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PREFACE

The content of this thesis is divided into two
parts. Part I consists of a review of graphical
methods in data analysis, whilst Part II presents
a graphical procedure for identifying growth
curves based on the fitting of a polynomial func-

tion to sections or ''blocks’ of the raw data.
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PART I

A REVIEW OF GRAPHICAL METHODS

IN DATA ANALYSIS




CHAPTER 1

THE HISTORY OF GRAPHICS

Graphical presentation of statistics was intro-
duced at the end of the eighteenth century. There
is some doubt as to whether the ’inventor” was William
Playfair (1759 - 1823) or A.F.W. Crome (1753 - 1833).
Playfair’s works on general descriptive economics were
illustrated i%ith some extremely good graphs, histograms
and pie diagrams, whilst Crome devised charts to des-
cribe geographical data of European states, chiefly
population figures and areas. Crome Jjustified the use
of his geometrical representation as follows:

""The proportions of the different sizes can how-
ever be more easily seen and grasped 1if they are brought
before the eye in the form of a drawing, because the
imagination is thus stimulated, than 1if these merely
appeared in the form of numbers, especially when these
consist of many digits as is often the case with areas
of states...... i (Crome {10} 1785)

A detailed investigation of the work of Crome and
Playfair has been undertaken by Royston {29}.

While holding the part-time appointment of Prof-
essor of Geometry at Gresham College (1890-94), Karl
Pearson gave a series of twelve lectures under the
heading nThe Geometry of Statistics.” These lectures
were mainly concerned with methods of visual presenta-
tion of descriptive statistics. The graphical approach

was a characteristic feature of Pearson’s teaching of



Applied Mathematics and it was only natural that he
should extend this approach to Statistics.

In 1915 Fisher {14} used 3-dimensional geometry
to describe a mean, a standard deviation, and Student's
ratio, and in 1925 wrote:

"The preliminary examination of most data is facili=-
tated by the use of diagrams., Diagrams prove nothing,
but bring outstanding features readily to the eye; they
are therefore no substitute for such critical tests as
may be applied to the data, but are valuable in suggesting
such tests, and in explaining the conclusions founded
upon them." (Fisher {15})

In 1949 Mosteller and Tukey {25}, in an article on
the use of binomial probability paper, drew attention to
the advantages of employing graphical methods to analyse
data.

"The speed of graphical processes, and the advan-
tages of visual presentation in pointing out facts or
clues which might otherwise be overlooked, make graphical
analysis very valuable." (Mosteller and Tukey {25})

In the early 1960's, possibly motivated by articles
by Tukey {31,32,33} on data analysis, statisticians began
detailed investigations into the use of relatively un-
sophisticated procedures for extracting information from
a body of data, in particular the use of graphical pro-
cedures. Tukey wrote:

"Procedures of diagnosis, and procedures to extract
indications rather than conclusions, will have to play a
large part in the future of data analysis. Graphical

techniques offer great possibilities in both areas."(Tukey{31})
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Wilk and GTlanadesikan, who were to play leading
roles in the development of graphical procedures for
the analysis of experimental data, also commented on
the need for graphics and informal data analytic pro-
cedures :

"If statistical methods are to be relevant to the
analysis of data, then a major concern of theoretical
statistics will have to be the provision of methods
which are useful tools for ’learning from’ data and for
bringing out the latent information in data. There are
greater possibilities of gaining insight into data
through, the use of an informal method, like probability
plotting, than through the use of a formal technique
like a test of significance.” (Gnanadesikan {17})

Tukey was particularly concerned that graphical
procedures should involve straight line ccmfigurations
as often as possible.

"Graphs are most effective ..... when reference
situations produce straight lines." (Tukey and Wilk {33})

When comparing data with a fitted curve he advo-
cated improving the histogram "oy employing:, instead, a
hanging rootogram (see Figure 1) in which the blocks
are attached to the fitted curve (not the base line)
and the eye merely has to check on the ’straightness"”
of thec>f rootogram.

The increasing use of computers in data analysis
has, in recent years, resulted in the introduction of

computerised graphical procedures. This was anticipated



': * QY -E Batch 1 2 3 4 5 6 7 8
!
; / Sample [5,5,15,5(5S]5%]55,{S5S.]85.(SS,
! o} I R ) .
i ( I/ A 15-81 . ++
' 3 / ey . .
e ! /_% o 1564 o
: L T 8 te ++ | e
£ W as T Sisay + o + °
T2 7 - -~ ] Py . +
:" i1 50 T - -1 ' 2 152 ° : e
BRI il ApRRR AN +
RENVEN . 150 + e o | + e | + °
1 i bt o N c o
2 { P Y L NS =t h
/o A-f - R Q’ 1481 : et +
¢ R _ VAT .
} T T 1461 o+
© ) 100 150 200 2%0 -
o 5 experiment. Dots an id line-31 con nd /?(’SU[[ ofaﬂa/ SI'S b /161/10‘{ A: ©
i ~Hall-normal glot of 4 2 expirizent. Do &;Zgﬂﬂi Jino81 contrasts. Crosses a gsis oy Method R: +
i ' U —
o T FIQURE 3 .
FiqurRE - ERRORS oOF sAmMPLiNG ArD
' ANALYSLS
S e
f
i
; 1
’ - -
1.9
— B S
74 BN Le c.d.fy. cdfx
(&
R ]
1.2
g ?
% 10 % P8
. © 20+ . .4
3
}- 30 -1 . [ .
>
7Z - 40 XY :&g py(‘])
. |50 =
10 60 - 10 E
7 3 1) -
- 70 O ¥x q
- 201 6o | 2o /
o J== 20— — 2304 o 0 -
L — — 1 1 ' g 4y(P)ax(p)

"‘“‘;“—‘ e e : Quantiles

FiIGurRE = | e e B

HANGING  RooTo GRAM FiquRrE B
TLLUSTRATIenl EoR  pP-pP

ArD Q@-@ PrLetrs



by Tukey:

"Computer-drawn graphs .... are going to be the
data analyst's greatest single resource.' (Tukey {32}),
and is now widely advocated:

"The graphic aspect of the computer can rapidly
convey the results of a computation to the man in a
form that can be quickly perceived i.e. through the
man's visual senses.” (Rall and Hall {3}).

"The thorough graphical analysis of residuals
as a routine is feasible only with a suitable com-
puter graphical output device.'" (Cox and Snell {9})

The history of granhics has indicated that only
in the last 15 years have the potentials of graphic
renrescntation received wide attention. Recent work
has tended to concentrate on the data analytic prop-
erties of praphics but new techniques are still being
devised for the simple presentation of data. Bachi
{2} recently nroposed a new device - Graphical Rational
Patterns - where integers are represented by a pattern
of marks enclosed within small square frames, to over-
comc the inadequacies of common graphical presenta-

tion of statistical data.



CHAPTER 2

PROBARILITY PLOTTING

(2) Uses

It is often uscful in data analysis to treat a
body of data as though it were an unstructured array.
A valuable representation of such data is provided by
the empirical cumulative distribution function
(e.c.d.f.) i.c. a plot of the i'th ordered value as
ordinate against i - 1 as abscissa (i =1, ....n).
Wilk and Gnanadesikag {39} have discussed in detail
the advantages of the e.c.d.f., in particular its
effectiveness as an indicator cf peculiarities~e,g.
asymmetry. They devised two basic kinds of plots for
situations where either (i) two e.c.d.f.'s are to be
compared, (ii) an e.c.d.f., is to be compared with a
theoretical c.d.f., or (iii) two theoretical c.d.f.'s
are to be compared. Their plotting nrocedures may be
described with the aid of Figure 2.

Corresponding to any ordinate value p there are
two guantile values 9x (p) and qy (p). A scatter plot
of %y(p) against qx(p) for various p, they label a
""quantile versus quantile” (Q-Q) plot. Similarly,
corresponding to any abscissa value g, there are two
c.d.f., values px(q) and Py(%)° A "percent versus
percent' (P-P) plot is just a scatter nplot of py(q)
against px(q) for various q.

If the two variables are identically distributed,

both the @-Q plot and the P-P plot will he linear,



with slope unity, pointed towards the origin. @-Q
plots are esmecially sensitive to discrepancies in
the tails of the distributions, whilst P-P plots

are sensitive to discrenancies in the middles of the
distributions.

Wilk and Gnanadesikan mentioned that extensions
and hybrids of the P-P and Q-Q nlots could be used
but suggested that more investigation was required
for the applications of these techniaues.

Probability plots act as useful, informal aids
to inference in data analysis. The essence of such
plots is to plot the n ordered "sample' values against
some rapresentative values from a presumed standard
distribution.. There are essentially two choices of
renresentative values:-

(i) corresponding quantiles of the reference

distribution such as i - 3 .. i _

n n + 1
(i=1..... n), nlotted on the appropriate
probability naper,

(i1) expected values of the standard crder stat-

istics from the reference distribution,

Under certain null statistical conditions a linear
configuration is obtained, passing through the origin.
The presence of real effects in a designed experiment,
the existence of distributional peculiarities, of

outliers, and of heterogeneities of variance all

result in distortions of the linear configuration.



Probability plots of the individual residuals in regre-
ssion studies are informative and sensitive tools. The
graphical analysis of residuals will be surveyed in
" Chapter 5. Probability plots may also be applied to
analysis of variance situations and a detailed study of
this particular application is made in Chapters 4 and 5.

(b) Choice of Plotting Positions

The choice of plotting positions on nrohability
paper has been investigated by Chernoff and Lieberman
{6,7} and Kimball {22}. Chernoff and Lieberman consi-
dered the problem of graphically estimating the mean,
v, and standard deviation, o, of a normal population on
the basis of a sample. If X;, X5, c... X, denote the

ordered sample values and P; P,, ....P_ the appropriate

n
values on the probability scale, then the nroblem was,
essentially, what values of theD 's yield good estima-
tes,  and 8? In order to translate the process of
visually fitting a straight line to the set of plotted
points into an analytical process, Chernoff and Lieberman
nroposed¢ the assumption that the visually fitted line
is a very good approximation to the line that would bhe
obtained by minimizine the sum of squares of the devia-
tions (in the x direction) from the line. This process
yielded sampling variances of the resulting analytical
estimates of the parameters u and o,

Their criterion for judging the optimal character
of a plotting method was the resulting magnitude of
the sampling variances of the parameters, in particular
the variance of 8 since this was the more difficult para-
meter to estimate. Thus they determined values of

-7 =



Py (i =1, .... n), for various n, which minimnized
the variance of an unbiascd estimate of o. They also
showed that a biased estinate of ¢ with minimum mean
square deviation could be found, and the plotting
positions for this estimate were given. They conclu-~
ded that the optimum choice of the p's depended upon
whether an unbiased estimate was necessary or whether
a biased estimate could be tolerated.

Kimball extended the work of Chernoff and Liebher-
man by pointing out that probability paper was not
used merely to estimate paranmeters. There were two
other purposes served in using probability paver,
namely, as a test as to whether or not the sample data
indicated that the ponulation was of the prescribed
tyne, and for granhical extrapolation at one of the
extremes, the nurpose most commonly served when plott-
ing data from an extreme-value population,

Kimball considered seven plotting conventions
hased on the assumption nroposed by Chernoff and
Lieberman. He applied these conventions to both nor-
mal probability vaper and extreme-value probability
paper. de of the conventions were those used by
Chernoff and Lieberman, namely, the convention which
minimized the variance of an unbiased estimatc of the
scale parameter and the convention which nroduced a
biased estimate of the scale parameter with minimum
mean square deviation. Kimball found that both these
conventions, when used for nlotting data on extreme-
value probability naner, gave plottine positions which

tended to lie along a curve. He concluded that for



both normal and extreme-value popnulations a conven-

b

1 O e ]

tion attributed to Blom {5}, . = (i - §)
| (n + 1)

would be satisfactory and simple to use for all three
objectives for using »robability paver. This conven-
tion carried an estimate of the scale parameter with
low mean square deviation.

¥imball emphasised that there was need for caution
in relying upon any single formula and that, parti-
cularly for extrapolation for an extreme-value popula-
tion, it would be well to supplement the plot using
roints determined from other conventions.

Blom's convention never seems to be used in nrac-
tice. Text books tend to use pnlotting conventions

based on order statistics, namely p; = or

_i
n+ 1
=3 -1 , between which there is no difference

n
except for small values of n. Both Chernoff and

D
i

Lieberman, and Kimball list the plotting positions

for these two conventions, for various values of n.



CHAPTER 3

GRAPHICAL METHODS FOR DISCRETE DATA

(7a) Rinomial-Like Counts

Dubey {12} proposed a graphical test to determine
whether certain experimental data could be described
satisfactorily by a bhinomial distribution. If, in the

standard binomial notation,

p(i) = Pr {X = i} = (?) ol 1 - )1 (1 =0,1,2, .... 0,

then

(i+1) = - 6 + (+1)8 . 1 L iieiieeenns (3.1)
EION e T @D

Hence, plotting p(i+l) against 1 should give a
p(1) i+l

straight line with slope (n+1)86 and intercept - 8
1-6 1-6
This method renuires an estimate of the unknown
parameter 6 in order to calculate p(i). 1In a later

paper Ord {26} noted the relationship i p(i) =
p(i-1)

- 6 . 1 (i=1,2, .... n) and sugges-

— e

(n+1) 8
1-6 1-9

ted that, using the assumption fiu p(i), where the fi
denote frequencies for the cases X = i (i = 0,1,2, .... n),

a plot could be made of i fi against i. This should

f.
i-1
give a straight linec with slope - 6 and intercept
(n+1)6 1-6
1-6

- 10 =~



Gart {16} suggested the simvler relationship

ip(i) = 8 N & 3
(a-i+1)p(i-1) + 1 v(i)

and showed how a plotting technique derived from (3.2)
is relataed to estimators and statistical tests of full
or nearly full efficiency. Using Ord‘'s assumption that

:Ei ap(i) we have =z set of estimators

A . . R -1 .
Bj_ = 3 fi{(n-1+1)fi__1 + 1 ‘Fi} (1 = 1,2,3 e o n).

A logical estimator of 6 is the weighted mean of the

N > Iw.0. . .
6;, namely 6 = i1 . If wo = (n-i+1)£, o o+ 1 £,

LW, *
~pif, et oL .
then ‘6 = €771 = 1 which is, of course, the best esti-
n_ii n

mator. If the gi 's are nlotted against i they should
cluster around the herizontal straight line with ordi-
nate 8.

Gart derived 2 normal deviate test to test whether
any particular gi deviated significantly from 6, He
vointed out that this test did not involve a specific
alternative to the binomial distribution and suggested,
as a reasonzble alternative, the bets-binomial distri-

bution,

p(i) = Pr{X=i} = (n

i

Bla+i,B+n-i) (i =C,1, .... n)
B(a,B)

where o and B are positive constants.
Manipulating as in (3.2) we obtain

i n(1) = 0-1 + i
(n=-1i+1)p(i-1)+ip (1) a+B+n-1 o+B+n-1

(i=1,2,....n). Following the notation for the binomial

- 11 =



analysis, this is equivalent to 5i = C + Di where C
and D are certain constants. If the data deviated
from the binomial in the direction of the beta-
binomial, the nlot of gi against 1 would be linear
with positive slope. The hynothesis that the data

is binomial as opvosed to beta-binomial can be formu-
lated as HO : D = 0; Hl :O<D<(n-1)_1. Gart showed
that a test based on D, the weighted least sauares
estimate of b, is eauivalent to the homogeneity xg
test. This is the asymototically locally optimal

test for the hinomial against the general alterna-

tive of 6 being itself a random variable. Hence the
"best'' test of the binomial can be related to a simple
and informative graph. The graph may also be used

to estimate the parameters of the beta-binomial distri-
bution:

(b) Poisson-Like Counts

Using his ideas set out in the previous section,
Dubey proposed a gravhical test to determine wvhether
certain exverimental data could te described satis-
factorily by a Poisson distribution. If, in the stan-
dard Poisson notation,

p(i) = Prix=i} = e 21 (i =0n,1,2,... @0,

then
(i) = 1 +1 i
p(i+1 X X
Hence, plotting p (i) against i1 should give a straight
p (i+1)
line with slope 1 and intercept 1. Dubey commented
. A A

- 12 -



that the method recuired an estimate of the unknown
parameter A in order to calculate p(i), and Ord

later derived an alternative relationship, namely

ip(i) =x (i =1,2,3,....), from which, using his
p(i-1)
assunption f. ap(l), it follows that a plot of 1fi
Ii-—l

against i1 should give a horizontal straight line with
ordinate ).

In a manner similar to his work on binomial-
like counts, Gart showed how Ord's plot could be
related to estimators and statistical tests. A logi-

cal estimator of X is the weighted mean of the esti-

~ if ~ Iw A
mators A, = i de.r= iiid . TFw =1, 4 then
fi 1 TW. -
1- il

X takes the value 1 which is the best estimator.
fart's normal deviate test to test wﬁether any parti-
cular ii deviated significantly from i did not, as

in the binomial case, involve a specific alternative
tc the Poisson distribution. He suggested, as a

reasonable alternative, the negative binomial distri-

bution p(i) = Pr{X=i} = (’“;3:11)(&)1 (1 . E)—r—i
| S \T T

(i =0,1,2, ..c..) (m,r>0).
In a similar manner to the derivation of (3.1),

Dubey has shown that

p (i) (1 + /r> C(r 1) (1+7/1) 1
p (1+1) i

and that a plot of against 1 should give a
p% +1

=

-

1

straight line with slopc - (r-l)(1+m/r) and intercept

Mo
- 13 -



m m . hd 3 3
<? + /rt) . This however, while providing a useful
/T

test in itself, was not directly compatible with
plotting techniques used for the Poisson distribu-
tion. Gart rectified the situation by noting that

Ord had nroved the result

ilp(i) = (r-1) [ ®/r /r (i=1,2,....)
p(i-1) 1+ /r 1+

which enabled a vlot of 1f i against i to indicate

£
either Poisson or negative binomial. 1In the latter

case this is equivalent to ii = C + Di where C and
D are certain constants. Thus, if the data is con-
sistent with the negative binomial, the nlot of ii
against i would be linear with positive slone.

A test of the deviation of the data from the
Poisson assumption in the direction of the negative
binomial alternative can be formulated as Hﬁ : D=0 :

H 0<D<1. Gart showed that a test based on D, the

1
weighted least sauares estimate of D, is eauivalent
to theo asvmptotically locally optimal test of the
Poisson distribution against the ncgative binomial
alternative. Hence the *best™ test of the Poisson
distribution can be related to the graph.

The logarithmic series distribution of Fisher

is defined by p(i) =Pr {X=i} = 08" (i = 1,2,3,....)
i
where oo = 1 (0<8<1). Ord decrived a plotting
In(1-86)
. i f. . . - .
procedurec using i against i which gave a line2r
—

i1



configuration with positive slope. This log series
plot could possibly be confused with the negative
binomial plot, a fact which motivated Gart to investi-

gate other plotting relationships, notably

i v(i) =8 (i=2,3....). The individual
(i-Vp(i-1)
estimators of 6 are 8. = 1 fi and the ei’s
(l—l)fi-l

should cluster around a horizontal straight line
when the data fits the log-series model.
(c) General

Grimm {20} showed that the types of some dis-
crete distributions could be readily discerned by
plotting data on Poisson cumulative probability
paper. Transparent stencils were used to quickly
recognize typical curve$ and to estimate their para-
meters. The class of compound and generalized
Poisson distributions is represented by curves in-
clined to the right, while the (positive) binomial
is versed to the left.

Ord plotted i p(i) against i for several dis-

p(i-1)

crete distributions. In the case of the hypergeo-
metric, beta-binomial and beta-Pascal distributions,
curves were obtained. Graphs are most effective
for identification purposes when linear plots are
produced so Gart's work on the derivation of straight
line configurations, e.g. beta-binomial distribution,

is a welcome eXxtension of Ord's technique.

- 15 -



CHAPTER 4-

GRAPHICAL METHODS FOR DATA FROM

UNIRESPONSE EXPERIMENTS

(a) Plots of Raw Data

In 1956 Pearson {27}, concerned at the lack of
evidence of étatisticians "geometrically examining
the pattern of their data" before analysing it arith-
metically,described simple ways for graphically in-
specting data in analysis of variance situations.
Figure 3 shows the data from an experiment with eight
batches of fertilizer, two independent samnles (Sl,
Sz) being drawn from cecach batch, each sample then
being divided into two sub-samples, the first ana-
lysed by method A, the second by method R. The var-
iable measured was "pcrcentage of potash'. Inspec-
tion of the plot indicates that with the exception
of Batch 3 the difference between the two results
for a given batch, using the same method of analysis
(either A or R) is small. The determinations by
methods A and R, however, differ considerably. Sub-
sequent arithmetical analysis confirmed these find-
ings.

(et

(b) Probability Plots

In 1959 Daniel {11} devised the half-normal plot
as a means for detecting real effects in a factorial
two-level experiment. Tukey {31} was later to comment
"The half-normal plot ..... will have more extensive

repercussions than most of us have dreamed of."

- 16 -



Half-normal probability paper is prepared by
deleting the probability scale P, for P < 50%, on
normal probability paner and replacing each P value
by P' = 2P - IQO , for P> 50%. The absolute value
of the i1'th smallest contrast is plotted as abscissa,

against P' = (1 - 1) (i=1,2,....n) where n is the

e

n
number of contrasts obtained from the experiment.

If there are no real effects then the plotted points
follow a straight line with positive slope, passing
through the origin. An estimate of the standard
error of the contrasts may be obtained from that
contrast for which P' is most nearly 68.3%. A par-
ticular treatment factor or combination of factors
is judged to have a real effect if the corresronding
contrast appears to be "too large" relative to the
other contrasts in the configuration of the half-
normal plot. The plot may then be revised by omitt-
ing these contrasts and cbtaining a new estimate of
the standard error of the remaining contrasts as
before (see Figure 4).

In his paper Daniel iflcluded some remarks of
Tukey's on half-normal plotting. Tukey had prefered
a grid that used the logs of the absolute values of
the contrasts since the corresvonding expansion of
the scale for smaller contrasts would be useful.
Tukey also suggested inclining the contrast axis
at 135° to the positive horizontal in order to bring

the expected position of the plot.for experiments

- 17 -



with no real effects to a horizontal straight line.
This would be useful in the sense of easier visual
identification of real effects but the plot would
lose its inherent Simplicity.

Daniel added that half-normal plotting could
- lead to (i) overestimation of the standard error of
the contrasts, (ii) the omission of a number of real
effects, (iii) faulty identification of recal effects
and (iv) possible non-detection of '"defective™ con-
trasts due to their being masked by real effects.
Birnbaum{4} commented that Daniel's granhical method
had the advantage that it gained, from the data being
analysed, a degree of confirmation for the under-
lying assumptions used in analysis of factorial
experiments, namely, that the contrasts are indepen-
dent and normally distributed with common variance
and that certain high-order interactions are zern.
Birnbaum was interested in an alternative to the stan-
dard assumptions and deveioped his own inference
procedure for detecting real effects. This cculd
be carried out within Daniel's graphical procedure.

In a series of papers {17,18,34-40} Wilk and
Gnanadesikan developed procedures to supplement the
analysis of variance table by helping i the follo-
wing respects: (i) 2llowing the data themselves to
provide guidance in developing an error term, (ii)
giving an easily grasned summary with a focus of
attention on interesting features such as real

effects, and (iii) being self-critical of underlying

- 18 -



essumptions. A useful obiective of analysis of
variance is the joint relative assessment of com-

parable quantities e.g. a collection of mean sauares
n

or contrasts in a

DY

exvreriment. Wilk and Gnana-
desikan lahelled procedures which involve the sim-
ultaneous comparison of comparable quantities
throurh the use of a statistical measure or stan-
dard, “internal comparisons" procedures. Thev
pointed out that Daniel's precedure nrovided graphi-
cal internal! comparisons of z set of single-degree-

of~freedor contrasts in uni response experiments.

faH

The graphical nature of the method facilitated the

i

gainine of insight concerning the structurs of the
data although in this respect they thought it
better to include hoth half and full-normal rlots.
Wilk and Gnanadesi%an devised granhical inter-

nal comparisons methods for analys

L
=
3
O
k$<
s
o
=
fed®
5
>
=3
ot
ob
[t

data. Their work may he summarized with the 2id

of the following classifications:-

RESPONSE STRUCTURE

Deconposition of

Inivariate Multivariate
Treatment Structure
A1l 1 4.F, T TV
A11 v d.f. 1T \'%
Mixed d.f, I11 VI

Cells IV, V and VI will be discussed in Chantasr 5.
Satisfactory vnrocedures for =11 T are full-

normal and/or half-normal »robsbility nlotting.



Experiments of the type denoted by Cell TI
are these where the treetment structure is to be
analysed in tervms of equal (>1) degreses of free-
dom decompositions e.g. the compariscn of all
main effects in a three-level factorisl experirment.
Wilk and Gnanadesikan deviscd a gamma probability

plotting procedure for such data where the n ord-

red

D
wn

quared contrasts arc plotted against approp-

griate %pantiles of the standard gamma distribu-
tion (scalec pavameter, A,=1) with shape parancter,

7. eanal t0 1u | ) .
to calculate an increasing scguence of proportions
What is involved in obtaining such a2 plot is
to calculate an increasing secquence of propnrtions
{bi} (i = 1,2,...n). defined ususlly as b, =
i -1, 2nd to determine quantiles X; such that
X.
i
-1 -t .
1 S 17t et ar = b, (i=1,2,...n)
0
Wilk, Gnanadesiken and Huyett {35} provided tables
listing ¥; for valuves of 7 and b,. The i'th
ordered squarec contrast is then plotted against

on ordinery linear by linear graph paper. Under

[N

a null hypothesis of no real effects the squared
contrasts may, as a reascnable approximation, be
considered as a random sample from a gawmma distri-
bution with scale paranmcter A unknowvn. It can
easily be showm that, under such an hvpothesis,

a straight-linc coafiguration should be obtained

with intercept O and slope 1. The contrasts
X

- 20 -~



associated with real effects wiil appear as ‘''too
large" deviations from the straight line pattern
(see Figure 5).

Gamma probability plots also serve as important
tocls for detecting other ''peculiarities™ in the
data such as distortions dus to '"maverick' observa-
tions and bad non-normality of the original data.
The gamma distribution has been considered as a
model in life-test problems and an evaluation of
this assumntion, or of an assumpticn of exponen-
tiality, is possible through a2 gamma plot of ord-
ered failure times.

Wilk and Cnanadesikan derived a graphical inter-
nal comparisons procedure {40} for Cell III of the
table i.e. for experiments where the analysis of
variance mean squares may have differing degrees of
freedom. The procedure consisted of plotting the
ordered mean squares against representative values
defined as expected values of appropriately condi-
tioned order statistics of standardized mean sauares.
If the ordered values of the mean squares are den-

oted by Slé_S2 €ovrooons éSK with corresnonding
degrees of freedom VqsVgeese eV respectively, then

the standardized mean squares are such that the

i'th ordered standardized mean sauare, Vi’ comes

2
Xy

from a distribution (i = 1,2,...K). One

i
Vi
of the 'null” assumptions is that the i‘th mean

- 21 -



Weight of cork boring (in ceatigrams)
o

100

i aad “ieoe
4 INPUT DATA
o BaT4 FROW PARCR BY 807 4O €OF. 3§ 3 X 3 TACTOREAL DESION
o | srmees vs pomcont
o
FIGURE 7
.
137
of E i
114
[¢34))]
060 +C
oA
Q46 B
. ®
023 ot
L
[ad
[+
(o] Q40 0.92 1.38 1.04 2.30 2.75
QUANTILES

30 40 50 60 70 8 90
1 . 'o 9
2 ] o a4
3 o+
4 e +ao0 Orientation :
N o
5 § Y
‘G A O +0 ‘S +
7 a + 8 W a
8t & 4 oo
9 a + [N ]
10 +e 0 A
1" ae0+
12 © SR +
HEE T ! e a0 +
TR Y & o of
w
L @15 a e o +
e
: 16 +a4a o ] !
RV s e + o ;
. &8 . s + € i
@) - e Ao 4+ o
N §2o 48 ° .
20 080 .
22 £ 333
23 e A o +
24 (X ¥ +
25 a o9
26 e+ a [}
27 e+ © a
28 ) 4 0 o+
FiqurReE 8
MEASUREMERTS of BARK
o CoRK TREES
1.38 %
S
5
1 L2l
e
* 104 |-
i Z
5 0.86 |- E
a &
g 069 1~ ]
: . 2
E . o
w 052 |- . ° o - g
L= ExS TOCx E (4
g o35 |- g
W v SxTOC o
g .
g ot | 0o ° .
© [
o leoal i | i 1 |
0O 078 156 234 3J2 3.90 4.68 546 6.24
Bl10)x 108,
FIGuRE b ‘ .
CEMERALIZED PrRoBABILITY
PLoT
(10)
(T = o)

FiquRE &

SAMMA

rrLoT



square is distributed (in the absence of real effects)
o2y ? )
as Vi where ¢ is a presumed common error var-

V.
iance.' It follows that E{Silvlyz,....vk} =

UZE{Vilvl,vz,....vk} and hence if §; = (constant)

E{Vilvl,vz,a.o.vk} then a plot of S, against 6,

(i =1....K) would be expected to yield a linear
configuration, with a slope which depends on o2,
when the mean squares do indeed conform to null
assumptions. Wilk and Gnanadesikan developed com-
puter programs for calculating the @,. With real
experimental effects, the associated mean squares
would tend to appear as devartures from the linear
configuration (see Figure 6).

(c) Transformations

An aspect of great importance in data analysis

is the transformation of variables. Data from a
factorial experiment with liarge interactions may
sometimes be described without interactions if it

is first transformed. Xruskal {23} developed a
graphical procedure where the data itself indica-

ted the monotone transformation which made the inter-
actions smallest. In the general linear model a

set of observations Y} (i =1,....n) are such that

it is supposed y, = E{Yi} = 3 giisj where the
k j R

£33 are known numbers and Bj arc unknown paramecters.

When this model fails to fit the data it may be

assumed instead that some appropriate transformation



N
]

f(Yi) satisfies the structural relationship,

z.

joi = - : i - »
i H{Zi} Zgiij where the function f must be

i
determined. Kruskal used the quantity

S(£,8)

as a measure of disparity between the numbers Zi
and the numbers Zs . Minimising S(f,B) over B
Kruskal labelled thc resulting quantity S(f), the
metric stress'" of the numbers Zi’ The "best' mono-
tone function, %, is defined to be the one which
minimizes S(f). E is an estimate of the true under-
lying function f, and is labelled the "minimum -
stress function™. The shane of this function, when
plotted, indicates the appropriate transformation.
In Figure 7 the minimum stress function is shown
2s a jagged curve and is compared with a logarithmic
function, the smooth curve. The asterisks show

Si + Yj + Gk against Yijk where YijP denotes the

~

) is such that E{zijr} =

AN

data and Zijk = f(Yijk

Bi + Yj + Gk‘



CHAPTER 5.

GRAPHICAL METHODS FOR

MULTIVARIATE DATA

(a) Plots of Raw Data

In a similar manner to his work on univariate
data described in the previous chapter, Pearson {27}
emphasized thc importance of a prcliminary graphical
study of data when several variables are used.
Figure 8 illustratcs such a study where the thick-
ness of bark deposit on cork trees is measured for
4 tree orientations, North, South, East and West.
Visual cxamination of the data indicates that, besides
the very noticeablce between-tree differences, there
arc differences in pattern associated with the
ordering of the trees. It is therefore doubtful
whether, without further sub-division, the data
would be sufficiently homogeneous to justify any
conclusions being drawn using multivariate normal
theory.

(b) Probability Plots

In their work on Cecll IV in the table in Chapter

4 Wilk and Gnanadesikan developed granhical internal
comparisons procedures for analysing 2™ factorial
experiments where main effects and interactions are
cach measured by a2 single-degrec-of-freedom contrast
and where several responses (e.g. purity, yield,
colour, density, etc.) are generated from the appli-
cation of a trecatment combination to an experimental

unit.



If %nowledge were available to permit equal weight-
ing to the responses, Wilk and Gnanadesikan suggested
that an informal study of the data could be made by
conducting a half-normal pleot on the absolute values
of a variable definad as the sum of the contrasts for
each of the resnonses corresvonding to a particular
effect.

Roy {28} suggested 2 way of looking at the multi-
resnonse proklem as a seauence of uniresponse pro-
blems. If, for example, response Dl is more imnortant
than resnonse Dzs then the bivariatce asscessments of
Dl and D2 should be thought of as the sequence of
assessments: (i) with respect to D1 marginally; (ii)
with resnect to Dz conditional on.Dl. Wil¥ and
Gnanadesikan extended this idea to 2 sraphical pro-
cedure involving two half-normal plots, both neccessary
for a study of the data. One piot used the absolute
values of the contrasts for response Dl only, whilst
the other used the contrasts for the Yconditional®
response WDz giveniDl", These contrasts are obtained
essentially from an analysis of covariance of 92 with
resnonse D1 as a covariable.

Wilk and fGnanadesikan devised a gamma nrobability
nlotting nrocedure for situations where there is no
mecaningful hkasis for ordering the responscs. If p
responscs are observed on each exrerimental unit then
the vector of.respensos for the i'th treatment com-

bination (i = 1....N, where N = Zn) may be denoted by



’ .
Yi (yil’ Yigseoo- Yip)‘ The N x p matrix of

observations is then given by
. '

71

Y2

YN

For uﬁiresponse situations, the conventional esti-
mates of the overall mean, main effects and inter-
actions may be viewed as being essentially given

by an appropriately chosen orthogonal transformation
of the observations. If R is the apnropriatecly
chosen N x N orthogonal matrix, then, for the multi-
response situation, application 6f the same trans-

formation R to Y yields

ml _ ; ’
GE) =RY where m = (ml,mzy,,..mp)

is !N times the overall mean vector and §_={xij}

(i=1,....N-15 j =1,....p). The rows of X are
"single-degree-of-freedom contrast vectors'" e.g. the

i'th row, denoted by x{ = '(xil, X ), hsas

12..,.xiP
as elements the contrasts for each of the p responses
corresponding to the i‘*th treatment effect.

Wilk and Gnanadesikan introduced a measure of
"size' to go with each of the contrast vectors. For

the contrast vector X s they assnciated the measure

AN

of size dj, defired by d, = x. A X4 where A is an

[®

arbitrary p x p nositive semi-definite matrix known
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as the ”compounding” matrix. If A was chosen to be
the identity matrix then di would be the sum of
sauares of the elements of X Under a null hypo-
thesis of no real effects tgg "distances’ di (0)
(i =1,....N-1) would be distributed as a linear
combination of independent single-degree-of-freedom
x? variables and may be expected to behave like a
random sample from a gamma distribution with scale
parameter A and shape parameter n unknown.

Before being able to carry out a probability
plot of the ordered distances, A and n need to be
estimated. A number L (¢N-1) of contrast vectors
which the experimenter is interested in studying
comparatively, is chosen, and the associated dis-
tances calculated. The inclusion of all these dis-
tances, some of which would be associated with con-
trast vectors that may not satisfy the null assump-
tions, in the process of estimating the parameters
may lead to a masking of the fact that some of
these '"non null" distances are ''too large'. A num-
ber X (<L) of contrast vectors which may well not
rcflect real effects is therefore selected. The
M(cK) smallest distances, which are therefore even
less likely to reflect real effects, are then con-
sidered as the M smallest of a random sample of
size K from a gamma distribution.

Wilk, Gnanadesikan and Huyett {36} prepared
tables for obtaining the maximum likelihood estimates

of A and n, X and a, for the above formulation.
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Finally, under a null hypothesis of no real effects,
a plot of the L ordered distances against the corres-
ponding quantiles of the standard gamma distribution
(A=1) with n=ﬁ should give a straight line with
intercept zero and slope 1. Distances corresponding
to real effects tend to a;pear as deviations from
the straight line pattern (see Figure 9).

Discussing their plotting procedure, Wilk and
Gnanadesikan pointed out that it would be desirable
to try various L,K and M values as well as different
compounding matrices. Each distinét plot would give
a different insight into the factorial structuring
of the data. Replotting after omitting distances
corresponding to real effects would also enable one
to see other peculiarities in the data. They stressed
the fact that their method was not meant to replace
preliminary analysis of the separate responses
through half-normal plotting. Multi-response analysis
could, though, importantly augment the separate uni-
response analysis.

In the case of experiments of the type denoted
by Cell V, the total set of N degrees of freedom is
restructured into k orthogonal sets of v degrees of
freedom each, plus one degree of freedom for the

mean. Wilk and Gnanadesikan derived the identity
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where the zij's are p-dimensional vectors obtained

by an appropriate orthogonal transformation of the
original observations. Under the null hypothesis
of no real cffects, they established that "distances"

V

, ,
a, (i =1,2,....K), where d, = 1 z.% A z,.
; @ 2, ), where d. 2 243 Azis s

could be considered as a random sample from a gamma
distribution with unknown scale and slope narameters.
A graphical internal comparisons procedure could
then be conducted in the usual manner by plotting
the ordered distances against quantiles of the
standard gamma distribution using an estimated shape
parameter.

There has, as yet, been‘no published work on
graphical procedures for Cell VI type experiments.

The probability plotting procedures advocated
by Wilk and Gnanadesikan are valuable tools in gain-
ing insight into the structure of the data. No
preselection of certain treatment effects for assign-
ment to error is necessary and the procedures assess
the consequences, if any, of a breakdown of the
assumptions used in generating the plot itself. The
data in a sense "analyses itself". Any attempt to
interpret these procedures as formal significance
testing procedures would be misguided. The data
analytic value of these plots is clearly greater than
any formal procedure.

Leaving the field of designed experiments, some

interesting papers have been written on various graphical
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techniques for handling multivariate data. Healy
{21} described an extension of the normal nlot for
multivariate situations, in particular for investi-
gating two-dimensional frequency data to see if it
indicated bivariate normality. If X and Y denote
the two random variables, Healy considered that it
would be natural to order the (x,y) points accord-
ing to their "distance” from the mean point. Under
the null hynothesis of bivariate normality, a trans-
formation to new axes and scales may be made in such
a way that the bivariate distribution is circular,
with equal standard deviations and zero-correlation.
The squared 'distance” of a point (x,y) from the

mean (a,B) is given by

n? =Q£:_°L\2 * (X;B_z - ZDCC_:_C& (tﬁ>
GX O'Y 0'X O'y

where, in practice, the population narameters ok,vy

and p must be replaced by their usual samnle esti-
mates. The variable D? has a x? distribution with
two degrees of freedom, for which the expected order
statistics of a sample of size N are given by

. + + ...t

2 2
1

2, 2+ 2 , 2+ 2 + 2
N-1

N N N-I N N-1 N-2

9 e & e o0

Z[

A plot of the ordered squarced distances against these
order statistics, should, in the null situation, give
a straight line configuration.

Healy investigated whether or not normal prob-

ability paper could be used for a X% plot and concluded
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that plotting D against expected normal order statis-
tics would detect outliers adequately and would check
bivariate normality. Sbecial x? probability paper is
now commerciélly available. His plots could be exten-
ded to three or more variables considered simulta-
neously.

(c) Other Plots

A novel way of plotting multivariate data was
developed by Andrews {1}. His idea was to imbed
high-dimensional data in an easily visualized space
of functions and then to plot the functions. If the
data is k-dimensional, each data point §'= (X, sXa,
e Xk) defines a function

fx(t) = x1(2)-%+x2sint+x3cost+xksin2t+x5c052t torerney

terminating at the Xy term. This function may be
plotted over the range - m <t < m and a function may
therefore be drawn for each data point E{ Close
points appear as close functions and distant points
as distant functions, so multivariate clusters and
outliers may be identified visually from the plot of
the functions (see Figure 10). This method has the
advantage of being unrestricted as regards the value
of k but, for visual purposes, only about ten points
may be plotted on the same graph. There is consid-
erable scope for further research into this type of
representation, narticularly with the use of various

k
g;(t) forms in the expansion f (t) = I x,8; (t).

i=1
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Cdj Plots for Regression Studies

Mallows {24} investigated the problem of deci-
ding how many terms should be included in a regre-
ssion equation. He was particularly interested in
the graphic display of some statistic which would
measure the adequacy of any chosen set. One such
statistic is the residual mean square. J.W. Gorman,
in a private communication, had suggested to Mallows
that a plot could be made of residual mean squares
in order of size against their ranks in this ordering.
Frequently, estimates of residual variance, converge
to a stable value as more terms are fitted, leading
to a feeling of confidence that a sufficiently com-
plete collection of candidate terms has been speci-
fied.

Mallows suggested that a convenient set of dis-
plays (one for each candidate term) could be obtained
by plotting values of the estimated regression coe-
fficients against the number of terms included in
the eqpation. In favourable cases a horizontal line
of points would appear in each display, correspond-
ing to a collection of eqpations in which the coe-
fficient studied is insensitive to the presence
or absence of other terms. Mallows then developed
a plot based on a statistic he labelled Cp. This
was essentially an estimate of the averagé predic-
tive mean square error of a fitted p-term equation.
If RSS:.l denotes the residual sum of squarces corres-
ponding to a fitted i-term equation, then Mallows
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derived the relationship

C - (n-k)RSS

- n + 2p
p RSS

k
where k = total number of candidate terms available,
and n = number of data values.

In a plot of values Cp against p, a point lying near

the 45° line corresponds to an equation in which all
the important terms have been included. A point
lying some way above the line corresponds to a badly
fitting equation. Figure 11 illustrates a Cp plot
for data with 6 candidate terms, the points being
labelled by terms omitted. It seems clear that terms
1, 3, and 4 are unimportant, both individually and
jointly.

The disadvantage of this method is that it
requires the specification of a supposedly exhaus-
tive set of candidate terms. In a private communi-

cation Tukey suggested using the index n+p RSSp in
n-p *

the same way as Cp'

The usefulness of graphical analysis of resi~
duals in regression studies has been discussed by
Tukey and Wilk {33}, Wilk and Gnanadesikan {39} and
Cox and Snell {9}. All agree that various plots of
residuals can be sensitive and informative tools for
checking on the adequacy of the model, the appropria-
teness of independent variables, the existence of

cutliers, the relevance of extraneous variables and
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distributional peculiarities. Valuable nlots include
(i) plots against fitted wvalues for detecting non-
constancy of wvariance, (ii) plots against variables
employed in the fit, where a curved relationship
would indicate non-linear regression on that variable,
(1ii) plots against variables not employed in the

fit to test the relevance of that variable and (iv)
plots of the ordered residuals against the expected
order statistics from a standard normal distribution
to test for non-normality of the distribution of the
errors.

Cox and Snell emphasised that the analysis of
residuals would indicate the nature of a departure
from an initial model but would not explicitly indi-
cate- how to extend or replace the model.

(e) Plots for Contingency Tables and Studies of

Association between Variables

A procedure for graphical analysis of large two-
way contingency tables was proposed by Fienberg {13}.
A certain quantity was added to each cell in the
table in order that no zeros would be present, and
then, for each cell, a normalised "contrast’* was
computed, which was a function of the cell frequency
and the frequencies of closely neighbouring cells.
These contrasts were divided into four groups, so
that contrasts within each group were uncorrelated.
In order to test the null hypothesis that all inter-

actions between the levels of the two variables are



zero, each group of normalised contrasts was plotted
separately on half-normal probability paper, assuming
that the contrasts within each group formed an inde-
pendent sample from a normal distribution with zero
mean and unit variance. Contrasts deviating signi-
ficantly from the theoretical unit variance liné thus
exhibited strong interaction. To separate the strong
interaction contrasts from the rest, Fienberg used
boundary lines suggested by Daniel {11} and Birnbaum
{4} (see Figure 12). He pointed out that his pro-
cedure could be extended to handle the analysis of
three-way tables and was a development of the pro-
cedure presented by Cox and Lauh {8}, who adapted
half-normal plotting to the analysis of contingency
tables in which there was a binary response variable.
A drawback to Cox and Lauh's procedure was the fact
that their plotted points were not independent, and
thus the results for half-normal plotting were not

| strictly applicable.

Shahani {30} has given a rather simple graphical
procedure for testing association between two random
variables. It ignors the points around the central
origin of the scatter diagram and involves a test
statistic based on the number of points found in four
specified regions. The test compares unfavourably
with Fisher's Z-transformation but it is much simpler

to use.
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CHAPTER 6

GRAPHICAL METHODS FOR GROWTH CURVES

Inspection of the preceding chapters reveals
problem areas in which no work or very little work
has been published concerning the application of
graphical methods. One such problem area 1is growth
curves. This 1s rather surprising since various
methods of residual analyses have been successfully
applied to model identification in regression studies
and these studies have direct analogies in time
series models, which take the form of regression
models with time as an independent variable.

One graphical approach for identification of
growth curves has been advocated by Gregg, Hossell
and Richardson {19}. The seven basic growth curves

with their characterizing equations are:-

(i) Linear, y = a + bt,
(ii) Quadratic, y = a + bt * ct2,
(iii) Exponential, y = ae”™",
(iv) Logarithmic Parabola, y = ae” + ct o
. o . bt
(v) Simple Modified Exponential, y = K + ae ’
* ct
D
(vi) Gompertz, y = ae °
.. , , ~1
(vii) Logistic, y = (K + aebt) ,

where y denotes the growth variable, t denotes time,
and a, b, ¢ and K are parameters.
The following relationships may easily be

obtained from the respective characterizing equations:
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)
(ii)
(1ii)
(iv)
)

(vi)

and(vii)

Linear, dy 1is constant,
dt

Quadratic, %X = b + 2ct,
t

Exponential, (l) %X is constant,

Logarithmic Parabola, <;) gz = b + 2ct

Simple Modified Exponential, log (%X)
t
log (ab) + bt,

Gompertz, log(l . dy\ = 1log (bc) + ct,
y dt

Logistic, log/1l . gx = log (-ab) + bt.
)’a t

Using the word "slope™ to mean the rate of change %X’
t

and estimating the value of y at any point by a moving

average (m.a.), Gregg, Hossell and Richardson produced

the table below:-

i .
Compute and Plot If the Plotted Then the curve
Against Time:- | points vary about |suggested is:-
a straight line
which is:~
Slope Horizontal Linear
Slope At an angle to the Ouadratic
horizontal
Slope/m.a. Horizontal Exponential
Slope/m.a. At an angle to the| Logarithmic
horizontal : Parabola
log(slope) Sloping down to Simple modified
the right Exponential
log(slope/m.a.) Sloping down to Gompertz
the right
log slope/(m.a.fi] Sloping down to Logistic
the right
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The qpantities in column 1 of the table, they lab-
elled "slove characteristics' and their procedure
for identification was to plot the slope charac-
teristics of the data and inspect these plots for
any indication of a satisfactory model.

This method has two practical difficulties
whose importance depends very much on the smoothness
of the data available. There is first the problem
of measuring the slopes at different times. This
can be done approximately by taking first differen-
ces and smoothing these with a weighted moving aver-
age. Alternatively one can smooth first and then
take differences or find the slope of a fitted trend
line. Heither approach is very satisfactory. One
can similarly auestion the use of a moving average
to estimate the value of y at any point. The second
problem comes from the fact that the method depends
on an eye comparison of different plots to see which
looks most like a straight line. One can, however,
be misled in this since the vertical scales are all
in different units.

Two other graphical ways of deciding which model
is appropriate are (i) plot the data on graph paper
using axes designed to give straight lines if the
data comes from the appropriate model, (ii) obtain
plots using the difference properties of the curves
although these plots could vary considerably about
their expected configurations because of the large

variances involved. Some difference vproperties are:-
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(a) Ayt is constant for linear data, linear for

quadratic data.

(b)_EZE is constant for exponential data.
Yt

(c) Ayt is constant for linear, exponential

and simple modified exponential data.

(d) ffﬁ§_{;__ is constant for exponential and

Gompertz data.

is constant for exponential
1
(;t-;> and logistic data.

(f) Alog Y is constant for exponential data,

(e)

linear for logarithmic parabola data.

(g) V¢ is constant for exponential data.
Ye-1

Both these methods again depend on an eye comparison
of different plots whose vertical scales are not
alike. 1In Part II a graphical method is proposed
for identifying growth curves which surmounts this

deficiency.
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PART 11

A  GRAPHICAL IDENTIFICATION PROCEDURE

FOR GROWTH CURVES




CHAPTER 7

FOUNDATION OF THE IDENTIFICATION

PROCEDURE

Let the growth data we wish to identify be deno-
ted by Y,, Ya,eeeecYp, the data being measured at
equal intervals of time such that the value Yi occurs
at time t = i (i = 1,2,....n). The data is divided
into overlapping "blocks'", each block consisting of
a fixed number of consecutive data points, usually
between 10 and 25 depending on the magnitude of n.
The division is such that each block is comprised of
an odd number of data points, éay (2m+1), i.e. the
k'th block, Bk say, consists of data points Yk"Yk+1’

coeoY with corresponding time base t = k, t = k+l,

k+2m
eeee t = k+2m (k = 1,2,....,n=-2m). For convenience
the time base of each B, is transformed into (2m+l)
equally spaced points in the interval -1l¢x¢+1. This

is effected for Bk by the transformation
T, :x = t=-k -1
k m
which also has the property that the natural order of

the original time base is preserved and further

k¢+» -1 and k+2m «++1, We shall use the notation Bk

Ty Ty

to denote the block B, transformed by Tye

To each block B, we fit the model
r=h

£x) = 2 o g x)

r=0
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where the aﬁk) are unknown parameters and gr(x) is

a known polynomial of degree r in x which is fixed
for the particular data under consideration. 1In
deciding the value of h, the order of the polynomial
fit, it was observed that too high a value results
not only in computational difficulties but also in

a relatively useless oscillatory fit to "noisy" data,
while smaller values yield a smoother fit and easier
numerical handling. For example, Figure 13 illus-
trates quite well the difference in smoothness bet-
ween a seventh order and a fourth order polynomial
fitted to a block of '"noisy'" exponential data., Tests
such as that illustrated in Figure 13 together with
computational algebraic difficulties encountered in
the least squares process (see Chapter 8) led us to
accept the value 4 for h as providing an acceptable
level of smoothness of fit with a tolerable measure
of algebraical and numerical manipulability.

() (k) (k) (k) (k)

Least squares estimates, ay, a1, az, as, a,
of éfz éfz éfz érz éf) respectively, are obtained
for each block By+ In Chapter 9 we investigate re-
lationships between the estimates or '"coefficients'"
themselves and their dependence on k and so develop
some plotting procedures which aim at identification
of particular types of growth data. We shall refer
to this process as'"the sliding block technique.”" The

possible models are restricted to the seven mentioned

by Gregg, Hossell and Richardson {19}, namely linear,
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qguadratic, exponential, logarithmic parabola, simple
modified exponential, Gompertz and logistic.

Much choice is available for the polynomials
gr(x) e.gl the Taylor series (so that gr(x) = xr),
Legendre polynomials, Tchebychef polynomials etc.
Each have their own particular advantages (and dis-
advantages) in fitting procedures. However, in our
investigation the gr(x) are chosen in such a way as
to attempt to minimise the ratios of the standard
deviations of the coefficients a;k) (G =0,1,s0..4)
to their absolute values, thus obtaining more reliable
coefficient plots for identification purposes. While
the full details are left until Chapter 10 it should
be mentioned that such gr(x) are tailor-made to a
particular set of data but are in no way block depen-
dent.

Finally the identification procedure is tested
on artificial growth data, both '"clean" and '"noisy",

and on some real growth data,
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CHAPTER 8

THE LEAST SQUARES FITTING PROCESS

In this chapter the general form of the coe-
fficients a;k) (j = 0,1,...4) is obtained by the
method of least squares. Throughout Part II of this
thesis the notation § will denote summation over

integer values from i = k to i = k+2m,.

In the k'th block By the data values are Yk’

Yk+1""’Yk+2m with corresponding x values Xp = = % ’
Xk+1 = - m""l 9 vessereee Xk+m = O, eoe s o9
m
Xppom = M, so that
m
To the block Bk we fit the model
r=4 (k) )
£(x;) = E;b a.  g.(x;) , (i =kk+l,...k+2m),
where
j=r () .
gr(xi) = i P'I"‘j X% , (r =0,1,2,3,4),

j=o

the p's being constants whose values are eventually
(k)

found in our attempt to minimise S.Dev.(aj )

(k)I

j

a

(j = 0,1,....4) for the data under consideration.
We make the assumptions that Var(Y|x=xi) = g2,

a constant, and Cov(Yi,Yj) = 0 for all i,j (i ¥ j).
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The leéast squares estimates afk), a{k)....agk) Qf
agk), a§k)...° ask) are those values of agk), afk)
. a£k) which minimise the quantity

r=4
[ o - 7 e g .
; =

r=0

If g(r,s) =1 gr(xi) . gs(xi), then least squares
i

theory gives

g(0,0) g(0,1).....2(0,4) a ¥
g(1,0) ax(k)
oK) =
a
0Ls(k)
g(4,0) g(4,4) o (1)
LY; go(xi)
1
E_:Yi gl (xi)
1
Y gy 0xy)
Yy 85(xy)
FY; 8y (x3)

The calculation of the g(r,s) terms is given in

Appendix 1. The inversion process for this matrix

is simplified by
' . 1 @ 3 @)
(i) putting the terms p1 , Py , P1 , DPs
(4)

and ps- equal to zero as in Tchebychef,

Hermite and Legendre polynomials,

- 44 -
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and (ii) omitting terms of smaller order than
O(m'z), so forming a "truncated" matrix
from the original.

To check that these approximations did not sig-
nificantly affect the matrix clements a programme
was written to calculate the elements of the ori-
ginal matrix above and the truncated" matrix for
values of m from 5 to 13. For convenience the p's
vere arbitrarily given Taylor series values i.e.

() ()

P = 1, p, = 0(r $0); j=0,1,....4.

A typical result (m = 7) was:-

ORIGINAL {g(r,s)} MATRIX

15.0 0 5.71428 0 3.89504
0 5.71428 0 3.89504 0
5.71428 0 3.89504 o) 3.14178
0 . 3.89504 0 3.14178 0
3.89504 0 3.14178 0 2.74317

TRUNCATED FORM OF {g(r,s)} MATRIX

15.0 0 5.71428 0 3.89524

0 5.71428 0 3.89524 0
5.71428 0 3.89524 0 3.14275

0 3.89524 0 3.14275 0
3.89524 0 3.14275 0] 2.74587

The largest error in an element due to truncation
was 0.01%, a clearly acceptable figure. Similarly

acceptable figures were obtained for other values of m.
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The inverse of the truncated {g(r,s)} matrix is
given in Appendix 2. To check the working, a pro-
gramme was written to compare this inverse with the
inverse of the original {g(r,s)} matrix obtained by
a Fortran subroutine, for values of m from 5 to 13
using Taylor series p values.

A typical result (m=7) was:-.

INVERSE OF TRUNCATED {g(r,s)} MATRIX AS

AS IN APPENDIX 2

0.237970 0 -1.01195 0 0.818274
0 1.12743 0 -1.39738 0
-1.01195 0 7.64035 | 0 -7.30850
0 -1.39738 0 2.05002 0
0.818274 0 =7.30850 0 7.57098

INVERSE OF ORIGINAL {g(r,s)} MATRIX USING

FORTRAN SUBROUTINE

0.239449 0 -1.01132 0 0.818284
0 1.12946 0 -1.40025 0
-1.01132 0 7.64143 0  -7.31582
0 -1.40025 0 2.05426 0

0.81824 0 -7.31582 0 7.58154

The largest error in an element is 0.14%. The errors
increase with increasing values of m but at a declin-
ing rate. The largest error for m = 13 is 0.94%, an

acceptable figure.
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Denoting the elements of the inverse of the

truncated form of the {g(r,s)} matrix by G(r,s)

(r=0,1,....4; s=0,1,....4), a good apnroximation
k (X))
to the coefficients ap , ¢eeveeen ay is given by
(k) |
ag G(0,0) G(0,1) viveveene G(0,4)
(k)
ay G(l,O)
(%) :
asz =
(k)
as
(k) '
ay : G(4,0) tvcvenvennnnscans G({4,4)
(0)
§Yi Po
Ty (1)
Y. Do X.
@ (2)
§Y1 (Po xiz+ ...... (8.1)
s (3 (3)
5Y; (Po X3°+ p2 x5
RN () ) (4
iY; (po X%+ Dy X%+ Dy )
where
(%) . —
Var(aj ) = G(j,j) . 0%, (i=0,1,...4)... (8.2)
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CHAPYER ©

PLOTS FOR MODEL IDENTIFICATION

In the following sections growth curve models
are investigated in order to build up plotting pro-
cedures from the "sliding block" technique described
in Chapter 7. The procedures are then inspected to
see if one in particular would suffice for the identifi-
cation of the seven basic models.

(a) Linear Data

If the data under inspection was perfectly
linear, then, at time t, Y, = a + bt where a and
b are unknown parameters. Applying the transforma-
tion Ty to the block B, we put t = mx + k + m, whence
in Bk:
Yi = a+b(mxi+k+m) = (a+bk+bm)+bmxi,(i=k,k+1,,..k+2m).
To tﬁis data we are fitting the model

(k) (x) (¥)
f(x;) = a0 S SORT pgl)xi+az (pgz)x;+p§2)) +

(x) (X)
o3 (pgs)X§+p§3)xi) + oy (p§4)x;+p§4)X§+p£4))...(9

Equating coefficients we obtain, for non-zero 3}3),

(3=0,1,...4)

(x) (1)
o1 Po = bm,
(x) (0)
Qo Do = a + bk + bnm,
(k) (k) (k)
Qa2 = (g = 0y = 0,
: (k) :
In practice we replace the aj by their least squares
(k)

estimate aj . The following plots would be useful
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as aids to identifying linear data:-

(i) A plot of a{k) against k would give a
straight line parallel to the k-axis having
intercept bm

(1)
Po
(ii) A plot of aék) (vert.) against k (horiz.)

would be linear, with slope b and

(
Poo)

intercept fa+bm .
of©)

(iii) A plot of agk) against agk) for increasing
k would give a straight line perpendicular
to the agk) axis. The plotted points would be

equally spaced along this line.

k)

(iv) A plot of ag against agk) would give a

series of points along the agk) axis.

(%) (1) op o{0)

Similarly for agq against a or ay .
(v) A plot of a£k) against agk) (or agk),a£k))
(k

would give a single point on the al“) axis.

(b) Quadratic Data

If the data under inspection was perfectly guad-
ratic, then, at time t, Y, = a + bt + ct? where a,b
and ¢ are unknown parameters. Transforming as in (a)

we obtain for Bk:

Y, = (a+bk+bm+ck?+2ckm+cm?) + (bm+2ckm+2cm?) X3

+ cmzxg, ‘(i = k,k+1,...k+2m).

Fitting model (9.1) and equating coefficients, we
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obtain,

Replacement of the aj*

J:. "suggests the following plots as aids to identifica-

tion: -

(1)

(11)

(iii)

(1v)

)

3)

for non-zero po @ H O%“" I
Po(2z) = cm2 >
Po(l) = bm + 2ckm + 2cme,
Po +a:k pi®h - a + bk +bm
- a0
fk')

A nlot of a;kl against k would give a straight

line parallel to the k-axis having intercept
cme
P(2)

A plot of aEKE'(Vert.) against k (horiz.)

would be linear, with slope :2cm and

Po (1>

intercept/bm+: cme

Po (1>
A nlot of a<fk” against a2k” for increasing k
would give a straight line perpendicular to
the ai-" axis.
A plot of aél%'against a;kl would give a
straight line perpendicular to the a2k” axis,
the points being equally spaced along the
line.
A plot of af ” against a3 or a*k” would
give a series of equally spaced points along

the a/k) axis.

by their least souares estimates

cmz2 ,



(vi) A plot of agk) against agk) or a&k) would

give a series of points along the agk) axis.

(c) Exponential Data

If the data under inspection was perfectly expo-

ebt where a and b

nential, then, at time t, Yt = a
are unknown parameters. Transforming as in (a) we
obtain for By?

Yi = a eb(mxi-l-k-l-m)

From (8.1) and Appendix 2,

af®) = 6(0,0) Zv;p{? + 6(0,2) TY; (p{PxgepfD)
1 1

+ 6(0,4) 23 (o8 xyepd g ent )
1

Hence on substituting for Yo

bmx .
agk) = G(0,0).péo).a.eb(k+m) Te mx1+ G(O,Z).a.eb(k+m)
i

bmx, bmx .
fe * (sz)X§+P§2)) + G(O,4).a.eb(k+m) Ee i

(p§4)x;+p§4)X§+p§4)),

bmx.

1 (6(0,0)p(®

ék) - a.eb(k+m) Ze

bhx
60,p{M) + 3¢ ix2(6(0,2)p{D460,43pf)) +
1

bmx. 4
Lo 1xiG(O,4)p§4{] .

ioeo a +G(0’2)p2(2) +

Replacing X; by its value i-k-m and changing the var-
m

iable of summation to be r = 0,1,...2m, agk) takes the

- 51 -



form
2m

aebk Z ebr{(G(o ,0 )pol )+G(o ,2)p2(2)+tG(o ,4)pH b +
=0

fr-m: (G(0.2)po (2 )=>-G(0,4)p24)) + ,r-rK"G(0,4)pQa4)> ,
m } km J

L . i-k+1"
whence it 1is easily seen that a%k 1 * é), a con-

— 3 F ANY

stant.

Similarly it can be shown that & K*1” = P (3x1,2,3,4).
aj }

From (8.1) and Appendix 2 we may similarly derive

the relationships:

ai(k) = aebk Z™ ebr({ (G6(1,1)pQ1)+G(1,3)pP))+frznls
1 m }

r=o0o

G(1,3)p0A3)} ,

alk® = a ebk z” ebr{ (G(2,0)pu(0)+G(2,2)p2(2)+G(2 ,4) pPb
r=o0

+ .r-m 2 (G(2.2)p, 2)*GC2.4)pLih * fr-m »G(2.4)p, (4)}
m “m !

qﬁk) s a ebk %m ebr{ (G(3,1)po1 )tG (3, 3)pPh* fr-m.
r=0 km '

G(3,3)po(3h

and



2m
all) = a eP¥ 5 PTr(6(4,00p M +604,2)p{ P46 (4,0)p{M)
r=0 .

+ 2oy (64,208 46(4,0)pf) s xomy v (e, 1,
m m

. (k)
It follows that “r (r = 0,1,2,3,4; s =0,1,2,3,4;

(k)
s

r ¥ s) are constants whose values depend on m, b and
the p terms.
The following plots would therefore be useful for

identifying exponential data:-~

(k1)
(i) Plots of aj against k (j = 0,1,2,3,4)

23

would give a straight line parallel to the
k-axis having intercept eb.

(ii) Plots of aﬁk) against agk) (r ¥ s) would
give straight lines passing through the
origin. As k increases the plotted points
becom¢ increasingly far apart along the

lines.

(d) Simple Modified Exponential Data

If the data under inspection was perfectly simple
modified exponential, then, at time t, Yt =K + a ebt'
where a, b and K are unknown parameters. Transforming
as in (a) we obtain for Bk:

b(mxi+k+m)

Yi = K+ a e
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From (8.1) and Appendix 2, it follows that

b (mx. +k+m)

)+6(0,2) £(p¢?)xt+

af®) = 6(0,0) zp{® (xrae 2
1 1

b (mx.+¥+m)

pi?) (xae ) + 600,4) 2§ xgen{Mxi+
1

b (mx . +k+m)
p{y(keae E 0y,

ice. al® = x[500,00p( (2m+1)46(0,2) (0D Txiep(?)
1

(m+1))+6(0,4) (0f ) 2x+pf®) zxzep{® (2me1y]
1 1

bmx .
+ a.e? (M I5e " 60,00p89+6(0,2)p2)+6(0,4)p{H))

1
bmx. bmx
+Ze  x2(6(0,2)piM+6(0,00pf) + 3o T xt
1 1
Gco,4)p§4{]~~-~~~-(9.23

In Appendix 3 it is shown that the coefficient of K
is non-zero.

Similar relationships may also be obtained for
a£k), agk), agk) and a&k), but these differ from agk)
in the essential feature that the coefficient of K
is zero, a fact which is established in Appendix 3.

These results indicate that the following plots
would be useful for identification of simple modi-
fied exponential data:-

(k+1)
(i) Plots of aj against k (j = 1,2,3,4)

NS
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(ii)

(iii)

would give a straight line parallel to the
k-axis having intercent eb. A plot of
g (k1) .

0 against k would not take this con-
ag
figuration (since X # 0).

Plots of aﬁk) against agk)(r = 1,2,3,4;

s =1,2,3,4; r % s) would give straight
lines passing through the origin. Since
parameter b is negative, the plotted points

would become increasingly close as k increased.
Plots of a(k) ageinst agk) (G = 1,2,3,4)
would give straight lines not passing through

the origin.

(e) Sigmoid Data; Gompertz and Logistic

If the data under inspection was perfectly Gom-

pertz or logistic, the theoretical forms of the coe-

fficients a}k) (j = 0,..4) become too complicated for

any immediate plotting procedure to emerge. We can,

however, reason what should happen if we bear in mind

that we are in practice moving "along" the s-shaped

trend curve as we pass from block to block.

There are three distinct phases:

(1)

Growth is relatively slow at first and then
begins to rise exponentially. The first

few blocks will, in fact, be composed solely
of such data and we might expect plotting
procedures applied to these blocks to give

results consistent with exponential data.

~ §§5 -



(1i) In the middle of the trend curve there is
a point of inflection. Blocks composed of
data points in this region would be expected
to give plots indicating linear data.

(iid) There 1is, finally, a relative decline in
growth as the trend rises to an upper asymp-
tote. “lotting procedures applied to blocks
composed of data at this "top end" of the
curve would be expected to give results con-
sistent with simple modified exponential
data.

Plots involving the coefficients G =0,...4),
when applied to perfect sigmoid data, v/ould therefore
give patterns indicating a merging of exponential,
linear and simple modified exponential data. It
does, however, appear that we shall be unable to
distinguish between Gompertz data and logistic data,

(f) Logarithmic Parabolic Data

If the data under inspection v/as a perfect log-

+CH+
arithmic parabola, then, at time t, ¥ = ebt C
where a, b and ¢ are unknown parameters. The theore-
tical forms of the coefficients a ( jJ = 0,1,...4)

again become too complicated for any immediate plott-
ing procedure to emerge. It is possible, however,

that if ¢ is small, plots would give configurations
similar to those expected from exponential data.

The best course seems to be to apply plotting pro-
cedures to artificial logarithmic parabolic data once
the p terms have been fixed and see if these result

in distinct configurations. This 1is done in Chapter 11.
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Sunmary

In order to avoid having to make an eye com-
parison of different plots, with possibly different
scales, when identifying the growth model, it is
desirable that one particular plot involving some
(or all) of the coefficients a§k) (G = 0,1,...4)
should give markedly different configurations for
the various models. It is also desirable that as
many of these configurations as possible are straight
line configurations since, as Tukey has remarked in
{33}, a straight line is most easily discernible by
the eye.

A plot that satisfies these requirements is the
plot of agk) against agk). Determination of the p
terms (see Chapter 10) and subsequent application of
the"sliding block" technique (seec Chapter 11) showed

(9

that coefficients a and agk) are positive for
perfect exponential data whilst agk) is negative for
perfect simple modified exponential data. The centre
column of Figure 14 illustrates the configurations
that a plot of a(k) against agk) would take for the
various growth curve models. We can clearly distin-
guish between the models and therefore surmount the
principle deficiency of the slope characteristics
method advocated by Gregg, Hossell and Richardson{19}

since we do not have to make an eye comparison of

different plots each possessing a different scale.
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Another plot which would distinguish between
the growth curve models is the plot of agk) against
agk), although this is not quite as efficient as the
previous nlot since all the configurations are in the
same quadrant and one configuration is a quadratic
curve. It mnevertheless has the advantage of greater
accuracy in one of the coefficients (see Chapter 11).
Appendix 3 shows that the coefficient of ¥ in (9.2)
is positive and since parameter K is positive for
simple modified exponential data it is easily shown
that the configuration for this model is a straight

o

line cutting the positive a axis. The right -
hand column of Figure 14 illustrates the configura-

tions for this plot.



CEHAPTER 10

CHONOSING THE "p" TERMS

Since some (or all) of the coefficients a§k)
(j = 0y...4) will be used in plotting procedures, it
is desirable that the variances of these coefficients

1(k)

be small. Consider, for example, coefficient a

From (8.2) and Avpendix 2 the standard deviation of

agk) is

-1 -} 1
[;gl)pgsi] .B .[§§3)2J+2p§3)p§3)n+p£3)zé]i Oe ver.(10.1)

We could reduce this standard deviation by

increasing pgl), but since, from (8.1),

2l = 6, 1pf ey x40 (1,508 0y x 26 (1,300 f 0y x,
i 1 .

-1
=[§§1)p§3)2§] Ep§3)2J+2p§3)p§3)n+p£3)ZE)gYixi
1

+(-pgs)ZD-p§3)n§3)E)¥Yixi3+(-pgs)p£3)D-p§3)ZE);Yix;]
1 1

-1
=[Po(1)Po(3)B] {Po(s) (-DgYixi3+J§Yixi)+p£3) (-E?Yixiﬁu
DZ.Yixi)] ] .......'...I.......l‘....'.'.....(10.2)
i

this action would also reduce a{k) in the same propor-
tion. Hence lowering the standard deviation by increas-

ing p&l) would only result, in effect, in a different
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scale on the ar ; axis of a plot and would not make
the calculated coefficient more reliable for any given
block of data points. It would be rather like a
confidence interval for a parameter being altered

from 10 + 1 to 5+ J.

We could, however, manipulate the terms po

§é3) (3) in order to minimise the ratio of the

and p:
standard deviation to the absolute value of the cal-
culated wvalue of the coefficient. From (10.1) and

and (1o .2) this ratio is given by

S .Dev oCafkh

R — - - -

’

U 3>2J+2 p PM 3W 3>2e] ¢ B*. a
; - =T

ip} J(-DEY.x.s+J£Y.x.)+p}  (~EEY.x.s+MY.x.)

1 1 1 1

The quantity B depends only on the block size and is
therefore constant for a fixed value of m. The quan-
tity a is a constant and we might note that even the
estimate of a, obtained from the squared residuals
of the polynomial fit to the data, is unaffected by
choice of individual p terms, provided we always use
a fixed order polynomial.

We attempt, therefore, to fix the terms p<P”

and p? ~ at those wvalues which minimise the expression

(10.3)
vp* (-DEY.x .3 +JEY.x.)+tpl3I (-EEY.x.3 +DEY.X.)



In general, we aim to fix all the p terms of the
polynomials to be those values which minimise the

ratios

S.Dev. (aj'") G =0,1, ...4)

no
aj

In reality, we shall find that this is impossible
without choosing different values of the p terms for
each block. The plotting procedures described in
Chapter 9 however, hold only if the p terms are con-
stant for each block of the data under investigation,
We show however, that using constant p terms, we
still obtain a close approximation to the true mini-
mum for each block.

(@) Minimisation for Coefficient aik)

From (8.2) and Appendix 2,

S.Dev. (a{kb
From (8.1), manipulating as in (10.2), we obtain

) -1i-1
B—P%k BEY .-CEY .x .2 +AEY .x .
_j_ 1 j_ 1 1

There are, therefore, no p terms we can adjust to
minimise the ratio of S.Dev. (ai”)) to [aif*™|, 1i.e
the ratio is independent of the p terms.

(k)

() Minimisation for Coefficient a1

From (8.2) and Appendix 2,

S.Dev. (as' ) 95C9 . B . E



From (8.1), manipulating as in (10.2), we obtain

-1
a{k) =1}§3)%J l% ;Yixi3fD2Yix;].

1

The ratio of S.Dev.(agk)) to la§k)

| is, therefore,
also independent of the p terms.

(c) ‘Minimisation for Coefficient agk)

From (8.2) and Appendix 2
-1 - 1
sev. ) =[pfpf8)] L 27 [ e f e 2p {0 .

From (8.1), manipulating as in (10.2), we obtain

Nied oo

-1 -1
a{k) - [§§23p54ﬂ A [%§4)(‘C?Yixi“"H?Yixiz*FgYi)
i 1 1

+ p§4)(-Agyixi“+c§Yixiz-BgYi{l :
1 1 1

If

L
]

-CIY.x.%- HEY.x.2+FIY.
i 171 i 171 ) 1?

and

7]
i

-ATY.x.*+CZY.x.2-BLY.
;i1 ; i7d k!

then
1

LA
S.Dev.(agk)) - [}p§4)2H+p£4)2A+2p£4)p§4)é]. Z .o

|a£k)l (4) . . (4) s|

‘Po P2

4) ,(4)

We require, therefore, the values of pg sP2

which minimise
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- F pf4>*n * p " 4apldg o1
Po
where H, A and C depend solely on the block size,

which is fixed, and r and s depend on the data

values for the particular block and the block size.

c (4)
If s= , then
(4)
P
1
g  [-He2 + 2C6 +alz ..., (10.4)
lrQ + s

In practice both 0 and s are real, hence the
equation Q2 (r9+s)2 = -H82+2CO0+A or
92 (r2QJ+H)+9 (2rsQ2 —2C)+ (s2Q02-A) * 0 ...... (10.5)

has real roots in 9 * consequently

(2rsQ2 =2C) 2 * 4 (r2Q2 +H) (s2Q2 ~A),  «.o.... (10.0)

402 (r2A-s2H-2rsC) ~ -4C: -4HA,

Qo*x * -HA-C: . e . (10.7)

r2A-s2 H-2rsC

The minimum value of Q2 occurs at equality in
(10.7), i.e. when inequality (10.6) becomes an equality.

Solving equation (10.5) for o we obtain

g — —(2rsQ: -2C) + [(2rsQ: —2Cy2 =4 (r2 Q2 +H) (s2 Q2 -A) ]

2 (r2 Q2 +H)
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With (10.6) as an equality, the value of 6

which minimises Q%, say 6

min ® is given by

1 - 2
nin C - rsQ .
T2Q2+H

Substituting for the minimum value of Q% obtained

from (10.7) we obtain

emin = C - (r/s)A cecescecssessscasecsss (10.8)
H+(r/s)C
The value of pg4) which minimises S.Dev.(agk))
(k)
4
p{H laz™|

is thus a function of the quantity (r/s) and there-
fore varies from block to block. We need a fixed

4)

value of pg

(4

in order to apply the plotting

procedures described in Chapter 9. Study of dia-
grams like Figure 15, in which emin is plotted
against (r/s) for the case m = 7, indicates that

a suitable fixed value to take would be the asympto-

tic value of 8pin?

- A . A programme was vwritten
C

to calculate (r/s) for blocks of all types of data

and it was found that, in practice, (r/s) took

values anywhere between *+ «, so endorsing the view

1, 2
that emin should take this value.
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Using - A instead of the true6 . to determine

the ratio p§4) , we must check that the value of

p®
Q obtained, denoted by Qasy say, is reasonably close
to the true minimum of Q denoted by Qmin' From
(10.7)
3
[-na-c?] :
Quin =

I's| [(r/s)zA-H-z(r/s)c]2

whence on substituting - % for 6 in (10.4), we

obtain
i !
Qgy - LAl [-HA-c?] .
|s] |C-A(x/s)]
Figure 16 shows plots of Q . |s| and Qasylsl

against (r/s). The two Q's are close except for

the range of (r/s) values where Q + o and

syl S|
Qmin]sl remains finite. Since p§2) is constant

in this analysis,

o
agk)cc T + S p = s(r/s + 1/98)
whence agk) =0if r = -1 . Since we are taking
' s )
the value - A for 6, agk) =0if r = C ,
C s A

which is the value (r/s) takes at the discontinuity
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shown in Figure 16. Hence the range of (r/s)

values for which Q + ocorresponds to blocks

asy! S|
for which agk) is aporoximately zero. These blocks
will still be reliable for plotting purposes since,
with the p terms fixed, the standard deviation of
agk) is invariant from block to block.

] 4 . .
The ratio pg‘) , now being fixed at the

g

value - A , is m dependent. The table below gives
C

values of p§4) for values of m from 5 to 12.

A
pit)
NG e
pi4 pi#)
~-0.9986 9 -1.0597
6 -1.0195 10 ~-1.0686
7 -1.0358 11 -1.0762
8 -1.0489 12 -1.0827
. () .
The error in the calculated values of pg is
4
pf)

derived in Appendix 4. This error is of the order

+ 0.0002,
An interesting point emerges from the above
analysis. For Tchebychef polynomials, p§4) = -1,
pit)
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and substitution of -1 for 06 in (10.4) would give
a quantity we may label QTcheb in accordance with

our previocus notation. It was found that QTcheb

was marginally closer to Qmin than Qasy only for

0< (r/s) < ‘1. In using - A for p(4) our poly-
C
N

nomials are therefore generally better than
Tchebychef polynomials in the sense of minimising

S.Dev.(agk))

|20

(d) Minimisation for Coefficient al<)

If

u = -DIY.x.¥ + JrY.x.
ill ill
and

v = -EIY.x.? + DIY.x.
; 11 ; 10

then, from (10.3), we require the values of p§3),

and pgs) which minimize

3
4 [§§3)3+2p§3)p§3)D+p§3)2%]

Q =
3) 34

lpa~’u + p

wvhere J, D and E depend on the block size only,
and u and v depend on the data values for the
particular block and the block si:ze.

If A = p§3) . then proceeding as in the

pi?)
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S
previous section, the value of A which minimises Q” ,

i.e. A , is given by

min

Apin = D= (WADE  ..iieiine....(10.10)
~J+(u/v)D

Figure 17 shows a plot of Xnin against (u/v)

for the case m = 7. With reasoning similar to the
previous section, the value of Anin Was fixed at
its asymptotic value, - % , this decision being
endorsed by the results of a programme which showed
that, in practice, (u/v) took values anywhere bet-
ween + » for data blocks.

We may similarly compare the true minimum of Q’,

denoted by Q’ s with the value of Q' obtained by

min

using - E instead of A Figure 18

Q sy S
min’ asy ay.

shows plots of Q/ |v| and @’ | v| against (u/v).

min asy

The two Q's are again close except for the range of

lv| + = whilst Q7

(u/v) values where Q/asy in

vl
remains finite. This range corresponds to blocks

for which agk)

is approximately zero, as was the
case with agk) in the previous section, these blocks
still being reliable for plotting purposes because
of the invariance of S.Dev. (afk)).

®

, 1f fixed at the value - E ,

The ratio p E
D

(3
T2
is m dependent. The table overleaf gives values

of p§33 for values of m from 5 to 12.

o)
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3

Pé ) P&S)

i ) L €
, P2 122

5 -1.4043 0 -1.5056
6 -1.4399 10 -1.5198
7 -1.4670 11 -1.5317
8 -1.4884 12 -1.5418

Appendix 4 shows the error in the calculated values

of p§3) to be of the order + 0.0001.
of)

It is interesting to note that, for Tchebychef

polynomials, p§3) = -1.3333 and substitution of
pf3)

this value in (10.9) gives Q; L which is mar-

che

than Q’

ginally closer to Q’ asy

min

In using - g for p§3)

et —

NS

only for -} <(u/v) < 3

our polynomials are there-

fore generally better than Tchebychef polynomials

in the sense of minimising S.Dev.(a£k))

1a{})]

(e) Minimisation for Coefficient alK)

= 4 2
If w = BZ}Y.xi +F§Yixi +L§Yi,

il i i
sz) , N sz)P£4) = P$4)Pg2) ,
pgz) pgz)pgn,)
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then from (8.1), (8.2) and Appendix 2 it can be

shown that

3
s.Dev.(dF)) [}Hp2+Av2-2Pp+23v+20pu+§]. Z.0

3

[af)]

|-tp - sv + w

where r and s are the quantities given in section

(c). We require, therefore, the values of p and v

which minimise

Q"

where

Qn =

i
[FHp? +Av2 -2Fp+2Bv+2Cpv+I|

|-rp = sv + wi

S.Dev.(agk))

26 |af®)]

Section (i) of Appendix 5 shows that this equation

may be written in the form

Q"(n,T)

where

Q"(n,T)

Ci
Ca2

Cs

Cy

Cs

Ce

1l

-

I:cm2 + CoT? + c;_‘

et eeeeneeeneeees..(10.11)
lCuﬂ + csT + Csl

= A + C2/H,

HAL+2BCF+ F2A-HB2+L(C?
AH + C?

-r,

-s -C .t ,

r (BC+FA) +s (BH-FC) +w (AH+C?)
AH + C2
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n = p- Cv +(BC+FA -<§> BH-FC
H AB+C2 H/\ an+c?

and

T = v + [(BH-FC
AH+C?

We require the values of n and T which minimise (10.11j.
Keeping T fixed and letting n vary we obtain, in a

similar manner to (10.7),

c1(c2T? + c3)
Q"*(n,T) > Ceeereeceess(10.12)

l}ﬁ(csz*Ca)+Cx(CsT+Cs)ﬂ

The minimum value of Q"%2(n,T) for a particular 7T
and variable n occurs when (10,12) is an equality.

Hence if Q"zmin(T) denotes this minimum,

1 [teteareich) hy, (M -erce| + 1 fecscscaazy, )]

2 2 2 - = _
+ [(CQCS'FC!CG)Q"min(T) C]C% 0 000.00..‘00.0(10.13)

This must have real roots in T for a particular min-

imum Q" (T), whence

min

(2C1CsCsQ";in(T))2 > 4 Ecﬁcz*cxcg)Q"éin(T)‘C1C{]-

[ctesserctrerg ,m-cic |

min

i.e. Ec3c2+c1c§)(c&c3+c,c§)-c§cgcgl ")
‘l}lcz(c§Ca+CxC%)+C1C3(c§Ca+Cxc§ Q"2. (T)+cfcacs€0..(10.14)

min
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We shall denote the L.H.S. of (10.14) by f(Q”;in(T)).

Equation (10.14) gives the full range of possible

values of Q";in(T) for -» ¢ T ¢ ». It follows that

the minimum value of @'(n,T), being the minimum value

of Q" (T), is given by the smallest real value of

min
112 . "2 : : : s
"hin (T) to satisfy £(Q min(T)) € 0. Section (ii)

of Appendix 5 shows that both the coefficient of

th . 12 O
'min(T) and the last term in f(Q'min(T)) are posi

tive. The quadratic f(Q”;in(T)) must therefore

have the shape indicated in the diagram below:

A
12

A

£(Q"2. (7))

min

ORI (133 2 3 s i -
The minimum value Q min of Q"% is given by Q‘min 1j5t
If we now keep n fixed and let T vary, then
by an exactly similar procedure we may derive the
inequality:

[ccterveact) (creareact) - chetet] @y

—[EZCI(C§C3+C2C%)+C2C3(C§C1+C2C$i] ";in(n)fcﬁclcac 0..(10.15)

where Q”;in(n) is the minimum value of Q"2 for a

particular n and variable T. Applying a similar

argument to Q" (n) as for Q@ (T) we see that

min min
2 : ] .

Q"min is the smallest value of Q"min(n) to satisfy

(10.15) and is thus the smallest root of (10.15)

considered as an equality. It is therefore evident
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that (10.14) and (10.15), when considered as eaquali-
ties, have a common root which may be found by

simple algebra and in fact is given by

C1C2Cs ceen (10.16)
2 2 2
C1C2CE+C1C3C5+C2C3Ch

12
Q min

Substituting this value in (10.13) and recalling

that Q"2. (T) = Q"2. satisfies the equality (10.14)

min nin
we obtain
T - CSCS ..l...'..."........l."(10017)
min C2Ce

Substituting (10.16) into the corresponding equa-

tion to (10.13) for Q“&in(n), and remembering that

(10.15) is an equality, we obtain

n - CSC“ ) 0..9..0'....‘..00 ...... (10.18)
min C1Ce
Tmin and Nnin 2re those values of T and n which

minimise (10.11). Since

BH - FC . ,
AB + C2

from equation (10.17) and the transformation equa-

tions for the "c'" terms, it follows that the value

+

of v which minimises Q" is given by:

. -r [eH-FC) (Bo+AR) -€4] -5 [(BH-FC) 2 -1 4w [(BH-FC) (-AH-c2)]

min ~rIE-AH-C2)(BC+AFﬂ -s E-AH-C!)(BH~EC§]+W ELAH-CZ){]

iene..(10.19)
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where A= HB2 - HAL - 2RCF - F2A - LC2,

Similarly,
C BC+FA C\ /BH-EC
p = n + AV + (
" (AH-I-C’) H) AH+C"‘)

so that from (10.18),(10.19) and the transformation

equations for the “c' terms, it can be shown that

the valye of p which minimises Q" is given by

. = [(Bc+nr)2+a4] -5 [(BC+AF) (HB-FC)-aC]+w [(BC+AR) (-AH-C?)]
MR or [(-AHLC2) (BC+AF)] -5 [(-AHC?) (HB-FC)] +w ]:(-AH-Cz)Z]

o

ceveeeesss(10.20)

Both these equations are of the form

zy + (s/r) zy, + (w/-1) 23

zy + (s/r) zs + (w/-r) z¢

where the "2" terms can be obtained from (10.20)

and depend solely on the block size.
S\ * 5 ZyZ3 = Z1Zs
(%) f (%) - Z22Z¢ = ZsZs

<E_* (w ) Zy22 = 2125
-r

2325 = Z¢Z2
both (10.19) and (10.20) may be reduced to the form

By putting

and

zz2 + z3 (W/-r)*/(s/1)*

25 + Z¢ (w/-1)*/(s/T1)*

where w, r and s depend on the data values for the

particular block and the block size.
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Figures 19 and 20 show the plots of v and

min
Pmin against (w/-r)*/(s/r)* for m = 7. The values
of Voin and Ppin Must be constant for all blocks

i.e. for all values of w, r and s, so they were
fixed at their asymptotic values z3/z¢, as was done
with emin and Amin in sections (c) and (d). The

asymptotic values of Vo3 and p are, from (10.19)

in min
and (10.20), BH-EC ang BCHAF _ respectively. A
-AH-(C? -AH-C?

programme written to calculate (w/-t)*/(s/r)* for
data blocks again endorsed the choice of these asy-
mptotic values by showing that this quantity'in prac-
tice took values anywhere between + o,

The true minimum of Q" i.e. Q"min’ may be com-
pared with the value of Q' obtained by using these

asymptotic values, Q" say. Figure 21 shows plots

asy

of Q" . |r] and Q%

min ‘against values of (s/r)

and (w/-r) for the case.m = 7. The two Q's are

close except for the range of (s/r) and (w/-r)

values where Q" ___|r| =+ ». This range corresponds

as
to blocks for whiZh aék) is approximately zero, as
was the case with agk) and afk) in previous sections.
These blocks will still be reliable for plotting
purposes because of the invariance of S.Dev.(aék)).

The ratios pgz)p§4) - p$4)p§2) and p§2)

NOMO o)

if fixed respectively at the values BH-FC and

-AH-C?
BC+AF _, are m-dependent only and are shown for

-AH-C?
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m * 5(1)12 in the table below:

m pf:)/pf2)
5 0.2843 "0 c3905
6 0.2695 “0.3883
7 0.2590 -0.3804
8 0,2513 “0.3744
9 0.2453 -0.3697
10 0.2406 -0.3660
11 0.2367 -0.3629
12 0.2335 -0,3604

Appendix 4 shows the errors in the calculated
values of the two ratios to be of the orders +
0,0047 and + 0.0054 respectively. We should,
therefore, only work to 3 decimal places when
using these quantities.

A

For Tchebychef polynomials pjP pf'r*-p”"po

Kr Po J
and P£\5:2}/por2j1 = -0.5, Substitution of these
values in (10 .11) gives which is margi-

n ° v
nall%.closer to Q nm than Qlasy only for a small
range of (s/r) and (w/-r) values. Our Polynomials
are therefore generally better than Tchebychef
polynomials in the sense of minimising

S.Dev. @' ")
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(£) The Form of the Polynomials gj(x) (i=0,1,...4).

For a given value of m we now have values of

p§4) p§3) p§23p54)-p54)p§2) 1 p§2)
’ , an
pi®)  pf3) NOMNO) N

which are approximately "hest" in the sense of

minimizing the ratios S.Dev.(a§k)) ]
la-(k), ('] —0,1,0..4)-
J

0)

We have no information on p& and pgl); these two

terms will, therefore, be fixed at unity as is the case
vith Legendre and Tchebychef polynomials. Consider the
case for m = 5, We know that p§4)

—-(T)- = «-0,9986 3

Pgs) and 52) "
= «1.4043 = =0.400.
5137 ;}7T
Now p£2)p§4)~p£4)pgz) ) pgz) p;A) ) p£4) - o282
NOMCY D) ) o
(4
Hence P! )

= (-O°4OO)(-0.9986)-1-0.284 = 0.11630.001
P

Hence the "best' polynomial to fit to the data blocks

is f£(x) = ap+o1x+az (x2-0.400)+0; (1.4043 x3-x)

+ ay (0.9986x"-x2+0.116)

Similar calculations lead to the following ''best™

polvnomials for the cases m = 6 tom = 12:
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f(x) = ap+a;X+0az (x*-0.388) + a3(1.4399x3%-x)

+ oy (1.0195x%-x2+0.114)

£(x) = ao+arx+oy (x2-0.380) + as(1.4670x3-x)

+ ay, (1.0358x"-x2+0,112)

f£(x) = aotoyX+o, (x2-0.374) + a5 (1.4884x3%-x)

+ ay (1.0489x"%-x2+0.111)

f(x) = ao+ai1Xx+ap (x2-0.370) + a3 (1.5056x°-x)

+ oy (1.0597x*-x2+0.110)

f(x) = ag+a1Xx+a, (x2-0.366) + ag(l.;ibixa-x)

+ 0y (1.0686x"-x2+0.109)

f(x) = ag+ayX+a, (X2'0.363) + 03 (1.5317)(3")()

+ a, (1.0762x%-x2+0.108)

Hh
~
b
p—
1]

Go*oyX+az (Xx2-0.360)+a3 (1.5418x% -x)

+

oy (1.0827x"-x2+0.108)

To apply the identification procedure we need
to chose the value of m for the data under investi-
gation and then fit the appropriate polynomial to

K)o

each block, recording the coefficients ag
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CHAPTER 11
RESULTS AND CONCLUSIONS

The p terms having been fixed, application of
the "sliding block" technique to all types of data
showed that agkl was the most "accurate" coeffi-
cient in the sense of having the smallest standard

deviation and a relatively large magnitude.

For example, with m = 9, we obtain, from (8.2),
S.Dev (ap'-*) = 0.2294
S.Dev (ap))' = 0.3770 a
S.Dev (atk”) = 0.6954
S.Dev (aPh = 0.8739 a
S.Dev (a{k”) = 2.3876

It would therefore be desirable for the identi-
fication procedure to .involve coefficient aOK" but,
as shown in Figure 14, the ap'” against ap l ot
produces, for the various models, configurations
more disparate than the ap ”~ against ap” plot.

It is proposed, therefore, that the identifi-
cation procedure should consist of:-

(1) deciding the value of m for the investi-

gation,

(ii) plotting both afl® against and aj”against
these plots supplementing each other in
indication of the growth model.

The choice of m depends on how many data

values are available. It would be desirable for

the plots to consist of at least ten to fifteen
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points so the value of m should be fixed accordingly.
If there are n data values then there will be (n-2m)
blocks. A rough criterion would bem g (n/2 - 6).
The following results were obtained using two
computer programmes, one which generated data from
the seven growth curve models, adding, if necessary,
a random component, and one which fitted the poly-
nomials derived in Chapter 10 to blocks of the
data, recording the a}k) (G = 0,1,...4) for each
block.
For reference purposes, the plots are arranged
in "book" fashion e.g. all those plots relating
to artificial linear data, both ''clean" and '"noisy"
are in the Linear Book. Similarly for the other
models.

(a) Form of the Plots for '"Clean” Data

The first two figures in each book show the
configurations obtained by plotting aﬁk) against
agk) and agk) against a{k) for '"clean' data gen-
erated from the seven growth curve models. The
plotted points are labelled by their block number,
k. Two interecsting facts arise:- |

(i) The plots do not distinguish between

Gompertz and logistic data although
these sigmoid curves exhibit configura-
tions markedly different from the other

curves.
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(ii) Logarithmic parabolic data gives a con-
figuration almost identical to exponen-
tial data except for a very slight curve,
extremely difficult to detect wvisually.
It would appear that, in practice, we
shall be unable to distinguish between
these two models and should perhaps dis-
card the logarithmic parabola model since
it is the least common of the two.

(b) Form of the Plots for "Noisy" Data

The plots behave as indicated by the theory
of Chapter 9 when the data is "clean", but we must
expect deviations from the configurations for "noisy"
data. Data was generated from the growth curve
models with (@) a small normally distributed random
component, and () a large normally distributed
random component added. Figures 22 and 23 show
respectively, the resulting data values, and the
standard deviation of the random component. Log-
arithmic parabolic data was excluded from this
exercise for reasons given in the previous section,
and sigmoid data was generated only from the logis-
tic model since we cannot distinguish this from
the Gompertz model. The coefficient plots for the
data are shown in the graph books.

It is still possible to identify the under-

lying model from these plots, particularly if we

remember that it is important to study the pattern
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of the block numbers. This pattern is unique for
each of the five basic configurations. The identi-
fication of the model becomes increasingly diffi-
cult as the data becomes "noisier”. We thus have
a limitation on the identification procedure in
that for very 'moisy’’ data accurate identification
is not possible, although an approximate indication
of the underlying model could be given.

Because of the '"movement” along the data as
we go from block to block, the identification pro-
cedure is efficient in detecting changes in the
underlying model. Data from quadratic and exponen-
tial models with a small random component added,
was carefully merged to give the data values depic-
ted in Figure 24. It is impossible to detect by
eye that the data consists of these two models yet
application of the identification procedure results
in a2 firm conclusion that we have quadratic data
merged with exponential data (see Figures 25 and
26).

(c) Estimation of the Model Parameters

The "sliding block" technique is designed
primarily to identify growth models, not to esti-
mate their parameters. However, as indicated in
Chapter 9, it is possible to acquire quite recason-
able estimates of some of the paramcters for some

of the models.
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(1) Linear Data

For linear data (Yt = a + bt), parameter "b"

is estimated by the quantity agk)/m. Also

agk) = (a + bm) + bk, so a plot of agk) against
k would give a straight line with slope "b"

and intercept (a + bm). These estimates were
found to be accurate for ‘'clean™ data but
became increasingly poor for "noisy" data.

The last two figures in the linear book (L.7
and L.8) show agk) plotted against k for the
linear data shown, respectively, in Figures

22 and 23. The underlying model was Yt =1 + t.
The estimates of "a’™ and "b'" from Figure L.7
are 0.845 and 1.006 respectively, whilst the
estimates of "a' and "b" from Figure L.8 are
~0.054 and 1.0% respectively. The estimates

of "b" obtained by dividing the average value

of agk

) by m are 1.01 and 0.98 respectively.
It would appear, therefore, that parameter "b"
can be estimatecd quite accurately even with
very ''noisy' data, but not so parameter'a’.

(ii) Quadratic Data

For quadratic data (Y, = a + bt + ct?), para-
meter ''c is estimated by the quantity a£k)/m?.
Also a&k) = (bm + 2cm®) + 2cmk, so 2 plot of
a&k) against k’would give a straight line with
slope 2cm and intercept (bm + 2cm?). The

estimates of both '¢' and "b" would be needed
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for an estimate of "a', and as this would
involve fitting a quadratic to a plot of agk)
against k it is unlikely that the estimate
of "a'" eventually obtained would be reliable.
The last two figures in the quadratic book
(Q.7 and Q.8) show a{k) plotted ageinst k for
the quadratic data depicted, resvectively,

in Figures 22 and 23. The underlying model
was Yt = 60 + 10t + 5t?2., The estimates of
"b" and "c¢" from Figure Q.7 are 5.93 and

5.06 respectively, whilst the estimates of
b and "c¢c" from Figure Q.8 are ~27.52 and
6.26 respectively. The estimates of fic”
obtained by dividing the average value of
agk) by m? are 4.83 and 6.02 respectively.

It therefore appears that reasonable esti-
mates of parameter ‘ic' may be obtained pro-
vided that the data is not too "noisy"; but

estimates of parameter ''b" are not reliable.

(iii) Exponential Data
For exponential data (Yt = aebt), parameter
"b" may be estimated from the relationship
a§k*1)/a§k) = e® (j =0,1, ...4). Using

§k+1}fa§k), since agk) is the

the ratio a
most reliable of the coefficients, estimates

of "b'" for the exponential data depicted in
Figures 22 and 23, where "b" was set at 0.1,
are 0.1 and 0.1 respectively, a result which
indicates that we may obtain a2 good estimate of

parameter ''b' even for ''moisy' data.
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(iv) Simple Modified Exponential Data
(k1) /(1) 4o

We may similarly use the ratio a
estimate the parameter “t¥ for simple modified
exponential data (Yt = K + aebt), but the
realibility of this estimate becomes poor as
the data becomes increasingly "noisier'. With
"b'" set at -0.1825 in the data depicted in
Figure 22, the average afk+1)/a£k) ratio gave
an estimate of -0.294. With "b" set at -0.2
in the data depicted in Figure 23, the average

ratio gave an estimate of -0.55.

(d) Some Results with '"Real’ Data

(i) Gregg, Hossell and Richardson {19} use data
they label '"Commodity A" to illustrate their
slope characteristic procedure. The data is
S-shaped (see Figure 27) but because their
slope characteristics for Gompertz and logistic
models show small regions of non-linearity for
years 7 to 9, they are wary of fitting one of
these models to the entire period. Figures 28
and 29 show the coefficient plots for this data
with m fixed at 5. Both plots suggest that a
sigmoid curve could be fitted to the data;
indeed there is very little deviation from the
standard sigmoid configuration.

(ii) In a paper in J.R.S.S.(C), volume 19, number
1, F.R. Oliver estimated the parameters of an

exponential growth model by direct least squares
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and éompared his results with the estimates
obtained by taking logarithms and then anply-
ing least squares. The estimates of parameter
"b" were:-
Direct lLeast Sauares Logarithmic Least Squares
N.081441 0.084102
The average of the a§k+1)/a§k) ratios from an
application of the identification procedure to
his data gave an estimate of "b" as 0.0815.
(iii) Experiments on rats at the M.R.C. unit,
Middlewood Hospital, Sheffield, required the
rats to be under constant conditions. The
rats needed a time to acclimatize after arriving
and the length of the acclimatization period
was the subject of some research. One variable
used to measure this neriod was the daily
fluid intake of the rats. Once the rats become
acclimatized this intake becomes constant.
Figure 30 shows the data for the first 33 days
of acclimatization for Rat C118. There was
doubt as to whether the fluid intake curve
could be adequately fitted by a sigmoid curve,
a simple modified exponential curve or two
straight lines. Figures 31 and 32, obtained
directly from a graph plotter, show the coeffi-
cient plots for the data. They show that there
is some initial linearity, a marked simple
modified exponential region and then several
blocks of linear data indicating lincarity from
day 10 onwards. There is no suggestion of an

S-shaped trend.
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(iv) In an experiment conducted by the Depart-
ment of Chcmistry and Biology at Sheffield
Polytechnic, a known concentration of orga-
nisms was placed in a culture medium, the
whole being incubated at 37%°c. Samples were
taken from the flask at eoual time intervals
and the optical density of the samnles was
measured in the appropriate units. The data
is shown in Figure 33. To identify the growth
data obtained, coefficient plots were produced
by a graph plotter (see Figures 34 and 35).
These indicate that the data has a sigmoid
trend up to the nineteenth reading and then,
surprisingly, follows a new sigmoid trend.

An experimental explanation offered by the
Department was that there could have been a

temperature fluctuation.
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CHAPTER 12

AREAS FOR FURTHER RESEARCH

The development and application of the coeffi-
cient plots supggests areas that lend themselves to
further study. These are:-

(i) Several 'p'" terms were set eaual to zero

in Chapter 8 for computational reasons

and because these terms are zero for poly-
nomials such as Tchebychef, Hermite and
Legéndre. The polynomials derived in
Chapter 10 might be improved if these 'p"
terms were evaluated in the same manner as
the remaining terms.

(i1) Orders other than a fourth-order polynomial
fit could be investigated and in fact h
could be chosen to further improve the
ratio S.Deve(agk))/|a§k% GG =0,1....h),
especially for the small values 0,1,2,...
of j.

(iii) A deep mathematical treatment of the log-
arithmic parabola, logistic and Gompertz
models might indicate useful plets for
identification purposes.

(iv) The gr(x) in the fitted model could be
varied:; a chain of exponential functions
suggests itself. There might, indeed,
be some optimum form of the g (x) for the

l.’r
purpose of identification of growth curves.
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SIMPLE MODIFIED EXPONENTIAL GRAPH BOOK




Paoeha
REDPS o

PR SaNS g e
PEBORT

ey

JO RS SRIRE MEOEE PIEEY

[SeR







1SR

T
Sy
]

|



En

3

s

T
H
Ty

i
}
i

i
i
i
i
1




SIS U

|
i
|




e

TALL

.
]

Fae

%

=

enr

o

o

1
e

ot

£




g

bk ey
LTIV

et

b

gh po

et ke

b od

i

g
pRatEa

i

et

FEpu RSy

tt

i

et
PG B e

i

Tt

WS S NI LN ) T 4t S

‘e
'




i

g eiia
i |

iri
JAe
Fee

!

ighuy §aeny

e

pegy

10t

,...;_fif




§ Puoe

1
=

Ftes pare:




e R
Cy

1lolniliibllll

1

FERNNRLY EAIRY

| et

LTIV




da

pouy ¢ 1




Al
: jhe s
1
a0
. e
. T
e
jeas
. uane
Lire
354
- ;
|
H
|
.- |
;
i
|
. 1
i
.




[EESY Ehaey

[RSE VA




i
.
o




{1}

{21

{3}

{4}

{5}

{61

{7}

{8}

{9}

{10}

{11}

{12}

{13}

{14}

{15}

REFERENCES

D.F. Andrews: Plots of High-Dimensional Data.
(Biometrics, 28, 1972)

R. Bachi: Graphical Rational Patterns. A New
Approach to Graphical Presentation of Stat-
istics. (Israel U.P. 1968)

G.H. Ball and D.J. Hall: Some Implications of
Interactive Graphic Computer Systems for Data
Analysis and Statistics. (Tech., 12, 1, 1970)

A. Birnbaum: On the Analysis of Factorial
Experiments Without Replication (Tech.1,4,1959)

G. Blom: Statistical Estimates and Transformed
Beta-Variables (Wiley, 1958)

H. Chernoff and G.J. Lieberman: Use of Normal
Probability Paper. (J.A.S.A., 49, 1954)

H. Chernoff and G.J. Lieberman: The Use of
Generalized Probability Paper for Continuous
Distributions. (Ann. Math. Stat., 27, 1956)

D.R. Cox and E. Lauh: A Note on the Graphical
Analysis of Multi-dimensional Contingency
Tables. (Tech. 9, 3, 1967)

D.R. Cox and E.J. Snell: A General Definition
of Residuals. (J.R.S.S. (B), 30, 2, 1968)

A.F.W. Crome: Uber die Grésse und Bevolkerung
der Samtlichen Europdischen Staaten.
(Leipzig 1785)

C. Daniel: Use of Half-Normal Plots in Inter-
preting Factorial Two-Level Experiments.
(Tech. 1, 4, 1959)

S.D. Dubey: Graphical Tests for Discrete
Distributions. (Amer. Stat., 20, 1966)

S.E. Fienberg: Preliminary Graphical Analysis
and Quasi-independence for Two-way Contin-
gency Tables (J.R.S.S. (C) 18, 2, 1969)

R.A. Fisher: Distribution of the Correlation
Coefficient. (Biometrika, 10, 507-21, 1915)

R.A. Fisher: Statistical Methods for Research
Workers. (1st Edition). (Oliver & Boyd 1925)

- 89 -



{16}

{17}

{18}

{19}

{20}

{21}

{22}

{23}

{24}

{25}

{261}

{27}

{281}

{29}

J.J. Gart: Some Simple Graphically Oriented
Statistical Methods for Discrete Data.
(Random Counts in Models and Structures,

Ed. G.P. Patil, Pennsylvania State U.P. 1970)

R. Gnanadesikan: Multivariate Statistical
Methods for Analysis of Experimental Data.
(I.Q.C., 19, 1963)

R. Gnanadesikan and E.T. Lee: Graphical Tech-
niques for Internal Comparisons Amongst '
Equal~Degree-of-Freedom Groupings in Multi-
response Experiments. (Biom. 57, 2, 1970)

J.V. Gregg, C.H. Hossell, and J.T. Richardson:
Mathematical Trend Curves: an Aid to Fore-
casting. (I.C.I. Monograph No.l, Oliver &
Boyd)

H. Grimm: Graphical Methods for the Determina~-
tion of Type and Parameters of Some Discrete
Distributions. (Random Counts in Models and
Structures, Ed. G.P. Patil)

M.J.R. Healy: Multivariate Normal Plotting.
(J.R.S.S. (C), 17, 2, 1968)

B.F. Kimball: On the Choice of Plotting Posi-
tions on Probability Paper. (J.A.S.A. 55,
1960).

J.B. Kruskal: Non-metric Analysis of Factorial
Experiments. (Internal Memorandum, Bell
Telephone Labs., Murray Hill, New Jersey,
1964)

C.L. Mallows: Choosing a Subset Regression.
(Internal Memorandum, Bell Telephone Labs.,
Murray Hill, New Jersey.)

F. Mosteller snd J.W. Tukey: The Uses and
Usefulness of Binomial Probability Paper.
(J.A.S.A., 44, 1949)

J.K. Ord: Graphical Methods for a Class of
Discrete Distributions.(J.R.S.S. (A), 130,
2, 1967)

E.S. Pearson: Some Aspects of the Geometry
of Statistics. (J.R.S.S. (A) 119, 2, 1956)

J. Roy: Step-down Procedure in Multivariate
Analysis. (Ann. Math. Stat. 29, 1958)

E. Royston: A Note on the History of the

Graphical Presentation of Data. (Biometrika
43, 241-47, 1956)

- 00 -



{30}

{31}

{32}

{33}

{34}

{35}

{36}

{37}

{38}

{39}

{40}

A.K. Shahani: A Simple Graphical Test of
Association for Large Samples. (J.R.S.S.
(cy, 18, 2, 1968)

J.W. Tukey: The Future of Data Analysis.
(Ann, Math. Stat., 33, 1962)

J.W. Tukey: The Technical Tools of Statistics.
(Internal Memorandum, Bell Telephone Labs.,
Murray Hill, New Jersey, 1965)

J.W. Tukey and M.B. Wilk: Data Analysis and
Statistics - An Expository Overview. (AFIPS
Conference Proceedings, 29, 1966)

M.B. Wilk and R. Gnanadesikan: Graphical
Analysis of Multi-Response Experimental Data
Using Ordered Distances. (Proc. Nat. Acad.
Sci. 47, 1209-12, 1961)

M.B. Wilk. R. Gnanadesikan and M.J. Huyett:
Probability Plots for the Gamma Distribution.
(Tech. 4, 1962)

M.B. Wilk, R. Gnanadesikan and M.J. Huyett:
Estimation of Parameters of the Gamma
Distribution Using Order Statistics. (Biom.
49, 1962)

M.B. Wilk, R. Gnanadesikan and A.E. Freeny:
Estimation of Error Variance from Smallest
Ordered Contrasts. (J.A.S.A., 58, 1963)

M.B. Wilk and R. Gnanadesikan: Graphical
Methods for Internal Comparisons in Multi-
Response Experiments. (Ann. Math. Stat.
35, 2, 1964)

M.B. Wilk and R. Gnanadesikan: Probability
Plotting Methods for the Analysis of Data.
(Biom. 55, 1, 1968)

M.B. Wilk and R. Gnanadesikan: A Probability

Plotting Procedure for General Analysis of
Variance. (J.R.S.S. (B), 32, 1, 1970)

- 91 -



APPENDIX 1

DETERMINATION OF THE g(r,s) TERMS

IN THE LEAST SQUARES FIT

To determine the elements of the g(r,s) matrix
(r =0,...4);(s = 0,....4),we use the following
identities. For ease of reading the auantities
o,B,Y,8 and € are defined as shown:

c=firdm

_2&1 = (2m+1) = a

R Y 5 j=m
ix;t=2 L (G¥/md)= oy L m(ne1) (2m1)
(23 3
= 2 1 -
-3-m + 1 + m B
ez heam
b = ..2_ X ..2_.. ~ 1 =
Xy =gmt 1l TEms =Y
= Riam
.2 11,1
¢§& X;g =gmrlt eyt 7 S
CzRem

o 2 4 14 4 1
X -t l - Tyt oy T Temr T €

= feam iz ke é= E-&:lm cx ﬁ‘*l"‘

Also, ;?ﬁxi

I
™
e

w

]

" ™M
al
w

U}
e}
el

Application of these identities gives:-

g(0,0) = 0°po(o)2
g(0,1) = g(1,0) = o pgo)p§1) ,
£00,2) = g(2,00 = 8 p{Pp{? + o p{Pp{?
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8 pi2p{3) 4+ o p{0p(%)

£g(0,3) = g(3,0)

SONORNONORSONG

g(0,4) 8(4 ,0)

g(1,1) =28 p§1)2+ o pfl)z

g(1,2) = g(2,1) = B(pgl)pfz)+pfl)p§2))+apfl)p§2)
2(1,3) = £3,1) =ypiIp{Pea(p{Mp3)4p {15 3))4ap(1)p (%)

g(1,4)=(g4,1)=Y(p§13p54)+pfl)p§4))+e(p§13p§4)+p£1]p§4))+

apLp(®)
g(2,2) =y p§2)2 + 8(29§2)9§2)+p§2)2) + ap§2)2

g(2,3) = g(3,2)=y p§23p53)+p52)p§3))+8(p§2)p§3)+p§2)p§3)+
piBp(3y 4 o p{Bp(3)

g(Z,4)=g(4,2)=6p§2)v§4)+v(pgz)p§4)+p¥2)pf4)+p§2)p§4))
+B(pgz)p54)+p£2)p§4)+p§2)p§6)) + apgz)p§4)

g(3,3)=6p§3fiv(2p§3)p§3)+p53)2)+8(2p§3)p§3)+p§3)2) +ap§3)2

g(3,4)=g(4,3)=8 0> p{D4p{Dp{yay (3 (Mup 51p ()

O R L L Ye S S C R O PRI oMY SOPIY SN S

g(4,4) = €P§4)2+5(2p§4)p§4)+pf4)2)+v(2p§4)p54)+2p§4)p§4)+

p§4)2)+8(2p£4)p54)+p§4)2)+ap54)2
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APPENDIX 2

THE INVERSE OF THE TRUNCATED
Tecr,s)] ™ATRIX

Let the elements of the inverse of the truncated
[é(r,si] matrix be denoted by

G(r,s) (r =0,1,2,3,4 ; s = 0,1,2,3,4).

-2

Let A = 0,3556m?+1,0667m+0.8890-0,11J1n

B = 0.0305m2+0,1524m+0, 2285-0.1112n"2,
= 0.3047m%+1,2190m+1.4222-0.2222n"_,
= 0.4000m+1+0,6667m"

= 0.6667m+1+0.3333n"

-0.0338m2-0, 2032m-0,3725+0.2223n"_,
= -0.2842m%-1,4224m-2,1330+0,4443n" 2,
= 0.2857m+1+m” ",

Ty = m m g 0
i

= 0.0073m2+0.0508m+0.1101-0.1111m’2,
and
Z = 0.0042m%+0.0312m?+0,0714n+0,0025-0.0950m" ",
These quantities occur during the inversion pro-
cess and are related to the truncated form of quanti-

ties a,B,yY,8 and € of Appendix 1 as follows:-

A = oy-B%; B = B8-y2%; C = ad-By; D = v;

E=8; F = 8y-Be; H = y2-qe; J = §;

L = ye-62; Z = 2B8y-B%c + aye - ad? - y?

[}

Inversion of the truncated g(r,s) matrix gives:
G(0,0) = {}§°)2p$2)2p$4)2%]-1[é52)2p£4)2L - ph2) My
* (pgz)p§4)-p£4)p52))2A+2p525pg4)(pgz)pg4)~p£4)pgz))B -
NONONOPWHONOINONG pg4)pgza)(3]
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-1
G(0,2) = G(2,0) =[§§0)p§2)2p§4)2é] Ep§23p54)2ﬁ _

pdDp{pfHpep{®) (p{B)p{H)-2p{Bp{*)c
NOINONOICRONW OGNS

60,4) = 602,00 = [pfp{0f*2] ™ (o5 -p{Dp M4
+p§2)p§433+p§2)p§4)§], |

I MO e I e T QI O |

G(3,1) = [—pénpp’zl{]-lj}ﬁ)n + p{3) B]

G(1,3) =
-1
6z,2) = [pfP"pf* 2] [ + pf nezpfp(c],
-1
6(2,8) = 6(4,2) = [pfDp{D?] E‘PDM)C"PzM]
-1
G(3,3) = [-§3)2§] . E,
G(4,4) = [;(4) ]
Also
G(0,1) = G(1,0) = G(0,3) = G(3,0) = C(l 2) = G(2,1)

= G(1,4) = G(4,1) = G(2,3) = G(3,2) = G(3,4) = G(4,3) =
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APPENDIX 3

SOME RESULTS CONCERNING THE COEFFICIENTS

a}k) (5=0,1....4) FOR SIMPLE MODIFIED

EXPONENTIAL DATA

(a) Coefficient 2 X7,

From (8.1) and Appendix 2, the theoretical form
of a&k) for perfect simple modified exponential data

is given by
2 = k[6(2,0pi? (2m+1)+6(4,2) (0{Drx;24pfD) (2me1))
1

+G(4,4)(p£4)§xi“+p§4)§xiz+p54)(2m+1)i]
1

bmx.
blem) g o 1 (4,00p8+6(4,2)p8P) 46 (4,478 D)

bmx . bmx.
e x(6(4,2)p8 46 (4,0)p ) wze 1xi~G(4,4)pg4{],
1 1

where a,b and K are unknown parameters.
Consider the coefficient of X above.

This can be written as

6(4,0)p P a+6(4,2)p P +6(4,2)pf P06 (4,4)p{ )y +6(4,4)p M g+

a(4,8)pMa
-1
where G(4 ’0)=E30(0)P§2)Po(4)27,] [(pa(z)pz(“-Po(z)PuM))A +

p§z)p§4)B+p§z)p§4)é],
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G(4,2)

-1
[p2p(72] Mo - p{a] |

-1
[§§4)2%] A

Hence the coefficient of K has the value

G(4,4)

-1
[P602p62 80 2] ™ [p§02 £20p () pa-p @pf2p () pas
SONONOINMONON QI QN OM O

-pgo)pgz)p§4)AB-pgo)pgz)p§4)Ca-pgo)pgz)p§4)Aa

+Pgo)pg2)pg4)ﬁw+pgo)PgZJPgé)AB+pgo)ngz)pg4)Aa]

i.e.
-1
o560 o]

But, from Appendix 2, B = B6-y2; C = ab-By; A = ay=-B?
from which it follows that Bo-CR+Ay = O
Hence the coefficient of X, for a&k), equals zero.

(b) Coefficient a{l)

From (8.1) and Appendix 2, the coefficient of K
(1’) b (mxi+k+m)
for as’, when Y; = K + ae , is given by

the term

6(3,1)p85x;+6(3,3) (0§ Drx 2 +p{Psx,) .

1 1 1
C=f4m cehiam
But Ix, = rx.?® = 0,
i=f 1 =k 1
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(k)

hence the coefficient of K, for a; ’, equals zero.

(c) Coefficients agk) and afk)

(k)

The coefficient of K, for a;” 7/, is given by
the term

6(2,00p§Varc(2,2)p§P8+6(2,2)p8 P ari2,8)p Dy

6(z,4)pfMe+6(2,0)p M

In a manner exactly similar to section (a) of this
Appendix, the above expression can be shown to equal
ZeTro.

The coefficient of X, for agk), is given by the
ternm

G(l,l)po(l)gxi + G(l,S)(p§3)§Xi3+ pgs)gxi)
1 1 1

from which it follows, as in section (b) of this
Aprendix, that this coefficient is also equal to zero.

(d) Coefficient all)

From (9.2) the coefficient of X, for a(k), is given
by the term

60,0)psa+6(0,2)p8 28 +6(0,2)pf Pa+6(0,4)p{ Iy +6(0,4)
pfMe+600,0)p M0

Proceeding as in section (a) of this Appendix we can

reduce this expression to the form

. -1
P£0)2P§2)2D§4)2i] [};O)D§z)29§4)2(La+FB+BYi]

From Appendix 2,

Lo +FB +By =286y ~y 3 -a62 -B2¢ +aye
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which, from Avpendix 1, equals
0.00082m3+0°0136m2+0.0564m+0.0508—0.0116m-1-0.0508m'2,
omitting terms of smaller order than O(m_z).

Our plotting procedure restricts us to positive,
integer values of m so the above expression is non-

zero. Hence the coefficient of X for agk) is non-

ZE€T0.



APPENDIX 4

ERROR ANALYSIS FOR THE ASYMPTOTIC VALUES OF

v_ . and

emin’ Amin’ min Pmin -

In the following sections we use the terms
"absolute error modulus' and "'relative error'. If
R is the approximate value of a quantity whose
exact value (not necessarily k%nown) is R* then the
absolute error modulus of R is |r| where r = R-R*,

The relative error is |r| or, for practical pur-
|R*|

poses, |r| .

IR]

(2) emin

The asymptotic value of emi is - %-, where A

n
and C are given in Appendix 2. We will consider the
case for m=8, a value in the middle of the likely
range of m values.

The absolute error modulus in A does not exceed

- - -4 -4 -
(%xlo 4xmz) + (%xlO 4xm) + (%xlo Yo+ (%xlo 4 xm 2)

= 36.5078 x10°%.

Similarly, the absolute error modulus in C does

-4
not exceed 36.5078x10 . Mow A = 32.1721, C =
30.6715, whence the relative error in A/C does not

exceed

-4 -
36.5078x10"% . 36.5078x10”*

32.1721 30.6715

= 2.3250x10 "%,
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Therefore the absolute error modulus in A/C does

not exceed
1.0489 x 2.3250 x10~ %
= 2.4387x10°%.

Hence —% certainly lies in the range -1.0489 + 0.0002.

Other values of m give a similar order of error.

(®) Apin

. . E
The asymptotic value of Amin is - 5 » where E

and D are given in Apvendix 2. With m=8, the abso-
lute error modulus in E does not exceed

3x10""xm) + (Gx107%xm™h)

= 4.0625x107%,

Similarly, the absolute error modulus in D does not
exceed

- - -
% x10™% xm™Y = 0.0625x107%.

Since E = 6.3753 and D = 4,2833, the relative error

in E/D does not exceed

2.0625x10"% . 0.0625x10"
6.3753 4.2833

4

= 0.6518x10”%.

Whence the absolute error modulus in E/D does not
exceed
1.4884 x 0.6518 x 10~°

= 0.9701 x 1072,

Thus -E/D certainly lies in the range -1.4884 + 0.0001

Other values of m give a similar order of error.
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(c) Vmin

From Chanter 10, section (e), the asymptotic

value of Voin is BE-FC . For m=8, the absolute
-AH-C?

error moduli in B,H,F,C and A do not exceed 36.5078x10~4,
from section (a) of this appendix. The relative errors

in B,H,F,C and A do not exceed,respectively, 10,7440x10—4,

4 4 4

1.1519x10'4, 8.7805x10 7, 1.1903x10 " and 1.1348x10 .

Hence the relative errors in RH, FC, AH and C?

. -4 -
do not exceed,respectively, 11.8959x10 *, 9.9708x10 4,

4 4

2.2867x10 ° and 2.3806x10"

The absolute error moduli in BH, FC, AH and C2?

4 1271.536x107%,

do not exceed,respectively, 1281.132x10"
2331.670X10_4 and 2239.528X10-4.

Hence the absolute error moduli in (BH-FC) and
(-AH-C?) do not exceed,respectively, 2552.668x10"

and 4571.198x10"%. The relative errors in (BH-FC)

4

and (-AH-C?) do not exceed 128.723x10 ' and 57.9183)(10.4

respectively, hence the relative error in BH-FC
-AH-C?

does not exceed 186.641x10_4, whence the absolute

error modulus in BH-FC does not exceed
-AH-C?

0.2513x186.641x10™"
-4
= 46.90 x 1074,

Thus BH-FC certainly lies in the range 0.2513+
-AH-C?
0.0047, Other values of m give a similar order of

error.
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(d)  eopin

From Chapter 10, section (e), the asymptotic
value of Pmin is BC+AF . Using the results from

~-AH-C?

the previous section for m=8, the relative errors

4 4

in BC and AF do not exceed 11.9343x10 " and 9.9153x10

respectively. The absolute error moduli in BC and
AF do not exceed 1243.799x10™% and 1326.322x107%
respectively, hence the absolute error modulus in
(BC+AF) does not exceed 2570.121x107%,

The relative error in (BC+AF) does not exceed
86.9911x10-4, hence, using results from the previous
section, the relative error in BC+AF does not

-AH-C?
exceed 144.9094x10'4° The absolute error modulus in

BC+AF does not exceed, thercfore,
-AH-C?

0.3744x144.9094x10" %

= s54.24 x 1074,

Thus BC+AF certainly lies in the range -0.3744+
~AH-C?

0.0054. Other values of m give a similar order of

error.
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APPENDIX 5

SOME RESULTS IN THE MINIMIZATION

PROCEDURE FOR COEFFICIENT a %)

(i) Reduction of the Quadratic Form in Q"

From section (e) of Chapter 10,

(k) ]
S.Dev.(a; ) - Q" =[}H92+Av2_zpp+2Bv+2va+ﬁ]z .

1
Zzolagk)l | -rp -sv+w|

The quadratic form in the numerator may be reduced
by means of the substitutions p = P + p, v = V + v,
Making these substitutions and equating the coeffi-

cients of P and V to zero, we obtain

p = BC+FA
-HA-C2
and
v _ __BH-FC
“HA-C2

The numerator is then of the form

13
[}Hp2+Av2+chv+(HAL+ZBCF+F2A—H32+LCZXAH+CZ) 1] .
This may be rearranged to the form

1
- 2
[FH(P-QY)2+(A+C 3 V2 + (HAL+2BCF+F2A-HB2 +LC? ) (AH+C?) %}
H 3

1
2

i.e. [cmz +C,T2 +c3]
where
C! = -H,
> = A+ Qf_ ’
H
¢s = (HAL+2BCF+F A-HB? +LC?) (AH+C?) L,
n = P-CV,
H
and T =V
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Substituting

p = P + BC+FA cocesseasessscssscnssss(A5.1)
-HA-C?
and
v = V + BH-FC ceesessoessssecsccansass (A5.2)
-HA-C?

into the denominator of Q'", we obtain the expression

' -1
-¢(P-CV)+ (-s-Cr)V+(r (BC+FA) +s (BH~FC) +w (AH+C2)) (AH+C?)
H H

tee lcun + csT + cgf,
where

Cy = -T

cs = =-s=C r

H
and
-1
- Cg = (r(BC+FA)+s(BH-FC)+w (AH+C?)) (AH+C?) .

Hence Q' may be written as

1
Q" [?‘nz * CaT? + cé]

qun + CsTH+ CS'

Note that from (A5.1) and (A5.2) n and T may be

expressed as

N = BC+FA . BH- F
H+C2 AH+C
T =y & BEFC
AH+C?

(ii) The Coefficient Properties of f(Q";in(T))

12
Consider the quadratic f(Q'mln

(1)) from inequa-
lity (10.14) of Chapter 10. The last term in this
quadratic is ci?czc3. Noting that
c? 1
c2 = A + o = q (HA*CZ) 5
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and applying Appendix 2 to establish that

HA+C?=-0.0082m"-0.0655m*-0.1755m2-0.0723m+0.1265,
(where we have omitted terms of order O(m_l)) we
see that for positive, integer values of m,HA+C? is
negative, and since H itself is negative, the term
c, is positive.
Consider the numerator for the term cj; .
From Appendix 2 it can be shown that
HAL+2BCF+F2A-HB2+LC2= -0.0000175m®-0.0002596m5
-0.0015672m"-0.0044835m3
-0.0044635m%+0.0056138m
+0.0130478,
wvhere terms of order O(m'l) have been omitted.
For positive, integer values of m this expression
is negative, and since the denominator for c; is
also negative the term c3; itself is positive, hence
the term ci®cz2cs is positive.
The coefficient of Q”;in(T) in equation (10.14)
is

cu'cz2cs + culcicace? + cics?cy?cy

Since c1, c2 and c3 are positive, this coefficient

is itself positive.
Similar results hold for the equivalent quadra-

5 3 w2
tic in Q min(n)'
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