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PREFACE

The content of this thesis is divided into two 
parts. Part I consists of a review of graphical 
methods in data analysis, whilst Part II presents 
a graphical procedure for identifying growth 
curves based on the fitting of a polynomial func­
tion to sections or ’’blocks” of the raw data.
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PART I

A REVIEW OF GRAPHICAL METHODS 

IN DATA ANALYSIS

c



CHAPTER 1
THE HISTORY OF GRAPHICS

Graphical presentation of statistics was intro­
duced at the end of the eighteenth century. There 
is some doubt as to whether the ’’inventor” was William 
Playfair (1759 - 1823) or A.F.W. Crome (1753 - 1833). 
Playfair’s works on general descriptive economics were 
illustrated î ith some extremely good graphs, histograms 
and pie diagrams, whilst Crome devised charts to des­
cribe geographical data of European states, chiefly 
population figures and areas. Crome justified the use 
of his geometrical representation as follows:

’’The proportions of the different sizes can how­
ever be more easily seen and grasped if they are brought 
before the eye in the form of a drawing, because the 
imagination is thus stimulated, than if these merely 
appeared in the form of numbers, especially when these 
consist of many digits as is often the case with areas
of states......” (Crome {10} 1785)

A detailed investigation of the work of Crome and 
Playfair has been undertaken by Royston {29}.

While holding the part-time appointment of Prof­
essor of Geometry at Gresham College (1890-94), Karl 
Pearson gave a series of twelve lectures under the 
heading nThe Geometry of Statistics.” These lectures 
were mainly concerned with methods of visual presenta­
tion of descriptive statistics. The graphical approach 
was a characteristic feature of Pearson’s teaching of
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Applied Mathematics and it was only natural that he 
should extend this approach to Statistics.

In 1915 Fisher {14} used 3-dimensional geometry 
to describe a mean, a standard deviation, and Student's 
ratio, and in 1925 wrote:

"The preliminary examination of most data is facili­
tated by the use of diagrams. Diagrams prove nothing, 
but bring outstanding features readily to the eye; they 
are therefore no substitute for such critical tests as 
may be applied to the data, but are valuable in suggesting 
such tests, and in explaining the conclusions founded 
upon them.1’ (Fisher {15})

In 1949 Hosteller and Tukey {25}, in an article on 
the use of binomial probability paper, drew attention to 
the advantages of employing graphical methods to analyse 
data.

"The speed of graphical processes, and the advan­
tages of visual presentation in pointing out facts or 
clues which might otherwise be overlooked, make graphical 
analysis very valuable." (Mosteller and Tukey {25})

In the early 1960’s, possibly motivated by articles 
by Tukey {31,32,33} on data analysis, statisticians began 
detailed investigations into the use of relatively un­
sophisticated procedures for extracting information from 
a body of data, in particular the use of graphical pro­
cedures. Tukey wrote:

"Procedures of diagnosis, and procedures to extract 
indications rather than conclusions, will have to play a 
large part in the future of data analysis. Graphical 
techniques offer great possibilities in both areas."(Tukey{31})
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Wilk and GTlanadesikan, who were to play leading 
roles in the development of graphical procedures for 
the analysis of experimental data, also commented on 
the need for graphics and informal data analytic pro­
cedures :

"If statistical methods are to be relevant to the 
analysis of data, then a major concern of theoretical 
statistics will have to be the provision of methods 
which are useful tools for ’learning from’ data and for 
bringing out the latent information in data. There are 
greater possibilities of gaining insight into data 
through, the use of an informal method, like probability 
plotting, than through the use of a formal technique 
like a test of significance." (Gnanadesikan {17})

Tukey was particularly concerned that graphical 
procedures should involve straight line ccmfigurations 
as often as possible.

"Graphs are most effective ..... when reference 
situations produce straight lines." (Tukey and Wilk {33}) 

When comparing data with a fitted curve he advo­
cated improving the histogram "by employing:, instead, a 
hanging rootogram (see Figure 1) in which the blocks 
are attached to the fitted curve (not the base line) 
and the eye merely has to check on the ’straightness" 
of t h e c > f  rootogram.

The increasing use of computers in data analysis 
has, in recent years, resulted in the introduction of 
computerised graphical procedures. This was anticipated

- 3 -
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by Tukey:
"Computer-drawn graphs .... are going to be the 

data analyst’s greatest single resource." (Tukey {32}), 
and is now widely advocated:

"The graphic aspect of the computer can rapidly 
convey the results of a computation to the man in a 
form that can be quickly perceived i.e. through the 
man's visual senses." (Ball and Hall {3}).

"The thorough graphical analysis of residuals 
as a routine is feasible only with a suitable com­
puter graphical output device." (Cox and Snell {9})

The history of graphics has indicated that only 
in the last 15 years have the potentials of graphic 
representation received wide attention. Recent work 
has tended to concentrate on the data analytic prop­
erties of graphics but new techniques are still being 
devised for the simple presentation of data. Bachi 
{2} recently nroposed a new device - Graphical Rational 
Patterns - where integers are represented by a pattern 
of marks enclosed within small square frames, to over­
come the inadequacies of common graphical presenta­
tion of statistical data.



CHAPTER 2

PROBABILITY PLOTTING

(a) Uses
It is often useful in data analysis to treat a

body of data as though it were an unstructured array.
A valuable representation of such data is provided by
the empirical cumulative distribution function
(e.Cod.f.) i.e. a plot of the i’th ordered value as
ordinate against i - \ as abscissa (i = 1, .. .. n) .

n
Wilk and Gnanadesikan {39} have discussed in detail 
the advantages of the e.c.d.f., in particular its 
effectiveness as an indicator of peculiarities e.g. 
asymmetry. They devised two basic kinds of plots for 
situations where either (i) two e.c.d.f.’s are to be 
compared, (ii) an e.c.d.f., is to be compared with a 
theoretical c.d.f., or (iii) two theoretical c.d.f.fs 
are to be compared. Their plotting procedures may be 
described with the aid of Figure 2.

Corresponding to any ordinate value p there are 
two quantile values (p) and (p) . A scatter plot 
°f against qx (p) for various p, they label a
"quantile versus quantile" (Q~Q) plot. Similarly, 
corresponding to any abscissa value q, there are two 
c.d.f., values px (qd and py(q,). A "percent versus 
percent" (P-P) plot is just a scatter olot of p (a)y
against pv(q) for various a .

If the two variables are identically distributed, 
both the Q-Q plot and the P-P plot will be linear,
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with slope unity, pointed towards the origin. Q-Q
plots are especially sensitive to discrepancies in
the tails of the distributions, whilst P-P plots
are sensitive to discrepancies in the middles of the
distributions.

Wilk and Gnanadesikan mentioned that extensions
and hybrids of the P-P and Q-Q plots could be used
but suggested that more investigation was required
for the applications of these techniques.

Probability plots act as useful, informal aids
to inference in data analysis. The essence of such
plots is to plot the n ordered ’’sample” values against
some representative values from a presumed standard
distribution. • There are essentially two choices of
representative values:-

(i) corresponding quantiles of the reference
distribution such as i - 1 i *- or ----=-n n + 1
(i = 1   n) , plotted on the appropriate
probability paper,

(ii) expected values of the standard order stat­
istics from the reference distribution .

Under certain null statistical conditions a linear 
configuration is obtained, passing through the origin. 
The presence of real effects in a designed experiment » 
the existence of distributional peculiarities, of 
outliers, and of heterogeneities of variance all 
result in distortions of the linear configuration.

- 6 -



Probability plots of the individual residuals in regre­
ssion studies are informative and sensitive tools. The 
graphical analysis of residuals will be surveyed in 
Chapter 5. Probability plots may also be applied to 
analysis of variance situations and a detailed study of 
this particular application is made in Chapters 4 and 5. 
(b) Choice of Plotting Positions

The choice of plotting positions on probability 
paper has been investigated by Chernoff and Lieberman 
{6,7} and Kimball {22}. Chernoff and Lieberman consi­
dered the problem of graphically estimating the mean, 
y, and standard deviation, a , of a normal population on 
the basis of a sample. If Xj , x2, .... xn denote the 
ordered sample values and P i P 2 > • • • • Pn ‘t̂ ie appropriate 
values on the probability scale, then the problem was, 
essentially, what values of theP ls yield good estima­
tes, y and 6? In order to translate the process of 
visually fitting a straight line to the set of plotted 
points into an analytical process, Chernoff and Lieberman 
proposed the assumption that the visually fitted line 
is a very good approximation to the line that would be 
obtained by minimizing the sum of squares of the devia­
tions (in the x direction) from the line. This process 
yielded sampling variances of the resulting analytical 
estimates of the parameters y and a .

Their criterion for judging the optimal character 
of a plotting method was the resulting magnitude of 
the sampling variances of the parameters, in particular 
the variance of 6 since this was the more difficult para­
meter to estimate. Thus they determined values of
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p^ (i = 1, ..., n) , for various n, which minimized 
the variance of an unbiased estimate of a. They also 
showed that a biased estimate of a with minimum mean 
square deviation could be found, and the plotting 
positions for this estimate were given. They conclu­
ded that the optimum choice of the p ’s depended upon 
whether an unbiased estimate was necessary or whether 
a biased estimate could be tolerated.

Kimball extended the work of Chernoff and Lieber­
man by pointing out that probability paper was not 
used merely to estimate parameters. There were two 
other purposes served in using probability paper, 
namely, as a test as to whether or not the sample data 
indicated that the population was of the prescribed 
type, and for graphical extrapolation at one of the 
extremes, the purpose most commonly served when plott­
ing data from an extreme-value population.

Kimball considered seven plotting conventions 
based on the assumption proposed by Chernoff and 
Lieberman. He applied these conventions to both nor­
mal probability paper and extreme-value probability 
paper. Two of the conventions were those used by 
Chernoff and Lieberman, namely, the convention which 
minimized the variance of an unbiased estimate of the 
scale parameter and the convention which produced a 
biased estimate of the scale parameter with minimum 
mean square deviation. Kimball found that both these 
conventions, when used for plotting data on extreme- 
value probability paper, gave plotting positions which 
tended to lie along a curve. He concluded that for
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both normal and extreme-value populations a conven­
tion attributed to Blom {5}, p. = (i - j) ,

(n + 3)

would be satisfactory and simple to use for all three 
objectives for using probability paper. This conven­
tion carried an estimate of the scale parameter with 
low mean square deviation.

Kimball emphasised that there was need for caution 
in relying upon any single formula and that, parti­
cularly for extrapolation for an extreme-value popula­
tion, it would be well to supplement the plot using 
points determined from other conventions.

Blomfs convention never seems to be used in prac­
tice. Text books tend to use plotting conventions
based on order statistics, namely p. = i or

n + 1

p. = i - I , between which there is no difference 
1 n

except for small values of n. Both Chernoff and 
Lieberman, and Kimball list the plotting positions 
for these two conventions, for various values of n.



CHAPTER 3

GRAPHICAL METHODS FOR DISCRETE DATA

(a) Binomial-Like Counts
Dubey {12} proposed a graphical test to determine 

whether certain experimental data could be described 
satisfactorily by a binomial distribution,, If, in the 
standard binomial notation,
p(i) = Pr {X = i) = H n  e1 Cl - e)n_i (i = 0,1,2, .... n), 
then
p(i+l) = - 6 + (n+l)6 . 1... ............ (3.1)
p(i) (i-e) (i-e) (i+i)

Hence, plotting p (i+1) against 1 should give a
p{i) i+l

straight line with slope (n+1)6 and intercept - 6 ,
1-0 1-9

This method requires an estimate of the unknown
parameter 0 in order to calculate p(i). In a later
paper Ord {26} noted the relationship i p(i) =

p(i-l)
(n+l) 0 - 0 o i (i = 1,2, .... n) and sugges-

1-0 1-0

ted that, using the assumption f^a p(i), where the f^ 
denote frequencies for the cases X = i (i = 0,1,2, .... n) ,
a plot could be made of i f^ against i. This should

7l-l
give a straight line with slope - 0 and intercept
(n+l)0 . 1”G
1-0

- 10



Gart {16} suggested the simpler relationship
_______i p(i)_________  = 9............... ....... (3.2)
(n-i+l)p(i-1) + i p(i)

and showed how a plotting technique derived from (3.2) 
is related to estimators and statistical tests of full 
or nearly full efficiency. Using Ord's assumption that
f. ap(i) we have a set of estimators

- i f.{(n-i + l ) f . + i ^i>~1 (i = 1,2,3  n) .

A logical estimator of 0 is the weighted mean of the
0., namely 0 = ?^i0i . If w. = (n-i+l)f. 1 + i f.

Ew. 1 1
 ̂ Eif 1then -0 ■= i__ i = _i which is, of course, the best esti- 

nEff ni l

A

mator. If the 0^ ’ s are plotted against i they should 
cluster around the horizontal straight line with ordi-

A

nate 0.
Gart derived a normal deviate test to test whether

A A

any particular 0^ deviated significantly from 0. He 
pointed out that this test did not involve a specific 
alternative to the binomial distribution and suggested, 
as a reasonable alternative, the bet?-binomial distri­
bution ,
p(i) = Pr{X=i} = (n\ 3(a+i,0+n-i) (i =0,1, .... n)

^i) BfcTFl

where a and $ are positive constants.
Manipulating as in (3.2) we obtain

i p (i)__________  = q-1 + i
(n-i+l)p(i-1)+ip(i) a+3+n-l a+0+n-l

(i=l,2,....n). Following the notation for the binomial
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analysis, this is equivalent to 0^ = C + Di where C 
and D are certain constants. If the data deviated 
from the binomial in the direction of the beta-

A

binomial, the plot of 9^ against i would be linear 
with positive slope. The hypothesis that the data 
is binomial as opposed to beta-binomial can be formu­
lated as H : D = O; H1 :0<D<(n-l) ^. Gart showed
that a test based on D, the weighted least squares

?estimate of D, is equivalent to the homogeneity y~ 
test. This is the asymptotically locally optimal 
test for the binomial against the general alterna­
tive of 0 being itself a random variable. Hence the 
"best” test of the binomial can be related to a simple 
and informative graph. The graph may also be used 
to estimate the parameters of the beta-binomial distri­
bution ;
(b) Poisson-Like Counts

Using his ideas set out in the previous section, 
Dubey proposed a graphical test to determine whether 
certain experimental data could be described satis­
factorily by a Poisson distribution. If, in the stan­
dard Poisson notation,
p (i) = Pr{X= i} = e~X A1 (i = 0,1,2.... ) (A>0) ,i I

then
p (i) = 1 + 1  i
pti^lj X* X

Hence, plotting p(i) against i should give a straight
p U +l)

line with slope 1_ and intercept 1. Dubey commented
X X
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that the method required an estimate of the unknown
parameter A in order to calculate p (i) , and Ord
later derived an alternative relationship, namely
ip (i) = A (1 = 1,2,3,....), from which, using his

P (i-l)
iassumption f-ap(i), it follows that a plot of i
1-1

against i should give a horizontal straight line with­
er dinate A .

In a manner similar to his work on binomial- 
like counts, Gart showed how Ord's plot could be 
related to estimators and statistical tests. A logi­
cal estimator of A is the weighted mean of the esti- 

/s • r Z W A
mators A. = i i.e. A = i i i . I f w .  =f. n then 

1 1±

A

A takes the value T which is the best estimator.
Gart’s normal deviate test to test whether any parti-

A /V

cular A^ deviated significantly from A did not, as 
in the binomial case, involve a specific alternative 
to the Poisson distribution. He suggested, as a 
reasonable alternative, the negative binomial distri­
bution p(i) = Pr{X=i} = ^  + r 1

(i = 0,1,2, . . . .) (m,r>0).
In a similar manner to the derivation of (3.1), 

Dubey has shown that
P (i) = fl + m/r h  - f fr-1) ClVVr)^  1
p-TPTT ^  »/r )  ^  m/r J  i

and that a plot of p(i) against 1̂ should give a
P(i + iy i

straight line with slope - / (r-1) (l+in/r) \ and intercept
m / /r

- 13 -



This however5 while providing a useful

test in itself, was not directly compatible with 
plotting techniques used for the Poisson distribu­
tion. Gart rectified the situation by noting that 
Ord had proved the result

either Poisson or negative binomial. In the latter

D are certain constants. Thus, if the data is con­
sistent with the negative binomial, the plot of A. 
against i would be linear with positive slope.

A test of the deviation of the data from the 
Poisson assumption in the direction of the negative 
binomial alternative can be formulated as H : D = 0

: 0<D<1. Gart showed that a test based on D, the 
weighted least squares estimate of D, is equivalent 
to the asymptotically locally optimal test of the 
Poisson distribution against the negative binomial 
alternative. Hence the "best” test of the Poisson 
distribution can be related to the graph.

The logarithmic series distribution of Fisher

i £which enabled a plot of  i against i to indicate

^  *

case this is equivalent to L  s C + D.l where C and

o

is defined by p(i) {X = i.} = a61 (i = 1,2,3,....1

where a 1___ (O<0<1). Ord derived a plotting



configuration with positive slope. This log series 
plot could possibly be confused with the negative 
binomial plot, a fact which motivated Gart to investi­
gate other plotting relationships, notably
i p(i) = 0 (i = 2,3....). The individual 

(i-l)p(i-l)
i f  *estimators of 0 are 0. = i and the 0.fs1 TZZTt

should cluster around a horizontal straight line 
when the data fits the log-series model.
(c) General

Grimm {20} showed that the types of some dis­
crete distributions could be readily discerned by 
plotting data on Poisson cumulative probability 
paper. Transparent stencils were used to quickly 
recognize typical curves and to estimate their para­
meters. The class of compound and generalized 
Poisson distributions is represented by curves in­
clined to the right, while the (positive) binomial 
is versed to the left.

Ord plotted i p(i) against i for several dis- 
p(i-l)

crete distributions. In the case of the hypergeo­
metric, beta-binomial and beta-Pascal distributions, 
curves were obtained. Graphs are most effective 
for identification purposes when linear plots are 
produced so Gart's work on the derivation of straight 
line configurations, e.g. beta-binomial distribution, 
is a welcome extension of Ordfs technique.

- IS -



CHAPTER 4~

GRAPHICAL METHODS FOR DATA FROM 

UNIRE SPON SB EXPE RIMENTS

(a) Plots of Raw Data
In 1956 Pearson {27}, concerned at the lack of 

evidence of statisticians ’’geometrically examining 
the pattern of their data” before analysing it arith­
metically, described simple ways for graphically in­
specting data in analysis of variance situations. 
Figure 3 shows the data from an experiment with eight 
batches of fertilizer, two independent samples (Ŝ ,
S2 ) being drawn from each batch, each sample then 
being divided into two sub-samples, the first ana­
lysed by method A, the second by method R. The var­
iable measured was ’’percentage of potash”. Inspec­
tion of the plot indicates that with the exception 
of Batch 3 the difference between the two results 
for a given batch, using the same method of analysis 
(either A or R) is small. The determinations by 
methods A and R, however, differ considerably. Sub­
sequent arithmetical analysis confirmed these find­
ings .
(b) Probability Plots

In 1959 Daniel (ll) devised the half-normal plot 
as a means for detecting real effects in a factorial 
two-level experiment. Tukey (3l) was later to comment
”The half-normal plot .... will have more extensive
repercussions than most of us have dreamed of.”
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Half-normal probability paper is prepared by
deleting the probability scale P, for P < 50%, on
normal probability paper and replacing each P value
by P' = 2P - 100 , for P > 50%0 The absolute value
of the i'th smallest contrast is plotted as abscissa,
against P* = (i ~ I) (i = l,2,....n) where n is the

n
number of contrasts obtained from the experiment.
If there are no real effects then the plotted points 
follow a straight line with positive slope, passing 
through the origin. An estimate of the standard 
error of the contrasts may be obtained from that 
contrast for which P ! is most nearly 68.3%. A par­
ticular treatment factor or combination of factors 
is judged to have a real effect if the corresponding 
contrast appears to be "too large" relative to the 
other contrasts in the configuration of the half­
normal plot. The plot may then be revised by omitt­
ing these contrasts and obtaining a new estimate of 
the standard error of the remaining contrasts as 
before (see Figure 4).

In his paper Daniel included some remarks of 
Tukey's on half-normal plotting. Tukey had prefered 
a grid that used the logs of the absolute values of 
the contrasts since the corresponding expansion of 
the scale for smaller contrasts would be useful.
Tukey also suggested inclining the contrast axis 
at 135° to the positive horizontal in order to bring 
the expected position of the plot for experiments
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with no real effects to a horizontal straight line. 
This would be useful in the sense of easier visual 
identification of real effects but the plot would 
lose its inherent simplicity.

Daniel added that half-normal plotting could 
- lead to (i) overestimation of the standard error of 
the contrasts, (ii) the omission of a number of real 
effects, (iii) faulty identification of real effects 
and (iv) possible non-detection of "defective1* con­
trasts due to their being masked by real effects. 
Rirnhaum{4) commented that Daniel's graphical method 
had the advantage that it gained, from the data being 
analysed, a degree of confirmation for the under­
lying assumptions used in analysis of factorial 
experiments, namely, that the contrasts are indepen­
dent and normally distributed with common variance 
and that certain high-order interactions are zero. 
Birnbaum was interested in an alternative to the stan­
dard assumptions and developed his own inference 
procedure for detecting real effects. This could 
be carried out within Daniel's graphical procedure.

In a series of papers (17,18,34-40} Wilk and 
Gri&nadesikan developed procedures to supplement the 
analysis of variance table by helping in the follo­
wing respects: (i) allowing the data themselves to 
provide guidance in developing an error term, (ill 
giving an easily grasped summary with a focus of 
attention on interesting features such as real 
effects, and (iii) being self-critical of underlying
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assumptions. A useful objective analysis of 
variance is the ioint relative assessment of com­
parable quantities e.f. a collection, of mean squares 
or contrasts in a 2n experiment. Wilk and Gnnna- 
desikan labelled procedures which involve the sim­
ultaneous comparison of comparable quantities 
through the use of a statistical measure or stan­
dard , "internal comparisons'' procedures. They 
pointed out that Daniel's procedure provided graphi­
cal internal comparisons of a set of single-degree- 
of-freedom. contrasts in uniresponse experiments.
The graphical nature of the method facilitated the 
gaining of insight concerning the structure of the 
data although in this respect they thought it 
better to include both half and full-normal riots.

Wilk and Gnanadesxkan devised graphical inter­
nal comparisons methods for analysing experimental 
datao Their work may be summarized with the aid 
of the following classificationsr-

RESPONSE STRUCTURE
Decomposition of TT . . , , c---------- Univariate Multivariate
Treatment Structure
All 1 d.f. I XV

All v d.f. IT V

Mixed d.f. Ill VI
Cells IVj. V and VI will be discussed in Chapter S.

Satisfactory orocedures for Cell I are full- 
normal and/or half-normal probability plotting.
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Experiments of the type denoted by Cell II 
are those where the treatment structure is to be 
analysed in terms of ecjual (>1) degrees of free- 
dom decompositions e.g.. the comparison of all 
main effects in a three-level factorial experiment. 
Wilk and Gnanadesikan devised a gamma probability 
plotting procedure for such data where the n ord­
ered squared contrasts are pi otted against approp­
riate cjuantiles of the standard gamma distribu­
tion (scale parameter, X 3 = 1) with shape parameter, 
irj s e<jual to i Vo

What is involved in obtaining such a plot is

{b-} (i = lf2„,«.n)* defined usually as b. =1 • 1

1 - I , and to determine quantiles x. such that

Wilk, Gnanndesikan and Huyett {35} provided tables 
listing x. for values of ^ and b^. The i’th 
ordered squared contrast is then plotted against 
x. on ordinary linear by linear graph paper. Under 
a null hypothesis of no real effects the squared 
contrasts may, as a reasonable approximation, be 
considered as a random sample from a gamma distri­
bution with scale parameter X unknown. It can 
easily be showsi that, under such an hypothesis, 
a straight-line configuration should be obtained 
with intercent 0 and slope 1_. The contrasts

to calculate an increasing sequence of proportions 

n
x

o

X
20



associated with real effects will appear as "too 
large” deviations from the straight line pattern 
(see Figure 5).

Gamma probability plots also serve as important 
tools for detecting other "peculiarities” in the 
data such as distortions due to "maverick” observa­
tions and bad non-normality of the original data.
The gamma distribution has been considered as a 
model in life-test problems and an evaluation of 
this assumption, or of an assumption of exponen- 
tiality, is possible through a gamma plot of ord­
ered failure times.

Wilk and Gnanadesikan derived a graphical inter­
nal comparisons procedure {40} for Cell III of the 
table i.e. for experiments where the analysis of 
variance mean squares may have differing degrees of 
freedom. The procedure consisted of plotting the 
ordered mean squares against representative values 
defined as expected values of appropriately condi­
tioned order statistics of standardized mean squares. 
If the ordered values of the mean squares are den­
oted by with corresponding

degrees of freedom v1,V2 «....v^ respectively, then

the standardized mean squares are such that the 
ifth ordered standardized mean square, Vh, comes 

y ̂from a A distribution (i = 1,2,...K). One

of the "null” assumptions is that the i'th mean
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square is distributed (in the absence of real effects')
2 2

as  ̂v~i where a2 is a presumed common error var- 
viiance. It follows that E{S^ | v^v2 ,... .v̂ } =

a2E{V^|Vj,v2,....v^} and hence if 0^ = (constant)

E{V.I Vi,v2j•••.vj then a plot of S. against 6.
1  l \  3. 1

(i = 1....K) would be expected to yield a linear 
configuration, with a slope which depends on a2, 
when the mean squares do indeed conform to null 
assumptions. Wilk and Gnanadesikan developed com­
puter programs for calculating the 0^. With real 
experimental effects, the associated mean squares 
would tend to appear as departures from the linear 
configuration (see Figure 6).
(c) Transformations

An aspect of great importance in data analysis 
is the transformation of variables. Data from a 
factorial experiment with large interactions may 
sometimes be described without interactions if it 
is first transformed. Kruskal {23} developed a 
graphical procedure where the data itself indica­
ted the monotone transformation which made the inter­
actions smallest. In the general linear model a 
set of observations Y^ (i = l,....n) are such that 
it is supposed jr̂  = E{Y^} = Z ^ij^j where the

g.. are known numbers and 3. are unknown parameters.-̂3 3
When this model fails to fit the data it may be 
assumed instead that some appropriate transformation
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Z. = f(Y^) satisfies the structural relationship,

as a measure of disparity betx^een the numbers 
and the numbers ẑ . Minimising S(f,B) over $
Kruskal labelled the resulting quantity S(f), the 
"metric stress" of the numbers Z^. The "best" mono­
tone function, f, is defined to be the one which
minimizes S(f). f is an estimate of the true under­
lying function f, and is labelled the "minimum • 
stress function". The shape of this function, when 
plotted, indicates the appropriate transformation.

In Figure 7 the minimum stress function is shown 
as a jagged curve and is compared x̂ ith a logarithmic 
function, the smooth curve. The asterisks show
3* + Y- + 6, against Y. x̂ here Y. denotes the 1 1 k 11k 11k

data and Z.., = f(Y..,) is such that E(Z..,} =11 K 11 K 13

Zi = = w^ere t îe function f must be
i

determined. Kruskal used the quantity

Z(zi-z)2
i
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CHAPTER 5.

GRAPHICAL METHODS FOR 
MULTIVARIATE DATA

(a) Plots of Raw Data
In a similar manner to his work on univariate 

data described in the previous chapter, Pearson {27} 
emphasized the importance of a preliminary graphical 
study of data when several variables are used.
Figure 8 illustrates such a study where the thick­
ness of bark deposit on cork trees is measured for 
4- tree orientations, North, -South, East and Nest. 
Visual examination of the data indicates that, besides 
the very noticeable between-tree differences, there 
are differences in pattern associated with the 
ordering of the trees. It is therefore doubtful 
whether, without further sub-division, the data 
would be sufficiently homogeneous to justify any 
conclusions being drawn using multivariate normal 
theory.
(b) Probability Plots

In their work on Cell IV in the table in Chapter 
4jWilk and Gnanadesikan developed graphical internal 
comparisons procedures for analysing 2n factorial 
experiments where main effects and interactions are 
each measured by a single-degree-of-freedom contrast 
and where several responses (e.g. purity, yield, 
colour, density, etc.) are generated from the appli­
cation of a treatment combination to an experimental 
unit.
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If "knowledge were available to permit equal wei ght- 
ing to the responses, Will: and Gnanadesikan suggested 
that an informal study of the data could be made by 
conducting a half-normal plot on the absolute values 
of a variable defined as the sum of the contrasts for 
each of the responses corresponding to a particular 
effect.

Roy {28} suggested a way of looking at the multi­
response problem as a sequence of uniresponse pro­
blems. If, for example, response P., is more important 
than response D^s then the bivariate assessments of 

and should be thought of as the sequence of 
assessments: (i) with respect to marginally; (ii) 
with respect to conditional on . Wilk and 
Gnanadesikan extended this idea to a graphical pro­
cedure involving two half-normal plots, both necessary 
for a study of the data. One plot used the absolute 
values of the contrasts for response only, whilst 
the other used the contrasts for the ’'conditional 
response MJ)? given These contrasts are obtained
essentially from an analysis of covariance of with 
response as a covariable.

Wilk and Gnanadesikan devised a gamma probability 
plotting procedure for situations where there is no 
meaningful basis for ordering the responses. If p 
responses are observed on each experimental unit then 
the vector of responses for the i’th treatment com­
bination (i = 1....N, where N = 2n) may be denoted by
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yi = (yil> yi2’  7ip)• The N x p matrix o

observations is then given by

Ai\
./
2

Y r'

v— y
For uniresponse situations, the conventional esti­
mates of the overall mean, main effects and inter­
actions may be viewed as being essentially given 
by an appropriately chosen orthogonal transformation 
of the observations. If R is the appropriately 
chosen N x N orthogonal matrix, then, for the multi­
response situation, application of the same trans­
formation R to Y yields

^  j = R Y where n/ = (m^n^s. . . .m̂ )

is times the overall mean vector and X ={x • •}
3

(i = 1, . . ,.N-l; j = 1,.. . op). The rows of X are
”single-degree-of-freedom contrast vectors” e.g. the
i’th row, denoted by x/ = (x..,, x.0....x. has5 7 _ i   ̂ i l ? i2 i p 7 s

as elements the contrasts for each of the p responses 
corresponding to the i’th treatment effect.

Will? and Gnanadesikan introduced a measure of 
”size” to go with each of the contrast vectors. For 
the contrast vector x^„ they associated the measure

of size d. , defined by d- = x f A x. where .A is an i i _jl —   1 —

arbitrary p x p positive semi-definite matrix known
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as the ’’compounding” matrix. If A was chosen to be 
the identity matrix then would be the sum of 
sauares of the elements of x^. Under a null hypo­
thesis of no real effects the ’’distances” d^ OO)
(i = 1,....N-1) would be distributed as a linear 
combination of independent single-degree-of-freedom 
X2 variables and may be expected to behave like a 
random sample from a gamma distribution with scale 
parameter X and shape parameter p unknown.

Before being able to carry out a probability 
plot of the ordered distances, X and n need to be 
estimated. A number L (<N-1) of contrast vectors 
which the experimenter is interested in studying 
comparatively, is chosen, and the associated dis­
tances calculated. The inclusion of all these dis­
tances, some of which would be associated with con­
trast vectors that may not satisfy the null assump­
tions, in the process of estimating the parameters 
may lead to a masking of the fact that some of 
these ’’non null” distances are "too large”. A num­
ber K Ĉ L) of contrast vectors which may well not 
reflect real effects is therefore selected. The 
M(<K) smallest distances, which are therefore even 
less likely to reflect real effects, are then con­
sidered as the M smallest of a random sample of 
size K from a gamma distribution.

Wilk, Gnanadesikan and Huyett {36} prepared 
tables for obtaining the maximum likelihood estimates

A Aof X and p, X and p, for the above formulation.
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Finally, under a null hypothesis of no real effects, 
a plot of the L ordered distances against the corres­
ponding quantiles of the standard gamma distribution
(X=l) with n=n should give a straight line with 
intercept zero and slope 1, Distances corresponding
to real effects tend to appear as deviations from 
the straight line pattern (see Figure 9).

Discussing their plotting procedure, Wilk and 
Gnanadesikan pointed out that it would be desirable 
to try various L,K and M values as well as different 
compounding matrices. Each distinct plot would give 
a different insight into the factorial structuring 
of the data. Replotting after omitting distances 
corresponding to real effects would also enable one 
to see other peculiarities in the data. They stressed 
the fact that their method was not meant to replace 
preliminary analysis of the separate responses 
through half-normal plotting. Multi-response analysis 
could, though, importantly augment the separate uni- 
response analysis.

In the case of experiments of the type denoted 
by Cell V, the total set of N degrees of freedom is 
restructured into k orthogonal sets of v degrees of 
freedom each, plus one degree of freedom for the 
mean. Wilk and Gnanadesikan derived the identity

X

N k v

i=l i-1 j 1
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where the z^j’s are p-dimensional vectors obtained

by an appropriate orthogonal transformation of the
original observations. Under the null hypothesis
of no real effects, they established that ’’distances”

v /d. (i = 1,2,....k), where d. = £ z . . A z . . s1 1 j=i _11 “ _il
could be considered as a random sample from a gamma 
distribution with unknown scale and slope parameters.
A graphical internal comparisons procedure could 
then be conducted, in the usual manner by plotting 
the ordered distances against quantiles of the 
standard gamma distribution using an estimated shape 
parameter.

There has, as yet, been no published work on 
graphical procedures for Cell VI type experiments.

The probability plotting procedures advocated
by Wilk and Gnanadesikan are valuable tools in gain­
ing insight into the structure of the data. No 
preselection of certain treatment effects for assign­
ment to error is necessary and the procedures assess 
the consequences, if any, of a breakdown of the 
assumptions used in generating the plot itself. The 
data in a sense ’’analyses itself”. Any attempt to 
interpret these procedures as formal significance 
testing procedures would be misguided. The data 
analytic value of these plots is clearly greater than 
any formal procedure.

Leaving the field of designed experiments, some 
interesting papers have been written on various graphical
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techniques for handling multivariate data. Healy 
{21} described an extension of the normal plot for 
multivariate situations, in particular for investi­
gating two-dimensional frequency data to see if it 
indicated bivariate normality. If X and Y denote 
the two random variables, Healy considered that it 
would be natural to order the (x,y) points accord­
ing to their "distance” from the mean point. Under 
the null hypothesis of bivariate normality, a trans­
formation to new axes and scales may be made in such 
a way that the bivariate distribution is circular, 
with equal standard deviations and zero correlation. 
The squared "distance” of a point (x,y) from the 
mean (a,3) is given by

and p must be replaced by their usual sample esti­
mates. The variable D2 has a x2 distribution with 
two degrees of freedom, for which the expected order 
statistics of a sample of size N are given by
2 , 2 + 2 , 2 + 2 + 2 , . . . . 2 + 2 + . . . + 2  
N N N-l N N-l N-2 N N-T 1

A plot of the ordered squared distances against these 
order statistics, should, in the null situation, give 
a straight line configuration.

Healy investigated whether or not normal prob­
ability paper could be used for a x 2 plot and concluded

where, in practice, the population parameters a* ax y
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that plotting D against expected normal order statis­
tics would detect outliers adequately and would check 
bivariate normality. Special x 2 probability paper is 
now commercially available. His plots could be exten­
ded to three or more variables considered simulta­
neously.
(c) Other Plots

A novel way of plotting multivariate data was 
developed by Andrews {1}. His idea was to imbed 
high-dimensional data in an easily visualized space 
of functions and then to plot the functions. If the 
data is k-dimensional, each data point x/j= (x, ,xa,
.... x^) defines a function

_ i
fx (t) = xi (2) a+x2sint+x3cost+xlfsin2t+xscos2t +......

terminating at the x^ term. This function may be 
plotted over the range - tt <t < tt and a function may 
therefore be drawn for each data point x* Close 
points appear as close functions and distant points 
as distant functions, so multivariate clusters and 
outliers may be identified visually from the plot of 
the functions (see Figure 10). This method has the 
advantage of being unrestricted as regards the value 
of k but, for visual purposes, only about ten points 
may be plotted on the same graph. There is consid­
erable scope for further research into this type of
representation, particularly with the use of various

k
g.(t) forms in the expansion f„(t) = E x.g.(t).1 X 1 1

~ i=l
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W  Plots for Regression Studies
Mallows {24} investigated the problem of deci­

ding how many terms should be included in a regre­
ssion equation. He was particularly interested in 
the graphic display of some statistic which would 
measure the adequacy of any chosen set. One such 
statistic is the residual mean square. J.W. Gorman, 
in a private communication, had suggested to Mallows 
that a plot could be made of residual mean squares 
in order of size against their ranks in this ordering. 
Frequently, estimates of residual variance, converge 
to a stable value as more terms are fitted, leading 
to a feeling of confidence that a sufficiently com­
plete collection of candidate terms has been speci­
fied .

Mallows suggested that a convenient set of dis­
plays (one for each candidate term) could be obtained 
by plotting values of the estimated regression coe­
fficients against the number of terms included in 
the equation. In favourable cases a horizontal line 
of points would appear in each display, correspond­
ing to a collection of equations in which the coe­
fficient studied is insensitive to the presence 
or absence of other terms. Mallows then developed
a plot based on a statistic he labelled C . ThisP
was essentially an estimate of the average predic­
tive mean square error of a fitted p-term equation.
If RSS^ denotes the residual sum of squares corres­
ponding to a fitted i-term equation, then Mallows
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derived the relationship

r _ (n-k)RSS^ „ +cr» “ P - n + 2pp RSS,
iv

where k = total number of candidate terms available, 
and n = number of data values.
In a plot of values against p, a point lying near

the 45° line corresponds to an equation in which all 
the important terms have been included. A point 
lying some way above the line corresponds to a badly 
fitting equation. Figure 11 illustrates a plot
for data with 6 candidate terms, the points being- 
labelled by terms omitted. It seems clear that terms 
1, 3, and 4* are unimportant, both individually and 
jointly.

The disadvantage of this method is that it 
requires the specification of a supposedly exhaus­
tive set of candidate terms. In a private communi­
cation Tukey suggested using the index n+p RSS in

n-p p
the same way as C .

The usefulness of graphical analysis of resi­
duals in regression studies has been discussed by 
Tukey and Wilk {33}, Wilk and Gnanadesikan (39} and 
Cox and Snell {9}. All agree that various plots of 
residuals can be sensitive and informative tools for 
checking on the adequacy of the model, the appropria­
teness of independent variables, the existence of 
outliers, the relevance of extraneous variables and
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distributional peculiarities. Valuable nlots include

(i) plots against fitted values for detecting non­

constancy of variance, (ii) plots against variables 

employed in the fit, where a curved relationship 

would indicate non-linear regression on that variable,

(iii) plots against variables not employed in the 

fit to test the relevance of that variable and (iv) 

plots of the ordered residuals against the expected 

order statistics from a standard normal distribution 

to test for non-normality of the distribution of the 

errors.

Cox and Snell emphasised that the analysis of 

residuals would indicate the nature of a departure 

from an initial model but would not explicitly indi­

cate- how to extend or replace the model.

(e) Plots for Contingency Tables and Studies of 

Association between Variables

A procedure for graphical analysis of large two- 

way contingency tables was proposed by Fienberg {13}.

A certain quantity was added to each cell in the 

table in order that no zeros would be present, and 

then, for each cell, a normalised "contrast’* was 

computed, which was a function of the cell frequency 

and the frequencies of closely neighbouring cells. 

These contrasts were divided into four groups, so 

that contrasts within each group were uncorrelated.

In order to test the null hypothesis that all inter­

actions between the levels of the two variables are
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zero, each group of normalised contrasts was plotted 
separately on half-normal probability paper, assuming 
that the contrasts within each group formed an inde­
pendent sample from a normal distribution with zero 
mean and unit variance. Contrasts deviating signi­
ficantly from the theoretical unit variance line thus 
exhibited strong interaction. To separate the strong 
interaction contrasts from the rest, Fienberg used 
boundary lines suggested by Daniel {11} and Birnbaum 
{4} (see Figure 12). He pointed out that his pro­
cedure could be extended to handle the analysis of 
three-way tables and was a development of the pro­
cedure presented by Cox and Lauh (8), who adapted 
half-normal plotting to the analysis of contingency 
tables in which there was a binary response variable. 
A drawback to Cox and Lauh’s procedure was the fact 
that their plotted points were not independent, and 
thus the results for half-normal plotting were not 
strictly applicable.

Shahani {30} has given a rather simple graphical 
procedure for testing association between two random 
variables. It ignors the points around the central 
origin of the scatter diagram and involves a test 
statistic based on the number of points found in four 
specified regions. The test compares unfavourably 
with Fisher’s Z-transformation but it is much simpler 
to use.
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CHAPTER 6

GRAPHICAL METHODS FOR GROWTH CURVES

Inspection of the preceding chapters reveals 

problem areas in which no work or very little work 

has been published concerning the application of 

graphical methods. One such problem area is growth 

curves. This is rather surprising since various 

methods of residual analyses have been successfully 

applied to model identification in regression studies 

and these studies have direct analogies in time 

series models, which take the form of regression 

models with time as an independent variable.

One graphical approach for identification of 

growth curves has been advocated by Gregg, Hossell 

and Richardson {19}. The seven basic growth curves 

with their characterizing equations are:-

(i) Linear, y = a + bt,

(ii) Quadratic, y = a + bt * ct2,

(iii) Exponential, y = ae^^,

(iv) Logarithmic Parabola, y = a e ^  + ct 9

b t(v) Simple Modified Exponential, y = K + ae ,
* ct
D  ©(vi) Gompertz, y = ae

bt ~1(vii) Logistic, y = (K + ae ) ,

where y denotes the growth variable, t denotes time, 

and a, b, c and K are parameters.
The following relationships may easily be 

obtained from the respective characterizing equations:
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(i) Linear, dy is constant, 
cTt

(ii) Quadratic, d£ = b + 2ct,

(iii) Exponential, d^ is constant,

(iv) Logarithmic Parabola, /l\ =  b + 2ct
[yj at

(v) Simple Modified Exponential, log ^dy^ « 
log (ab) + bt,

(vi) Gompertz, log /I . d%\ = log (be) + ct,
>y dtJ

and(vii) Logistic, log/1 . dy\ = log (-ab) + bt.(7 *v
Using the word "slope” to mean the rate of change dy,

and estimating the value of y at any point by a moving 
average (m.a.), Gregg, Hossell and Richardson produced 
the table below:-

Compute and Plot 
Against Time:-

If the Plotted 
points vary about 
a straight line 
which is:-

Then the curve 
suggested is:-

Slope Horizontal Linear
Slope At an angle to the 

horizontal
Quadratic

Slope/m.a. Horizontal Exponential
SIope/m.a. At an angle to the 

horizontal
Logarithmic

Parabola
log(slope) Sloping down to 

the right
Simple modified 
Exponential

log(slope/m.a.) Sloping down to 
the right

Gompertz

log jslope/ (m.a. f̂ J Sloping down to 
the right

Logistic
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The cjuantities in column 1 of the table, they lab­
elled ’’slope characteristics” and their procedure 
for identification was to plot the slope charac­
teristics of the data and inspect these plots for 
any indication of a satisfactory model.

This method has two practical difficulties 
whose importance depends very much on the smoothness 
of the data available. There is first the problem 
of measuring the slopes at different times. This 
can be done approximately by taking first differen­
ces and smoothing these with a weighted moving aver­
age. Alternatively one can smooth first and then 
take differences or find the slope of a fitted trend 
line. Neither approach is very satisfactory. One 
can similarly question the use of a moving average 
to estimate the value of y at any point. The second 
problem comes from the fact that the method depends 
on an eye comparison of different plots to see which 
looks most like a straight line. One can, however, 
be misled in this since the vertical scales are all 
in different units.

Two other graphical ways of deciding which model 
is appropriate are (i) plot the data on graph paper 
using axes designed to give straight lines if the 
data comes from the appropriate model, (ii) obtain 
plots using the difference properties of the curves 
although these plots could vary considerably about 
their expected configurations because of the large 
variances involved. Some difference properties are:-
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(a) Ay^ is constant for linear data, linear for 
quadratic data.

(b) Ay^ constant for exponential data. 
yt

t-1

^  is constant for linear, exponential
Ayt-1 and simple modified exponential data.

^  yt is constant for exponential and
Ai°g yt_i

Gompertz data.

is constant for exponential 
y t_1 J and logistic data.

(f) Alog y^ is constant for exponential data,
linear for logarithmic parabola data.

(s) *s constant for exponential data.
yt-l

Both these methods again depend on an eye comparison 
of different plots whose vertical scales are not
alike. In Part II a graphical method is proposed
for identifying growth curves which surmounts this 
deficiency.
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PART II

A GRAPHICAL IDENTIFICATION PROCEDURE

FOR GROWTH CURVES



CHAPTER 7

FOUNDATION OF THE IDENTIFICATION 
PROCEDURE

Let the growth data we wish to identify be deno­
ted by Yi, Y2  Yn, the data being measured at
equal intervals of time such that the value Y^ occurs
at time t = i (i = 1,2,....n). The data is divided 
into overlapping "blocks11, each block consisting of 
a fixed number of consecutive data points, usually 
between 10 and 25 depending on the magnitude of n.
The division is such that each block is comprised of 
an odd number of data points, say (2m+l), i.e. the 
k*th block, say, consists of data points Y^, Y^^, 
....Yj,+ 2m with corresponding time base t = k, t = k+1, 
.... t = k+2m (k = 1,2,....,n-2m). For convenience 
the time base of each B. is transformed into (2m+l) 
equally spaced points in the interval -l^x^+l. This
is effected for by the transformation

which also has the property that the natural order of 
the original time base is preserved and further 
kt**- -1 and k+2m «-*•+!. We shall use the notation 3j,

to denote the block B^ transformed by T^.
To each block 3 -,, we fit the model 

r=h



where the ct^) are unknown parameters and gr(x) is 
a known polynomial of degree r in x which is fixed 
for the particular data under consideration. In 
deciding the value of h, the order of the polynomial 
fit, it was observed that too high a value results 
not only in computational difficulties but also in 
a relatively useless oscillatory fit to ’’noisy1’ data, 
itfhile smaller values yield a smoother fit and easier 
numerical handling. For example, Figure 13 illus­
trates quite well the difference in smoothness bet­
ween a seventh order and a fourth order polynomial 
fitted to a block of ’’noisy" exponential data. Tests 
such as that illustrated in Figure 13 together with 
computational algebraic difficulties encountered in 
the least squares process (see Chapter 8) led us to 
accept the value 4 for h as providing an acceptable 
level of smoothness of fit with a tolerable measure
of algebraical and numerical manioulability.

(k)~(k) (k) (k) (k)
Least squares estimates, aft, ai , a2, as, at*,

(k) (k) (k) (k) (k)
of a0, ai , a2 , « 3  , respectively, are obtained
for each block $^. In Chapter 9 we investigate re­
lationships between the estimates or "coefficients" 
themselves and their dependence on k and so develop 
some plotting procedures which aim at identification 
of particular types of growth data. We shall refer 
to this process as"the sliding block technique." The 
possible models are restricted to the seven mentioned 
by Gregg, Hossell and Richardson {19}, namely linear,
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quadratic, exponential, logarithmic parabola, simple 
modified exponential, Gompertz and logistic.

Much choice is available for the polynomials 
gr(x) e.gj the Taylor series (so that gr (x) = xr), 
Legendre polynomials, Tchebychef polynomials etc.
Each have their own particular advantages (and dis­
advantages) in fitting procedures. However, in our 
investigation the gr(x) are chosen in such a way as
to attempt to minimise the ratios of the standard00deviations of the coefficients a. (j = 0,1,....4) 
to their absolute values, thus obtaining more reliable 
coefficient plots for identification purposes. While 
the full details are left until Chapter 10 it should 
be mentioned that such gr(x) are tailor-made to a 
particular set of data but are in no way block depen­
dent.

Finally the identification procedure is tested 
on artificial growth data, both "clean" and "noisy”, 
and on some real grox̂ th data.
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CHAPTER 8

THE LEAST SQUARES FITTING PROCESS

In this chapter the general form of the coe-
(kj

fficients â  (j = 0,1,...4) is obtained by the 
method of least squares. Throughout Part II of this 
thesis the notation | will denote summation over 
integer values from i = k to i = k+2m.

In the kfth block 8k, the data values are Yk,

^k+19 * * * *^k+2m corresP°nding x values xk = - m ,m
xk+l " - a i l  xk+m = °*m
xk+2m = 2 » 50 thatm

Tk : t = k + i «-- ► x = xk+i = - m-i
m

To the block $k we fit the model

r=4 (k)
f(xi) = ZL «r grCxi) , (i » k,k+l,...k+2m),r=o

where
jjr (r) .

~ %  pr-i xi 9 ^  ~j =o J

the p's being constants whose values are eventually
00found in our attempt to minimise S.Dev, (â  )

(k)
ai

(j = 0,1,....4) for the data under consideration.
We make the assumptions that Var(Y|x=x^) = crz, 

a constant, and Cov(Y^,Yj) = 0 for all i,j (i f j).
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The least squares estimates a^) 9 af^ ... .af^) of 
apĉ , # o are those values of aPĉ , af^
.... which minimise the quantity

<Yi
r*=4
21 ciyk  ̂ gjCxj))2.
r=o

If g(r,s) = I gr(xf) * gsCxi), then least squares 
theory gives

g (0,0) g (0,1) g (0,4)
gd,0)

g(4,0) g ( 4 , 4 )

a

a

a

a

a

flOa
(k)

(k)

(k)

2Yi gjfxj)

f i

f i  M xi) 

P i

The calculation of the g(r,s) terms is given in 
Appendix 1. The inversion process for this matrix 
is simplified by

(1) (2) (3) (3) (4)
(i) putting the terms Pi , , px , p3 p,(4)

and ps* equal to zero as in Tchebychef, 
Hermite and Legendre polynomials,
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and (ii) omitting terms of smaller order than
_ 70(m ), so forming a "truncated" matrix

from the original.
To check that these approximations did not sig 

nificantly affect the matrix elements a programme 
X'ras written to calculate the elements of the ori­
ginal matrix above and the "truncated" matrix for 
values of m from 5 to 13. For convenience the p ’s 
were arbitrarily given Taylor series values i.e.C j) Ci)pQ = 1, pr = 0 (r f 0) ; j =0,1,--- 4.

A typical result (m = 7) was:-

QRIGINAL {g(r,s)} MATRIX

15.0

5.71428

3.89504

0
5.71428

0
3.89504

0

5.71428
0

3.89504
0

3.14178

0
3.89504

0
3.14178

0

3.89504

3.14178

2.74317

TRUNCATED FORM OF {g(r,s)} MATRIX

15.0

5.71428

3.89524

0
5.71428

0
3.89524

0

5.71428
0

3.89524
0

3.14275

0
3.89524

0
3.14275

0

3.89524

3.14275

2.74587

to truncation
was 0.01%, a clearly acceptable figure. Similarly 
acceptable figures were obtained for other values of m

- 45 -



The inverse of the truncated (g(r,s)} matrix is 
given in Appendix 2. To check the working, a pro­
gramme was written to compare this inverse with the 
inverse of the original {g(r,s)> matrix obtained by 
a Fortran subroutine, for values of m from 5 to 13 
using Taylor series p values.

A typical result (m=7) wast-

INVERSE OF TRUNCATED (g(r,s)} MATRIX AS 
AS IN APPENDIX 2

0.237970
0

-1.01195
0

0.818274

0
1.12743

0
-1.39738

0

-1.01195
0

7.64035
0

-7.30850

0
-1.39738

0
2.05002

0

0.818274
0

-7.30850
0

7.57098 /
INVERSE OF ORIGINAL { g ( r , s ) }  MATRIX USING 

FORTRAN SUBROUTINE

0 -1.01132 0 0.818284
1.12946 0 -1.40025 0

0 7.64143 0 -7.31582
-1.40025 0 2.05426 0

0 -7.31582 0 7.58154

The largest error in an element is 0.14%. The errors 
increase with increasing values of m but at a declin­
ing rate. The largest error for m = 13 is 0.94%, an 
acceptable figure.

239449

-1.01132

0.81824
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Denoting the elements of the inverse of the 
truncated form of the {g(r,s)} matrix by G(r,s)
(r=0,l,... .4 ; si=o,l,... .4) , a good approximation00 00 
to the coefficients ao , ....... a«» is given by

a o ^ \  / g ( 0 , 0 )  G ( 0 , 1 )  ..................... G ( 0 , 4 ) \00
aj
(k)

a2
(k)

a3
(k)a*

G ( 1 , 0 )

G ( 4 , 0 )  ..........................................G ( 4 , 4 )

(0)
?Yi P»I 1 Cl)?Y. po x.
I C2)1 o (2)
?Y. (p0 x,2 + p2 )

(3) (3)
?Y. (po x.* + p2 x.)
r O )  \  ( O  „ C4 ) /jYj (Po + P2 Xj2+ Pk )/

(8.1)

where 00 Varfa^ ) = G(j,j) . o2, 0=0,1,...4)... (8.2)
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CHAPTER 9
PLOTS FOR MODEL IDENTIFICATION

In the following sections growth curve models 
are investigated in order to build up plotting pro­
cedures from the ’’sliding block” technique described 
in Chapter 7. The procedures are then inspected to 
see if one in particular would suffice for the identifi­
cation of the seven basic models.
(a) Linear Data

If the data under inspection was perfectly 
linear, then, at time t, Yt = a + bt where a and 
b are unknown parameters. Applying the transforma­
tion to the block we put t = mx + k + m, whence

in 6i<:
Y. = a+b(mx^+k+m) * (a+bk+bm)+bmx^,(i=k,k+l,...k+2m).

To this data we are fitting the model 
f (x.) = a0 po-°̂ +ai pJ1')xi+a2 (pô 2^x|+p|2 )̂ +

a3 (p^3-lx!+p|3^xi) + ak  ̂(p£^x2+p|4-,x|+pit4')) ... (9.1)

Equating coefficients we obtain, for non-zero PQ̂  ,
Cj =0 9 1J • • *4)

CIO CD
ax po = bm,
CD CO) 

ao Po = a + bk + bm,
Ck) (k) CD

a 2 = as = = 0.
Ck)

In practice we replace the a. by their least squares
ck) * j

estimate a. . The following plots would be useful
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as aids to identifying linear aata:-
(i) A plot of ap^ against k would give a

straight line parallel to the k-axis having 
intercept bm 

Po

(ii) A plot of aPĉ (vert.) against k (horiz.)
would be linear, with slope b and

JO)
r V Pffintercept /a+bm

(iii) A plot of a£^) agaiftst aP^ for increasing
k would give a straight line perpendicular
to the a£k) axis. The plotted points v/ould be
equally spaced along this line.

(iv) A plot of a£k) against a|^ v/ould give a
fklseries of points along the a^ J axis.

Similarly for against aP^ or a«P^.
(v) A plot of apĉ against aPĉ (or ap^,aip))

fklwould give a single point on the at axis.
(b) Quadratic Data

If the data under inspection was perfectly quad­
ratic, then, at time t, = a + bt + ct2 where a,b 
and c are unknown parameters. Transforming as in (a) 
we obtain for

= (a+bk+bm+ck2 +2 ckm+cm2) + (bm+2 ckm+2 cm2) x^

+ cm2 x|, '(i = k,k+l,.. .lc+2 m) .
Fitting model (9.1) and equating coefficients, we
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(j)obtain, for non-zero po (i

/—\•••#voII

(k)ai P0(2) = cm2 >
(k)af P0(1) = bm + 2 c km + 2 cm2 ,

„ ckia o Po + a (k) + a2
(2 ) 

pi J = a + bk + bm

= a (k) .k 0

fk' )Replacement of the aj* by their least souares estimates
J: .^suggests the following plots as aids to identifica­
tion: -

fkl(i) A nlot of a2 against k would give a straight 
line parallel to the k-axis having intercept 
cm2

p ,(2 )
fkl(ii) A plot of af“J (vert.) against k (horiz.) 

would be linear, with slope 2 cm and

P0 (1>

intercept/bm+2 cm2 

Po (1>
(iii) A nlot of a<fk  ̂ against a2k  ̂ for increasing k 

would give a straight line perpendicular to
the ai-^ axis.

(lO fkl(iv) A plot of af J against a2 would give a
straight line perpendicular to the a2k  ̂ axis,
the points being equally spaced along the
line.

(v) A plot of af  ̂ against a3̂  or a*k  ̂ would
give a series of equally spaced points along 
the a/k) axis.

cm2 ,
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(vi) A plot of against ap^ or a£k  ̂ v/ould
give a series of points along the aPĉ axis.

(c) Exponential Data
If the data under inspection was perfectly expo-

i * o .

nential, then, at time t, = a e where a and b 
are unknown parameters. Transforming as in (a) we 
obtain for B̂ :

Y. = a eM m x i+k+m) _

From (8.1) and Appendix 2, 

a0(k) = G(0,0) ^YiPoCO) + G(0,2) E Y ^ P o ^ x U p P 5)

+ G(0,4) ZY, Cpo(4 )x p p 2(4 :,x%p,(4))
X

Hence on substituting for Y^,
bmx.

a0(k) = G(0,0).pj0 b a . eb(k+m) Ze G(0,2) .a.eb(k+m)i

?ebmXi (pf2>x?+pj2b  ♦ GC0,4).a.eb<k«“ >
1 X X

(pô 4 -*Xi+pl4 ^x?+p^4 b»

i.e. a„(k) = a.ebfk+m)
bmx.

Ze 1  (G(O,O)p0(O)+G(Of2)p2(2:) + 

G(0,4)p^4b  + Ze V  (GCO,2)p0(2 )+G(O,4)p2(4b  +• X

r .  bmx.
*e xiG(0,4)po(4)

Replacing x. by its value i-k-m and changing the var-
m

iable of summation to be r « 0 ,1 ,...2 m, takes the
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form
2m

aebk Z  ebr{(G(0 ,0 )po(0 )+G(0 ,2 )p2(2 )+G(0 ,4 )p%(,!b  +
r=o

fr - m 2 (G(0.2)po(2 :)->-G(0,4)p2(4)) + ,r-rK"G(0,4)p0(4)> , 
m } k m J

ai-k+1  ̂ bwhence it is easily seen that 0 * e , a con-
- 3 F “

stant.
a (k+1> bSimilarly it can be shown that _j    = e (j*1,2,3,4).

aj }

From (8.1) and Appendix 2 we may similarly derive 
the relationships:

ai(k) = ae bk Z™ ebr{ (G(l,l)p0(1)+ G ( l , 3 ) p P ) ) + frzm 1 s 
r=o 1 m }

G(l,3)p0(3)} ,

a|k  ̂ = a ebk z” ebr{ (G(2,0)p0(O)+G(2,2)p2(2 )+G(2 ,4)pPb 
r=o

+ .r-m 2 (G(2.2)p,(2 )*GC2.4)p2C4 h * fr-m »G(2.4)p,(4)} . 
m  ̂m '

(k) bk 2majw  s a e Z ebr{ (G(3,l)p0(1 )tG(3,3)pPh*fr-m. 
r=o k m '

G(3,3)po(3h  .

and
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ap) = a ebk z" 1 ebr{ (G (A ,O)p0(O)+G (4 ,2)p|2)+G (4 ,4)pJ4 5  ) 
r=o

fT ^ 1 2 (G(4,2)p0(2 )+G(4J4)p2(4)) + frIm 1 ,tG(4,4)p0(4)} 
 ̂m J 1 m '

.  (k)It follows that c'r (r = 0,1,2,3,4; s = 0 ,1 ,2 ,3 ,4;
— mas

r £ s) are constants whose values depend on m, b and 
the p terms.

The following plots would therefore be useful for 
identifying exponential data:-

(k+1 )
(i) Plots of aj against k (j = 0,1,2,3,4)

j
would give a straight line parallel to the

bk-axis having intercept e .
(ii) Plots of against a^^ (r f s) would

give straight lines passing through the 
origin. As k increases the plotted points 
become increasingly far apart along the 
lines.

(d) Simple Modified Exponential Data
If the data under inspection was perfectly simple

modified exponential, then, at time t, = K + a e
where a, b and K are unknown parameters. Transforming
as in (a) we obtain for 3 :̂

b(mx.+k+m)
Y. = K + a e 1
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From (8.1) and Appendix 2, it follows that

m  COI b(mx.+k+m) ,,,
a0l J = G(0,0) Zp} J(K+ae 1 )+G(0,2) E(p0U J x|+

<-->1 b (mx. +l'+m) ,...
P2 ) (K+a6 1 ) + GCO,4) E(pol Jx H p 2UJ x? +i l l

m  b(mx.+k+m)
pi ’')(K+ae

i.e. a£k) = k |g (OsO)po(0) (2m+l)+G(0,2) (pP^ Ex?+p|2)
i

(2m+l))+G(0,4) (Po4) ZxUp2(4J ZxUpi^ (2m+l))l
i i -*

+ a.eb(k+m)
bmx.

Ze 1 (G(0,0)pf0 )+G(0>2)p-i2 )+G(0,4)pf4b

bmx. m  bmx.
+ Ze x|(G(0,2)po ^+G(0 ,4 )p2- -̂) + Ze 1

G(0,4)pi£4) (9.2)

In Appendix 3 it is shown that the coefficient of K 
is non-zero.

Similar relationships may also be obtained for 
apv̂ , a|k  ̂, ap'*̂  and ai^ f but these differ from a£k  ̂
in the essential feature that the coefficient of K 
is zero, a fact which is established in Appendix 3.

These results indicate that the following plots 
would be useful for identification of simple modi­
fied exponential data:-

(k+1 )
(i) Plots of aj against k (j = 1 ,2 ,3,4)

a: 
3
Ck)
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would give a straight line parallel to the
■L

k-axis having intercept e . A plot of 
aoCk+i)

0 against k would not take this con-
T p r

figuration (since K f 0).

(ii) Plots of against (r - 1,2,3,4;
s = 1 ,2 ,3,4; r | s) would give straight 
lines passing through the origin. Since 
parameter b is negative, the plotted points 
would become increasingly close as k increased.

(iii) Plots of aP^ against aj ^  (j = 1,2,3,4)
would give straight lines not passing through
the origin.

(e) Sigmoid Data; Gompertz and Logistic
If the data under inspection was perfectly Gom­

pertz or logistic, the theoretical forms of the coe- 
fklfficients aj“ J (j = 0,..4) become too complicated for 

any immediate plotting procedure to emerge. We can, 
however, reason what should happen if we bear in mind 
that we are in practice moving ’’along’1 the s-shaped 
trend curve as we pass from block to block.
There are three distinct phases:

(i) Growth is relatively slow at first and then
begins to rise exponentially. The first
few blocks will, in fact, be composed solely 
of such data and we might expect plotting 
procedures applied to these blocks to give 
results consistent with exponential data.
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(ii) In the middle of the trend curve there is 

a point of inflection. Blocks composed of 

data points in this region would be expected 

to give plots indicating linear data.

(iii) There is, finally, a relative decline in

growth as the trend rises to an upper asymp­

tote. ^lotting procedures applied to blocks 

composed of data at this "top end" of the 

curve would be expected to give results con­

sistent with simple modified exponential 

data.

Plots involving the coefficients (j = 0,...4),

when applied to perfect sigmoid data, v/ould therefore 

give patterns indicating a merging of exponential, 

linear and simple modified exponential data. It 

does, however, appear that we shall be unable to 

distinguish between Gompertz data and logistic data,

(f) Logarithmic Parabolic Data

If the data under inspection v/as a perfect log-
bt + C +^arithmic parabola, then, at time t , Y = a e 

where a, b and c are unknown parameters. The theore­

tical forms of the coefficients a ( j  = 0,1,...4) 

again become too complicated for any immediate plott­

ing procedure to emerge. It is possible, however, 

that if c is small, plots would give configurations 

similar to those expected from exponential data.

The best course seems to be to apply plotting pro­

cedures to artificial logarithmic parabolic data once 

the p terms have been fixed and see if these result 

in distinct configurations. This is done in Chapter 11.
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Summary
In order to avoid havinp; to make an eye com­

parison of different plots, with possibly different 
scales, when identifying the growth model, it is 
desirable that one particular plot involving some 
(or all) of the coefficients (j = 0 ,1 ,...4)
should give markedly different configurations for 
the various models. It is also desirable that as 
many of these configurations as possible are straight 
line configurations since, as Tukey has remarked in 
{33}, a straight line is most easily discernible by 
the eye.

A plot that satisfies these requirements is the 
plot of ajp) against • Determination of the p 
terms (see Chapter 10) and subsequent application of 
the"sliding block" technique (see Chapter ll) showed 
that coefficients af^ and are positive for
perfect exponential data whilst aPĉ is negative for 
perfect simple modified exponential data. The centre 
column of Figure 14 illustrates the configurations 
that a plot of a[^) against ap^ i\/ould take for the 
various growth curve models. We can clearly distin­
guish between the models and therefore surmount the 
principle deficiency of the slope characteristics 
method advocated by Gregg, Hossell and Richardson!19} 
since we do not have to make an eye comparison of 
different plots each possessing a different scale.
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Another plot which would distinguish between 
the growth curve models is the plot of a£^ against
fk”)ar J , although this is not quite as efficient as the

previous plot since all the configurations are in the
same quadrant and one configuration is a quadratic
curveo It nevertheless has the advantage of greater
accuracy in one of the coefficients (see Chapter 11).
Appendix 3 shows that the coefficient of K in (9.2)
is positive and since parameter K is positive for
simple modified exponential data it is easily shown
that the configuration for this model is a straight

Ik")line cutting the positive a$ J axis. The right - 
hand column of Figure 14 illustrates the configura­
tions for this plot.
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CHAPTER 10

CHOOSING THE »p» TERMS
(kiSince some (or all) of the coefficients aj- **'

(j = 0,...4) will be used in plotting procedures, it 
is desirable that the variances of these coefficients 
be small. Consider, for example, coefficient a f .
From (8.2) and Appendix 2 the standard deviation of 
a f k > is

a  (10.1)

We could reduce this standard deviation by 
increasing P o ^ , but since, from (8 .1 ),

i(k) = G(l,l)p0(1 )EYixi+G(l,3)PoC3 h Y ixi!l+G(l,3)p2(3 :)EYixi

=  [p0f1)poC3)2B]-1 [(po(3)2J+2p(3)pC3)I)+p2C3)zE),YiXi

+ (~pH^ 2 D-po^^pH^E)EY.x. 3 + (-pf 3 ^pH^D-p|3  ̂*E)EY.x.
i 1 1 i 1 1

1 — l r
PoCl-)PoC3-)B p„(3) (-DEY.x.3 +J5:Y.x.)+P2(3) (-ESY.x. 3 +

-I L i i i

DEY.x.) 
i 1 K

(10.2)

this action vrauld also reduce in the same propor-
tion. Hence lowering the standard deviation by increas­
ing po-1  ̂ would only result, in effect, in a different
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scale on the ar ; axis of a plot and would not make 
the calculated coefficient more reliable for any given 
block of data points. It would be rather like a 
confidence interval for a parameter being altered 
from 10 + 1 to 5 + J.

We could, however, manipulate the terms po
«(3) (3) in order to minimise the ratio of thepo and p2

standard deviation to the absolute value of the cal­
culated value of the coefficient. From (10.1) and 
and (1 0 .2 ) this ratio is given by

The quantity B depends only on the block size and is 
therefore constant for a fixed value of m. The quan­
tity a is a constant and we might note that even the 
estimate of a, obtained from the squared residuals 
of the polynomial fit to the data, is unaffected by 
choice of individual p terms, provided we always use 
a fixed order polynomial.

We attempt, therefore, to fix the terms p<P^ 
and p?  ̂ at those values which minimise the expression

S.Dev o Cafkh  U 3>2J+2 p P M 3W 3>2e] • B*. a- —   - - - —- i - ;   - - - —  - - - t --- — -   ■ .-
ip} J (-DEY.x.3 +J£Y.x. )+p} (-EEY.x.3 +MY.x.)

•  J .  X  • X X  • X  X  •
1 1 1 1

1

(10.3)
v p ^ (-DEY.x . 3 +JEY.x.)+p13:I (-EEY.x. 3 +DEY.X. )
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In general, we aim to fix all the p terms of the 
polynomials to be those values which minimise the 
ratios

S.Dev. (aj'̂  ) (j = 0,1, . . .4)

aj
no

In reality, we shall find that this is impossible 
without choosing different values of the p terms for 
each block. The plotting procedures described in 
Chapter 9 however, hold only if the p terms are con­
stant for each block of the data under investigation, 
We show however, that using constant p terms, we 
still obtain a close approximation to the true mini­
mum for each block.
(a) Minimisation for Coefficient ai

From (8.2) and Appendix 2,

(k)

S.Dev. (a{kb

From (8.1), manipulating as in (10.2), we obtain

B-W(k)
-i-l

BE Y. -CEY. x . 2 +AEY. x . 
-i 1 i 1 1

There are, therefore, no p terms we can adjust to 
minimise the ratio of S.Dev. (ai^)) to |aif̂ |̂, i.e 
the ratio is independent of the p terms.
(b) Minimisation for Coefficient ai 

From (8.2) and Appendix 2,

(k)

S.Dev. (as' ) Po.(3)u
- 1 “I. B . E
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From (8.1), manipulating as in (10.2), we obtain

ai00 -= Po-^bJ Je

The ratio of S.Dev.(a3 ^ )  to |aPw'| is, therefore, 
also independent of the p terms.
(c) Minimisation for Coefficient ai

From (8.2) and Appendix 2,
“1 -I

no

S.Dev. Cap)) = [ p , ^ 4)] [-p,( 4  W 4) W 4 )Po(4 )c].a.

From (8 .1 ), manipulating as in (10.2), we obtain

ai. 0 0 p f 2> p f 4 )
1 - 1  
. z p£4  ̂(-CEY.x^-HEYjX^+FEY.)

+ p|4  ̂(-AEY.x. ‘‘+CEY.X.2 -BEY.)
• 1 1  * 1 1  * 1

If
r =

and
s =

-CEY.x.k- HEY.x.2 +FZY-,• i i  - i i  il i i

-AEY.x.1*+CEY.X. 2 -BZY. 
i 1 1 i 1 1 i 1

then 1 i2 2
S.Dev.

|aP^| | P o r  + p£4  ̂ s|

We require, therefore, the values of p<f^ ,p|^ 
which minimise
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- F pf4>*H * p ^  + 2p|4)p ^ c] 1

(4) (4)Po r + P2 S

where H, A and C depend solely on the block size, 
which is fixed, and r and s depend on the data 
values for the particular block and the block size.

c(4)If 8 = , then
_ ( 4 )P2

1

q _ [-H6 2 + 2C6 + a! 2 ..............     (10.4)
| rQ + s |

In practice both Q and 6 are real, hence the 
equation Q2 (r9+s) 2 = -H82 +2C0+A or
92 (r2 QJ+H)+9(2rsQ2 -2C)+ (s2 Q2 -A) * 0 ......  (10.5)
has real roots in 9 * consequently

(2rsQ2 -2C) 2 * 4(r2 Q2 +H) (s2 Q2 ~A), ......   (10.6)

i.e.
4Q2 (r2 A-s2 H-2rsC)  ̂ -4C2 -4HA, 
i.e.
Q* * -HA-C2 .    ....---- .(10.7)

r2 A-s2 H-2rsC

The minimum value of Q2 occurs at equality in
(10.7), i.e. when inequality (10.6) becomes an equality. 
Solving equation (10.5) for 0 we obtain

8 - - (2rsQ2 -2C) + [(2rsQ2 -2C) 2 -4(r2 Q2 +H) (s2 Q2 -A)] .
2 (r2 Q2 +H)
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With (1 0 .6 ) as an equality, the value of 0 

which minimises Q2, say 0 . , is given bym m

0 . = C - rsQm m  ------xx ovy2

2n2r2 Qz+H

Substituting for the minimum value of Q2 obtained 
from (10.7) we obtain

9min = C ' Cr/S^A  ..............(1 0 .8 )
H+ (r/s)C

The value o£ which minimises S.Dev, (al^b
|a2« |

is thus a function of the quantity (r/s) and there­
fore varies from block to block. We need a fixed 
value of in order to apply the plotting

2

procedures described in Chapter 9. Study of dia­
grams like Figure 15, in which 0 . is plottedm m
against (r/s) for the case m = 7, indicates that 
a suitable fixed value to take would be the asymptO' 
tic value of 0- _, - A . A programme was written

111 1 XI ^

to calculate (r/s) for blocks of all types of data
and it was found that, in practice, (r/s) took
values anywhere between + «>, so endorsing the view
that 0 should take this value, m m
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Using - A instead of the true0_. to determine f m m

the ratio p<f^ , we must check that the value of

P2

Q obtained, denoted by Qasy say, is reasonably close
to the true minimum of Q denoted by Q . . From' m m
(10.7)

0  . C-HA-C2] 1_________^min . . r ~ i lI s | [(r/s)2A-H-2(r/s)c]

whence on substituting - A for 0 in (10.4), we 

obtain

Qasy . M.L.CrHA.iCfL1

I s | | C-A(r/s) |

Figure 16 shows plots of Q^*«|s| and 0 ^„|s|- "mm 1 1 asy1 1

against (r/s). The two Q ’s are close except for 
the range of (r/s) values where QaSylsl ** 00 an^ 
Qminisl remains finite. Since po^ is constant 
in this analysis,

noa£ * ex. r + si \ ® s(r/s + 1 /0 )
Ipo*-4 -1

fk)whence a^ - 0 if r = -1^. Since we are taking
s 0

the value - A for 0, a2̂  = 0 if r = C ,
C s A

which is the value (r/s) takes at the discontinuity
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shown in Figure 16. Hence the range of (r/s) 
values for which QaSylsl + ^corresponds to blocks

for which a|^ is approximately zero. These blocks 
will still be reliable for plotting purposes since, 
with the p terms fixed, the standard deviation of 
a|^) is invariant from block to block.

The ratio ptf , now being fixed at the
(4)P2

value - A , is m dependent. The table below gives 
C

values of pd.(4) for values of m from 5 to 12.

(4)Pi

m m pf4)

Pl4> Pa(4)

5 -0.9986 9 -1.0597
6 -1.0195 1 0 -1.0686
7 -1.0358 1 1 -1.0762
8 -1.0489 1 2 -1.0827

The error in the calculated values of Po^ is
(4)Pf J

derived in Appendix 4. This error is of the order 
+ 0.0002.

An interesting point emerges from the above 
analysis. For Tchebychef polynomials, p<f^ = -1,

P2(4)
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and substitution of -1 for G in (10.4) would give 
a quantity we may label Q-pcjiei) in accordance with 
our previous notation. It was found that

was marginally closer to Qm^n than QaSy only for

0 < (r/s) < 1 .  In using - A for po^ our poly-
C ----

Pa(4)

nomials are therefore generally better than 
Tchebychef polynomials in the sense of minimising 
S.Dev. (a|kh

I a P O ,

(d) Minimisation for Coefficient af ^

If
u = -DEY.x. 3 + JEY.x.i l l  4 i i

and
V = -EEY.x. 9 + DEY.x. 

i i
(31then, from (10.3), we require the values of po

('3')and pi- J which minimize

/ j p o ^ J + a p o ^ p l ^ D + p P ^ E j

Q |PP>u ♦ p P K l  ‘

where J, D and E depend on the block size only,
and u and v depend on the data values for the
particular block and the block size, 

f 3!If A = p0v J , then proceeding as in the
(3) pz J
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previous section, the value of X which minimises q' , 

i,e‘ Xmin> is §iven hy

*min = D - CuAr)E .......  (10-
~ J + (u /v )D

Figure 17 shows a nlot of X_. against (u/v)m m   ̂ '
for the case m = 7. With reasoning similar to the
previous section, the value of X . was fixed at r m m
its asymptotic value, - E , this decision being

D
endorsed by the results of a programme which showed 
that, in practice, (u/v) took values anywhere bet­
ween + 00 for data blocks.

We may similarly compare the true minimum of Q7, 
denoted by Q/m^ns with the value of Q7 obtained by 
using - E instead of Q/aSy say* Figure 18
shows plots of Q ^ J v l  and Q/asyl v| against (u/v).
The two Q's are again close except for the range of
(u/v) values where Q ^ g y M  + 00 whilst
remains finite. This range corresponds to blocks
for which aP^ is approximately zero, as was the 

fklcase with a£ in the previous section, these blocks 
still being reliable for plotting purposes because

noof the invariance of S.Dev. (ar*'-').
f 31The ratio po* , if fixed at the value - E ,

:---  D
- 2

is m dependent. The table overleaf gives values 
f 31of po* 3 for values of m from 5 to 12.



F i q o f t E _  17





m pF m p F }

5 -1.4043 9 -1.5056
6 -1.4399 1 0 -1.5198
7 -1.4670 1 1 -1.5317
8 -1.4884 1 2 -1.5418

Appendix 4 shows the error in the calculated values 
of to be of the order + 0 .0 0 0 1 .

It is interesting to note that, for Tchebychef 
(31polynomials, Po- - -1.3333 and substitution of

this value in (10.9) gives Qjcjie|) which is mar- 
ginally closer to Q'in than q' only for <(u/v)

(31In using - E for ptf our polynomials are there-
D ----

fore generally better than Tchebychef polynomials 
in the sense of minimising S.Dev.(af

lap) |
(e) Minimisation for Coefficient ap)

if w = bsy.x.‘*+fz:y.x.2 +lj:y. si l l  - 1 1  . 1
1 1 1



then from (8.1), (8.2) and Appendix 2 it can be 
shown that

S.Dev.(ap)) [^Hp2 +Av2 -2Fp+2Bv+2Cpv+L| . Z.a 

|ap) | | -rp - sv + w|

where r and s are the quantities given in section
(c). We require, therefore, the values of p and v 
which minimise

qm = lrHp2 +Av2 -2Fp+2Bv+2Cpv+]Q 
|-rp - sv + w|

where S.Dev.(aJ^)
Q" - -j------------  .

Z a lap) I

Section (i) of Appendix 5 shows that this equation 
may be written in the form

[cin2 + c2T2 + ĉ l *
Q”(n,T) = - --------------± - ...............  (10.11)

|c«f rj + c 5T + c 6|

where

Q"(n,T) = Q”,

ci = -H,
c2 * A + C2 /H,
C3 = HAL+2BCF* F2A-HB2 +LC2 ,

AH + C2

c.* = -r,
C5 = -s -C .r ,

H

c e « r (BC+FA) +s (BH-FC)+w fAH+C2 ) ,
AH + C2
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n - P- Cv +^bc+fa\ ~/c \ /bh-fcA 
H \AH+CV W  (ah+CV

and
T - v + /BH-FC 

AH+C2,

We require the values of n and T which minimise (10.11). 
Keeping T fixed and letting n vary we obtain, in a 
similar manner to (10.7),

Q"2 (n,T)
Ci(c2T 2 + c 3)

jc?(c2T2+c3)+Ci (c5T+c$)
(10.12)

The minimum value of Q,?2 (n,T) for a particular T
and variable n occurs when (1 0 .1 2 ) is an equality.
Hence if Q" 2 -„(T) denotes this minimum, m m  9

T2 J(c5c2+Cic|).Q"2in(T)-Cic^ + T [2ciCsC6Q"2in(T)J

+ jfcSc3+Cicl)Q"2in(T)-cic^J » 0 (10.13)

This must have real roots in T for a particular min­
imum Q” .̂ (T), whenc e ^ m m v

(2cic5c6q"2in(T))2 i 4 (c?c2+ C j d ) Q " ^ . n (T)-CiC2l

j(c?c3+cici)Q"2in(T)-c1c3

i.e. |(c?c2 +cic|) (cjc3 +cici)-cfclctj Q"^in(T)

- jcic2 (c5c3 +Cic|)+cjc3 (c?c2 +eic|^Q"2 in(T)+c?c2 c 3 <0.. (10.14)
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We shall denote the L.H.S. of (10.14) by f(Qn̂ jn (T))•
Equation (10.14) gives the full range of possible
values of Q?,,?-„(T) for -» £ T £ «>. It follows that  ̂m m v J
the minimum value of Qu(n,T), being the minimum value 
of QnmirtCT)> is given by the smallest real value of

Q'min^ t 0  satis£y fW ,!m i n ^ ^  * °* Section (**) 
of Appendix 5 shows that both the coefficient of
Qn,i. (T) and the last term in f(Qn̂ 4 „(T)) are posi- ^ m m  J m m v -
tive. The quadratic f(Q"2. (T)) must thereforem m  'J
have the shape indicated in the diagram below:

Q"2. (T) ^ m m v J

luxuAii iu m v a l u e  h ; u i  ^  xz> g x v c u  u y  i*; m ^ n  •

If we now keep n fixed and let T vary, then 
by an exactly similar procedure we may derive the 
inequality:

j(cfci+c2cS) (c|c3+c2c§) - cic^cij Q 5,Vm m ^

- |c2ci (cic3 +c2 c|)+c2 c3 (clci+c2 cj)j Ql’̂ in(p)+c|c1 c3< 0.. (10.15)

where Q^^Ce) £s the minimum value of Q" 2 for a
particular n and variable T. Applying a similar
argument to Q" . (n) as for Q5’ . (T) we see that m m v ' m m v J
^ min *s t l̂e smal£est value of to satisfy
(10.15) and is thus the smallest root of (10.15) 
considered as an equality. It is therefore evident
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that (10.14) and (10,15), when considered as equali­
ties, have a common root which may be found by 
simple algebra and in fact is given by

q i i 2 =  C l C 2 C a ......................  .................(10.16)
ffl̂ n CjC2Cl+CiC3c|+C2C3c5

Substituting this value in (10.13) and recalling 
that Q"^in (T) = Ql?̂ in satisfies the equality (10.14) 
we obtain

m _ C3CS .......................(10.17)
min "

C2C 6

Substituting (10.16) into the corresponding equa­
tion to (10.13) for and remembering that
(10.15) is an equality, we obtain

_ C3Cl*    (10.18)
nmin „ _

C i C 6

^min anc* ^min are t l̂ose values of T and p'vdiich 
minimise (10.11). Since

V  = T - B H  - F C  • •
ah + e2

from equation (10.17) and the transformation equa­
tions for the "c" terms, it follows that the value
4

of v which minimises Q" is given by:

( B H -F C )  (B C + A F )-C A l -s [ ( B H - F C )2-HaI+w f (B H -F C )  ( - A H - C 2 ) ]
■** —* r— —. |— —; . = -rm m - r  [ ( - A H - C 2 ) (BC+AF)] - s  [ ( - A H - C 2 ) (B H -F C )]  +w [ ( - A H - C 2 ) 2]

................... ( 1 0 . 1 9 )
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where A*= HB2 - HAL - 2BCF - F2A - LC2 .
Similarly

BC+FA
AH+C2 AH+C2

so that from (10.18),(10.19) and the transformation 
equations for the "c,f terms, it can be shown that 
the value of p which minimises Q" is given by

min -r j ( -A H -C 2 ) (EC+AF)J - s  j ( - A H - C 2 )  (H B -F C )]  +w [ ( - A H - C 2 ) * ]

Both these equations are of the form

zi + (s/r) z* + (w/-r) z3  

z«» + (s/r) z5 + (w/-r) z6

where the "z" terms can be obtained from (1 0 .2 0 ) 
and depend solely on the block size.
By putting

both (10.19) and (10.20) may be reduced to the form

Zs + z6 (w/-r)*/(s/r)*

where w, r and s depend on the data values for the 
particular block and the block size.

= -r fCBC+AF)2 +A/\] -s [(BC+AF) (HB-FC)-AC~1+w IfBC+AF) f-AH-C2)!
r   ̂. n  i—  — i i—  _*“-i

(10.20)

and

Z2 + z3 (w/-r)*/(s/r) *
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Figures 19 and 20 show the plots of v . and° m m
Pmin against (w/-r)*/(s/r)* for m = 7. The values

v„. and p must be constant for all blocks m m  ^mm
i.e. for all values of w, r and s, so they were
fixed at their asymptotic values z3/z6, as was done
with 8 and A.,, in sections (c) and (d). The m m  m m  J K J
asymptotic values of v„. and p„. are, from (10.19)' r m m  m m  ’ v '
and (10.20), BH-FC ^ BC+AF respectively. A

-AH-C2 -AH-C2

programme written to calculate (w/-r)*/(s/r)* for 
data blocks again endorsed the choice of these asy­
mptotic values by showing that this quantity in prac­
tice took values anywhere between + ®.

The true minimum of Q" i.e. Q1* . , may be com-m m 7 J
pared with the value of Q” obtained by using these 
asymptotic values, Q" cv say. Figure 21 shows plotsoSV
°f QHmin lrl and QUasylrl aSainst values of (s/r)
and (i\r/-r) for the case m = 7. The two Q's are
close except for the range of (s/r) and (w/-r)
values where Q"aSylrl ** 00 • This range corresponds

fk*)to blocks for which ad*"' is approximately zero, as 
was the case with aP^ and a/-^ in previous sections. 
These blocks will still be reliable for plotting 
purposes because of the invariance of S.Dev. (ao®) . 

The ratios pa^p^^ - and pj"^
T U Tp<r 'po J po

if fixed respectively at the values BH-FC and
-AH-C2

BC+AF , are m-dependent only and are shown for 
-AH-C2
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m * 5(1)12 in the table below:

—
m

... pf2 )/pf2)

5 0.2843 “0 c 3 9 Q 5
6 0.2695 “0.3883
7 0.2590 -0.3804
8 0,2513 “0.3744
9 0.2453 -0.3697

1 0 0.2406 -0.3660
1 1 0.2367 -0.3629
1 2 0.2335 -0,3604

Appendix 4 shows the errors in the calculated 
values of the two ratios to be of the orders + 
0,0047 and + 0.0054 respectively. We should, 
therefore, only work to 3 decimal places when 
using these quantities.

For Tchebychef polynomials pjP^p£'r̂ -p^^po ̂

P<r Po J

(2} r2iand P 2V /p0 ' = -0.5, Substitution of these
values in (1 0 .1 1 ) gives which is margi-
nally closer to Q" • than Q1' „ only for a smallJ m m   ̂asy 7

range of (s/r) and (w/-r) values. Our Polynomials 
are therefore generally better than Tchebychef 
polynomials in the sense of minimising 

S.Dev. (ao' )̂
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(f) The Form of the Polynomials g.(x) (j=0,l,.. .4).- -   -J — -   -    -—
For a given value of m we now have values of

p.(4>
^ F 7  ’ ’ W W >  and p F 1

which are approximately "best" in the sense of
minimizing the ratios S.Dev.(aPv̂ )’ f'vy C.i = 0,1,...4).

I*}
We have no information on and p o ^ ; these two
terms will, therefore, be fixed at unity as is the case 
with Legendre and Tchebychef polynomials. Consider the 
case for m = 5. We know that p ^

P0(3> d oF> ?2
-yyr = -1.4043 anCI ^ y  = "0.400.
P* J P0l J

^ * -0.9986 ,

Now Pa(2)p2(4)-p,(4;)po(23 /p P V p F A  pF>
“ (204)'Po Po p F ; i  = 0-284

.(O
(-0.400)(-0.9986) -0.284 = 0.116+0.001

Hence the "best" polynomial to fit to the data blocks 
is f(x) = ao+aix+a2 (x2-0.400)+a3 (1.4043 x3 -x)

+ ai, (0.9986x‘*-x2+0.116)

Similar calculations lead to the following "best" 
polynomials for the cases m ® 6 to m = 12:
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m = 6
f(x) = a 0+aiX+a2(x2-0.388) + a3 (1 .4399x3-x)

+ aw (1.0195X1* -x2+0.114)

m = 7
£ (x) = ao+aiX+a2(x2-0.380) + a3(1,4670x3-x)

+ an (1.0358xlt-x2+0.112)
m = 8
f (x) = ao+otiX+a2 (x2-0.374) + a3 (1 .4884x3 ~x)

+ aw(1.0489x‘*-x2+0.111)
m = 9
£(x) = ao+«iX+a2(x2-0.370) + a3(1.5056x3-x)

+ aw (1.0597X1* -x2+0.110) 
m » 10
f(x) = ao+otiX+a2 (x2-0.366) + a3 (1. 5 1 ^ x 3-x)

+ aw (1.0686xl*-x2+0.109) 
m = 11
f(x) = a0+aiX+a2 (x2-0.363) + a3 (1.5317x3-x)

+ aw (1.0762X1* -x2+0.108) 
m 88 12
£ (x) = ao+otiX+a2 (x2-0.360)+a3 (1. 5418x3-x)

+ aw (1.0827xIf-x2+0.108)
To apply the identification procedure we need 

to chose the value of m for the data under investi­
gation and then fit the appropriate polynomial to 
each block, recording the coefficients a£^....aiW.
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CHAPTER 11

RESULTS AND CONCLUSIONS

The p terms having been fixed, application of
the "sliding block" technique to all types of data 

fklshowed that a£ was the most "accurate" coeffi­
cient in the sense of having the smallest standard 
deviation and a relatively large magnitude.
For example, with m = 9, we obtain, from (8.2),

S.Dev (ap'-*) = 0.2294 a

S.Dev (ap))' = 0.3770 a
S.Dev (a£k )̂ = 0.6954 a

S.Dev (aP‘h  = 0.8739 a
S.Dev (a{k )̂ = 2.3876 a

It would therefore be desirable for the identi­
fication procedure to .involve coefficient a0̂K  ̂ but, 
as shown in Figure 14, the ap'^ against a p l o t  
produces, for the various models, configurations 
more disparate than the ap  ̂ against ap^ plot.

It is proposed, therefore, that the identifi­
cation procedure should consist of:-

(i) deciding the value of m for the investi­
gation,

(ii) plotting both af1̂  against and aj^against
these plots supplementing each other in 
indication of the growth model.

The choice of m depends on how many data 
values are available. It would be desirable for 
the plots to consist of at least ten to fifteen
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points so the value of m should be fixed accordingly. 
If there are n data values then there will be (n-2m) 
blocks. A rough criterion would be m < (n/2 - 6)•

The following results were obtained using two 
computer programmes, one which generated data from 
the seven growth curve models, adding, if necessary, 
a random component, and one which fitted the poly­
nomials derived in Chapter 10 to blocks of the 
data, recording the (j = 0,1,...4) for each
block.

For reference purposes, the plots are arranged 
in '’book" fashion e.g. all those plots relating 
to artificial linear data, both "clean" and "noisy" 
are in the Linear Book. Similarly for the other 
models.
(a) Form of the Plots for "Clean" Data

The first two figures in each book show the 
configurations obtained by plotting a a g a i n s t  
apĉ and a<£^ against a£^ for "clean" data gen­
erated from the seven groitfth curve models. The 
plotted points are labelled by their block number, 
k. Two interesting facts arise:-

(i) The plots do not distinguish between 
Gompertz and logistic data although 
these sigmoid curves exhibit configura­
tions markedly different from the other 
curves.
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(ii) Logarithmic parabolic data gives a con­
figuration almost identical to exponen­
tial data except for a very slight curve, 
extremely difficult to detect visually.
It would appear that, in practice, we 
shall be unable to distinguish between 
these two models and should perhaps dis­
card the logarithmic parabola model since 
it is the least common of the two.

(b) Form of the Plots for "Noisy" Data
The plots behave as indicated by the theory 

of Chapter 9 when the data is "clean", but we must 
expect deviations from the configurations for "noisy" 
data. Data was generated from the growth curve 
models with (a) a small normally distributed random 
component, and (b) a large normally distributed 
random component added. Figures 2 2 and 23 show 
respectively, the resulting data values, and the 
standard deviation of the random component. Log­
arithmic parabolic data was excluded from this 
exercise for reasons given in the previous section, 
and sigmoid data was generated only from the logis­
tic model since we cannot distinguish this from 
the Gompertz model. The coefficient plots for the 
data are shown in the graph books.

It is still possible to identify the under­
lying model from these plots, particularly if we 
remember that it is important to study the pattern
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of the block numbers. This pattern is unique for 
each of the five basic configurations. The identi­
fication of the model becomes increasingly diffi­
cult as the data becomes "noisier". We thus have 
a limitation on the identification procedure in 
that for very "noisy" data accurate identification 
is not possible, although an approximate indication 
of the underlying model could be given.

Because of the "movement" along the data as 
we go from block to block, the identification pro­
cedure is efficient in detecting changes in the 
underlying model. Data from quadratic and exponen­
tial models with a small random component added, 
was carefully merged to give the data values depic­
ted in Figure 24. It is impossible to detect by 
eye that the data consists of these two models yet 
application of the identification procedure results 
in a firm conclusion that we have quadratic data 
merged with exponential data (see Figures 25 and 
26) .
(c) Estimation of the Model Parameters

The "sliding block" technique is designed 
primarily to identify growth models, not to esti­
mate their parameters. However, as indicated in 
Chapter 9, it is possible to acquire quite reason­
able estimates of some of the parameters for some 
of the models.
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(i) Linear Data
For linear data (Ŷ  = a + bt) , parameter "b" 
is estimated by the quantity a ^ V m .  Also 
a<f^ = (a + bm) + bk, so a plot of ad^ against 
k would give a straight line with slope "b" 
and intercept (a + bm)- These estimates were 
found to be accurate for "clean” data but 
became increasingly poor for "noisy" data.
The last two figures in the linear book (L.7 
and L.8) show plotted against k for the
linear data shown, respectively, in Figures 
22 and 23. The underlying model was = 1 + t. 
The estimates of "a” and "b" from Figure L.7 
are 0.845 and 1.006 respectively, whilst the 
estimates of "a" and "b" from Figure L.8 are 
-0.054 and 1.08 respectively. The estimates 
of "b" obtained by dividing the average value 
of by m are 1.01 and 0.98 respectively.
It would appear, therefore, that parameter "b" 
can be estimated quite accurately even with 
very "noisy" data, but not so parameter"a".
(ii) Quadratic Data
For quadratic data (Ŷ  = a + bt + ct2), para­
meter "c" is estimated by the quantity aP^/m2 . 
Also ap v̂ = (bm + 2cm2) + 2cmk, so a plot of 
a a g a i n s t  lc would give a straight line with 
slope 2cm and intercept (bm + 2cm2). The 
estimates of both "c" and "b" would be needed
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for an estimate of "a", and as this would 
involve fitting a quadratic to a plot of a ^  
against k it is unlikely that the estimate 
of "a" eventually obtained would be reliable. 
The last two figures in the quadratic book 
(Q.7 and Q.8) show a p l o t t e d  against k for 
the quadratic data depicted, respectively, 
in Figures 22 and 23. The underlying model 
was = 60 + lot + 5t2. The estimates of 
"b" and Mc" from Figure Q.7 are 5.93 and 
5.06 respectively, whilst the estimates of 
"b" and "c" from Figure Q.8 are -27.52 and 
6.26 respectively. The estimates of "c" 
obtained by dividing the average value of 
a.P^ by m2 are 4.83 and 6.02 respectively.
It therefore appears that reasonable esti­
mates of parameter "c" may be obtained pro­
vided that the data is not too "noisy”, but 
estimates of parameter "b" are not reliable,

(iii) Exponential Data
T . u.

For exponential data (Ŷ  = ae ), parameter 
"b" may be estimated from the relationship 
a(k+l)/a(k) _ 0b q  = o ?i} ...4). Using

the ratio a<fk+^/a<P^ , since a<p) is the 
most reliable of the coefficients, estimates 
of "b" for the exponential data depicted in 
Figures 22 and 23, where "b" was set at 0.1, 
are 0.1 and 0.1 respectively, a result which 
indicates that we may obtain a good estimate of 
parameter "b" even for "noisy" data.
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(iv) Simple Modified Exponential Data
0+1 flc}We may similarly use the ratio aj-v /&\ to

estimate the parameter "b" for simple modified
exponential data (Ŷ  = K + ae c) , but the
realibility of this estimate becomes poor as
the data becomes increasingly "noisier”. With
"b" set at -0.1825 in the data depicted in

c v -f. 11 riciFigure 22, the average ar /af J ratio gave
an estimate of -0.2.94. With !,bM set at -0.2 
in the data depicted in Figure 23, the average 
ratio gave an estimate of -0.55.

(d) Some Results with "Real11 Data
(i) Gregg, Hossell and Richardson {19} use data 
they label "Commodity A" to illustrate their 
slope characteristic procedure. The data is 
S-shaped (see Figure 27) but because their 
slope characteristics for Gompertz and logistic 
models show small regions of non-linearity for 
years 7 to 9, they are wary of fitting one of 
these models to the entire period. Figures 28 
and 29 show the coefficient plots for this data 
with m fixed at 5. Both plots suggest that a 
sigmoid curve could be fitted to the data; 
indeed there is very little deviation from the 
standard sigmoid configuration.
(ii) In a paper in J.R.S.S.(C), volume 19, number 
1, F.R. Oliver estimated the parameters of an 
exponential growth model by direct least squares
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and compared his results with the estimates 
obtained by talcing logarithms and then apply­
ing least squares. The estimates of parameter 
nb5? were:-
Direct Least Squares Logarithmic Least Squares 

0.081441 0.084102
The average of the ratios from an
application of the identification procedure to 
his data gave an estimate of ”bt5 as 0.0815.

(iii) Experiments on rats at the M.R.C. unit, 
Middlewood Hospital, Sheffield, required the 
rats to be under constant conditions. The 
rats needed a time to acclimatize after arriving 
and the length of the acclimatization period 
was the subject of some research. One variable 
used to measure this period was the daily 
fluid intake of the rats. Once the rats become 
acclimatized this intake becomes constant.
Figure 30 shows the data for the first 33 days 
of acclimatization for Rat C118. There was 
doubt as to whether the fluid intake curve 
could be adequately fitted by a sigmoid curve, 
a simple modified exponential curve or two 
straight lines. Figures 31 and 32, obtained 
directly from a graph plotter, show the coeffi­
cient plots for the data. They show that there 
is some initial linearity, a marked simple 
modified exponential region and then several 
blocks of linear data indicating linearity from 
day 10 onwards. There is no suggestion of an 
S-shaped trend.

- 86 -





Fl <{yJR.E 31

R A T  C U B
r w-r LA1.-

17

IB

19 15 13
IE

c3 IB
11

10



R A T  C U B

IB 17



(iv) In an experiment conducted by the Depart­
ment of Chemistry and Biology at Sheffield 
Polytechnic, a known concentration of orga­
nisms was placed in a culture medium, the 
whole being incubated at 37°c. Samples were 
taken from the flask at equal time intervals 
and the optical density of the samples was 
measured in the appropriate units. The data 
is shown in Figure 33. To identify the growth 
data obtained, coefficient plots were produced 
by a graph plotter (see Figures 34 and 35). 
These indicate that the data has a sigmoid 
trend up to the nineteenth reading and then, 
surprisingly, follows a new sigmoid trend.
An experimental explanation offered by the 
Department was that there could have been a 
temperature fluctuation.
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CHAPTER 12

AREAS FOR FURTHER RESEARCH

The development and application of the coeffi­
cient plots suggests areas that lend themselves to 
further study. These are:-

(i) Several lfptf terms were set equal to zero 
in Chapter 8 for computational reasons 
and because these terms are zero for poly­
nomials such as Tchebychef, Ffermite and 
Legendre. The polynomials derived in 
Chapter 10 might be improved if these "pH 
terms were evaluated in the same manner as 
the remaining terms.

(ii) Orders other than a fourth-order polynomial 
fit could be investigated and in fact h 
could be chosen to further improve the 
ratio S. Dev. (ajiV̂ )/| aj^| (j = 0,1.... h), 
especially for the small values 0,1,2,... 
of j .

(iii) A deep mathematical treatment of the log­
arithmic parabola, logistic and Gompertz 
models might indicate useful plots for 
identification purposes.

(iv) The gr (x) in the fitted model could be 
varied; a chain of exponential functions 
suggests itself. There might, indeed, 
be some optimum form of the gr (x) for the 
purpose of identification of growth curves.
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SIMPLE MODIFIED EXPONENTIAL GRAPH BOOK
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APPENDIX 1

DETERMINATION OF THE gCr.s) TERMS 
IN THE LEAST SQUARES FIT

To determine the elements of the g(r,s) matrix 
(r = 0,...4);(s * 0,....4),we use the following 
identities. For ease of reading the quantities 
oi , B , y , 6  and e are defined as shown:

2 1 =  (2m+l) = a

j t m  .

2 x . 2 = 2 2 (j2/jn2) ss STT m(m+l)(2m+l)
irh 1 6

1-m + 1 + i — •  £3 3m p

L- O “I
.5*xi" - ! »  + 1 + I f f  - i k *  = y

i - ft+Swi.

2 x . 6 = J- m + 1 + — -  + = 6i 7 m 3m3 21m

'"T^x •- 2_ +' j + 4_ 14 4 1 _ p
c.ft i ” » 3m TSiiF 9mT “ r5mT ” e

Also, 2 x. * 2 x.3 = 2 x.5 = E x.7 = 0
crft 1 1 L;fk 1 t-«6 1

Application of these identities gives
g(0,0) - a p o ^ 2

g(0,i) = g(l.O) = a  p f ° ) p P )  ,

8(0,2) = g(2,0) = 6 +
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g ( 0 , 3 )  = g ( 3 , 0 )  = e  Po( 0 M 3 )  + a  Po(0)P3(3) 

g(0»4) = g (4,0) = y p £ ° ^ P o ^ + B P o ^ p ! 4 -)+ciPo'0 ^Pi»4 -* 
g(l,l) “ 8 Po(1)2+ a p ^ 2

gu,2) = g (2 ,1 ) = e c p o ^ y ^ p ^ P o ^ w p y 23

g  ( 1  > 3 )  = g C3 , l )  =YPo( 1 )p o( 3 ) + 8 ( p P p P ) +PoC1) p | 3 b + a p l( i y 3 5 

g(i»4)=cg/! »i)=y ( p R V ^ P p ^ V e t p P p f ^ p W 45)*

a p P p f 4 ’

8(2,23 =Y Po(2)2 ♦ B(2pf2Jpf2)+pf2)*) ♦ a p P ) 2 

g ( 2 ) 3 )  = g ( 3 ) 2 ) = y  p f 2 ) p f 3 M 2 ) p f 3 ) ) * e C p f 2 ) p f 3 M 2 ) p f 3 ) *

p ( 2 > p f * b  ♦  a  p * 2 > p f 3 >

g  ( 2  ) 4 ) = g ( 4 , 2 ) = 5 p P ^ p P ^ + Y  ( p f 2 ) p l 4 ) + p f 2 ) p f 4 > + p l 2 ) p ( 4 h  

♦ B C p f 2 ) p f 4 ) * p f 2 ) p f 4 M 2 ) p J 4 ) )  + a p P ^ p » f 4 ^

gC3,3)=6po(3tY(2po(3)p P 5 +p[3)2)+3(2piC3)p3C3)+p2(3)2) ^ ( S ) 2

g ( 3 , 4 ) = g ( 4  , 3 )  = 6  ( P o ^ ^ p i ^ ^ + p i ^ ^ p i - ^ b + Y C P o ^ ^ P s ^ ^ + P i ^ ^ p l 4  ̂ + 

p l 3 >px^4 U P f 3 ) poC4D) + 3 C p p ) p iC 4 ) +p2C3Dp3C 4 ) +p3C 3 ) p C 4 ) ) + o t p 3C 3 ) p | C4D

g ( 4 , 4 )  = ep<S-4 ** + < 3 ( 2 p ! 4 ) p (£4 ' * + p i ^  ) + Y ( 2 p £ 4 ^pi£4  ̂+ 2 p P ^ p J 4  ̂+

p l 4  ̂2 ) W 4 V 4 M 4 ) W 4 ) 2
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APPENDIX 2

THE INVERSE OF THE TRUNCATED 
f c ( r , s ) 1  MATRIX

Let the elements of the inverse of the truncated
jg(r,s)] matrix be denoted by
G(r,s) (r * 0,1,2,3,4 ; s = 0,1,2,3,4).
Let A = 0.35S6m2+1.0667m+0.8890-0.llJlm

B = 0.0305m2+0.1524m+0.2285-0.1112m'*,
C = 0.3047m2+1.2190m+l.4222-0.2222m'2,

' D = 0.4000ra+l+0.6667m*1,
E - 0,6667m+l+0*3333m ,
F = -0.0338m2-0.2032m-0.3725+0.2223m'2,
H = -0.2842m2-1.4224m-2.1330+0.4443m'2,

.1J » 0.2857m+l+m ,
L * 0.0073m2+0.0S08m+0.1101-0.1111m'2,

and
Z - 0.0042m,+0.0312m2+0.0714m+0.0025-0.0959m'1.
These quantities occur during the inversion pro­

cess and are related to the truncated form of quanti­
ties a,8,y,6 and e of Appendix 1 as follows:-

A » ay-32; E = 3<5-y2; C « a6-3y; D = y;
E = 3; F = <5y-3e; H ® y2-ae; J = 6;
L = ye-62; Z = 236y-32e + aye - a<52 - y3 

Inversion of the truncated g(r,s) matrix gives:

0(0,0) = [ p ^ 2̂ ^ ] ' 1^ 2̂ 4^  - 

+ CpS2>pi4M 4W V A + 2 p P M 4>(p£2M 4M 4)pJ2))B - 
2pP ^ 2>r ^ W 2M ^ C P ^ 4M % { 2hc],
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0(0,2) = G (2,0) = ^ 0CO)Po(2)2p0(4)2zj j(po(2)Po(4:,2F -

^ ( p^ W ^ ^ W 2^ ^ ] .

G(0,4) = G(4,0) =[p0W p 0C2)p0(4)2Z] - 1 [(pp ) p2(4).po(2)p^ ) )A

+po(2y 4W 2)Po(4)c],

G (1,1) =fp|1)2po(3:)2B]'1[pi:3)2J+2po(3>p2̂ D +p P ) 2E],

G(1,3) = G(3,1) = ^P o(1)P0(3)2bJ 1[po(3)D + p2(3) Ei] ,

G(2,2) - [p.(2)2p o W 2z]"1 [-pot4)2H + p2̂ 2A+2p(4)p0(4)c

G(2,4) = G(4,2) = jpoC2;>PoC4:)2 zj 1 £  Po(4)C-p2(4)Aj,

G(3,3) = [po(3)2b] . E,

G(4,4) = jpo(4)2z] ] A.
Also
G(0,1) = G(1,0) = G(0,3) * 6(3,0) = G(l,2) = G(2,l)

= G(1,4) = G(4,1) = G(2,3) = G(3,2) = G(3,4) = G(4,3) = 0
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APPENDIX 3

SOME RESULTS CONCERNING THE COEFFICIENTS
CJ =0,1___4) FOR SIMPLE MODIFIED

..     . — . _.     .

EXPONENTIAL DATA

(a) Coefficients^^.

From (8.1) and Appendix 2, the theoretical form 
fk')of a-j}* J for perfect simple modified exponential data 

is given by

a„(k) = k [g (4,0)pf0  ̂(2m+l)+G (4,2) (Po 2^Ex, *+p2 2  ̂(2m+l)) 
L i 1

+G(4 ,4) (pcC4)Ex.‘*+p2(4)Ex.i+p1,f4) (2m+l)) 
i 1 i 1

+ a.eb (k+m)

bmx.

I ebn>Xi (G (4 ,0)p.(°) +G (4,2 ) p ^  +G (4,4)p[4;))

bmx
L1

+Ze 1x%2(G(4,2)po(2)+G(4,4)pr-’)+Se"":Lx.,'G(4,4)p0l • 1 • 1
(4) (4)

where a,b and K are unknown parameters.
Consider the coefficient of K above.
This can be written as

G(4,0)pf^ct+G (4 ,2)pô 2^B+G (4 ,2)p|2^a+G (4,4)po4\+G (4 ,4)p24^8+

G(4,4)p£4 â

where G(4,0)= Po(0:,Pof2)Po(4^ Z
-1

(pi2)p2(4)-Po(2)P,(4))A ♦

Po(2)Po(4:iB+p2(2)p0(4)c
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«4,Z) ■ [pP,p,(*),z]'1[-pS4:iC - p‘4>A

G(4,4) = [p£41*z] ! A .

Hence the coefficient of K has the value

[p!0)P.{2>p.(4)!zj"1[p!0,p!!)p,(4)A«-p.<0)p!2)p.(4)A<..

pi0)p!2)p.(4) Ba+p J ° M 2M 4)C«..pf0>pf2)pf4)Ce

-Po(0)Po(2)P2(4)A8-p„WpP)po(4)c«-p(°)p(2)p (^Aa 

+p[0^Po2^Po4^Ay+Po-°̂ Po 2^P24 Â3+po°^Po-2^pi4^Aa
i.e.

[p.<°>p.(2>p£4 >‘] ‘ 1 [» .™ p .< 2 >p.<4 ) (Ba-CB+Ay)j .

But, from Appendix 2, B = 3<5-y2; C = a6-$y; A « ay-$2
from which it follows that Ba-CB+Ay = 0
Hence the coefficient of K, for a e q u a l s  zero.
(b) Coefficient aPĉ

From (8.1) and Appendix 2, the coefficient of K 
ov b(mx.+k+m)

for a3 , when = K + ae , is given by

the term

G(3,l)p0(1)i:xi+G(3p3) (Po^Ex.s+pP^Sx.) .
i i i

t = ft+Swv it f$+3m.
But Ex. = Zx.3 = 0,irfe 1 0«fe *
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hence the coefficient of K, for aP^ , equals zero.
(c) Coefficients a a n d  af^)

fk!The coefficient of K, for a£ , is given by 
the term
G(2,O)p0(O)a+G(2,2)p0(2-lB+G(2,2)pI2)a+G(2,4)po(:4)Y+

G(2,4)p|4^8+G(2,4)p£4 â

In a manner exactly similar to section (a) of this 
Appendix, the above expression can be shown to equal 
zero.

The coefficient of K, for a P ^ , is given by the
term
G(1 ,l)p|1^Ex. + G(1,3) (p£3^Ex.3 + pP^E x .)

i 1 i 1 i 1

from which it follows, as in section (b) of this 
Appendix, that this coefficient is also equal to zero.
(d) Coefficient a<P^

From (9.2) the coefficient of K, for a<P^ , is given 
by the term
G(0,0)pi'°^a+G(0,2)pi'2^8+G(0,2)p2'2'*a+G (O,4)p0(4:iY+G(O,4)

p^B+G(0,4)p{4ia

Proceeding as in section (a) of this Appendix we can 
reduce this expression to the form

(La +F3 +By )̂ j

From Appendix 2,
La+FB +By-2B6y -y3 -a62 -B2e +aye
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which, from Appendix 1, equals
0.00082m3+0.0136m2+0.0564m+0.0508-0.0116m"1-0.0508m'2,

- 2omitting terms of smaller order than 0(ro ).
Our plotting procedure restricts us to positive, 

integer values of m so the above expression is non­
zero. Hence the coefficient of K for ao^^ is non­
zero .
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APPENDIX 4

ERROR ANALYSIS FOR THE ASYMPTOTIC VALUES OF
8 • , X . , v • and p . mm* mm* m m _______Hm m  •

In the following sections we use the terms
"absolute error modulus" and "relative error"„ If
R is the approximate value of a quantity whose
exact value (not necessarily known) is R* then the
absolute error modulus of R is |r| where r = R-R*.
The relative error is |r1 or, for practical pur-

|R*|
poses, J_r]_ .

1*1

AThe asymptotic value of 0 . is - , where A' * m m  L 9

and C are given in Appendix 2. We will consider the
case for m=8, a value in the middle of the likely
range of m values.
The absolute error modulus in A does not exceed 

(jXlO 4xm2) + (Jj-xlO 4xm) + (^xlO 4) + (-Ji-xlO'̂ xm"̂ )

= 36.5078 xlO-4.
Similarly, the absolute error modulus in C does 
not exceed 36.5078xl0"4. Nov/ A = 32.1721 , C = 
30.6715, whence the relative error in A/C does not 
exceed

36.5078xl0‘4 t 36.5078xl0”4 
32.1721 30.6715

- 4-= 2.3250x10
-  1 0 0  -



Therefore the absolute error modulus in A/C does 
not exceed

1.0489 x 2.3250 xlO-4 
= 2.4387xlO‘4.

Hence -p certainly lies in the range -1.0489 + 0.0002.

Other values of m give a similar order of error.

\nin
PThe asymptotic value of X • is - , where E7 ■* min D 9

and D are given in Appendix 2. With m=8, the abso­
lute error modulus in E does not exceed

(̂ ■xlO 4xm) + (^xlO 4xm

= 4.0625xl0-4.

Similarly, the absolute error modulus in D does not 
exceed

| xlO'4 xm'1 = 0.0625xl0-4.

Since E = 6.3753 and D = 4.2833, the relative error
in E/D does not exceed

4.0625xl0~4 + 0.0625xl0~4
6.3753 4.2833

= 0.6518xl0-4.
Whence the absolute error modulus in E/D does not 
exceed

1.4884 x 0.6518 x 10'4

= 0.9701 x 10~4.
Thus -E/D certainly lies in the range -1.4884 + 0.0001 
Other values of m give a similar order of error.
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From Chapter 10, section (e), the asymptotic
value of v . is BH-FC . For m=8, the absolute m m  -----------  s

-AH-C2
-4error moduli in B,H,F,C and A do not exceed 36.5078x10 ', 

from section (a) of this appendix. The relative errors 
in B,H,F,C and A do not exceed,respectively, 10.7440x10” ,̂
1.1519xlO'4, 8.7805xl0-4, 1.1903xl0'4 and 1.134 8x10'4.

Hence the relative errors in BHy FC, AH and C2
_ Ado not exceed,respectively, 11.8959x10 9.9708x10 ,

2. 2867xlO-4 and 2.3806xl0~4.
The absolute error moduli in BH, FC, AH and C2

-A -Pdo not exceed,respectively, 1281.132x10 ', 1271.536x10 ',
2331.670xl0~4 and 2239.528xlO'4.

Hence the absolute error moduli in (BH-FC) and
(-AH-C2) do not exceed,respectively, 2552.668x10”^
and 4571.198x10 The relative errors in (BH-FC)
and (-AH-C2) do not exceed 128.723xlO'4 and 57.9183xlO-4
respectively, hence the relative error in BH-FC

-AH-C2

does not exceed 186.641x10 f, whence the absolute
error modulus in BI-I-FC does not exceed

-AH-C2

0.2513x186.641xlO"4

= 46.90 x 10‘4.

Thus BH-FC certainly lies in the range 0.2513+
-AH-C2

0.0047, Other values of m give a similar order of 
error.

-  1 0 2  -



From Chapter 10, section (e), the asymptotic
value of p • is BC+AF . Using the results from m m  ------

-AH-C2

the previous section for m=3, the relative errors
in BC and AF do not exceed 11.934-3x10  ̂ and 9.9153x10 ^
respectively. The absolute error moduli in BC and
AF do not exceed 1243.799X10-4 and 1326.322xlO~4
respectively, hence the absolute error modulus in

-A(BC+AF) does not exceed 2570.121x10
The relative error in (BC+AF) does not exceed 

-486.9911x10 , hence, using results from the previous
section, the relative error in BC+AF does not

-AH-C2

exceed 144.9094x10"^. The absolute error modulus in
BC+AF does not exceed, therefore,
-AH-C2

0.3744x144.9094xl0'4

54.24- x 10'4.
Thus BC+AF certainly lies in the range -0.3744-+ 

-AH-C2
0.0054-. Other values of m give a similar order of 
error.
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APPENDIX 5

SOME RESULTS IN THE MINIMIZATION 
PROCEDURE FOR COEFFICIENT a 0̂k^

(i) Reduction of the Quadratic Form in Qt?
From section (e) of Chapter 10,

S-Dev- t><pb  ̂^   ̂[-h02 M v 2 -2Fp +2BvH-2Cpv+L~l *
Z I a<f^ I | -rp -sv+w|
The quadratic form in the numerator may be reduced
by means of the substitutions p = P + p ,  v = V
Making these substitutions and equating the coeffi
cients of P and V to zero, we obtain

p = BC+FA 
-HA-C2

and
v = BH-FC 

-HA-C2

The numerator is then of the form 

[-HP2+AV2+2CPV+(HAL+2BCF+F2A-HB2+LC2)CAH+c 2)"11 

This may be rearranged to the form

-H(P-CV)2 +(A+C3 V2 + (HAL+2BCF+F2A-HB2 +LC2) (AH+C2) “
L H H

i.e. [clT12 +c2t 2 +c3J  
where

q = -H,

c2 = A + C2 ,
H -i

c3 = (HAL + 2BCF+F2 A-HB2 +LC2 ) (AH+C2 ) ,



Substituting
p = P + BC+FA ..................... (A5.1)

-HA-C2
and

v = v + BH-FC ......................(A5.2)
-HA-C2

into the denominator of Q", we obtain the expression
-1

- r (P-CV) + (-s-Cr)V+(r(BC+FA)+s(BH-FC)+w(AH+C2))(AH+C2)
H H

ia0‘ |ĉ ri + c 5T + c61 s 
where

ck = -r

c5 = -s-C rR
and

-1
c6 s (r(BC+FA)+s(BH-FC)+w(AH+C2))(AH+C2)

Hence Qf? may be written as
fcin2 + c 2T2 + c3l Q" = b---------------=L_
I ci*n + c 5t + c g |

Note that from (A5.1) and (A5.2) r) and T may be 
expressed as

* (s )  - (§) ( ^
T - v + #

AH+C2
(ii) The Coefficient Properties of f(Q"^in (T))

Consider the quadratic ^(Q"^in CT)) from inequa­

lity (10.14) of Chapter 10. The last term in this 
quadratic is ci2C 2 C 3 . Noting that 

c2 = A + = fj (HA+C2) ,
-  1 0 5  -



and applying Appendix 2 to establish that

HA+C2 = -0.008 2mlt-0.0659m3 -0.17 55m2-0.0723m+0.1265, 
(where we have omitted terms of order 0(m~^)) we 
see that for positive, integer values of m,HA+C2 is 
negative, and since H itself is negative, the term 
c2 is positive.

Consider the numerator for the term c3 .
From Appendix 2 it can be shown that
HAL+2BCF+F2A-HB2+LC2= -0.0000175m6-0.0002596m5

-0.0015672mtf-0.0044835m3 
-0.0044635m2+0.0056138m 
+0.0130478,

where terms of order 0(m ) have been omitted.
For positive, integer values of m this expression 
is negative, and since the denominator for c3 is 
also negative the term c3 itself is positive, hence 
the term ci2C2 C3 is positive.

The coefficient of equation (10.14)

1 S  Cl* ** C 2 C 3 + C i t 2 C l C 2 C 6 2 + C l C 5 2 Ci f 2 C 3 .

Since ci, C2 and c3 are positive, this coefficient

is itself positive.
Similar results hold for the equivalent quadra-

tic in Q’m i n W -
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