
Prototyping Z specifications in extended Lisp.

HIBBERD, Richard B.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19788/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19788/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

REFERENCE

ProQuest Number: 10697090

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697090

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Prototyping Z Specifications in
Extended Lisp

Richard Bramwell Hibberd

A thesis submitted in partial fulfilment of the requirements of

Sheffield Hallam University for the degree of Doctor of

Philosophy

October 2001

Acknowledgements
I would like to record my profound thanks to Ian Morrey and Jawed Siddiqi of the

School of Computing and Management Sciences at Sheffield Hallam University, who

have so freely offered guidance, support, encouragement and enthusiasm throughout the

course of the project.

I would also like to acknowledge the work of Graham Buckberry, the creator of the

companion CASE tool TranZit, which work is referenced in this thesis.

I must also record grateful thanks to successive Heads of the Department of Computing

at The Nottingham Trent University, namely Professor Bob Whitrow, Dr. Ted

Ashworth, Ms Pauline Fazackerley and Professor Adrian Hopgood; they all

demonstrated faith in the eventual outcome, despite the extended timescale and

numerous contra-indications.

It is impossible to acknowledge individually all those who have been obliged to live

with the consequences of my original decision to embark on this undertaking; this

includes my work colleagues and my family, but much the greatest contribution has

been from my wife Janice Hibberd who has unfailingly supported me in this

undertaking. I cannot see that the debt I owe her can ever be repaid, but I am glad that I

now have the chance to try.

Richard Hibberd BEd MSc October 2001

For Rosie and Fraser

Table of Contents
Acknowledgements...2
Table of Contents.. 4
Table of F igures...6
Abstract..7
1. Introduction and Problem D efinition...9

1.1 The Software Crisis and palliative measures - Software Engineering as a discipline...................10
1.2 Formal Methods as a part o f Software Engineering...12
1.3 Requirements Engineering - its place in Software Engineering..13
1.4 Research obj ecti v e s .. 15
1.5 Thesis structure... 18

2 Requirements Engineering...19
2.1 Requirements Engineering - th e fundamental activities...19
2.2 Requirements elicitation..22

2.2.1 Requirements formalisation.. 24
2.2.2 Requirements validation.. 25

2.3 Formal Methods in Requirements Engineering... 26
2.3.1 The benefits of formal specification...28
2.3.2 Specification using Z ... 28

2.3.2.1 Requirements validation through proof... 30
2.3.2.2 Requirements validation through animation...30

2.4 An Introduction to the REALiZE M ethod... 31
2.4.1 The expected benefits..32
2.4.2 Support for other software development activities..33

3 The Animation of Specifications... 35
3.1 The disadvantages o f specification executability... 35

3.1.1 The disadvantages investigated..37
3.2 The advantages of specification executability.. 39

3.2.1 How ZAL manages non-executability... 41
3.2.2 The best of both worlds... 42

3.3 Achieving executability... 44
3.3.1 Approaches to the execution of Z specifications..44

3.3.1.1 A formal framework for classifying animators.. 45
3.3.1.2 ZAL in this landscape...46
3.3.1.3 Proving or Testing..47

3.4 The REALiZE Method and its supporting toolset... 48
3.4.1 The toolset components..51
3.4.2 The Edit, Transform, Execute cycle...................................... 52
3.4.3 De-coupling TranZit & Z A L .. 52

4 Realisation o f the ZAL component.. 54
4.1 General issues o f symbolic execution o f Z 54
4.2 The application domain and symbolic evaluation strategies..55

4.2.1 Particular characteristics o f this development.. 56
4.2.1.1 Towards a development paradigm (or 2) ...57

4.2.1.1.1 An illustration of a natural fit - local b indings.. 58
4.2.2 The case for C + + ... 65
4.2.3 The case for H askell... 67
4.2.4 The case for L isp ... 68

4.3 How the execution engine w orks..70
4.3.1 ZAL data objects.. 70
4.3.2 ZAL source as Extended Lisp...75
4.3.3 An error reporting regime.. 75
4.3.4 Expression level manipulations... 77

4.3.4.1 General expressions.. 79
4.3.4.2 Testing for equality and binding values.. 79

4.3.4.2.1 Execution sequence.. 80
4.3.4.3 The question of quantifiers...81

4.3.5 Schema definition... 84
4.3.6 Schema level manipulations..85

4.3.6.1 The role of schemas in Z and Z A L ... 86
4.3.6.2 Constructing the executable ob ject.. 87
4.3.6.3 Constructing the environment..94

- 4 -

4.3.6.3.1 Input objects...94
4.3.6.3.2 Output objects.. 95
4.3.6.3.3 Local objects..96
4.3.6.3.4 State objects.. 96

4.3.6.4 Collecting inputs... 97
4.3.6.5 Evaluating the executable object.. 97
4.3.6.6 Reporting the results o f the evaluation.. 97
4.3.6.7 Management o f the ongoing sta te .. 97

4.4 The development o f a developer’s interface.. 98
4.5 Optimisations...99
4.6 Other issues of implementation...100
4.7 In conclusion.. 100

5 Case Studies..101
5.1 A Lending Library .. 102
5.2 The Water Level Monitoring System...117

Introduction... 117
5.2.1 The Z specification used in the case study..118
5.2.2 Validation..120
5.2.3 Animation..121
5.2.4 Discussion...132

5.3 A Car Rental System...135
5.3.1 Discussion.. 154
5.4 Summary...155

6 Results and Conclusions.. 156
6.1 Results evaluated... 156
6.2 Future w ork...159
6.3 In conclusion.. 159

References...161
Appendix A (STL/C++ structures).. 165
Appendix B (Car Rental Specification).. 167
Appendix C (WLMS in Z)...168
Appendix D (WLMS results).. 174
Appendix E (choose)...178
Appendix F (library in Haskell)..180

Table of Figures
Figure 2-1 : Possible sources of requirem ents...22
Figure 2-2 : A sample o f requirements elicitation techniques (from [van Vliet 2000.................................... 23
Figure 2-3 : The Logical Relationship of the Toolset Components...32
Figure 2-4 : The Modularisation of Schema Execution... 34
Figure 3-1 : The REALiZE m ethod...49
Figure 3-2 : The logical interfaces of the toolset components..51
Figure 4-1 : ReserveBook in Z ..61
Figure 4-2 : generalised intersection in Z and Haskell... 64
Figure 4-3 : The Z tower of types.. 71
Figure 4-4 : ‘Natural’ I/O.. 73
Figure 4-5 : ZAL predicates.. 76
Figure 4-6 : Argument verification and error reporting... 76
Figure 4-7 : Error reporting dialogue.. 77
Figure 4-8 : Macro-expansion of an existential quantification..82
Figure 4-9 : Perfect squares defined with a set comprehension...84
Figure 4-10 : An illustrative schema topology..89
Figure 4-11: distributed conjunction and distributed disjunction in Z ... 91
Figure 4-12 : The expanded predicate of schema S I ..92
Figure 4-13 : Lambda variables are distinct from symbols of the same nam e.. 95
Figure 4-14 : Local declaration incorporated into a schema predicate...96
Figure 5-1 : The Binding Inspector.. 103
Figure 5-2 : Executing the State Schem a..106
Figure 5-3 : Collecting Inputs...108
Figure 5-4 : Successful Execution.. 109
Figure 5-5 : Execution Feedback... 110
Figure 5-6 : Automatic warning of state inconsistency, after partial promotion..111
Figure 5-7 : The Toolset Components in Parallel... 115
Figure 5-8 : The Transformation Process..122
Figure 5-9 : The Execution Tool.. 123
Figure 5-10 : Default input values.. 124
Figure 5-11 : Schema NormalOperation.. 125
Figure 5-12 : Schema NormalOperation in Z and ZAL.. 125
Figure 5-13 : Collecting input values to an included schema ... 126
Figure 5-14 : Execution outcomes displayed.. 128
Figure 5-15 : ZAL Script File test5.2.1.ZAL.. 128
Figure 5-16 : Automated execution using a script f ile ...128
Figure 5-17 : Decorated values promoted.. 129
Figure 5-18 : The Binding Browser.. 130
Figure 5-19 : Documentation Strings..153
Figure 5-20 : Feedback via the Status B a r...154

code 4-1: The roots of a quadratic in C + + ...59
code 4-2 : reserveBook in H askell...62
code 4-3 : reserveBook in L isp .. 62
code 4-4 : Unary function composition in C++... 66
code 4-5 : Function composition in Haskell and Lisp.. 67

Abstract
Much research has identified shortcomings in the Requirements Description to be the

key factor in the failure of many software development projects; the development of

formal specification techniques and notations allows the unambiguous statement of

requirements, against which an implementation can generally be verified or even

proved. While this approach will resolve many of the difficulties, it is impossible to

formally confirm that such a specification is correct with respect to the intention of the

customer; the abstraction that is characteristic of such languages can make the formal

specification inaccessible without specialist skills.

Z is one such, model-based, specification notation and this thesis reports on a CASE

tool, the Z Animator in Lisp, that supports a process of specification validation through

animation. A specification in the proprietary ZAL format, a high-level, largely

functional, executable notation based on extended Lisp, can be executed by the

Animation Engine within the ZAL animation environment. Using a graphical

environment running under Microsoft Windows™, schemas representing the operations

upon the state are animated by populating their inputs, evaluating their predicates and

reporting the outcomes to the user; these outcomes can be used to directly update the

state, prior to further executions. The animator ensures the consistency of the on-going

model state by the execution of the system invariant. The user can identify precisely

which elements of the state should be displayed and can thereby focus on the particular

areas of interest. This interaction is significantly more accessible to the customer and

can be used to explore properties of the specification and thereby confirm, or not, that it

exhibits the desired behaviour. This process validates the specification with respect to

customer intention.

Because the transformation into the proprietary ZAL language can be largely

automated, using a companion CASE tool called TranZit, the process supports the

- 7 -

iterative development of an improved specification, since at each stage the Z document

reflects the system being animated.

1. Introduction and Problem Definition
During the twenty four hours prior to writing this particular sentence, the author has

interacted with software in many ways: explicitly using an Internet browser to order

groceries for home delivery and to pay for these; to bid for and buy a birthday gift; to

listen to an audio signal streamed several thousand miles; and to view news reports

from yet further away. Other software has been used to create, to evaluate and to

disseminate learning materials to students and colleagues and to communicate with a

number of them. Implicitly, embedded software has controlled the operation of many of

the devices used daily as a matter of course: the mobile phone with its text messaging

capability; the motor car with electronic engine management and indeed software

control of almost every system from air-bag deployment to traction control; the

excellent central heating controller1 that is a plug-in replacement for an older electro

mechanical device and which provides such a natural and flexible interface; ignoring

the availability of 32-bit games consoles for entertainment, even forty year old slot-car

racing systems now have retro-fit pacing systems that will “learn” the controller

position (and consequently the voltage) for a fast lap and will provide automated

competition for the solo driver.

The lesson of this arbitrary and individual review is the observation that software

pervades the life of anyone living in the United Kingdom in the early twenty-first

century. Indeed, its impact can be somewhat more significant than ‘pervading’ as is

evidenced by the fatal effect of software in such cases as the Airbus 320 accident at

Warsaw, Poland on 14 September 1993, in which a passenger and a pilot lost their lives;

though the investigation concluded that the pilots had reacted inappropriately to data

available to them (principally regarding excessive tail wind), they were not able to

1 Horstmann Model H27
- 9 -

apply reverse thrust early enough to slow the aircraft sufficiently to stop within the

available space. This was a consequence of a software lockout which required

compression of both undercarriage shock-absorbers and which could not be over-ridden

[Main Commission Aircraft Accident Investigation 1994].

And the impact is likely to increase : [Gibbs 1994] quotes Remi H. Bourgonjon,

director of software technology at Philips Research Laboratory in Eindhoven as saying,

"The amount of code in most consumer products is doubling every two years.”

Given that software is fundamental to so many activities and that it is a product of

human endeavour, that it sometimes fails to perform appropriately is unsurprising; this

failure may be inconsequential, perhaps necessitating a re-boot of a personal computer

or expensive and spectacular, as in the case of the $500 million self-destruction of the

Araine-5, but the lack of surprise should not be taken as conferring acceptability on

such failures.

The need to minimise the occurrence of, and to ameliorate the impact of such software

failures is the motivation behind the development of methods, techniques and processes

to improve the quality - however measured - of software systems - these together

constitute the discipline that is known as Software Engineering and this document

reports on an attempt to improve the practice in one small area of that discipline,

namely Requirements Validation.

1.1 The Software Crisis and palliative measures -

Software Engineering as a discipline

The recognition of what became known as the Software Crisis - the consistent, almost

inevitable tendency of software projects to over-run development schedules and

budgets - led to much research into the causes and remedies. A succession of

- 10 -

techniques was developed that addressed, but did not ultimately resolve, the difficulties;

these include Structured Programming, the formalisation of the development process

into numerous Software Lifecycle models and Object Oriented Programming.

[DeMarco and Lister 1989] found that real benefits do accrue from these techniques, but

still the problems of late, over-budget, inappropriate software persist. [Brooks 1987]

postulates two types of software development difficulty - the essential and the

accidental. An accidental difficulty might be an insufficiently fast hardware resource

and these can normally be readily dealt with; what then remain are essential difficulties

in that they derive from the essence of the process of software development or indeed

from the essence of software. It is a highly complex, abstract activity (or product) that is

not easily reduced to a series of simple steps.

In many ways the chronology of software development is the evolution of an activity

from a “black art” comprising skills that seem to “work” insofar as they give rise to

acceptable products, into a mature discipline with formal processes and methods and a

much better defined notion of what constitutes best practice in any given problem

domain; interestingly, this evolution is analogous to the process maturity classification

proposed by the Software Engineering Institute’s Capability Maturity Model.

The software development practices of early programming undertakings, perhaps

characterised by individuals or small teams using at best the early high-level languages,

did not scale at all w e ll; the complexity of the systems being developed increased

hugely and teams of developers, rather than individuals, became the norm. To resolve

the problems that flowed from this - effectively those of any nascent technology - it

was thought appropriate to borrow from disciplines where these problems had already

been addressed and to a great extent solved. The obvious candidate was engineering,

and so was bom Software Engineering, though this still reflects more an aspiration than

-11 -

a description. However, engineering is concerned with putting scientific knowledge to

practical uses and from this perspective there is considerable doubt as to whether

software engineering, as often practised, is in any sense engineering because there is

little if any scientific knowledge that is put to use.

1.2 Formal Methods as a part o f Software Engineering

This begs the question as to what scientific knowledge is of relevance to software

engineers. One approach that attempts to provide both theoretical underpinnings and

scientific rigour is the use of formal methods. The aim of formal methods is to establish

a mathematical foundation for software development in two crucial and related areas

where precision and rigour are of the utmost importance: specification and verification.

This is achieved through the provision of a framework for the development of provably

correct programs (i.e. programs, which will not deviate from their intended behaviour

when executed). Its proponents claim that this approach has several advantages, some of

which include: the increased confidence in the reliability of the parts which have had

their correctness established; freedom from the inadequacies and limitations of testing;

and perhaps most significantly, the diminishing need for corrective maintenance.

Much as the software engineers seek to adopt the methods and rigour o f engineering, so

the advocates of formal methods draw on the philosophy of mathematics, pursuing a

deductive approach in which emphasis is placed on representing relationships in the

problem domain through formal modelling and legitimating it through rigorous proof.

An alternative stems from a scientific tradition of empiricism which involves

observation, hypothesis testing and theory building. Within the discipline of software

engineering practitioners have advocated both traditions with varying degrees of

emphasis. The proponents of a formal methods approach have tended to emphasise the

- 1 2 -

need to strengthen practitioner skills in the deductive direction [Wing 1990], whilst

those advocating a strong science/engineering tradition have argued that a purely

deductive approach is not practical for many software systems.

The larger project within which this particular research is located combines these two

traditions to form an eclectic approach that is suitable for some problems; it involves

refining the given set of requirements into a formal specification building on the

deductive tradition of formal modelling. The validation of the problem statement is

carried out by exploring the specification in the inductive tradition through its

execution.

1.3 Requirements Engineering - its place in Software
Engineering

Any representation of the Software Lifecycle will include, indeed will almost certainly

begin with, a phase entitled Requirements Engineering; the significance of this activity

can hardly be overstated, as so many case studies of “failed” software projects have

concluded that the problems began with a poor understanding of user requirements.

These would include the Olympic Information Integration system developed by IBM

for the 1986 Atlanta Olympic Games, whose project manager conceded “user

requirements were not understood” [Forberg and Mooz 1997] and the London

Ambulance Service computer-aided dispatch system, though poorly understood

requirements is but one of many shortcomings in that project [Page et al 1993]. In fact

any report of software project over-run is generally accompanied by a recitation of the

high profile failures, much as in Section 1.1, but many analyses o f the causes of the

problems have highlighted errors in the capture and description o f requirements as both

being both wide-spread and having disproportionately significant impact.

- 1 3 -

For example, [Basili and Perricone 1984], in an empirical investigation of software

errors, report that 48% of the faults observed in a medium-scale software project were

“attributed to incorrect or misinterpreted functional specifications or requirements”;

similarly [Perry and Steig 1993] conclude that 20.4% of the implementation faults are

due to incomplete or omitted requirements.

The need to manage the requirements analysis and capture has led to many worthwhile

developments both in processes and in the tools to support them; this research is

intended to contribute in some way to continuing that progress.

1.4 Research objectives

This work forms a part of a larger project, ProToRE, based at the Computing Research

Centre at Sheffield Hallam University; ProToRE2 involves:

“the provision o f Requirements Engineering technology (i.e. processes

methods and tools) that assist in representing, validating and evolving

requirements so as to deliver a high quality requirements document

represented in forms that are appropriate to the needs o f both users and

developers ”

[ProToRE 2002]

Within this broad aim, and indeed the title, can be identified the distinct strands that

form the framework within which this work is located:

• the processes and methods are essentially those that constitute the REALiZE

method, which is described in Section 2.4 and

• the tools are the software components that support the REALiZE method and

comprise

o TranZit, a full-screen editor for constructing and syntax analysing Z

specifications, with its associated transformation engine;

o ZAL, a LISP-based environment for constructing an executable version

of a Z specification - the subject of this report; and

o ViZ, an object based system for visualising executions.

2 Processes and Tools for Requirements Engineering
3 Requirements Engineering by Animating LISP incorporating Z Extensions

- 15-

ViZ represents a relatively recent area of investigation, whose development has

complemented the toolset and which utilises the functionality of the other two tools, but

which has impacted neither on the development of the other two components, nor on the

relationship between them, nor on the way that they are used. Consequently, while

TranZit will be described and discussed, and its relationship to ZAL will be examined,

ViZ is considered to be outside the scope of this report.

The broad project aim of supporting the development of high quality requirements

documentation is generic, insofar as the form of that documentation is unspecified;

nonetheless, throughout its life the project has sought to support the development of a

high quality, formal specification written in the Z notation.

The precision and absence of ambiguity of such a specification confer significant

advantages in the implementation phase of a software development, but the danger

exists that these benefits are at the expense of incorrectly captured requirements; the

question of the quality of such a requirements document may reduce to one of how well

the formal requirements match the actual requirements of the client. As a consequence,

the project has devised techniques to support and guide the development of the formal

specification and seeks to develop tools to validate that specification with respect to

client intention.

From this more concrete objective has come the motivation to provide software

components that will support the creation of a Z specification (using the TranZit tool)

and its subsequent animation (using the ZAL tool). The primary aim would be to

increase the accessibility of the specification and thereby allow its validation by the

client, but such an animator would also enhance the specification creation process, by

allowing the developer of the specification, i.e. its writer, to verify its correctness.

- 16 -

To investigate the form of this animation and validation and how it might be achieved is

the purpose of this research.

From this can be derived the supplementary questions that form the basis of the enquiry:

• how might the process of specification validation be improved by animation?

• what form might such an animation system take and how would animation be

incorporated into the requirements formalisation process?

• which aspects of the process might animation help?

• can animation facilities be provided that are sufficiently usable - i.e. that will

enhance rather than simply complicate the process?

• can the inductive style of specification development be supported, in contrast to

the more usual post hoc deductive proof offered by other tools?

• what coverage of the Z specification language might such an animation system

provide and how would the system be developed?

Almost incidentally, these questions can also be seen as leading to an alternative

perspective on the development of the animator, which sees the objective as seeking to

use animation to enhance the accessibility of the formal notation; this viewpoint lacks

the framework of formal Software/Requirements Engineering activities, but does allow

for the use of the animator in a non-prescribed way, where it would be for the users to

determine where and how it might be used. This perspective is entirely consistent with

that of the animation as an element of the REALiZE process.

These questions have indeed been investigated and this document reports on that

investigation.

1.5 Thesis structure

The remainder of this thesis reports on the research, design, development and evaluation

of the Z Animator in Lisp, or ZAL, proposed in Section 1.4, the Research objectives ;

also considered in some detail is a process that integrates the use of the animation

system in a more formal requirements capture and validation context which has been

named the REALiZE process, and which provides the context for the ZAL animator.

Chapter 2 identifies the context of this development and proposed use, by considering

the broad landscape of Requirements Engineering, identifying a role for formal methods

within that landscape and suggesting how the use of animation might enhance that role.

Chapter 3 considers the benefits of animation and explores different approaches to it;

the place of ZAL in the REALiZE method is explained.

Chapter 4 considers the realisation of the ZAL toolset component; the underlying design

is explored and its implementation considered in some detail.

Chapter 5 considers and demonstrates the use of ZAL in three separate and contrasting

situations: in a conventional data processing scenario; in a safety-critical, process

control situation; and as an interactive tool, supporting Software Engineering education.

In Chapter 6, the results of the research programme are assessed and conclusions drawn

against the objectives identified in Section 1.4.

2 Requirements Engineering
This section will review the development of Requirements Engineering as a discipline

and examine what currently constitutes good practice. It will consider the role that

formal methods have in Requirements Engineering and identify some of the benefits

and drawbacks of their use. A need is identified for improvement in the specification

validation process and a mechanism proposed and described that will allow the

integration o f specification capture and validation into an iterative cycle, leading to the

development of an improved formal specification with wider ownership among the

stakeholder team.

The importance of this activity was identified by [Brooks 1987] in his seminal paper

“No Silver Bullet - Accident and Essence of Software Engineering”, uncompromisingly

asserting

“The hardest single part o f building a system is deciding what to build. No

other part is as difficult as establishing the detailed technical

requirements No other part o f the work so cripples the resulting system

i f done wrong. No other part is so difficult to rectify later”

2.1 Requirements Engineering - the fundamental activities

Requirements Engineering as a discipline might be considered to have come of age in

1993 which saw the 1st IEEE International Symposium on Requirements Engineering,

though obviously practitioners had been working in the area prior to that event but

without the convenience of an umbrella title and the recognition of the IEEE; references

to the phrase “Requirements Engineering” can be found as early as 1979 [Alford and

Lawson 1979]. The profile of those activities that now comprise Requirements

Engineering had been increasing with the wider recognition that failure to capture

adequately user requirements was perhaps the single most significant cause o f project

failure, or at least of what have been described somewhat euphemistically as projects

- 19 -

being ’’challenged”. One benefit of this increasing interest was that a consensus

developed as to

• what the term Requirements Engineering describes and

• the broad categorisation of what activities that might be undertaken in the name

of Requirements Engineering.

The problem with a consensus is that everyone understands what it means, but no two

individuals will agree on the precise definition of that understanding; notwithstanding

this, Requirements Engineering can be thought of as “the activities involved in the

discovering, documenting, validating and maintaining a set of requirements for a

computer-based system”.

Following straightforwardly from this definition are the three principal phases:

• requirements elicitation

• requirements formalisation

• requirements validation.

The maintenance of the set of requirements is necessary because this is essentially an

iterative process, where phases are revisited; the process of validation may highlight

either an inconsistency or an ambiguity in the formal statement o f the requirements,

which would require further investigation and formalisation. In “The Perfect

Requirement Myth”, [Mullery 1996] contends

“In reality, on the major systems which are so notorious fo r disastrous

failure, an initial near-perfect requirement specification exercise, followed

by a minor maintenance activity is a myth which retains credibility through

the inability o f the development community to recognise that there in no

such thing”;

- 2 0 -

this would seem to undermine the deductive approach of proving the requirements

correct and consistent, given the fallibility that Mullery asserts. Regardless though of

the achievability of the perfect specification, it is incumbent on those writing

specifications that they write the best possible one and to this end practitioners of

Requirements Engineering continue to strive.

None of the above identifies precisely what a requirement might be; a working

definition could be “ a requirement is a feature of a system or facility that must be

provided in order to fulfil a system’s purpose”. The collection of all the requirements

form the requirements definition; a number of authors [Pfleeger 1998] [Somerville

1989] differentiate this from the requirements specification, with the latter being the

formal, technical document and this distinction will be observed here. It also implies the

evolution of the formal statement of requirements from the requirements analysis

process.

The three phases of the overall process can be examined, to locate more precisely the

place of this research in the Requirements Engineering framework.

-21 -

2.2 Requirements elicitation

Requirements elicitation is the process by which the requirements analyst discovers,

structures, collates and records “what the customer wants”; as a result, the analyst

becomes sufficiently expert in the domain of the problem to synthesise a formal

statement of requirements.

There are many techniques by which this can achieved; Robertson and Robertson

[Pfleeger 1998] report the Volere requirements process model, see Figure 2-1.

Figure 2-1 : Possible sources of requirements

For each of these possible sources, there are a number of techniques that can be applied;

Van Vliet [van Vliet 2000] identifies a large number of such techniques and categorises

their strengths. The table is reproduced as Figure 2-2 below:

Stakeholder
wants and

needs
Domain
models

Current
organisation
and systems

Existing
documents

requireme
nts

/ \
Current
situation

model

Suggested
types of

requirement
s

Reusable
requirement

s

Requirements template
Reuse library

- 2 2 -

Technique Main information source

Domain User

Strong on

Current Future

Interview X X

Delphi technique X X

Brainstorming session X X

Task analysis X X

Scenario (use case) analysis X X X

Ethnography X X

Form analysis X X

Analysis of natural language descriptions X X

Synthesis of reqs from an existing system X X

Domain analysis X X

Use of reference models X X

Business Process Redesign X X X

Prototyping X X

Figure 2-2 : A sample of requirements elicitation techniques (from [van Vliet 2000])

Descriptions of these techniques can be found in [van Vliet 2000] and indeed in almost

every Requirements Engineering book; what is described in this report is intended to

augment this collection. The animation system must have a specification to animate and

- 2 3 -

so cannot be used for the first iteration, but subsequent passes can use the feedback from

stakeholders when exposed to the animation to inform the process. In much the same

way that a prototype cannot be the starting point for the elicitation process, neither can

an animation; the animation however can feed back into the loop at a much earlier stage

because it is produced largely automatically from the specification, whereas a prototype

requires a significant coding effort, even with prototyping languages.

2.2.1 Requirements formalisation

Once the requirements analyst has a suitably sophisticated model of the problem

domain, the requirements can be formalised into a requirements specification. This

document must communicate the results of the analysis to all the stakeholders and there

are a number of criteria it must meet [IEEE 1993], which include:

• it should be understandable to all the stakeholders, with whom resides its

ownership, if not its authorship;

• it should be correct;

• it should be unambiguous;

• it should be consistent;

• it should be complete.

Other attributes of less significance here are that it should be traceable, verifiable and

modifiable. These demands are those that proponents of formal specification techniques

claim to address, with the exception of the first; it is that first requirement, for the

specification document to be accessible to all the stakeholders, that the ZAL animation

system can claim to satisfy.

- 2 4 -

2.2.2 Requirements validation

Our rather over-simplified model indicates that once the requirements analyst has

formalised the requirements into a specification, that specification must be validated; it

must be established by some mechanism that the requirements as represented by the

specification correspond to the requirements as understood by the project sponsor or

client (though this role or actor is often referred to as “the user”). In fact requirements

reviews will generally have occurred while the requirements definition is formulated.

However it remains appropriate to consider the activity as a discrete one, regardless of

whether it is undertaken alongside or after the discovery and formalisation activities.

However “demonstrating that a set of requirements meets a user’s needs is extremely

difficult” [Somerville 1989]; [van Vliet 2000] confirms this:

“A major stumbling block to this stage is ensuring the user understands

the contents o f the requirements specification. ”

and continues

“The techniques applied at this stage often resolve into a translation o f

the requirements into a form palatable to user inspection: natural-

language paraphrasing, the discussion o f possible usage scenarios,

prototyping, and animation. ”

[Meyer 1985] suggests a similar approach

“first describe and analyse the problem using some formal notation and

then translate it back into natural language. The natural language

description thus obtained will in general represent a more precise notion

o f the problem. And it is readable to (sic) the user. Obviously both these

models must now be kept up-to-date. ”

- 2 5 -

Attractive though this suggestion is, the final point is quite significant, for there is a

price to be paid either to maintain the correspondence or, though more difficult to

quantify, if it is ignored.

2.3 Formal Methods in Requirements Engineering

Though their proponents have never claimed them to be, Formal Methods have

regularly been dismissed as “not the silver bullet”, in acknowledgement of [Brooks

1987]. This is in fact no criticism at all, if one accepts the validity of Brooks’ claim - if

there is no silver bullet, it is tautological to then itemise anything particular that is not.

These somewhat trite dismissals do however seek to make a valid point: that whatever

advantages are offered by their use, formal methods are by no means a panacea for the

problems of software development, but simply another technique whose use may be

beneficial in some circumstances.

The exact same perceptions of failure in the software development process led some to

postulate that the underlying cause was the lack of rigour in that process; this could be

addressed by adopting the formality of mathematics, with formality a synonym for

rigour. Deriving from this deductive tradition, the perception was of programs as

mathematical entities that were amenable to processes such as proof and transformation

and where the precision of mathematics would preclude any ambiguity.

A definition of Formal Methods can be found in [Levesonl990]:

"all applications o f (primarily) discrete mathematics to software

engineering problems ”.

These methods divide broadly into two categories, Verified Design and Formal

Specification [Jones 1990]; initial research tended to focus on the former, whereby an

implementation was verified against its initial design specification by a number of

proofs. Unsurprisingly in the light of the significant expense of this approach, it is

- 2 6 -

largely restricted to the development of safety-critical systems or rather those with high

potential cost of failure, in human or financial terms.

More recent effort has been devoted to production of the specification in a formal

notation that can be reasoned with, both formally and informally. Within this second

strand are two contrasting approaches: the model-based and the algebraic specification

notations.

A model-based approach uses the structural elements of discrete mathematics, such as

sets, relations and functions, and constructs a model of the system by defining the

components of the state and the various operations performed upon them (and

consequently is sometimes referred to as an ‘operational’ approach); Z [Abrial

1980][Spivey 1992] and VDM [Jones 1990] are both model-based specification

notations.

An algebraic specification would be familiar to a student of functional programming,

since a ‘definitional’ (this is in contrast to ‘operational’) view is taken; the definition, of

generally some abstract data type, comprises a signature -the declarations of the

members of the type- and an axiomatic part, where are found the re-write equations

defining the rules, or axioms.

This example of a specification of the natural numbers is from [van Vliet 2000];

type nat
functions

Null: -> Nat
SuccrNat Nat
Add:Nat * Nat -> Nat

axioms
Add(i, Null) = i
Add(i, Succ(j)) = Succ(Add(i,j))

This approach is highly mathematical and no more abstract than current functional

programming languages such as Haskell [PeytonJones and Hughes 1998]; though the

same criticism of inaccessibility can be legitimately made of an algebraic specification

- 2 7 -

and of-say- a Z specification, the model-based abstraction of the latter, with its

characteristic on-going state, is much closer to an intuitive, human view of the system it

models.

2.3.1 The benefits of formal specification

A formal specification is expressed in a notation whose syntax and semantics are

formally defined, which will preclude the use of natural language. The major benefits of

using a formal language are tabulated by [Somerville 1989], and are paraphrased here,

as:

• providing insights into the requirements;

• the possibility of animation or of prototyping;

• the ability to prove the conformance of an implementation;

• automatic processing, often using software tools;

• amenable to mathematical analysis;

• providing guidance for the design of testing

and to which [Barden et al 1994] adds

• project management visibility.

While these are of varying relevance in the area of Requirements Engineering, they

remain powerful arguments for the wider adoption of formal techniques; even with such

benefits apparently readily available, there remains little evidence of their increased use.

2.3.2 Specification using Z

The reader of a formal specification will encounter a highly abstract model o f the

proposed system, which will abound with mathematical formulae; in order to assimilate

- 2 8 -

the detail of that model easily the reader must have some expectation of the organisation

of the specification, a template to populate with the details of this particular instance.

One of the strengths of Z is that the basic structuring element is the schema, which

emerges as highly flexible in use and which naturally supports both structural and

functional decomposition. The modularity provided by using schemas allows both a

top-down decomposition, perhaps more useful for an experienced reader, and yet

bottom-up accessibility to the detail of declarations and operations. The schema calculus

provides both for higher-order manipulation of the schemas through, for example,

composition and also for the essentially straightforward textual expansion of schema

inclusion. And as a bonus, it utilises graphical highlighting to enhance readability,

which should not be deprecated; the consistent ‘shape’ of Z specifications makes for a

less steep learning curve for the novice reader. No little experience of introducing

formal specification in Z to undergraduates with often limited mathematical experience,

using the schema as the basic structural element, has convinced the author of the value

of a bottom-up approach based firmly on the schema, with its calculus a natural

development of the ways it is used.

It is not proposed to provide a tutorial on the Z notation here; there are numerous books

which do that very well, including [Wordsworth 1992] [Barden et al 1994] [Potter et al

1991][Lightfoot 1991].

It is now possible to consider the question of validation of the formal specification,

which is at the heart o f this work; how can both the requirements analyst and project

sponsor be confident that the specification document is a complete and correct

representation of the user’s requirements?

2.3 .2 .1 R eq u irem en ts va lid a tion th rou gh p ro o f

As will be further demonstrated in Section 3.2, the role of proof in the validation of

requirements is limited; proof can only establish properties such as coverage and

consistency between a specification and an implementation, which are the concerns of

the deductive practitioner, caricatured by a desire to “build the product right”. The

higher priority, at least at this stage of Requirements Engineering, is to “build the right

product”; since it is impossible to validate a specification with respect to user intention

by proof, an alternative strategy must be adopted.

2 .3 .2 .2 R eq u irem en ts va lid a tion th rou gh an im ation

The validation of a formal specification is essential to the development process; without

validation there is no way to establish whether any of the ‘downstream’ activities -those

of implementation, testing etc.- is appropriate. The specification will form the basis of

all the development that follows and is the definitive arbiter in the clarification of any

confusion. The fact that the specification is formal may even exacerbate any incorrect

requirements that may be present; they may misrepresent the user’s intention, but with

regard to the self-consistency of the specification, they are not ‘incorrect’. The existence

of the formal specification may cause acceptance of what might otherwise have

triggered further investigation.

The only route that will ensure confidence that the formal specification is a correct and

complete representation, with respect to sponsor intention, is to ensure the fullest

possible involvement of the stakeholders in the validation process. When the document

being validated is written in a highly abstract, highly mathematical notation, this can

present problems; it might be that the whole stakeholder team have experience o f and

confidence in reading the Z document, but if not alternatives must be explored.

Extensive use of natural language comments to explain the meaning of the various

elements can play a part in increasing accessibility; disciplined use of terms with clearly

- 3 0 -

identified meanings may help; indeed all the techniques that have been developed to

support requirements capture using informal methods can assist in the understanding of

the document, but none of this addresses the fundamental flaw alluded to earlier - it is

the specification that must be validated, not an explanatory comment. Any contractual

obligations will be based on the formal document and it is this document itself that must

be accessible to all the stakeholders.

This is the key difficulty that the techniques and tools reported upon here addresses. The

toolset automates to a large extent the translation of the specification from Z notation

into an executable form that can be demonstrated within an animation environment to

those who are in a position to say “Yes that is the behaviour that is required”.

2.4 An Introduction to the REALiZE Method

The REALiZE method (Requirements Engineering by Animating LISP incorporating Z

Extensions) has been developed to formalise the interplay between requirements

acquisition, requirements formalisation and requirements validation, as embodied by the

TranZit and ZAL toolset. The process fits into the standard software lifecycle model at

the requirements analysis phase. Following an initial requirements capture stage, the

specifier enters the requirements formalisation phase, where the requirements are

represented by the specifier in the Z notation using the facilities provided by the TranZit

tool. Once the specifier is satisfied that the formalisation is complete, the specifier

enters the requirements validation phase. Here the specifier first uses the transformation

engine built into the TranZit tool, to produce an executable representation o f the

captured Z specification in the ZAL language. The TranZit tool then forwards this

executable representation to the ZAL environment. This representation can then be

executed by the specifier within the ZAL animation environment, for the purposes of

-31 -

demonstrating properties of the captured specification to members of the stakeholder

team.

The logical relationships between the individual tool components associated with the

REALiZE method are shown in Figure 2-3.

Interface to ZAL

Validate and Refine

ZAL

LISP

ZAL Anim ator

Execution
Environm ent

Transform ation
Engine

Z Notation Editor

Syntax and Type
Checker

TranZit

Figure 2-3 : The Logical Relationship of the Toolset Components

2.4.1 The expected benefits

The use of an animation is consistent with good practice as identified by [Somerville

and Sawyer 1997]; using the taxonomy of guidelines given there, those that can be seen

to validate the use of the REALiZE method are cited below:

Guideline

Num ber

Description How it is supported by the REALiZE

method

3.1 use a standard document

structure

Z is a standard notation; furthermore style guides for

Z can be produced and used

3.8 make the document easy to

change

tool support for this is available using TranZit

4.3 identify and consult

stakeholders

the stakeholders are explicitly involved in validation

by animation

4.10 prototype poorly understood

requirements

the animation can be used as an automatically

generated prototype

4.11 use scenarios to elicit

requirements

the use described - requirements engineer sitting with

the end-user in front of the prototype & walking

through scenarios- is exactly that advocated by

REALiZE

10.6 specify systems using formal

specifications

this is self-evident, but is explained “it is important

that the project customer is convinced of the value of

using formal specification and that you are careful

that the customer can understand the specification.”

Table 1 : Requirements Engineering Good Practice (from [Somerville and Sawyer 1997])

2.4.2 Support for other software development activities

Though the work of the project is firmly located in the area of specification validation,

the flexibility of the ZAL tool will allow for its use in other situations. The design of the

animator has separated the user-interaction from the operation of the animation engine,

as shown in Figure 2-4. This de-coupling is evidenced by the availability of a command

line interface at which explicit calls to execute schemas can be evaluated.

This behaviour offers the prospect of support for other Software Engineering activities

such as change control and maintenance. For a given specification, a library o f test

- 3 3 -

executions could be maintained; these would then be available for the automated

validation of successive evolutions of the specification.

This is an area of current research effort, and this usage has not yet been formalised, but

as maintainability of a specification is certainly an issue with respect to its quality, this

would align with the ProToRE project objectives. Figure 5-16 demonstrates a schema

execution that is instigated from a script file; this script could be seen as one such test in

such a library.

interactively
collated inputs

construe tion
of schema
execution
object

A nim ation
Engine

OR
success?

script of
execution
parameters

Figure 2-4 : The Modularisation of Schema Execution

The context of ZAL within the REALiZE method and of that method within the wider

framework of Requirements Engineering and Software Engineering has been identified;

the enhancements which an animation system might offer to the Requirements

Engineering process, and the key activities that would be facilitated or supported by

such an animator have been detailed. It is now appropriate to consider the general and

specific issues pertaining to the animation of formal specifications.

- 3 4 -

3 The Animation of Specifications
This section is concerned with the wider view of the execution or animation of

specifications; historically, there has been some debate regarding the value or otherwise

of this feature. That this project aligns with those supporting the idea will be no

surprise, but the arguments both in favour o f and against execution will be examined. It

will emerge that the approach taken here and, more generally, in the REALiZE method

addresses the concerns of both schools of thought and seeks to gain many of the

advantages of executability without unduly compromising the expressive power

available to the specifier.

There is no longer much debate about the need for better specifications and much of

Requirements Engineering is concerned with the capture and validation o f requirements

in a formal specification; though there are some classes of software system (such as

interrupt driven systems) that present serious difficulties in their formal specification

which are best addressed by the language designers, equally there are other classes of

problem which are well suited to the currently available set o f formal specification

techniques and which can be usefully specified, yielding many of the benefits detailed

earlier. That this last category tends not to be formally specified is to a large extent due

to a lack of familiarity with the techniques and notation of formal specification; the

work reported here seeks to use animation to enhance the accessibility of the formal

notation and thereby facilitate its wider use.

3.1 The disadvantages of specification executability

If we accept the desirability of wider use of formal specification, there remains some

debate concerning the desirability of executing these specifications; [Hayes and Jones

1989] argue strongly that executability is not a desirable characteristic of a specification

language. Starting from the reasonable position that

- 3 5 -

"a specification written in a notation that is not directly executable will

contain less implementation detail than an executable one ”

they claim executability unduly constrains the specifier in a number of ways. Their

principle objections can be detailed thus:

• Executable specifications tend to over-specify the problem.

• Combining clauses in a specification; except sometimes in Prolog, conjunctions

cannot be formulated in programming languages. This is particularly true when

one clause constrains an otherwise infinite search space. In a similar vein,

negation cannot readily be used in an executable specification.

• Using quantifiers, as in is-perfect-square(i) = 3jeN-i=j2, will often present

difficulties; this execution will probably terminate if i is indeed a perfect square,

but searching for j when i is not a perfect square requires reasoning about the

implicit mathematical property - the enumeration must stop when j reaches i.

• Non-computable problems; an executable specification must allow the formulation

of specifications that are not computable - these are by definition not executable.

• Non-determinism is in general difficult ([Hayes and Jones 1989] claim impossible)

to model; they expect that a deterministic solution is the best that could be

expected.

• Some values, such as real numbers, cannot be represented; therefore a specification

using reals cannot be executed, since these must be modelled using floating

point approximations.

• Specification variables are used to describe non-functional requirements; how

should these variables (and the requirements) be treated in an executable

specification.

Significantly though, they conclude by distinguishing between specification and

prototyping, and it emerges that their concerns are largely with the latter, given that

"... much o f what is described in the literature as executable specifications

would be better classified as rapid prototyping”

- 3 6 -

This is in fact a helpful distinction, as it serves to delineate the scope of the objections

and to clarify this evaluation of the extent to which those objections are pertinent to this

work.

3.1.1 The disadvantages investigated

These difficulties might seem sufficiently serious to discourage exploration of the

possibilities of execution, but in fact they are refuted by both [Fuchs 1992] and

[Andersen et al 1992]; the approach in both cases is to provide executable examples of

those problems identified by [Hayes and Jones 1989]. These counter-examples do

indeed address the problems with the loss of little expressibility and the argument is

made that loss of expressive power is a small price to pay for the advantage of

executability. This is a slightly different analysis to that advocated here, where the

unconstrained use of Z is allowed, and its animation may or may not be possible;

Section 3.2.1 expands on this point.

The details of the counter-examples will not be examined, but a number of general

conclusions are drawn by [Fuchs 1992].

• A general approach to transforming non-executable specifications into

executable specifications involves reformulation and the addition of a small

number of constructive elements, including

o representations of sets and sequences by lists;

o construction of sets and sequences by recursion;

o representation of the predicate > by generators of elements.

“Executable specifications generated in this way are direct translations

o f their non-executable counterparts. Since they are built from available

powerful predicates they are problem-oriented, declarative and highly

abstract”5

5This technique is close to that already adopted in this project.

- 3 7 -

• Many of the derived executable specifications are based on a generate-and-test

approach.

• It is not enough that a specification postulates an object without detailing how the

object might be constructed; the reference of [Hayes and Jones 1989] to

unrepresentable values (primarily real numbers) is cited by Fuchs as an example of a

specification being incomplete since it refers to a body of knowledge that is assumed

by the specifier to be shared by readers of the specification. Rather than accept this

as an argument against constructive specifications, they are

“convinced that a specification, as an abstract definition o f something

that will have to be concretely realised, must be constructive, in the sense

o f constructive mathematics which is intolerant o f methods affirming

the existence o f things o f some sort, without showing how to fin d them

This however is a philosophical point and constitutes a counter-argument, rather than a

refutation.

• Specification variables can be considered part of the (executable) specification - the

animation of the specification may or may not fulfil the specified constraints, but in

either case valuable information can be gained. In view of the growing proportion of

current software systems that pertains to input and output, this concentration on

functional behaviour is unfortunate.

It can also be argued that the constraints captured in this way refer to the ultimate

implementation and not to the specification, so a failure of the specification to satisfy

such a requirement is of no significance.

Fuchs concludes by identifying more general advantages of validation using an

executable specification, namely

• the results of the validation (testing) are of much greater value because they are

available much earlier in the development process;

• testing executable specifications is more efficient as it occurs at a more abstract level,

and also in the problem domain.

- 3 8 -

While these arguments were made as a rebuttal o f the [Hayes and Jones 1989]

contentions, they introduce a number of the benefits of specification executability which

are now examined.

3.2 The advantages of specification executability

This section establishes the potential benefits of executable specifications; consideration

o f how that executability might be achieved, and at what cost, is deferred until

section 3.3.

[Breuer and Bowen 1994] identify the general advantages, in this case explicitly for Z :

“Any executable interpretation would certainly be very useful to software

engineers, because it would allow Z to be used as a prototyping language

as well as a specification language, and improve the interactiveness o f the

design process. ”

The objective of the work reported here is the creation of a better specification, where

the improved quality derives from the validation of the specification by the sponsor,

among others, rather than the specifier alone, and this improved accessibility is a

consequence of the executability.

The benefits of a formal specification, as detailed in 2.3.1, can be realised only if it is a

correct specification; the self-consistency o f a specification, one dimension of

correctness, can be established by proof, but there are other dimensions :

“correctness o f a software system means correctness with respect to the

requirements, i.e. with respect to explicit and implicit user intention and

needs ”.

This implies that users must be involved in the validation process;

- 3 9 -

“This suggests that the conceptual level provided by the specification is

the appropriate level fo r the user involvement, and that validation should

preferably take place in the specification phase. ”

since

“Executable specifications result in greater involvement by the users.

Users can participate in the formulation o f the specifications and in the

immediate validation ”

Correctness with respect to user intention is not amenable to formal reasoning; the

sponsor can confirm or deny that the formal specification embodies the actual

requirements, but any proof requires the existence of a formal statement of the

requirements as the starting point, and it is this statement with which the reasoning is

concerned. [Johnson and Sanders 1989] agree that

“Validating that a formal specification meets the customer’s requirements

cannot, by definition, be a formal process ”.

Consequently the correctness of the relationship of the specification to the actual user

requirements must be established some other way; many authors identify this validation

of the specification as crucial [van Vliet 2000] [Somerville and Sawyer 1997].

The meaningful evaluation of the specification as a correct statement of the

requirements can only be undertaken if the specification is accessible to the sponsor; the

native Z text may be readily understood by a sponsor, but that cannot be relied upon.

Alternative strategies to validate the specification are needed and animation is one such

approach. [Johnson and Sanders 1989] again suggest

“One technique that has some merit is to produce prototypes from formal

specifications and demonstrate these prototypes to the customer”.

- 4 0 -

There are other advantages. Executable specifications allow the demonstration of the

behaviour of a software system before it is actually implemented, with the following

benefits:

• executable components are available much earlier than in the traditional life

cycle, thereby allowing the earlier (less expensive) detection and correction of

problems. This is largely a re-phrasing of the “better specification” point already

addressed;

• requirements that are unclear can be clarified by animated interaction with the

specification;

• execution of the specification supplements inspection and formal reasoning as a

means of validation.

Furthermore, execution enables the self-consistency of a specification to be established;

this facility is provided by a wide range of specification tools, by some as core

functionality, but in an animation environment such as the REALiZE toolset it is a

natural consequence of automatically verifying consistency by executing the state

schema predicates - see Section 5.

3.2.1 How ZAL manages non-executability

As was acknowledged in section 3.1, not all Z specifications can be executed; the

simple use of -say- the natural numbers, which constitute an infinite set, precludes the

animation of the specification as written. As a specifier using the toolset may use

whatever (legal) Z is deemed appropriate, a strategy is necessary to resolve this

apparent paradox.

Buckberry details an “eclectic transformation strategy” [Buckberry 1999], which is

embodied in the TranZit transformation engine and which identifies what [Breuer and

Bowen 1994] term “enumeration functions” to provide candidate data for both

existentially and universally quantified clauses. These clauses are transformed into ZAL

expressions and consequently issues of non-computability, essentially the description of

an infinite search space, have been resolved before ZAL is required to evaluate a

quantified expression. The strategy involves identifying a constraint on such a search

space, either explicitly from the Z expression, or implicitly where manual human

intervention is employed to supply it; where the first approach fails to identify a suitable

constraint, a finite subset of potentially infinite data must be instantiated by the user in

order to use the animator.

It can be inferred from this that ZAL does not in fact have to consider these questions of

executability and consequently is not considered further in this report.

3.2.2 The best of both worlds

At the risk of undermining the symmetry of the discussion, it can be noted that Hayes

and Jones are primarily concerned that the specifier is limited in some way by the need

or wish to execute the specification; this might arise either by choosing an explicitly

executable notation for the specification or by using a subset of notation and techniques

that will facilitate execution.

Since the REALiZE method does not constrain the specifier in the Z that can be used,

the question of executability is not considered as the specification is constructed; any

concessions to executability will only be made at the stage of the transformation o f the

Z into ZAL code. As the Z specification will remain the ‘document of record’, the issue

of executability will have no impact on the specification construction process.

Neither do their concerns such as introducing an “algorithmic structure” to the

specification arise, since Z has no facilities to capture algorithmic detail; the only

scenario whereby the executability might constrain the specifier would be to encourage

a tendency to revisit techniques and models that have proved effective in the past.

- 4 2 -

Executability is not the factor here, it is simply that experience has that effect on

humans.

Furthermore, when the specifier chooses to use non-executable types or constructs, it is

likely to be exactly those highly abstract details of the specification that will be least

readily understood by the non-specialist; the advantage of expressiveness is potentially

compromised by that expressiveness rendering the specification less accessible. In this

particular situation, the availability of an animation should serve to clarify the abstract;

whatever dialogue is necessary to transform the specification into an executable form

cannot but ground the abstract model or mechanism in a more concrete, intermediate

representation.

Notwithstanding the efforts to refute [Hayes and Jones 1989], many of the points they

make are indeed valid - specifications are not necessarily executable; those that cannot

be executed can generally be recognised as such, or constrained to make them

executable - see [Buckberry 1999]. The significant subset that can be executed, either

unaltered or with very little modification, are those of concern and it is our contention

that advantages may generally accme when the specification can be executed.

When a specifier writes a specification that cannot be animated, its validation must be

by techniques other than execution; such a specification will remain less well validated,

at least with respect to the intention of the sponsor.

This section concludes with a supporting quote from [Hayes and Jones 1989]:

“Specifications are intended fo r human consumption - they provide a

communication link between the specifier and the user6, and the specifier

and the implementor”.

T h e “user” is the actor referred to herein as the sponsor.

- 4 3 -

This report contends that the specifier-sponsor communication is significantly enhanced

by executability and that the specifier-implementor dialogue can be unchanged, since

the specification remains a Z document with no “injury” suffered in the cause of

executability; it can be argued that the executability, or otherwise, of this document is of

no consequence between the specifier and the implementor. However, if the

specification is not accessible to the sponsor, any commitment to it cannot be

considered informed.

3.3 Achieving executability

There are a number of possible categorisations for execution techniques and animation

systems; some general patterns will be identified and then two frameworks will be

considered in some detail to identify the appropriate context for the REALiZE method,

and more particularly for the ZAL animation tool.

3.3.1 Approaches to the execution of Z specifications

In the numerous attempts to execute formal specifications, some characteristic patterns

can be observed; perhaps the most significant is the way that the correspondence

between the initial formal specification and the executable counterpart is established.

The usual way is to take a specification and refine it (perhaps numerous times) until it is

in a form that is executable, in a way analogous to the approach adopted by

[Wordsworth 1992] for the implementation of a software system that has been formally

specified (in Z); the emphasis is on maintaining the correctness by using techniques and

transformations that are proven correct and thus establishing the correctness of the

implementation. Whilst not a technique for executing specifications, this approach can

be considered an extreme example of that adopted by many seeking to execute the

specification; in particular [Valentine 1991] refines a subset of Z called Z— into an

increasingly concrete, less abstract form, until such time as it can be interpreted.

- 4 4 -

Broadly similar approaches have been adopted by [Sherrill and Carver 1993], who use

Z as a design language for a system implemented in the functional language Haskell; by

[Goodman 1993] who again uses Haskell to model Z (though the main purpose is to

demonstrate the use of a monad in a functional language); by [Dick et al 1990] who

transform Z into Prolog using correctness-preserving transformations, also known as

formal program synthesis; by [West and Eaglestone 1992] who do much the same and

contrast it with structure simulation, though without generators to provide candidate

solutions; and by[Horcher 1994] who has implemented a predicate compiler that

transforms Z specifications (in a particular and restricted style) into C functions, which

provide an exhaustive test framework. Of further interest in this last work is the original

resolution (or rather avoidance) of a number of difficult execution issues by the

adoption of a requirement that the user supplies expected outcomes, which are then

validated; this approach is described by [Utting 2000] as a ‘test oracle’, and is suggested

as a mechanism by which proving tools, as opposed to testing tools, can be used to

validate specifications. This dichotomy is examined in section 3.3.1.2, Proving or

Testing

3.3 .1 .1 A form al fram ew ork for c lassify in g an im ators

[Breuer and Bowen 1994], in what has become a key treatment of the problem, propose

the following classification of techniques for the animation of Z, based on the treatment

of sets:

(a) sets must be finite and are modelled by finite arrays;

(b) sets may be countably infinite and are modelled by an enumeration algorithm;

(c) sets are cardinally unbound and modelled by the characteristic function,

though they note that class (b) and class (c) are equivalent.

- 4 5 -

This framework was designed to reflect increasing correctness, rather than the more

usual measures of coverage (the portion of the grammar of Z that can be executed),

sophistication (the termination properties of an animation) or efficiency (how quickly a

result is obtained).

3 .3 .1 .2 Z A L in th is lan d scap e

In this classification ZAL is currently a class (a) animator; lazy evaluation would be

necessary to satisfy the class (b) criteria, which remains a possibility despite the fact

that ZAL has inherited the eager evaluation of Lisp. Animation of the existential

quantifier, 3, will always need to generate candidate solutions which can then be tested

in some way. An eager evaluation strategy will require all those candidates to be

generated before any is tested; this is sufficient to limit this approach to class (a) status.

A lazy evaluation strategy would allow much greater flexibility; in general, a value is

only generated when it is needed and consequently the modelling of infinite structures

(perhaps N) is very much easier. For the specific problem of existential quantification,

this might well provide for a more effective model, as a single satisfying value is

sufficient, though failure of the quantification when no such value exists would need to

be managed. Lazy evaluation is not a feature offered directly by Lisp (though the dialect

Scheme [Steele and Sussman 1975] does explicitly support continuations) but [Graham

1994] suggests implementations of the facilities (macros) needed to model

continuations. A continuation is a functional object that embodies the “future” o f a

computation, in that it is a suspended evaluation that can be called; it must “contain” all

the contextual information necessary for evaluation (such as bindings that are in scope)

in much the same way that as a closure must. In fact a continuation is a generalisation of

a closure - a closure is a function plus pointers to the lexical variables visible at the time

it was created, whereas a continuation is a function plus a pointer to the whole call stack

that was pending at the time it was created. These would appear to offer a route towards

- 4 6 -

a lazy evaluation mechanism, at least for the generators needed for quantifiers and

comprehensions, and which might prove beneficial in other areas.

[Utting 2000] suggests and implements a possibly better, more generalised strategy in a

tool called Jaza; this uses multiple (up to twelve) alternative representations of sets

where

“Each set is kept in its optimal representation, and translated into another

representation only when an operator requests i t”.

This approach makes explicit the recognition that different representations are more or

less well-suited to different operations.

However, fundamental changes such as these would have a significant impact not just

on the animation engine, but also on the other toolset components, since potentially

infinite search spaces have already been constrained, as a part of the transformation

process, before the specification is presented to ZAL. Further research is indicated in

this area.

3.3 .1 .3 P rov in g or T estin g

As was mentioned earlier, [Utting 2000] categorises tools for analysing Z specifications

depending on whether they attempt to show universal properties (Proof-like Tools) or

existential properties (Testing Tools); the two groups are identified as complementary

and it is stated that

“testing tools are better used early in the system life cycle ”

which aligns very closely with the position adopted in the REALiZE project. ZAL is

clearly a testing tool and the toolset supports the very earliest stages of system

development.

- 4 7 -

The use of proof has been established as inappropriate for the validation of specification

with respect to sponsor intention', consequently it is unsurprising to note that ZAL

exhibits virtually all the identified characteristics of testing tools, but the distinction is

nevertheless useful as it validates the pragmatic rationale that has underpinned much of

the development of the REALiZE toolset.

3.4 The REALiZE Method and its supporting toolset

The REALiZE method (Requirements Engineering by Animating LISP incorporating Z

Extensions), has been developed to formalise the interplay between requirements

acquisition, requirements formalisation and requirements validation, as embodied by the

TranZit and ZAL toolset. The process fits into the standard software lifecycle model in

the requirements analysis phase, as can be seen in Figure 3-1.

The initial Requirements Acquisition phase is entirely conventional and utilises familiar

techniques such as interviewing domain specialists and user questionnaires; however

the formalisation of those requirements in the Z notation is facilitated by the TranZit

tool, with extensive support for creation, edit and analysis of Z documents. Once the

specifier is satisfied that the formalisation is complete and that the specification

captured is the best representation of the requirements possible at this stage, then the

requirements can be validated. The specifier now uses a transformation engine built into

the TranZit tool to produce an executable representation of the captured Z specification

in the ZAL language and this executable representation is forwarded to the ZAL

environment.

- 4 8 -

Operation and
M ain tenance

Implem entation

D esign

R equirem ents
A nalysis

Softw are Lifecycle

R equirem ents
A cquisition

R equirem ents
Formalisation

R equirem ents
Validation

REALiZE P ro ce ss

Construct
Animation

E xecute
Animation

V isualise
Animation

Figure 3-1 : The REALiZE method

This representation can then be executed by the specifier within the ZAL animation

environment, in order:

• to confirm the correctness of the Z, with respect to the specifier’s intention, in a

way analogous to software testing;

• to demonstrate properties of the captured specification to members of the

stakeholder team, using techniques such as Scenario Walkthrough, Provocative

Investigation and Exploratory Investigation

- 4 9 -

This review is likely to lead to further iterations of the process, involving modifications

to the Z document, transformation of this modified specification and further executions.

This process should enhance the understanding of the specification for all the

participants and further improve the quality of the specification by ensuring that the

requirements embodied are a true representation of what the system needs to do.

The logical interfaces between the individual tool components associated with the

REALiZE method are shown in Figure 3-2. The reader will have noted a third tool,

namely ViZ [Parry 2001], another CASE tool being developed to further enhance the

interaction between the specifier and the other stakeholders by providing a visualisation

of a specification. As identified in Section 1.4 and though it uses the ZAL Animation

Engine to evaluate expressions and to provide results, ViZ is an entirely separate tool

and will not be reported upon here.

Interface to ZAL

Validate and Refine

ZAL
T ran Z it * ^

ViZ
Validate and Refine

Lisp

Visualisation
Engine

Zal to Graphics

Syntax and Type
Checker

Z Notation Editor

Transformation
Engine

Extended Lisp
Animation Engine

Execution Environment

Figure 3-2 : The logical interfaces of the toolset components

3.4.1 The toolset components

TranZit (Z Editor and Transformation System)[Buckberry 1999] is a tool for capturing

Z specifications, and automating their transformation to an executable representation. It

incorporates features supporting the construction, manipulation and maintenance of Z

specifications, as well as tools for checking their internal consistency, including a

complete syntax analyser and type checker. The Z editor component of TranZit includes

all the major features expected of a standard editor. In addition, full support for the Z

notation character set is provided, and schema graphic outlines for standard, generic and

axiomatic schemas are automatically generated. TranZit also incorporates a

Transformation Engine, which allows captured specifications to be automatically

transformed (as far as is possible) into an executable representation, suitable for input to

the ZAL animation environment.

-51 -

ZAL facilitates the exploration of Z specifications through execution, which can involve

confirmation or refutation of various properties of the original specification by

executing specification scenarios, thereby validating requirements. The mechanisms by

which this is achieved are described in section 2.0 and demonstrated in Section 0.

3.4.2 The Edit, Transform, Execute cycle

As can be seen from Figure 3-1, the key and original activity that underpins the

REALiZE process is the iterative cycle of specify, transform and execute; this is the

mechanism by which successively more precise and correct (again with respect to both

sponsor and specifier intention) versions of the specification are refined. Though this

report is concerned with the ZAL toolset component, the REALiZE process is the

context within which it works; this activity within the process should be recognised as

the raison d'etre for its development. The detailed consideration of performance of the

ZAL component is undertaken in Section 5 .

The end result of this iterative process should be a better specification in which all the

stakeholders have confidence.

3.4.3 De-coupling TranZit & ZAL

The REALiZE method is a formalisation of the logical interaction between the toolset

components and as such supports, and to a large extent requires, the iterative

development of a formal description of the requirements of a proposed system; it is the

mechanism by which the integration of the two toolset components is achieved. Without

ZAL, TranZit is primarily a Z editor, albeit a fully-featured one; the animation

environment is needed to realise the benefits of enhanced accessibility. Without

TranZit, ZAL is primarily a desktop calculator for an extended Lisp that models Z

expressions and schema; the automated transformation is needed to guarantee the

correspondence of the Z specification and the animation that is being demonstrated.

- 5 2 -

However, whilst appearing closely coupled, both TranZit and ZAL are separate, well-

defined software systems, each of which can be used independently of the other; it is the

REALiZE method that describes how they interact and which establishes the coherence

of that interaction. Despite the references made to the TranZit tool and the REALiZE

process, it is the research and development of the ZAL animation environment upon

which this thesis reports.

- 5 3 -

4 Realisation of the ZAL component
Having decided to animate Z specifications, an exploratory approach was adopted,

consistent with both the nature of the problem and the lack of readily-defined

boundaries. This was a recognition of the ill-definition of both the task and the form and

functionality of the ultimate deliverable, and to some extent of the characteristics of the

host language and development environment that would best support this approach. This

also reflects the inductive style adopted for the use of the toolset itself.

4.1 General issues of symbolic execution of Z

Z is a notation for specifying information systems [Spivey 1992] and was not conceived

as an executable “language” in the sense of a computer language; as a consequence,

there are no execution semantics associated with a specification in this notation. What

has been attempted in this project is to animate such a specification, as an example of

the behaviour that might be expected from an implementation o f the same.

Much has been made of the problem that non-determinism poses for an animation

system; Section 3 considered the objections raised by [Hayes and Jones 1989] and how

these can be refuted or at least addressed. An altogether more pragmatic stance was

adopted in this work that is again consistent with the fundamental choice o f an inductive

approach; it is that though non-determinism might appear to be crucial, a ZAL

animation is always ‘one possible execution’, which is all that is necessary for the

purpose intended.

There are two strands to the execution strategy devised and reported on here, namely the

expression-level manipulation; and the encapsulation of that ‘low-level’ functionality

into schema-level behaviour which is the principal concern of the user actor in the

Requirements Validation scenario outlined in Section 3.4. This dichotomy is manifested

- 5 4 -

both in the logical design and, as a consequence, in the implementation of that design;

it also serves as a useful shorthand for the conceptual distinction between the two.

Fundamental to the effective symbolic execution of Z schemas is the choice of the

model of evaluation, or rather models, since again the evaluation strategy also differs in

the two areas identified previously.

4.2 The application domain and symbolic evaluation
strategies

[Abelson et al 1985] suggest that the design strategy that we choose in order to model a

system is dictated by our perception of that system and suggest a number o f alternative

organisational strategies that could be adopted. This need to address “how a

computational object can change and yet maintain its identity will force us to

abandon our old substitution model of computation in favor (sic) of a more mechanistic

but less theoretically tractable environment model of computation” [Abelson et al 1985]

(page 168). These computational alternatives precisely correspond to the expression

level functionality modelled using an applicative approach and to the state-managing

encapsulating behaviour, or schema-level functionality, modelled with object-oriented

techniques, though without explicit 0 0 technologies.

That the underlying computational behaviour is applicative might well be expected - the

core nature of specifications is that they are declarative, describing the what not the

how, and so any attempt to model the behaviour of those specification is always likely

to be declarative in style.

“They describe what the system must do without saying how it is to be

done. ”

[Spivey 1992] (pi)

- 5 5 -

It is useful to consider in more detail the characteristics of the problem domain, and to

examine the range of implementation strategies and vehicles that might best map onto

that domain. This is the context in which design decisions with far-reaching

consequences were made; the implications of those decisions cannot properly be judged

until Section 5, but their validity can perhaps be established here.

4.2.1 Particular characteristics of this development

These then are the parameters that will constrain the development of the ZAL toolset

component

• the model o f use in the REALiZE method

• the interaction with other components (principally TranZit)

• the problem and the programming process (incremental development)

What are now the components of the REALiZE method, TranZit & ZAL were

conceived as the CASE tools to support the logical functions that constituted a possible

mechanism to better support requirements capture. This decomposition (see Figure 2-3)

came to be formalised as the REALiZE method but the initial component/process

interface was neither well-understood nor well-defined. As a consequence, an

exploratory approach was considered appropriate to the development both o f the

component interactions and of the ZAL component itself.

The relationship between TranZit and ZAL is essentially that of producer and consumer,

and to describe their interaction as dialogue would be to overstate its reflexivity; more

properly, the TranZit tool produces a representation of the Z of interest in a form that is

then executed by the ZAL tool. To have begun with a formal description of this

interchange format would have enabled a more conventional development process, but

the initial remit was to establish the feasibility of execution and then to investigate the

range of specification techniques and styles that could be executed. In particular the

- 5 6 -

parallel development of the toolset components required that this interchange format be

flexible, or at least extendable to accommodate an evolving set of executable constructs

and expressions. Having reached this stage of reporting on the work pre-supposes that

the decisions made have to a large extent been valid, or at least correct in a sense

analogous to the ‘magic coin’ used by [Harel 1987] in his treatment of non

determinism.

Notwithstanding quite profound reservations regarding the validity of the basic thesis

argued by [Hayes and Jones 1989] (see Section 3.1.1), they can certainly be supported

in the contention that it is unquestionably no part of the role of either the specifier or the

specification to address the detail of the implementation. They would want total

freedom from consideration of executability, while it will be shown that minor

compromise on this point can engender significant reward.

4.2 .1 .1 T ow ard s a d evelop m en t p arad igm (or 2)

The factors determining the choice of programming paradigm included, in something

approaching decreasing significance:

• the characteristics of the problem domain;

• the need to integrate this tool into a larger framework;

• the experience and preferences of the developer.

The characteristics of the problem domain strongly suggested a declarative approach

and no alternative was seriously entertained; this coincided with the inclinations of the

developer and was considered neutral with respect to the need to integrate. As the

toolset components and functionality were de-coupled from the outset, the need to

integrate was explicit; it was ultimately addressed by using an extended Lisp format,

where any shortfall in functionality could have been recovered by the generation o f

- 5 7 -

code at a lower level of abstraction (i.e. more Lisp-like), though this contingency did

not arise.

The choice was resolved further, between alternative declarative approaches, again with

minor deliberation. The logic languages (principally Prolog) though well suited to

search-space problems, are not a natural match for the expression-based architecture

of Z and [West & Eaglestone, 1992] identify a number of difficulties with using Prolog.

A basis in the evaluation of expressions is of course fundamental to functional

languages, such as Haskell and Lisp, and characterises the “natural fit” between

problem and solution. Notwithstanding this, the functional style can be used to

advantage in C++ [ISO/IEC 14882 1998], which now sports partially applied (curried)

functions (using b i n d l s t etc.) and higher-order functions (using t r a n s f o r m and

f o re a c h) . This question is explored in a little greater depth in Section 4.2.2

4.2.1.1.1 An illustration o f a natural fit - local bindings

It may be helpful to illustrate the question of a “natural fit” by looking at the mechanism

by which local bindings are established and managed in, firstly, Z and then in functional

languages; this is but one of many such examples that could have been chosen. The

ability to establish a local (i.e. temporary) binding for a name is useful from at least two

perspectives, computational efficiency and expressive clarity.

In a computer language, by definition executable, performance benefits can accrue from

only evaluating an expression once; a simple example can illustrate this -please note the

careful non-avoidance of the “prototypical boring programming problem” [Harvey &

Wright 1994], calculating the roots of a quadratic equation, using the following

formulae:

- 5 8 -

K b+^J b2- 4 a c
2 a

Z?~V b2-Aac
l a

The discriminant (the expression whose square root is taken) in the formulae would

normally be calculated only once, ‘stored’ locally and looked-up when needed. This

would give a C++ version of

std::pair<float, float> rootsOf(int a, int b, int c)
{

float routeD ;
float rl, r2;
routeD = sqrt(b*b-4*a*c);
rl = (-b+routeD)/ (2*a);
r2 = (-b-routeD)/ (2*a);
return std::make_pair(rl, r2);

std::pair<float, float> rootsOf2(int a, int b, int c)

float disc ;
if (disc < 0) throw noRealRoots;
float routeDisc ;
routeDisc = sqrt(b*b-4*a*c);
float rl, r2;
rl = (-b+routeDisc)/ (2*a);
r2 = (-b-routeDisc)/ (2*a);
return std::make_pair(rl, r2);

code 4-1: The roots of a quadratic in C++

The scoping rules of C++ ensure that the variables disc, r l and r2 are local to the

function r o o t s O f . That the computational saving is marginal is not an issue; the

technique is widely applicable and can be generalised and so effected by an interpreter,

at least for function calls, using the technique known as memoisation.

throws (noRealRoots)

- 5 9 -

The second benefit is of greater significance; the use of names for, in this case,

expressions allows logical abstractions which provide strategies, such as procedural

abstraction and functional decomposition, for the human designer to manage almost

arbitrarily complex problems. This technique allows us to express naturally the logic of

our solution.

The added expressiveness that derives from using local definitions is such that virtually

all languages support their use; this ability also exists in the Z notation, not to support

better execution, but to enhance the expressiveness of the notation. The mechanism for

using local binding is obviously notation/language specific, but a brief examination of

that mechanism in Z, in Haskell and in Lisp will establish the congruence o f the three.

The simplest scenario that will allow a valid use has been chosen; each uses

syntactically correct ‘code’, though in the latter two cases, it is probably not the best

way to capture the logic.

The scenario is a library which models r e s e r v a t i o n s as a function from a book

descriptor to a sequence of borrowers; in each case the local ‘variable’ r e s e r v e r s is

bound to the sequence of reservers fo r this book.

rReserveBook--

b? : BOOK

m? : BORROWER

reservations, reservations' : BOOK -+* seq BORROWER

r! : su c c e ss alreadyReservedByThis Borrower

(let reservers == reservations b?

• (m? e ran reservers A

reservations' = reservations A

r! = alreadyReservedByThisBorrower)

V

(m? g ran reservers A

reservations' = reservations © {b? (reservers ~<m?>) } A

r! = success)

Figure 4-1 : ReserveBook in Z

The use of a local binding in Haskell also involves a let clause, with a similar structure.

type Loans = [(Book, Borrower)]
type Library = (Book -> [Borrower],Loans)
type Report = String

reserveBook :: Library -> (Book , Borrower) -> (Library,
Report)

reserveBook lib (b, m)
= let

(reservations, loans) = lib
reservers = reservations b

in
if (m elem reservers)
then

(lib, "alreadyReservedByThisBorrower")
else

let
newReservers = reservers ++ [m]
newReservations =

reservations 'override' [(b,newReservers)]
newLib = (newReservations, loans)

in
(newLib, "success")

code 4-2 : reserveBook in Haskell

(defun reserveBook (lib b? m?)
(let*

((reservations (first lib))
(loans (second lib))
(reservers (applyfn reservations b?)))

(if (member m? reservers)
(list lib "alreadyReservedByThisBorrower")
(let
((newReservers (append reservers (list m?)))
(newReserverations (override reservations '((,b? , newReservers))))
(newLib (list newReservations loans)))
(list newLib "success")))))

code 4-3 : reserveBook in Lisp

- 6 2 -

As was suggested, more natural versions could easily be written in both Haskell and

Lisp, but the point here is to establish the close correspondence between all three, and

more precisely, the existence in the programming languages of such similar constructs

to that of the Z. In each case the let structure consists of the keyword l e t , a sequence

of declarations of the objects being brought into local scope, followed by the expression

to be evaluated in the augmented scope.

This close correspondence derives from the expression-based nature of the Z notation

which is so fundamental to applicative languages, though surprisingly for a model-based

specification language, Z is virtually free from the notation of updating state; the

transformations concerned with decoration (as in object and object’) explicitly

reference two discrete objects, which need individual declarations and which just

happen to have similar names and a convenient declaration shorthand.

It is not just this last characteristic that suggests a functional approach to the problem;

the manipulation of expressions is by nature a recursive process and consequently, the

implementation language chosen must support recursion. This requirement is

straightforward to satisfy, but functional languages are explicitly designed, and

consequently optimised, to handle recursion efficiently.

The exploratory programming approach can also be described as incremental

development; even if the ultimate objective is known, the best route towards it may not

be and in this area of ill-defined problems, it is important to maximise potential

flexibility, to be best able to circumvent unforeseen problems, should they arise. A

feature of the functional programming approach that contributes significantly to

flexibility is the property of referential transparency. A consequence of referential

transparency is that a function can be developed that will behave reliably, without

reference to any objects or values other than its arguments; this allows the developer to

- 6 3 -

provide incrementally more functionality, that may or may not be useful. A perception

of the longer term objective will influence the choice of what behaviour should be

developed, but not in the goal-driven, sequential way that is characteristic of and

appropriate to better-defined problems. Notwithstanding the more usually valued

benefits of referential transparency, namely the ability to formally reason with

functional programs, it is also invaluable in supporting the incremental development of

amorphous software systems.

There are so many instances of ‘good-fit’ matches that we can restrict the remainder of

this review of correspondence to the consideration of the ‘structural’ match that by this

point might be expected. The key abstraction mechanisms of functional programming,

such as the treatment of functions as first-class data objects and their use in higher-order

functions, are the same techniques from which Z derives much of its expressiveness;

what [Spivey 1992] (Chapter 4) describes as The Mathematic Tool-Kit, with the

n

functionals such as relational composition, function inversion etc., is the same discrete

mathematics that underpins functional programming.

F = [* l

n : P (P X) — > IP A ”

V ^ : P (P J I) •

n A = { x : X (V S : A • X e

genlntersect :: Ord a => [[a]] -> [a]
genlntersect = foldll intersect

Figure 4-2 : generalised intersection in Z and Haskell

7 This use is after [Backus 1978] and describes the connectives used to ‘glue’ functions together; they are also higher-order
functions.

- 6 4 -

The Generalised intersection Pi can be defined as in Figure 4-2 . An alternative

description would be “the set of sets is reduced with the binary operator n (set

intersection)”; r e d u c e is the list reduction operator in Lisp, or f o l d in Haskell. This

converts directly to the executable code that models this behaviour, g e n l n t e r s e c t .

Perhaps the clinching argument for adopting a functional perspective is more selfish.

"For programmers also, there is a tremendous gratification in frequently

being able to express application theory or design ideas directly as

program text, without the distracting details o f an exactly ordered series o f

steps or accompanying sequence o f memory operations ”

[Runciman and Wakeling 1995] p216

4.2.2 The case for C++

A decision regarding choice of development paradigm is not the same as the choice of

an implementation language; to illustrate this point it is worthwhile to examine what

might be considered an unusual vehicle for a functional approach. C++ has evolved to

support the development of software systems using an object-oriented approach, but that

is not the only paradigm supported by what is now a mature and coherent language;

particularly since the incorporation into the C++ standard [ISO/IEC 14882 1998] of

what was originally, and is usually still referred to as, the Standard Template Library

[Stepanov and Lee 1994]. Developments in the area of generic programming caused

Stepanov and Lee to research and build an extensive library of generic containers and a

set of algorithms that operate on those containers. These were adopted , largely

unchanged, in the C++ Standard and for those developers that choose to use them, C++

now has the tools that allow a largely functional style to be adopted.

- 6 5 -

Given the recognition of the STL container class map as a function and the m u lt im a p

as a relation, the Mathematical Tool-kit functions, such as dom, ran, relational inverse,

relational image, can all be readily coded; Appendix A (STL/C++ structures) contains

C++ code for these operations. However the usefulness of this approach is likely to be

in the implementation of specifications, rather further along the development process

than the stage of Requirements Capture and Validation with which we are

predominately concerned. The unary functional composition operator o , though defined

in the C++ standard as c o m p o se l is not in fact implemented by Visual C++ version 6;

its definition, in code 4-4, is illustrative of both the strengths and weaknesses of C++ as

the implementation language of choice.

template <class Opl, class Op2>
unary_compose<Opl, Op2> composel(const Opl & f, const Op2 & g)

{return (unary_compose<0pl, Op2>(f, g));};

templatecclass F_type, class G_type>
class unary_compose

: public unary_function< F_type::argument_type, G_type::result_type>
{

public:
unary_compose(const F_type & f, const G_type & g) :fl(f), gl(g){};
result_type operator()(const F_type::argument_type & y) const

{return (gl (fl(y)));};
protected:

F_type fl;
G_type gl;
} ;

code 4-4 : Unary function composition in C++

code 4-4 does indeed implement functional composition, but it is notably dense code

that is non-trivial to implement; much of the obscurity derives from the need to use both

inheritance and templates to support the polymorphism needed for the definition of

- 6 6 -

higher-order functions. The weakness of this solution is highlighted by the marked

contrast with the single line Lisp and Haskell equivalents, see code 4-5.

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = g (f x)

(defun compose f g)
(lambda (x) (g (f x))))

code 4-5 : Function composition in Haskell and Lisp

4.2.3 The case for Haskell

Thus far, there has been no distinction made between any of the functional languages

that might be chosen; both Haskell and Lisp have been invoked as preferable to C++,

but they have been dealt with as if there was nothing to choose between them. This

would certainly be the case for the implementation of the ‘tool-kit’ functionality, and

Haskell has been shown to be a viable path to take in this regard [Sherrill & Carver

1993].

It is in regard to the larger context into which the toolset component must integrate that

potential difficulties can be envisaged. At an early stage of the overall project a decision

was taken that the toolset would be developed and, potentially deployed, using the

Microsoft Windows operating system; this was primarily to maximise the user base that

might develop should the toolset be genuinely useful. Few disadvantages were

considered to derive from this decision, but one effect was to largely preclude Haskell

from consideration; this was a tenable strategy as equally good, or better, alternatives to

Haskell were available. A similar development using a totally functional subset of Lisp

had successfully been undertaken [Hibberd 1990]; this experience demonstrated the

feasibility of using Lisp, but it is worthwhile considering the characteristics that

underpinned this confidence.

- 6 7 -

4.2.4 The case for Lisp

Though originally designed as a functional programming language [McCarthy 1960],

Lisp has evolved many features that disqualify it from such a description; to name a

few, these include the iterative and loop constructs (lo o p , d o t im e s , p ro g n etc.), the

destructive list manipulators (n co n c , etc.), the side-effecting output functions (p r in c ,

etc.) and a plethora of state-setting possibilities centred around s e t f . Notwithstanding

these, the basic data structure, the list, is the core structure of functional programs and

the underlying style of programming remains prefix function application. It is quite

straightforward to develop significantly large Lisp programs that use only the

‘functional programming’ features of Lisp - this subset of the language has been called

FLisp [Glaser et #/1984] and would be the basis of the expression-level functionality

that implements Spivey’s Mathematical Tool-kit. All of the necessary characteristics

thus far identified can be found in FLisp; how this functionality might be ‘bundled’ and

made available to a user does raise a number of new, though secondary, considerations.

The implementation of an ‘environment’ or at least an interface is considered in Section

4.4; this a much better understood problem in many respects and its development using

more conventional strategies would appear straightforward. That Lisp supports a variety

of development paradigms as diverse as Object-Oriented and functional should ensure

that an appropriate one is available when required. In fact CLOS, the Common Lisp

Object System [Keene 1989], was available throughout the life of the project, but was

deemed inappropriate. The close correspondence with Z would not be enhanced, more

likely it would be undermined, by introducing a framework in ZAL that is not naturally

part o f Z.

The benefits of choosing Lisp as the development vehicle for, at least, the expression

level functionality can be reprised as :

- 6 8 -

Lisp is a functional language;

• Lisp supports incremental development;

o

• the Lisp chosen , though ultimately compiled, presents an interpreted interface

to the user, with a command line and the source-level debugging support

characteristic of such an integrated environment. These facilities make for a

productive and usable development environment;

• notwithstanding the above, the production code is compiled, with the attendant

performance benefits of this ;

• Lisp can model non-deterministic choice [Graham 1994]p 297. This ability may

or may not be required ;

• the access to the evaluator provided by Lisp provides an easy and accessible way

to manipulate expressions, in whatever representation is appropriate. For

example to model the scoping rules of the Z notation, an environment must be

constructed and managed that respects the appropriate rules regarding the

visibility of objects; what might be a free variable in an individual schema, may

be brought into scope by the inclusion or composition of another schema. Given

the interactive use of the animator envisaged in the Requirements Validation

process, the ability to manipulate schema expressions at a source-code level is

essential;

• Common Lisp is a standard(ised) language, so potential portability will be

maximised;

• the provision of a visual development environment and the library to support the

development of ‘visual’ Lisp applications will facilitate the construction o f a

developer’s interface

• experience suggests Lisp is the best possible vehicle for this endeavour, given

that

8 Allegro Common Lisp version 3.0.2

- 6 9 -

“Lisp is fo r building organisms - imposing, breathtaking, dynamic

structures built by squads fitting fluctuating myriads o f simpler organisms

into place The discretionary exportable functionality entrusted to the

individual Lisp programmer is more than an order o f magnitude greater

than that to be found within Pascal enterprises. ”

A JPerlis in Foreword to [Abelson et al 1985]

4.3 How the execution engine works

The division between the expression level functionality and the mechanism by which

that functionality is used to animate any particular specification remains explicit in its

implementation; the ‘Mathematical Tool-kit’ is converted from the discrete mathematics

version presented in [Spivey 1992] into an equivalent Lisp source code version. The

structural elements of the discrete maths, such as relations, sets, functions and

sequences are modelled as Lisp lists with an explicit tag - a so-called manifest type

[Abelson et al 1985].

If the animation is viewed as source code executing in some environment, the problem

becomes to some extent one of the implementation of a “language” with particular

execution semantics; the management of an execution context -principally a name

space- is in fact simplified by the “update” semantics adopted. Given that updating is

foreign to Z, the use of decorated names, such as value ’, to indicate post-states makes

explicit a potential update; this is in fact a little simplistic as there may be multiple

references to a decorated name in a given scope and resolving which are potential

updates is not necessarily straightforward.

4.3.1 ZAL data objects

The types of a Z specification are usually a combination of the basic types such as Z,

or more usually N. and the given sets particular to that specification. The integer types

are straightforward, as Z maps readily onto the FIXNUM, or BIGNUM, Lisp primitive

- 7 0 -

types; the BIGNUM type provides arbitrary precision integers, so is in fact a better

match then the integer types found in most programming languages.

Sets

Relations

Mappings

Sequences

Figure 4-3 : The Z tower of types

These types will also form the components of more complex types that are formed by

combining them into sets, relations etc. These latter structuring collections form a

“tower o f types” [Abelson et al 1985] (pi 51), which greatly simplifies their

manipulation. In essence, the tower is a hierarchy where each type has at most one

supertype and at most one subtype; the manipulation might involve coercion into

different types from the tower. In this case the relationship is particularly

straightforward, since all sequences are mappings, all mappings (including sequences)

are relations, and all relations are sets; this gives a relationship more akin to subsets and

supersets, as in Figure 4-3.

The consequence of this relationship is that type coercion, which can involve the loss of

detail in the transformation, is not necessary; it is sufficient to determine the appropriate

‘status’ of an argument (i.e. “is it a relation?”) at the point at which there exists such a

requirement. This is generally implemented as a pre-condition, using predicates that

examine the arguments.

-71 -

m e uasic con su u cis u i sei, ieiauun, m apping anu sequence a ie eacn iep iese iu eu as JL-isp

lists of (potentially complex) types, with a tag field prepended to indicate the ‘type’.

This gives the following, apparently inelegant, representation of -say- the set {apple,

banana, pear } as the list (*S APPLE BANANA PEAR); the *S is the tag field

indicating a set and the capitalised ‘strings’ the Lisp print-names of the symbols APPLE

BANANA and PEAR. This list is in fact the internal representation of the set and

unsurprisingly it is possible to re-format this format into a more usual sophisticated

form. That this re-formatting functionality can be inserted into the Top-Loop o f the Lisp

environment is more unusual; together with the use of developer-defined readtables, to

accept the same ‘sophisticated’ syntax, it is possible to provide a more natural

interaction, even at the command prompt, which is also redefined as in Figure 4-4

The read-eval-print behaviour of the command prompt was chosen as the initial

interface to the execution engine; this gave initial accessibility and offered the potential

to generalise the developed functionality to command strings that are generated

dynamically. There are indications in the status bar o f Figure 4-4 of the Toploop

processing being performed - the entered string {'apple 'banana 'pear} is converted,

using the opening brace character ‘ {‘ as a macro-dispatch character, into the list, or

cons, (mks 'a p p l e 'b a n a n a 'p e a r) , which is the form actually evaluated by

Lisp; this form returns (* S A P P L E BANANA PEA R) , which is re-formatted and

which then matches the original, except that is capitalised.

.y A llegro CL 3 .0 .2 [e:\ac l302 \a lleg ro .im g] - [n | x |

File Edit Search Window Package Tools Builder P re feren ces Help

Returned the cons (*s apple banana pear) Evaluated the cons (m ks 'apple 'banana 'pear)

zal: {'apple 'banana 'pear}
{'APPLE 'BANANA 'PEAR}
z a l :

Z Animation in Lisp
Sheffield Hallam Uniuersity
Nottingham Trent Uniuersity

Julian Briggs £
Richard Hibberd

For help type (help)

Figure 4-4 : ‘N atu ra l’ I/O

The actual symbols a p p l e b a n a n a and p e a r must be “quoted”, i.e. prefixed with the

single quote character; this prevents their evaluation, which is the desired behaviour as

they are simply symbols being used for their symbol-name. An alternative is to enter the

values as strings, in quotation marks; these are not then symbols but simple string

values, which evaluate to themselves. The input string in this case would be {“apple”

“banana” “pear”}; this style is considered to be less natural and tends to raise in the

mind of the user the unnecessary question of the string representing a physical or

logical entity, rather than actually being that entity, and so was not adopted even though

the chosen style does require the use of the quote character.

Table 2 has details of the input, output and internal representations of each of the type

constructors

- 7 3 -

Input format Output format Internal representation

Set {'a 'b 'c} {'A'B 'C} (*S ABC)

Relation {#('p'pear)#('p

'plum) }

{ #(T TEAR) #('P

'PLUM)}

(*R (P PEAR) (P PLUM))

Function

(mapping)

{#('a 'apple) #('p

'p lum)}

{ #('A 'APPLE) #('P

'PLUM) }

(*M (A APPLE) (P PLUM))

Sequence <'apple 'pear

'plum>

<’APPLE 'PEAR

'PLUM>

(*Q (1 APPLE) (2 PEAR)

(3 PLUM))

Table 2 Representation of collections

A more contrived example may demonstrate the purpose of the tag which determines

the default format of display in the environment, which reflects the format used when

the objects were constructed; this is important since the user would not expect the data

objects to be implicitly transformed. For example a function from integer to string

perhaps representing the mapping from a product code to its name might be instantiated

{# (1 " p r o d u c t 100") # (2 " p r o d u c t 2 0 0 ") } ; this could be tagged as a set,

as a mapping, or a sequence. However each of these has distinctive (and in this case

potentially misleading) output representations, as the tags are not normally displayed;

this artificial example could legitimately also be displayed as a sequence, i.e.

<”product 100” “product 200”>, or as a set.

- 7 4 -

4.3.2 ZAL source as Extended Lisp

The development of the particular ZAL syntax has also been incremental; at any point,

the ‘language’ has encompassed both the current subset of Z and also those structures

and operators which are not yet fully implemented, but which can be constructed using

a combination of existing elements and primitive Lisp code, as opposed to the extended

Lisp that characterises ZAL. This primitive, raw Lisp code has been used to model the

appropriate functionality and later, once the requisite behaviour has been established, as

the basis for the actual implementation of the feature. This approach has facilitated the

smooth evolution of the functionality.

Another, less important, consideration has been the efficiency of the execution; for

example, the implementation of the range restriction operator > began as

R > S (S < R ~)~

• • • 2This implementation yields 0(n) complexity, which was generally considered

sufficiently poor to warrant a more sophisticated implementation, if one was available,

which in this case involved a single pass over the relation, with corresponding O(n)

complexity, but some less clarity. In contrast, relational image d D remains implemented

as RdSD<=> ran (SOR), since this is still 0(n).

4.3.3 An error reporting regime

The data validation of the arguments to almost all the ZAL functions is performed

“locally”, that is as part of the ZAL function; this can sometimes lead to duplicated

computation but supports a more natural feedback style as the testing is performed when

the user “naturally” expects, at run-time and in the execution sequence. There are ZAL

predicates to test objects as sets, relations, functions and sequences and these are

respectively s e t p , r e l p , m app , s e q p ; their use can be seen in Figure 4-5.

- 7 5 -

e|x|
zal: (setp set eg) J
True
zal: (setp map eg)
True
zal: (mapp map eg)
True
zal: (mapp set eg) J
False
zal: (mapp seg_eg)
True
zal: (seqp seg_eg)
True
zal: (setp seg_eg)
True

Figure 4-5 : ZAL predicates

This verification of arguments can be seen wherever the possibility exists of the user

presenting inappropriate data values; attempting to build a set of differently typed

elements will fail, as will the union of two differently typed sets.

W — |g| x|

zal: {12 "twelve"}
Zal error: every element in a set must be of the same type,
at least one is not. The elements are:
12
twelve

zal: (unionz {11 22 33} {"eleven" "twentytwo" "thirtythree"})
Zal error: the sets, xs & ys, passed to unionz must be
of the same type. Jxs is {11 22 33}
ys is {eleven thirtythree twentytwo}

zal: |
___d

Figure 4-6 : A rgum ent verification and erro r reporting

In fact in normal use, these reports are directed to an error-reporting window (Figure

4-7 : Error reporting dialogue); the top loop, while available, is the province of

experienced users.

- 7 6 -

- [g | i

O Error: Zal error: every e lem en t in a se t must be of the sam e type,
at least one is not. The e lem en ts are:

12
tw elve

Enter Debugger
Return to Top Level (an 'abort' restart)

i! Restarts

invoke S e lected Restart Enter D ebugger | Abort

Figure 4-7 : E rro r reporting dialogue

It might appear that the error handling implemented within ZAL is unsophisticated in

that no use is made of exception-passing to facilitate recovery from errors; the error is

reported and the user offered the choice of an ‘abort’ restart or use of the Lisp

Debugger. In fact the Debugger offers the full functionality of the underlying

environment, together with inspection and edit facilities for the context of the error and

recovery from it. This is actually rather more functionality that the intended user of the

system would normally need; choosing an ‘abort’ restart will cause the stack unwinding

needed, together with the de-allocation of local objects, which is the major benefit of

exception handling regimes, and this would be the choice expected in almost all

situations. This rather binary view of the execution is consistent, in style at least, with

the execution of Z as interpreted here - an execution is successful or not.

4.3.4 Expression level manipulations

Having established the basic data components of the ZAL subsystem, the operations

that manipulate those data components can now be examined to complete the

description of the underlying functionality. These operations will very much correspond

to the discrete mathematics operators that are used to capture behaviour at an expression

level within Z schema.

- 7 7 -

The toolkit elements and their ZAL equivalents can be seen in Table 3.

The following Z constructs have been implemented.

Z c o n s tr u c t Description ZAL f u n c t i o n

set cardinality card

(,) pair construction #()

< relational operator #\< 9

<> sequence constructor < >

= equality testing / binding operator Eqz

ip powerset powerset

i— > maplet uses 2-tuple

e set membership is-mem

e set non-membership is-not-mem

d proper subset psubset

cz subset subset

n set intersection inter

u set union unionz

\ set difference setsub

n distributed (generalised) intersection inter-dis or gen-inter

u distributed union union-dis Or gen-union

9 relational composition Rel-compose

< domain restriction domres

O domain subtraction domsub

> range restriction ranres

> range subtraction ransub

© function override overrride

— sequence concatenation concat

3 existential quantification exist

V universal quantification forall

dD relational image Rel-image

3; unique existential quantification exist-one

V logical disjunction Or

9 The character *<’ is redefined to facilitate ‘natural’ sequence input, so the relational operator must be an escape sequence; this is
not an issue, since this is generated by TranZit.

- 7 8 -

A logical conjunction And

=> logical implication imply

disjoint disjoint disjoint

distributed disjoint distributed disjoint disjoint-dis

dom domain dom

function application applyz

head head head

ran range ran

~ relational inverse inverse

< > sequence constructor < >

{} set constructor { }

tail tail tail

Table 3 : Mathematical toolkit equivalents in ZAL

4.3.4.1 G enera l exp ression s

The style of modelling that has been adopted, with a close correspondence between the

Z Mathematical Toolkit and the ZAL function that implements it, gives rise to a bottom-

up development style; given the representation of data components described in Section

4.3.1, the coding of this functionality, with the exception of the quantifications and the

comprehensions, is for the most part straightforward.

4.3 .4 .2 T estin g for eq u a lity and b in d in g va lu es

There are two ways in which the = symbol is used in Z specifications. It can be either

the equality testing operator as in the constraining predicate state = state *; this would

indicate that the object state must not be changed (the decoration ’ is used to indicate an

after-state). Alternatively the symbol can be used to generate new ‘bindings’ for objects

as with

someFn* = someFn © {d 1 > r}

which generates a value for the after-state of the object someFn using the function

override operator. ; this can be considered a binding within the scope of the schema

- 7 9 -

expression. This twin role presents no difficulty in the Z as the second use can still be

seen as that of equality testing, but in the declarative sense of constraining the after-state

values to satisfy this predicate while not making deterministic any requirements

regarding sequencing or indeed particular values for the components; however it

constitutes an issue of some significance in this undertaking.

4.3,4.2,1 Execution sequence

In so much as our execution will constitute a single, possibly deterministic,

representation of a possibly non-deterministic specification, and that the outcome of that

execution, if terminating, is ultimately a truth value, that we adopt by default a

sequential, down-the-page regime is simply a choice that may or may not be effective

when applied to a particular specification. Empirically, it has been found to be a sound

approach in many cases, since the writers of Z specifications tend to adopt a pre

condition, update, post-condition sequencing in their specifications. Nonetheless, it

would be un-necessarily constraining to require this explicit sequencing, and so

strategies have been developed to minimise the set of valid specifications which cannot

be animated.

To this end, at execution-time the context of the equality expression is examined to

determine the precise use being made of the operator; this was initially performed when

the schema object was defined, but this approach cannot manipulate predicates from

included schema, which require that this examination be deferred until the actual,

expanded schema expression is available for analysis. This analysis of the predicates of

this expanded object reveals whether the operator is being used un-ambiguously (either

to bind a value or to test for equality) or if the use is ambiguous; an ambiguous use

might derive from a schema with a decorated object being used in more than one

predicate or expression.

- 8 0 -

This analysis is used to broadly categorise the predicates and to sequence them on this

basis. The expectation was that this would be too naive a solution and that more

sophisticated strategies would be needed to resolve this issue; this has in fact not been

the case and this approach has not been constraining, though further research may yet be

appropriate.

4.3 .4 .3 T h e q uestion o f q u antifiers

This section will examine the mechanism by which existential and universal

quantifications are modelled in ZAL; implicit set generation, or set comprehensions,

will emerge as a similar, though not congruent domain, with an equivalent set of issues

and solutions.

As was described in Section 3.2.1, the possibility of a potentially infinite search space

has been resolved before ZAL is required to evaluate expressions defined on it; this is

achieved by identifying a constraint from the Z expression, or if that fails, by user

intervention.

A simple example will highlight the mechanism employed; it features the existential

quantifier but the detail is identical for a universal quantification. The predicate

3 j : N |j e 0 . . 1 0 • j * j = 81

gives rise to the ZAL code, generated automatically

(exist j (mks 0 1 2 3 4 5 6 7 8 9 10) (= (* j j) 81)))

e x i s t is implemented as a macro which is expanded into a further macro call to x -

s t before the arguments are evaluated; this two stage expansion facilitates recursion

for multiple quantified variables and can be seen in Figure 4-8

The original call

(exist j (mks 0 1 2 3 4 5 6 7 8 9 10) (= (* j j) 81))

-81 -

expands to

(X - S T J (MKS 0 1 2 3 4 5 6 7 8 9 1 0) (= (* J J) 8 1))

This expression is again expanded to

(PROGl
(PROGN
(UNLESS (SETP (MKS 0 1 2 3 4 5 6 7 8 9 10))

(ZERROR "every second argument to exist must be a set"))
(SETF (GET 'J 'LAMBDA-VAR-?) T)
(SOME
#’(LAMBDA (J)

(= (* J J) 81))
(REST (MKS 0 1 2 3 4 5 6 7 8 9 10))))
(SETF (GET 'J 'LAMBDA-VAR-?) NIL))

and this is the expression that is eventually evaluated.

B - | n | x |
J

Z Animation in Lisp
Sheffield Hallam Uniuersity
Nottingham Trent Uniuersity

Julian Briggs 5
Richard Hibberd

For help type (help)
3.2
zal: (exist j (mks 0 1 2 3 4 5 6 7 8 9 10) (= (* j j) 81))
(X-ST J (MKS 0 1 2 3 4 5 6 7 8 9 10) (= (* J J) 81)):
(PR0G1

(PROGN
(UNLESS (SETP (MKS 0 1 2 3 4 5 6 7 8 9 10))

(ZERROR "euery second argument to exist must be a set"))
(SETF (GET 'J •LRMBDA-UAR-?) T)
(SOME

’(LAMBDA (J)
(= (x J J) 81))

(REST (MKS 0 1 2 3 4 5 6 7 8 9 10))))
(SETF (GET ‘J ’LAMBDA-UAR-?) NIL)):

_1
Figure 4-8 : M acro-expansion of an existential quantification

The processing is accomplished using the Lisp higher-order function some which

determines if the function argument returns true when applied to any element of the list

argument; also visible in the expanded Lisp/ZAL is error-checking code and code to

identify and manage the name-space at execution. In fact when evaluated within the

animation environment, rather than at the command line as here, the quantified

variables, j in this case, are replaced by gensym s (automatically generated unique

symbol names) after expansion but before execution.

- 8 2 -

The recursive macro-expansion performs a re-write equivalent to

3 i : I j : J • Q <=> 3 i : i » (3 j : J * Q)

Notice that the quantified expression is not the most general, lacking the usual

constraint P in

3D | P • 0

It is the case that constraining predicates P either constrain the search space, in which

case they will have been ‘absorbed’ into the declaration D or they will have been

rewritten using the equivalence

3D | P • 0 <=> 3D • P A 0

There are a number of similarities between the quantifications described above and the

generation of implicit sets, or set comprehensions; for both it is necessary to generate a

set of candidate data and to test that data with a predicate. For a quantification, the result

of the test generates the result of the quantification; for a set comprehension, the test is

used to filter the candidate data, with the successful values being used to construct the

set elements. An often-cited example of the drawbacks of executing specifications is the

inability to handle this definition of the set of perfect squares

{ i : N \ 3 j : N • j 2 = i }

It is absolutely the case that this will not directly transform into an executable form,

since both the set and the natural numbers are infinite. However by constraining < to

some finite range, it will execute without further change; in particular, there is no need

to introduce any algorithmic detail, as in Figure 4-9. Larger ranges can be searched, but

these require the use of the non-pure n r a n g e function to generate the candidate data.

; Toploop Package: zai MHlj
Z Animation in Lisp

S h e f f i e l d Hallam Uniuersi ty
Nottingham Trent Uniuersi ty

Jul ian Briggs &
Richard Hibberd

For help type (he lp)

3 .2
zal : (mksi ' i ' i (range 1 1OO00) ' (e x i s t j (range 1 100) (= i (* j j))))
(1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441
484 529 576 625 676 729 784 841 900 961 1024 1089 1156 1225 1296 1369 1444
1521 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401 2500 2601 2704 2809
2916 3025 3136 3249 3364 3481 3600 3721 3844 3969 4096 4225 4356 4489 4624
4761 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241 6400 6561 6724 6889
7056 7225 7396 7569 7744 7921 8100 8281 8464 8649 8836 9025 9216 9409 9604
9801 10000}
z a l :

J

Figure 4-9 : Perfect squares defined with a set comprehension

4.3.5 Schema definition

The initial approach to the creation of the schema object was to encapsulate the

declarations and behaviour into a Lisp functional object - both a closure and a lambda

expression were investigated. This generates small closures that can be readily

manipulated and provides a mechanism for schema inclusion using nested calls to the

execution function. This was also useful to support schema renaming and an explicit

call to one schema from within another - this technique is used by Morgan in a classic

specification of a telephone network in [Hayes 1993] as in the fragment

-i(3 cons0 : P CON • cons Cl cons0 A TN[cons° / cons]

where TN is a schema object, as is the schema-renamed expression. Though effective in

this particular situation, the technique limits the optimisations that can be made to those

valid at an individual schema level, at the time of schema definition. More seriously it is

not possible to establish which elements of a schema are visible at that point; the

alteration of a schema that is already included by others will invalidate all of the

including schemas.

This suggests that the correct point at which to encapsulate the declarations and

predicates is at execution. This does entail a significantly larger computational object,

- 8 4 -

□ 1x1

Z Animation in Lisp
S h e f f i e l d Hallam Uniuersi ty
Nottingham Trent Uniuersi ty

Jul ian Briggs &
Richard Hibberd

For help type (help)

3 .2
zal : (mksi ‘ i ‘ i (range 1 10O00) ‘ (e x i s t j (range 1 100) (= i (* j j))))
(1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441
484 529 576 625 676 729 784 841 900 961 1024 1089 1156 1225 1296 1369 1444
1521 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401 2500 2601 2704 2809
2916 3025 3136 3249 3364 3481 3600 3721 3844 3969 4096 4225 4356 4489 4624
4761 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241 6400 6561 6724 6889
7056 7225 7396 7569 7744 7921 8100 8281 8464 8649 8836 9025 9216 9409 9604
9801 10000}
z a l :
__________ J

Figure 4-9 : Perfect squares defined with a set comprehension

4.3.5 Schema definition

The initial approach to the creation of the schema object was to encapsulate the

declarations and behaviour into a Lisp functional object - both a closure and a lambda

expression were investigated. This generates small closures that can be readily

manipulated and provides a mechanism for schema inclusion using nested calls to the

execution function. This was also useful to support schema renaming and an explicit

call to one schema from within another - this technique is used by Morgan in a classic

specification of a telephone network in [Hayes 1993] as in the fragment

-i(3 cons0 : P CON • cons cz cons0 a TN[cons° / cons]

where TN is a schema object, as is the schema-renamed expression. Though effective in

this particular situation, the technique limits the optimisations that can be made to those

valid at an individual schema level, at the time of schema definition. More seriously it is

not possible to establish which elements of a schema are visible at that point; the

alteration of a schema that is already included by others will invalidate all of the

including schemas.

This suggests that the correct point at which to encapsulate the declarations and

predicates is at execution. This does entail a significantly larger computational object,

- 8 4 -

1 Toploop Package: zal

since it must be built in totality rather than referencing previously defined objects, but

this trade-off is well justified by the clarity and correctness of the model; furthermore it

is consistent with the notion of schema inclusion as a textual expansion.

The schema definition process is consequently largely reduced to a call to a structure

constructor (a structure is the Lisp record type), with initialising values for the various

fields. As a convention, static data is held in the fields of the structure and the run-time

flags and parameters are managed as property lists, which provide more flexible access

facilities.

4.3.6 Schema level manipulations

Though it is technically feasible to adopt a purely functional approach to the

manipulation of schema entities, rather than just the clauses of them, Z remains a state-

based modelling notation; indeed the role of the state schema is to introduce those

objects that constitute the state, together with the state invariants, the constraints that the

state will always satisfy.

The putative functional approach to schema level manipulations would necessitate the

passing of the state data into and out of an execution; such a system would be unusable

without some mechanism to automate the generation and management of this data.

Additionally, the raison d ’etre of the whole project is to make accessible to a sponsor

the details of a specification whilst minimising the technical skills required; it would be

illogical to then require an understanding of perhaps monadic I/O and the functional

paradigm. To this end, it is important that externally at least, the animation appears to

maintain an ongoing state. The virtual proscription of global variables does not apply to

the situation here; the state schema introduces the state objects of the specification and

that state is naturally global. Furthermore, the global objects in question are in effect

named values, and are not updateable in the conventional sense; pre- and post-states can

- 8 5 -

been interpreted as separate values and the only ‘updating’ of the state objects is the

promotion of some or all of the post-state values of some execution to be the current

values of the state. Between executions, the values may be edited, but that can be

interpreted as changing the ‘input’ data for the next execution; there exist command line

facilities to update state data, but these are not part of the ZAL code generated

automatically by TranZit.

The user’s perspective of executing a schema will be examined in Section 0, but a

technical overview is in order to better provide a context for the current discussion.

After a schema (name) is selected for execution, the process detailed below occurs:

• the executable object is constructed dynamically - this involves expanding

recursively any referenced schemas and building these into a single object.

These references may be by inclusion, conjunction, disjunction or negation;

• an environment is constructed for the execution, to include any objects that are

in scope in the lifetime of the execution;

• any inputs required by the schema are collected, by interaction with the user;

• the executable object is evaluated in the constructed environment;

• the result of the evaluation, a truth value, is reported to the user. If the evaluation

succeeded, any outputs are reported to the user, together with any other objects

selected for display and the opportunity to promote the values of post-state

objects is offered.

After a brief discussion of the role of the state schema, this process is examined in

detail.

4.3 .6 .1 T he role o f sch em as in Z and Z A L

The state schema is conventionally used to introduce the data objects of concern within

a specification, and to constrain the values that those objects may take; this can be

thought of as analogous to a variable declaration in a conventional programming

- 8 6 -

language, which brings the declared object into scope. The predicate clauses of the state

schema constrain the values, effectively defining what is or is not a valid state, and for

this reason, the predicate of the state schema is sometimes known as the invariant. A

novel aspect of the work is the practice of executing the state schema, or at least the

invariant, which has the effect of verifying the current state. As will be examined in

Section 5, this can be done in the normal way using the usual interface as in Figure 5-2

(page 106) and Figure 5-11 (page 125); it can also be automated so that a check is made

during the promotion of post-state values, Figure 5-17(page 111).

Another use of a schema is as an abstraction, whereby the schema simply serves as a

convenient name for a collection of data objects or predicates or both; this style of use

can be found in Section 5.2.3 and Figure 5-13 (page 126), where the schema

M o n i to r v a r? serves simply to bundle a commonly used set of inputs. The schema is

then included wherever that combination of inputs is required; this use is allowable

because of the namespace rules that Z employs. An object can be introduced by a

declaration in a schema or in a schema that is included in the original schema or in fact

in more than one of these - the only requirement is that all the declarations must be the

same, i.e. the object must be declared to be of the same type. In this respect Z differs

from virtually all programming languages, which generally utilise a hierarchical

scheme, with all occurrences being separate and at most one being visible at any point,

and the remainder hidden or shadowed. As a consequence, this namespace must be

explicitly managed, as is discussed in Section 4.3.6.7

4.3 .6 .2 C on stru ctin g the execu tab le ob ject

This phase is concerned with the creation of a Lisp lambda-expression, which is an un

named function expression that can be applied in a way identical to any other function

application. The form of the expression is

- 8 7 -

#'(lambda args body)

where a r g s is a possibly empty list of formal parameters to the expression and b o d y is

a symbolic expression, or s-exp, which calculates the return value of the function.

It is necessary to construct both a r g s and b o d y from the aggregation of all the

schemas that are referenced directly or indirectly by the “executing” schema; to this

end, the relationships are examined and their topology captured.

The references to other schemas all derive from the schema calculus; the particular set

o f operations supported are :

• schema negation

• schema inclusion

• schema conjunction and

• schema disjunction.

These schema operators determine the relationship between the elements that make up

the executable object; the elements are the argument schema, suggests an organisation

that will illustrate the mechanism by which both the declarations and the predicate of

the executable object are constructed.

Given the relationships of and that schema Sn has declarations Dn and predicate Pn,

D+Sl,the expanded declarations of SI, can be expressed in terms of D1 and the

expanded declarations of S2 and S3, and correspondingly, the expanded predicate of SI,

P+S1 in terms of PI and the expanded predicates of S2 and S3.

51 = S2 v S3

52 includes S4

S4 includes S5

53 includes S5

S3 includes S6

S6 = S7 a S8

S8 negates S9

Figure 4-10 : An illustrative schema topology

S2

S5
S4

v
S3

S5_________________ S6____
S7

A
S8

- 8 9 -

More formally

D»n S D n U

(U (a D+ i n c l u d e d B y (n))) L9

(U (a D + c o n j o i n e d B y (n)))

(U (a D + d i s j o i n e d B y (n))) L9

(U (a D + n e g a t e d B y (n)))

or

D+n = D n U (a D + (U{ i n c lu de d By (n) c o n j o i n e d B y (n) d i s j o in e dB y(n) n e g a t e d B y (n) }))

where is based on [Backus 1978] and is the apply-to-all-set-elements operator defined

This is a somewhat simplistic interpretation of the expansion of the declarations, which

is consistent largely because the visibility of the objects has been validated by the

TranZit component and so using the expanded declaration does not introduce elements

that are accessed by, say, one element of a schema disjunction when they are declared in

another.

- 9 0 -

The expression giving the expanded predicate is more complex, but can be expressed:

P+(n) = Pn A

(distA (a P+ i n c l u d e d B y (n))) A

{d/stA (a P+ c o n j o i n e d B y (n))) A

{d/stV (a P+ d i s j o i n e d B y (n))) A

(- i P+ (n e g a t e d B y (n)))

where d/st A , d/stv are distributed conjunction and distributed disjunction

respectively and are defined

distA , distv : P (P Bool) —» P Booi

V A : P (P Bool) •

distA = (Vp : A • p) a

distv = (3p : A • p)

Figure 4-11 : distributed conjunction and distributed disjunction in Z

The expanded predicate of the topology o f can be extracted from the executable object,

see Figure 4-12

-91 -

NMM-
j

Z Animation in Lisp
Sheffield Hallam University
Nottingham Trent University

Julian Briggs S
Richard Hibberd

For help type (help)
3.2
zal: (build-predicate s 1)
(and t (and) (and)

(or
(and p2

(and
(and 'p4 (and (and 'p5 (and) (and) (or t) (not (not t)))) (and)

(or t) (not (not t))))
(and) (or t) (not (not t)))

(and p3
(and (and ‘p5 (and) (and) (or t) (not (not t)))

(and ’p6
(and (and 'p7 (and) (and) (or t) (not (not t)))

(and 'p8 (and) (and) (or t)
(not (and p9 (and) (and) (or t) (not (not t))))))

(and) (or t) (not (not t))))
(and) (or t) (not (not t))))

(not (not t)))
z a l :

j
Figure 4-12 : The expanded predicate of schema SI

- 9 2 -

A reduced topology - that rooted at S6 - generates the predicate below, which has been

annotated to show the origin of each clause.

(and 'p6

(and

(and 'p7

(and)

(and)

(or t)

(not (not t)))

(and 'p8

(and)

(and)

(or t)

(not

(and 'p9

(and)

(and)

(or t)

(not (not t))))))

(and)

(or t)

(not (not t)))

predicate of S6

included by S6 - S7

predicate of S7

included by S7 - nil

conjoined by S7- nil

disjoined by S7- nil

negated by S7- nil

predicate of S8

included by S8- nil

conjoined by S8- nil

disjoined by S8- nil

negated by S8

- the predicate of S9

included by S9- nil

conjoined by S9- nil

disjoined by S9- nil

negated by S9- nil

conjoined by S6- nil

disjoined by S6 nil

negated by S6- nil

There exists some redundancy in this predicate which could be readily simplified, if

necessary.

- 9 3 -

4.3 .6 .3 C on stru ctin g the en v iron m en t

Each of the data objects that is in scope in the lifetime of the execution belongs to

exactly one of the following categories:

• an input object

• an output object

• a locally declared object

• a state object that is declared in the state schema

Each of these is handled individually and the particular characteristics of each are

discussed below; however it should be noted that only the state objects exist outside the

scope of a schema execution.

43.6.3.1 Input objects

These are objects that are used to construct the actual argument list to the executable

object; they are not a part of the execution itself since any references to the name within

the body of the executable object refer to the actual parameter, as is suggested by Figure

4-13. Even if the input object also names an existing symbol, the value entered by the

user is not the symbol’s value, but is stored in a property list as specific to this

execution. The arguments are all presented as values rather than symbols, so there is no

possibility of updating these objects.

4 Toploop Package: zal

2 Animation in Lisp
S h e f f i e ld Hallam Uniuersity
Nottingham Trent Uniuersity

Jul ian Briggs &
Richard Hibberd

For help type (help)

3 .2
zal : (symbol-ualue 'x?)
5
zal: (1+ x?)
6
zal: (f u n c a l l #'(lambda (x?) (1+ x?)) 16)
17
zal : (symbol-ualue ’x?)
5
z a l :

J
Figure 4-13 : Lam bda variables are distinct from symbols of the same name

4.3.6.3.2 O utput objects

Output objects in Z are suffixed with a T character and traditionally fulfil two

functions: they are used to report outcomes, with a success message or an error report

and they are used to pipe values between the two schemas of a composition, where the

output of the first schema - say name! - is the input value -here name? - to the second.

Though not usual, it is legal to treat an output object as a value that can be used in

predicate clauses; consequently output objects, once instantiated, are manipulated as

WORM10; they will generally be bound to a value at some point and may then be used

as named values.

10 Write Once Read Many

- 9 5 -

4.3.6.3.3 Local objects

Local objects are also exhibit WORM functionality, but their scoping is rather different

from all the other classes. Whereas a declaration in one schema of the topology

introduces an object to all the predicate clauses of the executable object, a local object is

de facto local and is not visible in any other schemas in the topology. To implement this

alternative scoping, a let expression is constructed when the schema object is defined,

which declares a local object with the predicate of just the defining schema as its body.

Again using the topology o f, a local declaration of an object L2 in schema S2 will be

reflected in the local and expanded predicate as in Figure 4-14

. ■■ »;• — M i . "lxl
>(sch-predicate S2) 23
(LET ((L2)) 1P2)
>(build-predicate S2)
(and

(let ((12))
> 2)

(and
(and 'p*4 (and (and ‘p5 (and) (and) (or t) (not (not t)))) (and) (or t)

(not (not t))))
(and) (or t) (not (not t)))

> j
Figure 4-14 : Local declaration incorporated into a schema predicate

In this situation, predicate P2 would reference the local object L2, which would not be

visible to other elements of the expanded predicate.

4.3.6.3.4 State objects

What are described as state objects are those data components that are declared in the

state schema declarations and which are constrained by the state schema predicate, or

invariant. During an execution they also represent named values and are not updated

except by the process of promotion; it could argued that the promotion only occurs after

successful execution and that consequently is no more than an alternative, more

convenient mechanism for the binding of new values, prior to a further execution.

- 9 6 -

4 .3 .6 .4 C o llectin g in p u ts

The set of named inputs is generated as a by-product of the analysis of the namespace;

each has already been identified as an input and categorised as such when the individual

schema object is created. Each is presented to the user in a dialogue, see Figure 5-13,

and a value is assigned to each by the user. These values, rather than the objects

themselves, are constructed into a list that is the argument to the function application.

4 .3 .6 .5 E va lu a tin g the executab le ob ject

The key aspect, actually executing a schema, is simply a matter o f applying the lambda

expression that is the executable object to the actual parameters collected from the user.

The environment of this application is that constmcted from the declared objects. This

application will yield a truth value, which is reported to the user.

4 .3 .6 .6 R ep ortin g the resu lts o f the eva luation

If the evaluation succeeded, any outputs are reported to the user, together with any other

objects selected for display. Usually these will be state objects and in some executions,

the post-state will differ from the pre-state. When this occurs, the user will be offered

the option of promoting the post-state values, as in Figure 5-5.

Provided that the state schema was included in the schema that was executed, if all the

post-state values are promoted then state data will remain self-consistent and valid;

should some, but not all, o f the values be promoted, this consistency is not guaranteed.

However the invariant is executed automatically at the end of the promotion dialogue

and should an inconsistent state exist, it is reported to the user, as demonstrated by

Figure 5-6..

4 .3 .6 .7 M an agem en t o f the on go in g sta te

The state space under consideration here comprises the data objects declared in the state

schema; these are the objects that represent the current state of the model and as such

- 9 7 -

should be both updateable and persistent. They constitute the data that is global to an

animation and are explicitly managed by the animation environment, primarily to

ensure the self-consistency explicit in the state schema .

The current bindings for the state objects can be examined using the Binding Browser

and these bindings can be modified by the user; because this introduces the possibility

of an inconsistent state, the invariant is automatically executed after this editing, and

violations reported.

The opportunity for establishing an inconsistent state is supported, since the reasoning

with a specification may well include investigation of exactly that point - what

constitutes an invalid state, with respect to any particular invariant.

Though it remains possible to access the command line, with the consequential

possibility of a corrupted state, this is considered unlikely and would in any case be

recognised by the mechanism described above.

4.4 The development of a developer’s interface

To a great extent, the design of an integrated, cohesive interface is not feasible until it is

known what functionality is to be interfaced; as perhaps the main focus of the

development has been to investigate precisely that - what functionality can be

implemented - then it is only now that the development of such an interface might

reasonably be undertaken. However the inability to predict the scope of that

functionality and how it might be used cannot preclude the provision of some

mechanism to access it; consequently the interface as is implemented can best be

thought of as a developer’s interface, providing access to the functionality but with little

attention having been paid to either its ergonomics or aesthetics. Similarly, the range of

ways that the implemented functionality is used could not readily be predicted and so

- 9 8 -

the intention has been to provide facilities that are both non-prescriptive and non-

proscriptive in the way they are used.

While the actual appearance of the interface presented to a user might be considered ad

hoc in style, it does remain simply an interface; all the functionality is available at the

command line interpreter and more importantly within the ZAL language itself. For

example, the ability to execute the invariant as discussed previously is accomplished by

a simple function call to the execution function e x e c u te ; this call can be made at the

command line or it can be constructed interactively, together with its arguments, by the

interface.

4.5 Optimisations

An investigative development such as this will not generally consider the optimisation

of the performance as a concern; indeed this should not figure as a consideration of the

specifier, who is free to use the full expressive power of the Z notation. Notwithstanding

this, there may arise situations where the optimisation of the transformed ZAL version

of a specification may render it feasibly executable whereas the un-optimised version is

not.

Empirical evidence suggests that the mechanism for resolving the equality testing issue

(see Section 4.3.4.2), the ZAL operator e q z , consumes significant resources of the

platform on which the animation runs. The majority of individual predicate clauses use

the equality operator and so it is a prime candidate for optimisation. Furthermore it is

implemented as a macro which entails a large expansion whenever it is used, so some

research has been undertaken to establish the feasibility of such optimisation. The

strategy ultimately devised involves a series of optimisations, which are increasingly

aggressive but decreasingly safe in their effect. These optimisations are managed as a

user-configurable safety level, which controls which of the optimisations are invoked.

- 9 9 -

4.6 Other issues of implementation

Though not yet necessary, the ability to model non-determinism has been demonstrated

through the provision of a non-deterministic choice operator, c h o o s e , after [Graham

1994], but this potential is not exploited in the system reported upon here, though it

forms the basis of n o n - d e t e r m i n i s t i c - p i c k - see Appendix E (choose); this

was developed as an alternative to p i c k , as used in Section 5.3 (page 135), but its

usefulness is limited and it remains of marginal relevance at this stage of the project

4.7 In conclusion

The realisation of the necessary animation functionality was an incremental exercise

that involved only limited backtracking to correct inappropriate design decisions; the

decision to delay the expansion and optimisation of the executable schema object -see

Section 4.3.5- was the only occasion which necessitated significant revision and the

current realisation is a tribute to the effectiveness of exploratory programming as an

approach to the resolution of ill-defined and ill-understood problems.

The functionality that has been achieved can now be examined through a number o f

case studies.

- 1 0 0 -

5 Case Studies
This section will explore the use of ZAL in a variety of problem domains and also in a

variety of styles of use. The three studies are :

• a traditional data processing area, with a well-understood problem - that of a

lending library. This has been chosen to demonstrate the capabilities and

characteristics of the animation: in particular, an indication of the breadth and

complexity of the Z expressions that can be executed, the support for elements

of the schema calculus and the mechanisms for modelling generic and axiomatic

definitions. The interaction might be typical of that involving the system

specifier and the client, where the purpose would be to demonstrate the

behaviour implicit in the specification - i.e. requirements validation;

• a safety-critical, monitoring context, involving a water-level monitoring system

with its associated controls and alarms. The interaction demonstrated here is

more typical of the developer of the specification exploring a complex scenario

and using the animation to confirm that the recorded Z notation does in fact

express the correct logic/behaviour - this would be a requirements formalisation

process. This study also demonstrates the use of a scripting interface that could

be developed to provide facilities to manage and administer test suites; and

• an analysis of a development in which the ZAL language is used as if it were a

specification language - i.e. the specification is developed using the ZAL

animator. Though this could be considered an inappropriate approach, given the

expectation that the ZAL version has been generated from the Z, it will be

shown to be consistent with the more usual usage. The classification of this

study is less straightforward as it does not typify a Software Engineering activity

per se; it originated as a genuine third-party undertaking, where the ZAL

animator was being used in an unexpected way. That usage though is compatible

with the stated objective “to make the specification more accessible”, provided

this includes the process of specification development; it also coincides with the

contention that the use of the animator is not prescribed - the expectation is that

it will be used within the REALiZE process, but other possibilities are not

excluded.

Mention should be made of the source and status of the ZAL code that is being

demonstrated, to clarify the purpose served by its presentation; rather than present just

-101 -

the final version of a development, some attention is paid to the process of refining the

specification. As a consequence, successive versions of a schema may be introduced in

support of some particular point and rather than confuse the picture with the detail of

using TranZit to edit and transform, the Z version of some of these is omitted in the

interests of clarity. In each case, the decision as to what to include has been governed by

the need to expose the performance of the animator in a given situation, so that in the

schemas suffixed ‘2’, the ZAL code itself may have been edited.

The style of the animation in each case is interactive, which reflects the planned use of

the tool. A consequence of this decision is that the scenarios that are explored in any

animation are chosen by the user of the animation to confirm or explore some particular

behaviour or situation; no mechanism currently exists for ensuring or managing more

exhaustive testing.

5.1 A Lending Library

The library system examined here derives originally from [Diller 1990] and models a

lending library which records the location and status of the texts in stock and also the

members of the library - the borrowers. The primary purpose is to demonstrate the ZAL

animator operating in “normal” mode - that is, demonstrating the functionality o f the

specification to the sponsor actor to confirm that the behaviour as formally recorded is

consistent with user intention.

The original Z is much the best description of the behaviour we seek to model; it is

reproduced here, together with rather extensive comments, and contrasted with the ZAL

code that models it.

-102-

[BOOK, COPY, PERSON]

The given sets of a specification are populated as required; type-checking would be

their principal use in the animator, but that function is achieved by TranZit.

Consequently it is sufficient to instantiate values to the data components of (usually) the

state schema. Here it is also necessary to bind the constant l i m i t to the value 6. This

can be done with a ZAL script or interactively using the tools of the ZAL Developer

Interface.

1 imit : N

limit = 6

• Binding Inspector

Limit

current value

a 3

_ d

r (text) r do not sh o w value

Bind New V alue | Close

previous v a lu es

docum entation

The maximum num ber of books
allowed to any borrow er

_J

Figure 5-1 : The Binding Inspector

In fact, values have been bound to each of the data components of the state schema

Library, and these can be browsed and edited using the Binding Browser and Binding

Inspector; they can also be echoed at the ZAL command line, thus

- 103-

zal: stock

{'Cl 'C2 'C3 'C4 'C5 'C6 'C7 ’C8}

zal: shelved

{'Cl 'C2 ’C3)

zal: borrowed

{'C4 'C5 ’C8}

zal: loans

[#{'C4 ’BOB) #('C5 ’ANN) #('C8 ’IAN)]

zal: members

{'ANN 'BOB 'IAN 'TED 'TOM}

zal: keptaside

{'C6 'C7}

zal: keptasidefor

[#('C6 ’CAROL) #('C7 ’PAUL)]

zal: isacopyof

[#('Cl 'CATCH2 2) #(’C2 ’SPOT) #('C3 'CATCH2 2) #(’C4 'BLEAKHOUSE) #('C5 ’SPOT) #(’C6

'COCKATOOS) #('C7 'THOMASTHETANKENGINE) #('C8 'SPOT)]

zal: hasreserved

[#('BOB ’SPOT) #('TED ’BLEAKHOUSE) #('TED ’SPOT) #('TOM 'BLEAKHOUSE)]

zal:

These values are a self-consistent set of data that satisfies the system invariant as

represented by the predicate of the state schema.

The function n um berB orrow edB y is defined in Z axiomatically, using a

quantification; the quantification serves to declare the domain of the function. The ZAL

code reflects the totality of the function by not constraining the argument to

membership of some set of values; this construct can be dispensed with when modelled

by a more natural function definition. It should be noted however that the precision and

clarity of the Z definition are captured in the equivalent, so that

V p : PERSON • NumberBorrowedBy p = #((loans~) d {p} D)

becom es

(defun NumberBorrowedBy (p)

(card (rel-image {p} (inverse loans))))

- 104-

The state schema for the library can now be defined.

rL ib ra ry ---

stock , shelved , borrowed, keptAside : P BOOK

members : P PERSON

loans : COPY PERSON

isACopyOf : COPY -> BOOK

hasR eserved : PERSON <—» BOOK

keptAsideFor : COPY -+> PERSON

stock = shelved u borrowed u keptAside

disjoint <shelved, borrowed, keptAside>

borrowed = dom loans

keptAside = dom keptAsideFor

ran loans c members

dom hasR eserved c members

dom isACopyOf = stock

V m : members • NumberBorrowedBy m < limit

The correspondence of the ZAL version of this schema can be readily recognised; each

predicate of the Z version has a matching predicate in ZAL, but in the prefix notation

perhaps more familiar to Lisp users, thus

(SCHEMA Library
:PREDICATE
(and

(eqz stock (unionz (unionz shelved borrowed)KeptAside))
(disjoint <shelved borrowed KeptAside>)
(eqz borrowed (dom loans))
(eqz KeptAside (dom KeptAsideFor))
(subset (ran loans) members)
(subset (dom HasReserved) members)
(eqz (dom IsACopyOf) stock)
(forall m members
(\<= (NumberBorrowedBy m) limit))
(not-mem nobody members)
)

)

- 105-

The self-consistency can be demonstrated by the original technique of executing the

state schema using the Execution Tool - see Figure 5-2 : Executing the State Schema;

this involves selecting a particular schema (here Library) and clicking the Run button

Allegro CL 3.0.2 [e:\acl302\allegro.img] mm
■■■■ -Mx|

File Edit Search Window Package Tools Builder Preferences Help

Schema

Library

V iew

ot(A,ZiT

C l

Bitk 1 **

m Close
A execution

T*.
LIBRARY

Okay

Figure 5-2 : Executing the State Schema

We will consider borrowing and returning, as well as querying the system. Borrowing a

book, or more precisely a copy of a book, is straightforward; the copy is either shelved

or has been kept aside for that borrower in response to a reservation request. In both

cases the sets are “updated” using the set difference operation.

- 106-

A Library

c? : COPY

p? : PERSON

p? e members

NumberBorrowedBy p? < limit

(c? » p? e KeptAsideFor V c? e shelved)

loans' = loans u { c? ^ p ? }

HasReserved' = HasReserved

KeptAsideFor' = KeptAsideFor \ {c? p?}

shelved' = shelved \ { c ? }

This is modelled by the ZAL schema

(SCHEMA BorrowBook
:INCLUDE delta-Library
:SHOW (loans KeptAsideFor Shelved)
:? (c? p?)
:PREDICATE
(and

(mem p? members)
(\< (NumberBorrowedBy p?) limit)
(or

(mem #(c? p?) KeptAsideFor)
(mem c? shelved)

)

(eqz loans' (unionz loans [#(c? p?)]))
(eqz HasReserved' HasReserved)
(eqz KeptAsideFor' (setsub KeptAsideFor {#(c? p?) }))
(eqz shelved' (setsub shelved {c?}))

)

)

There are a number of components of this operation schema that were not found in the

state schema, which consisted solely of a : P R E D IC A T E declaration; the : IN C L U D E

tag is used to support schema inclusion, in this case the A ubrary schema; the : ? tag

identifies the inputs to the schema, here c? and p ? for the copy and borrower

respectively; and the : SHOW tag controls the feedback to the user after the execution.

- 1 0 7 -

Inputs are collated interactively as the schema is executed, as can be seen from Figure

5-3 : Collecting Inputs.

Allegro CL 3.0.2 [e:\acl302\allegro.irng]

File Edit S e a r c h W indow P ack age T o o ls Builder P r e fe r e n c e s H elp

S ch em a

|Borrowbook

V ie w

o
tr an2 tT

Bjck

•i input value P?

■*

C lo s e

BKgEl

C a n c e l

□ l x |

i n p u t to s c h e m a

Borrowbook

A c c e p t

:Lisp-Frame-Window Package: Zal (a LISP-FRAME-WINDOW)

Figure 5-3 : Collecting Inputs

- 108-

The successful execution -see Figure 5-4 - returns True and the values of the data

objects are displayed -Figure 5-5; there is the opportunity after a successful execution to

promote the decorated values and thereby to model a sequence of actions in a style that

mimics somewhat schema composition.

Allegro CL 3.0.2 [e:\acl302\allegro img]

File Edit S earch Window Package T oo ls Builder P re fe ren ces Help

Execution tool HEIE3
Schem a

|Borrowbook

V ie w

OW,T

B id

33

v e x e c u tio n

BORROWBOOK

I O k a y

J a J x J

:Message-Dialog Package: Zal execution (a MESSAGE-DIALOG)

Figure 5-4 : Successful Execution

- 109-

• i Allegro CL 3 0 2 [e:\acl302\allegro img]

F il e E d i t S e a r c h W in d o w P a c k a g e T o o l s B u i ld e r P r e f e r e n c e s H e lp

S c h e m a Execution Feedback

<3
B a c h

- Shown objects
~ Object

Keptasidefor
Loans
Shelved

other (global) objects

v a lu e p o s t v a lu e

[#('C6 'CAROL) #('C7
[#('C4 'BOB) #('C5 'Ah
{■C1 'C2 'C3}

{{'C6 'CAROL) (C
{('C1 'BOB) ('C4 'E
fC 2 'C3}

□ F jx]

Prom ote

Prom ote All

O u tp u ts

C lose

:Fb Package: Zal (a DIALOG)

Figure 5-5 : Execution Feedback

Promotion of all the post-state values will ensure a consistent state, provided that the

state schema has been included, the predicate of which validates the state objects; if not

all the post-state values are promoted, the possibility of an invalid state exists. This can

be identified by the automatic execution of the state schema to provide that validation,

as shown in Figure 5-6.

- 1 1 0 -

f>Sfi E xecution F e e d b a c k

Shown objects
Object value post value

Keptasidefor
Loans
Shelved

other (global) objects

[#('C6 TED) #('C7 'BC
#('C4 'BOB) #('C5 'Al

{('C6 TED) ('C7 'E
{('C1 'BOB) ('C4 'E
i S S S S H I H

v W arning El

O u t p u

Y The invariant is no longer true

Okay

P ro m o te

Promote All

j] V a lu e

C lose

Figure 5-6 : Automatic w arning of state inconsistency, after partial prom otion

Returning a copy of a book also has two situations to consider. If a book has been

reserved, when a copy of that book is returned, it is kept aside for the borrower who

requested it and that particular reservation request is deleted. If it is not reserved, the

copy is shelved once again. Regardless of reservations, the loans function must be

updated.

Depending on the style of the Z used to describe this operation, at least two approaches

are possible to identify the particular borrower for whom this copy will be kept aside;

the Z below uses an existential quantification to both establish if the returned text is a

copy of a reserved book and then to select a borrower from the domain of HasReserved

- I l l -

i-ReturnBook-----

A Library

c? : COPY
p? : PERSON

c? ^ p ? e l o a n s

l o a n s ' = l o a n s \ {c? ►—» p ? }

(3 m : members ; b : BOOK •

IsA C o p y O f c? = b A

H a s R e s e r v e d m = b A

K e p tA s id e F o r ' = K e p tA s id e F o r u {c? ^ m} A

shelved' = shelved A

H a s R e s e r v e d ' = H a s R e s e r v e d \ {m ► b}

)

v

(-i 3 m : m e m b e r s ; b : BOOK •

IsA C o p y O f c? = b A

H a s R e s e r v e d m = b A

K e p tA s id e F o r ' = K e p tA s id e F o r A

s h e l v e d ' = s h e l v e d u {c?} A

H a s R e s e r v e d ' = H a s R e s e r v e d

)

This translates and executes as

-112-

(SCHEMA ReturnBook
:INCLUDE delta-Library
:SHOW (loans KeptAsideFor shelved HasReserved)
:? (c? p?)
:PREDICATE
(and

(mem #(c? p?) loans)
(eqz loans' (setsub loans {#(c? p?) }))
(or

(and
(exist m members b (ran IsACopyOf)
(and

(equalp (title c?) b)
(mem #(m b) HasReserved)
(eqz KeptAsideFor' (unionz KeptAsideFor {#(c? m)}))
(eqz shelved' shelved)
(eqz HasReserved' (setsub HasReserved {#(m (title c?))})))

(and
(not

(exist m members b (ran IsACopyOf)
(and

(eqz (applyz IsACopyOf c?) b)
(mem #(m b) HasReserved))
(eqz KeptAsideFor' KeptAsideFor)
(eqz shelved' (unionz shelved {c? }))
(eqz HasReserved' HasReserved)))

)

)

)

The non-determinism of the Z, whereby it is not specified for which reserving borrower

the returned book is kept aside, is not modelled in the ZAL translation; the animation

will in fact allocate the returned book to the alphabetically first member that has

reserved a copy and the updating predicates for subsequent ‘valid’ reservers that are

tested will fail, as the post-states have already been bound to reflect the success of the

first valid reserver. Somewhat cleaner is to check for the book title as a member of the

range of the reserved books; this test is very much clearer, but the mechanism for

selecting the “winning” reserver is much less obvious. A valid approach is to choose the

‘first’ reserver according to some criterion

- 1 1 3 -

(SCHEMA ReturnBook2
:INCLUDE delta-Library
:SHOW (loans KeptAsideFor shelved HasReserved)
:? (c? p?)
:LOCALS (winner book-name)
:PREDICATE
(and

(eqz book-name (title c?))
(eqz winner (lst-reserver book-name))
(mem #(c? p?) loans)
(eqz loans' (setsub loans {#(c? p?) }))
(or

(and
(mem book-name (ran HasReserved))
(eqz KeptAsideFor' (unionz KeptAsideFor {#(c? winner)}))
(eqz shelved' shelved)
(eqz HasReserved’ (setsub HasReserved {#(winner book-name)}))
)

(and (not-mem book-name (ran Hasreserved))
(eqz KeptAsideFor' KeptAsideFor)
(eqz shelved' (unionz shelved {c? }))
(eqz HasReserved’ HasReserved)
)

)

)

)

This schema introduces another tag :LOCALS which provides for the introduction of

local objects. The detail of the choice of reserver is now abstracted into the function lst-

reserver; this abstraction will allow more sophisticated models of reservation, probably

involving a sequence of reservers, to be introduced.

- 114-

The Z and ZAL versions of the two query schemasWhoHasBook and WhoHasCopy

are presented as a screen captured from TranZit and ZAL running in individual

windows (Figure 5-7).

iJHiiMHMIIMaB
File E d it View Sym bols T oo ls N o ta tio n

-WhoHasBook-----

H Library

b ? : BOOK

pi PERSON

p! = {m . members | 3 c . COPY • loans(c) = m A

IsACopyOf c = b?}

-Who Has Book2—

H Library

b? : BOOK

pi PERSON

p! = ra n ({b?} 0 IsA CopyO r D <1 loans)

■Who Has Copy-----

S Library

c ? COPY

p! PERSON

(c? e dom loans A p! = loansCc?))

(c ? t dom loans A p! = nobody)

/* end of specification */

J

inj_xjAllegro CL 3.0 2 [e:\acl302\oltegro img]

File E d it S e a rc h W indow P ackage I o o l s B uilder P re f e re n c e s Help

_ |□ | x|
(SCHEMA WhoHasBook ^

:INCLUDE psi_Librarv
: ? b ?

n members 'b {b?}
' (exist c (dom IsACopyOf)

(and
(mem #(c b) IsACopyOf)
(mem c (dom loans))
(equalp m (applyz loans c)))

)

(SCHEMA WhoHasBook2
:INCLUDE psi_Library
: ? b ?
:l p!
:PREDICATE
(eqz p! (ran (domres (rel-image (b?) (inverse isacopyof)) loans))
)

)

(SCHEMA WhoHasCopv
:INCLUDE psi_Library

PREDICATE

(and
(mem c? (dom loans))
(eqz p! (applyz loans c?))

(not-mem c? (dom loans))
(eqz p! nobody)

gf \ M " g|n|_x|| " g| IxJl'" g|n|j
Lisp-Frame-Window Package Zal (a USP-FRAME-WINDOW)

J

Figure 5-7 : The Toolset Com ponents in Parallel

There are two versions of the schema WhoHasBook; the first uses a set comprehension

to identify borrowers of a particular title and the second utilises function inversion,

relational image and domain restriction to achieve the required functionality. This

contrast in styles is examined in a little more detail in Section 5.3 .

- 115-

It can be seen from this exploration that the ZAL engine can indeed animate a

specification in the conventional ‘data-processing’ area; this is certainly to be expected,

but the ability to execute quite complex Z expressions, such as

3 m : members ; b : BOOK •

IsACopyOf c? = b A

Has Reserved m = b A

KeptAsideFor' = KeptAsideFor u {c? ^ m) A

shelved' = shelved A

HasReserved' = HasReserved \ {m ^ b}

or

p! = ran ({b ?} d isACopyOf~ D < loans)

is perhaps noteworthy.

- 1 1 6 -

5.2 The Water Level Monitoring System

Introduction

The second case study concerns requirements validation in the domain of high integrity,

safety-critical systems, where the use of formal methods has been most widely adopted.

A Z version is produced of a published VDM specification for a water-level monitoring

system (WLMS), which is then reasoned with, by inspection but more rigorously by

animation; this exercise was part of a larger enterprise, which reports upon the

REALiZE method referred to in Section 3.4. The safety properties of the system are

validated by animation. In particular, this example illustrates its use in conjunction with

another component of the toolset, namely TranZit.

The principal area of interest here is the automatic production of the ZAL code and its

execution, but a brief reprise of the REALiZE method and the toolset may be helpful to

contextualise the particular process on which we are focusing.

The REALiZE method is a framework for the interaction between requirements

acquisition, requirements formalisation and requirements validation, and as a protocol

for the integrated use of the TranZit and ZAL toolset components; it is located in the

standard software lifecycle model at the requirements analysis phase. After the initial

requirements capture, the specifier formalises the requirements in the Z notation using

the facilities provided by the TranZit tool. Once this is complete, the specifier can

validate these requirements. The specifier uses the TranZit tool to produce an

executable representation of the captured Z specification in the ZAL language. This

representation can then be executed by the specifier within the ZAL animation

environment, for the purposes of demonstrating properties of the captured specification

to members of the stakeholder team.

- 1 1 7 -

5.2.1 The Z specification used in the case study

The WLMS is a typical, though small-scale, safety system, in that it is a real-time event-

driven system. [Jackson and Stokes 1993] specified the system using VDM and

implemented it in Pascal. For this case study it was translated into Z. It was decided to

translate the parts of the system which monitor inputs and use the readings to specify

the state of the pump switch and an alarm signal, but to ignore (for simplicity) the parts

of the system which are concerned with display of the state on a monitor. In its overall

structure, the VDM specification and its Pascal implementation consist of an

initialisation operation and a main operation which is run repeatedly. The main

operation takes in inputs from a clock, water-level sensor, control buttons, etc., and

specifies values for state variables and outputs such as a switch to control the pumps

and an alarm which gives an audible warning when problems occur in the system. The

main operation uses a number of operations which deal with parts of the system, and in

some cases these are subdivided further. The system can be in one of four main

(operating) modes. It begins in standby mode; then if a reset button is held down for a

certain time and the water level is within its correct limits, it changes to operating mode,

with the pumps running. If the water level is found during operating mode to be outside

the correct limits, it changes to shutdown mode. If the water level then recovers within a

certain time, the pumps do not stop and it returns to operating mode; if not, then the

pumps are switched off and standby mode is entered. There is a test mode which is

entered from any other mode by holding down a test button. Another state variable

records the failure mode. This is normally a l l o k , but becomes b a d le v d e v if the

device for monitoring water level fails, or h a r d f a i l if other hardware fails.

The production of the specification was strictly a translation process from VDM to Z

which demonstrated some differences in the styles of specification encouraged by the

two languages. The basic types and constants in the VDM specification were translated

- 1 1 8 -

in a straightforward manner to free types and global variables in Z. However, the

structured types in the VDM were translated simply using inclusion of state schemas.

Real numbers are used in the VDM specification for water levels and times. As

mentioned by [Jackson and Stokes 1993], floating point implementations of real

numbers present problems for formal verification. For this reason, the basic Z language

and toolkit [Spivey 1992] did not originally include real numbers, though these have

been added by [Valentine 1993], and integer types were used in the Z specification here.

In practice, a time is a number of clock ticks, and the water level in this system is

derived from a differential pressure which can take only 256 discrete values, so the use

of integers is quite natural. The specification was also simplified by putting many small

schemas into a few large ones, and by avoiding the use of structured types

(implemented by schema inclusion) in the state. The complete resulting specification is

shown in Appendix C (WLMS in Z), though much of it is also included here.

A number of errors were identified during the process of simplification; these had to be

corrected to make the simplified structure possible and to allow animation. An error in

the operation to set a new state when inputs are read by the monitoring system in

standby mode was noticed by [Jackson and Stokes 1993] if buttons were pressed and

released at certain times, the operation required the operating mode variable to have two

different values. This type of error is not possible in "if-then-else" style of Z which was

adopted to translate the implication connectives used in the VDM to specify the values

of variables, because the conditions under which different values are specified are

orthogonal under this style of Z. The operation which determines the state o f the alarm

(silent or audible) in the original specification contained a precondition which required

that the power was on and the hardware had not failed. This was not checked when the

operation was included in the main operation function (VDM) or schema (Z). This

results in an operation with a predicate which cannot be satisfied by any values o f the

- 1 1 9 -

state variables when the precondition fails. In the simplified version, a third value

u n d e f in e d was introduced to allow animation to continue when the precondition

fails. In the original specification, the state variable waterlevel was not uniquely

determined from the input pressure diffPress? if the latter had one of its extreme values

0 or 255 which should never occur in normal operation. This non-determinism was not

serious because the range of allowable values caused no problems in the rest of the

specification.

A number of misprints were introduced in the translation from VDM to Z. A ’ -1 ’

symbol was omitted before the test to check that the water level was correct in the

schema which sets the new operating mode. This was noticed when the Z was translated

to ZAL, but was left in to demonstrate that it could be detected by the animation. The

water level was not determined correctly from the input pressure because of a missing

zero in a number used in the calculation. This error was also not corrected.

5.2.2 Validation

Before detailing the animation of the specification, brief consideration is given to the

issues involved in animating specifications for safety-critical applications. Whatever

checks and formal static analysis have been carried out on safety-critical software,

dynamic testing of the system as implemented is essential to produce evidence that the

software causes the target computer and plant to behave as intended. Testing o f safety-

critical software uses the same techniques as for non-critical systems, but the whole

process is performed within a more rigorous, quality-assured framework. This

comprises part of the safety case for the system. This requires that the tests performed,

the inputs and output results, are all documented and placed under change control. Test

definitions and coverage analysis are required, for example, by DO—178A for critical

-120-

and essential functions. This means checking the test cases to discover which aspects of

the requirements are confirmed by successful execution of each test [Pile 1991].

However, animation is not implementation, and its purpose is both to find errors in the

formal specification and to identify problems in the informal requirements. Validation

at the requirements phase of safety-critical software is much less well understood than

the testing of implementations, and different approaches are still under development.

There is as yet no standard, agreed method, but usually a collection of techniques

borrowed from other kinds of safety-critical engineering is employed. Test cases for the

requirements phase would be generated using standard safety analysis techniques such

as: Event-tree analysis; Fault-tree analysis; Failure mode effects analysis (FMEA),

Failure mode effect and criticality analysis (FMECA); Hazard and operability studies

(HAZOP) [Pile 1991]. Given the constraints of the exercise being described,

significantly fewer, if any, iterations through the cycle and versions of the specification

would be expected and very little change to the specification is reported here, beyond

the identification and correction of errors, including those described earlier.

5.2.3 Animation

There follows a demonstration of an animation that was used to investigate the

behaviour of the system as specified; the brief commentary guides the reader through

the process.

Once the complete specification of the WLMS has been syntax- and type-checked by

TranZit, the transformation engine can be used to produce the ZAL executable version

(Figure 5-8)

-121 -

File Edit View Symbols Joo ls Notation

■Normal Operation-

MonitorVar?

A StoredD ata

Control Signals!

Get Next Mode

A1 armControl

Get Outputs

Analyser and Transformation System
S y n ta x A n a ly se r

100 M axim um N um ber of S y n ta x E rro rs R e p o r te d

f~ R e p o r t U n d e f in e d F u n c tio n s |7 E n a b le T y p e C h e c k in g

time' = timeNow?

Clet level == levelLow erCal +

((d iffP ress? * 103803 - 4850 '

w ate r level =

if d iffP ress? = 0 then

T ra n s fo rm a tio n S y s te m

I ? T ra n sfo rm 2 to 2A L

I” W rite to C lip b o a rd P? W rite to F ile

w lm sp ap .za l

S ta r t C a n c e l

-d

e lse if d iffP ress? = 255 then level UpperCal + 1

e ls e if level < level LowerCal then level LowerCal

e ls e if level > level UpperCal then level UpperCal

e ls e level)

watchdog! = if w atchDoglim e < watchdogtim eout then opera te e ls e shu t

s tep = timeNow? - time

J

J

i f 1
i^ B sta rt | i f f Microsoft Word - scree... | | <3 TranZit - C:\MYDOC... ^ TranZit File Loader m 0 7 :0 8

Figure 5-8 : The Transform ation Process

- 122-

This can then be used by the ZAL system to interactively investigate the normal

operation of the WLMS, as specified in the schema NormalOperation

On entering the ZAL environment and loading the executable version of the

specification, the "Execution Tool" is invoked (Figure 5-9).

A lle g r o CL 3 . 0 [C : \A L L E G R O \a l le g r o .im g]

File Edit Search W indow P ack a g es lo o ls Builder Preferences Help

mmm

10 BHISHHE3
Toplr v-

IqjoIiqjI \n m \n \ H a H U B l B S a ̂
Loa
Loa
1 f
Res
Loa
3 f
Res

T
>
;; Loa
#P"c :\
;; Loa
;; 17 #P"c :\
;; Res
T
> (e x)*EX*
>

i E x e c u t io n t o o l

Schema

Initialise

V i e w

Ik L

mw

HHO

Back
[Run „
1

< f - o Close

-iDlxl
ew-bits.lsp" 0
ilWneu-bits.lsp"

a l W z . l s p "

J
4. execution E

True
IN IT IA L IS E

Picture-Button :ZAL-RUN-BUTTON

•^8Start 11"?'Allegro CL 3.0 [C:\A... @ @ 1 12:45

Figure 5-9 : The Execution Tool

- 123-

File Edit Search Window Packages Tools Builder Preferences Help

Allegro CL 3 .0 [C:\ALLEGRO\allegro.img] w n c

M U E E m \am \n \ H 3 E H I \
M P l i iew-bits.lsp"Loa

Loa
ilWneu-bits.lsp"

Res
Loa

I i n p u t v a lu e TIM EN O W ?

V i e wRes

zAl;; Loa
#P”c:\
;; Loa
;; 18
#P"c:\
;; Res

i n p u t t o s c h e m a2500
2100
2050

Cl
Momtorvar?

A c c e p tC a n c e l

:G e t-A rg u m e n ts P a c k a g e : Zal (a D IA LO G)

i ^ S t a r t | M icrosoft W o rd - s c r e e . A l l e g r o CL 3 .0 [C : \A . . . i&S'eS 0 1 :4 4

Figure 5-10 : Default input values

First, the Initialise schema is selected in the drop-down schema menu, and the schema is

executed, by clicking the Run button, to give initial values to the variables alarm,

shutdownSignal, timelnMode etc. The executed predicate evaluates to True. Then the

NormalOperation schema is selected (Figure 5-11).

- 124-

File Edit Search Window P ack ag es Tools Builder Preferences Help

EJ iDi^iHiBUi itM aI iqjqibji \nm \d u & fr m i t in p i#
BES39
;; Loa 4. Execution tool

Res
Loa

;; Loa
#P"c:\
;; Loa
;; 18
»P"c:\
;; Res
T
> (e x)
* E »
>

Schema

V ie w

ZAL

mTrA„ZjT

<=1
B aa

Pun£

< ft> C lo se

jaJiij
ew-bits.lsp” _d

il\\new-bits.lsp"

al\\z .lsp"

wlms.zal"
OPERATION

zl

Lisp-M ain-W indow P a c k a g e : Zal (a LISP-MAIN-WINDOW)

S tart j I1*"'Allegro CL 3 .0 [C :\A ... IjyM icrosoft W ord - D ocu ...| 08 :29

Figure 5-11 : Schema NormalOperation

The ZAL button opens an editing window to the executable version of the selected

schema, and the TranZit button does the same for the original Z (Figure 5-12).

X A l le g ro CL 3 . 0 [C : \A L L E G R O \a l le g r o .im g]

File Edit Search Window P ackages Tools Builder Preferences Help

xi iDî iHi@i<8l i^iai inlaid H 3 B H 1 B f l M B a
T - : > ^Mxj]
pN ormal Operation— £

MonitorVar?

w lm s p a p .z a l P a c k a g e : za l
|(SCHEMA NormalOperation ' D 111
:INCLUDE (MonitorVar? delta_StoredData ControlSignals! GetNextMode AlarmCon
:PREDICATE
(and

(eqz time' timeNow?)
(let ((level (+ levelLowerCal

(floor (* (- (* diffPress? 103803)48S010)
(— levelUpperCal levelLowerCal)) 2550000))

(eqz waterlevel
(if (eqz diffPress? 0) i

(— levelLowerCal 1)
(if (eqz diffPress? 255)

(+ levelUpperCal 1)
(if (\< level levelLowerCal)

levelLowerCal
------------------- (if (\> level levelUpperCal) .
time' = timeNow? d J __
(iet ievel == ievei LowerCal +

((diffPress? * 1 0 3 8 0 3 - 4 8 5 0 1 0) * (lev e lUpperCai - levelLowerCal)) div 2 5 5 0 0 0 0

w aterlevel =

if diffPress? = 0 then levelLowerCal - 1

AstoredData

ControlSignals!

GetNextMode

AiarmControl

GetOutputs

J

:W ize Package: Zal Path c:\mydocu1\research\papers\wlms\wlmspap.zed 228 lines and 8,223 characters Last modified
Saturday 6 Nov 1999 at 1:37:04 PM (today) (a TEXT-EDIT-WINDOW)

j j a s t a r t | l " g " A lle g ro CL 3 .0 [C : \ A . . A 0 1 :5 0

Figure 5-12 : Schema NormalOperation in Z and ZAL

- 125 -

Because NormalOperation makes reference (by schema inclusion) to the MonitorVar?

schema, running it causes the ZAL system to prompt for values of the input variables

(memory?, diffPress?, resetButton? etc.) defined by that schema (Figure 5-13). This use

of schema inclusion demonstrates the flexibility of the approach to animation that has

been adopted; support for the use of a schema to ‘package’ all the input variables in

MonitorVar has not been explicitly provided. Given that the style of specification

writing is consistent with the Z standard, it is implicitly supported by the toolset.

ŜsdraiiX 3D FC:\AUjE[iR®\a§§tjro,toi§!
File Edit Search Window Packages Tools Builder Preferences Help

BEjEI

>- h e i s s j e lyiwifll E E a a In tel d [71515151 H f f i B g Bl

Loa
Loa
1 f
Res
Loa
3 f
Res

T
>
;; Loa
UP"c:\
;; Loa
;; 18
#P"c:\
;; Res
T
> (ex)
* E X *
>

- 1 l_*J
Schema

| NormalOperation J

V i e w

zAl

TR«„e,T

Back

<f£>Ba^«i

B SC
ew-bits.lsp"
ilWnew-bits.lsp"

al\\z .lsp"

I input value M E M O R V ?
' ok|

l - l n l x i

— □

jJ
i n p u t to s c h e m a

C a n c e l

Monitorvar?

A c c e p t

:Lisp-Frame-Window Package: Zal (a LISP-FRAME-WINDOW)

ij|fl S t a r t] B y Microsoft Word - D o c u , . ,] ! ^ A lle g ro CL 3 . 0 [C : \A . . . 08:31

Figure 5-13 : Collecting input values to an included schema

After execution is complete, the before and after values of the system state variables are

displayed, together with the values of the outputs pumpSwitch! and watchDog! (see).

- 126-

File Edit Search Window Packages Joo ls Builder Preferences Help

4. Execution Feedback
*1 "

Lo
Lc
1
Re
La
3
Re

T
>
;; La
ttP"c:
;; La
;; 18 »P"c:
;; ReT
> (ex
EX
>

:Fb

Shown objects
Object value post value

Selftestbuttontime
Shutdownsignal
Timeinmode
Watchdogtime
Waterlevel

other (global) objects

73 0
'STOP

0
0 -

Outputs
PUMPSWITCH! 'OPEN
WATCHDOG! 'OPERATE

unchanged
unchanged

U

50
184

Promote

Promote All

Value

Close

l iB s t a r t l Microsoft Word - D ocu...||'‘“"Allegro CL 3.0 [C:\A. 08:33

Figure 5-14 : Execution outcomes displayed

This particular execution has also been effected through the command line interface, as

was described in Section 2.4.2. The script file test5.2.l.ZAL is reproduced in Figure

5-15 and the outcome can be seen in Figure 5-16

- 127-

(in-package 'zal)
(load "d: \\zal\\library.ZAL")
(execute 'Initialise)
(execute ’NormalOperation :? '(diffPress? 255

resetButton? 'on
selftestButton? 'no
powerNow? 'on
memory? 'ok

Figure 5-15 : ZAL Script File test5.2.1.ZAL

- !n|x|
File Edit Search Window Packages Tools Builder Preferences Help

Ira iQMHiaw a a d MWtoMmmmm m
(in-package 'zal)

(load ”d:\\zal\\library.ZAL")
(execute 'Initialise)
(execute 'NormalOperation :? ’(diffPress? 255

resetButton? 'on
m , raojra

Z Animation in Lisp
Sheffield Hallam University
Nottingham Trent University

Julian Briggs &
Richard Hibberd

For help type (help)

j

3.2
zal: (load "d:\\zal\\test.5.2.1.ZAL")
;; Result of last form read was T
True
zal :|

i | _ ____
:Lisp-Frame-Window Package: Zal (a LISP-FRAME-WINDOW)

Figure 5-16 : Automated execution using a script file

- 1 2 8 -

Clicking the Promote All button causes the system state variables to be promoted - that

is, they take on their after state values (Figure 5-17).

" T M m t i i f f l M i ' I I i l '« ■

File Edil Search Window P ackages lo o ls Builder Preferences Help

i i
iiggg
; Loa
; Loa
: 1 f ; Res
; Loa
: 3 f
; Res

T
>
;; Loa
#P"c : \
;; Loa
;; 18
#P"c : \
;; Res
T
> (ex)
EX
>

4. Execution Feedback

:Fb I

Shown objects
Object value post value

Selftestbuttontime
Shutdowns! anal
Timeinmode
Watchdogtime
Waterlevel

other (global) objects

0 J
'STOP

• i
50
184

Outputs
PUMPSWITCH! 'OPEN
WATCHDOG! 'OPERATE

unchanged
unchanged

romoted
promoted
promoted

73

l

Prom ote

Prom ote All

Value

C lo s e

Start j 3 y Microsoft Word - scree...||r***' Allegro CL 3.0 [C:\A.

Figure 5-17 : Decorated values promoted

l§M 01:̂ 0

- 129-

The Back button on the execution tool can be used to reverse this promotion if

necessary. The Bindings button on the execution tool invokes the "Binding Browser"

which can be used to inspect and edit current values of system state variables (Figure

5-18).

Allegro CL 3.0 [C:\ALLEGRO\allegro.img]
File Edit Search Window P ack ag es Joo ls Builder Preferences Help

P H I iQvNejl \n\m\n\ O T ^ W i i r i P I P l S0

Loa
Loa
1 f
Res
Loa
3 f
Res

T
>
;; Loa
ttP”c:\
;; Loa
;; 18
#P"c:\
;; Res
T
> (ex)
EX
>

Schema

(Normaloperation

lew-bits.lsp'
il\\new-bits.lsp"

View 4. ZAL Object Binding Browser

ZA!
W aterlevel'
Shutdownsignal'
A larm '
Failuremode'

Selftestbuttontim e'
IResetbuttontim e'

Documentation

Value

No documentation was supplied
when this object was (re)bound 1

jJ

' STANDBY J

J

InspecVEdit Unbind N e w Object

Close

Bind Package: Zal This dialogue is used to establish (or modify) bindings for ZAL objects (a DIALOG)

liQstart| 'jyMicrosoft Word - P o cu ...|| ,‘r i Allegro CL 3.0 [C : \ A - 08:34

Figure 5-18 : The Binding Browser

- 130-

Validating NormalOperation is an iterative procedure; each new execution prompts for

new MonitorVar? inputs, and the system state variables and outputs are updated and

displayed. The new system variable values are promoted by the user, and a new

iteration begins. NormalOperation was validated against all o f the test data described

below. To speed this process, the input dialogue box keeps a history o f the inputs

previously used, thus allowing values to be selected rather than keyed in, if appropriate,

as in (Figure 5-10).

The animation started in standby mode, and the inputs simulated the effect o f the reset

button being pressed for 3 seconds to start the pumps. During most o f this time, the

water level was within the normal limits, but for a short period in the middle it was

allowed to become too low to check that this had no effect (exploratory investigation).

The system went into operating mode and the reset button was released. The water level

was then set too high and too low, in each case for less than 0.2 seconds, to check that

the system entered shutdown mode but then returned to operating mode. During one o f

these periods, the reset button was pressed to check that it had no effect. The results o f

these tests are shown in more detail in Appendix D Table 1 Next the self test button

was held down for 0.5 seconds, to send the system into test mode (see Appendix D

Table 2). During this time the reset button was also held down for some time, and the

water level was allowed to become too high for more that 0.2 seconds, to see what

effect these conditions had. From test mode, the system should return to standby mode

after 5 seconds. During part o f this time the test data set the water level too low. From

standby mode, the reset button was held down to return to operating mode, and then the

water level became too high for more than 0.2 seconds to return the system to standby

mode via shutdown mode. Next the test button was held down for long enough to send

the system from standby to test mode and back again. The water level was too low for

periods both in standby mode and test mode (see Appendix D Table 3). The reset

-131 -

button was then pressed to get the system to operating mode, and the water level was set

too low for 0.4 seconds, but with the test button pressed for 0.5 seconds after less than

0.2 seconds o f the low level, to see whether standby or test mode is entered (see

Appendix D Table 4). This provocative investigation was carried out because o f a

suspicion, as a result o f looking at the specification, that the system would not behave

properly.

After a return to standby mode, the water pressure is set to 255, a value indicating that

the water level monitoring device has failed. (This is also shown in Appendix D Table

4). The pressure is then allowed to return to a normal value, but the system should not

return to normal operation. Then a gap o f 0.5 seconds is left between inputs, which

should result in a hardware failure being detected. Finally, the reset button is pressed for

3 seconds, with a normal water level, which should return the system to operating

mode, but the previous detection o f an irretrievable hardware error should keep the

pumps switched off.

5.2.4 Discussion

Not surprisingly, the errors which were introduced as misprints in the translation from

VDM to Z (see Section 5.2.1) were found immediately. The incorrect calculation o f the

water level resulted in levels which were too high by a factor o f 10. The missing "not"

symbol resulted in a transition from operating mode to shutdown as soon as the former

mode was entered with a water level within the correct limits. These errors were

corrected to allow animation to continue so that more subtle errors or undesirable

features might be exposed. Once the obvious errors had been corrected, the animation

found no problems with the transition between operating modes. Where pressing

buttons or allowing the water level to go outside its proper limits was expected to have

no effect, this was found to be the case. However, possible problems were revealed with

the values o f the output variables controlling the pumps and the audible alarm.

- 1 3 2 -

Normally, when the water level becomes too high or too low in operating mode,

shutdown mode is entered, but the pumps continue to operate for up to 0.2 seconds. If

the water level returns to its proper limits within that time, the system returns to

operating mode and the pumps are not switched off; if not, then standby mode is entered

and the pumps are switched off. However, if the test button is held down while the

system is in shutdown mode, it remains in that mode with the pumps on for 0.5 seconds

before going to test mode.

The alarm should be audible when the water level is outside the proper limits and after

standby mode is entered as a result o f this, and it should be audible when there is a

failure o f the water level monitoring device, and for a period o f 4 seconds when test

mode is entered. The animation revealed that if the water level goes outside the limits

and then recovers while the test button is held down in operating mode, the alarm does

not become silent. More seriously, if the monitoring device fails during standby mode

after test mode, the alarm remains silent.

If there is a failure o f the water level monitoring device in test mode after the 4 seconds

during which the alarm sounds, or in standby mode initially, then the alarm also stays

silent. This particular problem was not found with the animation data used initially,

though it was easily confirmed by a subsequent animation. These problems with output

variables have safety implications. The parts o f the specification concerned with these

variables are unnecessarily complicated, and the problems are not obvious without a

careful scrutiny o f the specification.

The original paper [Williams 1994] that formed the motivation for this enquiry explored

the relationship between the pump control and the pump environment. He found an

ambiguity in the Software Cost Reduction (SCR) specification [van Schouwen 1991]

because it is incomplete, in the sense that the behaviour o f one o f the environment

constraining variables is not specified; hence the safety o f the WLMS could be affected

- 133-

because the pumps cannot be properly shut down. In contrast this exercise focuses on

the transitions between the different operating modes; once the WLMS has been

initialised it is in exactly one o f the following modes: operating, standby, shutdown or

test. This investigation reveals a number o f errors in the specification as it stands, some

o f which can lead to safety being compromised because the alarm remains silent despite

the occurrence o f failures. Jackson and Stokes' work demonstrated the effectiveness o f

using formal specification to model requirements and hence develop confidence in our

understanding o f the safety-critical system specified; building on that work, this

exercise demonstrates the effectiveness o f the REALiZE method in general and o f the

tool components in furthering our understanding o f the water level monitoring system.

In particular, it was possible to detect a number o f errors that had remained undetected

in Jackson and Stokes' formalisation. Given the unnecessarily complicated specification

structure, the errors were not obvious, and their consequences might not be revealed

even with a careful scrutiny o f the specification. However, exercising the specification

through animation allowed the confirmation o f the intended consequences and the

identification o f the unforeseen ones.

- 134-

5.3 A Car Rental System

The problem examined here derives from a coursework assignment required o f Final

Year undergraduates, studying Software Engineering at Sheffield Hallam University.

The brief (Appendix B (Car Rental Specification) is intentionally non-prescriptive so as

not to constrain or unduly direct the efforts o f the students, and offers scope for a wide

range o f models without strongly suggesting any particular one. As this will usually be

the first specification o f any size attempted by the students, some o f the resulting

solutions are not the most obvious that might occur to more experienced specifiers; it is

the case though that the toolset can support development and animation o f a great

variety o f quite complex Z. One such specification is considered here, together with a

description o f how the animator can be used to refine it into an alternative form; for a

more detailed description o f the student experience o f using the REALiZE toolset, the

reader is referred [Siddiqi et al 1998]. The problem description is presented, together

with a solution in both Z and ZAL. Some observations are made on this solution and

then some improvements are suggested; in each case the “improved” version is suffixed

‘2 ’. The process o f deriving these improvements is also examined, along with the

contribution that the animator can make to this process. As the focus here is

predominately on the ZAL code, the following description will concentrate on this and

its development rather than its execution.

- 135-

The following describes the keys aspects o f the required specification

“The A C M E car hire company has a fleet of cars distributed across the country in a

number o f depots in several major cities. Each car is identified by a unique id

number. The depot in which the car is currently garaged, the car’s current mileage

and the car's manufacturer is recorded for each car. A client can hire a car from

any depot and return it to any other depot. When a customer hires a car from a

particular depot, they provide their name and specify the make o f car they want,

and the hire date is recorded. A specific car (if available) is then allocated to them.

When the car is returned (possibly to another depot), its new mileage is inspected,

and the customer is charged 10p p er mile plus a fixed charge of £20 for each day

o f the hire period. The A C M E company is so successful that sometimes there's a

queue o f people waiting to return their hired car to a depot. When this happens,

the company deals with the queue in strict order. Occasionally a customer in the

queue gets tired of waiting and leaves, hoping to return later when the queue is

shorter.

The student task is to develop a specification for this system, to include a description of

hiring and returning a car, and to allow a number o f specific queries regarding the

location and availability o f vehicles (see Appendix B (Car Rental Specification).

The specification discussed here is a student submission, which is

developed in a number o f ways to illustrate features o f the ZAL

environment.

CarRental is the state schema modelling this system

- 1 3 6 -

rCar R e n ta l ---

C a r s : C A R ID -+* M A N U FA C T U R E R

D e p o ts : IP D E PO T

C a r s ln D e p o t : C A R ID -+> D E PO T

C a r M i le a g e : C A R ID -+» N

H ire d : C A R ID -+» NA M E

H ir e d D a te : C A R ID -+> N

R e tu r n in g : s e q CA R ID

R e tu r n in g D e p o t : CA R ID -+* D E PO T

d o m C a r s = d o m C a r M i le a g e

V c : C A R ID | c e d o m H ire d • c {£ d o m C a r s ln D e p o t

d o m H ire d = d o m H ir e d D a te

d o m H ire d u d o m C a r s ln D e p o t = d o m C a r s

r a n C a r s ln D e p o t c D e p o ts

r a n R e tu r n in g c d o m H ire d

r a n R e tu r n in g D e p o t c D e p o ts

d o m R e tu r n in g D e p o t = r a n R e tu r n in g

R e tu r n in g = # R e tu r n in g D e p o t

V i,j : N | i e d o m R e tu r n in g A j e d o m R e tu r n in g

• i * j => R e tu rn in g (i) * R e tu rn in g (j)

V c C A RID 1 c e d o m C a r s • # ({ c } < C a r s) = 1

V c C ARID 1 c e d o m C a r M i le a g e • # ({ c } < C a r M ile a g e) = 1

V c CA RID 1 c e d o m H ire d • # ({ c } < H ire d) = 1

V c CA RID 1 c E d o m H ir e d D a te • # ({c} <1 H ire d D a te) = 1

V c CA RID 1 c E d o m C a r s ln D e p o t • # ({c} < C a r s ln D e p o t) =

The final five predicates are all quantifications designed to ensure that, respectively,

Cars CarMileage Hired HiredDate and CarslnDepot are functions; this is already a

requirement as each o f them is declared as a function. However this type information is

not used by the animator and the specifier has chosen the quantifications as a valid if

complicated way o f expressing this. Two alternatives suggest themselves: the first is to

use the same approach, but with a simpler predicate such as #Cars = #(dom Cars) ;

- 137-

the second is to rectify the omission where it is omitted i.e. in the ZAL code, which

requires a simple call to the ZAL predicate mapp which tests that its argument is indeed a

function. The second approach will require the same edit o f the ZAL code every time

the Transformation Engine is used to update / create ZAL code, but this can be readily

accomplished by abstracting all such constraints to a single schema which can be used

in much the same way as an abstraction schema is utilised in data refinement. Though

no part o f the work reported here, it is considered it would be a relatively simple matter

to generate this type constraining code using the range o f ZAL predicates seqp, mapp,

relp, setp, injectivep which test their argument is a sequence, function, relation, set

and injective function respectively.

The decision to maintain a single queue o f returning vehicles for all depots leads to the

over-complication o f the Return operation and also Query3; notwithstanding this, these

schemas can be readily animated, as will be seen. The ZAL code for the state schema is

(SCHEMA CarRental
:PREDICATE
(and

(eqz (dom Cars)(dom CarMileage))
(forall c (dom CarMileage)
(imply (mem c (dom CarMileage)) (eqz (card (domres (c }CarMileage))1)))
(forall c (dom Cars)

(imply (mem c (dom Cars))(eqz (card (domres {c JCars)) 1)))
(forall c (dom Hired)

(imply (mem c (dom Hired)) (not-mem c (dom CarslnDepot))))
(eqz (dom Hired)(dom HiredDate))
(forall c (dom Hired)

(imply (mem c (dom Hired)) (eqz (card (domres (c JHired)) 1)))
(forall c (dom HiredDate)

(imply (mem c (dom HiredDate)) (eqz (card (domres (c }HiredDate))1)))
(eqz (unionz (dom Hired)(dom CarslnDepot))(dom Cars))
(subset (ran CarslnDepot)Depots)
(forall c (dom CarslnDepot)

(imply (mem c (dom CarslnDepot)) (eqz (card (domres {c JCarsInDepot))1)))
(subset (ran Returning)(dom Hired))
(subset (ran ReturningDepot)Depots)
(eqz (dom ReturningDepot)(ran Returning))
(eqz (card Returning)(card ReturningDepot))
(and ;; not in Z

(forall j (dom Returning) i (dom Returning)
(imply (neqz i j) (neqz (applyz Returning i)(applyz Returning j))

)))))

- 138-

It can be seen that roughly half o f the predicates are concerned solely with modeling the

type constraints o f the functions and this will obviously militate adversely the

readability o f the specification.

The possible improvements to this schema are largely those suggested earlier, utilising

mapp, and to use disjoint rather than a quantification to require a vehicle to be either

hired or in the depot.

(SCHEMA CarRental2
:PREDICATE
(and

(eqz (dom Cars)(dom CarMileage))
(disjoint < (dom Hired) (dom CarslnDepot) >)
(eqz (dom Hired)(dom HiredDate))
(eqz (unionz (dom Hired)(dom CarslnDepot))(dom Cars))
(subset (ran CarslnDepot)Depots)
(subset (ran Returning)(dom Hired))
(subset (ran ReturningDepot)Depots)
(eqz (dom ReturningDepot)(ran Returning))
(eqz (card Returning)(card ReturningDepot))
(eqz (card Returning) (card (ran Returning)))
; the following six predicates constrain their arguments to be functions
(mapp CarslnDepot)
(mapp Hired)
(mapp HiredDate)
(mapp CarMileage)
(mapp Cars)
(mapp Hired)
)

)

- 139-

The operation schema Hire describes the behaviour expected o f a successful hiring and

might be called HireOK if a total operation with error reporting were required; the

operation

• checks the inputs are valid values

• confirms the availability o f the required make at the particular depot

• updates

Hired

HiredDate

CarslnDepot

• constrains to not change

Cars

CarMileage

Depots

Returning

ReturningDepot

This gives

- 1 4 0 -

-Hir e --

A C a r R e n ta l

n a m e ? : N A M E

m a n ? : M A N U FA C T U R E R

d e p o t ? : D E PO T

d a t e ? : N

d e p o t ? e D e p o ts

m a n ? e r a n C a r s

(3 c : C A R ID | c e d o m C a r s

• m a n ? = C a r s (c) a c e d o m C a r s ln D e p o t A d e p o t ? = C a r s ln D e p o t (c))

H ire d ' = H ire d u { c 11 > n a m e ? }

H ir e d D a te ' = H ir e d D a te u {c •—> d a t e ? }

C a r s ln D e p o t ' = { c } < C a r s ln D e p o t)

C a r s ' = C a r s

C a r M i le a g e ' = C a r M i le a g e

D e p o t s ' = D e p o ts

R e tu r n in g ' = R e tu r n in g

R e tu r n in g D e p o t ' = R e tu r n in g D e p o t

The reader can observe that this description is flawed, since the object c which is used

to record the actual vehicle hired is not in scope when it is used; this could be rectified

by conjoining the updating predicates with those in the quantification or else by

declaring a local variable o f type c a r i d , either o f which approach could correct Z which

would translate correctly. The presented usage, together that o f the Lisp primitive s e t f

to capture a value that satisfies the quantification, indicates that the ZAL version was

developed interactively, and then reverse-engineered to generate the Z equivalent.

11 c is not in scope here.

- 141 -

(SCHEMA Hire
:? (name? man? depot? date?)
:INCLUDE delta_CarRental
:SHOW (HiredDate Hired CarslnDepot)
:PREDICATE
(and

(mem depot? Depots)
(mem man? (ran Cars))
(exist c (dom Cars)
(and

(mem c (dom Cars))
(and

(equalp man? (applyz Cars c))
(mem c (dom CarslnDepot))
(equalp depot? (applyz CarslnDepot c))
(setf Hired' (unionz Hired { #(c name?) }))
(setf HiredDate' (unionz HiredDate { #(c date?) }))
(setf CarslnDepot' (domsub (c JCarsInDepot))
)

)

)

(eqz Cars' Cars)
(eqz CarMileage' CarMileage)
(eqz Depots’ Depots)
(eqz Returning' Returning)
(eqz ReturningDepot' ReturningDepot)
)

)

Notwithstanding these corrections, the Hire operation remains unwieldy and not

particularly natural; this follows directly from the original choice o f state schema.

The modified second version dispenses with the quantification at the root o f the original

difficulty; the availability is determined by (man? >-> depot?) e (Cars~ § CarslnDepot),

i .e . c o n s t r u c t i n g t h e M A N U FA C T U R E R x D E PO T t u p l e s b y r e l a t i o n a l c o m p o s i t i o n . A n

actual vehicle is chosen using the ZAL function p ic k , which selects a randomly-

chosen element from a set; in reality, there would almost certainly be some alternative

mechanism for selecting which one o f a number o f possible vehicles is selected. As was

discussed in Section 4.1, p i c k is implemented with the inbuilt Lisp function random ,

but a non-deterministic version is also available. While p i c k has no direct equivalent

in Z, the : LOCALS keyword is used to introduce a temporary “variable” and would

- 142-

n o r m a l l y b e g e n e r a t e d f r o m a Z l e t e x p r e s s i o n ; t h e s e t o f c a n d i d a t e v e h i c l e s f r o m w h i c h

o n e i s s e l e c t e d t o b e h i r e d i s d e s c r i b e d b y

dom (Cars > {man?}) n dom ({depot?} < CarslnDepot) i.e. those with both the correct

manufacturer and at the depot in question.

(SCHEMA Hire2
:? (name? man? depot? date?)
:INCLUDE delta_CarRental
:SHOW (HiredDate Hired CarslnDepot)
:LOCALS C
:PREDICATE
(and

(mem depot? Depots)
(mem man? (ran Cars))
(mem #(man? depot?) (rel-compose (inverse Cars) CarslnDepot))
(eqz c

(pick (inter (dom (ranres cars (man?)))
(dom (ranres CarslnDepot (depot?))))))

(eqz Hired’ (unionz Hired { #(c name?) }))
(eqz HiredDate' (unionz HiredDate { #(c date?) }))
(eqz Cars' Cars)
(eqz CarMileage' CarMileage)
(eqz Depots’ Depots)
(eqz Returning' Returning)
(eqz ReturningDepot' ReturningDepot)
)

)

Returning a car to a depot is achieved in this model by two operations: the first is to join

a queue o f returners at some depot and the second is to process the first returning

vehicle queuing at a particular depot; as a consequence o f using a single sequence for

all returning vehicles, updating requires a squash o f this sequence rather than just taking

the tail o f it. A further complication is that the queue at any one depot must be extracted

using range restriction as in (Returning C (dom (ReturningDepot > {depot?})).

T h e o p e r a t i o n s a r e d e s c r i b e d t h u s

- 143-

r A d d R e tu r n in g C a r -

A C a r R e n ta l

d e p o t ? : D E PO T

c a r ? : CA R ID

d e p o t ? e D e p o ts

c a r ? e d o m H ire d

c a r ? g r a n R e tu r n in g

R e tu r n in g ' = R e tu r n in g ~ (c a r ?)

R e tu r n in g D e p o t ' = R e tu r n in g D e p o t u { c a r ? d e p o t? }

C a r s ' = C a r s

C a r M i le a g e ' = C a r M i le a g e

C a r s l n D e p o t ' = C a r s ln D e p o t

H ire d ' = H ire d

H ir e d D a te ' = H ir e d D a te

D e p o t s ' = D e p o ts

This translation o f this operation by TranZit is entirely straightforward - the inputs are

validated and the details are added to Returning and ReturningDepot; there is no

“improved” version o f this operation.

(SCHEMA AddReturningCar
:? (depot? car?)
:INCLUDE delta_CarRental
:SHOW (ReturningDepot Returning)
:PREDICATE
(and

(mem depot? Depots)
(mem car? (dom Hired))
(not-mem car? (ran Returning))
(eqz Returning* (appendz Returning <car? >))
(eqz ReturningDepot* (unionz ReturningDepot { #(car? depot?))))
(eqz Cars' Cars)
(eqz CarMileage' CarMileage)
(eqz CarslnDepot' CarslnDepot)
(eqz Hired’ Hired)
(eqz HiredDate' HiredDate)
(eqz Depots' Depots)
)

)

- 144-

The complexity o f the processing o f returning a vehicle under this model is found in the

operation to accept the first vehicle at a given depot back into “stock”; after the inputs

are validated, almost all the data components must be updated:

• the actual vehicle is identified as the head o f the queue at the depot in question;

• the new mileage is recorded;

• the cost is calculated from the difference in mileage and in dates;

• the vehicle must be removed from Returning and ReturningDepot and also from Hired

and HiredDate;

• and the vehicle is added to CarslnDepot.

rReturnByDepot---

ACar Rental

depot? : DEPOT

date? : N

mileage? : N

bill! : N

car: CARID

depot? e Depots

depot? e ran ReturningDepot

Returning ^ ()

car = (squash (Returning > (dom (ReturningDepot > {depot?})))) 1
date? > HiredDate(car)

mileage? > CarMileage(car)

bill! = ((date? - HiredDate(car)) * 20) + 1 * (mileage? -CarMileage(car))

Returning' = squash(Returning > {car})

ReturningDepot' = {car} < ReturningDepot

Hired' = {car} <3 Hired

HiredDate' = {car} <3 HiredDate

CarslnDepot' = CarslnDepot u {car *—> depot?}

CarMileage' = CarMileage © {car •—> mileage?}

Cars' = Cars

Depots' = Depots

- 145-

Again this is a straightforward transformation and there is no improved version, though

note the inconsistency in the way that the returning vehicle is extracted from the

squashed Returning function, by a function application in the Z version, and by using

head in the ZAL version. This would again indicate that ZAL code has been executed

and edited, rather than generated from the Z at each stage.

(SCHEMA ReturnByDepot
:? (depot? date? mileage?)
:! bill!
:INCLUDE delta_CarRental
:SHOW (ReturningDepot Returning HiredDate Hired CarslnDepot CarMileage)
:PREDICATE
(and

(mem depot? Depots)
(mem depot? (ran ReturningDepot))
(neqz ReturningDepot <>)
(eqz car

(head (squash (ranres Returning (dom (ranres ReturningDepot (depot? }))))))
(\>- date? (applyz HiredDate car))
(\>= mileage? (applyz CarMileage car))
(eqz bill!

(+ (* (- date? (applyz HiredDate car))2000)
(* 10 (- mileage? (applyz CarMileage car)))))

(eqz Returning' (squash (ransub Returning (car })))
(eqz ReturningDepot' (domsub (car }ReturningDepot))
(eqz Hired' (domsub (car JHired))
(eqz HiredDate’ (domsub (car }HiredDate))
(eqz CarslnDepot' (unionz CarslnDepot { #(car depot?) }))
(eqz CarMileage' (override CarMileage { #(car mileage?) }))
(eqz Cars' Cars)
(eqz Depots' Depots)
)

)

None o f the query operations alters the state and consequently their specifications

include ECarRental; this schema expands to

- 1 4 6 -

(SCHEMA psi_CarRental
:INCLUDE (CarRental CarRental')
:PREDICATE
(and

(eqz ReturningDepot ReturningDepot')
(eqz Returning Returning1)
(eqz HiredDate HiredDate')
(eqz Hired Hired’)
(eqz Depots Depots')
(eqz CarsInDepot CarsInDepot')
(eqz Cars Cars')
(eqz CarMileage CarMileage')
)

)

Query 1 has to join Cars and CarsInDepot to generate the appropriate set o f Depot; this

can be done using domain and range restriction as below:

r O u e r y 1 ---

E C a r R e n ta l

m a n ? : M A N U FA C T U R E R

r e s u l t ! : IP D EPO T

m a n ? e r a n C a r s

r e s u l t ! = r a n (d o m (C a r s > { m a n ? }) < C a r s I n D e p o t)

The expression r a n (d o m (C a r s > { m a n ? }) < C a r s I n D e p o t)

can be derived by reasoning and then confirmed correct by animation, but an alternative

technique is available to the user who is familiar with ZAL. It is often useful to interact

with the animator at a command line where native ZAL expressions can be entered and

evaluated. Once the values o f data objects have been instantiated, the expressions in

question can be derived incrementally; these will o f course require confirmation, but in

a situation such as Queryl posits, it is useful to experiment with possible expressions.

One such dialogue is presented now, though with only correct expressions.

- 1 4 7 -

zal: Cars
{('Cl ’PONTIAC) ('C2 ’MINI) ('C3 ’SKODA) (’C4 ’SKODA) ('C5 ’FIAT) ('C6 ’SKODA)}
zal: CarsInDepot
{('Cl ’DERBY) (’C2 ’DERBY) (’C4 ’SHEFFIELD) (’C6 ’DERBY)}
zal: (ranres Cars {’SKODA})
[#('C3 ’SKODA) #(’C4 ’SKODA) #('C6 ’SKODA)]
zal: (dom (ranres Cars {’SKODA}))
{'C3 'C4 'C6}
zal: (domres (dom (ranres Cars {’SKODA})) CarsInDepot)
[#('C4 ’SHEFFIELD) #(’C6 ’DERBY)]
zal: (ran (domres (dom (ranres Cars {’SKODA})) CarsInDepot))
{'DERBY ’SHEFFIELD}
zal: (ran (domres (dom (ranres Cars {’MINI})) CarsInDepot))
{’DERBY}
zal: (ran (domres (dom (ranres Cars {’PONTIAC})) CarsInDepot))
{’DERBY}
zal: (ran (domres (dom (ranres Cars {’FIAT})) CarsInDepot))
{}

zal:

This dialogue is more useful if the Lisp facility to use the result o f the previous

evaluation, accessed as *, is utilised; the sequence o f expressions is also clearer:

zal: (ranres Cars {’SKODA})
[#('C3 ’SKODA) #('C4 ’SKODA) #('C6 ’SKODA)]
zal: (dom *)
{'C3 'C4 'C6}
zal: (domres * CarsInDepot)
[#('C4 ’SHEFFIELD) #('C6 ’DERBY)]
zal: (ran *)
{’DERBY 'SHEFFIELD}
zal:

In fact this approach facilitates the development o f an equivalent expression using

relational image

zal: (inverse cars)
[#(’FIAT ’C5) #('MINI 'C2) #('PONTIAC ’Cl) #('SKODA ’C3) #('SKODA ’C4) #(’SKODA ’C6)]
zal: (rel-image {’SKODA} *)
{'C3 'C4 ’C6}
zal: (rel-image * CarsInDepot)
{'DERBY ’SHEFFIELD}
zal:

This leads to the expression

result! = (Cars~ d {man?} D) d CarsInDepot D

and thence to

- 148-

(SCHEMA Query1
:? man?
:! result!
:INCLUDE psi_CarRental
:SHOW (cars carsindepot)
:PREDICATE
(and
(mem man? (ran Cars))
;; use either one of the following expressions
(eqz result! (ran (domres (dom (ranres Cars {man? }))CarsInDepot)))
;; (eqz result! (rel-image (rel-image {man?} (inverse Cars))CarsInDepot))
)

)

In a similar way, the description o f Query2 can be developed interactively; the initial

version uses a set comprehension to describe the vehicles currently at a given depot, and

in many ways this is a natural description - those vehicles that satisfy the predicate are

at depot d.

-Q u e r y 2 --

E C a r R e n ta l

d e p o t ? : D EPO T

r e s u l t ! : P CA RID

d e p o t ? e D e p o ts

r e s u l t ! = { c : C A R ID | c e d o m C a r s I n D e p o t A C a r s ln D e p o t(c) = d e p o t? }

This gives a ZAL version

(SCHEMA Query2
:? depot?
:! result!
:INCLUDE psi_CarRental
:PREDICATE
(and

(mem depot? Depots)
(eqz result!
(mksi 'c 'c (dom Cars)
’ (and

(mem c (dom CarsInDepot))
(equalp (applyz CarsInDepot c)depot?)

)

)

)

)

)

- 1 4 9 -

As a n a l t e r n a t i v e e i t h e r o f

r e s u l t ! = d o m (C a r s I n D e p o t > { d e p o t? } and

r e s u l t ! = C a r s I n D e p o t~ d { d e p o t? } D

w i l l g iv e t h e s a m e s e t of v e h i c l e s a s in

(SCHEMA Query2.2
:? depot?
:! result!
:INCLUDE psi_CarRental
:PREDICATE
(and

(mem depot? Depots)
;;either
(eqz result! (dom (ranres CarsInDepot {depot?})))
;; or
(eqz result! (rel-image {depot?} (inverse CarsInDepot)))
)

)

Again the interaction to derive the expressions is illustrative:

zal: (ranres CarsInDepot {'DERBY})
[#('C1 'DERBY) #('C2 ’DERBY) #(’C6 ’DERBY)}
zal: (dom *)
{’Cl 'C2 ’C6}
zal:

a n d

zal: (rel-image {’DERBY} (inverse CarsInDepot))
{'Cl 'C2 'C6}
zal:

Query3 again involves filtering the sequence Returning to establish a queue for a single

d e p o t ; t h i s q u e u e m u s t b e c o m p o s e d i n s o m e w a y w i t h f u n c t i o n Cars w h i c h m a p s

vehicles to manufacturers. The actual query can then be readily answered by using a

relational image, given the types

C a r s : C A R ID -+> M A N U FA C T U R E R

R e tu r n in g : s e q C A R ID , t h o u g h t h i s a g a i n n e e d s t o b e r e s t r i c t e d t o a p a r t i c u l a r d e p o t

a n d t h e n s q u a s h e d .

- 1 5 0 -

T h e r e l a t i o n o f i n t e r e s t i s f r o m manufacturer t o N ; t h i s w i l l g i v e t h e t u p l e s o f

m a n u f a c t u r e r s a n d t h e p o s i t i o n i n t h e q u e u e a t t h i s d e p o t . T h i s c a n b e a c h i e v e d e i t h e r b y

i n v e r t i n g t h e c o m p o s i t i o n o r b y c o m p o s i n g t h e i n v e r s e o f b o t h o r e l s e b y u s i n g

b a c k w a r d c o m p o s i t i o n i .e .

- 0 u e r y 3 --

S C a r R e n ta l

d e p o t ? : D EPO T

m a n ? : M A N U FA C T U R E R

p l a c e ! : P N

X : s e q C ARID

d e p o t ? e r a n R e tu r n in g D e p o t

m a n ? e r a n C a r s

R e tu r n in g ^ ()

X = s q u a s h (R e tu r n in g > (d o m (R e tu r n in g D e p o t > { d e p o t? })))

/ * e i t h e r * /

p l a c e ! = { m a n ? } d (X ? c a r s) ~ D
/ * o r p l a c e ! = { m a n ? } (] (c a r s ~ ? X ~) D * /
/ * o r b a c k w a r d c o m p o s i t io n p l a c e ! = { m a n ? } d (c a r s ° X) ~ D * /

T h i s g i v e s t h e f o l l o w i n g Z A L c o d e

-151 -

(SCHEMA Query3
:? (depot? man?)
:! place!
:INCLUDE psi_CarRental
:LOCALS (temp)
:PREDICATE
(and

(mem depot? (ran ReturningDepot))
(mem man? (ran Cars))
(eqz temp

(squash (ranres Returning (dom (ranres ReturningDepot {depot? })))))
(eqz place!

(inverse (rel-compose temp Cars))
;;; ;; alternative model
;;; (rel-compose
;;; (inverse Cars)
;;; (inverse temp)))

;;; ;; 2nd alternative backward composition
;;; (rel-image {’fiat} (inverse (compose cars temp)))
)

)

)

O f interest again is the command line manipulation

z a l: ;the following generates the returning queue at Sheffield
z a l: (squash (ranres Returning (dom (ranres ReturningDepot {'Sheffield }))))
< ’C3 'C5>
za l : ;this is composed with Cars to get the Sheffield queue as sequence of Manufacturer
za l: (compose Cars *)
[#(1 ’SKODA) #(2 ’FIAT)]
za l: ; take the relational image of the set {’FIAT}
z a l: (rel-image {’FIAT} *)
Zal error: the set, xs, passed to domres must be
of the same type as the domain of xm.
xs is {'FIAT}
xm is [#(1 ’SKODA) #(2 ’FIAT)]

z a l: ; the error indicates the composition gives N <—» MANUFACTURER, which should

have been inverted to give MANUFACTURER <—> N; the * refers to last result and

the ** to the last-but-one result
za l : (rel-image {’fiat} (inverse **))
{2 }

z a l : (rel-image {’fiat} (inverse (compose cars (squash (ranres Returning (dom (ranres
ReturningDepot {'Sheffield })))))))
{ 2 }

z a l:

The command line use o f the execution engine is helped greatly by the Lisp

environment in which it is hosted; the status bar o f the application window provides

guidance to the user by displaying relevant information as the user types. The following

- 152-

screens show two stages the entry o f an expression; in the first can be seen the

parameter pattern (or lambda list) expected by the function compose, and also the first

two lines of the documentation string.

M x]
File E d it S e a rc h W indow Package T o o ls B uilder P re f e re n c e s Help

□E
j

Z Animation in Lisp
Sheffield Hallam University
Nottingham Trent Uniuersity

Julian Briggs 4
Richard Hibberd

For help type (help)

3.2
zal: (compose |

J

Zal Function COMPOSE xr yr Compose. Com poses 2 relations, yr & xr. The range of yr must be a subset of the domain of xr Returns a relation which m aps the domain of yr to the range of xr.
Method 1 Remove *r's 2 Replace the second of each maplet (snd) in yr by xr applied to snd 3 Replace the *r Eg (compose [#('a ’ant) #Cb 1)311)) |#(1 ‘a) #(2 "b)D ![#(1 ANT) #(2 BALL)]. Eg

(applyz (compose [#fa 'ant) #(b ’ball)]|#(1 'a) #(2 to)])!) IANT.

Figure 5-19 : Documentation Strings

When the name of a data object is typed, the current binding is displayed in the status

bar, though in its internal representation.

V Toploop P a c k a g e , zal

v Allegro CL 3 0 2 [e \acl302\altegro img]

- 1 5 3 -

1 - □ ! * !
File Edit Search Window Package Tools Builder
P referen ces Help

1 >- Q 63 0 '5° M l® Qj(<4 © n 0 c? J ' J * J 6? § # ! ! ►

□ |x |
J

Z Animation in Lisp
Sheffield Hallam University
Nottingham Trent University

Julian Briggs &
Richard Hibberd

For help type (help)
3 .2
zal : (compose Cars |

J

Zal Variable CARS is bound to the cons (*S (C1 PONTIAC) (C2 MINI) (C3 SKO DA) (C4
SKODA) (C5 FIAT) (C6 SKODA))

Figure 5-20 : Feedback via the Status Bar

5.3.1 Discussion

As was described in the introduction, this study is unusual in that the animator and the

ZAL notation were used as a prototyping specification language. In the particular

situation where this arose, this approach was adopted due to a lack o f familiarity with

the Z notation and the exploratory interaction with the animator was used to establish

correct behaviour; this ZAL representation was ‘reverse-engineered’ to give a version in

Z notation. While the lack of rigour o f this approach precludes any great confidence in

- 154-

the final Z version, as is evidenced by the errors therein, the expedient of correcting

these and transforming that Z version into ZAL and validating using the derived version

would have re-established the correspondence and the confidence. Had this been done,

all the claimed benefits of the more usual style would have been available - the process

could have been rationalised as a minor modification to the REALiZE process, wherein

the initial attempt at formalisation is made in ZAL notation, which is manually

translated into Z.

5.4 Summary

From the three widely differing case studies, it can be seen that the ZAL execution

engine has the capacity to animate and thereby to demonstrate a significant proportion

of the Z language. The variety of the problem domains and also of the styles o f use

attest to the robust and flexible functionality it offers a user. Even cursory examination

o f the Z that is being evaluated will confirm that complex expressions pose no

problems.

The ability to promote schema execution outcomes allows a sequence of operations to

be explored in a structured and coherent way; the interactive interface can be used to

examine both the state elements and the operations upon them. This interaction can be

used to assist in the development of a specification, as in the second and third studies, or

to demonstrate an existing specification, as in the first. Both of these styles can be

accommodated within the framework of the REALiZE process.

The availability of a scripting interface to the animator can support ‘downstream’

Software Engineering activities, in particular the creation and management o f testing

suites which could then be administered to subsequent releases of software. While this

would be of value, the provision of the schema composition and schema piping

operators offers the possibility of the automated testing of specifications.

- 1 5 5 -

6 Results and Conclusions
It can be seen from Section 5 that ZAL provides robust and flexible functionality, as

demonstrated in a variety of domains and with very different styles of Z specifications;

the coverage of individual Z expressions is extensive which with the schema calculus

operations provides for the animation of complex specifications containing complicated

expressions.

It is not enough however to present the developed software and judge it simply on its

functionality; it must be evaluated in the light of the original research objectives and

against the questions that were posited at that stage. These will be addressed in turn, but

the original objective of

"the provision o f Requirements Engineering ...tools that assist in

representing, validating and evolving requirements so as to deliver a high

quality requirements docum ent. . .”

must be judged to have been met; the combination of TranZit, to capture and formalise

a specification, and ZAL, to then animate and validate it, do constitute a toolset that

precisely meets this objective.

6.1 Results evaluated

With reference to the issues more specific to this work, two Requirements Engineering

activities have been shown to be supported explicitly by the use of the ZAL anim ator:

• the requirements formalisation process where the writer of a specification uses

the animator to confirm that the Z document correctly captures the behaviour

that the writer intends;

• the requirements validation process where, having written the specification, the

writer demonstrates the specification to the client or sponsor, to establish that

the Z document correctly captures the behaviour that the sponsor intends.

- 156-

Both of these processes are obviously fundamental to the production of a high quality

requirements document, and this is the basis for the claim of success

The questions from Section 1.4 are reiterated here:

• what form might such an animation system take and how would animation be

incorporated into the requirements capture process?

The form of the system developed organically, consistent with the exploratory

programming approach adopted; the current evolution, version 3.2, comprises a robust

“execution engine” that evaluates expressions formed in the extended Lisp notation of

the ZAL language, together with a graphical interface that allows the symbolic

execution of Z schemas that have been translated into ZAL notation by another toolset

component, named TranZit. An adjunct of the conventional development lifecycle,

called the REALiZE method, has been proposed, to incorporate validation by

animation; though not part of this particular research programme, this is the context

within which it has been developed.

• which aspects o f the process might animation help?

The support of requirements validation is explicitly supported by the toolset component

that has been developed, but the overall process can be considered to have been

enhanced by the ability to address and perhaps resolve the fundamental difficulty o f the

use of a formal specification notation - that of accessibility to and ownership of the

formal document by the project sponsor and other stakeholders, regardless of their

experience of reading and understanding Z specifications.

Furthermore, the animation can also be used by the specification writer to verify that the

Z that he has written is in fact that which he intended.

- 1 5 7 -

• can animation facilities be provided that are sufficiently usable - i.e. that will

enhance rather than simply complicate the process?

Evaluation of usability can be fraught with subjective assessments, rather than objective

metrics; the description of the provision as a developer’s interface recognises that the

ZAL environment will be used by the specifier, rather than any other team member.

This requires expertise in the use of the animator on the part of only those skilled in the

writing of Z specifications; it is expected that the interface provided will be natural and

easy to learn for individuals with this background. An alternative view of the animation

execution process is that of the animation system providing a richer environment for the

dialogue between the participants; in this environment, the subtleties of understanding

can be jointly explored and resolved.

• can the inductive style o f specification development be supported, in contrast to

the more usual post hoc deductive proo f offered by other tools?

This is perhaps more straightforward, insofar as there is no alternative; a deductive

validation of requirements with respect to user intention is not possible, so support for

inductive development is all that can be offered.

• what coverage o f the Z specification language might such an animation system

provide and how would the system be developed?

The animation system has been developed incrementally, particularly the provision of

expression level functionality; the coverage is significant but not complete, though the

implementation of further constructs at the expression level remains relatively

straightforward. The areas where further development is more useful and also more

problematic are considered in Section 6.2 Future work

- 158-

6.2 Future work

The generally positive response that this project has generated thus far from the

research community indicates that further work may be appropriate; the debate

regarding the value of the execution of specifications may not be won, but the current

popularity of animators suggests that the tide has turned.

The outstanding issue to be addressed in this project is that of extending the schema

calculus functionality, primarily to support schema composition and piping. This is a

question of modelling non-determinism and the mechanism illustrated in non-

deterministic-pick (Section 4.6) offers a way forward.

The provision of these schema operators would allow the development of automated

test administration using the scripting interface as suggested in Section 2.4.2.

Development in an altogether different direction is also possible; the robust engine at

the heart o f the ZAL animator could be used as the basis for a Z desktop calculator, as

suggested by [Utting 2000]. This would require a different interface, but could support

the inductive development of expressions in the way that the command line was used in

the Car Rental case study (Section 5.3).

6.3 In conclusion

The method proposed has facilitated the creation of a precise, concise, unambiguous

statement of requirements, the essential deliverable of the formal specification process;

it was arrived at by a largely inductive, consistent with the original premise and as it is a

formal document, it is still available for an implementation to be proved against. That

elements of the specification may have been “reverse-engineered” after the desired

behaviour had been elicited by animation does not devalue it in the least; there is a

famous precedent that suggests that even it has not been generated by a wholly rational,

prescribed process, it is worthwhile to “pretend” that it had, which is “The Rational

- 159-

Design Process: How and Why to Fake It by David Pamas and Paul Clements [Pamas

and Clements 1986].

It is possible to claim success in this endeavour, since it has been demonstrated that:

the specification developed used the ZAL animator within the REALiZE process is

better because it is better validated and because the animation process has provided

accessibility to the specification and has thereby generated wider ownership;

the ability to maintain the (largely unconstrained) Z specification as the medium of

development and refinement while providing the facility to animate and interact with

the automatically derived ZAL equivalent addresses and indeed resolves many o f the

concerns and difficulties of animation.

- 1 6 0 -

References
[Abelson et al 1985] Abelson H, Sussman G & Sussman J, “Structure and Interpretation o f Computer
Programs”, MIT Press, 1995

[Abrial 1980] Abrial J, ‘‘The Specification Language Z: basic library”, Oxford University Programming

Research Group, 1998

[Alford and Lawson 1979] Alford M & Lawson J, "Software Requirements Engineering Methodology

(Development)", RADC-TR-79-168, USAF Rome Air Development Centre, New York, 1979

[Andersen et al 1992] Andersen M Elmstrom R Lassen P & Larsen P, "Making Specifications Executable

- Using IPTES Meta-IV", Microprocessing & Microprogramming, Vol. 35, No. 1992

[Backus 1978] Backus J. "Can programming be liberated from the von Neumann style? A functional style

and its algebra o f programs." Communications of ACM August 1978

[Barden et af] Barden S Stepney S & Cooper D, "Z in Practice", Prentice Hall International (UK), 1994

[Basili and Perricone 1984]Basili V & Perricone B, "Software errors and complexity: An empirical

investigation", Communications of the ACM, 27(1), 1984

[Breuer and Bowen 1994] Breuer P & Bowen J , "Towards Correct Executable Semantics fo r Z", in

Bowen J and Hall J (eds.) Z User Workshop, Cambridge 1994, Workshops in Computing, Springer-

Verlag, 1994.

[Brooks 1987] Brooks Jr. F P, "No Silver Bullet: Essence and Accidents of Software Engineering",IEEE

Computer, 1987

[Buckberry 1999] Buckberry G, "An Editor and Transformation System fo r a Z Animation Case Too",

PhD thesis, Sheffield Hallam University, UK, 1999

[DeMarco and Lister 1989] DeMarco T & Lister T, Software Development: State o f the Art vs. State of

the Practice in Proceedings 11th International Conference on Software Engineering, IEEE, 1989

[Dick et al 1990] Dick A Krause J & Cozens J, ‘‘Computer Aided Transformation o fZ into Prolog” in

Proceedings of the Fourth Annual Z User Meeting, Z User Workshop, Nicholls J (ed), Springer-Verlag

Germany, 1990

[Diller 1990] Diller A., Z: An Introduction to Formal Methods, John Wiley and Sons, 1990

[Forberg and Mooz 1997] Forberg K & Mooz H, "System Engineering Overview", Software

Requirements Engineering, 2nd ed, Thayer R H & Dorfman M, Eds, IEEE Computer Society Press,

Los Alamitos USA, 1997

[Fuchs 1992] Fuchs N, ‘‘Specifications are (preferably) Executable”, Software Engineering Journal,

September 1992

[Gibbs 1994] Gibbs, W.W. "Software's Chronic Crisis." Scientific American, September, 1994.

[Glaser et a/1984] Glaser H Hankin C & Till D, ‘‘Principles o f Functional Programming”, Prentice Hall

International, 1984

161

[Goodman 1993] Goodman H, “Animating Zspecifications in Haskell using a m onad”, Technical Report,

University o f Birmingham UK, 1993

[Graham 1994] Graham P, ”On L isp”, Prentice Hall, 1994

[Harel 1987] Harel D., ’’Algorithmics : the spirit o f computing”, Addison-Wesley, 1987

[Harvey & Wright 1994] Harvey B. & Wright M., ’’Simply Scheme”, , MIT Press, 1994

[Hayes 1993] Hayes I (ed),'1Specification Case Studies”, Prentice Hall 2nd edition, 1993

[Hayes and Jones 1989] Hayes I & Jones C, "Specifications are not (necessarily) executable", Software

Engineering Journal, November 1989

[Hibberd 1990] Hibberd R, "An FP System", MSc Project Sheffield Hallam University, 1990

[Horcher 1994] Horcher H-M, “Animation and Prototyping o f implicit Specifications”, Technical Report,

DST Deutsche System-Technik GmbH, Germany, 1994

[IEEE 1993] "IEEE Recommended Practice fo r Software Requirements Engineering", IEEE Std 830,

1993

[ISO/IEC 14882 1998] "Information Technology - Programming Languages - C++", ISO, 1998

[Jackson and Stokes 1993], "Formal specification and animation o f o f a water level monitoring system.",

Research Report INFO-0428. Ottawa, Atomic Energy Control Board, 1993

[Johnson and Sanders 1989] Johnson M & Sanders P, “From Z Specification to Functional

Implementations" in Proceedings o f the Z User Workshop Oxford 1989, Nicholls J (ed), Springer-

Verlag, Germany, 1989

[Jones 1990] Jones C, "Systematic Software Development using VDM", Prentic Hall International, New

Jersey, 1990

[Keene 1989] Keene S, “Object-OrientedProgramming in Common Lisp : A Programmer’s Guide to

CLOS”, Addison-Wesley, 1989

[Levesonl990] Leveson N, "Guest Editor's Introduction: Formal Methods in Software Engineering",

IEEE Transactions on Software Engineering 16 (9), 1990

[Lightfoot 1991] Lightfoot D, "Formal Specification Using Z", Macmillan Press, 1991

[Main Commission Aircraft Accident Investigation 1994] "Report on the Accident to Airbus A320-211

Aircraft in Warsaw on 14 September 1993", Main Commission Aircraft Accident Investigation 1994

[McCarthy 1960] McCarthy J, "Recursive Functions o f Symbolic expressions and their Computation by

Machine, Part 1", Communications of the ACM 3(4), 1960

[Meyer 1985] Meyer B, "On Formalism in Specifications", IEEE Software 2(1), 1985

[Mullery 1996] Mullery "The Perfect Requirement Myth", Requirements Engineering Journal (1996)

1:132-134 Springer-Verlag London, 1996

[Page et al 1993]Page D, Williams P & Boyd D, "Report o f the Inquiry into London Ambulance Service",

South West Thames Regional Health Authority, 1993

162

[Pamas and Clements 1986]Pamas d & Clements P, "The Rational Design Process: How and Why to

Fake It", IEEE Transactions on Software Engineering, Vol. SE12 No 2, February 1986

[Parry 2001] Parry P, "Viz" - work in progress, Sheffield Hallam University, 2001

[Perry and Steig 1993] Perry D & Steig C, "Investigating software requirements errors", in Proceedings

of th eEuropean Software Engineering Conference, 1993

[PeytonJones and Hughes 1998] Peyton Jones S & Hughes J (eds), "Report on the Programming

Language Haskell 98", http://www.haskel.org/report

[Pfleeger 1998] Pfleeger S, "Software Engineering: Theory and Practice", Prentice Hall, New Jersey,

1998

[Pile 1991],Pile I, "Developing Safety Systems”, Prentice Hall, 1991

[Potter et al 1991] Potter B Sinclair J & Till D, "An Introduction to Formal Specification and Z",

Prentice Hall International (UK), 1991

[Runciman and Wakeling 1995] Runciman C & Wakeling D , "Applications o f Functional

Programming", UCL Press, 1995

[Sherrill and Carver 1993] Sherrell L.B. & Carver D.L., ”Z Meets Haskell: A Case Study”, COMPSAC

‘93 - Procs. 17th. Annual International Computer Software & Applications Conference, 1993

[Siddiqi et al 1998] Siddiqi J Morrey I Hibberd R & Buckberry G ,” Understanding and exploring form al

specifications”, Annals o f Software Engineering 6 (1/4), 1998

[Somerville 1989]] Somerville I, "SoftwareEngineering (3rdEd.)"; Addison Wesley, 1989

[Somerville and Sawyer 1997] Somerville I & Sawyer P, "Requirements Engineering: A Good Practice

Guide", Wiley, 1997

[Spivey 1992] Spivey J.M., The Z Notation A Reference Manual, Prentice Hall, 1992

[Steele and Sussman 1975] Steele G & Sussman G, "Scheme: An interpreter fo r the extended lambda

calculus", Memo 349, MIT artificial Intelligence Laboratory

[Stepanov and Lee 1994] Stapanov A & Lee M, "The Standard Template Library", Hewlett Packard

Company, Palo Alto USA, 1994

[Utting 2000] Utting M, "Data Structures fo r Z Testing Tools" presented at FM-TOOLS 2000,

University o f Ulm Germany, July 2000

[Valentine 1991] Valentine S, “Z-- An Executable Subset o fZ ”, 6th Annual Z User Meeting, York UK,

1991

[Valentine 1993] Valentine S, "Putting Numbers into the Mathematical Toolkit", Proceedings of

theSeventh Z USer Meeting December 1992, in Bowen and Nicholls (eds) Springer-Verlag, 1993

[van Schouwen] van Schouwen A, "TheA-7 requirements model: re-examination fo r real-time systems

and an application to monitoring systems", Technical report 90-276, Queens University, Kingston,

Ontario, 1991

163

http://www.haskel.org/report

[van Vliet 2000] van Vliet H, "Software Engineering Principles and Practice", John Wiley, New York,

2000

[West and Eaglestone 1992] West M & Eaglestone B, "Software development: two approaches to

animation o f Zspecifications using Prolog", Software Engineering Journal, July 1992

[Williams 1994] Williams L, "Assessment o f safety-critical specifications", IEEE Software, 11(1), pp.51-

59, 1994

[Wordsworth 1992] Wordsworth J, "Software Development with Z : A Practical Approach to Formal

Methods in Software Engineering", Addison-Wesley, 1992

164

Appendix A (STL/C++ structures)
#include <map>
#include <set>
ttinclude <algorithm>

template <class DT, class RT>
set <DT> dom(const multimap<DT, RT> & mapp)
{

set<DT> result;
for (multimapcDT, RT>::const_iterator mi = mapp.begin();

mi!=mapp.end();mi++)
result.insert(mi->first);

return result;
}

template cclass DT, class RT>
set <RT> ran(const multimap<DT, RT> & mapp)
{

set<RT> result;
for (multimap<DT, RT>;:const_iterator mi = mapp.begin();

mi!=mapp.end();mi++)
result.insert(mi->second);

return result;
)

template cclass DT, class RT>
multimapcDT, RT> domRes(const set<DT> & sett, const multimapcDT, RT> & mmapp)
{

multimapcDT, RT> result;
paircmultimapcDT, RT>::const_iterator ,multimapcDT, RT>::const_iterator >

pr;
for (setcRT>::const_iterator si = sett.begin(); si != sett.end(); si++)
{

pr = mmapp.egual_range(*si);
copy(pr.first, pr.second, inserter(result,result.begin()));

}
return result;

}

template cclass DT, class RT>
setc rt> rellmage(const multimapcDT, RT> & mmapp, const setcDT> & sett)
{

return ran(domRes(sett, mmapp));
}

template cclass DT, class RT>
multimapcDT, RT> ranRes(const multimapcDT, RT> & mmapp, const setcRT> & sett)
{

return inverse(domRes(sett, inverse(mmapp)));
}

- 165-

template cclass DT, class RT>
multimapcRT, DT> inverse(const multimapcDT, RT> & mmapp)
{

multimapcRT, DT> result;
for (multimapcDT, RT>::const_iterator mi = mmapp.begin() ;

mi!=mmapp.end();mi++)
result.insert(make_pair(mi->second, mi->first));

return result;
}

template cclass ST >
setcST> inter(const setcST> & si,const setcST> & s2)
{

setcST> result;
set_intersection (sl.beginO, si. end (), s2 .begin () , s2.end(),

inserter(result, result.begin()));
return result;

}

template cclass ST >
setcST> sunion(const setcST> & si, const setcST> & s2)
{

setcST> result;
set_union (sl.beginO, sl.endO, s2.begin(), s2.end(),

inserter (result, result.beginO));
return result;

}

- 166-

Appendix B (Car Rental Specification)
BSc SE/CM/CMS Final Year

Formal Software Development Assessment (Part 1)

This is GROUP work

Write a Z specification for the system informally described below.

The ACME car hire company has a fleet o f cars distributed across the country in a number of
depots in several major cities. Each car is identified by a unique id number. The depot in which
the car is currently garaged, the car's current mileage and the car's manufacturer is recorded for
each car. A client can hire a car from any depot and return it to any other depot. When a
customer hires a car from a particular depot, they provide their name and specify the make of
car they want, and the hire date is recorded. A specific car (if available) is then allocated to
them. When the car is returned (possibly to another depot), its new mileage is inspected, and
the customer is charged 10p per mile plus a fixed charge of £20 for each day of the hire period.
The ACME company is so successful that sometimes there's a queue o f people waiting to return
their hired car to a depot. When this happens, the company deals with the queue in strict order.
Occasionally a customer in the queue gets tired of waiting and leaves, hoping to return later
when the queue is shorter.

Write a Z specification for the system informally described above. You should include
specifications for the following operations:

(a) Hiring a car. (This operation ignores cars which m ay be in the returning queues
- only those cars actually in the depots are available for hire.)

(b) Returning a car. (This comprises essentially two operations - joining a particular
returning queue, and dealing with the car at the front of a queue by issuing a bill
etc.)

(c) Answering the following queries:

(i) Which depots currently have a car of this particular m ake?

(ii) Which cars are currently garaged at this particular depot?

(iii) Is there a returning car of this particular m ake queueing at this
particular depot? If so, w hat position is it in the queue?

State clearly any assumptions you make, and remember that the English commentary
component of a Z specification is an important aid to understanding, so please include it.

- 167-

Appendix C (WLMS in Z)

/ *

Case Study : Water Level Monitoring System in Z

From : A. Van Shouwen

Date : 5th December 1997

Informal Description :

This specification is concerns the operation of a Water Level Monitoring

system which might be used in a safety-critical system involved in steam

generation, for example in a power plant. The system consists of two rese rv o irs ;

one serving as a steam generation v esse l, and the other as a source of w ater.

Under normal operation, w ater is pumped from the source into the steam

generating vessel w here it is evaporated. The pump transfering w ater to the

generating vessel and the pump controlling the ra te of steam generation in regulated

by a control system termed the WLMS.

The WLMS monitors and displays the level of w ater in the stream generating v esse l.

When the w ater level is too high or low, the WLMS issues visible and audible alarms

and shuts down the pumps. Pumps are also shut down if the WLMS itself fails

either due to external fau lts (such as failure of the w ater level detector) or

internal fau lts in the WLMS computer. Internal fau lts are detected by an external

watchdog which receives a periodic KICK from the WLMS. If and external fau lts is

detected by the WLMS or the watchdog fires, the WLMS shuts the system down by

turning off power to both pumps.

In addition, the WLMS has two push buttons: S elftest le ts the operator te s t the

WLMS output hardw are whilst the system is shut down. Reset re tu rns the system to

normal operation following shutdown or te s t, provided that the w ater level is within

the specified limits.

*

/ * F o r m a l S p e c i f i c a t io n in Z * /

- 1 6 8 -

BYTE == 0 . . 2 5 5

T IM E == N

L EV EL == N

D E V IC E T Y PE : : = o k | f a i l e d

W A TC H D O G TY PE : : = u n in it | o p e r a t e | s h u t

O N O FFT Y PE : : = o n | o f f

B U TTO N TY PE : : = p r e s s e d | r e l e a s e d

O PER A TIN G M O D E TY PE : : = o p e r a t i n g | s h u t d o w n I s t a n d b y | t e s t

FA IL U R E M O D E T Y PE : : = a l l o k | b a d l e v d e v | h a r d f a i l

PU M P SW IT C H T Y P E : : = o p e n | c l o s e d

SH U TD O W N SIG N A LTY PE : : = g o | s t o p

A L A R M T Y P E : : = s i l e n t | a u d ib l e | u n d e f in e d

[-S to re d D a ta ---

t im e : T IM E

tim e ln M o d e : T IM E

w a tc h D o g T im e : T IM E

r e s e t B u t t o n T i m e : TIM E

s e l f t e s t B u t t o n T i m e : TIM E

o p e r a t in g M o d e : O PER A TIN G M O D E TY PE

f a i l u r e M o d e : FA IL U R E M O D E T Y PE

a l a r m : A L A R M T Y P E

s h u td o w n S ig n a l : SH U TD O W N SIG N A LTY PE

w a t e r l e v e l : LEV EL

l e v e l : LEV EL

s t e p : T IM E

[-C o n tro l S ig n a l s --

a l a r m : A L A R M T Y P E

s h u td o w n S ig n a l : SH U TD O W N SIG N A LTY PE

p u m p S w i tc h : PU M PSW IT C H T Y PE

w a t c h d o g : W ATCH D O G TY PE

- 1 6 9 -

.-M o n ito r V a r -------------------------------------

d i f f P r e s s : BYTE

r e s e t B u t t o n : BU TTO N TY PE

s e l f t e s t B u t t o n : BU TTO N TY PE

p o w e r N o w : O N O FFTY PE

m e m o ry : D E V IC E T Y PE

t im e N o w : TIM E

tim e D e v ic e : D EV IC E T Y PE

le v e l L o w e r C a l : LEV EL

l e v e lU p p e r C a l : LEV EL

s h u td o w n L o c k T im e : TIM E

w a tc h d o g t i m e o u t : T IM E

h y s t e r e s i s : LEV EL

h ig h W a te rL im it : LEV EL

in itT im e : T IM E

lo w W a te r Lim it : LEV EL

m a x A Ia rm T im e : T IM E

m a x S e l f t e s t D e l a y : TIM E

m a x R e s e tD e la y : T IM E

m a x T e s tD e la y : TIM E

l e v e l L o w e rC a l = 1 3 0

l e v e lU p p e r C a l = 2 7 0

s h u td o w n L o c k T im e = 2 0 0

w a t c h d o g t i m e o u t = 5 0 0

h y s t e r e s i s = 5

h ig h W a te r Lim it = 2 6 0

lo w W a te r Lim it = 1 4 0

m a x A Ia rm T im e = 4 0 0 0

m a x S e l f t e s t D e l a y = 5 0 0

m a x R e s e tD e la y = 3 0 0 0

m a x T e s t D e l a y = 1 4 0 0 0

- 1 7 0 -

i-AlarmControl

MonitorVar?

A storedD ata

alarm ' =

if powerNow? ^ on V failureMode = hardfail

then undefined

e lse if failureMode = badlevdev

then if timelnMode = 0 then audible e lse alarm

else if operatingMode = te s t

then if 0 < timelnMode < maxAIarmTime then audible e lse silent

e lse if operatingMode = standby

then alarm

else if lowWaterLimit < w ater level < highWater Limit

then if operatingMode = shutdown

then alarm

else if timelnMode = 0

then silent

e lse alarm

else audible

.-Initialise—

StoredData

0 < initTime < 5000

alarm = silent

shutdownSignal = stop

timelnMode = 0

watchDogTime = 0

resetButtonTime = 0

selftestButtonTime = 0

operatingMode = standby

failureMode = allok

0 < time < initTime

- 171 -

-GetNextMode---------

Monitor V ar?

AStoredData

operatingMode' =

if operatingMode = operating

then if selftestB utton? ^ pressed A -i (low Water Limit < w ater level < highWater Limit)

then shutdown

else if selftestB utton? = p ressed A selftestButtonTime > maxSelftestDelay

then te s t

e lse operating

e lse if operatingMode = shutdown

then if selftestB utton? * p ressed A timelnMode < shutdownLockTime A

(lowWaterLimit + hysteresis < w aterlevel < highWater Limit - | hysteresis)

then operating

e lse if selftestB utton? =£ pressed a
timelnMode > shutdownLockTime

then standby

else if selftestB utton? = pressed A

selftestButtonTime > maxSelftestDelay

then te s t

e lse shutdown

e lse if operatingMode = standby

then if resetButtonTime > maxResetDelay A

(lowWaterLimit + hysteresis < w aterlevel

< highWater Limit - hysteresis)

then operating

e lse if selftestB utton? = p ressed A

selftestButtonTime > maxSelftestDelay

then te s t

e lse standby

e lse if timelnMode > maxTestDelay

then standby

e lse te s t

- 172-

[-Normal Oper ation-

MonitorVar?

AStoredData

ControlSignals!

GetNextMode

AlarmControl

time' = timeNow?

level = level Low erCal +

((diffPress? * 103803 - 485010) * (level Upper Cal - level Low erCal)) div 2550000

w aterlevel =

if diffPress? = 255 then level Low erCal - 1

e lse if diffPress? = 0 then levelUpperCal + 1

e lse if level < levelLowerCal then levelLowerCal

e lse if level > levelUpperCal then levelUpperCal

e lse level

watchdog! = if watchDogTime < watchdogtimeout then operate e lse shut

step = timeNow? - time

watchDogTime' = step

resetButtonTime' = if resetButton? = pressed then resetButtonTime + step e lse 0

selftestButtonTime' = if selftestB utton? = pressed then selftestButtonTime + step e lse 0

timelnMode’ = if operatingMode = operatingMode' then timelnMode + step e lse 0

failureMode' =

if failureMode = hardfail v memory? ^ ok v watchdog! ^ operate

v timeDevice? = failed

then hardfail

e lse if failureMode = badlevdev v diffPress? e { 0, 255 }

then badlevdev

e lse allok

shutdownSignal' =

if failureMode e { badlevdev, hardfail } V operatingMode e { standby, te s t }

then stop

else if operatingMode = shutdown then shutdownSignal

e lse if resetButton? = pressed then shutdownSignal

e lse go

pumpSwitch! =

if powerNow? = on a shutdownSignal' = go a watchdog! = operate then closed

e lse open

shutdownSignal! = shutdownSignal'

alarm! = alarm'

- 173-

Appendix D (WLMS results)
Validation of safety properties by animation Decem ber 1 7 ,1 9 9 9

Table 1. Results of the animation.

Inputs: state variables:
time
button

reset
button

test level water
mode

operating
mode

failure alarm pumps

2000 standby allok silent stop
2050 released released normal standby allok silent stop
2100 pressed released normal standby allok silent stop
3100pressed released normal standby allok silent stop
3500 pressed released toolow standby allok silent stop
4100 pressed released low standby allok silent stop
4800 pressed released normal standby allok silent stop
5099 pressed released normal standby allok silent stop
5100 pressed released normal operating allok silent stop
5200 released released normal operating allok silent go
5600 pressed released normal operating allok silent go
6700 pressed released high operating allok silent go
6750 pressed released toohigh shutdown allok audible go
6820 pressed released high shutdown allok audible go
7000pressed released normal operating allok audible go
7400pressed released normal operating allok silent go
8700pressed released normal operating allok silent go
8800 released released normal operating allok silent go
8820 released released low operating allok silent go
8830 released released low operating allok silent go
8840 released released toolow shutdown allok audible go
8880 released released low shutdown allok audible go
8900 released released normal operating allok audible go

Appendix D Table 1

- 174-

Validation of safety properties by animation Decem ber 1 7 ,1 9 9 9

Table 2. Results of the animation.

Inputs: state variables:
time
button

reset
button

test level water
mode

operating
mode

failure alarm pumps

8900 operating allok audible go
9000 released pressed normal operating allok silent go
9040 pressed pressed high operating allok silent go
9070 pressed pressed toohigh operating allok audible go

9080 pressed pressed toohigh operating allok audible go

9090 released pressed toohigh operating allok audible go

9300 released pressed normal operating allok audible go
9499 released pressed normal operating allok audible go
9500 released pressed normal Test allok audible go
9501 released pressed normal Test allok audible stop
9510 released released normal Test allok audible stop

10700 pressed released normal Test allok audible stop
11100 pressed pressed normal Test allok audible stop
11920 released pressed normal Test allok audible stop
12300 released released normal Test allok audible stop
12750 released released toolow Test allok audible stop

13249 released released normal Test allok audible stop
13500 released released normal Test allok audible stop
13999 released released normal Test allok silent stop
14500 released released normal Test allok silent stop
14600pressed released normal standby allok silent stop

Appendix D Table 2

- 175-

Validation of safety properties by animation Decem ber 1 7 ,1 9 9 9

Table 3. Results of the animation.

Inputs: state variables:
Time
button

reset
button

test level water
mode

operating
mode

failure alarm pumps

14600 standby allok silent stop
15000 pressed released normal standby allok silent stop
17300 pressed released normal standby allok silent stop
17600 pressed released toohigh standby allok silent stop
17610 pressed released high standby allok silent stop
17620 pressed released normal operating allok silent stop
17640 released released high operating allok silent go
17650 released released toohigh shutdown allok audible go
17850 released released high shutdown allok audible go
17860released released low standby allok audible go
17870 released released toolow standby allok audible stop
17900 released released low standby allok audible stop
17950 released released normal standby allok audible stop
18000 released pressed normal standby allok audible stop
18150 released pressed normal standby allok audible stop
18170 released pressed low standby allok audible stop
18180 released pressed toolow standby allok audible stop
18200 released pressed low standby allok audible stop
18499 released pressed normal standby allok audible stop
18500released pressed normal Test allok audible stop
18600 released pressed normal Test allok audible stop
18700 released released normal Test allok audible stop
19550 released released normal Test allok audible stop
19570 released released low Test allok audible stop
19590 released released toolow Test allok audible stop
19600 released released low Test allok audible stop
19700 released released normal Test allok audible stop
22600 released released normal Test allok audible stop
23000 released released normal Test allok silent stop
23600 released released normal Test allok silent stop
24000 released released normal standby allok silent stop

A p p e n d ix D T a b le 3

- 176-

Validation of safety properties by animation Decem ber 17, 1999

Table 4. Results of the animation.

Inputs: state variables:
time
button

reset
button

test level water
mode

operating
mode

failure alarm pumps

24000 standby allok silent stop
24400 released released normal standby allok silent stop
25000 pressed released normal standby allok silent stop
28000 pressed released normal operating allok silent stop
28600 released released toolow shutdown allok audible go
28760 released pressed toolow shutdown allok audible go
29000 released pressed toolow shutdown allok audible go
29100 released pressed normal shutdown allok audible go
29260 released pressed normal test allok audible go
29300 released pressed normal test allok audible stop
31700 pressed pressed normal test allok audible stop
32000 released released normal test allok audible stop
33700 released released normal test allok silent stop
34900 released released toohigh standby allok silent stop
34901 released released faulty standby badlevdev silent stop
34903 released released normal standby badlevdev silent stop
37100 pressed released normal standby hardfail undefined stop
40100 pressed released normal standby hardfail undefined stop
40101 pressed released normal operating hardfail undefined stop
40200 released released normal operating hardfail undefined stop
40500 released released normal operating hardfail undefined stop

Appendix D Table 4

- 1 7 7 -

Appendix E (choose)
(in-package ’zal)
;; non-deterministic choice, as modeled by P Graham, "On Lisp", Prentice Hall, 1994
(defvar choose nil)

(setq *cont* #'identity)

(defmacro =lambda (parms &body body)
'#'(lambda (*cont* ,©parms) ,©body))

(defmacro =defun (name parms &body body)
(let

((f (intern (concatenate 'string "=" (symbol-name name)))))
'(progn

(defmacro ,name , parms
'(,’,f *cont* ,,©parms))

(defun ,f (*cont* ,©parms) ,©body))))

(defmacro =bind (parms expr &body body)
'(let ((*cont* #’(lambda ,parms ,@body))) ,expr))

(defmacro =values (&rest retvals)
'(funcall *cont* ,©retvals))

(defmacro =funcall (fn &rest args)
'(funcall ,fn *cont* ,@args))

(defmacro =apply (fn &rest args)
'(apply ,fn *cont* ,@args))

(defparameter *paths* nil)

(defconstant failsym ’©)

(defmacro choose (&rest choices)
(if choices

'(progn
,@(mapcar #’(lambda (c)

'(push #'(lambda () ,c) *paths*))
(reverse (cdr choices)))

,(car choices))
'(fail)))

- 178-

(=defun non-deterministic-pick (someSet)
(let* ((poss (pick someSet)))

(choose-bind x (cdr someSet)
(if (equalp x poss)

(= 1
;;; (pop-up-message-dialog
;;; *lisp-main-window*
;;; "demonstrate pick"
;;; (concatenate 'string "accept ” (format nil "~a" x))
;;; warning-icon "Okay" "Next")

)

(=values x)
(fail)
))))

(defmacro choose-bind (var choices &body body)
'(cb #’(lambda (,var) ,@body) ,choices))

(defun cb(fn choices)
(if choices

(progn
(if (cdr choices)

(push #’(lambda () (cb fn (cdr choices))) *paths*))
(funcall fn (car choices)))

(fail)))

(defun fail()
(if *paths*

(funcall (pop *paths*))
failsym))

(=defun two-numbers ()
(choose-bind x (from-to 0 100)(0 1 2 3 4 5)
(choose-bind y (from-to 0 100);’(0 1 2 3 4 5)
(=values x y))))

(=defun parlour-trick (s) ;; after Graham
(=bind (n3 n4) (two-numbers)
(if (= (+ n3 n4) s)

(answer is ,n3 ,n4)
(fail))))

- 179-

Appendix F (library in Haskell)

— reservations :: Book -> [Borrower]
type Book = String
type Borrower = String
type Loans = [(Book, Borrower)]
type Library = ([(Book, [Borrower])] ,Loans)
type Report = String

reserveBook :: Library -> (Book , Borrower) -> (Library, Report)

reserveBook lib (b, m)
= let

(reservations, loans) = lib
reservers = apply reservations b

in
if (m 'elem' reservers)
then

(lib, "alreadyReservedByThisBorrower")
else

let
newReservers = reservers ++ [m]
newReservations = reservations 'override' [(b,newReservers)]
newLib = (newReservations, loans)

in
(newLib, "success")

replace maplet [] = error "replace without match"
replace maplet (hd:rest)

= let
(d, x) = maplet
(dd, y) = hd

in
if (d == dd)
then

(maplet:rest)
else

(hd:(replace maplet rest))

override [] 1 = 1
override 1 [] = 1
override 1 ((b,bs): rest)

|elem b (dom 1) = override (replace (b,bs) 1) rest
jotherwise = override ((b,bs) : 1) rest

dom ::[(a,b)] -> [a]
dom = map fst

apply :: [(Book, [Borrower])] -> Book -> [Borrower]
apply [] _ = []
apply ((b,bl):rest) arg

|b==arg = bl
jotherwise = apply rest arg

- 1 8 0 -

