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ABSTRACT

This thesis examines systolic array architectures and their methods of control and 

communication synchronisation.

Systolic array processors suffer from synchronisation problems associated with the 

clocking mechanism that causally restricts their scalability. To overcome this problem 

both return-to-zero (RTZ) and non-return-to zero (NRTZ) delay-insensitive self-timed 

(ST) techniques can be used to realise architectures that operate correctly in the presence 

of arbitrary delays at all levels in their design. As a consequence, RTZ and NRTZ 

versions of an existing systolic array architecture, namely the Single instruction Systolic 

Array (SISA), have been developed in order to investigate the potential for realising 

architecturally scaleable systolic arrays. The new architectures, called the RTZ and 

NRTZ ST-SISAs, have been compared with each other and against their synchronous 

counterpart to establish their relative trade-offs. The new designs exhibit several novel 

features including: variable length bit-serial data words, average case processing speeds 

dependent on data word length as well as computational complexity, a novel 

autonomous inter-processor data communication mechanism and architectural scalability 

independent of fabrication technology.

This thesis introduces an implementation of the RTZ and NRTZ ST-SISA architectures, 

along with their performance and area characteristics. Guidelines have been developed 

from the resulting RTZ and NRTZ architectures allowing novel self-timed systolic 

architectures to be derived.
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CHAPTER 1

INTRODUCTION

1.1 Background

Very Large Scale Integration (VLSI) and Wafer Scale Integration (WSI) have made 

possible the realisation of high performance massively parallel architectures on a single 

chip. This is due to the increased number of devices that can fit onto a large silicon area. 

One such massively parallel architecture is the Systolic Array (SA) [43] which achieves 

high processing speeds but suffers from problems attributed to the synchronous 

implementation technology that uses a global clocking mechanism. The main problem is 

that of clock skew [25, 89], which is the phase difference of the global synchronising 

signal as it arrives at the various system components, resulting in incorrect system 

operation. Clock skew becomes more apparent the greater the distance the clock signal 

must propagate. As a consequence, both the clock frequency and design scalability are 

limited as the number of devices and the size of the silicon area increase [14, 17], and 

will continue to worsen as technology evolves. Other problems associated with the 

global clocking mechanism include fixed instruction processing speed [16, 22] and fixed 

word length.

In response to the problems of clock skew both synchronous [34, 41, 42] and 

asynchronous self-timed design techniques [49, 74, 95] have been developed. The 

synchronous techniques adopt specially designed clock distribution networks that 

minimise the phase differences of the clock signal in the circuit, consequently, clock 

skew is only reduced and not eradicated. However, alternative asynchronous self-timed 

techniques exist that abolish the clock and instead use local data flows to co-ordinate 

correct circuit operation therefore removing clock skew.

1.2 The Systolic Array

Kung [47] proposed the SA as an elegant solution to computationally demanding 

applications. The high performance resulting from this approach has culminated in a 

large number of SA designs [39]. A typical SA [15] is a grid-like architecture of
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identical processing elements that process data much like an nxn dimensional pipeline. In 

physiology, the term ‘systolic’ describes the contraction of the heart, which regularly 

sends blood to all cells of the body through arteries and veins. Analogously, SAs 

perform operations in a rhythmic, regular and repetitive manner [44],

The progression of SA performance has been made possible through the rapid evolution 

of VLSI technology which has allowed a greater number of component devices to be 

fitted onto increasingly larger silicon chips. However, the smaller size of devices and the 

increasing speed at which they switch cannot be exploited because of clock skew [14]. 

These problems will continue to worsen with the advent of WSI [40, 55, 110] because a 

substantially larger number of devices can be fitted onto a substantially larger silicon 

area. As a consequence, the problems associated with clock skew are exacerbated 

because the clock signal must propagate for much longer distances. This increase in 

clock skew results in limited SA scalability. The alternative considered in this thesis is 

the asynchronous self-timed design method. The self-timed approach eliminates the need 

for a clock signal at any level in the design.

1.3 System Timing

The fundamental difference between synchronous and self-timed design is the manner in 

which circuit delays are handled as they pass through the system. These are considered 

as follows:

1.3.1 Synchronous Design

In a synchronous system responsibility for overcoming delays is passed to a global 

control centre. The worst case delay through the system is calculated and then a global 

signal, called the system clock, timed to match this delay is distributed to all modules. 

Consequently, all system functions operate to a worst case processing speed dictated by 

the slowest operation, the worst case signal delay and to restrictions imposed by clock 

skew.

1.3.2 Self-timed Design

In a self-timed system responsibility for overcoming delays is passed to the individual 

circuit modules themselves. The system modules co-ordinate computation both within
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themselves and communication with their immediate neighbours. This is achieved by 

each circuit determining when its computation is finished using special completion 

detection logic. Therefore, each stage of computation is triggered by local data flow 

rather than a global clock signal. This allows each computational module to operate at 

its own rate of computation resulting in task dependent processing speed.

1.4 Motivation

There exist many SA designs that are now well established as solutions to 

computationally demanding applications. However, future performance enhancement of 

SAs is restricted by clock skew. The alternative is the self-timed design method which 

removes the clock signal and its associated drawbacks. The self-timed approach 

potentially provides a solution to the restricted performance and scalability of SAs.

Self-timed design has now matured to a stage where the rules and techniques for 

constructing circuits are well established [35, 66, 88, 90, 102], At the circuit design 

level, a wide range of circuit implementation techniques exist, such as the speed- 

independent [102], delay-insensitive [9] and bounded delay models [100], that vary in 

performance, circuit cost and synchronisation techniques. These circuits can be designed 

using a number of formal techniques, such as Communicating Sequential Processes 

(CSP) [28] and Signal Transition Graphs (STGs) [8], that adopt different design 

approaches to formally describe circuit operation. These formal descriptions can then 

be synthesised to realise the correct behaviour of the model in the circuit implementation. 

Alternatively, standard macro-module design libraries [58, 100] exist such that designers 

do not need to know about the low level implementation details of circuit modules and 

the design methodology with which they were developed.

At the system level, work has been undertaken by Unger [103], Meng [64] and 

Staunstrup [96, 97, 98, 99] concerned with establishing methods for connecting these 

self-timed circuits to form self-timed computing systems. However, the application of 

these methods is limited and mainly restricted to the research groups that first developed 

the methodologies. As a consequence, the macro-module approach used by designers of 

synchronous systems, using the Micropipeline library [100] of macro-modules, 

predominates.
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Self-timed processors developed to date have focused on single processor designs [6, 18, 

62]. Consequently, very little work has been undertaken on the design of self-timed SA 

processors. A self-timed special-purpose SA of simple construction has been developed 

by Lloyd [57] demonstrating that performance improvement is possible adopting the self

timing design technique when compared to the existing synchronous technique. What is 

required is an assessment of the wide range of the different self-timed design techniques 

for scaleable general-purpose SA design.

1.5 Aims and Objectives of the Thesis

This thesis has two main aims. The first is to establish a coherent design framework that 

allows the trade-offs of new architecturally scaleable self-timed massively parallel 

processor designs to be compared with each other and their existing synchronous 

counterparts. The second aim is to use this framework to establish new guide-lines that 

assist in the design of new self-timed scaleable massively parallel architectures.

The first aim is a direct result of the very limited amount of knowledge in the design of 

scaleable self-timed SA architectures. The vast majority of research to-date in self-timing 

has concentrated on formal methods [7, 28], synthesis techniques [8, 59, 65] and the 

construction of single-processor architectures [6, 19, 20, 61] and so little information 

exists of the system level construction of self-timed architectures. The designer is also 

unable to determine which self-timed techniques to use to realise truly scaleable SA 

architectures and their resulting costs and performances. Therefore, the first aim of this 

research is to establish the trade-offs of self-timed techniques with respect to each other 

and their synchronous equivalents through the development and exploration of a 

common research vehicle.

The first aim is to derive a coherent design framework to determine the differences 

between implementation techniques. Three objectives are identified.

1. To determine requirements for the implementation of self-timed architectures 

when used for SA design.

2. The development of novel self-timed architectural structures based on the 

requirements developed in (1) which lead to scaleable and modular array designs.
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3. To characterise the implementation characteristics in terms of area and

performance for the existing synchronous and novel self-timed architectural 

designs and to compare their relative trade-offs.

The second aim is to establish strategies for the design of self-timed architectures 

utilising the framework from the first aim. Two objectives are identified:

1. To produce guide-lines for the design of new self-timed architectures which do

not require re-design when ported between architectures or circuit technologies.

2. To produce guide-lines for the selection of self-timed or synchronous circuit

design techniques for a given set of criteria.

1.6 Structure of the Thesis

Chapter 1 has introduced, thus far, the subjects of self-timed design and systolic arrays 

and has provided an overview of their current status. The chapter has also presented the 

aims and objectives of this thesis. Finally, chapter 1 highlights the contributions to 

knowledge resulting from this work.

In Chapter 2 SA architectures are introduced. From this an architectural taxonomy is 

used to categorise the different SA design approaches. The limitations of clocked control 

for SAs are then identified through a review of both the existing synchronous and self

timed techniques that attempt to alleviate or overcome these problems. The current 

status of self-timed design is then reviewed. This begins with an identification of the main 

methods of implementing self-timed circuit modules, followed by methods used to 

interconnect these modules to form system architectures. A review of the main 

methodologies used to design self-timed circuits is also undertaken. A number of key 

architectures that adopt these design methodologies are then reviewed and analysed. 

This chapter concludes by identifying the areas which require further investigation, 

leading to three experimental chapters and the identification of a research vehicle which 

together provide the basis for the research.

In Chapter 3 three main experiments are proposed to address each of the experimental 

objectives identified in chapter 2. The experimental methodology adopted by each of
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these experiments is described and the assumptions shared by all the experiments are 

stated.

In Chapter 4 the background to the adopted research vehicle, namely the Self-Timed 

Single Instruction Systolic Array (ST-SISA), is presented. It presents the existing 

synchronous and the new self-timed architectures which are described in terms of their 

array interconnection, processing element (PE) architecture and programmability.

In Chapter 5 the data path experiment is presented. This chapter provides a detailed 

explanation of each of the data path components, which are used to realise data storage, 

data communication and arithmetic/logic processing, and analyses their implementation 

characteristics. The results for this study are used to derive a set of guide-lines to assist 

in the design of data path units.

In Chapter 6 the control path experiment is presented. It provides a detailed 

explanation of each of the control path components which are used to realise instruction 

by-pass, instruction fetch, instruction decode and functions that are required to co

ordinate the processing cycles of the self-timed PEs. This is then followed by analysing 

their implementation characteristic relationships. The results for this study are used to 

derive a set of guide-lines to assist in the design of control path units.

In Chapter 7 the integration of the control and data path units, in order to realise a 

working PE, is presented. This allows the relative circuit area and performance of each 

of the self-timed PEs to be compared against each other and with their synchronous 

equivalent. The ST-SISA PEs are then connected together to form a working array. 

This allows the effects on PE performance resulting from inter-PE instruction and data 

communication to be established.

In Chapter 8 the conclusions from each of the previous experiments are summarised. 

The limitations of the work are examined and possible extensions to the existing 

investigations are discussed, as well as further areas of research. Finally, the thesis is 

concluded by summarising the main points of the research.
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1.7 Contributions to Knowledge

This thesis does not attempt to resolve all of the problems, or design issues, associated 

with the implementation of SA architectures. Instead this work aims to provide a 

coherent framework in which to design truly architecturally scaleable self-timed 

massively parallel processors through the adoption of new self-timed design techniques 

and strategies. In addition, this design framework allows the cost/performance trade-offs 

of the new self-timed designs to be compared with their existing synchronous 

counterparts. The contributions to knowledge of this thesis are as follows:

• A methodological approach to the design of self-timed SA architectures.

• Novel scaleable self-timed SA architectures that exhibit common architectural 

structures and modularity.

• The characterisation of the new self-timed and existing synchronous S A architectures 

thus establishing their relative trade-offs in terms of cost and performance.

• Design guide-lines for the development of self-timed data path and control path 

architectures adopting new self-timed design techniques.

• Guide-lines for the selection of the appropriate self-timed or synchronous design 

method for SAs for given design criteria.
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CHAPTER 2

REVIEW OF RELATED WORK

2.1 Objectives of the Chapter

This chapter introduces VLSI array architectures, primarily systolic array (SA) 

processors. This review will draw upon example architectures in order to illustrate their 

architectural, computational and communicational strategies and to identify the effects 

and trade-offs of adopting various synchronous and asynchronous control techniques. 

This chapter further investigates the techniques for self-timed control, and identifies 

those aspects that may prove appropriate for the exploitation by systolic architectures. 

Finally, this chapter proposes areas which require further research. These objectives are 

achieved by considering the following:

• Identify and categorise SAs, and introduce a taxonomy for their representation.

• Review the key SA architectures utilising the adopted taxonomy.

• Analyse the key aspects identified in the reviewed S A architectures.

• Review self-timed control techniques and design methodologies.

• Review the key self-timed architectures.

• Analyse the key aspects identified in the reviewed self-timed architectures.

2.2 Systolic Array Architectures

This section presents the background to SAs. From this a taxonomy will be developed 

which will be used to categorise the architectures according to their program control 

mechanism. Examples will be given of SA processors that achieve high performance 

through their use of modular design and localised communication.

2.2.1 Background to Systolic Arrays

The application domain of S A processors covers a wide variety of applications including 

image processing, sonar, radar, computer vision, speech and medical signal processing, 

the key characteristics of which are the enormous throughput rates and the huge 

amounts of data involved. Meeting these demands required a revolution in computing



technology. This improvement in performance was only practicable with the

development of smaller component devices on a larger chip area. As a consequence, 

high device speeds in conjunction with high degrees of on-chip parallelism have achieved 

the speeds required by modern day applications.

The degree of array concurrency is largely dictated by the underlying algorithm, and 

massive parallelism can only be achieved if the algorithm is designed to permit high 

degrees of pipelining and multiprocessing. Consequently, SA algorithms are dominated 

by convolution, matrix or transform algorithms which possess common properties such 

as regularity, recursiveness and locality [47], The properties shared by these algorithms 

can be best exploited by SAs because of their intensive local communication, 

decentralised parallelism and modular, rhythmic, intensive and repetitive computation. 

The dominating aspects of this approach are elaborated in the following section.

2.2.2 Introduction to Systolic Array Architectures

A SA is an architecture constructed of identical processing elements, each synchronised 

by a clock signal. The array performs operations in a rhythmic, cellular and repetitive 

manner. Data is pumped through the array producing partial results as it is passed 

concurrently through the array from one processing element (PE) to the next. 

Consequently, SAs have a very high rate of throughput. A SA can take the form of a 

wide variety topologies [47]. The choice of topology is dependent on the application 

and the required performance.

The PEs of a SA can take one of three forms, differentiated by their programmability. 

An increase in programmability results in greater flexibility allowing the same array to 

execute a wider variety of algorithms. However, there is also a corresponding increase in 

the complexity and hence the size of the PE. The programmability of a SA can be 

differentiated as follows:

1. A fixed-function PE that contains hardwired functions. The size and simplicity of 

these PEs can mean that hundreds can fit on a single chip.

2. A programmable PE that bridges the gap between inflexible fixed-function and 

programmable architectures. This approach adopts a vector-like PE containing an
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instruction decoding unit, without a control store, and a processing unit. This 

approach holds the instruction store external to the chip itself meaning that the circuit 

area consumed by each programmable PE is kept to a minimum.

3. A fully programmable PE complete with control store and processing unit. This PE 

essentially corresponds to the application generality of the von-Neuman type of 

computer architecture, though at the expense of increased PE circuit area, thus 

reducing the degree of on-chip array parallelism.

2.2.3 Taxonomy of Systolic Array Architectures.

There are a wide variety of SAs differing in their range of complexity and performance 

capabilities. In order to review the area a simple classification system has been adopted 

to identify key control and computational differences. The adopted classification focuses 

on the subdivision and elaboration of:

• the control mechanism.

• the functional complexity.

The taxonomy uses the Flynn classification notation [37] for various computer 

architecture types based upon the notion of instruction and data streams, namely; special- 

purpose, single instruction multiple data (SIMD) streams and multiple instruction 

multiple data (MIMD) streams. This is illustrated in figure 2.1. The distribution of 

control information can be classified as either central or local. From this the functional 

complexity can be divided into SIMD for centrally controlled SAs, and special-purpose 

or MIMD for locally controlled SAs.

SYSTOLIC ARRAY ARCHITECTURES

Control Central Local

Functional Dynamic Fixed 

SIMD Special-Purpose

Dynamic

Flexibility MIMD

Figure 2.1. An array architecture taxonomy.
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The special-purpose, SIMD and MIMD machine models are discussed in more detail in 

the following three sections.

Special-Purpose Systolic Arrays

Special-purpose systolic architectures need to be custom designed for each application 

because of their fixed-function. This type of SA architecture achieves high performance 

through simple design, and is very attractive from the viewpoint of simplicity and 

efficiency, but suffers from high design costs and lack of flexibility. Consequently, this 

type of architecture will not be considered in this work. Examples of special-purpose S A 

architectures can be found in [46, 47],

Single Instruction Multiple Data (SIMD) Systolic Arrays

SIMD processors provide a programmable alternative to special-purpose arrays. They 

are realised as an array of identical PEs, each having their own data memory which can 

be shared by immediate neighbours. Instructions are broadcast to all PEs such that they 

perform the same operation on different data, thus eliminating the need for on-chip 

control storage. The advantage of adopting this approach is that the PEs of a SIMD SA 

take up very little space on the silicon, therefore increasing the degree of on-chip 

parallelism. However, the generality of this type of architecture is restricted due to the 

broadcast nature of instructions. Examples of this type of architecture include Saxpy-1 

[15] and the Brown Systolic array [36],

Multiple Instruction Multiple Data (MIMD) Systolic Arrays

MIMD processors are arranged as an array of identical PEs. Application generality is 

maximised as each PE has its own control unit, program and data store. Each PE, 

similar in design to that of a conventional von Neumann architecture, can be loaded with 

a different program or all PEs may loaded with an identical program. Data memory is 

usually not shared in a MIMD SA, but instead is passed along communication lines to 

the next PE. This results in problems of decreased processing throughput, due to the 

higher dependency on off-chip pin communications, and of synchronisation between 

multiple PEs. Examples of this type of architecture include iWarp [5, 24] and WAP 

[84].
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2.2.4 Review of Key Array Architectures

The aim of this section is to review the current status of S A architectures. This review is 

broken down into two sections namely the SIMD and MIMD control classifications, 

with each review focusing on data and instruction communication, array synchronisation, 

and instruction set complexity. The Blitzen and Datawave processors reviewed in this 

section are not systolic architectures, however they exhibit architectural features that are 

relevant to the research and so are included for completeness.

2.2.4.1 SIMD Systolic Arrays.

2.2.4.1.1 Brown Systolic Array [36]

The Brown Systolic (B-SYS) array has a linear array architecture designed for sequence 

comparison and sorting applications. It has been designed to fit the maximum number of 

PEs onto a single VLSI chip. To achieve this each PE can only incorporate a very simple 

instruction set including basic Boolean, addition and comparison operations. To further 

maximise the degree of array parallelism each PE is only capable of storing eight bit 

words.

The B-SYS processor adopts a novel instruction communication mechanism where 

instructions are sent systolically through the linear array over a uni-directional control 

path. This is also the case for data interconnection. The instruction processing unit of 

each PE is of SIMD complexity though at the expense of extra circuitry as each PE 

requires its own dedicated instruction decoder.

Due to the systolic nature of instructions, and the array synchronisation mechanism that 

enforces global synchrony of PEs, read-after-write (RAW) hazards are handled by the 

notion of processing phases such that loads take place after all other computations have 

finished. Also, for more complex programs, such as those required for sequence 

comparison, alternate PEs are temporarily disabled to overcome RAW hazards. This is 

achieved through the use of a phase flag for each PE, which specifies its current phase, 

and a phase tag for each instruction. Therefore, PEs in phase j  execute only those 

instructions tagged with the same j  phase.
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2.2.4.1.2 Saxpy Matrix-1 [15]

The Matrix-1 is a linear SIMD array processor designed to be used for a wide variety of 

signal processing algorithms. The array connects to a system memory which stores all 

the data arrays externally to the processor array; a system controller broadcasts Matrix-1 

instructions over a combined data and control interconnect mechanism.

The array can consist of either 8, 16, 24, or 32 identical PEs, called computational zones, 

which are globally synchronised by a centralised clock. Each zone contains a pipelined 

32-bit floating-point multiplier, a pipelined 32-bit floating-point adder with logic 

capabilities (its ALU), realising a complex instruction set, and a 4K-Word local store. 

The processor array can function in either the systolic mode or in block mode, in which 

all zones operate independently and use local data. Although the Matrix-1 is an SIMD 

architecture the programmer is allowed more freedom as computational zones may be 

disabled via the setting of a mask bit.

The Matrix-1 processor has three types of data communication mechanism each of which 

are one word wide and operate at the global clock speed. The first type of interconnect 

is the systolic data path which connects each zone to its right neighbour with the last 

zone connecting to the output buffer or, in a circular fashion, to the first zone. The 

second type of interconnect utilises the global buffer as the source to broadcast data to 

all the zones, though this conflicts with the systolic nature of the design. The third 

mechanism connects the local memory of each zone both to the zone’s neighbouring PEs 

and to the processor interface.

2.2.4.1.3 Blitzen [4, 27, 38]

The objective of the Blitzen project was to construct a physically small high performance 

programmable massively parallel processor for use in real-time applications. The Blitzen 

chip achieves this by adopting a SIMD mesh array, consisting of 128 identical bit-serial 

PEs each with IK Bytes of addressable memory, synchronised by a global clock. Each 

PE comprises:
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• 16 logical operations.

• Single-bit full adder for bit-serial addition and two’s complement subtraction.

• 32-bit variable length shifter.

• 6 single-bit registers.

• IK byte of ram.

The variable length shift register can be configured to hold 4-, 8-, 12-, 16-, 20-, 24-, 28-, 

or 32-bit data words. An w-bit add (where n represents the data word length) is 

accomplished by specifying in the instruction the number of n- cycles to perform the 

load, and the number of w-cycles to perform the addition. As Blitzen is a SIMD machine 

the same instruction word is broadcast to each PE that performs the same operation on 

the same sized word. Two data communication interconnection mechanisms exist in the 

Blitzen array:

• PEs are inter-connected using an X-grid with nearest neighbour connection paths in 

eight directions. A routeing operation sends data out, bit-serially, in one direction 

and accepts data in from another. All PEs route in the same direction in one 

processing cycle.

• High system I/O bandwidth is provided by eight 4-bit I/O buses, one for each row, 

which shift data in from the west edge, and shift data out simultaneously along the 

east edge. In one processing cycle, 32 bits can be accessed at a column of eight PEs 

on a chip.

The Blitzen array processor consists of 16,384 PEs on 128 chips.

2.2.4.2 MIMD Systolic Arrays.

2.2.4.2.1 Instruction Systolic Array [53, 54, 78, 79, 80, 81, 82, 85, 86, 104, 105]

The ISA is a new variation on the systolic array architecture. In the ISA, instead of 

pumping data through the array like the SA, instructions called the top program and an 

orthogonal sequence of Boolean row selector bits called the left program are pumped 

through the array; resulting in the name - instruction systolic array. A PE receives an 

instruction and a selector bit in each cycle from its north and west neighbours 

respectively, therefore, each PE has a one word instruction register and two single bit
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selector stores. If an instruction meets a logic ‘1’ selector bit then that instruction is 

executed, otherwise a no-operation is performed and the contents of the registers are 

left unchanged.

Data communication between neighbouring PEs is achieved on the execution of a read 

instruction. Each PE can read the communication register (CR), which can be read by 

five PEs including itself, of one of its four direct neighbours. To avoid RAW conflicts, 

the CR is read by one or more neighbouring PEs in the first half of the instruction cycle, 

and then each reading PE writes the data to its own CR in the second half of the cycle.

The ISA is closely related to the concept of wavefront array processing in that a set of 

instruction and selector diagonals propagate in wavefronts through the array from the 

top left-hand PE toward the bottom right-hand PE. However, the synchronisation of 

instruction and data transfer is regulated by a global timing signal.

The commercial ISA processor consists of 64 identical bit-serial PEs with a complex 

instruction set including:

• Logical operations.

• A full adder for bit-serial addition and two’s complement subtraction.

• Comparator and multiplier.

• Floating-point unit.

• Shifter.

2.2.4.2.2 Single Instruction Systolic Array [53]

The SISA is closely related to the ISA except that it uses column selector bits in addition 

to row selector bits and has only one instruction input to the top left PE; hence the name 

- single instruction systolic array. The advantage of this variant on the ISA is the 

reduction of the overall amount of code by approximately m/2, m being the length of the 

instruction code. This reduction in code is only possible in programs where in each 

instruction diagonal there occurs only identical or no-operation instructions. As 

discovered by Lang [53] this is frequently the case in most practical ISA applications.
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2.2.4.2.3 Wavefront Array Processor [48, 50, 51]

The Wavefront Array Processor (WAP) supports the same programmability and local 

interconnectivity on word-size data as that of a programmable SA. However, it 

fundamentally differs in that it is data driven rather than globally synchronised. The 

WAP makes use of local clocking strategies to synchronise operations internal to each 

PE, therefore each PE is driven by internal clocks. However, it uses asynchronous 

handshaking communication lines between PEs to control the flow of data. This allows 

data to be passed to successive PEs only when they are ready to accept new operands, or 

to suspend waiting PEs until the input data is present. The benefits of this structure are 

threefold:

• Data communication does not have to be synchronised or scheduled to meet at the 

correct PE at the correct time, but instead only the correct ordering of the data is 

necessary to ensure the correct data meets the correct PE.

• The asynchronicity of data communication means that data can be queued up

between PEs of varying execution times, thus freeing up predecessor PEs for their 

next computation.

• The use of asynchronous communication means there is no need for a global clock

and the effects of inter-PE clock skew are eliminated, though internal PE clock skew

still remains a potential bottleneck.

A WAP is typically a grid-like array architecture, like the SA, in which computational 

‘wavefronts’ [13] are pipelined through a localised communication network. Each PE 

consists of a simple modular architecture consisting of internal program memory, a 

control unit, an ALU, and a set of registers. Every PE has a bi-directional buffer and 

independent status and control flags that are used to handle inter-PE data communication 

for each of its four adjacent PE neighbours. To understand the concept of computational 

wavefronts, an N x N matrix multiplication algorithm is executed on a orthogonal WAP, 

as shown in figure 2.2.
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Figure 2.2. The wavefront array.

Consider three matrices where A=aij, B=bij and C= AxB = {Cij}. Matrix A is 

decomposed into columns Ai and matrix B into rows Bi, therefore C=Ai x Bi + A2x B 2 

+ . . . + AN x Bn . The matrix multiplication can be carried out by N recursions of 

wavefronts on the WAP. The elements of A are stored in memory modules to the left, 

and those of B in memory modules to the top. The process begins with PE(1,1), where 

c(1)„ = c (0)n  + a n  x b n  is computed. The computational wavefront then propagates to 

the neighbouring PEs (1,2) and (2,1) which then execute their respective operations. 

The wavefront then propagates to PEs (3,1), (2,2) and (1,3). Thus, a computational 

wavefront proceeds through the array from the top left to the bottom right 

corresponding to one complete recursion. As the first wave propagates to the second 

diagonal an identical second recursion can be concurrently executed by pipelining it 

directly after the first one. This pipelining is feasible because two wavefronts are never 

allowed to intersect with one another, so different PE diagonals are used to execute 

different recursions at any given time.

2.2.4.2.4 Datawave[83, 84]

The Datawave multiprocessor chip has been developed by ITT Intermetall for High 

Definition Television (HDTV) applications. The Datawave chip contains 16 mesh- 

connected PEs operating on 12-bit fixed-format data words. Each PE is based on the 

pipelined RISC concept with local control and data stores.
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The processor array is globally synchronised by a 125-MHz clock which is distributed 

along an H-tree to minimise clock skew. Inter-PE data communication is possible over 

eight links configured as one read and one write bus at each of its four sides; each bus 

consists of 12 data and two handshake lines. All communication between PEs is data 

driven. Thus, only when all required data has arrived will processing commence. Local 

asynchronous handshaking protocols synchronise localised data transfers to the local PE 

clocks; where local PE clocks are derived from the global clock.

In order to absorb wait times, FIFO buffers are used between PEs to smooth out 

dataflow density fluctuations. These in-built mechanisms result in the programmer not 

needing to worry about timing or scheduling of data transfers, as long as the sequencing 

is correct. The Datawave PE architecture consists of the following modules:

• A multiplier-accumulator (MAC) which multiplies two 12-bit fixed point words 

producing a 24-bit product. The accumulator may output either a correctly scaled 

12-bit product or in two-cycles as a 24-bit product (hi, lo) that includes over-flow 

bits.

• An ALU that works in parallel with the MAC, both of which are fully pipelined, and 

performs all arithmetic and logical operations on one or two operands. The ALU 

output is padded with five additional registers to match the latency of the MAC path. 

This ensures ALU and MAC results appear at the common output bus in the same 

order in which their corresponding instructions have been issued.

• A four-port register bank with 16 registers. In each cycle two registers can be read, 

and two can be written.

• A static RAM program store which can hold 64 instructions each of which is 46-bits 

wide.

2.2.4.2.5 iWarp [5, 24]

iWarp, developed by Carnegie Mellon University and Intel Corporation, has been 

specially designed for image and signal processing applications. The iWarp, the 

successor to Warp [2], is a single chip processor containing a single PE that must be 

connected to other iWarp PEs to form a systolic array. An iWarp PE consists of a 

computation agent and a communication agent that can carry out operations
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independently from one another. Therefore, a PE may perform a computation while 

communication through the PE is taking place with other PEs thus supporting loosely 

coupled message passing. Tightly coupled communication is also supported such that 

systolic algorithms can be executed. The computation agent consists of an IEEE 

standard 64-bit floating point adder and multiplier, a 32-bit integer/logic unit and a 128 

word register file. The communication agent has four physical pairs of input and output 

ports thus allowing 1-D, 2-D and Torus networks to be configured.

2.2.5 Analysis of Key Systolic Array Architectures

The review section has briefly introduced the key architectures that exist in this area. 

However, an analysis must be undertaken to determine which features are common to 

these architectures, which features differ, and the rationale for the choice of a particular 

feature. The identified areas of analysis are split up as follows:

1. What are the relative trade-offs of the various array features; those of 

SIMD/MIMD control, array synchronisation and array topology? This will identify 

whether SIMD or MIMD architectures realise the highest PE density per chip and 

the extent of which data-driven mechanisms have been adopted.

2. What are the relative trade-offs of the various data word features; those of data 

orientation (serial or parallel) and data word size? This will establish the trade-offs 

between cost, performance and application generality.

3. What are the relative trade-offs of the various PE functionality features; those of 

instruction complexity, instruction timing and local storage? This will clarify how SA 

PEs can improve their performance and/or reduce their circuit cost through the 

implementation and control of their ALU.

4. What are the relative trade-offs of the various data communication features; those 

of the number and orientation of data ports, and the method of communication 

synchronisation? This will identify the degree of which communication can take 

place between neighbouring PEs and the communication mechanisms used to assist 

PE autonominity.
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2.2.5.I. Analysis of Key Features

The following four sections analyse the array, data word, PE functionality and data 

communication areas. In each section the various features of the reviewed architectures 

are depicted in a tabular format so that the differences and commonalties of the various 

architectures can be clearly seen. The rationale for the adoption of a particular 

architectural feature and the reasons for the architectural differences of the reviewed key 

architectures are identified.

Array Features

Table 2.1 presents the array level viewpoint. The first column shows that the numbers 

of PEs per chip varies enormously. One of the reasons for this is attributed to the 

location of the control store. The B-SYS, ISA and SIS A abolish the on-chip control 

storage and instead systolically pipeline the program through the array read from an 

external control store, whereas the WAP and iWarp store the program locally to each 

PE. Therefore, B-SYS, ISA and SISA maximise the number of PEs fit onto a chip.

The second column shows that array topology varies between the architectures. The 

reason for this is dependent on the application program [47].

The third column shows that the majority of the reviewed architectures adopt a globally 

clocked timing mechanism. However, each WAP PE chip is locally clocked. Therefore, 

WAP PEs are data driven. Blitzen PEs on each chip are also data driven, however, 

internal clocks are derived from the global signal.

PEs Per Chip Topology Timing

B-SYS Not available Linear Globally Synchronous

Matrix-1 Not available Linear Globally Synchronous

Blitzen 128 Mesh Globally Synchronous

ISA/SISA 64 Mesh Globally Synchronous

WAP 1 Mesh Locally Synchronous

Datawave 16 Mesh Globally Synchronous

iWarp 1 Any Globally Synchronous

Table 2.1. Array features.
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Data Word Features

Table 2.2 illustrates the difference in the data word features. It is important to note the 

data orientation, shown in the first column, has a significant effect on the number of 

wires and data throughput. Bit-serial orientated data is sent between circuit modules 

over a single wire, therefore consuming less circuit area than bit-parallel orientated data 

which requires one wire per bit. However, the speed at which bit-serial data can be 

communicated between circuit modules is slower than bit-parallel data. This is because 

bit-serial data is sent over a single wire requiring n clock cycles to communicate n data - 

bits, as compared to bit-parallel data in which all «-bits are communicated concurrently 

in the same clock cycle.

The second column shows the number of bits used to encode the data, or the data size, 

which is usually dependent on the application environment. For example, Datawave is 

specifically targeted at HDTV applications, which require only 12-bit data words, 

whereas more general-purpose architectures, such as the WAP and iWarp, adopt a larger 

data bandwidth to encompass a wider application environment. Another aspect of bit- 

serial data is the ability to vary the length of data words, as possible in the Blitzen 

processor.

Data

Orientation

Data

Size

Variable Length 

Support

B-SYS Bit-Parallel 8-bits NO

Matrix-1 Bit-Parallel 32-bits NO

Blitzen Bit-Serial 24-bits YES - 4-bit increments

ISA/SISA Bit-Serial 16-bits NO

WAP Bit-Parallel 32-bits NO

Datawave Bit-Parallel 12-bits YES - 12 or 24-bit products

iWarp Bit-Parallel 32-bits YES - 32 or 64-bit products

Table 2.2. Data word features.

Processing Element Functional Features

Table 2.3 shows the PE functional features. As can be seen in the first column, ALU 

complexity is simple for both the ISA and Blitzen architectures as they adopt a bit-serial
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(1-bit data path) ALU due to the bit-serial orientated data. The bit-parallel ALUs, 

adopted for the Matrix-1 (32-bit), WAP (32-bit), Datawave (12-bit) and iWarp (64-bit) 

processors, are larger and more complex. The ISA adopts a bit-parallel multiplier due to 

the relative poor performance of bit-serial multipliers.

The second column shows that the timing of instructions can take one or more 

instruction cycles. All processors, except Matrix-1, execute some of their functions over 

multiple processing cycles. Executing slow computations such as multiply in two 

processor cycles allows the clock period to be reduced thus improving processor 

performance for faster instructions.

Table 2.3 also shows how data memory varies from processor to processor, though, 

only the MIMD processors contain a significant amount of control memory.

ALU Complexity Timing of 

Instructions

Local

Memory

B-SYS 8-bit ALU & comparator Single-cycle 8x8-bit data & 

control

Matrix-1 32-bit ALU & Multiplier Single-cycle 4-K word data

Blitzen 1-bit ALU Two-cycle 1-K bit data

ISA/SISA 1-bit ALU, comparator & 

16-bit multiplier

Two-cycle for 

multiply & compare

l l x l  6-bit data 

2x16-bit inst.

WAP 32-bit ALU Two-cycle

Datawave 12-bit ALU & Multiplier Two-cycle 16x 12-bit data 

64x46-bit inst.

iWarp 64-bit adder/multiplier 

& 32-bit logic unit

Single-cycle 128-words

Table 2.3. PE functional features.

Data Communication Features

Table 2.4 shows several communication rationales. It can be seen from the first column 

that the number of communication ports, or the communications degree, ranges from 2
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to 8 ports. The communication degree for the mesh connected architectures allows bi

directional data communication between neighbouring PEs, whereas the B-SYS and 

Matrix-1 processor allow only FIFO pipelining.

The orientation of the ports are evenly spaced to allow communication with 

neighbouring PEs only.

Finally, the third column shows that the method of passing data for the more complex 

architectures is data-driven/asynchronous in order to aid PE autonomy and to facilitate 

array performance.

Communications

Degree

Orientation 

of Ports

Method of 

Passing Data

B-SYS 1 I/P & 1 O/P Linear Synchronous

Matrix-1 1 I/P & 1 O/P Linear Synchronous

Blitzen 4 I/P & 4 O/P 8-Directions Synchronous

ISA/SISA 4 I/P & 4 O/P NESW Synchronous

WAP 4 I/P & 4 O/P NESW Data-driven

Datawave 4 I/P & 4 O/P NESW Data-driven

iWarp 4 I/P & 4 O/P Any Synchronous or 

asynchronous

Table 2.4. Data communication features.

2.2.5.2 Conclusions

An important observation is that SAs that do not contain on-chip control memory tend 

to accommodate more PEs per chip than those SAs containing control memory. 

However, other factors such as functional complexity and data path width also have a 

significant impact on PE circuit area.

MIMD architectures, such as Datawave, can reduce PE circuit area by limiting the 

complexity of the functional units to integer based computations, though at the expense 

of functional flexibility. Even further reductions can be made by adopting bit-serial PEs, 

such as the ISA, SISA and Blitzen, at the expense of computational performance. The



Blitzen architecture is attractive because it can vary the number of bits used to encode 

data, thus improving performance for small magnitude data.

A major disadvantage of SAs is their method of synchronisation which incurs problems 

associated with clock skew [25, 34]. This problem is caused by the effects of centralised 

control and becomes more apparent as the number of PEs in a network is increased. The 

next section discusses clock skew in more detail.

2.2.6 Timing Issues.

In the previous section clock skew was identified as major concern causing problems of 

synchronisation failure, limited scalability and fixed processing time. This section 

elaborates on the causes of clock skew and the problems it causes.

The feasibility of implementing a digital signal processing algorithm is dependent on the 

ability to realise the required computing power. For example, a typical HDTV 

application, such as image coding, requires the execution of 100 operations per sample at 

a 100-MHz sample rate therefore requiring a performance in excess of 10 giga 

operations per second. Realising this processing speed using Datawave [83, 84] would 

require the use of forty-eight PEs. Therefore, a typical high speed systolic network will 

usually contain 10’s if not 100’s of identical processing elements in order to achieve the 

processing speeds required by the application environment. However, global timing is 

often a limiting factor in realising high speed arrays, to quote S. Y. Kung [47]:

“Whereas the asynchronous model in wavefront arrays incurs a fixed time 

delay overhead due to the handshaking processes, the synchronisation 

time delay in the systolic arrays is primarily due to the clock skew which 

changes dramatically with the size of the array. This latter phenomenon 

will be a potential barrier in the design of ultra-large-scale synchronous 

computing systems.”

The problems of clock skew have become more significant with the developments of 

reduced device feature size, achieving higher switching speeds, on increasingly larger 

chip area. These developments are most apparent in the currently developing field of
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wafer scale integration (WSI) SA design [45, 56, 101]. The aim of this technology is to 

assemble an entire network of chips on a single wafer of silicon, with the objective of 

avoiding the costs associated with individual chip packaging and the loss of performance 

associated with off-chip pin communications. However, this technology adds to the 

problems of synchronising large processor arrays [14]. The two primary difficulties are 

the fact that the clock must propagate relatively greater distances and the large fan-out 

associated with the clock signal.

Ideally, the clock signal is expected to arrive at all the modules on a chip at the same 

time. However, the same pulse may arrive at different modules with a time offset; this 

time offset is dictated by the resistivity of the wires, together with their capacitance, 

determining the rate at which the voltage can be driven onto a wire across its whole 

length. Clock skew causes two main problems:

• Firstly, synchronisation failure of the circuit occurs, caused by the clock signal 

arriving at the array PEs at differing times, resulting in unreliable circuit operation. 

This can be avoided by lowering clock rates and/or adding circuit delays to the faster 

circuits, both at the expense of slowing computation.

• Secondly, circuit scalability is limited because the effects of clock skew become more 

significant when the clock signal has to propagate longer distances such as in large 

VLSI or WSI circuits.

Other factors that can contribute to clock skew include the shape of the clock 

distribution network, the number of modules, the speed of modules, the load of the 

modules, the direction of data transfer with respect to the clock and the clocking scheme 

used.

Another significant problem is that the clock period is fixed to the worst case delay 

through the system. In SA architectures this causes significant loss of performance 

because fast processing functions, such as addition or logical operations, are fixed to the 

same worst case speed as that of the slowest function, such as the multiplier. Multi

cycling of these complex operations, such as multiply, can reduce this problem but not 

eradicate it.
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2.2.6.1 Methods of Overcoming Clock Skew

A number of clock distribution strategies have been developed for use in VLSI and WSI 

technologies. One technique that aims to overcome clock skew is called a Multi-Level 

Buffer Tree [25, 42], shown in figure 2.3. This technique splits a single clock signal 

progressively, level by level, into a regular clock distribution tree in which the points of 

the tree directly clock the storage elements. Buffering is required at each level of the 

tree to standardise the load, with the current drive capabilities for each buffer determined 

by the number of buffers in the next level of the tree. The drawback of this design is that 

it is difficult to scale [34].

A more scaleable approach is to divide the chip into regions, and to distribute the clock 

signal to all of the regions, namely an H-tree [14, 41, 42], This method distributes the 

clock signal via a hierarchy of “H” structures as shown in figure 2.4. In this configuration 

the clock signal is distributed to the rest of the chip by a centralised “H” structure from 

which the signal is transmitted to the four corners of the main “H”. These four signals 

arrive synchronously at the corners and form the inputs to the next level of hierarchy, 

represented by the four smaller “H” structures. The ends of the these “H”s are used to 

clock the local logic.

—

To
Registers

Input

H >
—

Figure 2.3. Multi-Tree buffer.

Clock

Figure 2.4. H-Tree structure.

It must be noted that by adopting a clock distribution strategy the effects of clock skew 

are reduced but not eradicated. As a consequence, an alternative asynchronous method 

of circuit timing known as self-timed control has evolved. The major difference between 

synchronous and self-timed control strategies is the way in which communicational and 

functional delays are handled as they propagate through a system [49].

26



In a synchronous design correct operation is ensured by asserting the signals within the 

system at a specific time, and for a specific duration. This time reference, known as the 

global clock, is calculated from and matched to the worst case delay through the system. 

The clock signal is distributed to all of the modules in order to ensure all computations 

and exchanges of information are synchronised.

In an self-timed design the clock is abolished and instead control is distributed to each 

individual circuit module. The modules themselves are responsible for correct system 

operation in the presence of communicational and computational delays, therefore 

signals within self-timed modules are asserted after some event, and are maintained until 

some other event. The next section presents the concepts that realise self-timed 

architectures.

2.3. Self-Timed Control

In this section a number of self-timed areas are reviewed and analysed. These are listed 

as follows:

• The handling of signals as they pass through a circuit module.

• The handling of signals as they propagate between circuit modules.

• The methodologies used to design self-timed architectures.

• The key self-timed architectures developed to date.

This section concludes with an analysis of the key self-timed architectures in order to 

establish the relative success and extent to which the techniques have been used to 

realise actual self-timed architectures.

2.3.1 Delays Within Circuits - Timing Models

There are three models of self-timed circuit-module operation, each exhibiting 

differences in the way signals are handled on their constituent gates and interconnecting 

wires:

1. The Bounded-Delay model assumes that all delays throughout the system are 

calculated and bounded.
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2. The Speed-Independent model assumes arbitrary delays in gates but wires have no 

delay.

3. The Delay-Insensitive model assumes correct circuit operation in the presence of 

arbitrary delays in gates and on wires.

Each of these models are explained in more depth in the following sections.

2.3.1.1 The Bounded-Delay Model

This approach to circuit design assumes that all wire and gate delays are known, 

uniform, and bounded [26, 35]. This is the same model that is used for synchronous 

circuits. In this model only nodes at the boundary of the Finite State Machine (FSM), 

figure 2.5, are used to represent the state of the module. The boundary nodes for a 

combinational circuit include primary inputs, secondary state inputs (feedback from the 

previous process cycle), primary outputs and secondary state outputs (feedback for the 

next process cycle).

Inputs

Present
State

Combinational

Logic

Outputs

Next
State

F e e d b a c k
D e l a y

A

B

c

Figure 2.5. Sequential FSM. Figure 2.6. Circuit delay hazard.

There are several concerns when implementing self-timed bounded delay finite state 

machines which do not occur when implementing synchronous systems. Firstly, since 

there are no global clocks to synchronise input arrivals, signals can arrive at any time, 

and so the system must behave correctly in the presence of multiple input changes. For a 

two input circuit example, the system must not move directly from input ‘00’ to ‘11’ as 

this may cause the circuit to produce erroneous output, otherwise known as a dynamic 

hazard, but instead must briefly pass through ‘01’ or ‘10’. Also, the output state must 

remain stable while these inputs transitions occur.
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Secondly, care must be taken to ensure that delay-hazards are not present in the circuit. 

To illustrate a delay-hazard the following example is used. The circuit depicted in figure

2.6 will introduce a hazard when a change takes place on input B, assuming all gates 

have a gate delay associated with them. Assuming the current state of the circuit is 

(A,B,C)=(1,1,1), if we now set B=‘0’ then the delay in the invertor will cause the top 

AMD gate to become false, before the lower becomes true, and a ‘0’ will propagate to 

the output, F. This is known as a delay-hazard and can be eliminated by ensuring the 

sum-of-products circuit doesn’t contains a variable and its complement.

In order to cater for sequential circuits, a model similar to that used for synchronous 

circuits must be adopted thus forcing several requirements on the circuit. Firstly, the 

combinational logic must be stable in response to a new input before the present state 

entries change. This is achieved by placing delay elements on the present state feedback 

lines. This restriction applies also to the next-state inputs. The final requirement is that 

the next external input transition cannot occur until the entire system settles to a stable 

state. These restrictions are what define a fundamental mode circuit. The fundamental 

mode of operation [90] requires that the circuit may receive new inputs only after all of 

the circuit’s nodes have stabilised. These rules are listed as follows ( > means ‘before’):

1. All inputs become defined > All outputs become defined

2. One input becomes undefined > All outputs remain defined

3. All inputs become undefined > All outputs become undefined

4. One input becomes defined > All outputs remain undefined

The bounded-delay model discussed has been successively applied to synchronous 

systems, however, there are some common problems that restrict its use in self-timed 

design. Firstly, the bounded-delay circuit modules must assume worst-case delays thus 

leading to worst case behaviour.

Secondly, the throughput of a bounded-delay self-timed system is extremely poor due to 

the severe timing restraints that must be enforced on the system components [26],
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Finally, synchronisation failure in a synchronous system can be easily rectified by 

clocking the chip at a slower rate. However, in a self-timed system there is no clock to 

slow down and a delay fault can cause incorrect circuit operation that cannot be fixed. 

Techniques to ensure that no delay faults arise tend to be very complex and time 

consuming. As a consequence of these problems, the difficulty in designing a complex 

pipelined microprocessor is enormous, and the performance of such an implementation 

would be extremely poor.

2.3.1.2 The Speed-Independent Model

The first assumption of the Speed-Independent model [26, 66] is that all gates have 

arbitrary and unknown delays. This assumption means that the state of the circuit has to 

be represented in a different manner to the bounded delay model. In this approach signal 

values on all nodes within the combinatorial circuit represent the state of the circuit 

module and all gate transitions are carefully ordered to constrain the circuit’s state 

transitions. This can be realised by constraining the interaction of the circuit with its 

environment, such that new values on the circuit’s input can only be supplied in response 

to a change in its output. Sietz has specified a set of rules that describe a sequence of 

events, called the Input-Output Operational Mode [90], These are listed below for a 

multiple input and output circuit module ( > means ‘before’):

1. One input becomes defined > One output becomes defined

2. All inputs become defined > All outputs become defined

3. All outputs become defined > One input becomes undefined

4. One input becomes undefined > One output becomes undefined.

5. All inputs become undefined > All outputs become undefined

6. All outputs become undefined > One input becomes defined

To ensure correct operation a second assumption states that within a circuit module the 

same signal propagating along different branches of a forked wire must proceed at the 

same rate. If this assumption was not enforced then a gate on one end of the fork may 

switch before the gate on the other fork, thus producing a delay-hazard.
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Implementing this assumption, such that a signal propagates at the same speed along all 

wires, is complex. In response, a stronger assumption has been made stating that all 

wires within a circuit must incur negligible delays. A region within an integrated circuit 

in which all wires have negligible delays is called an isochronic region, and a branched 

wire within this region is called an isochronic fork [3, 90]. The rules for the input-output 

mode are relaxed in that a change on a single node on the output may cause a change on 

the input, therefore the adoption of an isochronic region for the entire circuit is essential. 

However, the realisation of isochronic delay assumptions can be difficult to realise in 

practice and is usually dependent on the implementation technology, wire lengths, gate 

construction and switching thresholds, therefore the isochronic constraint may require 

fault testing.

2.3.1.3 The Delay-Insensitive Model

Signals in a delay-insensitive circuit [9, 26, 76] are assumed to be arbitrary on both gates 

and wires. Therefore, this model requires no assumptions about isochronic regions or 

the delay of the combinational circuit to ensure correct operation. To signal the 

commencement of computation in a delay-insensitive module a supervisory sub-circuit is 

required that monitors each of the inputs and flags when each changes state [9], A 

second component of this circuit then detects when all of the inputs are in the same state, 

then signals to the module to begin its function. Therefore, the operation of a delay- 

insensitive module must correspond to the fundamental mode of operation described 

earlier.

As no delay assumptions are applied to data as it propagates within or between gates, or 

between circuit modules, a new method of passing data is necessary. In a bounded-delay 

circuit the logic level of a wire is assumed to be correct by a given finite time, and thus 

can be processed at that given time. In a delay-insensitive system no assumptions can 

made as to when a wire will reach its desired value, thus data must be handled very 

carefully. A single wire cannot be used for level-encoded items, as two consecutive logic 

‘0’s cannot be distinguished from one another. Therefore, two wires are necessary to 

permit safe transfer of data. This approach not only transmits data but also 

communicates to self-timed modules to co-ordinate the progress of a computation. The 

handling of signals between circuit modules is considered in more detail in section 2.3.2.
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The problem with the class of delay-insensitive circuits is that it is very limited because 

some of the more complex circuits are difficult to implement efficiently. However, any 

circuit is possible if the class of delay-insensitive modules is augmented with the 

isochronic forks [60, 67] assumption resulting in a reasonable quasi-delay-insensitive 

compromise. A C-element incorporating an isochronic-fork is investigated by Kees van 

Berkel [3].

2.3.1.4 Analysis of Models

This section has shown that there are a number of ways to implement self-timed circuits 

that have differing gate and wire assumptions. These assumptions are summarised below 

in table 2.5.

Model Gate Delays Wire Delays

Bounded Bounded Bounded

Speed-

Independent

Unbounded Bounded

Delay-

Insensitive

Unbounded Unbounded

Table 2.5. Summary of delay assumptions.

Of these methods the bounded-delay model, in its purest form, is the most difficult and 

time consuming model to implement because of the strict timing assumptions that are 

physically difficult to implement. However, a design method called micropipelines 

redresses the problem by combining a bounded-delay data path with a delay-insensitive 

control circuit (to be discussed in section 2.3.3.3). Also, the bounded delay model tends 

to limit concurrency, thus, efficient data paths in general cannot be built. Therefore, the 

bounded-delay model addressed here will no longer be considered.

The delay-insensitive model is the most attractive as it promotes truly scaleable circuits, 

in the presence of arbitrary unbounded delays at any level, and leads to easier design. 

The class of delay-insensitive circuits is limited, though a compromise is possible through 

the adoption of speed-independent techniques. Delay-insensitive circuits are also self

checking because any circuit faults or stuck-at-faults will eventually cause the entire 

system to lock up, thus automatically providing complete fault coverage [11].
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2.3.2 Delays Between Circuits - Signalling Protocols

The correct handling of signals, as they propagate between circuit modules, is essential 

to guarantee the correct progression of computation and/or information. In a self-timed 

system where there is no global clock any transfer of information must be co-ordinated 

between the communicating circuits via the use of a signalling protocol. The reader is 

referred to the bounded signalling protocol [26, 75, 100], otherwise known as the data- 

bundled protocol, and the unbounded signalling protocols [1,9, 12, 107].

2.3.2.1 Analysis of Signalling Protocols

There are two main ways to implement the co-ordination of data transfer between 

communicating modules. The data-bundled approach is attractive because it is closely 

related to the synchronous method in that it only requires one wire to encode each bit. 

However, a degree of re-design is necessary when scaling between implementation 

technologies, or porting modules to other designs, because of the need to re-calculate 

time delays for each request wire.

The second approach is attractive because it assumes unbounded delay assumptions for 

all wires, consequently no redesign is necessary when scaling or porting circuit modules. 

The disadvantage of this approach is that each bit must be encoded using two wires 

resulting in designs that consume more circuit compared with equivalent synchronous or 

data-bundled implementations.

2.3.3 Self-timed Design Methodologies

There are three main circuit design methodology classifications that cover the majority of 

self-timed circuits developed to date.

• The first uses a graphical specification [7, 8] as the starting point to eventually 

derive a verifiable set of logic equations and circuit structures.

• The second technique is based upon compiling a high level language [28, 59] down 

to a VLSI circuit.

The third is a more informal approach that uses a library of macro-modules [100] that 

can be connected together by a designer to form circuits of micro-processor complexity.
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As there are numerous approaches to design self-timed circuits only the predominate 

method for each area is considered in depth.

2.3.3.1 Graphical Specification: Signal Transition Graphs

The signal transition graph (STG) [7, 8, 65, 108, 109] is presently the most amenable 

and widely used graphical approach to self-timed circuit design to date. It does not 

suffer from the same problems as the Petri-net which is restricted by a set of 

components (otherwise known as places) which are difficult to transform into an actual 

circuit realisation [26],

A STG describes circuit behaviour by specifying the precedence of transitions in a 

circuit, where transitions are interpreted as rising and falling transitions of signals of a 

control circuit. A control circuit can be said to consist of input signals which are caused 

by the environment, and output transitions that are caused by the circuit itself. STGs 

consist of a number of causal relations, for the various signal types defined above, where 

an arc is drawn between an input and output transition thus depicting the causal relation.

A hierarchical system design extension to the STG model has been developed that 

describes a composition procedure for the composition of deterministic STG circuit 

specifications. However, there is very little evidence to date that this work has been 

actually used to design complex microprocessor systems. The reader is referred to 

P.N.Lam etal [52],

2.3.3.2 High-Level Language : Communicating Sequential Processes (CSP)

In this method a computation is described as a set of communicating sequential 

processes (CSP) [59, 71], in a notation very similar to that to C.A.R Hoare’s CSP [28], 

The source program is then compiled in a series of semantic-preserving transformations 

resulting in a circuit which is correct by construction. The compilation process is made 

up of four steps; namely process decomposition, handshaking expansion, production rule 

expansion and operator reduction. These compilation steps are described as follows:
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Process Decomposition

The first step replaces each process by a number of several semantically equivalent 

processes, resulting in a program of simple assignments and communication commands.

Handshaking Expansion

The second step replaces each channel by a pair of wire-operators.

Production-rule Expansion

This step compiles the handshaking expansion into a set of production rules from which 

all specific sequencing has been removed. By matching those rules to the operator 

semantics the program can be identified with networks of operators.

Operator Reduction

This last step consists of identifying sets of production rules in the program with sets of 

production rules which describe the operators. The program can then be identified as a 

set of circuit operators.

The system level design is completed by “mechanically” [61] interconnecting the various 

circuit modules together. As a result, there is no information available on the system 

level design using Martins CSP technique.

2.3.3.3 Macro-modules: Micropipelines

This approach to self-timed design is closely related to the widely-used hierarchical 

black box design approach adopted by most synchronous hardware engineers. It relies 

upon the existence of a library of basic building blocks, or standard cells, which can be 

assembled together by the designer to form much more complex self-timed systems. 

This requires that the functionality of each macro-module be exactly specified to the 

designer. The interface for each library module is usually considered delay-insensitive in 

order the keep the timing considerations away from the designer.

The predominant method in this category is the Micropipelined [75, 100] approach 

developed by Ivan Sutherland. Although the Micropipeline’s data path is closely related 

to the bounded-delay model, it differs in that the data path is controlled by a delay-
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insensitive handshaking circuit. The micropipelined handshaking protocol adopts 

transition signalling, where the change between two logic levels is recognised as a 

signalling event, whereas the data is still represented using the conventional level- 

encoded logic states.

To implement the delay-insensitive handshaking protocol, two wires, called request and 

acknowledge, are used to connect the sender to the receiver in addition to an arbitrary 

number of data lines. In a communication, the sender places a value on its data lines and 

then sometime later produces an event on its request line. Some arbitrary time later the 

receiver accepts the data and then replies to the sender with an event on its acknowledge 

line. As can be deduced from this protocol the delay in transmitting data from the sender 

must be less than the delay in transmitting the request event; otherwise the request could 

arrive before the data is valid. This convention is said to be bundled because the request, 

acknowledge and data lines must be treated together when considering the delays in the 

circuit.

[DELAY}

Logic Logic

iDELAYi

Cd Cd

PdCd

Figure 2.7. Micropipeline containing storage elements 

and optional combinational logic.

The other major element required for a micropipeline design is the event-driven storage 

device. Figure 2.7 shows several instances of the storage element each labelled ‘REG’. 

Each storage element has two event inputs called capture (C), which render it 

transparent, and pass (D), which latches a data bit, and two outputs called capture done 

(Cd) and pass done (Pd) which are corresponding completion signals for C and D. In the
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event of a capture, a Cd event from the predecessor must be synchronised with the Pd 

event from the current capturing element. To pass data, the Cd from the successor must 

monitored by the current passing element.

In order to perform an AND on events the conventional set of Boolean logic gates 

cannot be used, as these devices cannot remember their previous inputs. Instead, a C- 

element [100] is used that only outputs an event when all inputs enter the same logic 

state. The C-element is utilised to synchronise the arrival of the Cd and Pd signals to 

signal the commencement of a capture phase. Figure 2.7 also shows how these storage 

elements are connected together to form a register pipeline. The hashed boxes between 

the storage elements labelled ‘Logic’ show how processing logic can be added to form a 

computational pipeline.

Interconnecting Micropipelines is based on the modular building block, or ad-hoc, 

approach, consequently, there is no information available regarding the system level 

design of micropipelined architectures.

2.3.3.4 Analysis of Self-timed Design Methodologies

In this section three of the main methods of designing self-timed circuits have been 

presented. Making a clear comparison between the various methods in terms of the 

resultant circuit area and performance is difficult, however, there are a number of clear 

differences that can be distinguished.

Firstly, only the STG and CSP methodologies allow the specification to be transformed 

into actual circuit realisations. Efficient algorithms for STG synthesis [106] and CSP 

synthesis [59] are well established and understood. Complex system-level design using 

the STG method results in over complicated graphical specifications [26],

Micropipelined design suffers in that there is no guidance on how to design complex 

systems. Current micropipelined architectures are generally designed in an ‘ad-hoc’ 

fashion, as no synthesis technique is currently available.

37



In conclusion, it is very difficult to assess which methodological approach is the best to 

adopt for the design of circuit modules and system-level architectural design. As a 

consequence, the extent to which these methods have been used to realise actual 

processor implementations must be addressed. This will establish the current state and 

extent to which the various self-timed design methodologies have been used in ‘real- 

world’ practical design situations.

2.3.4 Review of Key Self-timed Architectures

This section reviews a number of key architectures that use the previously presented self

timed design methods. The review of each architecture will concentrate upon the design 

(or specification) method, the data encoding technique, circuit implementation and 

architectural complexity.

2.3.4.1 The First Asynchronous Microprocessor [61, 62]

The pioneer asynchronous self-timed processor architecture was developed and 

transformed using the CSP [28, 59] design method explained in section 2.3.3.2. The 

focus of the research was to demonstrate the automatic compilation technique, rather 

than the processor architecture. Therefore, the architectural complexity is 

straightforward containing one simple 16-bit processing unit RISC processor, including 

12 registers, four buses and an ALU. Other features include separate data and control 

paths, no delayed branches, and globally shared buses, resulting in a tightly-coupled 

architecture. Circuit implementation was realised using speed-independent circuit 

elements, and the data encoding technique was realised using four-phase dual-rail 

encoding. The processor was fabricated in 1.6pm technology achieving a speed of 18 

MIPS using 20,000 transistors.

2.3.4.2 The Self-Timed RISC Processor [10]

The Self-Timed RISC processor is an advanced delay-insensitive architecture using the 

same CSP design method developed by Martin. The architectural complexity is more 

complicated than the first asynchronous microprocessor including a data processor 

(including register bank, ALU and decoder), and branch processor (including two 

decoders and program counter) that communicate through self-timed FIFOs serving as 

decoupling buffers. Both the branch processor and data processor communicate with the
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instruction memory, while only the data processor communicates with the data memory. 

The data encoding technique uses four-phase dual-rail signalling protocol for both data 

and control. Circuit modules are realised using delay-insensitive combinational logic, 

master-slave registers, finite state machines and FIFO register elements, as described in 

[9]. The advantages of this architecture include decoupled data and branch processing, 

variable delayed branches, acknowledge-less channels to remove redundant control 

signals and combined data-path and control. No information relating to cost or 

performance was available at the time of printing this thesis.

2.3.4.3 Amulet I [18, 19, 20]

The Amulet 1 project was established to investigate the potential power reduction due to 

an asynchronous implementation. The main goal of the project was to apply the 

micropipelined design method, adopting the two-phase data-bundled encoding technique, 

to an existing synchronous design of microprocessor architectural complexity, namely 

the ARM6; a RISC chip developed by ACORN Computers Limited.

The Amulet 1 consists of a number of pipelined sub-units, namely: the address interface 

(issues read and write requests), the register bank [73] (localised data storage that 

utilises a novel register locking mechanism), the execution unit [21] (ALU and multiplier 

that operate at an average rate of computation) and the data interface (reads data from 

memory and redirects it to the instruction pipeline, register bank or address interface). 

The major difference between the amulet’s pipelining and that of the ARM6 is that the 

pipelining is elastic due to the asynchronous nature of operation. This elasticity allows 

the supply and demand of information between the various sub-units to be decoupled, 

thus allowing a high degree of overlapping execution.

The Amulet 1 circuit has been implemented, using the library of macro-modules defined 

by Sutherland [100], in 1pm technology achieving a performance of 9K dhrystones at 

83mW using 58,374 transistors, as compared to the ARM6 which achieves 14K 

dhrystones at 75mW using 33,494 transistors.
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2.3.4.4 The Non-Synchronous RISC (NSR) Processor [6, 77]

The NSR processor is a general-purpose 16-bit RISC machine developed using the 

Micropipeline design method. Circuit implementation is realised using Micropipelined 

macro-modules that adopt the two-phase data-bundled data encoding technique. The 

architectural complexity corresponds to a conventional RISC machine such that the 

instruction fetch, instruction decode, execute, memory and register bank operations are 

pipelined. In addition, each of these units is decoupled, like Amulet 1, through self

timed FIFO queues allowing a high degree of overlapping instruction execution. The 

NSR processor circuit implementation was realised using seven field programmable gate 

arrays with a best-case performance of 1.3 MIPS draining between 40.8mA and 53.1mA.

2.3.4.5 TITAC [68]

The architectural complexity of TITAC is simple in that it corresponds to a conventional 

load, compute and store 8-bit von Neumann microprocessor developed using a macro

module design method. TITAC circuit implementation is realised using quasi-delay- 

insensitive (adopting the isochronic-forks assumption) circuit elements, using the four- 

phase dual-rail data encoding technique, though some control-path elements adopt a 

simple request/acknowledge wire pair.

Two control structures were implemented for comparison. The first is a hardwired 

controller (Cl) where the control structure was implemented by replacing, or mapping, 

the primitive elements of the dependency graph with one of five primitive circuit- 

elements (refer to page 56 of [68]). The second technique adopted a microprogrammed 

controller (C2), though, as no delay-insensitive memory was available 1-bit to dual-rail 

conversion was necessary. Combinational circuits, in the data path and control path, are 

implemented by transforming a binary decision diagram (BDD) representation of a 

function into a multi-levelled dual-rail implementation. Results have shown that C2 

requires almost three times the number of gates as its synchronous counterpart. There is 

no synchronous counterpart for Cl.

TITAC uses 5,517 cells and has been fabricated using 1 pm technology achieving a 

peak-speed of 11.2 MIPS with a peak power consumption of 212mW for C l, and 1.8
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MIPS with 70mW for C2. A by-product of this research produced a library of building 

blocks for design automation.

2.3.4.6 The CounterFlow Pipeline Processor (CFPP) [94]

A CFPP, currently being developed by Sproul et al, uses a bi-directional Micropipeline 

design, adopting the two-phase data-bundled data encoding technique method, in which 

partially executed instructions and results move in counter flowing directions. A general 

CFPP architecture connects an instruction fetch unit at the bottom with a register unit at 

the top with a decoupled instruction execute pipeline in-between. Advantages of this 

architecture include localised control, regular structure, local communication, modularity 

and simplicity. This architecture is still under development.

2.3.5 Analysis of Key Self-Timed Architectures

This section analyses the key features of the previously presented architectures for the 

following issues:

1. The extent to which the various design methodologies have been used.

2. Identification of relationships between the processor complexity and the design 

methodology.

3. The scalability of the architectures.

The self-timed review section has briefly introduced the key architectures. This section 

presents an analysis that represents the features in a more accessible manner. Table 2.6 

shows the general features for the reviewed architectures. From this it can be seen that 

the micropipeline design method seems to be the most widely adopted approach for 

various processor complexities, with very little application of the formal methods in 

microprocessor design. The micropipeline architectures predominately adopt two-phase 

signalling protocols using techniques developed by Sutherland [100].

No evidence as yet has been found of purely delay-insensitive processor architectures, 

however, TITAC re-addresses this balance by adopting quasi-delay-insensitive circuit 

modules. Consequently, due to the bounded or isochronic timing assumptions, none of 

these architectures are truly architecturally scaleable without a degree of re-design.
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Finally, it is extremely difficult to identify which performance characteristics are due to 

the design method and which are due to the architecture and/or technology.

Design

Method

Processor

Complexity

Signalling

Protocol

Circuit Delay 

Assumptions

Fabricated
?

FAM CSP Simple Four-phase Speed-

Independent

Yes

ST-RISC CSP Complex Four-phase Delay-

Insensitive

No

Amulet 1 Micro

pipeline

Very

complex

Two-phase Bounded Yes

NSR Micro

pipeline

Complex Two-phase Bounded Yes

TITAC Macro

module

Complex Four-phase Quasi-Delay-

Insensitive

Yes

CFPP Micro

pipeline

Not known Two-phase Bounded No

Table 2.6. General features.

2.3.5.2 Conclusions from Analysis

The analysis of the key architectures has established that there has been little widespread 

progress made in designing and implementing complex programmable processor designs 

using formal design methodologies [7, 59]. CSP and STGs have been used to implement 

a small number of simple processor designs, however the vast majority of the complex 

architectures have been implemented using the macro-module approach. In fact, 

N.Paver [72], a co-designer of Amulet 1, identified a number of drawbacks with formal 

self-timed design techniques which are still apparent today. The drawbacks of formal 

techniques are as follows:

• They are limited to the size, type and complexity of circuit they can process.

• The resulting circuit carries significant overhead relating to area and performance.

The application of these techniques has not progressed sufficiently so that they can be 

generally adopted for the design of complex self-timed architectures.
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The evidence shows that adopting any of the formal design methodologies will hinder the 

development of a novel complex self-timed array architecture at this time. These formal 

methods are still in their infancy in terms of their application to complex real-world 

architectures. Therefore, a less formal approach, based on a macro-module 

methodology, must be adopted to realise a complex self-timed SA architecture.

2.4 Thesis Objectives

The review chapter has shown the need for a study in the design of self-timed SA 

architectures as a result of the problem of array scalability, attributed to clock skew, and 

the current lack of work in self-timed SA processor design. This study must provide a 

basis for the evaluation of existing synchronous and self-timed design techniques for the 

implementation of array processing elements.

No information could be gained during the review regarding the trade-offs of self-timed 

design methods, compared with traditional synchronous techniques, for SA architecture 

realisation. It is therefore important to perform a study, comprising a series of 

investigations, to establish self-timed design strategies for the implementation of SA 

architectures. The study must characterise the nominated self-timed implementations in 

terms of circuit area, performance and design trade-offs compared with one another, and 

also against their synchronous counterparts.

A significant number of self-timed architectures have been constructed. However, it is 

very difficult to establish the reasons for the variations in cost and performance. To 

perform this study it is essential to perform investigations upon a single SA architecture, 

or research vehicle, thus providing a fair comparison of the existing synchronous and the 

new self-timed strategies. The suitability of the research vehicle must be categorised in 

terms of its ability to fully investigate the potential benefits of self-timed design.

Identification of Objectives

Most complex self-timed architectures to date have been developed using ad-hoc or 

macro-module methods, while recent research has focused on circuit synthesis and 

formal specification techniques. Consequently, there is very little understanding of the 

trade-offs between the various design strategies adopted for array architectures.
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To address these issues this thesis presents a methodological study of array and 

processing element architectural design. Two primary aims have been identified:

The first aim is to derive a coherent design framework to determine the differences 

between implementation techniques. Three objectives are identified.

1. To determine requirements for the implementation of self-timed architectures

when used for SA design.

2. The development of novel self-timed architectural structures based on the 

requirements developed in (1) which lead to scaleable and modular array designs.

3. To characterise the implementation characteristics in terms of area and

performance for the existing synchronous and novel self-timed architectural 

designs and to compare their relative trade-offs.

The second aim is to establish strategies for the design of self-timed architectures 

utilising the framework from the first aim. Two objectives are identified:

1. To produce guide-lines for the design of new self-timed architectures which do

not require re-design when ported between architectures or circuit technologies.

2. To produce guide-lines for the selection of self-timed or synchronous circuit

design techniques for a given set of criteria.

This thesis aims to provide a detailed analysis in the design of self-timed array 

architectures using a common design framework and methodological study. This will 

lead to an understanding of the potential of self-timed techniques for general array 

implementation.
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2.5 Conclusion

This chapter has provided a review of systolic array architectures and self-timed design 

techniques. A number of conclusions can be made from this review:

1. There are a wide variety of SA architectures that differ in circuit cost and 

performance, the reasons for which are due to their method of programming (SIMD 

or MIMD), data path implementation (Serial or Parallel), PE interconnection (Mesh 

or Linear) and synchronisation of data transfer (Synchronous or Data-driven).

2. A SA can be either globally or locally controlled resulting in globally synchronous or 

locally controlled data driven PEs, respectively.

3. Global timing of SAs causes problems of clock skew and limited scalability.

4. Self-timed control abolishes the clock therefore overcoming clock skew and its 

associated problems.

5. An architectural scaleable SA, that does not require redesign when ported between 

implementation technologies, can only be realised with delay-insensitive self-timed 

techniques.

6. Formal methods for self-timed design are still in their infancy consequently the 

macro-module approach predominates.

The merits of adopting self-timed techniques for SA design is unclear. As a 

consequence, a number of research objectives issues were identified in section 2.4 for 

further study, so that the potential of self-timed SA design can be more clearly 

understood.
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CHAPTER 3

EXPERIMENTAL OVERVIEW

3.1 Objectives of the Chapter

The purpose of this chapter is to identify and describe experiments to address the thesis 

objectives. The second purpose of this chapter is to describe the experimental 

methodology and experimental assumptions used and referenced from the later 

investigative chapters. The chapters aims are as follows:

• A description of the experimental objectives is provided.

• The experimental methodology to be utilised by each investigation is described.

• The assumptions shared by all the experiments are stated.

• The Mentor Graphics tool suite and VHDL language used to model and simulate the 

newly constructed architectural models is presented.

• The experimental chapters aims, procedures and intended outcomes are summarised.

3.2 Objectives and Methodology of the Experiments

In the review chapter a number of fundamental areas were identified where very little 

knowledge exists in the systolic self-timed processor design domain. As a consequence a 

number of topics must be considered, listed below, that address the thesis objectives 

identified in chapter 2:

1. The requirements and methods for implementing self-timed SA architectures.

2. The realisation of self-timed SA architectures using the requirements and 

methods established in (1).

3. The circuit area and performance characteristics of self-timed SA architectures.

4. The circuit area and performance trade-offs between self-timed and synchronous 

SA architectures.

5. Guide-lines for the design of self-timed SA architectures.

6. Guide-lines for the selection of self-timed or synchronous circuit design 

techniques for SA design for a given set of criteria.
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3.2.1 Scope of the Study

One important aspect of the review chapter is the wide variety of different systolic array 

implementations that are available. Most of these architectures, due to historic 

developments, are synchronous in nature, therefore the advantages and disadvantages of 

self-timed systolic array architectures are not known.

Another important key aspect of the review chapter is the number of self-timed design 

methodologies available, again each having their relative advantages and disadvantages. 

An exhaustive study comprising all of these architectures and self-timed design methods 

would be beyond the scope of this project. Thus, the scope of this study is limited to a 

single architecture, or research vehicle, that is the most amenable to the strictest self

timed design technology.

There are two levels at which the study can take place - at the hardware level and at the 

application level. The aim of this project is to propose design strategies for self-timed 

systolic array architectures, not to analyse the relative effects of self-timed 

implementation on the large number of systolic algorithms. Thus, the investigation is 

limited to hardware implementation.

There are a wide variety of self-timed implementation techniques available to realise self

timed circuits, however the majority of these assume that each circuit module resides 

within an isochronic region. Such techniques [60] would be unsuitable for this project 

because they are not easily scaleable between different fabrication technologies.

Only techniques that realise truly scaleable unbounded intra- and inter-module delays will 

be considered. Recent work by Lloyd [57, 58, 111, 112] has proposed a number of 

scaleable dual-rail RTZ and NRTZ modules that correspond to the implementation 

conditions of our self-timed architecture. Therefore, both of these implementation 

techniques have been adopted for this research resulting in RTZ and NRTZ versions of 

the research vehicle. This will enable a comparison to be made between these two 

technologies in terms of cost and performance.
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3.2.2 Experimental Methodology

In this section the experimental methodology employed throughout the project is 

described.

The research aim is to establish the trade-offs of adopting self-timed techniques as 

compared with synchronous techniques in systolic arrays. This can only be achieved 

through adopting a common research vehicle architecture to ensure a ‘level-playing field’ 

in which to perform the investigations. The research vehicle, namely the Self-Timed 

Single Instruction Systolic Array (ST-SISA), is based on that of an existing synchronous 

architecture called the Single Instruction Systolic Array (SISA); the reasons for its 

selection are explained in chapter 4. There are a number of areas such as data signalling, 

data communication and architectural structure that differ from the SISA implementation 

due to the self-timed nature of operation; also considered in chapter 4. These differences 

require analysis and investigation and thus are addressed in the appropriate experimental 

chapters.

The experiments can be sub-divided into the data path, control path and processing 

element investigations. Each experiment was undertaken according to a standard 

methodological approach tailored to fulfil the thesis objectives. The methodology 

describes an ordered procedure in which each thesis experiment was undertaken (step 2 

is omitted if the experiment does not require any hardware models to be constructed).

1. Identify the fundamental requirements of the experiment and the investigations 

that need to be performed to satisfy these requirements.

2. Develop hardware models of the architectures according to common design rules 

and assumptions (described in section 3.3). Adopt the following standard 

developmental procedure to produce these models.

a) Identify the requirements of the function independent of implementation 

technique.

b) Identify the requirements of the function when considering the self-timed 

design techniques. This is sub-divided as follows:
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i) Identify the requirements of the function when considering effects 

of the fundamental mode of self-timed operation and variable 

length words.

ii) Identify the requirements of the function when considering the 

RTZ/NRTZ self-timed encoding and end of word (EOW) tagging 

techniques (see section 3.4.1).

c) Derive the new RTZ and NRTZ architectures using the requirements 

derived in b(i) and b(ii).

3. Establish the existing synchronous implementation for the function.

4. Simulate the newly built architectural models in order to verify their correctness.

5. Measure the cost and performance characteristics of the simulated architectural

models.

6. Determine design and selection guide-lines.

The techniques and tools used to model the newly developed self-timed architectures are 

presented in the following section.

3.3 Experimental Assumptions

The purpose of this section is to state the assumptions to be adhered to by the 

experimental chapters. Therefore, a number of issues have to be addressed in order to 

satisfy the following:

1. Selection of a suitable research vehicle in which to perform the proposed

investigations.

2. Selection of a suitable macro-module library in order to realise the new self-timed 

architectures.

3. A method of modelling the macro-modules using a high-level behavioural language.

4. An environment in which to construct the new architectures.

5. A simulator in which to test the newly built architectures and to establish their

performance characteristics.

6. Selection of a suitable implementation technology in order to characterise the self

timed and synchronous architectures such that their performance and area

characteristics can be easily compared.
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3.3.1 Simulation Assumptions

The self-timed designs are constructed from a library of building block macro-modules

(Appendix D) previously specified by Lloyd [57, 58, 111, 112]. The reasons for the

selection of this library are as follows:

• The library is readily available.

• The library is tried and tested.

• The circuit speed and area of the library modules are known.

• Simulation of the macro-modules is straightforward.

The synchronous SISA model used in this project is taken from the original SISA 

constructed by ISATEC. However, the SISA circuit designs illustrated at the level of 

abstraction shown in this thesis cannot be referenced as they have never been published 

by ISATEC. The information for these illustrations was obtained during a two week 

visit to ISATEC. Therefore, references are made, where possible, to circuit designs that 

relate closely to the SISA circuits depicted in this thesis. The bit-serial latching 

mechanism adopted for the SISA conforms to the single-phase clocking technique 

described by Schimmler [81], and is further elaborated in [63, 91],

The simulation of the library modules was achieved by specifying the behaviour of each 

module using the VHDL language provided in the Mentor Graphics tools suite, namely 

the IEEE standard System-1076 (VHDL) Very high speed integrated circuit Hardware 

Description Language [69]. The timings extracted from the standard library were used as 

parameters in the behavioural description for each module, thus allowing the timing of 

each function to be specified, therefore any timing source, such as manufacturer specific 

timings, could also be used

The self-timed architectures were realised by interconnecting the appropriate macro

modules, using a standard system construction methodology (Appendix D), in a 

schematic design environment called Design Architect; a package in the Mentor Graphics 

CAD suite. This allowed the whole system architecture to be described pictorially. 

Sample schematic diagrams for the RTZ and NRTZ ST-SISA architectures are shown in 

Appendix A and Appendix B, respectively. Sample Macro-module VHDL code is
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shown in Appendix C. The self-timed architectures were then simulated using Quicksim 

II in order to verify their correctness and to establish their performance characteristics.

The timings for each module were specified using a relative unit of measurement, namely 

the delta (A) delay, where a A delay is equivalent to the average switching time (low-to- 

high and high-to-low transitions) for a standard two-input NAND gate. Therefore, the 

timing of the system components and architecture is not dependent on a particular 

implementation technology. Another reason for using the A delay is that the latency of 

all the modules in the adopted library have been measured in these delays therefore 

accurate performance simulations are possible.

3.3.2 Design Assumptions 

Delay Assumptions

The choice of delay assumptions is essential to the design of self-timed architectures. 

These assumptions are critical to the cost, performance and ease of design. So far this 

project has highlighted the delay-insensitive timing model as the strictest and most easily 

scaleable model to realise self-timed circuits. Therefore, self-timed architectures 

implemented using delay-insensitive timing operate correctly in the presence of 

unbounded inter- and intra-module line delays and unbounded intra-module gate delays; 

the fundamental mode of operation.

The reasons for adopting delay-insensitive timing are as follows:

• The resulting circuits are technology independent, therefore the design will be 

scaleable between different technologies.

• The resulting architecture operates correctly independent of time delays at any level, 

thus resulting in a straightforward and portable design.

• Co-ordination and control of the circuit elements is sequenced and not time 

dependent allowing the replacement of any circuit module without any form of 

system redesign.

As a consequence of adopting this timing model all information must be dual-rail 

encoded in order to satisfy the delay assumptions. There are currently two methods of
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encoding data on dual-rail lines, namely the RTZ and NRTZ encoding techniques. The 

macro-module library consists of modules for both of these techniques. Both the RTZ 

and NRTZ techniques are used to implement the ST-SISA, thus resulting in two versions 

of the ST-SISA.

For many implementation technologies, such as CMOS, the signal delay through any 

circuit element is dependant on the direction of the signal transition; a high-to-low 

transition takes a different amount of time than a low-to-high transition. As the time 

taken to produce new output is determined by the direction of a transition then the 

magnitude of the data on the dual-rail input(s) determines the speed of the circuit. 

Therefore, the switching speed of a circuit is determined by the logical state of the input 

and so is data-dependent. In this work it is assumed that the number of high-to-low and 

low-to-high transitions averages out over time, consequently, all delays are average case 

measurements.

Instruction Set Selection

The SISA instruction set includes a wide variety of arithmetic, logical and comparison 

instructions. However, due to the time constraints of a three year one man research 

project it was not possible to implement the complete SISA instruction set for the ST- 

SISA. Therefore, a survey was undertaken to establish the most commonly used SISA 

programs.

This survey concluded that matrix transposition and matrix sorting constitute the 

majority of SISA programs, with a smaller number of computational based programs 

such as matrix multiplication. As a result of this survey, only the essential instructions 

such as READ, AND, OR, ADD, MIN and MAX compare were implemented. For 

simplicity it is assumed that these functions operate upon unsigned integer data. This 

instruction set covers a wide enough range of applications to make the ST-SISA viable.

3.4 Introduction to the Investigations

This section summarises the investigations that address the thesis objectives, identifying 

the questions for each investigation.
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3.4.1 The Research Vehicle Study

This study was undertaken in order to select an existing synchronous architecture that 

would benefit from self-timed implementation, thus forming the self-timed research 

vehicle, namely the ST-SISA. This suitability study involved identifying an existing 

architecture that exhibited clock skew, fixed worst case performance and restricted 

scalability in the expectation of resolving these problems via self-timed implementation. 

In addition, due to the circuit area overhead of self-timed circuits an architecture was 

selected that would not significantly add to overall cost of the circuit design. Therefore, 

it is essential to adopt a bit-serial architecture. However, this led to a problem of how to 

signal the end of a bit-serial word in the absence of a global timing mechanism.

As a consequence this investigation required the identification and development of EOW 

tagging techniques, thus, allowing the length of a bit-serial word to be varied 

dynamically. Other important factors to be considered by this chapter include identifying 

any differences required in the instruction set, programming and architecture of the self

timed research vehicle in comparison to its synchronous counterpart.

These studies enabled a common architectural design to be adopted throughout the 

remaining investigative chapters. Also, the main architectural features of the research 

vehicle’s processing elements constitute the remaining experimental chapters.

3.4.2 The Data Path Investigation

The data path investigation consists of three main experiments namely the register bank 

unit (RBU), data output unit (DOU) and execute unit (EXU) experiments. Each of these 

experiments has four main aims, explained as follows. The first aim is to develop self

timed and encoding guide-lines that aid in the design of the data path function. The 

second main aim is to develop new RTZ and NRTZ architectural structures that realise 

the function. The third main aim is to determine circuit area and performance trade-offs 

between the new RTZ and NRTZ architectures, and existing synchronous architectures. 

The final aim is to establish selection guide-lines that aid in the selection of the 

appropriate design technique for the function for a given set of criteria.
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The main design issues particular to each of the three above mentioned data path 

experiments is elaborated in the following sections.

The Register Bank Unit

The main design issues of the RBU are concerned with methods of controlling and 

synchronising the reading of data from, and writing data to, the register bank, and 

writing data to, and reading data from, its registers. These issues must consider the 

effects of the self-timed operation, the encoding and tagging techniques, and the dynamic 

length of data words.

The Data Output Unit

The main design issue of the DOU experiment is the transfer of the existing SISA data 

communication protocol to the ST-SISA when considering the effect of self-timed 

operation and RTZ/NRTZ signalling techniques. Therefore, the main objective is to 

establish self-timed communication strategies and protocols for interfacing the internal 

PE data path to its external outputs accounting for the time variations associated with 

the unbounded timing model at both the PE and array levels.

The Execute Unit

The EXU has many functional operations including, assignment, AND, OR, ADD, MIN 

and MAX. As a consequence, this experiment consists of three sub-experiments that 

cover the development of each of these functions: logical (AND, OR), addition and 

comparison (MIN, MAX) experiments. The main design issues of each of these 

experiments is examination of the effects of the self-timed techniques on the functionality 

of each instruction, thus ascertaining any possible changes that needed to be made to the 

design functionality. In doing this the following questions were addressed for each 

function, when adopting the RTZ and NRTZ encoding and tagging techniques:

• What are the possible effects when varying word size in successive execution cycles? •

• What are the effects when varying the length of the input data words in the same 

execution cycle?

• Is it possible that the length of the output word is in excess of the length of the input 

words?
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• Is it possible to produce an output bit for every bit input?

3.4.3 The Control Path Investigation

The control path consists of six main functions. Thrqe of these functions are common to 

both the new ST-SISA and the existing synchronous SISA architectures: instruction by

pass unit (IBU), instruction fetch unit (IFU) and instruction decode unit (DDU). The 

other three functions are only used by the ST-SISA: the overwrite unit (OWU), result 

control unit (RCU) and processing element status unit (PSU). These latter three 

functions are required because the ST-SISA operates in instruction cycles where each 

cycle is sub-divided into a number of dynamic bit-cycles. The number of bit-cycles is 

determined by the length of the longest data word operated upon by the data path. As a 

consequence, these functions are required to co-ordinate the various sub-functions of the 

ST-SISA for both bit and instruction cycles.

The development of these functions constitutes the six main experiments of this 

investigation. Each of these experiments has four main aims, similar to those stated for 

the data path experiments. The first aim is to develop self-timing and encoding guide

lines that aid in the design of the control function. The second main aim is to develop 

new RTZ and NRTZ architectural structures that realise the function. The third main 

aim is to determine circuit area and performance trade-offs between the new RTZ and 

NRTZ architectures, and existing synchronous architectures for each of the IBU, IFU 

and IDU functions. However, no synchronous comparisons are possible for the OWU, 

RCU and PSU. The final aim is to establish selection guide-lines that aid in the selection 

of the appropriate design technique for the function for chosen design criteria.

The main design issues for each of the six experiments is briefly explained in the 

following six sections.

The Instruction By-pass Unit

The function of the IBU is to send the instruction word to the IFU only if two 

corresponding control bits it also receives are set to the appropriate logic value, 

otherwise the instruction is deselected and by-passes the PE. The main design issue is 

concerned with the IBU receiving a differing number of bits on its instruction and
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selector inputs, causing problems of dead-lock in the fundamental mode of circuit 

operation, because each input must receive an equal number of state changes.

The Instruction Fetch Unit

The IFU must first convert the bit-serial instruction into the equivalent bit-parallel 

instruction to correspond to the synchronous SISA. It must also handle the regeneration 

of this bit-parallel word in order to control the various sub-functions of the data path for 

each and every bit-cycle of an instruction cycle. The main design issues here are 

concerned with the storage and regeneration of the instruction word for a dynamic 

number of bit-cycles until the end of the instruction cycle is detected.

The Instruction Decode Unit

The IDU controls the various functions of the data path. The main design issues are that 

the IDU must monitor the status of the data path in order to disable the appropriate 

functions which have completed their functions. However, the IDU must continue to 

control other functions that require to continue processing in the same instruction cycle; 

these status signals are provided by the PSU.

The Over Write Unit

The function of the OWU is to dispose of the old data item from the selected destination 

register in order to make space for the new data item. This function is considered to be 

part of the control path because it must provide a status signal on each bit-cycle to the 

PSU to identify whether the old data item has been discarded or not. The main design 

issue here is the continuance of signalling a new state change on the status output when 

no more old data item bits can be read from the selected destination register.

The Result Control Unit

The RCU monitors the result path between the EXU and the RBU looking for the end of 

the bit-serial result operand so that it can signal to the PSU the end of the EXU 

execution cycle. The main design issue of the RCU is similar to that stated for the OWU 

in that it must continue signalling a new state change on its status output to the PSU on 

every PE bit cycle though no result bits can be read.
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The Processing Element Status Unit

The PSU unit monitors the status outputs from the OWU and RCU, in addition to the 

source data operand outputs from the RBU in order to signal the end of the instruction 

cycle. This function also provides status bits to the IDU indicating which parts of the 

data path it should disable and continue to control. The main self-timed design issue of 

the PSU is to continue sending state changes to the IDU in order to signal the status of 

the RBU source operand outputs which have been disabled by the IDU.

3.4.4 The Processing Element Investigation

The main aim of this experiment is to establish that the PE operates correctly when the 

data and control paths are connected together. The second objective of this experiment 

is to compare the cost and performances of the RTZ, NRTZ and synchronous PE 

architectures. This will provide valuable information on the overall processor 

performance for each executable instruction, assessing the trade-offs of the various 

design techniques and identifying any bottle-necks in the self-timed architectures. The 

third aim is to analyse the effect on RTZ and NRTZ processor performance in terms of 

the effect on PE instruction latency, when taking into account the variation in data 

communication and instruction execution latency of neighbouring PEs. The final aim is 

to suggest guide-lines to aid the designer in the selection of the appropriate design 

technique for a SA for required performance and area characteristics.

3.5 Conclusion

This chapter has identified the experimental objectives. It has stated that a common 

research vehicle must be used to ensure a ‘level-playing field’ in which to investigate 

these objectives. The simulation and design assumptions to which the experiments must 

adhere to have been established. Finally, the investigations that address the experimental 

objectives have been described.
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CHAPTER 4

THE RESEARCH VEHICLE

4.1 Objectives of the Chapter

This chapter provides the background to the research. The research vehicle, the Self- 

Timed Single Instruction Systolic Array (ST-SISA), is described in terms of its 

control mechanisms, array structure, processing element structure, application and 

design methodology.

The ST-SISA is based on the architecture of the synchronous Single Instruction 

Systolic Array (SISA). This chapter begins by identifying the functional properties of 

the SISA architecture that must be included within the ST-SISA implementation. The 

encoding and end-of-word tagging techniques adopted for the self-timed 

implementations are defined. The ST-SISA is introduced including the array level 

interconnection, processing element (PE) functionality, programming and the adopted 

instruction set.

4.2 The Single Instruction Systolic Array (SISA)

The Single Instruction Systolic Array (SISA) [53] provides enormous computing power 

for mathematical based applications such as image processing and ray tracing by use of 

massive parallelism. The SISA architecture is a bit-serial mesh connected array where 

application flexibility is provided by the programming of three streams of control 

information which are systolically pumped through the array, as shown in figure 4.1; 

instructions along the columns and selector bits along the columns and rows.

A single instruction (made up of two words) is input to the top left PE from where it 

moves, step by step, in the horizontal and vertical directions through the array forming a 

computational wavefront. This guarantees within each instruction diagonal that the same 

instruction is active before being passed onto the next diagonal (E.g. Figure 4 .1 - Shows 

the SISA containing, from right to left, read_west, read_north, add, read_west and 

read_north instructions). Instructions are selected or de-selected for execution by the
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logic value of the column and the row selector bits, if both are logic ‘1’ the instruction is 

executed, if either are logic ‘O’ the instruction is transformed into a NOP.

COLUMN
SELECTORS

INSTRUCTIONS

SISA

INSTRUCTION DIAGONALSROW SELECTORS

Figure 4.1. SISA control flow.

4.2.1 SISA Array Level Data and Control Interconnection

This section presents the interconnection schemes that implement control and data 

communication in the synchronous SISA. Figure 4.2 shows the input and output 

requirements for each SISA PE: north, east, south and west bi-directional data ports, 

instruction input and output, row and column selector input and output, word and bit 

clock inputs. Almost all information transfers are synchronised by the globally 

distributed bit-clock, except for the row and column selector transfers which are 

synchronised by the globally distributed word clock. Figure 4.3 shows how the PEs are 

interconnected to form an array.
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Figure 4.2. SISA PE input/output.
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Figure 4.3. The SISA array.

4.2.2 SISA Processing Element Architecture

The following describes some of lower level functional details of the SISA, as depicted 

in figure 4.4. The execute unit (EXU) implements a wide variety of instructions including 

register assignment, logical, addition and comparison. The execution of each instruction 

takes one word clock, which consists of 16 bit clocks. The word clock is used to 

synchronise operations, such as fetch and decode, which only need to be done once for 

each word cycle. The bit clock is used to synchronise bit by bit operations, such as 

addition and register assignment. This necessitates that a bit clock and a word clock are
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broadcast to all PEs to synchronise internal bit by bit operations and instruction cycles, 

respectively. Consequently, each instruction takes the same execution time. Also, since 

every instruction is propagated to the neighbouring PE directly after its execution, PEs 

only need to buffer the present instruction. Therefore, they do not need their own control 

stores.

Each PE has a register bank unit (RBU) containing 11 registers each laid out as a 16-bit 

shift register. It passes on one or two operands, via its two addressable multiplexors 

RBU MUX A and RBU MUX B, to the EXU and receives results from the EXU via the 

RBU demultiplexor (RBU DMUX). The first register of the RBU is the communication 

register which can be read by the PE itself or by one, some or all of its four neighbouring 

PEs. Therefore, data communication is possible in the north, south, east and west 

directions on the execution of a read instruction. To avoid read/write conflicts read 

access is always performed before write access within the same clock cycle.

The instructions are read bit-serially and are kept in two shift registers, storing word 0 

and word 1, from which control information is distributed to where it is used in the PE. 

The instruction buffers are also fed with the status of the row- and column-selector bits 

which mask their output to the instruction decoder. Only when both these selectors are 

logic ‘ 1 ’ will control information be passed to the other functions of the PE, otherwise, 

no control is produced and effectively a no-operation (NOP) is performed.
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Figure 4.4. The SISA PE top level functions.

The advantage of the SISA over the ISA [81, 78, 105] is that it has a reduced instruction 

bandwidth because only one instruction is input into the array on each word cycle, as 

compared to many instructions for the ISA. However, the PE architectures for the SISA 

and ISA are exactly the same. This construction leads to a very flexible architecture 

which creates the possibility of very efficient solutions for a large variety of applications.

The SISA was selected as the research vehicle for this project for the following reasons:

1. High degree of parallelism - Facilitates high performance.

2. Locality of communication - Fits in well with the self-timing philosophy.

3. Fixed worse case processing speed - Due to the globally synchronous pipelined 

nature of the SISA all operations take the same worst case time to process. 

Adoption of self-timed control techniques should eliminate this problem.

4. One instruction input as opposed to n for the ISA.

5. Bit serial operation - Minimises interconnection lines and keeps circuit size down to a 

minimum.

6. Multi-purpose architecture.
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4.3 The Self-Timed Single Instruction Systolic Array (ST-SISA)

This section begins by introducing the bit-serial encoding and tagging techniques 

adopted for the ST-SISA. The interconnection schemes required to implement control 

and data communication in the ST-SISA array are then presented. The processing 

element architecture and its major functional blocks are elaborated. The ST-SISA 

instruction set and field format are defined. Finally, an example ST-SISA program is 

explained.

4.3.1 Data and Control Communication Techniques

Two problems need to be addressed in order to realise self-timed communication in a bit- 

serial architecture. Firstly, encoding techniques must be identified that encode bit-serial 

data in a purely delay-insensitive manner; so that the arrival of new data can be detected 

in an environment where unbounded delays are assumed. Secondly, because there is no 

global timing reference in self-timed architectures the end of a bit-serial word cannot be 

signalled as for the conventional clocked SISA. Therefore, end-of-word (EOW) tagging 

techniques must be adopted in order to signal the end of a self-timed bit-serial word.

4.3.1.1 Encoding Techniques

Two dual rail encoding techniques could be used to realise delay-insensitive data 

communication in a self-timed bit-serial array, namely; retum-to-zero (RTZ) [9] and 

non-return-to-zero (NRTZ) [12].

4.3.1.2 Bit-Serial End of Word Tagging Techniques

RTZ and NRTZ encoding provide self-timed communication techniques for 

synchronising bit by bit data transfer operations, therefore replacing the function of the 

global bit clock. The main use of these above mentioned techniques is in bit-parallel 

systems. However, neither of these approaches provides a facility to signal the end of a 

bit-serial word. Consequently, EOW tagging techniques are required for both RTZ and 

NRTZ encoding in order to make the ST-SISA feasible, and are considered in the 

following two sections.
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4.3.1.2.1 RTZ End of Word Tagging

In the RTZ encoding technique valid data is encoded on two lines, using two-bit 

representations for data-true (1,0), data-false (0,1), and the empty state (0,0 = E). This 

leaves the unused (1,1) state to be utilised as a EOW Tag bit. This approach is attractive 

as it allows the (T)ag bit to be placed after any (V)alid bit in the stream, and before the 

(V)alid bit of the successive word, thus promoting variable length words (Example 4.1.).

TVEVEVTVEVEVEVEVEV 
100101110001000100 -> FO 
110000100100010001 -> FI 

 W1 ►

Example 4.1. RTZ EOW Tagging.

The conventional RTZ register cannot accommodate the illegal (1,1) state, so an 

alternative FIFO register design must be adopted. An appropriate alternative is the 

NRTZ register [58], comparable in size to the RTZ register, which can accommodate all 

dual-rail bit combinations. The advantages of this approach is that the EOW Tag can be 

placed at any position in the bit-serial transmission and taking the logical AND of the 

dual-rail is all that is required to detect the EOW Tag. Also, there is no encoding 

overhead associated with this tagging technique as a spacer token is simply replaced by 

an EOW Tag.

4.3.1.2.2 NRTZ End of Word Tagging

Signalling the end of a NRTZ bit-serial word is a much more complex problem than for 

the RTZ protocol, as no spare bit representation can be used. As a result the task of 

finding the end of a NRTZ stream is reduced to a process of counting bits or imposing a 

second encoding technique such as Huffman encoding [87]. Huffman Encoding is 

unattractive because data would have to be encoded and subsequently decoded at some 

later point resulting in a loss of performance and requiring extra circuitry. This overhead 

is present in all forms of encoding techniques. Consequently, for this work only the first 

approach is explored.
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The method identified periodically reserves a bit position, of any EVEN phase, in the 

data stream to indicate the EOW Tag. For example, every fourth bit in the data stream 

in the example below (Example 4.2.) is reserved to indicate the EOW (T)ag. If this is set 

to logic ‘1’ then the EOW is found, otherwise if it is set to logic ‘0’ then more (D)ata 

bits for that word are expected. In this approach every fourth bit is simply ignored by 

arithmetic/logical functions and so the extra decoding circuitry required by the Huffman 

approach is not needed. In addition, unlike the RTZ method extra registers are not 

required to store empty states.

The disadvantage of this approach is that the word size is a multiple of the tag period. 

Therefore, in some cases bits preceding the EOW Tag bit are not used to encode actual

data. These unused bits are simply encoded as logic ‘O’ data bits and so can be ignored

by arithmetic/logic functions.

TDDDTDDDTDDDTDDDTDDD 
11000010101000110000 -> F0
10010111111101100101 -> FI

W2—  W1 ►

Example 4.2. NRTZ EOW Tagging.

By using a latched pipeline, with at least three latches, it is possible to connect the output 

of the last stage to the input of the first, forming a delay-insensitive ring [92, 93]. 

Therefore, if the ring is initialised to contain a pre-determined bit sequence consisting of 

a series of logic zeros ending with an EVEN phase logic ‘1’ tag bit, a simple counter 

circuit is realised, as shown in figure 4.5. If the number of bits in the ring is matched to 

the tag period then the EVEN phase logic ‘ 1’ tag bit in the ring can be used to detect the 

end of a word. For example, for each data bit processed the contents of the ring are also 

rotated by one bit. If both the ring output bit and the data bit are set to an EVEN phase 

logic ‘ 1 ’ EOW Tag bit then the end of the word is detected. The main advantage of this 

approach is that for short tagging periods a saving in silicon area is made over that of 

conventional counters.
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Figure 4.5. An NRTZ delay-insensitive ring for tag detection.

4.3.1.2.3 NRTZ End of Word Tag Period Selection.

To ensure data items are not inefficiently encoded, careful selection of the appropriate 

tag period is crucial. For example, if the magnitude of the data to be encoded is small 

then adopting a large tag period would be inappropriate as there would be a large 

number of unused bits.

Selection of the correct tag period is dependent on the maximum data word-length of the 

desired architecture. For the ST-SISA we have chosen to operate on small magnitude 

words, up to a maximum of 16-bits, therefore the tag period is expected to be small. 

However, the exact tag period to adopt is not clear, therefore it is essential to assess the 

efficiency of adopting various tagging periods for a 16-bit system. This involves 

calculating the percentage efficiency based on the ratio of the number of bits used to 

represent the magnitude of the data to the total number of bits, including EOW Tag(s) 

and unused data bits, required to encode the entire word. This information is depicted in 

figure 4.6 which shows the percentage efficiency of word lengths ranging from 1 

incrementally to 16-bits adopting 4-, 6- and 8-bit tagging periods.

Figure 4.7 shows the average efficiency over various data bit ranges, including 1- 4 

(ranging over the low order nibble), 13-16 (ranging over the high order nibble), 1-8 

(ranging over the low order byte), 9-16 (ranging over the high order byte) and 1-16 (the 

complete word range).
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It can be seen from this graph that the 4-bit tagging period is the most efficient for the 

low order nibble and byte ranges. For the high order nibble and byte sized words the 6- 

bit tagging period is the most efficient. For the complete range of bits the 4-bit tagging 

period performs best on average. Therefore, it was decided to adopt the 4-bit tagging 

period for our design as this performs best in the average case, and on words that fit 

within the low-order byte and nibble ranges.
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Figure 4.6. Percentage efficiencies using 4-,6- and 8-bit tagging periods.
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Figure 4.7. Average percentage efficiencies.

4.3.2 ST-SISA Array Level Data and Control Interconnection

The ST-SISA has three streams of control information which are pumped through the 

array, these being the instructions, and the row and column selector bits [30], Data 

communication between neighbouring PEs is possible bi-directionally in the north, east,
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south and west directions [31]. In order to implement these communication channels a 

dual-rail line (two wires), and an acknowledge wire, is required for each PE bit-serial 

input and output. Figure 4.8 shows the input and output requirements for each ST-SISA 

PE and figure 4.9 shows how the PEs are interconnected to form an array.
INST. COL. 
INPUT INPUT

DATA IN/OUT 
NORTH

ROW 
  OUTPUT

ROW
INPUT

ST-SISA

PEDATA IN/OUT 
WEST

DATA IN/OUT 
EAST

KEY:
DUAL-RAIL 
CONTROL LINE 

DUAL-RAIL 
DATA LINE 

SINGLE RAIL 
ACK. LINE

INST. COL. 
OUTPUT OUTPUT

DATA IN/OUT 
SOUTH

Figure 4.8. The ST-SISA PE.
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Figure 4.9. The ST-SISA array.

4.3.3 ST-SISA Processing Element Architecture

The ST-SISA PE is made up of several blocks as shown in figure 4.10. Each block of 

the processor accepts data from its inputs, processes it in accordance with its function 

and outputs its data in First-In-First-Out (FIFO) order.
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These blocks produce output for each and every state change on their inputs. Therefore, 

to correspond to the rules of delay-insensitive design each function must receive a state 

change on all its inputs before an output can be produced, otherwise, the function 

remains in its current state. As a consequence this protocol requires that control 

information be re-generated for all the functions of the processor for each and every bit- 

cycle. The process of fetching and regenerating the control word is a function of the 

instruction fetch unit (IFU).
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CONTROL
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Figure 4.10. The ST-SISA processing element architecture.

A brief overview of the operation of the processor reveals a FIFO data path under the 

direct control of a FIFO control path. The operation of these is elaborated as follows:

The Control Path

The instruction bypass stage (IBU) reads the status of the column and row selectors, if 

both are set to logic ‘1* then a copy of the instruction is taken from the instruction 

stream and passed on to the IFU, hence the instruction is selected for execution. If 

either or both of the selector bits are logic ‘O’, meaning that the instruction is not 

selected for execution, then the instruction is simply ignored. The IFU takes the bit-serial 

instruction and converts it into a bit-parallel representation before outputting it to the 

instruction decode unit (IDU). The IFU unit also stores the bit-parallel control word in
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order to re-send it to the LDU in successive bit-cycles. The IFU sends the next control 

word only when the appropriate completion signal is received. The EDU sends decoded 

register information to the register bank unit (RBU) and decoded instruction information 

to the execute unit (EXU) and data output functions.

The Data Path

One or both of the RBU multiplexors (RBU MUX A and RBU MUX B) read a source 

operand from one of the RBU registers before sending it on to the EXU. The EXU 

stage then performs an arithmetic, logical, comparison or assignment operation on the 

source operand/operands producing a result. The RBU’s demultiplexor takes the result 

and then directs it to the appropriate register of the register bank. In the case when the 

result is written to the communication register (RO) a copy is also output to the 

appropriate neighbouring PEs via the data output unit (DOU).

ST-SISA Processing Element Functional Units

Details of the individual blocks of the ST-SISA PE are as follows:

The Instruction Bypass Unit (IBU)

The IBU takes as its input the row, column and instruction bit-serial control streams. If 

the instruction is deselected for the PE then one or both of the selector bits will be set to 

logic ‘O’. In this case the instruction is simply ignored by the IBU, therefore by-passing 

the rest of the PE architecture entirely. If both the row and column selector bits are set 

to logic ‘ 1 ’ then the instruction is passed onto the instruction fetch unit bit by bit. Also, 

each input to the IBU is forked and connected to the next respective successor PE for 

each respective control stream, thus, implementing the array level control interconnect.

The Instruction Fetch Unit (IFU)

The IFU takes the bit-serial instruction and converts it into a bit-parallel representation 

before sending it on to the IDU. This functionality corresponds to the SISA 

implementation. The IFU unit also stores the bit-parallel control word in order to re

send it to the IDU in successive bit-cycles. As outlined earlier, each function of the PE 

must receive a state change on all inputs before a new output is produced. 

Consequently, for each bit-cycle of the PE the IFU regenerates the same control word so
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that the IDU can re-apply decoded control information to each PE block. The IFU 

fetches the new control word when the appropriate status control signal is received from 

the register bank.

The Instruction Decoder Unit (IDU)

The IDU takes the parallel instruction from the IFU and generates the necessary control 

signals for the RBU, EXU and DOU. The IDU also accepts control status input from 

the RBU in order to disable registers that have been read and are no longer needed.

The Register Bank Unit (RBU)

The RBU (containing four registers for the purposes of this research) receives address 

information from the IDU. It passes on one or two operands, via its two addressable 

multiplexors, to the EXU and receives results from the EXU. Register 0 doubles as a 

communication register in that any data written to it is also sent to the DOU. Data 

stored in each individual general purpose register can vary in length from 1 to 16 bits.

The EXecute Unit (EXU)

The EXU receives its instructions in pre-decoded form from the IDU. It uses that 

information, and the necessary source operands from the RBU, to produce a result. The 

result is then routed back to the RBU. The execute unit performs several functions: 

AND, OR, ADD, ASSIGN, MIN and MAX. All except the MIN and MAX instructions 

produce a single output bit for every input bit. For these special instructions both 

operands are completely consumed before the result is generated and output to the RBU. 

This is because the appropriate word cannot be selected for output until the most 

significant bit of both source operands are compared. Therefore, both the MIN and 

MAX units require internal storage for two 16-bit data words.

The Data Output Unit (DOU)

The DOU takes whatever is input to the communication register RO and outputs copies 

along dedicated output paths to the appropriate neighbouring destination PEs. It obtains 

its destination control information from the result operand field. In the event of a write 

instruction being issued each bit of the result address field is used to represent a 

directional select/deselect flag (bitO-North, bitl-East, bit2-South, bit3-West). Whenever
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a flag is set to logic ‘ 1 ’ data is sent to the PE in that direction. This necessitates that a 

write instruction is identified by the IDU in order to address only the communication 

register.

4.3.4 ST-SISA Instruction Set

The ST-SISA is a 16-bit machine, implementing the simple instruction set shown in 

Table 4.1. Each ST-SISA PE operates solely on data stored in registers and data read 

from its four direct neighbours. There are four general purpose registers, one of which 

acts as the communication register (RO). Any data written to this special register, via 

executing the write instruction, is also copied and output to the appropriate neighbouring 

PEs, via the DOU.

Most of the instructions operate on two operands, addressable by Ra and Rb as shown in 

Table 4.1, including; AND, OR, ADD, MIN and MAX, with the WRITE, ASSIGN and 

READ instructions requiring only one source operand. The ASSIGN and READ 

instructions are realised using the same opcode since both assign data to an internal PE 

register. The only difference is that the source operand address field of the ASSIGN 

instruction references one of the internal PE registers whereas the READ instruction 

references an input from one of the neighbouring PEs. All instructions, except no

operation (NOP) which does not affect the state of the PE, produce a result (Rd).

No. Mnemonic Encoding Action

0 NOP 000 NO ACTION

1 ASSIGN/READ 
Rd, Ra

001 -Rd- -Ra- Rd Ra (internal or external)

2 AND Rd, Ra, Rb 010 -Rd- -Ra- -Rb- Rd <- Ra AND Rb

3 OR Rd, Ra, Rb 011 -Rd- -Ra- -Rb- Rd <- Ra ORRb

4 ADD Rd, Ra, Rb 100 -Rd- -Ra- -Rb- Rd <r Ra ADD Rb

5 MIN Rd, Ra, Rb 101 -Rd- -Ra- -Rb- Rd <r Ra IF Ra < Rb ELSE Rb

6 MAX Rd, Ra, Rb 110 -Rd- -Ra- -Rb- Rd <r Ra IF Ra > Rb ELSE Rb

7 WRITE RO, Ra 111 -R0- -Ra- -Rb- R0 Ra

Table 4.1 - The ST-SISA instruction set.
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The operations of the EXU stage are performed at a varying rate of computation 

dependent on the data word length and the complexity of the instruction executed.

Bit-serial data words input to the EXU stage not only vary in length from one instruction 

cycle to the next, but can vary in length with respect to one another in the same 

execution cycle. For example, an addition operation can add a word of 4 bits to a word 

of 12 bits producing a 13-bit result. This is the case for all arithmetic instructions. 

However, all functions must receive a state change on all their inputs every bit cycle in 

order for their function to be performed. This is clearly not the case if words vary in 

length, and will result in the circuit locking up because one of the inputs will cease to 

receive data bits for that word cycle. Therefore, dummy bits must be appended to the 

end of short words to ensure each input receives a state change on every bit cycle. A 

solution to this problem is presented in chapter 5.

ST-SISA Instruction Format

A ST-SISA instruction contains an operation code and address information for accessing 

register memory and performing I/O transfers. Figure 4.11 shows the format of the 16- 

bit instruction separated into two 8-bit words each containing two encoded sub-fields.

OPCODE RESULT
WO bits 0 to 3 bits 4 to 7

OPERAND B OPERAND A
W1 bits 0 to 3 bits 4 to 7

Figure 4.11. The ST-SISA instruction format.

The first word (WO) encodes the instruction op-code and the address to which the result 

is to be written; whether it be an internal general purpose register or one or more of the 

four neighbouring PEs. Bits 0 to 3 encode the instruction to be executed. When a write 

instruction is executed the result field bits, 4 through to 7, are used to represent the 

North, East, South and East output directions of the PE, respectively. Therefore, logic 

‘ 1 ’ bits in the result field indicate to the DOU which neighbouring PEs are to receive the 

data.
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The second word (Wl) encodes the address of two source operands which are processed 

by the EXU. Operand A can address either one of the registers of the RBU or one of 

four external data inputs to the PE, whereas operand B can address only one register of 

the RBU. Figure 4.12 shows an example in which the result, produced by adding 

together the content of registers 1 and 2, is written to register 3.

WO - 0100 0011 

W l - 0001 0010 

Figure 4.12. Instruction encoding example.

4.3.5 ST-SISA Programming

Programming the ST-SISA replaces the requirement of correct timing and sequencing, 

necessary for synchronous architectures such as the SISA, with that of correct 

sequencing [29]. As can be seen from the example SISA program, depicted in figure 

4.1, leading logical ‘0’ selector bits are placed before the actual program bits; in 

selector rows 2 and 3, and selector columns 2 and 3. This reason for this is to 

maintain the correct timing of selector bits.

For ST-SISA programs, no leading logic ‘O’ selector bits are necessary because PEs 

cannot perform their operation until all control information on their inputs arrives. 

For example, the first row selector bit for PE 0,1 (PE arrangement as seen in figure 

4.9) and the first column selector bit for PE 1,0 cannot be read until PE 0,0 passes 

the column selector bit to PE 0,1 and the row selector bit to PE 1,0. In this respect,

the ST-SISA operates much like the Wavefront Array in that control wavefronts

propagate from the top left PE towards the bottom right PE. However, trailing 

selector bits in columns and rows 1 to n are required to ensure all control information 

is removed from the ST-SISA array before the next program is issued.

A study of SISA programs has identified that SISA programs fall into three main 

categories:

1. Communicational - Matrix transposition.

2. Computational - Matrix addition.

3. Conditional - Bubble sort.
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4.4 Conclusion

This chapter has identified an architecture, deemed suitable for self-timed 

implementation, that exhibits all the problems associated with synchronous control. The 

new self-timed architecture, the ST-SISA, has been described in the following terms:

• Techniques to encode and signal the end of bit-serial words.

• Wire interconnection of the PEs.

• PE architecture.

• Programming.

The architecture described in this chapter is independent of the circuit implementation 

technology, assuming the technology uses dual-rail encoded circuit interfacing. 

However, the low-level implementation of the described architecture is dependent on the 

adopted dual-rail encoding technique; whether it be RTZ or NRTZ. Therefore, the 

effects of adopting the encoding and EOW tagging techniques introduced in this chapter 

must be investigated in the following experimental chapters in order to determine the 

differences of the ST-SISA architectures, and also for means of cost and performance 

comparison with the ST-SISA’s synchronous counterpart.
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CHAPTER 5

THE DATAPATH

5.1 Objectives of the Chapter

The objective of this chapter is to derive design guide-lines for the development of RTZ 

and NRTZ data path functions. These design guide-lines are developed through the 

design of the register bank unit, data output unit and execute unit architectural 

structures, constituting the second main aim of this investigation. The relative cost and 

performance characteristics for the new RTZ, NRTZ and existing synchronous data path 

functions can then be established. The final aim is to analyse these results in order to 

establish selection guide-lines that allow the identification of the most efficient design 

method for data path functions for a given set of criteria.

5.2 Introduction to the Data Path

The ST-SISA data path is shown in figure 5.1. It consists of several functions: a register 

bank unit (RBU), an execute unit (EXU) which includes ADD, AND, OR, MIN and 

MAX functions, and the data output unit (DOU). The operation of these data path units 

has been described previously in chapter 4.
DATA

INPUTS
N E S W£  DATA 

S OUTPUTSDOU

EXU

Figure 5.1. The data path.

The development of these self-timed RTZ and NRTZ architectures, and the comparison 

of their characteristics against each other and their synchronous counterparts, constitute 

the three main experimental sections of this chapter.
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5.3 Experimental Methodology and Assumptions

To ensure consistency throughout the three proposed investigations in this chapter, and 

the following experimental chapters, the same experimental and design methodologies 

are adopted. The standard experimental methodology can be found in chapter 3 and the 

design methodology in Appendix D.

The RTZ and NRTZ ST-SISA architectural features investigated in this chapter are 

established on their corresponding synchronous SISA counterpart. However, it is not 

always possible to base the RTZ and NRTZ architectures directly on their synchronous 

counterpart due to the timing constraints of the self-timed design technique; as will be 

seen in the comparator experiment. Therefore, in such a case the new RTZ and NRTZ 

architectures have been developed to match the synchronous counterpart as closely as 

possible.

The self-timed architectures shown in this chapter have been modelled and simulated 

using the Mentor Graphics tool suite, discussed in chapter 3, in order to verify their 

correctness and to establish their performance characteristics.

The metrics used to assess the implementation characteristics of the RTZ, NRTZ and 

synchronous designs are listed below:

Latency delay: The time taken for a function to complete a word processing cycle

(measured in delta delays (A)); for variable length data words for 

both RTZ and NRTZ architectures, and fixed length data words for 

synchronous architectures.

Throughput rate: The number of words that can be processed by a function in one A

delay unit (1 A/latency) for each possible word length.

Hardware: The area of the circuit in terms of the number of two-input NAND

gate cell primitives required to implement the function.
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It is important to note that the delay-insensitive functions addressed in this chapter are 

performed at a varying rate of computation. The rate of computation is not only 

dependent on the complexity of the operation but also on the length of the bit-serial data 

word. Therefore, the bit-serial data words input to a function can vary in length from 

one instruction cycle to the next, and with respect to each other within the same 

execution cycle. For example, an addition operation could be required to add a word of 

4-bits to a word of 12-bits. Consequently, due to the variable nature of the input 

operands, and the fundamental mode of circuit operation, a common problem is 

recognisable in each function. This problem is stated as follows:

All RTZ and NRTZ functional circuit modules must receive a state 

change on all their inputs in every bit cycle in order for their function to 

be performed. This is not the case, if words vary in length in the same 

instruction cycle, and thus results in circuit dead-lock because one of the 

inputs will cease to receive data bits for that word cycle.

In order to overcome this problem, in the fundamental mode, the input that reads the 

shorter word must still receive signal changes in order for the circuit module to produce 

its function. Therefore, dummy bits must be appended to the end of the shorter word 

therefore making both words of the same length.

5.4 The Register Bank Unit (RBU)

The RBU is shown in figure 5.2. Its role is to store variable length bit-serial data words 

in the PE, direct output data to the DOU and input data from one of the neighbouring 

PEs. It receives address information from the instruction decode unit in order to instruct 

it to read either one or two source operands via its two addressable multiplexors. The 

source operand provided by RBU MUXA is either read from one of the internal 

registers, or one of four inputs from the four neighbouring PEs, whereas RBU MUXB 

can read only one of the internal registers. The RBU addressable demultiplexor RBU 

DMUX receives the result operand from the EXU which is either written to one of the 

internal registers or to the DOU for external PE output.
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Figure 5.2. The register bank unit.

5.4.1 The Self-timing Requirements

To fulfil the functional requirements it is necessary to select the path of the data through 

the RBU and to synchronise the appropriate acknowledge signals between its various 

sub-functions. For example, if a register acts as a source to both RBU MUXA and RBU 

MUXB it must know when both multiplexors have read its output, so it can synchronise 

the appropriate acknowledge signals received from RBU MUXA and RBU MUXB. 

However, if a register acts as the source to only RBU MUXA then only the acknowledge 

signal from RBU MUXA needs to be monitored, not the acknowledge from RBU 

MUXB. Consequently, each register needs to know whether it is to act as the source to 

RBU MUXA and/or RBU MUXB, and/or the destination to RBU DMUX.

Due to this functional complexity each register requires local control circuitry to co

ordinate the synchronisation of the appropriate acknowledge signals for each of the 

above mentioned operational instances. There are eight combinations in which a register 

can operate in conjunction with MUXA, MUXB and the DMUX. These are as follows:

1. Register acts as a source to RBU MUXA.

2. Register acts as a source to RBU MUXB.

3. Register acts as a source to both RBU MUXA and RBU MUXB.

4. Register acts as a destination to RBU DMUX.

5. Register acts as a source to RBU MUXA and as a destination to RBU DMUX.
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6. Register acts as a source to RBU MUXB and as a destination to RBU DMUX.

7. Register acts as a source to both RBU MUXA and RBU MUXB, and as a 

destination to RBU DMUX.

8. Register not used as either source and/or destination.

5.4.2 The RTZ Experiment 

The RTZ Requirements

Data path components that operate on the EOW Tag bit are realised using NRTZ 

circuitry because of the need to cater for the EOW Tag bit. However, all local control 

circuitry operates on and generates RTZ encoded control information. The reason for 

adopting RTZ control codes is because the path of the data through the RBU cannot 

change until the first bit cycle of a new instruction, which is always a data valid bit cycle. 

As a consequence, because all control inputs to the data path functions are RTZ 

encoded, an empty phase control code automatically selects the same data path as that 

previously selected by the data valid control input.

The RTZ RBU Architecture

The RTZ RBU architecture is shown in figure 5.3.
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Figure 5.3. The RTZ register bank unit.
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REGISTER (0, 1, 2 & 3): The purpose of each RBU register is to store a single data 

word, up to a maximum length of 16-bits. Data can be written to its input and read from 

its output. Specific control circuitry is required to co-ordinate data transfer between the 

register’s write input and RBU DMUX, and/or the register’s read output and RBU 

MUXA and/or RBU MUXB. Due to the complexity of a register, its architecture is 

shown separately in figure 5.4.

RBU MUXA: The role of RBU MUXA is to direct data from one of the RBU registers, 

or from one of the external inputs of the four neighbouring PEs, to the EXU, depending 

on the address placed on its control input.

RBU MUXB: This device directs data from one of the RBU registers to the EXU, 

depending on the address placed on its control input.

RBU DMUX: The role of this device is to direct the resultant data word received from 

the EXU to one of the internal registers for storage, or to the DOU for output to one or 

more neighbouring PE(s). This is controlled by the address placed on its control input.

DMUX/MUXA/MUXB SELECT CONTROL: The purpose of this device is to pass 

the address received from the EDU to the controlled RBU MUX/DMUX only if it is 

required to pass data. If the RBU MUX/DMUX is not used then the address is 

discarded to ensure only the required components of the data path are selected.

The RTZ Register Architecture

The RTZ Register Architecture is shown in figure 5.4.
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Figure 5.4. The RTZ register.

MUX: The role of MUX is to direct either the new data into the register, if it is selected 

as the destination for the result, or to re-write the register’s old data back into itself, if it 

acts as the operand source; to maintain data integrity. Its operation is as follows. When 

the control input, controlled by control code DESTC, which is received from the IDU, is 

set to logic ’1’ the new result data received from the RBU’s DMUX is written into the 

register. Otherwise, when it is set to logic ‘0’ the original data stored in the register is 

fed back and re-written.

Destination (DEST) CONTROL: The role of this device, if the register is used as the 

source and/or destination, is to control the passing of the MUX control bit though 

DMUXO to control MUX, otherwise the control bit is discarded in the null circuit. This 

ensures that MUX is not inappropriately enabled if the register is not used as the source 

or destination. Its operation is as follows. If any of the DESTC, OP AC or OPBC (all 

received from the IDU) control inputs are set to logic ‘1’, indicating that the register is 

used as the destination and/or one or both source registers, then the control output is set 

to logic ‘1’; indicating to DMUXO that DESTC is to be passed to the MUX control 

input. If DESTC, OP AC and OPBC are all set to logic ‘O’, indicating the register is not 

used as either the source or destination, the control output is set to logic ‘O’; this signals 

to DMUXO that DESTC is not required by MUX and can therefore be discarded.
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If either WT or RESC are set to logic ‘1’, independent of the logic level of DESTC, 

OP AC and OPBC, then the control output is set to logic ‘O’ indicating to DMUXO to 

discard DESTC. Otherwise, if both are logic ‘0’ then the operation explained in the 

previous paragraph applies.

DMUXO: The function of this device is to pass DESTC to either the control input of 

MUX, if the control input is set to logic £0’, or to the null circuit where it is discarded, if 

the control input is set to logic ‘O’.

SOURCE CONTROL: The purpose of this device is similar to that of DEST

CONTROL except that it controls the passing of the control bits through DMUX1 to the 

three ACK CONTROL functions or the NULL circuit. Its operation is as follows. If 

DESTC, OP AC or OPBC are set to logic ‘1’, indicating that the register is used as the 

source and/or destination, then the control output is set to logic ‘1’ signalling to 

DMUX1 to send DESTC, OP AC and OPBC to their respective acknowledge select 

circuits. If DESTC, OP AC and OPBC are all set to logic ‘0’ then the control output is 

set to logic ‘0’ signalling to DMUX1 to discard all three control signals.

This circuit also monitors OWC. This signal when set to logic ‘ 1 indicates that the old 

data has not been overwritten in the destination register, otherwise when it is set to logic 

‘0’ this indicates that the destination register’s old data has been overwritten. If the 

OWC input is set to logic ‘ 1 ’ then the control output is set to logic ‘ 1 ’ independent of 

the logic level of DESTC, OP AC and OPBC, otherwise when it is set to logic ‘0’ then 

the operation in the previous paragraph applies.

DMUX1: The role of this component is similar to that of DMUXO except that it passes 

the three ACK CONTROL control bits (DESTC, OP AC and OPBC), in parallel, to 

either the ACK CONTROL circuits, if the select input is set to logic ‘1’, or to a NULL 

circuit, if the control input is set to logic ‘O’.

Acknowledge (ACK) CONTROL: The role of each of these circuits is to pass the 

acknowledge signal to the synchronising C-element, if the control input is set to logic
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‘1’, or the internally produced pseudo acknowledge signal, if the control input is set to 

logic ‘O’.

5.4.3 The NRTZ Experiment 

The NRTZ Requirements

All data path components are realised using NRTZ circuitry in order to cater for the 

NRTZ encoded and tagged words. In addition, all local control circuitry operates on 

and generates RTZ encoded control codes thus resulting in all control path components 

being realised in RTZ circuitry. The reason for adopting RTZ control codes is because 

the path of an NRTZ data word cannot change until the first bit cycle of a new 

instruction cycle, which is always an ODD phase. Therefore, a logic ‘0’ EVEN phase 

control input into a data path component automatically selects the same input/output 

path as that previously selected by the ODD phase control bit. As a result, all EVEN 

phase control bits are logic ’0’ because only ODD phase control bits differ in logic level.

The NRTZ RBU Architecture

The NRTZ RBU operates on NRTZ encoded data and is controlled by RTZ control 

signals as described in the previous section. Consequently, the NRTZ RBU architecture 

is almost the same as that produced for the RTZ RBU, as shown in figures 5.3, except 

that each NRTZ RBU register, shown in figure 5.4, is 24-bits long to accommodate the 

maximum length NRTZ encoded and tagged data word.

5.4.4 The Synchronous RBU

The synchronous SISA RBU [54] is shown in figure 5.5. It consists of two multiplexors, 

a demultiplexor, and four general purpose registers, one of which doubles as the 

communication register. An address is supplied to either one or both multiplexors, 

depending on the instruction, in order to select the source operand(s), and the 

demultiplexor is supplied with the destination address of the resultant operand.

Each selected source register, unless it also acts as the destination register, rotates its 

contents on each word-cycle in order to re-write its old data and to allow the data to be 

bit-serially read by the multiplexor(s), if required. The selected destination register 

discards its old data thus permitting the new data to overwrite it. Each register has a
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multiplexor at its input, which is controlled by a function within the instruction decoder, 

to direct the appropriate old (rewritten) or new (overwritten) data into the register.

The source data’s least significant bit (LSB) is always read from the third latch pair, from 

the register input, two-bit cycles prior to the end of the previous word-cycle. Otherwise, 

if the LSB were taken directly from the register output then it would take 18-bit cycles, 

rather than the required 16-bit cycles, to pass the LSB from the register output through 

to the LSB of the destination register, because of the two full latches in the EXU’s data 

path. As a consequence, the instruction source operand address fields must be pre

decoded 2-bits before the start of the next word-cycle; as will be discussed in chapter 6.

NORTH PE DATA INPUT 
EAST PE DATA INPUT 

SOUTH PE DATA INPUT 
W EST PE DATA INPUT -►

COMMUNICATION REGISTER

RBU
MUXA
DATA
OUTPUT

OVER-W RITE/

DMUX
DATA
INPUT

RBU
MUXB
DATA
OUTPUT

OVER-WRITE/
MUXA
SELECT

DMUX
SELECT

MUXB
SELECT

Figure 5.5. The synchronous register bank unit.

5.4.5 Results

Figure 5.6 illustrates the latencies of the RTZ and NRTZ RBU registers when operating 

on word lengths ranging from 1 to 16 bits, and the latency of the synchronous register 

when operating on its fixed length 16-bit word. Figure 5.7 illustrates the latencies of 

the RTZ, NRTZ and Synchronous RBUs. Figures 5.8 and 5.9 illustrate the throughput 

rates of the RTZ, NRTZ and synchronous registers and RBUs, respectively. Table 5.1 

shows gate count results for the RTZ, NRTZ and synchronous RBUs.
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RTZ NRTZ SYNC

RBU 11121 gates 10209 gates 1175 gates

Table 5.1. The RTZ, NRTZ and synchronous RBU gate counts.

The following observations can be made from the above figures:

Figure 5.6 shows that the latency of the RTZ register is less than that of the synchronous 

register for words less than 9-bits in length. The NRTZ register is faster than the 

synchronous register when operating on word lengths of 12-bits and less, whereas the 

NRTZ is consistently faster than the RTZ except for a 1-bit word.

Figure 5.7 shows that the RTZ and NRTZ RBU latencies are faster than the 

Synchronous RBU for word lengths of less than 7-bits. The NRTZ RBU gradually 

improves its performance over that of the RTZ RBU as the word size increases.

Figure 5.8 shows that the throughputs of the RTZ and NRTZ registers are 

approximately four and nine times greater than the synchronous register, respectively, for 

a 1-bit word. It can also be seen that the throughputs of both the RTZ and NRTZ
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registers decreases gradually as the length of the word is increased, with the RTZ 

register’s throughput less than the NRTZ and Synchronous register throughputs for long 

word lengths. The synchronous register’s throughput remains constant for its fixed word 

size.

Figure 5.9 shows that the throughput rates of the RTZ and NRTZ RBUs are 

approximately six and three times greater, respectively, than that of the synchronous 

RBU for a 1-bit word. The throughputs of all three implementations are comparable over 

mid-range word lengths (7 to 9-bits), but the throughputs of the RTZ and NRTZ RBUs 

decrease below the throughput of the synchronous RBU as the word length is increased 

to the maximum size.

Table 5.1 shows that the RTZ RBU is approximately 9% bigger than the NRTZ RBU. 

However, both the RTZ and NRTZ RBUs are approximately nine times bigger than the 

synchronous RBU.

5.4.6 Analysis

The RTZ and NRTZ registers and RBU implementations differ to their synchronous 

counterparts in that the length of the word they operate upon can vary from word to 

word. This has a significant effect on the latency and throughput of these functions when 

they operate on short length words. The latencies of RTZ and NRTZ RBUs, as 

compared to the latencies of the RTZ and NRTZ registers, respectively, increases 

significantly due to the inclusion of the large RBU multiplexors and demultiplexor in the 

data path.

The circuit area required to implement both the RTZ and NRTZ RBUs is considerably 

larger than the area required by the synchronous RBU. This is due to the extra circuitry 

required by the self-timed circuit implementation technique to accommodate dual-rail 

encoded words. In addition, the large amount of local register control circuitry and the 

large amount of circuitry required to implement the RBU 8-input multiplexor add to the 

circuit overhead.



Any clock skew that might detrimentally effect the processing speeds of the synchronous 

register and RBU would have to increase their latency by approximately 76% and 124%, 

respectively, to make them as slow as their RTZ counterparts. This assumes that all 

operate on the same maximum length 16-bit word.

5.5 The Data Output Unit (DOU)

The DOU is required to send data from the transmitting PE to one or more receiving 

PEs.

5.5.1 The Self-timing Requirements

The self-timed DOU is required to control and synchronise the asynchronous transfer of 

data from transmitting PE to one or more receiving PEs. This is because problems arise 

when multiple asynchronous PEs attempt to read the data from the transmitting PE at 

different instances in time [31, 32]. Therefore, a data bit output from the DOU must be 

read by all the appropriate receiving PEs before the next bit is output. This is achieved 

by synchronising the acknowledge signals, received from the reading PEs, on each and 

every bit transfer.

Each PE in the ST-SISA array can communicate with one, some or all of its four 

neighbouring PEs. Consequently, data might be sent to only one or two neighbouring 

PEs, therefore only the PEs that read the data need to be synchronised, the remainder 

can be ignored. Therefore, the DOU must know which neighbouring PEs are to read the 

data item in order to synchronise only the PEs involved in the data transfer. This is 

achieved by monitoring the appropriate bits in the result field, on the execution of a write 

instruction, where the logic ‘ 1 ’ bit(s) identify the receiving PE(s), as previously described 

in section 4.3.4.

The rendezvous function performed by the C-element is ideally suited to the 

synchronisation of multiple acknowledge signals. However, problems arise when only 

one, two or three of the neighbouring PEs read a data item because only signal changes 

will only take place on some, not all, of the C-element’s input lines. Consequently, the C- 

element’s output cannot signal the completion of the synchronisation because it must 

receive signal changes on all of its inputs. Therefore, a mechanism is required to force a
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signal change on each acknowledge line from each PE which does not read the data item. 

This enforcement of a signal change on an acknowledge line is termed a ‘pseudo write’.

Data output to the receiving PE(s) must be buffered in order to absorb processing time 

differences between the various PE(s) involved in the communication. For example, if a 

write instruction is executed by PEI, before the read instruction of PE2, PEI must wait 

for PE2 to execute the read instruction, thus slowing PEI. By inserting a buffer in each 

output direction of the DOU these variations in PE processing time can be absorbed.

The DOU only monitors the operand result field when a write instruction is executed, or 

until the EOW has been output from the DOU, otherwise data will be unnecessarily 

output resulting in incorrect array operation.

5.5.2 The RTZ Experiment 

The RTZ Requirements

The RTZ requirements for the DOU are the same as those stated for the RTZ RBU in 

section 5.4.2.

The RTZ DOU Architecture

The RTZ DOU architecture is shown in figure 5.10.
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Figure 5.10. The RTZ data output unit.
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DMUXi: This role of this device is to pass the (N)orth, (E)ast ,(S)outh ,(W)est write 

select bits to the corresponding DMUXn, DMUXe, DMUXs and DMUXw data output 

devices, when the write control input is set to logic ‘ 1’, or to the NULL circuit, when the 

select input is set logic ‘O’. This device also re-reads and outputs the N,E,S,W write 

select bits, when it receives an acknowledge signal from the C-element, on each and 

every data bit output from the DOU until the write control input is set logic ‘O’.

DMUX(n, e, s, w): The purpose of each of these devices is to pass the data bit to the 

corresponding receiving PE, if the control input is set to logic ‘1’, or to pass the data bit 

to the null circuit, if the control input is set to logic ‘O’, where the data bit is discarded 

thus performing a pseudo write. The pseudo write enables an acknowledge signal to be 

sent to the C-element.

C: When all four acknowledge signals have been received from DMUXn, DMUXe, 

DMUXs and DMUXw, the C-element signals the end of the bit transfer to DMUXi.

Buffer: Stores the bit-serial data word on route to its receiving PE. This enables the 

DOU to continue to output data even if the receiving PE is not ready to read the data, 

however, when the register is full the DOU must wait.

Null: This device simply discards its input.

5.5.3 The NRTZ Experiment 

The NRTZ Requirements

The NRTZ requirements for the DOU are the same as those stated for the RTZ DOU in 

section 5.5.2 because both must operate on two-phase data and RTZ control 

information.

The NRTZ DOU Architecture

The NRTZ DOU architecture is almost the same as that of the RTZ DOU, figure 5.10, 

except each output buffer register is 24-bits long to accommodate the maximum length 

NRTZ tagged data word.
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5.5.4 The Synchronous DOU

Each SISA PE has its own dedicated DOU [54], or communication register (CR), as 

shown in figure 5.11, that can be read directly by one, some or all of its neighbouring 

PEs. The CR is realised using a simple general purpose register except it has four extra 

output connections, one to each of the four neighbouring PEs. Therefore, the CR 

operates in exactly the same way as the general purpose register described in section

5.4.2, except that it can be read by up to four extra PE receivers.
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Figure 5.11. The synchronous data output unit.

5.5.5 Results

Figures 5.12 and figure 5.13 show the latency and throughput results, respectively, for 

the RTZ and NRTZ DOUs when outputting variable length bit-serial words ranging from 

1 to 16 bits in length. Table 5.2 shows the gate count for each of the new RTZ and 

NRTZ DOUs as well as for the existing synchronous DOU.
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Figure 5.13. Throughput results for the RTZ, NRTZ and synchronous DOUs.

RTZ NRTZ SYNC

DOU 2950 gates 2342 gates 292 gates

Table 5.2. The RTZ, NRTZ and synchronous DOU gate counts.

Figure 5.12 shows that the latency of the NRTZ DOU is less than that of the RTZ DOU 

for all word lengths, assuming both operate on the same length word. They are both 

considerably faster than the synchronous DOU for short and mid-range length words (1 

to 14-bits words), with the NRTZ DOU faster for long words (15 and 16-bit words).
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Figure 5.13 shows that the throughput of the NRTZ DOU is considerably greater than 

that of the synchronous DOU for all word lengths, whereas the throughput of the RTZ 

DOU is greater than the synchronous DOU for all word lengths of up to 14-bits.

Table 5.2 shows that both the RTZ and NRTZ DOUs are considerably larger than their 

synchronous counterpart, whereas the RTZ DOU is 26% larger than the NRTZ DOU.

5.5.6 Analysis

The RTZ and NRTZ DOUs have variable processing rates due to the variable length of 

the data words. The RTZ and NRTZ DOUs are significantly faster than their 

synchronous counterpart because of their simple design. The RTZ and NRTZ DOUs are 

both considerably larger than the synchronous DOU because of the extra circuitry 

associated with self-timed circuit implementation and because of the large circuit area 

associated with the inter-PE data buffers.

Any clock skew that might detrimentally effect the performance of the synchronous 

DOU would have to increase its latency by approximately 15% to make it as slow as the 

RTZ DOU when operating on the same maximum length 16-bit word.

5.6 The Execute Unit (EXU

The EXU [33], illustrated in figure 5.14, performs several functions: ASSIGN, AND, 

OR, ADD, MIN and MAX. The desired function is determined by the op-code, which 

controls the path taken by the source operand(s) through the EXU’s input 

demultiplexor(s) and the path taken by the result through the output multiplexor to the 

output of the EXU.
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Figure 5.14. The execute unit.

The functions of the EXU can be divided into four main categories, namely assignment, 

logical, addition and comparison operations. It is not necessary to perform an experiment 

for the ASSIGN instruction because no special circuitry needs to be designed. All that is 

required is a single dual-rail line to connect the ASSIGN output from DMUX A to the 

corresponding input of MUX, as illustrated in figure 5.14. However, the logical, addition 

and comparison categories require more in-depth analysis and are considered in the 

following three main sections.
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5.6.1 The Logical Function Experiment

The role of the logic processing function is to perform logical operations such as AND 

on two bit-serial operands. This is achieved by ANDing the nth bit (where n is the bit 

position) of the first operand (operand A) to the corresponding nth bit of the second 

operand (operand B), for all n up to the end of the longest operand. For example, bit 0 

of operand A must be ANDed with bit 0 of operand B then bit 1 of operand A with bit 1 

of operand B, and so on until the end of the longest operand.

5.6.1.1 The Self-timing Requirements

Due to the variable length of operand words there is a strong possibility that the AND 

circuit will operate on operands of differing lengths thus presenting problems of circuit 

deadlock, as discussed in section 5.3. In order to overcome this problem extra logic bits, 

called pseudo bits, must be appended to the shorter operand to make both operands the 

same length, enabling the data-driven logic function to continue processing the longer 

operand.

It is possible to deduce from these requirements that the length of the resultant operand 

does not increase in length over that of the longer input operand. Also, for every input 

bit an output result bit is produced. The next section details the realisation of the RTZ 

logic function.

5.6.1.2 The RTZ Experiment 

The RTZ Requirements

The AND function can only operate on RTZ encoded words (i.e. data-true, data-false 

and empty), the illegal EOW Tag bit (i.e. F0=‘l ’, F l= ‘l ’) cannot be processed. 

Therefore, an EOW Tag must be converted to an empty (E) value before it enters the 

AND function and then converted back to an EOW Tag only when both input data bits 

are EOW Tags, thus indicating the end of the operation.

The pseudo data valid bits for the RTZ circuit are assumed to have a logic ‘0’ value in 

order that the magnitude of the shorter operand is left unchanged, however each valid 

(V) bit must be separated by an EOW (T) Tag bit. This enables the pseudo EOW Tag 

bit of the shorter operand to coincide with the EOW Tag of the longer operand.
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All data path components, unless stated otherwise, are realised using NRTZ circuitry to 

cater for the EOW Tag, whereas all control components are realised using RTZ circuitry. 

The reasons for this have been explained previously in section 5.4.2.

The RTZ AND Architecture

The RTZ AND architecture is shown in figure 5.15.

PSEUDO BITS T>E
CONVERTER

E>T
CONVERTER

ACTUAL INPUTS
OUT

-►

PSEUDO BITS (V>E),(E,T>V)
CONVERTER

(V>E),(E,T>V)
CONVERTER

MUX
CONTROL

MUX
CONTROL

AND

Figure 5.15. The RTZ AND.

MUX0/MUX1: The role of MUX0/MUX1 is to pass either an actual data bit to the 

AND function when its control input is logic ‘O’, indicating that the EOW has not been 

detected, or a pseudo data bit, if its control input is set to logic ‘1’, indicating that the 

EOW has been found. The pseudo data bits, fed by a FIFO ring buffer, enable dummy 

bits to be appended to the end of short words thus enabling the AND output to change 

state.

(V>E), (E, T>V) CONVERTER: The purpose of this circuit is to convert each

monitored data bit into the equivalent RTZ code, of the correct phase, required by the 

two monitoring MUX CONTROL circuits. This enables local control functions to be 

realised in RTZ circuitry thus reducing their complexity. In addition, it converts the 

phase of the data so that the output from MUX CONTROL 0/MUX CONTROL 1 is in
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the correct phase for the control input of MUX0/MUX1. It behaves as follows. The 

device converts any valid data bit (logic ‘O’ or logic ‘1’) to an empty bit, an empty to a 

logic ‘O’ data bit (data-false), and an EOW Tag bit to a logic ‘ 1 ’ data bit (data-true).

MUX CONTROL(0,1): The role of this circuit is to control the passing of the actual or 

pseudo data bits through the controlled MUX circuit. This device monitors the output 

bits from MUXO and MUX1, for each bit cycle, which are termed the primary 

multiplexor, the controlled device relative to MUX CONTROL 0/MUX CONTROL 1, 

and the secondary multiplexor, which is the controlled device of the other MUX 

CONTROL circuit. Each MUX CONTROL circuit behaves as follows. When the 

secondary input (SI) is a tag and the primary input (PI) is an empty (i.e. the secondary 

word is shorter than the primary word), or both the SI and PI are tag bits, MUX 

CONTROL selects the actual data input on the next bit cycle. When the PI is a tag and 

the SI is empty bit (i.e. the primary word is shorter than the secondary word) the 

multiplexor’s pseudo input is selected in order to attach a dummy bit to the end of the 

word. The pseudo input will continue to be selected on each bit cycle until the SI is an 

EOW Tag.

T>E CONVERTER: Whenever an EOW Tag bit is input this circuit converts it to an 

empty value. All other states are passed unchanged.

E>T CONVERTER: Converts an empty state, output from the AND function, into an 

EOW Tag bit whenever the two input bits to the AND are EOW Tags.

AND: This is a conventional RTZ logical AND function.

5.6.1.3 The NRTZ Experiment 

The NRTZ Requirements

Like the RTZ implementation, the NRTZ AND function must not operate on logic ‘ 1 ’ 

EOW Tag bits (EOW1), which indicate the end of an word, otherwise the logic value of 

an EOW Tag bit might be changed. Therefore, an EOW1 must be converted to a logic 

‘0’ EOW Tag (EOWO), an unused EOW Tag bit, before it enters the AND and then 

converted back to an EOW1 only when both inputs are EOW1.
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Pseudo bits must be appended to the end of the shorter word to make both words equal 

in length. For the NRTZ ST-SISA presented in this work, n multiples of four pseudo 

bits (where n is the number of extra tagging periods) are appended to the end of the 

shorter word. The first three bits are set to logic ‘0’ so as not to change the value of the 

shorter word, the fourth bit, or the pseudo EOW Tag bit, must be set to a logic ‘1’ to 

indicate the EOW.

All data path components, unless stated otherwise, are realised using NRTZ circuitry, 

whereas all control components are realised using RTZ circuitry, for reasons outlined in 

section 5.4.3.

The NRTZ AND Architecture

The NRTZ AND architecture, shown in figure 5.16, is similar to that of the RTZ, except 

that it operates using the NRTZ data encoding and tagging scheme. The MUXO and 

MUX1 data input devices are the same as used for the RTZ version, therefore only the 

other functions are considered.

PSEUDO BITS EOW1>EOWO
CONVERTER

EOWOEOW1
CONVERTER

-►

-►ACTUAL INPUTS
OUT

V (ODDd>EVENd), 
- L-| (EOWO,

EOWlXDDDd)
CONVERTER

PSEUDO BITS (ODDd>EVENd),
(EOWO,
EOWl>ODDd)
CONVERTER

LATCH LATCH
MUX

CONTROL
MUX

CONTROL

AND

Figure 5.16. The NRTZ AND.

Ring Counter: A counting mechanism, realised by a ring buffer, presented in section

4.3.1.2.2, is used by other components to differentiate between the EOW Tag and data 

bits in the bit-serial data stream.



MUX CONTROL 0/MUX CONTROL 1: The role of this device is the same as that 

used for the RTZ AND architecture. Consequently, it operates in a similar manner to the 

previously explained MUX CONTROL, except it differentiates between an EOW1 or an 

EOWO and a EVEN data bit (EVENd) via monitoring the ring counter output. Feedback 

from the previous output state is used to indicate whether an actual data input or a 

pseudo data input was selected in the last bit cycle thus maintaining the same MUX 

CONTROL output status between EOW Tag bits. The operation of this circuit is 

explained as follows.

In the event of an EOW1 on the ring counter input (RCI), and a data bit (EVENd) set to 

logic ‘0’ on the feedback input (FI), MUX CONTROL selects the actual input of the 

multiplexor if PI is an EOWO and SI is either an EOW1 or EOWO, or if both PI and SI 

are EOW1. If PI is an EOW1, independent of the logic value of the FI, and SI is a 

EOWO, then the pseudo input is selected in order to append dummy bits on to the end of 

the word.

In the event of an ODD data bit (ODDd) or EVENd on the RCI, MUX CONTROL 

selects the actual input of the multiplexor if FI is logic ’O’, or the pseudo input if FI is 

logic ‘1’. Therefore, the intermediary bits, between EOW Tag bits, of either the pseudo 

word or actual word are selected.

EOW1>EOWO CONVERTER: This devices converts an EOW1 to an EOWO, when 

the output from the ring counter is an EOW1, before it is input into the AND to ensure 

the AND does not change an EOWO to an EOW1.

EOW OEOW 1 CONVERTER: An EOWO output from AND is converted to back to 

an EOW1 only when both data inputs into the two EOW1>EOWO CONVERTERS are 

EOW1 and the RCI is an EOW1.

(ODDd>EVENd), (EOWO, EOW1 > ODDd) CONVERTER: This device allows 

MUX CONTROL (0 & 1) to be realised using RTZ circuitry. It achieves this by 

converting an ODDd of any logic value to an logic ‘0’ EVENd and converting an EOWO 

or EOW1 to the corresponding logic level ODDd.
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5.6.1.4 Synchronous AND

The synchronous AND, figure 5.17, is realised by a simple AND gate latched at its 

inputs and output.

CLK

IN A

OUT
AND

INB

Figure 5.17. The synchronous AND.

5.6.1.5 Results

Figures 5.18, Figure 5.19 and Table 5.3 illustrate the latency, throughput and gate 

count results, respectively, for the RTZ and NRTZ AND functions, that operate on 

variable length words, and the fixed word size synchronous AND function.
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Figure 5.18. The RTZ, NRTZ and synchronous AND function latencies.
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Figure 5.19. The RTZ, NRTZ and synchronous logic function throughputs.

RTZ NRTZ SYNC

LOGIC 746 gates 1599 gates 27 gates

Table 5.3. The RTZ, NRTZ and synchronous logic function gate counts.

The following observations have been made:

Figure 5.18 indicates that the NRTZ AND operation is slightly faster than the RTZ 

equivalent for all word lengths except for 1,2,4 and 7 bits long. In addition, the graph 

shows that significant performance improvements are available for small magnitude data 

using variable word methods when compared with the same fixed word-length 

synchronous method. However, the RTZ and NRTZ implementations cease to perform 

better than the equivalent synchronous AND for word lengths greater than 6-bits.

Figure 5.19 shows that the throughput of the RTZ AND is approximately two times 

greater than the NRTZ AND function for a 1-bit word, however throughputs are 

comparable as the word size is increased. Both the RTZ and NRTZ AND throughputs 

are significantly greater than that of the synchronous AND for short words (1-5 bits), 

comparable to the synchronous AND over the mid range (6-9 bits) and approximately 

50% less efficient than the synchronous AND for long words (10-16 bits).
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Table 5.3 shows that the NRTZ AND is just over twice as large as the RTZ equivalent. 

However, the RTZ and NRTZ AND circuits are approximately twenty-eight and sixty 

times larger, respectively, than the equivalent synchronous AND.

5.6.1.6 Analysis

The NRTZ latency is greater than that of the RTZ AND for 1,2,4 and 7-bit word lengths 

because it requires more bits to encode the data. However, all other word lengths 

require less bits to encode and tag the data resulting in the NRTZ AND being 

consistently faster than the RTZ AND. Both the RTZ and NRTZ AND functions are 

faster than the fixed speed synchronous AND function for short word lengths because 

they require fewer bit cycles to process data.

The greater circuit area of the NRTZ AND compared with that of the RTZ AND can be 

attributed to the increased complexity of the multiplexor controllers, including the ring 

buffer counter, and as an effect of the extra expense of the multiplexor control circuits as 

the number of inputs is incrementally increased.

Any clock skew that might detrimentally effect the synchronous AND’s processing speed 

would have to increase its latency by approximately 146% to make it as slow as the RTZ 

AND when it operates on the same maximum length 16-bit word.

5.6.2 The ADD Function Experiment

The ADD function adds together two bit-serial words such that the nth bit of operand A 

is only added to the same nth bit of operand B, and the carry-propagation bit from the 

previous bit addition, up to the end of the longest word. Each bit addition produces a 

sum bit and a carry bit where the carry bit is fed back as input to the next bit addition.

5.6.2.1 The Self-timing Requirements

The major difference between a variable length bit-serial addition function and the 

previous logical function is that the word size in the former may increase as a result of 

carry propagation or overflow. This can be catered for, in the event of overflow, by 

simply appending pseudo bits to the end of both source operands in order to propagate 

the carry to the sum output, thus increasing the length of the word. If the bit-serial word
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increases in length from the maximum length of 16 bits to 17-bits then the ST-SISA PE 

will continue operating correctly because the RTZ RBU and NRTZ RBU registers can 

accept a maximum word length of 20-bits and 24-bits, respectively; anything beyond 

these ranges for the respective implementations would cause the entire PE to deadlock.

5.6.2.2 The RTZ Experiment 

The RTZ Requirements

The requirements of the RTZ ADD function are the same as those stated for the logic 

function. However, there is an extra requirement as a consequence of the possibility of 

overflow in the ADD function. This means that the empty bit output from the ADD 

cannot be converted to an EOW Tag bit when both the inputs are tag bits because the 

overflow bit must be appended to the end of the sum word before the EOW Tag. 

Therefore, only when there is no overflow can the empty value be converted back to an 

EOW Tag bit.

All data path components, unless stated otherwise, are realised using NRTZ circuitry, 

and all control circuitry is realised using RTZ circuitry, for reasons outlined earlier in 

section 5.4.2.

The RTZ ADD Architecture

The RTZ ADD, figure 5.20, is similar to the RTZ AND except for changes to the two 

MUX CONTROL circuits, output tag converter and the substitution of the AND with 

the RTZ full adder.
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Figure 5.20. The RTZ ADD.

MUX CONTROL 0/MUX CONTROL 1: The role and operation of this circuit is the 

same as that used in the AND function, except that it monitors the carry-out bit 

produced by the full adder. Consequently, if the carry-out bit is logic ‘ 1 ’ and the present 

input operand bits are EOW Tag bits then the pseudo input is selected in the next bit 

cycle thus appending a logic ‘O’ and a tag bit, in consecutive bit cycles, to the end of the 

input operand.

E>T CONVERTER: The role of this function is to ensure that the empty bit output 

from the FA is converted to an EOW Tag bit only when both inputs are EOW Tags and 

both MUX CONTROL outputs are selecting the next actual data input; when the MUX 

CONTROL output is logic ‘0’ this indicates that either there is no overflow or the 

overflow has been previously handled.

Full Adder (FA): This is a conventional RTZ full adder function [70].
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5.6.2.3 The NRTZ Experiment 

The NRTZ Requirements

The NRTZ requirements are similar to those stated for the NRTZ logic function, except 

that carry feedback in the NRTZ full adder introduces two problems, which are 

elaborated below.

The first problem is associated with the propagation of the carry output bit to the carry 

input of the next bit addition. For example, if an EVENd phase carry output bit is fed 

back to the carry input for addition with the next operand data bits, of ODD phase, then 

the FA will deadlock because the three inputs into the FA function are not in the same 

phase. To overcome this problem an EVENd phase carry output bit must be converted 

to an ODDd when passed back to the carry input, and vice versa for an ODDd carry 

output bit to an EVENd carry input bit.

The second problem is concerned with the propagation of an ODDd carry bit, from the 

addition preceding the input of EOWO tag bits, to the addition of the ODDd data bits 

succeeding the EOWO tag bits. This is illustrated below in figure 5.21.

STEP 4 STEP 3 STEP 2 STEP 1 STEPO

ODDd EOWO ODDd EYENd ODDd
ODDd EOWO ODDd EYENd ODDd

CARRY CARRY CARRYCARRY

SUM4
ODDd

SUM3
EOWO

SUM2
ODDd

SUM1
EVENd

SUMO
ODDd

ADD ADDADD ADD ADD

Figure 5.21. The carry propagation problem.

The figure shows that the carry output in step 2 must propagate to the addition in step 4, 

otherwise the addition of a logic c 1 ’ carry bit to the two EOWO operand bits in step 3 

would result in an undesirable EOW1 sum output, signalling the EOW prematurely. In
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other words, the two EOWO tag bit inputs must be output from the ADD as an EOWO 

sum, therefore not changing the logic value of the EOWO in the output stream, in 

conjunction with passing the ODDd carry of the previous addition through the FA in 

readiness for the succeeding ODD phase data bit addition. This is achieved by adding 

one of the EOWO bits to two copies of the EVENd (phase changed) carry bit, such that 

the carry bit is propagated to the next addition. Therefore, if the carry input is logic c 1 ’ 

the sum is logic ‘O’ and the carry produced is logic ‘1’, otherwise, if the carry input is 

logic £0’ both the sum and carry outputs are logic ‘O’.

All data path components are realised using NRTZ circuitry, whereas all control 

components are realised using RTZ circuitry, for reasons explained earlier in section 

5.4.3.

The NRTZ ADD Architecture

The NRTZ ADD architecture is shown in figure 5.22.
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(EOWO.EOW 1 >ODDd) 
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CONTROL
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Figure 5.22. The NRTZ ADD.

Phase Invertor (INV): The role of this device is to invert the phase of the output carry 

bit before it is input into the next addition. This is realised by placing an invertor gate in 

the phase wire of the carry output from the full adder. This ensures that the phase of the 

carry toggles without it affecting its logic level.
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NRTZ Symmetric (SYMM) Switch: The role of this device is to propagate the carry 

bit produced by the addition before the EOWO tag bits to the addition following the 

EOWO tag bits. The functionality of the NRTZ symmetric switch, as depicted in figure 

5.23, is as follows. The switch accepts operand and carry bit inputs and a control input. 

Whenever the control input is logic ‘0’ the operand and carry bits are passed to their 

respective outputs thus allowing the FA to add together the two operand data bits and 

carry bit. However, when the control input is logic ‘1’ the inputs are passed to each 

other’s respective output. In other words they are crossed over, resulting in one of the 

EOWO bits being discarded, by the null circuit, and another copy of the carry bit being 

sent to the FA. Therefore, if a carry bit set to logic e 1 ’ is added to itself and the EOWO 

then the sum will be logic ‘0’ and the carry output logic ‘1’. Otherwise, if a carry bit set 

to logic ‘0’ is added to itself and the EOWO then both the sum and carry output will be 

logic ‘O’. This operation allows the carry bit to propagate unchanged through the 

EOWO addition phase, to the next addition, without changing the value of EOWO on 

output.
FROM 
MUX A

FROM 
MUX B

SUM

CARRY

NRTZ
SYMMETRIC

SWITCH CTRL
TAG = 
DATA =

CONV

CONV

NRTZ

FULL
ADDER

Figure 5.23. The NRTZ full adder.

MUX CONTROL (0 & 1): The role and operation of the MUX CONTROL is similar 

to that used for the AND circuit, except it monitors the carry-out bit produced by the full 

adder. Consequently, if the previous addition produces a carry and the present input 

operands bits are both EOW1 then the pseudo input is selected in the next bit cycle.
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EOWO>EOW1 CONVERTER: The purpose of this device is to convert an EOWO 

output from the FA to an EOW1 only when both inputs are EOW1, the ring counter is 

an EOW1 and both multiplexor controller outputs are selecting the next actual data 

input. This indicates that either there is no overflow or the overflow bit has been 

previously output.

5.6.2.4 The Synchronous ADD

The synchronous ADD function [91], figure 5.24, is realised by a single FA which is 

latched at its inputs and outputs. It operates as follows. The two source operands are 

fed bit serially into the FA where they are added together with the carry bit of the 

previous bit addition, consequently producing a sum bit, which is fed to the destination 

register, and a carry bit, which is fed into the next addition.

CLK

IN A

inO OUTsum

carry out
carry in

INB

FA

Figure 5.24. The synchronous ADD.

5.6.2.5 Results

Figures 5.25, Figure 5.26 and Table 5.4 illustrate the latency, throughput and hardware 

results, respectively, for the RTZ, NRTZ and synchronous ADD function.
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Figure 5.25. The RTZ, NRTZ and synchronous ADD latencies.
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Figure 5.26. The RTZ, NRTZ and synchronous ADD throughputs.

RTZ NRTZ SYNC

ADD 1309 gates 2142 gates 62 gates

Table 5.4. Gate counts for the RTZ, NRTZ and synchronous ADD functions.

The following observations can be made from these results:

Figure 5.25 shows that the RTZ ADD is faster than the synchronous ADD for word 

lengths less than 7-bits, as compared to the NRTZ adder which is faster when operating 

on words lengths less than 4 bits. It is also noticeable that the RTZ is significantly faster
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than the NRTZ over the complete word length range even though the NRTZ requires 

less bits to encode its data in most cases.

Figure 5.26 illustrates that the throughput of the RTZ ADD is six times greater than the 

synchronous ADD for short word lengths, but only four times greater than the NRTZ 

ADD. However, the throughput of the NRTZ ADD is approximately two times greater 

than the synchronous ADD for 1 to 3 bit length words. The synchronous ADD is 

approximately 100% more efficient than the RTZ and NRTZ ADD for long words.

Table 5.4 shows that the RTZ and NRTZ ADD functions are approximately twenty-one 

and thirty-four times larger, respectively, than the synchronous ADD. The NRTZ ADD 

is approximately 64% bigger than the RTZ ADD.

5.6.2.6 Analysis

In this case the RTZ ADD is faster than the NRTZ ADD, whereas the NRTZ AND was 

faster than the RTZ AND. The main reason for this reversal can be attributed to the 

NRTZ symmetric switch which increases the latency of the NRTZ data path as compared 

with the RTZ equivalent. The NRTZ ADD is significantly bigger in circuit area than the 

RTZ because of the extra circuitry required to implement the NRTZ ADD function, 

symmetric switch and the increased complexity of the multiplexor control circuits.

Any clock skew that might detrimentally effect the synchronous ADD’s performance 

would have to increase its latency by approximately 222% to make it as slow as the 

NRTZ ADD when it operates on the same maximum length 16-bit word.

5.6.3 The Comparator Experiment

The comparator function is considered here by the development of the MAX 

comparator, which outputs the larger of two input variable length bit-serial operands. 

The MIN comparator design is virtually the same as the MAX comparator, except it 

outputs the smaller of two input operands. Therefore, only the implementation 

characteristics, and not the design, of the MIN comparator are considered in this section 

(The RTZ and NRTZ MIN comparator implementations can be seen Appendix A12 and 

Appendix B 12, respectively).
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5.6.3.1 The Self-timing Requirements

The self-timed MAX comparator compares the nth bit of the first operand (operand A) 

to the same nth bit of the second operand (operand B), and sets a status flag that records 

which of the two operands is the greater for that nth bit position. This process of 

comparing the same nth bit position for the two operands is repeated up until the end of 

the longest word. For example, for two 8-bit operands, if the 4th bit of operand A is set 

to logic ’1’ and the 4th bit of operand B is logic ‘0’ then the status flag is set to indicate 

that operand A is the greater up until the 4th bit position. If both bits are set to the same 

logic level then the status flag is left unchanged. The status flag setting at the end of the 

last bit comparison indicates which of the two words has the greater magnitude. The 

greater of the two operands can then be output. The advantage of a self-timed MAX 

comparator is that the functions of comparing the two operands and assigning the larger 

to the destination RBU register can take place in the same instruction cycle, as compared 

to the synchronous comparator which requires two instruction cycles.

Pseudo bits must be appended to the shorter word therefore enabling the data-driven 

comparator logic function to continue processing the longer word. This is because of 

the fundamental mode of operation which would cause the circuit to deadlock if one 

operand were shorter than the other.

All data path components, unless stated otherwise, are implemented with NRTZ 

circuitry, and all control circuitry is realised using RTZ circuitry, for reasons outlined 

previously in section 5.4.2.

5.6.3.2 The RTZ Experiment 

The RTZ Requirements

The requirements of the RTZ MAX function are the same as those stated for the RTZ 

logic function except that the data path is only monitored and not manipulated. 

Therefore, requirements relating to the manipulation of the data path operands do not 

apply to the RTZ MAX comparator.
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The RTZ MAX Comparator Architecture

The RTZ MAX function is shown in figure 5.27. The functionality of MUXO, MUX1, 

MUX CONTROL 0 and MUX CONTROL 1 are the same as those explained previously 

for the RTZ AND function.

IN A

REGISTER A
OUT

INB

REGISTER B

INPUT/OUTPUT
CONTROL

Figure 5.27. The RTZ MAX comparator.

REGISTER (0 & 1): These registers store the operands as they are input because the 

larger operand cannot be output until after the last bit comparison.

MAX COMPARE: The role of this circuit is to perform the comparison of the two

bit-serial operands. It sets its output, called the operand select bit, to indicate which is 

the larger. It operates as follows. The wth bit of operand A is compared to the same nth. 

bit of operand B (for all n) where the output, or the operand select bit, is set to either 

logic ‘O’, indicating operand A is the greater, or logic ‘1’, indicating that operand B is 

greater. If both «th bits are the same then the result of the previous comparison, fed 

back as input into the present comparison, is output.

NRTZ Symmetric (SYMM) SWITCH: The purpose of this device is to output the 

greater operand from the comparator and send the smaller operand to a null circuit 

where it is discarded. This circuit is controlled by DMUX. This device operates as 

follows. If the control input is set to logic ‘O’, indicating that operand A is the larger,
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then the contents of register A are sent to the output of the EXU, and the contents of 

register B are sent to the null circuit where they are discarded. If the control input is set 

to logic ‘ 1 ’ then the opposite occurs.

DMUX: The purpose of this circuit is to pass the operand select bits to the control 

input of the NRTZ SYMM SWITCH if the last bit comparison has completed. If the 

words are still in the process of being compared then the operand select bit is sent to a 

null circuit where it is discarded, so that the operand cannot be output before the last bit 

comparison has taken place.

MUX2: The role of this device is to pass either the actual or pseudo operand select bits 

to the operand select circuit. The actual operand select bits are passed when the 

operands are still in the process of being compared (control input = logic ‘0’). Pseudo 

operand select bits are output when the last bit of both operands have been compared 

(control input = logic cl ’) until the greater operand has been output from the EXU 

(control input returns to logic ‘0’).

OPERAND SELECT: This device outputs each operand select bit to DMUX, if the 

last bit comparison has not taken place. Otherwise, it passes the pseudo operand select 

bits, after the last bit comparison, which are set to the logic level of the previous actual 

operand select bit; to do this the output is fed back.

AND: The role of this device is to signal, to the INPUT/OUTPUT CONTROL, when 

the EOW Tag of both words have been detected. In valid data phase only a data-false 

value is output independent of the input logic level of each input.

INPUT/OUTPUT CONTROL: This circuit indicates to MUX2, DMUX and

OPERAND SELECT whether the input operands are still in the process of being 

compared (output = logic cO’) or the greater of the two has been determined (output = 

logic ‘1’).
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5.6.3.3 The NRTZ Experiment 

The NRTZ Requirements

The requirements of the NRTZ MAX function are the same as those stated for the 

NRTZ logic function except that the data path is only monitored and not manipulated.

In addition, each logic ‘ 1 ’ EVENd bit output from MAX COMPARE is converted to 

logic ‘O’, except in feedback. This is because the last bit comparison, used to select the 

operand to be output, will always be of an ODDd phase. This allows the circuitry 

succeeding the MAX COMPARE to be the same as that used for the RTZ.

The NRTZ MAX Comparator Architecture

The NRTZ MAX Comparator function, shown in figure 5.28, is very similar to the RTZ 

equivalent except that the MUX CONTROL 0 & 1 circuits are the same as those used in 

the NRTZ AND architecture, and the NRTZ implementation of the comparator operator 

function.

IN A

OUT

-►

-►
INB

COUNTER 2 I M  I

REGISTER B

REGISTER A

INPUT/OUTPUT
CONTROL

Figure 5.28. The NRTZ MAX comparator.

In order to differentiate between EOWO or EOW1 and data bits, two ring counters, 

explained previously in chapter 4, are required so that control, and comparison, of the 

input operands and the output of the largest operand can operate independently. 

Consequently, RING COUNTER 1 feeds MAX COMPARE, MUX CONTROL 0 & 1
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and the three input AND circuit, where the AND signals to the input/output controller 

when the EOW1 is detected for both input operands. RING COUNTER 2 feeds the two 

input NRTZ AND which in turn signals to the INPUT/OUTPUT CONTROL when the 

end of the output operand is detected.

MAX COMPARE: This circuit is an NRTZ implementation of the previously explained 

RTZ equivalent. The other main difference of this circuit is that it incorporates an extra 

input that reads RING COUNTER 1. In the event that the RING COUNTER input is an 

EOW1 then the MAX comparator simply ignores the values on its data inputs and 

outputs the value read from its feedback input, therefore the value of the operand select 

bit is unchanged.

AND (Three-input): Signals to INPUT/OUTPUT CONTROL when both the input 

operands are EOW1 tag bits. This is achieved by ANDing each operand input with the 

RING COUNTER output. If the RING COUNTER output value is EOW1 and both 

operand inputs are also EOW1 then an EOW1 is output to INPUT/OUTPUT 

CONTROL signalling the end of both input operands. If any of the inputs are EOWO 

then an EOWO is output to INPUT/OUTPUT CONTROL indicating that more data is to 

arrive.

AND (Two input): Operates in the same manner as the 3-input AND gate except that it 

monitors only the comparator resultant operand output and the output of ring counter 2.

5.6.3.4 The Synchronous MIN/MAX Comparator

The Synchronous MIN/MAX comparator [82], shown in figure 5.29, performs its 

function over two instruction cycles. In the first instruction cycle the two input bit-serial 

operands are compared such that the nth bit of the first operand (operand A) is 

compared to the same nth bit of the second operand (operand B) for the entire 16-bit 

word length; thus taking one complete instruction cycle. On each bit cycle the 

comparator output is set to logic ‘1’ if the nth bit of operand B is the greater, logic ‘O’ if 

the nth bit of operand A is the greater, or to the logic level of the previous comparator 

output, if the nth bits of the operands are the same. After the last bit comparison the 

greater of the two operands is then known.
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In the second cycle the comparator circuit is disabled though its output logic level is 

maintained. The multiplexor (MUX), controlled by the comparator and the MIN/MAX 

control input from the instruction decoder, then re-reads the two operands and outputs 

either the maximum operand signalled by the comparator, if the MIN/MAX control input 

is to logic ‘ I ’, or the minimum operand if the MIN/MAX control input is set to logic ‘O’.

IN A
MIN/MAX
COMPARATOR (COMP)

IN B

CYCLE 1 
ENABLE

MIN/MAX
SELECT

CYCLE2 
ENABLE

OUT

P

Figure 5.29. The synchronous MIN/MAX comparator.

5.6.3.5 Results

Figure 5.30 illustrates the latency results for the comparator function. Figure 5.31 and 

Figure 5.32 present the throughputs of the RTZ and NRTZ MIN and MAX functions, 

respectively, compared with the synchronous MIN/MAX comparator. Finally, Table

5.5, lists the hardware results for all three versions of the MIN and MAX functions.
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Figure 5.30. The RTZ, NRTZ and synchronous MIN and MAX latencies.
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Figure 5.31. The RTZ, NRTZ and synchronous MIN throughputs.
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Figure 5.32. The RTZ, NRTZ and synchronous MAX throughputs.

RTZ NRTZ SYNC

MAX 2905 gates 3086 gates 89 gates

MIN 3264 gates 3558 gates As above

Table 5.5. Gate counts for the RTZ, NRTZ and 

synchronous MIN and MAX functions.
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The following observations have been made:

Figure 5.30 shows that the RTZ MIN and MAX are faster than the Synchronous 

MIN/MAX comparator for words of up to 4 bits in length. The NRTZ MIN and MAX 

comparators are faster still than the synchronous equivalent for words of up to 6 bits in 

length, and are significantly faster, over the complete range of bits, than the RTZ MIN 

and MAX functions.

Figures 5.31 and 5.32 show that the throughputs of the RTZ and NRTZ MIN and MAX 

comparators are comparable. The throughputs of the RTZ and NRTZ implementations 

are greater than the synchronous equivalent for short word lengths, but becomes less 

than half as efficient than the synchronous MIN/MAX when the word size increases to 

the maximum word length.

Table 5.5 shows that the RTZ and NRTZ MAX functions are respectively thirty-three 

and thirty-five times larger than the synchronous MIN/MAX, whereas the RTZ MIN and 

MAX functions are thirty-seven and forty times bigger than the synchronous MIN/MAX, 

respectively. The NRTZ MAX and NRTZ MIN comparators are approximately 6% and 

9% bigger than their RTZ counterparts, respectively.

5.6.3.6 Analysis

The NRTZ MIN and MAX are faster than their RTZ counterparts because the same data 

is encoded using a smaller number of bits.

The RTZ and NRTZ comparator designs are significantly slower and larger than the 

other EXU functions because of their significant control circuit overhead.

Any clock skew that might detrimentally effect the synchronous MIN/MAX performance 

would have to increase its latency by approximately 229% to make it as slow as the RTZ 

MIN or MAX comparators when they operate on the same maximum length 16-bit 

word.
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5.7 Self-timing Design Guide-lines

This section presents the design guide-lines for the implementation of self-timed data 

path architectures: data communication (DOU), data storage (RBU) and data execution 

(EXU) functions. These guide-lines were determined during the previous experiments in 

this chapter for each data path unit and can be sub-divided into guide-lines for general 

self-timed implementation (independent of the encoding technique) and RTZ and NRTZ 

encoding and tagging guide-lines.

Design Guide-line Assumptions

The RTZ and NRTZ data path functions share two main design commonalties. Both 

these commonalties, stated below, have been explained in sections 5.4.2 & 5.4.3 and are 

common to each of the RTZ and NRTZ data path functions addressed in this section:

1. The data path must be realised using NRTZ circuitry.

2. All local control is to be realised using RTZ circuitry.

In a few cases an amendment to these guide-lines is required and will be highlighted, in 

the appropriate sections, in italic type.

Data Communication 

General Self-timing Guide-lines

1. The transmitting PE must synchronise the acknowledge signals received from 

multiple destination PEs on each bit cycle.

2. If the transmitting PE is to communicate with a select number of its total 

receivers then only the acknowledge signals from the selected receivers must be 

synchronised on each bit cycle.

3. The receiving PEs selected to read the data must be identified on each bit cycle to 

the transmitting PE in order to synchronise the appropriate acknowledge signals.

4. Due to the fundamental mode of operation pseudo acknowledge signals must be 

enforced on the acknowledge feedback lines from non-reading PEs, on each bit 

cycle, to the synchronising C-element thus allowing it to change state.

5. Each direction of data communication from the outputting device is buffered in 

order to absorb processing latency differences between the multiple receivers.
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Data Storage

General Self-timing Guide-lines

1. Each register must have prior knowledge of whether it is to communicate with 

the RBU demultiplexor and/or one or both RBU multiplexors in order that the 

appropriate acknowledge signals between these units can be synchronised.

2. Due to the fundamental mode of operation, if a register is to synchronise with

only one of the RBU multiplexors then a pseudo acknowledge signal must be 

enforced on the input into the synchronising C-element from the multiplexor 

which is not to read the data.

3. If a register is to act as a source, and not the destination, then the data must be

re-written into the register in order to maintain data integrity. This necessitates

the following:

a) The acknowledge signal received from the register’s data input must be

synchronised with the actual and pseudo acknowledge signal(s) of the 

receiving and non-receiving multiplexors, respectively.

4. If a register is to act as the destination only, then the old data in the register must

be pseudo read, in other words discarded, in order to maintain data integrity. 

This necessitates the following:

a) A pseudo acknowledge signal must be sent to the register’s output stage

to imitate a read. This signal must be synchronised with the pseudo 

acknowledge signals of both multiplexors and pseudo re-write 

acknowledge.

5. If the register is to act as a destination and a source then the old data

automatically vacates the register, thus the old data is not re-written.

Execution

This section is sub-divided into the logical, addition and comparison design guide-lines. 

Logical

General Self-timing Guide-lines

1. Pseudo bits must be appended to the end of the shorter data word input into the

function.
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RTZ Guide-lines

1. The data path is implemented using NRTZ circuitry, except for the operator 

function which is implemented using an RTZ circuit.

2. Local control is realised using RTZ circuitry, except for the following NRTZ

requirement:

a) Valid data bits monitored by the local control circuitry are converted to 

empty bits before they enter the RTZ control circuitry. In addition, each 

empty bit is converted to the equivalent logic ‘0 ’ data valid bit and each 

EOW tag bit is converted to the equivalent logic 7  ’ data valid bit.

3. Pseudo bits alternate between a logic ‘0’ data valid bit, to coincide with data 

valid bits of the longer word, and an EOW Tag bit, to coincide with the empty 

bits or tag bit of the longer word, until the EOW is detected for both input 

operands.

4. An EOW Tag bit must be converted to empty bit before it is input into the logic 

function.

5. As a consequence of guide-line 4, an empty bit output from the logic function is

converted back to an EOW Tag bit only when both inputs into the logic function 

are EOW Tag bits.

NRTZ Guide-lines

1. Local control is realised using RTZ circuitry, except for the following NRTZ

requirement:

a) Data path bits must be converted into their RTZ equivalent encoding 

before they enter the RTZ control circuit function. This means ODD 

phase data bits are converted empty bits, EVEN phase bits are converted 

to logic (0 ’ data valid bits, and EOWO and EOW1 tag bits are converted 

to their equivalent logic ‘0 ’ and logic 7  ’ data valid bits.

2. Pseudo bits must alternate between logic ‘O’ ODDd, logic ‘0’ EVENd, logic ‘0’ 

ODDd and EOW1 bits, matching the 4-bit tagging period, such that each bit 

coincides with the same phase of bit of the longer operand.

3. Each EOW1 bit must be converted to an EOWO bit before it enters the logic 

function.
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4. An EOWO output from the logic function must be converted to an EOW1 only 

when both inputs into the logic function are EOW1.

Addition

General Self-timing Guide-lines

The general guide-lines of the logic function also apply to the addition function. The 

following guide-line is also necessary:

2. Pseudo bits must be appended to the end of both operands in the event of carry

overflow.

RTZ Guide-lines

Logic function guide-lines 1 through 4 also apply to the addition function. However, 

guide-line 5 must be amended for the addition function, described as follows:

5. As a consequence of guide-line 2, an empty bit output from the logic function is 

converted back to an EOW Tag bit only when both inputs into the logic function 

are EOW Tag bits and there is no carry overflow.

NRTZ Guide-lines

NRTZ logic function guide-lines 1 through 4 apply to the NRTZ addition function, 

however, guide-line 5 must be amended. In addition, three further guide-lines specific to 

the NRTZ addition function are required.

5. An EOWO bit output from the logic function must be converted to an EOW1

only when both inputs into the logic function are EOW1 and there is no carry 

overflow.

6. An ODD phase carry bit preceding the input of EOWO bits must be propagated

to the addition of the ODD phase data bits succeeding the EOWO bits.

7. An ODD phase carry bit must be converted to the equivalent EVEN phase data

bit in readiness for the next bit addition cycle, and vice versa for EVEN to ODD 

conversion.
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Comparison

General Self-timing Guide-lines

Logic function guide-line 1 also applies to the comparator. In addition, a second guide

line is required for the comparator function:

2. If the comparison is to made in one instruction cycle the data operands must be

internally stored in the comparator until the last bit comparison, after which the 

appropriate operand can be output.

RTZ Guide-lines

RTZ Logic guide-lines 1 through 4 also apply to the RTZ comparator.

NRTZ Guide-lines

NRTZ Logic guide-lines 1 through 4 also apply to the NRTZ comparator.

5.8 The Selection Guide-lines

This section proposes guide-lines to aid computer architects in the selection of the 

appropriate RTZ, NRTZ or synchronous design technique, depending on the required 

SA data path implementation characteristics. These selection guide-lines are based on 

the circuit characteristics produced for each of the RTZ, NRTZ and synchronous data 

path functions and are categorised into performance, based on the latency and 

throughput results, and gate count selection guide-lines, discussed as follows.

Performance Guide-lines

The performance of self-timed data path functions is dynamic in that it is dependent on 

the length of the data words operated upon. The performance of the synchronous data 

path functions is fixed to a static worst case speed, even if the magnitude of the data item 

is less than the magnitude represented by the fixed-position most significant bit (MSB); 

in this case one or more trailing logic ‘0’ bits follow the encoded data for each bit 

position up to the pre-determined MSB.

The following guide-lines propose the appropriate technique to adopt to maximise a 

function’s performance when considering the number of bits required to encode the data 

item independent of the design technique:
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• If the word length of the environment data items varies over a range of 0 to 8-bits 

then NRTZ data path functions are the most appropriate to adopt in order to benefit 

most from the fast processing speed of short length words.

• If the data set magnitude varies between 8 to 16-bits then synchronous data path 

functions should be adopted because their worst case speed performs consistently 

better than both the RTZ and NRTZ data path functions operating on longer data 

words.

• If the data word length varies over the mid range, of between 4 to 12-bits, or the 

complete range, of between 1 to 16-bits, then the selection of the appropriate design 

technique is more difficult because the processing speed of the RTZ and NRTZ data 

path functions over these ranges are very similar to the fixed worst case speed 

synchronous data path functions. The required circuit area is therefore the deciding 

factor.

The guide-lines suggested above are based on the best case performance for each of the 

RTZ, NRTZ and synchronous data path functions, however, their final performance is 

dependent on other units that supply data and control information to their inputs. 

Therefore, selection of the appropriate design technique is directly related to the overall 

performance of the data path and control path when connected together. Consequently, 

final decisions on the selected implementation technique for the data path functions 

cannot be made until the performances of the RTZ, NRTZ and synchronous PEs are 

determined; presented in chapter 7.

Circuit Area Guide-lines

The following guide-lines propose the appropriate technique to use for different circuit 

area requirements:

• The gate counts of the RTZ and NRTZ data path functions are considerably larger 

than the synchronous equivalents. Therefore, if the desired circuit area of the 

processor is required to be small in order to make benefit of the maximum number 

PEs that can be fit onto a single chip, then the synchronous design technique is the 

best technique to use.
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• However, if circuit area is not an imperative issue then the NRTZ design approach, 

which is only slightly bigger than the RTZ, is the best to adopt in order to make use 

of the average case processing speed.

5.9 Conclusion

In this chapter three experimental studies were presented realising new self-timed RTZ 

and NRTZ architectures for the register bank unit, data output unit and execute unit data 

path functions. Each of the three above stated studies followed a standard experimental 

methodology that resulted in three important results:

• New guide-lines to aid in the design of RTZ and NRTZ self-timed bit-serial data path 

functions. This included general guide-lines that consider delay-insensitive self-timed 

design issues for the three afore-mentioned data path functions. In addition, guide

lines that consider encoding and tagging design issues were presented.

• New guide-lines to aid in the selection of the appropriate design technique for a 

given set of criteria.

• Comparison of the implementation characteristics of the RTZ, NRTZ and 

synchronous data path functions. This has shown that the performance of the RTZ 

and NRTZ data path functions is better than the synchronous equivalent for short 

data word lengths. However, the circuit area of the RTZ and NRTZ data path 

functions are significantly greater than their equivalent synchronous counterparts.
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CHAPTER 6

THE CONTROL PATH

6.1 The Objectives of the Chapter

The development of design guide-lines for RTZ and NRTZ control path functions is the 

main aim of this chapter. This aim is achieved through the design of the instruction 

bypass unit (TBU), instruction decode unit (IDU) and instruction fetch unit (IFU) control 

structures. The performance and cost characteristics for the RTZ and NRTZ control 

path functions are compared against each another and with their synchronous 

counterpart. From these results selection guide-lines are determined to identify the most 

efficient design method for each control path functions for a chosen application 

environment.

In addition to the control path structures identified above, three further control path 

functions, presented in the following section, are required to control the bit and 

instruction cycles of the ST-SISA. The aims identified above also apply to these three 

functions, however, because these functions are specific to the ST-SISA, comparisons 

with the SISA are not necessary.

6.2 Introduction to the Control Path

The ST-SISA control path is shown in figure 6.1. It contains several functions: the IBU, 

IFU, and IDU, and the newly presented over-write unit (OWU), result control unit 

(RCU) and the PE status unit (PSU). The role of the three fore mentioned control path 

units has been previously described in chapter 4.
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Figure 6.1. The control path.

The latter three control path functions are required because the ST-SISA operates in 

instruction cycles where each instruction cycle is sub-divided into a dynamic number of 

bit-cycles. The number of bit-cycles is determined by the length of the longest data word 

operated upon in the instruction cycle. As a consequence, it is necessary to co-ordinate 

the various sub-functions of the ST-SISA for both bit and instruction cycles. The RCU, 

OWU and PSU provide the required functionality, explained as follows:

Over-Write Unit (OWU): The role of the OWU is to allow the destination register of 

the RBU to dispose of its old data, by performing a pseudo read of its output, thus 

making space in the register for the new result data from the EXU. The OWU also 

signals to the PSU on each bit cycle whether or not the EOW Tag of the destination 

register’s old data has been detected, indicating the end of the over-write operation.

Result Control Unit (RCU): The purpose of the RCU is to monitor the result output 

from the EXU in order to signal on every bit cycle to the PSU whether it has detected 

the EOW Tag bit, thus indicating that the selected EXU function has completed its 

operation, or if it has detected a data bit (or otherwise), indicating that the selected EXU 

function is not yet complete.
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PE Status Unit (PSU): The role of this unit is to monitor the two RBU source operand 

outputs in order to send their status, indicating if either or both are EOW Tags or not, on 

every bit cycle to the IDU and IFU. This information enables the IDU to correctly 

disable the source operand data path that is no longer required; when one word is longer 

that the other. Both source operand data paths are disabled when a MIN/MAX operation 

completes the comparison of the source operands before the result can be written to the 

destination register. The PSU in addition monitors the status signals from the OWU and 

RCU, such that when these and both the source operand outputs indicate they have 

detected a tag, the PSU can then signal to the IFU to accordingly select or re-select the 

next or current instruction for transmission to the control path.

6.3 Experimental Methodology and Assumptions

To ensure consistency throughout this thesis the proposed investigations in this chapter 

adopt the same experimental and design methodologies as detailed in chapter 3 and 

Appendix D, respectively.

The experimental assumptions and adopted metrics are the same as those specified in 

previous chapter, in section 5.3.

6.4 The Instruction Bypass Unit (IBU)

The function of the IBU is to output the two instruction words (fixed to eight bits in 

length) to the IFU if both the row and column selector bits are set to logic ‘ 1 ’. 

Otherwise, if either or both selector bits are set to logic ‘O’, the instruction words are 

simply discarded by the IBU.

6.4.1 Self-timing Requirements

The row and column selectors are input into the IBU with the first bit of each instruction 

word. Therefore, the row and column selectors must not only control the path taken 

through the LBU for the first instruction bit of both words but for all succeeding bits of 

both words in order to correctly select or deselect the entire instruction. However, this 

causes problems because the fundamental mode of operation dictates that the row and 

column selector bit inputs must transpire through a state change for each instruction bit
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input, otherwise the IBU will deadlock. In order to overcome this problem the IBU 

must internally regenerate the row and column selector bits for each bit cycle of the IBU.

6.4.2 The RTZ Experiment 

The RTZ Requirements

The EOW Tag bit is used to signal the end of each instruction word. Therefore, when 

the EOW Tag bit is detected by the IBU, this indicates the next row and column selector 

bits can be read by the IBU.

All instruction path components are realised using NRTZ circuitry to cater for the EOW 

Tag (as described in section 5.4.2). In addition, because the selectors are RTZ encoded 

and untagged, all selector path components are realised using RTZ circuitry.

The RTZ IBU Architecture

The RTZ IBU Architecture is shown in figure 6.2.
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INPUT

ROW & COLUMN 
SELECTOR INPUTS

NULL

NULL

A N D
PSEUDO
BITS
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SELECT

SEL. BIT
INPUT
CONTROL

LATCH
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Figure 6.2. The RTZ IBU.

MUX: The role of this device is to pass the actual row and column selector bits to the 

AND circuit, associated with first bit of an instruction, or internally generated pseudo 

row and column selector bits. It operates as follows. Whenever the control input is set 

to logic ‘1’, indicating that the present instruction bit is an EOW Tag, the next row and 

column selector bits are passed to the AND circuit which consequently controls the
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selection of the next instruction word. However, if the control input is set to logic ‘O’, 

then row and column pseudo bits are passed to the output as no more selector bits can 

be read for the current input instruction.

SELECT (SEL) BIT INPUT CONTROL: The purpose of this device is to signal to 

MUX the type of instruction bit as each passes through the IBU. It outputs a logic ‘ 1 ’ 

bit when an EOW Tag has been detected, or a logic ‘O’ when it detects an empty bit, 

and an empty bit when it detects a valid bit of either logic level.

RE-SELECT: This device changes the logic level of the ANDed pseudo row and 

column selector bits to the logic level of the previous ANDed actual row and column 

selector bits until the end of the instruction word. It operates as follows. Whenever the 

control input is set to logic ‘1’ the bit received from AND is output unchanged. If the 

control input is set to logic ‘0’ then the bit received from AND is set to the logic level of 

the previous RE-SELECT output.

DMUX(0, 1): The purpose of this device is to output its respective instruction word to 

the EFU when the row and column selector bits are both set to logic ‘1’, indicated when 

the control input is set to logic ‘1’. If the control input is set to logic ‘0’ then the 

instruction word is sent to a null circuit where it is discarded.

LATCH: Buffers each instruction bit, taken from the instruction stream, before they are 

passed to the demultiplexor.

NULL: Simply discards the received instruction bit in the event one or both of the row 

and column selector bits are set to logic ‘O’.

6.4.3 The NRTZ Experiment 

The NRTZ Requirements

The requirements of the NRTZ circuit are very similar to the requirements of the RTZ 

circuit, except that it operates on an untagged NRTZ instruction stream. The untagged 

approach was adopted because instruction words are fixed to a length of eight bits. 

Therefore, if the NRTZ tagging technique were used to signal the end of a word then
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four extra bits (two EOWO, one EOW1 and an used data bit) would be required to 

encode each and every instruction word. So instead, an NRTZ ring counter is used to 

count each instruction bit input into the IBU for every instruction word. When the 

eighth bit is reached, the next row and column selector bits and instruction are input to 

the IBU.

All instruction path components are implemented with NRTZ circuitry and the selector 

path components are realised using RTZ circuitry (as described in section 5.4.3).

The NRTZ IBU Architecture

The NRTZ IBU Architecture, shown in figure 6.3, is the same as the RTZ IBU 

architecture except for the inclusion of the 8-bit ring counter instead of the select input 

control circuit.
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INPUT

WORD1
OUTPUT

WORD1
INPUT

ROW  & COLUM N  
SELECTOR INPUTS

NULL

NULL

AND
PSEUDO
BITS

RE-
SELECI

8-BIT RING  
COUNTER

LATCH

LATCH

Figure 6.3. The NRTZ IBU.

8-BIT RING COUNTER: The function of the ring counter is to count each instruction 

bit input into the IBU in order to signal the receipt of the eighth bit. It operates as 

follows. Whenever a instruction word bit is output from the IBU the ring counter 

rotates its internal buffer. When the eighth bit is read the output from the ring counter is 

set to logic ’1’, otherwise it is logic ‘O’, thus signalling to the MUX to read in the next 

row and column selector bits.
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6.4.4 The Synchronous IBU

The role of the synchronous IBU [82], figure 6.4, is slightly different to that of the ST- 

SISA IBU in that it inputs the control information in parallel, converted from serial to 

parallel by the IFU. It then passes the bit-parallel instruction information to the IDU 

either unchanged or converted into a NOP to deselect it if either or both of the row and 

column selector bits are set to logic ‘O’.

OPCODE OPCODE RESULT OPERAND B OPERAND A
TO RBU  
M U X B

TO RBU  
MUX A

TO EXU TO IDU TO
DM UX

TO
IDU

OPERAND B OPERAND AOPCODE RESULT

FROM IFU

Figure 6.4. The synchronous IBU.

The IBU operates as follows. The row and column selector bits, associated with each 

instruction, are read and ANDed together on each word cycle. The output from the row 

and column AND gate is then used as a select mask bit by each of the instruction bit 

AND gates, such that each gate outputs its respective input instruction bit, if the select 

mask bit is set to logic ‘1’, or outputs a logic ‘O’, if the select mask bit is set to logic ‘O’. 

Each of the instruction fields are then latched at the EBU output, so that the appropriate 

instruction fields can be read by the IDU, RBU and EXU.

6.4.5. Results

Figure 6.5, Figure 6.6 and Table 6.1 illustrate the latency, throughput and hardware 

results, respectively, for the RTZ, NRTZ and Synchronous IBU functions.
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RTZ NRTZ SYNC

IBU 446 gates 538 gates 422 gates

Table 6.1. The RTZ, NRTZ and synchronous IBU gate counts.

The following observations have been made:
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Figure 6.5 shows that the latency of the synchronous IBU is considerably less than that 

of the RTZ and NRTZ designs. It can also be seen that the NRTZ IBU performs better 

than the RTZ IBU.

Figure 6.6 shows that the throughput of the synchronous IBU is considerably greater 

than both the RTZ and NRTZ IBUs. The throughput of the NRTZ IBU is slightly 

greater than the RTZ IBU’s throughput.

Table 6.1 shows that the RTZ and NRTZ IBUs are approximately 6% and 27% bigger 

than their synchronous counterpart. The NRTZ IBU is approximately 21% bigger than 

the RTZ IBU.

6.4.6 Analysis

The self-timed and synchronous designs differ in that the latter operates in parallel as 

opposed to the former which operates in serial. Therefore, because of the inherent large 

size of delay-insensitive circuits, and the bit-parallel implementation of the synchronous 

design, the three circuits are comparable in circuit area. In addition, because the 

synchronous design operates in parallel it is considerably faster than the RTZ and NRTZ 

designs. The NRTZ RBU latency and throughput is greater than the RTZ IBU because 

it operates on less instruction bits because of the fewer bits required by the NRTZ 

encoding technique.

Any clock skew that might detrimentally effect the performance of the synchronous IBU 

would have to increase its latency by approximately 6000% to make it as slow as the 

RTZ IBU when it operates on the same maximum length 16-bit word.

6.5 The Instruction Fetch Unit (IFU)

The purpose of the IFU is to convert the bit-serial instruction into the equivalent bit- 

parallel format before sending it to the IDU; in order to conform with the existing 

synchronous SISA design.
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6.5.1 The Self-timing Requirements

The IFU takes the bit-serial instruction and then converts it into the bit-parallel 

equivalent before sending the result and operand address codes to the RBU and IDU, 

and the instruction code to the EXU and the IDU. It then re-sends the bit-parallel 

instruction on every ST-SISA bit cycle until the end of the instruction cycle. This is a 

result of the fundamental mode of circuit operation which requires that each control 

circuit module receives control information each time it guides a single data bit through 

its controlled device. Consequently, the IFU must store and re-send the bit-parallel 

instruction until the EOW Tag bit has been processed by the RBU’s DMUX. The IFU 

can then fetch the new instruction from the EBU when the appropriate control signal is 

received.

6.5.2 The RTZ Experiment 

The RTZ Requirements

In order to transmit the bit-parallel representation of the RTZ instruction to the relevant 

functional units, each (V)alid data bit, and its succeeding (E)mpty token, in each bit- 

serial instruction word must be separated and distributed over their own dedicated 

control line. In addition, because the control path is completely RTZ encoded, the (T)ag 

bit, succeeding the eighth bit, must be converted to an empty token before it is 

transmitted to its appropriate function(s). This functionality is illustrated in figure 6.7. 

As a consequence of this functionality all the RTZ EFU circuitry, after the tag is 

converted to empty bit, is implemented using RTZ circuitry.

The RTZ IFU Architecture
The RTZ EFU Architecture, depicted in figure 6.7, fetches eight instruction bits, 

therefore two EFUs, one for each instruction word, are required to fetch all sixteen 

instruction bits.
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Figure 6.7. The RTZ IFU.

DMUXO: The role of this device is to convert the bit-serial instruction word into an 

equivalent bit-parallel representation by sending the «th valid bit (where n is the bit 

position), with its corresponding empty token, to the corresponding nth. output. 

Therefore, bitO is passed to DMUX output 0, bitl to output 1, bit2 to output 2 and so 

on, in ascending order, until the end of the word. This process is repeated for every input 

instruction word. This device is controlled by DMUX OUTPUT SEQUENCE 

CONTROL, explained in the next paragraph.

DMUX OUTPUT SEQUENCE CONTROL: The purpose of this device is to control 

DMUXO enabling it to perform its function as stated in the previous paragraph. It 

operates as follows. A bit-parallel address incremented on each bit cycle is output to 

DMUXO, so that the corresponding 0 through to 8 outputs of DMUXO are selected in 

ascending order.

DMUX1: The function of this device is to discard instructions, if the select input is set to 

logic ‘ 1 ’ indicating a NOP instruction has been detected. Otherwise, if the instruction is 

something other that a NOP, the control input is set to logic ‘O’, then it is sent to MUX 

for output to the IDU.
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NOP CONTROL: The purpose of this circuit is to differentiate between a NOP and all 

other instructions in order that NOPs are discarded and all other instructions are sent to 

the IDU. It is realised using a simple 4-input NAND circuit that monitors the opcode 

field of the instruction. It sends a logic ‘1’ control bit to DMUX1 when the current op

code is a NOP, otherwise logic ‘O’ is sent indicating a new instruction is to be executed 

by the PE. Only one NOP control function is required for the two IFUs.

MUX: The role of this circuit is to send either the new bit-parallel instruction word, 

when the previous instruction is finished, or pseudo bits to the IDU, on each bit cycle of 

the current instruction. It operates as follows. If the control input is set to logic ‘1’, the 

new instruction word is sent to the IDU. Otherwise, if the control input is set to logic 

‘O’, then pseudo bits are passed through MUX.

BIT RE-SELECT: The role of this device is to set the logic level of pseudo bits to the 

logic level of the first control bit so that the instruction can be regenerated on each bit 

cycle, following the first bit cycle, of an instruction. It operates as follows. A new 

instruction bit is output if the select input is set to logic ‘1’. Otherwise, if the select 

input is set to logic ‘0’ then the pseudo bit, received from MUX, is set to the logic level 

of the previous control bit which was output to the IDU.

6.5.3 The NRTZ Experiment 

The NRTZ Requirements

The requirements of the NRTZ IFU are very similar to the RTZ IFU except for the need 

to convert the NRTZ instruction into the equivalent RTZ instruction because the NRTZ 

ST-SIS A incorporates an RTZ control path.

Two problems must be considered to convert an NRTZ bit-serial instruction into a 

equivalent bit-parallel representation. Firstly, EVEN phase instruction bits, 1, 3, 5 & 7, 

see figure 6.8, after being converted to parallel must then be converted to (O)DD phase 

instruction bits, otherwise they will be in the incorrect phase for the IDU. Consequently 

all circuitry that precedes and includes this functionality is implemented using NRTZ 

circuitry to cater for the NRTZ instruction. All circuitry succeeding the conversion of 

the NRTZ instruction to its RTZ equivalent is implemented in RTZ circuitry.
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Secondly, an empty token must be appended to the end of each newly converted bit- 

parallel data-valid instruction bit to ensure the correct RTZ sequence of data-valid and 

empty states. The required functionality is illustrated in figure 6.8, showing the 

transformation of the NRTZ bit-serial word into the RTZ bit-parallel word.

7 6 5 4 3 2 1 0
O O E O E O

Serial to Parallel

-+ O 
+ E 
->0 
+  E 
+ 0  
“►E 
> 0  
+ E

+ EV 
+ EV 
-►EV 
-+EV 
-+EV 
-►EV 
-►EV 
-►EV

NRTZ to RTZ

Figure 6.8. NRTZ bit-serial to RTZ bit-parallel.

The NRTZ IFU Architecture

The NRTZ IFU architecture is shown in figure 6.9.
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Figure 6.9. The NRTZ IFU.

DMUX OUTPUT SEQUENCE CONTROL: The role of this device is to control the 

outputs of DMUXO such that instruction bits are passed to the outputs in the order in 

which they were input. This is followed by passing alternate data (logic ‘0’) and empty
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pseudo bits in descending order to the DMUXO outputs; which are then appended to the 

new bit-parallel instruction word. In other words, the output bit-parallel address word is 

incremented on each bit cycle, 0 through to 7, before being decremented on each bit 

cycle to 0(e.g. 0,1,2,3,4,5,6,7,7,6,5,4,3,2,1,0).

MUX1: The role of this device is to send either the NRTZ encoded instruction, or a 

sequence of eight NRTZ logic ‘O’ pseudo bits, to DMUXO.

MUXO INPUT SEQUENCE CONTROL: The role of this device is to select the input 

port of MUX1. It does this by outputting a sequence of eight NRTZ encoded logic ‘1’ 

bits, which correspondingly cause MUX1 to pass the eight instruction bits to DMUXO, 

followed by a sequence of eight NRTZ logic ‘O’ bits, which cause MUXO to send eight 

logic ‘0’ pseudo bits to DMUX1.

PHASE INVERT: The role of this device is to change the phase of an EVEN phase 

instruction bit to an ODD phase instruction bit and vice versa.

6.5.4 The Synchronous IFU

The role of the IFU [81], figure 6.10, is to convert the input bit-serial instruction into the 

equivalent bit-parallel instruction for output to the IBU. The IFU also passes the 

unchanged bit-serial instruction on to the next PE. The synchronous IFU acts as a 

source to the IBU whereas the ST-SISA IBU acts as a source to the IFU.
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Figure 6.10. The synchronous IFU.
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The IFU is realised by two simple 16-bit bit-serial FIFO pipelines in which some of the 

latch outputs, as seen in the figure 6.10, are fed to the IBU in addition to the succeeding 

FIFO latch. Each instruction word is divided into two fields, therefore only after the 

sixteenth bit cycle does each field lie in the appropriate latches.

6.5.5 Results

Figure 6.11 shows the serial to parallel conversion time of the first instruction for the 

three versions of the IFU. It also shows the time taken to regenerate the bit-parallel 

instruction for successive data bit cycles; the synchronous IFU has no regenerate cycles.

Figure 6.12 illustrates the time taken by the RTZ and NRTZ IFUs to convert the next 

instruction succeeding the first instruction from serial to parallel,. This aims to show any 

reduction in the IFU processing time of the second instruction through the overlapping 

of regenerate cycles, of the first instruction, with the serial to parallel conversion time of 

the second instruction.

Figure 6.13 shows the throughput of the RTZ, NRTZ and synchronous IFUs. This 

figure only shows the results for non-overlapping instructions.

Finally, Table 6.2 shows the gate count results for the RTZ, NRTZ and synchronous 

IFU functions.
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Figure 6.11. The RTZ, NRTZ and synchronous IFU first instruction latencies.
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RTZ NRTZ SYNC

IFU 5104 gates 5512 gates 512 gates

Table 6.2. The RTZ, NRTZ and synchronous IFU gate counts.

The following observations can be made:

Figure 6.11 shows that the time taken by the NRTZ IFU to convert the bit-serial 

instruction from serial to parallel is approximately 100 A faster than the time taken by the 

RTZ IBU. However, the time taken to append empty bits onto the NRTZ bit-parallel
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instruction, controlling the second NRTZ PE bit cycle, is significantly longer than the 

RTZ IFU takes to regenerate its instruction code, for its second PE bit cycle. It can also 

be seen that the NRTZ IFU gradually increases its performance over that of the RTZ 

IFU as the number of bit cycles increases from 8-bits upwards. The synchronous IFU 

does not need to regenerate control information and so its latency remains constant.

Figure 6.12 shows that the greater the number of regenerate cycles for the first 

instruction, the greater the parallel overlap with serial to parallel conversion of the 

second instruction.

Figure 6.13 shows that the throughput of the RTZ IFU is greater than the NRTZ IFU 

throughput for short length data words, however, the NRTZ IFUs throughput is greater 

the RTZ IBU’s throughput for long data words.

Table 6.2 shows that both the RTZ and NRTZ IFUs are ten and eleven times larger in 

circuit area, respectively, than their synchronous counterpart, with the NRTZ IFU 

requiring 8% more circuit area than the RTZ IFU.

6.5.6 Analysis

The RTZ and NRTZ IFUs are significantly slower than the synchronous IFU due to their 

increased functionality and high gate count. However, the latency of the RTZ and 

NRTZ designs can reduced by up to 50 A through the parallel execution of the serial to 

parallel conversion and regenerate functions.

Any clock skew that might detrimentally effect the synchronous IFU’s processing speed 

would have to increase its latency by approximately 200% to make it as slow as the RTZ 

IFU when it operates on the same maximum length 16-bit word.

6.6 The Instruction Decode Unit (IDU)

The IDU takes the complete instruction from the IFU and then converts into a suitable 

format in order to co-ordinate and control the operation of the various sub-units of the 

data path.
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6.6.1 The Self-timing Requirements

A number of the required control signals have been previously identified in the DOU and 

RBU experiments: the source operand A & B register selects, destination register select, 

wait select and over-write select for each register and the write select for the DOU.

In addition to these control requirements two other control signals are necessary. The 

first is used to automatically select the DOU output of the RBU DMUX in the event of a 

write operation, because the result field is used to select the direction(s) in which the 

DOU is to output data. Consequently, when a write instruction is issued the RBU 

DMUX control input word must be forcibly set to 0 in order to select the DMUX’s DOU 

output.

The second control signal is necessary to disable the source data path, for operand B, 

when only a single operand instruction is executed, such as an ASSIGN or WRITE 

instructions. Otherwise, the PE would deadlock because operand B’s data path would 

not be able to operate upon any data. The sub-units that must be disabled are the RBU 

MXJXB and EXU MUXB.

6.6.2 The RTZ Experiment 

The RTZ Requirements

The entire RTZ IDU is implemented in RTZ circuitry because it only ever operates upon 

RTZ encoded bit-parallel instructions.

The RTZ IDU Architecture

The RTZ IBU architecture is shown in figure 6.14.
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Figure 6.14. The RTZ IDU.

OPERAND A SELECT: The role of this device is to decode operand A read from the 

IFU so that the appropriate control signals are generated for the control of the four 

registers. It operates as follows. It decodes operand A and sets to logic ‘ 1 ’ one of four 

dedicated register control lines (OPACO, OPAC1, OPAC2 or OPAC3), thus signalling to 

the corresponding register that it is read by RBU’s MUXA; all other lines are set to logic 

‘O’ signalling to their corresponding registers that they are not read by MUXA. When 

the entire data word has left the selected register, CA is set to logic ‘1’, signalling to the 

decoder to reset the previously selected line, indicating to the corresponding register to 

cease communicating with RBU MUXA.

DESTINATION SELECT: Same operation as the OPERAND A SELECT except it 

monitors the result field and the AND of the instruction op-code. If the result of the 

AND of the instruction is logic ‘1’, indicating that a write instruction has been issued, 

then the destination select control outputs are set to logic ‘0’ indicating to all registers 

that they are not used to store the resultant data word.

OPERAND B SELECT: Same operation as above except it monitors OPBSEL, and 

supplies control bits to the corresponding OPBCO, OPBC1, OPBC2 or OPBC3 outputs.



DMUX MASK SELECT: This device automatically selects the first output of the 

RBU DMUX, to the DOU, in the event of a write instruction. In this case the control 

input of the RBU’s DMUX is set to Oi0, in order to automatically select the DOU 

output, because the result field is instead referenced by the DOU.

SOURCE B DISABLE: This device disables operand B’s data path in the event of a 

write or assign instruction. It operates as follows. It sets its output to logic ‘1’ to 

disable the various sub-units of operand B’s data path. Otherwise, for any other 

instruction besides a write or assign it outputs logic ‘O’ indicating to operand B’s data 

path units that they are required.

WAIT SELECT: The role of this device is to disable the result data path in the event of 

a MIN or MAX operation. If this instruction is executed this device outputs a logic ‘ 1 ’ 

control signal to the EXU and RBU indicating that they must wait for the result data 

operand from the comparison function. If this signal was not issued then the 

corresponding sub-units would expect the arrival of a result data bit, which would not 

arrive, causing the entire ST-SISA to deadlock.

WRITE SELECT: The purpose of this device is to signal to the DOU to read the 

result address field from the IFU. It operates as follows. When its output is set to logic 

‘1’ the DOU reads the instruction result field. Otherwise, when it is set to logic ‘0’ the 

DOU will ignore the result field.

6.6.3 The NRTZ Experiment 

The NRTZ Requirements

The requirements for the NRTZ IDU are the same as the RTZ IDU because both adopt 

RTZ encoded control information.

The NRTZ IDU Architecture

The NRTZ IDU architecture is exactly the same as the RTZ IDU for reasons explained 

previously in section 6.6.2.
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6.6.4 The Synchronous IDU

The synchronous IDU [81], figure 6.15, has two main sub-functions. The first is to 

decode the result field for use by the RBU. The second is to identify the occurrence of 

a MIN or MAX instruction and generate controls signals for use by the comparator.
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RESULT
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Figure 6.15. The synchronous IDU.

6.6.5 Results

Figure 6.16 and Figure 6.17 illustrate the latency and throughput, respectively, for the 

synchronous IDU, and for the RTZ IDU, when it controls RTZ and NRTZ data path 

circuits. Table 6.3 shows the gate count results for the RTZ and synchronous IDU 

functions.
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Figure 6.16. The RTZ/NRTZ and synchronous IDU latencies.
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RTZ SYNC

IDU 393 gates 124 gates

Table 6.3. The RTZ, NRTZ and synchronous IDU gate counts.

The following observations have been made:

The RTZ/NRTZ IDU must decode the instruction, and PE status information, on each 

and every bit cycle. Figure 6.16 shows that the RTZ/NRTZ IDU is faster than its 

synchronous counterpart if the longest data word in the instruction cycle is 8-bits or less. 

However, for data words longer than 8-bits the RTZ/NRTZ IDU takes longer to decode 

the required control information for the complete instruction cycle than the synchronous 

IDU.

Figure 6.17 shows that the throughput of the RTZ/NRTZ IDU decreases as the word 

length is increased. The RTZ/NRTZ IDU throughputs are greater than that of the 

synchronous IDU for short length words, however for long words the synchronous 

IDU’s throughput is greater. The throughput of the RTZ/NRTZ IDU is greater when it 

controls an NRTZ data path than a RTZ data path.
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Table 6.3 shows that the RTZ/NRTZ IDU is approximately three times bigger than the 

synchronous IDU.

6.6.6 Analysis

The RTZ/NRTZ IDU must decode the instruction it receives on each and every PE bit 

cycle, consequently, its performance is relative to the synchronous IDU is dictated by the 

length of the longest data operand in the instruction cycle. The RTZ/NRTZ IDU latency 

is reduced when the IDU is used to control the NRTZ data path, because the NRTZ 

encoding technique requires less bits to encode the same data item than the RTZ 

encoding technique.

The RTZ IDU has a much higher gate count than the synchronous IDU because of the 

extra functions it implements, namely the mask select, register control, write select and 

wait select functions, in addition to the inherent larger size of self-timed circuits.

If clock skew were to detrimentally effect the performance of the synchronous IDU it 

would have to increase its latency by approximately 92% to make it as slow as the 

RTZ/NRTZ IDU when it operates on an RTZ 16-bit word.

6.7 The Result Control Unit (RCU)

The Result Control Unit (RCU) monitors the result operand as it is passed bit-serially 

from the EXU to the RBU. Its main function is to signal to the PSU the type of the bit 

it is monitoring, differentiating between an EOW Tag bit and a data bit. This enables the 

PSU to identify if the current bit represents the end, or continuance of the currently 

selected EXU function.

6.7.1 The Self-timing Requirements

The ST-SISA operates in fundamental mode, consequently, in the event that the 

destination register’s old data has not been overwritten the RCU must continue sending 

result status signals to the PSU even if the instruction cycle is not yet complete. The 

RCU is reset once the OWU status signal indicates that its EOW Tag has been detected. 

Consequently, the RCU, in addition to the PSU, must monitor the OWU status signal.
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Another important factor of the RCU to consider is that when a MIN or MAX 

instruction is executed the RCU will not receive any result bits from the EXU until the 

EXU has completely read both source operands. This will cause problems because the 

RCU must produce status output signals on every PE bit cycle otherwise the PSU will 

deadlock as it will not receive any signal changes on one of its inputs. Therefore, the 

IDU sends a wait signal to the RCU signalling that it must produce pseudo result status 

signals before the actual result operand can be read from the EXU.

6.7.2 The RTZ Experiment 

The RTZ Requirements

Any pseudo status bits produced after the result EOW has been detected must be set to 

logic ‘1’ to ensure that the RCU continues to signal the EOW Tag has been detected. 

Any pseudo status bits produced before a MIN or MAX operation has completed its 

comparison must be set to logic ‘O’ indicating the end of the word has not been detected.

All data path components are realised using NRTZ circuitry, whereas all control 

components are realised using RTZ circuitry for reasons explained in section 5.4.2.

The RTZ RCU Architecture

The RTZ RCU Architecture is shown in figure 6.18.
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Figure 6.18. The RTZ RCU.
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DMUXO: This device controls the passing of the wait control signal, produced by the 

IDU, to MUXO. It operates as follows. If the control input into DMUXO is set to logic 

‘O’, indicating that the result EOW Tag has not been detected by MUX CONTROL 1, 

then the wait control signal is sent to MUXO. If the control input is set to logic ‘1’, 

indicating that the EOW has been detected for the current instruction cycle, then the wait 

signal is discarded.

MUXO: The role of this device is to pass pseudo bits to MUX1, in the event of a MIN or 

MAX instruction, to ensure that the controlling device of MUX1 (MUX CONTROL 1) 

continues to receive state changes on all its inputs to avoid circuit deadlock. It operates 

as follows. If the wait signal is set to logic ‘0’ then the instruction currently being 

executed is either an instruction besides MIN or MAX, or a MIN or MAX instruction 

that has finished processing its operands, and so the result operand can be passed to 

DMUX1. If the wait signal is set to logic ‘1’ then pseudo bits, set to logic ‘O’, are sent 

to MUX1 which feeds MUX CONTROL 1. This is necessary because MUX 

CONTROL 1 must receive state changes on all its inputs.

DMUX1: This device is used to discard the pseudo data bits, sent by MUXO, because 

they are not read by the RBU. It operates as follows. If the wait signal is set to logic 

‘O’, indicating the instruction currently being executed is an instruction besides MIN or 

MAX, or a MIN or MAX instruction that has finished processing its operands, then the 

result is passed to the RBU. Otherwise, if the wait signal is set to logic ‘0’ then the 

pseudo bits received from MUX1 are discarded to ensure the RBU does not receive 

unwanted pseudo bits.

MUX CONTROL 1: The role of this device is to control the selection of the

appropriate output of DMUXO and input of MUX 1. It does this by monitoring the result 

operand and the over-write data (OWD) from the register bank. In the event the result is 

an EOW Tag, independent of the logic level of OWD, it selects the next actual result 

input ofM UXl, and allows DMUXO to pass the wait signal to MUXO and DMUX1. If 

the result input is an EOW Tag, and the OWD is not an EOW Tag, then the pseudo 

input ofMUXl is selected, in order that the MUX control can still receive state changes 

on its result input while it continues monitoring OWD. Otherwise, if both result and
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OWD are EOW Tag bits then the actual input ofMUXl is selected. In addition it allows 

DMUXO to discard the wait signal.

MUXI: The role of this multiplexor is to feed either the result word or pseudo data bits 

to MUX CONTROL 1, OWU and PSU. It operates as follows. If the control input is 

set to logic ‘O’ then an actual result bit is sent to MUX CONTROL 1, otherwise if the 

control input is set to logic ‘ 1’ a pseudo bit is sent.

6.7.3 The NRTZ Experiment 

The NRTZ Requirements

Every fourth pseudo status bit produced after the result EOW Tag has been detected 

must be set to an EOW1 to ensure that the RCU continues to signal that the EOW has 

been detected. Every fourth pseudo status bit produced before MAX completes its 

comparison must be set to EOWO indicating the EOW has not been detected.

All data path components are realised using NRTZ circuitry and all control components 

are realised using RTZ circuitry.

The NRTZ RCU Architecture

The NRTZ architecture, figure 6.19, is similar to the RTZ architecture except for the 

need to differentiate between EOW Tag bits and EVEN phase data bits.
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Figure 6.19. The NRTZ RCU.
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MUX CONTROL 1: The role of this device is exactly the same as its previously 

explained RTZ counterpart, only its operation differs. It operates as follows. In the 

event of a EOW1 on the ring counter input (RCI), and a logic ’0’ EVENd on the 

feedback input (FI), MUX CONTROL 1 selects the actual input ofM UXl if the result is 

an EOWO and if OWD is either an EOW1 or EOWO, or if both the result and OWD are 

EOW1 bits. If the result is an EOW1, independent of the logic value on the FI, and 

OWD is an EOWO, then the pseudo input is selected in order to continue sending bits to 

the result input of MUX CONTROL 1.

In the event of an ODDd or EVENd on the RCI, MUX CONTROL 1 selects the actual 

input of the multiplexor if FI is set to logic ’O’, or the pseudo input if FI is set to logic 

‘1’. Therefore, the intermediary bits, between EOW Tag bits, of either the pseudo or 

actual result word are selected.

6.7.4 Results

Figure 6.20, Figure 6.21 and Table 6.4 show the latency, throughput, and gate 

overhead results, respectively, for both the RTZ and NRTZ RCU functions.

800

RTZ
NRTZ

700

&  600  

_ ro

^  50 0  - 

as
o3 40 0  - Q
^  30 0  - 
a>
03

_J 200 -

100  -

1 2 3 4  5  6  7 8  9  10 11 12 13 14 15 16

Word Length (Bits)

Figure 6.20. The RTZ and NRTZ RCU latencies.
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RTZ NRTZ

RCU 407 gates 536 gates

Table 6.4. The RTZ and NRTZ RCU gate counts.

Figure 6.20 shows that the latencies for the RTZ and NRTZ functions are comparable 

for short and mid-size word lengths. However, the NRTZ RCU performs slightly better 

than the RTZ RCU as the word size approaches the maximum length.

Figure 6.21 shows that the throughput of the NRTZ RCU is slightly greater than the 

NRTZ RCU’s throughput.

Table 6.4 shows that the NRTZ function is approximately 32% bigger than the RTZ.

6.7.5 Analysis

The NRTZ is slightly faster and its throughput greater than the RTZ because it requires 

less bits to encode the data that it operates upon. The NRTZ RCU has a higher circuit 

overhead than the RTZ RCU because of extra circuitry required to implement the mux 

control circuit, ring buffer counter and feedback storage.
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6.8 The Overwrite Unit (OWU)

The function of the OWU is to remove the old data word from the selected destination 

register, thus creating space in the register for new data.

6.8.1 The Self-timing Requirements

The OWU removes old data from the RBU destination register by supplying an 

acknowledge signal to the LSB register latch each time a data bit is to be overwritten, 

thus allowing the current output bit to be replaced by the succeeding bit. This process is 

repeated until the EOW Tag bit of the old data is detected and discarded. Therefore, the 

OWU must read the result field address on every bit cycle so it can read the appropriate 

RBU register.

If the RBU destination register also acts as a source then overwrite acknowledge signals 

are synchronised with the acknowledge signals from the appropriate RBU multiplexor(s); 

though it is not necessary to do this, extra control circuitry would have been required to 

deselect the OWU when the destination register also acts as the source.

The OWU must signal to the PSU, on each bit cycle, whether the overwritten word’s 

EOW Tag has been detected or not. This is required by the PSU to identify the end of 

the instruction cycle. However, when the overwritten data word is shorter than the new 

word problems arise because the PSU, like all the circuits, operates in fundamental mode 

and therefore requires a signal on all of its inputs on each and every bit cycle, otherwise 

it will deadlock. Consequently, the OWU must continue to provide EOW status signals 

to the PSU after it has detected the EOW Tag of the overwritten data. The OWU EOW 

status signal can only be reset after the result EOW Tag bit has been detected, indicating 

the end of the instruction cycle. Therefore, the OWU must also monitor the status of the 

result word.

6.8.2 The RTZ Experiment 

The RTZ Requirements

The RTZ requirements of the OWU are the same as those specified for the RCU except 

they apply to the overwrite status signal instead of the result status signal.
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The RTZ OWU Architecture

The RTZ OWU Architecture is shown in figure 6.22.
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Figure 6.22. The RTZ OWU.

DMUX: The role of this bus demultiplexor is to pass the result address, from the IDU, 

to the control input of MUXO to allow it to read the appropriate RBU register output. It 

operates as follows. If the control input into DMUX is set to logic ‘O’, indicating that 

the old data in the destination register has not been overwritten, then the result address is 

passed to MUXO. If the control input is set to logic ‘1’, indicating that the destination 

register’s EOW Tag has been detected, in the current instruction cycle, then the result 

address is no longer needed and is therefore discarded.

MUXO: The role of this device is to guide the data bit, on each bit cycle, from the 

appropriate RBU register to MUX CONTROL 1 depending on the address supplied on 

its control input. It then acknowledges the receipt of each data bit it receives thus 

allowing the destination register to discard its old data. MUXO also passes each data bit 

to MUX1 which feeds the EOW monitoring device (MUX CONTROL 1).

MUX CONTROL 1: The purpose of this module is to control the passing of the result 

address through DMUX to MUXO, and to control the passing of the data bits or pseudo 

bits through MUX1 to MUX CONTROL 1. It operates as follows. In the event OWD 

is not set to an EOW Tag bit, independent of the logic level of RESD, then the next 

actual result input ofM UXl is selected, allowing DMUX to pass the result address to
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MUXO. If the OWD input is an EOW Tag, and the RESD is not an EOW Tag, then the 

pseudo input of MUX1 is selected, in order that MUX CONTROL 1 can continue to 

receive state changes on its OWD input while it continues monitoring RESD, and so that 

DMUX can discard the result address. Otherwise, if both OWD and RESD are EOW 

Tags then the actual input of MUX1 is selected, and the result address of the next 

instruction is passed through to MUXO.

MUX1: The function of this multiplexor is to pass the current overwritten data bit or a 

pseudo data input, under the control of the selector input, to MUX CONTROL 1. If the 

control input is set to logic ‘0’ then the OWD bit is sent to MUX CONTROL 1, 

otherwise if the control input is set to logic ‘ 1’ a pseudo bit is sent instead.

6.8.3 The NRTZ Experiment 

The NRTZ Requirements

The NRTZ requirements for the OWU are the same as those specified for the RCU 

except they apply to the overwrite status signal instead of the result status signal.

The NRTZ OWU Architecture

The NRTZ architecture, shown in figure 6.23, is very similar to the RTZ architecture 

except for the need to differentiate between EOW Tag bits and EVEN phase data bits. 

Therefore, changes needed to be made to the mux control circuit, explained as follows:
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Figure 6.23. The NRTZ OWU.

157



MUX CONTROL 1: The function of this device is exactly the same as that previously 

described for the equivalent RTZ OWU, only its operation differs. It operates as follows. 

In the event of an EOW1 on the ring counter input (RCI), and a logic ‘0’ EVENd on the 

feedback input (FI), MUX CONTROL selects the actual input ofMUXl if the OWD is a 

EOWO and RESD is either an EOW1 or EOWO, or if both the OWD and RESD are set 

to an EOW1. If OWD is an EOW1, independent of the logic value of the FI, and RESD 

is an EOWO, then the pseudo input is selected in order to continue sending bits to the 

result input of MUX CONTROL 1.

In the event of an ODDd or EVENd on the RCI, MUX CONTROL 1 selects the actual 

input of the multiplexor if FI is logic ’O’, or the pseudo input if FI is logic ‘1’. 

Therefore, the intermediary bits, between EOW Tag bits, of either the pseudo word or 

the actual OWD are selected.

6.8.4 Results

Figure 6.24 and Figure 6.25 illustrate the latency and throughput results, respectively, 

for the RTZ and NRTZ OWUs. Table 6.5 shows the gate overhead for both the RTZ 

and NRTZ OWU functions.
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RTZ NRTZ

OWU 578 gates 707 gates

Table 6.5. The RTZ and NRTZ OWU gate counts.

Figure 6.24 shows that both the RCU RTZ and NRTZ implementations are comparable 

over short and mid-range word lengths. However, as the word size approaches the 

maximum length the NRTZ OWU performance is better than the RTZ OWU.

Figure 6.25 shows that both the NRTZ and RTZ OWU throughputs are comparable for 

short length words, however, for long words the NRTZ OWU throughput is greater.

Table 6.5 shows that the NRTZ is approximately 22% larger the RTZ.

6.8.5 Analysis

The reasons for the better performance and higher circuit overhead of the NRTZ OWU 

compared with the RTZ OWU are the same as those previously explained for the RCU 

function.
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6.9 The Processing Element Status Unit (PSU)

The PSU has two main functions. The first is to signal the detection of the EOW for 

both source operands to enable the IDU to cease activating the selected RBU register(s) 

when more data is to be processed in the current instruction cycle. The second function 

is to signal the end of an instruction cycle. These two functions are explained in more 

detail in the following section.

6.9.1 The Self-timing Requirements

The first function of the PSU is necessary because if one source operand is shorter in 

length than the other then the IDU must cease sending control signals to the register that 

supplied the shorter operand. This is because improper circuit operation will arise as one 

data path will be expecting more data when none is available for that instruction cycle. 

This is also the case if a MIN or MAX instruction is executed in that the source operand 

register control signals must be disabled before the result can be written into the 

destination register. If the source registers continue to receive activation signals after 

both have output their data otherwise then incorrect circuit operation will occur.

The second main function of the PSU is to monitor the EOW Tag for each of the OWD, 

RESD, operand A and operand B status signals so it can signal the start of the next 

instruction cycle.

6.9.2 The RTZ Experiment 

The RTZ Requirements

All pseudo operand A or operand B status bits produced, after the result EOW Tag has 

been detected, must be set to logic ‘1’ to ensure that the PSU continues to signal the 

EOW to the IDU until the end of the instruction cycle.

All data path components are implemented in NRTZ circuitry to cater for the NRTZ 

EOW tagged data. The control is implemented in NRTZ circuitry.

The RTZ PSU Architecture

The RTZ PSU architecture is shown in figure 6.26.
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Figure 6.26. The RTZ PSU.

MUX (0, 1): The function of MUX is to pass to the receiving modules either an actual 

bit, indicating the status of the operand bit, or a pseudo bit, to ensure the receiving 

functions do not deadlock. It operates as follows. Each MUX has two data inputs, a 

source operand data input from the RBU and a pseudo data input, which are under the 

control of the selector input, which is fed by MUX CONTROL. If the control input is 

set to logic ‘0’ then the source operand data input is passed to the mux output, otherwise 

if the control input is set to logic ‘ 1 ’ then a pseudo bit is passed to the mux output. The 

pseudo input is fed by a FIFO ring buffer.

MUX CONTROL: The role of this device is to control the associated MUX through 

monitoring the RBU’s source operand A and B output bits and the RESD and OWD 

status signals, so that the appropriate output control signal can be supplied to the 

controlled MUX(0, 1). The two monitored multiplexors are termed the primary 

multiplexor (the controlled device) and the secondary multiplexor, which is simply 

monitored with respect to the multiplexor control. The controller behaves as follows.

When the secondary input (SI) is a tag and the primary input (PI) is an empty bit (i.e. the 

secondary word is shorter than the primary word), or both the SI and PI are tag bits,
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and both RESD and OWD are tag bits, indicating the end of the instruction cycle, then 

MUX CONTROL selects the PI on the next bit cycle. If the PI and SI are both tags and 

OWD and RESD are not both tags then the pseudo input is selected.

When the PI is set to a EOW Tag and the SI is an empty value (i.e. the primary word is 

shorter than the secondary word) then the multiplexor’s pseudo input is selected in order 

to attach a dummy bit to the end of the word. The pseudo input will continue to be 

selected on each bit cycle until the SI and the RESD and OWD signals are EOW Tags, 

indicating that the current instruction cycle has finished.

The outputs from each multiplexor controller, CA for operand A and CB for operand B, 

are also fed to the IDU to accordingly disable the data path for operand A or operand B.

AND: This circuit signals when both the operand, OWD and RESD EOW Tag bits have 

been detected thus signalling the end of the instruction (EOI) cycle. If all the inputs into 

the ‘AND’ are set to logic ‘1’ then the output is set to logic ‘1’ signalling the end of the 

instruction cycle. Otherwise, a logic ‘0’ is output indicating that there is more data to be 

processed for the current instruction cycle.

6.9.3 The NRTZ Experiment 

The NRTZ Requirements

Every pseudo status bit produced for operand A and operand B, after the result EOW 

for either been detected, must be set to logic ‘1’ to ensure that the PSU continues to 

signal the EOW to the IDU.

The NRTZ PSU Architecture

The NRTZ architecture, shown in figure 6.27, is similar to the RTZ architecture except 

for the need to differentiate between EOW Tag bits and EVEN phase data bits. 

Therefore, only needed changes to be made to the MUX CONTROL, explained as 

follows:
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Figure 6.27. The NRTZ PSU.

MUX CONTROL: This circuit operates in a similar manner to the previously explained 

MUX CONTROL, except it differentiates between an EOW1 or an EOWO and an 

EVENd via monitoring the RING COUNTER output. Feedback from the previous 

output state is used to indicate whether the actual data input or the pseudo data input 

was selected in the last cycle. The operation of this circuit is explained as follows.

In the event of an EOW1 on RING COUNTER input (RCI), and a logic ‘O’ EVENd on 

the feedback input (FI), MUX CONTROL selects the actual input of the multiplexor if 

PI is an EOWO and SI, RESD and OWD are either an EOW1 or EOWO, or if PI, SI, 

OWD and RESD are EOW1. If PI is an EOW1, independent of the logic value of FI, 

RESD and OWD, and SI is an EOWO, then the pseudo input is selected in order to 

append dummy bits to the end of the word. If PI and SI are EOW1, and OWD and 

RESD are EOWO, then the pseudo input is selected. Otherwise, if PI and SI are EOW1, 

and OWD and RESD are EOW1, then the next actual input is selected, thus indicating 

the end of the current instruction cycle.

In the event of an ODDd or EVENd on the RCI, MUX CONTROL selects the actual 

input of the multiplexor if FI is set to logic ’O’, or the pseudo input if FI is set to logic
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‘ 1*. Therefore, the intermediate bits, between EOW Tag bits, of either the pseudo word 

or actual word are selected.

6.9.4 Results

Figure 6.28, figure 6.29 and table 6.6 show the latency, throughput and gate overhead 

results, respectively, for both the RTZ and NRTZ PSU functions.
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Figure 6.28. The RTZ and NRTZ PSU latencies.
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RTZ NRTZ

PSU 612 gates 1075 gates

Table 6.6. The RTZ and NRTZ PSU gate counts.

Figure 6.28 shows that the NRTZ and RTZ latencies are comparable over the short and 

mid-range length words, however, the NRTZ PSU is slightly faster as the word length 

approaches the maximum.

Figure 6.29 shows that the RTZ and NRTZ PSU throughputs are comparable for short 

length words, however, the NRTZ PSU throughput is greater for medium to long length 

words.

Table 6.6 shows that the NRTZ PSU is approximately 76% bigger than the RTZ PSU.

6.9.5 Analysis

The reasons for the higher performance of the NRTZ PSU compared with the RTZ PSU 

is due to the same reason as the RCU and OWU functions. In addition, the circuit 

overhead of NRTZ PSU is significantly larger than the RTZ PSU due to the extra 

circuitry required by the ring buffer, the two MUX CONTROL circuits, and the extra 

AND function.

6.10 The Self-timing Design Guide-lines

This section summarises the design guide-lines for the implementation of self-timed 

control path structures: instruction bypass (IBU), instruction fetch (IFU), instruction 

decode (IDU), and PE bit and instruction cycle control functions (RCU, OWU, PSU). 

These guide-lines were determined during the previous experiments in this chapter for 

each of control path functions and can be sub-divided into guide-lines for general self

timed implementation, independent of the encoding technique, and RTZ and NRTZ 

encoding and tagging guide-lines.
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Design Guide-line Assumptions

The RTZ and NRTZ control path functions share two main design commonalities 

previously explained in sections 5.4.2 and 5.4.3, respectively. These two guide-lines are 

stated below and are common to each of the RTZ and NRTZ control path functions 

addressed in this section:

1. The data path must be realised using NRTZ circuitry.

2. All local control is be realised using RTZ circuitry.

In a few cases a modification to these guide-lines will be necessary and will be 

highlighted, in the appropriate sections, in italic type.

Instruction By-pass 

General Self-timing Guide-lines

1. The single bit row and column selectors, that determine whether a bit-serial 

instruction is input into a PE, must coincide with the first bit of the bit-serial 

instruction.

2. As a consequence of the previous guide-line and the fundamental mode of operation 

the IBU would dead-lock because the succeeding instruction bits would not be input 

with selector bits. Therefore, selector bits must be internally re-generated in order to 

appropriately select/deselect the remaining instruction bits.

The RTZ Guide-lines

3. The EOW Tag bit, in the instruction stream, indicates that the next row and column 

selector bits and instruction can be input.

The NRTZ Guide-lines

3. The NRTZ instruction stream is untagged and fixed in length, and consequently each 

instruction bit is counted as it is input. When a maximum count is reached, the next 

row selector bit, column selector bit, and instruction words, can be input.
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Instruction Fetch

General Self-timing Guide-lines

1. The bit-serial instruction is converted into the equivalent bit-parallel representation 

and transmitted to the decoder on each PE bit cycle.

2. The bit-parallel instruction must be internally stored and re-generated on each bit 

cycle.

RTZ Guide-lines

1. Each valid instruction bit and its corresponding succeeding empty bit must be passed 

to the instruction decoder over a separate dedicated line.

2. The instruction EOW Tag bit, succeeding the last valid bit of the instruction, must be 

converted to an empty bit before it sent to the instruction decoder.

3. All data path circuitry preceding and including the conversion of the EOW Tag to an 

empty bit must be realised using NRTZ circuitry.

4. All data path circuitry succeeding the conversion o f the EOW Tag to an empty bit is 

realised using RTZ circuitry.

NRTZ Guide-lines

1. As a consequence of the control circuitry of the NRTZ PE being completely

implemented in RTZ circuitry the NRTZ bit-serial instruction must be converted 

to the equivalent RTZ bit-parallel representation. This necessitates the following 

requirements:

a) Each EVEN bit in the bit-parallel instruction must be converted to the 

equivalent ODD phase bit, or RTZ valid bit, to be in the correct format 

for the instruction decoder.

b) An empty bit must be inserted between valid instruction bits in each 

parallel line to realise the RTZ encoding.

2. All data path circuitry preceding the operation described above in guide-line 1

must be realised using NRTZ circuitry.

3. All data path circuitry succeeding the operation described in guide-line 1 must

be realised using RTZ circuitry.
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Instruction Decode

General Self-timing Guide-lines

1. The IDU must provide control information to each of its controlled functions 

indicating whether they are enabled or disabled in each bit cycle; this is necessary 

because of the fundamental mode of operation.

2. The status (whether the EOW Tag has been detected or not) of the two source 

operand data paths from the RBU (sent by the PSU), and the result from the EXU, 

must be monitored in each bit cycle in order that the IDU can correctly disable the 

appropriate parts of the data path.

RTZ Guide-lines

1. The RTZ decoder is realised completely in RTZ circuitry.

NRTZ Guide-lines

1. The NRTZ decoder is exactly the same as the RTZ decoder.

The Result Control Unit

General Self-timing Guide-lines

1. The RCU must transmit a status bit, for each result bit that is passed between the 

EXU and RBU, to differentiate between the EOW Tag (data-true), empty bit (data- 

false) and valid data bit (empty).

2. The RCU must continue sending status bits in the event the result EOW Tag is 

detected and the destination register’s old data has not been overwritten; therefore 

the RCU must monitor the OWU status bit.

3. If a MIN or MAX instruction is executed the RCU must continue to output status 

bits, set to indicate that the EOW Tag has not been detected for each bit cycle, until 

the first result data bit is output from the EXU, after which guide-lines 1 and 2 

above, apply.

The Overwrite Unit

General Self-timing Guide-lines

1. The OWU removes old data from the destination register by supplying an 

acknowledge signal every time a data bit is read.
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2. A status bit must be sent to the PSU, for each old data bit overwritten, in order to 

differentiate between the EOW Tag bit, empty bit and data bit.

3. If the destination register also acts as a source then overwrite acknowledge signals 

must be synchronised with the acknowledge signals of the appropriate RBU 

multiplexor(s).

4. The OWU must continue sending status signals to the PSU after it has detected the 

EOW of the overwritten data if the result status bit is not set to signify the EOW 

Tag.

The Processing Element Status Unit 

General Self-timing Guide-lines

1. The PSU monitors each bit in both bit-serial operand streams as each are passed 

from the RBU and EXU. It transmits a corresponding status bit for both operand 

bits as they are monitored, to the IDU, differentiating between the EOW Tag, empty 

bit and valid data bit.

2. The PSU must monitor for the EOW Tag bit for each of the OWD, RESD, operand 

A and operand B status signals so it can signal the start of the next instruction cycle 

or regenerate the present instruction to the IFU.

6.11 Selection Guide-lines

This section proposes guide-lines to aid computer architects in the selection of the 

appropriate RTZ, NRTZ or synchronous design technique, depending on the required 

SA control path implementation characteristics. These guide-lines are directly related to 

the selected data path implementation technique, for example, if the selected data path 

implementation technique is NRTZ then the control path functions must also be NRTZ 

and not RTZ functions. The following performance and circuit area guide-lines are 

based, respectively, on the latency and throughput, and gate count characteristics 

produced for the RTZ, NRTZ and synchronous data path functions.

Performance Guide-lines

The performances of the IFU and IDU control path functions are dependent on the 

length of the data word operated upon by the data path, whereas the IBU’s performance 

is fixed to a worst case speed dependent on the pre-determined instruction word length.
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The performance of all the synchronous data path functions is fixed to a static worst case 

speed determined by the system clock.

The following guide-lines propose the appropriate technique to adopt to maximise a 

control path function’s performance when considering the number of control bit cycles 

produced for each of the functions:

• The RTZ and NRTZ IFU and IBU are slower than the fixed speed synchronous 

equivalents for all word lengths, and the IDU is slower for medium to long word 

lengths. Therefore, considering the performance of the RTZ and NRTZ control path 

functions independently, from their respective data path functions they control, 

means that the synchronous technique is the best to adopt.

The performance of the self-timed IFU and IDU functions is directly related to the 

number of bits processed by, and the performance of, the data path functions. Also, the 

performance of the synchronous control path functions given in this chapter are assumed 

to be best case processing speeds and not the fixed worst case PE speed as dictated by 

the system clock. As a consequence, final decisions on the selected implementation 

technique for a control path function for a required performance cannot made until the 

performances of the completed RTZ, NRTZ and synchronous PE are determined; 

presented in the next chapter.

Circuit Area Guide-lines

The gate counts of the RTZ and NRTZ IFU and IDU functions are considerable larger 

than their synchronous equivalents, whereas the IBU are approximately the same. In 

addition, the RTZ and NRTZ control paths require three extra functions due to the self

timed implementation, thus, adding considerably to the overall gate count of the control 

path. Therefore, the synchronous design technique is the best technique to adopt 

because of the large size of the RTZ and NRTZ control path functions.

6.12 Conclusion

This chapter has presented two new self-timed methods for realising control circuitry for 

the ST-SISA. These methods have been characterised in terms of circuit performance
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and area and have been compared with each other and their synchronous counterpart. 

This comparison has showed us that the RTZ and NRTZ circuits are architecturally 

scaleable but at the cost of considerably larger circuit area and reduced performance as 

compared with the synchronous counterparts.

This chapter has provided guide-lines to aid computer architects in the design of RTZ 

and NRTZ control path functions for use in bit-serial architectures. These guide-lines 

support the designer by proposing considerations to take into account when applying 

delay-insensitive assumptions, and RTZ and NRTZ encoding and tagging techniques to 

control path functions for use in bit-serial architectures.
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CHAPTER 7

THE PROCESSING ELEMENT

7.1 Objectives of the Chapter

The first main aim of this chapter is to demonstrate that the new RTZ and NRTZ data 

path and control path functions, presented in the two previous chapters, operate 

correctly when connected together to form the complete RTZ and NRTZ ST-SISA 

processing element (PE) architectures. This aim will be achieved through the test and 

analysis of the RTZ and NRTZ PE architectures when operating on each of the pre

defined instructions for differing data bandwidths. The second main aim is to 

demonstrate that both instruction and data inter-PE communication operates correctly in 

the ST-SISA array. This aim is satisfied through the test and analysis of a number of 

representative programs executed by the ST-SISA model. The successful completion of 

both these objectives will enable the relative circuit area and performance trade-offs 

between the RTZ and NRTZ ST-SISA and the synchronous SIS A PEs to be established.

7.2 Objectives of the Experiments

Two main experiments have been proposed, stated in the following two sections.

7.2.1 The PE Experiment

The aim of this experiment is to demonstrate that the RTZ and NRTZ ST-SISA PEs 

operate correctly. It also compares the circuit area and performance trade-offs between 

the RTZ and NRTZ ST-SISA PEs and the existing synchronous SISA PE. The metrics 

used are as follows:

1. Latency Experiment (1): Time between the start of an instruction

operation and it’s subsequent completion.

2. Throughput Experiment (2): The total amount of work completed in

one delta delay (1 A/latency).

3. Hardware Overhead Experiment (3): The number of PE gate primitives.
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7.2.2 The Communication Experiment

The aim of this experiment is to demonstrate that ST -SISA instruction and data inter-PE 

array communication operates correctly. This experiment also compares the effects of 

instruction and data communication on PE instruction latency for the RTZ and NRTZ 

ST-SISA arrays and SISA array. The metric used is stated as follows:

1. Latency Experiment: Time taken by each array PE from the start of an

communication instruction execution and it’s subsequent completion.

7.3 The PE Experiment

The ST-SISA PE architecture, common to both the RTZ and NRTZ implementations, is 

shown below in figure 7.1. It illustrates how the functional units of the control and data 

paths, presented and discussed in the previous chapters, are connected together to form 

the finished ST-SISA PE architecture. The role of each of the data and control path 

functions has been described previously, in chapters 5 and 6, respectively.
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Figure 7.1. The complete ST-SISA PE.

The INST. SEL. line signals the status of the PE after the previous bit cycle, in that a 

logic ‘1’ signals the end of the instruction cycle, whereas a logic ‘0’ signals that there is 

at least one more bit cycle in the instruction cycle to take place. Therefore,
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measurements can be taken from the time when all the instruction information is placed 

on the PE instruction inputs until the time the INST. SEL. line is set to logic ‘ 1*.

7.3.1 Latency Experiment (1)

Introduction

The latency of each of the ST-SISA instructions is defined as the time taken from the 

start to the completion of an instruction cycle. This measurement is taken as the greatest 

time interval between the receipt of a new instruction, on the PE instruction input lines, 

and the eventual signalling of the end of the instruction cycle, on the INST. SEL. line. 

This definition assumes that an instruction cycle can vary depending on the length of the 

longest data operand, therefore, measurements are taken for all possible word lengths for 

each instruction; this definition also assumes that RTZ empty values and NRTZ unused 

EOW Tag bits are included in these measurements.

Experiment

The experimental method adopted was to determine the time taken to process an 

instruction for the full range of data word lengths for each of the RTZ, NRTZ and 

synchronous PE implementations.

7.3.1.1 Latency Results

The results presented in Figures 7.2 through to 7.6 represent the trends that occur in the 

latency for the READ/WRITE/ASSIGN, AND, ADD, MIN and MAX instructions, 

respectively, for the RTZ, NRTZ and synchronous PEs.
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Figure 7.2. READ, WRITE and ASSIGN.
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The following trends can be observed from Figures 7.2 through to 7.6:

• The latency of overlapping instructions is less than non-overlapping instructions.

• The latency of each instruction increases as the word length of the longest operand is 

increased.

• Almost all synchronous instructions produce shorter latencies than the self-timed 

equivalents, except for a 1-bit RTZ word length for the READ, AND and ADD 

overlapped instructions. In addition, 1 and 2 bit word lengths for RTZ designs, and 

words lengths up to 3-bits for NRTZ designs, are faster than the synchronous design 

for the MIN and MAX overlapping instructions.

• The latency of each NRTZ instruction is less than the equivalent RTZ PE instruction.

• Each instruction executed on the same ST-SISA PE implementation (i.e. RTZ), 

assuming the same word size, takes approximately the same time.

7.3.1.2 Latency Analysis

These results show several significant features. Firstly, the overlapping of instructions 

allows an instruction to be converted from serial to its corresponding parallel equivalent 

while the preceding instruction is still being executed, therefore reducing the total latency 

of the succeeding instruction. However, if there are idle times between the PE executing 

successive instructions then the non-overlapping, or worst case, latency must be assumed 

for each instruction.
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Secondly, the greater the length of the longest operand then the greater the number of 

bit-cycles required to complete the instruction cycle therefore increasing instruction 

latency.

Thirdly, the NRTZ instruction latencies are less than the equivalent RTZ instruction 

latencies because of the fewer number of bits required by the NRTZ encoding technique 

compared with the RTZ technique to encode the same data value.

Finally, the latency of each self-timed instruction, assuming they operate on the same 

word length, are approximately the same. This is because the next cycle of control 

information for the RBU and EXU can only be output by the IFU when it receives the 

instruction select status signal from the PSU. The PSU can only send this control 

information signal after it receives the result EOW Tag status bit from the RCU. This is 

because the RBU and EXU operate in serial.

7.3.2 Throughput Experiment (2)

Introduction

The aim of this experiment is to establish the trends that occur in the throughput of each 

of the self-timed and synchronous PE implementations when operating on the pre

defined instruction set. These trends will reveal the PE performance for the three 

adopted design methods.

The throughput is defined as the total amount of work done in a given time. The rate at 

which the synchronous PE performs is always constant because of the fixed clocking 

rate, however, the performance of the two self-timed PE designs depends on the length 

of data operated upon for each instruction and the number and variance of the different 

instructions executed. These two factors concerned with the self-timed designs are 

directly related to the algorithm executed and the data operated upon. As a consequence 

there are no strict rules that can be adopted to determine the exact throughput of the 

RTZ and NRTZ PEs when working in an array of PEs. Therefore, in this experiment it 

is assumed that the environment always has the correct data and instructions ready to 

supply to a PE’s inputs for both the RTZ and NRTZ PE designs. From this the worst, 

best and average case throughputs for a single PE can be determined.
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Experiment

The throughput of each PE was obtained by measuring the time taken for each PE design 

to process each instruction (i.e. latency) and then taking the reciprocal of these 

measurements. Using these results it is possible to determine the following:

1. The best (i.e. overlapping instructions), worst (i.e. non-overlapping instructions) and 

average case (i.e. for both non-overlapping and overlapping instructions) 

throughputs of each PE for each individual word length.

2. The best, worst and average throughputs for each PE averaged over the entire word 

length range. In addition, the absolute best throughput (i.e. the repeated execution 

of the fastest instruction operating on the shortest possible word lengths) and the 

worst case throughput (i.e. the repeated execution of the slowest instruction 

operating on the longest possible word lengths) are established.

7.3.2.1 Throughput Results

Figure 7.7 depicts the best, worst and average case throughputs for each of the RTZ, 

NRTZ and synchronous PEs for all possible word lengths. Figure 7.8 illustrates the 

best, worst and average case throughputs averaged over the entire word length range for 

each PE. This figure also shows the absolute (ABS) best throughput and ABS worst 

throughput of each of the RTZ, NRTZ and synchronous PEs.
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Figure 7.7. The average, best and worst case throughputs.
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The following trends can be derived from Figure 7.7.

• The throughput of the self-timed PEs decreases as the word length increases.

•  The throughput of the synchronous PE is constant.

•  The best and average case throughputs of the RTZ PE for a 1 bit word length are

greater than the fixed constant throughput of the synchronous PE by approximately 

43% and 5%, respectively.

• The throughput of the synchronous PE is greater than the throughput of the NRTZ 

PE for all words lengths.

• The throughput of the synchronous PE is greater than the best throughput of the 

RTZ PE, by 30% to 250%, and the best throughput of the NRTZ PE, by 17% to 

163%, as the word length is increased from 2- to 16-bits.

•  The average, best and worst case throughputs of the RTZ and NRTZ PEs converge 

to the same value as the word size is increased.
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The following trends can be distinguished from Figure 7.8.

• The average, best and worst case throughputs of the RTZ and NRTZ PEs, 

respectively, averaged over the entire word range are approximately the same.

• The throughput of the synchronous PE is approximately two times greater than the 

average, average best and average worst case throughputs of the RTZ and NRTZ 

PEs over the entire word range.

• The absolute best throughputs of the RTZ and NRTZ PEs are approximately 23% 

and 62% greater, respectively, than the throughput of the synchronous PE.

• The throughput of the synchronous PE is approximately ten times greater than both 

the absolute worst throughputs of the RTZ and NRTZ PEs.

7.3.2.2 Throughput Analysis

These results show several important features. Firstly, the length of the data word 

operated upon in each bit cycle has a direct effect on the throughput of the RTZ and 

NRTZ PEs. For 1-bit data words the RTZ and NRTZ perform slightly better than the 

constant synchronous throughput. However, as the word length is increased the 

throughputs of both the self-timed PEs drops dramatically as the word size is increased. 

The reasons for this are as a direct result of the sequential operation of the data path, 

previously explained in section 7.3.1.2. The sequential operation of the data path also 

has a detrimental effect on the average throughput of the all the instructions over the 

entire word length range.

Finally, the absolute best throughputs of the RTZ and NRTZ PEs are significantly 

greater than the synchronous PE’s fixed constant throughput. This can only occur when 

a high degree of NOPs are executed. Therefore, this demonstrates the benefit of the 

variable length processing speed of the RTZ and NRTZ instructions as compared to the 

synchronous instructions, which all take the same fixed worst case processing speed. 

However, the absolute worst case throughputs of the RTZ and NRTZ PEs, in other 

words, the repeated execution of the worst case instruction assuming the longest 

possible word length, is far worse than the fixed synchronous throughput. This again 

can be attributed to the relative processing speed of the self-timed data path.
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7.3.3 Circuit Overhead Experiment (3)

Introduction

This experiment obtains the trends that occur in the circuit area required to realise the 

RTZ, NRTZ and synchronous PEs. In addition, the proportion of circuit area required 

to implement the control and data paths has been established revealing their relative 

costs.

Experimental Methodology

The circuit area overhead for the data path and control paths has been compiled with 

reference to chapters 5 and 6, respectively.

7.3.3.1 Circuit Area Results

Figures 7.9, 7.10 and 7.11 show the total data path, control path and PE circuit area 

gate counts, respectively, for the RTZ, NRTZ and Synchronous implementations.
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Examination of Figures 7.9, 7.10 and 7.11 reveals the following trends:

• The RTZ and NRTZ data paths are approximately fourteen and fifteen times bigger, 

respectively, than the synchronous data path.

• The NRTZ data path is approximately 6% bigger than the RTZ data path.

• The RTZ and NRTZ control paths are approximately eight and nine times bigger, 

respectively, than the synchronous control path.

• The NRTZ control path is approximately 16% larger than the RTZ control path.

• The RTZ and NRTZ processing elements are respectively twelve and thirteen times 

bigger than the synchronous processing element.

• The NRTZ PE is approximately 6% bigger than the RTZ PE.

7.3.3.2 Circuit Area Analysis

There are several reasons for the above observations. Firstly, the RTZ and NRTZ delay- 

insensitive circuit implementations are well known to consume a higher degree of circuit 

area than their equivalent synchronous counterparts thus resulting in their significant 

circuit overhead. In addition, the local control circuitry required by the various data path 

and control path functions also adds to this overhead.

Secondly, the relative circuit area required by the RTZ and NRTZ control path functions 

is much greater than the RTZ and NRTZ data path functions when they are compared to 

their synchronous equivalents. This is as a result of the large amount of self-timed 

circuitry required to convert the bit-serial instruction into parallel and to regenerate 

instruction codes.

Finally, the NRTZ control path, data path and final PE are larger than their RTZ 

counterparts because of the extra circuitry required to implement the ring buffer counters 

and the extra inputs required by the various combinational functions that operate on the 

ring buffer outputs.
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7.4 The Communication Experiment

The ST-SISA array has three uni-directional streams of control information, figure 7.12: 

instructions along the columns and selector bits along the columns and rows, 

respectively. Therefore, instruction flow is only possible in one direction starting from 

the top left hand PE (0,0) proceeding diagonally towards the bottom right PE (1,1).

Data communication in a ST-SISA array, figure 7.13, is possible in the North, South, 

East and West directions on the execution of a read instruction by the receiving PE and a 

write instruction by the transmitting PE. Therefore, data communication between any 

two neighbouring processing elements can only take place over the same dedicated lines 

connecting the two PEs.
COLUMN COLUMN

INSTRUCTION SELECTOR SELECTOR

ROW SELECTOR 0

ROW SELECTOR 1

PE 0,1PE 0,0

PE 1,0 PE 1,1

PE 0,0

PE 1,0

PE 0,1

PE 1,1

Figure 7.12. The ST-SISA control flow. Figure 7.13. ST-SISA data flow.

Testing both instruction and data communication in the ST-SISA array is 

straightforward. Firstly, any correct ST-SISA program will test control communication. 

Secondly, testing data communication between two PEs is the same as testing data 

communication between a PE and any one of it’s four neighbours. Therefore, instruction 

and data communication can be fully tested through the execution of a program that 

exchanges data in both communicational directions between two neighbouring PEs, as 

shown in figure 7.14.
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Figure 7.14. The ST-SISA test array.

Three programs can be used to test ST-SISA instruction and data communication. Uni

directional data communication can be tested through the execution of a simple program 

that assigns a data item, read from the westerly situated data memory, to each of the two 

PEs in the array, figure 7.15 (program 1 [54]); therefore, PE(1) must pass the first data 

item read on to PE(2). Bi-directional data communication can be tested through the 

execution of a program that then swaps these two data items between the two PEs, 

figure 7.16 (program 2 [53]). Bi-directional communication can also be tested through 

the execution of a data sort program which swaps the two PE data items only if the 

magnitude of PE l ’s data is less than the magnitude of PE 0’s data, figure 7.17 (program 

3 [82]).
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Figure 7.15. Program 1 - Assign. Figure 7.16. Program 2 - Transposition.
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Figure 7.17. Program 3 - Sort.

7.4.1 Latency Experiment 

Introduction

This experiment has two main objectives. The first aim is to ensure that both instruction 

and data communication work correctly for both the RTZ and NRTZ ST-SISAs. The 

second main objective is to observe the effects of instruction and data communication on 

the execution times of the RTZ and NRTZ ST-SISA PEs for each of the communication 

instructions in the three programs described earlier.

Experiment

The first objective is satisfied through the successful execution of the three above ST- 

SISA programs. The second objective is achieved through comparing the differences in 

PE instruction execution times (latency) of the single PE execution times detailed earlier 

(section 7.3.1.3) with the latencies of the instructions performed by each PE, when 

executed by the two PE array models, for each of the three programs. Therefore, the 

effects of RTZ and NRTZ self-timed inter-PE instruction and data communication on 

ST-SISA PE and array performance can be compared against each other and against 

their existing synchronous counterpart.

7.4.1.1 Latency Results

The results in Figures 7.18 and 7.19 show the latency trends for the RTZ and NRTZ 

array simulations for the executed instructions in program 1.
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Figure 7.19. NRTZ ST-SISA array results for program 1.

The following trends can be observed from Figures 7.18 and 7.19 for both the RTZ and 

NRTZ arrays, respectively, when executing program 1:

• The latency of the first read instruction (0) is greater than the time taken by the 

second read instruction (2) when both are executed by PE 0.
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• The latency of the write instruction (1) is the same as the second read instruction (2) 

when executed by PE 0.

• The latency of the first read instruction (0) when executed by PE 1 is twice times as 

great as the latency of the same read instruction (0) when executed by PE 0.

The results in Figures 7.20 and 7.21 show the latency trends for the RTZ and NRTZ 

array simulations, respectively, for the executed instructions in program 2. It is assumed 

that program 1 has been previously executed in order to assign data to the array.
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Figure 7.20. RTZ ST-SISA array  results for program 2.
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Figure 7.21. NRTZ ST-SISA array results for program 2.
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The following trends can be observed from Figures 7.20 and 7.21 for both the RTZ and

NRTZ arrays when executing program 2:

• The latency of the read instruction (1) executed by PEI is greater than the latency of 

the read instruction (3) executed by PE 0.

•  The latencies of instructions 1,2 and 3 are the same.

The results in Figures 7.22 and 7.23 show the latency trends for the RTZ and NRTZ 

array simulations, respectively, for the executed instructions in program 3. It is assumed 

that program 1 has been previously executed to assign data to the array.
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Figure 7.22. RTZ ST-SISA array  results for program 3.

20000

1B000
16000

■Z) 14000 
> ,
JS,§ 12000 
m
ffl 10000 Q
o ' 8000 
c  ffi

j3  6000

4000 

2000 

0
1 4 8 12 16

Data Word Length (Bits)

HPEO (inst2) 
□ PE 0 (inst 3) 
DPE 1 (inst 1) 
BPE 1 (Inst 2)

BPE 0 (inst 2) 
BPE 0 (inst 3) 
DPE 1 (instO) 
BPE 1 (inst 1)

1 4 8 12 16

Data Word Length (Bits)

Figure 7.23. NRTZ ST-SISA array results for program 3.
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The following trends can be observed from Figures 7.22 and 7.23 for both the RTZ and

NRTZ arrays when executing program 3:

• The latency of the MAX instruction (1) executed by PEI is greater than the latency 

of the MIN instruction (3) executed by PE 0.

• The latencies of the write instructions (1 and 3) are the same.

7.4.1.2 Analysis

The above results show several features. Firstly, the first instruction executed by PE 0 

and PE 1 take longer to execute than subsequent instructions because they cannot 

overlap serial-parallel instruction conversion with a preceding instruction. Secondly, the 

write and read instruction take the same time to execute because both are based on the 

assignment instruction. Finally, the first read instruction in program 1 when executed by 

PE 1 takes twice as long to execute because it must first wait for PE 0 to finish 

executing its read instruction and then begin executing the write instruction which then 

passes the appropriate data to PE 1.

7.5 Selection Guide-lines

This section provides guide-lines to aid computer architects in the selection of the 

appropriate RTZ, NRTZ or synchronous design technique to adopt, depending on the 

required SA PE implementation characteristics. These selection guide-lines are based on 

the circuit characteristics produced for each of the RTZ, NRTZ and synchronous PEs 

and are categorised into performance, based on the latency and throughput results, and 

gate count selection guide-lines, discussed as follows.

Performance Guide-lines

The performance of self-timed PEs is dependent on the length of the longest data word 

operated upon and the instructions executed. The performance of the synchronous PE is 

fixed to a static worst case speed dictated by the system clock, and is therefore not 

dependent on the instruction executed or data operated upon. The following guide-lines 

propose the appropriate technique to adopt to maximise a PEs performance when 

considering for differing data word lengths and instructions:
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• The performances of the RTZ and NRTZ PEs are worse than the fixed worst case 

speed synchronous PE for all EXU instructions for almost all word lengths except a 

1-bit word length. Therefore the synchronous design technique should be adopted to 

achieve maximum performance for algorithms which execute a high degree of EXU 

instructions, such as READ, WRITE, AND, OR, ADD, MIN and MAX.

• If the executed algorithm contains a high number of NOPs then the NRTZ PE should 

be adopted because it processes NOPs faster than the RTZ PE and considerably 

faster than synchronous PE.

Circuit Area Guide-lines

The synchronous PE is considerably smaller than both the RTZ and NRTZ PEs therefore 

it is the one to adopt if the maximum number of PEs are to be fitted onto a chip.

7.6 Conclusion

In this chapter the latency, throughput and circuit area of the RTZ and NRTZ PE 

architectures have been compared against one another, and their synchronous 

counterpart. It has been shown that in a small number of cases that the RTZ and NRTZ 

PE implementations can improve their performance as compared with their synchronous 

equivalent, however, this is at the cost of a significant amount of extra circuitry. 

Instruction and data communication has been proved to work correctly for the selected 

algorithms. Through executing these programs it has been shown that the self-timed 

nature of circuit operation also has an effect on PE instruction latency.

191



CHAPTER 8

CONCLUSIONS

8.1 Objectives of the Chapter

The main aim of this chapter is to conclude the thesis. It begins by summarising the main 

aims and conclusions from each of the previous investigations. The chapter also 

addresses the limitations of the work and the possible extensions to the existing 

investigations, as well as further areas of research. Finally, the thesis is concluded by 

assessing the success of the research by establishing whether the research aims have been 

achieved.

8.2 Review of Aims and Objectives

The body of the thesis was divided into six main areas. Firstly, in chapter 2, the 

principles of systolic array architectures were introduced. A taxonomy was presented 

which was used to classify the various reviewed key SA architectures. Analysis of these 

key SAs identified which features were common to these architectures, which features 

differed, and the significance for the choice of a particular feature. This was followed by 

addressing the main drawback of synchronously controlled SAs, that of clock skew, and 

two existing synchronous techniques that attempt to overcome this problem. An in- 

depth review of the alternative self-timed techniques, which use local data flows to co

ordinate correct circuit operation, was then undertaken. This review identified the main 

implementation techniques adopted to realise self-timed circuits, methodologies used to 

formally describe their operation and techniques of interconnecting circuit modules 

together. A representative range of key self-timed architectures was then reviewed and 

analysed in order to assess the relative successes of the various formal circuit design 

methodologies used in existing ‘real-world’ self-timed processor designs. The 

conclusion of this chapter highlighted the following main points:

1. There are a wide variety of SA architectures that differ in circuit cost and 

performance, the reasons for which are due to their method of programming (SIMD 

or MIMD), data path implementation (Serial or Parallel), PE interconnection (Mesh 

or Linear) and synchronisation of data transfer (Synchronous or Data-driven).
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2. A SA can be either globally or locally controlled, resulting in globally synchronous or 

locally controlled data driven PEs, respectively.

3. Global Timing of SAs causes problems of clock skew and limited scalability.

4. Self-timed control abolishes the clock therefore overcoming clock skew and its 

associated problems.

5. An architectural scaleable SA, that does not require redesign when ported between 

implementation technologies, can only be realised with delay-insensitive self-timing 

techniques.

6. Formal methods for self-timed system design are still in their infancy consequently 

the macro-module approach predominates.

Almost no information could be gained from the review chapter regarding the trade-offs 

of self-timing design methods, compared with traditional synchronous techniques, for SA 

architecture realisation. As a consequence an investigation was proposed that was to be 

performed upon a single SA architecture, the ST-SISA, thus providing ‘a level playing 

field’ in which a fair comparison of the existing synchronous and the new self-timing 

strategies could be undertaken. To address these issues a methodological study 

comprising two primary aims were identified:

The first aim was to derive a coherent design framework to determine the differences 

between implementation techniques. Three objectives were identified.

1. To determine requirements for the implementation of self-timed architectures 

when used for programmable SA design.

2. The development of novel self-timed architectural structures based on the 

requirements developed in (1) which lead to scaleable and modular array designs.

3. To characterise the implementations in terms of area and performance for the 

existing synchronous and new self-timed architectural designs and to compare 

their relative trade-offs.

The second aim was to establish strategies for the design of self-timed architectures 

utilising the framework from the first aim. Two objectives were identified:
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1. To produce guide-lines for the design of new self-timed architectures which do 

not require re-design when ported between architectures or circuit technologies.

2. To produce guide-lines for the selection of self-timed or synchronous circuit 

design techniques for a given set of criteria.

In Chapter 3, three main experiments were proposed: the data path, control path and 

processing element experiments. Their aims, procedures, and intended outcomes were 

also summarised. The experimental methodology to be utilised by each of these 

experiments was described and the assumptions of all the experiments was stated.

In Chapter 4, the research vehicle was introduced and described in terms of its array 

interconnection, processing element architecture and programmability for both the 

existing synchronous and the new self-timed architectures. Two methods of delay- 

insensitive self-timed information encoding were introduced. To realise variable length 

bit-serial words two, new end-of-word (EOW) tagging techniques were conceived.

In Chapters 5 and 6 the main thesis objectives were addressed through the undertaking 

of the data path and control path experiments, respectively. Both chapters presented the 

requirements for each of their respective functions. This allowed the data path and 

control path architectures to be realised. Circuit area and performance trade-offs were 

established and then compared for the self-timed and synchronous architectures. Guide

lines were developed to aid in the design of self-timed data path and control path 

functions. Finally, guide-lines for the selection of the appropriate implementation 

technique for a given set of criteria were presented.

In Chapter 7, for each architecture, the data path and control path were combined to 

realise a complete PE. The circuit area and performance characteristics were 

subsequently established for the self-timed and synchronous PEs, thus allowing their 

relative trade-offs to be determined.

194



8.3 Conclusions of the Experiments

This section summarises the conclusions obtained from the three experimental studies in 

this thesis. The conclusions are addressed according to the two principal aims: 

construction of the design framework and the formulation of self-timing strategies.

8.3.1 Construction of the Design Framework

The conclusions can be further sub-divided into design requirements for self-timed 

architectures, circuit construction and circuit characterisation.

8.3.1.1 Design Requirements for Self-Timed Architectures

The design requirements for the self-timed architectures were determined prior to the 

design of each of the data and control path functions. The requirements for each of these 

functions covered two main areas. Firstly, general self-timing design requirements 

considered the effects of self-timed operation on a function. Secondly, the encoding 

requirements considered the effects of adopting the selected encoding and EOW tagging 

techniques on a function. The main conclusions drawn from these two sets of 

requirements are presented in the following two sections:

General Self-timing Requirements: There are a number of requirements that are

common to all the self-timed data path and control path functions considered in this 

thesis. The reason for these commonalities is due to the fundamental mode of circuit 

operation that requires that each circuit module, whether a control or data path module, 

must receive state changes on all inputs before its function is performed. The general 

self-timing requirements are as follows:

In order to guide each data bit through the data path, the control path must re-send the 

same control information to the control inputs of data path modules on each bit cycle 

until the end of the instruction cycle is encountered. If this requirement was not enforced 

then the entire PE would dead-lock because not all inputs into a data path module would 

receive a state change for each data bit processed, thus violating the fundamental mode 

of operation.
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A device called a C-element was used to synchronise multiple acknowledge signals sent 

by several receiving circuit modules to a single transmitting module. The C-element 

operates in fundamental mode therefore its output can only change state when all of its 

acknowledge inputs change state. This causes problems when a circuit module sends 

data to only one or some of its possible receivers because not all acknowledge signals 

into the C-element will change state, resulting in circuit dead-lock. This problem was 

overcome by enforcing a pseudo-acknowledge signal on each acknowledge input not 

involved in the synchronisation of data transfer, thus allowing the output to change state. 

This requirement is demonstrated in the ST-SISA’s DOU which can synchronise data 

transfer between one or more neighbouring PEs. This is achieved by setting a user- 

defined control code that selects which acknowledge inputs to monitor for 

synchronisation and which inputs are to have pseudo acknowledge signals enforced upon 

them.

The dynamic length of bit-serial data words will mean that EXU functions which operate 

upon two operands of differing lengths, such as the ADD function, will dead-lock 

because one input will cease to receive state changes before the other. However, this 

problem was overcome by appending logic ‘0’ pseudo data bits to the end of the shorter 

operand such that the function can continue operating on the longer word without 

changing the output result.

Encoding Requirements: Two self-timed versions of the research vehicle were

developed, namely the RTZ and NRTZ ST-SISA processors. The processors differ in 

their adopted data encoding and end of word tagging techniques. Both the RTZ and 

NRTZ codes use two bits to encode their data resulting in four possible code 

combinations for each technique. The RTZ encoding technique uses two codes to 

represent data, a third code, called the empty state, to separate data items in the data 

stream and the fourth code to signal the end of a data word.

The NRTZ encoding technique uses all four possible states to encode the data, leaving 

no available code to signal the EOW as in the RTZ. Signalling the EOW in an NRTZ 

bit-serial word was achieved by periodically reserving a bit position in the bit-steam 

(every fourth bit). Setting the EOW bit position to logic ‘0’ denotes that more data bits
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for the present word are to arrive. When the EOW bit position is set to logic ‘ 1’ the end 

of the word is signalled.

Although the encoding approaches are very different in the way they encode and tag data 

they are very similar in that both utilise all four possible code combinations. As a result, 

all NRTZ data path functions, and the majority of the RTZ data path circuit modules, 

were implemented using NRTZ circuitry. The only exceptions were for the RTZ 

arithmetic and logic functions which were implemented using RTZ circuitry. The 

problem with using NRTZ equivalents is that they produce incorrect results when 

processing RTZ encoded and tagged data. For the RTZ arithmetic/logic circuits the 

EOW Tag is converted into an empty bit before it enters the function and then converted 

back into a EOW Tag only when both inputs are EOW Tags and when there is no carry 

propagation.

All local control circuit modules in the RTZ and NRTZ ST-SISAs were implemented 

using RTZ circuitry as each data bit in an instruction cycle always takes the same route 

through the data path. As a consequence, a new data path route can only be set up in the 

first bit cycle of a new instruction cycle because it is the only time that a new instruction 

can be decoded. It was possible therefore to use an RTZ empty control code to select 

the route taken through the data path by an empty spacer bit or an EOW Tag bit. Both 

of these can take the same route as the previous data valid bit. Similarly, a logic ‘O’ 

EVEN phase NRTZ control bit, which has the same encoding as the RTZ empty bit, was 

used to select the route taken through the data path by an EVEN phase data bit or EOW 

Tag bit. Both of these can take the same route as the previous NRTZ ODD phase data 

bit.

The NRTZ ADD function had two main problems associated with the NRTZ EOW 

tagging technique. If one data word is shorter than the other, in other words when a 

logic ‘1* EOW Tag is added to a logic ‘0’ EOW Tag, the ADD function outputs the 

logic ‘f  EOW Tag prematurely. This problem was solved by converting the logic ‘1’ 

EOW Tag into a logic ‘O’ EOW Tag before passing it into the ADD function, and then 

converting the result into a logic ‘1’ EOW Tag when both inputs are logic ‘1’ EOW 

Tags, and there is no carry overflow.
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The second problem with the NRTZ ADD is concerned with the propagation of the carry 

bit from the bit addition before the input of the unused (logic c0’) EOW Tag bits to the 

next data bit addition in the instruction cycle. For example, if a logic *1* carry bit from 

the previous bit addition is added to two unused EOW Tag operand bits then a logic cl ’ 

EOW Tag sum bit is output from the adder and a logic ‘O’ carry bit is passed to the next 

bit addition. These are both unwanted occurrences. Firstly, changing the input logic ‘0’ 

EOW Tag bit to a logic ‘1’ EOW Tag after addition would signal the EOW prematurely. 

Secondly, the logic level of carry bit would change from a logic ‘1’ to a logic ‘0’ thus 

causing the final result to be incorrect. These problems were overcome by adding one of 

the logic ‘0’ EOW Tag bits to two copies of the carry bit, such that if the carry input is 

logic ‘1’ the sum produced is ‘0’ and the carry produced is ‘1’, similarly if the carry input 

is ‘0’ both the sum and carry outputs are ‘O’.

8.3.1.2 Development of Novel Self-timed Architectures

The second part of the design process involved building the RTZ and NRTZ data and 

control path architectural structures. This was achieved by connecting together the 

appropriate elements from the standard macro module library using the system 

construction methodology, defined in Appendix D, to realise each main data and control 

path function. The resultant architectures exhibit a number of common features as a 

consequence of their common self-timing and encoding requirements, such as the local 

control circuitry used for each arithmetic and logical function.

8.3.1.3 Design Characterisation

The final part of the design process was to establish the latency, throughput and circuit 

area characteristics of the data path, control path and PE architectures in order to 

compare the RTZ and NRTZ implementation characteristics against one another and 

with their synchronous counterpart. The conclusions are summarised as follows:

Data Path: Analysis revealed that the latency and throughput of each of the self-timed 

data path components is dependent on the length of the bit-serial data processed such 

that the shorter the length of the longest operand the higher their performance. 

Consequently, the RTZ and NRTZ data path functions have been shown to have lower 

latencies and higher throughputs than their fixed speed synchronous counterparts for

198



short length words. However, the synchronous data path functions perform better than 

both the RTZ and NRTZ designs for long bit-serial data words.

Almost all the NRTZ data path functions achieve lower latencies and higher throughputs 

than their equivalent RTZ data path functions because they require fewer bit cycles to 

complete the same operation when performed on the same data values. However, the 

latency and throughput of the NRTZ ADD is worse than the equivalent RTZ ADD 

because of the extra circuitry required to cater for carry propagation.

The RTZ and NRTZ data path functions are considerably larger in circuit area than their 

equivalent synchronous functions because of the inherently larger size of self-timed 

circuits and the extra circuitry required to implement the self-timing and encoding 

requirements. NRTZ data path functions are larger than their RTZ counterparts. This is 

due to the increased complexity of the NRTZ multiplexor control circuits, as a 

consequence of the greater number of inputs, the ring buffer counters, and the increased 

complexity of the NRTZ data path architectures.

Control Path: Both the RTZ and NRTZ IBUs have fixed worst case latency and 

throughput because both operate on fixed length instruction words. As a consequence 

there was no leeway in which to improve their performance over that of the synchronous 

IBU. It was demonstrated that the NRTZ IBU’s performance is better than the RTZ IBU 

since it requires fewer bit cycles to process each instruction word.

Analysis of the IFU and IDU modules has revealed that their latency and throughput is 

dependent on the length of the longest data word processed by the data path. This is 

because the IFU must regenerate, and the IDU must subsequently re-decode the data 

path control codes for each and every bit cycle until the end of the instruction cycle.

The latency and throughput of the RTZ and NRTZ IFU have been shown to be worse 

than their synchronous counterpart because of the considerable degree of processing 

time required to convert the bit-serial instruction into the equivalent bit-parallel 

instruction. In addition, the time required to re-generate the instruction codes for each 

bit cycle adds to the relative poor performance of the RTZ and NRTZ IFUs. The
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performance of the NRTZ IFU is worse than that of the RTZ IFU for short instruction 

cycles, however, it improves over that of the RTZ IFU when the length of bit-serial data 

operated upon increases. This is due to the NRTZ IFU initially taking longer than the 

RTZ IFU to convert the bit-serial instruction into the equivalent parallel instruction, but 

then requiring fewer re-generate cycles than the RTZ IFU to control each bit 

propagating through the data path.

The NRTZ control path uses the RTZ IDU as a result of the NRTZ IFU generating RTZ 

instruction codes, therefore, its performance is dependent on the number of bit-cycles 

required to complete the instruction cycle.

The RTZ and NRTZ IFUs have a considerably larger circuit area than their synchronous 

counterpart because of the extra circuitry associated with the re-generate function and 

the inherent larger size of self-timed circuits. The NRTZ IFU is larger than the RTZ IFU 

because of the extra circuitry required to convert the NRTZ word into the equivalent 

RTZ word.

Both the RTZ and NRTZ IBUs have a slightly larger circuit area compared to their 

synchronous counterpart due to their complex implementation. The NRTZ IBU is larger 

than the RTZ IBU because it uses a counter circuit to count in the bits of each 

instruction word.

The RTZ/NRTZ IDU is larger than its synchronous counterpart due to the extra circuitry 

required to monitor the data path status signals and the extra circuitry associated with 

self-timed circuit technology.

PE: The latency and throughput of both the RTZ and NRTZ PEs is directly related to 

the number of bit cycles each requires to complete an instruction cycle. Therefore, the 

greater the number of bit cycles the longer the latency and the lower the throughput. 

The RTZ and NRTZ PEs processing speeds are lower than the equivalent synchronous 

PE because their main data path units operate in serial as a direct result of the way the 

data path must be controlled. In addition, the inherent slow operating speed of self

timed circuits, due to the extra circuitry required to realise a circuit, is also a contributing
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factor to the poor performance. The NRTZ instruction latencies in general are less than 

the equivalent RTZ instruction latencies because of the fewer number of bit cycles 

required by the NRTZ PE compared to the number of bit cycles required by the RTZ PE 

to process the same data values.

The latency of each instruction, assuming the same self-timed circuit technology (i.e. 

RTZ or NRTZ) for the PE, and the same data word length, is approximately the same. 

This is attributed to the sequential operation of the data path. The conversion of a bit- 

serial instruction into the corresponding bit-parallel instruction while the preceding 

instruction is still being executed, in other words the overlapping of instructions, 

improves PE performance, however, this improvement is only small.

The best case throughputs of the RTZ and NRTZ PEs are significantly greater than the 

synchronous PE’s fixed constant throughput. This can only occur when a high degree of 

no-operations are executed. However, the average and worst case throughputs of the 

RTZ and NRTZ PEs are much worse than the fixed synchronous throughput. Once 

again this is attributed to the sequential operation of the self-timed data path.

Both the RTZ and NRTZ PEs are both significantly larger in terms of circuit area than 

their synchronous counterpart for reasons previously explained in the data and control 

path conclusions.

8.3.2 Formulation of Self-timing Development Strategies

The second main research aim was to develop design guide-lines for use by computer 

architects to aid in the design of SAs. This involved two main tasks. Firstly, to develop 

guide-lines for the design of scaleable self-timed SA architectures. Secondly, to establish 

guide-lines for the selection of appropriate self-timed or synchronous design techniques 

to be used for the design of a particular SA given a set of design criteria. These are 

presented accordingly.
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8.3.2.1 Design Guide-lines

Design guide-lines have been developed for each of the data and control path functions. 

The application of these guide-lines have been proved to be successful through the 

realisation of several new RTZ and NRTZ self-timed architectural designs.

8.3.2.2 Selection Guide-lines

Selection guide-lines have been proposed that aid the designer in the choice of the 

appropriate design technique to realise the required SA architecture. The guide-lines 

were sub-divided into performance and circuit area guide-lines for the data path, control 

path and final SA PE architecture. In conclusion, the guide-lines suggested that if a large 

number of PEs are to be fitted onto the same chip and/or if the lengths of the data words 

to be operated upon range between 8 and 16-bits then the synchronous design techniques 

should be used to realise the SA architecture. However, if the application algorithms 

include a high degree of no-operations and the length of the data to be operated upon 

ranges between 0 to 8 bits then the NRTZ should be adopted if circuit area is not a 

restrictive factor.

8.4 Limitations of the Work

There are a number of limitations considered as follows. Firstly, there are a wide variety 

of self-timed implementation techniques available each having their relative advantages 

and disadvantages. An exhaustive study comprising all of these self-timed techniques 

would be beyond the scope of this project. Therefore, only two self-timed design 

techniques were investigated.

The second experimental limitation has been the restriction of the investigation of the 

self-timed design techniques in a single SA architecture. However, generic guide-lines 

have been developed for the design of other self-timed SA architectures.

The third experimental limitation has been the restriction of the research to the hardware 

implementation of the SA architectures. Further work could consider the execution of 

algorithms on the self-timed SA architectures.
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8.5 Further Work

Further work includes extending the current investigations presented in this thesis, and 

additional investigations that can be undertaken. These are described in the following 

two sections.

8.5.1 Extending the Current Investigations

Fabrication of the RTZ and NRTZ ST-SISA chips: Characterisation of the two

versions of the ST-SISA have been achieved through the simulation and analysis using 

tools from the Mentor Graphics CAD suite. These tools have provided models for 

analysis, but the performance characteristics obtained have not been verified through the 

physical implementation of the RTZ and NRTZ ST-SISAs. However, because both the 

self-timing models in this thesis have been simulated using this same model then their 

performances are equally compromised.

Minimisation of Duplicated circuitry: The EXU has a high proportion of circuitry that 

does not need to be duplicated. Reducing this circuitry to one common function 

available for use by all the EXU functions requires further investigation.

8.5.2 Additional Investigations

Maximisation of Self-timing Benefits: This research has demonstrated that a scaleable 

SA architecture can be built, however, the resulting architecture consumes a large 

amount of circuit area. The reason for this is partially attributed to the large amount of 

control circuitry required to co-ordinate local and global operations for the adopted 

research vehicle, and is therefore not completely due to the self-timed design technique. 

However, the extra control circuit area overhead could be reduced through the 

development of a new SA PE architecture especially designed to make maximum 

efficient utilisation of the new self-timed techniques presented in this thesis.

Dynamic Length Instruction Words: This research has presented two self-timing 

techniques that signal the end of bit-serial data words. As a result, design guide-lines 

were developed that have been used to realise architectural structures that operate on 

variable length data words. However, no work has been undertaken on the development 

of techniques to signal the end of variable length bit-serial instruction words or design
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guide-lines required to realise structures that operate on variable length instruction 

words. Therefore, it is not clear to what degree the existing EOW tagging techniques 

and design guide-lines could be used, or what new design guide-lines, if any, must be 

developed.

8.6 Summary

This thesis has presented new RTZ and NRTZ design methods for the design of 

scaleable systolic array architectures. These methods were proven through the 

realisation of new RTZ and NRTZ self-timed architectures based on a common research 

vehicle. Five objectives were proposed and each was fulfilled resulting in the following:

1. A methodological approach to the design of scaleable bit-serial RTZ and NRTZ S A 

architectures.

2. New scaleable self-timed architectural solutions that exhibit common circuit 

architectures and modularity.

3. The determination of implementation characteristics for the new RTZ and NRTZ 

self-timed architectural designs. In addition, this has shown that the RTZ and NRTZ 

designs can increase their performance when operating on short length data words, 

or when executing simple instructions such as no-operations, when compared to the 

fixed performance of the synchronous design. This is at the expense of a substantial 

amount of extra circuitry.

4. Design guide-lines for the development of self-timed SA architectures verified 

through the realisation of the new self-timed RTZ and NRTZ ST-SISA processors.

5. Guide-lines for the selection of appropriate self-timed or synchronous techniques for 

given design criteria. These guide-lines were based on the characteristics obtained for 

the new RTZ and NRTZ ST-SISA and existing synchronous SISA processors.
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APPENDICES

This section shows sample schematic diagrams of the RTZ ST-SISA (Appendix A) and 

NRTZ ST-SISA (Appendix B) processing elements, sample VHDL code of selected 

library macro-modules (Appendix C) and the adopted design methodology (Appendix 

D).

APPENDIX A :

THE RETURN-TO-ZERO (RTZ) ST-SISA ARCHITECTURE

Al. RTZ Single Processing Element (rtz_arrayl 1).

A2. RTZ Two Processing Element Array (rtz_arrayl2).

A3. RTZ Top Level Processing Element Architecture (rtz_pe).

A4. RTZ Instruction Bypass Unit (rtz_ibu).

A5. RTZ Instruction Fetch Unit (rtz_ifu).

A6. RTZ Instruction Decode Unit (rtz_idu).

A7. RTZ Execute Unit (rtz_exu).

A8. RTZ Logical OR (rtz_varor).

A9. RTZ Logical AND (rtz_varand).

A 10. RTZ ADD (rtz_varfa).

Al 1. RTZ MAX Comparator (rtz_max).

A 12. RTZ MIN Comparator (rtz_min).

A13. RTZ Register Bank Unit & Control (rtz_rbu&control).

A 14. RTZ Result Control Unit (rtz_rcu).

A15. RTZ Over Write Unit (rtz_owu).

A 16. RTZ Processing element Status Unit (rtz_psu).

A17. RTZ Register Bank Unit (rtz_4rbu).

A 18. RTZ Registers (rtz_4regbank).

A 19. RTZ Register (rtz_register).

A20. RTZ Data Output Unit (rtz_dou).
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APPENDIX B :

THE NON-RETURN-TO-ZERO (NRTZ) ST-SISA ARCHITECTURE

Bl. NRTZ Single Processing Element (nrtz_arrayl 1).

B2. NRTZ Two Processing Element Array (nrtz_arrayl2).

B3. NRTZ Top Level Processing Element Architecture (nrtz_pe).

B4. NRTZ Instruction Bypass Unit (nrtz_ibu).

B5. NRTZ Instruction Fetch Unit (nrtz_ifu).

B6. NRTZ Instruction Decode Unit (nrtz_idu).

B7. NRTZ Execute Unit (nrtz_exu).

B8. NRTZ Logical OR (nrtz_varor).

B9. NRTZ Logical AND (nrtz_varand).

BIO. NRTZ ADD (nrtz_varfa).

B l 1. NRTZ MAX Comparator (nrtz_max).

B12. NRTZ MIN Comparator (nrtz_min).

B13. NRTZ Register Bank Unit & Control (nrtz_rbu&control).

B14. NRTZ Result Control Unit (nrtz_rcu).

B15. NRTZ Over Write Unit (nrtz_owu).

B16. NRTZ Processing element Status Unit (nrtz_psu).

B17. NRTZ Register Bank Unit (nrtz_4rbu).

B18. NRTZ Registers (nrtz_4regbank).

B19. NRTZ Register (nrtz_register).

B20. NRTZ Data Output Unit (nrtz_dou).
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APPENDIX C :

SAMPLE VHDL MACRO-MODULES.

A select number of sample VHDL macro-modules, listed below, are included in this 

section showing the approach adopted to modelling their operation.

Cl. C-element.

C2. RTZ AND Function.

C3. NRTZ AND Function.

C4. RTZ Register Control Function.

C5. NRTZ Full Adder.

C6. RTZ Multiplexor.

APPENDIX D:

DESIGN METHODOLOGY.

D1 - D7. Macro-Module Library.

D8 - D11. System Construction Methodology.

216



CD
CO

<3
CD

CO

o O'o
UJ

Q

Aegac~usiecz;jD

O -  -  O  C

o
A8nec~qo;eaz

,nc"e

o a 8 m9 C ~ u j ; e s z ; j io

C o
- -  CO -OT3

J1S

■O

U' “ 9

O

A

0 0

Al



Aeu;aq~L|3^e3z:-.u

o  c

J1S

A B u a q ~ i p ; B 3 Z i w i

}no-e

A e u a q ~ q o ; B 3 z ■

;no_8

j ; s

o  c

A B u a q ~ u o  ) B o z  ; j i i

;n o *s

j i s

Ui ”8

i_ U' "8

I
A

zn

A2



Stl
O

£
7 8

2 s wtin
I

Ha 3

c*‘r“  (•!>•»•

A3



©  CO

oO
o

CO

c  rr

o oQ_zoo

COo

A4



O
A

-O
U

T

i«i5

A5



A6



O
0*

0U
K

I:
0)

m

A7

■O 
IA

OU
T



il
l 

I 
> 

-

1 1

CO 0 0

o

J L .

n.

GO ——

EE - J i

* « OO g) 

? ?  %

w
Li/

b e ?h a *
•= 5

«»u«a*"oippo*ijju*ea2
—!*jii j

s 31
-j. ~  „

£  ?

00

m

U?

:H>t

CO

U  * gT'c ° -a £

1  1

A8

A«M«q~uQ36o1“ X JJ

U”01”  
.u'-iOOj* «u!*0C0-*w

A1|»ff“UO30O t"?1

u( - h 8j«
u.-OtBj*II” — 31” HufiOO-* u .- aaa jq „



A9



A
IN

C>

#y»q* 10 J 1UQMA*Z U

U r .

A10
A



ri
H

A
(l

:0
>

0

All



'23|

A12



r c

® a
S o ^ J  ( 0 : t ) n0 ^ l)3S»J
c -S '= (0'■ /.)0do -0 3 0 (Q̂ nsap

CO

A13



o o o

□
GOo

CD

C c

Q3O

A14



o
o

o
o o
o

o

o

c n
c c
CD

CO

oO

Q
O  O LcJ

O
c l  a

o

o

o  o  o —

o

o  C3

CO

CO
LjJcz

A15



o ^  
o

oo
o

o

auao~)uo3xnuao~2

o
o

A16

CI
O 

:0
)



ooo o o
CO

oo

ca o
oo ao

o

o0 3O  0 33O  33 O333
3

O
00 003 a

.5 o

13S8J
-  uc 33S8Jr - -  m o — -  (Q : i ) ie$ n  
oJ-goo •otQ: (.) »S8Dr

"3 c  c  o

A17



0 A M (3 :0 > O -

"KMB:

rrrt

s t

5HB=
*.VB=

«*09) *#Uufl> 
ventll 9)

19..*

4Mtf «.*vt

at (t.W
tttmT? 

111

r4<n> 

I  * t

«*"L.0M<|•Mil 'l.*U n.*u

a  m i

11 31

S!! /fcSfat
Sit ̂ ifp» 
11 31 »

Jt;::
itl11 r |,* u

11111

tmi:
»1f. W »W  I*

t. j .  moo

-Otreg(T:0)

A18



o
o

■ o m r v

t i e s
0 1 8 S

A e u a q ~ i u o q O e j ~ z 11S8DL
l i e s  0 i s 8 3 i -  01»S

(no i- 
18$ 0 " O -

A8uaq" m o o se  j ~ ? i  j

Aeueq*!iuo3is8P~z 
\ iisaqL
1- tie s  c ise q  k.

  019$ '
• qsej -  

,es C=S9J“

o

A19



r— co

A20
CO LkJ

CO



CD

CO

o

o

Aeueq'uo;eoz}ju

o- o c o
u! "0J

j :s

Aeu9G~u3̂ eoz ĵU
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HITECTURE c_body OF c_element IS

IN
out <= 'O' AFTER 3ns WHEN reset = '1' ELSE

in_l AFTER 3ns WHEN in_l = in_2 ELSE 
c_out;

c_body;
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HITECTURE rtz_and_behav OF rtz_2and IS

IN

lect_input: PROCESS
ARIABLE first_iterate, found: BOOLEAN := false;
ARIABLE i: INTEGER:=0;
ARIABLE funO, funi:qsim_state: =' 0 ' ;
ARIABLE next_state : qsim_state:='1';
GIN
F first_iterate = false AND set='l' THEN 
first_iterate := true; 
fout(0)<=' O' ; 
fout(l)<='O';
LSE
IF (fin(0) XOR fin(l)) /= next_state OR (fin(2) XOR fin(3)) /= next_state TH
WAIT UNTIL (fin(0) XOR fin(l)) = next_state AND (fin(2) XOR fin(3)) = next_s 
e;
END IF;
CASE fin(3 DOWNTO 0) IS

"3210" t
WHEN "0101" => f u n i : = ' 0 ' ; f u n O : = ' 1 '
WHEN "0110" => f u n l : = ' 0 ' ; fu .n O  : = '  1 ' ;
WHEN "1001" => f u n i : = ' 0 ' ; f u n O : = ' 1 ' ;
WHEN "1010" => f u n l : = ' 1 ' ; f u n O : = ' 0 ' ;

WHEN OTHERS => f u n l : = ' 0 ; f u n O : = ' 0
END CASE;
fout(1)<=funl AFTER 6ns; fout(0)<=funO AFTER 6ns; 
next_state:=NOT(next_state);
ND IF;
D PROCESS select_input; 
rtz_and_behav ;
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CHITECTURE nrtz_and_behav OF nrtz_and IS

GIN

rtz_and: PROCESS
TYPE mem6 IS ARRAY (0 TO 3) OF qsim_state;
ARIABLE input:mem6;
ARIABLE first_iterate: BOOLEAN := false;
ARIABLE ftmpO, ftmpl: qsim_state:='0';
ARIABLE next_state:qsim_state: =' 1';
EGIN
IF first_iterate = false OR set='l' THEN 
first_iterate := true; 
f 0_out<='O'; 
fl_out<='0 ' ;
LSE
IF (fOO XOR fOl) /= next_state OR (flO XOR fll) /=next_state THEN 
WAIT UNTIL (fOO XOR fOl) = next_state AND (flO XOR fll) =next_state; 
END IF;
input(0):=f00; input(1):=f01; input(2):=f10; input(3):= fll;
CASE input(0 TO 3) IS
WHEN "0000” => ftmpl = '0' ftmpO = '0'
WHEN "0011" => ftmpl = '0' ftmpO = '0'
WHEN "1100" => ftmpl = '0' ftmpO = '0'
WHEN "1111" => ftmpl = '1' ftmpO
WHEN "1010" => ftmpl = '0' ftmpO = '1'
WHEN "0110" => ftmpl = '0' ftmpO = '1'
WHEN "1001" => ftmpl = '0' ftmpO = '1'
WHEN "0101" => ftmpl = '1' ftmpO = '0'
WHEN OTHERS => -- 'do nothing',
END CASE;
f0_out<=ftmp0 AFTER 10ns; fl_out<=ftmpl AFTER 10ns; 
next_state:=NOT(next_state);
ND IF;
D PROCESS nrtz_and; 
nrtz_and_behav;
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CHITECTURE rtz_regcont_behav OF rtz_regcont IS

GIN

elect_mux: PROCESS
TYPE mem6 IS ARRAY (0 TO 5) OF qsim_state;
VARIABLE input:mem6;
VARIABLE first_iterate: BOOLEAN := false;
VARIABLE sO, si: qsim_state:='0';
VARIABLE next_state:qsim_state:='1';
EGIN
IF first_iterate = false AND set='l' THEN 
first_iterate := true; 
sel0<='0'; 
sell<=' 0';

ELSE
IF (opOO XOR opOl) /= next_state OR (oplO XOR opll) /=next_state OR (destO XO 

destl)/=next_state THEN
WAIT UNTIL (opOO XOR opOl) = next_state AND (oplO XOR opll) =next_state AND 

estO XOR destl)=next_state;
END IF;
input(0):=op00; input(1):=op01; input(2):=opl0; input(3):=opll; i n p u t (4):=des 
; input(5):=destl;
CASE input(0 TO 5) IS

W H E N "101010" => si:='1' sO = '0'
W H EN "101001" => si:='0' s0 =  ' ! '

W H EN "100110" => si:='0' sO = '1'
W H EN "100101" => si: ='0' sO = '1'
W H EN "011010" => si:='0' sO = '1'
W H E N "011001" => oiii—iw sO =  > ! >

W H EN "010110" => si:='0' sO = '1'
W H EN "010101" => oiii—iw sO = '1'
W H EN OTHERS => si:='0' sO = '0' ;
END CASE;
sel0<=s0 AFTER 8ns; sell<=sl AFTER 8ns; 
next_state:=NOT(next_state);
ND IF;
D PROCESS select_mux; 
rtz_regcont_behav;
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CHITECTURE nrtz_fa_behav OF nrtz_fa IS

GIN

rtz_fadder: PROCESS
TYPE mem6 IS ARRAY (0 TO 5) OF qsim_state;
VARIABLE input:mem6;
VARIABLE first_iterate: BOOLEAN := false;
VARIABLE sO, si, c0, cl: qsim_state:='0';
VARIABLE next_state:qsim_state:='1 ';
EGIN
IF first_iterate = false OR set='l' THEN 
first_iterate := true; 
sum(0)<='0'; sum(l)<='0'; 
cout(0)<='0'; cout(1)<='0';

ELSE
IF (din0(0) XOR dinl(0)) /= next_state OR (dinO(l) XOR dinl(l)) /=next_state 
(cin(0) XOR cin(l))/=next_state THEN
WAIT UNTIL (din0(0) XOR dinl(0)) = next_state AND (dinO(l) XOR dinl(l)) =nex 

state AND (cin(0) XOR cin(l))=next_state;
END IF;
input(0):=din0(0); input(1):=dinl(0); input(2):=din0(1); input(3):= dinl(l); 

put(4):= cin(0); input(5):=cin(1);
CASE input(0 TO 5) IS

W H EN "000000" => si = '0' sO = '0' cl = '0' cO = '0'
W H E N "101010" => si = '0' sO = '1' cl = '0' cO = '1'
W H EN "101001" => si = '1' sO = '0' cl = '0' cO = '1'
W H E N "100110" => si = '1' sO = '0' cl = '0' cO = '1'
W H EN "100101" => si = '0' sO = '1' cl = '1' cO = '0'
W H E N "011010" => si = '1' sO = '0' cl = '0' cO = '1'
W H E N "011001" => si = '0' sO = '1' cl = '1' cO = '0'
W H EN "010110" => si = '0' sO = '1' cl = '1' cO = '0'
W H EN "010101" => si = '1' sO = '0' cl = '1' cO = '0'
W H EN "110000" => si = '1' sO = '1' cl = '0' cO = '0'
W H EN "001100" => si = '1' sO = '1' cl = '0' cO = '0'
W H EN "111100" => si = '0' sO = '0' cl = '1' cO = '1'
W H EN "000011" => si = '1' sO = '1' cl = '0' cO = ' 0'
W H EN "110011" => si = '0' sO = '0' cl = '1' cO = '1'
W H EN "001111" => si = '0' sO = '0' cl = '1' cO = ' 1'
W H EN "111111" => si = '1' sO = '1' cl = '1' cO = '1'
WHEN OTHERS => -- 'do nothing';
END CASE;
sum(0)<=s0 AFTER 11ns; sum(l)<=sl AFTER 11ns; 
cout(0)<=c0 AFTER 11ns; cout(l)<=cl AFTER 11ns; 
next_state:=NOT(next_state);
ND IF;
D PROCESS nrtz_fadder; 
nrtz_fa_behav;
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CHITECTURE rtz_2mux_behav OF rtz_2mux IS 
SIGNAL portid_ack: qsim_state := 'O'; 
SIGNAL port_id: integer:= -1;
GIN

elect_input: P R O C E S S  

A R I A B L E  first_iterate, found: B O O L E A N  := false; 
A R I A B L E  i: I N T E G E R : =0 ;

A R I A B L E  next_state : qsim_state:='1';
G I N

I F  first_iterate = false A N D  set='l' T H E N  

first_iterate := true;
L S E

I F  (sel(i) X O R  sel(i+l)) /= next_state T H E N  

W A I T  U N T I L  (sel(i) X O R  sel(i+l)) = next_state; 
E N D  I F ;

I F  sel(1)='1' T H E N  

port_id<=l;
E L S E  

port__id<=0;
E N D  I F ;

W A I T  U N T I L  portid_ack=next_state; 
next_state:= N O T (next_state); 
port_id<=-l;
N D  I F ;

D P R O C E S S  select_input;

ta_input: PROCESS
ARIABLE bit_count, portid_temp:integer:=0;
ARIABLE first_iterate: BOOLEAN:=false;
ARIABLE funO, funl: qsim_state:='1';
ARIABLE next_state : qsim_state:='1';
GIN
F first_iterate = false OR set='l' THEN
first_iterate:=true;
f0out<='O';
flout<='0';
a_out(1)<='1';
a_out(0)<='1';
LSE
WAIT UNTIL (port_id > -1) AND set='0' AND a_in = next_state;
IF next_state='0' THEN 
portid_temp:=portid_temp+port_id;

ELSE
portid_temp:=port_id;
END IF;
IF (finO(portid_temp) XOR fini(portid_temp))/=next_state THEN 
WAIT UNTIL (finO(portid_temp) XOR fini(portid_temp)) = next_state 
END IF;
funO:=finO(portid_temp); 
funl:=fini(portid_temp); 
f0out<=fun0 AFTER 6ns; 
flout<=funl AFTER 6ns;
a_out(portid_temp)<= NOT(funO XOR funl) AFTER 8ns; 
portid_ack<=next_state; 
next_state:=NOT(next_state);
VAIT UNTIL port_id = -1;
D IF;
PROCESS data incut;



APPENDIX D

Design Methodology

The design method used for the realisation of the ST-SISA adopts delay-insensitive 

circuit modules such that the resulting architecture will assume both unbounded intra- 

and inter-module delays. Therefore, the circuit modules themselves are responsible for 

co-ordinating computation within themselves and with their immediate neighbours. In 

order to build delay-insensitive systems out of these circuit modules a design method 

must be adopted to ensure straightforward and correct circuit construction that is 

amenable to other designers. There are a number of ways to build delay-insensitive 

systems, as have been described in the review chapter, each having their relative 

advantages and disadvantages. In this project we have chosen the building block, or 

macro-module, approach to delay-insensitive design.

This section begins by describing the functionality of the library of circuit modules, or 

macro-modules, that compose delay-insensitive circuits. Secondly, the method of inter

connecting delay-insensitive macro-modules, to form circuits of greater complexity, is 

described.

The Macro-Module Library

This section describes the macro-modules that are used for constructing delay-insensitive 

circuits. For many of the macro-modules described, two different implementations are 

required that differ only in the signalling protocol adopted at the data-interface; data

path macro-modules use the two-phase (NRTZ) signalling protocol whereas control-path 

modules adopt the four-phase (RTZ) protocol. Although these modules adopt different 

signalling protocols, the number and positioning of input and output wires remains 

constant for both the two-phase and four-phase implementations, therefore, each module 

is depicted only once.

The library of macro-modules can be separated into four categories namely: functional 

blocks, latches, switches and interconnection elements.
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Latch

A latch [58], figure 1, is used to store and pass data between communicating circuits. 

The operation of the latch is to allow a new value to overwrite the output only when 

both a new data value is placed on the input and an acknowledge is received from the 

succeeding register, indicating the register can load a new value, otherwise the latch is 

forced to hold its current value.

Every time a new value is placed on the output a transition is placed onto the 

acknowledge output wire indicating to the preceding circuit that the data has been 

received. Both two- and four-phase latches are required, however the operation for each 

is the same as described above only the encoding of the data placed on the data interface 

differs.

ACK. OUT ACK.IN

LATCH

DUAL-RAIL
OUTPUT

DUAL-RAIL
INPUT

Figure 1. The Latch.

Functional Blocks

A functional block [58], figure 2, computes a specific combinational function upon dual

rail encoded data. It has no synchronising properties in relation to the control of the data 

paths. The type of combinational function varies on the type of computation. Typical 

functions include logical and arithmetic operators such as AND and ADD, in addition to 

more complex user specified functions such as those used in control circuitry.

As will be seen in the experimental chapters a wide variety of combinational functions 

are implemented, therefore, only the essential properties are discussed here. The main 

feature of a combinational circuit is that a new output cannot be produced until all the 

inputs have transpired to the same state, in other words it operates in fundamental mode.
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For some of the functions used, both two- and four-phase implementations are required; 

such as the AND function used in the two- and four-phase ST-SISA ALU.

DUAL-RAIL

DUAL-RAIL
INPUTS

COMBINATIONAL
FUNCTION

(a)

INPUTS

DUAL-RAIL
OUTPUT(S)

MULTI OUTPUT 
COMBINATIONAL 

FUNCTION

(b)

Figure 2. Single- (a) and Multi-output (b) combinational functions.

Switches

Switches [58, 93] are used as data flow control elements. There are primarily four 

different types of switch, namely: the multiplexor, demultiplexor, symmetric switch and 

asymmetric switch. These are explained as follows:

Demultiplexor

A demultiplexor, figure 3(b), has one data input which is output over one of 2” data 

lines depending on the status of the w-input control bus. Therefore, a new data value can 

be placed on only one output and all other outputs maintain their current value.

Each demultiplexor, data interface is latched therefore the selected data path, with its 

associated acknowledge wires, operate in the same way as for the simple latch module, 

four- and two-phase implementations of the demultiplexor are needed, however the 

control inputs for both of these adopt the four-phase signalling protocol.

Multiplexor

A multiplexor, figure 3(a), has 2” dual-rail inputs of which only one input line is selected, 

depending on the status of the H-input control bus, for connection to the output line. 

Therefore, a new data value can be placed on only one input and all other inputs must
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maintain their current value. Each data interface is latched in the same way as the 

demultiplexor. Two- and four-phase implementations are required.

MULTIPLEXOR

DATA
OUTPUT

DATA
INPUTS

CONTROL
INPUT

DEMULTIPLEXOR,

DATA
INPUT

DATA
OUTPUTS

KEY:

DUAL-RAIL
LINE

ACK. W IRE

CONTROL
INPUTDUAL-RAIL

BUS

Figure 3. The multiplexor (a) and demultiplexor (b) modules. 

Symmetric Switch

A symmetric switch, figure 4(a), has two data inputs where either both data values are 

passed through to their respective outputs or both of them are crossed over so that they 

are output to each others respective output. This function is controlled by a single four- 

phase dual-rail control input. Only a two-phase implementation of this module is 

required. This is because it is used to operate upon NRTZ data words that use all dual

rail logic bit combinations.

Asymmetric Switch

An asymmetric switch, figure 4(b), again has two data inputs where either both data 

values are passed to their respective outputs or only one of them is crossed over to the 

others output, therefore the other must wait. Only a two-phase implementation of this 

module, under the control of a four-phase control input, is required for the same reasons 

as discussed for the symmetric switch.
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KEY: DUAL-RAIL
  ACK. WIRE

, x SYMMETRIC C Z £ >  DUAL-RAIL /i  \  ASYMMETRIC 
W  SWITCH V0 /  SWITCH

CONTROL: 
— ►  FALSE 

- ►  TRUECONTROL CONTROL

Figure 4. The symmetric (a) and asymmetric (b) modules.

The C-element

The C-element [100], figure 5, is used to AMD signal events, such as acknowledge 

signals. When all of the inputs into a C-element are in the same logic state, the C- 

element’s output changes to that state. When the inputs differ, the C-element retains its 

previous state and so its output is unchanged; the main use of the C-element in this 

project is to synchronise acknowledge signals between multiple communicating latching 

elements.

Inputs
Output

Figure 5. The C-element.

Fork and Join Elements

The structures used to interconnect multiple circuit modules are called fork and join [92, 

93], as shown in figure 6, (a) and (b), respectively. The fork is used when the same 

signal is input to more than one circuit module. The join is used when signals from more 

than one source are input to a circuit module.

D5



►  D ata

A ckD ata

A c k
 A c k

► -  D ata

- ► D a ta

► -D a ta

(a) Fork. (b) Join.

Figure 6. The fork (a) and join (b) interconnect structures.

An important aspect of both these structures is the handling of the acknowledge signals 

between the circuits involved. For the fork structure, each input module that accepts 

data from the output module must return an acknowledge signal to the output module. 

The output module must then synchronise all the acknowledge signals it receives such 

that the next data value cannot be accepted until all the acknowledge signals are in the 

same state. This is achieved by Anding all the acknowledge signals with a C-element. 

For the join structure, the acknowledge output produced by the input module must be 

forked to all the output modules that provide input data values.

Constructing Bus Macro-modules

It is possible to build bus orientated macro-modules, by connecting together a number of 

modules from those described earlier, such as a dual-rail bus demultiplexor. This type of 

bus function can be easily realised by connecting together a number of single dual-rail 

data-interface demultiplexors. For example, shown below in figure 7 is a circuit 

composed of two of the afore-mentioned demultiplexors which connect a two-input two 

bit wide data bus to two data bus outputs of the same bus width.

The circuit operates as follows. Whenever the control input status is set to false data on 

AO and A1 is passed to outputs BO and B1 respectively, otherwise, if the control input is 

true they are instead passed to outputs CO and Cl.
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OUT BO

IN AO

OUT CO
ACK. OUT,

OUT B1

INA1

OUT Cl

CONTROL

Figure 7. Bus demultiplexor.

Initialising Macro-modules

Each of above described macro-modules has another single rail input, not shown in the 

above figures, called either reset or set that is used to initialise a circuit module into a 

known state on power-up; both are global signals controlled by outside the system. The 

reset signal is used by RTZ modules to initialise their dual-rail outputs to logic ‘O’, 

whereas the set signal is used by NRTZ modules to initialise their dual-rail outputs to 

logic ‘1’.

The drawback of the reset and set initialise signals is that neither can be adapted to the 

delay-insensitive protocol because both do not have accompanying acknowledge signals. 

However, the problem is limited by stating the assumption that a circuit module will 

settle into a known state within a finite period of time after the initialise signal has been 

asserted [70],
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The System Construction Methodology

The design technique is based on the data-flow approach using pipelines and rings [92, 

93] that are composed into larger structures through the joining and forking of data 

paths. The pipelines and rings are implemented by using a limited set of macro-modules 

consisting of latches, combinational circuits and switches that are inter-connected using 

the small set of simple interconnect elements described in the previous section.

The benefit of using this approach is that by limiting the class of circuit modules and 

interconnect structures it is possible to build complex designs that are correct according 

to simple construction rules. Another benefit is that the analysis of performance and the 

understanding of bottlenecks are made easier because of the simplicity of construction.

Pipelines

The composition of a FIFO pipeline can be realised if each stage of the pipeline includes 

a latch added to the output of a combinational function block, as seen in figure 8.

Function Latch Function Latch Function Latch
B lock  B lock  B lock

A ck A ck A ck

Data Data DataData Data

L2

Figure 8. Delay-insensitive pipeline.

The function of the delay-insensitive latch is to prevent the incoming data from entering 

the combinational block until the successor latch has accepted the previous data. The 

latching of data is controlled by acknowledge signals from successor latches. For RTZ 

encoded data a latch may hold a new valid data item when its successor latch in the 

pipeline holds the empty value, and vice-versa for when the latch holds a empty spacer
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and the successor holds valid data. When the pipeline operates on NRTZ encoded data a 

latch may hold a new ODD valid data item when the successor latch holds a EVEN valid 

data item. The handshaking described ensures that the data flowing through the pipeline 

always consists of alternating valid and empty/tag values. This is the case for NRTZ 

encoded data in that data flowing through the pipeline always consists of alternating 

ODD and EVEN values, where some EVEN values may instead represent an EOW Tag.

Rings

Using a series of pipelined latches it is possible to connect the output of the last latch 

stage to the input of the first, forming a delay-insensitive ring. Such a ring is capable of 

performing an iterative computation.

Consider a ring containing three latches. The ring will always contain one of two 

patterns; either two valid and one empty element or two empty and one valid. Figure 9 

(a,b,c,d) shows how the contents of a delay-insensitive ring iteratively changes as the 

empty and valid items are passed around. It can be seen when data propagates from one 

latch (the transmitter) to its successor (the receiver) the contents of the transmitting latch 

can be overwritten by data propagating from the preceding latch. Consequently, there 

are periods when the same data item occupies two stages, as shown in figure 9 (b) where 

the same empty (E) bit is copied into two neighbouring latches. This is called a bubble 

[23]. Bubbles are essential for propagating data so that when data propagates forwards 

though a pipeline, bubbles are created therefore creating space for new data.

Bubble Bubble

Bubble
(a) (b)

Bubble

(c) (d)

Figure 9. Sequence of computations in a ring.
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Basic System Interconnection Structures

The fork and join circuit interconnect elements can be used to interconnect a number of 

separate data paths together thus forming more complex circuit structures.

There are three basic types of circuit structure [70]. The first is the join structure, figure 

10, which joins two (or more) data paths together at a combinational function input. The 

second is the split structure, figure 11, which separates a single data path into two (or 

more) data paths from a combinational function. Finally, the join and split structure, 

figure 12, brings together two (or more) data paths at the function inputs and then 

immediately splits them into two (or more) data paths at the output. Each of these 

structures must be latched at both their input(s) and output(s).

Latch Function Function Latch
tU O C K

Ack.

Latch L2

Data

Block

Latch
Ack.Data

L2
Data

Figure 10. Join structure. Figure 11 Split structure.

Latch Function

LI

Block A r k

L3
Data'''

Ack.

L2 L4
Datal^

i l | | > ■ s p F

Figure 12. Join and split structure.
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Multi-ring Structures

The ring and pipeline structures described earlier can be connected together to form 

more complex structures called a multi-ring structure [92, 93] using the three basic 

circuit structures described in the previous section. Figures 13, (a), (b) and (c), 

respectively show how the join, split, and join and split structures are used to form multi

rings.

Figure 13. Multi-ring structures.

Finite State Machines

In order to build a delay-insensitive finite state machine (FSM) [70], as shown in figure 

14, two or more latches otherwise known as register, must be combined with a 

functional logic block. It can be seen that the join element is used to synchronise the 

transfer of data from the primary and secondary input latches to the latch at the output of 

the functional logic.

P r im a r y
In p u t L a tc h

FU N C TIO N A L
LO G IC

S e c o n d a r y
I n p u t

L a tc h

P r im a r y
O u tp u t

A c k .

S e c o n d a r y  | | |  
O u tp u t

A c k .

REGISTER #

Figure 14. Delay-insensitive finite state machine.
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