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The work described in this thesis deals with the vibration

study of an open ended folded plate box type structure 1eadiﬁg
up to the prediction of its response to random excitation.
Theoretical and experimental results for the box are presented
as one of the main aims of the work is to predict theoreti-
cally the response of the structure to random excitation

and compare these results with experimeﬁ?ﬁily obtained values
using various methods available. ' ' ‘

The determination of the resnonse of a structure to random
excitation depends on the prediction of the response snectral
density. To determine the reswonse spectral density of sany
point .on a structure a knowledge of its natural frequencies
and mode shapes and modal damping factors is required. In
this work the finite-element method of analysis is used to
determine the natural frequencies of vibration and the
corresgdndihg mode shaves of the box structure and computer
programs were developed to perform this analysis. During
the project, beam and plate'structures have also teen
investigated to assess the accuracy of the tecknique and some
results for these are included in chapter 7. The natural
frequencies'and mode shapes obtained are_compared with
experimental results as well as with those obtained using
other theoretical snalyses. sFor the beam the exact method
was used and for the plate, the energy'methOdfusing
Warburton's formulae. Computer programs were also develoved
to caléulate the structural receptance from the nstural
frequencies and mode shapes calculated using the finite
element technique and damping factors obtained experimentally.
From this. the resnonse spectrzl density of the structure to
a known excitation spectrum was obtained. '

Experimental work include a) sinusoidal excitation tests to
determine natural frequencies, mode shapes and damping factors
and b) random excitation using pseudo~random binary sequence
- signals to determine response to random excitation using

narrow band frequency analysis and correlation techniqués.'
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the development of a non-contacting combined exciter nickup
probé; are described and discussed. The response to random
excitation is ohtained experimentally using a pseudo-random
" binary sequence signal generator and s time domain analyser,
giving the cross-correlation function from which the cross -
speciral density is calculated in a Fourier transform. A
Fast Fourier Transform COmputer program was developed during
the work to perform this. The resnonse spectral density

~is then obtained from s knowledge of the excitation spectral

density;

Finally the values of the response spectral densijfy. obtained
are compared with those obtained using the results of the
finite element znalysis and using the results of the sine
~sweep test and narrow band frequency analysis. The technique
" used in this work has proved satisfactory and the experimental
appafatus and computer programs developed, suitable for the
investigation. ' -

The work described in this thesis provides the necessary
basic requirements for future work in the establishment
of suitable exverimentsl anparatus setup and provision of
essential computer software. Sugjestions as to possible
extension of this work are made in the concluding chapter.
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Chapter 1. Introduction

The trend in recent engineering development is towards the
use of light folded-plate boxtype structures as the basic
unit of construction 1in many fields. In buildings and bri-
dges, box girders figure predominantly and in the transport
industry, motor cars, buses and trucks have always been
basically light folded plate box type structures. This has
stimulated interest in the determination of the response to
vibration stimuli of these structures, hereafter referred to
in this thesis simply as box-structuresThe resulting
reduction in the built-in safety factors as well as in the
damping because of the use of these lighter structural mem-
bers can lead to the build up of serious vibration response

levels.

Ignorance of the vibration characteristics of such struc-
tures is known to account for premature wear and fatigue
failings [17. The more spectacular catastrophes include the
breaking up of the Liberty ships and the bridge disaster at
Tacooma, in the U.S.A. where,in the latter case,random wind
loading had excited one of the natural vibration modes of the

bridge.

In the field of transportation, broad band vibrations set up
in the wvehicle have been shown to affect not only the 1life
expectancy of the vehicle but also to have undesirable
effects on the commuter. Once again the excitation here 1is
known to be of a random nature. It is therefore important to
study the vibration response of box structures and in

particular the response of box structures to random excitat-

ion.

This work 1s an investigation into the vibration characteris-
ics of box structures and ultimately to predict the response
of box structures to random excitation. Robson [2] and
Crandall [3] provide the necessary background knowledge on
random vibration theory and they show that the prediction

of the response of a structure at any point d to a single



(2)

random input at p depends on the determination of the
- receptance oy (Bishop and Johnson [41) of the structure

at the point under consideration. Robson has shown that in
~this case the output spectral density Sd(f) of the point
under consideration is related to the input soectral den81ty
Sp(f) of the exciting force by the expression:

sa(e) = locdp(if)l 2 sp(1) | (2.1)

where a%p(f) is the receptaﬁce of the system from:

ogp(i) =T o (X, - 1Y) o (1.2)
. | wo(x Yw. (x)
where fi - -~ g r 7ol
S M,
. L, ,
M., =.f° W, (x)mdx ,
| , 2 _ .2
Xr = 2fr T
y 4
qwqﬂfr B 1rf J
f2

‘Yr=4“&r2[(f - 19)° +Vlr

wi(xp)band wr(xq) are defleqtions of the structure
at input and output points p and q respectively when
the structure is vibrating in the rth normal mode,
f,. is the rth natural fregquency, f is the forcing
frequency and ir is the damnlng loss coefflclent

for the rth mode.

It is therefore’possible to calculate the feceptance of
-~ any structure given the knowledge of its natural frequencies
and mode shapes as well as damping factors. .

Any attempt at resoonse work inevitably‘requires'a knowledge
~of the_damping characteristics of the structure. As the

- mechanism of damping in étructures is not yet completely‘

known this work follows a commonly accepted theory for light



structures, that of hysteretic damping (see Crandal [5])*
Experimentally derived values of the loss factors have been
used as far as possible for the folded plate box configurat-
ion but where this was not possible, extrapolations were used
based on results obtained on plate damping measurements or

unimodal damping assumptions were made.

In using equation (1.2) the natural frequencies ,0f free
vibration and its corresponding mode shapes of the box
structure must also be known. These are obtained by solution
of the equation of motion of the structure. Vibration
analysis of structures can be divided into 'exact* methods

and approximate methods.

The exact method solves the exact equation of motion usually
using an iterative method. This however is only suitable for
beams and plates with simple boundary conditions and becomes
far too complicated for complex structures. It has not
however prevented a recent attempt by Abrahamson [6] in using
the exact method in an analysis of the natural frequencies
and normal modes of a four plate box structure. This exact
method is well documented in standard dynamics textbooks and

will not be gone into here.

Of the approximate methods available the most widely used 1is
the Rayleigh also known as the Energy method used mainly for
determination of the lower frequencies of vibration. Here

a shape, for example the static deflection curve, 1is assumed
for the true deflected curve. Using this, the maximum
potential and kinetic energies are calculated and equated.
If the exact shape o0of the deflected structure happens to be
chosen the calculated frequency corresponding to that shape
will also be exactly correct but if not a close upper bound
approximation will be obtained [4-1l. This method is also

limited to the analysis of the simpler structures.

For plates the exact method of solution is limited to those
simply supported around their perimeter. For fully fixed

plates Rits[7] provided probably the earliest analysis using



the Rayleigh method with a series of the various characteris-
tic beam functions. This work was extended by others includ-
ing Young [8] in 1950. Both the Rayleigh and the Rayleigh-
Ritz methods are well documented in standard vibration text-
books e.g. Timoshenko [9.7 and Bishop & Johnson [4]. Probably
one of the best known works in plate vibrations was done by
Warburton [10] in which he presented a paper giving approxi-
mate formulae for all the twenty one different boundary
conditions possible with plates using the Rayleigh method of
solution. Recent work on the same subject was done by Leissa
[11] who also investivated the effect of changing the wvalues
of Poission’s ratio and investigated the accuracy of Warburt-

ons formulae.

A theoretical solution to the vibration of box-type structures
using a sine series was presented by Dickinson and Warburton
[127. The analysis 1s however limited to the case in which
deflections at the corners of the structure are assumed to be
zZero. The use of the Rayleigh and Raleigh-Ritz methods is in
general not suitable for box structures because of difficulty
in satisfying continuity of slope and bending moments at the
common edges. The transfer matrix method (see Uhrig [13]) 1is
also not suitable for the box structure because of the
geometric difficulties encountered. The Bolotin edge effect
method (Dickinson and Warburton [14]) although able to
satisfy these continuity conditions does not solve for all
the modes of vibration of box structures particularly at the
higher modes when modal patterns are not easily represented

by lines parallel to the edges.

Of the remaining approximate methods available the advent of
the high speed large capacity computer has seen the emergence
of the finite difference and finite element methods of
analysis. The former (Heng [15]) was possibly until recently
the more popular because of its smaller computer storage
requirements but convergence especially in higher order
equations was slow (Chang [!£>]) . The latter is possibly
more appealing to the engineer and has become one of the most

important and powerful of the techniques developed recently.



It also appears to be the most suitable method available for
the analysis of the box structure and is therefore the method

chosen for this work.

One of the earliest references using this method was reported
in a paper by Turner et.al. [17] in 1956. Melosh [18] sub-
sequently applied it to the analysis of thin plates in bend-
ing. This was followed by Zienkiewicz and Cheung [19] in
which they noticed possible application of the method to
include vibration and thermal problems. Dawe [20] presents a
solution to plate wvibration problems and including non-
dimensionalised stiffness and mass matrices using rectang- *

ular elements.

The rapid increase in the use of matrix methods in structural
mechanics led to one of tne first major conferences on the
subject 1217 being held in 1965 at which the finite element
method featured predominantly. Since then several textbooks
on the method have been published (Przemeiniecki [22] and

Zienkiewicz 1 23]).

Rockey and Evans [247 applied the method to the static
analysis of box structures. In dynamic analysis, Handa [25]
deals with in-plane vibrations of box structures and Ali,
Hedge & Mills [26] approximates the vibrations of an idealis-
ed motor car chassis using beam elements only. This project
will therefore extend the work to consider the finite element
analysis of both in plane and transverse vibration of box
structures and to use the results for the determination of
the response power spectral density to random excitation.

The full potential of the finite element method of analysis
is still being constantly increased with new literature on
the work being published at the moment in many research

establishments.

Use of the finite element method necessitates the availability
of some finite element computer package. However, in general,
such computer program packages are not always available and it

is up to the individual establishments to develop their own.



It is therefore one of the aims of the work undertaken in

thls project to produce such a computer program package to

solve for the naturalAfrequenc1es and mode shapes of the boxA
structure. These results are then used in the calculation of

" the receptance of the box structure from equation (1.2).
The'reoeptance is used in the prediction of the response'nower"
spectral density to any known input from equation (1.1) and its
calculatlon 1ncorporated in the finite element package developed.

Little work, analytical or experimental, appears in the
literature on the vibration study of box structures. As a |
result an extensive experimental as well as analytical |
program is pursued to obtain. : .
(&) natural frequencies and mode shapes,with which the
~ accuracy of the finite element prediction of the
natural frequenéies and mode shapes of the box
structure can be assessed, and ‘
(b) the experimental response power spectral density,
with which the predicted response power spectral
 density can be compared. '
Although it is not expected that experlmentally obtained and
analytically predicted results correSpond exactly, it is hoped
thet some degree of collaboratlon will be achieved.

The experimental work entailed the design and developmént of
suitable experimental apparatus from which the necessary
response measurements can be obtained. Because of the 11ght—
ness of the box structuré a'non-contacting exciter-pickup had
to be developed. The natural frequencies and mode shapes of
the box structure were obtained. The response power spectral
density was however not obtained by a narrow band frequency
analysis of the response itself because of the inaccuracy
involved. Instead an alternative method uSing the cross-
correlation of the excitation and response signals is used.
Davies [27] and Jones [28] show that if white noise is applied
to a linear system, the cross correlation of the input signal
to the system with the resulting response of the system gives
the systems impulse response function. The pseudo random
binary sequence signal is used for determining this impulse
response function with considerably less difficulty in



obtaining the delayed signal for correlation and in the
operations involving multiplication and integration. More-
over the perfect repeatibility othérwise_unobtainable with
pure random signals is here possible making it suitable for
work of this kind. o

A Fourier Transform is necessary to evaluate the frequency
reSponse_function of the structure from its impulse response.
The calculation is found to require very long computational °
times using the usual method of evaluating the terms. A new
technique using the Fast Fourier Transform algorithm (Cooley
and Tukey (29], Bingham et.al. [30], Cochran et.al. [31]) is
found to reduce this time considerably and forms an important
part of the correlation technique used in this work. The
theory behind this method of calculating the Fourier transform
"of a series will be looked into in more detail in the
appropriate chapter.

Both the experimental as well as the analytical programme for
the box structure has been successfully completed. The
necessary apparatus has been developed and the natural
frequencies and mode shape,of'the box structure have been
obtained. The response power spectral density of the box
structure subjected to random excitation has been obtained
experimentally. A finite element computer program package has
been developed giving the natural frequencies.and mode shapes
of the box structure. A further computer program has also
been developed to predict the reéponse poWer speétral density
of the box structure subjected to random excitation. Agreement
between the experimental and predicted results is found to be
satisfactory. ”



Chapter 2  The finite element method

Summary -

The Finite Element method is used to predict theoretically the
mode shapes and frequencies of free vibrationiof a foided
plate box type structure using rectangular isotropic plate
elements. Both the stiffness and the mass matrices are
derived for the element used and the assembly into the
complete structure explained. The use of various standard
library routines for the solution of the eigenvalue problem is
~discusseds A full listing of the complete computer program
developed is included in Appendix 3.



2.1 Introduction

- The finite element méthod is one of the most suitable methods
for the analysis of complex structures. In the analysis,
whether static or dynamic, the original structure is replaced
by an assemblage‘of small but finite elements which inter-
connedt with one another only at a finite number of points
known as node points. These are usually found at the corners
of the element but are also commonly chosen to be along the
pides of the element. At each node a number of degrees of
freedom are represented usually the deflections and slopes or
their derivatives. The theory then is to assume that the dis-
placements in any part of the element will be defined in terms
of these nodal degrees of freedom via a diéplacement poly-
nomial of the form

w = {P}[c] o (2.1)

where {P} is a matrix of the coordinates X,y ond 2,

[C]) is a vector matrix of constants,

and the polynomial w(x,y,z) is chosen to satisfy the
following conditions: '

(a) © The number of independent terms must equal'the
number of degrees of freedom in the element

(b) For convergence to the correct solution it musf be
complete up to order n where n is the order of the
highest derivative appearing in the strain energy

integral appropriate to the type of element under
consideration. e

(¢) conforming or compatible elements further satisfy
the condition that the (n-1) th derivatives are
continuous..across the element boundaries.



From this displacement polynomial an elemental 'stiffness'

" matrix [k] is obtained via strain energy considerations
relating the gleméntal nodal forces and displacements in the
form s . ' . '

{p)° - [x] {a}® (2.2)

In a static analysis the nodal forces {F}e are due to the
applied forces and in a dynamic analysis they represent
inertia forces acting on the element. The characteristics of
the complete but considerably simplified structure is then
represented on the computer by the equation ’

= Ik)fe} 2oy

where [K] is the stiffness matrix for the complete structure,
made up of all the elemental stiffness matrices [k] . This
then relates the applied forces {F} and the nodal displace-
ments {d}of the complete structure and at the same time
satisfies the relevant boundary conditions applied. 

2.2 The element stiffness matrices

In folded plate structures the platés are subjected to both
‘bending and stretching effects. This is conveniently
considered separately as the plate element purely in bending
and then in stretching only. The former has three degrees of
freedom, w, Qx’ 6. at each node and the latter, u and v only.
However, depending on the orientation of the element in the

. complete structure, a Gz component may present jtself so that
- an allowance must be made for this in retaining a total of
six degrees of freedom per node, displacements u,v,w,.and

rotations, ex,e ’G?'

J



2.2.1 The bending stiffness matrix

Figure 2.1 represents one of the four node rectangular elements
which is a component idealising a complete side of the box. At

each node during bending there are three degrees of freedom, a
displacement w, and rotations ©x’ 9y to which correspond the

three bending forces W, Mx, My' Thus for the 4 node element
with 12 degrees of freedom, a 12 x 12 matrix is required to
express nodal forces in terms of the nodal displacements.
Other, ,types of elements may also be used e.g. the 3 node
triangular element or even the 8 node rectangular element with
midside nodes [23je However, a pair of the former will be
necessary to represent each of the 4 node rectangles. The
eight node rectangle is used primarily to represent curved
geometries and is therefore unnecessary, for the box column
with its straight sides, and also has a higher number of

degrees of freedom to contend with.

For the 4 node rectangular element chosen, it is assumed
that under load the deflected form of the element can be

expressed as

w = A"+ A2x + A’y + A”*x2 + A*xy + A”y2 + A + AQx2y

+ Agxy2 + Al0y3 + An x* + A12X~ (2.4a)

where w is the deflection at the point (x,y)

or in matrix form

w = [m]{A] (2.4Db)
where [m] = 1 ,x,y,x2,xy,y2,%x3,x2y,xy2 ,y3 ,x3y,xy3
and \ki is a vector of the constants Al, A2, ........... Al2 *

This displacement polynomial fully satisfies the necessary
requirements discussed in 2.1. The constants of the express-
ion can be evaluated by satisfying the displacement conditions
at each node point, i.e. w = w*, Dw/*y = <*, “*w/c)x = -0* at
node point i (i = 1,2,3,4).

The elemental stiffness matrix is then obtained via a strain

energy analysis.



(Lig)

bp

“ | IR |
U wa)g |
JR %
, D@.QOU
| Ortou |
) ve .
Nmt\ut.wm.
ﬁ N

zp

J:h

tp




— . ) (13)

Now the bendlng strain energy U of an isotropic plate of
‘uniform flexural rigidity, D, is glven by %jhéf c-av
where 6-= 7 ¢

] e 2,2, 5 w3 Pu 8
U = J[ (a - (axz)v(éyz) + 2(1 rﬁ(axay)ﬁ # y
D T ' | - o
= o C¢ dxd . (2.5)
g_[yzoLo_ o1 (] 16} axay ‘
. o 32W 32 '32 ' :
h = 4 ,
were {0} =} 52 o2 " amdy i
1 » 0 B
2] = » 1 0 (2.6)
0 0 2(1-» . :

The curvatures can e351ly be obtained by dlfferentlating
equatlon (2. 4a)

.SC} = a;g.! 2A4 f BALX + 2Agy + 6A11;y
| 4dzw S2A, 4 2A.x + 6A. 6, s
ay2 [ Th6 T Rgt T ol * MY
% |y, oax e 2a, v 3hx2 4 34,y
laxayd 3 gt t fg¥ * X+ SAha¥
i.e. fc}= [E]f{a} . e

‘where [E]=[0" O ‘O 2 0O 0  6x 2y 0 o 6xy 0
' 0- 0 0 0 0 2 0 0 2x 6y o 6xy
© 0 0 0 1 0 o0 2x 2y o 3x2 32 (2:8)

In order to find the matrix of constants {A} We,return to
figure 2.1 considering each‘node of the element in turn and.
using equation (2.4a) to determine the deflections at the
vnodes-of~the element to obtain



—————

1+ A3 + A6 + Aio
3+ 2hg + 3Aq4
=0, = 5[A2 + Ag + Ag + A121
1 F A2 + AB + A4 +'A5 + A6 + A7 + A8 + A9

Q o o o o o o
~ o VLW N
n
s
N
]
>

68 = ¢3 = AB + A5 + 2Ag + Ag + 2A9 + 3Ap + Ayq + 3445
dg = 65 ~[ o+ 2h, + Mg+ 3Aq + 2hg + Ag + 3Aqq + A12]
le = w4 Al + Ay + A4 + A7

dyp = €4 = Ay + Ag + Ag + Ay | |

d1p = 8, = =[Ay + 24, + 3Aq] | (2.9a)

“~where the subscripts refer to the nodal members.
In matrix notation

{a} = {B]{s} | - (2.99)

so that {4} = [B7%]{a} | (2.10)

Substitution of equations (2.7) and (2.10) back into (2.5)
and noting that only [E] is a function of x and ¥ gives the
strain energy

o= BBl SiSolE 0] ox e (57 o]

or U = #{a)"[x]{a] - _' (2.11)

Applying the theorem of virtual work %%— = Fi gives
i



{r} = [x]{d}
where {F} is the column matrix of nodal forces
ice. {F} = {Wy, Mg, MOy, Wy, .cevenen. M9, }
[K] is thus the required stiffness matrix and from (2.11)

, 19T, [ Db a 1T -1

[x] = [571] (fyzoszO[E] [%](2] ax ay) [B ], (2.12)

where the component matrices [%), [E] and'[B—ylare given in
(2.6), (2.8) and the inversion of (2.9%a) respectively.
In order to retain the element dimension parameters a and b,

the matrix manipulation are carried out by hand giving the
matrix [K] (Appendix 1la).

2.2,2 The lembrane.stiffness matrix

Figure 2.2 represents the configuration and notation used
for the 4 node rectangular element in stretching. The dis-

- placements in the x and the y directions, u and v, are in-
dependant of each other and so can be considered separately
and the anslysis is identical in both cases. The displacement
. polynomial chosen for the displacements in the x direction is

u = Alx + A2xy + A3y + A4

and that in the y direction is

vV = le + ngy + BBy + B4

The assumption for a plane stress‘distribution is made where

Ny O; this being valid for thin plates.

2z " Oz

zx ~Ozy =
By following the same steps as illustrated previously for
bending, equations (2.5) to(2.12), the stiffness matrix for
the element in stretching is obtained_(Appendix la).

We now have the stiffness matrices for the sgparate bending
and stretching modes of the element which can be used for the
solution of problems involving plate structures bending and
stretching respectively under static loading.
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2.3 The element mass matrices

In dynamic analysis the nodal forces are induced by inertia
loading of the displaced structure. The inertia loading dis-
tributed over an element during vibration is here replaced by
a system of equivalent nodal forces by means of the formation
of a 'mass*® matrix. The criterion adopted for such replace-
ment is that the work done by the equivalent nodal inertia
forces Ue is equal to that done by the actual inertia forces,
of the element Ua' The former is given by the equivalent
nodal forces {B}l} in moving through virtual nodal displeace-

ments {dv} .
ie. U = {Fm}{dv} | | (2.13)

The latter is given by the actual distributed inertia loading,
[f], in moving through & virtual deflection {wv} '

iee. Uy = {THw,} : (2.14)

" where from (2.4) and (2.10) {wel = [m][B“l]{dv} ~ (2.15)

The inertia force per unit srea when the plate is vibrating
sinusoidally with circular frequency p is

{ f} =J0p2w =/Op2[mJ[B_1}{d} - , (2.16)

where 0 is the density per unit area of the element.
Thus, equating the work done in both.cases, from equations

(2.13) and (2.14)

{85) {Fnt = [y2o [uZo {w}{f} ox oy

which from equations (2.15) and (2.16)

P (o] BN o o (1) ox e [0} eany

If each virtual nodal displacement is given the value unity in
turn while the remaining displacements are held zero, equatlon

(2.17) bccomes

{ E /Op (f& OJ;~O [m] dx dy) rB ]1d}
= A[M {d} - (2.8)



. where [Mj}= [B~%]TQI&EOJ¥io[mJT[m] dx dy)[B—l] (2-13)

is the required mass matrix of the element as-{Fm} is the
column matrix of nodal forces representing the inertia loading
on the element. Once again this is derived separately for the
element in bending and in stretching.

2.3.1 Bending mass matrix

From the previous section we have that the mass matrix of the
element _is given by ‘

[M] = [B-H Thﬁf[m]T[m] dx dy [B~1J ‘ (2.20)
For the element in bending [m] is given by equation (2.4) and
[B"l] by equation (2.9a) so that [M] is easily found
(Appendix 1b). :

2.3.2 Stretch mass matrix

Again the element mass mass matrix considering the stretching
case is given by equation (2.20) above. In this case the mass
matrix can be divided into two separate submatrices, one for
each direction as they are mutually independant of each other.
(Appendix 1b).

2.4 The combined element stretching and bending matrices

We now have the four bending and stretching rectangular plate
element stiffness and inertia matrices, [KB], [KS], [MB] and
[MS] of the element. These are combined to form the combined
bending and stretching stiffness and mass matrices [K] and[M]
of the element. These are full 24 x 24 matrices with the
complete set of six rotational and linear displacements u,v{w,
‘gx’@y’gz at each of the four.nodes. The matrices available
so far only form a 20 x 20 matrix as the plsne rotation GZ
had not been taken into account in the derivation of the mass
and stiffness matrices but must be included for rotation into
the three dimensional structure. The method used to overcome
this is simply to include rows and columns of zeros for the
appropriate degree~of'freedomfez. This method makes the



idealised structure more flexible than the actual but hss
been successfully used (Rockey and Evans [24], and Clough
and Johnson [32]). | |

The notation (fig. 2.3) used previously was chosen quite
arbitrarily and was sufficiently suitable for the purposes of
~determining the stiffness and inertia.matrices of the element.
However, it was found that for ease in analysing large and
complex structures, a more suitable system of numbering for
“the element had to be followed so that programming for the
computer is simpler. .The following system (fig. 2.4) was
chosen. This gives a smooth flow in the numbering system,
considering first the x axis and then the y axis. 1In the
program this is accomplished by first interchanging rows and
columns 2 and 4 in the stiffness and inertia matrices and
then doing the same for rows and columns 3 and 4. This
procedure is carried out in subroutine REORDER (Appendix 3).

The complete nodal and degree of freedom notation for an
element lying in the xy plane is given in figure 2.5 where,
considering node 1,

degree of freedom:

1l = u = displacement in x direction

2 = = displacement in y direction

3 = w = displacement in z direction

4 = GX = rotation along vector in x direction

5 = @y = rotation along vector in y direction

6 = 0, = rotation along vector in z direction
2.5 Assembly into the complete‘structure

The basic element obtained by the previous analysis is a four
node plate element which has combined bending and stretching
capabilities.

If we inspect the stiffness matrices obtained we see that a
column of either matrix is in fact a list of the forces acting
at each node when the displacement corresponding to that
column is given a unit displacement and all other degrees of
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freedom given the value zero. Thus if two or more elements
have a common node point then the total force acting at that
node point is obteined by addition of forces. The assembly
into the complete structure is then accomplished by the
merging of all the element matrices into that of the complete
structure by a simple point by point addition. The degree of
freedom notation as illustrated in figure 2.5 has been chosgen
to facilitate easy assembly into the complete structure.

Thieg merging of the basic element matrices into that of the
complete structure also requires the following
a) rotation of the clement into the correct plane before
assembly.
b) a systematic assembly of the various elements into
the complete stiructure.
c) a systematic numbering sequence of the nodes of the
complete structure to facilitate easy refinement of
| mesh size.
d) incorporation of the boundary conditions of the
complete structure.

2.6 The rotational matrix

So far the stiffness and mass matrices have been found for =z
plate element in its local coordinate system (i.e. the gtiff-
ness and mass matrices have been calculated for the element
lying in the xy plane). As an element can also lie in the xz
or yz planes or in any inclined plane, its inclination to the
global axis of the whole structure has to be taken into
consideration before it can be assembled into its proper
place in the actual structure (see for example Gere and

Weaver [33}). -

To illustrate the procedure, consider a rod of length L lying
‘on the x axis in the local coordinate system as shown in fig.
2.6. Any point of the rod has components of deflection u,v,
and w relative to the local axes x,y and z. It also has
components of deflection u', v' and w' relative to the global
axes x', y' and z'. These two sets of deflections are related



2
T
S

-0 U

i

&/

&

ip .

St

NNCUQ\LQ

v




by the expression

u o
v b o) v L - (2.21)
y |

From fig. 2.6,

1(u) = utcosu'u + v'cos v'u + wtcos w'u
where u'u etc., refer to the angle turned through from
the u' axis to the u axis.

Similarly,
1(v) = u'cos a'v + v'cos v'v + w'cos w'v

1(w) = u'cos u'w + v'cos v'w + w'cos w'w (2.22)

For the purposes of this investigation the directional cosines
invloved are either 1, O, or -1 since the sides of the box
structure investigated are all at right angles to one another
(fig. 2.7).

i) Consider the case of a plate lying in the x'y' plane
fig. 2.8). The matrix is simply:

1 0 o
0 1 0
0 0 1

-t

ii) For a plate lying in the y'z' plane, (fig. 2.9) it is:
01 0

0O 0 1
1 0 O
and iii) For a plate in the z'x' plane (fig. 2.10):
1 0 0 |
0O 0 1
0O -1 O

-

Using these rotation transformation matrices, the stiffness
and mass matrices of the plate element in its local coordinate
system can be transformed into that of the global coordinate
system using the equations '

[xe] = (R[] S e
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end [MG];'-' :R]T[ML] (& ] | S (2.24)
' . ' . r- “" . ) . ] . .. : A
where o .xlii)\12r K134

| 21 >‘2"_‘>\2‘3:

oo [ M3 N2 Az |
Rl =
| | | o

f
' (do)
| .

: oL . _ -
These trﬁnsfdrmations are performed using the. subroutines
ROTATEl, ROTATE2, and ROTATE3 for the Xy, Yz and zx planes

respectively (Appendix 3).

2.7 ‘Method of assembly

The priority of.assémbly of the plate’elements into the.
complete box structure is as follows. The plate elements are
first assembled together to form a complete side of the box.
~The sides in the xy plane are completed first, beginning with
that at z = 0. The.81des in the yz plane are then built up,
starting with that at x = O and finally the sides in the 2x
plane, again beginning with the one in the y = 0 position.

The method is illustrated in flg. 2.11 showing the prlorlty in
which the sides of the box are built up. This priority in the
. computer program is 1ndlcated by the parameter NA in the
calling sequence. The local axes of the elements of each
side are as shown previously in fig;.2.8, 2.9 and 2.10. Fig.
2.12 shows the node numbering of the aSsembled box structure.
The above method of numbering of the nodes does not give a
narrow band along the dlagonal of the matrix in the stiffness
and mass matrices. In a dynamic analysis howevér, this does
not present the same advantage 1t would using a narrow band
vsolutlon in statlc analy31s. : '

2.8 Boundary‘conditions

‘In a dynamic analysis, a fixed degree of freedom is specified
quite simply by eliminatlng both the row and the column
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corresponding to that particular degree of freedom. This is
because the inertia fbrces produced in such a case is non-
existant since no displacement is allowed at that point. In
this way a fully fixed node at.the boundary of the structure
may have all its degrees of freedom u, v, w, Qx, Qy; Qz
eliminated from the system matrices. Similarly a node along
a simply supported boundary along the x axis may have rows

and columns corresponding to its w and Gx displacements
removed. Other'degrees of freedom that are also reduced out
are those of dummy nodes and the dummy degree of freedom GZ
which had been assigned for ease of assembly. Where there

are no contributions to the assembled stiffness and mass
matrices the relevant rows and columns (which are all zeros)
are removed from these matrices as they would otherwise
become singular. The removal of these rows and columns is
achieved using a control matrix in which a list is maintained
of all the degrees of freedom of the structure, those to be
removed represented by zeros and those to be retained by ones.

The subroutine BOUNDARY removes all rows and columns

corresponding to the degree of freedom having the value zero,
leaving n by n stiffness and mass matrices where n is the |
total number of degrees of freedom remaining in the structure.

2.9 The solution algorithm

The structural vibration problem'(section 2.3) is now reduced
to one of solving the generalized symmetric eigenproblem

[x]x =X\[u]x (2.25)
for its eigenvalues and eigenvectors. From these are
obtained the natural frequencies and mode shapes of the ,
- vibrating box structure. A short summary of the method used
is given here and the reader requiring more detailed informat-

ion is referred to the computer subroutine manual used [34]
and Wilkinson [35]. '

For the generalised symmetric eigenvalue problem where [K] is
a real symetric matrix and [M] is a real symetric positive
‘definite matrix i.e. one whose eigenvalues are all greater



than zero, the solution is straightforward. (M] is factorised
by Cholesky's method into [M} = [L] [L]T where (1) is a

lower triangular matrix. Hence [K}ixi=A[M]{x} can be written
in the form

-

] ] )% = A1) ' (2.26)
which is the standard-symmetric problem | .
[Aly = Ay . (2.27)
‘where (4] = [0)7 [ ][]
and . y =,[L]T x

. The eigenvalues of [KIxt=2Mlx}are the same as those of [A] and
~if y is an eigenvector of [A] then x, the corresponding eigen--
vector of the original problem, is obtained by back substitut-
ion in the set of linear equations

[L]T x =y | | (2.28)

Householder's method is then used to tridiagonalise the matri
[A] and the eigenvalues are found using the QL algorithmtj{];
- The eigenvectorsiy}of the derived problem are then determined

using the QL algorithm and normalised so that{thd= 1 and the
eigenvectors{xjob the original problem are found from {L]Tb&%&
and normalised so that{i?[Mbﬂ: 1. This method can however
only be used if [K] is real and symmetric and M) is positive
definite. [K] is checked to be real and symmetric by inspect-
ion and in the computer program. The program also has built—_'
in facilities to check the eligibility of [M] using the ‘
criterion that its determinant is positive since the determin-
ant is equal to the product of its eigenvalues (which'must all
be greater than zero). '

In some instances due to rounding errors [M] may not be found
to be positive definite so that an alternative method has to
be used. The procedure commences with the generalised
symetric eigenproblem being manipulated into the standard
symetric form |

[B]z = Nz o (2.29)



i

where [B}

(x]7% [m]
and A\'n = WAn |

The [K] and [M] matrices are béth symmetrical but since [K]—l _
is not,so neither is the product‘[B]. The problem then
becomes one of solving for the eigenvalues and eigenvectors of
equation (2.29) where [B] is an unsymmetric matrixz. An
iterative method applied to this [B] matrix then proceeds to
find the lowest natural frequency first direCtly.

Because the elements of the matrix [B] often varies consider-
ably in size, the process of balancing is used. This is the.
name given to the rearrangement performed, necessary to
obtain maximum accuracy in the subsequent solution for the .
eigenvalues and eigenvectors. The object of balancing is to-
make the norm (the sum of the absolute values of the matrix
elements in each row or column) the same order of magnitude
in the corresponding rows ahd columns. Error in the calculat-
ion of the eigenvalues of the problem is reduced since the
eigensolution program used produces results with errors found
to be proportional to the norm of the matrix.

The solution then follows with similarity transformation on

the balanced matrix [A} so that [A] is transformed into the
real upper Hessenberg matrix,[H} where [H] = {S]_I[A]Bi] An
upper Hessenberg matrix is one whose elements hi. are such

that hij = 0 when i - j>1. The transformation matrix [S] is
built up as the product of n-2 stablised elementary transfor-
mation matrices, chosen so that the eigenvalues and eigen-
vectors of [H] can be more readily determined than those of
[A]. The eigenvalues of [H] are the same as those:of [A] and
if y is an eigenvector of {H] then [S]y'is the corresponding
eigenvector of [A}. The transformation process is however
considerably'simplified because of the balancing already
carried out and only part of the matrix is operated upon.

There iS‘UOSimplé method for easily calculating selected V-
‘eigenvalues of an upper Hessenberg matrix and all eigenvalues ’
of [H] are always célculated. A slight saving in computing



time and storage may be made if only at most 25 percent of the
eigenvectors are required. Since more than this is required
it is actually more efficient, both in time and storage, to
use back substitution subroutines which calculate all the
eigenvectors and then to discard those that are not needed.
The QR algorithm{BG]is used in the eigensolution subroutine.
This is a very stable method but accuracy is dependant on the
eigenvalues being well spaced out. ' '

A detailed description of all the algorithms and the actual
subroutines used is included in Appendix 2. More details of
the computer program written is given in Chapter 6.



. Chapter 3 Random theory

Summari‘

‘This chapter describes the basic terms and concepts of
random theory. The significance of the correlation
function of the excitation and the response signals .
for the case of white noise excitation is discussed.
The'Péeudo random binary sequence signal is a convenient
white noise signal suitable for use in obtaining the
cross correlation function easily and giving thevsystem
impulse response function..’The'receptance‘of the system
is obtained by a Fourier transform of the system impulse
response and calculation of the discrete Fourier trans-
form using a new and faster technique is used. It is
also shown that the frequency analysis of any response
to random excitation is not accurate and an alternative’
method of determining the response in form of its power
spectral density from a knowledge of the excitation PSD .
as well as the receptance of the system is described.



3;1 | Introduction -

Knowledge of the response of structures to random excitation

of any given type‘of Spebtrum is important. This chapter
deals-with the background theory relating to random

excitation of a folded plate box type structure which may
represent a car travelling along an uneven road surface, an
aircraft subjected to high speed air turbulence or buildings-
and bridges to wind gusts. A brief description of basic random
signal theory is given. The reader requiring‘a more detailed
knowledge of random vibration theory is referred to standard
text- books e. g. Robson [2].

A truely random process is by definition unpredictable.  In
order to make possible any analysis at all a statistical type
solution of the response of struCtures‘to random excitation
must be relied upon. Moreover it is difficult experimentally

to generate a true random signal and to be able to reproduce it

-again when required. The use of a special type of random signal
overcomes these difficulties. This is known as the pseudo
random binary sequence and will be discussed later in this
chapter.

The response of structures to random excitation is discussed
and the theoretical basis for its experimental as well'as
analytical derivation is examined. The method used in this
work to determine this response experlmentally is based on the
time domain correlatlon,of the input and response 31gnals._ For
the special case of a flat excitation spectrum the cross

spectral density obtained on performing a Fourier'transformationx»'

on the cross correlation function also gives the frequency
response function or receptance of the structure. The advantage

resulting in the elimination of interference signals greatly en

-hances this method of systems evaluation. It also gives an
accurate method whereby the response power spectral density
to the white noise excitstion is easily obtained. '



Robson also shows (eqn. 1.2) that the recentance of a structure
can be calculated from a knowledge of its natural frequencies
and mode shapes. He provides the theoretical basis for the
prediction of the response gpeétral density from this receptance
as well as the knowledge of the excitation power spectral
density. '

The finite element method of analysis described in the previous
chapter enables the calculation of natural frequencies and.
mode shapes of the box structure. From these the receptance
~and hence the response power spectral density is predicted.



3.2  Basic Theory

Before going into the realm of random vibration some of the
basic theory and concepts of random processes'as given in [2]
are here reviewed, and basic terms peculiar to random theory
are- defined. '

3.2.1 Statistical approach

; \
Because random signals are by definition unpredictable they
can only be described in statistical terms. The basic
requirement of such a description is an 'ensemble' of time
series records of the signal (fig 3.1) which may represent
force, acceleration, displacement etc.

One common way of describing the signal statistically is by
means of its probability density distribution p(x) which is
defined so that | | o |

Prob [xs x(to)S X + dt] = p(x)dx (3.1)

where the total area under the p(x) curve is equal to dne,
and indicates that the probability of the signal lying be-
tween extreme limits of the curve is 100 % . Many naturally
occuriﬂg random signals have a bell shaped probability
density function (fig 3.2) given by

p(x) = _1 exp —'—(—’25—"’“2—)2-] (3.2)

' sVt : o o

where & is the mean square value, also called the variance

of the signal and m is its mean. .
The process is then said to have a normal or Gaussian

probability distribution.
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In practice analysis is simplified by the introduction of the
concept of the 'stationary' random process. This is one in
which a probability distribution obtained for a particular
record is identical to those obtained for all the other re-
cords and is therefore independant of the time at which the
record is taken. All the statistical characteristics of a
stationary random process e.g. its mean, mean square etc. are
therefore time invariant. This concept is teken a step further
by the introduction of the ergodicAprocess which is defined as
not only being stationary but also has its probability distri-
bution taken across the ensemble identical with that taken
along any particular record. '

3.2.2 The correlation functions

The correlation of the excitation and response éignals of the
structure will be used in later calculations and provides an

important means of signal analysis.

The auto-correlation function Rxx(t,z) is defined as the
average over several records of the product of x(t) and its
delayed version x(t+z) which for a stationary signal is

Rxx(z) = E[x(t)x(t+2)] : s - (3.3)
where E represents the averaging process.
Similarly the cross correlation function Rxy(t,z) of two
stationary signals x(t) and yﬁt)'is

Rxy(z) = E[x(t)y(t+z)] R - e (3.44)
so that in the 1limit as z— ®© ,Rxy(z)—>0

This is bécause there is no correlation between two different
signals at that period of delay and this important property

makes it suitable for Fourier transformation as will be seen

later. ‘



3.2.3 Power spectral densities

Another term commonly used @n random signal analysis is pdwer
" spectral density S(f) or S(w%yspectral density for short.
The spectral density S (w) can be defined in terms of the
auto-correlation function Rx(z) of the signal and was first
clearly stated by Wiener [37] as

\ (2]

. * _i - .
Sx(w) = 1 fo(z) g 1WZ dz (3.5)

T
This is an important concept in random vibration analysis
since fo(w) dw is in fact the mean square E[xz]of the process

i.e.

2 " -
B [x2] = [s (w) aw , (3.8
. Yo
For Gaussian processes whgsp mean is zero, eqn (3.2) becomes
1 T 3 ) ,
p(x) = sIow ¢ » - (3.7

Knowledge of E[x2]would define the process completely since
for a process with a mean about zero ' -
e[x?] = &% - (3.8)
Hence since E[x2]can'be obtained from eqn 3.6, the determin-
- ation of the power spectral density is extremely useful in all
calculations involving random signals. It should be noted
here that Sx(f) is expressed as a function of frequency and
2w times larger than S (w). From equation (3.6) the mean .
square value of x(t) in any given band of frequencies & f is
simply Sx(f) Af or Sx(w)<Aw. As an example, if x(t) is a
varying force expressed in newtons, then Sx(f) would be in
newtons2 /Hz and Sx(w) in newtons 2sec.



3.2.4 Fourier analysis of random signals

In many’cases it may be desirable to express a random signal
in a Fourier series type expansion. However because the signal

is not periodic this'isvndt possible. Moreover since the
signal must be assumed to extend over an infinite period of

time to have stationary properties it cannot be expressed as
a Fourier integral either. A method of measurement is
therefore adopted to overcome the difficulties,using the
Fourier transform AT(lf) of a signal xT(t) which is 1dent1cal
' to the sn.gnal to be analysed over the. period—% < t< 5— and
zero elsewhere. The spectral density of the original signal
has been shown by Jenkins & Watts [38] to be approximated
by |

From this it can be seen that the direct Fourier transform
of the response of the structure required, measured within
any finite length of time will at best give only an approx-
imation to the true power spectral density>of the response.
A different approach is therefore adopted in this work to
attempt at obtaining & better estimate and the method is
described in section 3.5



3.3 - Response of structures to random excitation

The classical method of determining the response of a
structure to excitation requires the solution of the
differential equation (Newland [39]) relating the
excitatioan(t) and the resporise y(t) in

dnx

t .
}Z:A __Z - }f: 4y C —2 ~ (3.10)

e °n at" ne on dt"

This relationship however cannot be used in random vibration
work because o
(1) inadequate data is available to determine the
"~ coefficients A,B & C so that the complete dlfferentlal
. equation is not available.
(ii) even if the equation is known, a complete time
,history of x(t) is not obtainable because of its
random nature.

Analy81s of the response of any structure to randoms‘
excitation is therefore best carried out using the form
of its response power Spectralvdensity, described in the
previous chapter.‘ This requires the determination of the
structural frequency response curve commonly}called the

- receptance (Bishcp & Johnson [4])_of the structure.

The receptance of the structure is defined as the response
d of the structure to a unit applied sinusoidal force p of
frequency f. It should be noted that the receptance is
different at'different points of the structure and relates
only two specific points on the structure, A the point at
which the force is applied and B the p01nt at which the
response is measured i.e.

dg =p(if)py | : i (3.11)

Determination of of(if) will therefore give the response of
the structure to any given force p. The receptance and hence
e.the response’is complex, with a real and an imaginary part,
thevphysical"significance;being that there is a time lag
between the application of the force p and the occurance of



the response d. For a single degrée»of freedom structure
with a hysteretic damping factorfxl the equation of motion
may be written as

mx + k(1 + iN)x = p sinwt . | - (3.12)

from which the receptance is found to be
1

oL(if) = - (3.13)

kK - 4w-mf” + ik

'Robson [2] shows that the receptance of a multi-degree of
freedom atructure can be expressed in terms of its natural
frequencies and mode shapes (equation 1.2). For a structure
with light damping and hence pronounced resonance peaks the
receptance becomes | ‘

ld'(if) ‘ 2 =' E .[wrr(-XA)]z [Wr(va)e] _ _ (3.14)
T wfhet{e® - enetl)

where w,(x) is the r .th mode shape

S is the r th natural frequency
and M. ig the-generalised mass at mode r
given by éwf(x)mdx v |
Here structural damping is taken to be hysteretic only
(applicable to light structures) and any coupling between
~the structure and a medium such as air is assumed to be
negligible. '| the hysteretic damping factor for the
structure is calculated from its response curves and is
- discussed in more detail later.

The natural frequencies and mode shapes of a simple struc-
ture can be determined using the exact method of solving
differential equations or by approximations using various
energy methods. For more complicated structures however the
finite element method which is basically an energy method,
.described in chapter 2,is increasingly used because of
difficulties encountered with other methods. In this work
‘therefore the natural frequencies and mode shapes of the
box>structhre are predicted using a finite element computer
program package developed by the author and given in Appendix
3. Once the receptance of the structure is known a prediction



of the response spectral density is possible using the
relationship given previously in equation (1.1) provided the
input spectral density is also known. ’

sd(£) =log (1] sp(e) - (1.1)

Therefore once the receptance of the structure is known, the
response spectral density‘can be obtained for any given
excitation spectral density, from which other parameters
describing the response such as the mean square value and
probability distribution are obtained using equations (3.7)
and (3.8).



3.4 . Experimental Techniques

There are'bésically two ways of obtaining experimentallf the
response of structures to random excitation. The first is
the direct approach, measuring the frequency content of the
resoonse using a frequency analyser. This method however is
not sccurate in any finite sampling time because of the ran-
dom nature of the signal and also because of the low signel
to noise ratio generally encountered. The alternative
method is the synthesis of the response power spectral
density from experimentally derived values of both the
structural receptance as well as the excitation power
spectral density using the équation giVen previously.

S3(f) = '|o¢(if)|25p(f)' | | (1.1)

This method is found to be more accurate than the first
since the excitation power spectral density is often known
or can be obtained accurately.

There are three main ways of determining experimentally the
frequency response of receptance of structures to vibrations.
They are (a) sinusoidal frequency testing (b) transient
testing using a ramp or impulse input and (c) tests using
correlation methods. '

The simpléest and most commonly used method is sine wave
excitation, measuring the amplitude and phase angle of the
response over a range of frequencies giving the frequency
résponse curve directly. Disadvantages encountered with
this method include inaccuracy as often the response is
contaminated with extraneous noise. The excitation cannot
be increased since the system will lose its linear behaviour
- so that an averaging process is often incorporated. It is
also very time comsuming to excite each frequency separately
and to sweep sufficient frequencies for a complete frequency
response curve. Lot B ‘ C | :



Transient testing involves either step (ramn) response (fig.
3.3a) or impulse response measurements (fig. 3.3b). The former
is quick and contains all frequencies in the step and it is
therefore possible to obtain the structursl frequency
response using curve fitting techniques. It is however
limited to simple systems and involves a drastic change of
initial conditions. The latter retains the steady state ini-
tial conditions but is impossible to generate in practice.
Both are also susceptible to inaccuracies due to noise
interference at low levels of excitation and non linear
behaviour at higher levels.

The third method and one of the most important time domain
techniques available is the correlation of two signals, |
giving a measure of the similarity between the two. The
input x(t) and output y(t) of a system are related through

a finite integral known as the convolution integral described
‘'in Robson [ 2] and elsewhere as

y(t) =,£E(c)x(t-t)dc - (3.15) | >Q

where h(t) is the impulse response of the structure and € is
the time delay between the application of the impulse and
time t at which the impulse was applied. This convolution
integral provides a direct method of obtaining the output
signal from a knowledge of the input signal and the impulse
response of the structure. As it stands this does not mean
very much since the impulse responserof the structure is |
‘unknown but the application of the correlation method opens up
an entirely different approach to the problem.
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‘The theory behind the technique lies in the definition of
the correlation functions themselves (see section 3.1). The
~auto correlatlon functlon of the excitation x(%) may be

L ]

expressed as

Rxx(t) = o E%-jT;(t)x(t‘+ Tt (3.16)
and the crossAcorrelation‘function'of the excitation x(t)
and the response y(t) as | '

ny(t) = 1lim : T
T—> 0 2fo(t)y(t + t)dt - (3.17)
=T
Since the impulse response musi be zero before its applic-~
ation h(t) =0 for t<0 and nence (3.15) becomes
y(t) = [ h(a)x(t - 8)ds o
and substltutlng into eqn. 3. 17

T 00 . '
Rxy(zt) = lim . A x(t)[jh(s)x(t+1-s)ds] dt -
- T 27T o ~ 09
o lim _1
: t t dt d
giéoh(s)[ P>0d 27 'rx( )x(t+z-s) ] o
which from 3.16 becomes |
7 Rxy(z) —~rhxs) Rux( - " s)ds | . (3.18)

) oo < ,

It is immediately apparent that if we choose an excitation
signal with a autocarrelation function in the form of a

" 8pike or impulse, the impulse‘response function can be ,
- obtained quite simply from the cross-correlation function
between the excitation and response signals.

A white noise signal satisfies this requirement.  The auto-

- ¢orrélation function of a white noise signal with a flat power

density spectrum of K/f is an impulse of magnitude K.
Thus for white noise equatlon 3.18 becomes '

Rxy(xt) = Kh(T) S ‘(3-19)

White noise excitation therefore gives a particularly import-
ant aspect to correlation techniques as the cross correlation
between the excitation and the response ' of the structure
under.consideration gives the impulse response function of



the structure multiplied by a constant K. It is therefore
"no longer necessary to physically hit the structure with an
impulse of force in order to obtain its impulse response..

The fféquency response function or réceptance is then quite
simply the Fourier transform of the impulse response function.

Hw) = F[h(z)] , ©(3.20)

The impulse response function of any structure can therefore

be obtained without the problems associated with sinusoidal
and transient testing and has with it the advantage that noise
originating within the system does not correlate with the
excitation signal and is hence effectively eliminated. . Thus

a signal of lowvamplitude can be used even in a noisy environ-
ment. This is the basis of the so called method of random
systems testing. The method however has several drawbacks.
Firstly the truely random signal is difficult to generate
artifically and impossible to reproduce exactly. The delayed
signal required for calculation of the correlation function

is therefore not available. Furthermore the correlation also
requires: multiplication and integration over a theoretically
‘infinite period, and it would be difficult to obtain a
satisfactory correlation over a finite period of an essentially
unpredictable process. The use of the pseudo random binary
sequence signal, described later overcomes this difficulty.



3;6 The Fourier Transform . 1

“The concept of the frequency analysis of a signal of period
T by splitting it into its component frequencies using the -
Fourier Series is.well known (see Newland [39])

Thus < A .

0 ‘ o
' o 2Tnt . 2T nt
X(t)‘ = Z- An coSs T + Bn sin _-T—— (3.21)
WheTe T
I A |
AO = '_f 7 X(t) dat
i )
T
a =2 [ 2 (i) cos 2mE gy
n T m T
-2
' T
2
2 2Tnt
and Bn =7 [ . x(t) sin —F dt
-2
or also expressed as
’ i2mtnt
X = 1 * x(t) e ) ® dt where X_= A- - iB (3.22)
n T 0 n  “n n *

The 1imit when T tends to infinity is reached in non-periodic
signals so that the Fourier series becomes a Fourier integral
whose coefficients are the corresponding Fourier transforms.
i.e.
x(t)

2[[A(w) cos ot dw + B(w) sin wt dw] . (3.23)
and . ° : :

1]

Alw) = 1 J[ x(t) cos wt dt

and_

B(es)

Jﬁf"”x(t) sinwt dt S e (3.24)

[
with the limitation that x(t) dt < oo
This thus provides an indispensible tool which facilitates
signal analysis in transforming a signal from the time to the
frequency domain or vice versa. However, because of the
limitation on the signal x(t) itself, unless special precautions
are taken only a process which in the limit is finite can be
analysed. o



In fﬁé work & time series which satisfies this requirement
of being finite in the limit is used. This is the cross’ .
correlation fanction_of,thewwhite noise excitation and the
resulting response of -the structure. The direct frequency
analysis of the response itself is not used as it does not
'satisfy this requirement however long the record taken may
be. '

.From‘the'previous sectionj(éqn. 3.19), we have seen that
for white~noiSe the cross correlation function ny(t) ig in
fact X h(t)-Where h(z) is'fhe impulse response of the system
"and K is a constant, given by the power SpectralgdenSity'of
the excitation. The Fourier transform of this gives-its
'equivalent in the frequency domain, the frequéncy response
function of the structure, (eqn. 3.20),-multipiied by the

- same constant K. Because the excitation is white noise,

- this function when multiplied by the cohstant 21 gives the
output power spectral density of the structure as well.

"Here,a-continuoﬁs function is to be analysed by taking.

~discrete samples of it at equally spaced intervals of time.
Such a series completely represents the continuous waveform
providing the waveform is band limited and the samples are
taken at a rate of at least twice the highest frequency present
vin~the'origina1*waveform [39]. The samples are then called

- Nyquist samples and the highest frequency present, the

Nyquist fréquency. The discrete Fourier transform or DFT of

'such a time series is then closely related to the Fourier

transform of the original continuous waveform and has

| méthemetical properties analogous with it. If however

frequencies in the original signal exist which are higher than

';half the sampling frequency the Nyquist frequency, a corruption
of the graph known as aliasing occurs. In this case, to

" obtain a true DFT either a higher sampling frequency is

required or the existing high frequencies contravening the

Nyquist criteria must be filtered out of the signal. In this

work the latter method is used. -



Thus from eqn. 3.2 2 the DFT of N equally snaced samples taken
at intervals of time can be obtained using the formula

- N1 - - i2mnra | -
T T | (3.25)

B L]

e"*

',Xn‘=

where n ranges from 0 toXN -1 corregponding to harmonics

2m
of Na

' The use of eqn. 3 24 to obtaln the DFT is perfectly satis-

4 factory for processing small amounts of data and a computef
routine to carry out the algorithm is included in Apvoendix 4.
For large quantities of data however, this conventional
method.quickly takes up a large amount of computer core and
the computing time required becomes prdhibitive.‘

‘The Fast Fourier Transform or FFT is an algorithm that was
developed recently to calculate the Discrete Fourier Transform
(DFT) and takes adv&ntage of the fact that the ca1cu1ation

of the coefficients of the DFT can be carried out iteratively
resulting in a congiderable. saving of computing time and
increased accuracy. The algorithm used 1is that reported by
Cooley and Tukey[29]. The FFT method is perhaps not as
obvious as the DFT and the steps are briefly outlined here.

/

A time series Xk'of N p01nts is divided into two functlons Yk ;
‘and Zk where Yk consists of all the even numbered points and

Zk the qdd.

'Y- .

k = X2 | N
. . . k : 0,1,2, -0.0'6(“2‘ "1)
2 = Xor 4 1 .
.The?efore EP? DFT of Yk and Zk will be given by
z: - -Awirk
Br = Y, exp ( fv N

- ‘__4 , beirk wherelr = 0,1;2..(§ - l)
,_ci.-_-i;‘z 'exp(-’-—————-ﬁl%lr') S : :

. The DFT of the original serles Xk is then

.Ai -kgi{ | exp( 411rk ) + Zk exp ( ?ﬁir (2k + 1) )}



- -';'--I R

] : N
_ _ 4wirk emir (|32 4A7irk
--ggbxkegp( /e—ﬁ~—-—0 + exp(- 5 )[é;zkexp(-‘—Aﬁ—-’

Where 1‘ = 0,1,.,.‘.’.'...'...1‘1-1-
which may be written as

S 2Rir | o N }
A, =B, + exp(- =F—) C, for r=0,1,2.... (5 -1)
The DFTs, Br and Cr repeat themselves outside this interval

so that ' ' -

ot apyt el F e Bl

_ _ _ 2Wir |
= B, - exp ( T ) C.
since exp (- gg%iﬁ ) = -1
Therefore
. o N
Ar = Br 4 w Cr fOI' r —- 0,1’2 ~oooo,§
: _ _ 2wi
L _wr _ N
A N\= Br W Cr where W = €
C+z

Thus the two halves of the DFT of the N point X,, A, and

Ar . N ~can be obtained from the Br and Cr’ DFT's of Yk
'and.zi each of g points. By successively dividing the
series into further subseries as long as they are divisible
by two, we end up with the DFT of a small series from which
the DFT of the original series can be built up. Variations
on the method allow the series to be broken up into series
of multiples other than two but we shall not look into these

here.

In this work, series containing 512 and 1024 points are
"finally reduced to the single term, the DFT of the single
term being the term itself, and the DFT of the series

built up from it, and simply divided by the factor 512 or
1024 respectively. .Thus it will be seen that a considerable
'saying in the number of complex multiplications and complex



additions is made using this algorithmn. The resulting
gaving in the time taken enables this method of calculating
Fourier transforms to be run more economically than the
normal me thod especially on the slower computers.



3.7 The pseudo random binary signal sequence

Rahdom-type’signals used in the laboratory can be class-
ified into being naturally or artifically generated. Gommon-
ly used natural sources of random signals include (a) g

tape reéordings of a naturally occurring ramdon signal such
as wind noise, road noise etc. (b)"the.emission of
electrons by a thyratron or zener diode. These have

several disadvantages.  The former requires an infinitely
long record to be statistically accurate, the latter is
difficult to control particularly in the low frequency
ranges and moreover is not reproducable whenever required.
To overcome these drawbacks other sources of random signals |
have to be used. '

Pseudorandom binary sequence signals (referred to as PRBS
signal hereafter) provide artifically generated signals that
~are completely random within any specified period of time

but repeat themselves thereafter. ‘Since the signal is

completely random within this interval it meets all the

. requirements and has all the properties-of random signals.

discussed in the previous section. The use of a PRBS signal

as an excitation signal has several advantages over the use
of true random signals.

These include . . :

(a) repeatibility - it is possible to obtain exact signals

: for repeated tests and these tests do not have to be

infinitely long. Statistical type results do not
have to be relied on as in the case with true random
_ signals. _ .
(b) spectrum can be tailored to requirements - the frequency
- of interest, resolution, length of time available for
each test etc. can be allowed for in each case.

(c¢) correlation of excitation and response can be easily

obtained over a discrete number of signal points.

(d) for the particular equipment used a time domain correla-
‘tor is available as standard equipment so that automatic
~recording of the usually_lengp%hy correlation function

is possible.. '



A brief description of the signal (fig. 3.4) is now given.
For a more detailed account, the reader is referred to the

handbook [40]..

e

The PRBS signal is generated using a shift register, the
length n of which can be changed at will and which gives

it the name of the maximum length sequence of simply m
sequence. The outputs from two stages of the shift register
are connected to a modulo two adder (exclusive OR gate) whose
output controls the state of the first shift register stage.
These connections are chosen so that & maximum length sequence
is generated of N = (2" - 1) bits. The necessary delayed .
signal is obtained simply by dividing the full shift register
into two equal parts to form master and slave PRBS generators.
The main control logic then arranges for the slave shift

'to begin its sequence the required number of clock pulses
after the master.

It is completely controllable, a considerable advantagé
over true random signals but unlike random binary signals
has the number of positive and negative bits differing

- by one since the total number of bits in the sequence

is given by (2" - 1). Being a binary signal it has only 2
levels, +1 and -l; which change at intervals of Asec given
by the clock pulse. Multi-level sequences may however be
ehosen to assume particular types of probability distri-
‘butions if necessary. |

As mentioned previously the PRBS signsl is completely random
within the period '

T = NA
where 1/, = clock frequency
N = no. of bits in the sequence = (2" = 1)

A comparison of its autocorrelation function (fig. 3.5)
reveals that (a) it is a spike which repeats itself at

" intervals of N (see Newland‘[39j). (b) a small negative
” correlafion'-az/N persists. However it approaches that

of true white noise when the sequence length N is made
large and the clock time Asmall. Within the time interval
- NA therefore it has all the properties necessary for the
random systemS'testing described in the previous chapter.
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The Fourier transform of the autocorrelation function gives
the graph of relative power plotted against frequency (fig.
3.6). Referring to the figure, because the signal changes.
only at discrete intervals of time it will be seen that'
this is a line spectrum i.e. one made up'of‘individual lines

instead of the continuous spectrum of true white noise.
_ : . T ‘
These are spaced out at a distance of —Ng Hz apart where

fc = clock frequency = 1%— and are constant to -3 dB at

0.45 f_ Hz as shown. The shape of the envelope is given
in the manufacturers' specification as being described by

SIEX)2 where x =,%£ with a d.c. component of

c , o -
power ='a2/N since N is an odd number. A closer approxi-

mation to a continuous spectrum is obtained by increasing
the sequence length but reducing the clock frequency.
This is achieved at the expense of émplitude in the former

the function (

and the upper frequency in the latter.

The PRBS signal has a probability distribution shown in

fig 3.7. This reveals that the signal occurs only at 2
levels, + aV (see fig 3.4) and, of the 2n “1 bits of signal
in a sequence, has one more + a bit than - a bit. This can
however be tailored to approximate the Gaussian distribution
of commonly occuring random signals in a binomial type
distribution(fig 3.8)using multi-level sequences. This is
achieved however at the expense of (a) reducing the amplitude
of the output signal from a° to 32/(M~1),(b) widening the |
impulse type spike of its autocorrelation function (fig 3.5)
from 2A to 2(M-1)A and (c) reducing the highest frequency |
(fig 3.6) from £, to £ /(M-1) Haz.

It is possible therefore either to approximate a given random
signal or to generate a suitable excitation signal for any
given system and at the same time to be able to repeat it
exactly both for correlation calculations as well as to

. repeat a test subsequently. A suitable signal with which
to excite any given structure is govepned by the choice of
upper frequency limit, shape of excitation'power spectrum,
resolution of component frequencies; probability distribution
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and so on. All these are easily obtained with a PRBS signal.
The upper frequency limit is given by the clock frequency of
the PRBS generator and is determined by the requirement

to stimulate the structure up to a given frequency. In many
structures the most important frequencies are the lowest few
as the response at higher frequencies tends to be attenuated.
In practice most structures also tend to haVeAthe higher
frequehcies occurring close together and with the line
spectrum of the PRBS signal there is a danger that a natural
frequency of the structure may not be stimulated.

To summarise therefore the PRBS signal is within its sequence
length completely satisfactory for random testing purposes.
It is easy to generate, reproduce and multiply and is there-
fore particularly suitable for correlation measurements.
Since the correlation is performed over a finite period
however, some degree of correlation with unrelated noise may
lead to a variance in the measurements obtained. By
correlating over a number of complete sequences this effect.
is nevertheless considerably reduced.



Chapter 4 ~ The Apparatus

 Summary S e
This chapter deséribes,how the necessary.experimental

| apparatus was designed, calibrated and used. A vibration
table was built having the necessary characteristics for a
good vibration testing mounting and incorporating an accur-
ate two way traverse mechanism over the horizontal plane.
A novel non-contacting exciter/pickup probe incorporating
an electromagnetic exciter and a capacitance pickup is
described. A brief description of the investigation into
variations in both material and design leading up to the
final probe configuratibn is included. A fine adjustment
mechanism, linear as well as angular, is incorporated for
accurate adjustment of the air gap between the probe and
 the structure, . For random vibration work a pseudorandom
bihary sequence generator and time domain correlator is used
- from which a completely automatic system has been built up.



4.1 Introduction

Since the aim of this investigation is ultimately to be

able to predict the response of boxétypé'structures to
V1bration stimuli, a large part of the work necessarily
involves response measurements obtained. experimentally

to complement the equally" 1mportant theoretical analysis.
This basically requires a firm vibration testing table on
which the structure and a1l the necessary transducers can
be mounted. These exciters and vibration pickup transducers
must be suitable for the structure to be tested.

As light structures are to be tested, in order to reduce
inaccuracies due to the added masses of exciters or pickups,
non~-contacting transducers are necessary. PFurthermore it
‘is known that the ideal point at which to excite a particular'
mode is its antinode (Plunkett [41] and Dunn [42] ).

Exciting the structure at any point other than at a antinode

" requires a higher force per unit displacement respdnse.

This is becguse it can give rise to (&) displacement of a

- point which would otherwise be a node (b) rigid body displace-
ment (c) excitation of adjacent nodes or (d) local distor-
tion of the structure at the point of excitation (Pandered

and Bishop [43] ). The inherent drawback of a contacting
exciter is immediately apparent since multiple holes must be
made in the structure for excitation of more than one mode. .

Non contacting vibration pickups are'fairly widely usedAand
capacitance displacement transducers are well known and '
available commercially. In general contacting exciters are
still relied upon and work on non contacting electromagnetic
exciters are fairly poorly documented. Recent work by
Shap1r0[44] to produce suitable apparatus for similar
experimental investigations relied on contacting exciters
although non-contacting capacitance displacement transducers
-were used. This may be due to difficulties such as a
frequency doubling effect of the original signal in the
force output of an electromagnetic ex01ter.

]
t



‘This frequency,doub1ing effect and the heat generated in
the ekciter during operation were noted in the course of
“this work7and is-diécussedvlater in this chapter. The
development of an efflclent non-contacting exciter pickup is

rltherefore necessary and w111 be one of the tasks of this

1nvestigat10n.



4.2 The Vibration testing table

- The. 1mportance of the vibration testing table is that

it. prov1des a good vibration mounting for the test structure
isolated from 1nterference "which is mainly structural
borne. It also provides a stable support for the mountlng
of the exciters and v1brat10n pickup transducers with fine
adjustment available between these and the structure. An
accurate traverse mechanism is necessary on which the .
#ibrafion pickup probe and the exciter can be.éuspended

to scan the surface area of the structure locating the
~required points. '

The»work commenced using an éxisting vibration table
(plate 1). Structural'borne interference (the laboratory
was next to a busy main road) was found to be transmitted
straight through'fhe table and picked up at the measuring
v transducers. The traverse_mechanism‘hdlding these trans-
~ ducers Were\independent of the table and some floating

relative_tb the table was detected. A means of fine adjust-

ment of the transducer-plate gap was found to be necessary
because the plates were not absolutely flat and the
'exciter-plate gap size was found to be critical. A new

and larger table was made with these requirementé in mlnd{,

This is fairly large and heavy»and'supported on wide base
plates reéting on-%" vibration isolation pads to reduce
vibration transmitted through it (plate 2). Structures
measuring up to 1,500 x 900 x 430 mm_can be accommodated.
Anvaccurate'traverSe mechanism is built'on to the table .
and a écfew-type winding, at the ends of which are hand
wheels, drive the exciter-pickup probe in the two perpen-
‘dicular horizontal directions. The winding mechanism is
~ supported on special end ball races and phosphor bronze
siiders to reduce friction at the slideways. When the

- point to be measured is arrived at, the end clamps are
tightened thus ellmlnatlng extraneous vibrztions from

the traverse mechanlsm4

'TheAfineyadjustment mechanism is a double screwed device



(plafey})fWhich~ailows for aécurate-changes in linear
displacements in the probe-structure gap size. This is
‘necessary since both the exciter as well as the pickup
;have'characteristics Which dépend on.this gap size. The
mechanism screws down clockwise at 0.24 mm per turn with a
maximum'travel‘Of 20 mm. Coarse adjustment is by loosening
-allen screws holding the whole mechanism in ‘its holder in a
| Vertlcal 8liding arrangement. For angular adjustment three
-knurled screws on a swivelling ball joint ‘allow for tilt of the
transducer relative to the structure (plate 4).

The°étructures'to'be tested are held'with'Supports made

which would aporox1mate required boundary condltlons, €.g. @

'fully fixed flat plate (plate 5), clamped to the table using

large 'G' clamps. A close-up view of the method of fastening
of the box structure is shown in plate 6.



4.3  The Vibration Pickup Transducer

Since the box-typevstructure to be investigated was light,

. a non-contacting vibration pickup transducer was used.

Contacting transducers,e.g:,accelerometers, invariably
implies additional masses attached to the test structures
affecting the frequenéy characteristics of the structure.

Capacitance probes are part of a large family of non-cont-
acting transducers which are used in vibration studies to
.eliminate}the possibility of the transducer interfering
with the vibration characteristics of the structure to be
investigated. | ' o

The Wayne Kerr capacitance probe was chosen because of its
good characteristics and already widespread use amongst
research workers. It works on the prihciple that when
placed near to a conducting surface, a capacitance effect
exists between this surface and the face of the probe. The
capacitance so formed is connected to the feedback loop

of a high gain amplifier hence changing its impedance and
cauSing a voltage outpuf to be formed which is proportional
to the gap distance between the probe and the surface.

The type 'E' probe is most suitable for the purposes of v
this investigation, measuring amplitudes of up to 2.5 mm -
with a frequency response flat up to 1000 Hz. This is
calibrated together with the associated distance meter,
‘the 2 channel Wayne Kerr TE 2000 (pléte 7 & 8)e A full
description of the calibration procedure is given in
Appendix 6. | | |



4.4 The non-contacting exciter

A non-contacting exciter was chosen as being necessary
since the réSponse to excitation at various points. of

the structure is'réquired. "Contacting exciters would

have coniributed additional weight and required holes to

be made in the structure which would have altered the mode
shapes and natural frequencies and hence the overall response
of the structure. This is especially so since light folded
plate structures were investigated.

At the outset of this project a literature survey of current
research work revealed little information on the use of non-
contacting exciters. As a result it was decided to design a

- guitable electromagnetic exciter, modifying it from experienée
gained as the project progressed. Investigations were‘carried~
out and calibrated using a simple,béam experiment (Plate

- 9) as well as using a sensitive piezoelectric force

transducer in a housing made for the purpoée (plate 10). The
complete calibration procedure is described in Appendix 7.

The electromagnetic exciter is basically made up of enamelled
copper wire would on a central core. The number of coils

used is limited by a corresponding increase in the heat

generated and so this was fixed'at between 200 and 300 turns
for the investigation. Increasing the gsuge thickness of the
~windings also resulted inAincreasedvheatkgeneration with the
increased current flow.

A search for an optimum exciter design was made into the
effect of changing the material of which the core is made
(plate 11). The first exciter tested was made with a
permanent magnet core. Tests revealed that hysteresis
losses were present in the core and as a result of the
considerable heat generated, further investigation of this

particular exciter configuration was abandoned. In an
attempt to eliminate hysteresis losses and to consider the
effect of omitting the permanent magnet core, a perspex |
former was used as the exciter core. The result was a much

lower force output than obtained_using'the permanent magnet
core and moreover was found to be at a frequency of 60 Hz,



twice that of the 30 Hz input signal. This was attributed
to the absence of the permanent magnet core which provided

a net positive or negative field onto which the exciter _
output would be superimposed.- Thus in the absence of the
polerising field, 8 sinusoidal signal produces an attraction
when the signal is positive and'yet another attraction even
though the signal goes negative the next time.

To creat a substitute for the effect of the permanent magnet
a second layer of coils was wound on top of the existing

and a d.c. voltage applied to it. This produced a considerszsble
increase in force output and also eliminated the frequency
doubling effect. However a marked temperature fise for the
higher d.c. voltage ranges in the inner coil caused over-

; heating and melting of the enamel coating insulating the
copper coils. ‘ ' '

A final investigation was masde using a hollow iron bobbin

core. To prevent over-heating due to eddy'currents_in the
circuit formed by the ferrousfbobbin, a slot was machined
completely through it and filled with araldite. This greatly
reduced the heat produced and whatever was produced was '
quickly dissipated throuszh the bobbin. Hysteresis losses

were much less’that of the permanent magnet exciter and

force output much improved over the perspex core exciter.

This split core design is incorporated into the combined
exciter/pickup (plate 12) described in the next section.



4.5 ' The combined exciter/pickup probe

In order to obtain a compact transducer as well as to
alleviate the nécesSity of having separate traverse mechan-
isms for both the exciter Bs well as the vibration pickup
transdu¢er, it was decided to combine the two into a single
exciter/pickup probe. Excitation and response are thus
megsured at the same point on the structure.  This has the
added advantage of effectively reducing the impedance to
| v1brat10n hence increasing the measurement accuracy.
fFurthermore, for excitation at the antinodes there is less
tendency to rigid body motion and minimal excitatlon of
‘adjacent nodes (sectlon 4.1).

The pickup transducer was easily incorporated into the

final exciter design in the hollow core of the former on which
the exciter windings were wound. This was made a good fit

and held in place with a grub screw. A cut away view of the
combined probe_is shown in fig 4.1. The calibration proce--
dure followed is as carried out previously for the separate
exciter and plckup components and described in Appendices

6 & 7.

From tests made of the separate as well as the combined
transducers it was found that no interaction occurred between
the capacitance type vibration pickup probe and the induc-
tance typé electro-magnetic exciter in the combined orobe.
The result of the calibration of the combined probe in its
. vibration megsurement capacity is as follows:
1. The output of the probe in distance measurement is 1.85
| mm per volt displayed on the distance meter.
2. The output of the probe measuring amplitude of vibrat-
jon is 2.25 mm/volt output (fig 4.2). |
3. The effect of the gap distamce between the probe and
the vibrating surface measured is negligible. This
" is true provided the total distance (i.e. the amplitude
- of vibration + the mean distance between the probe
and the measured surface) is less than 2.72 mm.
4. The frequency response of the probe (fig 4.3) is flat
- and independant of frequency in the range tested from
- .30 Hz to 300 Hz.
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| The calibration of the.combined prdbe in its excitation
capac1ty is as follows:
| 1. The force cutput per input volt at a frequency of
100 Hz and probe-to-strpcture gap of 1 mm is shown
in fig 4.4.
2. The change in force output with probe-to-structure
. gap at a frequency of 100 Hz and excitation voltage
of 3 Vrms
3. The frequency response at a constant excitation

voltage and gap size is shown in fig 4.6.

is shown in fig 4.5.

In all these curves the d.c¢. polarisation voltage/excit-
ation voltage is taken as unity. The effects of variat-
ion of this factor is given in McNulty [45]. The output

- excitation power spectral density to a PRBS signal input
was also checked using the correlation method previously
described in chapter 3.
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Chapter 5 Experimental technique

Summary

This chapter describes how the correlation technique

(section 3.5) was apvolied to obtain the receptance of

the box structure despite the excitation being non-

white noise. It shows how the natural frequencies

and mode shapes of beams, plates and boxes were obtained
experimentally using the apparatus developed and discusses
the choice of the various pafameters governing the pseudo
random binary sequence signal used for response measure-
ments of the box structure. It also describes how natural
frequencies and mode éhapes obtained for s finite element
‘analysis of the box structure were used to predict the
response power spectral density using an excitation power
spectral density and damping factors obtained experimentally.
The Fourier transform computer program developed is presented
with flowcharts and descriptions end the advantages using

an optional faster algorithm is illustrated.



5.1 Introduction to the problem

+ Chapter 3 describes the general theory applicable to random
excitations and how the theory is applied to the special‘case
when the excitation has,a flat spectrum. It is shown that in
this case the impulse response function of the structure can
‘be easily obtained dlrectly from the cross correlation
between the input and response. (eqn 3.18 & 3.19)_

This impulse response function can then be Fourier transformed
to give the receptance of the structure at the point of
excitation (eqn 3.20). Having used this technigue to
determine the receptance, the response power spectral density
of the structure at the point of interest can be determined
from eqn (1.1) when the input pdwer spectral density is
known. '

In general engineering environments the excitation

. experienced rarely has a combletely uniform force snectrum
and often has one which tapers off at higher frequencies.
Also the advantages of a non-contacting exciter nickup
entailed the development of an electromagnetic exciter
which, unless sophisticated circuitry was provided, has
this same tapering force spectrum. Although an excitatién
signel having a white power spectrsl density { ‘the PRBS
signal) is anplied to the system shown in fig 5.1 the
actuasl excitation of the structure is no longer white due
to the characteristics of the associated exciter pickup
equipment and the response spectral density at the point
of interest is difficult to obtain.

In this chapter therefore some approximations are made to

take such exverimental factors into account by introducing
intermediate stages of analysis which basically denend on

the assumption of linearity in each stage. This is considered
to be valid because of the generally low signal levels used
‘in all the tests. '

Referring to fig 5.1 let p(t) and d(t) be the input and
the response of the system respectively. Within the
system itself let p*{t) and d*(t) be the actual input and
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response of the box itself. .Application of the correlation
me thod using the correlation of p*(t) and d*(t) would not

give the required impalse-response function of the box since
p* is not white noise. HoW§ver by considering the system'as
a whole it will be seen that as far as the system is concerned,
a white PRBS spectrum is being applied to it so that the
necésSary requirement for the correlation technique to be
applied to the system is satisfied. Therefore, using a

PRBS signal p(t) with a flat frequency spectrum of mean

square value K, the cross correlation function of the input
eand output to the system, Rpd, gives the impulse response of
the system h(z) multiplied by the factor K. The Fourier
transform of h(c)K gives H(w)XK the frequency resvonse .
function of the system multiplied by K which from above is the
mean square value of the PRBS input.b From H(w) the system
response nower spectrsl density can be obtained'according to

Sd(w) = |H(w)|? sp . (5.1)
where Sp is a constant for the PRBS signal and given by
[ sp(w) dw = K | | . (5.2)

We have therefore obtained experimentally the power spectral
density of system response d. Now in order to obtain the
power spectral density of the resvonse d* of the box itself
we have to go back a staze and consider the chfracteristics
of the displacement transducer which oroduces d from d¥

(see fig 5.2) The displacement transducer converts displace-
ment d* into voltage d and with its associated equipment
provides the relationship '

Sd(w) = |Hp(w)|? Sd*(w) (5.3

~ where Hp(w) is obtained from calibration of the displacement
transducer described in the previous chapter (fig 4.2 & 4.3).
This as we have seen is independant of frequency and therefore
a constant, Hp, which is given in units of volts/mm so that

Sa*®) =1 Sd(w) : L (5.4)
‘Hp2 ' I
The response power spectral .density of the box itself is -
therefore obtained.
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The sim of this work is to predict thais response from
knowledge of the characteristics of the box from its
receptance ®¢(if) (see chapter 3). 1In order to do this the
excitation power spectral density to the box}must be known.
‘From fig 5.1 we see that although p has a white spectrum p*¥
the actual box excitation does not have the same type of
spectrum. In fact Sp(w) to the system is modified on passing
through thne force transducer to become Sp*(w) to the box

(fig 5.3). Looking therefore at the stage where the signal
is converted into force we sce that

Sp*(w) = lHe(m)|2 Sp o o - (5.5)

where Sp is again a constant given by eqn (5.2) and He(u»
represents the output characteristics of the non-contacting
exciter at a particular amplifier setting. This is again
obtained from the calibration curves given in the previous
chapter (fig 4.6) but unlike the displacement transducer
is frequency dependant to a considerable extent. Since

we now know the power spectral density of the actual
excitation to the box we mn now attempt to predict the

box response using the equation

Sd*(w) = }HB(w)lz Sp*(w) ~ - (5.6)

where

|Hy(w)| = \oc(iw)]z

To summarise therefore we have (a) a method using the
correlation techniquesxaﬂggtaining the resoonse power
spectral density of the,experimentally and (b) an.

analytical method of predicting this using the nstural
frequencies and mode shaves of the box obtained. using the
finite element program developed. The next sections will
discuss the experimental details which arose as work

. proceeded to determine an experimental resoonse power density

as well as a predicted one for comparison:
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5.2 The excitation signal

- For the random excitation of the box structure considered.
in this work, the PRBS signal discussed in section 3.6

is used. The range of frequencies of interest of the box
chosen is from 20 Hz to 100 Hz which contained over 20
natural frequencies. Also it was found that at higher
frequencies the response becomes attenuated and natural
frequencies bunched together, making discrimination
between individual peaks difficult.

The PRBS excitation signal is controlled by several
parameters. The most important being the clock frequency,
the sequence length and the filter cut off frequency.

The choice of these depénd on the following considerations.
The clock frequency chosen is not simply that of the
highest of the range of response frequencies required

even though from section 3.6 it could give the highest

- frequency in the excitation signal. This is because in

the equipment used, the clock frequency is also the sampling
frequency. The sampling frequency is determined by
considering the spectrum using the Fourier transformation

, N1 -iowmkra S o
Xk = ‘ﬁ' rz:zo Xre N A . (5-7)

The properties of the.transformation'are-briefly summed up
as follows. Xn is limited to the range n = 0 ton =N -1
and repeats itself thereafter. This corresponds to the
frequency range O'to_“Hﬁ-l fo. Moreover of this tge _
unique'part'of the series lies in the range O to %ﬁl fc
only, and higher terms are mirror images of these. This
can be expected since the N bits of information can only
give the N/2 real and N/2 imaginary A and B components
of the first N/2 complete Fourier Transform terms. The
J frequency %ﬁl fc is known as the Nyquist frequency or

the 'folding' frequency.

The result of the Nyquist frequency is that for a maximum



. frequency of say 150 Hz to be realised in a signal, a

- sampling frequency of at least 300 Hz is necessary.

Since the sampling frequency on the PRBS signal generator used
is also the clock'frequency;'fc is therefore set at 300 Hz.
Now if frequencies above the Nyquist frequency of 150 Hz

are present in the signal a distortion of the Fourier
transform graph called aliasing is introduced. Setting

the clock frequency at 300 Hz however means that frequencies
up to 300 Hz will be present in the excitation signal .
which will inevitably distort the results. Consequently,

to enable the use of a high clock frequency for accurate
sampling purposes and yet retain only those frequencies

in the range of interest, a low pass filter(fig 5.4)

is included. Known as a third order Butterworth filter,

it is flat to -3dB at fb the upper bound frequency chosen,
then falling off at 18dB/octave, whereas the normal PRBS

spectrum has an envelope given by (§1§_§)2 where

x = TL with -3dB at 0.45 £ ( section 3.6 ).

Usingcthis filter,clock frequencies of 300 and 1000 Hz

were used. The bulk of the results were however taken from
the former as they contain the main resvonse frequencies and
also the latter gave an inaccurate disperse speétrum,-

The accuracy of a spectral measurement depends on the
effective bandwidth Be Hz. of the measurement and the
record length T sec. If o is the standard deviation of
a measurement of spectral density'of mean value m, then
Blackman and Tukey [46] shows that

G . 1

m BeT (5.8)

Thus for a required accuracy of %.= 1 with a frequency
resolution of 1 Hz using a clock frequency of 300 Hz,
a record. of 1 second in length is required. i.e. N the
. number of samples must be at least 300. For a required
~accuracy of §;= % with a resolution of 2 Hz requires a
2 second sample i.e. 600 samples using the same clock
frequency as before. Thus N is chosen to be at least
29 - 512 in the tests. | |
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In practice, in order to ensure adequate stimulation at

the resonances,'the spectral line interval must be such

that two spectral lines occur within the half power bandwidth
of the resonance - . '

e ‘ _ -
i.ef -ﬁg £ fh where (fh)'= half power bandwidth ;4(1fn)

f

so that N 2 ”Tf—g - - (5.9)

Taking typical values used for the structure

fc = 300 Hz, fl: 0.018, fl = 24.6 Hz

N>£%%= 666
It is evident from (5.9) that only the first natural frequency
is critical in determining the minimum number of data N required
in the sequence. N is limited physically by the equipment
available and .on the Solartron equipment used the largest
number available with correlation in one sequence is 1023.
However, run times increase rapidly as N is increased and a
typical time required for a test was approximately 3% hours
using N = 511 and 11 hours using N = 1023 in correlation x 10
mode using fifteen sequences‘per trigger.



5.3 Experimental technique

Using the apparatus which was described in the previous
sections, the esperimental investigation was carried out
- to determine the response of folded plate structures to

-

random excitation.

An 6pen ended box structure as shown in fig 5.5 was tested.
This was made from four thin plates each of thickness twenty
thousandths of an inch and soldered together along their
edges at right angles. This formed a simple structure which
had a low fundamental frequency and was easy to vibrate.
‘The box was fastened to supports at the corners of its

lower surface ( Plate 6 ) to approximate simply supported
boundary conditions st the corners. These supports were

- themselves attached to the vibration table with large G clamps.
In the preliminary'stages,of the investigation, work was
also done to determine the natural frequencies, mode shapes

- and damping factors of a fully fixed beam, a beam simply
supported at both ends and a flat plate with fully fixed
edges all round ( Plate 5 ). Results for these are included

in chapter 7.

In the course of the expefimental investigation the natural
frequencies and mode shapes of the box were obtained.
Difficulty in obtaining the damping faectors from the resoonse
curves was experienced (see section 5.3.3). The cross correla-
tion function of the input and response signals were also
obtained experimentally for the box structure'when excited.
by white noise generated using a P.R.B.S. signal generator.
This gave the impulse response function of the box system
which, when Fourier transformed, gave the receptance of the

" box at the point under consideration. The experimental
procedure is discussed in detail in the following sections.
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5.3.1? vDetermination of natural frequencies and mode

" shapes

The natural frequencies and mode shapes were determined T
using sine wave excitation.* The sine wave was generated
by a Muirhead decade oscillator which was connected
throuzh a powér amplifier as shown in figure 5.6 to the
cbmbined'exciter pickup and a d.c. bias applied as
described in section 4.5. '

To obtain the natural frequencies, the pickup is positioned
at a suitable point (antinode) on ‘the structure and
resonant frequencies located by adjusting the excitation
vfrequency from the decade oscillator until the amplitude
of vibration is at a maximum (resonance). The excitation
frequencies when the vibration amplitudes are greatest
are measured using the narrow band frequency snalyser and
correspond to the natural frequencies of the structure
under consideration. Natural frequencies in the range

20 to 100 Hz were obtained for the box structure. The
nat&ral frequencies of the beam, plate and box structure
analysed are given in tables 7.1, 7.2 and 7.3 in section
T.1.

The mode shape corresponding to each natural frequency

was obtained by measuring the amplitude of vibration at

a sufficiently large number of points on the structure to
define. it, keeping the excitation force and frequency fixed.
An epproximate idea of the mode shape is first obtained
using an accoustical method by traversing a hsnd held
microphone across the surface. This was then followed-

up uéing the probe and traverse mechanism using:the
following technique to give the accurate mode shape.

The combined exciter probe is positioned at the required
;point using the traverse mechanism and the probe-to-
" structure airgap checked using the displacement calibration
curves for the probe (section 4.5). This is necessary as
the force output by the probe is affected by the size of
- this gap (figure 4.5). -The air gap between the probe and
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the structure is adjusted to an_approximately parallel

position with the fine adjustment mechanism. A block
diagram of the necessary instrumentation used is shown

in figure 5.6. The actual force input to the box is

A givén by the currént into the probe and is read off the

\e
appropriate calibration curves corresponding to that ‘
frequency and probe—to—structure‘air gap. In determining
the mode shape at each natural frequency the amplitude
of the response signal is measured using a constant
percentage frequency analyser at thévlow frequency ranges,
shown in.Plate 13, and a constant béndwidth frequency
'analyser (Plate 14) at the higher frequencies. The
actual response amplitude is then givén off the probe
vibration measurement calibration curves. The response
at each of the points chosen were then obtained by
- traversing the probe to each of the points in turn
keeping the excitation force and frequency constant,
giving the required mode shape. To plot any particular
mode shape the knowledge of the relative values of the
various amplitudes is sufficient although the receptance
described in the next section requires the absolute
amplitudes to be ascertained. '

For the beam structure the exciter probe is simply traversed
along its length and keeping the excitation force constant,
measuring its response at a number of points sufficient

to describe the particular mode shape. Again for the mode
shape only relative values of response are reQuired. These
are illustrated in Table 7.1l. The mode shape o0f the plate

is obtained by dividing the plate into a grid (figure 5.7)
and determining the‘response at each of the grid points.

The fineness of the grid required depends on the mode

shape to be measured. Some of the lower naturallfrequencies’
.and mode shapes of the plate'analysed‘are also indicated

~in Table 7.2, described in terms of the number of half
wavelengths along and across the plate. The same procedure
is followed for the determination of the mode shapes of

the box structure since only the top plate of the box
structure was measured using the traverse mechanism. Figures
7.1 to 7.11 show the vibration modes of the box exisiing
between 20 Hz and 100 Hz.
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5.3.2 Determination of Receptance

Because of the tapering shape of the force spectrum .
created by the exciter probe the response to a sweep
test and hence the 'receptaﬁcé' obtained of the box
tested was not that of the generally accepted response
to a unit force spectrum. A correction to the results
| obfained by the sweep test was therefore necessary.
This factor was given by the conversion of the :
tapering force spectrum to that of a constant force
spectrum of unit magnitude. '

The receptances of the box were deteepmined experimentally

at various points using sine wave excitation from the
Muirhead decade oscillator which was connected as before
through the power.amplifier to the combined exciter-
pick-up. The probe‘was positioned in turn at each point

of interest and the gap between probe and structure was
measured and adjusted to give a suitable force output, |

the magnitude of which is obtained from the probe
calibration curves ( figure 4.4 ). Having adjusted the probe-
structure gap, the structure was excited at discrete
frequency intervals of 1 Hz in the range 20 Hz to 100 Hz.

In the region of a resonant, the frequency interval was
reduced to 0.5 Hz. At each of these frequencies the
magnitude of thevdiSplacement of ‘the structure was measured
using a frequency analyser as described previously. From
the probe calibration curves the force corresvonding to

that excitation signal amplitude, frequency and gap size

was determined. The response amplitude corresponding to a -
unit force can then be obtained. This procedure is repeated
over the range of frequencies selected and the receptance of
the box at the chosen points obtained. The receptance of

the box using this technique was obtained at the points

- which are indicated in figure 5.8 and from it the resoonse

power spectral density was obtained.
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5.3.3 Determination of damping factors.

" In this investigation the respbnse'of the box structures.
to ¥ibration stimuli is required. In the ideal case all
the excitation energy put into the system is converted into
response motion. In practice this is not so. |

When the structural material is cyclically stressed,
energy is lost either through rediation to the surrounding
medium or is dissipated in the material. There are various
commonly accepted theories [5]& M?L In structural damping the
assumption of hysteretic damping has been found to be a
realistic concept where damping is proportional to displace-
ment rather than velocity as in viscous damping. The
equation of motion o |

‘ mX + CX + kx = F, sin wt
then becomes ‘

mx + (1 + in Ykx = F_ sin wt . - (5.10)
where " the non dimensional damping loss factor is defined
as the ratio of the energyvloss per cycle to 21 times the
energy stored durihg that cycle. For linear systems
for small amplitudes, iﬁis usually
taken as a constant, 150 at the natural frequency
W,. Although this is not strictly correct at other
frequencies it is acceptable because the resnonse in a
lightly damped structure is devendant on"’lr only at its
natural frequency: @, snd would be virtually insignificant
elsewhere. This holds for multi-degrees of freedom systems

if any possible coupling of modes due to damping is neglected.

From ¢hapter one eqnl.2 the calculation of the receptance of
the box structure requires the knowladge of this damping
loss factor. This is calculated experimentally using its

frequency response curve (fig. 5.9)
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The separation ( * ) between the frequencies associated
with the points A and B, where x/xQ = 1//2, increases with
damning. The non-dimensional ratio ( ) 1s therefore
a basis for determination of the damping loss factor |

i
The method used, of determining the damping loss factor of
a structure from its resonance curve 1is known as the half
power point method. The name originates 1in the relevant
points A and B which are known as half power points since the
power during steady state conditions in a linear system 1is
proportional to the square of its amplitude. These points
for each mode of vibrationof the structure are therefore
experimentally obtained and the corresponding frequencies
used to calculate the damping loss factor for that parti-
cular mode.
This method worked satisfactorily for the preliminary work,
where simple beams and plates were used, having their
individual resonance peaks well defined and separate.
However for the box structure itself, aocart from the lowest
natural frequencies, some overlaooing and coupling of modes
occur™® As a result aoproximate wvalues were used, based
upon experience gained on the simpler structures and

assumotion of unimodal damping atthe higher frequeucies.

Unfortunately in the eventit was found that the method
used was not comoletely satisfactory and possibly an over-
simplification and gave rise to inaccuracies in the
calculated response values 1in the higher frequency regions.
Other methods of experimentally measuring the damping of
structures exist ( Kennedy and Pancu 048] , Pendered and

Bishop [1+3} and Bert 19 ) which may therefore be more
profitably used.



5.3.4 Determination .of response to random excitation

The PRBS signal described in section 3.6 was chosed as a_
suitable excitation signal to simulate random excitation of
the box structure. The parémeters of the particular PRBS
Signal chosen to excite the box was described previously

in section 5.2. In order to ensure adequate stimulation

of close adjacent resonance peaks, sufficient numbers of
spectral lines must ‘be cliosen. Thus sequences-containing
512 and 1024 samples were used.

Since response frequencies of up to 100 Hz were'required the
sampling rate necessary to satisfy the Nyquist criterion,

as described in section 5.2, is at least twice this. On

the equipment available, the sampling rate is determined by
the clock frequency fc and the nearest frequency available
~was 300 Hz. Two complete sets of values were obtained, using
firsticloCk frequency of 300 Hz and after that the next higher
clock frequency of 1000 Hz. Since the clock frequency is
also..the highest frequency of the signal, a low pass filter
was necessary to prevent aliasing (section 5.2).

The points chosen at which the cross correlation measurements
were obtained are shown in fig. 5.8. The exciter probe was
first positioned at one of the points required. The air gap
was then checked using the appropriate calibration curves

and adjusted if necessary to a predetermined value. The PRBS
signal was then applied to be main coils of the exciter via a
power amplifier (and a d.c. bias to the secondary coil) and
displayed on the oscilloscope is shown in the block diagram
(fig. 5.10). A true RMS random noise voltmeter was used to
measure the excitation signal. The response signal picked

up by the displacement transducer is also displayed on the
oscilloscope and fed into the time domain analyser and a

‘ nérrow pad analyser. Care is taken to record the position

at which measurements were made as well as* all the ampli--
fication factors of both the excitation and response signals
for converting back into the original units later. "
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The time domain analyser calculates the cross correlation
function of the excitation'and the response signals and
produces it on paper tape via én interface with a teletype.

The paper tape produced is compatible with the paper tape
reader:in the ICL 1907’computer where it is to be processed
using the FFT program described in the next section. The
procedure is then repeated at each of the points shown in

fig. 5.8, a different point receptance being obtained at

each respective point as it is position dependant as discussed
- in section 3.3. The instrumentation used is shown in Plate 15.



5.4 The Fourier Transform computer program

In this work the response spectral density of the box
structure ié calculated from the receptance of the box
structure system (section 5.1) as obtained experimentally

by the Fourier Transformation of the cross correlation
function of the PRBS excitation to the box and the resultant
response of the box. ' | |

In chapter 3 it was seen that a considerable saving in the
number of complex multiplications and additions is made using
the Fast Fourier Transform algorithmn. The resulting time
saving achieved also enables the Fourier transform to be
obtained much more economlcally than by the normal srralght—
forward operation.

The Fourier transform computer programs developed,MOJFTMl

and MOJFTM2 (fig. 5.11), contains both the FFT and the DFT
algorithms in separate subroutines either bf which can be
called up. MOJFIMl is used for transformation of correlation
functioas containing up to 512 no%gfﬁegnd can be run as a
small express job on the Unlver51ty whereas MOJFTM2 has to be
- run as a medium priority job and is used for the transform-

ation involving more than 1024 points.

The cross correlation function of the excitation and the
response of the structure is obtained from the time domain
analyser in the form of a paper tape via an interface with

a teletype in a code compatible with the computer. This
program is written to read this data directly off the paper
tape displaying the cross correlation function on a
graphical outpgt (see chapter T,fig. 7.14) as well as on a
lineprinter output with the exact values obtained, for an
immediate and more accurate output (fig. 7.15). The results
~of the Fourier transformation (the receptance) may also be.
graphically displayed as well as printed out on the computer
lineprinter output. Finally the response spectralydensity |
is calculated (section 3.2) and displayed in the same manner.
This program'also»has the facility for producing a iinear_



Figure 5.11 Computer program MOJFTM flowchart. .
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- or a logarithmic graph as chosen.
Alsd incorporated into the computer program package developed .
are subroutines using which smoothing of the coarse peaky |
results cou’d be obtained. Figures 7.16-7.21 are typical
traces of the response power spectral density obtained at
‘the same noint but using a pair of PRBS signals of dlfferent
sequence lengths and with various degrees of smoothing.

This is done by averaging (2N'+ 1) adgacent values to give
smoother granhs as N is increased. This, as discussed in
Newland[?g], also has the effecf of improving the statistical
accuracy of the result (at the expense of frequency
resolutlon) ‘which now becomes

) (%
‘_(m)n‘ew—‘ N+l M/o1d

so that from‘eqn (5.8)

(Bedp = (N4 D) (B - (5.D)

The superiority of the FFT algorithm is clearly demonstrated
in the following requirements for two jobs one using the
FFT and the other the DFT algorithm on a sample of 512 points.
The former required less-than.22x 512 X 1032(512) computer'k

s, and took 80 sec and 971 sec
B respecﬁively. The saving achieved on a-sample of 1024 éoints

menipulations compared with 512
would be even greater.
The results obtained using these computer programs are given

in chapter 7.

TSN



Chapter 6 The computer application

Summary Rl .

~ The previous chapter describes the experimental derivation
of the response of the box structure. Here a computer
prediction of the same is described. |

6.1 Response prediction

From chapter 3 (equation 3.14) it was shown that the natural
frequencies and mode shapes could be used to calculate the
receptance of a structure from which the response power
spectral dehsity to any known ‘excitation can be predicted.
This section deals with the application of this method to
the prediction of the response power spectral density of the
box structure to the PRBS excitation used. The natural
frequencies and mode shapes of the box in free vibrations
were calculated using the finite element method (chapter 2).
- The hysteretic damping loss coefficients were found experi-
mentally (section 5.3.3). The excitation power spectral
density to the box itself was found experimentally (chapter 4).

‘The receptance of a structure, given in terms of its natural
frequencies and mode shapes, is given by equation 6.1

wr2(xd)wr2(xp)
I [C R L P X 4

locgp (30 % =Z— (6.1)

rie6eT

In the equation only mode sha;es, in relative unlts, such
as that given by a finite element analysis are required.

- The actual units of the calculated receptance are given
by the generalised mass Mr used, by svecifying the units
in which the mass of the structure is chosen and will be
discussed later in this section. In this work using the
S.I. units of measurement in M ‘the predicted receptance
“squared will be in m 2 e, '



In the experimental work both the excitation and'response
measurements were concerned with transverse displacements
of the top surface of the box. In the computation of the .
receptance of the structure therefore only the transverse
dlsplacement degrees of freedom are required. In the
finite element idealisation, the open ended box structure
is divided into twenty-four elements as shown in fig. 6.1.

This gives a total of 50 transverse degrees of freedom wnich
describe the deflected shape of the structure in esch
vibration mode. This will also be required in the calculation
of Mr,the generalised mass for the r - th mode of vibration

of the structure. (eqn 6.2)

In the choice of the number of natural frequencies and mode
shapes required to sdequately determine the receptance, by
considering its magnitude it will be seen that only frequencies
in the immediaste vicinity of the nzturel frequencies are
important. The frequéencies of interest are taken to renge

up to 100 Hz, covering some twenty natural frequencies of
the box structure. The computation requires that sufficient
natural frequencies be taken for convergence to the true
value at the upper frequency limit. However, frequencies
much above this becomes redundant as their contribution is
negligible. Also since comparisbn’with'experimental results
is one of the main &ims of this work, the range of the rang8
of the instrumentation must also be considered. 1In this

case only the lower frequency limit of 20 Hz is important as
the upper limit is well above the 100 Hz limit chosen.
Therefore in the computation only the 21 natural frequencies
and their corresponding mode shapes occurinp w1th1n this band
of frequen01es are required.

In the calculation of the generalised.mass of.fﬁe structure

when v1brat1ng in mode r

‘ M, = ‘fw (x)m dx ’ (6.2)

‘where x represents the points at which a transverse degree of
freedom occurs and m is the mass of the structure assumed

to be .evenly distributed amongst these points. A summation
is then taken of the product of the square of the mode shape

and the distributed mass over the points on the structure.
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The receptance is then calculated according to equation
6.1 summing over the number of nodes required. Once

the receptance is obtained, the response spectral densify .
is calculated according to equation 6.3.

Sd(f) = Ioé(if)|2 Sp(f) - (6.3)

where now both the excitation power spectral density Sp(f)
and the receptance x(if) is known.



6.2 The Finite Element Computer nrogram vackage

From chapter 2 it was shown how the finite elememt me thod .

of analysis was applied to the predictidén of thé natural
frequencies and mode shapes of a box structure in free
vibration. In the pfevious.section it wes further shown that
the natural. frequencies ané mode shapes could he_used to
calculste the receptance of the box and from it to predict
the response power spectral density if the damping and
excitation power spectral density were known. In c¢hapter 5
the experimental derivation of both the damping and the
excitation power spectral density has been described. A
computer bassed prediction of the resoonse power spectral

- density of the box is therefore possible and was carried out.

The suite of computer programs is given in full in Appendix 3
but a brief description of their development and details of
their operation will be discussed here. Because of the size
of the problem the comoutation was divided into 7 prosrams
each communicating with the following program via a magnetic
tape or disc peripherasl. This strategy also enabled each
program to be developed independantly of the others and in
fact each program was developed and run on different.
computers.

The various programs were written and tested on the Sheffield
“Polytechnic's IBY 1130 computer, a small machine now
gradually being replaced by a new IBM 360, The IBM 1130 hsas
a core store of only 10K so that from the start it was
realised thet the'actual computations would have to be done
on that of the collaborating institution in this project, '
the University of Sheffield. This was a ICL 1907 computer,

a medium sized computer with up to 70K of core storage.

The programs were therefore written in a Fortran language
subset that was common to both computers.

In 1974 the University acquired a share of the use of the CDC
7600 of the University of Manchester Reglonal Computing Centre
with the installation of a satellite terminal. This is a
large and fast machine with up to 124K of storage available



“for any job. The programs were therefore modified to run
on this computer to take advantage of the much faster
computing times.

The first program MOJFEML fig. 6.2 calculates the stiffness
matrix for the element for the specified element geometry

and the material properties. It then assembles all the
element matrices into their proper places in the system
stiffness matrix for the box stfucture as shown previously

in fig. 6.1. This is then written to a file for storage.
"The same.procedure is then followed for the mass matrices

- re-using matrices previously used for the stiffness matrices.

MOJFEM2 fig. 6.3 then retrives the stiffness matrix for the
complete box and reduces out the redundant degrees of free-
dom caused by the boundary conditions specified. A check
is then made for the preservation of symmetry in the matrix
after which it is written back to the storage file. This
is repéated for the mass matrix. ' |

MOJFEM3 fig. 6.4 checks that the final reduced mass matrix
is'positive definite' a necessary condition for the physical
system (see section 2.9).

The problem has by this stage been fully set up and MOJFEM4
fig. 6.5 is the solution program solving the resulting
eigenproblem. The alternative program MOJFEMD fig. 6.6 is
used if the mass matrix is found to be non-positive definite.
As may be expected this phase demands the most core and also
takes the bulk of the total computing time of the whole suite
of programs. Standard library subroutines are used which
perform the various operations described in section 2.9 and
are outlined in Appendix 2. From the solution of the eigen-
value problem the natural frequencies mode shapes of the box
are calculated and written to file storage.

MOJFEMS5 fig 6.7 selects the requirgd number of natural

* frequencies and the degrees of freedom to give the normal

3 .
modes as prescribed in the previous section and creats a
storage file from which a paper tape can be obtained.

'MOJFEM6 fig. 6.8 then creats another file from this paper
tane for the final program which is run locally on the ICL



Pigure 6.2 - Computer program MOJFEML flowchart.
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Figure 6.3 Computer program MOJFEMZ2 flowchart.
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Figure 6.4 Computer program MOJFEM3 flowchart.
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Figure 6.5 Computer program MOJFEM4 flowchart.
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- Figure 6.6  Computer program MOJFEMD (optional) flowchart.
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Figure 6.7 Computer program MOJFEM5 flowchart.
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Figure 6.8 Comnuter program MOJFEM6 flowchart.
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Figure 6.9 Computer program MOJFEM7 flowchart.
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1907 computer. This is because having calculated the natural
frequencies and mode shapes of the structure, the receptanées
of the box at a large number of points and calculations of

the response spectral dens;ﬁies cen be obtained. These are
run as small express jobs while can be executed more econo-
mically and with faster turn round times on the local computer
with graph plots produced.

MOJFEMT7 fig. 6.9 computes the response vower spectral -density
‘at any chosen point from natural frequencies and normal modes
of the box given the damping factors and -the excitation power
gpectral density. A veripheral graph plot of the excitation
and the response power spectral density is output with an
additional line printer output for more accurate checking
purposes.

The following is a table of the various programs, the core
requirements and the solution times for the twenty-four
element-mesh idealisation shown in fig. 6,1.

Program Core (Kwords) - Time (Sec.)
MOJFEM1. ’ 39 4.0
MOJFEM2 57 0.8
MOJFEM3 44 " 6.5
MOJFEM4 | 55 '17.0
MOJFEMD (optional) 70 88.0
MOJFEMS ' 24 ‘ ' 0.3
MOJFEM6 18 10.0

NMOJFEMT ' . 19 72.0



Chapter 7 Results

Summarz

<

In this chapter results of the investigation of natural
frequencies and mode shapes of beams, plates and boxes
are presented. Further results of work leading up to
the response of the box structure to random excitation
are also presented.

T.1 Natural frequencies and mode shanes

Section 5.3.1'describes how the natural frequencies and mode
shapes of beams, plates and box structures were obtained.
The natural frequencies and mode shapés of a beam simply
supported at both ends and a beam fully fixed at both ends
are presented in Table 7.1. The first five natural frequen-
cies and mode shapes of a plate fully fixed all round are

presented in Table 7,2.'

The twenty-one natural frequencies of an oven ended folded
plate box type structure, fixed at the four corners of its
base, existing within the frequency range O to 100 Hz are
given in Table 7.3. Their corresponding mode shapes are
illustrated in fig. 7.1 to 7.11. The first mode predictéd
at 5.6 Hz was not checked experimentally as equipment ‘
available only measured down to 20 Hz. However, a swaying
mode was apparént at a very low frequency which seemed to
correspond to this mode. The other modes have been stimu-
lated experimentally and both the experimental and predicted
results are presented here. '



Table 7.1

Results of beam analysis (fully- fixed ends)

~Mode’shapev";

N
p . r
‘a7
1 =
1
/’1 /\‘\ LA t
I
NN
1

7

~Natural frequency (Hz.)'. Damping’

_éf??t M.bﬁhergyﬁ%?*wExpﬁ:;_!factor (1)
43.8 "43.9 13.2 | 0.020
121.0 123.0 117.0 | 0.007
238.1 240.0 | 223.9 | 0.006
392.0 | 397;Q 361.0 | 0.004
585.0 592.0 545.0 0.003

Results of beam anelysis (simply-suoported ends)

- Natural frequency (Hz.)  ;Damping |
- Mode shape -
' “Exact Energy(Fe)] Expt. | factor (1)
) i
T 19.5 19.5 13.8 0.018
- 78.1 | 78.1 62.0 | 0.007
pvi \ .\«v .- |
X S X 176.0 176.0 145.0 0.008
Pl X 313.0 | 313.0 1289,0 0.006
v fA\\ N\ v o '
oA 488.0 488.0 458.0 0.003
o |




Table 7.2 Results of plate investigation (fixed all

Length = 0.78m.
Width = 0.22m.
Thickness =0.00061m.
Mode shape Natural frequency
m n Expt. F.E. Energy
2 2 53.3 Hz 67.2 69.1
3 2 69.5 75.0 74.7
4 2 79.5 84.1 84.9
5 2 92.5 101.4 99.8
6 2 111.0 118.5 120.1

Number of half”wavelengths in x direction,

3
Il

n = Number of half-wavelengths in y direction.

The finite element analysis 1is made using 8 elements.

The results of Tables 7.1 and 7.2 were obtained principally
to show that the finite element programs were working satis-

factorily. The close agreement between the finite element
results and other calculated results showed this to be the
case. The experimentally obtained natural frequencies for

the plate and for the simply supported beam are both low-.
This can be attributed to the fact that the required boundary
conditions in these cases were not fully achieved in the
experimental apparatus. No action was taken to improve
these boundary conditions as these structures did not form a

major part of the work.

round)



Analytical _ Bxperimental

5.6 Hz . ' -

22.4 _— | 24.6 Hz
27.6 o 27.2
31.8 | . s2.8
36.4 | 37.0
38.1 o 424
47.0 | 49.5
48.5 S 5%a
49.0 o 55.1
54.5 | 586
59.0 " - 62.4
62.7 ' 66.8
67.9 - 68.2
69.2 | 70.8
’ 0.3 . | 72.7
- 70.9 | 4.7
75:0 | | 77.6
80.0 "y
81.0 650
91.0 | %.5
98.0 | . 105.6

Table 7.3 Natural frequencies of box structure
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7.2 Response calculations

The response of the open ended box is presented here in
the form of its power spectral density. The excitation
used experimentally and simulated on the computer predict-
ions (fig. 7.12) is a filtered PRBS signal applied to the
non-contacting exciter probe develoned. The results have
been obtained using three different techniques for com-

parison purposes,

(a) using the box receptance as calculated from the natural
frequencies and mode shapes predicted by a finite element
analysis of the structure{’and with the excitation power

spectral density and damping factors obtained experimentally.

(b) =as obtained using the cross correlation of the excita-
tion and resnonse signals giving the system impulse response
- function which is Fourier transformed to give the box re-
ceptance described in section 3.4. This is then used as

in (a).

(¢) by narrow band frequency snalysis of the vibration
" response of the box structure using equipment described
in chapter 5.

For spectral density calculations because of the symmetry
of the problem only a quarter of the top surface of the

box is illustrated in fig. 7.13. An average of the results
for the other remainins part of the box has been taken
because of slight differences obtained possibly due to
differences in material composition or incurred during
manufacture of the box. The results of the response power
spectral density predicted is compared with those obtained
experimentally for the seven points on the quarter box as
shown in the figure. Less accurate experimental values
were obtained along the edges of the box. This may be due
. to difficulties experienced during the manufacture of the.
box (a) in the cutting of the plates which make up the
sides and in (b) soldering the plates to form the sides at
right angles to one another.

g
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The excitation signal used in the tests is a PRBS signal
with a true RMS level of 0.3 V. The input-output cross
correlation function was obtained experimentally in the - |
form of a paper tape to be Fourier transformed on the
computer. A typical trace of the impulse response function
of the box as obtained during the work is plotted by the
Fourier transform program(fig. 7.14 & 7.15).From this the
response of the box computed by the computer program is
obtained and also displayed on a graph plot. Tyvpical
results using various degrees of smoothing for a 512 point
function are shown in fig. 7.16 to 7.18 and those for a
1024 point function, fig. 7.19 to 7.21. |

Figure T7.22 is a typical trace of the receptance of the

box structure calculated from the natural frequéncies and
mode shapes obtained using a finite element analysis. The
- PRBS excitation signal is fed into the non-contacting
exciter probe for which a typical excitation power snectral
density into:the box structure as shown in (fig. 7.12) is
obtained. This is used in the calculation of the typical
box response power spectral density (fig. 7.23) from the
recentance obtained.

The resnonse power spectral density of the box to this
excitation obtained using the finite element prediction
of the box receptance is shown in the chain-dotted lines
in fig. 7.24 to 7.30. The full lines in the figures
represent experimental results obtained from the cross
correlation of the excitation and response signals. Poor
results were obtained using direct narrow band frequency
~analysis of the response signal and are not included in
the figures. :
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*ZUTY3ooWs JuUTOd 924y} B SUTSN oAIND dsd ssuodsea gqutod tgo} oyl 02°L eandt g

- Ybl'o- = 2j o00) Ly 3smossiy

10 ISN0AS Y.

-
«

. , 4 s A .,.*,. J
, . @&%‘?&ﬁ c*c@..},.d_,,&.? _\{? .aé < % y

Ea/ %&é | . a«pﬁ

WIEW 34

-
T
e
T —
i ——
|
z-01X

,. I
[ [ | =
if ! o i z :
\m | * g i s_/ :\Neﬁo_xmﬁ.v
.._r. T ™ T T T T T T ) -0 - _
LFLT ¢le 0 S SELTG - €250 S GBYL O mw"...nm ) 070 w..v.o L1170 o000’
c-G1X Ziw3IH NI AZNINQ3INA -



Juiyqoouws qurod SATJ B 3UTSN SAJIND SJ 9SU0GSsJI pnﬁom 120} °ug AV mpwmﬁw

6co"1-

-981°0- = ZHOO| Ly 3su0457Y

00% "0~

i
00y70-

T

DOk 0~

‘

f@%é} e
o 3/?? /

i

56270~

2-01X 4 WIbW 34 80 3ISNOLS3Y

. 12% [

f T T T T T T T :  E— .
4267 016’0 96L°S €84 °G 69570 €SvG  WES . 8Z26 41170 000708
: ¢ OIX - v : Npmmr NI AJININ03N4 Co

.m:\wsm.o_.x ls3'e
[




*gq1TOSed JUOWS TS S3TUTJI

BUISN Po3BINOTEBO _souegdedaa xoq TBOTAAY 2y} Jo 301d v

e

2 .
H/ews 0l x 5009 - gpo

ge*l 9andtyg

-

3071 -

T

00& "0
IGNOS3Y

T

£09°0~

|
-01X - LISN3T THYLI3J4S

00y "0~

|
507
2

(%]

_ ,._ _. ,~ ‘ ._
£ogt o8 i 00%G. EEETD
woﬂxoomwxomdohmu>u2mnmmwm‘

i
18172

f
—5
. 000708




. sq[nsad JUSWSTS 99TULF oY% .
mmﬂms poqeInOTEO L3Tsusp TBa3Osds gamod ssuodsed TeOTALY VY ¢g*)l sandtyg

.

000°1-

NJ\;F o_xme b ='4rQ

00870~

|
009°0-
z-01X  11GN30 BYLII4ES ISNOLSIY

00 "0~

00270~

00871 - €eel 4811 0001 ESED 680 00670 geet0 et . 000-03
: B o z-01X 000 Nr 0GI Dh dn AONINQINL o o




H /e 6180 = gp O

‘'

s /
ﬁ%@x . .\m.\ﬂ\u\o \o.\mowo\w .\9800\ w.nOOQ\WwW\ .\\N. / m I
Y woipsy - Aswp |

T 05—

05—

to/=-

S

0F/

Os/

ocy

on

LY

g0



=H

-

h\ W\
. .
W\.V

L 0p=

S T06-

Tor-

03y

O

osv/

o/ .

‘9r0



O uohisy/ - \w.\nh@o .\D\muo& socod .vwcon\ww% 1 A 1o

Al
A
- &0‘
SH/ e 986-0 = gp O 7 98-
’ ) TOT-
‘tor-
ZH

— e .

057 o oty o7 on o %%



T 08—
° A
\]
T 05—
. Lo
T fus [0+ f = gp O
.? TOr-
10/~
ZH
- —
o5y 0% o7 o on & gpo



Co.\m\moQ\ - \\M\ns\u \b\mowo\m, s00d owcom\m&m\ Imlw.,NJ@I 05~

| .3
. , \),
, |
705~
s 9411 = gp 0 Tos-
|
~ i TOCr-
1
. \ -+ o/—
A ]
m.\.\ . } . ‘ ) B ]

-} } ] " ) ! 3 "
Osv O Osv o ol 00s 08 0¢ oz op oS o* o Y or o/ . gPo



™ rO0§-

§
7

I\

N\RE:\ HEL0 = GPO

v

+or—

T+ 0/

.m‘\\

sy O37 os/ oy o Y, os gpPo



5 Qﬂ..sv\m.nmv\ - \\.ﬁ

, 18U Jopads  omoo oS0y o T B
v > , o .
] P
DA
m\.\\‘&S #9810 = gp . Os-
or-
O/
Zf o . .
G e
ol ijllm.aj\




Chapter 8  Conclusion

From the results given in the previous chapter it will be
seen that the techniques chosen for this work in the analysis
of folded plate box type structures have worked satisfactorily.
The finite element method has been successfully applied to
predict natural frequencies, and mode shipes and used to
predict the'power spectral density of the response of the

box structures to random vibration. This is cbmpared with
actual experiméntal values obtained. The techniques used in
~the experimental investigation using the equipment developed
during this project provides results which form a close basis
of comparison with the predicted values.

Using the finite element method of analysis, the natural
frequencies and the corresponding mode shapes were obtained
for the simple béam,,plate as well as the box structure. The
finite element prediction of their natural frequencies were
found to be within 5 7, of the experimental values obtained.
The computer program suite developed to analyse.the box
structure consists of seven subprograms each reading off
information from the previous from a magnetic disc file,
using it, and.then writing the new information back to the
file for the next subprogram. This strategy was found to be
suitable for such & complex structure because of the reduced
computer core requirements and the provision of built in
checks at the end of each stage. Any errors can be detected
and the computation stopped and corrected without the com-
putation going on until the very end.

The analysis of the box structure for its natural frequencies
and normal modes using the finite element method even in the
relatively crude model chosen gave results which compare well
with those obtained experimentally. This shows that the

choice of the method for the analysis of this type of structure
is well justified. Also the gimple four node rectangular
element used with its twelve degrees of freedom in bending

and eight degrees of freedom in stretching is shown to be
adequate for the range of frequencies investigated as is



the coarse mesh employed. The finite element method often
gives a lower bound solution but in general this is not
known unless conforming'elements are used [50]. Although
theoretically the accuracy obtained in such an analysis is
expected to converge to the‘exact solution as the mesh size
is refined, this is limited by the size of the computer
storage available. Refinement of mesh size requires increased
computer storage that rapidly become prohibitive especially
in a dynamic analysis where two large matrices, the mass
and the stiffness matrices have to be manipulated
simultsneously. Some existing techniques for reducing

the size of these matrices are reviewed in Appendix 2.

The simplest way of reducing the mass matrix is to-

use lumped masses but this may lead to some lowering of
accuracy (Zienkiewwicz [20]). Techniques such as sub-
stfucturing and reduction of degrees of freedom by conden-
sation also allow the larger problems to be fitted onto the
smaller computers using backing store but at the expense of
increased computing time.

Methods considering only the transverse degrees of freedom
- (Vysloulch et al [51]) have been tried. Nore recently the
use of reduced numbers of degrees of freedom per node eg.

by using loof elements (Irons [52]) or relaxed continuity

elements (Patterson & Heng [53]) have been developed.

Despite the disadvantage of the tapering shape of the force
spectrum produced, the closeness of agreement between natural
- frequencies and mode shapes predicted and actual experimental
values justifies the use of the non-contacting exciter/pickup
probe developed sinée contacting. transducers may shift the
natural frequencies or distort the corresponding mode shaves
obtained. The overheating and frequency doubling effects of
the non-contacting exciter have been overcome although the
lower force output at the higher frequencies may lead to |
inaccuracies in that region. It is anticipated that this
frequency dependance caused by what is basically an inductance
circuit may be overcome using an active resistance-capacitance
circuit in parallel with .the exciter probe. In the present
‘work this was not done and in the prediction of the response



power spectral density of the box, this was taken into account
in the specification of the input power. spectral density. The
.ﬁon—contacting vibration pickup probe would probably be more
accurate tnan convectional contacting ones especially on the
light structures investigated. It was found that this capaci-
tance probe was fully applicable over the frequency range,

gap distance and amplitudes of vibration used.

In the use of discrete excitation to measure natural frequen-~"::
cies and mode shapes of the box structure, the closeness of
the higher modes and the necessarily low level of excitation
to maintain linearity allowed only the lower natural frequen-
‘cies and mode shapes to be easily identifiable. Also because
the tests were preformed in a laboratory situated close to a
busy main road, considerable extraneous noise was detected
which may excite resonance modes adjacent to the one under
~investigation. The upper frequency limit chosen of 100 Hz

was found to be sufficient, containing over tWenty modes and
furthermore it became difficult to distinguish between several
adjacent modes which were closely bunched together just above
100 Hz. The ascertainment of mode shapes required reveated
measurements taken at a sufficiently large number of points

on the structure to determine the resonance mode. This became
increasingly tedious especislly at the higher modes.

The correlation technique has been used to give the impulse
response function from which the receptance of the box system
is obtained. The calculation of the cross correlation func-
tion, although more practicable than measuring the structural
impulse response function, is often both time consuming and
laborious. The use of the PRBS signal considerably eases

the calculations and yet retains the requirement of being
random white noise for the correlation calculations. Also

its parameters are easily set to approximate a random signal
in its frequency content, excitation amplitude and probability
distribution and yet is completely repeatable. The PRBS
correlation method used to obtain the receptance of the box
structure gave frequencies within 5 7 of the predicted values.
In some cases espécially'at the higher frequencies it is
‘perhaps more reliable than those obtained using sine wave



tests because extraneous noise is eliminated doing the cor-
relation phase. Because of this and despite the generally
lower level of the excitation signals used, whilst agreeing -
with the frequencies obtained by the sine sweep test to .
within 1 7%, the clear superiority of the corrslation technique
~employed is illustrated in its giving consistant results
throughout in the calculation of the response power spectral
density. The use of the automatically recorded cross correlat-
~ion function on the PRBS system built un, considerably eased
~a task which took up to nine-hoursjfor'a 1024 point correlation.
This also enabled better results to be obtained, taken over-
night during the quieter late evenings, and early mornings.

The FFT computer program which calculates the recevtance of
‘the structure from its imoulse resnonse function is completel&
general and can be used for beam platés or box structures.
~Data input is chosen to be in the form of paper tape which is
‘easily stored and also is not easily shuffled unlike the more
conventional data cards. The provision of output in the form
of drawings as well as values on the line printer gives an
accurate and fast means of checking both input data as well

as calculated values. Graph plots are also produced for

ease of storage and dispnlay purposes. '

The natural frequencies and mode shapes of the box calculated
using the finite element metnod was used to derive the
receptance of the box structure using expnerimentally obtained
damping factors. Calculation of recepténée from natural
frequencies and mode shapes obtained using the finite

element method, is carried out using - |

le(if) |2 = T [mexp]% [ xp)® ] ‘ (8.1)
r
Mrz[;ew4{(fr2 B f2)2 + Qrfr4}]

Although only thevtop surface of the box structure is consider-
ed, the method is however apnlicable to all sides of the box
taking each side in turn. Only natural frequencies up to

100 Hz were considered and therefore the 21 natural frequen-
cies and mode shapes in that region are used. Yor the



~

~calculation of ¢¢ only these natural frequcnc1es and mode
shapes play an iwportant oart higher ones have.a negligible
contribution. This part of the finite element computer-.
‘program is'completely general;, heams, plates and boxes may

. be analysed by the input of its natural frequencies and

‘mode snapes at specified points and corresponding damping
factors. The excitation power spectral density produced

by the non-contacting exciter probe was not a flat one i
despite the use of a substantially white PRBS signal. This "
also had to be taken into account in the computation.

The response of the box type'structure is obtained in the
form of its power spectral density, using equation (8.2)

sa(w) = |a(if)|2 sp) | | | (8.2'),

This is commonly used in the calculation of response mean
square value, probsbility distribution, etc. in random
work. The response power spectral density'of'the box
structure obtained ekperimentally compares satisfactorily
with the predicted values especially in the lower frequency
region. In this region the predicted response power Spectrel
‘density agrees with the experimental values obtained to
within 1 dB (about 25‘% difference). At the higher frequen-
cies however the predicted results appear to be attenuated.
Average discrepancy between predicted spectral density values
an actusl values here are in the region of 4-5 dB. This may
‘perhaps be caused by the following: '

(a) slight differences (up to 5 %) between computed and
actual natural frequencies ( since the computed natural
frequencies were used in the prediction of the responSe

A power spectral densities ), L

(b) the lower excitation output at the higher frequency

| region by the non- contactlnv probe and therefore greater

interference effects,

(¢) inaccuracies involved in the mdnufqnture of the hox, and

() a review of the damping assvumptions used may a1 50 be
appllcach ‘



The apparatus, techniques employed and computer software
developed during this project forms a convenient point from
which extension to a two exciter investigation of random .
excitation of light folded plate box type structures may '
‘be carried out. Although a PRBS signal is used, a true
random signal is easily substituted if a suitable correlator
is available. Also from equation 8.2 the analysis is not
limited to that of a flat excitation spectrum. The design

of a compact exciter pickup probe resulted in measurement

of excitation and response at the same point &f the structure.
Again the analysis is also applicable to investigations where
the structure is excited at one point and measured at a dif-
ferent point. |
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Piate 3 The linear fine adjustment mechanism,
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Plate 4 The skew fine adjustment mechanism.
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Plate 10 The housing for the piezoelectric force transducer
used for the calibration of the exciter.
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Plate 15 The PRBS instrumentation used for the sutomstic
generation of the cross correlation function on

paper tape.
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Appendix 1

The stiffness and mass matrices




(a) The 24 x 24 stiffness matrix K

The lower triangle of the symmetrical matrix is given below

where A = length
: B = width
p=2
B
v. = poisson's ratio
t = thickness
C = Et3
12(1 - v2)AaB
D = Et
12(1 - v2)
K(1,1) = D((4.0/P)+(2.0x(1.0-v)xP))
K(2,1) = D(3.0x(1.0+v)/2.0)
K(2,2) = D((4.0xP)+(2.0x(1.0-v)/P))
K(3,1) =0 .
K(3,2) =0 :
K(3,3) = C((4.0xP2)+(4.0/P2)+2.8-(0.8xv))
K(4,1) =0 ,
K(4,2) =0 ‘ .
K(4,3) = C(((2.0xP2)+(0.2)+(0.8xv))xB)
K(4,4) = C(((4.0xP2/3,0)+(4.0x(1.0-v)/15.0))x(B2))
K(5,1) =0
K(5,2) =0
X(5,3) = C(((2.0/P2)+(0. 2)+0.8xv))x(-3))
K(5,4) = C(-VXAxXB)
K(5,5) = C(((4.0/(3. 0xP2))+((4 0x(1-v))/15.0x (AxA))
K(6,1) to K(6,6) =0
K(7,1) = D((2, O/P)—(2.0x(l.0-v)xP))
K(7,2) = D(-3.0x(1.0-3.0xVv)/2.0)
K(7,3) to K(7,6) =0
K(7,7) = D((4.0/P)+(2.0x(1.0-v)xP))
K(8,1) = D(3.0x(1.0-(3.0xVv))/2.0)
K(8,2) = D((~-4.0xP)+((1.0-v)/P))
K(8,3) to K(8,6) =0
K(8,7) = D(-3.0x(1.0+v)/2.0)
K(8,8) = D((4.0xP)+(2.0x(1.0-v) /P
K(9,1) =0 ‘ _
K(9,2) =0 ' _ .
K(9,3) = C((2.0/P2)-(4.0xP2)-2.8+(4.0xv/5.0))
K(9,4) = C(((2.0xP2)+((1.0-v)/5.0))x(-B))
K(9,5) = C(((=1. O/P2)+((l O+(4.0xv))/5.0) ) xA)
K(9,6) to K(9,8) =0
K(9,9) = C((4 0xP2)+(2.8)=(0.8xV) +(4,0/P2))
K(10,1) =0
K(10,2) =0
K(10,3) = C(((2.0xP2)+(1.0-V)/5.0xB)
K(10,4) = C(((2.0xP2/3.0)=((1-v)/15.0))x(BxB))
K(10,5) =0 4
K(10,6) to K(10,8) = O
K(10,9) = C(((2.0xP2)+(0.2)+(0.8xv))x(-B))

K(10,10) . = C(((4.0xP?/3.0)+(4.0x(1.0-v))/15.0)x(BxB)).
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H(1.0+(4.0xv))/5.0))xA)

((2.0/(3.0xP2))=(4.0x(1.0-v)/15.0))x(AxA))
11,8) = 0
((-2.0/P2)-(0.8xv) )xA)

vxAxB)
((4.0/3.0xP2)) +(4,0x(1.0-v)/15.0))x(AxA))
12,12) = 0

(-2.0/P)-((1.0-v)xP))
(-3.0x(1.0+v)/ 2.0))
13,6) = 0

(-4.0/P)+ ((1.0-v)xP))
(-3.0x(1-(3.0Xv))/2.0))
13,12) = 0
(4.0/P)+(2.0x(1.0-v)xP)
-3.0x(1.0+v)/ 2.0)
(-2.0xP)-((1.0-v)I/P))
14,6) = 0

(3.0x(1.0- (3.0xv))/2.0))
(2.0xP)-(2.0x(1.0-v)I/P))
14,12) = 0
(3.0x(1.0+v)/ 2.0))
4.0x(1.0-v)/P))

(-2.0xP2)-(2.0/P2)+(2.8)-(0.8xv))
(-P2+((1-v)/15.0))xB)
((-1.0/P2)+((1-v)/5.0))x(-A)

15,8) = 0
(-2.0x((2.0/P2)-(14.0-(4.0xv))/5.0))
((-P2+ (1.0+ (4.0xv ))/5 .0) )x (B) )
((2.0/P2)+((1.0-v)/5.0))xA)

15,14) = 0

(4.0xP2)+ (4.0/P2)+ (2. 8)-(0.8xv))

(P2-((1-v)I5.0))x(B))
((P2/3.0) + ((1-v)/15.0))x (BxB))
16,8) = 0
(-P2+(1.0+(4.0xv))/5.0)xB)
((2.0xP2)/3.0)- ((4.0x(1.0-v))/15.0))x(BxB))
16,14) = 0

((-2.0xP2)-(0.2)-(0.8xv))xB)

((4.0x P2/3.0)+(4.0x (1-v)/15.0))x (BxB))

(1.0/P2)- ((1-v)15.0)) x (-A)

((1.0/(3.0xP2))+ ((1-v)/15.0))x(AxA))
17,8) =0
((2.0/P2)+((1.0-v)I5.0))x(-A))

((2.0/(3.0xP2))-( (1.0-v)/15.0) )+ (AxA) )
17,14) =0

((2.0/P2)+ (0.2) + (0. 8v))x (A))

-vxAxB)

((4.0/(3.0xP2)) +<4.0x(l-v)/15.0))x(AXxA))

18,18) = 0



K(19,1) D((-4.0/P) +((1.0=v)xP))
K(19,2) D((3.0x(1.0-(3.0xv))/2.0))
K(19,3) to K(19,6) =0

K(19,7) D((-2.0/P)=((1.0-v)xP))
K(19,8) D((3.0x(1.0+v)/2.0))
K(19,9) to K(19,12) =0

K(19,13) D((2.0/P)=(2.0x(1.0-v)xP))
K (19,14) D((-3.0x(1.0-(3.0xv))/2.0))
K(19,15) to K(19,18) = 0

o

K(19,19) =D((4.0/P)+(2.0x(1.0-v)xP))
K(20,1) = D((-3.0x(1.0-(3.0xv))/2.0))
- K(20,2) = D((2.0xP)-(2.0x (1. O-v)/P))

K(20,3) to K(20,6) = O

X (20,7) D ((3.0x (1.04v) /2.0))

. K(20,8) D((-2.0xP) - ((1.0-v)/P)
K(20,9) to K(20,12) = O

o

K(20,13) = D((3.0x(1.0-(3.0xv))/2.0))

K(20,14) = D((-4.0xP)+((1.0-v)/P))

K(20,15) to K(20,18) =0

K(20,19) = D((-3.0x(1.0+v)/2.0))

K(20,20) = D((4.0xP)+(2.0x(1.0-v)/P))

K(21,1) = 0

K(21,2) = 0

K(21,3) = C(-2. Ox((2 0/P2)-P2)~-((14.0- (4. 0xv))/5 0))
K(21,4) = C((-p? +((1 0+ (4.0xv))/5.0))xB)

K(21,5) = C(((2.0/P%+((1.0-v)/5.0))xA)

K(21,6) to K(21,8) = O

K(21,9) = C(-(2.0xP2)=-(2.0/P2)+(2.8)~-(0.8xVv))
K(21,10) = C((P%=((1-v)/5.0))xB)
K(21,11) = Cc(((1.0/P%(-((1-v)/5.0))x(n))

K(21,12)to K(21,14) = O

K(21,15) = C((2. Ox((l 0/P2%)~(2.0xP2)))=((14.0~(4.0xVv))/5.0)
K(21,16) = C(((2.0xP?)+((1.0-v)/5.0))xB)

K(21,17) = c(((1.0/P?)-((1.0+(4.0xv))/5.0))xA)

K(21,18) to K(21,20) = ,0

K(21,21) = C((4.0 x P2)+(4.0/P2?)+(2.8)~(0.8xV))

K(22,1) = o ‘

K(22,2) =

K(22,3) = C(((P )= ((1.0+(4.0xv)) /5. O))xB) .

K(22,4) = C(((2.0xP?/3.0)-(4.0x(1.0-v)/15. o»x(BxB))

K(22,5) to K(22,8) = O

K(22,9) = C((P2~((1—V)/5.O))X(—B))

K(22,10) = Cc((P73.0)+((1-v)/15.0))x (BxB))
K(22,11) to K(22, 14)— o)

K(22,15) = C((2.0xP2)+((1.0-v)/5.0))x(~B))
K(22,16) = C((2.0xP2/3.0)-((1.0- v)/15 0) ) x (BxB))
K(22,17) to K(22,20) =0

K(22,21) = C(((2.0xP2)+(0.2)+(0.8xv))x(B))

K(22,22) C(((4.0xP%2/3.0)+(4.0x(1-A)/15.0))x (BxB))



K(23,1)
K(23,2)
K(23,3)
K(23,4)
" K(23,5)
K(23,6)
K (23,9)
K(23,10)
K (23,11)
K (23,12)
K(23,15)
K(23,16)
X(23,17)
K(23,18)
K(23,21)
K(23,22)
K(23,23)
K(24,1)

o

0O o
C(((2.0/P2)+((1.0-v)/5.0))x (-2))
0] : .

C((2.0/3.0xP?))=((1.0-v)/15.0))x (AxA))

to X(23,8) = 0.

|

t

o)

t

o]

o

to

C((( -1.0/P?)+((1-v) /5. 0))xA

0

C(((1.0/(3.0xP3))+((1-v)/15.0))x(AxA))
K(23,14) =0 . _
C(((1.0/P%2)=((1.0+(4.0xv))/5.0))xa)

0

Cc(((2.0/(3.0xP2))-(4.0x(1.0-v)/15. O))x(AxA))
K(23,20) = O

C(((2.0/P2)+(0.2)+ (0.8xv))xA)

C (vxAxB)

c(((4. 0/(3 OxP )+ (4. Ox(l—v)/lS 0))x (AxA))
K(24,24) "



(b) The 24 x 24 mass matrix M

The lower triangle of the symmetrical matrix"
is given below where »

length

A=
B = width
p. = density / unit area
multiply throughout by pAB
176400
M(1,1) = 19600
‘M(2,1) =0
M(2,2) = 19600
M(3,1) =0
M(3,2) = 0
M(3,3) = 24178.0
- M(4,1) = 0
M(4,2) = 0
M(4,3) = 3227 x B
M(4,4) = 560 x B X B
M(5,1) = 0
M(5,2) =0
M(5,3) = =3227 x A
M(5,4) = «441.0 X A x B
M(5,5) = 560.0 X A X A
M(6,1) to M(6,6) = O
M(7,1) =. 9800
M(7,2) to M(7,6) =-0
M(7,7) = 19600 '
M(8,1) =0
M(8,2) = 9800
M(8,3) to M(8,7) =0
M(8,8) = 19600
M(9,1) =0
M(9,2) =0
M(9,3) = 8582.0
M(9,4) = 1918.0 x B
M(9,5) = =1393.0 x A
M(9,6) to M(9,8) =0
M(9,9) = 24178.0
M(10,1) = 0
M(10,2) = 0
M(10,3) = -~1918.0 x B
M(10,4) = -420.0 X B x B
M(10,5) = 294.0 X A X B
M(10,6) to M(10,8) = O
M(10,9) = =3227.0 X B
M(10,10) = 560.0 x B x B
M(11,1) = 0
M(11,2) = 0
M(11,3) = -1393 x A
M(11,4) = ~294.0 X A X B
M(11,5) = 280.0 x A X A
M(11,6) to M(11,8) = O
M(11,9) = =3227.0 x A
'M(11,10) = 441.0 x A X B
M(11l,11) = 560.0 x A x A
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12
13
13
13
13
13
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
17
17
17
17
17
18

1) to M(12,12) = 0
1) = 4900

2) to M(13,6) = 0

7) = 9800

8) to M(13,12) = 0

13) = 19600

1) =0

2) = 4900

3) to » T ¥ =20

8) = 9800

9) to M(14,13) = 0
14) = 19600

1) =0

2) =0

3) = 2758.0

4) = 812,0 x B

5) =-812.0 x A

6) to M(15,8) = 0

9) = 8582.0

10) = -1393.0 x B
11) = -1918.0 x A
12)to M(15,14) = 0

15) = 24178.0

1) =0

2) 0

3) = -812.0 x B

4) = -210.0 x B x B
5) = 196.0 x A x B
6) to M(16,8) = 0

9) = -1393 x B

10) = 280.0 x B x B
11) = 294.0 x A x B
12)to M(16 ,14) = 0

15) = -3227.0 x B
16) = 560.0 x B x B
1) =0

2) =0

3) 812.0 x A

4) = 196.0 x A x B
5) = -210.0 x A x A
6)to M(17,8) = 0

9) = 1918.0 x A

10) = -294.0 x A x B
11) = -420.0 x A x A
12)to M(17,14) = 0

15) = 3227.0 x A

16) = -441.0 x A x B
17) = 560.0 x A x A
1) to M(18,18) = 0



M(19,1)
M(19,2)
M(19,3)
M(19,7)
M(19,8)
M(19,13)
M(19,14)
M(19,19)
M(20,1)
M(20,2)
M(20, 3)
M(20,8)
M(20,9)
M(20,14)
'M(20,15)
M(20,20)
M(21,1)
M(21,2)
M(21, 3)
M(21,4)
M(21,5)
M(21,6)
M(21,9)
M(21,10)
M(21,11)
M(21,12)
M(21,15)
M(21,16)
M(21,17)
M(21,18)
M(21,21)
M(22,1)
M(22,2)
M(22,3)
M(22,4)
M(22,5)
M(22,6)
M(22,9)
M(22,10)
M(22,11)
M(22,12)
M(22,15)
M(22,16)
M(22,17)
M(22,18)
M(22,21)
"M(22,22)
M(23,1)
M(23,2)
M(23,3)
M(23,4)
M(23,5)
M(23,6)
M(23,9)

Lt

9800
0

to M(19,6)

4900

to M(19,12)

9800

to M(19,18)

o

19600
0]
9800

to M(20,7)

i

4900
M(20,13)
9800

to M(20,19)

19600

0

0 .

8582.0
1393 x B
- 1918.0

to M(21,8)

2758.0
- 812.0
- 812.0

X
X

to M(21,14)

nan

munmwnun

8582.0

i

o

B
A

o O

o)

A
o)

0]

- 1918.0 x B
1393.0 x A
to M(21,20)

24178.0
O .
o

1393.0 x B

280.0 x
- 294.0

to M(22,8)

nnu

812.0 x
- 210.0
- 196.0

B
X
B

X
X

to M(22,14)
1918.0 x B

- 420.0
294.0 x

to M(22,20
3227.0 x B
560.0 x B x

1 O | I I

0]
0]

X
A
)

1918.0 x A

294.0 x

to M(23,8)
812.0 x A

b
NS

o



M(23,10) = - 196.0 x A X B
M(23,11) = - 210.0 x A X A
M(23,12) to M(23,14) =0
M(23,15) = 1393.0 x A
M(23,16) = - 294.0 x A x
M(23,17) = 280.0 x A X A
M(23,20) =0

M(23,21) = 3227.0 x A
M(23,22) = 441.0 X A x B
M(23,23) = 560.0 x A X A
M(24,1) to M(24,24) =0



Appendix 2

The computer solution algorithms .

2.1

2.2

-

Brief notes on current technigues available for
economising on the computer core space required
using the finite element method of analysis.

Listing of the standard library computer subroutines

used. Acknowledgements are due to the Nottingham

- Algorithm Group from whom descriptions of their

gscientific subroutines which were used in the
computer analysis performed are here reproduced.



2.1 Computer core storage economisation techniques

The finite element analysis of the three dimensional folged
plate structure required a very large core storage in order
to solve for the natural frequencies and mode shapes of the
structure. The simple and rather coarse mesh used, shown in
figure 2.12, gave a 146 x 146 matrix for the stiffness as
well as the mass matrices. This required a 70K computer core
storage which is often not available on smaller computers or
even if available, together with & long computer solution
time, is consequently very costly. The results are also
likely to be excessive and is accurate only at the lower
frequencies. In fact only a quarter of the eigenvalues
~computed is likely to be accurate enough for engineering
purposes. '

Although not used in the program developed, for prospective
- students of the finite element technique, savings in core
space may be achieved although often at the expense of
increased computing time by methods,
a) using the full stiffness matrix - most accurate but very
‘ demanding on core
storages.
b) banded K - the stiffness matrix is stored banded, .
resulting in a storage saving but at the
. cost of an increased solution time.
¢) frontal solution - reduction or condensation of selected
| degrees of freedom and solving only
the 'front' where unnecessary degrees
of freedom at stage are eliminated
and put on to a disc backing store
to relieve core storage..
d) substructuring - use of compound elements made up of
' collections of normal elements.
.~ The first two requires little explanation and core savings
are achieved utilising the matrices' symmetry and sparseness
outside the diagonal band.



¥Frontal solution

Here only the current'aétive degrees of freedom are kept in
the core during the solution [45]. All other degrees of .
freedom are reduced out of the core after all information
relating to them is complete. These are stored in a
peripheral storage device such as disc or magnetic tape

and the method is especially advantageous for matrlces
where the bandwidth varies considerably.v

The elimination takes place as follows. Basically what we
vhave is a very large linear set of simultaneous equations.
When a1l the information relating to a particular variable
is complete then that varisble may be eliminated since it
can be expressed in terms of the other variables.

[k){a} - {r} | | (A.2.1)
or 521 KinJ = F; for i = 1—n

for i = k (i.e. the kth equation)

1 A
2 K, .d. =F

j=1 AKJ J k
- [
k Kkk y=1 ky'y "k

This is then used in all the remaining (n - 1) equations to
give a reduced form of (A.2.1)

, K,
sothat(EKd) d F. - [():Kd)+r]
i=1 k k- i Kkk y=1

for y £ k

on rearranging, for y # k

5 | | R K d Ko
K. .d,) - 5 S A3 SN
=y Kigdy) y=1 ( Kyx ? Klkdk
K

_ik

=F; - F
K Kkk



K. K , Kik

» o _ _ik’kj R
';gi (Kij Kkk ) dJ = Pi Fk K;E (A.Q;B)

Thus using this method the N-equatlons can be reduced to

N - l and so on.

Using equétion (A.2.2) which is stored on peripheral a back

- substitution can be performed to determine dy .
Equation (A 2.3) can be derlved from (A.2.1) by replacing

;i _iz.zi
K; 5 by' (Kij_ K ) and
- : F. K
k™ik
P, by (F, - —==)
i i Kkk

where'dk is the degree of freedom to be eliminated. -

- The mass terms are‘modified to

K. K, Ky M

: ‘ K, . (
. Bk ik ik kk
IVIT. s 2 = Iﬁ s s - ( I(I'l . 3 ) - M . +
1] 7 g T ik Kl T Tk K T (Kkk)2

Thus the net result is that the kth row and column of the
stiffness and mass matrices are eliminated in the modified
matrices in which terms need only be altered if d and 4,
are both coupled to dy (flgure A.2.1). !

Substructuring

The dynamic anelysis of the three dimensional structure
requires a very 1arge core storage and sometimes even use
of the front solution is not sufficient. Because the
problem is so large even the active degrees of freedom
fhemselves require more core storage than is available,
substructuring is therefore necessary.

Substructuring is the name given to the reduction of the
strueture into giant compound elements. Thus only the
nodes at which these 'substructures' join are used. In a
~dynamic analysis the mass matrix is reduced to those at
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these nodes plus the 'master freedoms' specified.

A backing store is used to store the reduced out matrices -
and the substructure matrices are then used to produce the
complete systerm matrix. The eigenvalue problem of the
"master degrees of freedom is then solved and a back sub-
stitution is carried out to determine the displacement of
the 'slave' freedoms 's' on a static basis. The choice

of s is based on the observation that for the lower modes
of vibration of a structure it is possible to negleet the
effect of local inertia forces. The assumption is made
that s in relation to nearby unknowns d' 1is given by
static considerations. The inertia associated with s is
not néglected but it is not allowed to affect the relation-
ship between s and 4d' .

The method introduces errors almost negligible if the
following conditions are satisfied:

1) if rotational rather than translational freedoms are
eliminated. ' _

2) degrees of freedom close to clamped or hinged boundaries
and other freedoms having little inertia effects in
the mode of interest are eliminated.

3) only the first n/3 eigenvalues of the n degrees of freedom
chosen is required.

4) retention of at least one master freedom to represent
each of the rigid body modes of the structure.

Here the method is hriefly to first partition the stiffness
matrix [K] and the displacements{U}into

K11 Kpo
Koy Koo
Uy

U =

v,

 where Ul'contains the retained displacements and Ué the



remaining. Us is then obtained from the static equilibrium

eqn. {F} = [X] {U}' by assuming that the external forces Fé

corresoonding to the displacements U2 are all equal to zero.
/ -1 3

Therefore {U2} = - [‘{22][1 Zﬂ{Ul}

The resulting condensed mass matrix is then

RN

1
where A =
c -1
Koo Kpy
K 1]
"Therefore. M. = [1 - —gl][M]
c K
22 _
_Xa
| Koo ] '
K
_ [1 21} ‘ 22
B T Ky K
22
= Maa = Man B21 = m K21. M1 K21 e
= M1 12 == 21 == + Moo o=
22 22 P
K

; 21 -1
where KE; = [K22] [Kzﬂ

The result is considerably reduced stiffness and mass
matrices, the dimensions of which correspond to the number
of terms retained in Ul‘ |



NOTTINGHAM ALGORITHMS GROUP FO2AEF
ICL 1900 SYSTEM - Document No: 379 -
N.A.G. LIBRARY MANUAL - 1st May 1972

Replaces Document No: 138

1. SUBROUTINE FO2AEF(A,IA,B,IB,N,R,V,IV,DL,E,IFAIL)

2. Eigenvalues and eigenvectors of (A-)B)x=0, where A is real
symmetric and B is real symmetric positive definite, by Householder's
method and the QL algorithm. :

3. Language  FORTRAN IV,

4. Description

The problem is reduced to the standard symmetric eigenproblem using
Cholesky's method to decompose B into triangles B=LLT, where L is
lower triangular. Then Ax=ABx implies (L-;AL_T)(LTX)=A(ﬂTx), hence
the eigenvalues of Ax=ABx are those of Py=ly, where P is the symmetric’
matrix L-IAL-T. Houscholder's method is used to tridiagonalise the
matrix P and the eigenvalues are found using the QL algorithm. An
eigenvector Z of the derived problem is related to an eigenvector x

of the original problem by Z=LTX. The eigcnvectors Z are determined
using the QL algorithm and are normalised so that ZTZ=1, the eigen-
vectors of the original problem are then determined by solving

Z=LTx and are normalised so that xTBx=l.
S. References
MARTIN, R.S., WILKINSON, J.H. Reduction of the symmetric eigen-

‘ - problem Ax=ABx and related problems to standard form. Num.
. Math., Band 11, 1968, pp 99-110.

MARTIN, R.S., REINSCH, C., WILKINSON, J.H. Householder's tri-
diagonalisation of a symmetric matrix. Num. Math., Band 11,
1968, pp 181-195.

BOWDLER, H., MARTIN, R.S., REINSCH, C., WILKINSON, J.H. The QL
and QR algorithms for symmetric matrices. Num. Math.,
Band 11, 1968, pp 293-306.

6. Parameters

A - the name of a two dimensional REAL ARRAY of at least (N,N)



IA -
B -
IB -
N -
R -
v -
w -
1
: ‘E -
IFAIL

elements. On entry it should contain the real symmetric

‘matrix A in (A-AB)x=0, the upper triangle only is needed.

On exit the strict upper triangle will be unchanged. The
Jower triangle is used as work space. (See section 12).

-

an INTEGER quantity, the first dimension of A, IA2N.

the name of a two dimensional REAL ARRAY of at least (N,N) C o
elements.  On entry it should contain the elements of the

symmetric positive definite matrix B in (A-AB)x=0, the

upper triangle only is needed. On exit the upper triangle

will be unchanged, the strict lower triangle is used as

workspace.

an INTEGER quantity, the first dimension of B, IB2N.
an INTEGER quantity, the order of matrix A. : 7

the name of a one dimensional REAL ARRAY of at lcast (N[
clements, on exit it will contain the eigenvalues of
(A-AB)x=0 in order of increasing magnitude.

the name of a two dimensional REAL ARRAY of at least (N,N)
elements. On exit it will contain the eigenvectors of
(A-AB)x%=0 in column order corresponding to the eigenvalues,
i.e. V(1,3), where I=1,N corresponds to ecigenvalue R(J).
(Sce section 12). A '

an INTEGER quantity, the first dimension of V, IV2N.

‘the name of a one dimensional REAL ARRAY of at least (N)
elements used as work space.

the name of a one dimensional REAL ARRAY of at least (N)
elements used as work space, :

"’

~ an INTEGER variable. On entry the value of IFAIL ,
determines the mode of failure in the routine. On exit
IFAIL indicates successful use of the routine or acts as
an error indicator.

If, on entry, IFAIL=0 (hard failure) the program will’
terminate with a failure message if any error is detected.

1f , on entry, IFAIL=1 (soft failure) control returns to
the calling sequence within the program if any error is
detected by the routine. No failure message will be
printed.

" On exit IFAIL=0 for a successful call of the routine.

For other exit values of IFAIL, and their meanings, see
section 7.

It is essential, if the soft failure option is used,
that the value of IFAIL is tested on exit.




9.

10.

11.

12.

13.

Error Indicators

IFAIL=1 - Failurc in FOlAEF, matrix B is not positive definite
possibly due to rounding errors. : ’

IFAIL=2 Failure in FO2AMF, more than 30 iterations are needed
: . to isolate any one eigenvalue.

If the hard failure option is employed and the routine fails
bhecause of the error labelled by I, the message printed is

"LIBRARY FAILS IN FO2AEF WITH ERROR- I. .

huxiliary Routines

This subroutine calls subroutines FOlAEF, FOlAJF, FO2AMF, FOlAFF
: and POlAAF.

Timing

For a matrix-of order 10 the procedure takes 0.1 seconds.
For a matrix of order 20 the procedure takes 0.9 seconds.
For a matrix of order 30 the procedure takes 2.9 seconds.

Storage

The compiled subroutine and auxiliary subroutines require 1667 words.

- There are no internally declared arrays.

ﬂgcuracx

In general the accuracy of this subroutine is very high. However,
if B is ill-conditioned with respect to inversion the eigenvalues
and eigenvectors could be inaccurately determined. The answers to
the test cases were always accurate to 9 significant figures.

Further Comments

If the subroutine is called with the same name for the arrays A
and V then the eigenvectors will overwrite the real symmetric
matrix A.

Example

. To find the eigenvalues and eigenvéctors of the problem Ax=ABx

where A is the symmetric matrix

10.0 2.0 3
12.0 1.
11

[= e N



rULALEL

and B is the positive definite matrix

12.0 1.0 -1.0 2.0 1.0 .
i 14.0 1.0 -1.0 1.0
-~ 16,0 -1.0 1.0
12.0 -1.0
: 11.0

a short program could be

MASTER TESTEIGRV
DIMENSION A(S5,5),B(10,10) ,EVEC(5,5) ,EVAL(10),WKS1(5) ,WKS2(100)
N=5
DO 1 I=1,N
RCAD(1,100) (A(1,J),J3=1I,N)
1 CONTINUE , . :
DO 2 I=1,N _ : ’ , >
READ(1,100) (B(I1,J),3=I,N) - '
~ 2 CONTINUE
100" FORMAT(5F0.0)
I=1
CALL FO2AEF(A,N,B,10,N,EVAL,EVEC,5,WKS1,WKS2,I)
IF(I.EQ.0) GOTO 10
WRITE(2,200)1
200 FORMAT(1HO, 'FAILURE, IFAIL=', I5)
STOP
10 pO 3 1=1,N
WRITE(2,201)1,EVAL(I), (EVEC(J,1I) ,J=1,M)
3 CONTINUE
201 FORMAT(1HO, 'LAMDA',12,'=',1PE)G6.9//'EIGENVECTOR'//10
1(1X,1rE16.9/) /) '
STOP
END
FINISH

Results ' EE s ‘ :)

LAMDA 1 = 4.327872110E-01

EIGENVECTOR

- 1.345905740E-01
-6.129472247E-02

~1.579025622E-01
1.094657877E-01

~4.147301179E-02

LAMDA 2 = 6.636627484E~01
EIGENVECTOR
8.291980649E~-02
©1.531483957E-01
~-1.186036679E~01
-1.828130418E-01
3.5617203G9E-03



14.

FO2AEF

LAMDA 3 = 9.438590047E-01
FEIGENVECTOR ’
-1.917100316E-01
1.589912115E~-01
~7.483907094E-02
1.374689295E-01
-8.897789234E-02

LAMDA 4 = 1.109284540E 00
EIGENVECTOR
1.420119599E-01
1.424199505E~01
1.209976230E-01
1.255310152E~01
7.692207282E-03

LAMDA 5 = 1.492353233E 00
EIGENVECTOR
~-7.638B671787E-02
1.709800187E-02
~6.666453367E-02
8.604800930E~-02
2.894334142E-01

Kexwords

Houscholder
Eigenvalues
Eigenvectors
Standard Eigenproblem



Appendix 3

The finite element suite of computer programs developed ..

A listing of the set of computer programs developed to
analyse folded plate box structure.



LDSETC(PRESET=NGINF,MAP=B/222ZMP)

LGOCPL=6000)

CATALOG(TAPE3,MOJDATT ,FOSASIS,ST=5S6A)

HHARS
PROGRAM STRUCT(INPUT,TAPE1=INPUT,OUTPUT,TAPE2=S0UTPUT,TAPES)
LEVEL 2.,K i :

- C THIS PROGRAM COMPUTES THE STIFFNESS MATRIX DF A BGX UF NXNYNZ ELEMENT
Coeoeo FROM 3 STANDARD PLATE ELEMENTS WHOSE STIFHFNESS MATKRICES ARE COMPUTED
Cooos s THESE ELEMENTS ARE ROTATED AND_MERGED INTO A BOX. THE
C INERTIA MATRIX IS SIMILARLY OBTAINED AND THESE COMPLETED BOX MATRICES
C ARE STORED IN DATAFILE MU//DATA ’

DIMENSION R(24,24),0(24,264)

INTEGER ORDER . ) o

INTEGER E :
REAL KK(24+264) 4PsY,LENGTH,WIDTH,KJ
REAL K(18U,180),K1(24,24)
COMMON/UPPER/K

NX=4

NY=2

NZ=1 .

€ +s.LENGTH IS LENGTH OF BOX

CossssoWIDTH IS WIDTH OF BOX
LENGTH=0,515
WIDTH=0,255
HEIGHT=0,255 _
A=LENGTH/FLOAT(NX) ' ’ ) T T
B=WIDTH/FLOAT(NY) :
C=HEIGHT/FLOAT(NZ)

Coveeo VEPOISSUN®S RATIO
v=0,3

Coess o HETHICKNESS OF PLATE
H=0,00054 :

Y=(2,06€E11)
v=0,3

Ceeoo  RHOSDENSITY OF PLATE

RHO=7800,0%H

NE24
ORDER=(NX+1) 2 (NY+1)*(NZ+T) 46
00 4 1 = 1,0RDER .

DO &4 J = 1,0RDER
4 K(1,d) = 0,0

CALL BENDT(KK,N,A,B,V,Y,H,RHO) *
CALL CLEAR(KT) ’

CALL PLAINT (K1 ,N,A,B,VsYsH,RHO,KK)

CALL REUORDER(N,kK,KJ)

CALL ROTATET (K1,KK.Q,R)

CALL COMPLET (K ,NZ,ORDERJRsN/JNXKINY,1 )

CALL COMPLET (K/NZ,ORDERsIRsN)NXsNY,2 )

CoesosCALL ROTATZ2 (K1,KK,Q,R) .
CoeoeeCALL COMPLET (KeNX URDERIReN,)NY,N2Z:s3)
CoeasoeCALL COMPLET (KsNX,ORDERsReNsNYsNZs4)
CALL BENDI(KK,N,A,C,V,YsHsRHO)
CALL CLEAR(K1T)
CALL PLAINT (KT1/N,A/C,V,Y,H,RHO,KK)
CALL REORDER(N,KK.KJ)
CALL ROTATE3 (K1,KK,Q,R)
.CALL COMPLET (K, NY,ORDER/RsNsNXsNZ,5)
CALL COMPLET (K,NY,ORDPER/R,N¢eNXsNZ,6)
REWIND 3 oo T T
HRITE (3) K

CyhesssUSE K ANDKK MATRIX FOR INERTI1A MATRIX
D014 1 = 1,0RDER .
p0164 J 1,0RDER
14 K(1,J) = 0,0 ’ . S
CALL BENDZ(KK,N,A,BsV,Y,H,RHD) ) :
CALL CLEAR(KT)
CALL PLAINZ (K!INIA'B!V'YIHIRHO'KK
CALL REORDER(N,KK,KJ)
CALL ROTATET (K1/,KK,Q,R)
CALL CUMPLEY (K¢NZ,ORDER/RsN¢NXsNYe1 )
CALL COMPLET (K, NZ,)ORDERsRyNsNXsNY 2 )
CoeoveeCALL ROTATEZ (K1,KKsQ,R)
CeoeeoCALL COMPLET (K¢NX+/ORDEReReN s NYeNZ(3)
Cheeeo CALL COMPLET (KsNX,ORDERsR/NsNYsNZ,4)
CALL BENDZC(KK,NsAsCsV,Y,HeRHO)
CALL CLEAR(KT) oo
CALL PLAINZ (KT1sNrA:CoViYsHeRHD,KK)
CALL REORDER(N,KK,KJ)
CALL ROTATE3 (K1,KX:Q/R)
CALL CUMPLET (K+NY,ORDPER/R,NsNXsNZ,s5)
CALL COMPLET (XeNY+URDERIP N/ NXsNZs6)
CoreeoeSTORE MATKIX UNFORMATTED IN HAG TAPE.
WRITE (5) K : '
ENDFILE 3
REWIND 3
STOP
END



SUBROUTYINE BEND 1 (KKeNeAsBsV,E2T,RHO)
REAL ’ KK(N,N) tPehAsBeV
Ceesse CLEAR KK MATRIX : :
DO 1 I=1,N
DO 1 J=1.N
1 KK(1,4)=0,0
Creas s COMPUTE LUWFR TRIANGULAR KK MATRIX
CooveehN=12 SIGNIFIES BENDING N=24 FUR BENDING + STRETCHING
IF(N,EQ,T2) GO TO 10
IF(N,EQ,24) GO TO 20
10 .1=1
C;....THIS GIVES A 12 X 12 MATRIX
J=3
WRITE(2,11)
11 FORMAT(//'THIS ls FOR PLATE BENDING ONLY')
GO T0 50
20 1=3
WRITE(2,21)
21 FORMAT(//'THIS lS FOR PLATE BENDING AND STRETCHING®)
: J=6
Coesos THIS GIVES A 24 X 24 MATRIX
GO TO 5¢
50 P=(A/B) w2
J2xye2
J3=J+3
KK(I,1)=C6,04P)4(4,0/P)+2,8~(0,8*V )
AKCI+1,1)=((2,0+P)+(0,2)+(0,8%V))*B
KKCI41,147)=2((4,04P/3,0)4C4,0%(1,0=V)/15,0))%(Bra2)
KK(I+2,1)=¢(2,0/P)+(VU,2)+ (U, 8%V))*(~A) ’
KK(1+2,141)==VeAnB
KKC(I42,142)3(C (6,07 C5,0%P) )+ (46, 0%(1=V))/15,0))*(CA%A)
KKCI4J,1)=(2,0/P)=(4,U*P)=2,8+(4L, 0xV/5,0)
KKCI4J,141)=((2,0%P)+((1,0=V)/5,0))*(~-B)
KKCI#d,142)=((=1,0/P)+((1,0+4(4,02V))/5,0))%A
KKC(I4J,140)=(6,0%P)+(4,0/P)+(2,8)=-(0,8*Y)
KKC14J21,1)3((L,U0*P)+(1,0=V)/5,0)#*8
KKCI4J41,14¢1)=((2,0#+P/3,0)=((1=V) /15, U))'(B*B)
KE(14J41,142)=0,0
KKC(I4J41,140)2((2,0%P)+ (0, Z)‘(U BeV))«(=-B)
KKCI4J041,14041)=2((4,U0xP/3,0) 446, U*(1,0=V))/15,0)2(BeB)
KK(14d42,1)=((=1, 0/P)4((1.U‘(R.U*V))IS.U))*A
KK(1+J42,147)=0,0
KK(I+J342,142)2((2,0/7C3,04P))=(4,02(1,0~ V)/15 0))*(AxA)
KK(I+J42,1¢0)=((=2,0/P)=(0,2)=(U,H*V))nA
KK(14072,]14J+41)=VrArB
Kk(14J¢2,14042)=(C4, 0/ (5,0%P))404,0%(1,0=V)/15, 0))‘(A*A)
KKC(14J2,1)=(=2,0#P)=(2,0/P)+(2.,8)=(0,8%V) :
KKCI4J2,341)=(=P+(C1=Vv)/15,U0 ))+B
KK(I+J24142)=((=1,0/P)+((1=V)/5,0))%(=A)
KK(I+432,1¢4)=(=2, 0'((2 U/P)=P)=(14,0-(4,0*V)) /S, 0’
KKCI402,1+40+1)=((=P+(7,0¢(4,0%V))/5,0))x(B)
KK(I*JZ:I’J‘2)=((2.0/9)*((1.U-V)/5.0))*A
KKCI+J2,1402)=(4,0%P)+(46,0/P)+(2,8)=(0,8%V)
KK(I+3241,1)=(P~((1=V)/5,0))«(B)
KKCI+J2+41,141)=((P/5,0)+((1=-Vv)/15,0))«(B*B)
KK(1+J2+41,142)=0,0
KK(I49241,14J)=(=P+(1,0+(4,02V))/5,0)+B
KK(I+J241,1+4441)=(((2,0%P)/3,0)=((4,0%(1,0~ V))/15 0))*(B*B)
KK(1+J2+1,1+4J+2)=0,0 .
CKKCI#J241,1402)=((=2,0%P)=(0,2)=(0,B2xV))*B
KKCI+J241,140241)=((4,0%P/3,0)4(6,0%(1=V)/15,0))%(B*B)
KKCI+J2+42,1)=((1,0/P)=((1=V)/5,0))*(=A)
KK(I+J2+2,1+41)=0,0
KK(I4J242,142)=((1,0/(3,0+P))+((1~-V) /15, 0))’(A‘A)
KK(14J2+42,140)=((2,0/P)+((1,0=V)/5,0))*(=A) M
KK(I+J2+4¢2,14041)=0,0
KKC14Jd242,14442)=((2.0/(3,0*%P))=((1,0=-V)/15,0))«(A%A)
KK(I+J242,1+J2)=C(2,U/P)+(0,2)+C(U,84V))*(A)
KK(14J2+42,1+4J2+41)==VrAsj
KKCI4J2+42,140242)=(C4,0/(3,0%xP))+ (4, Ux(1=V)/15,0))%(A%A)
XKKCI+433,1)=2=2,0%x((2,0/P)=P)=((14,0=(4,04%V))/5,0)
KK(X*J3-1‘1)=('P*((1.0‘(Q.U*V))/5.U))*8
KKCI+J3,142)=((2.,0/P)+((1,0=V)/5,0))=A
KKCI4J3,140)==(2,0%P)=(2,0/P)+(2,8)=(0,8%V)
KECI4J3,14041)=(P=((1=V)/5,Q))*B
KKCI+U3,14042)=((1,0/P)=((1=V)/5,0))*CA) )
KKCI+J3,1402)=(2,0*((3,0/P)=(2,0*P)))=((14,0~-C4, O*V))/S 0
KK(!*J}:I*J2*1)=((2‘U*P)*((1.U‘V)/S U))*8
KKCI+J3,1402+42)=((1,0/P)=((T,0+(4,0%V))/5,0)) %A
KKCI4J3,1403)=(L,0%P)4(4,0/P)+(2,8)=-(0,8*Y)
KKLI+I3+T,1)=C(PI)=((T,04(6,02Vv))/S,0))%8
KKCI+3341¢141)=C(2,04P/3,0) =4, 0+ (1,0=¥)/15,0))+(B%B)}
KK(1+3341,1+42)=0,0 )
KE(I40341,140)=(P~((1=V)/5,0))+(=-B)
KKCI433+7,14+0+1)=C(P/3,0)4((1~V)/15,0))*(B"8B)
KK(I+4J3+41,14J+42)=0,0
KKCI+341,1402)=((2,0%P)+((7,0=V)/5,0))*(=-B)
EKCI40341,140241)=((2,02P/3,0)=((1,0=-V)/15,0))»(B#*B)

.



xr(l’43¢1.1043v1)=((4 o-Prs vwIete, u-(1-v)l1> UX)etaes)
EXCEI392,1)2((2.0/P) 4 (K1, 0=V)/>,u))e(=A) -
Kk(1+33+42,1+1)=0,0 .
KKCI40392,142)=C(2,0/ (3, 0ep))=(L1,U=VI/TI5,0))nCAA)
KKR(L4362,(+0)=((=1,0/P)*(C1=VI/D,0)) A
RK(I¢I342,1+1%1)=0,0
KK(I43342,14042)=0L1,0/C5,U*P))+((1=V)I/15,0))*CRAD,
KKCI40342,14023=C1,0/P)=((1,. 0006, UunV))/S, u )deA
KK(T+I342,1402¢1)20,0 :
KK(1903¢2,1402¢2)=((2,07(3,0%P))=C4, U*CT, u-v)tts 0))~(A-A)
TKKCI4I342,1435)=((220/P)4 (0. 2) 4V, BV ) oA
Kx(143342,1+05+1)=Vveand
RR(T+I542,1403¢2)2C(46,0/(5, OtP))'(k 0 (2=Y)/35,03)eCA®a)
C.....hULTlPLY 6Y FACTUR .
DO 54 1=1,N o .
PO 54 J=1,1
56 KK(L43)=(RR(T,3)I«CEX(Taw3)) /(1. 0%(1, U=(Us¥2))nANB)
CooyooCOMPLETE UPPER MATRIX TRIANGLE
NHI=N~1
DO 55 I=1,mMm1
IAIs]+1
- PO 55 J=I1A1,N
‘ 59 KX(1,J)=KK(JS,1)
c.-...NRITE CUMPLETE ELEMENT STIFFNESS MATRIX
WRITE(2,0U) (CKXCLlod)od=1,0)0121,N)
60 FUKMAT C(TH15°KK MATRIX®/7/(* *,12E10.4))
RETURN
END

SUBROUTINE PLAINT CKKsNeAsBIVIESToRHOSKY)
REAL KT(N,N)
KEAL KK(N,N)
CeooosH = B SIGNIFIES PLAIN STRAIN, N = 24 FOR BENDING AND STRETCHING
1F(N,EG,E) GO TO 1v
TF(N,EQ,24) GU Tu 20
STOP
10 WRITEC(R,11)
19 FORHMATC//'THIS 1S FOR PLAIN STRAIN ONLY®)
I=2 :
G0 10 30
20 J=§
CrossaTHIS GIVES A 8 X 8 MATRIX
30 J2xJe2
Coaee e NOTE THAT P = (A/B) NOT (A/B*w#2) .
p=A/B ‘ :
KK(141)2C4,0/P)+(2,0e1,0=V)*p)
KKC2,1)33,0e(1,0ev) 72,0
KK(2e2)=C4 00P)+(2,0%(1,0=V)/P)
KK(140,1)=(2,0/P)=(2,0%(1,u=V)*P)
KKC1¢J,2)==3,0e(1,U=3,00V)/2,0
RKCI*J 210X =(4, 0/P)+C2,08C1,0=V)*p)
KKCI4J0¢1,1)=3 U1, Uu=(3,0nVv))/2.0
KKC1ede1,2)3(=4,UsP)*((1,0=-V)/P)
KK 14J¢1,108)2=5,00(1 Uev)I/2,0
KKCT+Je1,1¢J¢T) =00 vep) e, u-«t.u-v:/p)
KK(14J2,1)e(=2,0/P)=((1,0=V)eP)
KKC14J2,)3(=3, bs(1,UsV)/2,0)
KKC14J2,140)2(=4,0/P) + (11, U=V)*P)
KKC1432,14541)3(=3,0s(1-(3,0%V))/2,0)
KKC19J2,1402)=04,0/P)+(2,9%(1,U=V)*P)
KKC1¢J241,1)==3,0~(1,0+v)/2,0
KKC1+4J2+1,2)=(=2,0%P)=((1,u~V)/P)
KKC14J241,140) (35,0801, 0=(3,0eV))/2,0)
KK(T1432+,140+1)=2(L,UsP)I=(2,U*(1,0=V)/P)
KR(14J2+41,1402)=(3,0%(1,0¢y)/2.0)
KK(14J24T,140247)=(4,00P)+(2,0*(1,0-V}2P)
J5xy*3 <
KK(14J3,1)=(=4,0/P)+((1,0=V)*P) ' :
KKC1+33,2)=C5,0%(1,0=C(35,04V))/2,0)
KK(1433,1+0)=(2,0/P)=((1,U=V)I*P)
KK(1433,14541)=(3,0201,0+v)/2,0)
KKCI43,1492)=(2,0/P)=(2,0%(1,U=V)*p)
KKC14J3,7+40241)=(=3,0%(T,0=(3,0*V)) 2, U)
KKCT1+03,1443)=(4,0/P)+ (2, 00 (1,U=V)*P)
KKC14J341,1)=(~3,0*(1,0=-(3,0%V))/2,0)
KKCI43341,2)=(2,0%P)=(2, U (1,0=V)/P) )
RK(143341,140)=(3,0+C1,0¢V)/2,0) RN
KKCI403¢1,140¢1)=(=2,04P)=((1,0-V)/P)
KKC140341,1402)=(3,04(1,0~(5,0%V))/2,.0)
KRCI4HI341,1492+1) (=6, 0%P)+((T,0~V)/P)
RE(143341,14058)=(=3, 0 (T, 0sVI72,0)
KKC14J347,140341)=(46,0eP)+(2,0%(1,0-V)/P)
CooseonULTIPLY BY COMMUN FACTOR .
DO 36 I=1,N . ) .
o 34 J=1,1 ’ :
36 KE(Lsd)=(KRCT14JIIRCET)/(12,02(1,0=C(V**2)))
Coeves COMPLETE UPPER MAIRIX TRIANGLE
NH1=N=1 .
00 35 I=1,NH1
IA1=]41
. DO 35 J=IA1,N .
35 KK(I1,J)=KK(J,1) ..
00 38 1=1,N
DO 38 J=1,N
38 KIS0 (T ) 4KK(1,D)
HRITEC2040) ((K1CI0J) I=T00) 9151, H)

—— e o

.r



1=
NOZN

1093 1=1+% .
1F(l,EQ, MO) GU TO 1112

=1 i .
1011 JF(RICLed) JNELR1(J L)) GO TO 1111 .

Jxd+i .o

1F(J. LY, 1) GO YO 1011

G0 TL 1013
1111 WRITE (2,7012) (1,3,K1(1,0) ,xi&J,1)) .
1012 FORMAT(//7* UNSYMSETRICAL MATRIX'//' FRRUK POSITION IS 21302000 %,

LYY % L,2F12.46)
IF(I,LT,NO ) GO TO 1013

1112 CONTINUE

RETURN
END

SUBROUTINE BEHD 2 (MM,N,AsBsVsEsT,(RHO)

REAL AMCNIN) s PsAeBoV
CoeoesCLEAR MM MATRIX .

PO 1 I=1,N

PO 1 J=1,K

1 HM(1,3)=0,0

CoereoN=12 SIGNIFIES BENDING N=24 FOR BENDING ¢ STRETCHING
1F(N.EQ,12) GU TU 1V
T JF(N,EQ,24) GO TO 20 .

1 1=1
WRITE(2,11)
11 FORMATC(//'THIS IS FUR PLATE BENDING ONLY')
4x3
CesossTHIS GIVES A 12 X 12 MATRIX
G0 70 5¢
2V 1=3

WRITE(2,2Y) :
21 FORMAY(//7'THIS IS FOR PLATE BENDING AND STREVTCHING®)
Jué
Ceooes THIS GIVES R .26 X 24 MATRIX
.60 TU 50
SU P=(A/B)aeg

J2=)e2
J3uJel
MM(1,1)224173,0
hML)+Y,1)x822/8
MM(T+1,1¢1)2500B*B
MM(1e2,1)2=3227eA
MH(142,1¢1)2-461,00A08
MM([42,142)2560,00A0A
MH(1ed,1)=8582,0 . . Ce
MH(Jed,1¢%)=191K,0nB
MM(1eS,142)2=1595,00A
MH(Ted 1+9)224178,0
MU 1 *J41,1)2=1718,0e8
MK(1+J41,1¢1)c=420,00Be8
MMCI+J¢1,142)2294,00AeB
MM(1¢Je1,140)5=38227,0e8
HH(1+J+1,1¢J41)=2560,0eB0B
HM(14J+2,1)=-15930A
HM(I4d92,1¢1)2-296,0¢A08
MM(J4J42,042)72R0U,UvARA
MM +9+2,140)5-35227,00A
MH(1+J42,143+1)=0L41,0eA¢B
MM(T+J42,140¢2)=560,08A4A «
MM(1402,1)=2758,0 -
MM(T402,141)=812,0¢B
MM(1+4J2,142)=-812,0*A
MM(T4J2,14J)=54%42,0
MM(1+4J2,1+4)41)==1395,0¢8
MM L1+4J2,14342)==1918,0¢A
MUCL+J2,1402)=24178,0 .
MM(1+452+49,1)=-812,0=8
MM(1+J2+1,141)=~210,04B#8
MM(I+J2+47,142)=196,0%A%B
MM(1+4J241,1+4)==139348
MM(1+32+7,14047)=280,0¢848
BM(T4+J2+41,14042)=204,0¢A%8
MM(I+J241,1432)==-3227,0%8B
MM(1¢J241,1+432+41)=560,0+828 LT
MM(I+J2+2,1)=812,0%A B
TMU(I432+42,141)=196,00A*B K " B .
MM(14J242,142)=2=210,00A%R, . .
MMCI+J24<Z,149)=1918,UA
HM(1+J242,]¢0+1)==294,00A08
MMCT4J24¢2,14042)==420,0%A%A
MMCI4J242,1402)=82270,0¢A
MM(14J242,140241)2~441,00A¢B

M1 4J242,140242)u5060 ,UsARA
MM(I*93,1)=8582,0
PMCI+I3,141)=9593+B
MMCI*J3,142)==1918,0¢A

O MMTeI3,140)22758,0
nv(1ed3,140+1)==-6412,0¢8
MM(1+03,14042)2=012,0%A



TrNscwsEsree s s g
HM(T4J8,1¢02¢1)2=1718,008
MM(I0J5,140242)51375,00A

MH(TeI3,10938)326178,0

MM{I+d3+1,1)21595,0e8

MM(14J3+41,141)x280,0%Be8
FM(14J34¢1,142)a=¢04,UvAsB
MM(I+¢J3+1,14J0)2812,0%8
MM(149341,140+1)2-210,0+848
MM(1¢J3+41,140¢2)z=196,0¢A%8
MM(1+0847,1402)=1718. 09
MM(1433¢1,14024¢1)x=420,UsB28
MM(I+J341,1402+42)x296,00A88
MM(TeI3+1,1403)53227,008B
MM(T1¢J341,14J541)3560,0e8%8
MM(I40342,1)=1918,0%4A

MM(I433¢2,141)5204,00A48
HM(14J342,142)3=420,0nA%A
MM(T14J342,1+9)x812,U%A : .
MM(14J3¢2,14J+1)==196,0¢A#8 e .
MM(T49342,14042)2=210,0%A%A
MM(140342,1492)=1373,0%4
MM(T4J342,140c¢1)3=294,0%A%8
MM(143342,140242)3280,00A%A
MM(J+J342,1403)23227,0%4A
MM(140342,1403+41)24417,00A68
MM(I4J342,140342)2560,00A%A

Coess s MULTIPLY BY COMMOMN FACTOR
’ DO 74 I=1,N
po0 74 J=1,1
7L MM(T1,J)=(MMOT,J))*RHU*A*B/176400
Coeeec COMPLETE UPPER INERTIA MATHRIX TRIANGLE,
NMizN=1
00 75 I=1,NM1
1A1=]1+14
DO 75 J=1A1,N
75 MM(1,J)=MH(J,1) .
CeaeaoWRITE COMPLETED ELEMENT INERTIA MATRIX
WRITE(Z2,80) ((MMC1,d),J=1¢N)o121,N)
80 FORMAT (1H1,°*MM MATRIX'//7/7(¢* *,12E10,4))
RETURN ‘
END

REBRS
ety

SUBROUTINE PLAINZ (MM NeAsBoVeEsTeRHO(K1)
REAL K1(K,N)
REAL MM(N,N)
CiesesN = 8B SIGNIFIES PLAIN STRAIN, N ® 24 FOR BENDING AND STRETCHING
1F(N,EQ,8) GO TO 10
IF(N,EQ,24) GO TO 20
STOP
10 WRITE(2,11) : .
11 FORMAT(//'THIS IS FUR PLAIN STRAIN ONLY")
Js2
GO YO 30 .
20 dx6 .. - . . -
30 J2=ye2
PeA/B
CoeveeTHIS GIVES A 8 X B MATRIX
CoeeeeCOMPUTE INERTIA MATRIX
MM(1,1)34,0° ) T
MM(2,1)=0,0
MM(2,2)%4,0
MM(14J,1)=22,0
MM(1+44,2)=0,0
MMC140,140)=4,0
MM(1+4J+1,1)=0,0
MM(14J41,2)=2,0
MM{14J¢1:140)=0,0
MMC14J41,14041)24,0 . : ) :
MM(1¢J2,1)=1,0 : ’ .
MM(14J2,2)=0,0 o : . : D
MM(1+4J2,14J)22,0
MM(14J2,140+1)50,0
MM(1402,1402)=4,0
MM(143241,1)=0,0
MM(14J2+41,2)=21,0
MMLT4J241,140)=0,0
MM(14J241,14041)=2,0
S HMM(14J241,1492)80,0
MM(14J241,14302+41)%6,0
J3x)e3
MM(1+4J33,1)=2,0
MM(14J3,2)%0,0
MMC14035,140)21,0
MM(1405,140+41)20,0
MM 1+J3,1492)22,0
MM(14J35,1¢02+1)=0,0
CHR(1433,1433)=6,0
MM(14J3+41,1)20,0
MM(14J341,2)22,0
MM(14J3¢1,14J)=0,0
MM(143341,149+41)=1,0



MMUT¢0347,1¢407)70,0
PH{1+J3¢T 14071 )2 0
HM(14J5¢1,1403)=0,0
AM(1433¢1,7¢9341) 20,0
Coona KULYIPLY BY COMMUN FACTOR

b0 50 181,N
bO 50 4=,

SU MM(T,J)=(HH(T1,J)«RHO*A*B/36,0)

Cooess CUMPLETE UPPER TRIANGULAR MATRIX

LEAESEa ]
DO 6V I=1,KM1
TA1=]+1
DO 60 J=]AT.N

60 MH(1,J)=MM(J,1)
DO 38 121N
DO 38 J=1,N

38 K1(1,3)=2K1C1,J)¢MU(1,J)
WRITE (2,70)

70 FORMAT (' TRANSLATIONAL INERTIA MATRIX CUHPLETED')
WRITE(2,40) ((K‘(IDJ)IJ=1IN)IX’1IN)

40 FORMAT (ThY,'MM MATRIX'///(' *,12E10,4))
RETURN
END

SUBROUTINE REORDER (N, KiKJ)
KEAL KC NeN ) iKJ
c RENUMBER NODAL SYSTEM
Coeess INTERCHANGE NUDE 2 AND 4 ROWS
PO 6V I=7,12,%
D0 69 J=1,24,1
KI=K(1+12,J)
KC(1+412,J)= K(1,J)
60 K(I,Jd)=K) }
Cooess INTERCHANGE NODE 2 AND & COLUMNS
DO 70 J=7,12,1
b0 70 1=1,24,1
KJI=zK(1,3+12)
KCT,d412)=K(1,0)
70 K€, 9)=KY
Coeos s KEURDER NODAL SYSTEM

Coeoes INTERCHANGE NODE 3 AND & ROWS
DO BU 1=13,18.,1
DO 80 J=1,24,1
KI=K(146,J)
K(1+649)=K(1,J)
BU K(1,9)=KJ
Cooass INTERCHANGE NODE 3 AND & COLUHNS
b0o 90 J=13,18
DO 90 1=1,24
KJEK(1,J¢6)
K(1,J46)=K(1,J)
90 K(1,Jd)=Kd
WKITEC2,100)CCK(1,3),0=0,24 del1=1,24 )
100 FORMAT(*T1REORDERED .ELENENT HMATRIX®*,//7C' *,10F12,4))

RETURN
END

SUBROUTINE ROTATE1 (R,KsK1,S)
DIMENSION R(24,24), S(24,24)
REAL K(24+24):K1(24,24)
DO 5 I=1,24
D0 5 J=1,24
$(1,4)=0,0
K1(1,4)=0,0
5 R(1,4)=0,0
DO 10 121,24
10 K(1,1)=1,0
CWRITE(2,4D) ((RC1,0)031,24)0121,24)
Couyes POST=MULTIPLY BY R
DO 50 I=1,24
DO 50 J=1,24
00 50 L=1,24
50 K1(1,3)=KT1(1,3)+(KCL,L)*R(L,II)
DO 52 I=1,24
DO 52 J=1,24
DUMMY=R(1,J)
R(1,9)=R€JI, 1)
RCJ, 1) =DUMMY
.52 CONTINUE
WRITE(2,40) C(CRCISJ),J=1,24),121,24)
Cosees PRESMULTIPLY BY R TRANSPOSED
DO 55 1=1,24
DO 55 J=1,24
DO 55 L=1,24
$5 S (1,4)=S (1,0)+(RCI,L)*KICL,9))
&0 FORMAT(CQAFS5,.2) :
WRITE (2+,60) (S CI1,d)oJdm1, 24),.139,24)
6U FORMAT (*1ROTATED ELEMENTAL MATRIX'/77(* *,12E10,4))
RETURN
END



PUBRUULING KUIAIEY? (K KoKR1p3)
VEAL K(26,26),01(26,24)
UIMERSJUN R(Z&,(‘)p S(24424)
PO 5 1=1,24
Lo 5 J=1,24
5(1,J4)=0,0 .
K1¢1,Jd)%0,0 : K -
5 KR(1,J)=0,0
00 1U 1=1,24,3
J=l41 . .
1V R(i, )= 9,0 <
DO 20 1%2,24,3
Julel
20 R(1,d)%1,0
DO S50 133,24,3
J=l=2
30 KCl,J)=1,0
WRITE(2,40) ((R(1,J),0%1,24),131,24)
LU FOKRMAT(24F5,2) -
Coeos o POST=MULTIPLY BY R
.D0 50 1=1,24
DO 50 J=1,24
00 50 L=1,24
50 K1(1:J)=K1(an)‘(K(ch)'R(L:J)’
D0 5S¢ 1=1,24
b0 52 J=1,24
DUMMY=R(1,J)
RC(1,JI=R(J, 1)
RC(J,1)mDUMMY
52 CONTINUE
WRITE(2,60) ((R(1,J)sJ%1,24),131,24)
Coopo o PRKE=MULTIPLY BY R TRANSPOSED
D0 55 1=1,24
b0 55 J=1,24
00 55 L=1,24
55 S (14Jd)=S (1, 1)4(R(14LI*KI(L,S))
WRITE (2460) ((S (1,4d),921, 24).+1%1,24)
60 FORMAT ("1ROTATED ELEMENTAL MATRIX'///(' *,12E10.4))
RETURN
END

SUBROUTINE ROTATE3 (R,K,K1,S).
REAL K(24,26)Y,K1(24424)
DIMENSION R(24,24), S(24,24)
00 5 Ix1,24
DO 5 Jx1,24
$(1,d)=0,0
K1(1.,J)=0,0
5 R(1,J)=0,0
b0 10 1=1,24,3
J=]
10 R(1,J4)= 1,0
Coees s POST-MULTIPLY BY R
DO 20 1#2,24,3
J=le1
20 R(1,J)=1,0
DO 30 1=3,24,3
Jxl-1 .
30 R(1,J)=-1,0
NR!TE(Z:‘U) ((R(1,3)49m1,24)4121,24)
) 40 FORMAT(24F5,2)
C'--..PRE-HULTIPLY 8Y R TRANSPOSED
00 S5V 1=1,24
DO 50 J9=1,24
00 50 t=1,24
50 K1C1,J)=KTICT, )+ (KCToL)*R(L,JI)
D0 52 I=1,24
D0 52 J=1,24
DUMMY=R(1,J)
RC1,4)=RCJ, 1)
R(J,1)=DUMMY
5¢ CONTINUE
WRITE(2,40) ((R(I'J)'J*1124)ul=102‘)
00 55 1=1,24
b0 55 J=1,24
DO 55 L=1.,24
55 S (J144)=S (1,0)+(RCI/L)2KI(L,Y))
WRITE (2+60) ((S (1,d),921, 24):¢121,24)
60 FORMAT ('TROTATED ELEMENTAL MATRIX'///C' *",12€E10,4))
RETURN
END

SUBROUTINE COMPLET (KyNZsNO,KKsNS/NXsNYsNA)
LEVEL 2.K
REAL KK(NS,NS),K(NO,NO)
INTEGER E
Coona o WRITE (2:,1003) C((KK(JI ) d3=21,NS)pJ21,NS)
TIR(NX®II 2 (NY#1) 28
NKE(NX41) 06
NIE(NX4¢1) e (NZel)es
TFCINALEU,T) . OR,(NALEQ,2)INTE(NX+1)#NZnE
LR ‘
TECIRALERQLS) ,OR, (NALED,G)) NJIa(NZ+Y) 06
ccocncCD”PlETE HATRIX FOK WHULE PLATLE #ROM FLEMENT MATRICES
1=}



CooveelT DENOTES STAKTING PUINT AND INCKEMENTAL X,
11=1=(NJ)
/2114
TEC(NALEQ,2) ITuITo(NXe1)a(NYIT)ohInb
1F (KA,EU, L) 1TSITe(NZe0)
TF (MALEQ,6) LTEIT+CINX4T)wH2s6)
1V I=njeo
IT=1T+4(NJ)
1F(1,EQ,1) GO TO 100 «
TECNN 6T, (NK)) GO0 Y0 30
CoveeeDUUELE PUINT FIKST ROW FULLUWS
IFCL LT (NN=5)) GO TU 2UU
TFCI,EQ,(KN"5)) GO TO 300
CIFCTILG6T(11=NK)) GO TO 4U
25 TFCILFQ,(NN41)) GO TO 40U
CeoeseUUADKUPLE POINTS RUWS FOLLOMWS .
TFCIEQ,(NN+/ ))INNZNNeNK
30 JFCILLT (NN=5)) GO TO 80D
IFCI,EQ,(NK=5)) GO TO 500
TFCI LT, C(I1=NK)) GO TO 25
4V CONTINUE
TFC1,EQ,(NK+1)) GD TO 600
c DOUBLE POINTS ROWS FOLLOWS
IFCI LT ,(11~5)) GO TO 700

CooeeoTHIS LEAVES ONLY ROWS OF LAST NODE
E * 19
M= IT ~KJ=K1
101 n=d
L=17
102 00 105 J=1,6
MM = MeJ=1
KCL/MH) = KK(E,J)4K(L,MM)
KCL/MMeNI)BKK(E,J406) +K (L, MMENY)
K(L/MMENT) = KKCE,J+412)+K (L, HH*+NKT)
. KCLsHMeRI4NI) = KK(EeJ+I1B)+K (L, MM*NI+NY)
105 CONTINUE
L=L+q
ExE+l
NxN+1
1E(K, LT, 7) GO TO 102
G0 70 1000

100 E=9
Hx1T
CioessRONS 1 T0 6
G0 Y0 101

360 Ex7 .
Hx)T=NJ
CoeaeoKOWS OF CORNER NUDES
60 70 101

600 E=13
MEIT=-N1
CoaovCORNER KODES OF LAST NODE
60 70 101

200 € = 7
Mz]lT=NS
250 L=17
Nx1
251 CONYINUE
Cooees COMPUTE DOUBLE POINTS ROW
DO 255 J=1,6
MMzH+ =1
KCLaMM)=KK(E, ) +K (L, MM)
RJ2=NJ#2
K(LeMMENS)IE KKCE,J+O)4KKCE=6,J)+K (L, MMENJ)
K(LeMM4NIZ2)= KKCE=64J+0)+K (L, MMENS2)
KC(LsMMAKT) = KR(E,J+12)¢K (L, MMENT)
KCLeHMENTONID)® KRCEGI+TIB) ¢KKCE=0,J¢12) 4K (L, MM+KI N )
KCL/MM+NI+NJI2) = KK(E= 6:J’1b)0K(L.MH0N1'hJ2)
255 CONTINUE
E=E+1
LxL+]
Nxj+1
TIF(N.LT,?) GO TO 251
GO0 TO 1000

400 L=]T
HzIT~N9
E=13
N=1
CoesesPOWS OF LEFY HAND EDGE NODES
401 DO 420 J=1,6
LT ENES
KCL/MM) =KX (E V) #K(LyMM)
KCLeMMONS) = KK(E,J+0) ¢ K(L,MM+NYS)
KL AMMeNT) & KRCE J+12) ¢RKCE=12,3) 4K (Lo MM*NT) )
K(LoMMENTOND) 2 KK(E(J*18) ¢ KR(E=12,J+0) ¢ KCL,MMeNT4NJ)
KCL/MMANTORT4N) 7 KR(E=12,J¢18) +K(L,MMeNT+NTONY)
h20 K{LoMMeNTONT) B KK(E~ 12.J‘1L)0u(L'HH0N1¢~1)
h=heq
ExEel
Lap+d
FECRLLT,?) GO TO 401



L TU TULL

500 Ls]T
t=19
. MelT=N1~NJ
N=1
Cooves RONS OF R,H, EDGE MNODES
501 1O 510 J=1,6
HHEH+ =1
KEC(L,MM)SKK(E,J)4K (L, M)
K(L/MMeN))mEX (L, J¢604X(L)"MeN])
KCLoMMEHT) = kn(bod*12) *0rK(E=12,J)4K (L, MMENT)
KCLAMMENTENY) = KR(E s J¢TBI+AR(E=T12,J406)¢FK (L, HHENTI4NY)
KCLiMMENTONT)ISXKCE=T12,d4T2) 41 (L, HA+NTI+NT)
KCLeMHENTONTONY) B KKCE=12,J+18) ¢ (Lo MHENTENTOND)
510 CUNTINUVE
NN+l
ExE+l
LeL+
IF(K,LT,7) GO TO 501
G0 TO 1000

700 L=IT
Ex19
N1 .
CoovesCOMPUTE DOUBLE POINTS ROWS 88
MIT=K1=NJ
6V TO 250

800 IF(NN,EQ,(NK*2)) GO TO 801
. GO TU B85S
Cooves COMPUTE K MATRIX ROWS FIRST OF QUADRUPLE POINTS ROWS

801 JFCI.GT,(NN=K1¢7)) GO TO 861

HelT-K1=-NJ

L=lT

N=l

Ex19
810 DO 820 J=1,6

MMzM+ =1

K(L/HM) = KK(E,Jd)+K(L,MM)

K(LsMMENS)m KK(EsJ40) +KKCE=6,J)¢K(L,NH¢NJ)

N2=NJ#*2 . . -
803 K(L/MMeNZ2) KK (E~6,J+6)+K(L,MH¢N2)

HMEM+J=T1+N1

KC(L/MM) = KKCE,J+12) ¢ KKCE=12,J)¢K(L,K")

O KCLIMMENI) = KK(EsJ¢1B) +KK(E=12,046) +KK(E=6,3412) +KK(E=18,J)

1 ¢K(L/,MMONY) B
805 K(L,MMeNZ) = KK(E-6sJ¢T1H) ¢KK(E=~T18,J406) KL, MN+N2)

HHMEMeJ=T1+NT+N1

KCL/MM) = KKCE=12,3412)4K(L,HK)

K(LsMMeNI ) ® KK(F~12,J¢18) +KK(F=18,J412)+K(L,MM¢NJ)
B20 KCL/MHMENZ) = KK(E=18,J¢18)+K(L,MH+N2)

L=+ -

NxK+1

ExE+1

IF(N,LT,7) GO TO B10

840 CONTINUE
60 T0 1000

c 1F NY 1S MORE THAN 3
Cooss COMPUTE QUAD POINTS ROWS FROM FIRST ROW OF QUAD POINTS
CoeyesPOSSIBLE ERROR BUILD=UP FROM USING THESE ROWS
855 CONTINUE
L=1T . . e e e e e
N=q
TANTAG =IT+N14¢NJ+S
TTHNIM6=IT~N1=NJ
850 DO 851 J=ITMNIM6,1ANTAG
852 K(LsJ)=KCL=N1,J=N1)
851 CONTINUE
Lzley = -
NER+T
IF(N,LT,7) GO TO BSO
60 TO 1000

.r

Coeves COMPUTE QUAD PUINTS ROW ONE, SECOND POINT ONWARDS
861 CONTINUE
L=17
k=1 :
TANTAG =IT+N14NJ+S
JTMNIMO=IT=N1=NJ
B60 DO Bo62 I=1TMNIM6,1ANTAG
862 K(LeJ)IEK(L=NJIsJI=NJ)
Lup+d
Nxh+d
1F(N,LT,7) GO TO 860
GO YO 1000

1000 IFCI,LT,(NK=NJ)IGO TO 10
1F(NA,LE,4) GO TO 1US0
TECL,EQ, CANK=NJ4TI%2)) 1T ®w((NX+1)enZeb)+]1T
TFCIEQ CONR=NJ+1) D) IT s((NX41)#NZwb) 1T
1050 SECI.LT,(11=%)) GO YU 10U -

Cooveo PRINT COMPLETED K MATRIX



HAUXSNX
NY=]1
TE CONAKRE, V1) AND (NA NEL2)) GO 10 10564
WRITE (£,1052) ’
1052 FORMAT (//' PLATE IN XY PLANE ONLY'/)
60 TO 1065
1054 1F C((NANE,3) (AND,(NA,NE,&)) GU TO TUS8 -
WRITE (2410U56) %
1056 FOKMAT(//* PLATES IN XY AND YZ PLANES'/)
GO TV 1065 «
1058 WRITE (2,1069) '
106U FORMAT (/7' PLATES IN XY AND YZ AND ZX PLANES'/)
1065 CONTINUE
WRITE(Z2,1001) -
1001 FOKMAT(® CUMPLETED MATRIX'///)
Coeess THIS IS TO REMUVE PRINTOUT INSTRUCTIUNS
CooseeDO 1005 I=21,NO
WRITE(2,1002) ' N
1002 FOKRHAT(' ) :
WPITE(Z,TV003)(K(1,J)¢ed=1,K0)
1003 FORMAT(IVEL2,4)
1005 CONTINUE
I=1
1013 I=x141
IF(1,EQ, NO) GO TD 1112
Js1
1019 JTF(KCT,J) NEK(J,1)) GO TO 1141
Jrde1
1FCJ.LT,1) GO TO 1011
G0 T0 1013 .
S 11T MRITE (2,1092) (1,3,K(1,d),K(Je1))
1012 FORMAT(///" UKRSYMMETRICAL MATRIX'//' ERROR PUSITION 1S 21344110 Y,
1' ',2F12,4)
16C1,LT,NO ) GO TO 1013
1112 CONTINUE

KX=NAUX
RETURN
END L

101+

JOB MUOJFEM2,tESJIS,CPT6(TLO,P2000)

ATTACH (TAPE3,NUJDATY +FOZASIS,ST=S6A)

ATTACHKC AFILE,LIBNAGFTNLCM,ID=LIBAPPL) . L

LIBRARYC(AFILE)

FTN, ’

LOSET(PRESETENGINF,MAP2B/2222ZMP)

LGU(PLE=600O)

REWIND(TAPE3)

COPY(TAPES,TAPED)

CATALOGCTAPE9,HUJDATT ,FU2AS]IS,ST=SOA)

SARES
PROGRAM STRUCTC(INPUT,TAPEI=INPUT,OUTPUT,TAPEZ=OUTPUT,TAPE3,TAPES)
LEVEL 2+K,S

Ceeeees THIS PRUOGRAM TAKES THE STIFFNESS AND MASS MATRICES AS GIVFN BY MASTER PLAT

[4 READ IN FROM MAG TAPE, THE INERTIA MATRIX 1S SIMILARLY MUDIFIED 18
[ AKD RECOKDED IN DISCFILE BOTH TAKING INTO ACCOUNT BOUNDARY CONDITIONS
REAL K(180,180)+/KK(6+6) ¢+ LENGTH, FEINT(156)

REAL S(166,146)
INTEGER URDER
INTEGER W(180)
COMMUN/UPPER/KS
NXES
NY=3
KI=2
READ (3) K
ORDER=NX*NY#NZ#6
N=QRDER
PO 10 I=1,N

10 M(1)=1
PO 15 I=1,N,6
1F(I1.EQ,1) GO TO 11
1FC(1,EQ,25) GO TO 11 . )
1F(1,EQ,61) 6O TO 11 : TS
1F(1,EQ,85) 60 TO 11 ) ’ ’
G0 TO 15

11 CONTINUE
J=0

12 H(1+4J)n0
JEJa
IF(J,LT,6) GO YO 12

15 CONTINUE

CoevooTHIS ELIMINATES THETA FOR EMPTY FIELDS

NYM2aNY-2
DO SU JJI=1,NYM2
DO 50 J=1,NX -
JKE(NX*B)+(600J))
JEKE(NX*NY*6)¢JK : : -
W{JK)=0 : - o
W(JKK) 20

50 CONTINUE
nzQ
DO 16 I=1,N . 7
TE(VWET),EQ, D) GO O V6
MEMeY

16 CONTINUE



WRITECLZ,V )M

17 FCKMAT(' # = 1,110)
HHITE(2,1)

1 FORMAT(* *)

NXMOGENK* G
WHITE (2,060)

60 FORMAT(® DLEGREES UF FRhtUDn REDUCED wult/s/s)
DO 1Y 121,Ns¢ NXMO
IR E XSS LIRS L]
WRITE(Z2,18)(WCJ),dal,11) .

18 POKMAT( 3014)

1y CONTINUE
WRITE (2.46)

L6 FORMAT(*ISTIFFNESS MATRIX OF REDUCED PLATE®)

CooeoolWxl FUR PKRINT
1W=2 .
CALL BNDRY (K,N,W,S,M,)1,1W)
CALL SYMET(S,M)
CALL WKTIP(S,1,M)
[+ USE K AND KX MATRIX FUR IKERTIA HATRIX

KEAD (3) K
WRITE (2.64)

64 FORMATC'V1INERTIA MATRIX OF STIFFENED PLATE®)
"CALL BNDRY (KrNoV.S:H:Z:lH)
CALL SYMET(S,M)
REWIND 3 .
WRITE (5) W
CALL WRTP(S,2,M)
ENDFILE 3
REWIHD 3
sTopP
END

SUBROUTINE BNDRY (KeNoWsSeAeB,sC)
LEVEL 2.X,S

REAL SCAIA) e KC(HoN)
INTEGER A8

INTEGER C

INTEGER W(N)

- € THIS SUBKOUTINE ALLOWS FUR SATISFACTION OF THE BOUNDARY CONDITIONS AKD AT

4 THE SAME TIME REDUCES REDUNDANT RUWS AND CULUMNS OF THE MATRIX
L=
CooesoDEALS WITH ROWS
DO 100 1=1,K
4 W(1) = 0 IF DEGREE OF FREEDOM ELIMINATED
1F (W(1).EQ,0) GO To 100
c THIS ELIMINATES ROW
Me|
CoevesDEALS WITH COLUMNS
DO 90 J=I,N
JF (W(J),EQ,0) GO TO 90
S(L,HIEX(T,d)
HEMed ’
90 CONTINUE } : .
L=L+1
100 COKTINUE
HE=M=1
1F (A,EQ,M) GO TO 110
sTOP
110 CONTINUE :
c COMPLETE LOWER TRIANGULAR MATRIX
Coeas s BOUND TO BE SYMMETRICAL
MH1=H-1
DO 120 J=1, MM}
JAI=J ¢
DO 120 1= JA1 ,M
120 SCI,3)=S, 1)
WRITE (2,140) M
140 FORMAT (' ', MATRIX SIZE IS ',13)
1F(C,NE,1) GO TO 143
DO 142 1 = 1,M
HRITE (2,161) ((S(I.J).J=1.n))
141 FORMATY ('o'.(1a£1o 4))
142 CONTINUE S -
143 COMTINUE o ’ ) .
RETURN ’
END

SUBROUTINE WRTP(S,B,A)
LEVEL 2,S
REAL SCA,R)
INTEGER A,8
CeeoooTHIS SUBROUTINE WRITES REDUCED MATRICES TO DISCFILE
WRITE (&) S
IfF (8B,EQ,1) GO TO ZUU
REWIND &
READ (&) S
WRITE(3) S
READ (4) S
WRITE(3) S
WRITE(2,8Y9)
&Y FORMAT(//' DATAFILE "MOJDAT * HAS NOW BFEN REDUCED BY BOUNDARY?')
200 RETURN .
END



SUBROUTINE SYMET(S,N)
LEVEL 2,8 ;
DIPENSION S(N,N)

Covras THIS SURKUUTINE CHECKS MATRICES AKE SYNMETKICAL AFFF& REDUCTION

DO 5 J=Z.N

IHix] =1

Vo S Js1,.IM1

1F(SC1,9),EQ,S5(3,1)) GO TO 100

WRITE (2.70) F1,3,5(1sd),S5¢3,1)
10 FOKMAT(? UNSY”%#'RIC&L MATRIX AT *,215%,77° *,2€10,4)
100 CONTINVE : .

> CONTINUE .
RETURN ’
END

SUBROUTINE DFEDET(K,M,1,DET,REINT,IT,S)
KEAL KC141),S{M,H),REINT(Y)
LEVEL 2,K,S
DO 30 11=1,M
b0 30 J =1,M
KCI1,3)=SC11,d)
30 CONTINUE
CALL FOSAAF(S,M,M .osT,nElNI.lt)
WRITE(2,7V)DET
71 FOKMAT(' DET = ',E20,10)
IF(IT,EQ,0) GO TO B8Y
IFCIT,EQ,1) GN TO 65
1F(IT,EQ,2) €O TO 75
65 CONTINUE
WRITEC2, 7000 © © © "0 er tt o setes e eseoees e Les
70 FORMAT(® SINGULAR MATRIX AT',14)
WRITE(2,72)(K(1,J2),92%1,1)
WRITE(2,72)(S(1,J2),J2%1,1)
MRITE(2,72)(x(J2,1),322%,1)
WRETE(2,72)(S5(J2,1),4221,1)
72 FORMAT(6ENS,7)
STOP
75 CONTINUE
WRITE(2,80)1
80 FORMAT(I&4,* VERY LARGE DETERMINANT VALUE DETECTED')
WRITEC2,72)C(K(1,32).92%1,1)
WRITE(2,72)(S(1,02).,42=1,1)
WRITE(2,72)(K(J2,1),42%1,1)
NRITE(2,722(S5€J2,1),d2%1,1)
sSYop
85 CONTINUE
WRITE(2,90)1
90 FORMAT(I4,' MATRIX IS CONFIRMED NON SINGULAR')
100 CONTINUE
D0 200 1I=1,M
DO 200 J =1,M
200 SCI1,J)=K(11,J)

RETURN .
END

1111 13

tene

1t/

JOB MUJFEM3,2ESJIJIS,CP76(T40,P2000)

ATTACHC(TAPE3,MUJDATT ,FU=ASIS,ST=S6A)

ATIACH(AFlLE:LlBNAGFINLCH:ID=L]8APPL)

LIBRARY(AFILE)

FTN,

LDSET(PRESETXNGINF,MAP=B8/2222ZMP)

LGU(PL=2000) . .

¥rans i ) T

PROGRAM POSDEFCINPUT,TAPEI=INPUT,0UTPUT,TAPE2=0UTPUT,TAPED)

LEVEL Z:&.H.C_

INTEGER 1W(180)

REAL K(166,146),M(146,146),C(146)

COMMON/UPPER/K M, C :

READ(3)Iw

READ(3)K

READ(3)M .

1F=4 ] .

CALL FOTAEFC146,K,166,4,166,C,1F)

© JECIFLEQ.1) WRITE(Z2,70)

10 FORMAT(® M NUT PUSITIVE osr:ulri')
TFCIFLEQ,U) WRITE(Z2,20)

20 FORMAT(®* M IS PUSITIVE oerxulTE')

sTOP

. END
STARS
hhan
IR R

JOB wu;;:no.xssJJs,cpre(rjll.pDOUU)
ATTACHCTAPEZ,MUJDATT ,FU=ASIS,STa56A)
ATTACHC AFILE,LIBNAGFTHLCM, 1D=LIBAPPL)
FIN(UPTE2)

LIBRARYCAFILE)
LDSET(PRESETaNGINF MAPSB/2Z2Z2ZMP)
LGU(PLE300Y)

REMIND(TAPE3)

COPYCTAPES, TAPEY)

CATALOGCTAPEY ,MOJDATT  ,FOEASIS,STxS6R)



MRHRS
PROGRAK SOLVECINPUT,TAPELISINPUT,,BUTPUT,,TAPELSOUTPUT, TAPES)
LEVEL 2,x,MsA
LEVEL 2.BB,8L,wesl
COMMUKJUPPERIK Mo A
. COMMUN/LUWEH/RB, HLsWI 2
CoroeaTHIS PRULKAM SULVES EJGFHVALUFS AND EIGENVECTUKS FROM K AND W MATRICES <
’ DIMENSION BBE16n),BLET4A) ,8(14606),1HCIHD)
KEAL K(1¢b.140),H(Ikb,lbo).h(?ub.?hb,
INTEGER Z(146)
NE140
NEEZ146
CoseoehW EQUAL ZERO FOR NU MATHRIX PRINTOUT
NW=g .
READ (3) TW . ’ .
READ (3) K
READ (3) M
REWIKD 3 T
"WRITE (204) . . .
& FORMAT(® K MATRIX*///) -
IF (KW,EU,0) GO TO 15
S FORMAT (//C 9F12.4))
DO 6 Ix=1,N
CWRITEC(R2:5)(KC14J)40%1,N)
6 CONTINUE
WRITE(2,8)
8 FORMAT(' *)
NRITE(2,10) : .
10 FORMAT ("9M MATRIX'///).
00 14 I=1,N
WRITE(2.,11)
11 FORMAY (* ")
WRITEC2, 5)(M(1,d)sd=1,N)
14 CONTINUE
15 CONTINVE
1F=1
[4 EPS GIVES ACCURACY REQUIRED
EPS=1,0E=-11
PO 13 1=1,N
DO 13 J=1,N
13 AC1,J) = 0,0
Coooee INVERT K MATRIX
‘CALL FOV1AAF (KyNeNJAsNsBLOIF)
IFCIF,EQ,0) GO TU 20 ' . .
1F (1F,NEL,Y) GO TO 18 E '
WRITE (2.17)
17 FORMAT (' MATRIX SINGULAR *)
18 WRITE(2,21)
21 FORMAT('ONO IMPRUVEMENT IN ITERATION®)
60 70 30
20 WRITE (2,23) ’ ‘
23 FORMAY ('USUCESSFUL INVERSION %)
30 CONTINUE
IF (KW,EQ,0) GO TO 32
WRITE (2,31)
31 FORMAT ('1INVERTED K MATRIX FOLLOWS®)
WRITEC2+5 ) CCACL,J)ed=1oN) s 1=ToN)
32 CONTINUE
IF (NW,EQ,0) GO TO 40
WRITE(2,8)
T WRITE(Z2, 5)((&(!.)),J TeN)o1=1,N)
WRITE(Z2,8)
WRITE(2, 5)(BL(I),1I21,N)
WRITE(2.,8)
40 CONTINUE
WRITE(2,19)1F
19 FORMAT(15) .. o et eeeiieea 4 eemmieeem meeeieee v meeeam e o s
Cooss s COMPLETE UPPER TRIANGLE
CoovsoMULTIPLY 1/K AND M MATRICES
1F = 3
CALL FO1CKF (KQA.!:N:N:NJBL:N.‘DIF)
IF (1F,EQ,v) GO TO &6
WRITE (2,45) IF
45 FORMAT (1HO,' ERROR DETECTED *,15)
sTOP
46 CONTINUE
WRITE(2,48)
48 FORMAT(' KM MATRIX UBTAINED')
TF(NN,EQ, L) GO TU &Y
WRITE (2,47) C((K(1,J0),0=1,N),121,N)
47 FORMAT (' KM MATRIX*//(TUF12,.4))
49 CONTINUE
Coeess BALANCE UNSYMMETRICAL MATRIX
CALL FO1ATF(N:£:K:N:IX:IYIBB)
WRITE(2,b)
WRITE(2451)
59 FORMAT(® BALANCED MATRIX®)
1F (WW,EQ,U) GL TO 57
WRITE(Z2, S)YC(RCI2J) ed=T,N)p =2 0N)
WRITE €2+5) (BBC1)e0i=14N)
WRITE(2,55)1X,1Y
55 FOKMAT(Z2110)
57 CONTINUE
c.....utoutc TO UPPER MESSENRERG FORM
CALL FULANE(NIXelYeXoN,2)

v

CALL FUTAPE (NolXelY ZoeKeMoAosK) .
CioeoeCOMPUTE EIGENVALUES AND EIGHNVECTORS OF UPPER HESSENBERG MATRIX
1F = 1

CALL FUCAUF (NolXKelYobPSokoNyAohoNeBLs2s1F)
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JF(IE,NELY) STUP
WRITE(2,75)
75 PORMAT(*UMUKE rnAu 50 ITERATIONS NECESSAKY IN ONt SOLUTIUN') °
71 CONTINUE
WRITE (2,73) (Z(1),1%1,n)
73 FOKMAT ( * KO UF TTERATIUNS =°,15)
WRITE(2,b)
WRITE (2,50) KE
S0 FORMAT(1H1,*NO OF EIGENVALUES COMPUTED =¢,14/77)
WRETE (2,60) (WC1),151,NE)
6U FOKMAT(IH ,*ETGENVALUES®//C1X,10692,6) )
IF (MW EU,U) GO TO 61
WRITE (¢,00)(CELC1),1BT,NE)
61 CONTINUE
DO 63 1x=1,NE
TF(W(L) ,LT,0,0) GO TO 62
60 T0 63
62 WRITE(2,64)1 N
64 FORMAT(' NEGATIVE EIGENVALUE -AT ',15)
LISRELI'IS B)
63 W(I)=(SORY(T1,/7W(1))/(2,01%3,142))
"WRITECZ,65) (W(1),1=1,NE)
65 FORMAT (14 ,/,' NATURAL FREQUENCIFS (HEKTZ)*//7(1X,5F12,4))
Coeess s RANSFORM EJGENVECTORS DF BALANCED MATRIXK TO OKIGINAL MATREX
CALL FULAUF(N,IX, 1Y, N,6B,ArK)
WRITE(2,80)
B0 FORMAT(*TEIGENVECTORS')
74 FOKMAT(YF13,6)
PO 90 J=1,HK
WRITEC2,11)
WRITE (2:74)(ACT1,J),1xT1,N)
90 CONTINUE
100 CONTINUE

REWIND 3
WRITE (3) 1IW
WRITE (3) A
WRITE (3) W
stop
END

AANNS

(23 2]

v/ e

JOB MUJFEMG, tESJIIS,CPTECTLO,P2000) "
ATTALHCTAPE3S,MUJDATY ,FO=AS1S,ST=S6A)
ATTACH( AflLE.LIuNAGFINLCM.chLlBAPPL)
FIN(UPTE2)
LIBRARY (AFILE) 1
LDSET(PRESETENGINF,MAPRB/2222M4P)
LGO(PL=L000)
REWINDC(TAPED)
COPY(TAPE3, TAPED)
vCATALOG(TAPE9;HUJDATI sFO=ASIS,ST=S6A)
11213
PROGRAM SULVE(lNPUT;TAPE1tlNFUT-OUTPUT:1APE2=007PUI.1APE5)
LEVEL 2/KsM,A
LEVEL 2,8BB,BL,Ws2
COMMUNJUPPER/K M, A
COMMON/LUWEK/EB,BL,N#2
CeoveoTHIS PROGKAM SOLVES EIGENVALUES AND EIGSENVECTORS tann K AND M MATRICES
DIMENSIUN BHC14L6),BLC146),W(166),IW(I1KY)
REAL X(146,166) ¢M(146,1466),A(146,146)
INTEGER 2(146)
NE146
NExX146
Covees KW EQUAL ZERO FOR NO MATRIX PRINTOUT
NW=0
READ (3) IW
READ (3) K
READ (3) M
REWIND 3
WRITE (2,4) .
& FORMAT(' K MATRIX'///)
1F (NW,EQ,U) GO TO 15
5 FORMAT (7/¢(C 9F12 4)) Y
DO 6 I=1,N .
WRITE(2+5)(X(1,J),9=1,K) .
6 CONTINUE ’ ) ) N
WRITE(2.:8) ’ '
8 FORMAT(' ')
WRITE(2,10)
10 FORMAT ('1M MATRIX'///)
DO 14 1=1,N
WRITE(2,11)
11 FORMAT (* ')
WRITE(Z2, S)(M(14,3)098%,N)
14 CONTINUE '
15 CONTINUE
1F=9
CALL FOZ2AEF(K,N.M, N.N.u.A.N.BL.aB.lF)
TECIF,EQ,0) 60 TU 20
IF (lF.NE.1) 60 70 18
WRITE (2,17)
17 FORMAT (' MATRIX NUOY POSITVIVE OFFINITE®)
18 WRITE(2,21)
21 FORMAT('UND lnPROVEMENT IN ITERATIUN')
60 TV 30 .
20 WRITE (2,23)
23 FOURMAT ('USUCESSFUL CUMPUTATION®)



30T CORTINUE
HRITE(Z2,80)

BO FURMAT('TEIGENVECTOKS®)

T4 FOKKAT(YF15,6)

70 POKMAT (/7' ',15,' MUDE SHAPE CUNWESPONDENG FO NATFREGH/LFTW,. Y
DO YU J=1,n
W(J) ® (SURT(N(J)IIIIC6,284)
WRITE (2,70) J,H4(CJ)
WRITE(Z,11)
WRITE (2s74)CACTL,d)elmi,N)

90 LONTINUE

100 CONTINUE
wHRITE (2,60) (lu(l):l'1:180)

60 FORMAT(6UI1Z)

REWIND 3
WRITE (3) IW
WRITE (35) A
WRITE (3) W -
sTOP : '
END
AHERS
[ T2R
XYLl

J0oB nOszns.:ESJJS.CPro(YeA.PJOOO)
ATTACH(TAPE3,MUJDATT ,FOzASIS;STES6A)
FTN,
LGoU(pPLE3QOL)
KEWIND(TAPE3)
COPY(TAPES,SCRATCH)
CATALOG(SCRATCH,MUJDAT2 ,FUSCONF,ST=S6A)
RAANS
PROGRAM SPONSCINPUT,TAPET1ZINPUT,OUTPUT,TAPE2=0QUFPUT,TSPES)
LEVEL ZsAsMslW
COMMUN/UPPER/A W, IW
CovessTHIS PROGRAM KEALS NATURAL FREGWUENCIES AND MODE SHAPES OF BOX
CoeeeeAND VUTPUTS SELECTED ONES UN DISC TO PAPER TAPE :
DIMENSION AC165,146),W(146),1W(180)
KEAD(3) IV
READ(3)A
READ(3)IW
Nx146
NT=180
1 FORMAT(* )
5 FURMAT(® DEGREES OF FREEDOM REDUCED OUT *//)
9 FOKMAT(//(PE13,4))
10 FORMAT(//(YF13,6))
11 FORMAT(3014)
70 FORMAT (//* ',15,"' MODE SHAPE CORWESPONDLING TO NATFREG™FAFTU.52/)
MRITE(2,1)
WRITE(2,1)
WRITE(2,5)
WRITEC2,11)CIW(1) ,I=1,NT)
WRITE(2,1)
NRITE(2,10) ¢ W(1),1=1,N)
DO 20 J=2,21
WRITE (2,70) J.W(J) : .
WRITEC2,Y)  (A(1,0),1=1,N) ~ :
20 CONTINUE
REWINC 3
CoeseeSELECT TUENTY NATURAL FREQUENCIES AND MOUES SHAPES OF BOX WEVHIN
Cooeos FREQUENCY RANGE 20 TO 1UU HZ AND WHITE TU PAPER TAPE FLLE
CoeoosONLY CUNSIDFRING UPPER SURFACE OF BOX
Ke62
00 50 J=2,21
WRITE(3,9) (AC1,J),1%=KsN)
50 CONTINUE
WRITE (3,10) (w(l1),1=2,21)
WRITE (3¢11) C(IWC1)I=91.NT)
STOP
END
[ ¥ 322

the e

- JOB MOJFEM6,1905M308,HENG ' B ’ . LR
DISPLAY '4514 MOJAMAGNDATAY 33000512 OUT!
FORTRAN 1,CRO(MUJOPRUG) , [TRU (DATT)),100,1000
LS 2 %] .
DOCUMENT MUJ6PKROG
PROGRAM(MUJIOT19U5M0JB)
INPUT 1 = CRV
QUTPUT 2 = LPO
INPUT 4 = TRO
USE 3= MTOC(MOJAMAGDATAT)
TRACE 2
ERD
MASTER TAPE
DIMENSTUN AC85,20),4(20),1IW(90)
9 FORMAT((YE13,4),/1)
10 FORMAT (YF13,6)
11 FORMAT(3014)
REWIND 8
CoeasoWRITE FIRST TWENTY NAT FREQ AND MODE SHAPE TO PAPER .TAPE
CoveeeONLY CONSIDERING UPPER SURFACF Of BUOX
N=8)
(X ]
DO 20 J=1,20



READ (4,9) (A(1d1J1=0,N)
WRITEC(R,Y) (ACLed)el®KeND

20 CONTINUE

- HWRITE (5) A :
READ (& ¢10) (W(I),1%1,20)
WRITE (5) W
WRITL (2,100 (W(T1D),021,20)
READ (4 o11) (Qu(s)el= V1,900 -
WRITE (5) 1MW .
WRITE (2¢11) C(LUCI)el= 1¢90)

ENDFILES
sTOP
END
FINISH
asne
#SHITCH

JOB MOJFEM7,190USM30B,HENG
DISPLAY '4514 MUJAMAGDATAT 33000512 IN®
FORTRAN 1,CRUCHUIZPRUG) 4CRUCHUITDATA), 75,1000
(X2 %3
DOCUMENT MOJT7PROG
LIBRARY (FD,SUBGHROUPSRGP)
LIBRARY(ED,SUBGRUUPSRFZ)
PROGRAM(MUIZIPUSHOSC)
COMPACT DATA
INPUT 1=CRO
QUTPUT 23LPO
INPUT 3=MTO(MOJAMAGDATAT)
NO TRACE
END
MASTER RESPONSE
REAL M(20) T ’ -
-DIMENSLION ACS512),5X(512),5Y(512)
DIMENSION JW(9U) ,ENC20),F(20) W(D0,20),R(102),X(B5,20)
DIMENSIUN DL(9),V(9),BCAC14)
DIMENSIUN WDF(20),WDFCV(20)
DATA BCA(Y)/27HEXCITATION SPECTRAL DENSITY/
DATA BCA(5)/18HFREQ UP TO0 150 hHZ /
DATA BCA(7)/25HRESPONSE SPECTRAL DENSITY/
DATA BCA(10) /234 FREQUENCY UP TO 150 HZ/
REWIND S
Cooeeel5 TRANSVERSE DEGREES OF FREEDOM ON TOP PLATE
NTRANS=1S
NMODE=20
N=Q0
READ(3)X
READ(3)F
KEAD(3) IV
NF=512
CovoreCALL PRINP(X,F,o1W)
FMAX=150
FMINEFMAX/S512,0
READ (1,170) (ENCI),1=1,NMODE)
10 FORMAT(1VFE,4)
WRITEC(2,10) (F(1),1=1,20)
WRITE(Z2,10) (FN(1),151,NMODE)
DM = ((U,/78%0,2¢%0,00061)¢7800,0)/FLOAT(RTRAKS)
Fa=0,0
DO 15 I=1,NF
ACE)=0,0
15 CONTINUE
DO 9 J=1,20
(33}
PO 9 I=1,90 1
W(I,3)=X(K,J) )
1IFCINC]) L EQ,1) GO TO 8
KxK=1
W(1,4)=0,0
8- CONTINUE
KeK+1
9 CONTINUE
WRITE (2,4)
& FORMAT(/' DEFLECTIONS IN MODES /)
WRITE (2+5) ((W(14d)olz3,N,0)0d01,20)

5 FORMAT (/(YE13,5)) e .
Coovoes HNODEXO,S INDICATESHALFWAY NODE POINTS TU BE INTERPOLATED
CoesssFOR ADDITIUNAL SPDNS POINTS :

HNODE=1,0
HNODE=U,5
IFC(HNODE,GT,0,5) GO TO 18

CALL INTM(W,WDF,WDFCV)
18 CONTINUE

Cooaeos INPUT SPECTRAL DENSITY

CALL INSPDNS(SXeNFoFMIN)

CALL GRAPH (SX,NF,0+0,SYsBCA2T /R, FMAX)
CoeeeoNB VALUE 1S CHANGED AFTFR PLOTTING

CALL INSPDNSC(SX/NF,EMIN)
CavveosRESPUNSE AT DEGREE UF FREEDOM K

K=39
K=33
K=27
Ku2y
K=1d
Ke9

Ke3



(1Y
K=g1
K=75
k=69
k=63
Ks57
K851
K=45

Coeeess PLATE EXCLTED AT DEGRFE OF FREEDOM L
L=
2V CONTINUE
WRITE (2,200) K,L
200 FORMAT (' RESPUNSE AT NUDE*,L%«® TU EXCEITATIUN AT uooe'.xs)
Coeegel CONTROLS N0 UF NAT FREG AND MODF SHAPES USED
Coeeoed CONTRULS NO UF TRANSVERSE UDEGHEFS UF FREEDUN
PO 1000 1J=1,512 .
FQaFMIN*#(FLOAT(1J))
. b0 60 I=1,NMODE
M(l1)=0,0
DO 50 J=x3,N.6
SO MU =MD +((W(J, 1) we2)nDm)
CooveoeTU TAKE INTU ACCOUNT THE OTHER 3 SIDES
Ceove HCIIZH(1)#3,0 .
H(1)=M(1) %60
60 CONTINUE
CoooaeTHIS CALCULATES MODULUS UF RECEPTANCE
Coveeoe COMPUTE SOUARE OF MOD UF RECEPTANCE
1F( HNODE,GT,.0,5) GU TO 80
Coeees FOR ADDITIUNAL NODES
00 70 1=1,20
WL, I1)=WDFCV(D)
70 CONTINUE
80 CONTINUE

CoeeaosAClJ) IS RECEPTANCE SQUARED
PO 100 1=1,NMODE
100 ACIIIEACTS) ¢ CCCHCLAI) MK 1)) *a2) 7CCCM(T)#x2) 0 (
VCCCFCII*a2)=(Fuen2) ) #02) + (CENCI) wa2) 2 (F(1)2%4))))))
ACTII=ACISD/(16,00(8,142%%4))
1000 CONTINUE
CoovneCALL GRAPH2(N,DL,NO,V,W,BCD,BCX,IW,R)
CALL SPDNS (A,SX,SY,NF)
CALL GRAPH (SY,NF,50,0,5SX¢BCA,2sReFMAX)
WRITECZ2,1001) FHAX
1009 FORMAT (/7' FMAX = *,F10,3)
sTO0P
END
SUBROUTINE INTM(W,HDF,WDFCWY
DIMENSIUN W(90,20)
DIMENSION WDF(20),WDFCV(20)
ELENG=0,13
1ST=39
1ST=45
15T=51
15T=9
15T=15
151=21
15T=33
ISTEP=3D
ISTEP=6
JSTEIST+ISTER
IFCISTEP,EQ,30) GO TO 20
1CR=I§T+2
JCR=JST42
60 70 30
20 CONTINUFE T e
ICR=IST+1 ’
JCREJST+Y
30 CONTINUE
DO 40 I=1,20
WDFCI)I(WCIST, 1)+ (JIST,1)) /2.0
WOFCVCII=WDFCI)+(ELENGY(WCICR,1)=W(JCR, 1)) /B, o)
40 CONTINUE -
WRITE(2,70) (WDF (1) 15T ,20)
WRITE(2,10) (WDFCV (1) #EET,20%
10 FORMAT(® *,//(12E10,4)) ) o -
RETURN . .
END

SUBROUTINE INSPONS(SX~NFsFMLNY

DIMENSION SX(NF)

0O 5 I=1,068

SXCI)=B, 40/ (C(FLOATC(69))*FHIN)I**2)
5 CONTINUVE .

DO 10 I=69,.NF

: SX(1)=8,40/ CCCFLUATCL D)) *FHIN)&»2)

10 CONTINUE

RETURN

END

SHORTLIST
SUBROUTINE PRINP(X,F,IW)
DIMENSTIOUN X(85,20).FC20),1W (%)
WRETEC2,500) ((XCT1,J),121,85), J21,20)
WRITE  (2,000) (F (1),1%=1,20)
. OWRITEC(2,700)C1WC1) ,121,90) .
500 FOKMAY (//(YE15,4))
600 FORMAT (/7/(YH13,4))



700 FORMAT (35014)
KETUKN
END

SUBRUUTINE SPONS (A,SXsSY,R)
DIMERSTON A(N) ,SX(N)oSY(N)
CovrsrTHIS COMPUTES Tk SYPECTHAL DENSITY OF HESPUNSE TU IKPUT SPD.
WRITE (240D (ACI)SI%1,M)
VO 2V I=1,m
SY(1) = ACI)eSX(I)
20 CONTINUE
WRITE(2,30)
30 FUKMAT (* SPECTRAL DENSITY OF RESPUMSE®}
WRITE (2,40) (SYCI),D57,K)
4U FOKMAT (12E10,3) :
KETURN
END

SUBROUTINE GRAPH (H,N,LUG,NSKIP,X,BCDo23,LN,FMAX)
CooeaeB IS A PUSITIVE REAL ARRAY
CooosoelOG IS SET TO ¢ FOK LINFAR GRAPM AND S0 FUH- LUG GRAPH
CoesaeNSKIP IS NO OF F~thl€5 TO Bt SKIPPED
INTEGER ©
REAL MAGNEG
REAL MAGM,MAGN,B(N),LNCT02)
DIMENSION X(N) .
DIHENSION BCD(14)
DATA BL,ST/11 ,1Hs/
1F (LOG,NE,50,AND,LOG,NE,D) GO TO 4100
G0 TO 200
100 WRITE (2,110)
110 FOKMAT (' NO DB SCALE SPECIFIED®)
sToP

20U WRITE (2,210) N

210 FORMAY (' N IS HARMONIC NUMBER =',16/)
1F (LOG,EQ,0) GO TO 220
DO 205 I = 1,N

205 1F(B(1)) 211,213,213

211 WRITE (2,212)

212 FORMAT (' ERROR DEVECTED LOG OF MEGATIVE NUMBER?')
sToOP

213 CONTINKVE
WRITE (2,215) 8(1) ’ N
215 FORMAT (' A(C) OMITTED FROM GRAPH, A(U) =*,1P2ET2,3)
AUX = B(1)
8¢1) =0,0
CooeesPUT THE LARGEST POSITIVE OR LEAST NEGATIVE VALUE EQ MAGM
220 MAGH = 8(1)
230 DO 290 1=2,N
HAGN = B(])
240 1F (HMAGM ~ MAGN) 250,290,2%0
250 MAGH = MAGN
290 CONTINUE
JIF (LOG,EQ,0) GO TO 500
WRITE (2.500) MAGH
300 FORMAT (YY0.,'ZERU DB =°,1PE12,3/)
E=2,0
JFC(E,EQ,1,0) WRITE(Z2,310)
IF(E,EQ,2,0) WRITE(2,311)

310 FORMAT(ZXK,*=100" s 7Xe " =20 o 7Xs " =BOT ,7Xs ' =70, 7Xe*=60"',7X,'=50",7X,

T8l 7Xe ' =307 374,20, 7%X,'=10"',9X,'0")

311 FORMAT (3Xo " =50 o 7Xs =45  ;7Xs" =40 ;7K' =35, 7Xs"'=30",7X,"=25%,7X,

TP=200 , 72X " =15, 7K, " =10, 8Xs"=5",3X,'0")
b0 320 1 =1,102
320 Lu(I) = BL

ALMAGM=T ,0E~40
PO 530 1 =27N,(NSKIP+1)
F= 10, O*ALOG10(HAGH/(8(1)*5L"k6"))
B(l)‘F
Sx 101,5 = (F*E)
1F (G.L7.1) 60 TO 380"
LK(G) = ST . .

380 K = 1-1 ’
WRITE (2,340) KsULN,F

340 FORMAT (15,102A1,'= =',F10,3)
IF (G,GE,1) LN(G) = BL

330 CONTINUE
H(1) = AUX
DO 350 K = 1,N

350 X(K) = ((FLOAT(K=1))* 9,0)/(FLOAT(N))
00 400 1=1,N

400 BCI)==((B(1)«5,0)/100,0)
CALL HGPLOT (0,0,0,U»1,%)
CALL HGPLUT (=2,0,2,V051,4)
CALL HGPAXIS (U ue=5,0,BCD(73, 25,5,0,90,0,=100,0,20,0)
AXILEFMAX/9,0 .
CALL HGPAXIS (L,U,0,0,8CD(10),27, 9,00, U,0,0,AXIL)
CALL HGPLOY (0,0,0,0,3,0) .
NEh=1
CALL HGPLINE(X R oNp=T)
CALL HGPLOT (1,0,1,001,2)

. RETURN
"500 CONTINUE !
CoeoesPUT LARGESY NEGATIVE VALUE AS MAGNEG,

MAGNEG = B(1) -

-r



DU ¢96 1 = 2,N
MAGN = B(ID)
1F (MAGNEG =~ MAGK) &96.!96-195

295 MAGNEG = MAGM .

296 CUNTINUE

CoavedFIND X AXES

Hox CINTCOOCABSC MAGNEG) 2 (MAGH=MAGKEGR) ) 10U 0D 6T 0
IF (MAGNEG,GT,U,0) M = 3,0 ‘
1F (MAGM. LT, 0,0) 9 = T01,.0
HRITE (2+,505) HMAGNEG,MAGH

505 FOKMAT (' THIS *4uST BF NEGATIVE®,&UX,® THIS MUST DE POSITVIVE"./

1Y Y F10,4,80a,F10,4)
LN (M) = ST
IF(H,EQ,1,0) GO TG 532
DU 510 J=1,H-1
510 LNQJ) = 8L
512 CONTINUE
1F(H,EQ,101,0) 6O TO S5t&
DO 511 J=H+1,102
511 INGJ) = BL
514 CUNTINUE
1F(1J,EQ.1) GO TG 521
CesessPLOT ON LINE PRINTER
DO 525 I=1,N,(NSKIP+1)
F s BCI)
IF ( M_NE.1,0) GO TO 513
c.....u 1S SCALE FAETOR
G = ((F/MAGM)*10U,0)+7,0
513 IF(M,NE,T101,0) Gu TU 51%
6 = K=((F/MAGNEG)#10D,0)
515 6 = (10U, 0 ((F~ nncntu)/(nnan-nasnse)))ct.u
LK(G) = ST .
K = 1=}
WRITE (24520) LN.K,F
520 FORMAT (102A1,14,'2*,1PE14,3)"
1f (G, NE.M) LN(G) = BL e
525 CONTINUE :
521 CONTINUE

c INITIALISE PLOTTER
CALL HGPLOT(O,0,0,0,1,1)
4 ASSIGN ORIGIN

AM = ((HAGH/(MAGM=MAGNEG))*5,00)+2,0
CALL HGPLOT (=2,0,AMs1,4)

AMEZAM=2,0
[4 PUT IN X AXIS
4 POSITION PEN AT X AXIS

CALL HGPLOT (0,0,0,0,3,0)
AXIL=FHAX/9,0
c DRAW IN X AXIS
CALL HOPAXIS (0,0,0,0,BCD(S),~18, 9,0,0,0,0,0,AXIL)
AAH= (MAGM=MAGNEG) /5,0
AMHZ =5, 0+AN
1F(1J,EQ,1) GU TU 545
1F(IJ,EQ.2) GO TO 546
545 CALL HGPAXIS (U,U,AMM,BCD(1),26,5,0,90,0,MAGNEG, AAN)
GO TO 547
S46 CALL HGPAXIS (0,U,AMM,BCD(7) 426+5,0+,90,0,MAGNEGHAAN)
547 CONTINUE
4 SCALE GRAPH
DO 550 K = 1,M
S50 X(K) = ((FLOAT(K=1))% 9 0)/C(FLOATCR))
C SCALE Y COORDINATES
1F(MAGM, LT, ABS(MAGNEG)) GO TO 555
AAEMAGM
60 TO0 560
555 AA=ABS(MAGNEG)
560 CONTINUE
DO 6U0 I = 1,
600 BC1)=(B(I)*AM) /MAGM
4 COMHENCE PLOT
CALL HGPLINE (X:Ber‘)
¢ END PLOT
CALL HGPLOT (1,0,1,001¢2)
CONTINUE :
RETURN
END

FINISH
(XX}
DOCUMENT MOJTDATA
0180 <0150 JU125 +UT05 LUTOIY L0UPS 0097 0085
o070 0067 «0006 2U060 ONS57 JUuLYy 0050 V0G0

«Q051

0030

+U076
020



Appendix 4

The Fourier Transform computer programs

The computer programs NOJFTM1. and MOJFTM2, developed to
analyse sets of 512 and 1024 data respectively, Fourier
transforming from the time to the frequency domain using
the discrete Fourier transform or the fast Fourier trans-
form algorithms. '



JOB MUJFTHT,1905MDIC, HENG
FURTRAN 1:CHU(HOJFPROG):TRO(HUJGDATA)c 75.2500
[ X2 2]

DOCUMENT HUJFPROG
LIBHARY(ED,SUBGRUUPSRF ()
LIBKAKY (ED,SUBOGHOUPSRGP)
PRUGKAMIHUJFIY0U5M0JC)
COMPACT
IKPUT 1xTKO
VUTPUT 2zLPO
NO TKACE
END
KASTER FORTFM.

Coeeos THIS PROGRAM COMPUTES THE FOURIER YRAMSFORM OF REAL DATA OF IMPULSE

Covveo®HICH 1S DIVIDED BY THE FACTUR K
« FOR THE RECEPTANCE UF THE COMPLETE SYSTEM WHICH 1S THEN SQUARED
o THIS 15 THEN MULTIPLIED BY THF £XCIT PSOD OF THE PKHS SIGNAL
Coeee s USED ARD FROM IT PSD UF THE SYSTEM RESPUNSE IS UBTAIMED
Covees THIS IS IN TURN MULTIPLIED BY THE PICK UP FACTUR SQUARED TO GIVE
Coeeoo RESPUNSE UF THE BOX STRUCTURE, N IS NO UF DATA
Coeos o CUMPLEX W( 512)
REAL MAGM,MAGN - W LNC102)
DIMENSION BCDC14)
DIMENSION C( 512),D( 512)
INTEGER G
REAL MAGNEG i
COMPLEX X{ 512),A( 512)
NEXEY -
NE(2¢#KEX)
DO 1 I=1,N
1 READ (1.101,END=2) C(I])
G0 10 3
2 DO & J=1,N=]1+1
& C(y+1-1) = 0,0
3 CONTINUE
WRITE (2.150) 1
150 FORMAT (//' NO OF DATA INPUT = *,15)
. 101 FOKMAT (F5,3/)
bO 2vU J=1,N
200 x(J)=cHMPLX(C(J),0, 0)
WRITE (2+210)N
210 FORMAT (/' PLOT OF DATA 'INPUT FOLLOWS, H= ',16)
CALL GRAPH (C,N,U,0,D) .
CALL-FFT(X,NEXsNsA)

Cons CALL RUOT (W/N)
Cous CALL DFYT (X WsA,N)
Coaueo JHPULSE RESPONSE OF BOX PLOTTED {A\

Coovss TABULATE FUURIER CUEFFICIENTS A
WRITE (£4220) ACY)
220 FORMAT (/°*10FT CUEFFICIENTS ARE'///' D,C,TERM 2',1P2E11,3)
WRITE (2,230) (ACJ) 1 J0=2,N)
230 FORMAT (/&4(1PE14,3,1PE11,3))
CoiveesRMS VALUE OF PRBS SIGNAL
PRBS=0,8
PRBS=0,3
CoeveskXPSD IS EXCITATION POWER SPECTRAL DENSITY USING 0,45 CLUCK FREQ
EXPSD = (PKBS*#2)/(0,45¢300,0)
CoaeesPLUT SPECTRAL DENSITY OUF OUTPUT FROM BOX
Coeeoo EXPSD = 2 PI FACTORK
FACTUORK=EXPSD/ 6,284
PO 250 I=1,N
250 C(1) = CABSCA(1))/FACTORK
MRITE (2,251) (CC1),I=1,N)
251 FORMAT (/7' SYSTEM RECEPTANCE',//' ', (1VE12,4))
CoeossPICK UP FACTOR IN MM PER VOLY INCLUDING OUTPUT AMPLIFICATION
PF=2,25/100,0
00 252 I=1,N
252 C(1) = ((PF*C(1))a#2 )*EXPSD
WRITE (2:255)N
255 FORMAT (/° BOX RESPONSE FOLLOWS, N = *,16)
WRITE (2,275) (CC1)41=1,N) -
275 FOKMAT (/7' RESPUNSE',//* ',(10E12,4))
CALL GRAPH (CsKsD0,04D)
STUP
END
SUBROUTINE GRAPH (BsN,LOG,NSKIP,X)
CovseeB 1S A POSITIVE KEAL ARRAY
CooeeslOG IS SET TO 0 FOR LINEAR GRAPH AND 50U FOR LOG GRAPH
CoveeoNSKIP IS NU OF ENTERLIES TO BE SKIPPED .
INTEGER G
REAL MAGNEG
REAL HAGH:HAG&,R(N):[N(102)
DIMENSION X(N)
PIMENSION BCD(14)
DATA BCDC1)/2¢HCKUSS CORKELATIUN FUNCTIUN/
DATA BCD(S5)/1UKDELAY BITS/
DATABCD(7) /7230 RESPUNSE DH RE MAGM/
DATA BCDC1U)/37HEREUUENCY N MERTZ(DC COMPONENT= - )/
DATA BLeST/IH ,1n%/
1F, (LOG,NE,50,ANV,LUOG,NE,0) GO TO 100
GO TU 20V

100 WRITE (2,110)
110 FORMAT (' NO DB SCALE SPECIFIED?)
sToP L

200 WRITE (Z!l1") N



21U FUKMAT (° N IS HAHRMONIC NUMBER 3Y,14])
IF (LOGLEU,0) LO TU 240
VU 205 1 = 1,N

205 TF(BCI)) 211,213,215 .

211 WKITE (2.217) ’

212 POKMAT (' ERROR DETECTED LOG OF NEGATIVE NUMBER')
sToP .

213 CONRTINUE
WRITE (2,215%) B(1)
215 FORMAT (°* ACO) OAITIED FROM GFAPH, ACD) ®°,1P2E1Z,5)
AUX = B(1)
(1) =0,0
CoeoeePUT THE LARGEST POSITIVE OR LEAST NFGATIVE VALUE EW MAGM
220 KAGM = R(1Y) N
230 DO 290 1=2,N . . :
HAGN = B(1)
240 1F (MAGM = MAGN) 250,290,290
250 MAGM = MAGH
290 CONTINUE
1F (LOG,EQ,D) GO TU 500
WRITE (4:500) MAGM
300 FORMAT (TYv,'ZERV DB =',1PE12,3/)
E = 2,0
1FCELEQ,1,0) WKITE(Z2,310)
1F(E,EQ,2,V) WRITE(Z,311)
310 FORHAT(zx,'—1Uu'.7x. LAY S FRARS TVANY S FREY ALY FRETILIY 4 PRES LY ¢
1°=40° , 7Xs =307, 7%, =20, 7%X,°=10"',9X,'0")
511 FORMAY (3x,'=50',7x,"* "5';7Xa"50'17K"‘55'17Xl.'30‘l7Xl"£5'l7Xl
0=200,7Xe'=15° 07X "~10° , BX,*=5,9%X,'0")
DO 320 1 =1,%02
320 LN(1) = BL
ALMAGM=1,VE=~4LD
00 3350 I =2,N.(NSKIP+1)
b2 TU,0*ALUGIUC(MAGM/ (BCI)¢ALHAGM))
G 101,5 = (F*E)
IF (6,LT,1) GO TO 380
LN(G) = ST
380 K & I=1
WRITE (2+340) K,LN,K,F
5640 FORMAT (15,102A%,14,'c=*,£7,2)
1f (G,GE,1) LK(G) = BL
330 CONTINUE
B(1) = AUX
DO 350 K = 1,% AR
350 X(K) = (C(FLOAT(K=1))* 9,0)/(FLVUAT(N))
bL 400 I = 1,4N
400 B(1) ==5,0«(10, U-ALUG10(HA6hI(B(1)01.06-20))1100.0)
CALL HGPLUT (0,0,0,0e¢1+1)
CALL HGPLOT (-2,0,2,0,1,4)
CALL HGPAXIS (U,Ve=5,0,BCD(7)s 25+5,0,90,0,=100,0,10,0)
AXISL = N/ 9,0
CALL HGPAXIS (U.0,0,U,BCDC10),37, 9,V0,U,0,0,0,AXISL)
CALL HGPLOT (U,0,0,U,3,0)
CALL HGPLINE (KsByN,=1)
CALL HGPLOT (1,061,00102)
RETURN
500 CONTINUE
CoeoesPUT LARGEST NEGATIVE VALUE AS MAGNEG,
MAGNEG = B(1) .
00 296 1 = 2,N
MAGN = B(])
IF (MAGNEG = MAGN) ¢96,296,295
295 MAGNEG = MAGN
2906 CONTINUE
Coeees FIND X AXIS i
M = (INTCCC(ABS( HAGNEG)I(MAGH-MAGNEG))~100 0)+1,0))
1F (MAGNEG,GT,0,0) M = 1,0
“IF (MAGM,LT,0,0) M = 01,0
WRITE (2+505) MAGNEG/MAGM
505 FORMAY (' THIS MUST BE NEGATIVE',640X,* THIS MUST BE POSITIVE®,/
1 YoF10,4,80X,F10,4) ’
LN(M) = ST
IF (M,EQ,1,0) GO TU 512 . . -
DO 510 J=1,M=~1
510 LN(J) = BL
512 CONTINUE
1F(M,EQ,101,0) GO TO 514
. o 511 J= no1,102 .
511 LN(J) = BL
514 CONTINUE
DU 525 1=31,N,(NSKIP+1)
F = a(D)
IF ¢ M_NE,1,0) GU TO 513
O = ((F/MAGM)*T1DU,0)+1,0
513 IF(M,NE,T1V1,0) GU TO 518
G = M=((F/MAGNEG)*TUU,0)
515 6 = (100,U*((F=MAGNEG)/(MAGM=MAGNEG)))+1,0
T OLN(G) = ST
K s I-1
WRITE (2+520) LN.K,F
520 FORMAT (102A1,146,'2,1PE14L,3)
JE (L, NELM) LN(G) = BL
525 CONTINUE

C INJTIALISH PLOTTER
CALL HGPLUT(D,V,0,0,1,1)
c ASSIGN ORIOGIN

AM 2 ((MAGM/ (MAGM=HMAGNFG))*5, 00)0( 0



550

555
560

60y

CALL MOPLOT (=2,0,AMstoa) 7
AMBAN=2, U
PUT 1N X ARIS

AXISL & N/ 9,0 -

PUSITIUN FEN AT % AXLS
CALL HGPLUT (U, 0,0.Ur5,0)
DRAW IN X AXIS
CALL HGPAXIS (U,0,0,0,8CD(5) =10, $,0,0,0,0,0,AXISL)
AAME(KMAGM=MAGNEG) /4,0 .
AMME=S U+AM
CALL HGPAXLS (U U pAMMAHECU(T)226ad,UsYU, UsMAGKEG,AAN)
SCALE GRAPH
LU 550 K = T.N
X(K) = ((HLOAT(K=1))e S U)X/CFLUATCN)
SCALE Y CUURDINATES
IF(MAGR LT _ABS(MAGNEG))Y GO YO 955
AATMAGH
GO TO 56V
AA=ABS (MAGNEG)
CONTINUE :
DO 6UD 1 = 1,N
BCIIS(BCI)®AM) fMAGH
CUMMENCE PLOT
CALL HGPLINE (XaBohsT)
END PLUT
CALL HGPLUT (1,0,3,0s102)
CONTINUE
RETURN
END
SUBROUTINE FFT(A,N,NB,B)
CUMPLEX A(NB) 4UsW,T,B(NB)
NBD2=NB/2
NBMI=NB~T
J=1
00 4 L=1,NBH1
IFC(L,GE,J) GO TO 2
T=A())
ACJ)=ACL)
ACL)=T
K=NBD2
1F(K,GE,J) GO TO &

cdxdeK

owv

1

thdw

K=K/

GO J0 3

JEJ¢K
PIw3,1415926535%
PO 6 MB1.N
Uz(1,0,0.,0)
KWEx2esy

K=ME/2
WECHPLRC(CUS(PI/K),SIN(PI/K))
DO 6 J=1.K

PO 5 L=J.NB,ME
LPK=L+K
TzA(LPK) *U
ACLPR)=ALL) =T
ACL)SACL)+T
UzUsw

00 10 I=1,n8
BCI)=ACI)/ (FLOAT(NEG) )
CONTINUVE

RETURN -

END

FINISH

¥SHWITCH



JOB MUJFTHZ,19USHOIC,HENG .
FORTRAN 1,CRUCHUJEPKUG) s TKUCMUJIGDATA) »200,4500

ren

VOCUMFNTY HUJFPKUG

- LIBKARY(ED, SURGRUUPSKET) ’ -
LIBRARY (LD,SUBUKOUPSROGP) . -

PROGKAM(MUJFIYUSHUIC)
-
COMPACT
TINPUT 1=TkU
VUTPUT 2ELPO
N0 TRACE
END
MASTER FURTFH
Coeess THIS PRUGKAM CUMPUTES THE FUURIER THRANSFURM OF REAL DATA OF IMPULSE
CovveoWHICH IS DIVIDED BY THE FACTUR K )
CoeceosFUOR THE RECEPTANCE UF THE COMPLFTE SYSTEM WHICH 1S THEN SQUARED
CoeeesTHIS 1S THEN MULTIPLIED BY THF EXCIV ¥SD  OF THE PRBS SIGNAL
CooeasUSED AND FROM 1T  PSD UF THE SYSTEM KESPUNSE IS UBTAIMED
CoveeoHIS 15 1IN TUKN MULTIPLIED BY THE PICY¥ UP PACTOK SQUARED TO GIVE
Coveeo KESPONSE OF THE BOX STKUCTURE, N IS NO OF DATA .
Cooves COMPLEX W(1024)
DIMERSTON BCD(14)
_ DIMENSION C(1024),D(1024)
COMPLEX X(1024),AC1024) -
INTEGER G
REAL MAGNEG
REAL MAGM,MAULN, LN(102)
NEX=10
NE(2¥*NEX)
PO 1 1=1,N .
1 READ (1,701:END=2) C(1)
GO TO 3
2 b0 & J=1,N~141
4 C(Jet=1) = 0,0
3 CONTINUE
WRITE (2,150) 1
150 FOKRMAT ((//* NU OF DATA INPUT = *,15)
101 FORMAT (FS5,3/)
DO 200 J=1,N .
200 X€J)=CMPLX(C(J),0,0)
WRITE (2,210)N
210 FORMAT (/' PLOT OF DATA INPUT FOLLOWS, N= ',16)
CALL GRAPH (CoN,U,0,D)
CALL FFT(X(NEXeNosA)
Coes CALL ROOT (M,N)
Coay CALL DET (XyWeA,N)
Coeveo JMPULSE RESPUNSE OF BOX PLOTTED
Covveo TABULATE FOURIER COEFFICIENTS A
WRITE (2,220) A(Y)
220 FORMAT (/'1DFY COEFFICIENTS ARE'///' D,C.TERM =',1PZ2E11,3)
WRITE (2,250) (ACJ)oJ=2,N)
230 FORMAT (/4(1PF14,3,1PE11,3))
CeeveskMS VALUE UF PRBS SIGNAL
PRBS=0,3
CoesestXPSD 1S EXCIT PUMWER SPECTKAL DENSITY USING 0,45 CLOCK FREQUENCY
EXPSD =(PRBS##2 )/ (U.45+300,0) .
CovsssEXPSD = 2 P1 FACTORK
FACTORK=EXPSD/0,2B4
bO 250 1=1,N
250 C(1) = CABSC(ACI))/FACTORK
WRITE (24251) (CC1),1=1,N)
251 FORMAT (//' SYSTEM RECEPTANCE®.//' ', (1VE12,4))
CoeeesPICK UP FACTOK IN MM PER VOLT, INCLUDING DUTPUT AMPLIFICATION
PFE=2,257/31,6
DO 252 1=1,N
252 C€(1) = (« PFAC(I))#%2 )*EXPSD
CossesPLOT SPECTKAL DENSITY UF ODUTPUT FROM BOX
WRITE (24255)N
255 FORMAY (/' BOX RESPUNSE FOLLOMS, N = *,16)
WRITE (2¢275) (CC1)o01=14N)
275 FORMAT (//' RESPUNSE',//' ',(1UE12,4))
CALL GRAPH (CeNsSDsUsD)
STOP ‘
END . : .

SUBROUTINE DFY (X,WsA,N)
COMPLEX X(N)eW(N)sA(N)
AC1)=(0,0,0,9)
‘DO 10 J=1,N
S0 AN SA(NIR)
PO 20 L=1,(N=1)
A(L+1)=(V,0,0,0)
DO 20 M=1.N .
TAK S(((K=T)sL)+)
INDEX = IAN-(Nﬂth((FLUAI(l@R)-0.01)I(FLUAI(N))))
20 ACL*1IZACL+1)eX(M)*UCINDEX)
PO 30 J=1,N ’ .
30 ACIIEACII/N
RETURN .
END S o

SUBROUTINE ROOT (WeN) -
CUMPLEX WN(NW) : ’
Coerd o CALCULATE 1HE COMMUN RUDT W(J) WHEREL ML= CEXP((=21)*p10J/N)



Wl1)s(1,0,0,0)
CaN
W(Z)RCEXP(CMPLE(U,U,=6,2852/C))
vo SU Js3,N .
M(J) =d(JI=1)eW(2)

SU CONTINVE
RETUKN : s
END ’

SUBKUUTINE GRAPH (ByN,LUG,NSKIPeX)
Coveoat 1S A PUSITIVE KEAL AKKAY
CooaaslUG IS SET TU 0 FOK LINEAR GKAPH AND 50 FOR LOG GRAPH
Coves e NSKIP IS NO OF ENTERIES 10O BE SKIPPED
INTEUER ©
HEAL MAGNEG
HEAL MAGM,MAGH,B(N),LNC102)
UIMENSION X(N)
UVIMENSION BCD(14)
DATA BCD(1)/7264CROSS CORRELATION FUMCTION/
DATA BCD(5)/TUHDELAY BITS/
DATABCD(7)/23H KESPONSE DU RE MAGM/
UATA BCDCIU)/3/7HFREUVENLY IN HERTZ(DC COMPUNENTS )/
DATA BL«ST/1H ,ine/
3F (LOG,NE,S50,AND,LUG,NE, Q) GO TO 100
60 YU 200

100 WRITE (2,110)
110 FORHAT (' NO DB SCALE SPECXFIED )
sTOP

20V WRITE (2,210) N
210 FORMAT (' N IS HARMONIC NUMBER =%,16/)
IF (LOG,Eu,0) 6O TO 22U
DO ¢U5 1 =1, N Tt orrmrt
205 1F(B(1)) 211.215o213
211 WRITE (2.212)
212 FORMAT (' ERROR DETECTED LUG OF NEGATIVE NUMBER')
STOP

213 CONTINUVE
WRITE (2.,215) B(1) .
215 FORMAT (' A(O) OMITTED FROM GRAPH, ACO0) =£',1P2E12,3)
AUX = B(1)
8(1) =0,v
CoeeeosPUT THE LARGEST POSITIVE OR LEAST NEGATIVE VALUE EQ MAGH
220 MALHM = B(1)
230 D0 2Y0 1=z2,N
MAGN = B(])
24V JF (MAGM = MAGN) 250,290,290
250 MAGM = MAGN
290 CONTINUE
JF (LOG,EQ,U) 6O TO 500
. WRITE (2,300) MAGM
300 FORMAT (T190,'ZERO DB x=',1PE12,3/)
E=2,0
JIF(E.FQ,1,0) WRITE(2,310)
IFCELEQ,2,U) WKITF(Z,311)
310 FORMAT(2X,"~10VU°,7X," -90'.7x.'-uu',?x.'-70'.7x.'-bo'.7x¢'-50'.7x.
V8oV p TR, =30, 7X0 ' =20" s 7Xe"=10",9X,'0")
311 FORMAT (3X,'=50°',7X.* -45',7X.'-L0',?x.'-35':7X,'-30'.7x.'-25' 77X
10200 7Xo =15 37X " =T0 ,BXs " =5, 9X,'0")
00 3¢0 1 =1,102
320 LN(1) = BL
ALMAGM=1,0E=40
DO 3530 1 =2,N,(NSKIP+1)
£ 10,0%ALUGTO(MAGM/ (B(I)+ALMAGM))
Gx 1U1,5 = (F*E)
IfF (G,LT,1) GO TU 380
LN(G) = ST
380 Kk = 1-1
WRITE (2.340) KlLN:K'F
340 FUKMAT (15,10281,164,"'==",F7,2)
"IF (6,GE,1) LN(G) = BL
33v CONIINUE
B(1) = AUX
DO 35¢ X = 1,N
350 X(K) = ((FLOAT(K=1))e* ¥, U)I(FLOAT(N))
DO 400 1 = 1,N
400 B(I) ==5,0+(10,0%ALUGI0(MAGH/(B(I)+1,0E~ eo)>l1oo v)
CALL HGPLOT (V,0,0,0r101)
CALL HGPLUT (=2,VU,2,0,1,4) -
CALL HGPAKXIS (U, U,=5,0,8CD(7)s 25+5.,0,90,0,=100,0,20,0)
AXISL = N/ 9,0
CALL HGPAXIS (U.0s0,U,BCDCT0) 570 9,Us0,000,0,AXISL)
CALL HULPLOT (U, 0,0,043,0)
CALL HGPLINE (XoHsNe=1)
CALL HGPLOT (1,001,001¢2)
RETURN
50U CUNTINUE
CoveedPUT LARGEST NEGATIVE VALUE AS MAGNEG,
HAGHEG = B(1)
DO 2Y6 1 2 2,N
MAGN = B(I)
1F (MAGNEG = MAGN) 2Y6,2V6,295
T 2VY MAUNEG 3 MAGLN
296 CONTINUE ’ .
CeossobIND X AKIS
Hom CINTOOCARSC MAGNEG) ZC(MAGA=HALNEG) ) * 00, 10)+1,0))

.r



IH (MAGNLG,GF,0,U) M & 1,0

§EO(MAGM, LT, 0,0) % = 101,0

WRITEL (2,505) HMAGNEGIMAGH

505 FURMAT (' THIS MUST GE KEGATIVE',4uX.' THIS MUST BE POSITIVE'Y/
1 Y FIU,4080X,H10,4) )

LK(M) = ST
IF (M EU,.1,0) GU TO %12
00 510 J=1,M=1 «

S1U LN(J) = BL

512 CONTINUE
FF(H,EQ,101,0) GU TU 514
VO 511 J=Me1,102

511 LN(J) = BL

514 CONTINUE
DO 5¢5 I1=1,N,(NSKIP¢1)
= BCD) .
1F C M NELT1,0) GO TO 5138
G = (CF/MALM)*100,0)+1,0

513 IF(M,NE,TV1,0) GU TO 515
G = M=((F/MAGKREG)*10U,0)

515 6 = (100,0¢C(F=MAGNEG)/(MAGM=HAGNEG)))¢1,0
LN(G) = 5T .
K& 1~-1 ’
WRETE (24520) LN.K(F

520 FORMAT (1UZ2A1,14,°=,1PE14,3)
1F (G,KNE,M) LN(G) = BL

525 CONTINUE

[ INITIALISE PLOTTER
CALL HGPLUT(0,0,0,0,%,1)
[ ASSIGN OKRIGIN

AM =((MAGM/ (1AGM=MAGNEG))*5,00)42,0
CALL HGPLOY (~2,0¢AMe1,4)

AMEAM=2,0
¢ PUT IN X AXIS
AXISL = N/ 9,0
¢ POSITION PEN AT X AXIS
CALL HGPLUT (€0,0,0,0,3,0)
c DRAW 1IN X AXIS

CALL HGPAXIS (U.Us0,0,BCD(5),=10, 9,0,0,0,0,0,AXISL)
AAM= (MAGM~-MAGNEG) /5,0 :
AMMEZ=5,0+AM
CALL HGPAXIS (0,0, AMM,BCD(1),26+5,0,90,0,MAGNEG,AAN)

[ SCALE GRAPH
DO 550 K = 1N

55V X(K) = ((FLOAT(K=1))+* 9,U)/(FLUAT(N))

< SCALE Y COURDINATES .
TF(MAGM, LT ,ABS(MAGNEG)) GO YO 555
AREMAGM
60 TU 560V

555 AAxABS(MAGNEG)
56U CONTINUE
00 600 I = 1,N
600 B(1)=x(B(I)*AM)/MAGH

(4 COMMENCE PLOT .
CALL HGPLINE (XsBeNeT)

C tND PLOT
CALL HGPLOT (1,00140:1,2)

CONTINUE
RETURN
END

SUBROUTINE FFT(A/N,NB,B)
COMPLEX A(NB) U W, T,8(NB)
NBD2=NB/2
NBM1=NB=1
J=1
DO & L=1,NBMYT "
1E(L,GE,d) GO TO 2
T=A(J) )
ACII=ACL) -
ACL) =T
2 K=NBD2 .
3 1F(K,GE,J) GO Tu &
drd=K . )
K=K/ _ ]
G0 70 3 . T ' ' : )
4 JxJex
PI=3,14159265359
PO 6 Mz=%,N
us=(1,0,0,0)
MEx2eeM
K=ME/2
N=CMPLX(COS(PI/K) »SINC(PI/K))'
DO 6 I=1,X
DO 5 L=J,NB/ME
LPK=L+K )
T=ACLPK) *U
ACLPKRY=A(L)=T
S ACLI=A(L)+T
6 Usyu*u
PO 10 1=1,NB .
BOI)=ACI)ZLFLOATONB))
10 CONTINUE
NETURN
tND
FINISH

arue
#SHITCH



Appendix 5

VDiagrams'and illustrations of the experimentél apparatus .

developed
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Appendix 6

Calibration of the vibration pickuvn transducer -

This section describes the method adopted in the calibration
~of the proximity probe measuring static displacement as well
as amplitude of vibration. '



The probe used is a Wayne~Kerr type E capacitance probe
with its associated TE200 transducer equipment. The

probe is part of a large family of non-contacting displace-~
ment transducers used in vibration studies to eliminate
the possibility of the transducer interferring with the
vibration characteristics of the structure tested. This
is especially evident in the present case where a V
transducer of considerable mass, e.g. an accelerometer, -
used to measure the vibration of a thin plate, would
~drastically alter its vibration characteristics and render
them totally false.

Capacitance probes work on the princinle thét when a probe

is placed near to a.conducting surface, a cespacitance exists
between this surface and the face of the probe. The
capacitance so formed is made use of in the feedback loop

of a high gain amplifier thereby changing its impedance and
causing a voltage output to be formed which is proportional
to the gap distance between the probe and the surface. The
aim of the calibration is to cbtain this relationship between
the voltage output of the probe and its amplifier equlpment
and the amplitude of vibration that it measures.

It was decided not to use Wayne-Kerr.vibration meters but
actually calibrate the probe in preparation for future work

on random vibration since Wayne-Kerr vibration meters are

only calibrated for sinusoidal wave excitation and are hence
valid only for discrete excitation work. The calibration of
-the probe in terms of R.M.S. volts and R.M.S, amplitudes of
vibration would however be equally valid for random excitation
work., A block dlagram of the apparatus used in the callbratlon
is shown in figure A.6.1.

The probe was positioned above a reference block (plate 7),
opposite sides of which were mounted two accelerometers, and
which was fastened on to a vibrator. Adjustment of the probe-
to-vibrating-surface gap was possible using the mechanism
described in section L.2. The voltage output of the
accelerometer and amplifier system was recorded with correspond-
ing readings of the probe and amplifier output when vibrating
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at a fixed frequency of 30 Hz but with different amplitudes
of vibration. The same procedure was repeated with several
different frequencies but keeping the probe-to-surface
distance constant. Finally the probe-to-surface distance” was
varied and the above procedure repeated.

The amplitudes of vibration were calculated from the

accelerometer outputs and graphs of amplitude of vibration

- against probe output were plotted. The gradients of these

- graphs were calculated for each probe-to-surface distance |
and a final graph plotted, showing the effects of the probe-
to-surface distance on these gradients. '

Facility for-double integration of acceleration by the Bruel
and Kjaer preamplifier to obtain amplitude of vibration was
availeble but limited to specified frequencies of 1,3, 10,
30, 100 and 300 Hz., As a result this method was only used as
. a check for the values of amplitudes of vibration which were
calculated from actual acceleration figures,

A travelling microscope was used to measure static displacements
and low frequency vibrations when a visual measurement of the
amplitude of vibration provides g check on the accelerometer
readings at low frequencies. '

—

The angular fine adjustment mechanism was used to adjust the gap
between the probe and the vibrating surface to ensure that they
were parallel. This was to prevent the surfaces .otherwise touch- ..
ing when the gap size and the amplitude of vibration approach
each other. Apart from this however little effort was necessary
since from the manufacturers specification an eight degree angle

.carried an error of only 1% in the distance measurement and no
error at all in the vibration amplitude measurement since only
the difference between the alternating pegks were measured.



Appendix 7

Calibration of the non-contacting exciter ' , .

This section describes the ‘method used to calibrate the
non-contacting electromagnetic vibrator developed.



Figure A.7.1 is a block diagram of the instrumentation used
in the calibration of the exciter in which the effect of
signal amplitude, frequency response and gap distance were

-

investigated.

L3

The exciter was mounted above a reference block supported

by a steel column housing a piezoelectric load sensitive
transducer (plate 10). The force generated by the exciter
would therefore act on the block and be transmitted through
the load cell. A sinusoidal signal was applied to the inner
coil and a corresponding d.c. bias to the outer coil of the
noncontééting exciter which is set at a fixed distance. from
the reference block., This produces an alternating force onto
the block which, acting on the load cell, produces a signal
monitoring the force generated by the exciter. This was set
to recad directly in Newtons of force using a compatible
factory calibrated charge amplifier. The output was checked
- to be of the same sinusoidal waveform as the excitation voltage
to the exciter, both traces being displayed on a twin beam
oscilloscope.

The excitation signal amplitude was then varied but retaining
the same frequency and the variation of force outout of the
exciter with input voltage obtained. The whole procedure was
repeated at various signal frequencies and calibrations
corresponding to each obtained. Also by keeping the
amplitude of the input signal constant but varying its
frequency the frequency response of the exciter was obtained.

Finally the effect of variation of the gap between the exciter
and the surface of the structure excited on the force output
was obtained, keeping the frequency and amplitude of the input
signal fixed, | ‘



Muirhead power

decade amplifier — oscilloscope
~oscillater h
— : B &K
oscilloscope d.c. : true RMS
source meter
electro-
magnetic : 5
force — b
transducer | -
steel
lat -
plate
L]
Kistler Kistler
load ' force
amplifier ' transducer
B &K
frequency
analyser

R v A av e ar e ey avd

fig. A.7.1 Block diagram of instrumentation used for
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