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ABSTRACT

Trends towards reduced life-time of products and globalised competition has 

increased pressure on manufacturing industries to be more responsive to changing 

needs of product markets. Consequently, the use of simulation to describe short term 

future performance of manufacturing system has become more significant than ever. 

An application of simulation that has attracted attention is for testing of control logic 

before commissioning on site by using a detailed simulation model called emulation 

model. However, though the success of using emulation particularly in improving 

cost-effectiveness of automated material handling system delivery has been 

acknowledged by industries and simulation model developers, the uptake for this 

technology is still low. The major inhibitors are the high costs of its model building as 

well as simulation and emulation models are perceived to be non convertible.

The main objective, of this research is to establish a methodology to develop 

simulation model that can be converted into emulation model with ease, thus making 

emulation technology more affordable. The product of this research called the 

methodology to build Hybrid Simulation Emulation Model (HSEM) is a new 

approach of building emulation model comprising of three phases namely (1) 

development of base simulation model, (2) development of detail emulation model, 

and (3) integration of controller with the emulation model. Important requirements 

for HSEM are flexibility of adding details to the simulation model and inter process 

communication between model and real control system. To facilitate implementation 

of the methodology, it is essential that the simulation software package provide 

functionalities for modular model development, access and adding of codes, 

integration with other application and real time (RT) modelling.

The methodology developed offers a more affordable emulation modelling and an 

opening for further research into the comprehensive support for the implementation 

of real time control system testing using emulation.
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CHAPTER 1

INTRODUCTION

1.1 Manufacturing System Development

Manufacturing is changing rapidly around the world. The processes, equipment, and 

systems used to design and produce everything from automobiles to computer chips 

are undergoing dramatic changes in response to new customer needs, competitive 

challenges, and emerging technologies. Advances in information systems, business 

practices, engineering techniques, and manufacturing science now enable companies 

to produce new and better products more quickly and at a much lower cost than ever 

before.

As a result, fundamental changes are occurring in the manufacturing environment. 

This can be seen in the current trend towards highly automated systems that are 

intended to adapt quickly to change while providing extensibility through a modular, 

distributed design. It has also placed the whole manufacturing system development 

process greater importance than ever before.

1.2 Issues on Manufacturing System Development 
and Delivery

In order to realise the flexibility and/or productivity that these advanced system 

promise, system modelling and control are viewed as vital to enable the components 

of these automated manufacturing systems to work together in an integrated way.
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The complexity of such system imposes the need to trace products throughout the 

system, and include more rules and logic. Thus not only the manufacturing system 

design has to be efficient, the validation has to be fast and cost effective.

To understand the validation process let us look at the manufacturing system 

development project which generally goes through several key stages as shown in 

Figure 1.1.

System
specification

Hardware,
software
selection

Installation, 
testing and 
commissioning

System
Acceptance

Figure 1.1 Stages for Manufacturing System Delivery

The first stage is definition and analysis, in which simulation has long been used to 

help determine the system specification. A well-written simulation model can be a 

valuable tool in the design, analysis, and operation of manufacturing and other 

complex systems.

The second stage is the selection of hardware and software suppliers, and the 

construction of the hardware. Key parts of the solution may be tested off-site, in order 

to verify the technology.

The third stage is on site installation, testing and commissioning. Once testing is 

finished, the owner takes possession of the installation and the system is ramped up. 

During this phase, and at any time during the working life of the installation, control 

system modifications may be necessary as the load on the system changes.

Commissioning covers the period of hardware installation and software testing, as 

well as acceptance and handoff of the project. In many cases, commissioning disrupts
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existing production, and in all cases the sooner the system is successfully 

commissioned, the sooner the system can be used to generate revenue.

Testing the control system is an important part of the commissioning phase, and yet it 

is often done under extremely difficult conditions due to the following reasons:

• Some of the hardware may already be in use for production.

• Complete testing is impossible before the installation is complete.

• “Full system” control tests are often impossible.

• Control tests often conflict with hardware calibration and testing.

• Realistic current and future loading levels are unavailable for testing.

• Control software may be incomplete.

• Malfunctions may be hard to replicate.

• Modifications may be rushed and not fully tested before implementation.

The commissioning period of a project is often extended, resulting in penalties and 

the need to bring unbudgeted resources to the site to resolve the situation. This costs 

both hardware vendors and client's time and money.

Users of industrial simulation products have long requested a way to eliminate the 

need to reproduce the logic built into the simulation model when the experimentation 

and analysis phase is complete and the control system has to be developed.

1.3 Emulation: Simulation Model for Control System 
Testing

A growing application of simulation and communication is emulation, where a 

simulation model is used to replace a real Automated System in order to test and 

debug an industrial control system. Since an emulation model is designed to provide 

the same responses as the physical system, it can reliably replace the physical system 

for many control system tests.
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Emulation and control system testing can be carried out as soon as the control system 

software has been developed, before commissioning. This leaves the critical 

commissioning window available for unavoidable hardware tests and minimises the 

set of control system tests that must be done during the final testing stage.

This allows control system designers to test the control logic using the simulation 

prior to going into the field, which can resuit in considerable savings in terms of time 

spent on site performing routine logic testing and debugging as illustrated in Figure 

1.2 .

Typical Project Phases

System Design

Hardware Procurement

On-site Installation

Control Logic Testing and Debugging

Project Phase 

System Design

3S Using Emulation

| Hardware Procurement

On-site Installation

Control Logic Testing and Debugging
£$£$

A d d itio n a l
P ro fit

T im e

Figure 1.2 Time and cost benefits of emulation

Emulation provides a reliable and safe way of verifying control code functionality 

offline, training operators in a safe environment, and of testing modifications to a 

control system before they get put into effect. Furthermore, the emulation model 

serves as a test bed for any further control system modifications throughout the life of
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the system, so production is not disrupted. Being a software solution, it is easier to 

implement and modify than hardwired panels. It can also be stored for reuse on a 

future project and provides the possibility of early testing.

Another advantage of emulation model is that it can be maintained for the lifetime of 

the automated system it represents. During the productive phase of the system, any 

proposed changes can be tested on the model before they are implemented on the 

shop floor, just as the original design was tested. This can save money and provide 

greater returns from the system, because it can be adapted to keep pace with business 

changes. The updated model can also be used for training employees about changes to 

the system, as well.

1.4 Developing Hybrid Simulation-emulation model

Even though the benefits of using emulation for the analysis of manufacturing control 

systems are well acknowledged, the speed and cost of the model building remains a 

concern.

At present, development of an emulation model has to be done independently from 

simulation model. In other words, a project will require a simulation model for initial 

analysis and development as well as a separate emulation model for testing a control 

system. The main reasons for requiring the two-stage development are that an 

emulation model is often more detailed than a simulation and also emulation model 

must include communication logic.

Even so, the development of separate software logic for all levels of detail would 

cause duplication of effort which renders it not cost effective and also creates 

difficulty in maintaining consistency.

A proposed solution is to develop a methodology to build hybrid simulation- 

emulation model or composable simulation model, one that is used for both purposes
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and should have a facility to switch off/on certain elements from the model as 

necessary. The present work investigates this possibility and proposes a system 

approach towards its development.

1.5 Summary

This chapter has introduced the role of discrete event simulation in manufacturing 

system development. The importance of efficient validation of manufacturing system 

design is highlighted. Emulation model, a new form of simulation model developed 

for early validation of control system is introduced. The chapter ends with 

underlining the aim of the present research which is to develop a rapid development 

approach for emulation model building.

The outline for proceeding chapters is as below.

Chapter 2 reviews in more detail the previous works related to emulation and outlays 

the aims and objectives of the present research.

Chapter 3 describes the justification of the research and the research methodology 

employed in this research.

Chapter 4 gives the requirement specification for simulation-emulation model 

building.

Chapter 5 describes the proposed simulation to emulation model conversion 

methodology.

Chapter 6 describes the validation of the methodology.

Chapter 7 concludes with the findings of the research and propose recommendation 

for future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The previous chapter has introduced the concept of emulation modelling and its 

benefits. Special emphasis has been drawn towards the need to build the emulation 

model more cost effective. This chapter presents a background of emulation 

technology in more detail based on case studies of some emulation-related 

manufacturing projects.

It begins with defining the scope of investigation for the proposed research. This is 

followed by a review on the use of simulation in a-variety of applications in 

manufacturing industry. The next section looks at Discrete Event Simulation (DES), 

the most widely used type of simulation in manufacturing, particularly in the design 

and testing of the manufacturing system. The discussion is then directed towards a 

new form of DES called emulation and its role in control system testing, which 

become the focus of this thesis. This section is followed by comparative study 

between simulation and emulation model. It also reports the investigation on the 

current applications of emulation models in manufacturing industry and the 

approaches that the models were developed in order to establish the specific 

requirements for building emulation model from simulation model. The chapter 

concludes by summarising the findings of the case studies.
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2.2 Scope of investigation

Initial literature search has indicated that the term 'emulation' has also been used in a 

variety of application area and context. For example it is also used in the computer 

gaming community, software (programming) emulators as well as electronic 

hardware emulators. However, to avoid ambiguity and to maintain consistency in the 

context of the proposed research the term 'emulation' was referred to as a new form of 

discrete event simulation being used to model the plant in manufacturing system 

design and validation.

From the initial search it was also realised that literature on 'emulation' particularly in 

regard to its model building was very limited. Consequently, the search was 

broadened to include the use of the phrases 'simulation for control system testing' 'real 

time simulation', as well as ' flexibility of adding details' which to some extent 

considered related to the context of the proposed research.

'Simulation for control system testing' relates to the purpose of emulation in this 

research context (Habchi and Berchet 2003; Shnits et al. 2004) . 'Real time 

simulation' provides the understanding of the technology concerning real time 

communication from emulation(Dougall 1998; Jeong and Kim 1998; Julia and 

Valette 2000; Stewart et al. 2003). And, ' flexibility of adding details' relates to the 

multi-resolution modelling as well as usefulness and credibility of the emulation 

model (Ball 1998; Persson 2002).

Thus, the scope of investigation, within the defined context covered the technologies 

and development methodologies related to the above mentioned phrases together with 

the literature search for the relatively new technology of emulation.



2.3 Simulation Technologies in Manufacturing

In general, manufacturing system design involves making long-term decisions such as 

facility layout and system capacity/configuration. As such, models are typically 

created and used for a single design exercise, and model run time is not a significant 

factor during the simulation process.

Manufacturing system operation, on the other hand, involves making decisions on a 

much shorter time schedule. The activities include operations planning and 

scheduling, real-time control, operating policies, and performance analysis As such, 

the model is generally used (and reused) much more frequently, and simulation run 

time is a more significant factor in the software/package selection and model design 

process (Smith 2003).

Modelling of such manufacturing systems can be achieved using a number of tools 

and techniques. While modelling and analysis are important to help ensure good 

system performance, the integration and complexity of manufacturing systems often 

makes purely analytic tools difficult to use. Hence, simulation remains one of the 

most widely used tools to fill this need.

One of the most quoted description of simulation, (Banks 1998) defined simulation as 

"the imitation of the operation of a real-world process or system over time. 

Simulation involves the generation of an artificial history of the system, and the 

observation of that artificial history to draw inferences concerning the operating 

characteristics of the real system that is represented".

Or put another way, simulation is the technique of a building a model of a real or 

proposed system so that the behaviour of the system under specific conditions may be 

studied. One of the key powers of simulation is the ability to model the behaviour of a 

system as time progresses.
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Various simulation technologies and software for manufacturing are available and 

selection is normally based on the application area and purpose of study apart from 

the monetary and time constraints.

Within the scope of manufacturing systems the general application areas of 

simulation include business process modelling, manufacturing process modelling, 

supply chain modelling, and process and system visualisation

Focusing more specifically on production systems, there are a large number of 

application areas and simulation technologies. Some simulation technologies are 

specific to certain application. For example, human tasks simulation is used for 

ergonomic studies of work areas and manual tasks. Robotic simulation deals with 

motion and collision control of industrial robots as well as of-line programming of 

equipment including industrial robots. Assembly simulation is used as an aid for 

process planning for assembly operation, accessibility and to investigate assembly 

feasibility (Banks et al. 2000).

A more generic discrete event simulation is widely used in facility design, material 

handling system design, manufacturing cell design, and flexible manufacturing 

system (FMS) design. The activities include buffer sizing, lot sizing, material flow 

including bottleneck detection, plant layout effects, scheduling evaluations, costs and 

work in process levels (Holst 2001). A more specific form of discrete event 

simulation called emulation is used to develop and validate control strategies for 

automated system like AMHS (automated material handling systems) of which 

AGVS (automated guided vehicle systems) and ASRS (automated storage and 

retrieval systems) are examples.

2.3 Discrete Event Simulation

Discrete event simulation is one way of building up models to observe the time based 

(or dynamic) behaviour of a system. A discrete-event simulation is one in which the
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state of a model changes at only a discrete, but possibly random, set of simulated time 

points. During the experimental phase the models are executed (run over time) in 

order to generate results. The results can then be used to provide insight into a system 

and a basis to make decisions on. As for emulation, due to the fact that it involves 

interaction with controller which operates in discrete manner, it is imperative that 

Discrete Event Simulation is taken as the foundation for its model building. Thus it is 

essential to understand basic concepts of discrete event simulation.

2.3.1 Key Elements of Discrete-Event Simulation Software

The process of building simulation models will invariably involve some form of 

software. The software could either be a high level programming language or a data 

driven software system in which the model is specified using user-defined and default 

data items. Hence the model is either the software itself or held within a host software 

system. With the development of more user-friendly simulation systems it is 

generally the user who will build the model, not an expert.

Inside the software or model will be a number of important concepts, namely entities 

and logic statements. Entities are the tangible elements found in the real world, e.g. 

for manufacturing these could be machines or trucks. The entities may be either 

temporary (e.g. parts that pass through the model) or permanent (e.g. machines that 

remain in the model). The concepts of temporary and permanent are useful aids to 

understand the overall objectives of using simulation, usually to observe the 

behaviour of the temporary entities passing through the permanent ones.

Logical relationships link the different entities together, e.g. that a machine entity will 

process a part entity. The logical relationships are the key part of the simulation 

model; they define the overall behaviour of the model. Each logical statement (e.g. 

"start machine if parts are waiting") is simple but the quantity and variety and the fact 

that they are widely dispersed throughout the model give rise to the complexity.
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Another key part of any simulation system is the simulation executive. The executive 

is responsible for controlling the time advance. A central clock is used to keep track 

of time. The executive will control the logical relationships between the entities and 

advance the clock to the new time. The process is illustrated in Figure 2.1. The 

simulation executive is central to providing the dynamic, time based behaviour of the 

model. Whilst the clock and executive are key parts of a simulation system they are 

very easy to implement and are extremely simple in behaviour.

Two other elements that are vital to any simulation system are the random number 

generators and the results collation and analysis. The random number generators are 

used to provide stochastic behaviour typical of the real world. For example, machine 

scrap rates will rarely be fixed but will vary between certain ranges hence the scrap 

rate of a machine should be determined by a random distribution.

The results collation and display provides the user a means of utilising the simulation 

tool to provide meaningful analysis of the new or proposed system. Simulation tools 

will typically display tabulated raw results and possess some graphing capabilities.

Entities / relations Clock

Executive

Distributions Results collection

Figure 2.1 Structure of a simulation system (Ball 1996)
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Today, there are hundreds of commercially available DES software packages; some 

based on the Simulation Programming Languages (SPL) , some on general 

programming languages, and yet others on proprietary SPLs; some are 2-D, others 

come in 3-D, and a few offer both; and they range in price from a few hundred 

pounds to tens of thousands of pounds.

These simulation packages can be further classified into general-purpose simulation 

packages and application-oriented simulation packages (Law and Mccomas 1999), 

meaning that they differ in their area of application, from very general (such as 

Extend and Simul8) to highly specialized packages for various manufacturing 

applications (such as AutoMod and Quest), or call centres (such as Arena's .Contact 

Center Edition.), just to mention a few. In fact, the level of specialization in 

manufacturing goes even further, as evidenced by for example automated storage and 

retrieval system (AS/RS) modules (such as for Quest).

With regards to emulation modelling in the context of manufacturing, a specific 

discussion on the software requirement is presented in subchapter 4.4

2.3.2 Discrete-Event Simulation and Control System Testing

As been highlighted in the previous section, control system testing using simulation 

has received considerable attention among the simulation practitioners (Banks 2000). 

In line with the scope of the present thesis, the discussion is focused towards 

manufacturing system development.

The development of a complex real system which is controlled by a control system 

may include one or more of the following four design stages or testing types which is 

illustrated in figure 2.2 (Auinger et al. 1999).

Full prototyping, shown as type A, involves tests with real equipment or system to be 

controlled and real control systems. This seems the most realistic testing possibility,
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although it is quite expensive to build and experiment with the whole prototype 

system, especially because it involves the risk of failures if the possibilities of its 

design are not tested thoroughly beforehand.

Full simulation or offline simulation, shown as type B, on the other hand, does not 

involve so high costs. However, it may disregard some phenomena that are present in 

the real system or contain additional factors that might influence the outcomes. 

Among these are the issues arising from the fact that the control architecture is 

usually distributed across a network of computers and communication requirements 

among the distributed computing processes are a major concern. It is often difficult to 

adequately model the communications requirements using software alone. 

Furthermore, it is often difficult to foresee all potential deadlock situations that can 

arise and include these within the software simulation of the system.

SimulationReality

Control System 
PLC, PCS, DCS

Simulated 
Control System

Emulated PlantPlant

Figure 2.2 Possible Combinations between Reality and Simulation for Control

System Testing.

(Adapted from (Auinger et al. 1999))

Type C which represents the context of this research emulates the equipment or 

system to be controlled and uses real control systems. Also called hardware-in-the-

14



loop (HIL)-based approach where the inputs and outputs of a controller are connected 

to a simulation of the part to be controlled (Rabbath et al. 2000). The detailed 

emulated model is also called emulation (Mueller 2001; Schiess 2001).

Reality in the loop or Real-time control shown as type D uses real equipment and 

simulates the control systems. This type of testing is also called test bench testing as 

the equipment to be tested is usually relatively small and easy to set up but the control 

logic could be complex.

It is important to note that both the development of the real system and the 

development of the software control system are very expensive. Emulation and real­

time control have the advantage that they can be carried out in a cheaper way than full 

prototyping, and stay closer to reality.

Other advantages of emulation as pointed by (Mcgregor 2000) include :

(1) Emulation allows earlier, more complete testing.

(2) Emulation allows more time to modify and repair control code.

(3) Emulation helps improve client relations.

(4) Emulation facilitates inexpensive, non-disruptive operator training.

(5) Emulation provides a safe means of testing system modifications off-line.

However, building an emulation model is still unaffordable for small and medium 

scale industries, as could be seen from the examples of emulation projects discussed 

in section 2.5. This is mainly due to its complex nature and as noted in the literature 

search and also from the discussion with simulation software suppliers and users, that 

at present an emulation model has to be built independently from simulation model. 

To find ways of reducing the cost, the characteristics and requirements of emulation 

model need to be better understood. The next section reviews the similarities and 

differences between simulation and emulation model.
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2.4 Comparisons between Simulation and Emulation 
Models

Although a simulation model and an emulation model may look the same, and may be 

built largely with the same building blocks, there are significant differences in usage 

as well as their operation. The operational differences include the execution clock, 

inclusion of hardware, level of detail, system coding, external communication and 

repeatability.

2.4.1 Different Objectives

Simulation models are used to test and develop different solutions in order to arrive at 

a better solution, based on an accepted set of pre-defined metrics. It often provides the 

impartial judge between experience and new ideas, and allows the user to 

demonstrate functionality and results in a cost-effective and flexible environment. 

Simulations results help define the physical layout of a system, its operating limits 

and its control system. Models are used as a basis for extensive experimentation, 

often using automatic procedures to determine optimal or robust solutions. (Mehrabi 

et al. 2000)

As the aim of a simulation model is exploratory by nature, the faster it can cover all 

different possibilities, the better. Simulation modelling software is therefore designed 

and developed with speed of execution in mind, and the models built with it are also 

often constructed for fast execution.

(Rohrer and McGregor 2002) argued that emulation models are used in a much more 

precisely defined way; in order to test the operation of the control system under 

different system loading conditions, and as a risk-free means of training system 

operators and maintenance staff. Emulation models are not used for experimentation 

in the same way that simulation models are; they are unsuited to this function as they 

often execute only in real time.
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The emulation model reflects more precisely the system that will be implemented, 

and as such, can be used to carry out a constrained series of verification procedures to 

ensure the performance or reaction of the control system.

2.4.2 Hardware in the loop

A major difference between simulation and emulation is that simulation models are 

'stand-alone' done all in software where as emulation models are used in conjunction 

with hardware, a situation also called hardware in the loop (HIL).

Good system engineering practice would begin with a pure simulation and as 

components become better defined (with the aid of simulation); they can be fabricated 

and replaced in the control loop.

For most real systems, there are characteristics that are unknown or too complex to 

model by pure simulation. Emulation allows hardware to be included in the model 

and the developers can see the real-time interactions between different hardware and 

software models. It is also possible to hook up real-world stimulus to peripherals and 

start debugging system behaviour (Wells et al. 2002).

Industrial communications networks are not deterministic, and control systems need 

to be designed to run reliably under varying load conditions. It therefore becomes 

important that emulation models be robust, like the control systems that drive 

industrial processes and Automated Material Handling Systems (AMHS) (Mcgregor 

2002).

2.4.3 Execution clock

(Davis et al. 1996) regarded the primary difference between simulation and emulation 

arises with the manner in which the model is executed. A simulation model
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maintains its own simulation clock. When a decision is taken within the model, the 

simulation clock does not advance until the necessary calculations have been 

performed and the decision has been evaluated. This means that simulation time stops • 

whilst decisions are taken.

As an example consider a box on a diverging conveyor belt. In a simulation model, 

the box may be sent one way or the other depending on the contents of the box and its 

final destination. In reality, this decision may be the result of several steps, each of 

which takes a measurable amount of time. The box may be scanned, and a bar code 

read. The information may be sent via a network and used to search a database to 

identify the contents and the destination of the box. Then a control system may verify 

that a diverter is in the correct position. If it is not, then a pneumatic or electric 

movement takes place. The initial bar code scan will have taken place before the 

diverter, at a sufficient distance to ensure that the response can be calculated and the 

diverter moved to the appropriate position before the box arrives (Mcgregor 2002).

In essence, to be realistic an emulation model must run at exactly the same speed as 

the control system. Since control systems are designed to operate in real time, and so 

emulation experiments should be operated in real time.

Thus, the difference between an emulation and simulation in terms of execution clock 

may simply be summarised by saying that under a simulation, message processing 

procedures control the advancement of time while under an emulation, the 

advancement of time is controlled by a real-time clock.

The difference between logical-time simulations and real-time simulations is also 

apparent in their code. Logical-time simulations have the classical discrete event or 

continuous simulation data structures and algorithms. Real-time simulations resemble 

real-time systems -  their execution is measured by hertz frequency, and they are 

typically interrupt driven (Page and Smith 1998).
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While real time simulation and emulation has similar characteristics in terms of the 

execution clock, they are quite different in other aspects of modelling. One of the 

main differences is with regard to the modelling different levels of detail as explained 

in the next section.

2.4.4 Level of detail

To use an appropriate level of detail is one of the cornerstones of a valid model. Since 

the model is, by definition, an abstraction of the actual system under study, not all 

details are depicted in the model (Ball 1998). Choosing the appropriate level of detail 

seems to be a balancing act between, minimising the details on the one hand and, 

adding details to ensure usefulness of the model on the other hand. When reducing 

the level of detail, the model looses its ability to provide a useful result at some point.

An emulation model is often more detailed than a simulation model. Because the 

emulation model must provide the same responses to the controllers as real system 

hardware, the model must be designed to respond to many system events that would 

otherwise not require custom processing during a simulation.

Therefore the level of abstraction necessary to create the emulation should be as low 

as possible. For example, an emulation model might be required to send signals to a 

controller server when a load begins a pop-up transfer, when the transfer has 

completed lifting, when the load moves to the new section and when the transfer 

completes lowering (Mcgregor 2002).

To model every component of the system at the low level of abstraction would be 

inefficient as well as problematic. Models with a high level of detail or resolution 

describe the real system more accurately, but a simulation in a high resolution 

requires a long execution time. In large models with high resolution this can lead to 

an execution which is slower than in real time.
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One way to overcome this would be through the use of parallel computing systems. 

Another alternative which would be much faster is to have the major part of the 

simulation realised on a rough level and only small parts are simulated in a high 

resolution hence the use of multi-resolution modelling.

2.4.5 Control system coding

A simulation model may contain control logic developed in the simulation 

environment that directly controls devices and loads throughout the execution of the 

model. An emulation model often responds to signals from the external control 

system, which controls system processes.

(Mcgregor 2002) argued that in order for an emulation model to operate in a way that 

reflects the reality of an automated system, it must be possible for the modeller to 

separate the physical parts of the model from the logical or operational parts. Also, in 

order for the modeller to experiment with the final model it may be necessary to have 

a part of the model operate under simulation logic, whilst other parts are under the 

direct control of an external control system.

(LeBaron and K.Thompson 1998) acknowledged that the main benefit of emulation is 

that it eliminates the need to re-implement code. Code developed and refined in 

traditional simulation models must be re-implemented into the actual control software 

if it is to be used. This creates the possibility of communication and re­

implementation errors. With emulation, the actual control system is used, thus the 

code is developed and refined as the model is developed thus provides greater 

confidence in the results.

2.4.6 Inter-process communication (IPC)

Inter-process communication (IPC) is a capability supported by some operating 

systems that allows one process to communicate with another process. The processes
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can be running on the same computer or on different computers connected through a 

network. IPC enables one application to control another application, and for several 

applications to share the same data without interfering with one another.

Off-line or full simulation often does not require IPC for the reason that it does not 

require communication with external application.

Emulation on the other hand must include communication logic to link the model to 

real time control system which consists of a continuous dialogue between sensors, 

control systems, and actuators. For example, in an AGV order assignment the 

location of each AGV is required, the driving distances or times form each location to 

each location should be available and the actual status of each other handlers should 

be available. This information is sent from different controllers such as the ASRS 

manager, the crane manager or the AGV manager to the external algorithm.

As such, development and use of appropriate interface between multiple real 

controllers and emulation model is crucial in obtaining the correct results.

2.4.7 Repeatable runs

Two or more model runs will always execute in exactly the same way and produce 

precisely the same results if no parameters are changed between runs. Any impression 

of randomness in a simulation model is due to the use of pseudorandom numbers to 

generate certain events such as breakdowns, cycle times and so on. Repeatability is 

necessary in order to recreate and understand events during the model run, as well as 

to debug the model as it is built. All events that influence the model execution are 

contained within the model and are therefore repeatable.

Due to the fact that in most emulation models the control system is separate from the 

model itself, repeatability is uncertain, as communication events are asynchronous 

and unpredictable. The model and the control system work with different clocks and
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synchronize via a communications layer, itself prone to the decisions of the operating 

system (Mcgregor 2002).

The comparison between simulation and emulation using the above features is 

summarised in Table 2.1.

Table 2.1 Summary of comparison between simulation and emulation

Characteristics/features Simulation Emulation

Aim To test and develop 

different solutions

To test control system 

under different conditions

Execution Clock Virtual time Real time

Level of detail Low High

Hardware in the Loop No Yes

Control system coding Control rules hard coded Control rules separated 

from event code developed 

and refined as model is 

developed.

External communication Not always Yes

(interface required)

Repeatable runs Yes

(precisely same result)

No

(communication events 

asynchronous and 

unpredictable)

2.5 Applications of Emulation

Over the years emulation modelling has developed steadily from its predecessor 

(simulation) and has been used in different ways in various environment. While 

majority of the literature relates the success stories of implementing emulation
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technology, very few discuss the technical development details of the venture. As 

such, since emulation is closely related to real time and on-line simulation, some of 

their applications and development details are also quoted to exemplify the emulation 

model building.

2.5.1 Automated Material Handling System (AMHS)

Literature search has found that Automated Material Handling System (AMHS) has 

the most number of applications of emulation. Below are some examples of 

emulation projects to illustrate the usefulness and benefits of emulation in Automated 

Material Handling System (AMHS) projects. Included are some technical details on 

their development and some cautions with regards to emulation model building by the 

experienced modellers.

Ranistan Conveyor

(LeBaron and K.Thompson 1998) Rapistan Systems, MI, USA and AutoSimulations 

Inc., UT, U.S.A. used emulation to develop, test, debug, and optimize a complex pick 

and pack conveyor system for their client. The project integrates a simulation model 

with the actual control system. The simulation model provides the output for 

evaluating control logic and algorithms as well as a real time 3-D graphical animation 

for improved visibility and confidence.

The emulation model they made has a built-in message handler that receives and 

sends messages through a standard network interface (TCP/IP). The simulation 

message handler pulls message information from the server at predefined time 

intervals and acts on these messages. In addition, the simulation model sends 

messages to the server when certain events have occurred within the simulation 

model. Emulation has provided them the graphical and statistical output needed to 

accurately evaluate different algorithms and control logic.
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Eskav ASRS

Eskay Corporation (Salt Lake City, UT, USA) an AMHS supplier, developed 

emulation of a 2-aisle pallet Automated Storage and Retrieval System (AS/RS) Unit 

Load system to test the order fulfilment control system. The conveyors taking pallets 

of product to and from the AS/RS were controlled by Think & Do™ industrial 

control PLC software and the Warehouse Management System (WMS). The 

simulation model built using Automod was connected to the controller via an OPC 

server, and to the WMS via sockets.

(Young and Heider 2002) who were involved in the project reported that despite 

delays created by resource scheduling problems, the emulation was completed 

months before commissioning was to start. The project manager and software 

engineers were able to test the full system functionality tested and the checklist over 

80% complete before travelling to site

They also attributed that majority of the work for the emulation project involves 

creating a detailed hardware model and interfacing with the other emulation 

components. Their work on the interfacing was reduced by using the Automod Model 

Communication Module (MCM). Nonetheless even though AS/RS, case conveyor, 

and pallet conveyor are common AutoMod components, for emulation they require 

significant customization from standard AutoMod operation.

Some important cautions they provided were:

(1) Testing all of the functionality of a MHS would be extremely difficult. It is more 

important to set limited goals to test and refine basic system functionality.

(2) No amount of software testing can make up for hardware installation difficulties. 

If the hardware installation is not complete per schedule, the software commissioning 

will be delayed.
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(3) Even if the full system emulation operates correctly, any hardware mistakes will 

not be revealed until commissioning.

Coca Cola Packer

Coca Cola Enterprise (CCE) Atlanta, GA, USA, needed to accurately model their 

complex production line and was looking for a method to reduce debugging time on 

line system start-ups. They developed an emulation model of their Fort Worth Texas 

production line using Automod software and utilised AutoMod MCM (Model 

Communication Module) to establish communication between the PLC hardware they 

use to control their production line and the model (Hodgson and Kartz 2000).

The model was built with a modular structure that supports rapid restructuring to 

describe different production lines. Photoeye objects, motors, and other resources are 

modelled in the simulation and the state of these objects are set and read by the PLC 

connected to the simulation computer using DDE commands provided in the MCM.

By using the model with different speed inputs, different MTTF/MTTR numbers, 

they made an informed decision that replacing the existing packer with a faster one 

would not improve the overall line efficiencies after all.

CCE also used emulation to determine the best sequence in which to build a series of 

‘layered’ pallets. By using the ‘Dynamic Scheduler’ they were able to show an 

additional 17% gain in throughput (Cheshire and Hodgson 2001).

General Mlotor Car Assembly

General Motors (GM) used MCM and Automod to do emulation of a GM Holden car 

assembly plant to validate their After Paint Mix Bank control logic before 

implementation in the plant. Communication capability was established between 

AutoMod emulation model and Softlogix 5, an Allen Bradley PLC emulation 

software using RSlinx, a communication package also from Allen Bradley. The
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communication protocol used was Dynamic Data Exchange (DDE) which was 

provided by AutoSimulations.

In the case where there were more than two models, the Multi Model Synchronization 

(MMS) Server, an extension of the Model Communications Module was required. 

The MMS Server automatically opens and manages a connection between each model 

and the Server and synchronizes all the models that are participating in the simulation.

GM Holden acknowledges that the ability to connect to actual control systems 

eliminates the need to recreate control logic in simulation models. This not only saves 

time but also increases model accuracy. GM Holden also realized significant savings 

using this functionality when their After Paint Mix Bank was fully operational just 3 

days after implementation, resulting large financial benefit (Vedapudi 2001)

Schipol Underground Logistic System AGV

(Versteegt and Verbraeck 2002) applied a four-step approach of using simulation in 

evaluating real-time control systems of Automated Guided Vehicle Systems (AGVS) 

and Automated Material Handling Systems (AMHS) for the Underground Logistic 

System (OLS) Schipol in The Netherlands.

The four steps are (1) Testing in a fully simulated environment or offline simulation 

(Type B in Figure 2.2), (2) Emulation of logistic resources, (3) Combining reality in 

the loop, emulation and simulation, (4) Implementation of both control and system 

being controlled in reality.

The strategy in the approach was to solve as many of the technical uncertainties at the 

first stages and delay the investments in expensive control software and physical 

logistic resources to later stages. In a fully simulated environment problems can 

easily and quickly be detected and possible solution can be evaluated for their 

effectiveness. In later phases the high investments in control software are made, only 

when the uncertainties and problems are solved. When the uncertainties are solved in
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the beginning of the project, the chances of investing in wrong technologies is 

minimized.

The main idea behind the approach is the development of interchangeable simulated, 

emulated and prototype components of the control systems and the systems-being 

controlled. Interchangeable means that components can be changed during 

experiments without making changes to the control systems.

Some important lessons taken from their work are:

1. The interfaces between the components were defined right at the beginning of 

the project. Later models and logistic resources had to comply with these interfaces.

2. Use asynchronous messaging to reduce the effect of delays when exchanging 

information between system components that are coupled in a network.

3. Synchronization between simulation clock and the wall clock is very 

important aspect in combining simulation, emulation, and prototypes. Except for the 

software packages that offer standard built-in features for real-time progress in 

simulation models, separate program has to be made to provide this functionality.

Airport Baggage Handling System

As reported by (Rengelink and Saanen 2002), baggage handling has become one of 

the major issues in competition between airports. Due to the nature of non-stop 

operation 24 hours a day, 7 days a week and high security levels, there is a high 

demand for the quality of the newly implemented systems and its controls at airports. 

The extensions or changes need to be thoroughly tested in advance without involving 

the real equipment on site but under conditions comparable to operational conditions.
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In view of this, (Rengelink and Saanen 2G02) developed a simulation environment 

for emulating baggage handling equipment which enabled detailed tests and provided 

insight into the behaviour of the real PLC for their client.

They used eM-Plant simulation environment due to the following advantages:

1. A large number of basic processes were already depicted within the baggage 

simulation library.

2. The required details for the emulation were able to be easily implemented 

because of the Object Oriented structure.

3. This approach saved the manufacturer significant lead time in the project and 

reduced the required time for testing on-site.

In general, the applications of emulation reported above have indicated that in the 

long-term, simulation and emulation should be used as an integrated part of the 

design process, analysis, tests and realization. Optimal use should be made of the 

activities done during all of the phases and this requires reusability of models, easy 

adjustability for different lay-outs, and project management based on the 

developments.

2.5.2 Manufacturing Process Control

Although simulation has been the tool of choice for modelling the behaviour of 

Manufacturing Systems, the accuracy of simulation tools in modelling modem 

manufacturing systems such as Flexible Manufacturing Systems (FMS) has been 

doubted. The inherent inaccuracy of simulation tools arises from the inability to 

model all the constraints associated with the operation of an FMS. Simulation tools 

usually focus on modelling the primary job entity as it flows through a stochastic



queuing network representation of the FMS. Few simulation tools readily permit the 

modeller to consider the flow of the supporting resources (e.g. tooling, part kits, 

fixtures, and processing plans).

FMS Emulator

(Davis et al. 1996) argued that the coordination of all entity flows in an FMS is 

crucial, and it is the interactions among the controllers within the FMS that coordinate 

these flows. To address these requirements, they introduced the notion of coordinated 

object, which included an intelligent controller or coordinator to perform integrated 

on-line planning and control. They developed a coordination architecture called 

Recursive Object-Oriented Control Hierarchy (ROOCH) for assembling the 

coordinated objects into a real-time management structure such that planning and 

control are both distributed and controlled.

To model the performance of the ROOCH, a simulation methodology, the 

Hierarchical Object-Oriented Programmable Logic Simulator (HOOPLS) was 

developed. HOOPLS employs an object-oriented architecture, and the C++ 

programming language was selected for implementing of the simulation model.

To demonstrate the benefits arising from both the ROOCH architecture and the 

associated HOOPLS modelling paradigm, (Gonzalez and Davis 1997) developed a 

physical emulator for an FMS in a laboratory environment at University of Illinois at 

Urban-Champaign, USA. The development of real time control architecture for a 

physical emulator is described in (Gonzalez and Davis 1998)

TSCS

(Peters et al. 1996) presented a simulation control system developed by the Texas 

A&M Computer Aided Manufacturing Laboratory (TAMCAM) to explore the 

advantages and disadvantages of on-line simulation for process control.
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The TAMCAM Simulation Control System (TSCS) consists of a simulation-based 

controller developed in Arena, a message router and client controls developed in 

Microsoft Visual C++, and an external database system developed in Microsoft 

Access. The simulation-based controller is built in Arena using the Arena Real-Time 

template. The Arena model also uses a user-coded dynamic link library (DLL) 

written in Microsoft Visual C++ to provide the implementation-specific 

communications functions required by the router. All connections within the real-time 

system are implemented using the TCP/IP protocols. The connections within the 

forecast system are implemented with Database Access Objects (DAO).

2.5.3 Other Applications

2.5.3.1 Control Architecture Evaluation

A modular experimental test bed was developed by (Rogers and Brennan 1997; 

Brennan 2000) to investigate the relative performance of any variety of 

manufacturing control architectures with any type of manufacturing system. In order 

to make this analysis possible, the experimental test bed needs to separate the control 

system from the emulated system allowing each to be developed and tested 

independently.

Brennan noted that emulated manufacturing system was chosen over a physical 

system in order to overcome drawbacks of physical systems for this type of 

experimental work namely difficulty in controlling the test bed and its environment, 

and difficulty in reproducibility of tests.

The approach to de-couple the manufacturing system and the control system as fully 

as possible resulted in the basic structure of the modular experimental test bed as 

shown in Figure 2.3.
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Figure 2.3 The experimental test bed 

(Brennan 2000)

This figure shows the two main modules of the test bed, which can be identified as:

(a) an emulation module, which is intended to emulate the behaviour of the 

manufacturing system being controlled, and

(b) a state/control module, which is used to implement alternative decision-making 

schemes.

The simulation model was written in Arena simulation package, and can be modelled 

relatively easily to represent alternative manufacturing system configurations. The 

Arena simulation model is augmented by a communication model, implemented with 

additional ANSI C routines, which carries out the low-level communication functions 

via input/output streams (implemented as UNIX or INET sockets).
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The state/control module, which is used to implement the test control architectures, is 

implemented in the C++ programming language. The structure of this module is 

similar to the emulation module; it consists of a communication model, used to carry 

out the low level communication functions, and a control model, used to implement 

the test control architectures.

A part/machine expert system is included as part of the state/control module to 

instantiate the control system decision makers. The expert system relies on a set of 

rule bases that describe the capabilities of the work centres in a given manufacturing 

system and the detailed processing requirements for the parts that are to be introduced 

to the system (Brennan and Norrie 2001).

2.5.3.2 Verification of Controller Software

Testing the behaviour of a controller for example a PLC, which, controls a device 

being part of a more complex system, is usually done by connecting the controller to 

a ‘stand-alone’ version of the device called ‘mock-up’. This method of verifying and 

validating the controller’s software is expensive, and test conditions are hard to 

reproduce. Such tests are incomplete since the interaction of this device with the other 

parts of the system is simply ignored. Therefore a large part of testing and debugging 

is still carried out on-site.

To solve such problems (Schludermann et al. 2000) has developed a Soft- 

Commissioning (SoftCom) , a ‘hardware-in-the-loop’ (HIL)-based system approach 

that enables interaction between controller such as a PLC and a commercial discrete 

event simulator, also known as emulator. HIL means that the inputs and outputs of a 

controller are connected to a simulation (emulation) of the part to be controlled. 

Hence, the system needs to be modular and scalable.

While most other HIL systems are based on continuous real-time simulation and use 

fast Digital Signal Processor (DSP), SoftCom was developed to interact with 

commercial Discrete Event Simulators (DES) and conventional I/O hardware. A
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special communication protocol was defined to make flexible SoftCom internal data 

exchange possible. The two basic modules shown in figure 2.4 are the I/O Devices 

Driver (IODD), which is used to interface between the I/O hardware and the SoftCom 

protocol, and the Simulator to real World Interface (SWI) which is used to link the 

simulator to the SoftCom system.

IODD

PLC

Simulator
SWI

Figure 2.4 The SoftCom System

The IODD internal link to the I/O cards is defined by a library interface, e. g. a 

Dynamically Linked Library (DLL) in the Windows world. The implementation of 

this interface depends on the I/O hardware in use. Thus the IODD must support 

connections to more than one library at the same time to be able to establish links to 

different I/O cards.

The implementation of the SWI depends on the simulator’s approach of providing 

access to its variables and objects. (Schludermann et al. 2000) prototype was based on 

the simulation environment Arena. Arena provides two mechanisms for external 

programs to interact with the simulation, Visual Basic for Applications (VBA) 

module and Dynamically Linked Library (DLL) interface. DLL interface was chosen 

as the link between the SWI and the simulator for the reason for that the DLL can be 

implement in C++, which provides more flexibility in programming.

The DLL interface defines routines to interact with the simulation: One type gives 

access to simulator variables and the event calendar. The other type enables the
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simulation to execute user code when appropriate events are triggered. By forcing the 

simulation to call into the user event DLL routine periodically, a certain update time 

step is achieved. This time step is needed to synchronize both simulation data and 

simulation time with the SoftCom system.

Tasks such as 'system update', 'system configuration' and 'runtime control' are usually 

quite simple as long as the system is restricted to a single computer. But they rapidly 

grow in complexity with the number of computers involved. Thus configuration and 

maintenance of bigger systems can become a time-consuming job.

The strategy to simplify this job is to update and configure the system on a single 

computer, which then forwards this information to all other computers of the system. 

Based on this strategy, a SoftCom Manager was developed as a centralizing tool for 

configuration and runtime control (Schludermann et al. 2000).

2.5.3.3 Simulation Model Integration

One of the greatest challenge towards building emulation model is having to integrate 

different functional areas developed in different simulation environment as reported 

by (Boer et al. 2002).

In a complex system, such as a container port, there are thousands of pieces of 

equipment and controllers. Testing of complex systems like a port system might 

entail several difficulties, which, beside the general communication problems, 

concern the variety of simulation environments, variety in the real equipment and 

differences between communication protocols.

The simulation models or simulation components are usually developed by different 

modellers, using different concepts and different simulation environments. Thus, the 

communication between various environments should be enabled in order to provide 

collaboration. Equipment and simulation models support different communication 

protocols, therefore, different models can communicate only if a common protocol is
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worked out or several interfaces are developed, that allows for communication 

between any two of them.

In view of this, (Boer et al. 2002) has developed FAMAS (First All Modes All Sizes) 

Simulation Backbone Architecture, a flexible architecture for the interoperability 

between various distributed simulation models. Its structure shown in Figure 2.5 

consists of technical components representing the simulation models, and technical 

components providing common tasks used by the functional components.

r

/ Run control V ̂ Subsystem j

r
/ Simulation

Technical Components

fvtenaoer I (E6TM) J
/  Looking \  /  Visû izoDcn \
^  Subsystem ) I, Subsystem i

CcuTimufilc-tiiion L ayer

N..
Sirrulaiion \  
Model 2 /

Furtctiona! Components

/ Sirmiation \  
Mode! n /

Figure 2.5 The Structure of the FAMAS Simulation Backbone Architecture

In the development of the FAMAS Backbone Architecture (Boer et al. 2002) listed 

requirements to be fulfilled, which are:

Distributed execution', this can be achieved by a well-defined interoperability 

between different simulation components. The interoperability in the FAMAS 

Simulation Backbone is provided by a low-level message passing mechanism.
j

Optimal communication: effort is required to attain an effective communication 

speed.

Stand-alone and distributed testing: refers to the possibility to test distributed 

simulation models developed by different parties as in standalone as in distributed 

environment.
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Package independence: this requirement focuses on combining simulation models 

implemented in different simulation packages (e.g. Arena, eMPlant, Enterprise 

Dynamics) and programming languages (C++, Java, Delphi, etc.). The characteristics 

mentioned so far reflect the grade of flexibility of the architecture and reusability of 

the simulation models.

Structure transparency: aims to give some insights into the architecture for the 

groups who intend to develop models or support subsystems for it, in order to provide 

interoperability. The transparency helps the modeller to couple the simulation models 

effortlessly.

Hierarchical structure allows for modelling, design, and development in a 

hierarchical manner. This feature is essential in the FAMAS project as the models 

might be developed at different levels of detail.

Some other application areas that share some common elements of emulation model 

include the following.

• on-line business process and decision making (Dalai et al. 2003),

• real time security control system testing (Jordan et al. 1998; Smith et al. 

1999),

• transport (Verbraeck and Versteegt 2000; Verbraeck and Versteegt 2001; 

Hunter and Machemehl 2003; Xu et al. 2003).

These were also reviewed in the development of questionnaire survey described in 

Chapter 3.

2.6 Summary
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The literature search was based on the pretext of trying to understand a simulation 

technology in manufacturing system design called emulation. As it progressed, it was 

discovered that while there were much interest on emulation, not many companies 

were willing to invest in the technology, primarily due to the monolithic nature of the 

model building and high cost. Thus a new approach towards developing emulation 

model needs to be investigated including the possibility of simulation-emulation 

conversion process.

Review on the similarities and differences between simulation and emulation models 

have highlighted several issues to consider before developing a new method for 

building emulation model. They include (1) simulation and emulation models are 

built with different aims, (2) emulation operates with hardware in the loop (HIL) 

which requires an interface for the interaction and has to be run in real time, (3) 

emulation models higher level of detail compared to simulation model, (4) control 

rules are hard coded in simulation where as control rules are separated from event 

code in emulation, and (5) runs are repeatable and results are predictable for 

simulation but not for emulation.

Review on the application areas of emulation has shown that most of the applications 

are in manufacturing area particularly in the modelling of automated material 

handling system (AMHS). Others include manufacturing process control, 

transportation logistics and non manufacturing application.

With regard to modelling work, majority of the work reported for the emulation 

project involves creating a detailed hardware model and interfacing with the other 

emulation components. While Object Oriented approach, the likes of HOOPLS and 

eM-Plant simulation environment offers the advantage of flexibility and openness, 

most manufacturing application simulation software packages (for example Arena, 

Automod, Quest etc) are non object oriented. However there are functions or modules 

created either directly by the vendor or indirectly by the user of simulation packages 

to overcome drawbacks encountered in the respective projects.
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An important observation on the existing method of building emulation model was 

that it had to be developed separately from simulation model, in other words they 

were not convertible. To make emulation model more cost effective, as indicated 

from the result of the literature review, a hybrid simulation-emulation model (HSEM) 

is seen to be a viable alternative.

The next chapter describes the overall methodology by which the research was 

carried out including developing areas identified in this chapter.
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CHAPTER 3

JUSTIFICATION OF THE PROPOSED 

RESEARCH AND RESEARCH 

METHODOLOGY

3.1 Introduction

This chapter describes the justification of the proposed research and the methodology 

employed to answer the issues raised in the previous chapter with regard to 

developing new methodology of building emulation model.

The first part consisting of preliminary research and questionnaire survey describes 

justification process of the proposed research. The second part consisting of 

development of a sample model, development of a new methodology to develop 

emulation model and validation describes the research methodology of the proposed 

work.

3.2 Preliminary Research

Initial research works involved fact finding through literature review and gathering of 

information from simulation software suppliers and users. Two important initial 

findings were:
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• The lack of published information concerning the procedure of emulation 

model building,

• Emulation is not yet widely used especially outside USA.

Conference papers especially from the annual Winter Simulation Conferences 

provided vast information on the benefits and applications of emulation. However, 

not much information could be obtained with regard to its building methodology. As 

also noted in 2.2, further search was done on the websites and journals using the 

phrases 'simulation for control system testing' 'real time simulation' , as well as 

'flexibility of adding details' which provided considerable amount of related material.

The initial literature findings coupled the outcome of meetings and correspondence 

with simulation software suppliers and users provided a clearer meaning of emulation 

the context of the proposed research.

To identify current trend and expectation research priority areas within the proposed 

research, a questionnaire survey was developed and conducted.

3.3 Questionnaire Survey

The main objectives of the survey were to investigate the extent of use of Emulation 

model for Control System Testing, its application areas and users opinion about its 

model building.

Due to the similarity in purpose and more commonly understood term, "simulation 

model for control system testing" instead of "emulation" was used in the 

questionnaire survey.

It was also discovered that the phrases have also been used in non manufacturing 

application areas like security system (Jordan et al. 1998; Smith et al. 1999) and
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transport system (Verbraeck and Versteegt 2000; Hunter and Machemehl 2003; Xu et 

al. 2003).So, for the purpose of initial study and comparison the scope of 

investigation was widened to include non manufacturing application areas.

The questionnaire questions were developed based on guidelines in (Oppenheim 

1992; Thomas 1999). Regarded as the biggest world wide gathering of simulation 

practitioners and simulation software vendors, Winter Simulation Conference (WSC) 

was chosen as an ideal opportunity to distribute the questionnaire and gather the 

required information.

The questionnaire distributed to the participants of WSC 2003 consisted of seven 

topics dealing with

1) type of user ,

2) whether or not using simulation for control system testing,

3) current application area,

4) ranking the benefits of using simulation for control system testing,

5) important stages for its model building,

6) simulation packages used

7) potential application areas.

 The first two general topics were used to classify the background of-the respondents-

according to their professional affiliation and to gauge the level of use of simulation 

in control system testing in general.

Topics (3), (4) and (5) only apply to current users of simulation for control system 

testing. The aim was to gather information based on their experience the benefits of 

emulation model and facilities that would assist the development of emulation model.

The last two general topics deal the choice of simulation software used and the 

simulation user's expectation on the future use of emulation. Apart from indicating 

the preference towards certain software package, more importantly the response to the
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choice of simulation used would identify the suitability of the software to be used for 

control system testing from the user's perspective.

With regard to the application area, present and future, the respondent was offered 

choice(s) from a list of which the general meaning of each application area was as 

follows:

Process control involves monitoring, controlling and improving a process typically 

in production environment.(Davis et al. 1996; LeBaron and Hendrickson 2001)

Business Process is collection of activities designed to produce a specific output for a 

particular customer or market. (Aguilar-Saven 2004)

Material Handling is the movement, storage, control and protection of materials, 

goods and products throughout the process of manufacturing, distribution, 

consumption and disposal. (Mueller 2001; Versteegt and Verbraeck 2002)

Security system is the mechanism to protect facilities against intrusions by external 

threats as well as unauthorized acts by insiders. It includes physical as well as 

information protection.(Jordan et al. 1998; Smith et al. 1999)

Transport system is the facility consisting of the roads and equipment necessary for 

the movement of passengers or goods. Mode of transport includes land, air and 

water.(Verbraeck and Versteegt 2000; Verbraeck and Versteegt 2001)

As to the benefits of using simulation for control system testing, the respondent is 

asked to rank them from a list. They are (i) shorter commissioning time, (ii) low 

overall cost, (iii) efficient use of resource and (iv) client satisfaction.

The respondent was also asked in topic (5) to rank according to its importance the 

development stage requiring specific tool for emulation model building. The 

development stages gathered during initial case studies are (i) Interfacing between 

models, (ii) Modifying simulation code, (iii) Determining the correct level of detail.
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The response would help to indicate the inhibiting factors at present as well as the 

important areas of research and development.

The questionnaire also contained additional space so that respondents could specify 

particular application areas, benefits and simulation packages that were not listed in 

the original choice of answers. This was aimed to get more information that was not 

retrieved during the literature review exercise.

The survey sample was not selected by any formal statistical method. Out of 100 

samples distributed, answers from 26 respondents were collected and analysed. Table

3.1 shows the distribution of current and potential areas using emulation for control 

system testing based on the user background. Table 3.2 shows the distribution of the 

application area of emulation, present and future from simulation practitioner’s 

perspective.

Table 3.1 Current and potential areas using of emulation for control system testing

User Type
Academic (%) Industrial (%)

Current Potential Current Potential

Application 
area using 

emulation for 
control 

system testing

Process Control 28.6 27.6 33.3 33.3
Business Process 28.6 17.2 14.3 18.2

Material
Handling 28.6 20.7 28.6 24.2

Security System 0 10.3 0 3.0
Transport System 14.3 24.1 23.8 21.2

Table 3.2 Present and Future Application Area of Emulation

Present (%) Expected (%)
Process Control 33.3 30.9
Business Process 18.5 16.4

Material Handling 29.6 23.6
Security System 0 7.3

Transport System 18.5 21.8
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The results of ranking the benefits of using emulation for control system testing based 

on weighted average calculation were as follows:

(1) Efficient use of resource

(2) Low overall cost

(3) Shorter commissioning time

(4) Client satisfaction

Ranking of the importance of development stage requiring specific tool for emulation 

model building would indicate (1) inhibiting factors at present, (2) important areas of 

research and development. The results of survey, in order of importance, are as 

follows:

(1) Interfacing between models,

(2) Modifying simulation code,

(3) Determining the correct level of detail.

Based on the preliminary research and analysis of questionnaire survey, several 

important points were identified. They are listed below.

• Process control and material handling are considered to be the prime 

application areas of emulation.

• Emulation has the potential being used for control system testing in areas 

other than manufacturing and production like transport system, business 

process and security system.

• There is a need to provide a generic methodology and facilities for developing 

emulation models.

3.4 Case Studies

The case studies that followed were conducted to look into:

(1) Defining the requirement specification for a simulation model to be able to 

convert into an emulation model.
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(2) Developing a framework of activities associated with building a simulation 

model and converting it into an emulation model.

Results of the case studies from the first part were used to develop the requirement 

specification as discussed in Chapter 4. They include adaptability for modelling 

detail; inter process communication and criteria for simulation/emulation convertible 

software.

Case studies for the second part looks at detail simulation model development 

procedure as well as interfacing real system with the simulation model. This is 

discussed in the development of proposed framework of activities in Chapter 5.

3.5 Development of a sample model

Based on the more in-depth case studies, a methodology of converting simulation 

model into emulation model was developed. The methodology consists of three main 

steps. They are as follows.

1. Developing conceptual model,

2. Converting an initial or conceptual simulation model into a more detailed 

simulation model,

3. Integrating the model at various level of detail with external controller and 

running it in real time.

The methodology was verified by developing, constructed through the various stages, 

a sample model using Arena Simulation package.

The reasons for choosing Arena simulation package were as follows.

• It is a general purpose, non specific application software with which a generic 

tool could be developed for a wider use in a variety application area,

• It is modular, hierarchical and configurable which would allow integration of 

models of various level of detail.
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• It has a real time modelling facility which would allow real time 

communication between the simulation model and controller.

The case example is the modelling of a 2-machine manufacturing system. Two types 

of parts namely "Part Type 1" and "Part Type 2" are processed in the system. A "Part 

Type 1" is processed first on Machine 1, then on Machine 2. A "Part Type 2" is 

processed first on Machine 2, then on Machine 1.

The sequence of events the entities, Part Type 1 and Part Type 2, follow is shown in 

Figure 3.1

The Arena model, in Figure 3.2 shows the modelling logic and animation of the 

manufacturing system based on the assumed time projection of events. In reality 

assumed time projections are not enough. For example, due to limited buffer space 

the machines need to communicate between each other as well as with the arrival 

controller to monitor the number of parts coming to the respective stations.

The model, shown in Figure 3.3, is a modification of the simulation model 

incorporating Real Time elements. Only the logic diagram is shown as the animation 

diagram in this example is exactly the same as for simulation. This model 

demonstrates Arena running in execution mode and conducting inter-process 

communications with an external client application called RTConsole.exe written in 

Visual Basic.
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Figure 3.1 Sequences of Events for the 2-Machine Manufacturing System
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Figure 3.3 Real-Time Simulation of a 2-Machine Manufacturing System

The conversion involves some changes in the communication structure as well as the 

message handling in the simulation model.

The simulation of sending and receiving of the messages and relevant parts by the 

respective machine on a 'client' was successfully controlled through a remote 

computer, which acted as a 'server'.

Further information on the development of a similar sample model can be found in 

(Hasnan and Perera 2004).
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3.6 Development of new methodology

Based on previous studies and experience of developing a sample model, a new 

methodology of building emulation model is developed.

The development comprises of the following activities.

1. Defining the requirement specification for a simulation model to be able to 

convert into an emulation model.

2. Developing a framework of activities associated with building a simulation 

model and converting it into an emulation model.

3. Documenting the methodology for general application.

The specific requirements for hybrid simulation-emulation model (HSEM) building 

are described in Chapter 4. The methodology for the development is documented in 

Chapter 5.

3.7 Validation

The validation of the new methodology is through the development of a hypothetical 

simulation model of a small manufacturing plant and converting it into an emulation 

model where some form of external control is included. The development of the 

validation model, based on the general methodology developed, comprises of the 

following activities.

1. Building base simulation model.

2. Modelling details.

3. Integration with controller.

The validation process is described in Chapter 6.
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3.8 Summary

This chapter has described the justification process of the proposed research as well 

as outlined the methodology of the research. The stages, sub-activities and areas as 

well as the outcome at each stage of research are summarised and shown in Figure 

3.4.

The next chapter discusses the requirement specifications for developing HSEM as 

prescribed from stages 1, 2 and 3 of the research.
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CHAPTER 4

REQUIREMENT SPECIFICATION FOR 

SIMULATION-EMULATION MODEL

BUILDING

4.1 Introduction

The comparison of salient features between simulation and emulation model 

summarised in Table 2.1 in Chapter 2 has highlighted the general requirements 

towards building emulation model from existing simulation model.

This chapter discuss in more detail the technical requirements for the possible 

conversion. It covers two major categories, namely (1) the flexibility of adding details 

to the simulation model while assuring its correctness and (2) the inter process 

communication between model and real control system. It is followed by discussion 

on selection criteria of simulation software suitable for the development of Hybrid 

Simulation/Emulation Model (HSEM). This chapter concludes with a summary of the 

requirement specification for HSEM building.
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4.2 Flexibility for Modelling Detail

Like any system that anticipates change in the later stage, HSEM needs to be build 

with flexibility in mind. One of the most important concerns about the development 

of HSEM is the requirement of adding components with multiple levels of detail or 

abstraction as the model develops. Simulation like any modelling project begins with 

a conceptual model with many assumptions. It then goes through an iterative process 

becoming more detail and refined until it reaches a stage considered accurately 

representing the real system, a process shown in Figure 4.1.

As suggested by(Robertson and Perera 2002), due to this iterative fashion of model 

building it is considered to be a good practice to embed the first version or iteration of 

the model with flexibility. If this first iteration of the modei is designed to 

accommodate such predicted developments, the model will require less time and 

effort later in the model development life cycle, for the 2nd, 3rd, 4th, or even 5th 

iteration. The consequences of not embedding this flexibility initially are that the 2nd 

iteration will require greater time and effort to be modified, as will the 3rd iteration, 

and so on.

Model Model Model Model Model
IteraKon Iteration lt«r»1k>n Iteration • Iteration

N o . t  No,  2  No,  2  No,  4  No,  5

f!—i-

p |a n t in O p eration

Figure 4.1 The iterative model building process 

(Robertson and Perera 2002)
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The degree of flexibility should be sufficient to allow the user to create a “hybrid” 

model where the control system to be verified provides the logic for a part of the 

model and the simulation product takes care of the rest.

4.2.1 Adaptable Simulation Models

Since building a simulation model can be a difficult and time-consuming task, a 

decision-maker will seek to reuse a simulation model if possible and change it to 

solve a different problem or evaluate another option. Thus, it is desirable to have 

adaptable simulation models that are easy to change with little or no programming 

effort (Randell et al. 1999).

In the manufacturing systems context, small changes in the manufacturing 

environment can produce many different, though related, changes to the data input for 

the simulation model. Some examples of changes that are likely to occur are: (a) the 

answers needed from the simulation, (b) the products that are being made on the shop 

floor, (c) new production processes or characteristics of the current production 

processes, and (d) changes to the plant layout.

Also, the process of designing a manufacturing system requires changes to the 

simulation model. As a manufacturing system progresses from a concept to a detailed 

design to an installed and operating facility, the simulation model of the system must 

change. Typical changes include equipment selection and location, control rules and 

operating procedures for equipment and material handling systems, arriving material 

and customer order characteristics, and operating hours.

4.2.2 M odular Simulation

Simulation experiments often require the examination of a potentially large number 

of scenarios dealing with many solution strategies. The development time to build 

new models or make changes to existing models can be quite substantial and
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problematic. One technique to reduce this problem is to develop generic, modular 

simulation solution systems.

Modularity is based on locality and encapsulation (Pidd and Castro 1998). Locality is 

the notion that all information relevant to a design decision should be kept in one 

place, i.e. within a module. Encapsulation, or information hiding, separates internal, 

hidden aspects of a module from the external (Rumbaugh 1991).

A modular model should satisfy two conditions according to (Pidd and Castro 1998):

(i) The model or component must not directly access the state of any other model or 

component.

(ii) The model must have recognized input and output ports through which all 

interaction with the exterior is mediated.

A further advantage is that this modularity supports the re-use of model components, 

since modular models are defined with no direct reference to the state of their 

potential co-components. This improves the likelihood that modular models may be 

built, at least in part, from existing components. It also provides an attractive way of 

introducing hierarchical components into simulation models (Robinson et al. 2004).

The general modelling approach that is recommended is to remain at the highest level 

possible when creating the models. However, as soon as we find that these high-level 

constructs do not allow capturing the necessary detail, drop down to the next level for 

some parts of the model rather than sacrifice the accuracy of the simulation model. 

(Meinert et al. 1999; Nketsa and Valette 2001)

Some simulation packages seem well suited for modular development while others 

have a structure that makes modular design difficult. It very much depends on the 

modelling style that usually follows the programming style which could be either 

procedural or object oriented.
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Procedural Style

Programming in simulation languages like GPSS, SLAM and SIM AN are considered 

to be procedural based. In the procedural programming, a problem was decomposed 

into procedures and either represented by general components, like a queue, or 

represented in programming code with a data structure and code.

(Joines and Roberts 1999)argued that the main limitation of the procedural style was 

its lack of extensibility. From the earliest simulation languages until the early 1990s, 

the only way to adapt these simulations was through functional extension. In other 

words, structural functionality can be added to the simulation but cannot alter any of 

its basic processes, like giving properties to resources. For example, the simulation 

needed to include a bridge crane; it has to be completely programmed. One of the 

reasons for this lack of extensibility was that procedural changes were the only 

approach to model changes.

Because many simulation languages offer pre-specified functionality produced in 

another language, the user cannot access the internal function of the language. 

Instead, only the vendor can modify the internal functionality. Also, users have only 

limited opportunity to extend an existing language feature.

Object (component) Style

With object style, a simulation language provides a user with a set of pre-defined 

object classes (i.e., resources, activities, etc.) from which the simulation modeler can 

create needed objects or components. The modeler declares objects and specifies their 

behavior through the parameters available. Therefore, an object can be described by 

an entity that holds both the descriptive attributes of the object as well as defines its 

behavior.

The class concept evolved out of the notion of encapsulation where objects needed 

independence of action and a means to hide their implementation details, yet provide
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an interface for their use. Further, there needed to be way to construct objects and to 

communicate among them.

In the context of extensibility, object style can be divided into two types namely 

object-based and object-oriented.

The object-based approach only allows extensibility in the form of composition 

where new objects can only be created out of existing objects. Object-based 

programming is a limited version of object oriented programming where one or more 

of the following applies: (1) there is no implicit inheritance; (2) There is no 

polymorphism, (3) only a much reduced subset of the available values is objects, 

typically the GUI components.

Simulation packages like Arena and AweSim have beginnings of object-based. Both 

languages provide a composition approach to creating network macros, through 

Arena templates and AweSim subnetworks. Both have access to Visual Basic, which 

is only object-based. AweSim wraps its functionality in a few objects, whereas Arena 

contains an object model (not with SIMAN features) that is integrated with Visual 

Basic. These templates or subnetworks provided a form of encapsulation but these 

collections do not provide for autonomous objects.

An object-oriented simulation (OOS) deals directly with the limitation of 

extensibility by permitting full data abstraction. Object-oriented programming is a 

type of programming in which programmers define not only the data type of a data 

structure, but also the types of operations (functions) that can be applied to the data 

structure. In this way, the data structure becomes an object that includes both data and 

functions. In addition, programmers can create relationships between one object and 

another. For example, objects can inherit characteristics from other object.

The Smalltalk environment is fully 0 -0  and contains fully OOS. Simulation 

languages based on C++, like C++/CSIM and C++SIM, possess all the object- 

oriented capability. Simple++ and MODSIM III are further examples of object-
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oriented languages that employ most of these concepts within different simulation 

frameworks (Joines and Roberts 1999).

It has to be noted that object-oriented programming and simulation requires more 

skill from the user which is the main drawback in its use. Comparison on types of 

modularity used in some simulation packages are shown in Table 4.1.

4.3 Requirements for inter process communication

The term inter process communication (IPC) describes the act of two applications 

communicating and sharing data with one another. This feature allows the integration 

of external data and applications into and out of the simulation models. At the 

emulation stage, the communication between the simulation model and the real 

controller has to be established and synchronized.

4.3.1 Real time capability

Real time simulation is based on the ability of the system to obtain the real-time data 

needed to update the simulation model.

Majority of control systems are designed to operate in real time, so emulation 

experiments should be operated in real time. Although simulation models can provide 

responses faster than real time, this is potentially a source of error, as control system 

timers cannot adapt to this, running at speeds greater than real time should be avoided.

The synchronization of time which is aimed at synchronizing the simulation clock of 

the simulated control system to the internal clocks of the emulation model is 

important. The usual implementation of real-time or “wall clock” synchronization is 

to jump to the next event on the event list, to check whether the time of this event is 

such that it can be allowed to take place, and if not, delay the simulation environment 

until the event is allowed to take place. The problem here is that external events can
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come in before the next event time, while the simulation clock has already been 

advanced to that next time.

Some software packages offer standard features for real-time time progress in 

simulation models. Arena, for example, offers a set of extension called Arena RT that 

allows communication with external clients such as Manufacturing Execution 

Software (MES), Management support tools and interactive training interfaces. Arena 

RT also allows enhanced control logic where it can initiate and react to external 

actions as well as synchronization with external clock. Object oriented simulation 

software like Simple++ (now eM-Plant) and FlexSim offer standard built-in features 

for real-time progress as well.

The simulation software selection criteria and comparison in section 4.4 lists the 

simulation software packages that provide this facility.

4.3.2 Model Communication Interface

The integration of simulation models is based on three fundamental themes: (1) 

models are objects; (2) they communicate with one another in client/server 

relationships by passing messages; and (3) each model is represented by an agent that 

explains the capabilities of the model and assists with integration of that model.

One of the important aspects of emulation is the communication between models. To 

make real components and simulation modules fully pluggable against each other the 

simulation models have to provide interfaces similar to the interfaces of the real 

world plant. Ideally an input or output in the simulation model may “directly” be 

attached to the output of a sensor or the input of an actuator.

Types of interfaces that can be used are for instance DDE (Dynamic Data Exchange), 

DLL (Dynamic Link Library), TCP/IP socket connections, ActiveX, OPC (OLE for
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Process Control) and DCOM (Distributed Components Object Model). When needed 

the user should also be able to construct custom made interfaces.

Client-Server Model

A standard model for emulation applications is the client-server model. A server is a 

process that is waiting to be contacted by a client process so that the server can do 

something for the client. A typical scenario is as follows:

The server process is started on some computer system. It initializes itself, and then 

goes to sleep waiting for a client process to contact it requesting some service.

A client process is started, either on the same system or on another system that is 

connected to the server's system with a network. The client process sends a request 

across the network to the server requesting a service of some form.

When the server process has finished providing its service to the client, the server 

goes back to sleep and wait for the next client request to arrive.

In the context emulation for control system testing, the emulation model is regarded 

as the client while the controller is regarded as the server.

Socket

A socket is a software object that connects an application to a network protocol. A 

program can send and receive TCP/IP messages by opening a socket and reading and 

writing data to and from the socket. This simplifies program development because the 

programmer need only worry about manipulating the socket and can rely on the 

operating system to actually transport messages across the network correctly.

A socket is one end of a two-way connection between running programs across a 

network. Generally, the server runs on a machine of which the IP address is known to
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the clients, and waits listening for a client to make a connection request. The 

connection request is made to a specific port number that the server is listening to. 

That is, in establishing a connection, a client needs to make a request to the server's 

machine and port.

If the request is successful, the connection is established through a new socket bound 

to a different port on the server. A new port is required so that the server can continue 

listening to the original port for new clients. The socket connection is as shown in 

Figure 4.2.

If a connection is established the client and server can communicate by writing to or 

reading from the sockets created by the connection.

C onnection
Client 1

Client 1
Request

Client 2
Client 2SERVER

SERVER
Client 3

.Client 3

Figure 4.2 Socket Connection

With the Sockets technology such a stable simultaneous work of several Internet 

applications is available. The socket implementation for MS Windows called 

Windows Socket or just Winsock.

An important point to note about socket is that the application can produce as many 

sockets as it needs for effective job, but one socket works with one TCP/IP port only.

OPC (OLE for Process Control)

In a multi client/server situation, where interoperability among multiple vendor 

products has become a problem, OPC could be the solution.
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The background of the problem then was the absence of any standard. All process- 

control and information systems on the market have proprietary techniques, interfaces, 

and APIs (Application Programming Interfaces) in order to access the information 

that they contain. The cost of integrating the different systems and the long-term 

maintenance and support of an integrated environment can be significant.

To overcome this problem OPC (OLE for Process Control) was developed by the 

OPC Foundation to provide a common interface for communicating in real time with 

diverse process-control devices, regardless of the controlling software or devices in 

the process. By using a standard way of configuring computer hardware (and 

software interfaces) automatically, a device will easily connect to another and 

immediately work without the need for lengthy installation procedures or complex 

configuration.

Based on Microsoft’s OLE (now ActiveX), COM (component object model) and 

DCOM (distributed component object model) technologies, OPC consists of a 

standard set of interfaces, properties, and methods for use in process-control and 

manufacturing-automation applications. The ActiveX/COM technologies define how 

individual software components can interact and share data.

Although OPC is primarily designed for accessing data from a networked server, 

OPC interfaces can be used in many places within an application. At the lowest level 

they can get raw data from the physical devices into a SCADA (Supervisory Control 

And Data Acquisition) or DCS (Digital Control System) or from the SCADA or DCS 

system into the application. The architecture and design makes it possible to construct 

an OPC Server which allows a client application to access data from many OPC 

Servers provided by many different OPC vendors running on different nodes via a 

single object. Figure 4.3 shows the OPC Client/Server Relationship where 

"Application" could be the emulation model. [I/F refers to Interface, I/O refers to 

Input Output]
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Figure 4.3 OPC Client/Server Relationships 

(OPC Taskforce 1998)

Typically, devices react to state changes as directed by the controller; for example a 

controller might send a message containing values that cause a motor to change its 

section velocity or stop or start. Devices send messages to the controller to indicate 

the status of the device, configuration parameters, and so on.

To emulate the devices in the manufacturing system, an emulation model connects to 

one or more OPC servers as a client application. OPC servers read and write values to 

a controller in the same way as system devices.

OPC has attracted interest among software vendors and simulation software 

developers. Arena, for example, has added new enhancements to include the ability to 

use OPC technology to test control system logic on a model of a manufacturing line 

rather than testing on the real factory (Bapat and Sturrock 2003).

The Model Communications module (MCM) which is an enhancement to the 

AutoMod software that allows a model to communicate over a network with other 

software applications is reported to also support communication with OPC server and 

sockets (Rohrer and McGregor 2002).
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4.4 Simulation Software Selection Criteria and 
Comparison

This section establishes the important emulation modelling features needed for 

HSEM project and reviews the readiness of some existing simulation software 

packages in providing those features.

Emulation Modelling Features

Manufacturing simulation models can be developed using both general-purpose and 

manufacturing oriented software. General purpose software can solve almost any 

discrete event simulation problem. Examples of general-purpose simulation packages 

are Arena, AweSim, Extend, GPSS/H, Micro Saint, MODSIM III, SIMPLE++, 

SIMUL8, SLX, and Taylor Enterprise Dynamics Developer.

However, depending on the complexity of the system being modelled, manufacturing 

simulation package can significantly simplify and quicken the modelling process. 

Examples of manufacturing -oriented simulators are Arena Packaging Edition, 

AutoMod, AutoSched, Extend + MFG, ProModel, QUEST, Taylor Enterprise 

Dynamics Logistics Suite, and WITNESS.

Each manufacturing-oriented simulation packages on the market has its strengths and 

weaknesses. Some packages focus on ease of use and compromise flexibility, while 

others focus on flexibility and are more difficult to use. Because most manufacturing 

systems have some unique intricacy, the best packages allow the user to combine 

easy-to-use constructs with more flexible, lower level constructs. There are some 

packages that are particularly good at representing material handling or some other 

aspect of manufacturing processes. Simulation packages also differ in their support 

for both input and output data analysis.
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The list of criteria for simulation package selection for emulation model building is 

long and most of them are important and commonly available in most packages for 

emulation modelling. Nonetheless, below are the criteria that are not commonly 

available but important to be considered for HSEM building project.

1) Modular. Modularity allows the user to develop the model in separate modules 

step by step. Each module can be tested and debugged separately and then linked 

together. The merging of models when a previously made model is going to be a 

sub-model for a larger model is useful. This option would be further enhanced if a 

library of reusable modules and pre-existing generic models is available.

2) Coding aspects. Possibility to enlarge the flexibility by adding user code to the 

simulation models either via external codes like DLLs or with user methods and 

event Access to the source code of the simulation software is useful when 

integration requires programming. A library of in-built functions and the 

possibility of defining functions by user further enhance this criterion.

3) Integration with other application. Simulation software may integrate with 

other packages such as spreadsheets, statistical packages, database management 

systems, CAD, and word processors to import or export data.

4) Speed control. Control of the speed of the model run is a desirable feature. One 

can see the flow of the model better at a low speed and use it for debugging, while 

he/she can save time by running the model in a high speed mode. For real time 

(RT) simulation facility which is essential for emulation, some simulation 

packages have standard built-in features for real time progress in simulation 

models, while some requires developing a customized synchronization tool.

5) Open Architecture. The simulation package should allow the modeler to model 

complicated control structures. It should be possible to implement complex 

logistic rules and control algorithms. Packages that offer interface to
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programming language like VBA or C++ as well as OPC compliant are 

considered to have a clear advantage.

6) Animation. For emulation real time viewing is necessary. Whether true to scale 

or iconic or whether 2D or 3D the requirement depends on the objective of the 

project.

To illustrate the criteria for selecting simulation software for a HSEM project eight 

simulation packages were selected for comparison. Selection was based on case 

studies and results of the questionnaire survey conducted as explained in Chapter 3. 

They are Arena, Automod, EmPlant (Simple++), Extend, FlexSim, Promodel, Simul8 

and Witness. Below is the general description for each package.

Arena

Arena a product of Systems Modelling Corporation part of Rockwell Software 

Automation is a flow oriented simulation language with the basis language SIM AN. 

Arena is a graphical modelling/animation system that is based on hierarchical 

modelling concepts. It allows user to create new modelling objects called modules, 

which are the building blocks of model creation. Models are created by drag and drop 

modules in a large window. These modules represent one or more statements of the 

SIMAN language.

Automod

Automod, software from AutoSimulations Inc part of Brooks Automation has general 

model building features, including the specification of processes, resources, loads, 

queues, and variables.

Automod is a simulation package that keeps a special focus on the space that object 

require. The animation capabilities include true to scale 3D graphics, rotation and 

tilting. A CAD like drawing utility is used to construct the model.
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eM-Plant

eM-Plant is a rename of Simple++ from Aesop Corp which has become part of 

Technomatix Technologies. Simple++ is a fully object-oriented simulation system 

with an integrated graphical user interface. The user creates models by making a 

library of objects. These library objects represent classes (or parents) whose instances 

(or children) can be inserted into the models. Simple++ takes advantage of the 

features of object orientation, including class structure, inheritance, hierarchy, 

modularity, and polymorphism. In addition, Simple++ has an open architecture that 

allows it to communicate with other software.

Extend

Extend, from Imagine That Inc. is a visual, interactive simulation tool. Extend 

contains a built-in development system that allows the user to construct components 

and build custom user interfaces. Models are constructed graphically by dragging and 

dropping blocks (high level model components) from library windows onto the model 

worksheet. Other features include suite of inter process communication tools, 

hierarchical modelling capabilities and built-in optimization package.

FlexSim

FlexSim from Flexsim Software Products Inc is a Windows-based, fully object- 

oriented simulation environment for modelling discrete-event flow processes like 

manufacturing, material handling, and office workflow in 3D virtual reality animation. 

Models are created graphically, using drag and drop ready-made model

Promodel

Promodel from Promodel Corp is a manufacturing-oriented discrete event simulation 

software, used for evaluating, planning or designing manufacturing, warehousing, 

logistics and other operational and strategic situations. These products are Windows
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based applications with intuitive graphical interfaces and object-oriented modelling 

constructs, eliminating the need for programming.

Simul8

SIMUL8 from SIMUL8 Corp is a general-purpose graphical oriented simulation 

package with a point-and-click user interface used in a wide variety of applications. 

Simul8 claims that the Windows based graphical interface allows user to build 

relatively complex models without needing to learn a programming language.

Witness

WITNESS is a Windows applications developed by Lanner Group has been used 

across a wide range of business applications both in the manufacturing and service 

industries. Key features of the WITNESS approach include building block design, 

modular and hierarchical structure, range of logic and control options, comprehensive 

statistical input and reports and openness to link the system to other software such as 

CAD, BPR, mapping tools and spreadsheets.

Several sources of information exist that provide good descriptions of simulation 

software from various aspects, including plain descriptions of popular packages and 

languages used in simulation; similarities and differences between packages ((Banks 

et al. 2000);(Klingstam and Gullander 1999) ); what to consider when selecting a 

package (Nikoukaran and Paul 1999);(Tewoldeberhan, T. W., A. Verbraeck, E. 

Valentin, et al. (2002); user requirements surveys (Hlupic 2000); and updated lists of 

current version and price of the most popular packages.

The comparison of features against the simulation software packages selected is 

shown in Table 4.1. The comments, included where available, were gathered from 

conference papers, product brochures, website information, demo CDs, email 

correspondence and discussion with some, software vendors and users.
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Papers offering descriptions of some simulation languages and environments include 

the following: Arena (Bapat and Sturrock 2003), AutoMod (Rohrer and McGregor 

2002), eM-Plant(Heinicke and Hickman 2000) , Extend(Krahl 2003) , Flexsim 

(Nordgren 2003), Promodel (Harrell and Price 2002), and Witness (Rawles 1998).

It has to be said that the list and comments are by no means complete and it does 

require regular review. Nonetheless it can be used as a guide and basis for further 

research particularly in choosing the right software and tools for HSEM project. 

Clarification on the comments presented and updates can be found on the sources and 

materials mentioned earlier and latest versions of product brochures and websites.

Some general comments to be noted from the software comparison are as follows.

1. Modular modelling is quite well supported in current simulation software 

packages.

2. Accessibility to codes varies among packages. While object oriented 

simulation packages offer truly openness, other packages offer limited access 

to codes in their own languages or C++.

3. While some packages provide built-in facilities for some specific function 

like real time modelling and interfacing, some packages require a 

development of customised functionality or module for assistance.

4. Although some capabilities are claimed to be featured in their respective 

simulation environments, the extent of readiness and ease to use is still 

subjective.
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Appendix D

4.5 Summary

This chapter has discussed the technical framework and specific requirements for 

HSEM building including structural requirement, construction approach as well 

specific simulation software features for a HSEM project.

In general, flexibility of adding details to the simulation model while maintaining its 

correctness and facilitating communication with the control system underlines the 

requirement and approach towards developing such a model.

Flexibility requires the model to be adaptable to changes as well as structurally 

modular. Simulation model adaptability is the ease with which a simulation model 

can be modified, either to conform to changes in the system it represents, or to 

demonstrate the effect of changes to the system. Modular means that changes are 

local and are independent of the rest of the model, since they are encapsulated within 

a single module. Modularity supports the re-use of model components. It also 

provides a way of introducing hierarchical components into simulation models.

The general modelling approach that is recommended is to remain at the highest level 

possible when creating the models. However, as soon as that these high-level 

constructs do not allow capturing the necessary detail, drop down to the next level for 

some parts of the model rather than sacrifice the accuracy of the simulation model.

Inter process communication allows the integration of external data and applications 

into and out of the simulation models. In the context of emulation, communication 

between the model and the real controller has to be established and synchronized. 

Real time modelling capability and model communication interface are the basic 

requirements for a HSEM project.
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Several features of simulation software those are essential for a HSEM modelling has 

been identified. Comparison among the selected software based on those features has 

indicated that, in general, HSEM is viable. Some software packages are more ready 

the others, other packages require some developments or modification and inclusion 

of appropriate functionalities or modules.

The development of HSEM as in other simulation projects does not depend on 

technical requirement alone. It requires the involvement of broad spectrum of 

expertise and activities. Chapter 5 describes the novel methodology or system 

approach that covers the technical requirements as well as organizational issues to 

develop HSEM.
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CHAPTER 5 

SIMULATION-EMULATION CONVERSION 

METHODOLOGY

5.1 Introduction

The previous chapter has described the technical requirements for developing Hybrid 

Simulation Emulation Model (HSEM) which include flexibility of adding detail , 

inter-process communication and specific emulation modelling features that a 

simulation software package need to have for such a project. This chapter describes, 

in two parts, the system approach to develop such a model.

The first part discusses the general methodology that can be used in a general 

application area. Section 5.2 outlines the prerequisites for using this methodology, 

Section 5.3 discuss the framework of such a project. Section 5.4 describes the phases 

and steps of the methodology.

The second part explains the specific elements for emulation model building. A 

manufacturing system development is used as example. Section 5.5 suggests an
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approach towards modelling different level of detail. Section 5.6 demonstrates a 

method for interfacing between model and external controller.

5.2 Prerequisite for HSEM Methodology Deployment

As with any project, using a methodology alone does not solve all problems in an 

emulation project. Three important aspects to consider for a successful project are (i) 

the emulation project team should involve a broad spectrum of employees, from 

shop-floor operators to key decision makers; (ii) the emulation analysts must have 

good knowledge of simulation methodology and programming, and (iii) selection of 

the right simulation software tools.

A simulation project team usually comprise of (a) model project owner or client 

group consisting of managers and system users (for example AMHS operators and 

technical support) and (b) simulation developer group consists of project manager and 

modellers. However, due to the need to integrate the real control system with the 

model, emulation project team need to include process controllers, control engineers 

and software engineers.

5.3 Framework of Simulation-emulation project

The philosophy of the methodology centres on making emulation modelling simple 

and flexible, requiring minimal (if any) programming and using available built-in 

technology. The software comparison summarised in Table 4.1 can be used as 

indication of the availability of relevant tools in the simulation software in the market 

today.

The proposed methodology is a synthesis and extension of many ideas and 

developments published , among others, covering the topics of manufacturing system
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development (Wu 1994), simulation methodology (Eldabi and Paul 1997; Banks 1998; 

Sadowski and Grabau 1999; Law and Kelton 2000), real time simulation 

methodology (Lee and Fishwick 1999; Brennan 2000; Versteegt and Verbraeck 2002) 

as well as verification and validation of simulation model (Balci 2003).

The HSEM methodology is defined by a cycle, comprising the following activities:

a. Model definition: the user defines a model of the system to develop, splitting them 

in different subcomponents.

b. Simulation and validation against the real system: simulations are derived, and 

detailed behaviour is analyzed.

c. Detailed experimentation in a virtual environment: in order to ensure validity, 

different experimental conditions are tested.

d. Development o f the actual subsystem in a hardware surrogate: simulated versions 

of the model are replaced by real-time executable versions. This is done by 

automatically replacing the simulator by a real-time engine.

This cycle is incrementally repeated providing feedback to change the models 

originally defined. The process stops when the system is fully developed and tested, 

and every simulated component has been replaced by an executable one. The process 

might result in modifying the models originally defined according to the simulation or 

execution results obtained.

5.4 Simulation-emulation model building phases

The HSEM methodology cycle defined in the previous section can be demonstrated 

by the flow of activities in phases shown in Figure 5.1. Even though some phases and 

steps are similar to the development of a simulation model there are important ones 

that are specifically essential for emulation model building. Those phases and steps
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are highlighted with bold letters to illustrate the novel elements in the approach. 

Specific explanations are included to emphasise certain points in some steps in a 

simulation-emulation project.

5.4.1 PROBLEM DEFINITION (HSEM Phase 1)

The first phase of the simulation process has the most effect on the total simulation 

study since a wrong problem definition can waste a lot of time and money on the 

project. It is important that the problem definition should be explicit and documented 

as part of the Project Functional Specifications. This phase includes the following 

activities:

• Define the objectives of the study.

• List the specific issues to be addressed and the performance measures for 

evaluating a system design.

• Determine the boundary or domain of the study.

• Determine the level of detail or proper abstraction level.

The task of determining which components of the real system to include and exclude 

from the simulation model requires both insight on how the real system operates and 

experience in simulation modelling. A good method is to make a list of all 

components in the real system and identify those components that may have a 

significant direct or indirect effect on the simulation model output. For example, for 

the AGV material handling study one may include the following components of the 

real system: stations to be visited by the AGVs in order to pick up or drop parts, AGV 

path, and AGV battery recharge stations.

The information gathered at the end of this phase should suffice to estimate the total 

cost of the project. The simulation Group and the client generally meet / visit to 

observe the actual or a similar process during this phase is recommended too. A 

formal proposal is generally written at the end of this phase of the project. Continuing 

with the other phases is contingent on its acceptance.
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Figure 5.1 Overall Hybrid Simulation-emulation model building flowchart

78



Appendix D

5.4.2 PROJECT DESIGN (HSEM Phase 2)

In the second phase, some steps of the previous phase are investigated in more detail 

and the technical aspects of the problem are given more weight. The project team 

discusses issues in detail with the line engineers and operators. This phase includes 

the following activities.

• Estimate the life cycle of the model.

• List broad assumptions.

• Determine the animation requirements.

• Determine the level of data available and what data is needed.

• Determine the human requirements and skill levels.

• Determine the audience (usually more than one level of management).

• Identify the deliverables.

• Check for simulation-emulation model viability conversion. Simulation- 

emulation conversion checklist is as in Table 5.1.

• Select simulation-emulation software package.

Table 5.1 Simulation-emulation modelling software features checklist

Features Availability

1 Flexible modelling with variable levels of details 

(Modular, hierarchical and configurable)

2 Accessibility to source code and adding user code to the 

simulation model

3 Integration with other applications

(Database, Statistical, optimizing tool, 3D graphics etc.)

4 Real time modelling facilities

5 Inter process communication capability

(ability to cooperate and communicate with other software

packages and real systems)
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The information gathered at the end of this phase of the project is documented in the 

Project Functional Specifications. The project team may change the project timing 

and resource requirements based on the new information available at the end of this 

phase of the project.

5.4.3 BASE SIMULATION MODEL DESIGN (HSEM Phase 3)

The overall strategy should focus on finding a model that minimizes the simulation 

effort while ensuring that all objectives of the project are met and all specific issues 

are investigated. The third phase includes all or part of the following activities.

• Determine the elements that drive the system.

• Determine the entities that should represent the system elements.

• Determine the level of detail needed to describe the system components.

• Determine the graphics requirements of the model.

• Build the basic simulation model.

• Validate the basic model.

5.4.4 DETAIL MODEL DESIGN AND DEVELOPMENT (HSEM Phase 4)

At the fourth phase, the modeller describes in detail the operating logic of the system 

and performs data collection and analysis tasks. This phase includes the following 

activities.

• Obtain the operation specifications from “subject-matter experts” (SMEs).

• Obtain the material handling specifications.

• List all information and data summaries in an “assumptions document,” which 

becomes the major documentation for the model.

• Identify the areas that utilize special control logic and build the control 

logic accordingly.

• Define the interfaces between the components.
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• Describe the process in detail.

• Use sensitivity analyses (Law and Kelton 2000) if necessary to determine 

important model factors, which have to be modelled carefully.

• Modify the base model to the desired level of detail for emulation

• Modify the control logic accordingly.

• Verify the detail model.

An important point to note at this phase is that for emulation modelling, the system to 

be analysed has to be divided into a (simulation) model of the plant (e.g. machinery)

and a (simulation) model of the control system (e.g. PLC, PAC, DCS) in order to

replace one component by reality. Therefore it is essential for the communication 

between control system and the plant is explicitly modelled at the earliest stage. This 

would enable the code to be developed and refined as the model is developed.

The information that is generated at this phase of the project may be used to create the 

Maintenance Manual, if one is requested by the client. In any case, this information 

can be integrated into a detailed Project Functional Specifications as well as into the 

Project Book and the model code.

5.4.5 INTEGRATION WITH CONTROL SYSTEM (HSEM Phase 5)

The integration of the emulation model with controller, its verification, and 

operational validation constitute the fifth phase of the process. This phase, shown in 

figure 5.2., includes the following guidelines and activities.

1. Consider the tool availability and limitations for emulation, with 

reference to Figure 5.1.

2. Check control system structure and variables

3. Define the interface required.

4. Use built-in or existing interface as much as possible.

5. Build new interface(s) if necessary.

6. Integrate emulation model with control system

7. Verify communication.

8. Test run to validate emulation model
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This phase is specific for connecting emulation model to the real controller. The 

guidelines and steps are further explained in 5.5. The model obtained at this phase is 

ready for experimentation or test run in real environment.
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5.4.6 DOCUMENTATION AND PRESENTATION (HSEM Phase 6)

Good documentation and presentation play a key role in the success of a simulation 

study. The sixth phase also applies to long-term emulation life-cycle studies where 

the models are maintained throughout the life of the real system. On the other hand, 

short-term simulation studies are those where once the simulation results are used in 

the decision-making, the model is not used any more by the client.

The long-term emulation studies require a long-time ownership of the model by a 

modeller and/or engineers that are going to use the model. One may categorize long­

term life-cycle models into four categories in terms of use, namely; (a) training, (b) 

scheduling, (c) system redesign, and (d) launching phase analysis. Training models 

are built to train client personnel in emulation as part of a simulation class or to 

familiarize the new personnel in the system. Scheduling models are models such that 

when the product-mix and batch sizes change, the scheduling rules are tested under 

the new conditions for best resource utilization and product deliveries. These two 

categories may require no or minimum modeller follow-up once the model has been 

transferred to the client.

The models for system redesign and launch phase studies may require a close 

modeller-and-client-engineer interaction so that the model is not misused. System 

redesign models are used whenever a change in design of the system is to be 

implemented. Models that are used for launching phase analysis are those used during 

system launch to allocate resources (e.g., workers) effectively in the partial operation 

of the whole system. In many cases, long-term life-cycle models are used for multiple 

purposes including all four categories.

It is important that the long-term of the model usage should be identified as part of 

the original objectives of the study because the model design is highly influenced by 

it. A representative of the long-term users of the model should become a member of 

the project team right from the beginning of the study.
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5.5 MODELLING DETAIL VARIABILITY

This section focuses on the process of modelling the different levels of detail or multi­

resolution modelling of the Manufacturing System Design (MSD) and how such 

models may be built in a manner that helps the already existing simulation packages 

to build a base simulation model and then flexibly extend it to the detailed design 

model for emulation.

Figure 5.3 illustrates the modelling concept of integration of different levels of detail. 

An example would be the same manufacturing system can be modelled in different 

ways in three different simulation models. The models can be built with different 

levels of detail. The first model may contain all machines, servers, conveyors, and 

buffers present in the system. This model is considered to be having high level of 

detail. The second model can be a lower level of detail, but keeps the notion of 

manufacturing lines without the possibility to store products in between servers. The 

third model can be built with a very low level of detail. Here, complete production 

lines cab be built as single servers, producing complete batches.

Figure 5.3 Appropriate Level of Detail for Integration 

(adapted from (Benjamin et al. 1998)

A simple method is introduced here which is based on some guidelines to ease the 

process of modelling systems with variable details. The following subsections 

describe the main steps for this method.
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Modelling the Conceptual Level

1. Identification and Classification ofModeVs Entities:

Considering the conceptual level of the MSD, the first major step in building such a 

model should be the identification of the building blocks of the system, such as the 

different types of cells. When starting to identify the basic components of the 

conceptual model, the modeller must bear in mind that this model is to be extended 

into more detail later in a flexible manner without the need to create a new detailed 

simulation model from scratch. Therefore, the major components of a conceptual 

model might be classified as separate, preferably non-overlapping, blocks or entities 

regardless of their internal structures and details.

2. Assigning Entities Activities:

After the identification of the main entities of the model, the second step is to assign 

the behaviour of each entity.

Generally, the modeller, when developing the conceptual model, must avoid 

including any unnecessary details that may overcomplicate the conceptual model. On 

the other hand, forgoing any other important components at this level will increase 

the problem of complication in the more detailed stage. If a simulation model of the 

conceptual level is built correctly, it will provide the required results and at the same 

time it will be a well established base for detailed design. This can easily be extended 

with more details and complexity. At this stage the modeller may assign equal 

numbers for each entity or resource. For instance, he/she may assign the same number 

of machines for each cell. Another example might be the assigning of equal speed of 

transportation between any two cells. This is to eliminate the effect of such details on 

the simulation results. Generally speaking, the model at this stage is not necessarily 

‘valid’ or typical of the real system.
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Modelling the Detailed Level

3. Entering Model's Details:

At the detailed design level, the third step is to enter the new details within the 

boundaries of the blocks, which are already created at the conceptual level. That is, 

each block of the conceptual model is expanded separately from the rest of the model. 

Detailed data of a cell block could be the number of machines in the cell, the process 

duration of each machine, rate of failure for each machine, and maintenance time. 

Sometimes it can be expanded into an internal network of activities. For example, in a 

‘painting-cell’ block parts may be queued for cleaning, then after cleaning they are 

transferred to another queue for painting. Some details might be entered as 

interactions between different entities such as, physical positioning, distances, and 

directions between cells within the system.

4. Re-Assigning Entities ’ Details:

At this level, information assigned at the conceptual level is to be reassigned by 

introducing the real values to each entity before fine-tuning it to achieve the best 

results.

The detailed design level can be considered as a network of blocks, each block 

containing all its corresponding details and other necessary details which represent 

interactions with other blocks. In addition, it gives the real physical layout. It is worth 

noting at this stage the model validity is very important, that it should represent all the 

details that make up the system as accurately as possible.

Generally, this method of classification will ease the process of model building and 

reduce the chance of error, as all necessary modifications are to be made from within 

the entity’s boundaries with no subsequent effects on other parts of the system. This 

reduces the time needed for any changes to the model, as a change of one entity will 

not affect the rest of the model. This method can be considered useful for effectively 

building flexible models with variable levels of detail.
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The above discussion gives an overview of how system components can be classified 

for flexible modelling of detail variability at the conceptual level, then how data is 

arranged and reassigned at the detailed level to be entered into the simulation package.

5.6 MODEL COMMUNICATION W ITH EXTERNAL CONTROLLER

Results from the survey conducted among the simulation practitioners in the earlier 

part of this research has indicated that interfacing between models to be the most 

required facility to ease emulation model building (Hasnan et al. 2005).

A 'plug and play' interface, without writing any program code, is a desired feature. 

There are tools, the like of RT-Lab LabVIEW API tools and Automod Model 

Communication Module (MCM), in the market that provide assistance for developing 

interfaces between proprietary applications and devices, but the usage is rather 

limited, mostly due to lack of standard specifications. Data Access Specification 

developed by the OPC Foundation is seen to have the potential to make such feature. 

Until that happens, an emulation modeller needs to do some form of programming to 

build a suitable interface.

This section outlines the steps to establish the communication between emulation 

model, in this application regarded as 'client' and the external controller which is 

regarded as 'server'.

There are a number of transport protocols to move packets of data from client to 

server that a modeller can choose, normally based on the platform being used. Among 

them are Novell's IPX/SPX, Apple AppleTalk, Transmission Control Protocol/ 

Internet Protocol (TCP/IP) and Open System Interconnection (OSI). There are also 

various client-server protocols to dictate the manner in which clients request 

information and service from a server and also how the server replies to that request. 

Examples are NetBIOS, Remote Procedure Call (RPC), Advanced Program-to-
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Program Communication (APPC), Named Pipes, Sockets, Transport Level Interface 

(TO), Sequence Packet Exchange (SPX) and OPC.

Studies on features simulation software, as discussed in Chapter 4, has shown that all 

simulation packages provides mechanisms for external program to interact with the 

simulation through VBA module and Dynamic Link Library (DLL) usually 

implemented in C++.

The steps outlined below uses TCP/IP protocol and socket technology for MS 

Windows Socket called Winsock. Winsock is a set of routines that reside in a DLL 

interfaced with TCP/IP and from there through to the internet.

1. Create client application in the simulation model using a program editor. 

Usually the program editor is built-in or attached to the simulation software.

2. Create server application for the controller program.

3. Create message handler application or communication module to manage the 

transfer of messages.

4. Launch both client and server applications.

5. Verify connection.

6. Confirm the availability of real time modelling features in the software 

package. If not, create application tool to enable real time run.

7. Run the emulation model in real time.

The programming details to create the client and server applications are not within the 

present scope of the thesis. Nonetheless books and websites that teach and discuss the 

programming side are available and too many to list. However two books that have 

been helpful in this research are (Horton 1998) for programming in C++ and (Wright 

1998) for programming in Visual Basic.

An important issue concerning the communication between emulation model and 

external controllers is the synchronization. As (Versteegt and Verbraeck 2002) 

reported that whilst certain software (e.g. Arena and Simple ++) offer standard built 

in feature for real time progress, other software (e.g. Automod) requires the 

construction of a customized tool, in their case called 'wall-clock peeker' to
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synchronize the simulation clock with the wall lock every fixed time unit. It could be 

implemented in a user written C++ function in a DLL.

The general procedure is also applicable for using OPC as the means for 

communicating between the emulation model and the controller system in a multi 

client/server situation. It can also be used as a basis for application in a distributed 

simulation environment.

5.7 Summary

This chapter has described the system approach to develop the Hybrid Simulation 

Emulation Model (HSEM). The summary of general steps for HSEM modelling is 

shown in Table 5.2

While emphasizing on the technical issues this chapter has also covered briefly the 

non technical aspects of the development including project planning and some 

organizational issues. As for documentation, although it is essential for every phase of 

the project, is not specifically discussed in this chapter as the process is taken to be 

the same with any simulation project.

Some highlights in this chapter include:

1. A new methodology is proposed to accelerate emulation model building 

through an efficient hybrid approach. This approach should minimise the 

effort required to build emulation models.

2. The HSEM project requires a team comprising of multidisciplinary expertise. 

The major difference from the usual simulation project is the inclusion of 

expertise in the field of information and communication technology (ICT) and 

control engineers, particularly to develop the interface between the emulation 

model and external controllers.
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3. For emulation model, synchronization is essential. Since the objective of 

HSEM project is to develop emulation modelling simple, a built-in feature for 

real time modelling is required.

4. The methodological approach of multi-resolution modelling detail would be 

useful as a guide for the model builder to develop the emulation model 

efficiently.

Table 5.2 Summary of Steps of HSEM Modelling

Steps Summary Procedures
Base Model

Step 1

Identification and classification of 
the main blocks or entities of the 
system separately to be extended 
into more detail later.

Step 2

Assigning averages and 
assumptions of real data to the 
established blocks and not entering 
much detail.

Detailed Model

Step 3

Adding more extensive details 
(entities and activities) needed to 
build final model including all 
necessary factors such as physical 
layout.

Step 4

Reassigning the model’s behaviour 
by entering the real data into those 
blocks then fine-tuning the model 
to achieve the required results.

Control System Integration

Step 5
Define interface required, build 
new interface if necessary and 
verify usability.

Step 6
Integrate emulation model with 
control system and verify 
communication.

The validation of the methodology presented in this chapter is discussed in the 

following chapter. Chapter 6 describes the development of HSEM for a small
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manufacturing, progressing from a simple basic model to more elaborate model 

involving external intervention to the emulation model.
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CHAPTER 6 

VALIDATION

6.1 Introduction

The previous chapter has described a methodology to develop a new type of model 

called Hybrid Simulation Emulation Model (HSEM).

This chapter reports the validation process of the proposed methodology. It describes 

the developmental work of using the methodology to build a hypothetical simulation 

model of a small manufacturing plant and converting it into an emulation model 

where some form of external control is included. Since the focus is on the emulation 

building, some parts of the work that are common with simulation model building are 

not discussed in detail. The description of the model building is simplified so as to 

highlight the conversion simulation-emulation aspects of HSEM building rather the 

output of the model. A human machine interface is developed and used to describe 

the interaction between emulation model and human controller.

The validation work begins, as reported in section 6.2, with describing the 

background of the plant and the aim of the modelling work. Section 6.3 highlights 

some important features of Arena Modelling for HSEM model building. Section 6.4 

describes the development of the base simulation model and modelling the details of 

certain components and process in the model. Section 6.5 describes the integration of 

external controller with the emulation model. Section 6.6 reports the procedure 

HSEM was executed. Section 6.7 gives the summary of the validation process.
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6.2 Project background and design

(HSEM Phase 1)

The management of a manufacturing plant aims to improve the efficiency and 

productivity on one of the production line for one of its products, without any 

additional capital investment.

A system developer team was assigned to develop a system, based on existing setup 

and resources that would improve the efficiency and productivity of the production 

line by 20%.

(HSEM Phase 2)

Results from preliminary study conducted by the team indicated that a major source 

of ineffectiveness came from large amount of non moving Work-in-Process (WIP). 

The system developer team then decided that a simulation study is to be conducted 

with the following objectives.

1. To identify problem areas in the production flow line.

2. To assess the current performance with regards to WIP status at each station.

3. To develop possible methods to reduce WIP.

4. To evaluate the effectiveness of the optimization strategies.

5. To present potential methods and improvements to the management.

Since some strategies that would be tried on the system involves integration of 

components with multiple level detail as well as some form of control algorithm, and 

also the model is intended to be reuse, HSEM is seen to be a viable option.
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Further checks on the suitability of simulation software, as shown in checklist in 

Table 6.1, the team found that the Arena 7.0 was equipped for such project.

This simulation language was selected among others due to its ability to operate in 

conjunction with a real time (RT) package. Moreover, Visual Basic for Applications 

(VBA) is an integral part of Arena 7. This enables convenient access to databases and 

the automating of Arena models.

Table 6.1 Simulation-emulation modelling software features checklist for Arena

Features Availability

1 Flexible modelling with variable levels of details 

(Modular, hierarchical and configurable)
V

2 Accessibility to source code and adding user code to the 

simulation model
V

3 Integration with other applications

(Database, Statistical, optimizing tool, 3D graphics etc.) V
4 Real time modelling facilities V

5 Inter process communication capability

(ability to cooperate and communicate with other software

packages and real systems)

V

6.3 Features of Arena Modelling

Below are some important points with regard to modelling in Arena SE version 7.0 

that would be helpful towards understanding the HSEM model building explained in 

the sections that followed.
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• SIMAN is a general-purpose simulation language that builds upon early 

languages such as SLAM

• In Arena the structures of SIMAN are implemented as graphical modeling 

objects

• Simulations models are built by placing these objects on a drawing board and 

linking the objects to define the model logic (basically a flow-chart of the 

system is constructed)

• In simulations the Arena model is parsed into SIMAN code, then compiled 

and executed

• The modeling constructs in Arena are called modules

• Arena contains a wide variety of modules that are organized into different 

libraries called templates or panels

• All modules are composed of SIMAN components, different amounts of 

functions are aggregated in higher and lower level modules

• Modules of different hierarcy levels can be used interchangeably

• New templates and modules can be created by using existing components or 

user-written VB, C/C++ or FORTRAN code

Figure 6.1 below shows the different hierarchy levels of the modules in Arena. 

(Kelton et al. 2004)

Data exchange between an ARENA model and the external data source are achieved 

by Visual Basic for Applications (VBA). The external data source can be database, 

spreadsheet and files in various formats. Procedures and functions can be defined 

through writing codes in the Visual Basic Editor corresponding to each VBA block in 

the simulation model logic view. When an entity arrives at the VBA block, 

procedures and functions defined in this block are fully executed. After everything is 

done, the entity may leave the VBA block and go on to the next module/block.
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Figure 6.1 Arena hierarchical structure

Another feature of Arena, called Arena RT can be used for a simulation model to 

interact with external client applications. This interaction is performed via an online 

messaging system. For example, the simulation model might contain aggregate-level 

system logic that sends tasks in real-time to a facility’s shop floor control system. In 

this case, Arena’s client might be a messaging queue that interfaces directly with 

PLCs. After completion of this operation (automated or manual), a message is sent 

back to the model so that the simulation can be updated and further instructions can 

be issued. During the execution of the model, the simulation and actual shop floor 

could operate concurrently. The animation could serve as a real-time monitoring 

device.
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6.4 Model Building of a Manufacturing Plant

The production side of the manufacturing plant is made up two staging area and three 

processing cells. The two staging areas are divided into part arrival station and 

product exit station. The three processing cells, arranged in series, are the machining, 

painting and packaging centres. The layout of the plant is as shown in Figure 6.2.

Arriv.
J

)l ExitWj

MachiningCentrt Paint S tation

ijpp
Pack S ta tio n 1

Figure 6.2 A Manufacturing plant layout

Parts entering the system are placed at a staging area of the Arrival Station, for 

transfer to the first workstation, a machining centre. After the parts have completed 

processing at the machining centre, they are transferred to a paint station manned by a 

second worker, named painter, then to a packaging station where they are packed by a 

third worker, named packer, and then to a second staging area, Exit Station, where 

they exit the system. The transfer of parts between stations is by. means of an 

Automated Guided Vehicle system (AGVs).

6.4.1 Base Simulation Model 

(HSEM Phase 3)

The basic or conceptual model consists of one machine per cell with each machine 

having different processing time. The purpose of the model is to estimate the 

following performance measure.
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• Throughput

• Time in system for parts

• Times parts spend in queues

• Queue sizes

• Utilization of equipment

Since the transfer behaviour was not required, the ROUTE module, a type of Transfer 

block, was used to model the unconstrained movement of entities from one station to 

another. The ROUTE module or connect method used assumes that time may be 

required to move the entity between stations, but it operates on the assumption that no 

additional delay will be incurred because of unavailable resources or transporters.

The model logic, in the form of Arena flowchart type modules which also define the 

routing of simulation entities through the system is shown in Figure 6.3.

The modelling uses modules in the Basic Process Panels and Advanced Process, 

Advanced Transfer Panels, viewed as middle level in the Arena hierarchical structure 

shown in Figure 6.1.

As shown in Figure 6.3, the model logic can be summarised as follows:

1. Create entity called 'part' at the 'Arrival Station' at random 'Time between 

arrival' type specified in the CREATE module.

2. Assign 'Time In' variable for part entry time into the system.

3. Transfer part from 'Arrival Station' to 'Machining Centre'. ROUTE was used 

to allow modelling transfer of entities between stations, with a defined time 

delay in the transfer.

4. Part arriving at the machining centre is put in Queue before being processed.

5. In the PROCESS module, the entity SEIZE the resource, in this instance the 

'Machinist', DELAY for specified processing time and RELEASE the 

resource.

6. Part is transfered using ROUTE to the 'Paint Station'.
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7. Steps 4 to 6 are repeated for processing of entities at 'Paint Station' and 'Pack 

Station' respectively.

8. Part is transfered using ROUTE from the 'Pack Station' to 'Exit Station' 

where entity exit the system. The time interval during which the entity 

remains in the system is recorded as 'Flow Time'.

Parts a t  Arrival Station to  be transfered to  Machining Centre

C re a te  jo b s  a t  
s ta g in g  a r e a s  . ! Arrival Station A s s ig n  T im e  In

Route from 
Arrival S tation

Parts a t  Machining Centre for processing and transfered to  Paint Station

Machining 
C entre S tation P r o c e s s

M ach in ing

|1 Route from I 
['Machine Centre!

Parts a t  Paint Station for processing and  transfered to  Pack Station

Route from Pain 
Stationi  Pain t S tation

P r o c e s s  P a in t

Parts a t  Pack Station for processing and transfered to  Exit Station

Route from P ac
■ji P a c k  Station StationP r o c e s s  P a c k

Parts e x it  sy stem

Exit S tation
D is p o s e  p a r ts  exi 

sy s te m
R e c o rd  Flow  

T im e

Figure 6.3 Model Logic for Base Simulation Model

The animation level was set to sufficiently indicate flow of entities between stations. 

The animation is as in Figure 6.5.
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6.4.2 Modelling Details 

(Phase 4 of the methodology)

After a review it was found that to improve performance, some changes and detailing 
need to be made.

At the next phase of study, the management and system developer have identified two 

areas in the system that can be re-develop with minimal cost that could reduce the 

overall WIP. Those were (a) loading and unloading of parts between every station and 

the movers, and (b) transfer of parts between stations.

A more detail study on the effect of any changes made in the two areas on the whole 

system has to be made. The base simulation model developed earlier was then 

upgraded by adding resource-constrained modules in the form of entity transfer as 

well as loading and unloading process modules.

There are variety of approaches that can be used to add details to the simulation 

model, depending on factors such as involvement of resources and controllers, 

hierarchical level of modules etc.

Modelling the details of loading and unloading process can be done using PROCESS 

module which would consider the entity seizing a resource (loading or unloading 

operator or machine), delaying for loading or unloading time and release the resource. 

If the activity of the resource is not considered significant, using a DELAY module or 

block would be sufficient. In the present context, to keep the model simple yet 

flexible, DELAY module is used.

Modelling transfer of parts or material handling can be divided into two categories (1) 

based on the number of individual material handling device available, (2) based on 

space availability.
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The transfer of parts between stations using the AGV, from a modelling standpoint, 

falls under the first category of moveable resources, referred to in Arena as 

transporters.

Arena provides two types of modelling transporters: Free-path and Guided. Free-path 

transporters can move freely through the system without encountering delays due to 

congestion. Guided transporters are restricted to moving within a predefined network. 

The travel times depend on the vehicle’s speeds, the network paths they follow, and 

potential congestion along those paths.

The transfer of a part with a transporter requires three activities: ' Request' a 

transporter, vTransport' the part, and ' Free' the transporter. The 'Request' activity, 

which is analogous to seizing a resource, allocates an available transporter to the 

requesting entity and moves the allocated transporter to the location of the entity, if 

it’s already not there. The ' Transport' activity causes the transporter to move the 

entity to the destination station. The ' Free' activity frees the transporter for the next 

request, much like releasing a resource. The modeller can choose to use modules in 

Arena Advanced Transfer panel or SIMAN codes in the Blocks, Elements panels, 

depending on the approach and level of detail required for the model. The present 

model uses Free-Path transporter type with REQUEST, TRANSPORT, STATION 

and FREE modules from the Advanced Transfer panel. Other alternatives would be 

using LEAVE and ENTER Arena modules or REQUEST, ALLOCATE, MOVE etc 

from SIMAN blocks, element panels.

The model logic employed for detail simulation model of the manufacturing plant is 

shown in Figure 6.4.
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Figure 6.4 Model Logic for Detail Simulation Model

The model logic for activities in the transfer of part between stations can be 

summarised as follows.

1. Part request for an AGV.

2. If available, an AGV is allocated and move towards the part.

3. Part is loaded on to the AGV in a specified delay time.

4. Part is transported at specified speed to the next station.

5. At the next station, part is unloaded on to the next resource in specified time 

delay.

6. Part frees the AGV.

7. AGV waits for next instruction.

In the case of multiple AGV in the system, two situations regarding assignment to 

parts are possible. First, a situation during the run where an entity requests an AGV 

and more than one is available. In this case, Arena provides the choice of Transporter 

Selection Rules to determine which one of the transporter units will fulfil the request.
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The second is when a transporter is freed and there are multiple entities waiting. In 

this case, Arena applies a built-in priority rule. The situations described highlight the

noted that it is possible to separate the process and control logic using ARENA’S 

simulation language SIMAN.

The animation for the detail simulation, shown in Figure 6.5, has included the graphic 

representation of the AGV movement.

It is acknowledged that various issues can be studied and corresponding components 

can be detailed accordingly. Those include parts transfer logistics, scheduling 

strategies, track layout, parts order control, loading/unloading mechanisms and 

operating procedures. The areas in the system to be studied mentioned earlier can be 

modelled to more detail level using SIMAN codes, albeit requiring a considerable 

level of modelling skill. For the purpose of illustrating the process of conversion from 

simulation to emulation model building, the current detail simulation model is 

sufficient to be regarded as an emulation model. The next section discusses the steps 

to integrate the emulation model with external controller as a demonstration of 

completing the process HSEM building.

use of built-in control logic options in the modelling of entity transfer. It is also to be

AGV

'Arrival

Machining
Centre

Paint
Station

Pack
Station

Figure 6.5 Animation for Detail Simulation
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6.5 Integration with Controller

(HSEM Phase 5)

So far, the modelling logic and animation of the manufacturing system are based on 

the assumed time projection of events. In reality assumed time projections are not 

enough, unexpected events may occur. Therefore real time communication is 

sometime necessary. For example, the modeller may find in the detail modelling 

process, due to limited buffer space the machines need to communicate between each 

other as well as with the arrival controller to monitor the number of parts coming to 

the respective stations.

The next stage of the modelling needs to coordinate the. simulation logic with the 

external process of a real system. In this model, the external processes considered as 

'server' and Arena model considered as 'client' communicate via a messaging system, 

whereby entities in the Arena model send messages to the external applications to 

indicate simulated tasks, and the external applications send "message responses" back 

to Arena to indicate the tasks have been completed.

6.5.1 Emulation Communication Structure

The client/server communication between machine and computer in this model uses 

socket, a program device, which supplies sending, and receiving data via the defined 

TCP/IP port. In this case, socket technology for MS Windows called Winsock was 

used.

For ease of maintenance and flexibility, the non simulation model components are all 

implemented using the common programming framework of Microsoft Visual Basic 

for Applications (VBA). The implementation of the major supporting components 

within VBA not only allows for a powerful implementation using a variety of 

Microsoft products, but it also allows for direct links to those objects that are
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exposed within Systems Modeling Corporation’s Arena simulation software, version 

7.0. The Visual Basic object library within Arena was used to incorporate significant 

flexibility into the model.

A key advantage to utilizing the VBA architecture within HSEM is its widespread 

availability in industry applications, not to mention the ease of use of its development 

environment. Readily available, off-the-shelf software products were used to provide 

the base functionality required within the modules of HSEM without reinventing or 

duplicating the significant development momentum provided by Microsoft and other 

software vendors.

A message handler application called RTConsole.exe was written in Visual Basic, 

acts as interface between client and server computer.

The emulation communication structure is shown in Figure 6.6.

Client Computer

Simulation M odel:
Graphical A nim ation, 
Statistical Output

N etw ork
Interface
(Socket)

N etw ork
Interface

< TC P/IP <■ (Sock et)
> >

M essage
Handler

(R T C on cso le)

Server Computer

R outing  L ogic , 
S ch ed u lin g  A lgorithm , 
H ost C ontrollers, 
PLC /PC  T estin g

Figure 6.6 Emulation Model Communication Structure

ARENA RT which supports real-time synchronization and message exchange over 

TCP/IP was used to synchronize simulation time with real-time and to access the 

external controller. ARENA RT- also supports switching between internal simulation 

logic and external control logic simplifying the process of separating classical 

simulation logic and simulation logic based on external control. Linking into the 

event scheduler of the simulator by one of the provided functions it was possible to
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synchronize the simulation clock as well as to update the internal simulation data with 

the external I/O signals.

6.5.2 Implementing Changes

The following are the three major changes involving Arena and external code that are 

required to implement the inter-process communication (IPC) between the model and 

the controller.

6.5.2.1 Modification on Arena Object

To coordinate simulation logic with the external process of a real system, the 

simulation model needs to be programmed for the control system to open socket 

connections and read and send messages. This is done in VBA using the VBA events 

provided in Arena’s ThisDocument object. The ThisDocument object gives the VBA 

project access to various events within the Arena model. To add code for an event 

procedure, one can select the ModelLogic object in the Visual Basic Editor, and 

choose the desired event (for example RunBegin) in the procedure list.

The following VBA events provided in Arena’s ThisDocument object are used. These 

events are only called when Arena is running in execution mode.

• RealTimelnitialize—called at the beginning of the first replication. Place code 

that initializes the inter-process communications here. It is also used to display 

userform (called frmConnect) to prompt the IP address and port.

• RealTimeSend—Called when an entity tries to send a message to the external 

process. Code that sends the message to the IPC queue is placed here.

• RealTimeReceive—Code that receives messages from the IPC queue and 

passes them to Arena.

• RealTimeTerminate—called at the end of the last replication. Code that 

terminates the inter-process communications is placed here.
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UserForms (dialogs) called frmConnect are useful for custom interfaces to connect IP 

addresses and ports of the client and server through sockets. An important point to 

note is to make sure Microsoft winsock control called 'W insockl' has been added to 

the form.

Arena ThisDocument Object and frmConnect UserForms codes for the model are 

shown in Appendix C.

6.5.2.2 Model modification and preparation

Define the specification for sending message from Arena simulation model to the 

external process when it is run in execution mode. This can done by changing the 

fixed delay time (or velocity) in the model statement blocks or modules of Delay', 

'Route', Transport', 'Move', 'Process', 'Enter' or ‘Leave’ to TASKID expression which 

executes in real-time. The format of message string is defined in 'TASKS' element.

A message to send from a logic module or block to the external process needs to be 

specified. In Arena this can done by changing the fixed delay time (or velocity) in 

the model statement blocks or modules of 'Delay', 'Route', Transport', 'Move', 

'Process', 'Enter' or 'Leave' to

TASKID (Value, TaskID [, TimeOutInterval][, ErrorLabel])

The logic of a TASKID expression is executed as two threads in parallel. The first 

thread simulates the delay or transfer time using the specified Value. The second 

thread executes the real-time task by sending a message to the real system to start an 

activity; it then waits for the system to respond with a "task completed" message. If 

the execution thread finishes before the simulation thread, the simulation thread is 

terminated and the entity departs the block. If the simulation thread finishes first, the 

entity remains suspended in the block until either (a) the execution thread completes, 

or (b) the actual task time exceeds Value by an amount that is greater-than-or-equal to
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the Timeoutlnterval, in which case the task is terminated with a timeout error and the 

entity is sent to the block specified by ErrorLabel.

This involves defining the format of messages the simulation entities may send to the 

external process. In Arena this is called experiment statements defined in 'Tasks' 

Element.

The TASKS element defines message strings that simulation entities may send to an 

external process when Arena is running in execution mode. After sending a message, 

an entity can then wait for a response back from the external application before 

proceeding to the next block. This allows us to coordinate the simulation logic with 

the external process of a real system.

Table 6.2 shows the modification on the Arena modules, SIMAN blocks and elements 

that were necessary for the simulation-emulation conversion. The changes indicated 

are for the following activities:

1. loading of raw parts at the arrival station on to the transporter,

2. unloading of raw parts from the transporter on to the machining centre,

3. machining process at machining centre.

Changes on other sections of the model follow similar procedure.
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Table 6.2 Parameter setting differences between simulation and emulation using

Arena RT.

Module Name/Variable Simulation Emulation
Delay Loading Arrival Station 

Delay Time

Units

UNIF(.5,1.5)

minutes

TASKID(UNIF(.5,1,1.5),
LoadingTime,NOW AIT)

minutes
Delay Unload Machine Centre 

Delay Time 
Units

UNIF(0.5,1.5)
minutes

TASKID(UNIF(.5,1.5),ProcessPart)) 
minutes

Process Machining 
Delay Time

Units

UNIF(0.5,1.5)

minutes

TASKID(UNIF(.5,1.5), 
MachinePart)

minutes
Tasks : LoadingTime 

Format

Parameter

Not Used
"LoadPart TGID=%1 .Of

TNOW=%5.2f;" 
IDENT, TNOW

Tasks : UnloadingTime 
Format

Parameter

Not Used
"UnloadPart TGID=%1.0f 
TNOW=%5.2f;M 
IDENT, TNOW

Tasks : MachinePart 
Format

Parameter

Not Used
"MachinePart TGID=% 1 .Of 
TNOW=%5.2f;"
IDENT, TNOW

Figure 6.7 shows the changes in the logic construct. It also shows the inclusion of 

TASKS elements for loading and unloading time as well as machine part processing 

real time expressions. The full emulation model can be viewed in Appendix D.

An important lesson learnt while verifying the emulation model was that TASKID 

expression could not be implemented for the REQUEST construct. Apparently, this is 

one of the modules that Arena software has not implemented the real time facility. 

Debugging to get the emulation model running has resulted in the use of ALLOCATE 

and MOVE combination from Block Panel instead.
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Figure 6.7 Emulation model logic at part arrival station and machining centre.

This means that at certain stage of the development, modelling HSEM in Arena 

sometime may require not just changing to TASKID expression in the “Delay” or 

“Velocity” variables but may also require substituting building blocks. In this 

situation, the modeller needs to be aware of the limitations of built-in objects or 

modules and the availability of alternative approaches and objects including the use 

of lower level modelling blocks or language.

Detail modelling of transporter movement requires the use of set of features for 

guided vehicle instead of free path which in Arena is at SIMAN blocks and elements 

level.

These are not reported in the thesis but investigation has shown that to get the detail 

model running, the set of “REQUEST”, “DELAY”, TRANSPORT”, “FREE” and 

“MOVE” modules from the Basic Process and Advanced Transfer Panels have to be 

substituted with “Request”, “Delay”, Transport”, “Free” and “Move” SIMAN blocks 

from Blocks Panel. The use of Guided Vehicle set of features necessitate the use of 

“Transporters”, “Intersections”, “Links” and “Networks” elements from the Element 

panel instead of “Transporter” and “Distance” data modules in Advanced Transfer 

Panel.
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Further investigation on detailing the model to include Automated Guided Vehicle 

(AGV) control features like bottleneck detection, deadlock detection, collision 

avoidance, dynamic traffic scheduling and routing have highlighted the importance of 

space awareness in simulation model and uncovered the limitation of Arena of 

lacking it.

This has raised a new issue of synchronization of space in emulation model. So far 

this thesis has looked at synchronization of time as the prime requirement for the 

interaction between the model and controller. Synchronization of space would be 

easier modelled using software packages providing 3D true to scale modelling like 

Automod and Quest as well as Object-oriented simulation packages like eM-Plant 

and FlexSim. Therefore HSEM modeller needs to be aware if space awareness is 

required and the choice of software packages that provide the facilities.

6.5.2.3 Interface development and use

Develop and use a message handling program, an interface for sending message 

received from Arena to the external process and sending message received from the 

external process to Arena model. In this model, the message handling program 

interface written and used, as shown in Figure 6.7, is called RTConsole. VBA 

userforms “listen” and “connect” were also developed to facilitate connection 

between model and RTConsole. •
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File Clear Help

-  Send M essage to Arena----------------------------------------------------

M essage Type: Entity Number: Return Code:

|0 - R esponse to Task ▼] j ....... jo

Send

M essages........... .... ................. ..............

Received from Arena: Sent to Arena:

UnloadPart TGID=4 TN0W = 2 1 0 4 0
UnloadPart TGID=3 TN0W = 1 ~ 0 4 0
LoadPart TGID=4 TN0W = 1.8 0 3 0
UnloadPart TGID=2 TN0W = 1 0 2 0
LoadPart TGID=3TN0W = 1.0 0 3 0
LoadPart TGID=2 TN0W = 0.0 0 2 0

< 1 >

Status:

Socket accep ted  connection request on port 8111 
Socket listening on port 8111

Figure 6.8 Message Handling Interface RTCosole 

The program written in Visual Basic 6.0 can be viewed in Appendix E.

6.6 Model Execution

The emulation model in Arena set to run with RTConsole interface was executed 

according to the following procedures.

1. Set the model to run in real time mode.
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a) In <Run Setup\Run Control>, verify that the model is set to "Run in Execution 

Mode".

b) In <Run\Setup\Run Control>, verify that " .DLL" is NOT checked unless a 

DLL is to be used.

c) In <Run Setup\Run Speed>, verify that the model will "Advance Simulation 

Time Using a Real Time Factor" of 1.

2. Invoke 'Listen' on the message handler through its local port.

a) Click the icon "RTConsole.exe" in the named view "Model Description and 

Instructions" of the model. This starts the client application that will send and 

receive messages from Arena.

b) From RTConsole's menu bar, click <File\Listen...>. Display form is as shown 

in Figure 6.9. Keep the default of "8111" for the port and hit <OK>. 

RTConsole is now waiting to connect to Arena.

OK

C ancel

\ m m

Figure 6.9 Display form for invoking ‘Listen’.

3. Confirm connection to the server IP address and port.

a) From Arena's menu bar, click <Run\Go> and begin running 

MfgPlant_RT_AGV.doe. Note that the VBA event RealTimelnitialize is 

called first, displaying a dialog asking for RTConsole's IP address and port.

b) Display form is as shown in Figure 6.10. Keep the defaults and press 

<Connect>

c) The model should display a "Successfully connected to RTConsole" 

message that indicates a successful connection. Press <OK>.
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R T C o n s o l e  I P  a d d r e s s :  j  1 2 7 . 0 . 0 . 1
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[ C o n n e c t  j

Figure 6.10 Display Form to Confirm Connection

4. The model run was successfully run with the model and the controller located 

on different computers. The interaction between the controller and model was 

done through the message handler interface in real time. Actual loading and 

unloading time as well as the processing time which form part of the actual 

WIP studies were determined by the reaction of the respective operators 

which acted as controllers.

Instructions for running the validation model called MfgPlant_RT_AGV.doe using 

VBA real time events can be viewed in Appendix F.

Table 6.3 illustrates the different hierarchy levels of the modules or panels in Arena 

used for three phases of simulation-emulation model development.

At present there are no specific module or block in Arena that could facilitate 

integration of model with real time controller. Therefore knowledge on programming 

and use of DLLs is essential to develop interfaces with emulation model.

114



Appendix D

Table 6.3 Panels used in development of HSEM

Basic Simulation y Detailed Simulation Y. y  Emulation

• Basic Process

• Advanced Process

• Advanced Transfer

• Basic Process

• Advanced Process

• Advanced Transfer

• Blocks (SIMAN)

• Elements (SIMAN)

• Basic Process

• Advanced Process

• Advanced Transfer

• Blocks (SIMAN)

• Elements (SIMAN)

• User-written Visual 

Basic, C++ code

6.7 Summary

This chapter has described the validation of the HSEM methodology by reporting the 

development of an emulation model of a hypothetical manufacturing plant. The three 

phase starts with a conceptual base simulation model, developing into detailed model, 

followed with the integration with controllers in real time to complete the emulation 

model building.

It is acknowledged that modelling approach may vary among model builders 

depending on several factors including the features and structure of the simulation 

software package as well as the modeller’s skill and experience. However the 

validation process has further highlighted the importance of accessibility to source 

codes and the knowledge to use them to model the appropriate details in the HSEM 

development.
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A considerable amount, of time and effort was needed to develop the interface to 

provide communication between the emulation model and the human controller. Thus 

the experience in the validation process has emphasised the need for special facilities 

and features for inter-process communication to be incorporated in the simulation 

software package.

Synchronization of time is seen to be the main requirement for the interactive 

communication between emulation model and the controller. It is also found that 

there are situations where synchronization of place is required. This is suggested to be 

another area for future research.

The next chapter presents the overall findings of the research as well 

recommendations for further development.
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CHAPTER 7 

CONCLUSIONS

7.1 Research Background

This research work started with investigating the role of simulation in manufacturing 

system development particularly towards shortening design to manufacture cycle time. 

The advantage for using simulation is that simulation can often capture and describe 

the complex interactions within a particular manufacturing system accurately where 

analytical methods seen to have failed.

As flexible and agile manufacturing become prevalent and the ability to describe 

short term future performance of manufacturing system becomes critical, the use of 

simulation has become more significant than ever.

An application of simulation that has attracted attention among manufacturing 

industries is for testing of control logic before installing on site. The aim is to avoid 

full testing using real manufacturing system and real control system which not only 

expensive to build and experiment but also involves high risk of failure if the 

possibilities of design are not tested thoroughly beforehand.

The use of full or pure simulation for control system testing using may not involve 

high costs but it may disregard some phenomena that are present in the real system or 

contain additional factors that might influence the outcomes. Thus the results may not 

be realistic and reliable.
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Reality in the loop (RIL) testing or test bench testing involving the use of simulated 

control system with real equipment has been widely used on relatively small system 

and equipment. For large system like manufacturing this type of testing may not be 

practical.

Emulation or soft commissioning uses detailed simulation called emulation model of 

the equipment or system to be controlled with real control systems. This application 

has been proven to have reduced the commissioning time as well as improved

efficiency and reliability of the manufacturing system delivery.

Even though the success of using emulation particularly in improving cost- 

effectiveness of automated material handling system delivery has been acknowledged 

by industries and simulation model developers, the uptake for this technology is still 

low.

The main reason is that it requires huge amount of initial investment in terms of cost, 

resource and multidisciplinary expertise because of the complex nature of its model 

building. The complexity is usually attributed to the model multiple level of detail, 

incremental development of the control logic to be tested and the inclusion of real 

time communication between the model and controller. Thus an emulation model is 

being built totally different and separated from the initial simulation model. In other

words, simulation and emulation models are not convertible.

7.2 Contributions to Knowledge

The main theme of this research is to establish a methodology to develop simulation 

model that can be converted into emulation model with ease. The beneficiaries to the 

methodology would be the modellers, researchers, simulation software developers 

and the model client particularly the small and medium size companies where 

emulation technology would become more affordable. The contributions are stated in 

brackets at the end of the appropriate paragraph.
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7.2.1 HSEM Methodology

The main contribution of the research to new knowledge is the Hybrid Simulation 

Emulation Model (HSEM). HSEM is a product and a new approach of developing 

emulation model that would help reduce the negative perception amongst modellers 

and clients towards emulation of being difficult to develop, costly and non-productive. 

Consequently, a more positive perception and clearer model building approach would 

increase the readiness among small companies to invest in this technology. 

(Contribution 1)

The novel methodology to develop new product of HSEM presented in Chapter 5 is a 

synthesis and extension of many ideas and developments covering the topics of 

manufacturing system development, methodology for modelling details, real time 

simulation methodology as well as verification and validation of simulation model. 

In short the methodology comprises of three sequential steps as follows.

1) Development of base simulation model,

2) Development of detail emulation model,

3) Integration of controller with the emulation model.

As shown in Chapter 5, the approach is developmental and iterative. To implement 

the methodology, like any simulation project, HSEM modelling requires a team of 

appropriate expertise, knowledge of simulation methodology and a selection of the 

right simulation tools. The product of this research work in the form of a 

methodology has taken into consideration those requirements above. The organization 

of the methodology would be useful in assisting the HSEM project manager to 

organise and monitor the project effectively. (Contribution 2)
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7.2.2 Facilitating decision making process

HSEM approach which is developmental and incremental would facilitate the 

development of integrated decision support system at all three levels of managerial 

planning, namely strategic, tactical and operational levels. For example, one of the 

decision making areas at the corporate level can be design of a manufacturing system. 

After a broad architecture of the system is identified, a HSEM may be developed to 

answer the detailed design issues like number of machines required, the type of 

computer control at each level etc. Several design alternatives can be evaluated and 

the one best suits the business goal can be selected.

At a tactical level, the impact of a decision taken at strategic level can be emulated 

and the output can be analysed to get more insight into the system behaviour. For 

example, for a particular design configuration chosen, the material requirement plan 

over the planning horizon can be emulated. Similarly emulation of inventory systems 

helps finding best inventory policy for the system. At this level, a detailed model may 

even be used to compare the projected work load generated from MRP with machine 

and labour resources available. The model may assist the process of capacity 

management by producing profiles of load against capacity over time. This in turn 

assists in management decision-making regarding short-term capacity planning and 

adjustment.

At operational level, HSEM may be used for a detailed, day-to-day scheduling, which 

is derived from production plans made at higher levels. At this level, it may also be 

used as a part of the overall shop floor control. The current status of the shop floor 

can be maintained using an interface with the shop floor software as well as the 

factory database. Depending on the current status, various production control 

decisions can be specified. The effect of such decisions on the progress of the orders 

in terms of the due dates, WIP, and machine utilization level could then be checked. 

The type of decision to be emulated would include, for example, the effect of batch 

sizes and times of batch release. The progress of jobs through a shop can be emulated
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once a particular control decision has been implemented. From the results, proper 

adjustments could be made in the schedule.

Decisions at various levels of a system highly influence each other. The consequence 

of ignoring such real-time interaction could be very serious. Using HSEM, managers 

can analyse various decisions at any planning level, and observe the effects of these 

decisions on the other levels. (Contribution 3)

7.2.3 Another perspective of emulation technology

Emulation which is considered to be an extension of simulation technology is in a 

situation similar to when simulation was emerging and perceived to be only for large 

companies. As reported in Chapter 2, publications on emulation are limited. Thus not 

many know about its technology and the cost-benefit it brings. This thesis provides 

better awareness as well as another perspective of emulation technology and hope to 

attract the attention of wider spectrum of potential users. (Contribution 4)

The major inhibitors to widespread use of modelling and simulation in manufacturing 

are the perception of its high costs of model building and low reuse. The perception is 

even worse for emulation due to the fact that it being more detailed and complex. 

Section 2.4 of Chapter 2 explains simulation-emulation relationships while section 

2.5 reports some application of emulation. This would provide better understanding 

of emulation technology and with that the modeller and client would be able to make 

a more informed decision with regard to investing in emulation technology. 

(Contribution 5)

7.2.3 Potential areas of development

The results of the questionnaire survey conducted in this research work, as reported in 

Chapter 3, have indicated increasing interest among simulation users in the use of 

emulation technology as well as have identified priority areas of development. This
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would help future researchers justify and prioritise their work, especially in 

developing tools and facilities for building emulation model easier and more user- 

friendly. (Contribution 6)

Chapter 4 describes the requirements and criteria of functionalities in simulation 

software packages that are needed for the development of HSEM. They are 

categorised into features that should provide (1) the flexibility of adding details to the 

simulation model while assuring its correctness and (2) the inter process 

communication between model and real control system.

The specific emulation modelling features and the comparison of features for HSEM 

against selected simulation software packages presented in section 4.4 could be used 

by the HSEM developer as benchmark for selecting the appropriate software package 

for the project. To the simulation software vendor, these would help to identify 

specific areas for feature enhancement or tool development. (Contribution 7)

7.2.4 Convertible Simulation-emulation model

As reported in Chapter 6, the research work has proved that HSEM is viable, refuting 

the perception that simulation and emulation are non convertible. This would pave the 

way for more aggressive work by future researchers on making emulation model 

more affordable. (Contribution 8)

As a result of emulation technology in the form of HSEM becoming more affordable, 

the industry in general would benefit in terms of low overall cost, efficient use of 

resource and client satisfaction. Also, the consumers at large would be able to receive 

better and faster product delivery as well as wider choice of products. (Contribution 

9)
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7.2.5 Summary of Contributions to Knowledge

The contributions of this research to knowledge is summarised according to the 

benefits classified in the previous sections and their beneficiaries shown in Table 7.1.

Table 7.1 Summary of Contributions to Knowledge

Beneficiaries
Contributions 
And Benefits

Modellers Software 
developers and 

researchers

Client
(Industry)

Product
Customer
(Public)

1 E E

2 E

3 E E

4 E E

5 ® E

6 E

7 E E

8 E E

9 E E

7.3 Recommendations for future work

The present work has produced a generic methodology and guide for developing 

HSEM. Thus it is open to modellers to develop models in their own application area 

using their choice of simulation software. However below are some suggestions for 

future researchers to work on to make emulation modelling more appealing and 

useful.
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7.3.1 Enriching existing special packages.

Although the focus of the current work is on the application of HSEM in 

manufacturing system, there are also other potential application areas that could use 

HSEM methodology. As reported in Chapter 3, those areas include transport system, 

business process and security system. Some software vendors offer special packages for 

example to model logistics, healthcare and call centre which include templates and 

functionalities for specific applications. Blending these functionalities with real time 

(RT) modelling tools would significantly reduce the effort to develop emulation model in 

the respective area.

However, compatibility of certain modules or blocks with RT modeling tools needs to be 

investigated or perhaps modified before use. For example in the context of modelling 

using Arena, as indicated in section 6.5.2.2, while Arena is equipped with RT modelling 

tools there are modules and blocks that are presently not compatible. These could be 

developed further either by the software developer or the modeller to enhance the use of 

RT modelling tool for emulation modelling.

7.3.2 Interface development tools

The experience of developing the method and validating the methodology, as reported 

in Chapter 6 has highlighted the need to have access to lower level codes and the skill 

to use them in modelling detail. At present some level of programming skill is 

required to program and use the appropriate tools or functions to develop system 

interface for inter process communication. It is widely accepted fact that easy model 

building means requiring no or minimal programming. Thus this work has 

emphasised the need for future researchers and software developers alike to develop 

more user friendly codes or blocks for developing inter process communication 

interface. This would be useful to enable the emulation modeller to concentrate on 

developing emulation model which itself is already complex.
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7.3.3 More Comprehensive Feature Review

It is acknowledged that enhancements and new functionalities are continuously being 

developed by the simulation software vendors and new features are introduced in 

version upgrades. Thus it is difficult for the researcher to make authoritative 

comparisons on the availability and accessibility of certain functions in the software 

packages in the market. The software comparison for HSEM suitability presented in 

Chapter 4 can be used as a guide and researchers as well as HSEM modellers are 

recommended to regularly review and update the comparison table so as to make the 

comparison more comprehensive and up-to-date.

7.4 Conclusions

This research has devised and developed a new approach to develop emulation model 

called Hybrid Simulation Emulation Model (HSEM). Prior to this, simulation model 

and emulation model are considered to be non convertible. This work has proved that, 

by applying the methodology devised and described in the thesis, a simulation model 

built for initial analysis and development can be converted into an emulation model 

for testing a control system.

Potentially the methodology developed offer a starting point for further research into 

the comprehensive support for the implementation of real time control system testing 

using emulation. Hence the future application of this methodology and 

recommendations may lead to important technical and commercial benefits.
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Control System Testing Using Simulation Survey

Although control system testing using simulation also known as 'emulation' has been used 
extensively in the design on manufacturing systems, it would also applicable in other areas as well. 
Examples are logistic control in transportation and defence, production process control as well as 
business process control.

The aim of the survey is to obtain feedback from simulation practitioners on the usage of simulation 
for control system testing, their application areas and development problems. This will then help us to 
identify areas of potential research to enhance the use of emulation.

If you would like further information on our work, please contact us at the School of Engineering, 
Sheffield Hallam University, England.

Khalid Hasnan or Prof Terrence Perera
k.hasnan@shu.ac.uk t.d.perera@shu.ac.uk

1. Are you an academic or industrial user of simulation software?

r  Academic

H  Industrial

2. Do you use simulation to test control system in your work?

□  Yes
Please go to Question 3

□  No
Please go to Question 6.

3 . Which application area do you use simulation for control system testing? (You can tick 
more than one box.)

E Process Control v D  Business Process
(Production)

n  Material Handling , w  ,  . , □  Security System
(e.g.Manufactunng)

(Cargo, Passenger)
r  Transportation

r  Other pjease specify].....---- .......------------------------   .. .    ....

4. Please rank the following in terms of the benefit o f using simulation for control system  
testing? (1 = Greatest, 4 = Least)

E  Short Commissioning Time 

f" Low Overall Cost 

r  Effecient Use of Resource 

f ~  Client Satisfaction

r  Other Suggestion
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5. In designing simulation model for testing control system, which development stage 
would require a specific tool or module to facilitate emulation model building? Please 
rank according to its importance. (1 = Greatest, 3 = Least)

P  Determining the correct level of detail for model representation 

P  Modifying simulation code 

□  Interfacing between models

□  Other
Please specify

7.

Which simulation package(s) do you primarily use? 

P  Arena P  Automod

p  EmPlant/S imple++ 

p  Quest 

□  Other

P  Extend 

FI Witness

P  AweSim 

P  Promodel

Please specify!

Which application area do you think would benefit from the advancement of control 
system testing using simulation technology? (You can tick more than one box.)

P  Process Control P  Business Process
(Production)

P  Material Handling / w  r x P  Security System

p  Transportation

(e.g. Manufacturing) 

(Cargo, Passenger)

P  Other
Please specify.!

Please feel free to add any comments about anything you feel is particularly 
important to facilitate modifying a simulation model into a model that is capable to 
test a real control system.____________________________________________

our e-mail address
Error! Objects cannot be crea (Optional - please enter your e-mail address if  you would 
Thank you. be interested in sharing o f information in this area and/or
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Appendix B 

Conference Paper Proceedings

Appendix B .l Hybrid Simulation-Emulation Model: AGVS 
Example.

(ESDA 2004, Manchester UK)

Appendix B.2 User Perspectives on the Use of Emulation in Control 
System Testing.

(ICMR 2005, Cranfield UK)
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HYBRID SIMULATION-EMULATION MODEL : 
AGVS EXAMPLE.

Khalid Hasnan 
Terence Perera

School of Engineering 
Sheffield Hallam University 

Sheffield SI 1WB 
United Kingdom

K e y w o r d s  : E m u la t io n ,  S im u la t io n ,  A r e n a  R T , A G V .

ABSTRACT

Simulation and emulation have several salient contrasting functions and features. 
They include different aims, levels of details, execution time and integration of 
models.

In many cases, a project will require both a simulation model for initial analysis and 
development, as well as an emulation model for testing a control system. If this is the 
case, a copy of the simulation model can be used as a starting point for developing the 
emulation model. Hybrid simulation-emulation model, one that is used for both 
purposes should have a facility to switch off/on certain elements from the model as 
necessary.

There is much published work in simulation and a dearth of work in emulation. To 
date there has been no work published in converting a simulation into emulation 
model.

This paper describes a novel approach which combines both attributes and is 
illustrated using a case study based on an Automated Guided Vehicle System 
(AGVS).
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1 Introduction

The current trend towards highly automated systems that are intended to adapt 
quickly to change while providing extensibility through a modular, distributed design. 
[1, 2]

In order to realise the flexibility and productivity that these advanced system 
promise, system modelling, simulation and control are viewed as increasingly vital to 
enable the components of these automated manufacturing systems to work together in 
an integrated way.

A growing application of simulation and control is emulation, where a 
simulation model is used to replace a real Automated Material Handling System 
(AMHS) in order to test and debug an industrial control system.

Emulation provides a reliable and safe way of verifying control code 
functionality offline, training operators in a safe environment, and of testing 
modifications to a control system before they get put into effect. The emulation model 
can also serve as a test bed for any further control system modifications throughout 
the life of the system, so production is not disrupted.

Designing an emulation model is similar to designing a simulation model; but 
there are some important differences [3]
• An emulation model must include communication logic. Emulation models open 
connections with one or more controllers for example OPC servers, and read and 
write item values throughout a model run.
• An emulation model is often more detailed than a simulation model. Because 
the emulation model must provide the same responses to the controllers as real 
system hardware, the model must be designed to respond to many system events that 
would otherwise not require custom processing during a simulation. (For example, an 
emulation model might be required to send signals to a controller server when a load 
begins a pop-up transfer, when the transfer has completed lifting, when the load 
moves to the new section and when the transfer completes lowering.)
• Simulation model typically has no direct links to external devices. Emulation 
model often responds to signals from the control system, which controls system 
processes.

Even though the benefits of using emulation for the analysis of manufacturing 
systems are well acknowledged, the speed and cost of its model building remains a 
concern.

At present, a project will require a simulation model for initial analysis and 
development as well as an emulation model for testing a control system. It is unlikely 
that the emulation model will be suitable for the initial analysis phase. The main 
reason is that the control system is unlikely to be available as it is usually a result of 
the definition stage. A second reason is that the emulation model is likely to be much 
more detailed than the analysis model, and so will run more slowly, making the 
necessary simulation analysis prohibitive. [4]

A proposed solution to this is to develop a hybrid simulation-emulation model 
or composable simulation model, one that is used for both purposes and should have a 
facility to switch off/on certain elements from the model as necessary.

In this paper we provide insight on the methodology to convert an existing 
simulation model into an emulation model using Arena Simulation package.
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2 Manufacturing Systems and Emulation Review

Understanding the manufacturing systems entities is crucial for the success of 
a manufacturing emulation project where communication between entities and the 
elements in the manufacturing system has to be in real time. Table 1 shows this 
relationship, and addresses the importance of material and information transfers/flows.

Table 1 Manufacturing System Entities Relationship

Processing

Transportation

These entities are classified along two main axes: plant vs. control, and 
processing vs. transportation . Elements in the plant classification comprise the 
physical factory, such as machines, material and transporters. Elements in the control 
classification comprise the logical factory, including decision-makers, performance 
evaluators and information about the physical factory. Elements in the processing 
classification focus on the intermediate transformation steps that turn raw materials 
into finished goods, while elements in the transportation classification address the 
logistics of moving material through the various process stages. [5]

For the project to be cost effective, the developer has to be selective on which 
part of the simulation model need to be emulated. This can be achieved by reviewing 
the key performance indicators (KPIs) and identifying their associated variables that 
would have great influence. For example, in a flexible manufacturing plant a 
decision may require varying certain parameters in the processing and transportation 
variables as shown in Table 1.

Plant Control

M achines, material 
processing operations, 
storage buffers, machine 
setup, inspection

Commands 

< --------
----------►

Status updates

Controllers, operators, . 
m achine state information, 
controller domains, process 
recipes, m achine 
scheduling, process 
monitoring

i

y

Material transfer via 
shared locationsr

11 Information transfer 
via networks

▼

Transporters, conveyors, 
material m ovement 
operations.

Commands 

< --------

----------w
Status updates

Controllers, operators, 
transporters state 
information, controller 
domains, material 
movement requests, 
process plans
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3 Steps for simulation to emulation conversion

There are three basic steps in building emulation model from existing simulation 
mode. The steps below are generic and applicable to other simulation software 
packages. Arena software package was used as an example.

3.1 Model Structure
Abstract to the appropriate level of details of the control elements (modules/ 

process/ variables/ parameters) that are affecting the KPIs. This necessitates the 
model to be modular, hierarchical and configurable as shown in Fig.l [6]

Fig. 1 Integration of different hierarchical module

Arena employs an object-oriented design for entirely graphical model development. 
The graphical modules can be used by simulation analysts to create models and are 
provided “off-the-shelf’ with Arena. [7] It also provides the integration of different 
hierarchical Arena modules and SIMAN codes. These modules can also be custom 
designed to produce a modelling environment that is tailored to a specific application 
area, for example to facilitate emulation model building. The resulting collection of 
user-created modules would then be contained inside an Application Solution 
Template (AST) that can be shared by any licensed Arena user.

3.2 Communication
Establish the communication procedure in Real Time. Communications can be 

achieved through sockets, NetDDE, DCOM, or OPC. A model communication 
structure is shown in Fig. 2.

Client Computer

Simulation M odel:
G raphical A nim ation, 
Statistical Output

N etw ork
Interface
(S ock et)

N etw ork
Interface

« - TC P/IP <■ (S ock et)
* >

M essage
Handler

(R T C on cso le)

Server Computer

R outing L ogic , 
S ch ed ulin g  A lgoritm , 
H ost C ontrollers, 
PLC /PC  T esting

Fig 2 Emulation Model Communication Structure
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As in the case study example, models can communicate through sockets to open and 
close socket connections, send and read data messages (including strings and C 
structures), and send and read synchronization messages.

It involves three important phases:

3.2.1 Model modification and preparation
A message to send from a logic module or block to the external process needs 

to be specified. In Arena this can done by changing the fixed delay time (or velocity) 
in the model statement blocks or modules of 'Delay', 'Route', Transport', 'Move', 
'Process', 'Enter' or 'Leave' to

TASKED (Value, TaskID [, TimeOutInterval][, ErrorLabel])

internally controlled 
simulation time

externally controlled 
execution time (Real 
time task)

The logic of a TASKID expression is executed as two threads in parallel. The 
first thread simulates the delay or transfer time using the specified Value. The second 
thread executes the real-time task by sending a message to the real system to start an 
activity; it then waits for the system to respond with a "task completed" message. If 
the execution thread finishes before the simulation thread, the simulation thread is 
terminated and the entity departs the block. If the simulation thread finishes first, the 
entity remains suspended in the block until either (a) the execution thread completes, 
or (b) the actual task time exceeds Value by an amount that is greater-than-or-equal to 
the Timeoutlnterval, in which case the task is terminated with a timeout error and the 
entity is sent to the block specified by ErrorLabel.

3.2.2 Message Handling
This involves defining the format of messages the simulation entities may 

send to the external process. In Arena this is called experiment statements defined in 
'Tasks' Element.

The TASKS element defines message strings that simulation entities may send 
to an external process when Arena is running in execution mode. After sending a 
message, an entity can then wait for a response back from the external application 
before proceeding to the next block. This allows us to coordinate the simulation logic 
with the external process of a real system.

The ARRIVALS element creates batches of entities that arrive at the system 
model at specified times. In execution mode, the time is specified by key hit or 
message and the corresponding operands initiated by external process.

3.2.3 Inter-Process Communication

To coordinate simulation logic with the external process of a real system, he 
simulation model need to be programmed for the control system to open socket 
connections and read and send messages. In Arena this can be done using SIMAN, 
VBA and C++.
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For example, the following VBA events provided in Arena’s ThisDocument 
object is used. These events are only called when Arena is running in execution mode.

• RealTimelnitialize—called at the beginning of the first replication. Place code
that initializes the inter-process communications here.

• RealTimeSend—Called when an entity tries to send a message to the external
process. Place code that sends the message to the IPC queue here.

• RealTimeRetrieve—Code that retrieves messages from the IPC queue and
passes them to Arena here.

• RealTimeTerminate—called at the end of the last replication. Place code that
terminates the inter-process communications here. [6]

UserForms (dialogs) are useful for custom interfaces to connect IP addresses
and ports of the client and server through sockets.

3.3. Run/Simulate the model.

• Set to run in Real Time mode (execution mode in Arena) in the Run Setup 
menu.

• Establish connection to simulation model (client) by invoking 'listen' on the 
message handler through its local port.

• Confirm connection by invoking the 'connect' method to the server IP address 
and port.

• Run the model.

4. Case Example

The case example is the modelling of a four manufacturing cells system. The system 
model also consists of part arrivals, and part departures. Cells 1, 2 and 4 each have 
single machine; Cell 3 has two machines. The system produces three parts, each 
visiting different sequence of stations. The parts are transported between stations by 
means of two Automated Guided Vehicles (AGV).

4.1 Model Logic Example
The Arena model in Fig. 3 shows the modelling logic and animation of the 

manufacturing system based on the assumed time projection of events. In reality 
assumed time projections are not enough. For example, due to limited buffer space 
the machines need to communicate between each other as well as with the arrival 
controller to monitor the number of parts coming to the respective stations.

The model, shown in Fig. 4, is a modification of the simulation model 
incorporating Real Time elements. Only the logic diagram is shown as the animation 
diagram in this example is the same as for simulation. This model demonstrates 
Arena running in execution mode and conducting inter-process communications with 
an external client application called RTConsole.exe written in Visual Basic.

The communication between machine computers client/server uses socket, a 
program device which supplies sending and receiving data via the defined TCP/IP 
port. In this case example, socket technology for MS Windows called Winsock was 
used.
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The simulation of sending and receiving of the relevant parts by the respective 
machine on a 'client' was successfully controlled through a remote computer which 
acted as a 'server'.

4.2 Message Handling Example

When Arena is run in execution mode, each part will send a "LoadPart" 
message to the external message handler, RTConsole, before loading part on to an 
AGV and transporting it to the next station. Also when an AGV begins unloading on 
to a station, it will send an "UnloadingPart" task to RTConsole. A "task complete" 
response must then be sent back to Arena to indicate when the part has completed its 
unloading, free the AGV. The AGV then waits for or execute the next command.
As an example, simulation code for loading a part on to an AGV at a station. 

REQUEST : AGV(SDS,AGV#)
DELAY : UNIF(0.5,1.5)
TRANSPORT: AGV(AGV#)

In the control application, the logic is identical except that the time delay 
depends on the performance of a physical task rather than an internal clock. 

REQUEST : AGV(SDS,AGV#)
DELAY : TASKID(UNIF(0.5,1.5), LoadingTime)
TRANSPORT: AGV(AGV#)

The difference in the setting and code, where there are differences, between 
simulation and emulation models can be viewed in Table 1.

Table 2. Param eter setting differences between simulation and emulation using 
Arena RT.

Module or Block or 
Element (Name/Variable)

Simulation Emulation

DELAY
Loading To AGV# 

Load Time Delay 
Units

UNIF(0.5,1.5)
minutes

TASKID(UNIF(0.5,1.5), LoadingTime) 
minutes

*
ENTER
Unloading To Cell 1 

Unload Time Delay 
Units

UNIF(0.6,1.3)
minutes

TASKID(UNIF(0.6,1.3),UnLoadingTime) 
minutes

TASKS
Loading Time 

Format

Parameter

Not Used "LoadPart %1.0f TGID=%1.0f loc %1.0f 
TNOW=%5.2f"
Entity.Type, IDENT, Entity.Station, 
TNOW

TASKS
Unloading Time
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Format

Parameter

Not Used "UnloadPart % 1 .Of TGID=% 1 .Of loc 
%1.0f TNOW=%5.2f"
Entity.Type, IDENT, Entity.Station, 
TNOW

**
TASKS
Order Part Type 1 Not Used

Format "OrderPartType %1.0f TNOW=%5.2f;"
Parameter Entity.Type, TNOW

**
ARRIVALS Not Used
Order Part Type 1

Type Station
TypelD Order Release
Time Message
Assignment

Variable ID Entity.Type
Value Part Type 1

Keys
AGV# refers to the unit number of the AGV
* Similar settings and changes for Modules of 'Enter Cell 2', 'Enter Cell 3',
'Enter Cell 4' and 'Enter Exit Station'.
** Similar variable name and parameter settings for 'Order Part 2' and 'Order Part
3'

5 Conclusions

Once the key performance indicators (KPI) have been identified, converting a 
simulation model into an emulation model requires three fundamental changes. 
Firstly, the abstraction to the appropriate level of detail necessitates the model to be 
modularised and configurable. Secondly, Communication procedure in real time 
needs to be established. Finally before running the model, the simulation model needs 
to set up in real time execution mode.

The work presented here only shows the basic steps in converting the 
simulation model in Arena software environment. Nonetheless the methodology is 
also applicable in other simulation languages and packages.
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ABSTRACT

Simulation models with high level of details also known as emulation has been used 
to test control in a variety of sectors such as manufacturing, logistics and 
transportation. To establish the nature of current use and investigate the factors that 
inhibit its use, a survey was conducted to obtain feedback from simulation 
practitioners on the use of emulation, their application areas and development 
problems. This paper presents findings of the survey and highlights potential research 
areas for the application of emulation as well as recommendations for development 
with regard to its model building.

1 INTRODUCTION

Traditionally, control systems are often only fully tested after commissioning, at the 
'shop floor'. When this has to be done within the time constraints of the project’s 
commissioning phase; the result is often unsatisfactory for all concerned, leading to 
project overrun, extended ramp times and rising costs. Thus, it is vital to test control 
systems before implementing them.

The benefits and potential of using emulation is very well acknowledged [1] 
Nonetheless there are also few concerns that need to be addressed. Among them the 
economy of scale of building such model and there is a need to understand on how to 
develop an emulation model in more cost effective manner.

The paper begins with a background discussion of using emulation for control system 
testing based on case studies. It is followed by the outline of the survey, the results 
and the analysis. The conclusions highlight the user's perspective on the current use 
of simulation for control system testing as well their expectations for the future.

2 SIMULATION FOR CONTROL SYSTEM TESTING

With the technology available today, a combination of reality and simulation to test 
control systems is seen to be appropriate. Four possible approaches to test control 
systems, based on the possible combinations between reality and simulation, are 
shown Figure 1. [2]

1. A combination of a control system and a system being controlled both in reality. 
The control system is tested during or after commissioning.
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2. Soft commissioning. A combination of a control system in reality and a simulated 
system being controlled. A hardware-in-the-loop (HIL)-based approach where the 
inputs and outputs of a controller are connected to a simulation of the part to be 
controlled.
3. Reality in the loop. A combination of a simulated control system and a real system 
being controlled such as on a test bed.
4. Off-line simulation. A  combination of both a simulated control system and a 
simulated system being controlled. Also referred to as pure simulation, it is often used 
to understand the behaviour of a system, or to predict an outcome under different 
internal and external influences.

simulationreality

control system control system

sy s te m -b e in g -
co n tro lled

Fig. 1 Approaches for Testing Control Systems [3]

From initial case studies [3-6] , building a simulation model for the purpose of 
control system testing involves the following.

a) Determining the correct level of detail. Choosing the appropriate level of
detail seems to be a balancing act between, minimising the details on the one hand 
and, adding details to ensure usefulness of the model on the other hand.
b) Modifying simulation code, to improve the quality of common core 
simulation functions, improve the potential for creating reusable modelling 
components from those core functions, and improve the integration of simulation 
packages with other applications including controllers.
c) Interfacing between modules. It involves the simulation software interfacing, 
synchronizing and real time capability.

3 SURVEY AMONG SIMULATION PRACTITIONERS

The main objectives of the survey were to investigate the extent of use of Emulation 
model for Control System Testing, its application areas and users opinion about its 
model building.

The questionnaire distributed to the participants of Winter Simulation Conference 
2003 consisted of seven topics dealing with

8) type of user,
9) whether or not using simulation for control system testing,
10) current application area,
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11) ranking the benefits of using simulation for control system testing,
12) important stages for its model building,
13) simulation packages used
14) potential application areas.

Topics (3), (4) and (5) only apply to current users of simulation for control system 
testing. The aim was to gather information based on their experience the benefits of 
emulation model and facilities that would assist the development of emulation model.

The general meaning of each application area listed in the survey is as follows:
Process control involves monitoring, controlling and improving a process typically in 
production environment. [7, 8]
Business Process is collection of activities designed to produce a specific output for a 
particular customer or market. [9]
Material Handling is the movement, storage, control and protection of materials, 
goods and products throughout the process of manufacturing, distribution, 
consumption and disposal. [3, 10]
Security system is the mechanism to protect facilities against intrusions by external 
threats as well as unauthorized acts by insiders. It includes physical as well as 
information protection. [11,12]
Transport system is the facility consisting of the roads and equipment necessary for 
the movement of passengers or goods. Mode of transport includes land, air and 
water.[13]

The questionnaire also contained additional space so that respondents could specify 
particular application areas, benefits and simulation packages that were not listed in 
the original choice of answers.

The survey sample was not selected by any formal statistical method. The 
respondents were participants of a simulation conference believed to be regular users 
of simulation. The ratio of responses from academics and industry was 40% to 60%.

4 RESULTS OF SURVEY

The results of the survey are presented in two sections. The first section presents 
results based on user’s background, distinguishing academic and industrial users view. 
Second section focuses on presenting a general need and expectation on the use of 
emulation for control system testing.

4.1 Results based on user background

Application area of simulation for control system testing currently being used and 
possible application area in the future according to the user type are shown in Table 1
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Table 1 Current and potential areas using of emulation for control system
testing

User Type
Academic (%) Industrial (%)

Current Potential Current Potential

Application 
area using 

emulation for 
control 

system testing

Process Control 28.6 27.6 33.3 33.3
Business Process 28.6 17.2 14.3 18.2

Material
Handling 28.6 20.7 28.6 24.2

Security System 0 10.3 0 3.0
Transport System 14.3 24.1 23.8 21.2

4.2 Results based on users need and expectation

The distribution of the application area of emulation, present and future from 
simulation practitioner’s perspective is shown in Table 2.

Table 2. Present and Future Application Area of Emulation

Present (%) Expected (%)
Process Control 33.3 30.9
Business Process 18.5 16.4

Material Handling 29.6 23.6
Security System 0 7.3

Transport System 18.5 21.8

The results of ranking the benefits of using emulation for control system testing based 
on weighted average calculation are as follows:
(1) Efficient use of resource
(2) Low overall cost
(3) Shorter commissioning time
(4) Client satisfaction

Ranking of the importance of development stage requiring specific tool for emulation 
model building would indicate (1) inhibiting factors at present, (2) important areas of 
research and development. The results of survey, in order of importance, are as 
follows:
(1) Interfacing between models,
(2) Modifying simulation code,
(3) Determining the correct level of detail.

5 ANALYSIS OF SURVEY RESULTS

The extent to which simulation is used for control system testing and the approach 
towards control system testing may vary between different types of users and
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organizations, depending on the needs and practicality. This is indicated by the results 
shown in Table 1 and Table 2.

While process control and material handling are considered by both types of users to 
be the prime application areas of emulation, present and future their views are quite 
different as regards to other application areas.

On the future use as shown in Table 2, there is notable expectation in using emulation 
in the control system testing of transport system and security system among the 
academic users indicating research interest.

Another point to note is that the industrial users expects an increase in the use 
emulation in business process system testing. This can be viewed as increasing use of 
emulation as another tool towards increasing competitiveness among companies.

Regarding the main benefit of building emulation model, although it was initially 
perceived to be shortening the commissioning time [8, 10, 14], the results of the 
survey on users perception on the benefits of using emulation for control system 
testing indicated a different view. The ranking of putting efficient use of resource first, 
followed by low overall cost, shorter commissioning time and client satisfaction 
underlines the priority of concerns among the respondents.

Table 3 highlights the prospect of simulation model for control system testing across 
the spectrum of application areas, if there is better technology for its model building. 
It shows a shift towards a wider area of application covering areas beyond 
manufacturing and production. Thus, facilities for emulation model building for 
generic application is needed.

Regarding specific tools for emulation model building most respondents noted 
interfacing between models as most important. Works by researchers [2, 7, 15, 16] 
also highlights its importance. The ranking is followed by facility to modify 
simulation code and getting the correct level of detail. These facilities depended on 
the type and internal structure of simulation package being used. Nikoukaran [17] 
provides an insight towards this requirement.

Good system engineering practice would begin with a pure simulation and as 
components become better defined with the aid of simulation, they can be fabricated 
and replaced in the control loop. Once physical components are added to the loop, un­
modelled characteristics can be investigated, and controls can be further refined.

Similar approach of control system testing could also be adapted to non engineering 
application as indicated by the response of the survey.

6 CONCLUSIONS

Emulation has the potential being used for control system testing in areas other than 
manufacturing and production like transport system, business process and security 
system based on a similar concept to Hardware in the loop simulation (HILS).
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The simulation users acknowledged a need to provide a generic methodology and 
facilities for developing emulation models particularly regarding interfacing between 
models.

In general this survey has identified areas for development regarding using simulation 
for control system testing.
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Appendix C 

Arena Model ThisDocument and FrmConnect 
For Emulation Model MfgPlant_AGV_RT.doe

Appendix C.l Arena ThisDocument Object VBA Code 

Appendix C.2 VBA Code for userform ‘frmConnect’
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Appendix C.l Arena ThisDocument Object VBA Code

Option Explicit 

'Global declarations
Public blnM essageW aiting A s B oolean 'Is there a m essage from the client that needs to be 
processed?
Public blnlsConnected A s B oolean 'Is the w indow  socket connected to the rem ote host? 
Public strM essage A s String 'Most recent m essage from the client

Private Function M odelLogic_R ealT im eInitialize(ByV al processN am e A s String, B yV al 
rem oteProcessNam e A s String) A s Long
I

'RealTim elnitialize
t

'If Arena is running in execution m ode, then this event is 
'automatically called once by Arena before the first replication.
'Place code that initializes the com m unication port with the external client in 
'this function.

W ith frmConnect
'Display frm Connect to prompt for the IP address and port.

.TextB o x l.T ex t =  "127.0.0.1"

.T extB ox2.T ext =  "8111"

.Show  
End W ith

End Function

Private Function M odelL ogic_R ealT im eR eceive(m essage A s String) A s Long
t

'R ealTim eR eceive
f

'If Arena is running in execution mode, then this event is 
'periodically called by Arena (e.g., every .1 seconds).
'Place code that checks for incom ing m essages from  the client 
'in this function.
t

If (blnM essageW aiting =  True) Then
'If a m essage has been received from the client, then store the m essage in the parameter 
'"message" so  that it may be processed by Arena. 

blnM essageW aiting = False 
m essage = strM essage 

End If
End Function

Private Function M odelLogic_R ealT im eSend(ByV al m essage A s String) A s Long
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'RealTim eSend
f

'If Arena is running in execution m ode, then this event is
'automatically called  by Arena each tim e a m essage (stored in the argument "message") 
'is sent by an entity from a D E L A Y , ROUTE, TR ANSPO RT, or M O V E  block.
'Place code that sends m essages to the client in this function.
t

'The format o f  the argument "message" is defined in the TA SK S elem ent.

If (N ot blnlsConnected) Then
'End the m odel run. The socket is not connected.

A rena.ActiveM odel.End
Else
'Send the m essage string over the w indow  socket to the client 

frm C onnect.W insockl.SendD ata (m essage +

End If
End Function

Private Function M odelLogic_RealTim eTerm inate() A s Long  

'RealTimeTerminate

'If Arena is running in execution m ode, then this event is autom atically called  
'once by Arena at the end o f the last replication. Place code that terminates 
'com m unications with the client in this function.

'Close socket if  not already closed  
If (frm C onnect.W insockl.State <>  sckC losed) Then  

frm Connect. W in sock l .Close 
End If

End Function
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Appendix C.2 VBA Code for userform ‘frmConnect’

Option Explicit

Private Sub C om m andButtonl_C lick()
t

'"Connect" button click  event
t

On Error Resum e N ext 
'Close socket if  not already closed  
If (W insock l.S tate < >  sckC losed) Then  

W in sock l.C lose  
End If
'Call the Connect m ethod on W in sock l (w insock  object) to connect to the rem ote host. 
W in sock l .Connect T extB oxl.T ext, TextB ox2.T ext

'NOTE TO USER: If the com pile error "Variable not defined" is occuring on the object
''W insock l' in this subroutine, then the M icrosoft w insock  control 'W in so c k l' is
'missing from the form 'frm Connect'. T o run using the V B A
'code, a M icrosoft w insock control named 'W in so ck l' must first be added to
'the form 'frm Connect'. D ouble-C lick  'frm Connect' in the project explorer and
’select V iew /T oolbox to add 'W in so ck l'.
I

'Click the icon  "Instructions" in the m odel w indow  for step-by-step instructions on 
'running this exam ple.
End Sub

Private Sub W insock l_C onnect()
T h is  w insock  event is called after successful connection to remote host
t

M sgB ox "Successfully connected to RTConsole.", vblnform ation
T hisD ocum ent.blnlsConnected =  True
'Hide this form
frm Connect.Hide
End Sub

Private Sub W insockl_D ataA rrival(B yV al bytesTotal A s Long)
' This w insock  event is called automatically when data arrives to the socket.

D im  str A s String

'Store m essage in str variable. 
frm Connect.W insockl.G etData str, vbString
'Set the flag blnM essageW aiting to TRUE so that Arena w ill know  a m essage needs
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'to be processed the next time the R ealT im eR eceive event is called.
ThisD ocum ent.blnM essageW aiting =  True
'Store m essage in global strM essage so Arena can get string later
ThisD ocum ent.strM essage = str
End Sub

Private Sub W insockl_E rror(B yV al Num ber A s Integer, D escription A s String, B yV al Scode  
A s Long, B yV al Source A s String, B yV al H elpFile A s String, B yV al H elpContext A s Long, 
C ancelD isplay A s B oolean)
'This w insock  event is called after an error
I

'D isplay error m essage
M sgB ox D escription & Chr(lO) & Chr(lO) & _
"Error connecting to R TC onsole.exe. Before running this m odel in execution mode," & 
Chr(lO) & _
" First start the client R T C onsole.exe and set it to listen. C lick the icon Instructions for" & 
Chr(lO) & _
"step-by-step instructions on running this example.", vbCritical, "RT Execution M ode.doe" 
'Hide this form  
frm Connect.Hide 
End Sub

158



Appendix D

Appendix D .l 

Appendix D.2

Appendix D 

Emulation Model

Logic Flowchart and Animation 

SIMAN code
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Appendix D.2 SIMAN code

; M odel statements for module: Station 6

2$ STATIO N, ExitStation;
37$ D ELAY: 0.0„V A :N E X T (3$);

; M odel statements for module: D elay 9

3$ DELAY: Exit_UnloadingTim e„O ther:NEXT(4$);

; M odel statements for module: Free 5 

4$ FREE: A G V (A G V #):N E X T (1$);

; M odel statements for module: Record 2  

i  $ TALLY: FlowTim e,INT(Tim eIn), 1 :NEXT(0$);

; M odel statements for module: D isp ose 2

0$ ASSIG N: D ispose Part.Num berOut=Dispose Part.NumberOut + 1;
38$ DISPOSE: Yes;

; M odel statements for module: Station 7

10$ STATIO N, PackStation;
41$ DELAY: 0.0„V A :N E X T (11$);

; M odel statements for module: D elay 11 

i  1$ DELAY: Pack_UnloadingTim e„O ther:NEXT(12$);

; M odel statements for module: Free 6 

12$ FREE: A G V (A G V #):N E X T (5$);
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Model statements for module: Process 4

5$ ASSIG N: Process Pack.NumberIn=Process Pack.Num berln + 1:
Process Pack.W IP=Process Pack.W IP+1;

71$ STACK , 1: S ave:NEXT (45$);

45$ QUEUE, Process Pack.Queue;
44$ SEIZE, 2,VA:

Packer, 1:NEXT(43$);

43$ DELAY: Triangular(1.8,2.2,2.6)„VA :NE X T(86$);

86$ ASSIG N: Process Pack.W aitTim e=Process Pack.W aitTim e + Diff.W aitTim e;
50$ TALLY: Process Pack.W aitT im ePerEntity,D iff.W aitT im e,l;
52$ TALLY: Process Pack.TotalTim ePerEntity,Diff.StartTim e, 1;
76$ ASSIG N: Process Pack.V A Tim e=Process Pack.V A Tim e +  D iff.V A T im e;
77$ TALLY: Process P ack.V A T im ePerE ntity,D iff.V A T im e,l;
42$ RELEASE: Packer, 1;
91$ STACK , 1 .-Destroy :NEXT(90$);

90$ ASSIG N: Process Pack.Num berOut=Process Pack.NumberOut + 1:
Process Pack.W IP=Process Pack.W IP-l:N E X T (6$);

; M odel statements for module: Request 5

6$ QUEUE, Request A G V  at Pack Station.Queue; 
REQ UEST, 1 :AG V (C Y C ,A G V #),50:N EX T (8$);

; M odel statements for module: D elay 10 

8$ DELAY : Pack_LoadingTim e„Other:NEXT(9$);

M odel statements for module: Transport 5 

9$ TRANSPORT: AGV,ExitStation,50;

; M odel statements for module: Station 8

15$ STATIO N, PaintStation;
96$ DELAY: 0.0„V A :N E X T (16$);

; M odel statements for module: D elay 13

16$ DELAY: Paint_UnloadingTim e„O ther:NEXT(17$);
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Model statements for module: Free 7

17$ FREE: A G V  (A G V #) :NEXT (34$);

; M odel statements for module: Process 7

34$ ASSIG N: Process Paint.Num berIn=Process Paint.Num berln + 1:
Process Paint.W IP=Process Paint.W IP+1;

126$ STACK , 1: S a v e : N EX T (100$);

100$ Q UEUE, Process Paint.Queue;
99$ SEIZE, 2,VA:

Painter,1:NEXT(98$);

98$ DELAY: Triangular(1.8,2.2,2.6)„V A :N E X T(141$);

141$ ASSIGN: Process Paint.W aitTim e=Process Paint.W aitTim e + Diff.W aitTim e;
105$ TALLY: Process Paint.W aitT im ePerEntity,D iff.W aitT im e,l;
107$ TALLY: Process Paint.TotalTim ePerEntity,D iff.StartT im e,l;
131$ ASSIGN: Process Paint.VATim e=Process Paint.VATim e + D iff.V A T im e;
132$ TALLY: Process P aint.V A T im ePerE ntity,D iff.V A T im e,l;
97$ RELEASE: Painter, 1;
146$ STACK , 1 :Destroy:NEX T(145$);

145$ ASSIGN: Process Paint.Num berOut=Process Paint.NumberOut + 1:
Process Paint.W IP=Process Paint.W IP-l:N EX T (32$);

; M odel statements for module: Request 9

32$ QUEUE, Request A G V  at Paint Station.Queue; 
REQUEST, 1:A G V (C Y C ,A G V #),50:N EX T (13$);

; M odel statements for module: D elay 12

13$ DELAY: Paint_LoadingTim e„Other:NEXT(14$);

; M odel statements for module: Transport 6 

14$ TRANSPORT: AG V,PackStation,50;

M odel statements for module: Station 9

19$ STATIO N, MachineCentre;
151$ DELAY: 0.0„V A :N E X T (20$);
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; Model statements for module: Delay 14

20$ DELAY: TA SK ID (E X PO ( 3 ),U nloadingTim e)„O ther:N EX T(21$);

M odel statements for module: Free 8 

21$ FREE: A G V (A G V #):N E X T (18$);

M odel statements for module: Process 6

18$ A SSIG N: Process M achining.Num berIn=Process M achining.Num berln + 1:
Process M achining.W IP=Process M achining.W IP+1;

181$ STACK , l:Save:N E X T (155$);

155$ QUEUE, Process M achining.Queue;
154$ SEIZE, 2,VA:

M achinist,1:N EXT(153$);

153$ DELAY: T A SK ID (U N IF(.5,1.5),M achinePart)„V A :N E X T (196$);

196$ ASSIG N: Process M achining.W aitTim e=Process M achining.W aitT im e +
Diff.W aitTim e;
160$ TALLY: Process M achining.W aitTim ePerEntity,Diff.W aitTim e, 1;
162$ TALLY: Process M achining.TotalTim ePerEntity,D iff.StartTim e,l;
186$ ASSIGN: Process M achining.V A Tim e=Process M achining.V A T im e +
D iff.V A T im e;
187$ TALLY: Process M achining.VA Tim ePerE ntity,D iff.V A Tim e, 1;
152$ RELEASE: M achinist, 1;
201$ STACK , 1 :Destroy:NEXT(200$);

200$ ASSIG N: Process M achining.Num berOut=Process M achining.Num berOut +
1:

Process M achining.W IP=Process M achining.W IP-1 :N E X T(30$);

30$ ALLOCATE, 1: AG V(AG V#),M achineCentre;
31$ M OVE: A G V  (A G V #) ,PaintStation :NEXT (22$);

M odel statements for module: D elay 15 

22$ DELAY: TA SK ID (E X PO ( 3),LoadingTim e)„O ther:N EX T(23$);

M odel statements for module: Transport 7 

23$ TRANSPORT: AG V,PaintStation,50;

164



Model statements for module: Create 2

203$  CREATE, l,M inutesT oB aseT im e(0.0), Entity
1 :M inutesToBaseTim e(EXPO (3)):N EX T(204$);

204$ ASSIG N: Create jobs at staging ares.NumberOut=Create jobs at staging
ares.NumberOut +  1:NEXT(24$);

; M odel statements for module: Station 10

24$ STATION, ArrivalStation;
209$  DELAY: 0 .0„V A :N E X T (25$);

; M odel statements for module: A ssign  2

25$ ASSIG N: Tim eIn=TNO W :NEXT(26$);

; M odel statements for module: Request 8

26$ Q UEUE, Request A G V  at ArrivalStation.Queue;
REQ UEST, 1 :AG V (C Y C ,A G V #),50:N EX T (28$);

; M odel statements for module: D elay 16

28$ D ELAY : TA SK ID (EX PO ( 3),LoadingTim e)„O ther:NEXT(29$);

; M odel statements for module: Transport 8 

29$ TRANSPORT: AG V,M achineCentre,50;
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Appendix E .l RTConsoleMain.frm

Option Explicit
Private Sub cboMessageType_LostFocus()
Call cboMessageType_Click 
End Sub
Private Sub cmdSend_Click()
'Send a Message to Arena

'Declarations
Dim blnResponseToTask As Boolean 
Dim blnEntityldentifier As Boolean 
Dim strMessage As String

blnResponseToTask = (cboMessageType.Text = ”0") Or (cboMessageType.Text = "0 - Response to 
Task")
blnEntityldentifier = cboIdentifier.Text <> ""
'If responding to a task, must specify entity identifier 
If (blnResponseToTask And Not blnEntityldentifier) Then Exit Sub

'Store message to send in strMessage 
If blnResponseToTask Then

strMessage = "0 " & cboIdentifier.Text & "" & txtReturnCode.Text 
'Remove entity identifier from combobox 
cboIdentifier.Removeltem (cboIdentifier.Listlndex)

Else
strMessage = cboMessageType.Text & "" & txtAssignments.Text 

End If
'Send the message
wsArena.SendData (strMessage + Chr(0))
AddLineToTextBox txtSent, strMessage

End Sub
Private Sub cboMessageType_Click()

'Declarations
Dim blnResponseToTask As Boolean 

'Response to task?
blnResponseToTask = (cboMessageType.Text = "0") Or (cboMessageType.Text = "0 - Response to 
Task")

'Set visible properties o f Send Message fields 
txtAssignments.Visible = Not blnResponseToTask 
lblAssignments.Visible = Not blnResponseToTask 
cboldentifier. Visible = blnResponseToTask 
txtRetumCode. Visible = blnResponseToTask 
lblldentifier.Visible = blnResponseToTask 
lblReturnCode. Visible = blnResponseToTask 
End Sub
Private Sub Form_Load()
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'Setup MessageType combo-box 
cboMessageType.Addltem "0 - Response to Task" 
cboMessageType.Addltem "1" 
cboMessageType.Addltem "2" 
cboMessageType.Addltem "3" 
cboMessageType.Addltem "4" 
cboMessageType.Addltem "5" 
cboMessageType.Text = "0 - Response to Task"
Call cboMessageType_Click 
End Sub
Private Sub Form_Terminate()
'Close socket if  not already closed 
If (frmMain.wsArena.State <> sckClosed) Then 

frmMain.wsArena.Close 
End If 
End Sub
Private Sub menuClearAll_Click()
'Clear all textboxes 
txtSent.Text ="" 
txtReceived.Text ="" 
txtStatus.Text =""
End Sub
Private Sub menuClearReceived_Click()
'Clear Messages Received textbox 
txtReceived.Text =""
End Sub
Private Sub menuClearSent_Click()
'Clear Messages Sent textbox 
txtSent.Text =""
End Sub
Private Sub menuClearStatus_Click()
'Clear Status textbox 
txtStatus.Text =""
End Sub
Private Sub menuFileDisconnect_Click()
'Close socket if  not already closed 
If (frmMain.wsArena.State o  sckClosed) Then 

frmMain.wsArena.Close 
End If
'Enable Listen and Connect menu items 
MenuFileListen.Enabled = True 
MenuFileConnect.Enabled = True 
'Disable Send button and Disconnect Menu Item 
MenuFileDisconnect.Enabled = False 
cmdSend.Enabled = False 
'Clear Entityldentifier combo-box 
cboIdentifier.Clear

AddLineToTextBox txtStatus, "Socket disconnected" 

End Sub
Private Sub menuFileListen_Click()
'Set Socket to listen on port

'Declarations 
Dim strPort As String 
Dim intRet As Integer
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On Error Resume Next 
'Prompt for port number
strPort = InputBox("", "Listen on Port:", "8111")

If (Len(strPort) > 0) Then
wsArena.LocalPort = CLng(strPort)
'Check for error assigning LocalPort property 
If (Err.Number o  0) Then

intRet = MsgBox("Error assigning port. Port""" & strPort &  may be invalid.", vbCritical)
GoTo ExitHere 

End If
'Set socket to listen 
wsArena.Listen

AddLineToTextBox txtStatus, "Socket listening on port" & strPort

'Disable Listen and Connect menu items 
MenuFileListen.Enabled = False 
MenuFileConnect.Enabled = False 
'Enable Disconnect menu item 
MenuFileDisconnect.Enabled = True 

End If

ExitHere:
On Error GoTo 0 

End Sub
Private Sub MenuFileConnect_Click()
'Connect to Arena 
frmConnect.Show vbModal 
End Sub
Private Sub menuFileExit_Click()
Unload Me 
End Sub
Private Sub menuHelpAbout_Click()
frmAbout.Show
End Sub
Private Sub wsArena_Connect()
'Winsock event called after successful connection to remote host

'Enable Disconnect menu item and Send button 
MenuFileDisconnect.Enabled = True 
cmdSend.Enabled = True 
'Disable Connect and Listen menu items 
MenuFileConnect.Enabled = False 
MenuFileListen.Enabled = False

AddLineToTextBox txtStatus, "Socket connected to port" & wsArena.RemotePort & " of h o st" _  
& wsArena.RemoteHostIP 
End Sub
Private Sub wsArena_ConnectionRequest(ByVal requestID As Long)
'Winsock event called when a remote client is attempting to connect

If wsArena.State <> sckClosed Then wsArena.Close 
wsArena.Accept requestID

'Enable Send button
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cmdSend.Enabled = True

AddLineToTextBox txtStatus, "Socket accepted connection request on port" & wsArena.LocalPort 
End Sub
Private Sub wsArena_DataArrival(ByVal bytesTotal As Long)
'Winsock event called when data is received from remote computer

'Declarations 
Dim strData As String 
Dim strLines() As String 
Dim strTokens() As String 
Dim lngl As Long

'Store socket data in strData 
wsArena.GetData strData, vbString 
'First remove any line feed characters from string 
strLines = Split(strData, Chr(lO)) 
strData = Join(strLines)
'Now parse data into the individual lines (Each line should end with a character) 
strLines = Split(strData,";")

'Process each line
For lngl =  0 To UBound(strLines)

'Remove ending and leading spaces (if any) 
strLines(lngl) = Trim(strLines(lngI))
If (Len(strLines(lngI)) > 0) Then

'Add line to Messages Received textbox 
AddLineToTextBox txtReceived, strLines(lngl)
'Parse line into tokens (Each token should be separated by a space) 
strTokens() = Split(strLines(lngI),"")
'Filter string array to only the "TGID" token 
strTokens = Filter(strTokens, "TGID=")
If (UBound(strTokens) > -1) Then 
'There is a "TGID" token. Add the entity identifier 
'to the combo-box "Entity Identifier" (so that the user can select 
'this value when sending a response back to Arena 

cboIdentifier.Addltem Right(strTokens(0), Len(strTokens(0)) - 5)
End If 

End If 
Next

End Sub
Private Sub wsArena_Error(ByVal Number As Integer, Description As String, ByVal Scode As Long, 
ByVal Source As String, ByVal HelpFile As String, ByVal HelpContext As Long, CancelDisplay As 
Boolean)
'Winsock event called after an error
MsgBox ("Error" & Number & Chr(13) & Description)
'Close the socket 
wsArena.Close 
End Sub
Private Sub AddLineToTextBox(txtBox As TextBox, strLine As String)
'Adds strLine to txtBox
txtBox.Text = strLine + Chr(13) + Chr(10) + txtBox.T ext 
End Sub
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Appendix E.2 RTConsoleConnect.frm

Option Explicit
Private Sub cmdCancel_Click()
Unload Me 
End Sub
Private Sub cmdOK_Click()

On Error Resume Next 
'Close socket if not already closed 
If (frmMain.wsArena.State o  sckClosed) Then 

frmMain.wsArena.Close 
End If

'Connect to remote host
frmMain.wsArena.Connect txtRemoteHost.Text, txtRemotePort 
'Check for error 
If (Err.Number <> 0) Then 

MsgBox ("Invalid IP address or port.")
GoTo ExitHere 

End If 
Unload Me

ExitHere:
On Error GoTo 0 

End Sub
Private Sub Form_Load()
'Set default IP Address and Port 
txtRemoteHost.Text = frmMain.wsArena.LocallP 
txtRemotePort.Text = "4334"
End Sub
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Appendix F

Instructions for Running 
MfgPlant_RT_AGV.doe

ON-LINE HELP NOTE: Refer to the help topic "Arena RT" in the on-line help for a 
detailed description of Arena RT and its features.

There are two alternative approaches for implementing the inter-process 
communications
between Arena and an external client: through VBA or through user-code.
This example demonstrates VBA approach.

****
Instructions for running MfgPlant_RT_AGV.doe using VBA realtime events:
****
1. Enter the Visual Basic Editor and double-click the form frmConnect in the 
project explorer.

2. Make sure a Microsoft winsock control named 'W insockl' has been added to 
the form frmConnect. If the winsock control has not been added, select 
View/Toolbox to access the controls tab. Then drag-and-drop a winsock control onto 
the form. By default, it should be named 'W insockl'.

Note that you must have a design time license of the Microsoft winsock 
control to add it to the project.

3. Spend some time browsing through the VBA code. Then exit the Visual Basic 
Editor.

4. In <Run Setup\Run Control>, verify that the model is set to "Run in Execution 
Mode".

5. In <Run\Setup\Run Control>, verify that "Load User-Coded .DLL" is NOT 
checked.

6. In <Run SetupYRun Speed>, verify that the model will "Advance Simulation 
Time Using a Real Time Factor" of 1.

7. Let's now run the example. First, click the icon "RTConsole.exe" in the named 
view "Model Description and Instructions" of the model. This starts the client 
application that will send and receive messages from Arena.
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8. From RTConsole's menu bar, click <File\Listen...>. Keep the default of 
"8111" for the port and hit <OK>. RTConsole is now waiting to connect to Arena.

9. From Arena's menu bar, click <Run\Go> and begin running 
MfgPlant_RT_AGV.doe. Note that the VBA event RealTimelnitialize is called first, 
displaying a dialog asking for RTConsole's IP address and port. Keep the defaults and 
press <Connect>. The model should display a "Successfully connected to 
RTConsole" message that indicates a successful connection. Press <OK>.

10. The model is now running. Notice that the clock is advancing in real-time.

11. Adjust the application windows of Arena and RTConsole such that both of 
them are displayed on the screen. If you haven't already, press <A> in Arena to zoom 
to the model animation.

12. Notice that entities representing parts have entered the system at time 0.0 and 
sent "LoadPart" messages to RTConsole. Once ‘loaded’ the part moves with the 
mover to the designated destination. When it reaches the next station it sends a 
message "UnloadPart" parts begin processing on the first machines in their sequence, 
they also send "ProcessPart" messages to RTConsole.

13. A response is required from RTConsole for each of the "LoadPart" messages. 
A response indicates the entity has completed its loading in the "real system", and can 
now proceed to the next step in its sequence.

14. To respond to a "LoadPart" message sent by an entity on a mover, in 
RTConsole select the entity you want to respond to from the Entity Number pull­
down list. Press <Send> to send the response.

15. Watch the entity you responded to in the model animation. It is now 
proceeding to the next step in its sequence which is travelling in the transporter to the 
designated station. In the Messages Sent to Arena list box of RTConsole, note the 
actual format of the response message sent back to Arena (e.g., "0 2 0" or "0 6 0"). A 
more detailed description of the format of messages sent to Arena may be found in 
the online help.

16. Through RTConsole, continue entering parts into the simulation and 
responding to "UnloadPart", "MachinePart" messages etc. The simulation is 
emulating the "real system"!

17. At the end of the session, stop the model.

18. From RTConsole's menu bar, click <File\Disconnect> to close the socket.
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