Sheffield
Hallam
University

Prototyping Z specifications in extended Lisp.

HIBBERD, Richard B.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19788/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19788/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

REFERENCE

ProQuest Number: 10697090

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10697090

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Prototyping Z Specifications in
Extended Lisp

Richard Bramwell Hibberd

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallam University for the degree of Doctor of
Philosophy

October 2001

Acknowledgements

I would like to record my profound thanks to Ian Morrey and Jawed Siddiqi of the
School of Computing and Management Sciences at Sheffield Hallam University, who
have so freely offered guidance, support, encouragement and enthusiasm throughout the

course of the project.

I would also like to acknowledge the work of Graham Buckberry, the creator of the

companion CASE tool TranZit, which work is referenced in this thesis.

I must also record grateful thanks to successive Heads of the Department of Computing
at The Nottingham Trent University, namely Professor Bob Whitrow, Dr. Ted
Ashworth, Ms Pauline Fazackerley and Professor Adrian Hopgood; they all
demonstrated faith in the eventual outcome, despite the extended timescale and

numerous contra-indications.

It is impossible to acknowledge individually all those who have been obliged to live
with the consequences of my original decision to embark on this undertaking; this
includes my work colleagues and my family, but much the greatest contribution has
been from my wife Janice Hibberd who has unfailingly supported me in this
undertaking. I cannot see that the debt I owe her can ever be repaid, but I am glad that I

now have the chance to try.

Richard Hibberd BEd MSc October 2001

For Rosie and Fraser

Table of Contents

ACKNOWIEAZEMENES ..c.eveeiiiiiniiiii ittt e e e s e et a e 2
TaAbIE Of CONENLSveriieeieieiieieee e et sttt b st e st et sas s e srn e eae s sanas s sraer s e eteseatnns 4
TADLE OF FAZUIES ..o ettt ettt st et b bbb bbb bt see et e en s e eas s s es e nn e e e beereeares 6
ADSITACE. ...ttt ctie e ettt e e cete st e st eaeteeeanes st be e b e ea e LR b et seR e seb et e e es sas s e e habe s s beseaaaesentneeenns 7
1. Introduction and Problem Defilitioncociivereriieiiiinininiiniinir e s e 9
1.1 The Software Crisis and palliative measures — Software Engineering as a discipline................ 10
1.2 Formal Methods as a part of Software Engineeringcc.ccccoverenvnviniineiineneniininniniennine 12
1.3 Requirements Engineering — its place in Software Engineeringccoccoveiiniviinnniniinnnnnnns 13
1.4 ReSearch ODJECHIVESuuiueiureiieiiiiiireeeieeteeee ettt et see e saecacee s et see s e eeses e eseeseenassassans 15
1.5 THESiS SHUCIUIIE ...eeoveie ittt et ettt et e bttt saesan e s eae st srtne s e cen e e sanesban sns 18

2 Requirements ENGINEETINGc.cccovurmriereriueririaeeiriiiieece e sen e s seaaes e s st s sre st s serenssnsenesen 19
2.1 Requirements Engineering —the fundamental activities............ccccecerennicniiiinciccinii e 19
2.2 Requirements elCitationceveuieiereiiiiiiinii i e s 22
221 Requirements formalisation.........ccceveiiniiniiicininienicee 24
222 Requirements validation............cccoe i 25

2.3 Formal Methods in Requirements ENgineering............cccocevevreeruercererieriiiniesierienienmeeinssionnns 26
23.1 The benefits of formal specificationcoccoiiiiiiiiniiii e 28
232 Specification USING Zccovevimeiriiiiiiiict ittt e s sas s 28
2.3.2.1 Requirements validation through proof...............ccccccoiiiiniiiin 30

2.3.2.2 Requirements validation through animation.............cccecevereniininiecinenre e 30

2.4 AnIntroduction to the REALIZE Methodccceiviiiniinniiccnieiins s 31
24.1 The expected DENEfitsccevueiiiiieiiieiie et e s 32
242 Support for other software development activities..........ccccoevverenriireievinienin e 33

3 The Animation of SPECIfICAtIONSc.coicivreieiirie ittt st e e s sne s 35
3.1 The disadvantages of specification executabilitycccocoeriiiiiienininici e 35
3.1.1 The disadvantages investigatedc..ceoeeiiiiiiinieniiir e e 37

3.2 The advantages of specification eXecutability............cccoovereiriirrieeiriece e 39
3.2.1 How ZAL manages non-exXecutabilityccocueevrieininiiniiennie e e e 4]
322 The best 0f BOth WOTIAS.....c..oiiiiiiieee ettt ettt e s 42

3.3 Achieving eXecutabilityccoeiiririieiniiiii e e e 44
33.1 Approaches to the execution of Z specificationscceceririrereniieninie e 44
3.3.1.1 A formal framework for classifying animators............cccocveverrreecereerceeninreenieee e 45

3.3.1.2 ZALIn this 1andSCapec.coeceeveereimieiinrtene ettt sae et et e en e 46

3.3.1.3 Proving of TEStNG......ccocvicveiierireeieeit et stesttescteseeesteesneee e e seeesseeaabsaasssasseasanseens 47

3.4 The REALIZE Method and its supporting toOISEtc.cuevveeruiriiereeieiieeeeeei e et sere e e 48
34.1 The toOolSEt COMPONENLS.ceeirieirieees e eeitt e sseesreesrs e s ssieeestaeesernneeessssnesessnesssnsnees 51
342 The Edit, Transform, EXeCUe CYCIE......ccorurreruiieieriniiririee e e eeteees e e e e es 52
3.43 De-coupling TranZit & ZALcooiiiiiiiiiiiiieieen ettt ettt e e e 52

4 Realisation of the ZAL COMPONEIILc.c.oviiiiirieieieriirieeeescriee e et e ae e et beeee e e e eseeiraeeeeseeaenns 54
4.1 General issues of symbolic execution of Z ettt ettt et b ar e e b e e e e e b e eraas 54
4.2 The application domain and symbolic evaluation strategies............cceeereeerieerirerereeeineesiveeenneans 55
4.2.1 Particular characteristics of this developmentc.ccccuvveieeeeiiecieine e 56
4.2.1.1 Towards a development paradigm (OT 2).......ccccervuerrirrirenieesiieerieriieeeeeeensreesrseesneeserens 57
4.2.1.1.1 Anillustration of a natural fit - local bindingscccecoveevveereeciieeeeeee e 58

422 The €ase fOr CAt ...ttt ettt e e et sre st sttt ee e menaen 65
4.2.3 The case for Haskellc.cooiriiiiiiiiiinieini et ettt sttt e 67
4.2.4 THE CaSE FOI LASP ..veviiriieiris ittt sttt ettt sttt e et e e e e s teeraaen sraaesaeaennsesassenene 68

4.3 How the execution €NGINe WOTKScccevveereterieenrieririeernansseeessesieseessesssesssseesssnesssssssessssesane 70
43.1 ZAL data ODJECLScueeiieesiieiee e certeteertee e seeee e e aeeeesntaeetssesae sbeeseesreeesenaeseteeesneeansen 70
432 ZAL source as EXtended LiSp........cccooeerieiieiicniinienesniereeeseiee e eeenssre s snaeseresensessnnnes 75
433 AN EITOT TEPOTHING TEGIME.eeeuveeeeeeeierreerierterrrertaeseessesareesnsesssnessssesssessrssesssssesssassnseans 75
4.3.4 Expression level Manipulations........cccceeevirerieereciinienenieinnniesres e sseasseesnesrvessessvesssaenens 71
4.3.4.1 General EXPIESSIONScceeriveuereeerereerteerterateerrerstesssessssesssessasesssesssasssssesanssesssesssseesssees 79
4.3.4.2 Testing for equality and binding ValUESc.ccceereeeviiriieecciieice e e ee e 79
4.3.4.21 EXECULION SEQUETICEccuvriruirierirerarearreeiseasesssinsasesssassssasssssesssasssessssesssseessnsesssesns 80

4.3.4.3 The question Of QUANLI{IEIS........c.cvverrieeveiriieeieecee et ecsiesenae e steesaesseeessbeesbesesneesasaas 81

4.3.5 Schema definitioncceeviiriiiiiii ettt ettt e st rer e e e e e enraeneas 84
43.6 Schema level ManipUlationseceevierieieeneeiiie e eetree et ctr e etaeeere e esbteesteserareeraas 85
4.3.6.1 Therole of schemasinZ and ZALccccoccovereriiirniiniireieiesecrteereeeneesseeenesreesanenes 86
4.3.6.2 Constructing the eXecutable ODJECtccevirvirreeirrreciirrietr ettt see e e 87
4.3.6.3 Constructing the enVITONIMENL.........ccceeeieiiieieiiie ettt e e eee e eas 94

4.3.6.3.1 Input ObJectS...ccccoceverrereererenereerenen
4.3.6.3.2 Output objects
43.6.3.3 Local objects
43.6.3.4 State objects
4.3.6.4 Collecting inputs

4.3.6.5 Evaluating the executable object.............
4.3.6.6 Reporting the results of the evaluation....
4.3.6.7 Management of the ongoing state
44 The development of a developer’s interface........
4.5 OptimiSations........cccceverrenreereereerernresensessessensuenne
4.6 Other issues of iMPlemMentation.......cccccveieriiereiesrereeresrererereeseseesesseesesessessesersessesssssesssassessenees
47 IR CONCIUSION ettt tsteseststae s e e sossesesseenesensenesaostssssssesesnesas

5 Case Studies....coereevrerererreivene
5.1 A Lending Library
5.2 The Water Level Monitoring System

INEEOAUCEION.c..eeireiieirectrineecteesereresreerresresseesseesresnsesessnessessvaenes
5.2.1 The Z specification used in the case study
522 VAIIAAION....cveiveirrirriieereeieeeerereeeeseesrestsesesessseseesesssesseressesasonssnsessessessssssessasssessessessonsanss
523 ANIMIALION. c1eiveiieieeieceerrtereeeteeiresieecsesrsesseessssiseessesssessesssesssessessssssssassssssssnssenssessssonsesssses
5.2.4 Discussion............

5.3 A CarRental System....

5.3.1 Discussion................

54 Summary......ceeeenn.

6 Results and Conclusions......

6.1 Results evaluated
6.2 FULUIE WOTK...ceeieeieeeeeicrreeieeneeseetae e erreressesssbessaeseesess e sassassassessaassansensessseseorssnsesasssensansessnens
6.3 Inconclusion......cceeceeenvercnerernesrnreennns
References......ceeeeereveeieieeieeiececeeneseesee e eveseeeenas
Appendix A (STL/C++ structures)coeeene
Appendix B (Car Rental Specification)
Appendix C (WLMS in Z).....cocoerevvcccrercneenennes
ApPPendix D (WLMS FESUILS)...coueirerrriiriiititiiniiteseeenretesetstisaeseesssnessensssasssnessessssessssessessesassnssossonsosessee
ADPPENAIX E (CHOOSE).c.ccviviriereirieereeretnreietinteisssanresseeeteseesessesssesassessssessssssssssassessssessesesssssessessssesssnsssesees
Appendix F (library in Haskell)

...

Table of Figures

Figure 2-1 : Possible SOUrces Of FEQUITEIMENLESc.coereurueecreerneriiseessenerentetesetesesessieneusasessssessssesssesenessarens 22
Figure 2-2 : A sample of requirements elicitation techniques (from [van Vliet 2000...........cccooevivurnvenene 23
Figure 2-3 : The Logical Relationship of the Toolset COMPONENtSccocerreeevreniirieninerennienicssrererinenns 32
Figure 2-4 : The Modularisation of Schema EXeCutioncc.coeciiinrinincnccincinnnisennnenseenns 34
Figure 3-1 : The REALIZE MEthOdcccviiiiiiuiiiniriniiciiccccnerniccscnsscsssssessseeseesssesassessssasaens 49
Figure 3-2 : The logical interfaces of the t00lset COMPONENLSoceeveevreerinrrrrceererenrereierseeoseeneresnones S1
Figure 4-1 : ReserveBook in Z.........cocovevievieieniennieinccncneeeecneeineenene

Figure 4-2 : generalised intersection in Z and Haskell
Figure 4-3 : The Z tower of types
Figure 4-4 : “Natural’ I/O.......cccccoeveunene.

Figure 4-5 : ZAL predicates.........ccocovvinicininniicnnicnisereciencssesssesins
Figure 4-6 : Argument verification and error reporting
Figure 4-7 : Error reporting dialoguececevuevererreeninncrenneeneneeenieeenens
Figure 4-8 : Macro-expansion of an existential quantification
Figure 4-9 : Perfect squares defined with a set comprehension
Figure 4-10 : An illustrative schema topologycoueeeveeerereeeresescruenonene
Figure 4-11 : distributed conjunction and distributed disjunction in Z
Figure 4-12 : The expanded predicate of SChema STccccvvrivinreiniininnenneieetnceeree e sesssnesens
Figure 4-13 : Lambda variables are distinct from symbols of the same name.......c.ceceveerureerrcseccncrneerucrenes 95
Figure 4-14 : Local declaration incorporated into a schema predicate..........cocoevevnvereieeeriscceenninnnieninnns 96
Figure 5-1 : The Binding INSPECLOT......c.covviiriirieiiiiiiniettieeennrsscsiss e esssnsscsesassessesesessessnssnens 103
Figure 5-2 : Executing the State SChema ..ot 106
Figure 5-3 : Collecting Inputs .
Figure 5-4 : Successful EXECULION........ciiiiiiiviiicicciicns et scssesesn s snsenens 109
Figure 5-5 : Execution FEedbackccovmiiiienecrininiiiciiiiieniniiiiesesecsseiseeseesenesesessesseesesnessesees 110
Figure 5-6 : Automatic warning of state inconsistency, after partial promotion..........coceveeevvevereerrrcrunnne 111
Figure 5-7 : The Toolset Components in Parallel
Figure 5-8 : The Transformation PrOCESS.........ccouereiiciiiiinininiiieeiinciinisitnisscs e csnscseseesessssesessssensennas
Figure 5-9 : The Execution Tool.....ccouvmiiiiiventrnininninicnscsecseererencnenens

Figure 5-10 : Default input VAIUESccoviruieeereeeniitieicreiiceeesetssee et esesiestes s seste e sesnesessnenssrsores
Figure 5-11 : Schema NOFrmalOPeration..............uevecceneceereinueneenenieciiresieissesieseesesesesteseessosesssssesssssones
Figure 5-12 : Schema NormalOperation in Z and ZAL
Figure 5-13 : Collecting input values to an included SChEMAccccereevriveeieriierereereeneceesenrcrnenesene 126
Figure 5-14 : Execution outcomes displayed
Figure 5-15 : ZAL Script File test5.2.1.ZAL
Figure 5-16 : Automated execution using a SCript filecoccoeeureeririniriernnernieeertee e 128
Figure 5-17 : Decorated values promoted.........coucvmiiiiininiiiiinienininiiinnsie st sssessssesssnsssssesses
Figure 5-18 : The Binding BrowSserccceceeveeureeernrinrccininesenenssssnnenenaes

Figure 5-19 : Documentation Strings........ccocovveevevniiiniicniniecnnncnnnenineae

Figure 5-20 : Feedback via the Status Bar

code 4-1: The roots of @ QUAATAtIC IN CH ...ceiiieirieeeeeeie et ettt e et e sre et se e se s e s seesanemnes 59
code 4-2: reserveBook in Haskell

code 4-3 : 1eserveBOOK IN LiSP cceiueviiiiiiiniiiiicctintiiniitctctcttc vttt sese e sas s s
code 4-4 : Unary function composition iN Ch......c.uiviuiriiiiciicrcieninecntr et ssssssasaes 66
code 4-5 : Function composition in Haskell and LiSp..........cccccveviniiiiincnneiicniicctcceccesnenenns 67

Abstract

Much research has identified shortcomings in the Requirements Description to be the
key factor in the failure of many software development projects; the development of
Jformal specification techniques and notations allows the unambiguous statement of
requirements, against which an implementation can generally be verified or even
proved. While this approach will resolve many of the difficulties, it is impossible to
formally confirm that such a specification is correct with respect to the intention of the
customer; the abstraction that is characteristic of such languages can make the formal

specification inaccessible without specialist skills.

Z is one such, model-based, specification notation and this thesis reports on a CASE
tool, the Z Animator in Lisp, that supports a process of specification validation through
animation. A specification in the proprietary ZAL format, a high-level, largely
functional, executable notation based on extended Lisp, can be executed by the
Animation Engine within the ZAL animation environment. Using a graphical
environment running under Microsoft Windows™, schemas representing the operations
upon the state are animated by populating their inputs, evaluating their predicates and
reporting the outcomes to the user; these outcomes can be used to directly update the
state, prior to further executions. The animator ensures the consistency of the on-going
model state by the execution of the system invariant. The user can identify precisely
which elements of the state should be displayed and can thereby focus on the particular
areas of interest. This interaction is significantly more accessible to the customer and
can be used to explore properties of the specification and thereby confirm, or not, that it
exhibits the desired behaviour. This process validates the specification with respect to

customer intention.

Because the transformation into the proprietary ZAL language can be largely

automated, using a companion CASE tool called TranZit, the process supports the

-7

iterative development of an improved specification, since at each stage the Z document

reflects the system being animated.

1. Introduction and Problem Definition

During the twenty four hours prior to writing this particular sentence, the author has
interacted with software in many ways: explicitly using an Internet browser to order
groceries for home delivery and to pay for these;lto bid for and buy a birthday gift; to
listen to an audio signal streamed several thousand miles; and to view news reports
from yet further away. Other software has been used to create, to evaluate and to
disseminate learning materials to students and colleagues and to communicate with a
number of them. Implicitly, embedded software has controlled the operation of many of
the devices used daily as a matter of course: the mobile phone with its text messaging
capability; the motor car with electronic engine management and indeed software
control of almost every system from air-bag deployment to traction control; the
excellent central heating controller' that is a plug-in replacement for an older electro-
mechanical device and which provides such a natural and flexible interface; ignoring
the availability of 32-bit games consoles for entertainment, even forty year old slot-car
racing systems now have retro-fit pacing systems that will “learn” the controller
position (and consequently the voltage) for a fast lap and will provide automated

competition for the solo driver.

The lesson of this arbitrary and individual review is the observation that software
pervades the life of anyone living in the United Kingdom in the early twenty-first
century. Indeed, its impact can be somewhat more significant than ‘pervading’ as is
evidenced by the fatal effect of software in such cases as the Airbus 320 accident at
Warsaw, Poland on 14 September 1993, in which a passenger and a pilot lost their lives;
though the investigation concluded that the pilots had reacted inappropriately to data

available to them (principally regarding excessive tail wind), they were not able to

! Horstmann Model H27

apply reverse thrust early enough to slow the aircraft sufficiently to stop within the
available space. This was a consequence of a software lockout which required
compression of both undercarriage shock-absorbers and which could not be over-ridden

[Main Commission Aircraft Accident Investigation 1994].

And the impact is likely to increase : [Gibbs 1994] quotes Remi H. Bourgonjon,
director of software technology at Philips Research Laboratory in Eindhoven as saying,

**The amount of code in most consumer products is doubling every two years."

Given that software is fundamental to so many activities and that it is a product of
human endeavour, that it sometimes fails to perform appropriately is unsurprising; this
failure may be inconsequential, perhaps necessitating a re-boot of a personal computer
or expensive and spectacular, as in the case of the $500 million self-destruction of the
Araine-5, but the lack of surprise should not be taken as conferring acceptability on

such failures.

The need to minimise the occurrence of, and to ameliorate the impact of such software
failures is the motivation behind the development of methods, techniques and processes
to improve the quality — however measured — of software systems — these together
constitute the discipline that is known as Software Engineering and this document
reports on an attempt to improve the practice in one small area of that discipline,

namely Requirements Validation.

1.1 The Software Crisis and palliative measures —
Software Engineering as a discipline

The recognition of what became known as the Software Crisis — the consistent, almost
inevitable tendency of software projects to over-run development schedules and

budgets — led to much research into the causes and remedies. A succession of

-10-

techniques was developed that addressed, but did not ultimately resolve, the difficulties;
these include Structured Programming, the formalisation of the development process
into numerous Software Lifecycle models and Object Oriented Programming.
[DeMarco and Lister 1989] found that real benefits do accrue from these techniques, but
still the problems of late, over-budget, inappropriate software persist. [Brooks 1987]
postulates two types of software development difficulty — the essential and the
accidental. An accidental difficulty might be an insufficiently fast hardware resource
and these can normally be readily dealt with; what then remain are essential difficulties
in that they derive from the essence of the process of software development or indeed
from the essence of software. It is a highly complex, abstract activity (or product) that is

not easily reduced to a series of simple steps.

In many ways the chronology of software development is the evolution of an activity
from a “black art” comprising skills that seem to “work” insofar as they give rise to
acceptable products, into a mature discipline with formal processes and methods and a
much better defined notion of what constitutes best practice in any given problem
domain; interestingly, this evolution is analogous to the process maturity classification

proposed by the Software Engineering Institute’s Capability Maturity Model.

The software development practices of early programming undertakings, perhaps
characterised by individuals or small teams using at best the early high-level languages,
did not scale at all well ; the complexity of the systems being developed increased
hugely and teams of developers, rather than individuals, became the norm. To resolve
the problems that flowed from this — effectively those of any nascent technology - it
was thought appropriate to borrow from disciplines where these problems had already
been addressed and to a great extent solved. The obvious candidate was engineering,

and so was born Software Engineering, though this still reflects more an aspiration than

-11 -

a description. However, engineering is concerned with putting scientific knowledge to
practical uses and from this perspective there is considerable doubt as to whether
software engineering, as often practised, is in any sense engineering because there is

little if any scientific knowledge that is put to use.

1.2 Formal Methods as a part of Software Engineering

This begs the question as to what scientific knowledge is of relevance to software
engineers. One approach that attempts to provide both theoretical underpinnings and
scientific rigour is the use of formal methods. The aim of formal methods is to establish
a mathematical foundation for software development in two crucial and related areas
where precision and rigour are of the utmost importance: specification and verification.
This is achieved through the provision of a framework for the development of provably
correct programs (i.e. programs, which will not deviate from their intended behaviour
when executed). Its proponents claim that this approach has several advantages, some of
which include: the increased confidence in the reliability of the parts which have had
their correctness established; freedom from the inadequacies and limitations of testing;

and perhaps most significantly, the diminishing need for corrective maintenance.

Much as the software engineers seek to adopt the methods and rigour of engineering, so
the advocates of formal methods draw on the philosophy of mathematics, pursuing a
deductive approach in which emphasis is placed on representing relationships in the

problem domain through formal modelling and legitimating it through rigorous proof.

An alternative stems from a scientific tradition of empiricism which involves
observation, hypothesis testing and theory building. Within the discipline of software
engineering practitioners have advocated both traditions with varying degrees of

emphasis. The proponents of a formal methods approach have tended to emphasise the

-12-

need to strengthen practitioner skills in the deductive direction [Wing 1990], whilst
those advocating a strong science/engineering tradition have argued that a purely

deductive approach is not practical for many software systems.

The larger project within which this particular research is located combines these two
traditions to form an eclectic approach that is suitable for some problems; it involves
refining the given set of requirements into a formal specification building on the
deductive tradition of formal modelling. The validation of the problem statement is
carried out by exploring the specification in the inductive tradition through its

execution.

1.3 Requirements Engineering - its place in Software
Engineering

Any representation of the Software Lifecycle will include, indeed will almost certainly
begin with, a phase entitled Requirements Engineering; the significance of this activity
can hardly be overstated, as so many case studies of “failed” software projects have
concluded that the problems began with a poor understanding of user requirements.
These would include the Olympic Information Integration system developed by IBM
for the 1986 Atlanta Olympic Games, whose project manager conceded “user
requirements were not understood” [Forberg and Mooz 1997] and the London
Ambulance Service computer-aided dispatch system, though poorly understood
requirements is but one of many shortcomings in that project [Page ef a/ 1993]. In fact
any report of software project over-run is generally accompanied by a recitation of the
high profile failures, much as in Section 1.1, but many analyses of the causes of the
problems have highlighted errors in the capture and description of requirements as both

being both wide-spread and having disproportionately significant impact.

-13-

For example, [Basili and Perricone 1984], in an empirical investigation of software
errors, report that 48% of the faults observed in a medium-scale software project were
“attributed to incorrect or misinterpreted functional specifications or requirements”;
similarly [Perry and Steig 1993] conclude that 20.4% of the implementation faults are

due to incomplete or omitted requirements.

The need to manage the requirements analysis and capture has led to many worthwhile
developments both in processes and in the tools to support them; this research is

intended to contribute in some way to continuing that progress.

-14-

1.4 Research objectives

This work forms a part of a larger project, ProToRE, based at the Computing Research

Centre at Sheffield Hallam University; ProToRE? involves:

“the provision of Requirements Engineering technology (i.e. processes
methods and tools) that assist in representing, validating and evblving
requirements so as to deliver a high quality requirements document
represented in forms that are appropriate to the needs of both users and

developers”

[ProToRE 2002}

Within this broad aim, and indeed the title, can be identified the distinct strands that

form the framework within which this work is located:

o the processes and methods are essentially those that constitute the REALIZE’

method, which is described in Section 2.4 and

e the tools are the software components that support the REALIiZE method and

comprise

o TranZit, a full-screen editor for constructing and syntax analysing Z

specifications, with its associated transformation engine;

o ZAL, a LISP-based environment for constructing an executable version

of a Z specification — the subject of this report; and

o ViZ, an object based system for visualising executions.

2 Processes and Tools for Requirements Engineering
3 Requirements Engineering by Animating LISP incorporating Z Extensions
-15-

ViZ represents a relatively recent area of investigation, whose development has
complemented the toolset and which utilises the functionality of the other two tools, but
which has impacted neither on the development of the other two components, nor on the
relationship between them, nor on the way that they are used. Consequently, while
TranZit will be described and discussed, and its relationship to ZAL will be examined,

ViZ is considered to be outside the scope of this report.

The broad project aim of supporting the development of high quality requirements
documentation is generic, insofar as the form of that documentation is unspecified;
nonetheless, throughout its life the project has sought to support the development of a

high quality, formal specification written in the Z notation.

The precision and absence of ambiguity of such a specification confer significant
advantages in the implementation phase of a software development, but the danger
exists that these benefits are at the expense of incorrectly captured requirements; the
question of the quality of such a requirements document may reduce‘ to one of how well
the formal requirements match the actual requirements of the client. As a consequence,
the project has devised techniques to support and guide the development of the formal
specification and seeks to develop tools to validate that specification with respect to

client intention.

From this more concrete objective has come the motivation to provide software
components that will support the creation of a Z specification (using the TranZit tool)
and its subsequent animation (using the ZAL tool). The primary aim would be to
increase the accessibility of the specification and thereby allow its validation by the
client, but such an animator would also enhance the specification creation process, by

allowing the developer of the specification, i.e. its writer, to verify its correctness.

-16 -

To investigate the form of this animation and validation and how it might be achieved is

the purpose of this research.

From this can be derived the supplementary questions that form the basis of the enquiry:

e how might the process of specification validation be improved by animation?

e what form might such an animation system take and how would animation be
incorporated into the requirements formalisation process?

e which aspects of the process might animation help?

e can animation facilities be provided that are sufficiently usable — i.e. that will
enhance rather than simply complicate the process?

e can the inductive style of specification development be supported, in contrast to
the more usual post hoc deductive proof offered by other tools?

¢ what coverage of the Z specification language might such an animation system

provide and how would the system be developed?

Almost incidentally, these questions can also be seen as leading to an alternative
perspective on the development of the animator, which sees the objective as seeking to
use animation to enhance the accessibility of the formal notation; this viewpoint lacks
the framework of formal Software/Requirements Engineering activities, but does allow
for the use of the animator in a non-prescribed way, where it would be for the users to
determine where and how it might be used. This perspective is entirely consistent with

that of the animation as an element of the REALIZE process.

These questions have indeed been investigated and this document reports on that

investigation.

-17 -

1.5 Thesis structure

The remainder of this thesis reports on the research, design, development and evaluation
of the Z Animator in Lisp, or ZAL, proposed in Section 1.4, the Research objectives ;
also considered in some detail is a process that integrates the use of the animation
system in a more formal requirements capture and validation context which has been

named the REALIZE process, and which provides the context for the ZAL animator.

Chapter 2 identifies the context of this development and proposed use, by considering
the broad landscape of Requirements Engineering, identifying a role for formal methods

within that landscape and suggesting how the use of animation might enhance that role.

Chapter 3 considers the benefits of animation and explores different approaches to it;

the place of ZAL in the REALIZE method is explained.

Chapter 4 considers the realisation of the ZAL toolset component; the underlying design

is explored and its implementation considered in some detail.

Chapter 5 considers and demonstrates the use of ZAL in three separate and contrasting
situations: in a conventional data processing scenario; in a safety-critical, process

control situation; and as an interactive tool, supporting Software Engineering education.

In Chapter 6, the results of the research programme are assessed and conclusions drawn

against the objectives identified in Section 1.4.

- 18-

2 Requirements Engineering

This section will review the development of Requirements Engineering as a discipline
and examine what currently constitutes good practice. It will consider the role that
formal methods have in Requirements Engineering and identify some of the benefits
and drawbacks of their use. A need is identified for improvement in the specification
validation process and a mechanism proposed and described that will allow the
integration of specification capture and validation into an iterative cycle, leading to the
development of an improved formal specification with wider ownership among the

stakeholder team.

The importance of this activity was identified by [Brooks 1987] in his seminal paper
“No Silver Bullet — Accident and Essence of Software Engineering”, uncompromisingly

asserting

“The hardest single part of building a system is deciding what to build. No
other part is as difficult as establishing the detailed technical
requirements.. ... No other part of the work so cripples the resulting system

if done wrong. No other part is so difficult to rectify later”

2.1 Requirements Engineering —the fundamental activities

Requirements Engineering as a discipline might be considered to have come of age in
1993 which saw the 1% IEEE International Symposium on Requirements Engineering,
though obviously practitioners had been working in the area prior to that event but
without the convenience of an umbrella title and the recognition of the IEEE; references
to the phrase “Requirements Engineering” can be found as early as 1979 [Alford and
Lawson 1979]. The profile of those activities that now comprise Requirements
Engineering had been increasing with the wider recognition that failure to capture
adequately user requirements was perhaps the single most significant cause of project

failure, or at least of what have been described somewhat euphemistically as projects

-19-

being “challenged”. One benefit of this increasing interest was that a consensus

developed as to
e what the term Requirements Engineering describes and

e the broad categorisation of what activities that might be undertaken in the name

of Requirements Engineering.

The problem with a consensus is that everyone understands what it means, but no two
individuals will agree on the precise definition of that understanding; notwithstanding
this, Requirements Engineering can be thought of as “the activities involved in the
discovering, documenting, validating and maintaining a set of requirements for a

computer-based system”.

Following straightforwardly from this definition are the three principal phases:
e requirements elicitation
e requirements formalisation
e requirements validation.

The maintenance of the set of requirements is necessary because this is essentially an
iterative process, where phases are revisited; the process of validation may highlight
either an inconsistency or an ambiguity in the formal statement of the requirements,
which would require further investigation and formalisation. In “The Perfect

Requirement Myth”, [Mullery 1996] contends

“In reality, on the major systems which are so notorious for disastrous
failure, an initial near-perfect requirement specification exercise, followed
by a minor maintenance activity is a myth which retains credibility through
the inability of the development community to recognise that there in no

such thing”’;

-20-

this would seem to undermine the deductive approach of proving the requirements
correct and consistent, given the fallibility that Mullery asserts. Regardless though of
the achievability of the perfect specification, it is incumbent on those writing
specifications that they write the best possible one and to this end practitioners of

Requirements Engineering continue to strive.

None of the above identifies precisely what a requirement might be; a working
definition could be “ a requirement is a feature of a system or facility that must be
provided in order to fulfil a system’s purpose”. The collection of all the requirements
form the requirements definition; a number of authors [Pfleeger 1998] [Somerville
1989] differentiate this from the requirements specification, with the latter being the
formal, technical document and this distinction will be observed here. It also implies the
evolution of the formal statement of requirements from the requirements analysis

process.

The three phases of the overall process can be examined, to locate more precisely the

place of this research in the Requirements Engineering framework.

-21-

2.2 Requirements elicitation

Requirements elicitation is the process by which the requirements analyst discovers,
structures, collates and records “what the customer wants”; as a result, the analyst
becomes sufficiently expert in the domain of the problem to synthesise a formal

statement of requirements.

There are many techniques by which this can achieved; Robertson and Robertson

[Pfleeger 1998] report the Volere requirements process model, see Figure 2-1.

Stakeholder
wants and Domain
needs models
Current Elicit Current
organisation > requireme 44— situation
and systems nts model
Existing /
documents
Suggested
types of Reusable
requirement requirement
s s
Requirements template \

Reuse library

Figure 2-1 : Possible sources of requirements

For each of these possible sources, there are a number of techniques that can be applied;
Van Vliet [van Vliet 2000] identifies a large number of such techniques and categorises

their strengths. The table is reproduced as Figure 2-2 below:

-22-

Technique Main information source Strong on
Domain User Current Future

Interview X X

Delphi technique X X

Brainstorming session X X
Task analysis X X

Scenario (use case) analysis X X X
Ethnography X X

Form analysis X X

Analysis of natural language descriptions X X

Synthesis of reqs from an existing system X X

Domain analysis X X

Use of reference models X X

Business Process Redesign X X X
Prototyping X X

Figure 2-2 : A sample of requirements elicitation techniques (from [van Vliet 2000])

Descriptions of these techniques can be found in [van Vliet 2000] and indeed in almost

every Requirements Engineering book; what is described in this report is intended to

augment this collection. The animation system must have a specification to animate and

-23.

so cannot be used for the first iteration, but subsequent passes can use the feedback from
stakeholders when exposed to the animation to inform the process. In much the same
way that a prototype cannot be the starting point for the elicitation process, neither can
an animation; the animation however can feed back into the loop at a much earlier stage
because it is produced largely automatically from the specification, whereas a prototype

requires a significant coding effort, even with prototyping languages.

2.2.1 Requirements formalisation

Once the requirements analyst has a suitably sophisticated model of the problem
domain, the requirements can be formalised into a requirements specification. This
document must communicate the results of the analysis to all the stakeholders and there

are a number of criteria it must meet [IEEE 1993], which include:

e it should be understandable to all the stakeholders, with whom resides its

ownership, if not its authorship;
e it should be correct;
e it should be unambiguous;
e it should be consistent;
e it should be complete.

Other attributes of less significance here are that it should be traceable, verifiable and
modifiable. These demands are those that proponents of formal specification techniques
claim to address, with the exception of the first; it is that first requirement, for the
specification document to be accessible to all the stakeholders, that the ZAL animation

system can claim to satisfy.

-24 -

2.2.2 Requirements validation

Our rather over-simplified model indicates that once the requirements analyst has
formalised the requirements into a specification, that specification must be validated; it
must be established by some mechanism that the requirements as represented by the
specification correspond to the requirements as understood by the project sponsor or
client (though this role or actor is often referred to as “the user”). In fact requirements
reviews will generally have occurred while the requirements definition is formulated.
However it remains appropriate to consider the activity as a discrete one, regardless of

whether it is undertaken alongside or after the discovery and formalisation activities.

However “demonstrating that a set of requirements meets a user’s needs is extremely

difficult” [Somerville 1989]; [van Vliet 2000] confirms this:

“A major stumbling block to this stage is ensuring the user understands

the contents of the requirements specification.”
and continues

“The techniques applied at this stage often resolve into a translation of
the requirements into a form palatable to user inspection: natural-
language paraphrasing, the discussion of possible usage scenarios,

prototyping, and animation.”
[Meyer 1985] suggests a similar approach

“first describe and analyse the problem using some formal notation and
then translate it back into natural language. The natural language
description thus obtained will in general represent a more precise notion
of tﬁe problem. And it is readable to (sic) the user. Obviously both these

»

models must now be kept up-to-date.’

-25-

Attractive though this suggestion is, the final point is quite significant, for there is a
price to be paid either to maintain the correspondence or, though more difficult to

quantify, if it is ignored.

2.3 Formal Methods in Requirements Engineering

Though their proponents have never claimed them to be, Formal Methods have
regularly been dismissed as “not the silver bullet”, in acknowledgement of [Brooks
1987]. This is in fact no criticism at all, if one accepts the validity of Brooks’ claim — if
there is no silver bullet, it is tautological to then itemise anything particular that is not.
These somewhat trite dismissals do however seek to make a valid point: that whatever
advantages are offered by their use, formal methods are by no means a panacea for the
problems of software development, but simply another technique whose use may be

beneficial in some circumstances.

The exact same perceptions of failure in the software development process led some to
postulate that the underlying cause was the lack of rigour in that process; this could be
addressed by adopting the formality of mathematics, with formality a synonym for
rigour. Deriving from this deductive tradition, the perception was of programs as
mathematical entities that were amenable to processes such as proof and transformation

and where the precision of mathematics would preclude any ambiguity.
A definition of Formal Methods can be found in [Leveson1990]:

“all applications of (primarily) discrete mathematics to software

engineering problems”.

These methods divide broadly into two categories, Verified Design and Formal
Specification [Jones 1990]; initial research tended to focus on the former, whereby an
implementation was verified against its initial design specification by a number of

proofs. Unsurprisingly in the light of the significant expense of this approach, it is

-26-

largely restricted to the development of safety-critical systems or rather those with high

potential cost of failure, in human or financial terms.

More recent effort has been devoted to production of the specification in a formal
notation that can be reasoned with, both formally and informally. Within this second
strand are two contrasting approaches: the model-based and the algebraic specification

notations.

A model-based approach uses the structural elements of discrete mathematics, such as
sets, relations and functions, and constructs a model of the system by defining the
components of the state and the various operations performed upon them (and
consequently is sometimes referred to as an ‘operational’ approach); Z [Abrial
1980][Spivey 1992] and VDM [Jones 1990] are both model-based specification

notations.

An algebraic specification would be familiar to a student of functional programming,
since a ‘definitional’ (this is in contrast to ‘operational’) view is taken; the definition, of
generally some abstract data type, comprises a signature -the declarations of the
members of the type- and an axiomatic part, where are found the re-write equations

defining the rules, or axioms.

This example of a specification of the natural numbers is from [van Vliet 2000];

type nat

functions
Null: - Nat
Succ:Nat = Nat

Add:Nat * Nat = Nat
axioms
Add(i, Null) = i
Add (i, succ(j)) = Succ(add(i,j))

This approach is highly mathematical and no more abstract than current functional
programming languages such as Haskell [PeytonJones and Hughes 1998]; though the

same criticism of inaccessibility can be legitimately made of an algebraic specification

-27-

and of —say- a Z specification, the model-based abstraction of the latter, with its
characteristic on-going state, is much closer to an intuitive, human view of the system it

models.

2.3.1 The benefits of formal specification

A formal specification is expressed in a notation whose syntax and semantics are
formally defined, which will preclude the use of natural language. The major benefits of
using a formal language are tabulated by [Somerville 1989], and are paraphrased here,

as:

e providing insights into the requirements;

e the possibility of animation or of prototyping;

o the ability to prove the conformance of an implementation;

e automatic processing, often using software tools;

e amenable to mathematical analysis;

e providing guidance for the design of testing

and to which [Barden ef al 1994] adds

e project management visibility.

While these are of varying relevance in the area of Requirements Engineering, they
remain powerful arguments for the wider adoption of formal techniques; even with such

benefits apparently readily available, there remains little evidence of their increased use.

2.3.2 Specification using Z

The reader of a formal specification will encounter a highly abstract model of the

proposed system, which will abound with mathematical formulae; in order to assimilate

-28 -

the detail of that model easily the reader must have some expectation of the organisation
of the specification, a template to populate with the details of this particular instance.
One of the strengths of Z is that the basic structuring element is the schema, which
emerges as highly flexible in use and which naturally supports both structural and
functional decomposition. The modularity provided by using schemas allows both a
top-down decomposition, perhaps more useful for an experienced reader, and yet
bottom-up accessibility to the detail of declarations and operations. The schema calculus
provides both for higher-order manipulation of the schemas through, for example,
composition and also for the essentially straightforward textual expansion of schema
inclusion. And as a bonus, it utilises graphical highlighting to enhance readability,
which should not be deprecated; the consistent ‘shape’ of Z specifications makes for a
less steep learning curve for the novice reader. No little experience of introducing
formal specification in Z to undergraduates with often limited mathematical experience,
using the schema as the basic structural element, has convinced the author of the value
of a bottom-up approach based firmly on the schema, with its calculus a natural

development of the ways it is used.

It is not proposed to provide a tutorial on the Z notation here; there are numerous books
which do that very well, including [Wordsworth 1992][Barden et al 1994][Potter et al

1991][Lightfoot 1991].

It is now possible to consider the question of validation of the formal specification,
which is at the heart of this work; how can both the requirements analyst and project
sponsor be confident that the specification document is a complete and correct

representation of the user’s requirements?

-29-

2.3.2.1 Requirements validation through proof

As will be further demonstrated in Section 3.2, the role of proof in the validation of
requirements is limited; proof can only establish properties such as coverage and
consistency between a specification and an implementation, which are the concerns of
the deductive practitioner, caricatured by a desire to “build the product right”. The
higher priority, at least at this stage of Requirements Engineering, is to “build the right
product”; since it is impossible to validate a specification with respect to user intention

by proof, an alternative strategy must be adopted.

2.3.2.2 Requirements validation through animation

The validation of a formal specification is essential to the development process; without
validation there is no way to establish whether any of the ‘downstream’ activities —those
of implementation, testing etc.- is appropriate. The specification will form the basis of
all the development that follows and is the definitive arbiter in the clarification of any
confusion. The fact that the specification is formal may even exacerbate any incorrect
requirements that may be present; they may misrepresent the user’s intention, but with
regard to the self-consistency of the specification, they are not ‘incorrect’. The existence
of the formal specification may cause acceptance of what might otherwise have

triggered further investigation.

The only route that will ensure confidence that the formal specification is a correct and
complete representation, with respect to sponsor intention, is to ensure the fullest
possible involvement of the stakeholders in the validation process. When the document
being validated is written in a highly abstract, highly mathematical notation, this can
present problems; it might be that the whole stakeholder team have experience of and
confidence in reading the Z document, but if not alternatives must be explored.
Extensive use of natural language comments to explain the meaning of the various

elements can play a part in increasing accessibility; disciplined use of terms with clearly

-30-

identified meanings may help; indeed all the techniques that have been developed to
support requirements capture using informal methods can assist in the understanding of
the document, but none of this addresses the fundamental flaw alluded to earlier — it is
the specification that must be validated, not an explanatory comment. Any contractual
obligations will be based on the formal document and it is this document itself that must

be accessible to all the stakeholders.

This is the key difficulty that the techniques and tools reported upon here addresses. The
toolset automates to a large extent the translation of the specification from Z notation
into an executable form that can be demonstrated within an animation environment to

those who are in a position to say “Yes that is the behaviour that is required”.

2.4 An Introduction to the REALIZE Method
The REALIZE method (Requirements Engineering by Animating LISP incorporating Z

Extensions) has been developed to formalise the interplay between requirements
acquisition, requirements formalisation and requirements validation, as embodied by the
TranZit and ZAL toolset. The process fits into the standard software lifecycle model at
the requirements analysis phase. Following an initial requirements capture stage, the
specifier enters the requirements formalisation phase, where the requirements are
represented by the specifier in the Z notation using the facilities provided by the TranZit
tool. Once the specifier is satisfied that the formalisation is complete, the specifier
enters the requirements validation phase. Here the specifier first uses the transformation
engine built into the TranZit tool, to produce an executable representation of the
captured Z specification in the ZAL language. The TranZit tool then forwards this
executable representation to the ZAL environment. This representation can then be

executed by the specifier within the ZAL animation environment, for the purposes of

-31-

demonstrating properties of the captured specification to members of the stakeholder

team.

The logical relationships between the individual tool components associated with the

REALIZE method are shown in Figure 2-3.

Transformation Interface to ZAL LISP
Engine "
A
y
Syntax and Type ZAL Animator
Checker
A
Y
- - | Validate and Refine Execution
Z Notation Editor [« Environment
ZAL

TranZit

Figure 2-3 : The Logical Relationship of the Toolset Components

2.4.1 The expected benefits

The use of an animation is consistent with good practice as identified by [Somerville
and Sawyer 1997]; using the taxonomy of guidelines given there, those that can be seen

to validate the use of the REALIZE method are cited below:

-32-

Guideline | Description How it is supported by the REALIiZE
Number method
3.1 use a standard document Z is a standard notation; furthermore style guides for
structure Z can be produced and used
3.8 make the document easy to tool support for this is available using TranZit
change
4.3 identify and consult the stakeholders are explicitly involved in validation
stakeholders by animation
4.10 prototype poorly understood the animation can be used as an automatically
requirements generated prototype
4.11 use scenarios to elicit the use described - requirements engineer sitting with
requirements the end-user in front of the prototype & walking
through scenarios- is exactly that advocated by
REALIZE
10.6 specify systems using formal this is self-evident, but is explained “it is important
specifications that the project customer is convinced of the value of
using formal specification and that you are careful
that the customer can understand the specification.”

Table 1 : Requirements Engineering Good Practice (from [Somerville and Sawyer 1997])

2.4.2 Support for other software development activities

Though the work of the project is firmly located in the area of specification validation,
the flexibility of the ZAL tool will allow for its use in other situations. The design of the
animator has separated the user-interaction from the operation of the animation engine,
as shown in Figure 2-4. This de-coupling is evidenced by the availability of a command

line interface at which explicit calls to execute schemas can be evaluated.

This behaviour offers the prospect of support for other Software Engineering activities

such as change control and maintenance. For a given specification, a library of test

-33-

executions could be maintained; these would then be available for the automated

validation of successive evolutions of the specification.

This is an area of current research effort, and this usage has not yet been formalised, but
as maintainability of a specification is certainly an issue with respect to its quality, this
would align with the ProToRE project objectives. Figure 5-16 demonstrates a schema
execution that is instigated from a script file; this script could be seen as one such test in

such a library.

interactively
collated inputs

\ construction ; X
OR of schema Animation

execution Engine success?

script of / object
execution
parameters

Figure 2-4 : The Modularisation of Schema Execution

The context of ZAL within the REALIZE method and of that method within the wider
framework of Requirements Engineering and Software Engineering has been identified;
the enhancements which an animation system might offer to the Requirements
Engineering process, and the key activities that would be facilitated or supported by
such an animator have been detailed. It is now appropriate to consider the general and

specific issues pertaining to the animation of formal specifications.

-34-

3 The Animation of Specifications

This section is concerned with the wider view of the execution or animation of
specifications; historically, there has been some debate regarding the value or otherwise
of this feature. That this project aligns with those supporting the idea will be no
surprise, but the arguments both in favour of and against execution will be examined. It
will emerge that the approach taken here and, more generally, in the REALIZE method
addresses the concerns of both schools of thought and seeks to gain many of the
advantages of executability without unduly compromising the expressive power

available to the specifier.

There is no longer much debate about the need for better specifications and much of
Requirements Engineering is concerned with the capture and validation of requirements
in a formal specification; though there are some classes of software system (such as
interrupt driven systems) that present serious difficulties in their formal specification
which are best addressed by the language designers, equally there are other classes of
problem which are well suited to the currently available set of formal specification
techniques and which can be usefully specified, yielding many of the benefits detailed
earlier. That this last category tends not to be formally specified is to a large extent due
to a lack of familiarity with the techniques and notation of formal specification; the
work reported here seeks to use animation to enhance the accessibility of the formal

notation and thereby facilitate its wider use.

3.1 The disadvantages of specification executability

If we accept the desirability of wider use of formal specification, there remains some
debate concerning the desirability of executing these specifications; [Hayes and Jones
1989] argue strongly that executability is not a desirable characteristic of a specification

language. Starting from the reasonable position that

-35-

“a specification written in a notation that is not directly executable will

contain less implementation detail than an executable one”

they claim executability unduly constrains the specifier in a number of ways. Their

principle objections can be detailed thus:

Executable specifications tend to over-specify the problem.

Combining clauses in a specification; except sometimes in Prolog, conjunctions
cannot be formulated in programming languages. This is particularly true when
one clause constrains an otherwise infinite search space. In a similar vein,

negation cannot readily be used in an executable specification.

Using quantifiers, as in is-perfect-square(i) =2 3jeN-i=j2, will often present
difficulties; this execution will probably terminate if i is indeed a perfect square,
but searching for j when i is not a perfect square requires reasoning about the

implicit mathematical property - the enumeration must stop when j reaches i.

Non-computable problems; an executable specification must allow the formulation

of specifications that are not computable - these are by definition not executable.

Non-determinism is in general difficult ([Hayes and Jones 1989] claim impossible)
to model; they expect that a deterministic solution is the best that could be

expected.

Some values, such as real numbers, cannot be represented; therefore a specification
using reals cannot be executed, since these must be modelled using floating

point approximations.

Specification variables are used to describe non-functional requirements; how
should these variables (and the requirements) be treated in an executable

specification.

Significantly though, they conclude by distinguishing between specification and

prototyping, and it emerges that their concems are largely with the latter, given that

“... much of what is described in the literature as executable specifications

would be better classified as rapid prototyping”

-36 -

This is in fact a helpful distinction, as it serves to delineate the scope of the objections
and to clarify this evaluation of the extent to which those objections are pertinent to this

work.

3.1.1 The disadvantages investigated

These difficulties might seem sufficiently serious to discourage exploration of the
possibilities of execution, but in fact they are refuted by both [Fuchs 1992] and
[Andersen et al 1992]; the approach in both cases is to provide executable examples of
those problems identified by [Hayes and Jones 1989]. These counter-examples do
indeed address the problems with the loss of little expressibility and the argument is
made that loss of expressive power is a small price to pay for the advantage of
executability. This is a slightly different analysis to that advocated here, where the
unconstrained use of Z is allowed, and its animation may or may not be possible;

Section 3.2.1 expands on this point.

The details of the counter-examples will not be examined, but a number of general

conclusions are drawn by [Fuchs 1992].

e A general approach to transforming non-executable specifications into
executable specifications involves reformulation and the addition of a small

number of constructive elements, including
o representations of sets and sequences by lists;
o construction of sets and sequences by recursion;
o representation of the predicate > by generators of elements.

“Executable specifications generated in this way are direct translations
of their non-executable counterparts. Since they are built from available
powerful predicates they are problem-oriented, declarative and highly

abstract’”

5This technique is close to that already adopted in this project.

-37-

e Many of the derived executable specifications are based on a generate-and-test

approach.

e It is not enough that a specification postulates an object without detailing how the
object might be constructed; the reference of [Hayes and Jones 1989] to
unrepresentable values (primarily real numbers) is cited by Fuchs as an example of a
specification being incomplete since it refers to a body of knowledge that is assumed
by the specifier to be shared by readers of the specification. Rather than accept this

as an argument against constructive specifications, they are

“convinced that a specification, as an abstract definition of something
that will have to be concretely realised, must be constructive, in the sense

of constructive mathematics which is intolerant of methods affirming

»

the existence of things of some sort, without showing how to find them”.

This however is a philosophical point and constitutes a counter-argument, rather than a

refutation.

e Specification variables can be considered part of the (executable) specification - the
animation of the specification may or may not fulfil the specified constraints, but in
either case valuable information can be gained. In view of the growing proportion of
current software systems that pertains to input and output, this concentration on

functional behaviour is unfortunate.

It can also be argued that the constraints captured in this way refer to the ultimate
implementation and not to the specification, so a failure of the specification to satisfy

such a requirement is of no significance.

Fuchs concludes by identifying more general advantages of validation using an

executable specification, namely

o the results of the validation (testing) are of much greater value because they are

available much earlier in the development process;

e testing executable specifications is more efficient as it occurs at a more abstract level,

and also in the problem domain.

-38-

While these arguments were made as a rebuttal of the [Hayes and Jones 1989]
contentions, they introduce a number of the benefits of specification executability which

are now examined.

3.2 The advantages of specification executability

This section establishes the potential benefits of executable specifications; consideration
of how that executability might be achieved, and at what cost, is deferred until

section 3.3.
[Breuer and Bowen 1994] identify the general advantages, in this case explicitly for Z :

“Any executable interpretation would certainly be very useful to software
engineers, because it would allow Z to be used as a prototyping language
as well as a specification language, and improve the interactiveness of the

design process.”

The objective of the work reported here is the creation of a better specification, where
the improved quality derives from the validation of the specification by the sponsor,
among others, rather than the specifier alone, and this improved accessibility is a

consequence of the executability.

The benefits of a formal specification, as detailed in 2.3.1, can be realised only if it is a
correct specification; the self-consistency of a specification, one dimension of

correctness, can be established by proof, but there are other dimensions :

“correctness of a software system means correctness with respect to the
requirements, i.e. with respect to explicit and implicit user intention and

needs”.

This implies that users must be involved in the validation process;

-39-

“This suggests that the conceptual level provided by the specification is
the appropriate level for the user involvement, and that validation should

preferably take place in the specification phase.”

since

“Executable specifications result in greater involvement by the users.
Users can participate in the formulation of the specifications and in the

immediate validation”

Correctness with respect to user intention is not amenable to formal reasoning; the
sponsor can confirm or deny that the formal specification embodies the actual
requirements, but any proof requires the existence of a formal statement of the
requirements as the starting point, and it is this statement with which the reasoning is

concerned. [Johnson and Sanders 1989] agree that

“Validating that a formal specification meets the customer’s requirements

cannot, by definition, be a formal process”.

Consequently the correctness of the relationship of the specification to the actual user
requirements must be established some other way; many authors identify this validation

of the specification as crucial [van Vliet 2000] [Somerville and Sawyer 1997].

The meaningful evaluation of the specification as a correct statement of the
requirements can only be undertaken if the specification is accessible to the sponsor; the
native Z text may be readily understood by a sponsor, but that cannot be relied upon.
Alternative strategies to validate the specification are needed and animation is one such

approach. [Johnson and Sanders 1989] again suggest

“One technique that has some merit is to produce prototypes from formal

specifications and demonstrate these prototypes to the customer”.

-40 -

There are other advantages. Executable specifications allow the demonstration of the
behaviour of a software system before it is actually implemented, with the following

benefits:

e executable components are available much earlier than in the traditional life-
cycle, thereby allowing the earlier (less expensive) detection and correction of
problems. This is largely a re-phrasing of the “better specification” point already

addressed;

e requirements that are unclear can be clarified by animated interaction with the

specification;

e execution of the specification supplements inspection and formal reasoning as a

means of validation.

Furthermore, execution enables the self-consistency of a specification to be established;
this facility is provided by a wide range of specification tools, by some as core
functionality, but in an animation environment such as the REALIZE toolset it is a
natural consequence of automatically verifying consistency by executing the state

schema predicates — see Section 5.

3.2.1 How ZAL manages non-executability

As was acknowledged in section 3.1, not all Z specifications can be executed; the
simple use of —say- the natural numbers, which constitute an infinite set, precludes the
animation of the specification as written. As a specifier using the toolset may use
whatever (legal) Z is deemed appropriate, a strategy is necessary to resolve this

apparent paradox.

Buckberry details an “eclectic transformation strategy” [Buckberry 1999], which is
embodied in the TranZit transformation engine and which identifies what [Breuer and
Bowen 1994] term “enumeration functions” to provide candidate data for both

existentially and universally quantified clauses. These clauses are transformed into ZAL

-41 -

expressions and consequently issues of non-computability, essentially the description of
an infinite search space, have been resolved before ZAL is required to evaluate a
quantified expression. The strategy involves identifying a constraint on such a search
space, either explicitly from the Z expression, or implicitly where manual human
intervention is employed to supply it; where the first approach fails to identify a suitable
constraint, a finite subset of potentially infinite data must be instantiated by the user in

order to use the animator.

It can be inferred from this that ZAL does not in fact have to consider these questions of

executability and consequently is not considered further in this report.

3.2.2 The best of both worlds

At the risk of undermining the symmetry of the discussion, it can be noted that Hayes
and Jones are primarily concerned that the specifier is limited in some way by the need
or wish to execute the specification; this might arise either by choosing an explicitly
executable notation for the specification or by using a subset of notation and techniques

that will facilitate execution.

Since the REALIZE method does not constrain the specifier in the Z that can be used,
the question of executability is not considered as the specification is constructed; any
concessions to executability will only be made at the stage of the transformation of the
Z into ZAL code. As the Z specification will remain the ‘document of record’, the issue

of executability will have no impact on the specification construction process.

Neither do their concerns such as introducing an “algorithmic structure” to the
specification arise, since Z has no facilities to capture algorithmic detail; the only
scenario whereby the executability might constrain the specifier would be to encourage

a tendency to revisit techniques and models that have proved effective in the past.

-42-

Executability is not the factor here, it is simply that experience has that effect on

humans.

Furthermore, when the specifier chooses to use non-executable types or constructs, it is
likely to be exactly those highly abstract details of the specification that will be least
readily understood by the non-specialist; the advantage of expressiveness is potentially
compromised by that expressiveness rendering the specification less accessible. In this
particular situation, the availability of an animation should serve to clarify the abstract;
whatever dialogue is necessary to transform the specification into an executable form
cannot but ground the abstract model or mechanism in a more concrete, intermediate

representation.

Notwithstanding the efforts to refute [Hayes and Jones 1989], many of the points they
make are indeed valid - specifications are not necessarily executable; those that cannot
be executed can generally be recognised as such, or constrained to make them
executable — see [Buckberry 1999]. The significant subset that can be executed, either
unaltered or with very little modification, are those of concern and it is our contention

that advantages may generally accrue when the specification can be executed.

When a specifier writes a specification that cannot be animated, its validation must be
by techniques other than execution; such a specification will remain less well validated,

at least with respect to the intention of the sponsor.
This section concludes with a supporting quote from [Hayes and Jones 1989]:

“Specifications are intended for human consumption — they provide a
communication link between the specifier and the user®, and the specifier

and the implementor”.

The “user” is the actor referred to herein as the sponsor.

-43 -

This report contends that the specifier-sponsor communication is significantly enhanced
by executability and that the specifier-implementor dialogue can be unchanged, since
the specification remains a Z document with no “injury” suffered in the cause of
executability; it can be argued that the executability, or otherwise, of this document is of
no consequence between the specifier and the implementor. However, if the
specification is not accessible to the sponsor, any commitment to it cannot be

considered informed.

3.3 Achieving executability

There are a number of possible categorisations for execution techniques and animation
systems; some general patterns will be identified and then two frameworks will be
considered in some detail to identify the appropriate context for the REALIiZE method,

and more particularly for the ZAL animation tool.

3.3.1 Approaches to the execution of Z specifications

In the numerous attempts to execute formal specifications, some characteristic patterns
can be observed; perhaps the most significant is the way that the correspoﬁdence
between the initial formal specification and the executable counterpart is established.
The usual way is to take a specification and refine it (perhaps numerous times) until it is
in a form that is executable, in a way analogous to the approach adopted by
[Wordsworth 1992] for the implementation of a software system that has been formally
specified (in Z); the emphasis is on maintaining the correctness by using techniques and
transformations that are proven correct and thus establishing the correctness of the
implementation. Whilst not a technique for executing specifications, this approach can
be considered an extreme example of that adopted by many seeking to execute the
specification; in particular [Valentine 1991] refines a subset of Z called Z-- into an

increasingly concrete, less abstract form, until such time as it can be interpreted.

| Broadly similar approaches have been adopted by [Sherrill and Carver 1993}, who use
Z as a design language for a system implemented in the functional language Haskell; by
[Goodman 1993] who again uses Haskell to model Z (though the main purpose is to
demonstrate the use of a monad in a functional language); by [Dick et al 1990] who
transform Z into Prolog using correctness-preserving transformations, also known as
formal program synthesis; by [West and Eaglestone 1992] who do much the same and
contrast it with structure simulation, though without generators to provide candidate
solutions; and by[Ho6rcher 1994] who has implemented a predicate compiler that
transforms Z specifications (in a particular and restricted style) into C functions, which
provide an exhaustive test framework. Of further interest in this last work is the original
resolution (or rather avoidance) of a number of difficult execution issues by the
adoption of a requirement that the user supplies expected outcomes, which are then
validated; this approach is described by [Utting 2000] as a ‘test oracle’, and is suggested
as a mechanism by which proving tools, as opposed to testing tools, can be used to
validate specifications. This dichotomy is examined in section 3.3.1.2, Proving or

Testing

3.3.1.1 A formal framework for classifying animators

[Breuer and Bowen 1994], in what has become a key treatment of the problem, propose
the following classification of techniques for the animation of Z, based on the treatment
of sets:

(a) sets must be finite and are modelled by finite arrays;

(b) sets may be countably infinite and are modelled by an enumeration algorithm;

(c) sets are cardinally unbound and modelled by the characteristic function,

though they note that class (b) and class (c) are equivalent.

- 45 -

This framework was designed to reflect increasing correctness, rather than the more
usual measures of coverage (the portion of the grammar of Z that can be executed),
sophistication (the termination properties of an animation) or efficiency (how quickly a

result is obtained).

3.3.1.2 ZAL in this landscape

In this classification ZAL is currently a class (a) animator; lazy evaluation would be
necessary to satisfy the class (b) criteria, which remains a possibility despite the fact
that ZAL has inherited the eager evaluation of Lisp. Animation of the egistential
quantifier, 3, will always need to generate candidate solutions which can then be tested
in some way. An eager evaluation strategy will require all those candidates to be
generated before any is tested; this is sufficient to limit this approach to class (a) status.
A lazy evaluation strategy would allow much greater flexibility; in general, a value is
only generated when it is needed and consequently the modelling of infinite structures
(perhaps N) is very much easier. For the specific problem of existential quantification,
this might well provide for a more effective model, as a single satisfying value is
sufficient, though failure of the quantification when no such value exists would need to
be managed. Lazy evaluation is not a feature offered directly by Lisp (though the dialect
Scheme [Steele and Sussman 1975] does explicitly support continuations) but [Graham
1994] suggests implementations of the facilities (macros) needed to model
continuations. A continuation is a functional object that embodies the “future” of a
computation, in that it is a suspended evaluation that can be called; it must “contain” all
the contextual information necessary for evaluation (such as bindings that are in scope)
in much the same way that as a closure must. In fact a continuation is a generalisation of
a closure - a closure is a function plus pointers to the lexical variables visible at the time
it was created, whereas a continuation is a function plus a pointer to the whole call stack

that was pending at the time it was created. These would appear to offer a route towards

- 46 -

a lazy evaluation mechanism, at least for the generators needed for quantifiers and

comprehensions, and which might prove beneficial in other areas.

[Utting 2000] suggests and implements a possibly better, more generalised strategy in a
tool called Jaza; this uses multiple (up to twelve) alternative representations of sets

where

“Each set is kept in its optimal representation, and translated into another

representation only when an operator requests it”.

This approach makes explicit the recognition that different representations are more or

less well-suited to different operations.

However, fundamental changes such as these would have a significant impact not just
on the animation engine, but also on the other toolset components, since potentially
infinite search spaces have already been constrained, as a part of the transformation
process, before the specification is presented to ZAL. Further research is indicated in

this area.

3.3.1.3 Proving or Testing

As was mentioned earlier, [Utting 2000] categorises tools for analysing Z specifications
depending on whether they attempt to show universal properties (Proof-like Tools) or
existential properties (Testing Tools); the two groups are identified as complementary

and it is stated that

“testing tools are better used early in the system life cycle”

which aligns very closely with the position adopted in the REALIZE project. ZAL is
clearly a testing tool and the toolset supports the very earliest stages of system

development.

-47-

The use of proof has been established as inappropriate for the validation of specification
with respect to sponsor intention; consequently it is unsurprising to note that ZAL
exhibits virtually all the identified characteristics of testing tools, but the distinction is
nevertheless useful as it validates the pragmatic rationale that has underpinned much of

the development of the REALIZE toolset.

3.4 The REALIZE Method and its supporting toolset
The REALIZE method (Requirements Engineering by Animating LISP incorporating Z

Extensions), has been developed to formalise the interplay between requirements
acquisition, requirements formalisation and requirements validation, as embodied by the
TranZit and ZAL toolset. The process fits into the standard software lifecycle model in

the requirements analysis phase, as can be seen in Figure 3-1.

The initial Requirements Acquisition phase is entirely conventional and utilises familiar
techniques such as interviewing domain specialists and user questionnaires; however
the formalisation of those requirements in the Z notation is facilitated by the TranZit
tool, with extensive support for creation, edit and analysis of Z documents. Once the
specifier is satisfied that the formalisation is complete and that the specification
captured is the best representation of the requirements possible at this stage, then the
requirements can be validated. The specifier now uses a transformation engine built into
the TranZit tool to produce an executable representation of the captured Z specification
in the ZAL language and this executable representation is forwarded to the ZAL

environment.

-48 -

[Requirements /
Analysis

Operation and

/ Maintenance
/ Implementation /

/

Software Lifecycle

Requirements
Acquisition

(

;lRequirements I o |Requirements
'IFormalisa(ion | ¥ | validation

/

REALIZE Process

Construct
Animation

- |Execute I o |Visualise
'|Animation | " JAnimation

N

/

Figure 3-1 : The REALIiZE method

This representation can then be executed by the specifier within the ZAL animation

environment, in order:

e to confirm the correctness of the Z, with respect to the specifier’s intention, in a

way analogous to software testing;

e to demonstrate properties of the captured specification to members of the

stakeholder team, using techniques such as Scenario Walkthrough, Provocative

Investigation and Exploratory Investigation

- 49 -

This review is likely to lead to further iterations of the process, involving modifications

to the Z document, transformation of this modified specification and further executions.

This process should enhance the understanding of the specification for all the
participants and further improve the quality of the specification by ensuring that the

requirements embodied are a true representation of what the system needs to do.

The logical interfaces between the individual tool components associated with the
REALIZE method are shown in Figure 3-2. The reader will have noted a third tool,
namely ViZ [Parry 2001], another CASE tool being developed to further enhance the
interaction between the specifier and the other stakeholders by providing a visualisation
of a specification. As identified in Section 1.4 and though it uses the ZAL Animation
Engine to evaluate expressions and to provide results, ViZ is an entirely separate tool

and will not be reported upon here.

-50-

Execution Environment
Transformation Interface to ZAL > Extended Lisp

Engine Animation Engine
Syntax and Type .

Checker Lisp
Z Notation Editor | Validate and Refine

)
ZAL
TranZit 4
VizZ
Validate and Refine
Visualisation Zal to Graphics
Engine

Figure 3-2 : The logical interfaces of the toolset components

3.4.1 The toolset components

TranZit (Z Editor and Transformation System)[Buckberry 1999] is a tool for capturing
Z specifications, and automating their transformation to an executable representation. It
incorporates features supporting the construction, manipulation and maintenance of Z
specifications, as well as tools for checking their internal consistency, including a
complete syntax analyser and type checker. The Z editor component of TranZit includes
all the major features expected of a standard editor. In addition, full support for the Z
notation character set is provided, and schema graphic outlines for standard, generic and
axiomatic schemas are automatically generated. TranZit also incorporates a
Transformation Engine, which allows captured specifications to be automatically
transformed (as far as is possible) into an executable representation, suitable for input to

the ZAL animation environment.

-51-

ZAL facilitates the exploration of Z specifications through execution, which can involve
confirmation or refutation of various properties of the original specification by
executing specification scenarios, thereby validating requirements. The mechanisms by

which this is achieved are described in section 2.0 and demonstrated in Section 0.

3.4.2 The Edit, Transform, Execute cycle

As can be seen from Figure 3-1, the key and original activity that underpins the
REALIZE process is the iterative cycle of specify, transform and execute; this is the
mechanism by which successively more precise and correct (again with respect to both
sponsor and specifier intention) versions of the specification are refined. Though this
report is concerned with the ZAL toolset component, the REALIZE process is the
context within which it works; this activity within the process should be recognised as
the raison d'étre for its development. The detailed consideration of performance of the

ZAL component is undertaken in Section 5 .

The end result of this iterative process should be a better specification in which all the

stakeholders have confidence .

3.4.3 De-coupling TranZit & ZAL

The REALIZE method is a formalisation of the logical interaction between the toolset
components and as such supports, and to a large extent requires, the iterative
development of a formal description of the requirements of a proposed system,; it is the
mechanism by which the integration of the two toolset components is achieved. Without
ZAL, TranZit is primarily a Z editor, albeit a fully-featured one; the animation
environment is needed to realise the benefits of enhanced accessibility. Without
TranZit, ZAL is primarily a desktop calculator for an extended Lisp that models Z
expressions and schema; the automated transformation is needed to guarantee the

correspondence of the Z specification and the animation that is being demonstrated.

-52-

However, whilst appearing closely coupled, both TranZit and ZAL are separate, well-
defined software systems, each of which can be used independently of the other; it is the
REALIZE method that describes how they interact and which establishes the coherence
of that interaction. Despite the references made to the TranZit tool and the REALIZE
process, it is the research and development of the ZAL animation environment upon

which this thesis reports.

-53-

4 Realisation of the ZAL component

Having decided to animate Z specifications, an exploratory approach was adopted,
consistent with both the nature of the problem and the lack of readily-defined
boundaries. This was a recognition of the ill-definition of both the task and the form and
functionality of the ultimate deliverable, and to some extent of the characteristics of the
host language and development environment that would best support this approach. This

also reflects the inductive style adopted for the use of the toolset itself.

4.1 General issues of symbolic execution of Z

Z is a notation for specifying information systems [Spivey 1992] and was not conceived
as an executable “language” in the sense of a computer language; as a consequence,
there are no execution semantics associated with a specification in this notation. What
has been attempted in this project is to animate such a specification, as an example of

the behaviour that might be expected from an implementation of the same.

Much has been made of the problem that non-determinism poses for an animation
system; Section 3 considered the objections raised by [Hayes and Jones 1989] and how
these can be refuted or at least addressed. An altogether more pragmatic stance was
adopted in this work that is again consistent with the fundamental choice of an inductive
approach; it is that though non-determinism might appear to be crucial, a ZAL
animation is always ‘one possible execution’, which is all that is necessary for the

purpose intended.

There are two strands to the execution strategy devised and reported on here, namely the
expression-level manipulation; and the encapsulation of that ‘low-level’ functionality
into schema-level behaviour which is the principal concern of the user actor in the

Requirements Validation scenario outlined in Section 3.4. This dichotomy is manifested

-54-

both in the logical design and, as a consequence, in the implementation of that design;

it also serves as a useful shorthand for the conceptual distinction between the two.

Fundamental to the effective symbolic execution of Z schemas is the choice of the
model of evaluation, or rather models, since again the evaluation strategy also differs in

the two areas identified previously.

4.2 The application domain and symbolic evaluation
strategies

[Abelson ef al 1985] suggest that the design strategy that we choose in order to model a
system is dictated by our perception of that system and suggest a number of alternative
organisational strategies that could be adopted. This need to address “how a
computational object can chaﬁge and yet maintain its identity will force us to
abandon our old substitution model of computation in favor (sic) of a more mechanistic
but less theoretically tractable environment model of computation” [Abelson et al 1985]
(page 168). These computational alternatives precisely correspond to the expression
level functionality modelled using an applicative approach and to the state-managing
encapsulating behaviour, or schema-level functionality, modelled with object-oriented

techniques, though without explicit OO technologies.

That the underlying computational behaviour is applicative might well be expected — the
core nature of specifications is that they are declarative, describing the what not the
how, and so any attempt to model the behaviour of those specification is always likely

to be declarative in style.

“They describe what the system must do without saying how it is to be

done.”

[Spivey 1992] (p1)

-55-

It is useful to consider in more detail the characteristics of the problem domain, and to
examine the range of implementation strategies and vehicles that might best map onto
that domain. This is the context in which design decisions with far-reaching
consequences were made; the implications of those decisions cannot properly be judged

until Section 5, but their validity can perhaps be established here.

4.2.1 Particular characteristics of this development

These then are the parameters that will constrain the development of the ZAL toolset

component

o the model of use in the REALiZE method
e the interaction with other components (principally TranZit)

o the problem and the programming process (incremental development)

What are now the components of the REALIZE method, TranZit & ZAL were
conceived as the CASE tools to support the logical functions that constituted a possible
mechanism to better support requirements capture. This decomposition (see Figure 2-3)
came to be formalised as the REALIZE method but the initial component/process
interface was neither well-understood nor well-defined. As a consequence, an
exploratory approach was considered appropriate to the development both of the

component interactions and of the ZAL component itself.

The relationship between TranZit and ZAL is essentially that of producer and consumer,
and to describe their interaction as dialogue would be to overstate its reflexivity; more
properly, the TranZit tool produces a representation of the Z of interest in a form that is
then executed by the ZAL tool. To have begun with a formal description of this
interchange format would have enabled a more conventional development process, but
the initial remit was to establish the feasibility of execution and then to investigate the

range of specification techniques and styles that could be executed. In particular the

-56-

parallel development of the toolset components required that this interchange format be
flexible, or at least extendable to accommodate an evolving set of executable constructs
and expressions. Having reached this stage of reporting on the work pre-supposes that
the decisions made have to a large extent been valid, or at least correct in a sense
analogous to the ‘magic coin’ used by [Harel 1987] in his treatment of non-

determinism.

Notwithstanding quite profound reservations regarding the validity of the basic thesis
argued by [Hayes and Jones 1989] (see Section 3.1.1), they can certainly be supported
in the contention that it is unquestionably no part of the role of either the specifier or the
specification to address the detail of the implementation. They would want total
freedom from consideration of executability, while it will be shown that minor

compromise on this point can engender significant reward.

4.2.1.1 Towards a development paradigm (or 2)

The factors determining the choice of programming paradigm included, in something

approaching decreasing significance :

o the characteristics of the problem domain;
e the need to integrate this tool into a larger framework;
o the experience and preferences of the developer.

The characteristics of the problem domain strongly suggested a declarative approach
and no alternative was seriously entertained; this coincided with the inclinations of the
developer and was considered neutral with respect to the need to integrate. As the
toolset components and functionality were de-coupled from the outset, the need to
integrate was explicit; it was ultimately addressed by using an extended Lisp format,

where any shortfall in functionality could have been recovered by the generation of

-57-

code at a lJower level of abstraction (i.e. more Lisp-like), though this contingency did

not arise.

The choice was resolved further, between alternative declarative approaches, again with
minor deliberation. The logic languages (principally Prolog) though well suited to
search-space problems, are not a natural match for the expression-based architecture

of Z and [West & Eaglestone, 1992] identify a number of difficulties with using Prolog.
A Basis in the evaluation of expressions is of course fundamental to functional
languages, such as Haskell and Lisp, and characterises the “natural fit” between
problem and solution. Notwithstanding this, the functional style can be used to
advantage in C++ [ISO/IEC 14882 1998], which now sports partially applied (curried)
functions (using bind1st etc.) and higher-order functions (using transformand

foreach). This question is explored in a little greater depth in Section 4.2.2

4.2.1.1.1 An illustration of a natural fit - local bindings

It may be helpful to illustrate the question of a “natural fit” by looking at the mechanism
by which local bindings are established and managed in, firstly, Z and then in functional
languages; this is but one of many such examples that could have been chosen. The |
ability to establish a local (i.e. temporary) binding for a name is useful from at least two

perspectives, computational efficiency and expressive clarity.

In a computer language, by definition executable, performance benefits can accrue from
only evaluating an expression once; a simple example can illustrate this -please note the
careful non-avoidance of the “prototypical boring programming problem” [Harvey &
Wright 1994], calculating the roots of a quadratic equation, using the following

formulae:

-58-

bV -dac ~b-b*~4ac

I/I” 2a I/j?_: 2a

The discriminant (the expression whose square root is taken) in the formulae would

normally be calculated only once, ‘stored’ locally and looked-up when needed. This

would give a C++ version of

std: :pair<float, float> rootsOf(int a, int b, int c)
{

float routeD ;

float rl, r2;

routeD = sqgrt(b*b-4*a*c);

rl = (-b+routeD)/(2*a);

r2 = (-b-routeD)/(2*a);

return std::make_pair(rl, r2);

std::pair<float, float> rootsOf2(int a, int b, int c)

throws (noRealRoots)

float disc ;

if (disc < 0) throw noRealRoots;
float routeDisc ;

routeDisc = sqrt(b*b-4*a*c);
float rl, xr2;

rl = (-b+routeDisc)/(2*a);

r2 = (-~b-routeDisc)/(2*a);

return std::make_pair(rl, r2);

code 4-1: The roots of a quadratic in C++

The scoping rules of C++ ensure that the variables disc, r1 and r2 are local to the
function rootsOf£. That the computational saving is marginal is not an issue; the
technique is widely applicable and can be generalised and so effected by an interpreter,

at least for function calls, using the technique known as memoisation.

-59.-

The second benefit is of greater significance; the use of names for, in this case,
expressions allows logical abstractions which provide strategies, such as procedural
abstraction and functional decomposition, for the human designer to manage almost
arbitrarily bomplex problems. This technique allows us to express naturally the logic of

our solution.

The added expressiveness that derives from using local definitions is such that virtually
all languages support their use; this ability also exists in the Z notation, not to support
better execution, but to enhance the expressiveness of the notation. The mechanism for
using local binding is obviously notation/language specific, but a brief examination of

that mechanism in Z, in Haskell and in Lisp will establish the congruence of the three.

The simplest scenario that will allow a valid use has been chosen; each uses
syntactically correct ‘code’, though in the latter two cases, it is probably not the best

way to capture the logic.

The scenario is a library which models reservations as a function from a book
descriptor to a sequence of borrowers; in each case the local ‘variable’ reservers is

bound to the sequence of reservers for this book.

- 60 -

-ReserveBook

b? : BOOK
m? : BORROWER
reservations, reservations' : BOOK -+ seq BORROWER

r! : success | alreadyReservedByThisBorrower

(let reservers == reservations b?
e (m? € ran reservers A
reservations’' = reservations A
r! = alreadyReservedByThisBorrower)
\V4
(m? ¢ ran reservers A
reservations' = reservations @ {b? — (reservers " <m?>) } A

r! = success)

Figure 4-1 : ReserveBook in Z

-61-

The use of a local binding in Haskell also involves a let clause, with a similar structure.

type Loans = [(Book, Borrower)]
type Library = (Book -> [Borrower],Loans)
type Report = String

reserveBook :: Library -> (Book , Borrower) -> (Library, -
Report)

reserveBook 1lib (b, m)

= let
(reservations, loans) = 1lib
reservers = reservations b
in
if (m elem reservers)
then
(1ib, "alreadyReservedByThisBorrower")
else
let
newReservers = reservers ++ [m]
newReservations =
reservations ‘override' [(b,newReservers)]
newLib = (newReservations, loans)
in

(newLib, "success")

code 4-2 : reserveBook in Haskell

(defun reserveBook (lib b? m?)
(let*
((reservations (first 1ib))
(loans (second 1lib))
(reservers (applyfn reservations b?)))
(if (member m? reservers)
(list 1ib "alreadyReservedByThisBorrower")
(let
((newReservers (append reservers (list m?)))
(newReserverations (override reservations ' ((,b? , newReservers))))
(newLib (list newReservations loans)))

(list newLib "success")))))

code 4-3 : reserveBook in Lisp

-62-

As was suggested, more natural versions could easily be written in both Haskell and
Lisp, but the point here is to establish the close correspondence between all three, and
more precisely, the existence in the programming languages of such similar constructs
to that of the Z. In each case the let structure consists of the keyword let, a sequence
of declarations of the objects being brought into local scope, followed by the expression

to be evaluated in the augmented scope.

This close correspondence derives from the expression-based nature of the Z notation
which is so fundamental to applicative languages, though surprisingly for a model-based
specification language, Z is virtually free from the notation of updating state; the
transformations concerned with decoration (as in object and object’) explicitly
reference two discrete objects, which need individual declarations and which just

happen to have similar names and a convenient declaration shorthand.

It is not just this last characteristic that suggests a functional approach to the problem;
the manipulation of expressions is by nature a recursive process and consequently, the
implementation language chosen must support recursion. This requirement is
straightforward to satisfy, but functional languages are explicitly designed, and

consequently optimised, to handle recursion efficiently.

The exploratory programming approach can also be described as incremental
development; even if the ultimate objective is known, the best route towards it may not
be and in this area of ill-defined problems, it is important to maximise potential
flexibility, to be best able to circumvent unforeseen problems, should they arise. A
feature of the functional programming approach that contributes significantly to
flexibility is the property of referential transparency. A consequence of referential
transparency is that a function can be developed that will behave reliably, without

reference to any objects or values other than its arguments; this allows the developer to

-63-

provide incrementally more functionality, that may or may not be useful. A perception
of the longer term objective will influence the choice of what behaviour should be
developed, but not in the goal-driven, sequential way that is characteristic of and
appropriate to better-defined problems. Notwithstanding the more usually valued
benefits of referential transparency, namely the ability to formally reason with
functional programs, it is also invaluable in supporting the incremental development of

amorphous software systems.

There are so many instances of ‘good-fit’ matches that we can restrict the remainder of
this review of correspondence to the consideration of the ‘structural’ match that by this
point might be ef&pected. The key abstraction mechanisms of functional programming,
such as the treatment of functions as first-class data objects and their use in higher-order
functions, are the same techniques from which Z derives much of its expressiveness;
what [Spivey 1992] (Chapter 4) describes as The Mathematic Tool-Kit, with the
functionals’ such as relational composition, function inversion etc., is the same discrete

mathematics that underpins functional programming.

—[X]
N:PPX -SPX

VA:IP([P/\’)‘
NA={xX|(VS5: A ex 9

genIntersect :: Ord a => [[a]] -> [a]

genIntersect = foldll intersect

Figure 4-2 : generalised intersection in Z and Haskell

7 This use is after [Backus 1978] and describes the connectives used to ‘glue’ functions together; they are also higher-order
functions.

-64 -

The Generalised intersection () can be defined as in Figure 4-2 . An alternative

description would be “the set of sets is reduced with the binary operator M (set

intersection)”’; reduce is the list reduction operator in Lisp, or fo1d in Haskell. This

converts directly to the executable code that models this behaviour, genIntersect.

Perhaps the clinching argument for adopting a functional perspective is more selfish.

“For programmers also, there is a tremendous gratification in frequently
being able to express application theory or design ideas directly as
program text, without the distracting details of an exactly ordered series of

steps or accompanying sequence of memory operations”

[Runciman and Wakeling 1995] p216

4.2.2 The case for C++

A decision regarding choice of development paradigm is not the same as the choice of
an implementation language; to illustrate this point it is worthwhile to examine what
might be considered an unusual vehicle for a functional approach. C-++ has evolved to
support the development of software systems using an object-oriented approach, but that
is not the only paradigm supported by what is now a mature and coherent language;
particularly since the incorporation into the C++ standard [ISO/IEC 14882 1998] of
what was originally, and is usually still referred to as, the Standard Template Library
[Stepanov and Lee 1994]. Developments in the area of generic programming caused
Stepanov and Lee to research and build an extensive library of generic containers and a
set of algorithms that operate on those containers. These were adopted , largely
unchanged, in the C++ Standard and for those developers that choose to use them, C++

now has the tools that allow a largely functional style to be adopted.

- 65 -

Given the recognition of the STL container class map as a function and the multimap
as a relation, the Mathematical Tool-kit functions, such as dom, ran, relational inverse,
relational image, can all be readily coded; Appendix A (STL/C++ structures) contains
C++ code for these operations. However the usefulness of this approach is likely to be
in the implementation of specifications, rather further along the development process
than the stage of Requirements Capture and Validation with which we are
predominately concemed‘. The unary functional composition operator o , though defined
in the C++ standard as composel is not in fact implemented by Visual C++ version 6;
its definition, in code 4-4, is illustrative of both the strengths énd weaknesses of C++ as

the implementation language of choice.

template <class Opl, class Op2>
unary_compose<Opl, Op2> composel (const Opl & £, const Op2 & g)
{return (unary_compose<Opl, Op2>(f, g));};

template<class F_type, class G_type>
class unary_compose

: public unary_function< F_type::argument_type, G_type::result_type>

public:
unary_compose (const F_type & f, const G_type & g) :f1(f), gl(g){};
result_type operator() (const F_type::argument_type & y) const
{return (gl (f1(y))):};
protected:
F_type £f1;
G_type gl;
}:

code 4-4 : Unary function composition in C++

code 4-4 does indeed implement functional composition, but it is notably dense code
that is non-trivial to implement; much of the obscurity derives from the need to use both

inheritance and templates to support the polymorphism needed for the definition of

-66-

higher-order functions. The weakness of this solution is highlighted by the marked

contrast with the single line Lisp and Haskell equivalents, see code 4-5.

(.) :¢+ (b ->¢) -> (a -> b) -> (a -> c)

(f . g9) x =g (f x)

(defun compose (f g)
(lambda (x) (g (f x))}))

code 4-5: Function composition in Haskell and Lisp

4.2.3 The case for Haskell

Thus far, there has been no distinction made between any of the functional languages
that might be chosen; both Haskell and Lisp have been invoked as preferable to C++,
but they have been dealt with as if there was nothing to choose between them. This
would certainly be the case for the implementation of the ‘tool-kit’ functionality, and
Haskell has been shown to be a viable path to take in this regard [Sherrill & Carver

1993].

It is in regard to the larger context into which the toolset component must integrate that
potential difficulties can be envisaged. At an early stage of the overall project a decision
was taken that the toolset would be developed and, potentially deployed, using the
Microsoft Windows operating system; this was primarily to maximise the user base that
might develop should the toolset be genuinely useful. Few disadvantages were
considered to derive from this decision, but one effect was to largely preclude Haskell
from consideration; this was a tenable strategy as equally good, or better, alternatives to
Haskell were available. A similar development using a totally functional subset of Lisp
had successfully been undertaken [Hibberd 1990]; this experience demonstrated the
feasibility of using Lisp, but it is worthwhile considering the characteristics that

underpinned this confidence.

-67-

4.2.4 The case for Lisp
Though originally designed as a functional programming language [McCarthy 1960],

Lisp has evolved many features that disqualify it from such a description; to name a
few, these include the iterative and loop constructs (Loop, dotimes, progn etc.), the
destructive list manipulators (nconc, etc.), the side-effecting output functions (princ,
etc.) and a plethora of state-setting possibilities centred around set f. Notwithstanding
these, the basic data structure, the list, is the core structure of functional programs and
the underlying style of programming remains prefix function application. It is quite
straightforward to develop significantly large Lisp programs that use only the
‘functional programming’ features of Lisp — this subset of the language has been called
FLisp [Glaser et a/l1984] and would be the basis of the expression-level functionality
that implements Spivey’s Mathematical Tool-kit. All of the necessary characteristics
thus far identified can be found in FLisp; how this functionality might be ‘bundled’ and
made available to a user does raise a number of new, though secondary, considerations.
The implementation of an ‘environment’ or at least an interface is considered in Section
4.4; this a much better understood problem in many respects and its development using
more conventional strategies would appear straightforward. That Lisp supports a variety
of development paradigms as diverse as Object-Oriented and functional should ensure
that an appropriate one is available when required. In fact CLOS, the Common Lisp
Object System [Keene 1989], was available throughout the life of the project, but was
deemed inappropriate. The close correspondence with Z would not be enhanced, more
likely it would be undermined, by introducing a framework in ZAL that is not naturally

part of Z.

The benefits of choosing Lisp as the development vehicle for, at least, the expression

level functionality can be reprised as :

- 68 -

e Lisp is a functional language;
e Lisp supports incremental development;

e the Lisp chosen®, though ultimately compiled, presents an interpreted interface
to the user, with a command line and the source-level debugging support
characteristic of such an integrated environment. These facilities make for a

productive and usable development environment ;

e notwithstanding the above, the production code is compiled, with the attendant

performance benefits of this ;

e Lisp can model non-deterministic choice [Graham 1994]p 297. This ability may

or may not be required ;

e the access to the evaluator provided by Lisp provides an easy and accessible way
to manipulate expressions, in whatever representation is appropriate. For
example to model the scoping rules of the Z notation, an environment must be
constructed and managed that respects the appropriate rules regarding the
visibility of objects; what might be a free variable in an individual schema, may
be brought into scope by the inclusion or composition of another schema. Given
the interactive use of the animator envisaged in the Requirements Validation
process, the ability to manipulate schema expressions at a source-code level is

essential;

¢ Common Lisp is a standard(ised) language, so potential portability will be

maximised ;

e the provision of a visual development environment and the library to support the
development of ‘visual’ Lisp applications will facilitate the construction of a

developer’s interface

e experience suggests Lisp is the best possible vehicle for this endeavour, given

that

8 Allegro Common Lisp version 3.0.2

-69-

“Lisp is for building organisms - imposing, breathtaking, dynamic
structures built by squads fitting fluctuating myriads of simpler organisms
into place The discretionary exportable functionality entrusted to the
individual Lisp programmer is more than an order of magnitude greater

than that to be found within Pascal enterprises.”

A J Perlis in Foreword to [Abelson et al 1985]

4.3 How the execution engine works

The division between the expression level functionality and the mechanism by which
that functionality is used to animate any particular specification remains explicit in its
implementation; the ‘Mathematical Tool-kit’ is converted from the discrete mathematics
version presented in [Spivey 1992] into an equivalent Lisp source code version. The
structural elements of the discrete maths, such as relations, sets, functions and
sequences are modelled as Lisp lists with an explicit tag — a so-called manifest type

[Abelson et al 1985].

If the animation is viewed as source code executing in some environment, the problem
becomes to some extent one of the implementation of a “language” with particular
execution semantics; the management of an execution context -principally a name
space- is in fact simplified by the “update” semantics adopted. Given that updating is
foreign to Z, the use of decorated names, such as value’, to indicate post-states makes
explicit a potential update; this is in fact a little simplistic as there may be multiple
references to a decorated name in a given scope and resolving which are potential

updates is not necessarily straightforward.

4.3.1 ZAL data objects

The types of a Z specification are usually a combination of the basic types such as Z,
or more usually N. and the given sets particular to that specification. The integer types

are straightforward, as Z maps readily onto the FIXNUM, or BIGNUM, Lisp primitive

-70 -

typés; the BIGNUM type provides arbitrary precision integers, so is in fact a better

match then the integer types found in most programming languages.

Relations

Mappings

Sequences

Figure 4-3 : The Z tower of types

These types will also form the components of more complex types that are formed by
combining them into sets, relations etc. These latter structuring collections form a
“tower of types” [Abelson et al 1985] (p151), which greatly simplifies their
manipulation. In essence, the tower is a hierarchy where each type has at most one
supertype and at most one subtype; the manipulation might involve coercion into
different types from the tower. In this case the relationship is particularly
straightforward, since all sequences are mappings, all mappings (including sequences)
are relations, and all relations are sets; this gives a relationship more akin to subsets and

supersets, as in Figure 4-3.

The consequence of this relationship is that type coercion, which can involve the loss of
detail in the transformation, is not necessary; it is sufficient to determine the appropriate
‘status’ of an argument (i.e. “is it a relation?”’) at the point at which there exists such a
requirement. This is generally implemented as a pre-condition, using predicates that

examine the arguments.

-71-

111IT UdblL COLLUULLS Ul otl, 1C1dllUlLL, 1H1dP Pl dlll SCHUTIHILD dIT ©Alll 10PICSCIICU do> LispP
lists of (potentially complex) types, with a tag field prepended to indicate the ‘type’.
This gives the following, apparently inelegant, representation of —say- the set {apple,
banana, pear } as the list (*S APPLE BANANA PEAR); the *S is the tag field
indicating a set and the capitalised ‘strings’ the Lisp print-names of the symbols APPLE
BANANA and PEAR. This list is in fact the internal representation of the set and
unsurprisingly it is possible to re-format this format into a more usual sophisticated
form. That this re-formatting functionality can be inserted into the Top-Loop of the Lisp
environment is more unusual; together with the use of developer-defined readtables, to
accept the same ‘sophisticated’ syntax, it is possible to provide a more natural

interaction, even at the command prompt, which is also redefined as in Figure 4-4

The read-eval-print behaviour of the command prompt was chosen as the initial
interface to the execution engine; this gave initial accessibility and offered the potential
to generalise the developed functionality to command strings that are generated
dynamically. There are indications in the status bar of Figure 4-4 of the Toploop
processing being performed - the entered string {"apple 'banana "pear} is converted,
using the opening brace character ‘{* as a macro-dispatch character, into the list, or
cons, (mks 'apple 'banana 'pear), which is the form actually evaluated by
Lisp; this form returns (*S APPLE BANANA PEAR), which is re-formatted and

which then matches the original, except that is capitalised.

-72 -

.y Allegro CL 3.0.2 [e:\acl302\allegro.img] - [n]x]|
File Edit Search Window Package Tools Builder Preferences Help

Z Animation in Lisp
Sheffield Hallam Uniuersity
Nottingham Trent Uniuersity

Julian Briggs £
Richard Hibberd
For help type (help)

zal: {'apple 'banana 'pear}
{"APPLE 'BANANA 'PEAR}
zal:

Returned the cons (*s apple banana pear) Evaluated the cons (mks 'apple 'banana 'pear)

Figure 4-4 : ‘Natural’ I/O

The actual symbols apple banana and pear must be “quoted”, i.e. prefixed with the
single quote character; this prevents their evaluation, which is the desired behaviour as
they are simply symbols being used for their symbol-name. An alternative is to enter the
values as strings, in quotation marks; these are not then symbols but simple string
values, which evaluate to themselves. The input string in this case would be {“apple”
“banana” “pear”}; this style is considered to be less natural and tends to raise in the
mind of'the user the unnecessary question ofthe string representing a physical or
logical entity, rather than actually being that entity, and so was not adopted even though

the chosen style does require the use ofthe quote character.

Table 2 has details of'the input, output and internal representations of each ofthe type

constructors

- 73

Input format Output format Internal representation
Set {'a'd'c} {'/A'B'C} *SABC)
Relation {#('p 'pear) #('p | { #(P PEAR) #(P (*R (P PEAR) (P PLUM))
'plum) } 'PLUM) }
Function {#('a'apple) #('p | { #(A'APPLE) #('P | (*M (A APPLE) (P PLUM))
(mapping) 'plum) } 'PLUM) }
Sequence <'apple 'pear <’APPLE 'PEAR (*Q (1 APPLE) (2 PEAR)
'plum> 'PLUM> (3 PLUM))

Table 2 Representation of collections

A more contrived example may demonstrate the purpose of the tag which determines

the default format of display in the environment, which reflects the format used when

the objects were constructed; this is important since the user would not expect the data

objects to be implicitly transformed. For example a function from integer to string

perhaps represehting the mapping from a product code to its name might be instantiated

{#(1 “product 100”) #(2 “product 200”) }; this could be tagged as a set,

as a mapping, or a sequence. However each of these has distinctive (and in this case

potentially misleading) output representations, as the tags are not normally displayed;

this artificial example could legitimately also be displayed as a sequence, i.e.

<’product 100” “product 200>, or as a set.

-74 -

4.3.2 ZAL source as Extended Lisp

The development of the particular ZAL syntax has also been incremental; at any point,
the ‘language’ has encompassed both the current subset of Z and also those structures
and operators which are not yet fully implemented, but which can be constructed using
a combination of existing elements and primitive Lisp code, as opposed to the extended
Lisp that characterises ZAL. This primitive, raw Lisp code has been used to model the
appropriate functionality and later, once the requisite behaviour has been established, as
the basis for the actual implementation of the feature. This approach has facilitated the

smooth evolution of the functionality.

Another, less important, consideration has been the efficiency of the execution; for

example, the implementation of the range restriction operator > began as

R>S < (S<R™)”

This implementation yields O(i’) complexity, which was generally considered
sufficiently poor to warrant a more sophisticated implementation, if one was available,

which in this case involved a single pass over the relation, with corresponding O(n)

complexity, but some less clarity. In contrast, relational image () remains implemented

as R(SD <> ran (S<IR), since this is still On).

4.3.3 An error reporting regime

The data validation of the arguments to almost all the ZAL functions is performed
“locally”, that is as part of the ZAL function; this can sometimes leéd to duplicated
computation but supports a more natural feedback style as the testing is performed when
the user “naturally” expects, at run-time and in the execution sequence. There are ZAL
predicates to test objects as sets, relations, functions and sequences and these are

respectively setp, relp, mapp, seqp; their use can be seen in Figure 4-5.

-75-

e|x|

zal: (setp set eq) J
True

zal: (setp map e9)

True

zal: (mapp map €g)

True

zal: (mapp set eq) J
False

zal: (mapp seg_eq)

True

zal: (segp seg eq)

True

zal: (setp seg eq)

True

Figure 4-5 :ZAL predicates
This verification of arguments can be seen wherever the possibility exists of the user

presenting inappropriate data values; attempting to build a set of differently typed

elements will fail, as will the union of two differently typed sets.

W gl x|

zal: {12 "twelve"}

Zal error: every element in a set must be of the same type,
at least one is not. The elements are:

12

twelve

zal: (unionz {11 22 33} ({"eleven" "twentytwo" "thirtythree"})
Zal error: the sets, xs & ys, passed to unionz must be

of the same type. J
xs 1s {11 22 33}

ys 1is {eleven thirtythree twentytwo}

zal: |

Figure 4-6 : Argument verification and error reporting
In fact in normal use, these reports are directed to an error-reporting window (Figure

4-7 : Error reporting dialogue); the top loop, while available, is the province of

experienced users.

_76-

i Restarts - [g | i

Error: Zal error: every element in a set must be of the same type,
() at least one is not. The elements are:

12
twelve
Enter Debugger
Return to Top Level (an 'abort' restart)

invoke Selected Restart Enter Debugger | Abort

Figure 4-7 : Error reporting dialogue

It might appear that the error handling implemented within ZAL is unsophisticated in
that no use is made of exception-passing to facilitate recovery from errors; the error is
reported and the user offered the choice ofan ‘abort’ restart or use of the Lisp
Debugger. In fact the Debugger offers the full functionality of the underlying
environment, together with inspection and edit facilities for the context ofthe error and
recovery from it. This is actually rather more functionality that the intended user of'the
system would normally need; choosing an ‘abort’ restart will cause the stack unwinding
needed, together with the de-allocation of local objects, which is the major benefit of
exception handling regimes, and this would be the choice expected in almost all
situations. This rather binary view ofthe execution is consistent, in style at least, with

the execution ofZ as interpreted here - an execution is successful or not.

4.3.4 Expression level manipulations

Having established the basic data components ofthe ZAL subsystem, the operations
that manipulate those data components can now be examined to complete the
description of the underlying functionality. These operations will very much correspond
to the discrete mathematics operators that are used to capture behaviour at an expression

level within Z schema.

-77-

The toolkit elements and their ZAL equivalents can be seen in Table 3.

The following Z constructs have been implemented.

Z construct Description ZAL function
set cardinality card

G,) pair construction #C)

< relational operator #\< ’

<> sequence constructor <>

= equality testing / binding operator Eqz

P powerset powerset

— maplet uses 2-tuple

€ set membership is-mem

& set non-membership is-not-mem

< proper subset psubset

< subset subset

N set intersection inter

v set union unionz

\ set difference setsub

N distributed (generalised) intersection inter-dis Or gen-inter
v distributed union union-dis Or gen-union
5 relational composition Rel-compose

< domain restriction domres

< domain subtraction domsub

> range restriction ranres

B range subtraction ransub

& function override overrride

- sequence concatenation concat

3 existential quantification exist

v universal quantification forall

a relational image Rel-image

3 unique existential quantification exist-one

v logical disjunction or

® The character ‘<’ is redefined to facilitate ‘natural’ sequence input, so the relational operator must be an escape sequence; this is
not an issue, since this is generated by TranZit.

-78-

A logical conjunction and

= logical implication imply

disjoint disjoint disjoint

distributed disjoint distributed disjoint disjoint-dis

dom domain dom
function application applyz

head head head

ran range ran

~ relational inverse inverse

<> sequence constructor <>

{} set constructor (1

tail tail tail

Table 3 : Mathematical toolkit equivalents in ZAL

4.3.4.1 General expressions
The style of modelling that has been adopted, with a close correspondence between the
Z Mathematical Toolkit and the ZAL function that implements it, gives rise to a bottom-
up development style; given the representation of data components described in Section
4.3.1, the coding of this functionality, with the exception of the quantifications and the

comprehensions, is for the most part straightforward.

4.3.4.2 Testing for equality and binding values

There are two ways in which the = symbol is used in Z specifications. It can be either
the equality testing operator as in the constraining predicate state = state’ ; this would
indicate that the object state must not be changed (the decoration ’ is used to indicate an
after-state). Alternatively the symbol can be used to generate new ‘bindings’ for objects

as with

someFn’ = someFn @ {d —> l‘}

which generates a value for the after-state of the object someFn using the function
override operator. ; this can be considered a binding within the scope of the schema

-79-

expression. This twin r6le presents no difficulty in the Z as the second use can still be
seen as that of equality testing, but in the declarative sense of constraining the after-state
values to satisfy this predicate while not making deterministic any requirements
regarding sequencing or indeed particular values for the components; however it

constitutes an issue of some significance in this undertaking.

4.3.4.2.1 Execution sequence

In so much as our execution will constitute a single, possibly deterministic,
representation of a possibly non-deterministic specification, and that the outcome of that
execution, if terminating, is ultimately a truth value, that we adopt by default a
sequential, down-the-page regime is simply a choice that may or may not be effective
when applied to a particular specification. Empirically, it has been found to be a sound
approach in many cases, since the writers of Z specifications tend to adopt a pre-
condition, update, post-condition sequencing in their specifications. Nonetheless, it
would be un-necessarily constraining to require this explicit sequencing, and so
strategies have been developed to minimise the set of valid specifications which cannot

be animated.

To this end, at execution-time the context of the equality expression is examined to
determine the precise use being made of the operator; this was initially performed when
the schema object was defined, but this approach cannot manipulate predicates from
included schema, which require that this examination be deferred until the actual,
expanded schema expression is available for analysis. This analysis of the predicates of
this expanded object reveals whether the operator is being used un-ambiguously (either
to bind a value or to test for equality) or if the use is ambiguous; an ambiguous use
might derive from a schema with a decorated object being used in more than one

predicate or expression.

-80-

This analysis is used to broadly categorise the predicates and to sequence them on this
basis. The expectation was that this would be too naive a solution and that more
sophisticated strategies would be needed to resolve this issue; this has in fact not been
the case and this approach has not been constraining, though further research may yet be

appropriate.

4.3.4.3 The question of quantifiers

This section will examine the mechanism by which existential and universal
quantifications are modelled in ZAL; implicit set generation, or set comprehensions,
will emerge as a similar, though not congruent domain, with an equivalent set of issues

and solutions.

As was described in Section 3.2.1, the possibility of a potentially infinite search space
has been resolved before ZAL is required to evaluate expressions defined on it; this is
achieved by identifying a constraint from the Z expression, or if that fails, by user

intervention.

A simple example will highlight the mechanism employed; it features the existential

quantifier but the detail is identical for a universal quantification. The predicate

Jj:N |j € 0..10 ¢ j »j = 81
gives rise to the ZAL code, generated automatically

(exist j (mks 01 23 4567 89 10) (= (* j j) 81)))

exist is implemented as a macro which is expanded into a further macro call to x-
st before the arguments are evaluated; this two stage expansion facilitates recursion

for multiple quantified variables and can be seen in Figure 4-8

The original call

(exist j (mks 01 2 3 456 7 89 10) (= (* j j) 81))

-81-

expands to

(X-ST J (MKS 0 1 2 3 4 56 7 8 9 10) (= (* J J) 81))
This expression is again expanded to

(PROG1L
(PROGN
(UNLESS (SETP (MKS 0123 456789 10))
(ZERROR "every second argument to exist must be a set"))
(SETF (GET 'J 'LAMBDA-VAR-?) T)
(SOME
#’ (LAMBDA (J)
= +JJ9 8l))
(REST (MKS 0123456789 10))))
(SETF (GET 'J 'LAMBDA-VAR-?) NIL)

and this is the expression that is eventually evaluated.

B-|n|x|

Z Animation in Lisp
Sheffield Hallam Uniuersity
Nottingham Trent Uniuersity

Julian Briggs 5
Richard Hibberd
For help type (help)

3.2
zal: (exist j (mks 0 1 23456789 10) (= (* j j) 81))
(X-ST J (MKS 01 23456789 10) (= (*J J) 81)):
(PROG1

(PROGN
(UNLESS (SETP (MKS 01 23456789 10))
(ZERROR "euery second argument to exist must be a set")
(SETF (GET 'J LRMBDA-UAR-?) T)
(SOME
' (LAMBDA (J)
(= (x 3 9) 81)
(REST (MKS 012 3 456789 10))))
(SETF (GET ‘J 'LAMBDA-UAR-?) NIL)):
Figure 4-8 : Macro-expansion of an existential quantification
The processing is accomplished using the Lisp higher-order function some which
determines if the function argument returns true when applied to any element of the list
argument; also visible in the expanded Lisp/ZAL is error-checking code and code to
identify and manage the name-space at execution. In fact when evaluated within the
animation environment, rather than at the command line as here, the quantified

variables, j in this case, are replaced by gensyms (automatically generated unique

symbol names) after expansion but before execution.

-82-

The recursive macro-expansion performs a re-write equivalent to
JitljiJe Q< Title (3Tj:JeQ
Notice that the quantified expression is not the most general, lacking the usual

constraint P in

3D | P e 0

It is the case that constraining predicates P either constrain the search space, in which
case they will have been ‘absorbed’ into the declaration D or they will have been

rewritten using the equivalence

Dl Pe Qe FDePADQ

There are a number of similarities between the quantifications described above and the
generation of implicit sets, or set comprehensions; for both it is necessary to generate a
set of candidate data and to test that data with a predicate. For a quantification, the result
of the test generates the result of the quantification; for a set comprehension, the test is
used to filter the candidate data, with the successful values being used to construct the
set elements. An often-cited example of the drawbacks of executing specifications is the

inability to handle this definition of the set of perfect squares
. . 2 .
{i:N|3j:Nej =i}

It is absolutely the case that this will not directly transform into an executable form,
since both the set and the natural numbers are infinite. However by constraining < to

some finite range, it will execute without further change; in particular, there is no need
to introduce any algorithmic detail, as in Figure 4-9. Larger ranges can be searched, but

these require the use of the non-pure nrange function to generate the candidate data.

-83-

; Toploop Package: zai Ml

J
Z Animation in Lisp
Sheffield Hallam Uniuersity
Nottingham Trent Uniuersity
Julian Briggs &
Richard Hibberd
For help type (help)
3.2
zal: (mksi 'i 'i (range 1 10000) '(exist j (range 1 100) =i (* j j))))
(1 49 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441
484 529 576 625 676 729 784 841 900 961 1024 1089 1156 1225 1296 1369 1444
1521 1600 16811764 1849 1936 2025 2116 2209 2304 2401 2500 2601 2704 2809
2916 3025 31363249 3364 3481 3600 37213844 3969 4096 4225 4356 4489 4624
4761 4900 50415184 5329 5476 5625 5776 5929 6084 6241 6400 6561 6724 6889
7056 7225 73967569 7744 7921 8100 8281 8464 8649 8836 9025 9216 9409 9604
9801 10000}
zal:
J

Figure 4-9 : Perfect squares defined with a set comprehension

4.3.5 Schema definition

The initial approach to the creation ofthe schema object was to encapsulate the
declarations and behaviour into a Lisp functional object - both a closure and a lambda
expression were investigated. This generates small closures that can be readily
manipulated and provides a mechanism for schema inclusion using nested calls to the
execution function. This was also useful to support schema renaming and an explicit
call to one schema from within another - this technique is used by Morgan in a classic

specification of a telephone network in [Hayes 1993] as in the fragment

-i(3 consO : P CON ¢ cons Cl cons0 A TN|cons® / cons]

where TN is a schema object, as is the schema-renamed expression. Though effective in
this particular situation, the technique limits the optimisations that can be made to those
valid at an individual schema level, at the time of schema definition. More seriously it is
not possible to establish which elements of a schema are visible at that point; the
alteration of a schema that is already incl/uded by others will invalidate all ofthe

including schemas.

This suggests that the correct point at which to encapsulate the declarations and

predicates is at execution. This does entail a significantly larger computational object,

-84-

1 Toploop Package: zal olx1

Z Animation in Lisp
Sheffield Hallam Uniuersity
Nottingham Trent Uniuersity

Julian Briggs &
Richard Hibberd
For help type (help)

3.2

zal: (mksi ‘i ‘i (range 1 10000) ‘(exist j (range 1 100) (=i (* j j))))
(1 49 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441
484 529 576 625 676 729 784 841 900 961 1024 1089 1156 1225 1296 1369 1444
1521 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401 2500 2601 2704 2809
2916 3025 3136 3249 3364 3481 3600 3721 3844 3969 4096 4225 4356 4489 4624
4761 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241 6400 6561 6724 6889
7056 7225 7396 7569 7744 7921 8100 8281 8464 8649 8836 9025 9216 9409 9604
9801 10000}

zal:

3

Figure 4-9 : Perfect squares defined with a set comprehension

4.3.5 Schema definition

The initial approach to the creation ofthe schema object was to encapsulate the
declarations and behaviour into a Lisp functional object - both a closure and a lambda
expression were investigated. This generates small closures that can be readily
manipulated and provides a mechanism for schema inclusion using nested calls to the
execution function. This was also useful to support schema renaming and an explicit
call to one schema from within another - this technique is used by Morgan in a classic

specification of a telephone network in [Hayes 1993] as in the fragment

-i3 cons0 : P CON ¢ cons ¢z cons0a TN[cons® / cons]

where TN is a schema object, as is the schema-renamed expression. Though effective in
this particular situation, the technique limits the optimisations that can be made to those
valid at an individual schema level, at the time of schema definition. More seriously it is
not possible to establish which elements of a schema are visible at that point; the
alteration of'a schema that is already included by others will invalidate all of the

including schemas.

This suggests that the correct point at which to encapsulate the declarations and

predicates is at execution. This does entail a significantly larger computational object,

-84-

since it must be built in totality rather than referencing previously defined objects, but
this trade-off is well justified by the clarity and correctness of the model; furthermore it

is consistent with the notion of schema inclusion as a textual expansion.

The schema definition process is consequently largely reduced to a call to a structure
constructor (a structure is the Lisp record type), with initialising values for the various
fields. As a convention, static data is held in the fields of the structure and the run-time
flags and parameters are managed as property lists, which provide more flexible access

facilities.

4.3.6 Schema level manipulations

Though it is technically feasible to adopt a purely functional approach to the
manipulation of schema entities, rather than just the clauses of them, Z remains a state-
based modelling notation; indeed the role of the state schema is to introduce those
objects that constitute the state, together with the state invariants, the constraints that the

state will always satisfy.

The putative functional approach to schema level manipulations would necessitate the
passing of the state data into and out of an execution; such a system would be unusable
without some mechanism to automate the generation and management of this data.
Additionally, the raison d’etre of the whole project is to make accessible to a sponsor
the details of a specification whilst minimising the technical skills required; it would be
illogical to then require an understanding of perhaps monadic I/O and the functional
paradigm. To this end, it is important that externally at least, the animation appears to
maintain an ongoing state. The virtual proscription of global variables does not apply to
the situation here; the state schema introduces the state objects of the specification and
that state is naturally global. Furthermore, the global objects in question are in effect

named values, and are not updateable in the conventional sense; pre- and post-states can

-85-

been interpreted as separate values and the only ‘updating’ of the state objects is the
promotion of some or all of the post-state values of some execution to be the current
values of the state. Between executions, the values may be edited, but that can be
interpreted as changing the ‘input’ data for the next execution; there exist command line
facilities to update state data, but these are not part of the ZAL code generated

automatically by TranZit.

The user’s perspective of executing a schema will be examined in Section 0, but a
technical overview is in order to better provide a context for the current discussion.

After a schema (name) is selected for execution, the process detailed below occurs:

e the executable object is constructed dynamically — this involves expanding
recursively any referenced schemas and building these into a single object.

These references may be by inclusion, conjunction, disjunction or negation;

e an environment is constructed for the execution, to include any objects that are

in scope in the lifetime of the execution;
e any inputs required by the schema are collected, by interaction with the user;
e the executable object is evaluated in the constructed environment;

e the result of the evaluation, a truth value, is reported to the user. If the evaluation
succeeded, any outputs are reported to the user, together with any other objects
selected for display and the opportunity to promote the values of post-state

objects is offered.

After a brief discussion of the role of the state schema, this process is examined in

detail.

4.3.6.1 The role of schemas in Z and ZAL

The state schema is conventionally used to introduce the data objects of concern within
a specification, and to constrain the values that those objects may take; this can be

thought of as analogous to a variable declaration in a conventional programming

-86-

language, which brings the declared object info scope. The predicate clauses of the state
schema constrain the values, effectively defining what is or is not a valid state, and for
this reason, the predicate of the state schema is sometimes known as the invariant. A
novel aspect of the work is the practice of executing the state schema, or at least the
invariant, which has the effect of verifying the current state. As will be examined in
Section 5, this can be done in the normal way using the usual interface as in Figure 5-2
(page 106) and Figure 5-11 (page 125); it can also be automated so that a check is made

during the promotion of post-state values, Figure 5-17(page 111).

Another use of a schema is as an abstraction, whereby the schema simply serves as a
convenient name for a collection of data objects or predicates or both; this style of use
can be found in Section 5.2.3 and Figure 5-13 (page 126), where the schema
Monitorvar? serves simply to bundle a commonly used set of inputs. The schema is
then included wherever that combination of inputs is required; this use is allowable
because of the namespace rules that Z employs. An object can be introduced by a
declaration in a schema or in a schema that is included in the original schema or in fact
in more than one of these — the only requirement is that all the declarations must be the
same, i.e. the object must be declared to be of the same type. In this respect Z differs
from virtually all programming languages, which generally utilise a hierarchical
scheme, with all occurrences being separate and at most one being visible at any point,
and the remainder hidden or shadowed. As a consequence, this namespace must be

explicitly managed, as is discussed in Section 4.3.6.7

4.3.6.2 Constructing the executable object

This phase is concerned with the creation of a Lisp lambda-expression, which is an un-
named function expression that can be applied in a way identical to any other function

application. The form of the expression is

-87-

#’ (lambda args body)

where args is a possibly empty list of formal parameters to the expression and body is

a symbolic expression, or s-exp, which calculates the return value of the function.

It is necessary to construct both args and body from the aggregation of all the
schemas that are referenced directly or indirectly by the “executing” schema; to this

end, the relationships are examined and their topology captured.

The references to other schemas all derive from the schema calculus; the particular set

of operations supported are :
e schema negation
e schema inclusion

e schema conjunction and

e schema disjunction.

These schema operators determine the relationship between the elements that make up
the executable object; the elements are the argument schema. suggests an organisation
that will illustrate the mechanism by which both the declarations and the predicate of

the executable object are constructed.

-88 -

Given the relationships of and that schema Sn has declarations Dn and predicate Pn,
D*S1,the expanded declarations of S1, can be expressed in terms of D1 and the
expanded declarations of S2 and S3, and correspondingly, the expanded predicate of S1,

P*S1 in terms of P1 and the expanded predicates of S2 and S3.

S1

S2 Sla S2v S3
S4

S5 S2 includes S4

S4 includes S5

S3 includes S5

S3 includes S6

v S62 S7TA S8
S3

S8 negates S9
S5 S6

S7

Figure 4-10 : An illustrative schema topology

-89.-

More formally

D*n 2 Dn U
(U (o D*includedBy(n))) U
(U (o D*conjoinedBy(n))) U
(U (a D*disjoinedBy(n))) U
(U (o D* negatedBy(n)))

or

D'n2 Dnu (oD* (U{ includedBy(n) conjoinedBy(n) disjoinedBy(n) negatedBy(n) }))

where is based on [Backus 1978] and is the apply-to-all-set-elements operator defined

—=lY,Z]
(Y > 2DXPY > PZ

VIf:(Y—>2),;S:PY e
fs={y:Y|yesefy}

This is a somewhat simplistic interpretation of the expansion of the declarations, which
is consistent largely because the visibility of the objects has been validated by the
TranZit component and so using the expanded declaration does not introduce elements
that are accessed by, say, one element of a schema disjunction when they are declared in

another.

-90-

The expression giving the expanded predicate is more complex, but can be expressed:

P+(n) 2 Pn A
(distA (a PrincludedBy(n))) A
(distA (a P*conjoinedBy(n))) A
(distv (a P+disjoinedBy(n))) A
(- P*(negatedBy(n)))

where diséA , distv are distributed conjunction and distributed disjunction

respectively and are defined

distA , distv : P (P Bool) — [P Bool

V A : P (P Bool) e
distA =(Vp: Aep)A
distv = (dp : Aep)

Figure 4-11 : distributed conjunction and distributed disjunction in Z

The expanded predicate of the topology of can be extracted from the executable object,

see Figure 4-12

-91-

NMM-

Z Animation in Lisp
Sheffield Hallam University
Nottingham Trent University

Julian Briggs §
Richard Hibberd
For help type (help)

3.2
zal: (build-predicate sl)
(and t (and) (and)

(or
(and p2
(and
(and 'p4 (and (and 'p5 (and) (and) (or t) (not (not t)))) (and)
(or t) (not (not t))))
(and) (or t) (not (not t)))
(and p3
(and (and 'p5 (and) (and) (or t) (not (not t)))
(and 'pé6

(and (and 'p7 (and) (and) (or t) (not (not t)))
(and 'p8 (and) (and) (or t)
(not (and p9 (and) (and) (or t) (not (not t))))))
(and) (or t) (not (not t))))
(and) (or t) (not (not t))))
(not (not t)))
zal:

Figure 4-12 : The expanded predicate of schema SI

-92-

A reduced topology — that rooted at S6 — generates the predicate below, which has been

annotated to show the origin of each clause.

(and ‘pé6 predicate of S6
(and included by S6 — S7
(and ‘p7 predicate of S7
(and) included by S7 - nil
(and) conjoined by S7- nil
(or t) disjoined by S7- nil
(not (not t))) negated by S7- nil
(and ‘p8 predicate of S8
(and) included by S8- nil
(and) conjoined by S8- nil
(or t) disjoined by S8- nil
(not negated by S8
(and ‘p9 — the predicate of S9
(and) included by S9- nil
(and) conjoined by S9- nil
(or t) disjoined by S9- nil
(not (not t)))))) negated by S9- nil
(and) conjoined by S6- nil
(or t) disjoined by S6 nil
(not (not t))) negated by S6- nil

There exists some redundancy in this predicate which could be readily simplified, if

necessary.

-93 -

4.3.6.3 Constructing the environment

Each of the data objects that is in scope in the lifetime of the execution belongs to

exactly one of the following categories:

an input object

e an output object

a locally decllared object

a state object that is declared in the state schema

Each of these is handled individually and the particular characteristics of each are
discussed below; however it should be noted that only the state objects exist outside the

scope of a schema execution.

4.3.6.3.1 Input objects

These are objects that are used to construct the actual argument list to the executable
object; they are not a part of the execution itself since any references to the name within
the body of the executable object refer to the actual parameter, as is suggested by Figure
4-13. Even if the input object also names an existing symbol, the value entered by the
user is not the symbol’s value, but is stored in a property list as specific to this
execution. The arguments are all presented as values rather than symbols, so there is no

possibility of updating these objects.

-94-

4 Toploop Package: zal

3.2

zal:

zal:

zal:

17

zal:

zal:

Figure 4-13 : Lambda variables are distinct from symbols of the same name

2 Animation in Lisp
Sheffield Hallam Uniuersity
Nottingham Trent Uniuersity

Julian Briggs &
Richard Hibberd
For help type (help)

(symbol-ualue 'x?)
1+ x?)
(funcall #'(lambda (x?) (1+ x?)) 16)

(symbol-ualue ’x?)

4.3.6.3.2 Output objects

Output objects in Z are suffixed with a T character and traditionally fulfil two
functions: they are used to report outcomes, with a success message or an error report
and they are used to pipe values between the two schemas ofa composition, where the
output of the first schema - say name! - is the input value -here name? - to the second.
Though not usual, it is legal to treat an output object as a value that can be used in
predicate clauses; consequently output objects, once instantiated, are manipulated as

WORM 10, they will generally be bound to a value at some point and may then be used

as named values.

10 Write Once Read Many

-95-

4.3.6.3.3 Local objects

Local objects are also exhibit WORM functionality, but their scoping is rather different
from all the other classes. Whereas a declaration in one schema ofthe topology
introduces an object to all the predicate clauses ofthe executable object, a local object is
defacto local and is not visible in any other schemas in the topology. To implement this
alternative scoping, a let expression is constructed when the schema object is defined,
which declares a local object with the predicate ofjust the defining schema as its body.
Again using the topology of, a local declaration of an object L2 in schema S2 will be
reflected in the local and expanded predicate as in Figure 4-14

M- Mi . "lxl

>(sch-predicate 8§2) 23

(LET ((L2)) 1p2)
>(build-predicate S2)
(and
(let ((12))
>2)
(and
(and 'p4 (and (and 'p5 (and) (and) (or t) (not (not t)))) (and) (or t)
(not (not t))))
(and) (or t) (not (not t)))
>

Figure 4-14 : Local declaration incorporated into a schema predicate

In this situation, predicate P2 would reference the local object L2, which would not be

visible to other elements ofthe expanded predicate.

4.3.6.3.4 State objects

What are described as state objects are those data components that are declared in the
state schema declarations and which are constrained by the state schema predicate, or
invariant. During an execution they also represent named values and are not updated
except by the process of promotion; it could argued that the promotion only occurs after
successful execution and that consequently is no more than an alternative, more

convenient mechanism for the binding of new values, prior to a further execution.

-96-

4.3.6.4 Collecting inputs

The set of named inputs is generated as a by-product of the analysis of the namespace;
each has already been identified as an input and categorised as such when the individual
schema object is created. Each is presented to the user in a dialogue, see Figure 5-13,
and a value is assigned to each by the user. These values, rather than the objects

themselves, are constructed into a list that is the argument to the function application.

4.3.6.5 Evaluating the executable object

The key aspect, actually executing a schema, is simply a matter of applying the lambda
expression that is the executable object to the actual parameters collected from the user.
The environment of this application is that constructed from the declared objects. This

application will yield a truth value, which is reported to the user.

4.3.6.6 Reporting the results of the evaluation

If the evaluation succeeded, any outputs are reported to the user, together with any other
objects selected for display. Usually these will be state objects and in some executions,
the post-state will differ from the pre-state. When this occurs, the user will be offered

the option of promoting the post-state values, as in Figure 5-5.

Provided that the state schema was included in the schema that was executed, if all the
post-state values are promoted then state data will remain self-consistent and valid;
should some, but not all, of the values be promoted, this consistency is not guaranteed.
However the invariant is executed automatically at the end of the promotion dialogue
and should an inconsistent state exist, it is reported to the user, as demonstrated by

Figure 5-6..

4.3.6.7 Management of the ongoing state

The state space under consideration here comprises the data objects declared in the state

schema; these are the objects that represent the current state of the model and as such

-97-

should be both updateable and persistent. They constitute the data that is global 7o an
animation and are explicitly managed by the animation environment, primarily to

ensure the self-consistency explicit in the state schema .

The current bindings for the state objects can be examined using the Binding Browser
and these bindings can be modified by the user; because this introduces the possibility
of an inconsistent state, the invariant is automatically executed after this editing, and

violations reported.

The opportunity for establishing an inconsistent state is supported, since the reasoning
with a specification may well include investigation of exactly that point — what

constitutes an invalid state, with respect to any particular invariant.

Though it remains possible to access the command line, with the consequential
possibility of a corrupted state, this is considered unlikely and would in any case be

recognised by the mechanism described above.

4.4 The development of a developer’s interface

To a great extent, the design of an integrated, cohesive interface is not feasible until it is
known what functionality is to be interfaced; as perhaps the main focus of the
development has been to investigate precisely that — what functionality can be
implemented — then it is only now that the development of such an interface might
reasonably be undertaken. However the inability to predict the scope of that
functionality and how it might be used cannot preclude the provision of some
mechanism to access it; consequently the interface as is implemented can best be
thought of as a developer’s interface, providing access to the functionality but with little
attention having been paid to either its ergonomics or aesthetics. Similarly, the range of

ways that the implemented functionality is used could not readily be predicted and so

-08 -

the intention has been to provide facilities that are both non-prescriptive and non-

proscriptive in the way they are used.

While the actual appearance of the interface presented to a user might be considered ad
hoc in style, it does remain simply an interface; all the functionality is available at the
command line interpreter and more importantly within the ZAL language itself. For
example, the ability to execute the invariant as discussed previously is accomplished by
a simple function call to the execution function execute; this call can be made at the
command line or it can be constructed interactively, together with its arguments, by the

interface.

4.5 Optimisations

An investigative development such as this will not generally consider the optimisation
of the performance as a concern; indeed this should not figure as a consideration of the
specifier, who is free to use the full expressive power of the Z notation. Notwithstanding
this, there may arise situations where the optimisation of the transformed ZAL version
of a specification may render it feasibly .executable whereas the un-optimised version is

not.

Empirical evidence suggests that the mechanism for resolving the equality testing issue
(see Section 4.3.4.2), the ZAL operator eqz, consumes significant resources of the
platform on which the animation runs. The majority of individual predicate clauses use
the equality operator and so it is a prime candidate for optimisation. Furthermore it is
implemented as a macro which entails a large expansion whenever it is used, so some
research has been undertaken to establish the feasibility of such optimisation. The
strategy ultimately devised involves a series of optimisations, which are increasingly
aggressive but decreasingly safe in their effect. These optimisations are managed as a

user-configurable safety level, which controls which of the optimisations are invoked.

-99-

4.6 Other issues of implementation

Though not yet necessary, the ability to model non-determinism has been demonstrated
through the provision of a non-deterministic choice operator, choose, after [Graham
1994], but this potential is not exploited in the system reported upon here, though it
forms the basis of non-deterministic-pick - see Appendix E (choose); this
was developed as an alternative to pick, as used in Section 5.3 (page 135), but its

usefulness is limited and it remains of marginal relevance at this stage of the project

4.7 In conclusion

The realisation of the necessary animation functionality was an incremental exercise
that involved only limited backtracking to correct inappropriate design decisions; the
decision to delay the expansion and optimisation of the executable schema object —see
Section 4.3.5- was the only occasion which necessitated significant revision and the
current realisation is a tribute to the effectiveness of exploratory programming as an

approach to the resolution of ill-defined and ill-understood problems.

The functionality that has been achieved can now be examined through a number of

case studies.

-100 -

5 Case Studies

This section will explore the use of ZAL in a variety of problem domains and also in a

variety of styles of use. The three studies are :

a traditional data processing area, with a well-understood problem — that of a
lending library. This has been chosen to demonstrate the capabilities and
characteristics of the animation: in particular, an indication of the breadth and
complexity of the Z expressions that can be executed, the support for elements
of the schema calculus and the mechanisms for modelling generic and axiomatic
definitions. The interaction might be typical of that involving the system
specifier and the client, where the purpose would be to demonstrate the
behaviour implicit in the specification — i.e. requirements validation;

a safety-critical, monitoring context, involving a water-level monitoring system
with its associated controls and alarms. The interaction demonstrated here is
more typical of the developer of the specification exploring a complex scenario
and using the animation to confirm that the recorded Z notation does in fact
express the correct logic/behaviour — this would be a requirements formalisation
process. This study also demonstrates the use of a scripting interface that could
be developed to provide facilities to manage and administer test suites; and

an analysis of a development in which the ZAL language is used as if it were a
specification language — i.e. the specification is developed using the ZAL
animator. Though this could be considered an inappropriate approach, given the
expectation that the ZAL version has been generated from the Z, it will be
shown to be consistent with the more usual usage. The classification of this
study is less straightforward as it does not typify a Software Engineering activity
per se; it originated as a genuine third-party undertaking, where the ZAL
animator was being used in an unexpected way. That usage though is compatible
with the stated objective “to make the specification more accessible”, provided
this includes the process of specification development; it also coincides with the
contention that the use of the animator is not prescribed — the expectation is that
it will be used within the REALIZE process, but other possibilities are not

excluded.

Mention should be made of the source and status of the ZAL code that is being

demonstrated, to clarify the purpose served by its presentation; rather than present just

- 101 -

the final version of a development, some attention is paid to the process of refining the
specification. As a consequence, successive versions of a schema may be introduced in
support of some particular point and rather than confuse the picture with the detail of
using TranZit to edit and transform, the Z version of some of these is omitted in the
interests of clarity. In each case, the decision as to what to include has been governed by
the need to expose the performance of the animator in a given situation, so that in the

schemas suffixed ‘2°, the ZAL code itself may have been edited.

The style of the animation in each case is interactive, which reflects the planned use of
the tool. A consequence of this decision is that the scenarios that are explored in any
animation are chosen by the user of the animation to confirm or explore some particular
behaviour or situation; no mechanism currently exists for ensuring or managing more

exhaustive testing.

5.1 A Lending Library

The library system examined here derives originally from [Diller 1990] and models a
lending library which records the location and status of the texts in stock and also the
members of the library — the borrowers. The primary purpose is to demonstrate the ZAL
animator operating in “normal” mode — that is, demonstrating the functionality of the
specification to the sponsor actor to confirm that the behaviour as formally recorded is

consistent with user intention.

The original Z is much the best description of the behaviour we seek to model; it is
reproduced here, together with rather extensive comments, and contrasted with the ZAL

code that models it.

-102 -

[BOOK, COPY, PERSON]

The given sets of'a specification are populated as required; type-checking would be
their principal use in the animator, but that function is achieved by TranZit.
Consequently it is sufficient to instantiate values to the data components of (usually) the
state schema. Here it is also necessary to bind the constant lim it to the value 6. This

can be done with a ZAL script or interactively using the tools ofthe ZAL Developer

Interface.
limit : N
limit = 6

+ Binding Inspector

Limit)
previous values

current value

a 3
d documentation
r (text) r do notshow value The maximum number of books
allowed to any borrower
Bind New Value | Close _J

Figure 5-1 : The Binding Inspector

In fact, values have been bound to each ofthe data components of the state schema
Library, and these can be browsed and edited using the Binding Browser and Binding

Inspector; they can also be echoed at the ZAL command line, thus

- 103-

zal: stock

{'c1 'c2 'C3 'C4 'C5 'C6 'C7 'C8}

zal: shelved

{'c1 'c2 'Cc3})

zal: borrowed

{'C4 'C5 'C8}

zal: loans

[#('C4 'BOB) #('C5 'ANN) #('C8 'IAN)]

zal: members

{'ANN 'BOB 'IAN 'TED 'TOM)

zal: keptaside

('cé6 'C7}

zal: keptasidefor

[#('C6 'CAROL) #('C7 'PAUL)]

zal: isacopyof

[#('C1 'CATCH22) #('C2 'SPOT) #('C3 'CATCH22) #('C4 'BLEAKHOUSE) #('C5 'SPOT) #('C6
'COCKATOOS) #('C7 'THOMASTHETANKENGINE) #('C8 'SPOT)]

zal: hasreserved

[#('BOB 'SPOT) #('TED 'BLEAKHOUSE) #('TED 'SPOT) #('TOM 'BLEAKHOUSE)]

zal:

These values are a self-consistent set of data that satisfies the system invariant as

represented by the predicate of the state schema.

The function numberBorrowedBy is defined in Z axiomatically, using a
quantification; the quantification serves to declare the domain of the function. The ZAL
code reflects the totality of the function by not constraining the argument to
membership of some set of values; this construct can be dispensed with when modelled
by a more natural function definition. It should be noted however that the precision and

clarity of the Z definition are captured in the equivalent, so that

Vp : PERSON ¢ NumberBorrowedBy p = #((loans™) ({p} D)

becomes

(defun NumberBorrowedBy (p)

(card (rel-image {p} (inverse loans))))

-104 -

The state schema for the library can now be defined.

-Library
stock, shelved, borrowed, keptAside : P BOOK
members : P PERSON

loans : COPY - PERSON

isACopyOf : COPY — BOOK

hasReserved : PERSON <> BOOK
keptAsideFor : COPY - PERSON

stock = shelved U borrowed U keptAside
disjoint <shelved, borrowed, keptAside>
borrowed = dom loans

keptAside = dom keptAsideFor

ran loans < members

dom hasReserved < members

dom isACopyOf = stock

¥V m ! members ¢ NumberBorrowedBy m < limit

The correspondence of the ZAL version of this schema can be readily recognised; each
predicate of the Z version has a matching predicate in ZAL, but in the prefix notation

perhaps more familiar to Lisp users, thus

(SCHEMA Library
: PREDICATE
(and
(eqz stock (unionz (unionz shelved borrowed)KeptAside))
(disjoint <shelved borrowed KeptAside>)
(eqz borrowed (dom loans))
(eqz KeptAside (dom KeptAsideFor))
(subset (ran loans) members)
(subset (dom HasReserved) members)
(egz (dom IsACopyOf) stock)
(forall m members
(\<= (NumberBorrowedBy m) limit))

(not-mem nobody members)

)

-105-

The self-consistency can be demonstrated by the original technique of executing the
state schema using the Execution Tool - see Figure 5-2 : Executing the State Schema;

this involves selecting a particular schema (here Library) and clicking the Run button

Allegro CL 3.0.2 [e:\acl302\allegro.img] 1nin -MX|

File Edit Search Window Package Tools Builder Preferences Help

Schema
Library Cl
View

Bitk 1* *

A execution

%ZT m Close

LIBRARY
T*.

Okay

Figure 5-2 : Executing the State Schema

We will consider borrowing and returning, as well as querying the system. Borrowing a
book, or more precisely a copy of'a book, is straightforward; the copy is either shelved
or has been kept aside for that borrower in response to a reservation request. In both

cases the sets are “updated” using the set difference operation.

- 106-

-BorrowBook:

ALibrary
c? : COPY
p? : PERSON

pP? € members

NumberBorrowedBy p? < limit

(c? — p? € KeptAsideFor Vv c? € shelved)
loans' = loans U { c? + p?}

HasReserved' = HasReserved

KeptAsideFor' = KeptAsideFor \ {c? — p?}

shelved' = shelved \ {c?}

This is modelled by the ZAL schema

(SCHEMA BorrowBook

)

There are a number of components of this operation schema that were not found in the
state schema, which consisted solely of a : PREDICATE declaration; the : INCLUDE

tag is used to support schema inclusion, in this case the ALibrary schema; the : ? tag

identifies the inputs to the schema, here c? and p? for the copy and borrower

respéctively; and the : SHOW tag controls the feedback to the user after the execution.

:INCLUDE delta-Library
:SHOW (loans KeptAsideFor Shelved)
:? (c? p?)
:PREDICATE
(and
(mem p? members)
(\< (NumberBorrowedBy p?) limit)
(or
{mem #(c? p?) KeptAsideFor)
(mem c? shelved)
)
(eqz loans' (unionz loans ([#(c? p?)]))

(eqz HasReserved' HasReserved)

(eqz KeptAsideFor' (setsub KeptAsideFor (#(c? p?) }))

(eqz shelved' (setsub shelved (c?}))

-107 -

Inputs are collated interactively as the schema is executed, as can be seen from Figure

5-3 : Collecting Inputs.

Allegro CL 3.0.2 [e:\acl302\allegro.irng]
File Edit Search Window Package Tools Builder Preferences Help

Schema
|Borrowbook i input value P? O 1X|
View g
Bjck .*
input to schema
Close Borrowbook
TRAN21T
Cancel Accept
:Lisp-Frame-Window Package: Zal (a LISP-FRAME-WINDOW)

Figure 5-3 : Collecting Inputs

- 108-

The successful execution -see Figure 5-4 - returns True and the values of the data
objects are displayed -Figure 5-5; there is the opportunity after a successful execution to
promote the decorated values and thereby to model a sequence of actions in a style that

mimics somewhat schema composition.

Allegro CL 3.0.2 [e:\acl302\allegro img] JaJx]
File Edit Search Window Package Tools Builder Preferences Help

Execution tool HE|E3

Schema
|Borrowbook 33
View
v execution
Bid
BORROWBOOK
@
I Okay

:Message-Dialog Package: Zal execution (a MESSAGE-DIALOG)

Figure 5-4 : Successful Execution

- 109-

-i Allegro CL 3 0 2 [e:\acl302\allegro img]

File Edit Search Window Package Tools

Schema Execution Feedback

- Shown objects

~ Object

Keptasidefor
Loans
Shelved

other (global) objects

Outputs

:Fb Package: Zal (a DIALOG)

Figure 5-5 : Execution Feedback

Builder

Preferences

value
[#('C6 'CAROL) #('C7
[#('C4 'BOB) #('C5 'Ah
{aCl 'C2 'C3}

Help

post value
{{'C6 'CAROL) (C

{(Cl 'BOB) (‘'C4 E
£C2'C3}

Promote

Promote All

Close

oFjx]

Promotion of all the post-state values will ensure a consistent state, provided that the

state schema has been included, the predicate of which validates the state objects; if not

all the post-state values are promoted, the possibility of an invalid state exists. This can

be identified by the automatic execution of the state schema to provide that validation,

as shown in Figure 5-6.

-110-

P Execution Feedback

Shown objects

Object value post value Promote
Keptasidefor [#('C6 TED) #('C7 'BC {('C6 TED) ('C7 E
Loans #('C4 'BOB) #('C5 'Al {('C1 BOB) ('C4 E
Shelved iSSSSHIH
Promote All

other (global) objects

jl Value
v Warning El

Y The invariant is no longer true

Outpu
Okay

Close

Figure 5-6 : Automatic warning of state inconsistency, after partial promotion

Returning a copy ofa book also has two situations to consider. Ifa book has been
reserved, when a copy of'that book is returned, it is kept aside for the borrower who
requested it and that particular reservation request is deleted. If it is not reserved, the
copy is shelved once again. Regardless of reservations, the loans function must be

updated.

Depending on the style of the Z used to describe this operation, at least two approaches
are possible to identify the particular borrower for whom this copy will be kept aside;
the Z below uses an existential quantification to both establish ifthe returned text is a

copy of a reserved book and then to select a borrower from the domain of HasReserved

- 111 -

-ReturnBook

ALibrary
c? : COPY
p? : PERSON

c? — p? € loans
loans' = loans\ {c? +— p?}
(3 m : members ; b : BOOK e
IsACopyOf c? = b A
HasReserved m = b A
KeptAsideFor' = KeptAsideFor U {c? — m} A
shelved' = shelved A

HasReserved' = HasReserved \ {m — b}

(-3 m : members ; b : BOOK ¢
IsACopyOf c? = b A
HasReserved m = b A
KeptAsideFor' = KeptAsideFor A
shelved' = shelved U {c?} A

HasReserved' = HasReserved

This translates and executes as

-112-

(SCHEMA ReturnBook
:INCLUDE delta-Library
:SHOW (loans KeptAsideFor shelved HasReserved)
:? (c? p?)
: PREDICATE
(and
(mem #(c? p?) loans)
(eqz loans' (setsub loans ({#(c? p?) }))
(or
(and
(exist m members b (ran IsACopyOf)

(and
(equalp (title c?) b)
(mem #(m b) HasReserved)
(eqgz KeptAsideFor' (unionz KeptAsideFor {#(c? m)}))
(egz shelved' shelved)
(eqz HasReserved' (setsub HasReserved (#(m (title c?))})))
(and
{ not

(exist m members b (ran IsACopyOf)
(and
(eqz (applyz IsACopyOf c?) b)
(mem #(m b) HasReserved))
(eqz KeptAsideFor' KeptAsideFor)
(eqz shelved' (unionz shelved {c? }))

(eqz HasReserved' HasReserved)))

)

The non-determinism of the Z, whereby it is not specified for which reserving borrower
the returned book is kept aside, is not modelled in the ZAL translation; the animation
will in fact allocate the returned book to the alphabetically first member that has
reserved a copy and the updating predicates for subsequent ‘valid’ reservers that are
tested will fail, as the post-states have already been bound to reflect the success of the
first valid reserver. Somewhat cleaner is to check for the book title as a member of the
range of the reserved books; this test is very much clearer, but the mechanism for

selecting the “winning” reserver is much less obvious. A valid approach is to choose the

“first’ reserver according to some criterion

-113-

(SCHEMA ReturnBook2
:INCLUDE delta-Library
:SHOW (loans KeptAsideFor shelved HasReserved)
:? (c? p?)
:LOCALS (winner book-name)
:PREDICATE
(and

(eaz book-name (title c?))

(eqz winner (lst-reserver book-name))

(mem #(c? p?) loans)

(eqz loans' (setsub loans {#(c? p?) }))

(or

(and
(mem book-name (ran HasReserved))
(egz KeptAsideFor' (unionz KeptAsideFor (#(c? winner)}))
(egz shelved' shelved)
(eqz HasReserved' (setsub HasReserved (#(winner book-name)}))
)
(and (not-mem book-name (ran Hasreserved))

(eqz KeptAsideFor' KeptAsideFor)
(eqz shelved' (unionz shelved {c? 1}))
(eqz HasReserved' HasReserved)
)

)

This schema introduces another tag :LOCALS which provides for the introduction of
local objects. The detail of the choice of reserver is now abstracted into the function 1st-
reserver; this abstraction will allow more sophisticated models of reservation, probably

involving a sequence of reservers, to be introduced.

-114 -

The Z and ZAL versions of the two query schemasWhoHasBook and WhoHasCopy

are presented as a screen captured from TranZit and ZAL running in individual

windows (Figure 5-7).

1JHiiMHMIIMaB
File Edit View Symbols
-WhoHasBook——

H Library

b? : BOOK
pi PERSON
pl = {m . members | 3 ¢ .

IsACopyOf ¢ = b?}

-WhoHas Book2—

HLibrary

b? : BOOK

pi PERSON

p! = ran ({b?} 0 IsACopyOr D
aWhoHas Copy——

S Library

c? COPY

p! PERSON

(¢? ¢ dom loans A p! = loansCe?))
(¢? ¢ dom loans A p! = nobody)

/% end of specification */

COPY =

Allegro CL 3.0 2 [e:\acl302\oltegro img]

Tools Notation File Edit Search Window Package lools Builder Preferences
(SCHEMA WhoHasBook
:INCLUDE psi_Librarv
2 b2
n members 'b {b?}
' (exist ¢ (dom IsACopyOf)

loans(c) = m A (and
(mem #(c b) IsACopyOf)
(mem ¢ (dom loans))

) (equalp m (applyz loans c))

(SCHEMA WhoHasBook2
:INCLUDE psi_Library

<l loans)
:? b?
1 pt
:PREDICATE
(eqz p! (ran (domres (rel-image (b?) (inverse isacopyof)) loans))
)
)
(SCHEMA WhoHasCopv
:INCLUDE psi_Library
PREDICATE
(and
J (mem c? (dom loans))
(eqz p! (applyz loans c?))
(not-mem c? (dom loans))
(eqz p! nobody)
" " " 5
gt M gln|_x|| gl IxJ ginlj

Lisp-Frame-Window ~ Package Zal (a USP-FRAME-WINDOW)

Figure 5-7 : The Toolset Components in Parallel

inj_xj
Help

_folx|

There are two versions ofthe schema WhoHasBook; the first uses a set comprehension

to identify borrowers ofa particular title and the second utilises function inversion,

relational image and domain restriction to achieve the required functionality. This

contrast in styles is examined in a little more detail in Section 5.3 .

- 115-

It can be seen from this exploration that the ZAL engine can indeed animate a
specification in the conventional ‘data-processing’ area; this is certainly to be expected,

but the ability to execute quite complex Z expressions, such as

I m : members ; b : BOOK e
IsACopyOf ¢c? = b A
HasReserved m = b A
KeptAsideFor' = KeptAsideFor U {c? = m} A
shelved' = shelved A

HasReserved' = HasReserved \ {m + b}

or

p! =ran ({b?} (isACopyOf~™ D < loans)

is perhaps noteworthy.

-116 -

5.2 The Water Level Monitoring System

Introduction

The second case study concerns requirements validation in the domain of high integrity,
safety-critical systems, where the use of formal methods has been most widely adopted.
A Z version is produced of a published VDM specification for a water-level monitoring
system (WLMS), which is then reasoned with, by inspection but more rigorously by
animation; this exercise was part of a larger enterprise, which reports upon the
REALIZE method referred to in Section 3.4. The safety properties of the system are
validated by animation. In particular, this example illustrates its use in conjunction with

another component of the toolset, namely TranZit.

The principal area of interest here is the automatic production of the ZAL code and its
execution, but a brief reprise of the REALIZE method and the toolset may be helpful to

contextualise the particular process on which we are focusing.

The REALIZE method is a framework for the interaction between requirements
acquisition, requirements formalisation and requirements validation, and as a protocol
for the integrated use of the TranZit and ZAL toolset components; it is located in the
standard software lifecycle model at the requirements analysis phase. After the initial
requirements capture, the specifier formalises the requirements in the Z notation using
the facilities provided by the TranZit tool. Once this is complete, the specifier can
validate these requirements. The specifier uses the TranZit tool to produce an
executable representation of the captured Z specification in the ZAL language. This
representation can then be executed by the specifier within the ZAL animation
environment, for the purposes of demonstrating properties of the captured specification

to members of the stakeholder team.

-117 -

5.2.1 The Z specification used in the case study

The WLMS is a typical, though small-scale, safety system, in that it is a real-time event-
driven system. [Jackson and Stokes1993] specified the system using VDM and
implemented it in Pascal. For this case study it was translated into Z. It was decided to
translate the parts of the system which monitor inputs and use the readings to specify
the state of the pump switch and an alarm signal, but to ignore (for simplicity) the parts
of the system which are concerned with display of the state on a monitor. In its overall
structure, the VDM specification and its Pascal implementation consist of an
initialisation operation and a main operation which is run repeatedly. The main
operation takes in inputs from a clock, water-level sensor, control buttons, etc., and
specifies values for state variables and outputs such as a switch to control the pumps
and an alarm which gives an audible warning when problems occur in the system. The
main operation uses a number of operations which deal with parts of the system, and in
some cases these are subdivided further. The system can be in one of four main
(operating) modes. It begins in standby mode; then if a reset button is held down for a
certain time and the water level is within its correct limits, it changes to operating mode,
with the pumps running. If the water level is found during operating mode to be outside
the correct limits, it changes to shutdown mode. If the water level then recovers within a
certain time, the pumps do not stop and it returns to operating mode; if not, then the
pumps are switched off and standby mode is entered. There is a test mode which is
entered from any other mode by holding down a test button. Another state variable
records the failure mode. This is normally allok, but becomes badlevdev if the

device for monitoring water level fails, or hardfail if other hardware fails.

The production of the specification was strictly a translation process from VDM to Z
which demonstrated some differences in the styles of specification encouraged by the

two languages. The basic types and constants in the VDM specification were translated

-118 -

in a straightforward manner to free types and global variables in Z. However, the
structured types in the VDM were translated simply using inclusion of state schemas.
Real numbers are used in the VDM specification for water levels and times. As
mentioned by [Jackson and Stokes 1993}, floating point implementations of real
numbers present problems for formal verification. For this reason, the basic Z language
and toolkit [Spivey 1992] did not originally include real numbers, though these have
been added by [Valentine 1993], and integer types were used in the Z specification here.
In practice, a time is a number of clock ticks, and the water level in this system is
derived from a differential pressure which can take only 256 discrete values, so the use
of integers is quite natural. The specification was also simplified by putting many small
schemas into a few large ones, and by avoiding the use of structured types
(implemented by schema inclusion) in the state. The complete resulting specification is

shown in Appendix C (WLMS in Z), though much of it is also included here.

A number of errors were identified during the process of simplification; these had to be
corrected to make the simplified structure possible and to allow animation. An error in
the operation to set a new state when inputs are read by the monitoring system in
standby mode was noticed by [Jackson and Stokes 1993] if buttons were pressed and
released at certain times, the operation required the operating mode variable to have two
different values. This type of error is not possible in *‘if-then-else" style of Z which was
adopted to translate the implication connectives used in the VDM to specify the values
of variables, because the conditions under which different values are specified are
orthogonal under this style of Z. The operation which determines the state of the alarm
(silent or audible) in the original specification contained a precondition which required
that the power was on and the hardware had not failed. This was not checked when the
operation was included in the main operation function (VDM) or schema (Z). This

results in an operation with a predicate which cannot be satisfied by any values of the

-119-

state variables when the precondition fails. In the simplified version, a third value
undefined was introduced to allow animation to continue when the precondition
fails. In the original specification, the state variable waterlevel was not uniquely
determined from the input pressure diffPress? if the latter had one of its extreme values
0 or 255 which should never occur in normal operation. This non-determinism was not
serious because the range of allowable values caused no problems in the rest of the

specification.

2

A number of misprints were introduced in the translation from VDM to Z. A’ -
symbol was omitted before the test to check that the water level was correct in the
schema which sets the new operating mode. This was noticed when the Z was translated
to ZAL, but was left in to demonstrate that it could be detected by the animation. The
water level was not determined correctly from the input pressure because of a missing

zero in a number used in the calculation. This error was also not corrected.

5.2.2 Validation

Before detailing the animation of the specification, brief consideration is given to the
issues involved in animating specifications for safety-critical applications. Whatever
checks and formal static analysis have been carried out on safety-critical software,
dynamic testing of the system as implemented is essential to produce evidence that the
software causes the target computer and plant to behave as intended. Testing of safety-
critical software uses the same techniques as for non-critical systems, but the whole
process is performed within a more rigorous, quality-assured framework. This
comprises part of the safety case for the system. This requires that the tests performed,
the inputs and output results, are all documented and placed under change control. Test

definitions and coverage analysis are required, for example, by DO--178A for critical

- 120 -

and essential functions. This means checking the test cases to discover which aspects of

the requirements are confirmed by successful execution of each test [Pile 1991].

However, animation is not implementation, and its purpose is both to find errors in the
formal specification and to identify problems in the informal requirements. Validation
at the requirements phase of safety-critical software is much less well understood than
the testing of implementations, and different approaches are still under development.
There is as yet no standard, agreed method, but usually a collection of techniques
borrowed from other kinds of safety-critical engineering is employed. Test cases for the
requirements phase would be generated using standard safety analysis techniques such
as: Event-tree analysis; Fault-tree analysis; Failure mode effects analysis (FMEA),
Failure mode effect and criticality analysis (FMECA); Hazard and operability studies
(HAZOP) [Pile 1991]. Given the constraints of the exercise being described,
significantly fewer, if any, iterations through the cycle and versions of the specification
would be expected and very little change to the specification is reported here, beyond

the identification and correction of errors, including those described earlier.

5.2.3 Animation

There follows a demonstration of an animation that was used to investigate the
behaviour of the system as specified; the brief commentary guides the reader through

the process.

Once the complete specification of the WLMS has been syntax- and type-checked by

TranZit, the transformation engine can be used to produce the ZAL executable version

(Figure 5-8)

-121-

File Edit View Symbols Jools Notation

mNormal Operation-
MonitorVar?
AStoredData
Control Signals!
GetNextMode

AlarmControl

GetOutputs
time' = timeNow?
Clet level == levelLowerCal +

((diffPress? * 103803 - 4850'

Analyser and Transformation System
Syntax Analyser

l(D Maximum Number of Syntax Errors Reported

f~ Report Undefined Functions |7 Enable Type Checking

Transformation System

1? Transform 2 to 2AL
I” Write to Clipboard P? Write to File

wlmspap.zal

waterlevel =
Start Cancel
if diffPress? 0 then
else if diffPress? = 255 then level UpperCal + 1
else if level < level LowerCal then level LowerCal
else if level > level UpperCal then level UpperCal
else level)
watchdog! if watchDoglime < watchdogtimeout then operate else shut
step = timeNow? - time
J
i*Bstart | iff Microsoft Word - scree... || <3 TranZit - C:\MYDOC... ~ TranZit File Loader m

Figure 5-8 : The Transformation Process

-122-

ifl

07:08

This can then be used by the ZAL system to interactively investigate the normal

operation ofthe WLMS, as specified in the schema NormalOperation

On entering the ZAL environment and loading the executable version of the

specification, the "Execution Tool" is invoked (Figure 5-9).

Allegro CL 3.0 [C\ALLEGRO\allegro.img] mmm
File Edit Search Window Packages lools Builder Preferences Help
10 BHISHHE3 IgjolicgI \nm\n\ HaHUB1lBS a *
oplry- -1DIxI
T yExeculion tool HHO .
Loa ew-bits.lsp" 0
Loa Schema
1f ilWneu-bits.lsp"
Res nitialise
Loa
3 £ alWz.lsp"
Res View
T [Rmn , I
> Back
;7 Loa IkL 1 4, execution E
#e"c :\
;; Loa INITIALISE
35 17 <f-0 True
#2nc :\ Vr&’//l Close
;i Res
T
> (ex)
EX
>

Picture-Button :ZAL-RUN-BUTTON

eA8Start 11"?'Allegro CL 3.0 [C:\A... @@1 12:45

Figure 5-9 : The Execution Tool

- 123-

Allegro CL 3.0 [C\ALLEGRO\allegro.img] wnc

File Edit Search Window Packages Tools Builder Preferences Help

MUEEm lam\n\H3EHTI
M P Ili

Loa iew-bits.lsp"
Loa
ilWneu-bits.lsp"
Res
Loa
I input value TIMENOW?
Res View
:: Loa 7AL
#P"c:\
;i Loa
55 18 (]: 2500 inputto schema
#P"c:\ 2100
;i Res 2050 Momtorvar?
Cancel Accept
:Get-Arguments Package: Zal (a DIALOG)
i*Start | Microsoft Word -scree.Allegro CL 3.0 [C:\A ... & S'ES 01:44

Figure 5-10 : Default input values

First, the Initialise schema is selected in the drop-down schema menu, and the schema is
executed, by clicking the Run button, to give initial values to the variables alarm,
shutdownSignal, timelnMode etc. The executed predicate evaluates to True. Then the

NormalOperation schema is selected (Figure 5-11).

- 124-

File Edit Search Window Packages Tools Builder Preferences Help

EJiDi*iHiBUi itM al iqjqibji \nm \d u & frm itinpi#

BFS39 Execution tool . JaJll-]
;i Loa ew-bits.lsp” d
Schema
il\\new-bits.lsp"
Res
Loa
al\\z .lsp"
View
<=1 Pung
Baa

;i Loa ZAL
#P"c:\

Loa
55 18 <fr> Close
;i Res OPERATION
T
> (ex)
*E»
> zl

Lisp-Main-Window Package: Zal (a LISP-MAIN-WINDOW)
Startjlt™Allegro CL 3.0 [C:\A... IjyMicrosoft Word - Docu...| 08:29

Figure 5-11 : Schema NormalOperation

The ZAL button opens an editing window to the executable version of the selected

schema, and the TranZit button does the same for the original Z (Figure 5-12).

XA]]cgm CL 3.0 [C:\ALLEGRO\allegro.img]
File Edit Search Window Packages Tools Builder Preferences Help

xi iDi*jHi@i<8l i“*iai inlaidH3BH1 Bf1MB a
T- - > AMxj]
lNOl‘malOPel‘aﬁOH—£ wlmspap.zal Package: zal
| (SCHEMA NormalOperation ' D 111
MonitorVar? :INCLUDE (MonitorVar? delta_StoredData ControlSignals! GetNextMode AlarmCon
:PREDICATE
AstoredData (and

(eqz time' timeNow?)
(let ((level (+ levelLowerCal

i !
ControlSignals! (floor (* (- (* diffPress? 103803)485010)
(— levelUpperCal levellLowerCal)) 2550000))
GetNextMode (eqz waterlevel
(if (eqz diffPress? 0) i
AiarmControl (— levelLowerCal 1)
(if (eqz diffPress? 255)
(+ levelUpperCal 1)

Getoutputs (if (\< level levelLowerCal)

levelLowerCal
------------------- (if (\> level levelUpperCal)
time' = timeNow? d J
(iet ievel == ievei LowerCal +

((diffPress? * 103803 - 485010) * (levelUpperCai - levelLowerCal)) div 2550000
waterlevel =

if diffPress? = 0 then levelLowerCal - 1

‘Wize Package: Zal Path c:\mydocu1\research\papers\wims\wimspap.zed 228 lines and 8,223 characters Last modified
Saturday 6 Nov 1999 at 1:37:04 PM (today) (a TEXT-EDIT-WINDOW)

jjastart [1"g"Allegro CL 3.0 [C :\A .. A 01:50

Figure 5-12 : Schema NormalOperation in Z and ZAL

- 125 -

Because NormalOperation makes reference (by schema inclusion) to the MonitorVar?
schema, running it causes the ZAL system to prompt for values of