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ABSTRACT

Several Quartz Crystal Microbalance (QCM) measurement techniques in conjunction 
with a series of calix[4]resorcinarene sensing membranes have been successfully 
exploited for the detection of volatile organic solvents at vapour concentrations below 
their lower explosive level.

The impedance analysis technique involves the measurement of the electrical 
properties of the QCM around the resonant frequencies of crystal. Subsequent fitting 
of the measured spectra to an equivalent circuit allows parameters directly related to 
mass loading and the mechanical properties (viscosity) of the film to be obtained. An 
experimental setup which allows the real time in situ extraction of these parameters 
has been developed.

It has been shown that unique changes in mass loading and the films viscoelastic 
properties caused by the adsorption of target vapours into a calix[4]resorcinarene 
C15H31 sensing membrane can be detected. In some cases this facilitates both the 
detection and discrimination of target vapours using a single QCM sensing element. 
The changes in the films mechanical properties are believed to be caused by capillary 
condensation of vapours at values below saturated vapour pressure inside the nano- 
porous calix[4]resorcinarene film matrix.

The work is extended by the use of the sensor array technique. In the first instance 
frequency only measurements are used. Four QCM have been coated with 
calix[4]resorcinarene compounds with different hydrocarbon chain lengths and 
exposed to range of organic vapours. The variation in chain length produces 
selectivity between the sensing membranes, and leads to the classification of all the 
tested organic vapours using a feed forward multilayer Artificial Neural Network. The 
trained network successfully classified over 98% of the test data.

The additional measurement of film dissipation using impedance analysis/QCMD 
shows interesting phenomena. An unexpected increase in mechanical stiffness of the 
film is observed for small chain length C[4]RA compounds (CH3) on vapour sorption. 
A speculative model has been proposed relating the chain length and effective cavity 
size to the observed phenomena.

An alternative low cost multi parameter measurement set up has also been developed 
using the QCMD principle. The crystal is driven from an external oscillatory source 
and subsequently disconnected. The resonant frequency and dissipation factor can be 
extracted from the decaying sinusoid signal. This approach eliminates the need for 
expensive network analysers. An additional multiplexing circuit has been combined 
with the QCMD technique and allows both the frequency and dissipation factor of 
several crystals to be measured in pseudo real time. This makes the system ideally 
suited for multi parameter array measurements.

The basis for a discriminative explosive vapour sensor based on calix[4]resorcinarene 
membranes has been investigated and promising results for future development have 
been obtained. The exact adsorption mechanisms are however complex and although



speculative models have been proposed, further research is suggested to fully 
characterize the complete adsorption process and the mechanical changes taking place 
within the film.
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Introduction

Chapter 1

The detection of hazardous substances causing harm to health, the environment and 

causing risk of explosion is a major concern in many industrial, commercial, and 

laboratory environments. Of particular interest in this thesis is the class of volatile 

organic compounds (VOC), many of which display both toxic and carcinogenic 

properties [1]. VOC’s are found in common items, such as paints, adhesives, cleaning 

solvents and are major constituents of petrol and other hydrogen based fuels.

The key property of VOC’s is that their high saturated vapour pressure allows them to 

easily vaporise at room temperature. This fact leads to the importance of the Lower and 

Upper Explosion Limits (LEL and UEL), defining the lower and upper concentrations 

of vapour in the air at which ignition may occur (see figure 1.1). Between these limits 

the risk of explosion is significant. The typical LEL for most organic solvents is in the 

region of 1 % of the total air volume (1 0 ,0 0 0 ppm), small solvent spillages/leaks may 

rapidly give rise to concentrations above this value in the atmosphere within close 

proximity of the spillage. A minute spark from an electrical machine could be the 

trigger for a catastrophic explosion. Such a scenario is relevant and of great concern in 

the petrochemical industry; where the transport and storage of liquid petroleum in large 

pipes and tankers is common. The ability to detect a leaking VOC is of substantial 

benefit both in terms of safety and reducing waste.
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The requirement of such sensors with increased accuracy, smaller size, high versatility 

and predominantly low cost are therefore always in demand, for both commercial and 

scientific gain.

100 -SVP

< Too lean 
to igniteH

High
explosive

risk!

100%
LEL UEL SVP

Vapour concentration (volume %)

Figure 1.1. Graphical representation showing the flammable properties of a typical 

organic solvent.

Vapour
LEL-UEL

(ppm )xio3
Hexane 1 2 - 7 7
Benzene 13 -8 0
Toluene 1 0 - 7 0
xylene 1 1 - 7 0
cyclohexane 1 3 - 8 4
m xylene 11 -7 0

Table l( l . Concentration in parts per million (ppm) for the lower and upper explosion

limits of a range of VOC’s.
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A conventional sensor can be defined as a device which produces a measurable output 

signal in response to some input quantity i.e. a certain quantity of analyte molecules [2]. 

In nearly all cases this output quantity is in the form of an electrical signal which carries 

information about the measured parameter(s). The sensor itself is a combination of 

several components usually comprising of the sensitive membrane where the molecular 

recognition or chemical reactions occur, transducer which transforms the chemical 

reaction into a physical measurable parameter and signal processing system as shown in 

figure 1.2. It is also acknowledged that sensor technology is an interdisciplinary field 

combining fields of physics, chemistry, biology, computing and engineering.

Chemical sensor

Input -
chemical
quantity

Sensitive
membrane

Transduction Signal
chemical reaction processing

into Acoustic, —1 and or
electrical, optical conditioning
chemical quantity

Output -  
electrical 
signal

Figure 1.2. Chemical sensor block diagram showing a typical arrangement o f input, 

sensitive membrane, transduction, signal processing and output.

A range of different transduction mechanisms have been employed for vapour detection. 

Common examples include metal oxide sensors (MOS) [3,4], conducting polymers [5-8] 

and the acoustic wave based sensor [9-15] used for the work in this thesis.

The Acoustic Wave Sensor (AWS) operates on the principle that the input quantity 

produces a change in the path over which the acoustic wave travels. In the case of the 

Thickness Shear mode (TSM) resonator, changes in the path are related to an additional 

effective thickness of the crystal which results in the decrease in resonant frequency of the



device. Sauerbrey was the first to utilize the TSM resonator as a mass sensing device. He 

discovered the frequency of the device is directly proportional to the . deposited mass on 

the surface of the crystal and hence the TSM resonator is often referred to as the Quartz 

Crystal Microbalance 16]. The Sauerbrey relation is however based on several 

assumptions defined in Chapter 2. In this work a simple gravimetric regime defined by 

Sauerbrey can not be used, and more complex analysis is required to fully characterise the 

TSM resonator and contacting media.

To obtain additional information on the mechanical properties of the film, the 

impedance analysis technique has been exploited. The impedance spectrum of the QCM 

is measured over a range of frequencies around resonance. Subsequent fitting of the 

spectra to an equivalent circuit model allows the extraction of parameters which are 

directly related to the mass loading and changes in the mechanical properties of the 

film. Vapour adsorption causing unique changes in the properties of the film can 

therefore be detected, allowing the discriminative detection of the target vapours.

This approach has been applied to several calix[4]resorcinarene based sensing membranes 

on exposure to a range of VOC’s. The results show the additional information obtained in 

some cases allows a single QCM to discriminate between a number of volatile organic 

solvents.

Further improvements on vapour identification can be achieved with the sensor array 

(electronic nose) approach. The generally accepted definition of the electronic nose is 

defined by Gardner and Bartlett. “An electronic nose is an instrument which comprises 

chemical sensors with partial specificity and an appropriate pattern recognition system 

capable of recognising simple or complex odours” [17]. The aim of this work is the
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development of such a system for the detection of Volatile Organic Compounds using the 

TSM resonator as the transduction mechanism. While many QCM based systems have 

been reported [9,13,18-30], the focus of the research is to combine multiple parameter 

measurements from a single crystal with the sensor array technique. The resultant sensor 

should have a decreased array size while still providing both the detection and 

discrimination capabilities found in large QCM sensor arrays.
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1.1 Aims and objectives of the research

The aim of this research is to develop chemical sensing devices, intended to detect 

various organic solvents and evaluate their concentration. The system is based on the 

monitoring of changes in the electrical characteristics of the Thickness Shear Mode 

(TSM) resonator to allow the analysis and furthermore recognition of contacting 

chemical compounds and calculation of their relative concentrations. Measurement of 

both the mass loading and dissipation which occur in the film is used in conjunction with 

sensor array techniques to aid classification and quantification of the target vapours. 

Objectives:

1. The development of an experimental set-up for QCM impedance measurements.

2. Development of software to allow the extraction of equivalent circuit parameters 

from the obtained impedance spectra.

3: Deposition of organic sensitive membranes onto the QCM.

4. The study of the impedance characteristics of sensitive membranes on exposure to 

different gaseous analytes (organic vapours, toxic gases). Evaluation of the 

parameters of the equivalent circuit and their correlation to visco-elastic properties 

of the coating.

5. The development of a circuit board for the QCM sensor array and writing the 

software for Artificial Neural Network (ANN) analysis of the sensor array response.

6 . Investigation of different analytes using ANN. Accumulation of data, building a 

database of responses for the training of the ANN. Recognition and quantitative 

analysis of unknown mixtures of analytes.

7. The development of QCM as a cost effective alternative to the impedance analysis 

method.

8 . Development of the prototype sensor, interfacing both software and hardware 

elements.
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Chapter 2
Literature review and theoretical background

2.0 Introduction

This chapter gives a background of the thickness shear mode resonator both 

theoretically and historically. A description of the transduction mechanism through the 

quartz and contacting film(s) are given and of how various loading conditions affect 

quartz parameters. The latter sections give a review of the current state of the art in the 

area including advanced QCM measurement techniques and QCM based sensor arrays.

2.1 Piezoelectric effect

In 1880 the Curie brothers first reported that when certain crystalline minerals were 

subjected to a mechanical force an electrical polarization is created [1 ], this is known as 

the piezoelectric effect. The opposite effect was first proved theoretically by Lipmann in 

1881 and subsequently confirmed experimentally by the Curies [2]. All crystals 

exhibiting piezoelectric behaviour also show a mechanical deformation on the 

application of an electric field known as the converse piezoelectric effect. Figure 2.1 

shows a schematic of the relationship between the mechanical and electrical variables.

This property is not however common to all crystals. The crystal structure must lack a 

centre of inversion symmetry; this is only evident in 21 of the 32 crystallographic point 

groups [3]. Out of these 2 1  groups only the quartz structure has the combination of

10



suitable mechanical, electrical, chemical, and thermal parameters to be used 

significantly in commercial applications [1 ].

Mechanical variables Electrical variables
< ► < ►

Displa
cementStrain

Stress Field

Figure 2.1. The relationship between mechanical and 

electrical variables.

By application of an alternating electrical field to a crystal it may be excited into 

mechanical resonance with a standing acoustic wave travelling across the quartz.

2.2 Acoustic waves

The frequencies covered by acoustic waves span from approximately 0.01 Hz to several 

terahertz, with the bulk of sensing applications in the range of a few hundred Hz up to 

hundreds of MHz. Figure 2.2 shows a small selection of phenomena and devices which 

operate within the acoustic wave spectrum. Several acoustic wave sensing devices are 

highlighted [3].
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Figure 2.2 The acoustic wave spectrum covers approximately 14 orders of magnitude, 

the most common acoustic wave sensors are shown and highlighted.

Acoustic wave sensing is based on the principle that the input quantity into the sensing 

device produces change in the path over which the acoustic wave propagates. Several 

acoustic wave based devices are now common in studying interactions with thin films 

and liquids. Typical examples include, Surface Acoustic Waves (SAW), Flexural Plate 

Wave (FPW), Acoustic plate mode (APM) and the Thickness Shear Mode (TSM) 

resonator used within this work. To fully characterise the TSM resonator it is essential 

to understand both how the acoustic wave travels through the quartz and how it interacts 

with contacting layers and or media.
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2.3 The Quartz Crystal Microbalance

The QCM system consists of a thin disk of AT-cut quartz crystal coated with electrodes 

on each side as shown in figure 2.3. An a.c. signal is applied between the electrodes 

resulting in a shear deformation wave across the crystal. Due to the piezoelectric 

properties of the quartz, it can be electrically excited into a number of resonant modes 

with maximum displacement occurring at the crystal faces (see figure 2.4). The property 

of maximum displacement at the crystal faces in the Thickness Shear Mode (TSM) 

makes this mode of excitation extremely sensitive to surface mass accumulation [3].

AT-cut quartz crystal

Upper and lower electrodes

Connecting legs

Figure 2.3. Cross sectional schematic of a TSM resonator.

2.3.1 QCM as a gravimetric sensor

In 1959 Sauerbrey [4] first showed that the shift in resonant frequency of a Thickness 

Shear Mode (TSM) resonator was proportional to the deposited mass on the surface of 

the crystal. It was originally used for the measurement of metal deposition rates but has 

since successfully been used in many applications with the sensitivity now reaching sub 

nanogram levels [5]. In most instances the TSM resonator is configured as a gravimetric

13



mass sensor often referred to as a Quartz Crystal Microbalance (QCM), where the 

crystal works as the frequency-determining element in an electrical oscillator circuit.

Additional
mass

N=1 Y

Quartz,

X

Figure 2.4. Displacement profile showing the fundamental resonant 

frequency (N=l) with maximum displacement at the crystal surfaces.

Additional mass is seen as an extension of the quartz.

For resonance to occur in a quartz crystal the total phase shift of the standing wave 

propagating through the crystal must be an integer of I n ,  producing constructive 

interference between the incident and the return waves. When resonance occurs the 

following criteria described by equations (2.1-2.3) must apply.

where X is the acoustic wavelength, hq is the crystal thickness and N  is the resonator 

harmonic number representing the resonant mode.
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where / 0 is the fundamental resonant frequency and vq is the shear wave velocity 

given by equation 2.3.

v,=
( ^ 2  

Me (2.3)
\Pq J

where p q is the quartz density (2.65g/cm3), and Mq [s the shear stiffness

(2.95xlO11 dyne/cm2). Sauerbrey demonstrated that a small increase in mass is 

proportional to a change in thickness and resonant frequency as shown by equation (2.4)

[4]-

Afn A ha AM aJ jl =  l  =  SL (2.4)
fo K  M q

where M q = p qhq is the mass density. Substituting in equations (2.2) and (2.3) equation

(2.5) can be obtained directly relating the change in mass to the change in resonant 

frequency often referred to as the Sauerbrey relationship.

2 /02AM 
A/ = -  7  g (2.5a)

Equation (2.5a) can be presented in the form:

AM'(g)/cm> = - — Af  -  (2.5b)
2.26x10 f 0

Equation (2.5) is only valid on the condition that the acoustic phase shift $ across the 

film (equation 2.6) is small.

(pY2 * = I (2-6)

where p  is the film density h is the film thickness co = 27f0 and G is the shear 

modulus (assumed real).
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The relation described by Sauerbrey is however a limited case and conditions of the 

additional layer/mass must be acoustically thin, rigidly coupled to the surface of the 

QCM, moving synchronously with quartz itself. Sauerbrey assumes the additional mass 

may be treated as an extension of the quartz itself, in essence just adding to the 

thickness of the quartz as shown in figure 2.4. The range of which the Sauerbrey's

A 77? /
equation is considered suitable is y  <2%  [6]. Where Amr is the areal mass

/  777 q J

density of the foreign layer and m areal mass density of the quartz.

An increase in the working range of the standard QCM was extended by improvements 

in both crystal design and oscillator driving circuits [6,7]. In 1971 Behrndt proposed 

that the period t  of the crystal oscillation is proportional to the mass loading as 

described in equation (2.7) :

mi r, f

where r  is the oscillation period unloaded quartz and rq is the oscillation period of the 

loaded quartz. Using equation (2.7) the operating range of the QCM is increased to

Am/  < 10%./ m q

Benes [6,7] argues that equation (2.7) makes more sense theoretically as compared to 

equation (2.4) because it is based on direct proportionality between the crystal thickness

hq and the period of oscillation at resonance r = ^
/ « •
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2.3.2. Z match technique

Miller and Bolef [8,9] were the first to treat the quartz crystal/film as a composite 

resonator, taking into account the acoustic properties of the film. Their long and 

complex expression was later simplified and reduced by Lu and Lewis [10] to equation 

(2.8).

Zq ta n (^ );r  + Zf  tan(^-);r = 0 (2.8)
J q  J  f

where Zq is the acoustic impedance of the quartz, Zf  is the acoustic impedance of the 

film, f c is the composite resonant frequency and f q and f f  are the mechanical resonant 

frequencies of the quartz and film respectively.

The relationship between the mass load and frequency is therefore given by equation 

(2-9).

^ = - M arctan

Using the following substitutions.

—Man —
. /  ■' 9 ,

(2.9)

1 C
f  = ----  I—  (2.10) for the mechanical resonance frequency of quartz.

1 I c •f  =.. - L  (2.11) for the mechanical resonance frequency of film.
2hf \ p f

Z q =P<,vq = Pf\c~ , (2 J 2 )  Z f = P / v/ = l P f cf  (2 J S )  

where vq is the shear wave velocity in quartz,^ is the shear stiffness constant for 

quartz, vf  is the shear wave velocity in the film andc^ is the shear stiffness constant for 

the film.
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The operating mass range from equation (2.9) is Am
< 70% [6]. The method is

generally referred to as the ‘z match’ technique and is now used in commercial mass

deposition monitors. The values of density and acoustic impedance for the deposited

2.3.3 Transmission Line Model

The QCM is often modelled as a piezoelectric layer (the quartz) and a number of 

connected non piezoelectric layers into which the acoustic wave spreads [11,12] (see 

figure 2.5). The behaviour of a quartz resonator may be derived from the one 

dimensional wave equation and a number of boundary conditions. When an alternating 

voltage is applied to the quartz electrodes two acoustic waves (A and B) are generated 

travelling in opposite directions. The displacement in the crystal is given by a 

superposition of these waves and must satisfy the acoustic boundary conditions on each 

face of the crystal and all external interfaces equations (2.17a-f) [13]. The acoustic 

voltage u{z) and current i(z) can therefore be defined by equations (2.14a and b) [ 14].

Z = (pG)/2 (2.16) is the complex impedance where G is the complex shear modulus.

material must be known for successful implementation of the technique.

Uj (z) = (A,eJk‘! + )eJmT (2.14a)

i .{ z )= -(A ieJk‘z - B leJi‘‘ )ei“’T (2.14b)
z

where yq = j k  = j co
(2.15) is the complex wave propagation constant and
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Acoustic Boundary conditions

1. Continuous displacement at the crystal coating interface

u. (z = ht) = uM (z = (2.17a)

2. Continuous shear stress at the crystal coating interface

Ti(z = hi) = TM(z = hi) (2.17b)

3. Vanishing shear stress at free crystal surface

T(z = 0) = 0 (2.17c)

4. Vanishing shear stress at free coating surface

r (z  = £> ,.) = () (2.17d)

5. The driving electrical potential at the upper electrode

</>(z = hq) = -</>0ejcot (2.17 e)

6. The driving electrical potential at the lower electrode

0(z = O) = ^  (2.17J)

The analogy between electromagnetic and acoustic fields can easily be made. Table 2.1 

shows the equivalent relationships between acoustic and electrical wave propagation.

Mechanical stress T U Electrical Voltage

Particle speed u I Electric current

Acoustic impedance IIo
N

Zelect = % - Electrical impedance

Table 2.1. Equivalent relationship between acoustic and electrical wave propagation
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Z-cnPnx hn ---► z„

ZC2P2 h2 ---► Z2

ZC1P1 hi
---►

z ,

ZcqPq hq —
A

ZQ

Figure 2.5. Generally accepted arrangement of a QCM with a multilayer number of

coatings (n).

It is common to treat the propagation of acoustic waves as analogous to the transmission 

of electrical waves. Piezoelectric layers such as quartz can be defined by a three port 

model with two acoustic ports representing the top and bottom quartz surfaces, and the 

third port coupled via a transformer representing the piezoelectric connection

[3,11,13,15]. This arrangement is widely known as a transmission line shown in figure 

2.6. An additional deposited layer on one side of the quartz is shown by an extension of 

the transmission line shown in figure 2.6. The Transmission Line Model (TLM) 

describes the piezoelectric transformation between electrical and mechanical vibration 

and the propagation of acoustic waves in the system.

The transmission line concept is implemented using a chain matrix technique [13,16]. 

The propagation matrix P (2.18a) and transfer matrix T (2.18b) are used in order to 

determine the transformation matrix M as shown in equation (2.19).

pq =

(  hq
0
K,y.,-r

(2.18a) T<,=

—  1

—  -1
vZ« ,

(2.18b)
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cos(r„-r) 2gsin(r,^)_ i ,
<7 <7 9 <7

vz «

9 2

■^sin(^^f) cos(rff-f-)
p.yp;

O —

Quartz (Zcq,pq) Film (load) (ZCf,pf)

Figure 2.6. The transmission line Model (TLM). Section (a) identifies the uncoated 

quartz crystal with two acoustic ports and one electrical port representing the 

piezoelectric properties of the quartz. Section (b) identifies the additional non 

piezoelectric layer.

The acoustic impedance at CD can be realised as electrical impedance at port AB using 

the following equations.

1
Z - Z Ab ~ . „ +JX  + - ^ Z CDjcoCt N'“

(2 .20)

where j X  represents the piezoelectric transformer with turns ratio 1:N given by 

equations 2.21 and 2.22 respectively.
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1

j X  =  — 1 - -  sina  ( 2 . 2 1 )
jcoCP a

1 4K  1 , 2 a  . .  . . .sin — (2.22) 
2N  coCp a  Z cq

The final solution to the one dimensional problem is given in equation ( 2 .2 3 ) .

Z  =
jcoCf

a

1 -
2 tan----- j —-

K 2 2 Zcq

a  l - j —^-cota
Zcq

( 2 .2 3 )

Using

2 eciK  = —-— is the electromechanical coupling coefficient of quartz. 
s*cq

a  = coh —  is the acoustic phase shift inside the quartz crystal.

Z cq ~  V P q c q characteristic acoustic impedance of quartz.

A
Cp =£q~̂ ~ is static quartz crystal capacitance.

where eq is the piezoelectric constant, s  is the permittivity, and cq is the

piezoelectric stiffened elastic constant (q designates properties for quartz). Zi is the 

acoustic load impedance acting at the surface of the quartz crystal and rjq is the

phenomenological quartz viscosity.

It is often helpful to split the electrical impedance in equation ( 2 . 2 3 )  into a parallel 

circuit consisting of the static capacitance Cp and a motional impedance of the quartz 

( Z m) .  The motional impedance may be split further into two parts Z mq and Z,nL 

representing the unloaded quartz ( Z mL = 0 )  and the acoustic load respectively.
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‘ mL
1 a Z L 

cdCp 4K 2

1-

(2.25)

cq a
2 tan 2

Close to the resonant frequency of the unloaded quartz crystal the following 

approximation (2.26) may be used.

4 a„a (
tan— (2.26)

2 ( N x f - a 2

where N  is the resonator harmonic number (odd integer). Substituting equation (2.26) 

into equation (2.24) gives

Z  =  —

JcoCF
( N n f - a -  

8 K 2
-1 (2.27)

where the phase shift across the quartz is a -  cohq(pq / juq)2 . To account for losses in 

the quartz p q =juqo+ ja>tlq-Pqo is the shear stiffness and riq is the effective quartz 

viscosity. Substituting these into equation (2.27) gives equation (2.28)

Zmq ~
°}2h2,P ,i?,

+ JO) hP,P„c 1 ( N n f - Z K 1
{%K2Cp \nq \2) {&K2Cp jco %K2CP J

(2.28)

Rq +jcoLq + - ± - r  
J^C„

23



Equations (2.29) can be evaluated to the simple RLC circuit if one assumes 

that co = cos =27ifs, where the series resonant frequency is f s . Figure 2.7 shows the

series RLC network often referred to as the motional branch. By aligning equation 

(2.28) and equation (2.29) the circuit elements may be identified (2.30-2.32). Assuming 

quartz losses are small the following may be applied.

Equations (2.30-2.32) can be transformed into the motional branch of the commonly 

used Butterworth Van dyke (BVD) equivalent circuit shown in figure 2.7

The lumped element BVD equivalent model may be used instead of the transmission 

line model with negligible deviation when modelling the unperturbed resonator [17]. 

The Butterworth-Van-Dyke (BVD) model consists of four variable parame* 

Resistance (R), Inductance (L) and Capacitance (C) in series representing the o'

G”? ,«  > therefore | n q |= juqo and let co = cos

R L C

Cp

Figure 2.7. The lumped element Butterworth Van-Dyke 

equivalent circuit model for and uncoated QCM near resonance.



crystal compose the motional arm, while Parallel Capacitance (Cp) represents the static 

arm of the unperturbed crystal as shown in figure 2.7. Each element in the model 

represents a physical property of the crystal. The resistance 'R' represents the energy 

loss arising from the effects of the viscous medium, internal friction and damping 

induced by the crystal holder, inductance 'L', the initial mass/motional inertia of the 

system, capacitance C the mechanical elasticity of the quartz and parallel capacitance 

'Cp-, which consists of the capacitance of the quartz between the electrodes and the 

parasitic capacitance of the crystal fixture. The parallel capacitance Cp dominates the 

admittance spectra away from quartz resonance.

Cr = s ±  (2.33)
K

Where A is the active area of the quartz. The BVD model may be conveniently used to 

model the unloaded quartz and allows quick and effective simulation and calculation of 

the quartz resonances. From the equivalent circuit model the circuit admittance 

(Y=G+JB) can be determined.

Y(co) = jo)Cp +-^~ (2.34)

where Zm (co) = R + jcoL + —-— (2.35)
jcoC

When R -> 0, two distinct resonant frequencies are apparent as shown in figure 2.8. (i) 

The series resonant frequency f St where the motional reactance is zero; and (ii) the 

parallel resonant frequency f v where the total reactance is equal to zero. These 

correspond to the frequencies of maximum and minimum admittance and can be 

defined as:

f - ' ^ 7 T c  <U6>
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f p  2?r ĵ

1 1
 1----c cp

(2.37)

•1 10010

p  02
-2

10

B (deg)
G(s)

10

-20

-40
-410'

-60

-80

-5I 1---
1.83

10' — '-100 
1.8361.831 1.832 1.833 1.834 1.835

Figure. 2.8. Admittance magnitude and phase as a function of frequency with 

the series (fs) and parallel (fp) resonant frequencies indicated.

In all practical applications where energy dissipation occurs (R>0), frequencies of f s, f p 

and zero phase differ from those at the max /min admittance shown in figure 2.9. In the 

case of series resonance f s , the frequencies are defined below. Where f  (Gmax) is the 

frequency at maximum admittance magnitude and f (B=0)i the lower frequency of zero

phase crossing illustrated in figure 2.9.

1 „ CPRAc )= ---- r ^ 1-----— ) (2.38)
“ ) 2 k -Tl C 2 L

2tt4 l C 2 L/(*.0W  = (1 + (2.39)
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100

(Gmax) (B=0)

G (S)
B (deg)

2 -

 50
1.83251.831 1.8315 1.832

Figure. 2.9 Admittance magnitude and phase as a function of frequency with 

frequencies at admittance maximum/ (Gmax) , zero phase/ (b=o) and series 

resonance f s indicated.

2.4 Surface loading

From equation (2.25) the surface load acting on the quartz may be represented by

1 a  Z, 1
ZmL - aCp 4K Zcq

1 -

r
J

2 tan 2

(2.25 repeated)

For small loads the approximation shown in equation (2.40) may be used. In this case 

the last term in equation (2.25) can be simplified to equation (2.41) [17].



L  —

coCP 4K Zcq
= RJ+jXl (2.41)

The motional impedance is now directly related to the acoustic load Z L. With ZmL a

complex resistance where Ri and X ) are the real and imaginary components in series 

with the motional resistance and defines the surface load on the quartz.

Equation (2.35) can be modified to incorporate these two additional elements in the 

motional branch equation (2.42) and shown schematically in a modified Butterworth 

Van Dyke circuit shown in figure 2.10.

Zmi0*) ~(R  + R\) + J C0(L + Ll) +
jcoC

(2.42)

Figure 2.10. Modified Butterworth Van-Dyke Equivalent circuit Model 

for an uncoated QCM near resonance with additional elements R\ 

and Li accounting for the surface load.
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2.4.1 The Acoustic Load Concept (ALC)

Lucklum and co-workers [11,18-20] have recently introduced the Acoustic Load 

concept (ALC). This offers a direct relationship between the complex acoustic 

impedance ZL and two parameters which may be measured using several experimental 

techniques described in Chapter 3. These approximations may be applied to all typical 

coatings used in chemical or biochemical sensing [11,21]. Values of L and f 0 are 

physical properties specific to a particular quartz resonator and may be obtained from a 

separate measurement of the bare quartz. The imaginary part of ZL is related to the 

frequency at the phase admittance maximum ( f (Gmax)) which corresponds to resonance 

of the motional arm according to equation (2.43a) (see figure 2.9). The real part of ZL 

is related to acoustic energy dissipation/resistance equation (2.43b).

(2 .43a) (Z 43b)
/o 1&C, 2 co0L nZcq

2.4.2 The Viscoelastic film

Of considerable importance to the sensor world is the vapour-sensitive film. These 

coatings combine properties of viscous and rigid materials. Many polymers exhibiting 

viscoelastic properties are now used as chemically sensitive films in sensing 

applications. Under sinusoidal deformation the properties of the viscoelastic material 

are described by a complex shear modulus.

G = G' + jG"

Where, the real part G ’ is the stress component in phase with the strain which leads to 

energy storage. The imaginary component G is the stress component 90° out of phase 

with the strain, and is a measure of energy dissipation. The two terms of the shear 

modulus G + jG  are often known as the storage and loss moduli respectively. When
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resonance occurs the part of the film in contact with the crystal oscillates synchronously 

with it, however the outer sections may lag behind the inner regions in contact with the 

oscillating crystal. This is known as the acoustic phase shift cp.

The acoustic load of a viscoelastic film with finite thickness can be calculated from 

equation (2.44), which may be rearranged separating the mass and acoustic factor M 

(2.46a) and V (2.46b) respectively [11,21].

Z L -  j ( Pf G/ )  tan CO

v°/y

i/ A

(2.44)

where Gf = G'+jG" which may be transformed into

z l = jo>p,hf  ̂  = JMV (2.45) 
<P

where cp~hf co( PJ A

\ Gf j
is the phase difference between crystal surface and outer surface

of the coating ,M  = copf hf (2.46a) is the mass factor and V = l an^  (2.46b) is the
cp.

acoustic factor. For a small but perceptible phase shift cp, the following approximation

A V<p + A
may be applied, tan cp&----------- . The acoustic factor may be rewritten as shown in

<P

equation (2.47).

</>2
F = tanI kV U ^  = 1 + !pL = 1+ML (24?) 

cp cp 3 3 Z]f

where Zcf is the acoustic impedance of the film. The acoustic load for a sufficiently thin

film becomes
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Using equations (2.43a) and (2.43b) the frequency shift A f and resistance change AR 

caused by a viscoelastic film are approximated by equations (2.49a) and (2.49b) 

respectively.

The resultant frequency shift due to the viscoelastic coating has the effect of an 

additional erroneous mass. This extra perceived frequency shift leads to an over 

estimation of the mass accumulation unless viscoelastic contributions are considered. 

The viscoleastic film also causes an increase in the resistance, this is created by the 

introduction of the loss moduli G ’ ’ associated with a viscoelastic film.

special case of equation (2.44) where hf is small and G a real number only (i.e. the film 

is thin and sufficiently rigid). Equations (2.44) may then be simplified if one assumes 

yf hf  -» 0  and \anh(yf hf ) -» yf hf  and therefore the load ZL = jcopf hf . Substituting

in equation (2.43a) the change in frequency A/ can be written as equation (2.50), which 

is equivalent to the Sauerbrey relation [13].

1 U1
A/ocM  1 +  — - M 2 (2.49a)

V 3 / ? |G |  )

A R k M  1 + ------— T-M2 (2.49b)
I  3 p \ G\  )
(.  1 G"

2.4.3 Special case for Sauerbrey relationship

As stated in section 2.31 the Sauerbrey equation is based on a thin rigid film . This is a
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2.5 Modelling QCM loading using the Modified BVD 
equivalent circuit

The effects of each parameter of the BVD equivalent circuit on the admittance spectra 

are shown in figures 2.11 a-d produced by MATLAB version 6.0 simulations. Figure 

2.11 shows the direct effects of mass loading through an additional inductance Lj  in the 

BVD model; the whole spectrum is translated to a lower frequency without any change 

in peak or half width. Figure 2.11b shows an increase in the motional resistance Rj  

directly related to damping effects and primarily caused by changes in the film viscosity 

or by contacting liquid medium. Figures 2.11c shows changes in the capacitance C, 

which represents the mechanical elasticity of the quartz. Figures 2.1 Id shows changes 

in the parallel capacitance CPt which determines the admittance away from resonance, 

and consists of the capacitance of the quartz between the electrodes and the parasitic 

capacitance of the crystal fixture. Both C and Cp remain constant throughout coating 

and analyte exposure as they are intrinsic properties of the crystal.
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Figure 2.11a. The effects of pure mass loading 
leading to an increase in L (Lj) associated with a 

decrease in resonant frequency.
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Figure 2.11c Several values of C representing 
various values of quartz elasticity.
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Figure 2.11b. Changes in viscoelastic film 
properties shown through changes in R (Ri).
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Figure 2.1 Id Increases in parasitic 
capacitance Cp.
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2.6 Modelling a viscoelastic film

The acoustic load (Z l)  representing a viscoelastic film described in equation (2.44) may 

be modelled three dimensionally as shown in figures 2.12a&b through 2.13a&b, 

showing the imaginary and real parts of the acoustic load respectively. Both figures 

show two distinct regions, one principally plain region with slight incline and the 

second region showing large maxima/minima. These two regions correspond to 

acoustically thin and acoustically thick films [11,22]. The right hand comer of figures 

2.12a and 2.13a show the film in its glassy state (acoustically thin films). In this region 

the changes in the film shear parameters have a relatively small effect on both the 

imaginary and real parts of the load (hence a small A f and AR). An enlarged scale of this 

region is shown in figures 2.12b and 2.13b for the imaginary and real values of ZL 

respectively. Although changes in either parameter are relatively small in comparison to 

figures 2.12a and 2.13a, a distinguishable variation is still present in the glassy state 

region. In the glassy region the film moves synchronously with the surface of the 

quartz. The lower left hand section of figures 2.12a and 2.13a show the film in its 

rubbery state (approx G’ =106 and G” <G'). The imaginary value shown in figure 2.12a 

shows a large groove and high peak, a corresponding large peak is shown in the real 

part of ZL at approximately the same values of shear moduli (see figure 2.13a). This 

section is related to acoustically thick films where the upper surface of the film 

appreciably lags the oscillating quartz creating a large phase shift between the polymer 

surface and quartz surface. Here the tangent function dominates the acoustic load [11]. 

Table 2.1 gives typical values of shear modulus (G' and G") for glass, mbbery and 

transition states.

The contribution to frequency shift and film dissipation caused by the acoustic load 

shown in figures 2.12a and 2.13a can be calculated using equations (2.43 a & b). The
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corresponding A f  and AR are shown on right hand side of figures 2.12 and 2.13 

respectively. The large changes in both A f  and AR show the dramatic effect which an 

acoustic load may cause on quartz crystal properties.

G’ (Pa) G” (Pa)

Glassy state *1 0 9 G’» G ”

Transition region *1 0 7 G’«G”

Rubbery 10b G’>G”

Table 2.2. Typical values of shear modulus for the three different states.

The effects of an acoustic load on the electrical admittance of the QCM is shown in 

figure 2.14(a&b) .Curves 'B’, 'C' and 'D' represent different loads corresponding to the 

points indicated in figure 2.13a while 'A' represents the uncoated quartz. For a glassy 

rigid film (acoustically thin) the admittance curve is simply translated to a lower 

frequency with no change in the shape or magnitude (curve 'B') . In contrast curve 'C' is 

heavily damped to the extent that the phase plot does not cross the zero line. As most 

crystal oscillators operate at the phase angle of zero degrees [13], under these heavy 

loading conditions, typically found with liquid loading and thick viscoelastic films, 

oscillation would fail. At these conditions advanced techniques, such as network 

analysis or QCMD are required (see Chapter 3). Curve 'D' shows the film at acoustic 

resonance, in this case the oscillation may jump to a higher frequency, in
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Figure 2.12a. Imaginary part of an acoustic load based on a single layer film with
• . , . 3 •

thickness 1pm with a density of 1000kg m' ; this value was taken from literature. An 

excitation frequency of 18MHz was chosen to give a realistic comparison to the 

experimental section.
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Figure 2.12b. Enlarged section of figure 2.21a.
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Figure 2.13a. Real part of an acoustic load based on a single layer film with thickness 

1 pm with a density of 1000kg nf and excitation frequency of 18MHz.
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Figure 2.13b. Enlarged section of figure 2.13a.
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some cases above the original frequency of the uncoated quartz (curve 'A'). This leads to 

a misleading observation of zero mass increase. Details of the MATLAB simulations 

used to produce figures 2.12 through 1.14 can be found in appendix [A].
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Figure 2.14. a) Simulated admittance phase and b) magnitude under different loading 

conditions.

38



2.7 Organic vapour sensing using the QCM

To exploit the TSM resonator in gas sensing applications a sorbent coating/membrane 

must be applied to the surface of the device. The range of compounds for sensing 

membranes is vast and choosing a suitable material for the intended target vapour has 

been the subject of many research works [23-28]. Polymer films are the most common 

of all sensing membranes, in particular compounds with soft rubbery characteristics, as 

penetration of vapours into glassy and or crystalline structures is slow [29]. Hence, 

polymers with low glass transition temperatures producing faster responses are widely 

used. The adsorption mechanism and interactions between the target molecules and 

sensing membranes have been of much interest. Interaction between vapour molecules 

and sensing membranes are normally non-covalent and may include dispersion forces, 

dipole/dipole interactions, dipole/dipole induced interactions, and hydrogen bonding 

[29]. Many researchers have reported host-guest interactions between the cavitand and 

the molecules [30-35].

Adsorption in the bulk of the applied sensing membrane is characterised by the partition 

coefficient K, defined in equation (2.51). The partition coefficient relates the 

distribution of vapour molecules between the gas phase (concentration Cv ) and the 

sorbent phase (concentration Cs ) [36]. The sensor is therefore in reality measuring the 

number of molecules in Cs and does not directly give a measure of the concentration of 

molecules in the gas phase. In order to determine Cv the partition coefficient K  must be 

known for the sensing compound.

39



The frequency shift may be related to the partition coefficient by equation (2.52) 

[36,37].

Af(mass) = AfsCv (2.52)

Where Af s represents the frequency shift seen when the sensing membrane is applied, 

p s is the density of the polymer material/sensing membrane.

The phenomena of film swelling has been observed by many researchers during the 

adsorption of vapours into a sensing membrane and is often accompanied by changes in 

the physical properties of the film [37].
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Figure 2.15. Equilibrium partitioning of solute vapour molecules between 
the gas phase and a sorbent sensing film.

2.8 QCM sensor arrays

The sensor array principle can be applied to QCM having different sorbent coatings 

with only partial specificity to the target analytes. Analysis of the sensor response 

pattern is then performed, often allowing both the classification and quantification of 

the target analytes. The fundamental requirement for the sensor array is that it generates
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a pattern of responses and that these patterns are discemibly different from each sample 

[29]. The inherent disadvantage of the sensor array approach, is however, the increased 

system complexity often referred to as "the curse of high dimensionality" [38], and 

additional analysis techniques must be applied to the data obtained. Several 

multivariate techniques have been utilized for the analysis of QCM sensor arrays, these 

include Artificial Neural Networks (ANN) [39-49], fuzzy logic [40,43,50], Principal 

Component Analysis (PCA), cluster analysis and many more. A detailed description, 

examples and applications of these techniques can be found in [29].

Currently most useful of the data processing techniques for sensor arrays are Principle 

Component Analysis and Artificial Neural Networks [29]. In this work the ANN was 

selected primarily because of its ability to handle non linear signals from the sensor 

array [38,51]. A schematic of a typical QCM sensor array is shown in figure 2.16.

Sensing elements 
several QCM's

R r

Data acquisition & curve 
fitting

Intelligent data analysis 
- neural net/fuzzy 

techniques.

,------ * N

T Frequency P
D — ► counter/network JT

M analyser C

Figure 2.16. Block diagram of QCM array sensing system

With the sensor array approach, both the discrimination and quantification of a range of 

aromatic compounds has been successfully accomplished by many researchers. Table 

2.3 summarises the analysis methods, the number of sensing elements in the array and 

the target odours tested from a selected number of researchers in this area.
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Target odours Analysis method Number of QCM Reference

Organic solvents ANN, PCA 16
Kalchenko et al 

2002[52]

Organic

compounds
Fuzzy clustering 4 Barko et al 1999[50]

Volatile sulfur 
compounds 
(Halitosis)

PCA 8 Ito et al 2004[53]

Blended

fragrance

ANN 

Fuzzy logic
8

Nakamoto et al 

1996[43]

Apple flavor Unknown 8
Nakamoto et al 

2001 [54]

Food products PCA 7 Pardo et al [55]

Organic
compounds

ANN 
Decision tree 

classification and 
hill climb search

6
Polikar et al 

2001 [45]

Table 2.3. Summary of the research works using QCM sensor arrays.

2.9 Advanced QCM sensor signal interpretation - the A f - AR 

technique

It has been stated by Gardner and Bartlett [29] that “One emerging way forward in 

sensor technology is in the use of multidimensional measurements from the same 

sensor”. Increasing the amount of information available from a single sensor leads to a 

decrease in array size and hence a decrease in the system complexity.

It has been discovered by several researchers that the adsorption of an analyte into a 

viscoelastic coating may cause changes in both the mass and the shear properties (i.e. a 

hardening or softening of the film) [3,5,56,57]. As demonstrated in this chapter, changes



in the properties of the surface load are translated into changes in the equivalent circuit 

parameters (equation 2.42). Hence additional information on the film may be obtained 

by the measurements of the resonant frequency and energy losses; the latter is related to 

the equivalent circuit resistance, R in the BVD model.

This work uses the additional information obtained from the resistance parameter 

(energy dissipation) observed on analyte absorption to produce sensor discrimination 

using a single QCM, and or to reduce the number of QCM required in a sensor array. 

Although many researchers have used the additional dissipation parameter technique 

(usually through measuring the BVD equivalent circuit resistance R), little work has 

been done using the additional information to aid discrimination and classification of 

contacting target vapours using viscoelastic sensing membranes.

In the field of biosensing in particular where measurements in liquid phase are utilized, 

the QCM dissipation techniques have been used extensively. Hook & Rodahl et al 1998 

exploited the QCMD technique to measure structural changes in haemoglobin. Marxer 

et al [58] use the dissipation technique to measure adsorption and viscoelastic properties 

of proteins. While Lucklum [5,11,13,16,56,59-65] and co-workers have extensively 

used multiple parameters from QCM measurements for material characterisation, 

extraction of film parameters and monitoring changes in film properties with gases and 

in liquids.
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2.10 Sensing membranes

The selection of a suitable coating for the QCM is of paramount importance for sensor

design. The sensitive coating/membrane must ideally have the following properties:

(i) Fast response to the contacting analyte, (ideally a few seconds). The response 

time of the sensor (ton) defined as the time taken for the device to reach a 

predetermined fraction of its final response following a step change in 

concentration [29].

(ii) Sensor membrane recovery after exposure, the sensor signal should return to its 

original baseline. In the case of sensor poisoning the analyte irreversibly binds to 

the sensing material often leading to a reduction or complete loss of sensitivity. 

The recovery time should be as fast as possible (in the order of minutes).

(iii)x /H igh sensitivity: the sensing material should show a high sensitivity to the 

target analyte. Where the sensitivity is defined as a measure of the magnitude of 

the output signal produced in response to a certain input quantity of specified 

magnitude [3].

(iv) High resolution: with the resolution defined as the minimum quantity to which 

the sensor can respond [3].

VvV ^  ^ w  limit of detection, the detection limit defined as a concentration which 

produces a response above 2 x the standard deviation of the baseline noise [29].

array configuration as the sensor head may be replaced without the need for 

retraining of the ANN [29].

(v) * /H ig h selectivity: the ability to distinguish one input quantity from another [3].

(vii) w///£ligh reproducibility: ity: this property becomes of increasing importance iin a sensor
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The problem of selectivity of sensing membranes has recently been advanced with the 

use of synthetic molecules as receptors. The design of synthetic receptors allowed 

tuning of the selectivity towards different classes of compounds/analytes [31,66].

Cavitand compounds have been defined as synthetic organic compounds with enforced 

concave cavities of molecular dimensions [30,31,33]. In the last few years cavitand 

based synthetic coatings have been increasingly used as sensing membranes for the 

detection of organic solvents [30-35,67]. The series of calix[4]resorcinarene derivatives 

was of particular interest throughout this work. It has been shown that the calixarene 

cavitand structure is suitable for the formation of inclusion complexes with several 

organic guest molecules [34]. Several groups have reported how the shape and 

dimensions of the cavity can influence the selectivity of organic solvents through 

specific host guest interactions [30,33,34,68-70]. While Dalcanale [30] has shown that 

the selectivity of the material is due to the presence of pre organised cavities, Grate [67] 

suggests alternatively that the selectivity is produced from general dispersion 

interactions.

In this work several calix[4]resorcinarene based compounds have been used with the 

principal difference between them being the size of the hydrocarbon chain length and 

hence the resultant cavity size. Previous work utilizing the Surface Plasmon Resonance 

(SPR) technique has shown the suitability of calixarene compounds for sensing of 

several organic solvent vapours and produces fast reversible responses ideally suited to 

a sensor array [34,70,71]. The basic calix[4]resorcinarene structure is shown in figure 

2.17, and calix[4]resorcinarene derivatives used in this thesis are listed in table 2.4.
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HO OH

OHHO

HO OH

OHHO

P CnH (nx2)+l

Figure 2.17. Calix(4)resorcinarene with ‘P ’ representing the hydrocarbon tail

composition.

Substituting 
hydrocarbon tail

Molecular weight 
(Da)

Calix[4]resorcinarene C1H3 540.5599

C3 H7
652.7726

C5 H11 764.9852

C-11H23 1101.623

C1 5H31 1326.048

C1 7H35 1438.261

Table 2.4. Sensing membranes used for VOC detection.

2.1.1 Target Analytes - Volatile Organic Compounds (VOC)

The detection of volatile organic compounds in the gaseous phase is of vital 

environmental importance. The presence of VOC’s such as benzene, toluene or m- 

xylene in small quantities in the atmosphere are hazardous to human health, with 

benzene for example classed as a human carcinogen. Such VOC’s are frequently found 

in vehicle exhaust fumes, spillage in fuel stations and leaks in fuel pipes, these all 

contribute to the excessive amount of aromatic hydrocarbons in the atmosphere [34]. 

The VOC’s tested in this thesis are listed in Chapter 5 table 5.4.
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The calixarenes used in this work are predominantly suited for the registration of 

relatively large concentrations of vapour. In previously published works by Nabok et al 

it was shown that organic vapour adsorption is fast and fully recoverable [34,69-72]. 

However the concentrations are in the range of lOOppm and above (a few percent of 

saturated vapour pressure). Although such levels are above typical health and safety 

exposure levels they are still an order of magnitude below the lower explosion limits for 

the tested solvent vapours. This makes the calixarene films ideally suited for the 

application as a pre explosive vapour alarm/sensor. With typical installations within oil 

ships, petrol stations and oil refineries, where the detection of leaking solvent from 

pipes or tanks is required.

47



REFERENCES

[1] A. Janshoff, H. Galla, and C. Steinman, "Piezoelectric Mass Sensing devices 
as Biosensors - An alternative to optical Biosensors?," Angew.Chem.Int.Ed., 
vol. 39,pp. 4004-4032, 2000.

[2] M. Trainer, "Kelvin and piezoelectricity," European Journal of Physics, vol. 
24, p p .535-542, 2003.

[3] D. S. Ballatine, R. M. White, S. J. Martin, A. J. Ricco, G. C. Fryre, E. T. 
Zellers, and H. Wohltjen, "Acoustic Wave Sensors Theory, Design and 
Physico chemical applications," Academic press, New York, 1997.

[4] G Sauerbrey, "Verwendung von Schwingquarzen zur Wagung diinner 
Schichten und zur Mikrowagung," Zeitschrift fur Physik, vol. 155,pp. 206, 
1959.

[5] R. Lucklum and P. Hauptmann, "The [Delta]f-[Delta]R QCM technique: an 
approach to an advanced sensor signal interpretation," Electrochimica Acta, 
vol. 45,pp. 3907-3916, July 2000.

[6] E. Benes, "Improved quartz crystal microbalance technique," Journal of 
Applied Physics, vol. 56,pp. 608-626, Aug. 1984.

[7] E. Benes, M. Groschl, W. Burger, and M. Schmid, "Sensors based on 
piezoelectric resonators," Sensors and Actuators A: Physical, vol. 48,pp. 1-21, 
May 1995.

[8] J. G. Miller and D. I. Bolef, "Sensitivity Enhancement by the use of acoustic 
resonators in cw ultrasonic spectroscopy," Journal of Applied Physics, vol. 
39,pp. 4589-4593, Sept. 1968.

[9] J. G. Miller and D. I. Bolef, "Acoustic Wave Analysis of the Operation of 
Quartz-Crystal Film-Thickness Monitors," Journal of Applied Physics, vol. 
39,pp. 5815-5816, Nov. 1968.

[10] C. S. Lu and O. Lewis, "Investigation of film-thickness determination by 
oscillating quartz resonators with large mass load," Journal of Applied 
Physics, vol. 43,pp. 4385-4390, Nov. 1972.

[11] R. Lucklum and P. Hauptmann, "Transduction mechanism of acoustic-wave 
based chemical and biochemical sensors," Measurement Science and 
Technology, vol. 14, pp. 1854-1864, 2003.

[12] S. J. Martin, "Interactions of acoustic waves with thin films and interfaces - 
Closing remarks," Faraday Discussions, vol. 107,pp. 463-476, 1997.

[13] R. Lucklum and P. Hauptmann, "Determination of polymer shear modulus 
with quartz crystal resonators," Faraday Discussions, vol. 107,pp. 123-140,
1997.

48



[14] R. Lucklum, C. Behling, R. W. Cemosek, and S. J. Martin, "Determination of 
complex shear modulus with thickness shear mode resonators," Journal of 
Physics D: Applied Physics, vol. 30, pp. 346-356, 1997.

[15] S. J. Martin, H. L. Bandey, R. W. Cemosek, A. R. Hillman, and M. J. Brown, 
"Equivalent-circuit model for the thickness-shear mode resonator with a 
viscoelastic film near film resonance," Analytical Chemistry, vol. 72,pp. 141- 
149, Jan. 2000.

[16] R. Lucklum, S. Schranz, C. Behling, F. Eichelbaum, and P. Hauptmann, 
"Analysis of compressional-wave influence on thickness-shear-mode 
resonators in liquids," Sensors and Actuators A: Physical, vol. 60,pp. 40-48, 
May 1997.

[17] H. L. Bandey, S. J. Martin, R. W. Cemosek, and A. R. Hillman, "modelling 
the responses of thickness-shear mode resonators under various loading 
conditions ," Analytical Chemistry, vol. 71,pp. 2205-2214, Mar. 1999.

[18] R. Lucklum and G. McHale, "Treatment of slip in a generalised acoustic load 
concept," 2000 IEEE/EIA Int. frequency control symposium & exhibition, pp. 
40-45, 2000.

[19] R. Lucklum, P. Hauptmann, and R. W. Cemosek, "Thin film material 
properties analysis with quartz crystal resonators," 2001 IEEE Int. frequency 
control symposium & PDA exhibition, pp. 542-550, 2001.

[20] R. Lucklum and P. Hauptmann, "Generalized acoustic parameters of non 
homogeneous thin films," 2002 frequency control symposium & PDA 
exhibition, pp. 234-241, 2002.

[21] C. Behling, R. Lucklum, and P. Hauptmann, "The non-gravimetric quartz 
crystal resonator response and its application for determination of polymer 
shear modulus," Measurement Science and Technology, vol. 9, pp. 1886-1893,
1998.

[22] S. J. Martin, C Gregory, G. C Fryre, and S Senturia, "Dynamics and Response 
of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic 
Properties and Film Resonance," Analytical Chemistry, vol. 66,pp. 2201-2219, 
1994.

M. Gomes, A.C. Duarte, and J. A. B. P. Oliveira, "Critical assessment of the
parameters that affect the selection of coating compounds for piezoelectric 
quartz crystal microbalances," Talanta, vol. 48,pp. 81-89, Jan. 1999.

[24] L Hierlemann, K. Bodenhofer, M. Fluck, V. Schurig, and W. Gopel, 
"Selective detection of nitrogen and oxygen containing volatile organic 
compounds: use of metal-modified polysiloxanes as sensor coatings," 
Analytica Chimica Acta, vol. 346,pp. 327-339, July 1997.

[25] I. A. Koshets, Z. I. Kazantseva, Yu Shirshov, S. A. Cherenok, and V. I. 
Kalchenko, "Calixarene films as sensitive coatings for QCM-based gas 
sensors," Sensors and Actuators B: Chemical, vol. 106, April 2005.

49



[26] S. P. Sakti, S. Rosier, R. Lucklum, P. Hauptmann, F. Buhling, and S. Ansorge, 
"Thick polystyrene-coated quartz crystal microbalance as a basis of a cost 
effective immunosensor," Sensors and Actuators A: Physical, vol. 76,pp. 98- 
102, Aug. 1999.

[27] J. Zhang, J. Hu, Z. Q. Zhu, H. Gong, and S. J. O'Shea, "Quartz crystal 
microbalance coated with sol-gel-derived indium-tin oxide thin films as gas 
sensor for NO detection," Colloids and Surfaces A: Physicochemical and 
Engineering Aspects, vol. 236,pp. 23-30, Apr. 2004.

[28] X. C. Zhou, L. Zhong, S. F. Y. Li, S. C. Ng, and H. S. O. Chan, "Organic 
vapour sensors based on quartz crystal microbalance coated with self
assembled monolayers," Sensors and Actuators B: Chemical, vol. 42,pp. 59- 
65, July 1997.

[29] J. W. Gardner and P. N. Bartlett, "Electronic Noses Principles and 
Applications," Oxford University Press, New York, 1999.

[30] E. Dalcanale and J. Hartmann, "Selective detection of organic compounds by 
means of cavitand-coated QCM transducers," Sensors and Actuators B: 
Chemical, vol. 24,pp. 39-42, Mar. 1995.

[31] E. B. Feresenbet, E. Dalcanale, C. Dulcey, and D. K. Shenoy, "Optical sensing 
of the selective interaction of aromatic vapors with cavitands," Sensors and 
Actuators B: Chemical, vol. 97,pp. 211-220, Feb. 2004.

[32] M. Ferrari, V. Ferrari, D. Marioli, A. Taroni, M. Suman, and E. Dalcanale, 
"Cavitand-coated PZT resonant piezo-layer sensors: properties, structure, and 
comparison with QCM sensors at different temperatures under exposure to 
organic vapors," Sensors and Actuators B: Chemical, vol. 103,pp. 240-246, 
Sept. 2004.

[33] J. Hartmann, P.Hauptmann, S.Levi, and E. Dalcanale, "Chemical sensing with 
cavitands: influence of cavity shape and dimensions on the detection of 
solvent vapors," Sensors and Actuators B: Chemical, vol. 35,pp. 154-157, 
Sept. 1996.

[34] A. K. Hassan, A. K. Ray, A. V. Nabok, and T. Wilkop, "Kinetic studies of 
BTEX vapour adsorption onto surfaces of calix-4-resorcinarene films," 
Applied Surface Science, vol. 182,pp. 49-54, Oct. 2001.

[35] P. Nelli, E. Dalcanale, G. Faglia, G. Sberveglieri, and P. Soncini, "Cavitands 
as selective materials for QMB sensors for nitrobenzene and other aromatic 
vapours," Sensors and Actuators B: Chemical, vol. 13,pp. 302-304, May 1993.

[36] J. W. Grate, S. N. Kaganove, and V. R. Bhethanabotla, "Examination of mass 
and modulus contributions to thickness shear mode and surface acoustic wave 
vapour sensor responses using partition coefficients," Faraday Discussions, 
vol. 107,pp. 259-283, 1997.

[37] J. W. Grate, M. Klusty, R. A. Mcgill, M. H. Abraham, G. Whiting, and J. 
Andonianhaftvanj "The predominant role of swelling-induced modulus

. changes of the sorbent phase in determining the responses of polymer-coated

50



surface acoustic-wave vapor sensors," Analytical Chemistry, vol. 64,pp. 610- 
624, 1992.

[38] J. W. Gardner, P. Boilot, and E. L. Hines, "Enhancing electronic nose 
performance by sensor selection using a new integer-based genetic algorithm 
approach," Sensors and Actuators B: Chemical, vol. 106,pp. 114-121, 205.

[39] J. Auge, P. Hauptmann, J. Hartmann, S. Rosier, and R. Lucklum, "Versatile 
microcontrolled gas sensor array system using the quartz microbalance 
principle and pattern recognition methods," Sensors and Actuators B: 
Chemical, vol. 26,pp. 181-186, May 1995.

[40] R. Dutta, E. L. Hines, J. W. Gardner, K. R. Kashwan, and M. Bhuyan, "Tea 
quality prediction using a tin oxide-based electronic nose: an artificial 
intelligence approach," Sensors and Actuators B: Chemical, vol. 94,pp. 228- 
237, Sept. 2003.

[41] J. W. Gardner, E. L. Hines, and H. C. Tang, "Detection of vapours and odours 
from a multisensor array using pattem-recognition techniques Part 2. Artificial 
neural networks," Sensors and Actuators B: Chemical, vol. 9,pp. 9-15, July 
1992.

[42] M. Holmberg, F. Winquist, I. Lundstrom, J. W. Gardner, and E. L. Hines, 
"Identification of paper quality using a hybrid electronic nose," Sensors and 
Actuators B: Chemical, vol. 27,pp. 246-249, June 1995.

[43] T. Nakamoto, S. Hanaki, and T. Moriizumi, "Artificial odor-recognition 
system using neural network for estimating sensory quantities of blended 
fragrance," Sensors and Actuators A: Physical, vol. 57,pp. 65-71, Oct. 1996.

[44] T. Nakamoto and H. Hiramatsu, "Study of odor recorder for dynamical change 
of odor using QCM sensors and neural network," Sensors and Actuators B: 
Chemical, vol. 85,pp. 263-269, July 2002.

[45] R. Polikar, R. Shinar, L. Udpa, and M. D. Porter, "Artificial intelligence 
methods for selection of an optimized sensor array for identification of volatile 
organic compounds," Sensors and Actuators B: Chemical, vol. 80,pp. 243-254, 
Dec. 2001.

[46] A. M. Reznik, A. A. Galinskaya, O. K. Dekhtyarenko, and D. W. Nowicki, 
"Preprocessing of matrix QCM sensors data for the classification by means of 
neural network," Sensors and Actuators B: Chemical, vol. 106,pp. 158-63, 
2005.

[47] H. Shinichi, T. Nakamoto , and M. Toyosaka, "Artificial odor-recognition 
system using neural network for estimating sensory quantities of blended 
fragrance," Sensors and Actuators A: Physical, vol. 57,pp. 65-71, Oct. 1996.

[48] L. X. Sun and T. Okada, "Simultaneous determination of the concentration of 
methanol and relative humidity based on a single Nafion(Ag)-coated quartz 
crystal microbalance," Analytica Chimica Acta, vol. 421,pp. 83-92, Sept. 
2000.

51



[49] T. Nakamoto and H. Hiramatsu, "Study of odor recorder for dynamical change 
Of odor using QCM sensors and neural network," Sensors and Actuators B: 
Chemical, vol. 85,pp. 263-269, July 2002.

[50] G. Barko, J. Abonyi, and J. Hlavay, "Application of fuzzy clustering and 
piezoelectric chemical sensor array for investigation on organic compounds," 
Analytica Chimica Acta, vol. 398,pp. 219-226, Oct. 1999.

[51] M. A. Craven, J. W. Gardner, and P. N. Bartlett, "Electronic noses -- 
development and future prospects," TrAC Trends in Analytical Chemistry, vol. 
15,pp. 486-493, Oct. 1996.

[52] V. I. Kalchenko, I. A. Koshets, E. P Matsas, O. N Kopylov, A Solovyov, and 
Z. I. Shirshov Yu. M. Kazantseva, "Calixarene-based QCM sensors array and 
its response to volatile organic vapours," Materials Science, vol. 20,pp. 73-87, 
2003.

[53] J. Ito, T. Nakamoto, and H. Uematsu, "Discrimination of halitosis substance 
using QCM sensor array and a preconcentrator," Sensors and Actuators B: 
Chemical, vol. 99,pp. 431-436, May 2004.

[54] T. Nakamoto, Y. Nakahira, H. Hiramatsu, and T. Moriizumi, "Odor recorder 
using active odor sensing system," Sensors and Actuators B: Chemical, vol. 
76,pp. 465-469, June 2001.

[55] M. Pardo, L. G. Kwong, G. Sberveglieri, K. Brubaker, J. F. Schneider, W. R. 
Penrose, and J. R. Stetter, "Data analysis for a hybrid sensor array," Sensors 
and Actuators B: Chemical, vol. 106,pp. 136-143, 2005.

[56] R. Lucklum, C. Behling, and P. Hauptmann, "Gravimetric and non-gravimetric 
chemical quartz crystal resonators," Sensors and Actuators B: Chemical, vol. 
65,pp. 277-283, June 2000.

[57] C. Behling, R. Lucklum, and P. Hauptmann, "Response of quartz-crystal 
resonators to gas and liquid analyte exposure," Sensors and Actuators A: 
Physical, vol. 68,pp. 388-398, June 1998.

[58] C. Galli Marxer, M. Collaud Coen, and L. Schlapbach, "Study of adsorption 
and viscoelastic properties of proteins with a quartz crystal microbalance by 
measuring the oscillation amplitude," Journal of Colloid and Interface Science, 
vol. 261,pp. 291-298, May 2003.

F. Hook, M Rodahl, C Kellwe, K Glasmastar, C Fredriksson, P. Dahlqvist, and 
B. Kasemo, "The Dissipative QCM-D Technique:Interfacial Phenomena and 
Sensor Applications for Proteins Biomembranes, Living Cells and Polymers," 
1999 Joint Meeting EFTF - IEEE IFCS, pp. 966-972, 1999.

[60] R. Lucklum, B. Henning, P. Hauptmann, K. D. Schierbaum, S. Vaihinger, and 
W. Gopel, "Quartz microbalance sensors for gas detection," Sensors and 
Actuators A: Physical, vol. 27,pp. 717-722, May 1991.

[61] R. Lucklum, S. Rosier, P. Hauptmann, and J. Hartmann, "On-line detection of 
organic pollutants in water by thickness shear mode resonators," Sensors and 
Actuators B: Chemical, vol. 35,pp. 103-111, Sept. 1996.

52



[62] R. Lucklum and P. Hauptmann, "Determination of polymer shear modulus 
with quartz crystal resonators," Faraday Discussions, vol .107 pp. 123-140,
1997.

[63] R. Lucklum, C. Behling, P. Hauptmann, S. J. Martin, and R. W. Cemosek, 
"Error analysis of material parameter determination with quartz-crystal 
resonators," Sensors and Actuators A: Physical, vol. 66,pp. 184-192, Apr.
1998.

[64] R. Lucklum, C. Behling, and P. Hauptmann, "Signal amplification with 
multilayer arrangements on chemical quartz crystal resonators," 1999 Joint 
Meeting EFTF - IEEE IFCS, pp. 987-990, 1999.

[65] R. Lucklum and P. Hauptmann, "The quartz crystal microbalance: mass 
sensitivity, viscoelasticity and acoustic amplification," Sensors and Actuators 
B: Chemical, vol. 70,pp. 30-36, Nov. 2000.

[66] F. L. Dickert and R. Sikorski, "Supramolecular strategies in chemical sensing," 
Materials Science and Engineering: C, vol. 10,pp. 39-46, Dec. 1999.

[67] J. W. Grate, S. J. Patrash, M. H. Abraham, and C. M. Du, "Selective vapor 
sorption by polymers and cavitands on acoustic wave sensors: Is this 
molecular recognition?," Analytical Chemistry, vol. 68,pp. 913-917, 1996.

[68] A. K. Hassan, A. K. Ray, A. V. Nabok, and F. Davis, "Spun films of novel 
calix[4]resorcinarene derivatives for benzene vapour sensing," Sensors and 
Actuators B: Chemical, vol. 77,pp. 638-641, July 2001.

[69] A. V. Nabok, A. K. Hassan, A. K. Ray, O. Omar, and V. I. Kalchenko, "Study 
of adsorption of some organic molecules in calix[4]resorcinolarene LB films 
by surface plasmon resonance," Sensors and Actuators B: Chemical, vol. 
45,pp. 115-121, Dec. 1997.

[70] A. V. Nabok, A. K. Hassan, and A. K. Ray, "Condensation of organic vapours 
within nanoporous calixerene thin films," Journal of materials chemistry, vol. 
10,pp. 189-194, June 1999.

[71] A. K. Hassan, A. V. Nabok, A. K. Ray, A. Lucke, K. Smith, C. J. M. Stirling, 
and F. Davis, "Thin films of calix-4-resorcinarene deposited by spin coating 
and Langmuir-Blodgett techniques: determination of film parameters by 
surface plasmon resonance," Materials Science and Engineering: C, vol. 8- 
9,pp. 251-255, Dec. 1999.

[72] A. V. Nabok, N. V. Lavrik, Z. I. Kazantseva, B. A. Nesterenko, L. N. 
Markovskiy, V. I. Kalchenko, and A. N. Shivaniuk, "Complexing properties of 
calix[4]resorcinolarene LB films," Thin Solid Films, vol. 259,pp. 244-247, 
Apr. 1995.

53



Chapter 3
Experimental methodology

3.0 Introduction

This chapter is divided into four sections. The first describes how the sensing 

membranes are deposited onto the QCM and gives a brief discussion on the techniques 

used. Section two covers the delivery of the target solvent to the sensing element 

including the design of the apparatus used and calculation of vapour concentrations. 

Section three gives a detailed account of several techniques and equipment which may 

be used to measure QCM devices. Section four gives information on how the sensing 

membranes may be measured and characterized using two different techniques Atomic 

Force Microscopy (AFM) and ellipsometry.

3.1 QCM sensing membranes film deposition

For the QCM to operate as a chemical sensor, it must first be coated with a sensing 

membrane suitable for the target analyte for which it is intended. Several methods are 

available including dip coating, spray coating [1,2], spin coating [3] and Langmuir 

Blodgett (LB) [4-7]. Throughout this work only the spin coating and LB deposition 

techniques were used, this choice was primarily based on the large amount of 

experience within the group of using the two techniques and suitable 

equipment/apparatus being available. Much work on making films with a suitable 

thickness and consistent homogeneity has been carried out by the group previously, 

with the results confirmed using Surface Plasmon Resonance (SPR), UV Spectroscopy 

and ellipsometry [4,5,7-9].
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3.1.1 Surface preparation

Prior to the deposition of a film onto any substrate it is vital to have a clean surface free 

from any defects. In the case of the QCM major defects, such as poor contact between 

the quartz and the electrodes, can easily be seen from a visual inspection of the QCM. 

All crystals were rinsed thoroughly using acetone and dried with a stream of pure 

nitrogen before the initial measurement of the uncoated QCM was taken. All 

preparation and coating of the crystals was all undertaken inside a grade 100 clean 

room. Handling of the crystals was performed using fine tweezers and latex were gloves 

worn throughout to avoid contamination. All chemicals used for the cleaning and 

preparation process were of scientific grade and purchased from Fisher Scientific.

3.1.2 Spin coating

The spin coating technique is fast, cheap and relatively simple to perform. To achieve 

suitable film properties using spin coating a number of parameters were optimized, 

namely the concentration of sensing compound, type of solvent, the spinning regime 

(acceleration, spin speed, and the duration) and the amount of solution deposited on the 

crystal surface.

Several solvents were tested and ethanol was found to give the best results. It was also 

noted that a non linear relationship between the solvent concentration and film thickness 

is evident; a plateau of thickness was reached at approximately 25mg/ml. To obtain a 

homogeneous cluster-free spinning solution the coating compound is dissolved in 

ethanol, and placed in the ultrasonic bath for approximately fives minutes. Table 3.1 

gives a summary of the parameters used to achieve the desired film coating. The 

numbers in brackets relates to the particular program number on the spin coating 

instrument used, which in this instance was the electronic micro systems model 4000.
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Solvent Compound
concentration Ramp Spin speed Spin

duration
Spin coating ethanol 2 5 mg/ml 2 2000rpm

(1085)
30 sec

Table 3.1. Summary of parameters used for the spin coating process.

3.1.3 Langmuir Blodgett (LB) deposition

Compared to the spin coating technique, the LB method inherently has several 

disadvantages, in particular the complexity of preparation of the LB trough and the long 

time required to produce suitably thick films. A typical time period to attain a suitable 

number of layers would be over twenty four hours, and although the system is semi

automated and computer controlled, the material would need to be re-spread 

approximately four to six times during the process. This must be done manually on this 

particular system, although more advanced systems are available where this process can 

also be automated.

The dipping process must also be optimized to each particular compound to gain the 

best transfer ratio. These parameters include the surface pressure and dipping speed on 

both up and down strokes. In some cases a negative transfer ratio (corresponding to the 

film peeling off) has been observed if these parameters are not set correctly. A summary 

of typical parameters used for the LB process is given in table 3.2.

LB Deposition

Solution concentration 1 mg/ml

initial spreading 65pl

Subsequent spread 40pl

Dipper speed down-stroke 10mm/min

Dipper speed up-stroke 60mm/min

Table 3.2. Summary of parameters used for the spin coating process.
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3.2 Exposure methods and techniques

To deliver the target vapour to the QCM two techniques were investigated, the injection 

of the liquid solvent with a micro syringe and constant vapour flow technique. To 

realize the safe, consistent and accurate delivery of the vapours two gas cells (chambers) 

were purposely designed and manufactured in the university workshop.

3.2.1 Gas cell/chamber

The two chambers were designed with similar specifications only altering in size. One 

was designed to hold a single QCM, and the other one contained up to seven QCM’s 

allowing the array measurements. The cells were designed to have the minimum volume 

possible, this was intended to allow the domination of the kinetics of vapour adsorption 

rather than the time required to fill a large cell with target vapour. The total volume of 

the single QCM chamber was 7.5cm3. To avoid the condensation of vapours on the 

walls of the chamber, all internal surfaces were fabricated from PTFE (Teflon®), with 

all other major components machined from stainless steel. Nitrile O-rings were also 

used to seal between the lid of the chamber; these were recessed into the bottom part of 

the chamber to allow consistent positioning and relocating of the two mating parts. For 

easy mounting of QCM inside the chamber, two brass pins were inserted through the 

base. The pins were machined to a specific size in order accommodate a standard 

electronic terminal block. The cell complete with terminal block and connectors is 

shown in figure 3.1. The terminal block connection was incorporated to allow a simple 

and quick mounting of QCM inside the chamber. Inlet and outlet pipes were located on 

the top of the chamber with the outlet connected to a vapour extraction system via a 

simple airtight valve positioned just outside the chamber. This system allowed a safe 

and convenient method of sealing the chamber and flushing with air after each
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exposure. No special temperature stabilization measures were undertaken; however the 

temperature was monitored to be constant within ±0.5°C during experiments. A 

schematic of the chamber is shown in figure 3.2.

OutletInlet
20mm

Lid

QCM40mm

BoltsBolts

Terminal Base 
BlockNotch for 

rubber O Ring
Electrical

connectors

Figure 3.1. Cross sectional diagram of the small vapour exposure cell. Cross hatched 

areas show the PTFE fabricated cell walls total cell volume 0.0075 litres.

3.2.2 Vapour injection method

The simplest and most convenient form of vapour delivery was the vapour injection 

method. Micro syringes in the volume range of lp  to 50pl were purchased specifically 

for this purpose. The target solvents were placed in sealed test tubes with a needle 

inserted through the top plastic sealing plug, this allowed the minimization of loss and 

evaporation of the solvent.
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A certain amount of solvent was injected into the chamber by piercing nescofilm® 

which covers the inlet (a) on the chamber. The solvent then evaporates inside the 

chamber. To flush the chamber the air valve (c) has to be opened (see figure 3.2).

Overhead ducting to outside of building (arrow indicates direction of airflow)

Vented to 
outside

Inject target vapour 
using micro syringe

QCM " 
exposure Electrical connection 

to oscillator/network
analyser

Figure 3.2. Schematic of the exposure chamber and ducting system used when 

performing vapour exposure. On injecting the vapour through inlet (a) valve (c) 

connected to outlet (b) would be closed creating an airtight chamber. After each 

exposure the chamber is flushed with air by opening valve (c) creating a vacuum and 

sucking air through the chamber.
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3.2.3 Vapour flow method

The vapour flow method is based on the diffusion tube principle and allowed a supply 

of constant flow of known low concentration of vapours in the carrier gas (air/nitrogen). 

The system provides highly accurate and reliable low vapour concentrations as long as 

the following criteria are met: the diffusion tube is held at a constant temperature 

(±0.1 °C) and the gas flow rate is accurate down to ±1% [10]. A schematic of the setup 

is shown in Figure 3.3. The system does however require a quite elaborate calibration 

procedure. At constant temperature, the weight of diffusion gas permeating and the 

weight of diffusion gas evaporating will both be set at constant levels. The gas 

concentrations are determined from the dynamic weight loss obtained from several 

measurements taken at set time periods. The process is described in detail in [10].

Overhead ducting to outside o f  building (arrow indicates direction o f  airflow)

Inlet

O utlet
Standards
Generator

2 way 
valveInlet

N 02
"Vent

Impedance analyserOutlet
1.25+j25

Figure 3.3. Schematic of vapour exposure using the standards generator.
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3.2.4 Vapour Concentration and Saturated vapor pressure

To calculate the concentration of injected liquid solvent inside the chamber the equation

(3.1) was used. A list of typical vapours used and the amount of liquid solvent needed to

achieve a concentration of lOOOOppm is listed in table 3.3.

^  . / n D x O sx22.4x1000Concentrationyppm)- —------------------ (3.1)
m.wxCvol

where D is the density, Qs is the quantity of liquid solvent in micro litres, m.w = is the 

molecular weight of solvent, Cvol is the volume of the exposure cell and 22.4 is the 

molar gas volume constant.

Assuming a chamber size o f  0.00751

Liquid Solvent |jl at 
10000ppm % o f SVP

Benzene 0.2977 10.1325
Hexane 0.4406 5.9603
M-Xylene 0.4095 126.6561
Cyclohexane 0.3619 7.9783
Toluene 0.3558 34.9406

Table 3.3. Liquid solvent required to achieve lOOOOppm and its respective percentage

of saturated vapour pressure.

3.2.5 Saturated vapour pressure
The analysis of the results also required the saturated pressure of the solvents to be 

known. These were calculated using equation (3.2). Table 3.4 lists all the vapour 

pressure for the solvents used.

w(g!l) = ( P x m . w x  V ) 
( Rx ( T  + 273.15))

(3.2)
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k P  Cl
where P (Vapour pressure in atm) = ■ — ^  -  (3.3). To convert from g/l units to ppm  to

equation (3.4) was used.
w(mg/ mJ)x Rg x(T  + 273.15)

ppm =
m.w (3.4)

where iv is concentration in grammes per litre, m.w is the molecular weight o f the 

solvent in grammes, V is the volume (1 litre), P is the vapour pressure in atmospheres at 

specified temperature, T is Temperature in degrees Celsius and Rg is the Gas Constant 

(8.206e2 L atm K' 1 mol'1).

Compound molecular
weight

Vapour
pressure

(kPa)
pressure atm concentration

mg/m3
concentration

ppm

Benzene 78.11 10 0.0986923 320456.152 98692.326
Hexane 86.2 17 0.1677769 601198.881 167776.955
Toluene 92.1 2.9 0.0286207 109577.050 28620.774
M-xlene 106.2 0.8 0.0078953 34855.914 7895.386
acetone 58.1 24 0.2368615 572070.233 236861.584
p xylene 106.2 0.9 0.0088823 39212.904 8882.309
aniline 93.1 0.04 0.0003947 1527.818 394.770

Cyclohexane 84.1608 12.7 0.1253392 438506.013 125339.255

Table 3.4. List of solvents, their molecular weights, vapour pressures and respective 

concentrations in ppm at saturated vapour pressures.

3.3 QCM Measurements techniques and equipment

Since the first report by Sauerbrey in 1959 of using a QCM to measure the thickness of 

vacuum deposited metals [11], both QCM measurement techniques and understanding 

of the device itself have advanced significantly. With the realization that the 

measurements of the resonant frequency alone is inadequate to fully characterize the 

TSM resonator, several advanced techniques have been established which allow both 

the frequency shift and the damping (dissipation) to be measured. The following
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sections describe several measurement techniques and their implementation in this work 

for the characterization of the TSM resonators and/or contacting media.

3.3.1 Resonant oscillator circuits

The simplest measurement of the QCM is by the means of the resonant oscillator 

circuit. The QCM acts as the frequency determining element in an electrical oscillator 

circuit, the properties of the crystal itself inherently provide high frequency stability and 

low thermal drift [12]. With the discovery that the QCM may also operate in the heavily 

damped environments (i.e. liquid phase) [13] a range of new oscillator have been 

developed. Several oscillator circuits for gaseous and liquid phase can be found in the 

following references [14,15] and some liquid phase specific designs may be found in 

[16,17].

Some recent oscillator designs also allow measurement of Q factor (dissipation) [18- 

23], these however often need complex and time consuming calibration to obtain true 

values for frequency and resistance (dissipation), and often lack high resolution which 

can only be achieved with the network analyzer instruments.

The oscillator circuits exploited in this work were based on previous achievements of 

the group [24] in the development of pre explosive vapour sensor alarm devices. The 

original concept for the design was sourced from Hwang et al [25]. A circuit diagram of 

the oscillator can be found in appendix [B].

3.3.2 QCMD (Dissipation)

The QCMD method is based on the measurements of the decay properties of the 

oscillating quartz. For full details and in-depth information on the QCMD technique see 

references [26,27], The crystal is driven by an external frequency generator at
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approximately resonant frequency, subsequently disconnected from the driving 

oscillatory force, and the exponentially decayed sinusoid was measured. Both the 

resonant frequency of the crystal and the dissipation factor are obtained from fitting the 

decay curve to equation (3.5). The parameter r  (decay time constant) is a function of 

the QCM dissipation factor described in equation (3.6), and the resonant frequency/  is 

extracted directly from equation (3.5). The QCMD method is relatively simple and can 

be implemented at a fairly low cost with the basic requirements of function generator 

and a Digital Storage Oscilloscope (DSO) interfaced to a PC via GPIB interface. A 

high degree of accuracy can also be easily obtained. A schematic of the QCMD setup is 

illustrated in figure 3.4. The dissipation factor D is related to the BVD equivalent circuit 

model resistance by equation (3.7).

U(t) = A0e~tlT sm(27tft + </>) (3.5)

where (j> is the phase, r is the decay time constant and A0 the amplitude of the a.c. 

signal.

D = ) ~  (3.6)
7tfV

D = 4  (3-7)
COL

The setup does however require computer control and automation. The timing of the 

relay and triggering of the scope must be precisely defined to obtain the decaying 

sinusoid. The function generator must also be automated to track the resonant frequency 

of the QCM, hence after each measurement the function generator is set to the extracted 

resonant frequency measurement obtained from fitting the previous decay curve. If the 

excitation frequency does not match the QCM resonant frequency, the amplitude of 

oscillations is reduced increasing noise within the system and if the frequencies are too
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far apart, the crystal may fail to oscillate. To facilitate the tracking of the resonant 

frequency a Stanford Research model DS345 programmable function generator 

controlled via GPIB bus was used. The signal was captured using a Tektronix 500MHz 

digital storage oscilloscope once again utilizing the GPIB interface for transfer of the 

captured decay curve to the PC. The block diagram in figure 3.4 was realized on 

printed circuit board. Details of the circuit design, and components can be found in 

appendix [B].

Measurements start by closing the computer controlled relay (Clare MSS-2), a period of 

approximately 20ms is then given allowing the crystal oscillations to stabilize. The 

computer then opens the relay and triggers the scope to capture the decay curve. The 

data are then transferred from the oscilloscope to PC and data fit performed. The 

Levenberg Marquadt algorithm from the Labview® analysis toolbox was used for the 

data fitting. Due to malfunction of the Tektronix oscilloscope it was replaced with a 

Gould 1604, the triggering using GPIB was found to be inaccurate so a PIC 16F84 

microcontroller was used to close the relay and to trigger the oscilloscope using the 

external trigger. Details of the Labview® software and 'C* program for the PIC 

microcontroller can be found in appendix [C].
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Figure 3.4. Block diagram of the QCMD setup, the PIC microcontroller being used to 

accurately trigger the oscilloscope using the external trigger.

0.8

0.6

0.4

0.2

5:n 1000 1500 2000
- 0.2

-0.4

- 0.6

- 0.8

Time (a.u.)

Figure 3.5. Typical decay curve obtained from equation (3.5).
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3.3.3 Impedance/Network Analysis

The most comprehensive analysis of the QCM is achieved from the measurements of 

Impendence/Admittance over a range of frequencies around crystal resonance [28]. This 

method allows all crystal resonances to be observed (see chapter 2).

The impedance of a device can be defined as the total opposition a device or circuit 

offers to the flow of alternating current at a given frequency [29]. Impedance is 

represented by a complex quantity consisting of a real part (resistance R) and an 

imaginary part (reactance X ). It can be expressed in the rectangular coordinates form 

R+jX or in polar form as a magnitude and phase \Z\ Z.6 . In many cases it is however

more convenient to use the reciprocal of the impedance — -—  known as the
R + jX

admittance Y, which is represented by the complex quantity Y=G+jB, where G is the 

conductance and B is the susceptance.

The main drawback of the network analysis method is high instrument cost, with a 

typical purchase price of over £20 000 limiting the use of such method to the analytical 

laboratory. Several research groups have however recently implemented low cost 

designs performing the same function of the network analyzer [30-32].

For all the experiments in this thesis, a Solartron SI 1260 impedance analyzer was used. 

Control and interface software was written in Labview®, details of which can be found 

in appendix [D]. An initial crystal measurement consisted of setting the start and stop 

frequencies at approximately 10kHz above and below the parallel and series resonant 

frequencies of the QCM respectively. A measurement at a sampling step of 1kHz would 

be taken to check if the full spectra is obtained. If successful, the start and stop 

frequencies are adjusted to 2000Hz above the parallel and 2000Hz below the serial 

resonant frequency, a further sweep is then taken at 100Hz sampling frequency to give
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an accurate representation of the impedance spectra. A typical sweep is shown in figure 

3.6 showing both the admittance magnitude and phase.
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Figure 3.6. Experimental measured admittance spectra showing both serial and parallel 

resonances (note nulling procedure described in section 3.7 has been applied to this

spectrum).

PC interfaced using 
HP GPIB BusQCM Chamber Solartron 1260 

Imoedance analvser

□ □ □ □
12.5+jl5.

Figure 3.7. Diagram of the Basic Experimental set-up.

3.3.4 Experimental errors

From preliminary crystal measurements it was found that errors were also being 

introduced from parasitic stray impedances associated with the test leads, mounting 

fixtures, and crystal connectors. This can clearly be seen on the admittance phase
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diagram in figure 3.8. As the phase approaches the parallel resonant frequency large 

spikes in the spectra are evident.
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1836000018340000 18380000 18400000

Frequency (Hz)

Figure 3.8. The admittance phase with series and parallel resonant 

frequencies indicated; the large spikes in admittance phase are also

highlighted.

The following procedure was therefore completed before each set of measurements to 

compensate for the additional capacitance/inductance introduced by the test setup. The 

basis of the approach is to carry out short circuit and open circuit tests to find the 

parasitic series and parallel impedances (figures 3.9b and 3.9c respectively) and then 

subtract these values from the experimental data at each measured frequency. The 

procedure is outlined in figures 3.10a-c.

Solartron
1260

In the case ZL 

R L C
H /W H  

Cp

Figure 3.9a. The experimental setup may be represented by the above circuit where Zl

is the object under test.
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Solartron
1260

Figure 3.9b. Perform Short Circuit (s/c) test to give Zs

Solartron
1260

Figure 3.9c. Perform Open Circuit (o/c) test to give Zs + Zp.

1ZT —Zs +
(— +  — ) 
7  7L ^  P

(3.8)

which after rearrangement for Zl Gives 

1
. i

(3.9)

Z T — Z s Z p

Examples of the spectra before and after compensation (nulling) are shown in figure 

3.10 a-d. The results show a significant decrease in both the resonant frequency and 

admittance magnitude, as well as pseudo stretching of the spectra. Most noticeably, no 

spikes appeared in the admittance phase.
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before nulling.
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Figure 3.10c. Admittance phase 

before nulling.
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Figure 3.10b Admittance 

magnitude after nulling.
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Figure 3.1 Od Admittance phase 

after nulling.
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3.3.5 Increasing measurement accuracy

In an ideal case the measurement setup should have the resolution of less than one hertz 

and allow recording of a full spectrum (range of 100kHz), in under one second. While 

modem network analyzers quote specifications close to these parameters the Solartron 

1260 is limited to approximately lpt/0.8s. A typical spectrum is shown in figure 3.6 

sampled at a frequency of 100Hz over a 100kHz range, and therefore required 

approximately eight minutes.

An increase in accuracy was obtained by interpolating extra data points above the 

sampling frequency. This was implemented by additional data fitting. The peak of the 

admittance magnitude (G) (figure 3.10a) is fitted to a polynomial curve, as shown in 

(figure 3.10b) and the zero crossing of the admittance phase (B) (figure 3.10c) is fitted 

to a linear equation. For the polynomial fit nine data points would be taken centred on 

the measured frequency of maximum admittance G(max), as shown in (fig 3.10b). A 

polynomial fit was then performed on the selected nine data points and the best fit 

coefficients obtained were saved. The order of the polynomial was determined by an

tViiterative process, and a 4 order polynomial was found to give the most accurate results. 

Polynomials of lower orders give a poor fit to the data, while higher polynomials follow 

errors in the experimental data. The saved best fit coefficients were then used to re-plot 

the admittance peak at an increased sampling frequency of 1 Hz (see figure 3.10b). The 

new frequency of G(max) was then taken from the peak of the interpolated data. 

Similarly, seven points were taken about the zero phase crossing and fitted to a linear 

equation with additional points interpolated at a 1Hz frequency. The verification was 

performed using simulated data and the results show that the frequencies G(max) and B(=o) 

could be obtained with the accuracy better than ±3Hz using a sampling frequency of 

100Hz for the initial data. The technique described gives rise to a significant increase in



accuracy and also reduces the overall noise of the setup. Documentation for the program 

can be found in the appendix [E].
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Figure 3.11 a-d. Screen capture of Labview® data interpolation software.
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3.3.6 Real time analysis

A specific goal for the experimental setup was to allow the real time analysis of QCM 

parameters. From literature and early experimental results using oscillator only 

measurements, the response time of a QCM on vapour exposure was found to be 

extremely quick; typically being under five seconds [3,4,7,9]. With frequency only 

measurements the sampling time was not a problem as the only limitation imposed was 

the gating time of the frequency counter. However, with the Solartron analyzer taking 

over eight minutes to obtain a full spectrum, real time analysis was not a realistic option 

without modification of both the software and setup. The following approach was 

therefore devised to allow a pseudo real time response. For all initial QCM 

measurements the full spectra would be undertaken, fitted to the BVD equivalent 

circuit, and values of R, L, C and Cp obtained for the uncoated quartz. For all further 

measurements a narrow frequency range of 1800Hz centered on the frequency at 

maximum admittance magnitude (Gmax) was used. With the fixed parameters of the 

quartz R, L, C and Cp established, further fitting were applied to Li and R\ related to the 

additional mass and dissipation respectively. These two parameters can be obtained 

from the narrow frequency scans as discussed previously.

Measurements of 18 points took approximately 23 seconds; this includes setting the 

frequency range of the analyzer, download of the measured spectra to PC and all data 

fitting (analysis). The Labview® software was programmed to track the frequency of 

(Gmax) after each measurement, the start and end points for the next measurement would 

be set to ± 900Hz centred on the G (max) frequency.

A major disadvantage of slow measurement speed is that a false spectrum would be 

obtained if the evaporation of the vapour is not complete, or leakage occurs during the 

measurement. In this case, the vapour concentration is not constant during the complete
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measurement of the spectra, and the spectra are therefore stretched towards lower 

frequency due to evaporation and to a higher frequency due to leakage (see figure 

3.12a). Figure 3.12b shows a true representation of the admittance spectra if a quick 

acquisition time is available, and a number of spectra are measured during the 8 minute 

period.

8mins
Real spectra-----
Stretched spectra

8mins

vapour vapour
evaporation leakage

Figure 3.12 a). The result of slow acquisition time when the properties o f the QCM 

change during a spectra measurement. The spectrum is stretched to higher or lower 

frequency depending on adsorption or desorption of the vapour, b) Several spectra 

recorded in the same 8 minute period.

To obtain a true admittance measurement over an 8 minute period it must also be 

assumed that the sorption of vapour and changes in viscoelastic properties of the 

sensing membrane are not time dependant and remain constant throughout. From 

previous work by Nabok, Hassan et al [3,4,9] this assumption cannot be made, and the 

measurement of the kinetics during vapour adsorption yields more realistic results. The 

narrow frequency range 23 second measurement period was found to be acceptable, 

giving realistic response kinetics on vapour exposure without any major loss in 

characteristics of the admittance curves.
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3.4 Array measurements and techniques

To measure several QCM in real time, two additional circuits were developed allowing 

several QCM to be multiplexed into a single measurement device. With the rapid 

sampling times achievable using resonant oscillator circuits and the QCMD technique, 

it was possible to obtain the measurement of up to five QCM in under four seconds. 

This gives a realistic pseudo real time response of the kinetics during vapour adsorption.

3.4.1 Resonant oscillator array

The measurement of several QCM was performed by using the time division 

multiplexing technique. In several commercial multiplexer integrated circuits that were 

tested the cross talk between the channels was too high. The final design was therefore 

based around a relay approach, each oscillator connected to the frequency counter by an 

individual relay. At sampling of a channel, the corresponding relay would be closed by 

a signal triggered from the IEEE 1284 bus, creating a physical connection to the 

frequency counter. The measurement would then be taken, data transferred and logged 

on PC, then the next channel would be sampled and so on. To achieve stable operation 

the oscillator must be given a suitable warm up period, ruling out the possibility of 

multiplexing all the QCM into a single oscillator circuit. A separate oscillator circuit is 

required for each crystal in the array. Again all control and data logging were performed 

using Labview® software, full details of circuit designs and components can be found 

in appendix [B,C]. A block diagram of the test setup is shown in figure 3.13.
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IEEE 1284 Interface PC control/ 
data logging

CH1 = 18.43256 Mhz

Oscillator 1 CH2 = 18.40236 Mhz

CH3 = 18.39652 Mhz

BNC

GPIB 
IEEE 488Oscillator 2

5 Z ____________□ □ □ □
Relay per 
oscillator 18.43250586MHzOscillator x

HP frequency counter

Figure 3.13. Block diagram of resonant oscillator QCM array, all the relays IEEE 

1284 connectors and associated electronics were mounted onto a single PCB.

3.4.2 QCMD Array

For multiple sensor QCMD measurements, the same relay based multiplexing approach 

was implemented. The major difference being only a single measurement circuit was 

used (see figure 3.14), whereas in the oscillator array each QCM was driven by an 

individual oscillator circuit. A sampling time of approximately one second per QCM 

was achieved. Details of circuit designs, components, can be found in appendix [C].
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QCM 1

QCM 2

QCM x

Function
Generator

Oscilloscope

Vvv
GPIB

Ferrite Torroid

J U U M PIC
Micro

PC-instrument
control

automation/data
C hi f=18.43 D = 1e-6

C h2f= 18 .45D  = 5e-6

GPIB

IEE488

Figure 3.14. Schematic of QCMD array. Each QCM is connected through individual 

relay to the driving circuitry with the relay switching controlled using IEE 488 bus.
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3.5 Data acquisition and analysis

After either an impedance spectra or QCMD decay curve is obtained a suitable fitting 

procedure was performed to extract the relevant parameters related to the mass 

accumulation and/or changes in the film viscosity. Several fitting algorithms were tested 

with the main performance criteria being the accuracy and fitting speed. As real time 

analysis was required, a fitting time of less than one second was seen as acceptable.

3.5.1 Curve fitting

Several curve fitting techniques based around the least square error principle were tested 

ranging from an iterative approach of testing every possible combination of the 

equivalent circuit parameters within a specified search space, Genetic Algorithms, 

simulated annealing and Levenberg Marquadt technique.

If good estimate coefficients for the fit were available the Levenberg Marquadt (LM) 

technique gave the best performance regarding both the speed and the fit accuracy. 

However, if the initial guess coefficients were not close enough to the actual values the 

LM technique proved to be ineffective often giving erroneous values. In this case the 

simulated annealing (SA) approach proved to be effective. The SA minimization 

technique has been proven to be successful for circuit tuning applications [33-35], and 

was therefore applied to fitting experimental data of the TSM resonator to the BVD 

equivalent circuit model.
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3.5.2 Simulated Annealing (SA) technique

A basic overview of the SA algorithm used and how it was applied in this application is 

shown below.

□ Select the initial system configuration R,L,C and Cp -(datum point 'pi')

□ Let the variables move from this datum point by a small quantity R±A, L±A, 

C±A, Cp±A. generating a new point 'p2-

□ The probability of this new point becoming the old datum point' pi' is 

determined using the metropolis criterion.

i f  f 2<fi probability = e ^  (3.10) 

else probability = 1

where f  is the sum of the squared errors between the experimental or generated spectra 

and the spectra generated using the parameters of datum point 'pf.

a.u)
n /=o

Where n is the number of data points, p\. is the admittance value generated from

equations (2.34) and (2.35) using parameters of'pi' (values of R, L, C and Cp), and > 7  are 

the values of experimental admittance spectra.

In the same way ^  can be found as the sum of the squared errors between the 

experimental or generated spectra and the spectra generated using the parameters of 

point 'p2'. p 2 . is the admittance value generated from equations (2.34) and (2.35) using 

parameters of datum point 'P2 ’.

f 1 = - f t(.p2i - y i)2 (3.12) 
n (=0
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□ A random number is generated between 0 -  1; if this number is greater than 

or equal to the calculated probability,^ becomes the new datum point, else f  

remains the datum point.

□ Tis a control parameter often referred to as 'tem peratureThis dictates the 

willingness of the algorithm to accept points with higher errors.

□ A number of iterations are made at each value of T . At high values of T  the 

probability of a new point being selected as the datum points is high as the 

value of T decreases the algorithm is increasingly selective only selecting 

points with a smaller error.

The algorithm was implemented in MATLAB 6.0 and tested using simulated data. The 

program proved successful at fitting equivalent circuit parameters when poor initial 

guess coefficients are used. Its major disadvantage was however the lengthy fitting time 

(up to 30s) and was therefore not feasible for real time analysis.

3.5.3 Levenberg Marquadt

If a spectrum containing both f s and f p is obtained, realistic initial parameters can be 

calculated using a non linear Levenberg Marquardt [36,37] least squares fitting 

algorithm. The initial implementation was to manually adjust equivalent circuit 

parameters until a reasonable visible fit obtained. These parameters are then used as the 

guess coefficients. To obtain initial parameters from the spectra the following method 

was applied.

At small values of R, the series resonant frequency^ defined by equation (2.4) can be 

estimated from Gmax. However as R increases the correlation between Gmax and f s starts 

to diminish and the approximation is no longer feasible. A more accurate estimation of 

f s is found from the mid point between the frequency f(Qmax)  and the frequency f(Biow=0)
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(the lower frequency of zero phase crossing) see figure 3.15. Table 3.5 shows examples 

o f resonance characteristics for four different values R.

R fs f  (Gmax) f ( ^ lo w e r~  0 ) fs "  f  ( Gmax) fs - fB lo w e r^  0 )

10 18316675.68 18316672.7 18316678.8 2.9833004 -3.1167
20 18316675.68 18316663.6 18316687.9 12.0833 -12.2167
100 18316675.68 18316376.4 18316983.1 299.2833 -307.4167
200 18316675.68 18315521.2 18317961 1154.4833 -1285.317

Table 3.5. Simulated resonance properties for different values of R.
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Figure 3.15. Simulation of admittance spectra around series resonance using 

the following parameters R = 200Q, L=3.02mH, C=25fF and Cp= 12pF. A 

clear separation between the series resonance f s, maximum admittance/(cnax) 

and zero phase crossing/fi?/^ = 0) can be observed.

The parallel capacitance Cp can be estimated from equation (3.13), with G(min) taken as 

the parallel resonant frequency. Additional data points were again interpolated through 

polynomial fitting of the series/parallel resonance curves as described in section 3.35 to
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increase the sampling frequency measurements up to ±3Hz. Guess coefficients for L and 

C are found from equations (3.14) and (3.15) respectively [12].

(3 J 3 )

£  =  — ;------------- 0 . 1 4 )
$ * 2f C pA f,p

C = — (s £ l  (3,15)
f

where Afsp=fp-fs

The complete fitting process described was implemented using Labview® software, 

which incorporates both the data acquisition and curve fitting programs with all 

calculations/fitting being performed autonomously. The complete post acquisition 

analysis requires less than 50ms on an IBM PC running at 1700 MHz. Fitting accuracy 

was tested on generated spectra; and the results presented in Table 3.6 show the error of 

less than 0.1%.

R (Q ) L(mH) C (Ff) Cp(Pf)
Actual 18.000000 3.022000 25.00000 10.000000
fitted 17.999998 3.022002 24.999983 10.000026

Table 3.6. Example of fitted values produced from simulated data to test the curve

fitting software.

3.5.4 Parameter minimization

From the equation for the series resonant frequency (is clearly evident that f s is a 

function of equivalent circuit parameters L and C. If f s is accurately extracted from the 

spectra the fitting equation can be minimized to three parameters. The value of f s was 

estimated as the frequency half-way between fomax) and f(Biower= o) (as shown previously
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in figure 3.15). The software was modified to include the calculation of L or C from the 

series resonant frequency, and therefore to reduce the problem to three variables.

3.5.5 Feature extraction

With typical experimental vapour exposure lasting several hours the amount of data 

collected is vast. This becomes increasingly problematic as the number of crystals is 

measured. An example of an array containing 5 QCM over a period of 2 hours would 

give: 5(number of QCM ) x 2(number of parameters /  and D or R) x 12(number of 

measurements per minute) xl20(Total time) = 14400 measured data points. A typical 

measurement for a single QCM is shown in figure 3.16a & b

18376500-

18376000-

18375500-

U
I  18375000-

(a) (1nl) 2810 ppm T oluene
(b) (2nl) 5620 ppm  T oluene
(c) (3nl) 8430 ppm  T oluene
(d) (4^1) 11240 ppm  T oluene
(e) (5^1) 14050 ppm T oluene
(f) (6nl) 16860 ppm  T oluene

18374500-

18374000-

18373500
650 700 750 800 850 900

Time (a.u)

Figure 3.16a. Typical measurement of frequency during a sequence of exposures to an

organic solvent.
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1 8 —1 (V I)  2810 ppm Toluene 
(2nl) 5620 ppm Toluene 
(3^1) 8430 ppm Toluene 
(4^1) 11240 ppm Toluene 
(5^1) 14050 ppm Toluene 
(6|il) 16860 ppm Toluene16-

1 2 -

650 700 750 800 850 900
Time (a.u)

Figure 3.16b. Typical measurement of resistance during a sequence of exposures to an

organic solvent.

From this set of data shown in figure 3.16a & b, it is apparent that only specific features 

are of prominent interest, principally the segments corresponding to vapour exposure. 

From these segments a single precise value must be obtained to represent the A/" and AR 

at a specific concentration as shown in figure 3.17.
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18376750-
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18376000-

X  18375750- 

18375500-
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770 790750 760 780 800 810

Time (a.u)

Figure 3.17 Typical responses of/  and R on vapour exposure. 5 distinctive regions 

are apparent: a) In air b) injection of vapour c) steady state d) flushing of chamber 

e) recovered.

The key parameters which must be obtained are the values of/  and R before exposure 

section (a) figure 3.17 and the settled response during exposure (section (c) in figure 

3.17). To extract these points the Labview® software was programmed to perform the 

following.

□ Differentiate the frequency data to find the injection and vapour release points 

which are shown by large spikes, which correspond to sections (b) and (d) of 

figure 3.17 respectively.

□ Find the 3 values with the smallest differential in the preceding 20 data points 

before section (b), take the mean of these three to obtain values frequency (ft) 

and resistance (R[>) before exposure.
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□ Find the three points between sections figure 3.17 (b) and (d) having the 

smallest differential. Take the average of the three values to obtain the exposed 

frequency and resistance values f e and Re respectively.

Af=fb-fe 

AR = Rb- Rb

The software implementation of the above allowed the fast, accurate, and repeatable 

extraction of the A f and AR parameters.

3.6 Film characterization techniques

Many aspects of the QCM theory presented in Chapter 2 are based on the assumption 

that the coating (sensing membrane) covers the full surface area of the QCM electrodes 

and has a consistent thickness and homogeneity. Many researchers have found the 

surface roughness plays a major role in the TSM resonator response, and becomes 

increasingly important in the liquid phase where “trapping” of liquid inside the film 

matrix may occur [38-41]. Textured and smooth surfaces also show different behaviour, 

with the textured surfaces giving an increased motional resistance [38].

It is also anticipated that the calixarene films are not acting purely according to the 

Sauerbrey equation and therefore a simple linear relation between the frequency shift 

may not be applicable. A major contribution from viscoelastic properties may be 

evident in the frequency shift. Hence the confirmation of the film thickness by an 

independent method is required. Therefore, to determine surface roughness, 

homogeneity and film thickness the techniques of Atomic Force Microscopy (AFM) 

and ellipsometry were employed.
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3.6.1 Atomic Force Microscopy (AFM)

The principles of AFM operation are relatively simple. An atomically sharp tip is 

scanned over the surface of the object with a feedback mechanism that allows the piezo

electric scanners to maintain the tip at a constant force, therefore obtaining height 

information. The inverse may be applied maintaining constant height to obtain force 

information above the sample surface. Tips are normally made from SisN4  or Si, and 

extended down from the end of a cantilever. The nanoscope AFM head employs an 

optical detection system, in which the tip is attached to the underside of a reflective 

cantilever. A laser diode is focused onto the back of a reflective cantilever. As the tip 

scans the surface of the sample, moving up and down with the contour of the surface, 

the laser beam is deflected from the attached cantilever into a quadrapole element 

photodiode. The photodetector measures the difference in light intensities between the 

upper/lower and left/right sections of the photodetectors, and then converts to voltage. 

Feedback from the photodiode difference signal, through software control from the 

computer, enables the tip to maintain either a constant force or constant height above 

the sample. In the constant force mode the piezo-electric transducer monitors real time 

height deviation. In the constant height mode the deflection force on the sample is 

recorded. The latter mode of operation requires calibration parameters of the scanning 

tip to be inserted in the sensitivity of the AFM head during force calibration of the 

microscope [42,43].

3.6.2 Ellipsometry

Ellipsometry measures the change in polarization state of light reflected from the 

surface of a sample. The measured values are expressed as 'F and A, standing for the 

ratio of amplitudes of p and s components of polarized light (3.17) and their phase 

difference (3.18).



A„
vF = tan—^ (3.17) A = VF - T  (3.18)

A,

These values are related to the ratio of Fresnel reflection coefficients, Rp and Rs for p  

and s-polarized light, respectively.

tan('?)e'A = ^
Rs

Parameters (i.e. thickness, refractive index) of thin films deposited on silicon wafers can 

be found by fitting the experimental data (lF and A spectra) to Fresnel’s formula.

The science of ellipsosmetry is vast and out of the scope of this thesis, more information 

can be found from the following references [44,45]. The Instrument used in this work 

was the JA Woolam and co M-2000V.
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3.7 Conclusions

This chapter introduces several techniques which are used for QCM measurements. 

Three primary methods have been described; oscillator circuits, QCMD and impedance 

analysis. The latter two techniques show a distinct advantage as dissipation which 

occurs in the film can also be measured. Additional fitting and feature extraction is also 

required to obtain the necessary information from the measured data. The techniques 

used include Simulated Annealing, Levenberg Marquadt, polynomial and linear fitting. 

Details of the experimental procedures have been given, the Langmuir Blodgett and 

spin coating techniques used to apply sorbent coatings to the QCM are shown. The 

experimental setup and exposure methods have also been described. Lastly a brief 

summary of AFM and ellipsometry techniques has been given which are used to 

characterize the sorbent coatings used in this work.
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Chapter 4
Results and discussion -  QCM characterisation and 
coating properties

4.0 Introduction

This chapter reports the results from measurements taken using QCM sensor, coating 

processes and film characterisation techniques described in chapter 3. The chapter is 

divided into several sections; firstly the validation and performance of the experimental 

setups/techniques are measured and compared. Section 4.2 records the effects of 

temperature on the parameters of the QCM. Although the uncoated AT cut quartz has a 

temperature coefficient of approximately zero [1], the properties of the soft polymer 

coatings are affected considerably by the temperature. Section 4.3 shows the variation 

in quartz crystals and how they are selected for coating. The results obtained from the 

crystal coating process are given in section 4.4 and comparisons between experimental 

and simulated calculations are given. The latter sections give details taken from AFM 

and ellipsometry measurements. Film properties such as thickness, morphology and 

homogeneity are characterised.
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4.1 Experimental setup validation and performance

The experimental test setups and techniques described in Chapter 3 have been evaluated 

and compared in performance; the properties of sensitivity, stability and reproducibility 

were selected as measurement criteria.

4.1.1 Frequency based measurements

The simplest and most common of all the QCM techniques is the oscillator circuit. The 

setup described in Chapter 3.4.1 was tested with an uncoated quartz crystal over a 

period of 1 hour. The measured resonant frequency of the crystal is shown in figure 4.1. 

Before the hour measurement was taken the oscillator was left on for an additional hour 

period to allow full ‘warm up’. The temperature was checked periodically and remained 

constant at 23 °C throughout the experiment. The sampling frequency was set to 

approximately 0.5 seconds. Although a faster sampling period is easily achieved, the 

selected value was established as a suitable period to obtain accurate transient 

information without creating colossal amounts of data. From the obtained measurements 

the mean frequency and the standard deviation are calculated, (see table 4.1). The Limit 

of Detection (LOD) defined as concentration which produces a response (2 x standard 

deviation) of the baseline noise [2], is also calculated. It must however be noted that the 

stability observed does not remain constant over longer periods, with spikes of 

approximately 5-10Hz being observed periodically and a drift of 5-20Hz over a 24 hour 

period. Within the typical experiment time used in this work the results given in table

4.1 are however applicable.
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Figure 4.1. Direct frequency measurement of a coated QCM using oscillator circuits

described in Chapter 3.3.1.

Mean Standard Deviation (SD) 2*SD
Frequency (Hz) 18420992.85 0.2922 0.5844

Table 4.1 Statistics obtained from frequency based measurements.

4.1.2 Impedance analysis

The impedance analysis setup described in Chapter 3.3.3 was tested using the following 

procedure. 18 points were taken during each sweep centred on the frequency of the 

maximum admittance as shown in figure 4.2a. Over a one hour period 156 spectra were 

measured equating to approximately 23.1 seconds per sweep. The spectra were fitted to 

the BVD equivalent circuit as described in Chapter 3, and parameters /  and R were 

extracted. Figure 4.2 a&b shows the admittance spectra magnitude and phase
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respectively over a one hour period, for clarity only every tenth spectra is shown. The 

stability and reproducibility of the technique is clear with virtually indistinguishable 

changes in spectra over the period of one hour. The impedance measurement technique 

inherently has several advantages over oscillator circuits; primarily all oscillators suffer 

from warm up time, drift, and they are often affected by temperature.

Figure 4.3 shows the extracted values of/ and R over a one hour period, the statistical 

data from the measurements are given in table 4.2. With the additional fitting described 

in chapter 3.3.5 the extraction o f / is  considerably improved above the value of ±50Hz 

achieved with the 100Hz sampling frequency. Fitting the resonance peak to the 

polynomial has been justified from the measurement of the admittance spectra at an 

increased sampling frequency around the resonance peak. Figure 4.4 shows the 

admittance spectra sampled at 4Hz and 100Hz intervals. The 4Hz data have been fitted 

to a 4th order polynomial with excellent agreement, validating the polynomial fitting 

procedure described in Chapter 3.3.5, which was used to improve the measurement 

accuracy.

Mean Standard Deviation (SD) LOD = 2 x SD
Frequency (Hz) 18455593.03 1.5903 3.1806
Resistance (Q) 8.7350 0.0248 0.0497

Table 4.2. Statistics of the extracted/ and R parameters using the impedance analysis 

technique.
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Figures 4.2 a&b. Impedance spectra measured over a 1 hour period with every tenth

measured spectra shown.
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Figure 4.3 a&b. Extracted values o f/and  R over a 1 hour period, obtained from 

fitting the admittance spectra to the BVD equivalent circuit model.
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Figure 4.4. Peak of measured impedance sampled at 4Hz and 100Hz. A polynomial fit 

has been applied to the 4Hz spectra and shows excellent agreement with the 

experimental data points. The spectra highlights the need for either a high sampling 

frequency and or additional data fitting as applied in this case.

Repeatability of the experimental measurements is also critical, the impedance analysis 

technique is particularly sensitive to changes in signal path between the crystal and 

impedance analyser. An accurate compensation or null facility described in chapter 

3.3.4 is required to cancel the loading effects caused by the connecting leads and the 

crystal test fixture. Figure 4.5a&b shows the admittance spectra of the same crystal 

measured on four separate occasions, between each of the measurements the crystal was 

removed from the test fixture. With careful experimental design and using the 

compensation procedures, almost identical results can be consistently reproduced within
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the experimental error in either the frequency shift or the measured dissipation of the 

QCM.

QCM test
QCM removed and replaced into fixture (1) 
QCM removed and replaced into fixture (2) 
QCM removed and replaced into fixture (3)

0.01 —
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CD
1E -4 -
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1 0 0 -

80-
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O)<DQ
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- 1 0 0 -

18440000 18460000 18480000 18500000 18520000 18540000
Frequency (Hz)

Figure 4.5 a&b. QCM admittance magnitude and phase respectively measured on four 

separate occasions used to validate the repeatability of the measurement procedure.
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4.1.3 QCMD

Figure 4.6 shows a typical response obtained using the QCMD technique. The 

measured dissipation factor can be related to the resistance parameter of the BVD 

equivalent circuit model by equation (3.7). The accuracy and stability of the QCMD 

measurements are comparable to those achieved using the impedance analysis method. 

Although a slightly higher standard deviation is obtained, the speed of the technique 

allows larger number of measurements to be taken. After averaging and filtering of the 

obtained data, almost identical results to the impedance analysis method in terms of 

accuracy and stability are achieved.
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4.0E-07 -
*Af

-  2000
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-  1000
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0 100 200 300 400 500
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Figure 4.6. Kinetic measurement of Af and AD obtained using the QCMD method.
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4.2 Temperature measurements

The temperature stability of uncoated quartz crystals was tested and found to be in the 

range of ±lHz/°C, which is negligible in comparison to the frequency changes 

measured in our experiments. The effect of the moisture on QCM coated with LB 

C[4]RA films was studied earlier [3]. The effect of injection of saturated water vapours 

was unnoticeable because of extremely high hydrophobicity of calixarene coating. That 

is why in the present study no special measures were taken to control the humidity 

during measurements.

In contrast the effect of temperature on the coated crystal was found to be considerable. 

Figure 4.7 shows the change in the admittance spectra of a QCM coated with 

calix[4]resorcinarene (C 1 5H 3 1 ) at several temperatures between 25 to 85°C. With 

increasing temperature the frequency increases, at 85°C the frequency is over 1100Hz 

above the initial measured value at 25°C. This indicates a significant loss in the film 

mass. A value of -1.4651pg/cm is obtained, using the Sauerbrey relationship given by 

equation (2.5) in Chapter 2.

A decrease in the resonance peak is also observed with a total resistance change of 

+2.54Q over the measured temperature range. This indicates softening of the film. 

Extracted parameters/ and R are shown in figure 4.8, a distinct correlation between the 

two parameters is clearly observed. A softening of the film and decrease in the mass is 

however unusual. The decrease in the mass may be attributed to the evaporation of 

residual solvent/water from within the C[4]RA matrix, such phenomena is however 

normally associated with a decrease in resistance (stiffening of the film).

104



The observed behaviour can be however understood from the fact that the solvent 

ethanol is used for the preparation of coating, the ethanol interacts mostly with the OH 

groups of C[4]RA molecules. As a result the main structure unit e.g. a dimer of C[4]RA 

molecules is broken by the incorporation of solvent molecules (see the schematic in 

figure 4.9a). After evaporation of ethanol molecules at elevated temperatures the dimer 

structure is restored (see figure 4.9b) and the films become much softer due to the 

formation of hydrogen bonding between C[4]RA molecules.
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7 5 °CCO<5 8 5 °C
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18365000 18366000 18367000 18368000 18369000 18370000

f (Hz)

Figure 4.7. Measured Admittance spectra of a C[4]RA coated QCM at temperature

ranging from 25°C to 85°C.
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Figure 4.8. Extracted values/ (Hz) and R (Q ) of a C[4]RA coated QCM at temperature

ranging from 25°C to 85°C.
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(a) (b)

Figure 4.9. Schematic of the C[4]RA dimer structure a) Before and b) after the 

evaporation of ethanol molecules, caused by elevated temperatures.
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4.3 Crystal properties and selection

Before the application of a sorbent coating all the crystals were measured using the 

impedance analysis technique. Each spectrum was fitted to the BVD equivalent circuit 

and the values of R, L, C and Cp were obtained. Figure 4.10 clearly shows the variation 

between admittance spectra of 18 uncoated crystals. The variation although large is 

within the stated manufactures tolerance. To compensate for this most of the results in 

this thesis are therefore given as difference values i.e. A f  or AR. This allows more 

genuine comparison between crystals. From the above test of 18 crystals, the maximum 

difference in frequency and resistance are 73000Hz and 27.1 IQ respectively. To 

compensate for the large variation, crystals were also grouped into batches of three, four 

or five with similar initial resonant frequencies. Table 5.3 shows a summary of the 

results obtained from this test.

f  (Hz) R(Q)

Mean 18453000.00 16.99
Max 18494000.00 27.11
Min 18421000.00 8.30

Std Deviation 23874.67 6.29
Max - Min 73000.00 18.81

Table 4.3. Summary of the results from the measurement and fitting of the 18 uncoated

QCM spectra.
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Figure 4.10. Admittance magnitude of 18 uncoated QCM.
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4.4 Crystal Coating

To produce a suitably thick film a combination of the spin and LB coating processes 

described in Chapter 3 was used. Firstly a relatively thin film was applied using spin 

coating to provide a thin homogenous layer; secondly the LB technique was used to 

obtain a coating of suitable thickness. Figure 4.11 shows the resonant frequencies of 

four crystals coated in an identical process, the results are also summarised in table 4.4. 

The spin coating and LB techniques produce approximately the same frequency shifts 

of about 25 kHz between each stage.

The spin coating process produces relatively consistent results in terms of a frequency 

shift. Typically results as shown in this case show the frequency shift for each crystal 

fall within ±5% of the mean frequency shift. The LB process gave slightly higher 

deviation of frequency of approximately ±10% of the mean frequency. This may be 

caused by the inconsistent and non ideal transfer ratio of films produced by LB 

deposition. The deposited film thickness can be estimated from the mass load calculated 

from the Sauerbrey equation and equation (4.1) [4]. Assuming a density of 0.63 g/cm 

taken from literature [5] a film thickness of approximately 400nm is obtained. The

change in the resistance parameter is however not as consistent, with AR ranging from

2.73 -  4.67Q after LB deposition as shown in figure 4.12.

/  / a  nhfm = -------- (4.1)
P f

where p f  is the density of the film material in g/cm3, and Am is the change in mass per 

unit area g/cm2 calculated from equation 2.5.
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After preliminary tests it was found that the spin coating procedure could be optimised 

to produce films of a comparable thickness to the LB technique. This was achieved by 

increasing the concentration of the dissolved calixarene and lowering the spin speed. 

Typical frequency shifts using the higher concentration spin coating solution are 35-45 

kHz.

f (Hz)

Figure 4.11. Resonant frequencies of four QCM coated with an identical C[4]RA

compound.

f (Hz)
QCM Uncoated spin LB Af (spin) Af (LB)

1 18425921 18401367 18377677.5 24554 48243.5
2 18425842 18403524 18375282.5 22318 50559.5
3 18425948 18401612 18367970 24336 57978
4 18425851 18402492.5 18369427.5 23358.5 56423.5

R(£»
QCM Uncoated spin LB AR (spin) AR (LB)

1 16.13 18.79 20.8 2.66 4.67
2 12.41 16.23 16.39 3.82 3.98
3 9.18 9.44 12.87 0.26 3.69
4 10.43 11.23 13.16 0.8 2.73

Table 4.4. Resonant frequencies and resistances of four QCM coated with an identical

C[4]RA compound .

□ Uncoated 
a  Spin
□  LB

18410000

18390000

18370000

18350000 L i
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■ LB Coated

1 2  3 4
QCM

Figure 4.12. Change in resistance of four QCM coated with an identical C[4]RA

compound.

The differences in resistance between the coated QCM (see figure 4.12) can be 

attributed to variation in several film parameters including surface roughness, 

homogeneity, film coverage and thickness.

Using the approximations proposed by Lucklum (equations (2.49a) and (2.49b)) the 

effect of the applied viscoelastic film on both the parameters /  and R can be calculated. 

The deviation from a pure mass load has also been calculated and showed as an 

apparent ‘extra mass’ (see figure 4.13). The frequency difference between a rigid and 

viscoelastic film being approximately 250Hz for a thickness of 350nm equates to a 

perceived additional mass of 327 ng. This value is however relatively small (less than 

1% of the total calculated mass). The deviation in the frequency shift between rigid and 

viscoelastic films is however a function of the film thickness, and it becomes significant
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for thicker films as shown in figure 4.15. A film of lOOOnm would produce an 

additional frequency shift of 5150Hz in comparison to a purely rigid film. Using a film 

density of 650 kg/m3 [6 ], shear modulus of G’ = 0.5xlO8 Pa and G” =2><106 Pa and a 

resonant frequency of 18.4MHz. The shear moduli of the film were estimated using the 

fast three step method proposed by Lucklum et al [7]. Step 1: The acoustic load ZL was 

calculated from the measured electrical admittance at the series resonant frequency 

using a rearrangement of equation (2.25), and is given in equation (4.2).

(Y - jw C P) ~ - 2 Y t m |
------------- ^ ~ Z ------1  (4-2)
Y - (Y - jc o C p)--^ c o ta

K

Step 2: A series of approximations are used for the tan function in equation (4.3), these 

cover a range of acoustic phase shift cp between 0 and 7r (see appendix [F]). In this step 

a set of shear moduli were calculated, although not all values of G’ and G” can be 

simultaneously valid. The calculated shear moduli are then substituted back into 

equation (4.3) and the acoustic load ZL recalculated. The calculated values of Z L are 

compared with the measured value of ZL and the best approximation of shear moduli 

was obtained. A MATLAB 6.0 program was written to perform the above calculations 

and can be found in appendix [E]. It must be noted this only gives very approximate 

values of film modulus and further iterative fitting is required to find precise values of 

shear modulus.

= j ( p f Gf y 2 tan '*]VCO (4.3) rpt o f equation (2.44)
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Figure 4.13 A f  for a rigid and viscoelastic film for increasing film thickness calculated

using equation (2.49a).
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Figure 4.14. Magnified view of figure 4.13 shows A f  at values of thickness around 

anticipated film thickness of the films used.
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Figure 4.15. Calculated difference in frequency shift between a rigid and viscoelastic

film.

The calculated resistance increase caused by the viscoelastic film is shown in figure 

4.16. Again the calculated results are in acceptable agreement with the experimental 

data in Table 4.4. With a film thickness of 350nm a resistance change of approximately 

6 Q. The resistance increase therefore indicates the film must be viscoelastic in nature, a 

purely rigid film would show no increase in resistance (AR=0). Similarly to the 

frequency AR is proportional to the film thickness and quickly starts to rise as the film 

thickness increases; a lOOOnm film giving a AR of above 50Q as shown in figure 4.16 

(inset). The increase in resistance is a resultant of the loss modulus G” which is 

introduced with a viscoelastic film.
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Figure 4.16. Change in resistance of viscoelastic film for increasing film thickness. 

Inset shows increased film thickness to 1/zm.

4.5 Film properties/structure

The properties of the coating film such as uniformity, roughness and.homogeneity also 

play an important part in the behaviour of a QCM. Although in depth investigation of 

such effects is out of the scope of this thesis, both AFM and ellipsometry have been 

used to determine the film thickness and give fundamental information on the 

morphology, surface roughness and homogeneity of C[4]RA films used.

4.5.1 Atomic Force Microscopy measurements

The samples were prepared on silicon wafers with the C[4]RA coatings listed in table

4.5. AFM tapping mode was used due to the soft composition of the organic samples. 

Figures 4.17 through 4.21 show selected images of the C[4]RA films. Most of the films
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studied are similar in structure and surface roughness, with typical values of the 

maximum height variation in the range of 3-4nm. The calixarenes with the smallest of 

the hydrocarbon tails (CH3) did however produced unexplained holes in the film (figure 

4.20), and hence gave the largest standard deviation in the Z values.

C[4]RA (RMS Rq) nm (Ra) nm
C17H35 0.563 0.448
C15H31 0.37 0.29
C5H11 0.554 0.407
C1H3 0.891 0.403

Table 4.5. Surface roughness of C[4]RA films from the AFM study, 

where the (RMS Rq) is the standard deviation of Z values and (Ra) is the Mean 

roughness calculated from the average of surface height deviations.

It is well known that a homogeneous structure of C[4]RA films is due to the interaction 

of hydrocarbon chains. Obviously the shortest CH3 substitution groups do not provide 

such interaction and the films are less homogeneous as a result.
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Figure 4.17. AFM image o f C[4]RA C 1 7 H 3 5  compound. 

Flatten

Figure 4.18. AFM image o f C[4]RA C 15H31 compound.
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Figure 4.19. Pseudo 3D AFM image o f C[4]RA C 15H31 compound.
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Figure 4.20. AFM image o f C[4]RA C 1H3 compound.
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A crude but efficient AFM check of film thickness is carried out by simply scratching 

the surface of the sample with a fine tip. This leaves a groove on the surface of the film. 

The groove is clearly visible on the AFM image in figure 4.21 and shows large walls on 

either side where the coating material has been pushed aside. The film thickness has 

been estimated from the profile shown in figure 4.22 to be in the range of 300nm. This 

shows good correlation with results obtained from ellipsometry measurements.
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Figure 4.21. Pseudo 3D image of C15H35 compound with surface scratch.
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Figure 4.22. Screen capture of the AFM software showing the profile of the groove 

along the line drawn in the bottom left comer of the image.
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4.5.2 Ellipsometry measurements

The same samples tested using AFM were also measured using ellipsometry to obtain 

values of film thickness. The experimental values of T  and A were first obtained for 

each of the C[4]RA films. A suitable optical model was then constructed which 

describes the sample structure as shown in figure 4.23. The C[4]RA film are represented 

by a cauchy layer. The dispersion of refractive index is given by equation (4.1). 

Theoretical data were then generated from the optical model. A least squares fit was 

then performed minimizing the error between experimental and the generated data 

adjusting the relevant parameters (film thickness and or optical constants), until a ‘best 

fit’ is achieved. The final parameters are then obtained from the best fit parameters. The 

values for parameters A, B, and C in equation (4.4) are given in table 4.6. The 

extinction coefficient k was fixed at zero value since the films are transparent in the 

visible range. All data fitting was performed using the WVASE32® software from J.A. 

Woollam Co., Inc. The values of film thickness were found to be in the range 300- 

350nm, the two C[4]RA C 15 H 3 5  compounds giving thicknesses of approximately 

320nm which is in reasonable agreement with values estimated from QCM and AFM 

techniques.

n(X) = A + J -  + | -  (4.4)

A B C
1.3113 0.012009 -0.000047928

Table 4.6. Parameters of the dispersion model.
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Figure 4.23. Optical model of the sample structure used in the ellipsometry fitting.

4.6 Conclusion

The QCM experimental techniques detailed in chapter 3 have been tested and verified. 

Limits of detection and repeatability for the three measurement techniques (Oscillator 

circuit, QCMD and impedance analysis) have been established. The additional 

polynomial fit used to interpolate additional data points has been shown to successfully 

increase the accuracy of the impedance analysis technique.

A large variation between uncoated QCM must however be noted and all further 

experiments were therefore undertaken using batches of similarly specified crystals. The 

results from the crystal coating process also show some variability. The LB technique 

gave the most consistent results, however spin coating was preferred based on the 

significantly decreased time scale required to deposit the sensing membranes. The effect 

of the deposited films has been estimated using the equations proposed by Lucklem et 

al, and approximations for the shear parameters of the film have been obtained using the 

fast three step method [6,7]. The calculated deviation from the Sauerbrey model caused 

by the viscoelastic film is relatively small, resulting in an additional frequency shift of 

250Hz.
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The deposited films have been probed using the AFM technique and found to be 

relatively flat and consistent. The coating thickness has also been obtained and 

estimated in the range of 300nm. This is in good agreement with the results from 

ellipsometry measurements and the calculated thickness based on the Sauerbrey 

equation.
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Chapter 5
Results and discussion -  Vapour exposure

5.0 Introduction

This chapter reports the results of from QCM measurements taken during vapour 

exposure. The three experimental techniques: (i) oscillator measurements, (ii) 

impedance analysis and (iii) QCMD have been used in conjunction with a series of 

calixarene based sensing membranes in order to detect and discriminate between a range 

of organic solvents. The sensor array technique has also been implemented with the use 

of artificial neural networks to perform the pattern recognition of solvent vapours and 

hence their classification. The measurements of multiple parameters {Af and AR) from a 

single QCM, obtained with either impedance analysis or QCMD methods showed a 

novel approach method of solvent classification through unique changes in film 

parameters induced by the contacting solvents.
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5.1 Vapour exposure -  Frequency based measurements

The frequency based array measurements were performed using four QCM coated with 

different C[4]RA compounds and an uncoated reference QCM. Although several more 

variants of the C[4]RA compounds were available, only four compounds were chosen. 

Preliminary tests showed that the C[4]RA C17 H35 compound produced results identical 

to the C15 H31 compound. The C[4]RA compounds with small hydrocarbon chains 

(C1H3 and C3H5) proved to be unusable giving erratic oscillator frequency shifts during 

exposure, and were often highly unstable producing large amounts of baseline noise 

during measurements (see page 165 for details).

Figure 5.1 shows a typical kinetic frequency response of four QCM exposed to a hexane 

vapour. Two crystals were coated with identical C[4]RA C15H31 films and the other two 

with C[4]RA C11H23 and C[4]RA C5H 11 films. As expected the. response time is 

relatively fast in the order of a few seconds. The |Af| value for each concentration was 

estimated from the mean value of response at saturation (indicated in figure 5.1). The 

concentration ranges for the solvents were determined empirically by number of 

preliminary tests using each target vapour. The final concentration ranges were selected 

such that each solvent would produce values of |Af] spanning a similar frequency range. 

The obtained values for solvent vapour concentrations differ considerably when 

measured in absolute units of ppm, however when calculated as a function of their 

relative saturated vapour pressures (p/ps), their correlation becomes apparent.
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Figure 5.1. Kinetic frequency response of four QCM exposed to 8104ppm of hexane

vapour.

The accuracy in the vapour concentration is principally related to the precision of the 

liquid solvent measured to be injected into the cell. To produce the required 

concentrations two syringes were used, 1 /d and 10 /d depending on the concentration 

required. Where high concentrations up to 15x 10 ppm were necessary, as in the case of 

hexane, the 10 /d syringe would be used. In the case of toluene a maximum 

concentration of approximately 3.5x103 ppm is required, and hence a 1 /d syringe is 

suitable. The accuracies were estimated as 0.01 ul for the 1 /d syringe and 0.1 /d for the 

10 /d syringe. The corresponding are experimental errors, 281 ppm (0.00982p/ps) in 

absolute concentration for toluene and 2269ppm (0.013526 p/ps) for hexane using the 1 

/d and 10 /d syringes respectively. It is assumed that the gas-cell is air-tight and no 

vapour leakage occurred during relatively short time (a few minutes) of vapour 

exposure.

Figure 5.2a shows the sensor response of a C[4]RA C5H11 coated QCM to four organic 

solvent vapours. The order of sensitivity corresponds to the relative vapour pressure of
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the analytes at a given temperature. Hexane having a saturated vapour pressure (SVP) of 

17kPa, exhibiting the lowest sensitivity, while the highest sensitivity is observed for m- 

xylene with a SVP of 0.8kPa (see table 5.1).. The responses in the given concentration 

range appear to be linear, so the sensitivity levels can be estimated from the gradient 

values of the respective curves. Table 5.2 gives a summary of the sensitivity levels and 

limits of detection observed for the C[4]RA C5H I 11 membrane. The latter parameter 

was calculated from the concentration needed to produce a frequency shift of twice the 

baseline noise. The values of detection limit quoted are however substantially lower 

than levels at which vapour discrimination can be achieved. Table 5.3 gives the Lower 

Explosion Limit (LEL) and Upper Explosion Limit (UEL) in % for a range of organic 

solvents. Figure 5.2b shows the slope of the curves from figure 5.2a plotted against the 

boiling point of each respective vapour. This Confirms the relationship of sensitivity 

against the and boiling point which is directly related to the saturated vapour pressure of 

the vapour (higher vapour pressure = lower boiling point).
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Figure 5.2a. Frequency shift (Hz) against concentration (ppm) for a C[4]RA C5H I 11 

membrane exposed to a range of organic solvents.
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Figure 5.2b. Gradient of curves from figure 5.2a plotted against boiling point of the
respective vapour.

Compound
Molecular

weight
Vapour pressure 

(kPa)
Benzene 78.11 10
Hexane 86.2 17
Toluene 92.1 2.9
M xylene 106.2 0.8
Acetone 58.1 24

Cyclohexane 84.16 12.7

Table 5.1. Molecular weight and vapour pressures the target organic solvent.

Vapour
Sensitivity

Hz/ppm
Sensitivity

ppm/Hz
2*SD

Baseline
Detection limit 

(ppm)
Hexane 0.0272 36.7647 0.5844 21.4864

Benzene 0.063 15.8730 0.5844 9.2767
Toluene 0.2448 4.0850 0.5844 2.3873
M Xylene 0.5871 1.7033 0.5844 0.9954

Table 5.2. Sensitivity levels and detection limits of C[4]RA C5H 11 membrane calculated

from linear fitting of the experimental data.

M-Xylene
♦

Toluene
♦

Benzene 
Hexane ♦
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Compound LEL-HEL
Hexane 1.2% -  7.7%
Benzene 1 . 3 % - 8 %
Toluene 1 % - 7%
xylene 1.1 -7 %
cyclohexane 1.3% -8.4%
m xylene 1.1 % - 7 %

Table 5.3. Lower and Higher explosion limits for a selected set of volatile organic 

solvents as a volume percentage of air.

Reproducibility between coated crystals is acceptable as shown in figure 5.3a. The 

graph shows two identically coated QCM (a&b) exposed to hexane and toluene vapours 

within the same chamber. In terms of absolute frequency shifts, the two QCM produce 

distinguishably different responses, the relative frequency changes are however almost 

identical for both vapours. This is demonstrated by plotting the data normalised between 

0 and 1 with respect to the largest shift frequency produced by each QCM and is shown 

in figure 5.3b. The normalised frequency shifts for each coating when exposed to 

hexane to toluene vapours are nearly undistinguishable.
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: 5.3 a. Frequency response of two identically coated QCM exposed to several 
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Figure 5.3b. Normalised Frequency response of two identically coated QCM (a&b) 

exposed to several concentrations of hexane and toluene vapours.
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The response patterns for all C[4]RA compounds tested are show the same order of 

sensitivity based on the levels of SVP for the respective solvent vapours as described 

previously. It must be however noted that the frequency shifts are discemibly different 

for each compound, making the C[4]RA coatings tested suitable for an array based 

sensor approach. Figure 5.4 shows a three dimensional plot of absolute frequency shifts 

of three QCM exposed to several concentrations of hexane and m-xylene vapours (only 

two vapours are shown for clarity). The pseudo 3D plot response pattern of the sensors 

shows clear separation between the two solvents. With such a limited amount of data (2 

vapours 3 sensors), analysis is relatively straightforward; however increasing the array 

size and the number of test vapours quickly makes such simple analysis impossible and 

thus requires additional more sophisticated techniques.
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Figure 5.4. Sensor responses of three QCM from within an array to a sequence of 

increasing concentrations of hexane and m-xylene vapours.
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5.2 Analysis of the QCM array using Artificial Neural 

Network (ANN)

With the experimental data clearly showing distinct sensor patterns (see figure 5.4) 

additional analysis in order to classify and quantify the analytes is possible. Several 

techniques are available such as Principle Component Analysis (PCA), Partial Least 

Squares (PLS), fuzzy logic and Artificial Neural Networks to name a few.

The ANN has been used extensively for the classification of data produced from 

electronic noses [1-13]. Applications vary widely ranging from the identification of 

paper quality [5], tea quality prediction [2], through to the detection of hazardous 

organic vapours [4] as in this case. The following section gives an overview of the 

ANN, the description and format of the equations are taken from Gardner et al [14]. The 

ANN consists of an interconnected group of prceessing elements called neurons. The 

neurons are connected to each other in a specfic way known as the network architecture, 

with the strength of the interconnections known as the synaptic weights. The input at 

each neuron (a) is the sum of the input values (xt) multiplied by its asscociated weight

M -

al (5.1)
1=1

where, h signifies a hidden layer, 1 refers the first of the hidden layers, Who is the neuron 

bias. This value is then transfered to an activation function (F) (usually non linear) 

which produces the final neuron output (z).

z i ,= a \ F  (5.2)

The most commonly used ANN for analysis of electronic nose data is the Multilayer

Perceptron (MLP). The MLP consists of three layers: input, hidden layer and output.
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The input layer represents the input from each of the (n) sensor inputs. A fully 

connected MLP neural network is shown schematically in figure

5.5.
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Figure 5.5. A typical multilayer perceptron arrangement consisting of three layers, i is

the input layer, h the hidden layer and k the output layer.

The activation functions used in this work was the tan sigmoid and log sigmoid. The

final neuron output for the log sigmoid function is given by equation (5.3).
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{ /  (l + exp“°*)J
(5.3)

The same calculation is performed by each neuron in the hidden layer, the output value 

is then fed forward into the next layer of the network. The value into neuron k in the 

output layer is given by equation (5.4), where H  is the total number of neurons in the 

hidden layer.

where m is the final neuron in the output layer.

The network is trained by comparing the values of the output neurones ojt with the target 

outputs (tj) for the analyte data set (the difference vectcor). The difference vector value 

is then used to modify the weights which are then fed back into into the network (often 

referred to as backpropagation). The training process iteratively adjusts the weights of 

the network to minimize the error between the network outputs and the target values 

until convergance on a solution, usually a specified minimum error is achieved.

There are many variations of the backpropagation algorithm. The simplest 

implementation of backpropagation learning updates the network weights and biases in 

the direction in which the performance function decreases most [15].

The performance of the neural network is measured through the the total sum of the 

square errors zTSS given by equation (5.5).

H

a k = E ( w*i>z» - w *o) (5.4)
h= 1

The final output vector Oytand is defined as:

n

eTSS = Z (3-5)
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where 8 is the difference vector calculated from equation (5.6).

Sjt ={ t j -ok){\-ok) (5.6)

For this application the Neural Network was implemented using MATLAB software 

(version 6.0, Mathsworks, Natick, MA) and using the supplied functions and algorithms 

within the MATLAB Neural networking Toolobox (version 4.0, Mathsworks, Natick, 

MA).

The network architecture chosen consisted of 4 inputs (one per sensor), a single hidden 

layer of 8 neurons and output layer of three neurons giving 96 weights to for the 

network to learn. The number of neurons in the hidden layer was optimized through an 

empirical process in order to find the minimum number of neurons which are still able 

to achieve the desired network performance. Prior to the training process the sensor data 

were divided into training and validation data sets. Due to the limited amount of data 

available, extra data points were interpolated using the lines of best fit from the sensor 

response graphs (see figure 5.2). In total 120 vectors were used to train the network. 

The Levenberg Marquadt back propagation algorithm was chosen for the network 

training because of its stated superior speed at achieving convergence [15]. The training 

was performed over 20000 epochs (iterations) or until the desired error performance 

goal of lx lO '10 was achieved. Figure 5.5 shows a plot of network performance against 

the number of epochs for a typical training run. The target values for the output neurons 

are binary combinations representing each of the target analytes.

The NN was trained by experimental and interpolated data results from the four 

measured QCM and five target vapours (hexane, toluene, benzene, cyclohexane and m- 

xylene).
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Figure 5.5. Total sum of the squared error output sTTS during network training. After 

17642 epochs the desired network performance has been achieved and training is 

stopped.

To evaluate the network performance the validation data set were entered into the 

network and the values at the output neurons measured. Once again due to the limited 

amounts of data additional interpolated data points were used. These were obtained 

from the lines of best fit of the original data (see figure 5.2) with added random noise 

(ranging from ± the maximum measured baseline noise). A program was written in 

MATLAB to read the data file of test input vectors, simulate the network response, and 

record the neuron output values.

At concentrations over lOOOppm over 98% of the test data was classified correctly. It is 

also evident from figure 5.4 that the separation between the vapours is proportional to 

solvent concentration. This was confirmed with the ANN results where higher
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concentrations gave rise to increased performance to almost 1 0 0 % certainty in vapour 

classification. Although in this case the QCM sensing and ANN analysis were 

performed independently, the incorporation of both functions into a single 

software/hardware package is easily achieved. The resultant sensor would allow real the 

time detection and discrimination to a range of VOC's.

5.3 Results QCM Impedance measurement

The C[4]RA C 15H31 compound was initially selected for the impedance measurements 

because of a large cavity formed by the long hydrocarbon chains . This was considered 

to be optimal for organic vapour detection and may induce specific host guest 

interactions within the membrane. Figure 5.6 shows a typical response of QCM coated 

with C[4]RA film exposed to several concentrations of toluene vapours in the range of 

0 -  2xl0 4 ppm. Both the decrease in resonant frequency and damping of the admittance 

peak are taking place on course of vapour adsorption. The second effect is believed to 

be caused by capillary condensation of hexane vapours in the C[4]RA film bulk [16]. A 

purely rigid film results in only a shift of the admittance curve to a lower frequency, 

with no changes in the peak amplitude and shape. The change in admittance the 

magnitude is related directly to the resistance (Ri) of the equivalent circuit model, and 

can be easily evaluated by fitting the experimental admittance spectra to the BVD 

equivalent circuit, as described in Chapter 3.

139



w
CD

4.00x10 -

3.50x10 -

3.00x10“ -

2.50x10-

2.00x10 -

Increasing vapour concentration

A ■

r \  7  V  '>

/  ;  \ f \  J

X  vr  /• \  //  w J. A \  V
\  / \

I---------- 1 I---------- 1 I----- -— I----------1-----------1-------
18344000 18345000 18346000 18347000 18348000

f (Hz)

Figure 5.6. Typical set of admittance spectra measured at different concentrations of

toluene vapours.

The equivalent circuit model parameters R, L, C and Cp were first fitted to the 

admittance spectra of uncoated crystals. This allowed us to obtain the values for the 

non-variable parameters C (the mechanical elasticity of the quartz) and Cp (the 

capacitance of the quartz between the electrodes and the parasitic capacitance of the 

crystal fixture). Cp remaining constant in gas phase applications. Table 5.1 shows 

typical values of the equivalent circuit parameters for uncoated crystals. On exposure to 

the target analytes, parameters C and Cp were kept constant, while R\ and Li were 

obtained from the difference between uncoated values of R and L and measured values 

obtained during vapour exposure.
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Figure 5.7a shows changes in the resonant frequency against concentration for both 

hexane and toluene. As expected, the resonant frequency decreased in an approximately 

linear fashion with increasing analyte concentration. When the vapour concentration is 

given in absolute units of ppm (figure 5.7a), the two types of solvent vapours yield 

different frequency shift according to their relative vapour pressures. From this graph 

alone it is not possible to solve a reverse problem of evaluation of the vapour 

concentration from the frequency shift because of a multiple solution. Moreover, these 

vapours have become completely indistinguishable, if the concentration is presented in 

the units of a relative vapour pressure in respect to the saturated vapour pressure 

( p /  p s) at a given temperature, and two dependencies fall almost into the same line (see

figure 5.7b). The latter fact is in a good agreement with the results of our previous study 

of adsorption of organic vapours using QCM and Surface Plasmon Resonance (SPR) 

techniques [16].
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Figure 5.7. The dependence of A f  against vapour concentration measured in absolute 

ppm units (a) and relative vapour pressure units (p/ps) (b).
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The changes in resistance against the concentration/relative vapour pressure for the two 

selected analytes are shown in figure 5.8. Firstly, the curves for hexane and toluene 

curves, presented in both ppm (figure. 5.8a) and p/ps (figure. 5.8b) units are well 

distinguished. The responses appear exponential which is confirmed from plotting AR 

on a logarithmic scale (inset figure. 5.8a) and (inset figure. 5.8b). The increase in the 

resistance (Ri) value, which represents viscoelastic film properties, is believed to be 

associated with the film softening. Such behaviour is expected from the mechanism of 

capillary condensation of organic vapours of high concentrations in the range of a few 

percent of saturated vapour pressure [16]. The two curves in figure 5.8b are very close 

at low pressures, but separated at high pressures. This trend is clearly seen when the 

results presented in semi-logarithmic scale on the inset to figure 5.8b. The pressure 

value of about 0 . 1  p/ps, where the two curves met, corresponds to the characteristic 

pressure ( p cc) for capillary condensation governed by the Kelvin’s formula 5.7 [17]:

'  2 Vy
Pee = P, eXP Cos 6 (5.7)

v rRT

where V and y  are respectively the molar volume and surface tension of liquid 

adsorbate, r is the radius of cylindrical capillary, and 6 is the wetting angle in the 

capillary. This approach was successfully implemented in [16] for nano-porous 

calixarene films, and the pore size in the range of 1 nm was estimated.
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To determine the type of solvent and its relative concentration figure 5.7a and 5.8a can 

be cross referenced and presented as a plot of Af  (change in resonant frequency) 

against AR (change in resistance). This has been done in figure 5.9, which gives an 

unambiguous indication that each analyte tested affects the viscoelasticity of C[4]RA 

film in a unique way. It also shows that damping effects produced each vapour are not 

directly proportional to the change in resonant frequency and have been estimated to 

follow a exponential trend as shown in figure 5.9.
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Figure 5.9. The dependence of zIR against A f  for hexane and toluene vapours.

The experimental error of the admittance analysis is approximately ±5Hz for the 

frequency measurements and within ±0.1 Q for the resistance. Figure 5.10(a) and (b) 

shows typical kinetics of changes in A f  and AR respectively, extracted by fitting of 

admittance spectra measurements, as a response to exposure to hexane vapour of
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different concentration. The time scale here is given in arbitrary units, which is equal to 

about 20 sec and determined by the duration of admittance spectra measurements. The 

response is fast and reproducible, and full recovery was observed after flushing the gas 

cell with fresh air, the facts typically observed for adsorption of organic vapours of high 

concentration in calixarene films [18,19]. The slightly longer time of response of about 

12 a.u.(240 sec) compared to recovery of 4 a.u. ( 80 sec) is most likely caused by the 

extra time required for evaporation of injected liquid solvent and vapour diffusion 

inside the gas-cell.

Also the two stage impedance measurements procedure seems to be optimal in a sense 

of a number of experimental spectra points measured and therefore yields reasonable 

accuracy in evaluation of A f and AR and at the same time allows in-situ tests of vapour 

exposure to be performed.
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Figure 5.10. Typical time dependence of the resonance frequency (a) and the resistance 

R (b) during a sequence of exposures to hexane vapours of different concentrations and 

intermediate flushing with air.
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The effect of analyte adsorption into a viscoelastic film has been predicted by Lucklum 

and coworkers [20]. The values A f  and ARV represent the frequency shift and resistance 

change caused by sorption of a small amount of analyte into the viscoelastic film and 

are given by equations 5.8 and 5.9 respectively.

4 / ,= c M J l  + - ^ M 2) (5.8)
I  P\G\  )

ARV oc M v
( G" ^ 

1 h— ——i-M 2 

P | G | 2 ,
(5.9)

where Mv is a further increase in mass factor caused by analyte adsorption and relates 

directly to the Sauerbrey relationship as described in section 2.42.

With no change in film parameters (G’ or G’ ’) a mass increase caused by any analyte 

would give identical values of AR for the observed changes in Af. It is therefore 

believed that the sorption of hexane and toluene vapours showing unique values of

^ / ^ f  indicates changes in viscosity (G’ & G” ) are unique to either vapour. The above

phenomenon is not necessarily observed in all membranes. Figure 5.11 shows the 

y / f c f  sensor response of a polyurethane based polymer with calix[4]arene unit

incorporated in the main chain (PU-C[4]A) exposed to hexane, toluene and benzene 

vapours. All three vapours fall into the same line, indicating no unique change in shear 

moduli (G’ or G” ). It is also worth noting a large variation in sensitivity levels between 

the (PU-C[4]A) and C[4]RA compounds (see figure 5.12). Although the (PU-C[4]A) 

shows no discrimination from measuring A f  and AR of a single sensor, the difference in 

vapour sensitivity compared to the C[4]RA films makes its suitable for a QCM array.
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The detection limits using the impedance analysis technique are summarised in table 5.4 

based on the extracted frequency parameter. The values were established from linear fits
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of the experimental data as shown in figure 5.7a. The detection limits for hexane and 

toluene vapours are 120.5ppm and 22ppm, respectively, making the sensitivity to 

toluene (in absolute units of ppm) 5.5 times greater than that of hexane.

Sensitivity
Hz/ppm

Sensitivity
ppm/Hz 2xSD LOD

Hexane 0.0264 37.8787 3.1806 120.4765
Toluene 0.1447 6.9109 3.1806 21.9805

Table 5.4. Sensitivity levels and detection limits of C[4]RA C 15H31 membrane 

calculated from linear fitting of the experimental data (impedance analysis technique).

The sensitivity of the resistance parameters AR (or Ri of the BVD equivalent circuit) is 

slightly more complicated as the increase is not linear with concentration and follows an 

exponential trend (figure 5.8). From fitting the experimental data, the change in AR for 

increasing concentration in ppm is given by equation (5.10).

AR = aexpb (5.10)

where values of a and b for hexane and toluene vapours are given in the table table 5.5 

below.

a b
Hexane 6.86935x10-01 3.17908Ex10-5
Toluene 6.04560x10-01 1.45644Ex10-4

Table 5.5. Coefficients of equation (5.10) from hexane and toluene vapours obtained 

from fitting of experimental data (see figure 5.8).

The limit of discrimination between the two vapours has been estimated at the point 

where the difference between the AR values for each vapour is greater than 2><SD of the 

baseline noise (see table 5.4). From equations (5.10) the value has been calculated as 

1704ppm. Although this value seems moderately high, it is still well below the LEL for
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either of the vapours, and hence suitable for the application as a pre-explosive alarm 

devices.

Hexane Toluene AR Tol-ARHex

Concentration (ppm) A R O R Q
1704 0.72517 0.77486 . 0.049683157 (>0.04966)

Table 5.3. Values of AR for hexane and toluene vapours at which discrimination is

achieved.

5.4 QCMD Results

Identical tests to those performed using impedance analysis (section 5.4) were 

completed using the QCMD method. The dissipation factor (D) measured directly with 

the experimental setup described in Chapter 3.3.2 has been converted into an equivalent 

circuit resistance using equation (3.7). The value of L obtained from previous 

impedance measurements and fitting was used. Figure 5.13a shows the frequency 

change Af (Hz) against concentration (ppm) for hexane and toluene vapours, the results 

are effectively identical to those shown previously in figure 5.7a for QCM impedance 

measurements. The good agreement between the two methods continues for both 

frequency shifts A f  and resistance changes AR as shown in figures 5.13 though 5.15,. 

Table 5.4 gives the A f  sensitivity levels for hexane and toluene using impedance 

analysis and the QCMD method based on the C[4]RA C15 H31 crystal coating. A high 

degree of correlation in sensitivity levels obtained with the two techniques is evident.

Im p ed an ce  Analysis QCMD
Sensitivity ppm/Hz Sensitivity ppm/Hz

Hexane 0.024 41.66666667 0.0264 37.87878788
Toluene 0.1437 6.958942241 0.1447 6.910850035

Table 5.4. The A f  sensitivities of hexane and toluene vapours using the Impedance

analysis and QCMD methods.
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5.5 Vapour sensing -  impedance analysis/QCMD 

measurements for an array based sensor

The following sections describe the collection of data by the impedance 

analysis/QCMD methods for the implementation within a sensor array. The advantages 

of obtaining an additional parameter AR extracted from the measurements of a QCM 

coated with a viscoelastic films have been shown in the previous sections and proposed 

by several research groups [20-29]. In this work the extraction of multiple parameters 

has shown that the detection and discrimination of contacting hexane and toluene 

vapours is possible using even a single sensor. Further tests have therefore been 

undertaken with more target analytes and several of the C[4]RA compounds used 

previously in the QCM sensor array.

Figure 5.17a shows the frequency response of the C[4]RA C1H3 (the 

calix[4]resorcinarene with smallest hydrocarbon tail length) exposed to hexane, toluene, 

benzene, m-xylene and cyclohexane vapours. Similar to previous measurements taken 

using the oscillator based QCM array, responses are erratic and very random, with no 

clear trends emerging (see figures 5.16 and 5.17). The poor response pattern is believed 

to be caused by the lack of basket shaped cavities which are created by the 

calix[4]resorcinarenes with longer hydrocarbon chain lengths.

In contrast to the frequency, the value AR appears to follow definite trends for each

vapour and even more unexpectedly, a negative AR value is obtained. Figure 5.16

shows the kinetic frequency and resistance responses during a sequence of increasing

benzene exposures. The decrease in resistance (-R) is not predicted or explained by

equations 5.8 and 5.9 for an increasing mass. The decrease in resistance suggests an

increase in film stiffness [27] which may be attributed to the incorporation of solvent
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(benzene) molecules into the film, and therefore improving the links between the 

C[4]RA baskets. The largest change in AR is produced by hexane vapours, the long 

hydrocarbon hexane molecule displaying the best interlinking properties and therefore 

gives most rigidity to the C1H3 C[4]RA structure. It must also be noted that cyclohexane 

does not follow the same pattern as hexane and is closer to the aromatic hydrocarbons 

(benzene, toluene, m-xylene).

The erratic variations in frequency may be due to statistical adsorption/desorption 

processes, however the exact cause is unknown and further investigation is required.
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Figure 5.16. Typical time dependence of the resonance frequency (f) and the resistance 

(R) during a sequence of exposures to benzene vapours of different concentration and

intermediate flushing with air.
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The next compound tested was C[4]RA C5H 1 1 . Figure 5.20a shows the frequency 

sensorgram for the C[4]RA C5H 11 compound in ppm units. The responses show a 

definite logarithmic trend, with high sensitivity levels at lower concentrations. Over the 

larger concentration range tested here the C5H 11 membrane shows decreasing sensitivity 

with increasing vapour concentration. This indicates the high sensitivity levels obtained 

previously using QCM oscillator measurements are only applicable at low organic 

vapour concentrations, when using the C[4]RA C5H 11 compound. The general trend 

appears to follow typical Langmuir (equation 5.11) or BET (at low concentration) 

adsorption isotherms, with a large number of adsorption sites at low vapour pressure 

giving the high sensitivity (see figures 5.20a and 5.20b). The Langmiur constant 

calculated from equation 5.11 for each respective vapour is given table 5.5. It is 

however believed that the adsorption process is not purely Langmuir and solvation of 

the vapour into the film may also occur. The small response displayed by m-xylene 

vapours (see figure 5.20b) has been observed previously [16] and has been attributed to 

the fact that m-xylene is a larger molecule and permeation into the membrane is 

therefore more difficult. The responses are believed not to be an effect associated with 

transient behaviour as the samples were taken when sensor(s) had fully settled (see 

figure 5.1).

bP0 = - ^ —  (5.11)
1 + bP

where 6 is the surface coverage P is the pressure and b is the equilibrium constant.

Vapour Langmuir Constant
Hexane 7.597
Toluene 6.302
Benzene 6.782
M-xylene 2.026

Cyclo hexane 4.983

Table 5.5 Fitted Langmuir constants obtained from figures 5.20.
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Figure 5.21 shows the frequency sensorgram for a further increase in hydrocarbon tail 

length C[4]RA C 11H2 3 . The response appears very similar to the C[4]RA CisHsi, 

showing an approximately linear frequency responses to increases in vapour 

concentration. It is believed that the linear responses seen for the longer chain C[4]RA 

compounds, corresponds to the early stages of a typical Langmuir or BET adsorption 

isotherm. The smaller chain length C[4]RA compounds begin to saturate much earlier 

with less adsorption capabilities, compared with the longer tail C[4]RA compounds.

The changes in the resistance parameter for both C[4]RA C5H 11 and C[4]RA C1 1H23 

parameters are however not in agreement with results obtained from C[4]RA C15H3 1 . 

At lower concentrations a negative AR is observed (figure 5.22), this decrease in 

resistance continues until a ‘negative saturation’ is reached. With further increases in 

vapour concentration the resistance shows an abrupt increase, quickly becoming 

positive again and rises sharply to above 4Q at the highest concentrations tested. The 

point of polarity change for the AR parameter when plotted against units of absolute 

ppm ( figure 5.22a) shows the familiar series of vapour pressure values, hexane (lowest) 

through to mxylene (highest) (see table 5.1). Plotting as a function of saturated vapour 

pressure p/ps also yields no further information (see figure 5.23b), with no particular 

point of vapour pressure signifying the change in polarity of AR, the approximate values 

range from 0.2-0.8p/ps. In this case it is believed that at lower concentrations 

interlinking between solvents and the C[4]RA structures takes place as observed 

previously for the C[4]RA C 1H3 compound. This suggests a stiffening of the film. 

However, further increases in concentration leads to a maxima in the interlinking 

between the solvents and C[4]RA films. After this point the sharp increase in resistance 

(film softening) is seen and is believed to be a result of capillary condensation as 

observed within the C[4]RA C15H31 film matrix.
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Figure 5.21. The dependence of A f  against vapour concentration measured in absolute 

ppm units for a C[4]RA C11H23 sensing membrane.

4

3 H 

2

G H

3 0

-1 

-2 -  

-3 - 

-4

(a)
V

X

□ X

X

X
X

Li **X>KX' 

♦

♦  Hexane 
■  Toluene 

Benzene 
X  m-xylene 
X  Cyclo

0 20000 40000 60000 80000 100000 120000
Concentration (ppm)

Figure 5.22a. Typical dependence of AR against vapour concentration measured in 

absolute ppm units.

161



5

4

3

2

G 1

-1 

-2 

-3 

-4
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Concentration p/ps

Figure 5.22b. Typical dependence of AR against vapour concentration measured in 

relative vapour pressure units (p/ps) for either a C[4]RA C5H11 or C11H2 3 sensing

membrane.

The C[4]RA C15H31 compound as before produced good reproducible results as shown 

in figures 5.23 through 5.26. Once again the frequency response when plotted as a 

function of saturated vapour pressure shows all the vapours lying on approximately the 

same line (figure 5.25), indicating the mass increase is purely related to p/ps ratio. 

Figure 5.26 shows the AR/Af response for the four vapours, a clear separation between 

the hexane and toluene vapours is apparent. The benzene follows the same trend but lies 

approximately between the hexane and benzene vapours. M-xlylene as before (see 

figure 5.20b) shows an unusual deviation from the other vapours.
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From the results obtained using the series of C[4]RA compounds a. speculative model 

may be suggested relating the hydrocarbon chain length of C[4]RA compounds, to the 

observed responses from organic solvents. The C[4]RA compounds may be broadly 

classified into three categories:

(i) Small chain lengths (C 1H 3 ), in this case the short C H 3 chains provide reduced cavity 

sizes and only a small number of molecules are required to saturate (fill) the available 

adsorption sites. Once this threshold is reached statistical adsorption/desorption occurs 

and erratic results, as demonstrated in figures 5.16 and 5.17 are observed. The decrease 

in the resistance (film stiffening) is a result of interlinking solvents, with hexane itself a 

long hydrocarbon chain structure and produces the largest decrease in resistance.

(ii) Medium chain lengths (C5H 11 and C11H2 3). The chain length now provides 

sufficient adsorption properties for the solvents. The smaller C[4]RA C5H 11 chain 

reaching saturation earlier and shows a typical Langmuir or early stages of BET 

adsorption dependence (see figure 5.20). The C[4]RA C11H2 3 exhibits linear responses 

over the tested vapour concentration range. It is believed that the increase in chain 

length further enhances adsorption capabilities, and the linear responses correspond to 

the first stages of a typical Langmuir isotherm. The change in resistance for this group 

of C[4]RA compounds show an initial decrease in resistance which corresponds to a 

stiffening of the film. At lower concentrations the film undergoes the same interlinking 

mechanism seen in the C[4]RA C1H3 . The stiffening effect continues until the onset of 

capillary condensation at increased values of vapour pressure /concentration. After this 

point a rapid softening of the film (increase in resistance) is observed which is 

accompanied by swelling of the film.
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(iii) Long chain lengths (C 1 5H 31 and C 1 7H 3 5 ). Of all the C[4]RA compounds tested this 

group produce the most stable and repeatable sensor responses.. The large basket 

cavities formed by the long hydrocarbon chains already provide sufficient interlinking 

and no decrease in resistance is observed. Vapours exposure causes a significant 

softening of the film which is the effect normally associated with adsorption of an 

analyte into a viscoelastic membrane [20,27,30]. The frequency response appears be 

linear neglecting minimal contributions which may be caused by the viscoelastic 

membrane (see Chapter 4.4).

5.6 Coating stability

Interesting results have also been obtained from freshly prepared samples of the 

C[4]RA C15H31 compound. If samples are measured directly after the coating process 

has taken place (within 24 hours), an unexpected negative AR is observed at low 

concentrations, as shown in figure 5.27. The resistance decrease is also initially seen at 

the start of exposure at higher concentrations but after a small number of sample points 

(a short time) the resistance rises dramatically (indicated in figure 5.29). The frequency 

shift however shows no altered response and decreases consistently with the increasing 

vapour concentration (figure 5.28). This feature has only been observed with freshly 

coated samples of the C[4]RA C15H31 compound. After the coated QCM have been 

exposed to the natural environment for an undetermined period (24 hours in the case of 

these samples), the response of the resistance parameter behaves as previously tested 

with increases in R as expected for vapour adsorption as described in section 5.4. 

Baking of the freshly prepared samples at 100°C for several hours also results in a

normal behaviour of AR during further experiments. Figure 5.30 shows plot for a
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newly prepared film at low concentrations, the negative resistance is clearly observed. 

After AR passes zero, identical results to ‘normal’ C[4]RA C15H31 films are obtained . 

This phenomenon is believed to be a special case for newly prepared films. Initially 

after coating the films may contain large quantities of ethanol molecules making the 

films softer than anticipated. Adsorption of non polar molecules gives additional 

rigidity to the structure at lower concentrations, until the mechanism of capillary 

condensation becomes predominant and increases in resistance are observed. After an 

undetermined period of exposure to air the majority of ethanol molecules evaporate 

from within the film matrix. Further vapour adsorption therefore only shows increases 

in resistance related to film softening. Baking of the samples has resulted in the 

evaporation of residual ethanol molecules, and thus normal adsorption behaviour is 

observed.
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Figure 5.27. Time dependence of the resonance frequency during a sequence of 

exposures to toluene vapours of different concentration and intermediate flushing with 

air on a freshly prepared C[4]RA C15H31 sensing membrane.
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5.7 Summary

The three QCM measurement techniques: (i) oscillator circuits, (ii) impedance analysis 

and (iii) QCMD in combination with C[4]RA sensitive membranes have been 

successfully exploited as VOC sensors. The oscillator based frequency only 

measurements when used in an array of sensors allows both sensor discrimination and 

quantification for all the organic solvents tested.

The additional resistance/dissipation parameter obtained from impedance analysis and 

QCMD is a measure of the mechanical properties (viscoelasticity) of the sensing 

membrane. Through acquiring both changes in the mass and in film properties, it has 

been possible to detect and discriminate a selected number of VOC’s using only a single 

sensing element. The unique combination of mass loading and changes in film viscosity 

caused by vapour adsorption shows a novel method for classification of VOC’s. The
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possibility of combining multi-parameter QCM measurements with array techniques has 

been investigated using a series C[4]RA compounds, with different hydrocarbon chain 

lengths as sensing membranes. The results show some unexpected responses from the 

C[4]RA compounds with smaller hydrocarbon chains, primarily an increase in the film 

stiffness is observed on vapour adsorption. This behaviour does not correspond with 

previous literature where analyte adsorption into a viscoelastic film is accompanied by 

film softening. A speculative model has been put forward explaining the phenomena, 

however further research is required and currently underway to fully understand the 

adsorption mechanisms and resultant effects on the film properties.
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Chapter 6
6.0 Conclusions and Recommendations

The development of a QCM sensor for in situ monitoring of volatile organic solvents in 

the pre-explosive vapour range has been investigated in this thesis. Several QCM 

measurement techniques have been exploited ranging from the standard oscillator 

circuits to impedance analysis and QCMD methods, where multiple parameters can be 

obtained from a single crystal. The latter two methods have a distinct advantage through 

acquiring the resistance/dissipation parameter, which gives a further insight into the 

adsorption of the analyte into the film. The measurement of dissipation within the film 

becomes increasingly important with the use of viscoelastic membranes, such as 

calixarene films used in this thesis (described in chapter 2). The adsorption of an analyte 

into a viscoelastic film in most cases does not follow the simple linear relation 

described by Sauerbrey, unless strict conditions of film thickness and rigidity are met.

The measurement of the impedance is typically performed using a laboratory based 

impedance analyser as demonstrated within this work. The technique allows all the 

resonance properties of the crystal to be measured and gives most information of the 

QCM measurement techniques available. The equipment for impedance analysis is 

however bulky, expensive and complex. Further fitting of the spectra to an equivalent 

circuit is also quite complicated and required a specifically designed software program. 

A suitable alternative was found in the use of the QCMD measurement technique 

proposed by Rodahl et al [1,2]. An experimental test setup based on the QCMD system 

was built in house, and was found to give levels of performance comparable to that
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achieved using the impedance analyser. Further improvements were made to the design 

through additional multiplexing circuitry. This allowed the measurements of multiple 

parameters from several crystals in pseudo real time, making the system suitable for 

array applications.

Simple oscillator measurements are still however suitable for many applications if 

changes in viscoelastic properties are of little or no concern. As shown in Chapter 4.4 

the contribution to the frequency shift caused by a viscoelastic load is minimal when 

using films with small thicknesses (negligible acoustic phase shift). In such cases the 

viscoelastic effects may be insignificant.

In this work a small array of QCM oscillators has been utilized for the classification of 

several VOCs. Using the array technique and a suitable ANN, accurate classification 

and quantification of a number of organic solvents has been achieved at concentrations 

above 5% of LEL for the tested vapours. A series of calix[4]resorcinarene compounds 

were used as sensing membranes, showing suitably different sensitivity levels from one 

another to facilitate odour classification. It is believed the levels of sensitivity are 

related to their respective substituent alkyl chain length, and hence the cavity size 

formed by the calix[4]resorcinarene compounds. The compounds having shorter alkyle 

chains (C1H3 & C3H7) show poor sensitivity and unpredictable frequency shifts. The 

highest sensitivity is seen when using the mid length calix[4]resorcinarene alkyls in 

(C5H11 & C11H23), with vapour detection in some cases below 1 ppm. While the longer 

alkyl chains prove to be the most stable and provide approximately linear responses 

over the concentration ranges tested.
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The method of impedance analysis/QCMD was first applied to the C[4]RA C15H31 

sensing membrane. It is well documented that adsorption of an analyte into a sensing 

membrane may cause changes in its mechanical properties[3-7]. This principle was 

therefore exploited for the selective detection of several organic solvent vapours using a 

single QCM. Through monitoring changes in both the mass and the viscoelastic 

properties of the C[4]RA CisFbifilm, classification was made possible by the unique 

changes in film properties and mass load caused by some target analytes.

The effect of dissipation in a viscoelastic can be related to the mechanical properties of 

the film through equations (5.8) and (5.9). Adsorption of a vapour into the membrane 

causing no change in the mechanical film properties (G’ and G” ) would therefore be 

indistinguishable. All vapours would produce an identical resistance change for a

specified frequency shift » as demonstrated by PU-C[4]A compound shown in

figures 5.T In the case of the C[4]RA compound it is believed that the capillary 

condensation of the solvent occurs at concentrations well below saturated vapour 

pressure (see chapter 5.4). The effect of condensation within the film matrix gives rise 

to the unique changes in the films mechanical properties for certain organic solvents. 

Calixarene membranes represent a unique combination of rigidity and nano-porosity of 

the film structure, in which the adsorption and condensation of organic vapours takes 

place. This constitutes the main advantage of calixarenes over the other amphiphilic 

compounds.

It has to be mentioned that the organic vapour adsorption in C[4]RA C15H3 5 films is fast 

(a few seconds), and a full recovery of QCM sensors was observed. All the facts 

mentioned above make the proposed sensor very much suitable for the detection of high 

(pre-explosive) concentrations of organic solvent vapours.
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The success of the oscillator array and impedance analysis/QCMD techniques 

motivated the development of a system combing the two methods. Further investigation 

using impedance analysis was undertaken into a series of C[4]RA membranes used 

previously for simple oscillator measurements. The results showed a remarkable 

uncharacteristic decrease in resistance (film stiffening). Such an effect is abnormal as 

adsorption of a vapour into a viscoelastic membrane in most cases is accompanied with 

film softening, and is not predicted by equations (5.8) and (5.9). The peculiar behaviour 

continues into the mid chain length of C[4]RA compounds. In this instance a negative 

resistance change is only seen at lower concentrations. A speculative model for the 

C[4]RA series of compounds has been proposed in Chapter 5 which accounts for this 

phenomena. However, to fully characterise and understand the adsorption mechanism 

and resultant changes in film properties much further investigation is required.

The work in this thesis constitutes the basis for multi parameter QCM array 

measurements. The measurement of viscoelastic properties of the film in addition to the 

mass accumulation gives an additional parameter to aid the classification and in some 

cases allows a single QCM to discriminate between vapours. The calix[4]resorcinarene 

coatings do not provide high specificity for the any particular individual or group of 

organic solvent vapours. However, when combined with array techniques and/or 

multiple parameter QCM measurements, the discrimination between vapours can be 

achieved within and in some cases below the range of LEL and HEL, thus making the 

sensor a valuable tool for the detection of explosive organic vapours.

Further work on the study of different analytes, vapour mixtures (including cross

sensitivity study of inorganic gases) in a wide range of concentrations and using
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different sensitive membranes as well as long term stability of QCM sensors is currently 

underway.

6.1 Recommendations for future work

The work in this thesis gives promising results for the further development of a pre 

explosive vapour alarm using QCM techniques. A combination of multiple parameter 

measurements and electronic nose techniques is proposed to provide both the detection 

and quantification of target VOC’s. Although a considerable amounts of work has been 

done during the study of this thesis, further investigation and new designs are required 

in order to implement a final prototype sensor. The following list contains 

recommendations for future work proposed by the author.

1.) The study of an increased number of organic solvent vapours building a 

database of sensor responses for further classification of all compounds 

possible.

2.) The study of exposure of the all the C[4]RA compounds to a mixture of organic 

vapours, building a database of sensor responses for the classification between 

mixtures of solvent vapour in the air.

3.) Further investigation into the increases in film stiffness seen in small chain 

length C[4]RA compounds. Further verification of the model relating C[4]RA 

chain length to the sensor responses.

4.) Integration of the complete experimental setup into a single hardware/software 

package including the ANN/pattem recognition algorithm.

5.) Testing of the sensors in non laboratory conditions. Studying the effects of 

vapour flow, and natural environment.
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6.) Investigation of recent oscillator circuit designs which allow frequency and 

dissipation measurements. Evaluation of the resolution and stability of such 

circuits for the sensor applications.
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Appendix [A]

1. Program to simulate the acoustic load over a range of shear modulus values. 

Film thickness, density and the probing frequency must be known.

2. Program to calculate admittance spectra using the TLM model.

Uses physical properties of the quartz and contacting film.

3. Program to first calculate an admittance spectra from the TLM or experimental 

Data, the fast 3 step method is then performed.

4. Program to calculate Af and AR for known shear parameters over defined 

thickness range.



Program 1

% Program to calaculate and produce 3D plot the acoustic load 
%for a range of shear moduli input parameters are 
%film thickness , film desnity and probing frequency

clear all
p_film = 1000; %film density kg m3 1100
hs = 1.0e-6; %1E-6

y=4:0.05:9
x=4:0.05:9%Gdd

Gf_d =10.Ax;
Gf_dd = 10.Ay;

%c = complex(a.b)

w = 2*pi*10e6; %10MHz

x=Gf_d;
y=Gf_dd;
[X Y]=meshgrid(x,y); 
a_size=size(X)

for i=1:a_size(1) 
for j=1:a_size(1)

Gf = complex(Gf_d(i),Gf_ddO’));
ZLA = (((p_film*Gf)A0.5)*1i);
ZLB = tan(w * (((p_film/Gf)A0.5)*hs)); 
ZL(i,j)=ZLA*ZLB; 

end 
end

ZL_real = real(ZL);
ZLJmag = -1*imag(ZL);

meshc(log10(Y),log10(X),ZL_imag); 
yosettgca/Xscale'/log1) 
%zlim([-800000 500000]) 
%caxis([0000 150000]) 
rotate3d

xlabel({' Iog10 (G")/Pa';})
Ylabel({' log 10 (G"")/Pa ';}) 
zlabel({' imaginary (Z l)';})

clear all



Program 2

%Program to generate sample admittance spectra from the 
%TLM and values of known shear modulus

clear all 
format long 
size = 200 
p_q = 2.651e3; 
e p j l  = 3.982e-11; 
e_q = 9.53e-2; 
n_q = 3.5e-4; 
c_q = 2.947e10; 
f_q = 18.44e6;
A = 28.3e-6;

%density 
%permitivity 

%piezoelkectric constsnt 
%viscosity 

%piezo electric stiffened elastic constant 
%resonant freq of my qcm 

%area of my qcm in m2

vs = (c_q/p_q)A0.5; %velocity
ko2 = e_qA2/(ep_q*c_q); %electromechanical coupling factor 
h_q = vs/(2*f_q) %quartz thickness
Co = (ep_q*A)/h_q %static capacitance
%al_q = (w*h_q)/vs; %wave phase shift im quartz from luclum behling j phys d
%al_q = (w*h_q)*((p_q/c_q)A0 .5 );
2c_q = (p_q*c_q)A0.5; 
i=1;

%calculate viscoelastic load 
p_film = 650; %film density kg m3 
hs = 0.5e-6; %from ellipsometry
w = 2*pi*f_q;

Gf_d=1e8;
Gf_dd=1e6;
Gf = complex(Gf_d,Gf_dd);
ZLA = (((p_film*Gf)A0.5)*1i);
ZLB = tan(w * (((p_film/Gf)A0.5)*hs));
ZL=ZLA*ZLB

load=ZL/zc_q;
%Z split into two parts of motional branch 
for f=18.3e6:100:18.5e6

% Impedance of the motional branch 
w=2*pi*f;
al_q = (w*h_q)/vs; 
parta =1/((w*Co)*1i);

front=(ko2/al_q);
topline= ((2*tan(al_q/2))-((load*1i))); 
bottomline =(1-(((load)*1i)*cot(al_q))); 
partb= 1-(front*(topline/bottomline));

zm_tot=parta*partb;
Ztotal(i)=zm_totA-1;
freq(i)=f;
i=i+1;
end

%plot the data



zm_fs = abs(Ztotal); % get the magnitude
min=min(zm_fs)
semilogy(freq,zm_fs)
[Gmax,ind]=max(zm_fs)
R=1/Gmax

fs_approx=freq(ind)
Ztotal(ind)



Program 3

% Program to fist calculate an admittance value using the full transmission line model 
%and known values of shear modulus.(this can be replaced with a measured admittance value) 
%The fast three step method is then implemented and (Lucklum 2001) and approximate values 
of shear parameters obtained 
% for the measured/simulated admittance

clear all 
format long 
size = 200 
p_q = 2.651 e3; 
eP_d = 3.982e-11; 
e_q = 9.53e-2; 
n_q = 3.5e-4; 
c_q = 2.947e10; 
f_q = 18.44e6;
A = 28.3e-6;

%density 
%permitivity 

%piezoelkectric constant 
%viscosity 

%piezo electric stiffened elastic constant 
%resonant freq of my qcm 

%area of my qcm in m2

vs = (c_q/p_q)A0.5; %velocity
ko2 = e_qA2/(ep_q*c_q); %electromechanical coupling factor 
h_q = vs/(2*f_q) %quartz thickness
Co = (ep_q*A)/h_q %static capacitance
%al_q = (w*h_q)/vs; %wave phase shift im quartz from luclum behling j phys d
%al_q = (w*h_q)*((p_q/c_q)A0 .5 ); 
zC-d = (p_q*c_q)A0.5; 
i=1;

%calculate viscoelastic load 
p_film = 650; %film density kg m3 
hs = 0.5e-6; %from ellipsometry
w = 2*pi*f_q;

Gf_d=1e6;
Gf_dd=1e6;
Gf = complex(Gf_d,Gf_dd);
ZLA = (((p_film*Gf)A0.5)*1i);
ZLB = tan(w * (((p_film/Gf)A0.5)*hs));
ZL=ZLA*ZLB

load=ZL/zc_q;

f=18.3e6

w=2*pi*f;
al_q = (w*h_q)/vs; 
parta =1/((w*Co)*1i);

front=(ko2/al_q);
topline= ((2*tan(al_q/2))-((load*1 i))); 
bottomline =(1-(((load)*1i)*cot(al_q))); 
partb= 1-(front*(topline/bottomline));

zm_tot=parta*partb;
Ztotal=zm_totA-1;
impedance=Ztotal

ZL



%

bit =impedance-((w*Co)*1i);
high=(bit*(al_q/ko2))-(2*impedance*(tan(al_q/2)));
low=impedance-(bit)*((al_q/ko2)*cot(al_q));

Zl_calc=(zc_q*1 i)*(high/low)

m=w*p_film*hs
pO=1/p_film*(((1/3)*mA3)/((ZI_calc/1i)-m))
p1=1/p_film*(((ZI_calc/1i)-(2*m))/(1-(pi/2)))A2
p2=1/p_film*((-(piA2)/8)*(ZI_calcA2)-(m*ZI_calc/1i)+(pi/4)*ZI_calc*sqrt(((piA2)/4)*(ZI_calcA2)-
4*1i*m*ZI_calc))
p3=1/p_film*(((ZI_calc/1 i)-(2*m))/(1+(pi*(3/2))))A2 
p4=1/p_film*(((ZI_calc/1 i)-(m))/(pi))A2

%substitute values back into equation for ZL 
w = 2*pi*f_q;
ZL0= (((p_film*p0)A0.5)*1i)*tan(w * (((p_fiim/p0)A0.5)*hs))
ZL1= (((p_film*p1 )A0.5)*1 i)*tan(w * (((p_film/p1)A0.5)*hs))
ZL2= (((p_film*p2)A0.5)*1i)*tan(w * (((p_film/p2)A0.5)*hs))
ZL3= (((p_film*p3)A0.5)*1i)*tan(w * (((p_film/p3)A0.5)*hs))
ZL4= (((p_film*p4)A0.5)*1i)*tan(w * (((p_film/p4)A0.5)*hs))

%compare these values with measured ZL to obtain best approximation



Program 4

%Program to calculate df and dr of a viscoelastic film over a 
%defined set of thickness values and known shear parameters

clear all
p_film = 630 ; %film density kg m3 
Gf_d =0.5e8;
Gf_dd = 2e6; 
w = 2*pi*18.4e6;

j= i;

for hf = 0.1e-6:0.01E-6:0.5E-6;

Gf = complex(Gf_d,Gf_dd);
ZLA = (((p_film*Gf)A0.5)*1i);
ZLB = tan(w * (((p_film/Gf)A0.5)*hf)); 
ZL=ZLA*ZLB;
theta=(w *hf*(((p_film/Gf)A0.5))); 
M=w*p_film*hf;
V=(tan(theta))/theta;

df_visco(j)=M*(1+((1/3)*(Gf_d/(p_film*(abs(Gf))A2)))*MA2);
dr_viscoG)=M*(((1/3)*(Gf_dd/(p_film*(abs(Gf))A2)))*MA2);

hf_pG)=hf;;
M_p(j)=M;

diff_freqG)=df_viscoG)-M_pG)
j=j+1;

end

plot(hf_p,dr_visco) 
%plot(hf_p1df_visco,hf_p,M_p,'x') 
%plot(hf_p,diff_freq) 
xlabel({' hf (m)';})
%Ylabel({' \Delta f (Hz)’;}) 
Ylabel({' \Delta R (\Omega)';})



APPENDIX [B]

Single QCM oscillator
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APPENDIX [B]

Multiplexer Circuit based around multiple reed relays
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APPENDIX [C]

QCMD Main board
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APPENDIX [C]

PIC Microcontroller schematic
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APPENDIX [D]

Front panel of QCM spectra acquisition program.
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Appendix [E]

Front panel of polynomial fit program
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Appendix [F]

Approximations used for the tangent function when using the fast three step method 

proposed by Lucklum et al[l], and implementing MATLAB program.
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