
Methodology to develop hybrid simulation/emulation model.

BIN HASNAN, Khalid.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19768/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19768/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

A aseus oe iu re uuy ucim|ju5>
Sheffield S1 1WB

1 0 1 8 2 6 2 0 4 0

Fines are charged at 50p per hour

REFERENCE

ProQuest Number: 10697070

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697070

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Methodology to Develop Hybrid
Simulation/Emulation Model

KHALID BIN HASNAN

A thesis submitted in partial fulfillment of the requirements of
Sheffield Hallam University

for the award of
Doctor of Philosophy

December 2005

DECLARATION

This is to certify that I am responsible for the work submitted in the thesis, that the

original work is my own except as specified in acknowledgements, and that neither

the thesis nor the original work contained therein has been submitted to this or any

institution for a higher degree.

Signature:

Name : KHALID BIN HASNAN

Date 15 December 2005

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful.

I would like to communicate my sincere gratitude to my research supervisors,

Professor Dr. Terrence Perera and Dr David R. Clegg, for their guidance and

encouragement. In particular I would like to express my appreciation to Professor

Terrence Perera for his interest and enthusiasm, to read, modify and comment on the

manuscript.

I wish to thank all colleagues of the Manufacturing Systems Engineering Research

Group particularly Anna Lassila, Tom Pohl, Saman Yapa, Piyasena Samarakoon,

Ruwan Wickramarachchi, Michael Liew and Jakub Banaszak for their support to this

research.

Thanks to the government of Malaysia and Kolej Universiti Teknologi Tun Hussein

Onn (KUiTTHO) for sponsoring my PhD study. Special thanks to members of the

Faculty of Mechanical and Manufacturing Engineering of KUiTTHO particularly to

its Dean, Professor Mohd Zainal, for their kind support and cooperation towards the

completion of this thesis.

Finally, and most importantly, I wish to express my love and appreciation to my wife,

Suhaidah Tahir; my children Ruqayyah, Maryam, Luqman, Anisah, Nabielah, Busyra,

Fatimah, Hakimi, Zarif, Izzah and Iqbal; my son-in-law Farhan and grandson Amirul

Hakim; for their patience, support, encouragement and du’a throughout the work

which has taken many hours that should have been dedicated exclusively to them.

Also I wish to express my love to my late parents, brothers and sister as well as parent

in-law for their consistent support and du’a.

ABSTRACT

Trends towards reduced life-time of products and globalised competition has

increased pressure on manufacturing industries to be more responsive to changing

needs of product markets. Consequently, the use of simulation to describe short term

future performance of manufacturing system has become more significant than ever.

An application of simulation that has attracted attention is for testing of control logic

before commissioning on site by using a detailed simulation model called emulation

model. However, though the success of using emulation particularly in improving

cost-effectiveness of automated material handling system delivery has been

acknowledged by industries and simulation model developers, the uptake for this

technology is still low. The major inhibitors are the high costs of its model building as

well as simulation and emulation models are perceived to be non convertible.

The main objective, of this research is to establish a methodology to develop

simulation model that can be converted into emulation model with ease, thus making

emulation technology more affordable. The product of this research called the

methodology to build Hybrid Simulation Emulation Model (HSEM) is a new

approach of building emulation model comprising of three phases namely (1)

development of base simulation model, (2) development of detail emulation model,

and (3) integration of controller with the emulation model. Important requirements

for HSEM are flexibility of adding details to the simulation model and inter process

communication between model and real control system. To facilitate implementation

of the methodology, it is essential that the simulation software package provide

functionalities for modular model development, access and adding of codes,

integration with other application and real time (RT) modelling.

The methodology developed offers a more affordable emulation modelling and an

opening for further research into the comprehensive support for the implementation

of real time control system testing using emulation.

TABLE OF CONTENT

DECLARATION... I

ACKNOWLEDGEMENTS... II

ABSTRACT..I l l

TABLE OF CONTENT........................ IV

CHAPTER 1 INTRODUCTION..1

1.1 M anufacturing S ystem D evelopm ent ..1

1.2 Issues on M anufacturing System D evelopment an d D e l iv e r y 1

1.3 Em ulation: S imulation M odel for Control S ystem Te s t in g 3

1.4 D eveloping H ybrid S im ulation-em ulation m o d e l ..5

1.5 Su m m a r y .. 6

CHAPTER 2 LITERATURE REVIEW ... 7

2.1 Introduction ..7

2.2 S cope of in v estig a tio n ... 8

2.3 S im ulation Technologies in M a n ufa c tu r in g ...9

2.3 D iscrete Event S im u l a t io n ... 10

2.3.1 K ey Elements o f Discrete-Event Simulation Softw are...............................11

2.3.2 Discrete-Event Simulation and Control System Testing............................ 13

2.4 Comparisons between S imulation a nd Em ulation M o d e l s 16

2.4.1 Different O bjectives..16

2.4.2 Hardware in the lo o p ...17

2.4.3 Execution c lock .. 17

2.4.4 Level o f detail..19

2.4.5 Control system coding..20

2.4.6 Inter-process communication (IP C)..20

2.4.7 Repeatable runs..21

2.5 A pplications of Em ulation ..22

2.5.1 Automated Material Handling System (A M H S)..23

2.5.2 Manufacturing Process Control..28

2.5.3 Other A pplications... 30

2.6 Su m m a r y .. 36

CHAPTER 3 JUSTIFICATION OF THE PROPOSED RESEARCH AND

RESEARCH M ETHODOLOGY..39

3.1 Introduction ... 39

3.2 Preliminary Research ... 39

3.3 Questionnaire S u r v e y .. 40

3.4 Case St u d ie s .. 44

3.5 D evelopment of a sample m o del ...45

3.6 D evelopment of new m ethodology .. 50

3.7 V alidation ..50

3.8 Su m m a r y ..51

CHAPTER 4 REQUIREMENT SPECIFICATION FOR SIMULATION-

EMULATION MODEL BUILDING... 53

4.1 Introduction ...53

4.2 Flexibility for M odelling D et a il ...54

4.2.1 Adaptable Simulation M odels.. 55

4 .2 .2 Modular Simulation..55

4.3 Requirements for inter process c om m unication 59

4.3.1 Real time capability.. 59

4 .3 .2 M odel Communication Interface..60

4.4 S imulation Software S election C riteria an d Com parison65

4.5 S u m m a r y ... 72

CHAPTER 5 SIMULATION-EMULATION CONVERSION

METHODOLOGY...74

5.1 Introduction74

5.2 Prerequisite for HSEM M ethodology D e p l o y m e n t75

v

5.3 F r a m e w o r k o f S im u l a t io n - e m u l a t io n p r o j e c t ... 75

5.4 S imulation-emulation model building p h a se s ... 76

5.4.1 PROBLEM DEFINITION (HSEM Phase 1) .. 77

5.4.2 PROJECT DESIGN (HSEM Phase 2) ...79

5.4.3 BASE SIM ULATION MODEL DESIGN (HSEM Phase 3)80

5.4.4 DETAIL MODEL DESIGN A N D DEVELOPM ENT (HSEM Phase 4)

80

5.4.5 INTEGRATION WITH CONTROL SYSTEM (HSEM Phase 5) 81

5.4.6 DOCUM ENTATION A N D PRESENTATION (HSEM Phase 6)83

5.5 MODELLING DETAIL V A R IA B IL IT Y .. 84

5.6 MODEL COMM UNICATION WITH EXTERNAL CONTROLLER

87

5.7 S u m m a r y ..89

CHAPTER 6 VALIDATION.. 92

6.1 Introduction ... 92

6.2 Project background and d e sig n ...93

6.3 Features of A rena M odelling .. 94

6.4 M o d e l B u il d in g o f a M a n u f a c t u r in g P l a n t ... 97

6.4.1 Base Simulation M od el..97

6.4.2 M odelling D etails..100

6.5 In t e g r a t io n w it h C o n t r o l l e r ..104

6.5.1 Emulation Communication Structure... 104

6.5.2 Implementing Changes..106

6.6 M odel Ex e c u t io n ..112

6.7 S u m m a r y ..115

CHAPTER 7 CONCLUSIONS... 117

7.1 R e s e a r c h B a c k g r o u n d .. 117

7.2 Contributions to Kn o w le d g e ..118

7.2.1 HSEM M ethodology..119

7.2.2 Facilitating decision making p ro cess...120

7.2.3 Another perspective o f emulation tech n o logy ..121

7.2.3 Potential areas o f developm ent.. 121

7.2.4 Convertible Simulation-emulation m od el...122

7.2.5 Summary o f Contributions to K n ow led ge..123

7.3 Recommendations for future w ork .. 123

7.3.1 Enriching existing special packages.. 124

7.3.2 Interface development to o ls124

7.3.3 More Comprehensive Feature R ev iew ..125

7.4 Co n c lu sio n s ... 125

REFERENCES... 126

APPENDIX A SURVEY QUESTIONNAIRE..133

APPENDIX B CONFERENCE PAPER PROCEEDINGS..................................136

HYBRID SIM ULATION-EM ULATION M O D E L : AG VS EXAM PLE............... 137

USER PERSPECTIVES ON THE USE OF EM ULATION IN CONTROL

SYSTEM TESTING..147

APPENDIX C 154

A ppendix C. 1 A rena ThisD ocument Object V B A Co d e155

A ppendix C. 1 A rena ThisD ocument Object V B A Co d e155

A ppendix C.2 V B A Code for userform ‘frmConnect’157

APPENDIX D EMULATION M ODEL.. 159

A ppendix D. 1 Logic Flowchart a n d A n im a t io n ... 160

A ppendix D .2 SIM AN code .. 161

APPENDIX E RTCONSOLE CODE...166

A ppendix E. 1 RTConsoleM a in .fr m ..167

A ppendix E.2 RTConsoleConnect .f r m ... 172

APPENDIX F INSTRUCTIONS FOR RUNNING

MFGPLANT_RT_AGV.DOE ...173

LIST OF FIGURES

Figure 1.1 Stages for Manufacturing System Delivery... 2

Figure 1.2 Time and cost benefits of emulation...4

Figure 2.1 Structure of a simulation system (Ball 1996)..12

Figure 2.2 Possible Combinations between Reality and Simulation for Control

System Testing..14

Figure 2.3 The experimental test bed...31

Figure 2.4 The SoftCom System.. 33

Figure 2.5 The Structure of the FAMAS Simulation Backbone Architecture............ 35

Figure 3.1 Sequences of Events for the 2-Machine Manufacturing System................47

Figure 3.2 Simulation of a 2-Machine Manufacturing System.................................. 48

Figure 3.3 Real-Time Simulation of a 2-Machine Manufacturing System............... 49

Figure 3.4 Research Methodology Summary... 52

Figure 4.1 The iterative model building process..54

Figure 4.2 Socket Connection... 62

Figure 4.3 OPC Client/Server Relationships... 64

Figure 5.1 Overall Hybrid Simulation-emulation model building flowchart........... 78

Figure 5.2 Emulation Model-Controller Integration Flowchart....................................82

Figure 5.3 Appropriate Level of Detail for Integration...84

Figure 6.1 Arena hierarchical structure... 96

Figure 6.2 A Manufacturing plant layout..97

Figure 6.3 Model Logic for Base Simulation Model....................... 99

Figure 6.4 Model Logic for Detail Simulation Model...102

Figure 6.5 Animation for Detail Simulation...103

Figure 6.6 Emulation Model Communication Structure................................. 105

Figure 6.7 Emulation model logic at part arrival station and machining centre 110

Figure 6.8 Message Handling Interface RTCosole... 112

Figure 6.9 Display form for invoking ‘Listen’...113

Figure 6.10 Display Form to Confirm Connection... 114

LIST OF TABLES

Table 2.1 Summary of comparison between simulation and emulation 22

Table 3.1 Current and potential areas using of emulation for control system testing. 43

Table 3.2 Present and Future Application Area of Emulation......................................43

Table 4.1 Comparison of Features for HSEM against Selected Simulation Software.

...71

Table 5.1 Simulation-emulation modelling software features checklist......................79

Table 5.2 Summary of Steps of HSEM Modelling... 90

Table 6.1 Simulation-emulation modelling software features checklist for Arena 94

Arena RT...

Table 6.3 Panels used in development of HSEM.....

Table 7.1 Summary of Contributions to Knowledge

115

123

CHAPTER 1

INTRODUCTION

1.1 Manufacturing System Development

Manufacturing is changing rapidly around the world. The processes, equipment, and

systems used to design and produce everything from automobiles to computer chips

are undergoing dramatic changes in response to new customer needs, competitive

challenges, and emerging technologies. Advances in information systems, business

practices, engineering techniques, and manufacturing science now enable companies

to produce new and better products more quickly and at a much lower cost than ever

before.

As a result, fundamental changes are occurring in the manufacturing environment.

This can be seen in the current trend towards highly automated systems that are

intended to adapt quickly to change while providing extensibility through a modular,

distributed design. It has also placed the whole manufacturing system development

process greater importance than ever before.

1.2 Issues on Manufacturing System Development
and Delivery

In order to realise the flexibility and/or productivity that these advanced system

promise, system modelling and control are viewed as vital to enable the components

of these automated manufacturing systems to work together in an integrated way.

1

The complexity of such system imposes the need to trace products throughout the

system, and include more rules and logic. Thus not only the manufacturing system

design has to be efficient, the validation has to be fast and cost effective.

To understand the validation process let us look at the manufacturing system

development project which generally goes through several key stages as shown in

Figure 1.1.

System
specification

Hardware,
software
selection

Installation,
testing and
commissioning

System
Acceptance

Figure 1.1 Stages for Manufacturing System Delivery

The first stage is definition and analysis, in which simulation has long been used to

help determine the system specification. A well-written simulation model can be a

valuable tool in the design, analysis, and operation of manufacturing and other

complex systems.

The second stage is the selection of hardware and software suppliers, and the

construction of the hardware. Key parts of the solution may be tested off-site, in order

to verify the technology.

The third stage is on site installation, testing and commissioning. Once testing is

finished, the owner takes possession of the installation and the system is ramped up.

During this phase, and at any time during the working life of the installation, control

system modifications may be necessary as the load on the system changes.

Commissioning covers the period of hardware installation and software testing, as

well as acceptance and handoff of the project. In many cases, commissioning disrupts

2

existing production, and in all cases the sooner the system is successfully

commissioned, the sooner the system can be used to generate revenue.

Testing the control system is an important part of the commissioning phase, and yet it

is often done under extremely difficult conditions due to the following reasons:

• Some of the hardware may already be in use for production.

• Complete testing is impossible before the installation is complete.

• “Full system” control tests are often impossible.

• Control tests often conflict with hardware calibration and testing.

• Realistic current and future loading levels are unavailable for testing.

• Control software may be incomplete.

• Malfunctions may be hard to replicate.

• Modifications may be rushed and not fully tested before implementation.

The commissioning period of a project is often extended, resulting in penalties and

the need to bring unbudgeted resources to the site to resolve the situation. This costs

both hardware vendors and client's time and money.

Users of industrial simulation products have long requested a way to eliminate the

need to reproduce the logic built into the simulation model when the experimentation

and analysis phase is complete and the control system has to be developed.

1.3 Emulation: Simulation Model for Control System
Testing

A growing application of simulation and communication is emulation, where a

simulation model is used to replace a real Automated System in order to test and

debug an industrial control system. Since an emulation model is designed to provide

the same responses as the physical system, it can reliably replace the physical system

for many control system tests.

3

Emulation and control system testing can be carried out as soon as the control system

software has been developed, before commissioning. This leaves the critical

commissioning window available for unavoidable hardware tests and minimises the

set of control system tests that must be done during the final testing stage.

This allows control system designers to test the control logic using the simulation

prior to going into the field, which can resuit in considerable savings in terms of time

spent on site performing routine logic testing and debugging as illustrated in Figure

1.2 .

Typical Project Phases

System Design

Hardware Procurement

On-site Installation

Control Logic Testing and Debugging

Project Phase

System Design

3S Using Emulation

| Hardware Procurement

On-site Installation

Control Logic Testing and Debugging
£$£$

A d d itio n a l
P ro fit

T im e

Figure 1.2 Time and cost benefits of emulation

Emulation provides a reliable and safe way of verifying control code functionality

offline, training operators in a safe environment, and of testing modifications to a

control system before they get put into effect. Furthermore, the emulation model

serves as a test bed for any further control system modifications throughout the life of

4

the system, so production is not disrupted. Being a software solution, it is easier to

implement and modify than hardwired panels. It can also be stored for reuse on a

future project and provides the possibility of early testing.

Another advantage of emulation model is that it can be maintained for the lifetime of

the automated system it represents. During the productive phase of the system, any

proposed changes can be tested on the model before they are implemented on the

shop floor, just as the original design was tested. This can save money and provide

greater returns from the system, because it can be adapted to keep pace with business

changes. The updated model can also be used for training employees about changes to

the system, as well.

1.4 Developing Hybrid Simulation-emulation model

Even though the benefits of using emulation for the analysis of manufacturing control

systems are well acknowledged, the speed and cost of the model building remains a

concern.

At present, development of an emulation model has to be done independently from

simulation model. In other words, a project will require a simulation model for initial

analysis and development as well as a separate emulation model for testing a control

system. The main reasons for requiring the two-stage development are that an

emulation model is often more detailed than a simulation and also emulation model

must include communication logic.

Even so, the development of separate software logic for all levels of detail would

cause duplication of effort which renders it not cost effective and also creates

difficulty in maintaining consistency.

A proposed solution is to develop a methodology to build hybrid simulation-

emulation model or composable simulation model, one that is used for both purposes

5

and should have a facility to switch off/on certain elements from the model as

necessary. The present work investigates this possibility and proposes a system

approach towards its development.

1.5 Summary

This chapter has introduced the role of discrete event simulation in manufacturing

system development. The importance of efficient validation of manufacturing system

design is highlighted. Emulation model, a new form of simulation model developed

for early validation of control system is introduced. The chapter ends with

underlining the aim of the present research which is to develop a rapid development

approach for emulation model building.

The outline for proceeding chapters is as below.

Chapter 2 reviews in more detail the previous works related to emulation and outlays

the aims and objectives of the present research.

Chapter 3 describes the justification of the research and the research methodology

employed in this research.

Chapter 4 gives the requirement specification for simulation-emulation model

building.

Chapter 5 describes the proposed simulation to emulation model conversion

methodology.

Chapter 6 describes the validation of the methodology.

Chapter 7 concludes with the findings of the research and propose recommendation

for future work.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The previous chapter has introduced the concept of emulation modelling and its

benefits. Special emphasis has been drawn towards the need to build the emulation

model more cost effective. This chapter presents a background of emulation

technology in more detail based on case studies of some emulation-related

manufacturing projects.

It begins with defining the scope of investigation for the proposed research. This is

followed by a review on the use of simulation in a-variety of applications in

manufacturing industry. The next section looks at Discrete Event Simulation (DES),

the most widely used type of simulation in manufacturing, particularly in the design

and testing of the manufacturing system. The discussion is then directed towards a

new form of DES called emulation and its role in control system testing, which

become the focus of this thesis. This section is followed by comparative study

between simulation and emulation model. It also reports the investigation on the

current applications of emulation models in manufacturing industry and the

approaches that the models were developed in order to establish the specific

requirements for building emulation model from simulation model. The chapter

concludes by summarising the findings of the case studies.

7

2.2 Scope of investigation

Initial literature search has indicated that the term 'emulation' has also been used in a

variety of application area and context. For example it is also used in the computer

gaming community, software (programming) emulators as well as electronic

hardware emulators. However, to avoid ambiguity and to maintain consistency in the

context of the proposed research the term 'emulation' was referred to as a new form of

discrete event simulation being used to model the plant in manufacturing system

design and validation.

From the initial search it was also realised that literature on 'emulation' particularly in

regard to its model building was very limited. Consequently, the search was

broadened to include the use of the phrases 'simulation for control system testing' 'real

time simulation', as well as ' flexibility of adding details' which to some extent

considered related to the context of the proposed research.

'Simulation for control system testing' relates to the purpose of emulation in this

research context (Habchi and Berchet 2003; Shnits et al. 2004) . 'Real time

simulation' provides the understanding of the technology concerning real time

communication from emulation(Dougall 1998; Jeong and Kim 1998; Julia and

Valette 2000; Stewart et al. 2003). And, ' flexibility of adding details' relates to the

multi-resolution modelling as well as usefulness and credibility of the emulation

model (Ball 1998; Persson 2002).

Thus, the scope of investigation, within the defined context covered the technologies

and development methodologies related to the above mentioned phrases together with

the literature search for the relatively new technology of emulation.

2.3 Simulation Technologies in Manufacturing

In general, manufacturing system design involves making long-term decisions such as

facility layout and system capacity/configuration. As such, models are typically

created and used for a single design exercise, and model run time is not a significant

factor during the simulation process.

Manufacturing system operation, on the other hand, involves making decisions on a

much shorter time schedule. The activities include operations planning and

scheduling, real-time control, operating policies, and performance analysis As such,

the model is generally used (and reused) much more frequently, and simulation run

time is a more significant factor in the software/package selection and model design

process (Smith 2003).

Modelling of such manufacturing systems can be achieved using a number of tools

and techniques. While modelling and analysis are important to help ensure good

system performance, the integration and complexity of manufacturing systems often

makes purely analytic tools difficult to use. Hence, simulation remains one of the

most widely used tools to fill this need.

One of the most quoted description of simulation, (Banks 1998) defined simulation as

"the imitation of the operation of a real-world process or system over time.

Simulation involves the generation of an artificial history of the system, and the

observation of that artificial history to draw inferences concerning the operating

characteristics of the real system that is represented".

Or put another way, simulation is the technique of a building a model of a real or

proposed system so that the behaviour of the system under specific conditions may be

studied. One of the key powers of simulation is the ability to model the behaviour of a

system as time progresses.

9

Various simulation technologies and software for manufacturing are available and

selection is normally based on the application area and purpose of study apart from

the monetary and time constraints.

Within the scope of manufacturing systems the general application areas of

simulation include business process modelling, manufacturing process modelling,

supply chain modelling, and process and system visualisation

Focusing more specifically on production systems, there are a large number of

application areas and simulation technologies. Some simulation technologies are

specific to certain application. For example, human tasks simulation is used for

ergonomic studies of work areas and manual tasks. Robotic simulation deals with

motion and collision control of industrial robots as well as of-line programming of

equipment including industrial robots. Assembly simulation is used as an aid for

process planning for assembly operation, accessibility and to investigate assembly

feasibility (Banks et al. 2000).

A more generic discrete event simulation is widely used in facility design, material

handling system design, manufacturing cell design, and flexible manufacturing

system (FMS) design. The activities include buffer sizing, lot sizing, material flow

including bottleneck detection, plant layout effects, scheduling evaluations, costs and

work in process levels (Holst 2001). A more specific form of discrete event

simulation called emulation is used to develop and validate control strategies for

automated system like AMHS (automated material handling systems) of which

AGVS (automated guided vehicle systems) and ASRS (automated storage and

retrieval systems) are examples.

2.3 Discrete Event Simulation

Discrete event simulation is one way of building up models to observe the time based

(or dynamic) behaviour of a system. A discrete-event simulation is one in which the

10

state of a model changes at only a discrete, but possibly random, set of simulated time

points. During the experimental phase the models are executed (run over time) in

order to generate results. The results can then be used to provide insight into a system

and a basis to make decisions on. As for emulation, due to the fact that it involves

interaction with controller which operates in discrete manner, it is imperative that

Discrete Event Simulation is taken as the foundation for its model building. Thus it is

essential to understand basic concepts of discrete event simulation.

2.3.1 Key Elements of Discrete-Event Simulation Software

The process of building simulation models will invariably involve some form of

software. The software could either be a high level programming language or a data

driven software system in which the model is specified using user-defined and default

data items. Hence the model is either the software itself or held within a host software

system. With the development of more user-friendly simulation systems it is

generally the user who will build the model, not an expert.

Inside the software or model will be a number of important concepts, namely entities

and logic statements. Entities are the tangible elements found in the real world, e.g.

for manufacturing these could be machines or trucks. The entities may be either

temporary (e.g. parts that pass through the model) or permanent (e.g. machines that

remain in the model). The concepts of temporary and permanent are useful aids to

understand the overall objectives of using simulation, usually to observe the

behaviour of the temporary entities passing through the permanent ones.

Logical relationships link the different entities together, e.g. that a machine entity will

process a part entity. The logical relationships are the key part of the simulation

model; they define the overall behaviour of the model. Each logical statement (e.g.

"start machine if parts are waiting") is simple but the quantity and variety and the fact

that they are widely dispersed throughout the model give rise to the complexity.

11

Another key part of any simulation system is the simulation executive. The executive

is responsible for controlling the time advance. A central clock is used to keep track

of time. The executive will control the logical relationships between the entities and

advance the clock to the new time. The process is illustrated in Figure 2.1. The

simulation executive is central to providing the dynamic, time based behaviour of the

model. Whilst the clock and executive are key parts of a simulation system they are

very easy to implement and are extremely simple in behaviour.

Two other elements that are vital to any simulation system are the random number

generators and the results collation and analysis. The random number generators are

used to provide stochastic behaviour typical of the real world. For example, machine

scrap rates will rarely be fixed but will vary between certain ranges hence the scrap

rate of a machine should be determined by a random distribution.

The results collation and display provides the user a means of utilising the simulation

tool to provide meaningful analysis of the new or proposed system. Simulation tools

will typically display tabulated raw results and possess some graphing capabilities.

Entities / relations Clock

Executive

Distributions Results collection

Figure 2.1 Structure of a simulation system (Ball 1996)

12

Today, there are hundreds of commercially available DES software packages; some

based on the Simulation Programming Languages (SPL) , some on general

programming languages, and yet others on proprietary SPLs; some are 2-D, others

come in 3-D, and a few offer both; and they range in price from a few hundred

pounds to tens of thousands of pounds.

These simulation packages can be further classified into general-purpose simulation

packages and application-oriented simulation packages (Law and Mccomas 1999),

meaning that they differ in their area of application, from very general (such as

Extend and Simul8) to highly specialized packages for various manufacturing

applications (such as AutoMod and Quest), or call centres (such as Arena's .Contact

Center Edition.), just to mention a few. In fact, the level of specialization in

manufacturing goes even further, as evidenced by for example automated storage and

retrieval system (AS/RS) modules (such as for Quest).

With regards to emulation modelling in the context of manufacturing, a specific

discussion on the software requirement is presented in subchapter 4.4

2.3.2 Discrete-Event Simulation and Control System Testing

As been highlighted in the previous section, control system testing using simulation

has received considerable attention among the simulation practitioners (Banks 2000).

In line with the scope of the present thesis, the discussion is focused towards

manufacturing system development.

The development of a complex real system which is controlled by a control system

may include one or more of the following four design stages or testing types which is

illustrated in figure 2.2 (Auinger et al. 1999).

Full prototyping, shown as type A, involves tests with real equipment or system to be

controlled and real control systems. This seems the most realistic testing possibility,

13

although it is quite expensive to build and experiment with the whole prototype

system, especially because it involves the risk of failures if the possibilities of its

design are not tested thoroughly beforehand.

Full simulation or offline simulation, shown as type B, on the other hand, does not

involve so high costs. However, it may disregard some phenomena that are present in

the real system or contain additional factors that might influence the outcomes.

Among these are the issues arising from the fact that the control architecture is

usually distributed across a network of computers and communication requirements

among the distributed computing processes are a major concern. It is often difficult to

adequately model the communications requirements using software alone.

Furthermore, it is often difficult to foresee all potential deadlock situations that can

arise and include these within the software simulation of the system.

SimulationReality

Control System
PLC, PCS, DCS

Simulated
Control System

Emulated PlantPlant

Figure 2.2 Possible Combinations between Reality and Simulation for Control

System Testing.

(Adapted from (Auinger et al. 1999))

Type C which represents the context of this research emulates the equipment or

system to be controlled and uses real control systems. Also called hardware-in-the-

14

loop (HIL)-based approach where the inputs and outputs of a controller are connected

to a simulation of the part to be controlled (Rabbath et al. 2000). The detailed

emulated model is also called emulation (Mueller 2001; Schiess 2001).

Reality in the loop or Real-time control shown as type D uses real equipment and

simulates the control systems. This type of testing is also called test bench testing as

the equipment to be tested is usually relatively small and easy to set up but the control

logic could be complex.

It is important to note that both the development of the real system and the

development of the software control system are very expensive. Emulation and real­

time control have the advantage that they can be carried out in a cheaper way than full

prototyping, and stay closer to reality.

Other advantages of emulation as pointed by (Mcgregor 2000) include :

(1) Emulation allows earlier, more complete testing.

(2) Emulation allows more time to modify and repair control code.

(3) Emulation helps improve client relations.

(4) Emulation facilitates inexpensive, non-disruptive operator training.

(5) Emulation provides a safe means of testing system modifications off-line.

However, building an emulation model is still unaffordable for small and medium

scale industries, as could be seen from the examples of emulation projects discussed

in section 2.5. This is mainly due to its complex nature and as noted in the literature

search and also from the discussion with simulation software suppliers and users, that

at present an emulation model has to be built independently from simulation model.

To find ways of reducing the cost, the characteristics and requirements of emulation

model need to be better understood. The next section reviews the similarities and

differences between simulation and emulation model.

15

2.4 Comparisons between Simulation and Emulation
Models

Although a simulation model and an emulation model may look the same, and may be

built largely with the same building blocks, there are significant differences in usage

as well as their operation. The operational differences include the execution clock,

inclusion of hardware, level of detail, system coding, external communication and

repeatability.

2.4.1 Different Objectives

Simulation models are used to test and develop different solutions in order to arrive at

a better solution, based on an accepted set of pre-defined metrics. It often provides the

impartial judge between experience and new ideas, and allows the user to

demonstrate functionality and results in a cost-effective and flexible environment.

Simulations results help define the physical layout of a system, its operating limits

and its control system. Models are used as a basis for extensive experimentation,

often using automatic procedures to determine optimal or robust solutions. (Mehrabi

et al. 2000)

As the aim of a simulation model is exploratory by nature, the faster it can cover all

different possibilities, the better. Simulation modelling software is therefore designed

and developed with speed of execution in mind, and the models built with it are also

often constructed for fast execution.

(Rohrer and McGregor 2002) argued that emulation models are used in a much more

precisely defined way; in order to test the operation of the control system under

different system loading conditions, and as a risk-free means of training system

operators and maintenance staff. Emulation models are not used for experimentation

in the same way that simulation models are; they are unsuited to this function as they

often execute only in real time.

16

The emulation model reflects more precisely the system that will be implemented,

and as such, can be used to carry out a constrained series of verification procedures to

ensure the performance or reaction of the control system.

2.4.2 Hardware in the loop

A major difference between simulation and emulation is that simulation models are

'stand-alone' done all in software where as emulation models are used in conjunction

with hardware, a situation also called hardware in the loop (HIL).

Good system engineering practice would begin with a pure simulation and as

components become better defined (with the aid of simulation); they can be fabricated

and replaced in the control loop.

For most real systems, there are characteristics that are unknown or too complex to

model by pure simulation. Emulation allows hardware to be included in the model

and the developers can see the real-time interactions between different hardware and

software models. It is also possible to hook up real-world stimulus to peripherals and

start debugging system behaviour (Wells et al. 2002).

Industrial communications networks are not deterministic, and control systems need

to be designed to run reliably under varying load conditions. It therefore becomes

important that emulation models be robust, like the control systems that drive

industrial processes and Automated Material Handling Systems (AMHS) (Mcgregor

2002).

2.4.3 Execution clock

(Davis et al. 1996) regarded the primary difference between simulation and emulation

arises with the manner in which the model is executed. A simulation model

17

maintains its own simulation clock. When a decision is taken within the model, the

simulation clock does not advance until the necessary calculations have been

performed and the decision has been evaluated. This means that simulation time stops •

whilst decisions are taken.

As an example consider a box on a diverging conveyor belt. In a simulation model,

the box may be sent one way or the other depending on the contents of the box and its

final destination. In reality, this decision may be the result of several steps, each of

which takes a measurable amount of time. The box may be scanned, and a bar code

read. The information may be sent via a network and used to search a database to

identify the contents and the destination of the box. Then a control system may verify

that a diverter is in the correct position. If it is not, then a pneumatic or electric

movement takes place. The initial bar code scan will have taken place before the

diverter, at a sufficient distance to ensure that the response can be calculated and the

diverter moved to the appropriate position before the box arrives (Mcgregor 2002).

In essence, to be realistic an emulation model must run at exactly the same speed as

the control system. Since control systems are designed to operate in real time, and so

emulation experiments should be operated in real time.

Thus, the difference between an emulation and simulation in terms of execution clock

may simply be summarised by saying that under a simulation, message processing

procedures control the advancement of time while under an emulation, the

advancement of time is controlled by a real-time clock.

The difference between logical-time simulations and real-time simulations is also

apparent in their code. Logical-time simulations have the classical discrete event or

continuous simulation data structures and algorithms. Real-time simulations resemble

real-time systems - their execution is measured by hertz frequency, and they are

typically interrupt driven (Page and Smith 1998).

18

While real time simulation and emulation has similar characteristics in terms of the

execution clock, they are quite different in other aspects of modelling. One of the

main differences is with regard to the modelling different levels of detail as explained

in the next section.

2.4.4 Level of detail

To use an appropriate level of detail is one of the cornerstones of a valid model. Since

the model is, by definition, an abstraction of the actual system under study, not all

details are depicted in the model (Ball 1998). Choosing the appropriate level of detail

seems to be a balancing act between, minimising the details on the one hand and,

adding details to ensure usefulness of the model on the other hand. When reducing

the level of detail, the model looses its ability to provide a useful result at some point.

An emulation model is often more detailed than a simulation model. Because the

emulation model must provide the same responses to the controllers as real system

hardware, the model must be designed to respond to many system events that would

otherwise not require custom processing during a simulation.

Therefore the level of abstraction necessary to create the emulation should be as low

as possible. For example, an emulation model might be required to send signals to a

controller server when a load begins a pop-up transfer, when the transfer has

completed lifting, when the load moves to the new section and when the transfer

completes lowering (Mcgregor 2002).

To model every component of the system at the low level of abstraction would be

inefficient as well as problematic. Models with a high level of detail or resolution

describe the real system more accurately, but a simulation in a high resolution

requires a long execution time. In large models with high resolution this can lead to

an execution which is slower than in real time.

19

One way to overcome this would be through the use of parallel computing systems.

Another alternative which would be much faster is to have the major part of the

simulation realised on a rough level and only small parts are simulated in a high

resolution hence the use of multi-resolution modelling.

2.4.5 Control system coding

A simulation model may contain control logic developed in the simulation

environment that directly controls devices and loads throughout the execution of the

model. An emulation model often responds to signals from the external control

system, which controls system processes.

(Mcgregor 2002) argued that in order for an emulation model to operate in a way that

reflects the reality of an automated system, it must be possible for the modeller to

separate the physical parts of the model from the logical or operational parts. Also, in

order for the modeller to experiment with the final model it may be necessary to have

a part of the model operate under simulation logic, whilst other parts are under the

direct control of an external control system.

(LeBaron and K.Thompson 1998) acknowledged that the main benefit of emulation is

that it eliminates the need to re-implement code. Code developed and refined in

traditional simulation models must be re-implemented into the actual control software

if it is to be used. This creates the possibility of communication and re­

implementation errors. With emulation, the actual control system is used, thus the

code is developed and refined as the model is developed thus provides greater

confidence in the results.

2.4.6 Inter-process communication (IPC)

Inter-process communication (IPC) is a capability supported by some operating

systems that allows one process to communicate with another process. The processes

20

can be running on the same computer or on different computers connected through a

network. IPC enables one application to control another application, and for several

applications to share the same data without interfering with one another.

Off-line or full simulation often does not require IPC for the reason that it does not

require communication with external application.

Emulation on the other hand must include communication logic to link the model to

real time control system which consists of a continuous dialogue between sensors,

control systems, and actuators. For example, in an AGV order assignment the

location of each AGV is required, the driving distances or times form each location to

each location should be available and the actual status of each other handlers should

be available. This information is sent from different controllers such as the ASRS

manager, the crane manager or the AGV manager to the external algorithm.

As such, development and use of appropriate interface between multiple real

controllers and emulation model is crucial in obtaining the correct results.

2.4.7 Repeatable runs

Two or more model runs will always execute in exactly the same way and produce

precisely the same results if no parameters are changed between runs. Any impression

of randomness in a simulation model is due to the use of pseudorandom numbers to

generate certain events such as breakdowns, cycle times and so on. Repeatability is

necessary in order to recreate and understand events during the model run, as well as

to debug the model as it is built. All events that influence the model execution are

contained within the model and are therefore repeatable.

Due to the fact that in most emulation models the control system is separate from the

model itself, repeatability is uncertain, as communication events are asynchronous

and unpredictable. The model and the control system work with different clocks and

21

synchronize via a communications layer, itself prone to the decisions of the operating

system (Mcgregor 2002).

The comparison between simulation and emulation using the above features is

summarised in Table 2.1.

Table 2.1 Summary of comparison between simulation and emulation

Characteristics/features Simulation Emulation

Aim To test and develop

different solutions

To test control system

under different conditions

Execution Clock Virtual time Real time

Level of detail Low High

Hardware in the Loop No Yes

Control system coding Control rules hard coded Control rules separated

from event code developed

and refined as model is

developed.

External communication Not always Yes

(interface required)

Repeatable runs Yes

(precisely same result)

No

(communication events

asynchronous and

unpredictable)

2.5 Applications of Emulation

Over the years emulation modelling has developed steadily from its predecessor

(simulation) and has been used in different ways in various environment. While

majority of the literature relates the success stories of implementing emulation

22

technology, very few discuss the technical development details of the venture. As

such, since emulation is closely related to real time and on-line simulation, some of

their applications and development details are also quoted to exemplify the emulation

model building.

2.5.1 Automated Material Handling System (AMHS)

Literature search has found that Automated Material Handling System (AMHS) has

the most number of applications of emulation. Below are some examples of

emulation projects to illustrate the usefulness and benefits of emulation in Automated

Material Handling System (AMHS) projects. Included are some technical details on

their development and some cautions with regards to emulation model building by the

experienced modellers.

Ranistan Conveyor

(LeBaron and K.Thompson 1998) Rapistan Systems, MI, USA and AutoSimulations

Inc., UT, U.S.A. used emulation to develop, test, debug, and optimize a complex pick

and pack conveyor system for their client. The project integrates a simulation model

with the actual control system. The simulation model provides the output for

evaluating control logic and algorithms as well as a real time 3-D graphical animation

for improved visibility and confidence.

The emulation model they made has a built-in message handler that receives and

sends messages through a standard network interface (TCP/IP). The simulation

message handler pulls message information from the server at predefined time

intervals and acts on these messages. In addition, the simulation model sends

messages to the server when certain events have occurred within the simulation

model. Emulation has provided them the graphical and statistical output needed to

accurately evaluate different algorithms and control logic.

23

Eskav ASRS

Eskay Corporation (Salt Lake City, UT, USA) an AMHS supplier, developed

emulation of a 2-aisle pallet Automated Storage and Retrieval System (AS/RS) Unit

Load system to test the order fulfilment control system. The conveyors taking pallets

of product to and from the AS/RS were controlled by Think & Do™ industrial

control PLC software and the Warehouse Management System (WMS). The

simulation model built using Automod was connected to the controller via an OPC

server, and to the WMS via sockets.

(Young and Heider 2002) who were involved in the project reported that despite

delays created by resource scheduling problems, the emulation was completed

months before commissioning was to start. The project manager and software

engineers were able to test the full system functionality tested and the checklist over

80% complete before travelling to site

They also attributed that majority of the work for the emulation project involves

creating a detailed hardware model and interfacing with the other emulation

components. Their work on the interfacing was reduced by using the Automod Model

Communication Module (MCM). Nonetheless even though AS/RS, case conveyor,

and pallet conveyor are common AutoMod components, for emulation they require

significant customization from standard AutoMod operation.

Some important cautions they provided were:

(1) Testing all of the functionality of a MHS would be extremely difficult. It is more

important to set limited goals to test and refine basic system functionality.

(2) No amount of software testing can make up for hardware installation difficulties.

If the hardware installation is not complete per schedule, the software commissioning

will be delayed.

24

(3) Even if the full system emulation operates correctly, any hardware mistakes will

not be revealed until commissioning.

Coca Cola Packer

Coca Cola Enterprise (CCE) Atlanta, GA, USA, needed to accurately model their

complex production line and was looking for a method to reduce debugging time on

line system start-ups. They developed an emulation model of their Fort Worth Texas

production line using Automod software and utilised AutoMod MCM (Model

Communication Module) to establish communication between the PLC hardware they

use to control their production line and the model (Hodgson and Kartz 2000).

The model was built with a modular structure that supports rapid restructuring to

describe different production lines. Photoeye objects, motors, and other resources are

modelled in the simulation and the state of these objects are set and read by the PLC

connected to the simulation computer using DDE commands provided in the MCM.

By using the model with different speed inputs, different MTTF/MTTR numbers,

they made an informed decision that replacing the existing packer with a faster one

would not improve the overall line efficiencies after all.

CCE also used emulation to determine the best sequence in which to build a series of

‘layered’ pallets. By using the ‘Dynamic Scheduler’ they were able to show an

additional 17% gain in throughput (Cheshire and Hodgson 2001).

General Mlotor Car Assembly

General Motors (GM) used MCM and Automod to do emulation of a GM Holden car

assembly plant to validate their After Paint Mix Bank control logic before

implementation in the plant. Communication capability was established between

AutoMod emulation model and Softlogix 5, an Allen Bradley PLC emulation

software using RSlinx, a communication package also from Allen Bradley. The

25

communication protocol used was Dynamic Data Exchange (DDE) which was

provided by AutoSimulations.

In the case where there were more than two models, the Multi Model Synchronization

(MMS) Server, an extension of the Model Communications Module was required.

The MMS Server automatically opens and manages a connection between each model

and the Server and synchronizes all the models that are participating in the simulation.

GM Holden acknowledges that the ability to connect to actual control systems

eliminates the need to recreate control logic in simulation models. This not only saves

time but also increases model accuracy. GM Holden also realized significant savings

using this functionality when their After Paint Mix Bank was fully operational just 3

days after implementation, resulting large financial benefit (Vedapudi 2001)

Schipol Underground Logistic System AGV

(Versteegt and Verbraeck 2002) applied a four-step approach of using simulation in

evaluating real-time control systems of Automated Guided Vehicle Systems (AGVS)

and Automated Material Handling Systems (AMHS) for the Underground Logistic

System (OLS) Schipol in The Netherlands.

The four steps are (1) Testing in a fully simulated environment or offline simulation

(Type B in Figure 2.2), (2) Emulation of logistic resources, (3) Combining reality in

the loop, emulation and simulation, (4) Implementation of both control and system

being controlled in reality.

The strategy in the approach was to solve as many of the technical uncertainties at the

first stages and delay the investments in expensive control software and physical

logistic resources to later stages. In a fully simulated environment problems can

easily and quickly be detected and possible solution can be evaluated for their

effectiveness. In later phases the high investments in control software are made, only

when the uncertainties and problems are solved. When the uncertainties are solved in

26

the beginning of the project, the chances of investing in wrong technologies is

minimized.

The main idea behind the approach is the development of interchangeable simulated,

emulated and prototype components of the control systems and the systems-being

controlled. Interchangeable means that components can be changed during

experiments without making changes to the control systems.

Some important lessons taken from their work are:

1. The interfaces between the components were defined right at the beginning of

the project. Later models and logistic resources had to comply with these interfaces.

2. Use asynchronous messaging to reduce the effect of delays when exchanging

information between system components that are coupled in a network.

3. Synchronization between simulation clock and the wall clock is very

important aspect in combining simulation, emulation, and prototypes. Except for the

software packages that offer standard built-in features for real-time progress in

simulation models, separate program has to be made to provide this functionality.

Airport Baggage Handling System

As reported by (Rengelink and Saanen 2002), baggage handling has become one of

the major issues in competition between airports. Due to the nature of non-stop

operation 24 hours a day, 7 days a week and high security levels, there is a high

demand for the quality of the newly implemented systems and its controls at airports.

The extensions or changes need to be thoroughly tested in advance without involving

the real equipment on site but under conditions comparable to operational conditions.

27

In view of this, (Rengelink and Saanen 2G02) developed a simulation environment

for emulating baggage handling equipment which enabled detailed tests and provided

insight into the behaviour of the real PLC for their client.

They used eM-Plant simulation environment due to the following advantages:

1. A large number of basic processes were already depicted within the baggage

simulation library.

2. The required details for the emulation were able to be easily implemented

because of the Object Oriented structure.

3. This approach saved the manufacturer significant lead time in the project and

reduced the required time for testing on-site.

In general, the applications of emulation reported above have indicated that in the

long-term, simulation and emulation should be used as an integrated part of the

design process, analysis, tests and realization. Optimal use should be made of the

activities done during all of the phases and this requires reusability of models, easy

adjustability for different lay-outs, and project management based on the

developments.

2.5.2 Manufacturing Process Control

Although simulation has been the tool of choice for modelling the behaviour of

Manufacturing Systems, the accuracy of simulation tools in modelling modem

manufacturing systems such as Flexible Manufacturing Systems (FMS) has been

doubted. The inherent inaccuracy of simulation tools arises from the inability to

model all the constraints associated with the operation of an FMS. Simulation tools

usually focus on modelling the primary job entity as it flows through a stochastic

queuing network representation of the FMS. Few simulation tools readily permit the

modeller to consider the flow of the supporting resources (e.g. tooling, part kits,

fixtures, and processing plans).

FMS Emulator

(Davis et al. 1996) argued that the coordination of all entity flows in an FMS is

crucial, and it is the interactions among the controllers within the FMS that coordinate

these flows. To address these requirements, they introduced the notion of coordinated

object, which included an intelligent controller or coordinator to perform integrated

on-line planning and control. They developed a coordination architecture called

Recursive Object-Oriented Control Hierarchy (ROOCH) for assembling the

coordinated objects into a real-time management structure such that planning and

control are both distributed and controlled.

To model the performance of the ROOCH, a simulation methodology, the

Hierarchical Object-Oriented Programmable Logic Simulator (HOOPLS) was

developed. HOOPLS employs an object-oriented architecture, and the C++

programming language was selected for implementing of the simulation model.

To demonstrate the benefits arising from both the ROOCH architecture and the

associated HOOPLS modelling paradigm, (Gonzalez and Davis 1997) developed a

physical emulator for an FMS in a laboratory environment at University of Illinois at

Urban-Champaign, USA. The development of real time control architecture for a

physical emulator is described in (Gonzalez and Davis 1998)

TSCS

(Peters et al. 1996) presented a simulation control system developed by the Texas

A&M Computer Aided Manufacturing Laboratory (TAMCAM) to explore the

advantages and disadvantages of on-line simulation for process control.

29

The TAMCAM Simulation Control System (TSCS) consists of a simulation-based

controller developed in Arena, a message router and client controls developed in

Microsoft Visual C++, and an external database system developed in Microsoft

Access. The simulation-based controller is built in Arena using the Arena Real-Time

template. The Arena model also uses a user-coded dynamic link library (DLL)

written in Microsoft Visual C++ to provide the implementation-specific

communications functions required by the router. All connections within the real-time

system are implemented using the TCP/IP protocols. The connections within the

forecast system are implemented with Database Access Objects (DAO).

2.5.3 Other Applications

2.5.3.1 Control Architecture Evaluation

A modular experimental test bed was developed by (Rogers and Brennan 1997;

Brennan 2000) to investigate the relative performance of any variety of

manufacturing control architectures with any type of manufacturing system. In order

to make this analysis possible, the experimental test bed needs to separate the control

system from the emulated system allowing each to be developed and tested

independently.

Brennan noted that emulated manufacturing system was chosen over a physical

system in order to overcome drawbacks of physical systems for this type of

experimental work namely difficulty in controlling the test bed and its environment,

and difficulty in reproducibility of tests.

The approach to de-couple the manufacturing system and the control system as fully

as possible resulted in the basic structure of the modular experimental test bed as

shown in Figure 2.3.

30

STATKi'CONTROI, M ODUI -K EMULATI ON MODULE

Comm u nk at Ion
M odel

(> 4 -

C cntro l
CoTT.tOinJi

| f- if t | P*fi | Pw i | Pi*i |

| (j r | J t i r r | | |

C ontrol
M odel

C+~

UNIX r
S ocket tOHlfOl I
------------------\C o m n i3 t>J:-i 1o] i \ ■

ManufattuTijiji System
S u te Information

&
Ctinliol Requests;

Inference P A R T /M A C H IN E
E n-itie | E X P E R T S Y S T E M
C++

M4i3iiiK
i

MjClitu*
I Tjrp*2

Machine Capabilities
Rule Bases

Part Processing Requirements
R ok Bases

Com munication
M uriel

C

Co UK;
C o r.n ia rd i

S im u la tio n
M odel
I ri'tia
& n

J H

® LJ

Figure 2.3 The experimental test bed

(Brennan 2000)

This figure shows the two main modules of the test bed, which can be identified as:

(a) an emulation module, which is intended to emulate the behaviour of the

manufacturing system being controlled, and

(b) a state/control module, which is used to implement alternative decision-making

schemes.

The simulation model was written in Arena simulation package, and can be modelled

relatively easily to represent alternative manufacturing system configurations. The

Arena simulation model is augmented by a communication model, implemented with

additional ANSI C routines, which carries out the low-level communication functions

via input/output streams (implemented as UNIX or INET sockets).

31

The state/control module, which is used to implement the test control architectures, is

implemented in the C++ programming language. The structure of this module is

similar to the emulation module; it consists of a communication model, used to carry

out the low level communication functions, and a control model, used to implement

the test control architectures.

A part/machine expert system is included as part of the state/control module to

instantiate the control system decision makers. The expert system relies on a set of

rule bases that describe the capabilities of the work centres in a given manufacturing

system and the detailed processing requirements for the parts that are to be introduced

to the system (Brennan and Norrie 2001).

2.5.3.2 Verification of Controller Software

Testing the behaviour of a controller for example a PLC, which, controls a device

being part of a more complex system, is usually done by connecting the controller to

a ‘stand-alone’ version of the device called ‘mock-up’. This method of verifying and

validating the controller’s software is expensive, and test conditions are hard to

reproduce. Such tests are incomplete since the interaction of this device with the other

parts of the system is simply ignored. Therefore a large part of testing and debugging

is still carried out on-site.

To solve such problems (Schludermann et al. 2000) has developed a Soft-

Commissioning (SoftCom) , a ‘hardware-in-the-loop’ (HIL)-based system approach

that enables interaction between controller such as a PLC and a commercial discrete

event simulator, also known as emulator. HIL means that the inputs and outputs of a

controller are connected to a simulation (emulation) of the part to be controlled.

Hence, the system needs to be modular and scalable.

While most other HIL systems are based on continuous real-time simulation and use

fast Digital Signal Processor (DSP), SoftCom was developed to interact with

commercial Discrete Event Simulators (DES) and conventional I/O hardware. A

32

special communication protocol was defined to make flexible SoftCom internal data

exchange possible. The two basic modules shown in figure 2.4 are the I/O Devices

Driver (IODD), which is used to interface between the I/O hardware and the SoftCom

protocol, and the Simulator to real World Interface (SWI) which is used to link the

simulator to the SoftCom system.

IODD

PLC

Simulator
SWI

Figure 2.4 The SoftCom System

The IODD internal link to the I/O cards is defined by a library interface, e. g. a

Dynamically Linked Library (DLL) in the Windows world. The implementation of

this interface depends on the I/O hardware in use. Thus the IODD must support

connections to more than one library at the same time to be able to establish links to

different I/O cards.

The implementation of the SWI depends on the simulator’s approach of providing

access to its variables and objects. (Schludermann et al. 2000) prototype was based on

the simulation environment Arena. Arena provides two mechanisms for external

programs to interact with the simulation, Visual Basic for Applications (VBA)

module and Dynamically Linked Library (DLL) interface. DLL interface was chosen

as the link between the SWI and the simulator for the reason for that the DLL can be

implement in C++, which provides more flexibility in programming.

The DLL interface defines routines to interact with the simulation: One type gives

access to simulator variables and the event calendar. The other type enables the

33

simulation to execute user code when appropriate events are triggered. By forcing the

simulation to call into the user event DLL routine periodically, a certain update time

step is achieved. This time step is needed to synchronize both simulation data and

simulation time with the SoftCom system.

Tasks such as 'system update', 'system configuration' and 'runtime control' are usually

quite simple as long as the system is restricted to a single computer. But they rapidly

grow in complexity with the number of computers involved. Thus configuration and

maintenance of bigger systems can become a time-consuming job.

The strategy to simplify this job is to update and configure the system on a single

computer, which then forwards this information to all other computers of the system.

Based on this strategy, a SoftCom Manager was developed as a centralizing tool for

configuration and runtime control (Schludermann et al. 2000).

2.5.3.3 Simulation Model Integration

One of the greatest challenge towards building emulation model is having to integrate

different functional areas developed in different simulation environment as reported

by (Boer et al. 2002).

In a complex system, such as a container port, there are thousands of pieces of

equipment and controllers. Testing of complex systems like a port system might

entail several difficulties, which, beside the general communication problems,

concern the variety of simulation environments, variety in the real equipment and

differences between communication protocols.

The simulation models or simulation components are usually developed by different

modellers, using different concepts and different simulation environments. Thus, the

communication between various environments should be enabled in order to provide

collaboration. Equipment and simulation models support different communication

protocols, therefore, different models can communicate only if a common protocol is

34

worked out or several interfaces are developed, that allows for communication

between any two of them.

In view of this, (Boer et al. 2002) has developed FAMAS (First All Modes All Sizes)

Simulation Backbone Architecture, a flexible architecture for the interoperability

between various distributed simulation models. Its structure shown in Figure 2.5

consists of technical components representing the simulation models, and technical

components providing common tasks used by the functional components.

r

/ Run control V ̂ Subsystem j

r
/ Simulation

Technical Components

fvtenaoer I (E6TM) J
/ Looking \ / Visû izoDcn \
^ Subsystem) I, Subsystem i

CcuTimufilc-tiiion L ayer

N..
Sirrulaiion \
Model 2 /

Furtctiona! Components

/ Sirmiation \
Mode! n /

Figure 2.5 The Structure of the FAMAS Simulation Backbone Architecture

In the development of the FAMAS Backbone Architecture (Boer et al. 2002) listed

requirements to be fulfilled, which are:

Distributed execution', this can be achieved by a well-defined interoperability

between different simulation components. The interoperability in the FAMAS

Simulation Backbone is provided by a low-level message passing mechanism.
j

Optimal communication: effort is required to attain an effective communication

speed.

Stand-alone and distributed testing: refers to the possibility to test distributed

simulation models developed by different parties as in standalone as in distributed

environment.

35

Package independence: this requirement focuses on combining simulation models

implemented in different simulation packages (e.g. Arena, eMPlant, Enterprise

Dynamics) and programming languages (C++, Java, Delphi, etc.). The characteristics

mentioned so far reflect the grade of flexibility of the architecture and reusability of

the simulation models.

Structure transparency: aims to give some insights into the architecture for the

groups who intend to develop models or support subsystems for it, in order to provide

interoperability. The transparency helps the modeller to couple the simulation models

effortlessly.

Hierarchical structure allows for modelling, design, and development in a

hierarchical manner. This feature is essential in the FAMAS project as the models

might be developed at different levels of detail.

Some other application areas that share some common elements of emulation model

include the following.

• on-line business process and decision making (Dalai et al. 2003),

• real time security control system testing (Jordan et al. 1998; Smith et al.

1999),

• transport (Verbraeck and Versteegt 2000; Verbraeck and Versteegt 2001;

Hunter and Machemehl 2003; Xu et al. 2003).

These were also reviewed in the development of questionnaire survey described in

Chapter 3.

2.6 Summary

36

The literature search was based on the pretext of trying to understand a simulation

technology in manufacturing system design called emulation. As it progressed, it was

discovered that while there were much interest on emulation, not many companies

were willing to invest in the technology, primarily due to the monolithic nature of the

model building and high cost. Thus a new approach towards developing emulation

model needs to be investigated including the possibility of simulation-emulation

conversion process.

Review on the similarities and differences between simulation and emulation models

have highlighted several issues to consider before developing a new method for

building emulation model. They include (1) simulation and emulation models are

built with different aims, (2) emulation operates with hardware in the loop (HIL)

which requires an interface for the interaction and has to be run in real time, (3)

emulation models higher level of detail compared to simulation model, (4) control

rules are hard coded in simulation where as control rules are separated from event

code in emulation, and (5) runs are repeatable and results are predictable for

simulation but not for emulation.

Review on the application areas of emulation has shown that most of the applications

are in manufacturing area particularly in the modelling of automated material

handling system (AMHS). Others include manufacturing process control,

transportation logistics and non manufacturing application.

With regard to modelling work, majority of the work reported for the emulation

project involves creating a detailed hardware model and interfacing with the other

emulation components. While Object Oriented approach, the likes of HOOPLS and

eM-Plant simulation environment offers the advantage of flexibility and openness,

most manufacturing application simulation software packages (for example Arena,

Automod, Quest etc) are non object oriented. However there are functions or modules

created either directly by the vendor or indirectly by the user of simulation packages

to overcome drawbacks encountered in the respective projects.

37

An important observation on the existing method of building emulation model was

that it had to be developed separately from simulation model, in other words they

were not convertible. To make emulation model more cost effective, as indicated

from the result of the literature review, a hybrid simulation-emulation model (HSEM)

is seen to be a viable alternative.

The next chapter describes the overall methodology by which the research was

carried out including developing areas identified in this chapter.

38

CHAPTER 3

JUSTIFICATION OF THE PROPOSED

RESEARCH AND RESEARCH

METHODOLOGY

3.1 Introduction

This chapter describes the justification of the proposed research and the methodology

employed to answer the issues raised in the previous chapter with regard to

developing new methodology of building emulation model.

The first part consisting of preliminary research and questionnaire survey describes

justification process of the proposed research. The second part consisting of

development of a sample model, development of a new methodology to develop

emulation model and validation describes the research methodology of the proposed

work.

3.2 Preliminary Research

Initial research works involved fact finding through literature review and gathering of

information from simulation software suppliers and users. Two important initial

findings were:

39

• The lack of published information concerning the procedure of emulation

model building,

• Emulation is not yet widely used especially outside USA.

Conference papers especially from the annual Winter Simulation Conferences

provided vast information on the benefits and applications of emulation. However,

not much information could be obtained with regard to its building methodology. As

also noted in 2.2, further search was done on the websites and journals using the

phrases 'simulation for control system testing' 'real time simulation' , as well as

'flexibility of adding details' which provided considerable amount of related material.

The initial literature findings coupled the outcome of meetings and correspondence

with simulation software suppliers and users provided a clearer meaning of emulation

the context of the proposed research.

To identify current trend and expectation research priority areas within the proposed

research, a questionnaire survey was developed and conducted.

3.3 Questionnaire Survey

The main objectives of the survey were to investigate the extent of use of Emulation

model for Control System Testing, its application areas and users opinion about its

model building.

Due to the similarity in purpose and more commonly understood term, "simulation

model for control system testing" instead of "emulation" was used in the

questionnaire survey.

It was also discovered that the phrases have also been used in non manufacturing

application areas like security system (Jordan et al. 1998; Smith et al. 1999) and

40

transport system (Verbraeck and Versteegt 2000; Hunter and Machemehl 2003; Xu et

al. 2003).So, for the purpose of initial study and comparison the scope of

investigation was widened to include non manufacturing application areas.

The questionnaire questions were developed based on guidelines in (Oppenheim

1992; Thomas 1999). Regarded as the biggest world wide gathering of simulation

practitioners and simulation software vendors, Winter Simulation Conference (WSC)

was chosen as an ideal opportunity to distribute the questionnaire and gather the

required information.

The questionnaire distributed to the participants of WSC 2003 consisted of seven

topics dealing with

1) type of user ,

2) whether or not using simulation for control system testing,

3) current application area,

4) ranking the benefits of using simulation for control system testing,

5) important stages for its model building,

6) simulation packages used

7) potential application areas.

 The first two general topics were used to classify the background of-the respondents-

according to their professional affiliation and to gauge the level of use of simulation

in control system testing in general.

Topics (3), (4) and (5) only apply to current users of simulation for control system

testing. The aim was to gather information based on their experience the benefits of

emulation model and facilities that would assist the development of emulation model.

The last two general topics deal the choice of simulation software used and the

simulation user's expectation on the future use of emulation. Apart from indicating

the preference towards certain software package, more importantly the response to the

41

choice of simulation used would identify the suitability of the software to be used for

control system testing from the user's perspective.

With regard to the application area, present and future, the respondent was offered

choice(s) from a list of which the general meaning of each application area was as

follows:

Process control involves monitoring, controlling and improving a process typically

in production environment.(Davis et al. 1996; LeBaron and Hendrickson 2001)

Business Process is collection of activities designed to produce a specific output for a

particular customer or market. (Aguilar-Saven 2004)

Material Handling is the movement, storage, control and protection of materials,

goods and products throughout the process of manufacturing, distribution,

consumption and disposal. (Mueller 2001; Versteegt and Verbraeck 2002)

Security system is the mechanism to protect facilities against intrusions by external

threats as well as unauthorized acts by insiders. It includes physical as well as

information protection.(Jordan et al. 1998; Smith et al. 1999)

Transport system is the facility consisting of the roads and equipment necessary for

the movement of passengers or goods. Mode of transport includes land, air and

water.(Verbraeck and Versteegt 2000; Verbraeck and Versteegt 2001)

As to the benefits of using simulation for control system testing, the respondent is

asked to rank them from a list. They are (i) shorter commissioning time, (ii) low

overall cost, (iii) efficient use of resource and (iv) client satisfaction.

The respondent was also asked in topic (5) to rank according to its importance the

development stage requiring specific tool for emulation model building. The

development stages gathered during initial case studies are (i) Interfacing between

models, (ii) Modifying simulation code, (iii) Determining the correct level of detail.

42

The response would help to indicate the inhibiting factors at present as well as the

important areas of research and development.

The questionnaire also contained additional space so that respondents could specify

particular application areas, benefits and simulation packages that were not listed in

the original choice of answers. This was aimed to get more information that was not

retrieved during the literature review exercise.

The survey sample was not selected by any formal statistical method. Out of 100

samples distributed, answers from 26 respondents were collected and analysed. Table

3.1 shows the distribution of current and potential areas using emulation for control

system testing based on the user background. Table 3.2 shows the distribution of the

application area of emulation, present and future from simulation practitioner’s

perspective.

Table 3.1 Current and potential areas using of emulation for control system testing

User Type
Academic (%) Industrial (%)

Current Potential Current Potential

Application
area using

emulation for
control

system testing

Process Control 28.6 27.6 33.3 33.3
Business Process 28.6 17.2 14.3 18.2

Material
Handling 28.6 20.7 28.6 24.2

Security System 0 10.3 0 3.0
Transport System 14.3 24.1 23.8 21.2

Table 3.2 Present and Future Application Area of Emulation

Present (%) Expected (%)
Process Control 33.3 30.9
Business Process 18.5 16.4

Material Handling 29.6 23.6
Security System 0 7.3

Transport System 18.5 21.8

43

The results of ranking the benefits of using emulation for control system testing based

on weighted average calculation were as follows:

(1) Efficient use of resource

(2) Low overall cost

(3) Shorter commissioning time

(4) Client satisfaction

Ranking of the importance of development stage requiring specific tool for emulation

model building would indicate (1) inhibiting factors at present, (2) important areas of

research and development. The results of survey, in order of importance, are as

follows:

(1) Interfacing between models,

(2) Modifying simulation code,

(3) Determining the correct level of detail.

Based on the preliminary research and analysis of questionnaire survey, several

important points were identified. They are listed below.

• Process control and material handling are considered to be the prime

application areas of emulation.

• Emulation has the potential being used for control system testing in areas

other than manufacturing and production like transport system, business

process and security system.

• There is a need to provide a generic methodology and facilities for developing

emulation models.

3.4 Case Studies

The case studies that followed were conducted to look into:

(1) Defining the requirement specification for a simulation model to be able to

convert into an emulation model.

44

(2) Developing a framework of activities associated with building a simulation

model and converting it into an emulation model.

Results of the case studies from the first part were used to develop the requirement

specification as discussed in Chapter 4. They include adaptability for modelling

detail; inter process communication and criteria for simulation/emulation convertible

software.

Case studies for the second part looks at detail simulation model development

procedure as well as interfacing real system with the simulation model. This is

discussed in the development of proposed framework of activities in Chapter 5.

3.5 Development of a sample model

Based on the more in-depth case studies, a methodology of converting simulation

model into emulation model was developed. The methodology consists of three main

steps. They are as follows.

1. Developing conceptual model,

2. Converting an initial or conceptual simulation model into a more detailed

simulation model,

3. Integrating the model at various level of detail with external controller and

running it in real time.

The methodology was verified by developing, constructed through the various stages,

a sample model using Arena Simulation package.

The reasons for choosing Arena simulation package were as follows.

• It is a general purpose, non specific application software with which a generic

tool could be developed for a wider use in a variety application area,

• It is modular, hierarchical and configurable which would allow integration of

models of various level of detail.

45

• It has a real time modelling facility which would allow real time

communication between the simulation model and controller.

The case example is the modelling of a 2-machine manufacturing system. Two types

of parts namely "Part Type 1" and "Part Type 2" are processed in the system. A "Part

Type 1" is processed first on Machine 1, then on Machine 2. A "Part Type 2" is

processed first on Machine 2, then on Machine 1.

The sequence of events the entities, Part Type 1 and Part Type 2, follow is shown in

Figure 3.1

The Arena model, in Figure 3.2 shows the modelling logic and animation of the

manufacturing system based on the assumed time projection of events. In reality

assumed time projections are not enough. For example, due to limited buffer space

the machines need to communicate between each other as well as with the arrival

controller to monitor the number of parts coming to the respective stations.

The model, shown in Figure 3.3, is a modification of the simulation model

incorporating Real Time elements. Only the logic diagram is shown as the animation

diagram in this example is exactly the same as for simulation. This model

demonstrates Arena running in execution mode and conducting inter-process

communications with an external client application called RTConsole.exe written in

Visual Basic.

46

In Real time Simulation Model,
controller send message request
specific part type from Arrival
Station

In Real time Simulation Model,
controller specifies part
processing time on First Machine

In Real time Simulation Model,
controller specifies part
processing time Second Machine

Part Process on
First Machine

Release
First Machine

Route to
First Station

Release
Second Machine

Route to
Depart Station

At First Station
Seize First Machine

Route to
Second Station

Part Process on
Second Machine

Raw Parts Arrive
at Arrival Station

At Second Station
Seize Second Machine

Dispose
Processed Part

at Depart Station

Figure 3.1 Sequences of Events for the 2-Machine Manufacturing System

Simulation

L o q i c

S y stem A rriv a l:

Create P art Type

- 'i j Arrive System

f] Create P art T y p e \LZJo
M achine 1 an d M achine 2 S ta tio n s:

j i M achinal
jh Station

Route to First
Station

i S e iz e M achinal [►—' I J 5 2 . M J L I — H P l? ? s? .P a ,‘ onNumber on M1 Machine 1

— ~ ~ ~ \
Clear Entity |L# i R e lease Machine , fH 1. R a le to N e x t

m Number on M1 g i 1 •
[i Station

M e h n e 2
Se ize M achine2 1 MSJ 3 L E n%| i N unberon M2

—
K P rocess P art cn I , j C lea-Enlity L
I M actine2 I | NumberonM 2 |

R elease Nbchinei 2 R a l e to Next I
Station I

S ystem D epart:

DepartSystem

Y
Count Parts
Completed

12:00:00
Entity N um ber
on M achine:

Arrivals
M achine 1

Machine 2
D epartu res

Part 2s Completed:Ffcrt Is Completed:

Figure 3.2 Simulation of a 2-Machine Manufacturing System

Emulation

i— L ,-o c]j t? --------

S y s te m A rriv a l:

Amvsfs

C reate Part Typo

Route to R fstA mve S ys tem
Station

|j Create Part Type I

U se the ARRIVALS element to define what happens
If an 'Unsolicited" m essage is received from the client.

A n unsolicited m essage is a m essage received from the client
that is not a drec t response to an entity task.

In this ARRIVALS element, w e have specified logic to create
a Part Type 1 if the m essage “1" Is rec av e d from the client
and create a P art Type 2 if the m essage *2" is r ec av e d from the
c lien t E ach new entity is sen t to the station Airive S ystem .

M achine 1 a n d M achine 2 S ta tio n s : U se the T A SK S element to define m essages
that may be sen t by simulation entities to th e external
client

i Machine 1
Station

" Machine 2
Station

H R d e ase MachineStore Entity
Number on M1

Clear EntityS e ize Machine 1 Number on M1Machine 1

 SL —.[I C learE ntity L
i l\ Number on M2 |

f | S tore Entity P rocess P art on
Machine 2

R e lease Machine
h Number on M2

: 1. Route to Next
S tation

Z Route to Next
Station

S y stem D epart:

' I f 'Tl S—^] I
'I I C ourt Pa rts >.

1] Depart S y s tem j Completed spose

Click th is icon to s ta r t th e ex am p le client R T C o n so le .ex e

Figure 3.3 Real-Time Simulation of a 2-Machine Manufacturing System

The conversion involves some changes in the communication structure as well as the

message handling in the simulation model.

The simulation of sending and receiving of the messages and relevant parts by the

respective machine on a 'client' was successfully controlled through a remote

computer, which acted as a 'server'.

Further information on the development of a similar sample model can be found in

(Hasnan and Perera 2004).

49

3.6 Development of new methodology

Based on previous studies and experience of developing a sample model, a new

methodology of building emulation model is developed.

The development comprises of the following activities.

1. Defining the requirement specification for a simulation model to be able to

convert into an emulation model.

2. Developing a framework of activities associated with building a simulation

model and converting it into an emulation model.

3. Documenting the methodology for general application.

The specific requirements for hybrid simulation-emulation model (HSEM) building

are described in Chapter 4. The methodology for the development is documented in

Chapter 5.

3.7 Validation

The validation of the new methodology is through the development of a hypothetical

simulation model of a small manufacturing plant and converting it into an emulation

model where some form of external control is included. The development of the

validation model, based on the general methodology developed, comprises of the

following activities.

1. Building base simulation model.

2. Modelling details.

3. Integration with controller.

The validation process is described in Chapter 6.

50

3.8 Summary

This chapter has described the justification process of the proposed research as well

as outlined the methodology of the research. The stages, sub-activities and areas as

well as the outcome at each stage of research are summarised and shown in Figure

3.4.

The next chapter discusses the requirement specifications for developing HSEM as

prescribed from stages 1, 2 and 3 of the research.

51

R e se a rc h M ethodology * Subactiv ities/a reas O utcom e

r

(2)
Questionnaire

Survey

(3)
C ase Studies

(4)
Development of
Sample model

(5)
Development of a
new methodology

(6)
Validation

Literature
M eetings
C o rrespondences

Emulation m eaning and
context

Q u es tio n n a ire :
Design
Collection
Analysis

Application a re a s
T echnology developm ent

S ta tem en t of n eed

Modelling details technique
Inter-process
com m unication (IPC)

R equirem ent
Specifications

Fram ew ork of activities

D evelopm ent of s im p le :
B ase simulation model
RT Simulation (emulation)

Confirmation of
M ethodology Fram ew ork

Form alisation of
M ethodology

M ethodology Details

D evelopm ent of em ulation
model of m anufacturing

plant
P roven M ethodology

Figure 3.4 Research Methodology Summary

CHAPTER 4

REQUIREMENT SPECIFICATION FOR

SIMULATION-EMULATION MODEL

BUILDING

4.1 Introduction

The comparison of salient features between simulation and emulation model

summarised in Table 2.1 in Chapter 2 has highlighted the general requirements

towards building emulation model from existing simulation model.

This chapter discuss in more detail the technical requirements for the possible

conversion. It covers two major categories, namely (1) the flexibility of adding details

to the simulation model while assuring its correctness and (2) the inter process

communication between model and real control system. It is followed by discussion

on selection criteria of simulation software suitable for the development of Hybrid

Simulation/Emulation Model (HSEM). This chapter concludes with a summary of the

requirement specification for HSEM building.

53

4.2 Flexibility for Modelling Detail

Like any system that anticipates change in the later stage, HSEM needs to be build

with flexibility in mind. One of the most important concerns about the development

of HSEM is the requirement of adding components with multiple levels of detail or

abstraction as the model develops. Simulation like any modelling project begins with

a conceptual model with many assumptions. It then goes through an iterative process

becoming more detail and refined until it reaches a stage considered accurately

representing the real system, a process shown in Figure 4.1.

As suggested by(Robertson and Perera 2002), due to this iterative fashion of model

building it is considered to be a good practice to embed the first version or iteration of

the model with flexibility. If this first iteration of the modei is designed to

accommodate such predicted developments, the model will require less time and

effort later in the model development life cycle, for the 2nd, 3rd, 4th, or even 5th

iteration. The consequences of not embedding this flexibility initially are that the 2nd

iteration will require greater time and effort to be modified, as will the 3rd iteration,

and so on.

Model Model Model Model Model
IteraKon Iteration lt«r»1k>n Iteration • Iteration

N o . t No, 2 No, 2 No, 4 No, 5

f!—i-

p |a n t in O p eration

Figure 4.1 The iterative model building process

(Robertson and Perera 2002)

54

The degree of flexibility should be sufficient to allow the user to create a “hybrid”

model where the control system to be verified provides the logic for a part of the

model and the simulation product takes care of the rest.

4.2.1 Adaptable Simulation Models

Since building a simulation model can be a difficult and time-consuming task, a

decision-maker will seek to reuse a simulation model if possible and change it to

solve a different problem or evaluate another option. Thus, it is desirable to have

adaptable simulation models that are easy to change with little or no programming

effort (Randell et al. 1999).

In the manufacturing systems context, small changes in the manufacturing

environment can produce many different, though related, changes to the data input for

the simulation model. Some examples of changes that are likely to occur are: (a) the

answers needed from the simulation, (b) the products that are being made on the shop

floor, (c) new production processes or characteristics of the current production

processes, and (d) changes to the plant layout.

Also, the process of designing a manufacturing system requires changes to the

simulation model. As a manufacturing system progresses from a concept to a detailed

design to an installed and operating facility, the simulation model of the system must

change. Typical changes include equipment selection and location, control rules and

operating procedures for equipment and material handling systems, arriving material

and customer order characteristics, and operating hours.

4.2.2 M odular Simulation

Simulation experiments often require the examination of a potentially large number

of scenarios dealing with many solution strategies. The development time to build

new models or make changes to existing models can be quite substantial and

55

problematic. One technique to reduce this problem is to develop generic, modular

simulation solution systems.

Modularity is based on locality and encapsulation (Pidd and Castro 1998). Locality is

the notion that all information relevant to a design decision should be kept in one

place, i.e. within a module. Encapsulation, or information hiding, separates internal,

hidden aspects of a module from the external (Rumbaugh 1991).

A modular model should satisfy two conditions according to (Pidd and Castro 1998):

(i) The model or component must not directly access the state of any other model or

component.

(ii) The model must have recognized input and output ports through which all

interaction with the exterior is mediated.

A further advantage is that this modularity supports the re-use of model components,

since modular models are defined with no direct reference to the state of their

potential co-components. This improves the likelihood that modular models may be

built, at least in part, from existing components. It also provides an attractive way of

introducing hierarchical components into simulation models (Robinson et al. 2004).

The general modelling approach that is recommended is to remain at the highest level

possible when creating the models. However, as soon as we find that these high-level

constructs do not allow capturing the necessary detail, drop down to the next level for

some parts of the model rather than sacrifice the accuracy of the simulation model.

(Meinert et al. 1999; Nketsa and Valette 2001)

Some simulation packages seem well suited for modular development while others

have a structure that makes modular design difficult. It very much depends on the

modelling style that usually follows the programming style which could be either

procedural or object oriented.

56

Procedural Style

Programming in simulation languages like GPSS, SLAM and SIM AN are considered

to be procedural based. In the procedural programming, a problem was decomposed

into procedures and either represented by general components, like a queue, or

represented in programming code with a data structure and code.

(Joines and Roberts 1999)argued that the main limitation of the procedural style was

its lack of extensibility. From the earliest simulation languages until the early 1990s,

the only way to adapt these simulations was through functional extension. In other

words, structural functionality can be added to the simulation but cannot alter any of

its basic processes, like giving properties to resources. For example, the simulation

needed to include a bridge crane; it has to be completely programmed. One of the

reasons for this lack of extensibility was that procedural changes were the only

approach to model changes.

Because many simulation languages offer pre-specified functionality produced in

another language, the user cannot access the internal function of the language.

Instead, only the vendor can modify the internal functionality. Also, users have only

limited opportunity to extend an existing language feature.

Object (component) Style

With object style, a simulation language provides a user with a set of pre-defined

object classes (i.e., resources, activities, etc.) from which the simulation modeler can

create needed objects or components. The modeler declares objects and specifies their

behavior through the parameters available. Therefore, an object can be described by

an entity that holds both the descriptive attributes of the object as well as defines its

behavior.

The class concept evolved out of the notion of encapsulation where objects needed

independence of action and a means to hide their implementation details, yet provide

57

an interface for their use. Further, there needed to be way to construct objects and to

communicate among them.

In the context of extensibility, object style can be divided into two types namely

object-based and object-oriented.

The object-based approach only allows extensibility in the form of composition

where new objects can only be created out of existing objects. Object-based

programming is a limited version of object oriented programming where one or more

of the following applies: (1) there is no implicit inheritance; (2) There is no

polymorphism, (3) only a much reduced subset of the available values is objects,

typically the GUI components.

Simulation packages like Arena and AweSim have beginnings of object-based. Both

languages provide a composition approach to creating network macros, through

Arena templates and AweSim subnetworks. Both have access to Visual Basic, which

is only object-based. AweSim wraps its functionality in a few objects, whereas Arena

contains an object model (not with SIMAN features) that is integrated with Visual

Basic. These templates or subnetworks provided a form of encapsulation but these

collections do not provide for autonomous objects.

An object-oriented simulation (OOS) deals directly with the limitation of

extensibility by permitting full data abstraction. Object-oriented programming is a

type of programming in which programmers define not only the data type of a data

structure, but also the types of operations (functions) that can be applied to the data

structure. In this way, the data structure becomes an object that includes both data and

functions. In addition, programmers can create relationships between one object and

another. For example, objects can inherit characteristics from other object.

The Smalltalk environment is fully 0 -0 and contains fully OOS. Simulation

languages based on C++, like C++/CSIM and C++SIM, possess all the object-

oriented capability. Simple++ and MODSIM III are further examples of object-

58

oriented languages that employ most of these concepts within different simulation

frameworks (Joines and Roberts 1999).

It has to be noted that object-oriented programming and simulation requires more

skill from the user which is the main drawback in its use. Comparison on types of

modularity used in some simulation packages are shown in Table 4.1.

4.3 Requirements for inter process communication

The term inter process communication (IPC) describes the act of two applications

communicating and sharing data with one another. This feature allows the integration

of external data and applications into and out of the simulation models. At the

emulation stage, the communication between the simulation model and the real

controller has to be established and synchronized.

4.3.1 Real time capability

Real time simulation is based on the ability of the system to obtain the real-time data

needed to update the simulation model.

Majority of control systems are designed to operate in real time, so emulation

experiments should be operated in real time. Although simulation models can provide

responses faster than real time, this is potentially a source of error, as control system

timers cannot adapt to this, running at speeds greater than real time should be avoided.

The synchronization of time which is aimed at synchronizing the simulation clock of

the simulated control system to the internal clocks of the emulation model is

important. The usual implementation of real-time or “wall clock” synchronization is

to jump to the next event on the event list, to check whether the time of this event is

such that it can be allowed to take place, and if not, delay the simulation environment

until the event is allowed to take place. The problem here is that external events can

59

come in before the next event time, while the simulation clock has already been

advanced to that next time.

Some software packages offer standard features for real-time time progress in

simulation models. Arena, for example, offers a set of extension called Arena RT that

allows communication with external clients such as Manufacturing Execution

Software (MES), Management support tools and interactive training interfaces. Arena

RT also allows enhanced control logic where it can initiate and react to external

actions as well as synchronization with external clock. Object oriented simulation

software like Simple++ (now eM-Plant) and FlexSim offer standard built-in features

for real-time progress as well.

The simulation software selection criteria and comparison in section 4.4 lists the

simulation software packages that provide this facility.

4.3.2 Model Communication Interface

The integration of simulation models is based on three fundamental themes: (1)

models are objects; (2) they communicate with one another in client/server

relationships by passing messages; and (3) each model is represented by an agent that

explains the capabilities of the model and assists with integration of that model.

One of the important aspects of emulation is the communication between models. To

make real components and simulation modules fully pluggable against each other the

simulation models have to provide interfaces similar to the interfaces of the real

world plant. Ideally an input or output in the simulation model may “directly” be

attached to the output of a sensor or the input of an actuator.

Types of interfaces that can be used are for instance DDE (Dynamic Data Exchange),

DLL (Dynamic Link Library), TCP/IP socket connections, ActiveX, OPC (OLE for

60

Process Control) and DCOM (Distributed Components Object Model). When needed

the user should also be able to construct custom made interfaces.

Client-Server Model

A standard model for emulation applications is the client-server model. A server is a

process that is waiting to be contacted by a client process so that the server can do

something for the client. A typical scenario is as follows:

The server process is started on some computer system. It initializes itself, and then

goes to sleep waiting for a client process to contact it requesting some service.

A client process is started, either on the same system or on another system that is

connected to the server's system with a network. The client process sends a request

across the network to the server requesting a service of some form.

When the server process has finished providing its service to the client, the server

goes back to sleep and wait for the next client request to arrive.

In the context emulation for control system testing, the emulation model is regarded

as the client while the controller is regarded as the server.

Socket

A socket is a software object that connects an application to a network protocol. A

program can send and receive TCP/IP messages by opening a socket and reading and

writing data to and from the socket. This simplifies program development because the

programmer need only worry about manipulating the socket and can rely on the

operating system to actually transport messages across the network correctly.

A socket is one end of a two-way connection between running programs across a

network. Generally, the server runs on a machine of which the IP address is known to

6 1

the clients, and waits listening for a client to make a connection request. The

connection request is made to a specific port number that the server is listening to.

That is, in establishing a connection, a client needs to make a request to the server's

machine and port.

If the request is successful, the connection is established through a new socket bound

to a different port on the server. A new port is required so that the server can continue

listening to the original port for new clients. The socket connection is as shown in

Figure 4.2.

If a connection is established the client and server can communicate by writing to or

reading from the sockets created by the connection.

C onnection
Client 1

Client 1
Request

Client 2
Client 2SERVER

SERVER
Client 3

.Client 3

Figure 4.2 Socket Connection

With the Sockets technology such a stable simultaneous work of several Internet

applications is available. The socket implementation for MS Windows called

Windows Socket or just Winsock.

An important point to note about socket is that the application can produce as many

sockets as it needs for effective job, but one socket works with one TCP/IP port only.

OPC (OLE for Process Control)

In a multi client/server situation, where interoperability among multiple vendor

products has become a problem, OPC could be the solution.

62

The background of the problem then was the absence of any standard. All process-

control and information systems on the market have proprietary techniques, interfaces,

and APIs (Application Programming Interfaces) in order to access the information

that they contain. The cost of integrating the different systems and the long-term

maintenance and support of an integrated environment can be significant.

To overcome this problem OPC (OLE for Process Control) was developed by the

OPC Foundation to provide a common interface for communicating in real time with

diverse process-control devices, regardless of the controlling software or devices in

the process. By using a standard way of configuring computer hardware (and

software interfaces) automatically, a device will easily connect to another and

immediately work without the need for lengthy installation procedures or complex

configuration.

Based on Microsoft’s OLE (now ActiveX), COM (component object model) and

DCOM (distributed component object model) technologies, OPC consists of a

standard set of interfaces, properties, and methods for use in process-control and

manufacturing-automation applications. The ActiveX/COM technologies define how

individual software components can interact and share data.

Although OPC is primarily designed for accessing data from a networked server,

OPC interfaces can be used in many places within an application. At the lowest level

they can get raw data from the physical devices into a SCADA (Supervisory Control

And Data Acquisition) or DCS (Digital Control System) or from the SCADA or DCS

system into the application. The architecture and design makes it possible to construct

an OPC Server which allows a client application to access data from many OPC

Servers provided by many different OPC vendors running on different nodes via a

single object. Figure 4.3 shows the OPC Client/Server Relationship where

"Application" could be the emulation model. [I/F refers to Interface, I/O refers to

Input Output]

63

Application OPCI /F]
;[\ C j = i |

OPC
Server

y OPC I /F J
V o — ^

SCADA
System

l/̂ V-NPhysical I / F .

Kn— v>
Physical

I /O

^ — N'Physical I / F j

N=I— ^

Physical
I /O

Figure 4.3 OPC Client/Server Relationships

(OPC Taskforce 1998)

Typically, devices react to state changes as directed by the controller; for example a

controller might send a message containing values that cause a motor to change its

section velocity or stop or start. Devices send messages to the controller to indicate

the status of the device, configuration parameters, and so on.

To emulate the devices in the manufacturing system, an emulation model connects to

one or more OPC servers as a client application. OPC servers read and write values to

a controller in the same way as system devices.

OPC has attracted interest among software vendors and simulation software

developers. Arena, for example, has added new enhancements to include the ability to

use OPC technology to test control system logic on a model of a manufacturing line

rather than testing on the real factory (Bapat and Sturrock 2003).

The Model Communications module (MCM) which is an enhancement to the

AutoMod software that allows a model to communicate over a network with other

software applications is reported to also support communication with OPC server and

sockets (Rohrer and McGregor 2002).

64

4.4 Simulation Software Selection Criteria and
Comparison

This section establishes the important emulation modelling features needed for

HSEM project and reviews the readiness of some existing simulation software

packages in providing those features.

Emulation Modelling Features

Manufacturing simulation models can be developed using both general-purpose and

manufacturing oriented software. General purpose software can solve almost any

discrete event simulation problem. Examples of general-purpose simulation packages

are Arena, AweSim, Extend, GPSS/H, Micro Saint, MODSIM III, SIMPLE++,

SIMUL8, SLX, and Taylor Enterprise Dynamics Developer.

However, depending on the complexity of the system being modelled, manufacturing

simulation package can significantly simplify and quicken the modelling process.

Examples of manufacturing -oriented simulators are Arena Packaging Edition,

AutoMod, AutoSched, Extend + MFG, ProModel, QUEST, Taylor Enterprise

Dynamics Logistics Suite, and WITNESS.

Each manufacturing-oriented simulation packages on the market has its strengths and

weaknesses. Some packages focus on ease of use and compromise flexibility, while

others focus on flexibility and are more difficult to use. Because most manufacturing

systems have some unique intricacy, the best packages allow the user to combine

easy-to-use constructs with more flexible, lower level constructs. There are some

packages that are particularly good at representing material handling or some other

aspect of manufacturing processes. Simulation packages also differ in their support

for both input and output data analysis.

65

The list of criteria for simulation package selection for emulation model building is

long and most of them are important and commonly available in most packages for

emulation modelling. Nonetheless, below are the criteria that are not commonly

available but important to be considered for HSEM building project.

1) Modular. Modularity allows the user to develop the model in separate modules

step by step. Each module can be tested and debugged separately and then linked

together. The merging of models when a previously made model is going to be a

sub-model for a larger model is useful. This option would be further enhanced if a

library of reusable modules and pre-existing generic models is available.

2) Coding aspects. Possibility to enlarge the flexibility by adding user code to the

simulation models either via external codes like DLLs or with user methods and

event Access to the source code of the simulation software is useful when

integration requires programming. A library of in-built functions and the

possibility of defining functions by user further enhance this criterion.

3) Integration with other application. Simulation software may integrate with

other packages such as spreadsheets, statistical packages, database management

systems, CAD, and word processors to import or export data.

4) Speed control. Control of the speed of the model run is a desirable feature. One

can see the flow of the model better at a low speed and use it for debugging, while

he/she can save time by running the model in a high speed mode. For real time

(RT) simulation facility which is essential for emulation, some simulation

packages have standard built-in features for real time progress in simulation

models, while some requires developing a customized synchronization tool.

5) Open Architecture. The simulation package should allow the modeler to model

complicated control structures. It should be possible to implement complex

logistic rules and control algorithms. Packages that offer interface to

66

programming language like VBA or C++ as well as OPC compliant are

considered to have a clear advantage.

6) Animation. For emulation real time viewing is necessary. Whether true to scale

or iconic or whether 2D or 3D the requirement depends on the objective of the

project.

To illustrate the criteria for selecting simulation software for a HSEM project eight

simulation packages were selected for comparison. Selection was based on case

studies and results of the questionnaire survey conducted as explained in Chapter 3.

They are Arena, Automod, EmPlant (Simple++), Extend, FlexSim, Promodel, Simul8

and Witness. Below is the general description for each package.

Arena

Arena a product of Systems Modelling Corporation part of Rockwell Software

Automation is a flow oriented simulation language with the basis language SIM AN.

Arena is a graphical modelling/animation system that is based on hierarchical

modelling concepts. It allows user to create new modelling objects called modules,

which are the building blocks of model creation. Models are created by drag and drop

modules in a large window. These modules represent one or more statements of the

SIMAN language.

Automod

Automod, software from AutoSimulations Inc part of Brooks Automation has general

model building features, including the specification of processes, resources, loads,

queues, and variables.

Automod is a simulation package that keeps a special focus on the space that object

require. The animation capabilities include true to scale 3D graphics, rotation and

tilting. A CAD like drawing utility is used to construct the model.

67

eM-Plant

eM-Plant is a rename of Simple++ from Aesop Corp which has become part of

Technomatix Technologies. Simple++ is a fully object-oriented simulation system

with an integrated graphical user interface. The user creates models by making a

library of objects. These library objects represent classes (or parents) whose instances

(or children) can be inserted into the models. Simple++ takes advantage of the

features of object orientation, including class structure, inheritance, hierarchy,

modularity, and polymorphism. In addition, Simple++ has an open architecture that

allows it to communicate with other software.

Extend

Extend, from Imagine That Inc. is a visual, interactive simulation tool. Extend

contains a built-in development system that allows the user to construct components

and build custom user interfaces. Models are constructed graphically by dragging and

dropping blocks (high level model components) from library windows onto the model

worksheet. Other features include suite of inter process communication tools,

hierarchical modelling capabilities and built-in optimization package.

FlexSim

FlexSim from Flexsim Software Products Inc is a Windows-based, fully object-

oriented simulation environment for modelling discrete-event flow processes like

manufacturing, material handling, and office workflow in 3D virtual reality animation.

Models are created graphically, using drag and drop ready-made model

Promodel

Promodel from Promodel Corp is a manufacturing-oriented discrete event simulation

software, used for evaluating, planning or designing manufacturing, warehousing,

logistics and other operational and strategic situations. These products are Windows

68

based applications with intuitive graphical interfaces and object-oriented modelling

constructs, eliminating the need for programming.

Simul8

SIMUL8 from SIMUL8 Corp is a general-purpose graphical oriented simulation

package with a point-and-click user interface used in a wide variety of applications.

Simul8 claims that the Windows based graphical interface allows user to build

relatively complex models without needing to learn a programming language.

Witness

WITNESS is a Windows applications developed by Lanner Group has been used

across a wide range of business applications both in the manufacturing and service

industries. Key features of the WITNESS approach include building block design,

modular and hierarchical structure, range of logic and control options, comprehensive

statistical input and reports and openness to link the system to other software such as

CAD, BPR, mapping tools and spreadsheets.

Several sources of information exist that provide good descriptions of simulation

software from various aspects, including plain descriptions of popular packages and

languages used in simulation; similarities and differences between packages ((Banks

et al. 2000);(Klingstam and Gullander 1999)); what to consider when selecting a

package (Nikoukaran and Paul 1999);(Tewoldeberhan, T. W., A. Verbraeck, E.

Valentin, et al. (2002); user requirements surveys (Hlupic 2000); and updated lists of

current version and price of the most popular packages.

The comparison of features against the simulation software packages selected is

shown in Table 4.1. The comments, included where available, were gathered from

conference papers, product brochures, website information, demo CDs, email

correspondence and discussion with some, software vendors and users.

69

Papers offering descriptions of some simulation languages and environments include

the following: Arena (Bapat and Sturrock 2003), AutoMod (Rohrer and McGregor

2002), eM-Plant(Heinicke and Hickman 2000) , Extend(Krahl 2003) , Flexsim

(Nordgren 2003), Promodel (Harrell and Price 2002), and Witness (Rawles 1998).

It has to be said that the list and comments are by no means complete and it does

require regular review. Nonetheless it can be used as a guide and basis for further

research particularly in choosing the right software and tools for HSEM project.

Clarification on the comments presented and updates can be found on the sources and

materials mentioned earlier and latest versions of product brochures and websites.

Some general comments to be noted from the software comparison are as follows.

1. Modular modelling is quite well supported in current simulation software

packages.

2. Accessibility to codes varies among packages. While object oriented

simulation packages offer truly openness, other packages offer limited access

to codes in their own languages or C++.

3. While some packages provide built-in facilities for some specific function

like real time modelling and interfacing, some packages require a

development of customised functionality or module for assistance.

4. Although some capabilities are claimed to be featured in their respective

simulation environments, the extent of readiness and ease to use is still

subjective.

70

Ta
bl

e
4.1

Co

m
pa

ris
on

of

Fe
at

ur
es

for

 H
SE

M

ag
ai

ns
t

Se
le

ct
ed

Si

m
ul

at
io

n
So

ftw
ar

e.
00 W

itn
es

s
Y

es
Ob

jec
t

ba
se

d

Y
es

Co
de

ed

ito
r

Pla
in

te
xt

Y
es

FA
C

TO
R

Y
C

A
D

Y
es

Y
es

H
LA

co
m

pl
ia

nt

Ico
nic

2D

Si
m

ul
8

Y
es

Ob
jec

t
ba

se
d

Y
es

,
in

-b
ui

lt
la

ng
ua

ge

Vi
su

al
Lo

gi
c

Y
es

,
V

is
io

Y
es

Y
es

V
B

A
C

O
M

in
te

rf
ac

e
X

M
L

in
te

rfa
ce

Ico
nic

2D

VO Pr
om

od
el

Y
es

,
I

5
Ob

jec
t

ba
se

d

Y
es

,
wr

itt
en

in

C

++

Y
es

Y
es

Y
es

V
B

A

Sc
ale

d
2D

m Fl
ex

Si
m

Y
es

,
O

bj
ec

t
or

ie
nt

ed

Y
es

wr
itt

en

in

C
++

Y
es

Y
es

Y
es

Tr
ue

to

sc
al

e
3D

r r E
xt

en
d

Y
es

,
Ob

jec
t

ba
se

d

Y
es

Y
es

Y
es

Y
es

bu
ilt

-in
co

m
pi

le
d

la
ng

ua
ge

(M
od

L)

2D
ic

on
ic

m eM
-P

la
nt

Y
es

,
O

bj
ec

t
or

ie
nt

ed

Y
es

Y
es

Y
es

Y
es

,
V

BA
,

C
++

and

O
PC

CO
M

in
te

rf
ac

e
eM

-P
la

nt
so

ck
et

3D

n A
ut

om
od

Y
es

,
Ob

jec
t

ba
se

d
for

M

H
S

co
m

po
ne

nt
s

Y
es

in
so

ur
ce

fil

e
co

de
d

in

A
ut

om
od

tex

t
ed

ito
r

Y
es

M

C
M

(M

od
el

C

om
m

un
ic

at
i

on
M

od
ul

e)
Y

es

Y
es

,
V

BA
,

C
++

and

O

PC

Tr
ue

to

sc
al

e
3D

rH A
re

na
Y

es
,

Ob
jec

t
ba

se
d

Y
es

Ac
ce

ss

to
SI

M
A

N
bl

oc
ks

Y
es

,

Y
es

,
wi

th
R

ea
l

tim
e

fa
ci

lit
y

Y
es

,
V

BA
,

C+
+

and

O
PC

C

O
M

in

te
rfa

ce

Ic
on

ic
,

2D

M
od

ul
ar

Co
di

ng

A
sp

ec
t

In
teg

ra
tio

n
w

ith

ot
he

r
ap

pl
ic

at
io

n

Sp
ee

d
C

on
tr

ol

O
pe

n
A

rc
hi

te
ct

ur
e

A
ni

m
at

io
n:

Appendix D

4.5 Summary

This chapter has discussed the technical framework and specific requirements for

HSEM building including structural requirement, construction approach as well

specific simulation software features for a HSEM project.

In general, flexibility of adding details to the simulation model while maintaining its

correctness and facilitating communication with the control system underlines the

requirement and approach towards developing such a model.

Flexibility requires the model to be adaptable to changes as well as structurally

modular. Simulation model adaptability is the ease with which a simulation model

can be modified, either to conform to changes in the system it represents, or to

demonstrate the effect of changes to the system. Modular means that changes are

local and are independent of the rest of the model, since they are encapsulated within

a single module. Modularity supports the re-use of model components. It also

provides a way of introducing hierarchical components into simulation models.

The general modelling approach that is recommended is to remain at the highest level

possible when creating the models. However, as soon as that these high-level

constructs do not allow capturing the necessary detail, drop down to the next level for

some parts of the model rather than sacrifice the accuracy of the simulation model.

Inter process communication allows the integration of external data and applications

into and out of the simulation models. In the context of emulation, communication

between the model and the real controller has to be established and synchronized.

Real time modelling capability and model communication interface are the basic

requirements for a HSEM project.

72

Appendix D

Several features of simulation software those are essential for a HSEM modelling has

been identified. Comparison among the selected software based on those features has

indicated that, in general, HSEM is viable. Some software packages are more ready

the others, other packages require some developments or modification and inclusion

of appropriate functionalities or modules.

The development of HSEM as in other simulation projects does not depend on

technical requirement alone. It requires the involvement of broad spectrum of

expertise and activities. Chapter 5 describes the novel methodology or system

approach that covers the technical requirements as well as organizational issues to

develop HSEM.

73

Appendix D

CHAPTER 5

SIMULATION-EMULATION CONVERSION

METHODOLOGY

5.1 Introduction

The previous chapter has described the technical requirements for developing Hybrid

Simulation Emulation Model (HSEM) which include flexibility of adding detail ,

inter-process communication and specific emulation modelling features that a

simulation software package need to have for such a project. This chapter describes,

in two parts, the system approach to develop such a model.

The first part discusses the general methodology that can be used in a general

application area. Section 5.2 outlines the prerequisites for using this methodology,

Section 5.3 discuss the framework of such a project. Section 5.4 describes the phases

and steps of the methodology.

The second part explains the specific elements for emulation model building. A

manufacturing system development is used as example. Section 5.5 suggests an

74

Appendix D

approach towards modelling different level of detail. Section 5.6 demonstrates a

method for interfacing between model and external controller.

5.2 Prerequisite for HSEM Methodology Deployment

As with any project, using a methodology alone does not solve all problems in an

emulation project. Three important aspects to consider for a successful project are (i)

the emulation project team should involve a broad spectrum of employees, from

shop-floor operators to key decision makers; (ii) the emulation analysts must have

good knowledge of simulation methodology and programming, and (iii) selection of

the right simulation software tools.

A simulation project team usually comprise of (a) model project owner or client

group consisting of managers and system users (for example AMHS operators and

technical support) and (b) simulation developer group consists of project manager and

modellers. However, due to the need to integrate the real control system with the

model, emulation project team need to include process controllers, control engineers

and software engineers.

5.3 Framework of Simulation-emulation project

The philosophy of the methodology centres on making emulation modelling simple

and flexible, requiring minimal (if any) programming and using available built-in

technology. The software comparison summarised in Table 4.1 can be used as

indication of the availability of relevant tools in the simulation software in the market

today.

The proposed methodology is a synthesis and extension of many ideas and

developments published , among others, covering the topics of manufacturing system

75

Appendix D

development (Wu 1994), simulation methodology (Eldabi and Paul 1997; Banks 1998;

Sadowski and Grabau 1999; Law and Kelton 2000), real time simulation

methodology (Lee and Fishwick 1999; Brennan 2000; Versteegt and Verbraeck 2002)

as well as verification and validation of simulation model (Balci 2003).

The HSEM methodology is defined by a cycle, comprising the following activities:

a. Model definition: the user defines a model of the system to develop, splitting them

in different subcomponents.

b. Simulation and validation against the real system: simulations are derived, and

detailed behaviour is analyzed.

c. Detailed experimentation in a virtual environment: in order to ensure validity,

different experimental conditions are tested.

d. Development o f the actual subsystem in a hardware surrogate: simulated versions

of the model are replaced by real-time executable versions. This is done by

automatically replacing the simulator by a real-time engine.

This cycle is incrementally repeated providing feedback to change the models

originally defined. The process stops when the system is fully developed and tested,

and every simulated component has been replaced by an executable one. The process

might result in modifying the models originally defined according to the simulation or

execution results obtained.

5.4 Simulation-emulation model building phases

The HSEM methodology cycle defined in the previous section can be demonstrated

by the flow of activities in phases shown in Figure 5.1. Even though some phases and

steps are similar to the development of a simulation model there are important ones

that are specifically essential for emulation model building. Those phases and steps

76

Appendix D

are highlighted with bold letters to illustrate the novel elements in the approach.

Specific explanations are included to emphasise certain points in some steps in a

simulation-emulation project.

5.4.1 PROBLEM DEFINITION (HSEM Phase 1)

The first phase of the simulation process has the most effect on the total simulation

study since a wrong problem definition can waste a lot of time and money on the

project. It is important that the problem definition should be explicit and documented

as part of the Project Functional Specifications. This phase includes the following

activities:

• Define the objectives of the study.

• List the specific issues to be addressed and the performance measures for

evaluating a system design.

• Determine the boundary or domain of the study.

• Determine the level of detail or proper abstraction level.

The task of determining which components of the real system to include and exclude

from the simulation model requires both insight on how the real system operates and

experience in simulation modelling. A good method is to make a list of all

components in the real system and identify those components that may have a

significant direct or indirect effect on the simulation model output. For example, for

the AGV material handling study one may include the following components of the

real system: stations to be visited by the AGVs in order to pick up or drop parts, AGV

path, and AGV battery recharge stations.

The information gathered at the end of this phase should suffice to estimate the total

cost of the project. The simulation Group and the client generally meet / visit to

observe the actual or a similar process during this phase is recommended too. A

formal proposal is generally written at the end of this phase of the project. Continuing

with the other phases is contingent on its acceptance.

77

Appendix D

No
Verified ?

Yes

No
Validated ?

Yes

No

Verified ?

Yes

No
Validated ?

Yes

Docum entation
and presentation

Implementation

Integration with
control system

Detail model
d esign and

Developm ent

Problem Definition

Project D esign

B ase sim ulation model d esign
and developm ent

Figure 5.1 Overall Hybrid Simulation-emulation model building flowchart

78

Appendix D

5.4.2 PROJECT DESIGN (HSEM Phase 2)

In the second phase, some steps of the previous phase are investigated in more detail

and the technical aspects of the problem are given more weight. The project team

discusses issues in detail with the line engineers and operators. This phase includes

the following activities.

• Estimate the life cycle of the model.

• List broad assumptions.

• Determine the animation requirements.

• Determine the level of data available and what data is needed.

• Determine the human requirements and skill levels.

• Determine the audience (usually more than one level of management).

• Identify the deliverables.

• Check for simulation-emulation model viability conversion. Simulation-

emulation conversion checklist is as in Table 5.1.

• Select simulation-emulation software package.

Table 5.1 Simulation-emulation modelling software features checklist

Features Availability

1 Flexible modelling with variable levels of details

(Modular, hierarchical and configurable)

2 Accessibility to source code and adding user code to the

simulation model

3 Integration with other applications

(Database, Statistical, optimizing tool, 3D graphics etc.)

4 Real time modelling facilities

5 Inter process communication capability

(ability to cooperate and communicate with other software

packages and real systems)

79

Appendix D

The information gathered at the end of this phase of the project is documented in the

Project Functional Specifications. The project team may change the project timing

and resource requirements based on the new information available at the end of this

phase of the project.

5.4.3 BASE SIMULATION MODEL DESIGN (HSEM Phase 3)

The overall strategy should focus on finding a model that minimizes the simulation

effort while ensuring that all objectives of the project are met and all specific issues

are investigated. The third phase includes all or part of the following activities.

• Determine the elements that drive the system.

• Determine the entities that should represent the system elements.

• Determine the level of detail needed to describe the system components.

• Determine the graphics requirements of the model.

• Build the basic simulation model.

• Validate the basic model.

5.4.4 DETAIL MODEL DESIGN AND DEVELOPMENT (HSEM Phase 4)

At the fourth phase, the modeller describes in detail the operating logic of the system

and performs data collection and analysis tasks. This phase includes the following

activities.

• Obtain the operation specifications from “subject-matter experts” (SMEs).

• Obtain the material handling specifications.

• List all information and data summaries in an “assumptions document,” which

becomes the major documentation for the model.

• Identify the areas that utilize special control logic and build the control

logic accordingly.

• Define the interfaces between the components.

80

Appendix D

• Describe the process in detail.

• Use sensitivity analyses (Law and Kelton 2000) if necessary to determine

important model factors, which have to be modelled carefully.

• Modify the base model to the desired level of detail for emulation

• Modify the control logic accordingly.

• Verify the detail model.

An important point to note at this phase is that for emulation modelling, the system to

be analysed has to be divided into a (simulation) model of the plant (e.g. machinery)

and a (simulation) model of the control system (e.g. PLC, PAC, DCS) in order to

replace one component by reality. Therefore it is essential for the communication

between control system and the plant is explicitly modelled at the earliest stage. This

would enable the code to be developed and refined as the model is developed.

The information that is generated at this phase of the project may be used to create the

Maintenance Manual, if one is requested by the client. In any case, this information

can be integrated into a detailed Project Functional Specifications as well as into the

Project Book and the model code.

5.4.5 INTEGRATION WITH CONTROL SYSTEM (HSEM Phase 5)

The integration of the emulation model with controller, its verification, and

operational validation constitute the fifth phase of the process. This phase, shown in

figure 5.2., includes the following guidelines and activities.

1. Consider the tool availability and limitations for emulation, with

reference to Figure 5.1.

2. Check control system structure and variables

3. Define the interface required.

4. Use built-in or existing interface as much as possible.

5. Build new interface(s) if necessary.

6. Integrate emulation model with control system

7. Verify communication.

8. Test run to validate emulation model

81

Appendix D

No

Y es

No
Y es

No

Y es

No

Y es

D ocum entation

Interface
OK?

im ulation
OK? .

.om m unicatn

. OK? ,

Interface for
JC available!

Refine
Interface

Build Interface

T est Run Real
time

R evise
model

Verify
Interface
Usability

V erify c lien t/
server

com m u n ication

Verified
Detail

simulation
m odel

Refine Client/
se rver

com m unication

Figure 5.2 Emulation Model-Controller Integration Flowchart

This phase is specific for connecting emulation model to the real controller. The

guidelines and steps are further explained in 5.5. The model obtained at this phase is

ready for experimentation or test run in real environment.

82

Appendix D

5.4.6 DOCUMENTATION AND PRESENTATION (HSEM Phase 6)

Good documentation and presentation play a key role in the success of a simulation

study. The sixth phase also applies to long-term emulation life-cycle studies where

the models are maintained throughout the life of the real system. On the other hand,

short-term simulation studies are those where once the simulation results are used in

the decision-making, the model is not used any more by the client.

The long-term emulation studies require a long-time ownership of the model by a

modeller and/or engineers that are going to use the model. One may categorize long­

term life-cycle models into four categories in terms of use, namely; (a) training, (b)

scheduling, (c) system redesign, and (d) launching phase analysis. Training models

are built to train client personnel in emulation as part of a simulation class or to

familiarize the new personnel in the system. Scheduling models are models such that

when the product-mix and batch sizes change, the scheduling rules are tested under

the new conditions for best resource utilization and product deliveries. These two

categories may require no or minimum modeller follow-up once the model has been

transferred to the client.

The models for system redesign and launch phase studies may require a close

modeller-and-client-engineer interaction so that the model is not misused. System

redesign models are used whenever a change in design of the system is to be

implemented. Models that are used for launching phase analysis are those used during

system launch to allocate resources (e.g., workers) effectively in the partial operation

of the whole system. In many cases, long-term life-cycle models are used for multiple

purposes including all four categories.

It is important that the long-term of the model usage should be identified as part of

the original objectives of the study because the model design is highly influenced by

it. A representative of the long-term users of the model should become a member of

the project team right from the beginning of the study.

83

Appendix D

5.5 MODELLING DETAIL VARIABILITY

This section focuses on the process of modelling the different levels of detail or multi­

resolution modelling of the Manufacturing System Design (MSD) and how such

models may be built in a manner that helps the already existing simulation packages

to build a base simulation model and then flexibly extend it to the detailed design

model for emulation.

Figure 5.3 illustrates the modelling concept of integration of different levels of detail.

An example would be the same manufacturing system can be modelled in different

ways in three different simulation models. The models can be built with different

levels of detail. The first model may contain all machines, servers, conveyors, and

buffers present in the system. This model is considered to be having high level of

detail. The second model can be a lower level of detail, but keeps the notion of

manufacturing lines without the possibility to store products in between servers. The

third model can be built with a very low level of detail. Here, complete production

lines cab be built as single servers, producing complete batches.

Figure 5.3 Appropriate Level of Detail for Integration

(adapted from (Benjamin et al. 1998)

A simple method is introduced here which is based on some guidelines to ease the

process of modelling systems with variable details. The following subsections

describe the main steps for this method.

84

Appendix D

Modelling the Conceptual Level

1. Identification and Classification ofModeVs Entities:

Considering the conceptual level of the MSD, the first major step in building such a

model should be the identification of the building blocks of the system, such as the

different types of cells. When starting to identify the basic components of the

conceptual model, the modeller must bear in mind that this model is to be extended

into more detail later in a flexible manner without the need to create a new detailed

simulation model from scratch. Therefore, the major components of a conceptual

model might be classified as separate, preferably non-overlapping, blocks or entities

regardless of their internal structures and details.

2. Assigning Entities Activities:

After the identification of the main entities of the model, the second step is to assign

the behaviour of each entity.

Generally, the modeller, when developing the conceptual model, must avoid

including any unnecessary details that may overcomplicate the conceptual model. On

the other hand, forgoing any other important components at this level will increase

the problem of complication in the more detailed stage. If a simulation model of the

conceptual level is built correctly, it will provide the required results and at the same

time it will be a well established base for detailed design. This can easily be extended

with more details and complexity. At this stage the modeller may assign equal

numbers for each entity or resource. For instance, he/she may assign the same number

of machines for each cell. Another example might be the assigning of equal speed of

transportation between any two cells. This is to eliminate the effect of such details on

the simulation results. Generally speaking, the model at this stage is not necessarily

‘valid’ or typical of the real system.

85

Appendix D

Modelling the Detailed Level

3. Entering Model's Details:

At the detailed design level, the third step is to enter the new details within the

boundaries of the blocks, which are already created at the conceptual level. That is,

each block of the conceptual model is expanded separately from the rest of the model.

Detailed data of a cell block could be the number of machines in the cell, the process

duration of each machine, rate of failure for each machine, and maintenance time.

Sometimes it can be expanded into an internal network of activities. For example, in a

‘painting-cell’ block parts may be queued for cleaning, then after cleaning they are

transferred to another queue for painting. Some details might be entered as

interactions between different entities such as, physical positioning, distances, and

directions between cells within the system.

4. Re-Assigning Entities ’ Details:

At this level, information assigned at the conceptual level is to be reassigned by

introducing the real values to each entity before fine-tuning it to achieve the best

results.

The detailed design level can be considered as a network of blocks, each block

containing all its corresponding details and other necessary details which represent

interactions with other blocks. In addition, it gives the real physical layout. It is worth

noting at this stage the model validity is very important, that it should represent all the

details that make up the system as accurately as possible.

Generally, this method of classification will ease the process of model building and

reduce the chance of error, as all necessary modifications are to be made from within

the entity’s boundaries with no subsequent effects on other parts of the system. This

reduces the time needed for any changes to the model, as a change of one entity will

not affect the rest of the model. This method can be considered useful for effectively

building flexible models with variable levels of detail.

86

Appendix D

The above discussion gives an overview of how system components can be classified

for flexible modelling of detail variability at the conceptual level, then how data is

arranged and reassigned at the detailed level to be entered into the simulation package.

5.6 MODEL COMMUNICATION W ITH EXTERNAL CONTROLLER

Results from the survey conducted among the simulation practitioners in the earlier

part of this research has indicated that interfacing between models to be the most

required facility to ease emulation model building (Hasnan et al. 2005).

A 'plug and play' interface, without writing any program code, is a desired feature.

There are tools, the like of RT-Lab LabVIEW API tools and Automod Model

Communication Module (MCM), in the market that provide assistance for developing

interfaces between proprietary applications and devices, but the usage is rather

limited, mostly due to lack of standard specifications. Data Access Specification

developed by the OPC Foundation is seen to have the potential to make such feature.

Until that happens, an emulation modeller needs to do some form of programming to

build a suitable interface.

This section outlines the steps to establish the communication between emulation

model, in this application regarded as 'client' and the external controller which is

regarded as 'server'.

There are a number of transport protocols to move packets of data from client to

server that a modeller can choose, normally based on the platform being used. Among

them are Novell's IPX/SPX, Apple AppleTalk, Transmission Control Protocol/

Internet Protocol (TCP/IP) and Open System Interconnection (OSI). There are also

various client-server protocols to dictate the manner in which clients request

information and service from a server and also how the server replies to that request.

Examples are NetBIOS, Remote Procedure Call (RPC), Advanced Program-to-

87

Appendix D

Program Communication (APPC), Named Pipes, Sockets, Transport Level Interface

(TO), Sequence Packet Exchange (SPX) and OPC.

Studies on features simulation software, as discussed in Chapter 4, has shown that all

simulation packages provides mechanisms for external program to interact with the

simulation through VBA module and Dynamic Link Library (DLL) usually

implemented in C++.

The steps outlined below uses TCP/IP protocol and socket technology for MS

Windows Socket called Winsock. Winsock is a set of routines that reside in a DLL

interfaced with TCP/IP and from there through to the internet.

1. Create client application in the simulation model using a program editor.

Usually the program editor is built-in or attached to the simulation software.

2. Create server application for the controller program.

3. Create message handler application or communication module to manage the

transfer of messages.

4. Launch both client and server applications.

5. Verify connection.

6. Confirm the availability of real time modelling features in the software

package. If not, create application tool to enable real time run.

7. Run the emulation model in real time.

The programming details to create the client and server applications are not within the

present scope of the thesis. Nonetheless books and websites that teach and discuss the

programming side are available and too many to list. However two books that have

been helpful in this research are (Horton 1998) for programming in C++ and (Wright

1998) for programming in Visual Basic.

An important issue concerning the communication between emulation model and

external controllers is the synchronization. As (Versteegt and Verbraeck 2002)

reported that whilst certain software (e.g. Arena and Simple ++) offer standard built

in feature for real time progress, other software (e.g. Automod) requires the

construction of a customized tool, in their case called 'wall-clock peeker' to

Appendix D

synchronize the simulation clock with the wall lock every fixed time unit. It could be

implemented in a user written C++ function in a DLL.

The general procedure is also applicable for using OPC as the means for

communicating between the emulation model and the controller system in a multi

client/server situation. It can also be used as a basis for application in a distributed

simulation environment.

5.7 Summary

This chapter has described the system approach to develop the Hybrid Simulation

Emulation Model (HSEM). The summary of general steps for HSEM modelling is

shown in Table 5.2

While emphasizing on the technical issues this chapter has also covered briefly the

non technical aspects of the development including project planning and some

organizational issues. As for documentation, although it is essential for every phase of

the project, is not specifically discussed in this chapter as the process is taken to be

the same with any simulation project.

Some highlights in this chapter include:

1. A new methodology is proposed to accelerate emulation model building

through an efficient hybrid approach. This approach should minimise the

effort required to build emulation models.

2. The HSEM project requires a team comprising of multidisciplinary expertise.

The major difference from the usual simulation project is the inclusion of

expertise in the field of information and communication technology (ICT) and

control engineers, particularly to develop the interface between the emulation

model and external controllers.

89

Appendix D

3. For emulation model, synchronization is essential. Since the objective of

HSEM project is to develop emulation modelling simple, a built-in feature for

real time modelling is required.

4. The methodological approach of multi-resolution modelling detail would be

useful as a guide for the model builder to develop the emulation model

efficiently.

Table 5.2 Summary of Steps of HSEM Modelling

Steps Summary Procedures
Base Model

Step 1

Identification and classification of
the main blocks or entities of the
system separately to be extended
into more detail later.

Step 2

Assigning averages and
assumptions of real data to the
established blocks and not entering
much detail.

Detailed Model

Step 3

Adding more extensive details
(entities and activities) needed to
build final model including all
necessary factors such as physical
layout.

Step 4

Reassigning the model’s behaviour
by entering the real data into those
blocks then fine-tuning the model
to achieve the required results.

Control System Integration

Step 5
Define interface required, build
new interface if necessary and
verify usability.

Step 6
Integrate emulation model with
control system and verify
communication.

The validation of the methodology presented in this chapter is discussed in the

following chapter. Chapter 6 describes the development of HSEM for a small

90

Appendix D

manufacturing, progressing from a simple basic model to more elaborate model

involving external intervention to the emulation model.

91

Appendix D

CHAPTER 6

VALIDATION

6.1 Introduction

The previous chapter has described a methodology to develop a new type of model

called Hybrid Simulation Emulation Model (HSEM).

This chapter reports the validation process of the proposed methodology. It describes

the developmental work of using the methodology to build a hypothetical simulation

model of a small manufacturing plant and converting it into an emulation model

where some form of external control is included. Since the focus is on the emulation

building, some parts of the work that are common with simulation model building are

not discussed in detail. The description of the model building is simplified so as to

highlight the conversion simulation-emulation aspects of HSEM building rather the

output of the model. A human machine interface is developed and used to describe

the interaction between emulation model and human controller.

The validation work begins, as reported in section 6.2, with describing the

background of the plant and the aim of the modelling work. Section 6.3 highlights

some important features of Arena Modelling for HSEM model building. Section 6.4

describes the development of the base simulation model and modelling the details of

certain components and process in the model. Section 6.5 describes the integration of

external controller with the emulation model. Section 6.6 reports the procedure

HSEM was executed. Section 6.7 gives the summary of the validation process.

92

Appendix D

6.2 Project background and design

(HSEM Phase 1)

The management of a manufacturing plant aims to improve the efficiency and

productivity on one of the production line for one of its products, without any

additional capital investment.

A system developer team was assigned to develop a system, based on existing setup

and resources that would improve the efficiency and productivity of the production

line by 20%.

(HSEM Phase 2)

Results from preliminary study conducted by the team indicated that a major source

of ineffectiveness came from large amount of non moving Work-in-Process (WIP).

The system developer team then decided that a simulation study is to be conducted

with the following objectives.

1. To identify problem areas in the production flow line.

2. To assess the current performance with regards to WIP status at each station.

3. To develop possible methods to reduce WIP.

4. To evaluate the effectiveness of the optimization strategies.

5. To present potential methods and improvements to the management.

Since some strategies that would be tried on the system involves integration of

components with multiple level detail as well as some form of control algorithm, and

also the model is intended to be reuse, HSEM is seen to be a viable option.

93

Appendix D

Further checks on the suitability of simulation software, as shown in checklist in

Table 6.1, the team found that the Arena 7.0 was equipped for such project.

This simulation language was selected among others due to its ability to operate in

conjunction with a real time (RT) package. Moreover, Visual Basic for Applications

(VBA) is an integral part of Arena 7. This enables convenient access to databases and

the automating of Arena models.

Table 6.1 Simulation-emulation modelling software features checklist for Arena

Features Availability

1 Flexible modelling with variable levels of details

(Modular, hierarchical and configurable)
V

2 Accessibility to source code and adding user code to the

simulation model
V

3 Integration with other applications

(Database, Statistical, optimizing tool, 3D graphics etc.) V
4 Real time modelling facilities V

5 Inter process communication capability

(ability to cooperate and communicate with other software

packages and real systems)

V

6.3 Features of Arena Modelling

Below are some important points with regard to modelling in Arena SE version 7.0

that would be helpful towards understanding the HSEM model building explained in

the sections that followed.

94

Appendix D

• SIMAN is a general-purpose simulation language that builds upon early

languages such as SLAM

• In Arena the structures of SIMAN are implemented as graphical modeling

objects

• Simulations models are built by placing these objects on a drawing board and

linking the objects to define the model logic (basically a flow-chart of the

system is constructed)

• In simulations the Arena model is parsed into SIMAN code, then compiled

and executed

• The modeling constructs in Arena are called modules

• Arena contains a wide variety of modules that are organized into different

libraries called templates or panels

• All modules are composed of SIMAN components, different amounts of

functions are aggregated in higher and lower level modules

• Modules of different hierarcy levels can be used interchangeably

• New templates and modules can be created by using existing components or

user-written VB, C/C++ or FORTRAN code

Figure 6.1 below shows the different hierarchy levels of the modules in Arena.

(Kelton et al. 2004)

Data exchange between an ARENA model and the external data source are achieved

by Visual Basic for Applications (VBA). The external data source can be database,

spreadsheet and files in various formats. Procedures and functions can be defined

through writing codes in the Visual Basic Editor corresponding to each VBA block in

the simulation model logic view. When an entity arrives at the VBA block,

procedures and functions defined in this block are fully executed. After everything is

done, the entity may leave the VBA block and go on to the next module/block.

95

Appendix D

Higher

Lower

Level of
Modeling

User-Created Templates
C o m m o n ly u s e d c o n s tru c ts

C o m p a n y -sp e c if ic p r o c e s s e s
C o m p a n y -sp e c if ic te m p la te s

e tc

Application Solution Templates
C o n ta c t C e n te r s
P a c k a g in g lin e s

Basic Process Panel
M any c o m m o n m o d e lin g c o n s tru c ts

V ery a c c e s s ib le , e a s y to u s e
R e a s o n a b le flexibility

Advanced Process, Advanced
Transfer Panels

A c c e s s to m o re d e ta ile d m o d e lin g fo r g r e a te r
flexibility

Blocks, Elements Panels
All t h e flexibility o f th e SIM AN sim u la tio n la n g u a g e

User-written Visual Basic, C/C++ Code
T h e u ltim ate in flexibility

VBA is bu ilt in
C /C + + re q u ire s c o m p ile r

A s in g le
g ra p h ic a l u s e r

in te rfa c e
c o n s is te n t a t a n y
level o f m o d e lin g

Figure 6.1 Arena hierarchical structure

Another feature of Arena, called Arena RT can be used for a simulation model to

interact with external client applications. This interaction is performed via an online

messaging system. For example, the simulation model might contain aggregate-level

system logic that sends tasks in real-time to a facility’s shop floor control system. In

this case, Arena’s client might be a messaging queue that interfaces directly with

PLCs. After completion of this operation (automated or manual), a message is sent

back to the model so that the simulation can be updated and further instructions can

be issued. During the execution of the model, the simulation and actual shop floor

could operate concurrently. The animation could serve as a real-time monitoring

device.

96

Appendix D

6.4 Model Building of a Manufacturing Plant

The production side of the manufacturing plant is made up two staging area and three

processing cells. The two staging areas are divided into part arrival station and

product exit station. The three processing cells, arranged in series, are the machining,

painting and packaging centres. The layout of the plant is as shown in Figure 6.2.

Arriv.
J

)l ExitWj

MachiningCentrt Paint S tation

ijpp
Pack S ta tio n 1

Figure 6.2 A Manufacturing plant layout

Parts entering the system are placed at a staging area of the Arrival Station, for

transfer to the first workstation, a machining centre. After the parts have completed

processing at the machining centre, they are transferred to a paint station manned by a

second worker, named painter, then to a packaging station where they are packed by a

third worker, named packer, and then to a second staging area, Exit Station, where

they exit the system. The transfer of parts between stations is by. means of an

Automated Guided Vehicle system (AGVs).

6.4.1 Base Simulation Model

(HSEM Phase 3)

The basic or conceptual model consists of one machine per cell with each machine

having different processing time. The purpose of the model is to estimate the

following performance measure.

97

Appendix D

• Throughput

• Time in system for parts

• Times parts spend in queues

• Queue sizes

• Utilization of equipment

Since the transfer behaviour was not required, the ROUTE module, a type of Transfer

block, was used to model the unconstrained movement of entities from one station to

another. The ROUTE module or connect method used assumes that time may be

required to move the entity between stations, but it operates on the assumption that no

additional delay will be incurred because of unavailable resources or transporters.

The model logic, in the form of Arena flowchart type modules which also define the

routing of simulation entities through the system is shown in Figure 6.3.

The modelling uses modules in the Basic Process Panels and Advanced Process,

Advanced Transfer Panels, viewed as middle level in the Arena hierarchical structure

shown in Figure 6.1.

As shown in Figure 6.3, the model logic can be summarised as follows:

1. Create entity called 'part' at the 'Arrival Station' at random 'Time between

arrival' type specified in the CREATE module.

2. Assign 'Time In' variable for part entry time into the system.

3. Transfer part from 'Arrival Station' to 'Machining Centre'. ROUTE was used

to allow modelling transfer of entities between stations, with a defined time

delay in the transfer.

4. Part arriving at the machining centre is put in Queue before being processed.

5. In the PROCESS module, the entity SEIZE the resource, in this instance the

'Machinist', DELAY for specified processing time and RELEASE the

resource.

6. Part is transfered using ROUTE to the 'Paint Station'.

98

Appendix D

7. Steps 4 to 6 are repeated for processing of entities at 'Paint Station' and 'Pack

Station' respectively.

8. Part is transfered using ROUTE from the 'Pack Station' to 'Exit Station'

where entity exit the system. The time interval during which the entity

remains in the system is recorded as 'Flow Time'.

Parts a t Arrival Station to be transfered to Machining Centre

C re a te jo b s a t
s ta g in g a r e a s . ! Arrival Station A s s ig n T im e In

Route from
Arrival S tation

Parts a t Machining Centre for processing and transfered to Paint Station

Machining
C entre S tation P r o c e s s

M ach in ing

|1 Route from I
['Machine Centre!

Parts a t Paint Station for processing and transfered to Pack Station

Route from Pain
Stationi Pain t S tation

P r o c e s s P a in t

Parts a t Pack Station for processing and transfered to Exit Station

Route from P ac
■ji P a c k Station StationP r o c e s s P a c k

Parts e x it sy stem

Exit S tation
D is p o s e p a r ts exi

sy s te m
R e c o rd Flow

T im e

Figure 6.3 Model Logic for Base Simulation Model

The animation level was set to sufficiently indicate flow of entities between stations.

The animation is as in Figure 6.5.

99

Appendix D

6.4.2 Modelling Details

(Phase 4 of the methodology)

After a review it was found that to improve performance, some changes and detailing
need to be made.

At the next phase of study, the management and system developer have identified two

areas in the system that can be re-develop with minimal cost that could reduce the

overall WIP. Those were (a) loading and unloading of parts between every station and

the movers, and (b) transfer of parts between stations.

A more detail study on the effect of any changes made in the two areas on the whole

system has to be made. The base simulation model developed earlier was then

upgraded by adding resource-constrained modules in the form of entity transfer as

well as loading and unloading process modules.

There are variety of approaches that can be used to add details to the simulation

model, depending on factors such as involvement of resources and controllers,

hierarchical level of modules etc.

Modelling the details of loading and unloading process can be done using PROCESS

module which would consider the entity seizing a resource (loading or unloading

operator or machine), delaying for loading or unloading time and release the resource.

If the activity of the resource is not considered significant, using a DELAY module or

block would be sufficient. In the present context, to keep the model simple yet

flexible, DELAY module is used.

Modelling transfer of parts or material handling can be divided into two categories (1)

based on the number of individual material handling device available, (2) based on

space availability.

100

Appendix D

The transfer of parts between stations using the AGV, from a modelling standpoint,

falls under the first category of moveable resources, referred to in Arena as

transporters.

Arena provides two types of modelling transporters: Free-path and Guided. Free-path

transporters can move freely through the system without encountering delays due to

congestion. Guided transporters are restricted to moving within a predefined network.

The travel times depend on the vehicle’s speeds, the network paths they follow, and

potential congestion along those paths.

The transfer of a part with a transporter requires three activities: ' Request' a

transporter, vTransport' the part, and ' Free' the transporter. The 'Request' activity,

which is analogous to seizing a resource, allocates an available transporter to the

requesting entity and moves the allocated transporter to the location of the entity, if

it’s already not there. The ' Transport' activity causes the transporter to move the

entity to the destination station. The ' Free' activity frees the transporter for the next

request, much like releasing a resource. The modeller can choose to use modules in

Arena Advanced Transfer panel or SIMAN codes in the Blocks, Elements panels,

depending on the approach and level of detail required for the model. The present

model uses Free-Path transporter type with REQUEST, TRANSPORT, STATION

and FREE modules from the Advanced Transfer panel. Other alternatives would be

using LEAVE and ENTER Arena modules or REQUEST, ALLOCATE, MOVE etc

from SIMAN blocks, element panels.

The model logic employed for detail simulation model of the manufacturing plant is

shown in Figure 6.4.

101

Appendix D

P a r ts a t Arrival S ta t io n to b e tr a n s fe r e d to M achining C en tre

C re a te jo b s a t
s ta g in g a r e s i Arrival Station I A ss ig n Tim e In

sR equesiA G V a
u ArrivaiStation

Delay Loading
Arrival Station

T ansportfrom
ArrivaiStation

P a r ts a t M achining C en tre for p r o c ess in g an d tr a n s fe r e d t o P a in t S

iMachine Centre
m Station

,ij Delay Unload
(Machine Centre

,ii Free AGV
iMachine Centre

P r o c e s s I _j
M ach in ing I j

RequestA G V a!
M achine Centre

a t io n

Delay Loading
vlachine Centr

T ransportfrom !
M achine C e n tra

P a r ts a t P a in t S t a t io n for p r o c es s in g an d tr a n s fe r e d to Pack S t a t io
............ - - v ---- ..
i PaintStation JJ Delay Unload J PaintStation

^ Free AGV Paint
m Station

I
P ro c e ss Paint __ J R equestA G V a

jj PaintStation
l i

____j.D elay Loading
i! PaintStation

■ T ransportfrom !
h PaintStation I

P a r ts a t Pack S t a t io n for p r o c e ss in g an d tr a n s fe r e d to E xit S ta t io n
K ■' ” ■ ", " * J ■■■*■ -'.S' ft——...-— ------- --------

Pack Station -
| Delay Unload ! _ j F ree AGV Pack
j Pack Station 1 [j Station

li
—'I P ro c ess Pack ____, (R equestA G V a

- || Pack Staton ■----- - Delay Loading
P ack Station 1

T ransportfrom
Pack Station

P a r ts e x i t sy ste m

Delay Unload Free AGV Exit D is p o s e P a r te x i
\ \ s y s te m

V
ExitStation * ~ 'R e c o r d Flow TiEx it Station Station

Figure 6.4 Model Logic for Detail Simulation Model

The model logic for activities in the transfer of part between stations can be

summarised as follows.

1. Part request for an AGV.

2. If available, an AGV is allocated and move towards the part.

3. Part is loaded on to the AGV in a specified delay time.

4. Part is transported at specified speed to the next station.

5. At the next station, part is unloaded on to the next resource in specified time

delay.

6. Part frees the AGV.

7. AGV waits for next instruction.

In the case of multiple AGV in the system, two situations regarding assignment to

parts are possible. First, a situation during the run where an entity requests an AGV

and more than one is available. In this case, Arena provides the choice of Transporter

Selection Rules to determine which one of the transporter units will fulfil the request.

102

Appendix D

The second is when a transporter is freed and there are multiple entities waiting. In

this case, Arena applies a built-in priority rule. The situations described highlight the

noted that it is possible to separate the process and control logic using ARENA’S

simulation language SIMAN.

The animation for the detail simulation, shown in Figure 6.5, has included the graphic

representation of the AGV movement.

It is acknowledged that various issues can be studied and corresponding components

can be detailed accordingly. Those include parts transfer logistics, scheduling

strategies, track layout, parts order control, loading/unloading mechanisms and

operating procedures. The areas in the system to be studied mentioned earlier can be

modelled to more detail level using SIMAN codes, albeit requiring a considerable

level of modelling skill. For the purpose of illustrating the process of conversion from

simulation to emulation model building, the current detail simulation model is

sufficient to be regarded as an emulation model. The next section discusses the steps

to integrate the emulation model with external controller as a demonstration of

completing the process HSEM building.

use of built-in control logic options in the modelling of entity transfer. It is also to be

AGV

'Arrival

Machining
Centre

Paint
Station

Pack
Station

Figure 6.5 Animation for Detail Simulation

103

Appendix D

6.5 Integration with Controller

(HSEM Phase 5)

So far, the modelling logic and animation of the manufacturing system are based on

the assumed time projection of events. In reality assumed time projections are not

enough, unexpected events may occur. Therefore real time communication is

sometime necessary. For example, the modeller may find in the detail modelling

process, due to limited buffer space the machines need to communicate between each

other as well as with the arrival controller to monitor the number of parts coming to

the respective stations.

The next stage of the modelling needs to coordinate the. simulation logic with the

external process of a real system. In this model, the external processes considered as

'server' and Arena model considered as 'client' communicate via a messaging system,

whereby entities in the Arena model send messages to the external applications to

indicate simulated tasks, and the external applications send "message responses" back

to Arena to indicate the tasks have been completed.

6.5.1 Emulation Communication Structure

The client/server communication between machine and computer in this model uses

socket, a program device, which supplies sending, and receiving data via the defined

TCP/IP port. In this case, socket technology for MS Windows called Winsock was

used.

For ease of maintenance and flexibility, the non simulation model components are all

implemented using the common programming framework of Microsoft Visual Basic

for Applications (VBA). The implementation of the major supporting components

within VBA not only allows for a powerful implementation using a variety of

Microsoft products, but it also allows for direct links to those objects that are

104

Appendix D

exposed within Systems Modeling Corporation’s Arena simulation software, version

7.0. The Visual Basic object library within Arena was used to incorporate significant

flexibility into the model.

A key advantage to utilizing the VBA architecture within HSEM is its widespread

availability in industry applications, not to mention the ease of use of its development

environment. Readily available, off-the-shelf software products were used to provide

the base functionality required within the modules of HSEM without reinventing or

duplicating the significant development momentum provided by Microsoft and other

software vendors.

A message handler application called RTConsole.exe was written in Visual Basic,

acts as interface between client and server computer.

The emulation communication structure is shown in Figure 6.6.

Client Computer

Simulation M odel:
Graphical A nim ation,
Statistical Output

N etw ork
Interface
(Socket)

N etw ork
Interface

< TC P/IP <■ (Sock et)
> >

M essage
Handler

(R T C on cso le)

Server Computer

R outing L ogic ,
S ch ed u lin g A lgorithm ,
H ost C ontrollers,
PLC /PC T estin g

Figure 6.6 Emulation Model Communication Structure

ARENA RT which supports real-time synchronization and message exchange over

TCP/IP was used to synchronize simulation time with real-time and to access the

external controller. ARENA RT- also supports switching between internal simulation

logic and external control logic simplifying the process of separating classical

simulation logic and simulation logic based on external control. Linking into the

event scheduler of the simulator by one of the provided functions it was possible to

105

Appendix D

synchronize the simulation clock as well as to update the internal simulation data with

the external I/O signals.

6.5.2 Implementing Changes

The following are the three major changes involving Arena and external code that are

required to implement the inter-process communication (IPC) between the model and

the controller.

6.5.2.1 Modification on Arena Object

To coordinate simulation logic with the external process of a real system, the

simulation model needs to be programmed for the control system to open socket

connections and read and send messages. This is done in VBA using the VBA events

provided in Arena’s ThisDocument object. The ThisDocument object gives the VBA

project access to various events within the Arena model. To add code for an event

procedure, one can select the ModelLogic object in the Visual Basic Editor, and

choose the desired event (for example RunBegin) in the procedure list.

The following VBA events provided in Arena’s ThisDocument object are used. These

events are only called when Arena is running in execution mode.

• RealTimelnitialize—called at the beginning of the first replication. Place code

that initializes the inter-process communications here. It is also used to display

userform (called frmConnect) to prompt the IP address and port.

• RealTimeSend—Called when an entity tries to send a message to the external

process. Code that sends the message to the IPC queue is placed here.

• RealTimeReceive—Code that receives messages from the IPC queue and

passes them to Arena.

• RealTimeTerminate—called at the end of the last replication. Code that

terminates the inter-process communications is placed here.

106

Appendix D

UserForms (dialogs) called frmConnect are useful for custom interfaces to connect IP

addresses and ports of the client and server through sockets. An important point to

note is to make sure Microsoft winsock control called 'W insockl' has been added to

the form.

Arena ThisDocument Object and frmConnect UserForms codes for the model are

shown in Appendix C.

6.5.2.2 Model modification and preparation

Define the specification for sending message from Arena simulation model to the

external process when it is run in execution mode. This can done by changing the

fixed delay time (or velocity) in the model statement blocks or modules of Delay',

'Route', Transport', 'Move', 'Process', 'Enter' or ‘Leave’ to TASKID expression which

executes in real-time. The format of message string is defined in 'TASKS' element.

A message to send from a logic module or block to the external process needs to be

specified. In Arena this can done by changing the fixed delay time (or velocity) in

the model statement blocks or modules of 'Delay', 'Route', Transport', 'Move',

'Process', 'Enter' or 'Leave' to

TASKID (Value, TaskID [, TimeOutInterval][, ErrorLabel])

The logic of a TASKID expression is executed as two threads in parallel. The first

thread simulates the delay or transfer time using the specified Value. The second

thread executes the real-time task by sending a message to the real system to start an

activity; it then waits for the system to respond with a "task completed" message. If

the execution thread finishes before the simulation thread, the simulation thread is

terminated and the entity departs the block. If the simulation thread finishes first, the

entity remains suspended in the block until either (a) the execution thread completes,

or (b) the actual task time exceeds Value by an amount that is greater-than-or-equal to

107

Appendix D

the Timeoutlnterval, in which case the task is terminated with a timeout error and the

entity is sent to the block specified by ErrorLabel.

This involves defining the format of messages the simulation entities may send to the

external process. In Arena this is called experiment statements defined in 'Tasks'

Element.

The TASKS element defines message strings that simulation entities may send to an

external process when Arena is running in execution mode. After sending a message,

an entity can then wait for a response back from the external application before

proceeding to the next block. This allows us to coordinate the simulation logic with

the external process of a real system.

Table 6.2 shows the modification on the Arena modules, SIMAN blocks and elements

that were necessary for the simulation-emulation conversion. The changes indicated

are for the following activities:

1. loading of raw parts at the arrival station on to the transporter,

2. unloading of raw parts from the transporter on to the machining centre,

3. machining process at machining centre.

Changes on other sections of the model follow similar procedure.

108

Appendix D

Table 6.2 Parameter setting differences between simulation and emulation using

Arena RT.

Module Name/Variable Simulation Emulation
Delay Loading Arrival Station

Delay Time

Units

UNIF(.5,1.5)

minutes

TASKID(UNIF(.5,1,1.5),
LoadingTime,NOW AIT)

minutes
Delay Unload Machine Centre

Delay Time
Units

UNIF(0.5,1.5)
minutes

TASKID(UNIF(.5,1.5),ProcessPart))
minutes

Process Machining
Delay Time

Units

UNIF(0.5,1.5)

minutes

TASKID(UNIF(.5,1.5),
MachinePart)

minutes
Tasks : LoadingTime

Format

Parameter

Not Used
"LoadPart TGID=%1 .Of

TNOW=%5.2f;"
IDENT, TNOW

Tasks : UnloadingTime
Format

Parameter

Not Used
"UnloadPart TGID=%1.0f
TNOW=%5.2f;M
IDENT, TNOW

Tasks : MachinePart
Format

Parameter

Not Used
"MachinePart TGID=% 1 .Of
TNOW=%5.2f;"
IDENT, TNOW

Figure 6.7 shows the changes in the logic construct. It also shows the inclusion of

TASKS elements for loading and unloading time as well as machine part processing

real time expressions. The full emulation model can be viewed in Appendix D.

An important lesson learnt while verifying the emulation model was that TASKID

expression could not be implemented for the REQUEST construct. Apparently, this is

one of the modules that Arena software has not implemented the real time facility.

Debugging to get the emulation model running has resulted in the use of ALLOCATE

and MOVE combination from Block Panel instead.

109

Appendix D

TASKS elemBnt to define messages forloadng andiriloadng
parts hat may be sent by sinrJation end I as to h e externa#
controller.

Parts at Arrival Station to be transfered to Machining Centre

Create jets at \,----- , AmvdSa.cn

U ----- ,--
stagngares $

J 0
AssigiTimeln at Amva Station

| Tasks |

LoadiftflTima
UnioadfngTima

|
D d cf /L a rin a 1 J Transport ficm

!
Anival S ta ic n I 1 Arrival Station

Parts at Ntechining Centre for processing and transfered to PaintStation

Tasks
TASKS dement to define messages fcr processing pads
fiat may be sent by si mi at an enf ties to the external
controller.

M c h n eC ertre
S ta ic n

Delay U io a d
Machine Certre

FreeAGV
Machine Certre

Process
M xHring h J j U odng

(I NtachneCertre
Transport from

M achnsC ertre

Figure 6.7 Emulation model logic at part arrival station and machining centre.

This means that at certain stage of the development, modelling HSEM in Arena

sometime may require not just changing to TASKID expression in the “Delay” or

“Velocity” variables but may also require substituting building blocks. In this

situation, the modeller needs to be aware of the limitations of built-in objects or

modules and the availability of alternative approaches and objects including the use

of lower level modelling blocks or language.

Detail modelling of transporter movement requires the use of set of features for

guided vehicle instead of free path which in Arena is at SIMAN blocks and elements

level.

These are not reported in the thesis but investigation has shown that to get the detail

model running, the set of “REQUEST”, “DELAY”, TRANSPORT”, “FREE” and

“MOVE” modules from the Basic Process and Advanced Transfer Panels have to be

substituted with “Request”, “Delay”, Transport”, “Free” and “Move” SIMAN blocks

from Blocks Panel. The use of Guided Vehicle set of features necessitate the use of

“Transporters”, “Intersections”, “Links” and “Networks” elements from the Element

panel instead of “Transporter” and “Distance” data modules in Advanced Transfer

Panel.

110

Appendix D

Further investigation on detailing the model to include Automated Guided Vehicle

(AGV) control features like bottleneck detection, deadlock detection, collision

avoidance, dynamic traffic scheduling and routing have highlighted the importance of

space awareness in simulation model and uncovered the limitation of Arena of

lacking it.

This has raised a new issue of synchronization of space in emulation model. So far

this thesis has looked at synchronization of time as the prime requirement for the

interaction between the model and controller. Synchronization of space would be

easier modelled using software packages providing 3D true to scale modelling like

Automod and Quest as well as Object-oriented simulation packages like eM-Plant

and FlexSim. Therefore HSEM modeller needs to be aware if space awareness is

required and the choice of software packages that provide the facilities.

6.5.2.3 Interface development and use

Develop and use a message handling program, an interface for sending message

received from Arena to the external process and sending message received from the

external process to Arena model. In this model, the message handling program

interface written and used, as shown in Figure 6.7, is called RTConsole. VBA

userforms “listen” and “connect” were also developed to facilitate connection

between model and RTConsole. •

111

Appendix D

File Clear Help

- Send M essage to Arena--

M essage Type: Entity Number: Return Code:

|0 - R esponse to Task ▼] j jo

Send

M essages...........

Received from Arena: Sent to Arena:

UnloadPart TGID=4 TN0W = 2 1 0 4 0
UnloadPart TGID=3 TN0W = 1 ~ 0 4 0
LoadPart TGID=4 TN0W = 1.8 0 3 0
UnloadPart TGID=2 TN0W = 1 0 2 0
LoadPart TGID=3TN0W = 1.0 0 3 0
LoadPart TGID=2 TN0W = 0.0 0 2 0

< 1 >

Status:

Socket accep ted connection request on port 8111
Socket listening on port 8111

Figure 6.8 Message Handling Interface RTCosole

The program written in Visual Basic 6.0 can be viewed in Appendix E.

6.6 Model Execution

The emulation model in Arena set to run with RTConsole interface was executed

according to the following procedures.

1. Set the model to run in real time mode.

112

Appendix D

a) In <Run Setup\Run Control>, verify that the model is set to "Run in Execution

Mode".

b) In <Run\Setup\Run Control>, verify that " .DLL" is NOT checked unless a

DLL is to be used.

c) In <Run Setup\Run Speed>, verify that the model will "Advance Simulation

Time Using a Real Time Factor" of 1.

2. Invoke 'Listen' on the message handler through its local port.

a) Click the icon "RTConsole.exe" in the named view "Model Description and

Instructions" of the model. This starts the client application that will send and

receive messages from Arena.

b) From RTConsole's menu bar, click <File\Listen...>. Display form is as shown

in Figure 6.9. Keep the default of "8111" for the port and hit <OK>.

RTConsole is now waiting to connect to Arena.

OK

C ancel

\ m m

Figure 6.9 Display form for invoking ‘Listen’.

3. Confirm connection to the server IP address and port.

a) From Arena's menu bar, click <Run\Go> and begin running

MfgPlant_RT_AGV.doe. Note that the VBA event RealTimelnitialize is

called first, displaying a dialog asking for RTConsole's IP address and port.

b) Display form is as shown in Figure 6.10. Keep the defaults and press

<Connect>

c) The model should display a "Successfully connected to RTConsole"

message that indicates a successful connection. Press <OK>.

113

Appendix D

R T C o n s o l e I P a d d r e s s : j 1 2 7 . 0 . 0 . 1

P o r t : j s i n

[C o n n e c t j

Figure 6.10 Display Form to Confirm Connection

4. The model run was successfully run with the model and the controller located

on different computers. The interaction between the controller and model was

done through the message handler interface in real time. Actual loading and

unloading time as well as the processing time which form part of the actual

WIP studies were determined by the reaction of the respective operators

which acted as controllers.

Instructions for running the validation model called MfgPlant_RT_AGV.doe using

VBA real time events can be viewed in Appendix F.

Table 6.3 illustrates the different hierarchy levels of the modules or panels in Arena

used for three phases of simulation-emulation model development.

At present there are no specific module or block in Arena that could facilitate

integration of model with real time controller. Therefore knowledge on programming

and use of DLLs is essential to develop interfaces with emulation model.

114

Appendix D

Table 6.3 Panels used in development of HSEM

Basic Simulation y Detailed Simulation Y. y Emulation

• Basic Process

• Advanced Process

• Advanced Transfer

• Basic Process

• Advanced Process

• Advanced Transfer

• Blocks (SIMAN)

• Elements (SIMAN)

• Basic Process

• Advanced Process

• Advanced Transfer

• Blocks (SIMAN)

• Elements (SIMAN)

• User-written Visual

Basic, C++ code

6.7 Summary

This chapter has described the validation of the HSEM methodology by reporting the

development of an emulation model of a hypothetical manufacturing plant. The three

phase starts with a conceptual base simulation model, developing into detailed model,

followed with the integration with controllers in real time to complete the emulation

model building.

It is acknowledged that modelling approach may vary among model builders

depending on several factors including the features and structure of the simulation

software package as well as the modeller’s skill and experience. However the

validation process has further highlighted the importance of accessibility to source

codes and the knowledge to use them to model the appropriate details in the HSEM

development.

115

Appendix D

A considerable amount, of time and effort was needed to develop the interface to

provide communication between the emulation model and the human controller. Thus

the experience in the validation process has emphasised the need for special facilities

and features for inter-process communication to be incorporated in the simulation

software package.

Synchronization of time is seen to be the main requirement for the interactive

communication between emulation model and the controller. It is also found that

there are situations where synchronization of place is required. This is suggested to be

another area for future research.

The next chapter presents the overall findings of the research as well

recommendations for further development.

116

Appendix D

CHAPTER 7

CONCLUSIONS

7.1 Research Background

This research work started with investigating the role of simulation in manufacturing

system development particularly towards shortening design to manufacture cycle time.

The advantage for using simulation is that simulation can often capture and describe

the complex interactions within a particular manufacturing system accurately where

analytical methods seen to have failed.

As flexible and agile manufacturing become prevalent and the ability to describe

short term future performance of manufacturing system becomes critical, the use of

simulation has become more significant than ever.

An application of simulation that has attracted attention among manufacturing

industries is for testing of control logic before installing on site. The aim is to avoid

full testing using real manufacturing system and real control system which not only

expensive to build and experiment but also involves high risk of failure if the

possibilities of design are not tested thoroughly beforehand.

The use of full or pure simulation for control system testing using may not involve

high costs but it may disregard some phenomena that are present in the real system or

contain additional factors that might influence the outcomes. Thus the results may not

be realistic and reliable.

117

Appendix D

Reality in the loop (RIL) testing or test bench testing involving the use of simulated

control system with real equipment has been widely used on relatively small system

and equipment. For large system like manufacturing this type of testing may not be

practical.

Emulation or soft commissioning uses detailed simulation called emulation model of

the equipment or system to be controlled with real control systems. This application

has been proven to have reduced the commissioning time as well as improved

efficiency and reliability of the manufacturing system delivery.

Even though the success of using emulation particularly in improving cost-

effectiveness of automated material handling system delivery has been acknowledged

by industries and simulation model developers, the uptake for this technology is still

low.

The main reason is that it requires huge amount of initial investment in terms of cost,

resource and multidisciplinary expertise because of the complex nature of its model

building. The complexity is usually attributed to the model multiple level of detail,

incremental development of the control logic to be tested and the inclusion of real

time communication between the model and controller. Thus an emulation model is

being built totally different and separated from the initial simulation model. In other

words, simulation and emulation models are not convertible.

7.2 Contributions to Knowledge

The main theme of this research is to establish a methodology to develop simulation

model that can be converted into emulation model with ease. The beneficiaries to the

methodology would be the modellers, researchers, simulation software developers

and the model client particularly the small and medium size companies where

emulation technology would become more affordable. The contributions are stated in

brackets at the end of the appropriate paragraph.

118

Appendix D

7.2.1 HSEM Methodology

The main contribution of the research to new knowledge is the Hybrid Simulation

Emulation Model (HSEM). HSEM is a product and a new approach of developing

emulation model that would help reduce the negative perception amongst modellers

and clients towards emulation of being difficult to develop, costly and non-productive.

Consequently, a more positive perception and clearer model building approach would

increase the readiness among small companies to invest in this technology.

(Contribution 1)

The novel methodology to develop new product of HSEM presented in Chapter 5 is a

synthesis and extension of many ideas and developments covering the topics of

manufacturing system development, methodology for modelling details, real time

simulation methodology as well as verification and validation of simulation model.

In short the methodology comprises of three sequential steps as follows.

1) Development of base simulation model,

2) Development of detail emulation model,

3) Integration of controller with the emulation model.

As shown in Chapter 5, the approach is developmental and iterative. To implement

the methodology, like any simulation project, HSEM modelling requires a team of

appropriate expertise, knowledge of simulation methodology and a selection of the

right simulation tools. The product of this research work in the form of a

methodology has taken into consideration those requirements above. The organization

of the methodology would be useful in assisting the HSEM project manager to

organise and monitor the project effectively. (Contribution 2)

119

Appendix D

7.2.2 Facilitating decision making process

HSEM approach which is developmental and incremental would facilitate the

development of integrated decision support system at all three levels of managerial

planning, namely strategic, tactical and operational levels. For example, one of the

decision making areas at the corporate level can be design of a manufacturing system.

After a broad architecture of the system is identified, a HSEM may be developed to

answer the detailed design issues like number of machines required, the type of

computer control at each level etc. Several design alternatives can be evaluated and

the one best suits the business goal can be selected.

At a tactical level, the impact of a decision taken at strategic level can be emulated

and the output can be analysed to get more insight into the system behaviour. For

example, for a particular design configuration chosen, the material requirement plan

over the planning horizon can be emulated. Similarly emulation of inventory systems

helps finding best inventory policy for the system. At this level, a detailed model may

even be used to compare the projected work load generated from MRP with machine

and labour resources available. The model may assist the process of capacity

management by producing profiles of load against capacity over time. This in turn

assists in management decision-making regarding short-term capacity planning and

adjustment.

At operational level, HSEM may be used for a detailed, day-to-day scheduling, which

is derived from production plans made at higher levels. At this level, it may also be

used as a part of the overall shop floor control. The current status of the shop floor

can be maintained using an interface with the shop floor software as well as the

factory database. Depending on the current status, various production control

decisions can be specified. The effect of such decisions on the progress of the orders

in terms of the due dates, WIP, and machine utilization level could then be checked.

The type of decision to be emulated would include, for example, the effect of batch

sizes and times of batch release. The progress of jobs through a shop can be emulated

120

Appendix D

once a particular control decision has been implemented. From the results, proper

adjustments could be made in the schedule.

Decisions at various levels of a system highly influence each other. The consequence

of ignoring such real-time interaction could be very serious. Using HSEM, managers

can analyse various decisions at any planning level, and observe the effects of these

decisions on the other levels. (Contribution 3)

7.2.3 Another perspective of emulation technology

Emulation which is considered to be an extension of simulation technology is in a

situation similar to when simulation was emerging and perceived to be only for large

companies. As reported in Chapter 2, publications on emulation are limited. Thus not

many know about its technology and the cost-benefit it brings. This thesis provides

better awareness as well as another perspective of emulation technology and hope to

attract the attention of wider spectrum of potential users. (Contribution 4)

The major inhibitors to widespread use of modelling and simulation in manufacturing

are the perception of its high costs of model building and low reuse. The perception is

even worse for emulation due to the fact that it being more detailed and complex.

Section 2.4 of Chapter 2 explains simulation-emulation relationships while section

2.5 reports some application of emulation. This would provide better understanding

of emulation technology and with that the modeller and client would be able to make

a more informed decision with regard to investing in emulation technology.

(Contribution 5)

7.2.3 Potential areas of development

The results of the questionnaire survey conducted in this research work, as reported in

Chapter 3, have indicated increasing interest among simulation users in the use of

emulation technology as well as have identified priority areas of development. This

121

Appendix D

would help future researchers justify and prioritise their work, especially in

developing tools and facilities for building emulation model easier and more user-

friendly. (Contribution 6)

Chapter 4 describes the requirements and criteria of functionalities in simulation

software packages that are needed for the development of HSEM. They are

categorised into features that should provide (1) the flexibility of adding details to the

simulation model while assuring its correctness and (2) the inter process

communication between model and real control system.

The specific emulation modelling features and the comparison of features for HSEM

against selected simulation software packages presented in section 4.4 could be used

by the HSEM developer as benchmark for selecting the appropriate software package

for the project. To the simulation software vendor, these would help to identify

specific areas for feature enhancement or tool development. (Contribution 7)

7.2.4 Convertible Simulation-emulation model

As reported in Chapter 6, the research work has proved that HSEM is viable, refuting

the perception that simulation and emulation are non convertible. This would pave the

way for more aggressive work by future researchers on making emulation model

more affordable. (Contribution 8)

As a result of emulation technology in the form of HSEM becoming more affordable,

the industry in general would benefit in terms of low overall cost, efficient use of

resource and client satisfaction. Also, the consumers at large would be able to receive

better and faster product delivery as well as wider choice of products. (Contribution

9)

122

Appendix D

7.2.5 Summary of Contributions to Knowledge

The contributions of this research to knowledge is summarised according to the

benefits classified in the previous sections and their beneficiaries shown in Table 7.1.

Table 7.1 Summary of Contributions to Knowledge

Beneficiaries
Contributions
And Benefits

Modellers Software
developers and

researchers

Client
(Industry)

Product
Customer
(Public)

1 E E

2 E

3 E E

4 E E

5 ® E

6 E

7 E E

8 E E

9 E E

7.3 Recommendations for future work

The present work has produced a generic methodology and guide for developing

HSEM. Thus it is open to modellers to develop models in their own application area

using their choice of simulation software. However below are some suggestions for

future researchers to work on to make emulation modelling more appealing and

useful.

123

Appendix D

7.3.1 Enriching existing special packages.

Although the focus of the current work is on the application of HSEM in

manufacturing system, there are also other potential application areas that could use

HSEM methodology. As reported in Chapter 3, those areas include transport system,

business process and security system. Some software vendors offer special packages for

example to model logistics, healthcare and call centre which include templates and

functionalities for specific applications. Blending these functionalities with real time

(RT) modelling tools would significantly reduce the effort to develop emulation model in

the respective area.

However, compatibility of certain modules or blocks with RT modeling tools needs to be

investigated or perhaps modified before use. For example in the context of modelling

using Arena, as indicated in section 6.5.2.2, while Arena is equipped with RT modelling

tools there are modules and blocks that are presently not compatible. These could be

developed further either by the software developer or the modeller to enhance the use of

RT modelling tool for emulation modelling.

7.3.2 Interface development tools

The experience of developing the method and validating the methodology, as reported

in Chapter 6 has highlighted the need to have access to lower level codes and the skill

to use them in modelling detail. At present some level of programming skill is

required to program and use the appropriate tools or functions to develop system

interface for inter process communication. It is widely accepted fact that easy model

building means requiring no or minimal programming. Thus this work has

emphasised the need for future researchers and software developers alike to develop

more user friendly codes or blocks for developing inter process communication

interface. This would be useful to enable the emulation modeller to concentrate on

developing emulation model which itself is already complex.

124

Appendix D

7.3.3 More Comprehensive Feature Review

It is acknowledged that enhancements and new functionalities are continuously being

developed by the simulation software vendors and new features are introduced in

version upgrades. Thus it is difficult for the researcher to make authoritative

comparisons on the availability and accessibility of certain functions in the software

packages in the market. The software comparison for HSEM suitability presented in

Chapter 4 can be used as a guide and researchers as well as HSEM modellers are

recommended to regularly review and update the comparison table so as to make the

comparison more comprehensive and up-to-date.

7.4 Conclusions

This research has devised and developed a new approach to develop emulation model

called Hybrid Simulation Emulation Model (HSEM). Prior to this, simulation model

and emulation model are considered to be non convertible. This work has proved that,

by applying the methodology devised and described in the thesis, a simulation model

built for initial analysis and development can be converted into an emulation model

for testing a control system.

Potentially the methodology developed offer a starting point for further research into

the comprehensive support for the implementation of real time control system testing

using emulation. Hence the future application of this methodology and

recommendations may lead to important technical and commercial benefits.

125

Appendix D

REFERENCES

Aguilar-Saven, R. S. R. S. (2004). "Business process modelling: Review and
framework." International Journal of Production Economics 90(2): 129-149.

Auinger, F., M. Vorderwinkler and G. Buchtela (1999). Interface Driven Domain-
Independent Modeling Architecture For "Soft-Commissioning" And "Reality In The
Loop". The 1999 Winter Simulation Conference, Phoenix, AZ, USA.

Balci, O. (2003). Verification. Validation. And Certification Of Modeling And
Simulation Applications. The 2003 Winter Simulation Conference, New Orleans, LA,
USA.

Ball, P. (1998). "Abstracting Performance In hierarchical Manufacturing Simulation."
Journal Of Materials Processing Technology 76(1-3): 246-251.

Ball, P. D. (1996). Introduction to discrete event simulation, the 2nd DYCOMANS
workshop on "Management and Control: Tools in Action", Algarve, Portugal,.

Banks, J. (1998). Handbook of simulation : principles, methodology, advances,
applications and practice. New York, Wiley : Engineering and management press.

Banks, J. (2000). Simulation In The Future. The 2000 Winter Simulation Conference,
Orlando, FL, USA.

Banks, J., J. S. Carson, B. L. Nelson and D. M. Nicol (2000). Discrete event system
simulation. Upper Saddle River, New Jersey, USA, Prentice Hall.

Bapat, V. and D. T. Sturrock (2003). The Arena Product Family: Enterprise Modeling
Solutions. The 2003 Winter Simulation Conference, New Orleans, LA, USA.

Benjamin, P., M. Erraguntls, D. Delen and R. Mayer (1998). Simulation Modelling at
Multiple Levels of Abstraction. The 1998 Winter Simulation Conference,
Washington DC, USA.

Boer, C. A., A. Verbraeck and H. P. M. Veeke (2002). The Possible Role Of A
Backbone Architecture In Real-Time Control And Emulation. The 2002 Winter
Simulation Conference, Salt Lake City, UT, USA.

126

Appendix D

Brennan, R. W. (2000). " Performance comparison and analysis of reactive and
planning-based control architectures for manufacturing." Robotics and Computer
Integrated Manufacturing 16(2-3): 191-200.

Brennan, R. W. and D. H. Norrie (2001). "Evaluating The Performance Of Reactive
Control Architectures For Manufacturing Production Control." Computers In Industry
46(3): 235-245.

Cheshire, C. and J. Hodgson (2001). Using AutoMod and Emulation. Coca-cola
improved system throughput by 17%. The 2001 Brooks Automation Symposium
Proceedings.

Dalai, M., B. Groel and A. Prieditis (2003). Real-Time Decision Making Using
Simulation. The 2003 Winter Simulation Conference, New Orleans, LA, USA.

Davis, W. J., J. G. Macro, A. L. Brook, M. S. Lee and G. S. Zhou (1996). Developing
A Real-Time Emulation/Simulation Capability For The Control Architecture To The
Ramp FMS. The 1996 Winter Simulation Conference, Coronado, CA, USA.

Dougall, D. J. (1998). Applications and benefits of real-time I/O simulation for PLC
and PC control systems. ISA Transactions. Vol.36: 305-311.

Eldabi, T. and R. J. Paul (1997). Flexible Modeling Of Manufacturing Systems With
Variable Levels Of Detail. The 1997 Winter Simulation Conference, Atlanta, GA,
USA.

Gonzalez, F. G. and W. J. Davis (1997). A Simulation-Based Controller For
Distributed Discrete-Event Systems With Application To Flexible Manufacturing.
The 1997 Winter Simulation Conference, Atlanta, GA, USA.

Gonzalez, F. G. and W. J. Davis (1998). Developing A Physical Emulator For A
Flexible Manufacturing System. IEEE International Conference on Systems, Man and
Cybernetics.

Habchi, G. and C. Berchet (2003). "A model for manufacturing systems simulation
with a control dimension." Simulation Modelling Practice and Theory 11(1): 21-44.

Harrell, C. R. and R. N. Price (2002). Simulation Modeling Using Promodel
Technology. The 2002 Winter Simulation Conference, Salt Lake City, UT, USA.

Hasnan, K. and T. Perera (2004). Hybrid Simulation-Emulation Model: AGVS
Example. ESDA04 7th Biennial Conference On Engineering Systems Design And
Analysis, Manchester, United Kingdom, ASME.

Hasnan, K., T. Perera and D. Clegg (2005). User Perspectives On The Use Of
Emulation In Control System Testing. 3rd International Conference on Manufacturing
Research (ICMR 2005), Cranfield University, UK.

127

Appendix D

Heinicke, M. U. and A. Hickman (2000). Eliminate Bottlenecks with Integrated
Analysis Tools in eM-Plant. The 2000 Winter Simulation Conference, Orlando, FL,
USA.

Hlupic, V. (2000). Simulation Software: An Operational Research Society Survey Of
Academic And Industrial Users. The 2000 Winter Simulation Conference, Orlando,
FL, USA.

Hodgson, J. and M. Kartz (2000). Using A Portable Simulation Structure With
Emulation For Offline Testing, AutoSimulations Symposium. AutoSimulations
Symposium.

Holst, L. (2001). Integrating Discrete-Event Simulation into the Manufacturing
System Development Process : A Methodological Framework. Division of Robotics,
Department of Mechanical Engineering. Lund, Sweden, Lund University.

Horton, I. (1998). Beginning Visual C++ 6. Birmingham, Wrox Press.

Hunter, M. and R. Machemehl (2003). Development And Validation Of A Flexible,
Open Architecture. Transportation Simulation. The 2003 Winter Simulation
Conference, New Orleans, LA, USA.

Jeong, K.-C. and Y.-D. Kim (1998). "Real-time scheduling mechanism for a flexible
manufacturing system: Using simulation and dispatching rules." International Journal
of Production Research 36(9): 2609-2626.

Joines, J. A. and S. D. Roberts (1999). Simulation In An Object-Oriented World. The
1999 Winter Simulation Conference, Phoenix, AZ, USA.

Jordan, S. E., M. K. Snell, M. M. Madsen, J. S. Smith and B. A. Peters (1998).
Discrete-Event Simulation For The Design And Evaluation Of Physical Protection
Systems. The 1998 Winter Simulation Conference, Washington DC, USA.

Julia, S. and R. Valette (2000). "Real time scheduling of batch systems." Simulation
Practice and Theory 8(5): 307 - 319.

Kelton, W. D., R. P. Sadowski and D. T. Sturrock (2004). Simulation With Arena,
Third Edition. New York, McGraw Hill.

Klingstam, P. and P. Gullander (1999). "Overview of simulation tools for computer-
aided production engineering." Computers in Industry 38(2): 173-186.

Krahl, D. (2003). Extend: An Interactive Simulation Tool. The 2003 Winter
Simulation Conference, New Orleans, LA, USA.

Law, A. M. and W. D. Kelton (2000). Simulation modeling and analysis. New York,
McGraw-Hill.

128

Appendix D

Law, A. M. and M. G. Mccomas (1999). Simulation Of Manufacturing Systems. 1999
Winter Simulation Conference, Phoenix, AZ, USA.

LeBaron, H. T. and R. A. Hendrickson (2001). Using Emulation To Validate A
Cluster Tool Simulation Model. The 2001 Winter Simulation Conference, Arlington,
VA, USA.

LeBaron, T. E. and K.Thompson (1998). Emulation Of A Material Delivery System.
The 1998 Winter Simulation Conference, Washington DC, USA.

Lee, K. and P. A. Fishwick (1999). "OOPM/RT: A Multimodeling Methodology For
Real-Time Simulation." ACM Transactions On Modeling And Computer Simulation
9(2): 141-170.

Mcgregor, I. (2000). The Use Of Emulation In Commissioning: An Example Model.
AUTOFLASH. 13.

Mcgregor, I. (2002). The Relationship Between Simulation And Emulation. The 2002
Winter Simulation Conference, Salt Lake City, UT, USA.

Mehrabi, M. G., A. G. Ulsoy and Y. Koren (2000). "Reconfigurable Manufacturing
Systems: Key To Future Manufacturing,." Journal Of Intelligent Manufacturing 11:
403 - 419.

Meinert, T. S., G. D. Taylor and J. R. English (1999). " A modular simulation
approach for automated material handling systems,." Journal of Simulation Practice
and Theory 7: 15-30.

Mueller, G. (2001). Using Emulation To Reduce Commissioning Costs On A High
Speed Bottling Line. The 2001 Winter Simulation Conference, Arlington, VA, USA.

Nikoukaran, J. and R. J. Paul (1999). "Software selection for simulation in
manufacturing: a review." Simulation Practice and Theory 7(1): 1-14.

Nketsa, A. and R. Valette (2001). "Rapid and Modular Prototyping-based Pet Nets
and Distributed Simulation for Manufacturing Systems." Journal of Applied
Mathematics and Computation: 265-278.

Nordgren, W. B. (2003). Flexsim Simulation Environment. The 2003 Winter
Simulation Conference, New Orleans, LA, USA.

Oppenheim, A. N. (1992). Questionnaire design, interviewing and attitude
measurement. London, Pinter Pub Ltd.

Page, E. H. and R. Smith (1998). Introduction To Military Training Simulation: A
Guide For Discrete Event Simulationists. The 1998 Winter Simulation Conference,
Washington DC.

129

Appendix D

Persson, J. F. (2002). "The impact of different levels of detail in manufacturing
systems simulation models." Journal of Robotics and Computer Integrated
Manufacturing 18: 319-325.

Peters, B. A., J. S. Smith, J. Curry and C. LaJimodiere (1996). Advanced Tutorial -
Simulation-based Scheduling and Control. Proceedings Of. The 1996 Winter
Simulation Conference, Coronado, CA, USA.

Pidd, M. and R. B. Castro (1998). Hierarchical Modular Modelling In Discrete
Simulation. The 1998 Winter Simulation Conference, Washington DC, USA.

Rabbath, C. A., M. Abdoune and J. Belanger (2000). Effective Real-Time
Simulations Of Event-Based Systems. The 2000 Winter Simulation Conference,
Orlando, FL, USA.

Randell, L. G., L. G. Holst and G. S. Bolmsj'o (1999). Incremental System
Development Of Large Discrete-Event Simulation Models. The 1999 Winter
Simulation Conference, Phoenix, AZ, USA.

Rawles, I. (1998). The Witness® Toolbox - A Tutorial. The 1998 Winter Simulation
Conference, Washington DC, USA.

Rengelink, W. and Y. A. Saanen (2002). Improving The Quality Of Controls And
Reducing Costs For On-Site Adjustments With Emulation:An Example Of Emulation
In Baggage Handling. The 2002 Winter Simulation Conference, Salt Lake City, UT,
USA.

Robertson, N. and T. Perera (2002). "Automated data collection for simulation?"
Simulation Practice and Theory 9(6-8): 349-364.

Robinson, S., R. E. Nance, R. J. Paul, M. Pidd and S. J. E. Taylor (2004). "Simulation
model reuse: definitions, benefits and obstacles." Simulation Modelling Practice and
Theory 12(7-8): 479-494.

Rogers, P. and R. W. Brennan (1997). A Simulation Testbed For Comparing The
Performance Of Alternative Control Architectures. The 1997 Winter Simulation
Conference, Atlanta, GA, USA.

Rohrer, M. and I. W. McGregor (2002). Simulating Reality Using AutoMod. The
2002 Winter Simulation Conference, Salt Lake City, UT, USA.

Rumbaugh, J. (1991). Object-oriented Modelling and Design. New Jersey, Prentice
Hall International.

Sadowski, D. A. and M. R. Grabau (1999). Tips For Successful Practice Of
Simulation. The 1999 Winter Simulation Conference, Phoenix, AZ, USA.

130

Appendix D

Schiess, C. (2001). Emulation : Debug in the Lab - Not On The Floor. The 2001
Winter Simulation Conference, Arlington, VA, USA.

Schludermann, H., T. Kirchmair and M. Vorderwinkler (2000). Soft-Commissioning:
Hardware-In-The-Loop-Based Verification Of Controller Software. The 2000 Winter
Simulation Conference, Orlando, FL, USA.

Shnits, B., J. Rubinovitz and D. Sinreich (2004). "Multicriteria dynamic scheduling
methodology for controlling a flexible manufacturing system." International Journal
of Production Research 42(17): 3457-3472.

Smith, J. S. (2003). "Survey on the use of simulation for manufacturing system design
and operation." Journal of Manufacturing Systems 22(2): 157.

Smith, J. S., B. A. Peters, S. E. Jordan and M. K. Snell (1999). Distributed Real-Time
Simulation For Intruder Detection System Analysis. The 1999 Winter Simulation
Conference, Phoenix, AZ, USA.

Stewart, P., P. J. Fleming and S. A. MacKenzie (2003). "Real-time simulation and
control systems design by the response surface methodology and designed
experiments." International Journal of Systems Science 34(14-15): 837-850.

Thomas, S. J. (1999). Designing surveys that work! : a step-bv-step guide. Thousand
Oaks, California, Corwin Press.

Vedapudi, S. (2001). Using MCM To Do Emulation Of A Car Assembly Line. The
2001 Brooks Automation Symposium Proceedings.

Verbraeck, A. and C. Versteegt (2000). A bridge between the design and
implementation of complex transportation systems - Linking simulation models and
physical models. 12th European Simulation Symposium ESS2000 - Simulation in
Industry, Hamburg, Germany, SCS publications,Ghent.

Verbraeck, A. and C. Versteegt (2001). Logistic for fully automated large-scale
freight transport systems. 2001 IEEE Intelligent Transportation Systems Conference,
Oakland (CA), USA.

Versteegt, C. and A. Verbraeck (2002). The Extended Use Of Simulation In
Evaluating Real-Time Control Systems Of AGVS And Automated Material Handling
Systems. The 2002 Winter Simulation Conference, Salt Lake City, UT, USA.

Wells, G. J., R. E. Zee and C. J. Damaren (2002). " Hardware Emulation Strategies
for Concurrent Microsatellite Hardware and Software Development." The Canada
Aeronautics and Space Journal 48(1): 87-95.

Wright, P. (1998). Beginning Visual Basic 6 Objects. Birmingham, U.K., Wrox
Press.

1.31

Appendix D

Wu, B. (1994). Manufacturing systems design and analysis : context and techniques.
London, Chapman and Hall.

Xu, J., K. L. Hancock and F. Southworth (2003). Dynamic Freight Traffic Simulation
Providing Real-Time Information. The 2003 Winter Simulation Conference.

Young, J. and W. Heider (2002). Emulating An Order Fulfillment System. Brooks-
PRI Automation Simulation Symposium 2002, Salt Lake City, UT, USA.

132

Appendix D

Appendix A

Survey Questionnaire

133

Appendix D

Control System Testing Using Simulation Survey

Although control system testing using simulation also known as 'emulation' has been used
extensively in the design on manufacturing systems, it would also applicable in other areas as well.
Examples are logistic control in transportation and defence, production process control as well as
business process control.

The aim of the survey is to obtain feedback from simulation practitioners on the usage of simulation
for control system testing, their application areas and development problems. This will then help us to
identify areas of potential research to enhance the use of emulation.

If you would like further information on our work, please contact us at the School of Engineering,
Sheffield Hallam University, England.

Khalid Hasnan or Prof Terrence Perera
k.hasnan@shu.ac.uk t.d.perera@shu.ac.uk

1. Are you an academic or industrial user of simulation software?

r Academic

H Industrial

2. Do you use simulation to test control system in your work?

□ Yes
Please go to Question 3

□ No
Please go to Question 6.

3 . Which application area do you use simulation for control system testing? (You can tick
more than one box.)

E Process Control v D Business Process
(Production)

n Material Handling , w , . , □ Security System
(e.g.Manufactunng)

(Cargo, Passenger)
r Transportation

r Other pjease specify].....----------------------------

4. Please rank the following in terms of the benefit o f using simulation for control system
testing? (1 = Greatest, 4 = Least)

E Short Commissioning Time

f" Low Overall Cost

r Effecient Use of Resource

f ~ Client Satisfaction

r Other Suggestion

134

mailto:k.hasnan@shu.ac.uk
mailto:t.d.perera@shu.ac.uk

Appendix D

5. In designing simulation model for testing control system, which development stage
would require a specific tool or module to facilitate emulation model building? Please
rank according to its importance. (1 = Greatest, 3 = Least)

P Determining the correct level of detail for model representation

P Modifying simulation code

□ Interfacing between models

□ Other
Please specify

7.

Which simulation package(s) do you primarily use?

P Arena P Automod

p EmPlant/S imple++

p Quest

□ Other

P Extend

FI Witness

P AweSim

P Promodel

Please specify!

Which application area do you think would benefit from the advancement of control
system testing using simulation technology? (You can tick more than one box.)

P Process Control P Business Process
(Production)

P Material Handling / w r x P Security System

p Transportation

(e.g. Manufacturing)

(Cargo, Passenger)

P Other
Please specify.!

Please feel free to add any comments about anything you feel is particularly
important to facilitate modifying a simulation model into a model that is capable to
test a real control system.__

our e-mail address
Error! Objects cannot be crea (Optional - please enter your e-mail address if you would
Thank you. be interested in sharing o f information in this area and/or

135

Appendix D

Appendix B

Conference Paper Proceedings

Appendix B .l Hybrid Simulation-Emulation Model: AGVS
Example.

(ESDA 2004, Manchester UK)

Appendix B.2 User Perspectives on the Use of Emulation in Control
System Testing.

(ICMR 2005, Cranfield UK)

136

Appendix D

ESDA2004-58130

HYBRID SIMULATION-EMULATION MODEL :
AGVS EXAMPLE.

Khalid Hasnan
Terence Perera

School of Engineering
Sheffield Hallam University

Sheffield SI 1WB
United Kingdom

K e y w o r d s : E m u la t io n , S im u la t io n , A r e n a R T , A G V .

ABSTRACT

Simulation and emulation have several salient contrasting functions and features.
They include different aims, levels of details, execution time and integration of
models.

In many cases, a project will require both a simulation model for initial analysis and
development, as well as an emulation model for testing a control system. If this is the
case, a copy of the simulation model can be used as a starting point for developing the
emulation model. Hybrid simulation-emulation model, one that is used for both
purposes should have a facility to switch off/on certain elements from the model as
necessary.

There is much published work in simulation and a dearth of work in emulation. To
date there has been no work published in converting a simulation into emulation
model.

This paper describes a novel approach which combines both attributes and is
illustrated using a case study based on an Automated Guided Vehicle System
(AGVS).

137

Appendix D

1 Introduction

The current trend towards highly automated systems that are intended to adapt
quickly to change while providing extensibility through a modular, distributed design.
[1, 2]

In order to realise the flexibility and productivity that these advanced system
promise, system modelling, simulation and control are viewed as increasingly vital to
enable the components of these automated manufacturing systems to work together in
an integrated way.

A growing application of simulation and control is emulation, where a
simulation model is used to replace a real Automated Material Handling System
(AMHS) in order to test and debug an industrial control system.

Emulation provides a reliable and safe way of verifying control code
functionality offline, training operators in a safe environment, and of testing
modifications to a control system before they get put into effect. The emulation model
can also serve as a test bed for any further control system modifications throughout
the life of the system, so production is not disrupted.

Designing an emulation model is similar to designing a simulation model; but
there are some important differences [3]
• An emulation model must include communication logic. Emulation models open
connections with one or more controllers for example OPC servers, and read and
write item values throughout a model run.
• An emulation model is often more detailed than a simulation model. Because
the emulation model must provide the same responses to the controllers as real
system hardware, the model must be designed to respond to many system events that
would otherwise not require custom processing during a simulation. (For example, an
emulation model might be required to send signals to a controller server when a load
begins a pop-up transfer, when the transfer has completed lifting, when the load
moves to the new section and when the transfer completes lowering.)
• Simulation model typically has no direct links to external devices. Emulation
model often responds to signals from the control system, which controls system
processes.

Even though the benefits of using emulation for the analysis of manufacturing
systems are well acknowledged, the speed and cost of its model building remains a
concern.

At present, a project will require a simulation model for initial analysis and
development as well as an emulation model for testing a control system. It is unlikely
that the emulation model will be suitable for the initial analysis phase. The main
reason is that the control system is unlikely to be available as it is usually a result of
the definition stage. A second reason is that the emulation model is likely to be much
more detailed than the analysis model, and so will run more slowly, making the
necessary simulation analysis prohibitive. [4]

A proposed solution to this is to develop a hybrid simulation-emulation model
or composable simulation model, one that is used for both purposes and should have a
facility to switch off/on certain elements from the model as necessary.

In this paper we provide insight on the methodology to convert an existing
simulation model into an emulation model using Arena Simulation package.

138

Appendix D

2 Manufacturing Systems and Emulation Review

Understanding the manufacturing systems entities is crucial for the success of
a manufacturing emulation project where communication between entities and the
elements in the manufacturing system has to be in real time. Table 1 shows this
relationship, and addresses the importance of material and information transfers/flows.

Table 1 Manufacturing System Entities Relationship

Processing

Transportation

These entities are classified along two main axes: plant vs. control, and
processing vs. transportation . Elements in the plant classification comprise the
physical factory, such as machines, material and transporters. Elements in the control
classification comprise the logical factory, including decision-makers, performance
evaluators and information about the physical factory. Elements in the processing
classification focus on the intermediate transformation steps that turn raw materials
into finished goods, while elements in the transportation classification address the
logistics of moving material through the various process stages. [5]

For the project to be cost effective, the developer has to be selective on which
part of the simulation model need to be emulated. This can be achieved by reviewing
the key performance indicators (KPIs) and identifying their associated variables that
would have great influence. For example, in a flexible manufacturing plant a
decision may require varying certain parameters in the processing and transportation
variables as shown in Table 1.

Plant Control

M achines, material
processing operations,
storage buffers, machine
setup, inspection

Commands

< --------
----------►

Status updates

Controllers, operators, .
m achine state information,
controller domains, process
recipes, m achine
scheduling, process
monitoring

i

y

Material transfer via
shared locationsr

11 Information transfer
via networks

▼

Transporters, conveyors,
material m ovement
operations.

Commands

< --------

----------w
Status updates

Controllers, operators,
transporters state
information, controller
domains, material
movement requests,
process plans

139

Appendix D

3 Steps for simulation to emulation conversion

There are three basic steps in building emulation model from existing simulation
mode. The steps below are generic and applicable to other simulation software
packages. Arena software package was used as an example.

3.1 Model Structure
Abstract to the appropriate level of details of the control elements (modules/

process/ variables/ parameters) that are affecting the KPIs. This necessitates the
model to be modular, hierarchical and configurable as shown in Fig.l [6]

Fig. 1 Integration of different hierarchical module

Arena employs an object-oriented design for entirely graphical model development.
The graphical modules can be used by simulation analysts to create models and are
provided “off-the-shelf’ with Arena. [7] It also provides the integration of different
hierarchical Arena modules and SIMAN codes. These modules can also be custom
designed to produce a modelling environment that is tailored to a specific application
area, for example to facilitate emulation model building. The resulting collection of
user-created modules would then be contained inside an Application Solution
Template (AST) that can be shared by any licensed Arena user.

3.2 Communication
Establish the communication procedure in Real Time. Communications can be

achieved through sockets, NetDDE, DCOM, or OPC. A model communication
structure is shown in Fig. 2.

Client Computer

Simulation M odel:
G raphical A nim ation,
Statistical Output

N etw ork
Interface
(S ock et)

N etw ork
Interface

« - TC P/IP <■ (S ock et)
* >

M essage
Handler

(R T C on cso le)

Server Computer

R outing L ogic ,
S ch ed ulin g A lgoritm ,
H ost C ontrollers,
PLC /PC T esting

Fig 2 Emulation Model Communication Structure

140

Appendix D

As in the case study example, models can communicate through sockets to open and
close socket connections, send and read data messages (including strings and C
structures), and send and read synchronization messages.

It involves three important phases:

3.2.1 Model modification and preparation
A message to send from a logic module or block to the external process needs

to be specified. In Arena this can done by changing the fixed delay time (or velocity)
in the model statement blocks or modules of 'Delay', 'Route', Transport', 'Move',
'Process', 'Enter' or 'Leave' to

TASKED (Value, TaskID [, TimeOutInterval][, ErrorLabel])

internally controlled
simulation time

externally controlled
execution time (Real
time task)

The logic of a TASKID expression is executed as two threads in parallel. The
first thread simulates the delay or transfer time using the specified Value. The second
thread executes the real-time task by sending a message to the real system to start an
activity; it then waits for the system to respond with a "task completed" message. If
the execution thread finishes before the simulation thread, the simulation thread is
terminated and the entity departs the block. If the simulation thread finishes first, the
entity remains suspended in the block until either (a) the execution thread completes,
or (b) the actual task time exceeds Value by an amount that is greater-than-or-equal to
the Timeoutlnterval, in which case the task is terminated with a timeout error and the
entity is sent to the block specified by ErrorLabel.

3.2.2 Message Handling
This involves defining the format of messages the simulation entities may

send to the external process. In Arena this is called experiment statements defined in
'Tasks' Element.

The TASKS element defines message strings that simulation entities may send
to an external process when Arena is running in execution mode. After sending a
message, an entity can then wait for a response back from the external application
before proceeding to the next block. This allows us to coordinate the simulation logic
with the external process of a real system.

The ARRIVALS element creates batches of entities that arrive at the system
model at specified times. In execution mode, the time is specified by key hit or
message and the corresponding operands initiated by external process.

3.2.3 Inter-Process Communication

To coordinate simulation logic with the external process of a real system, he
simulation model need to be programmed for the control system to open socket
connections and read and send messages. In Arena this can be done using SIMAN,
VBA and C++.

141

Appendix D

For example, the following VBA events provided in Arena’s ThisDocument
object is used. These events are only called when Arena is running in execution mode.

• RealTimelnitialize—called at the beginning of the first replication. Place code
that initializes the inter-process communications here.

• RealTimeSend—Called when an entity tries to send a message to the external
process. Place code that sends the message to the IPC queue here.

• RealTimeRetrieve—Code that retrieves messages from the IPC queue and
passes them to Arena here.

• RealTimeTerminate—called at the end of the last replication. Place code that
terminates the inter-process communications here. [6]

UserForms (dialogs) are useful for custom interfaces to connect IP addresses
and ports of the client and server through sockets.

3.3. Run/Simulate the model.

• Set to run in Real Time mode (execution mode in Arena) in the Run Setup
menu.

• Establish connection to simulation model (client) by invoking 'listen' on the
message handler through its local port.

• Confirm connection by invoking the 'connect' method to the server IP address
and port.

• Run the model.

4. Case Example

The case example is the modelling of a four manufacturing cells system. The system
model also consists of part arrivals, and part departures. Cells 1, 2 and 4 each have
single machine; Cell 3 has two machines. The system produces three parts, each
visiting different sequence of stations. The parts are transported between stations by
means of two Automated Guided Vehicles (AGV).

4.1 Model Logic Example
The Arena model in Fig. 3 shows the modelling logic and animation of the

manufacturing system based on the assumed time projection of events. In reality
assumed time projections are not enough. For example, due to limited buffer space
the machines need to communicate between each other as well as with the arrival
controller to monitor the number of parts coming to the respective stations.

The model, shown in Fig. 4, is a modification of the simulation model
incorporating Real Time elements. Only the logic diagram is shown as the animation
diagram in this example is the same as for simulation. This model demonstrates
Arena running in execution mode and conducting inter-process communications with
an external client application called RTConsole.exe written in Visual Basic.

The communication between machine computers client/server uses socket, a
program device which supplies sending and receiving data via the defined TCP/IP
port. In this case example, socket technology for MS Windows called Winsock was
used.

142

Appendix D

The simulation of sending and receiving of the relevant parts by the respective
machine on a 'client' was successfully controlled through a remote computer which
acted as a 'server'.

4.2 Message Handling Example

When Arena is run in execution mode, each part will send a "LoadPart"
message to the external message handler, RTConsole, before loading part on to an
AGV and transporting it to the next station. Also when an AGV begins unloading on
to a station, it will send an "UnloadingPart" task to RTConsole. A "task complete"
response must then be sent back to Arena to indicate when the part has completed its
unloading, free the AGV. The AGV then waits for or execute the next command.
As an example, simulation code for loading a part on to an AGV at a station.

REQUEST : AGV(SDS,AGV#)
DELAY : UNIF(0.5,1.5)
TRANSPORT: AGV(AGV#)

In the control application, the logic is identical except that the time delay
depends on the performance of a physical task rather than an internal clock.

REQUEST : AGV(SDS,AGV#)
DELAY : TASKID(UNIF(0.5,1.5), LoadingTime)
TRANSPORT: AGV(AGV#)

The difference in the setting and code, where there are differences, between
simulation and emulation models can be viewed in Table 1.

Table 2. Param eter setting differences between simulation and emulation using
Arena RT.

Module or Block or
Element (Name/Variable)

Simulation Emulation

DELAY
Loading To AGV#

Load Time Delay
Units

UNIF(0.5,1.5)
minutes

TASKID(UNIF(0.5,1.5), LoadingTime)
minutes

*
ENTER
Unloading To Cell 1

Unload Time Delay
Units

UNIF(0.6,1.3)
minutes

TASKID(UNIF(0.6,1.3),UnLoadingTime)
minutes

TASKS
Loading Time

Format

Parameter

Not Used "LoadPart %1.0f TGID=%1.0f loc %1.0f
TNOW=%5.2f"
Entity.Type, IDENT, Entity.Station,
TNOW

TASKS
Unloading Time

143

Appendix D

Format

Parameter

Not Used "UnloadPart % 1 .Of TGID=% 1 .Of loc
%1.0f TNOW=%5.2f"
Entity.Type, IDENT, Entity.Station,
TNOW

**
TASKS
Order Part Type 1 Not Used

Format "OrderPartType %1.0f TNOW=%5.2f;"
Parameter Entity.Type, TNOW

**
ARRIVALS Not Used
Order Part Type 1

Type Station
TypelD Order Release
Time Message
Assignment

Variable ID Entity.Type
Value Part Type 1

Keys
AGV# refers to the unit number of the AGV
* Similar settings and changes for Modules of 'Enter Cell 2', 'Enter Cell 3',
'Enter Cell 4' and 'Enter Exit Station'.
** Similar variable name and parameter settings for 'Order Part 2' and 'Order Part
3'

5 Conclusions

Once the key performance indicators (KPI) have been identified, converting a
simulation model into an emulation model requires three fundamental changes.
Firstly, the abstraction to the appropriate level of detail necessitates the model to be
modularised and configurable. Secondly, Communication procedure in real time
needs to be established. Finally before running the model, the simulation model needs
to set up in real time execution mode.

The work presented here only shows the basic steps in converting the
simulation model in Arena software environment. Nonetheless the methodology is
also applicable in other simulation languages and packages.

144

Appendix D

. iA s s ig i P a itT ypeC ,B O lder R e lease
I] a rd Sequence H Station

, t s Transport from

E nter Cell 1

Transport from

E nter Cell 3

R equest

R equest

R equest

D elay

D elay

Queue

Delay

ErlerExit
Station

S e m e n ts : Q ueues and Storage

S toragesS torages S toragesQ ueues Q ueues S toragesQ ueues

A GV.l □

flCV_2 E D

Order

Release i l l__
I a ; I I

_ i r p _ ±

■ o n 3

Fig.3 Simulation model
Parts Anfval Bement

ErlerExit
Station

f j A ss ig n P a r t p
■ 'f j Type and

U S e q u e n c e |

ErterCell 1
C ell 1 P r o c e s s

ErterCell 2

— Queue Request Delay

Sian Soquanca .OuouAGVrSDS.AGV «)

Transport from
Oder Release

Delay

Queue Request Delay

From Coll_2.Quauo AGV(SDS.AGV «)

C e ll 3 P r o c e s s
Request Delay

From C all_3.0uout AGV(SDS.AGV f)

Request Delay

AGVfSDS.AGV ff)

I ! Transport from
Cell

Transport from
Cell 2

Transport from
Cell 3

Transport from
Cell 4

r { D isp o se P a r t

Click this ic o n to s ta r t th e c lie n tR T C o n so la .e x e
OrderPaitl Bement Loading/Unloading Element

Storages Storages

Elements : Queues and Storage

Queues Storages Storages Storages

From C tlL 3 .0uouC «ll_3 V
C»ll_3 Loading

Fig. 4 Emulation model

145

Appendix D

6 References

1. Brennan, R.W. and B. Foroughi, A Control Framework To Support
Responsive Manufacturing. International Journal of Agile Management
Systems, 1999.1(3): p. 159-168.

2. Ramasesh, R., S. Kulkarni, and M. Jayakumar, Agility In Manufacturing
Systems: An Exploratory Modeling Framework And Simulation. Journal of
Integrated Manufacturing Systems, 2001.12(7): p. 534 - 548.

3. McGregor, I. and R.A. Walters. Emulation Overview, in The 2001 Brooks
Automation Symposium Proceedings. 2001.

4. Mcgregor, I. The Relationship Between Simulation And Emulation, in The
2002 Winter Simulation Conference. 2002.

• 5. Bodner, D.A. and L.F. McGinnis. A Structured Approach to Simulation
Modeling o f Manufacturing Systems, in The 2002 Industrial Engineering
Research Conference. 2002. Orlando.

6. Ball, P., Abstracting Performance In hierarchical Manufacturing Simulation.
Journal Of Materials Processing Technology, 1998. 76(1-3): p. 246-251.

7. Takus, D.A. and D.M. Profozich. Arena Software Tutorial, in The 1997
Winter Simulation Conference. 1997.

146

Appendix D

USER PERSPECTIVES ON THE USE OF EMULATION
IN CONTROL SYSTEM TESTING

Khalid Hasnan, Terrence Perera, David Clegg
Faculty of Arts, Computing, Engineering and Sciences,
Sheffield Hallam University,
Sheffield S1 1WB, UK

ABSTRACT

Simulation models with high level of details also known as emulation has been used
to test control in a variety of sectors such as manufacturing, logistics and
transportation. To establish the nature of current use and investigate the factors that
inhibit its use, a survey was conducted to obtain feedback from simulation
practitioners on the use of emulation, their application areas and development
problems. This paper presents findings of the survey and highlights potential research
areas for the application of emulation as well as recommendations for development
with regard to its model building.

1 INTRODUCTION

Traditionally, control systems are often only fully tested after commissioning, at the
'shop floor'. When this has to be done within the time constraints of the project’s
commissioning phase; the result is often unsatisfactory for all concerned, leading to
project overrun, extended ramp times and rising costs. Thus, it is vital to test control
systems before implementing them.

The benefits and potential of using emulation is very well acknowledged [1]
Nonetheless there are also few concerns that need to be addressed. Among them the
economy of scale of building such model and there is a need to understand on how to
develop an emulation model in more cost effective manner.

The paper begins with a background discussion of using emulation for control system
testing based on case studies. It is followed by the outline of the survey, the results
and the analysis. The conclusions highlight the user's perspective on the current use
of simulation for control system testing as well their expectations for the future.

2 SIMULATION FOR CONTROL SYSTEM TESTING

With the technology available today, a combination of reality and simulation to test
control systems is seen to be appropriate. Four possible approaches to test control
systems, based on the possible combinations between reality and simulation, are
shown Figure 1. [2]

1. A combination of a control system and a system being controlled both in reality.
The control system is tested during or after commissioning.

147

Appendix D

2. Soft commissioning. A combination of a control system in reality and a simulated
system being controlled. A hardware-in-the-loop (HIL)-based approach where the
inputs and outputs of a controller are connected to a simulation of the part to be
controlled.
3. Reality in the loop. A combination of a simulated control system and a real system
being controlled such as on a test bed.
4. Off-line simulation. A combination of both a simulated control system and a
simulated system being controlled. Also referred to as pure simulation, it is often used
to understand the behaviour of a system, or to predict an outcome under different
internal and external influences.

simulationreality

control system control system

sy s te m -b e in g -
co n tro lled

Fig. 1 Approaches for Testing Control Systems [3]

From initial case studies [3-6] , building a simulation model for the purpose of
control system testing involves the following.

a) Determining the correct level of detail. Choosing the appropriate level of
detail seems to be a balancing act between, minimising the details on the one hand
and, adding details to ensure usefulness of the model on the other hand.
b) Modifying simulation code, to improve the quality of common core
simulation functions, improve the potential for creating reusable modelling
components from those core functions, and improve the integration of simulation
packages with other applications including controllers.
c) Interfacing between modules. It involves the simulation software interfacing,
synchronizing and real time capability.

3 SURVEY AMONG SIMULATION PRACTITIONERS

The main objectives of the survey were to investigate the extent of use of Emulation
model for Control System Testing, its application areas and users opinion about its
model building.

The questionnaire distributed to the participants of Winter Simulation Conference
2003 consisted of seven topics dealing with

8) type of user,
9) whether or not using simulation for control system testing,
10) current application area,

148

Appendix D

11) ranking the benefits of using simulation for control system testing,
12) important stages for its model building,
13) simulation packages used
14) potential application areas.

Topics (3), (4) and (5) only apply to current users of simulation for control system
testing. The aim was to gather information based on their experience the benefits of
emulation model and facilities that would assist the development of emulation model.

The general meaning of each application area listed in the survey is as follows:
Process control involves monitoring, controlling and improving a process typically in
production environment. [7, 8]
Business Process is collection of activities designed to produce a specific output for a
particular customer or market. [9]
Material Handling is the movement, storage, control and protection of materials,
goods and products throughout the process of manufacturing, distribution,
consumption and disposal. [3, 10]
Security system is the mechanism to protect facilities against intrusions by external
threats as well as unauthorized acts by insiders. It includes physical as well as
information protection. [11,12]
Transport system is the facility consisting of the roads and equipment necessary for
the movement of passengers or goods. Mode of transport includes land, air and
water.[13]

The questionnaire also contained additional space so that respondents could specify
particular application areas, benefits and simulation packages that were not listed in
the original choice of answers.

The survey sample was not selected by any formal statistical method. The
respondents were participants of a simulation conference believed to be regular users
of simulation. The ratio of responses from academics and industry was 40% to 60%.

4 RESULTS OF SURVEY

The results of the survey are presented in two sections. The first section presents
results based on user’s background, distinguishing academic and industrial users view.
Second section focuses on presenting a general need and expectation on the use of
emulation for control system testing.

4.1 Results based on user background

Application area of simulation for control system testing currently being used and
possible application area in the future according to the user type are shown in Table 1

149

Appendix D

Table 1 Current and potential areas using of emulation for control system
testing

User Type
Academic (%) Industrial (%)

Current Potential Current Potential

Application
area using

emulation for
control

system testing

Process Control 28.6 27.6 33.3 33.3
Business Process 28.6 17.2 14.3 18.2

Material
Handling 28.6 20.7 28.6 24.2

Security System 0 10.3 0 3.0
Transport System 14.3 24.1 23.8 21.2

4.2 Results based on users need and expectation

The distribution of the application area of emulation, present and future from
simulation practitioner’s perspective is shown in Table 2.

Table 2. Present and Future Application Area of Emulation

Present (%) Expected (%)
Process Control 33.3 30.9
Business Process 18.5 16.4

Material Handling 29.6 23.6
Security System 0 7.3

Transport System 18.5 21.8

The results of ranking the benefits of using emulation for control system testing based
on weighted average calculation are as follows:
(1) Efficient use of resource
(2) Low overall cost
(3) Shorter commissioning time
(4) Client satisfaction

Ranking of the importance of development stage requiring specific tool for emulation
model building would indicate (1) inhibiting factors at present, (2) important areas of
research and development. The results of survey, in order of importance, are as
follows:
(1) Interfacing between models,
(2) Modifying simulation code,
(3) Determining the correct level of detail.

5 ANALYSIS OF SURVEY RESULTS

The extent to which simulation is used for control system testing and the approach
towards control system testing may vary between different types of users and

150

Appendix D

organizations, depending on the needs and practicality. This is indicated by the results
shown in Table 1 and Table 2.

While process control and material handling are considered by both types of users to
be the prime application areas of emulation, present and future their views are quite
different as regards to other application areas.

On the future use as shown in Table 2, there is notable expectation in using emulation
in the control system testing of transport system and security system among the
academic users indicating research interest.

Another point to note is that the industrial users expects an increase in the use
emulation in business process system testing. This can be viewed as increasing use of
emulation as another tool towards increasing competitiveness among companies.

Regarding the main benefit of building emulation model, although it was initially
perceived to be shortening the commissioning time [8, 10, 14], the results of the
survey on users perception on the benefits of using emulation for control system
testing indicated a different view. The ranking of putting efficient use of resource first,
followed by low overall cost, shorter commissioning time and client satisfaction
underlines the priority of concerns among the respondents.

Table 3 highlights the prospect of simulation model for control system testing across
the spectrum of application areas, if there is better technology for its model building.
It shows a shift towards a wider area of application covering areas beyond
manufacturing and production. Thus, facilities for emulation model building for
generic application is needed.

Regarding specific tools for emulation model building most respondents noted
interfacing between models as most important. Works by researchers [2, 7, 15, 16]
also highlights its importance. The ranking is followed by facility to modify
simulation code and getting the correct level of detail. These facilities depended on
the type and internal structure of simulation package being used. Nikoukaran [17]
provides an insight towards this requirement.

Good system engineering practice would begin with a pure simulation and as
components become better defined with the aid of simulation, they can be fabricated
and replaced in the control loop. Once physical components are added to the loop, un­
modelled characteristics can be investigated, and controls can be further refined.

Similar approach of control system testing could also be adapted to non engineering
application as indicated by the response of the survey.

6 CONCLUSIONS

Emulation has the potential being used for control system testing in areas other than
manufacturing and production like transport system, business process and security
system based on a similar concept to Hardware in the loop simulation (HILS).

151

Appendix D

The simulation users acknowledged a need to provide a generic methodology and
facilities for developing emulation models particularly regarding interfacing between
models.

In general this survey has identified areas for development regarding using simulation
for control system testing.

REFERENCES

1. Banks, J. Simulation In The Future, in The 2000 Winter Simulation
Conference. 2000. Orlando, FL, USA.

2. Auinger, F., M. Vorderwinkler, and G. Buchtela. Interface Driven Domain-
Independent Modeling Architecture For ''Soft-Commissioning'' And "Reality
In The Loop", in The 1999 Winter Simulation Conference. 1999. Phoenix, AZ,
USA.

3. Versteegt, C. and A. Verbraeck. The Extended Use O f Simulation In
Evaluating Real-Time Control Systems OfAGVS And Automated Material
Handling Systems, in The 2002 Winter Simulation Conference. 2002. Salt
Lake City, UT, USA.

4. Mcgregor, I. The Relationship Between Simulation And Emulation, in The
2002 Winter Simulation Conference. 2002. Salt Lake City, UT, USA.

5. Persson, J.F., The impact o f different levels o f detail in manufacturing systems
simulation models. Journal of Robotics and Computer Integrated
Manufacturing, 2002.18: p. 319-325.

6. Ball, P., Abstracting Performance In hierarchical Manufacturing Simulation.
Journal Of Materials Processing Technology, 1998. 76(1-3): p. 246-251.

7. Davis, W.J., J.G. Macro, A.L. Brook, M.S. Lee, and G.S. Zhou. Developing A
Real-Time Emulation/Simulation Capability For The Control Architecture To
The Ramp FMS. in The 1996 Winter Simulation Conference. 1996. Coronado,
CA, USA.

8. LeBaron, H.T. and R.A. Hendrickson. Using Emulation To Validate A Cluster
Tool Simulation Model, in The 2001 Winter Simulation Conference. 2001.
Arlington, VA, USA.

9. Aguilar-Saven, R.S.R.S., Business process modelling: Review and framework.
International Journal of Production Economics, 2004. 90(2): p. 129-149.

10. Mueller, G. Using Emulation To Reduce Commissioning Costs On A High
Speed Bottling Line, in The 2001 Winter Simulation Conference. 2001.
Arlington, VA, USA.

11. Jordan, S.E., M.K. Snell, M.M. Madsen, J.S. Smith, and B.A. Peters.
Discrete-Event Simulation For The Design And Evaluation O f Physical
Protection Systems, in The 1998 Winter Simulation Conference. 1998.
Washington DC, USA.

12. Smith, J.S., B.A. Peters, S.E. Jordan, and M.K. Snell. Distributed Real-Time
Simulation For Intruder Detection System Analysis, in The 1999 Winter
Simulation Conference. 1999. Phoenix, AZ, USA.

152

Appendix D

13. Verbraeck, A. and C. Versteegt. Logistic for fully automated large-scale
freight transport systems, in 2001 IEEE Intelligent Transportation Systems
Conference. 2001. Oakland (CA), USA.

14. Schiess, C. Emulation : Debug in the Lab - Not On The Floor, in The 2001
Winter Simulation Conference. 2001. Arlington, VA, USA.

15. Rogers, P. and R.W. Brennan. A Simulation Testbed For Comparing The
Performance Of Alternative Control Architectures, in The 1997 Winter
Simulation Conference. 1997. Atlanta, GA, USA.

16. Schludermann, H., T. Kirchmair, and M. Vorderwinkler. Soft-Commissioning:
Hardware-In-The-Loop-Based Verification O f Controller Software, in The
2000 Winter Simulation Conference. 2000. Orlando, FL, USA.

17. Nikoukaran, J., V. Hlupic, and R J . Paul, A Hierarchical Framework For
Evaluating Simulation Software. Simulation Practice and Theory, 1999. 7: p.
219-231.

153

Appendix D

Appendix C

Arena Model ThisDocument and FrmConnect
For Emulation Model MfgPlant_AGV_RT.doe

Appendix C.l Arena ThisDocument Object VBA Code

Appendix C.2 VBA Code for userform ‘frmConnect’

154

Appendix D

Appendix C.l Arena ThisDocument Object VBA Code

Option Explicit

'Global declarations
Public blnM essageW aiting A s B oolean 'Is there a m essage from the client that needs to be
processed?
Public blnlsConnected A s B oolean 'Is the w indow socket connected to the rem ote host?
Public strM essage A s String 'Most recent m essage from the client

Private Function M odelLogic_R ealT im eInitialize(ByV al processN am e A s String, B yV al
rem oteProcessNam e A s String) A s Long
I

'RealTim elnitialize
t

'If Arena is running in execution m ode, then this event is
'automatically called once by Arena before the first replication.
'Place code that initializes the com m unication port with the external client in
'this function.

W ith frmConnect
'Display frm Connect to prompt for the IP address and port.

.TextB o x l.T ex t = "127.0.0.1"

.T extB ox2.T ext = "8111"

.Show
End W ith

End Function

Private Function M odelL ogic_R ealT im eR eceive(m essage A s String) A s Long
t

'R ealTim eR eceive
f

'If Arena is running in execution mode, then this event is
'periodically called by Arena (e.g., every .1 seconds).
'Place code that checks for incom ing m essages from the client
'in this function.
t

If (blnM essageW aiting = True) Then
'If a m essage has been received from the client, then store the m essage in the parameter
'"message" so that it may be processed by Arena.

blnM essageW aiting = False
m essage = strM essage

End If
End Function

Private Function M odelLogic_R ealT im eSend(ByV al m essage A s String) A s Long

155

Appendix D

'RealTim eSend
f

'If Arena is running in execution m ode, then this event is
'automatically called by Arena each tim e a m essage (stored in the argument "message")
'is sent by an entity from a D E L A Y , ROUTE, TR ANSPO RT, or M O V E block.
'Place code that sends m essages to the client in this function.
t

'The format o f the argument "message" is defined in the TA SK S elem ent.

If (N ot blnlsConnected) Then
'End the m odel run. The socket is not connected.

A rena.ActiveM odel.End
Else
'Send the m essage string over the w indow socket to the client

frm C onnect.W insockl.SendD ata (m essage +

End If
End Function

Private Function M odelLogic_RealTim eTerm inate() A s Long

'RealTimeTerminate

'If Arena is running in execution m ode, then this event is autom atically called
'once by Arena at the end o f the last replication. Place code that terminates
'com m unications with the client in this function.

'Close socket if not already closed
If (frm C onnect.W insockl.State <> sckC losed) Then

frm Connect. W in sock l .Close
End If

End Function

156

Appendix D

Appendix C.2 VBA Code for userform ‘frmConnect’

Option Explicit

Private Sub C om m andButtonl_C lick()
t

'"Connect" button click event
t

On Error Resum e N ext
'Close socket if not already closed
If (W insock l.S tate < > sckC losed) Then

W in sock l.C lose
End If
'Call the Connect m ethod on W in sock l (w insock object) to connect to the rem ote host.
W in sock l .Connect T extB oxl.T ext, TextB ox2.T ext

'NOTE TO USER: If the com pile error "Variable not defined" is occuring on the object
''W insock l' in this subroutine, then the M icrosoft w insock control 'W in so c k l' is
'missing from the form 'frm Connect'. T o run using the V B A
'code, a M icrosoft w insock control named 'W in so ck l' must first be added to
'the form 'frm Connect'. D ouble-C lick 'frm Connect' in the project explorer and
’select V iew /T oolbox to add 'W in so ck l'.
I

'Click the icon "Instructions" in the m odel w indow for step-by-step instructions on
'running this exam ple.
End Sub

Private Sub W insock l_C onnect()
T h is w insock event is called after successful connection to remote host
t

M sgB ox "Successfully connected to RTConsole.", vblnform ation
T hisD ocum ent.blnlsConnected = True
'Hide this form
frm Connect.Hide
End Sub

Private Sub W insockl_D ataA rrival(B yV al bytesTotal A s Long)
' This w insock event is called automatically when data arrives to the socket.

D im str A s String

'Store m essage in str variable.
frm Connect.W insockl.G etData str, vbString
'Set the flag blnM essageW aiting to TRUE so that Arena w ill know a m essage needs

157

Appendix D

'to be processed the next time the R ealT im eR eceive event is called.
ThisD ocum ent.blnM essageW aiting = True
'Store m essage in global strM essage so Arena can get string later
ThisD ocum ent.strM essage = str
End Sub

Private Sub W insockl_E rror(B yV al Num ber A s Integer, D escription A s String, B yV al Scode
A s Long, B yV al Source A s String, B yV al H elpFile A s String, B yV al H elpContext A s Long,
C ancelD isplay A s B oolean)
'This w insock event is called after an error
I

'D isplay error m essage
M sgB ox D escription & Chr(lO) & Chr(lO) & _
"Error connecting to R TC onsole.exe. Before running this m odel in execution mode," &
Chr(lO) & _
" First start the client R T C onsole.exe and set it to listen. C lick the icon Instructions for" &
Chr(lO) & _
"step-by-step instructions on running this example.", vbCritical, "RT Execution M ode.doe"
'Hide this form
frm Connect.Hide
End Sub

158

Appendix D

Appendix D .l

Appendix D.2

Appendix D

Emulation Model

Logic Flowchart and Animation

SIMAN code

159

A
ppendix

D

Appendix D.2 SIMAN code

; M odel statements for module: Station 6

2$ STATIO N, ExitStation;
37$ D ELAY: 0.0„V A :N E X T (3$);

; M odel statements for module: D elay 9

3$ DELAY: Exit_UnloadingTim e„O ther:NEXT(4$);

; M odel statements for module: Free 5

4$ FREE: A G V (A G V #):N E X T (1$);

; M odel statements for module: Record 2

i $ TALLY: FlowTim e,INT(Tim eIn), 1 :NEXT(0$);

; M odel statements for module: D isp ose 2

0$ ASSIG N: D ispose Part.Num berOut=Dispose Part.NumberOut + 1;
38$ DISPOSE: Yes;

; M odel statements for module: Station 7

10$ STATIO N, PackStation;
41$ DELAY: 0.0„V A :N E X T (11$);

; M odel statements for module: D elay 11

i 1$ DELAY: Pack_UnloadingTim e„O ther:NEXT(12$);

; M odel statements for module: Free 6

12$ FREE: A G V (A G V #):N E X T (5$);

161

Model statements for module: Process 4

5$ ASSIG N: Process Pack.NumberIn=Process Pack.Num berln + 1:
Process Pack.W IP=Process Pack.W IP+1;

71$ STACK , 1: S ave:NEXT (45$);

45$ QUEUE, Process Pack.Queue;
44$ SEIZE, 2,VA:

Packer, 1:NEXT(43$);

43$ DELAY: Triangular(1.8,2.2,2.6)„VA :NE X T(86$);

86$ ASSIG N: Process Pack.W aitTim e=Process Pack.W aitTim e + Diff.W aitTim e;
50$ TALLY: Process Pack.W aitT im ePerEntity,D iff.W aitT im e,l;
52$ TALLY: Process Pack.TotalTim ePerEntity,Diff.StartTim e, 1;
76$ ASSIG N: Process Pack.V A Tim e=Process Pack.V A Tim e + D iff.V A T im e;
77$ TALLY: Process P ack.V A T im ePerE ntity,D iff.V A T im e,l;
42$ RELEASE: Packer, 1;
91$ STACK , 1 .-Destroy :NEXT(90$);

90$ ASSIG N: Process Pack.Num berOut=Process Pack.NumberOut + 1:
Process Pack.W IP=Process Pack.W IP-l:N E X T (6$);

; M odel statements for module: Request 5

6$ QUEUE, Request A G V at Pack Station.Queue;
REQ UEST, 1 :AG V (C Y C ,A G V #),50:N EX T (8$);

; M odel statements for module: D elay 10

8$ DELAY : Pack_LoadingTim e„Other:NEXT(9$);

M odel statements for module: Transport 5

9$ TRANSPORT: AGV,ExitStation,50;

; M odel statements for module: Station 8

15$ STATIO N, PaintStation;
96$ DELAY: 0.0„V A :N E X T (16$);

; M odel statements for module: D elay 13

16$ DELAY: Paint_UnloadingTim e„O ther:NEXT(17$);

162

Model statements for module: Free 7

17$ FREE: A G V (A G V #) :NEXT (34$);

; M odel statements for module: Process 7

34$ ASSIG N: Process Paint.Num berIn=Process Paint.Num berln + 1:
Process Paint.W IP=Process Paint.W IP+1;

126$ STACK , 1: S a v e : N EX T (100$);

100$ Q UEUE, Process Paint.Queue;
99$ SEIZE, 2,VA:

Painter,1:NEXT(98$);

98$ DELAY: Triangular(1.8,2.2,2.6)„V A :N E X T(141$);

141$ ASSIGN: Process Paint.W aitTim e=Process Paint.W aitTim e + Diff.W aitTim e;
105$ TALLY: Process Paint.W aitT im ePerEntity,D iff.W aitT im e,l;
107$ TALLY: Process Paint.TotalTim ePerEntity,D iff.StartT im e,l;
131$ ASSIGN: Process Paint.VATim e=Process Paint.VATim e + D iff.V A T im e;
132$ TALLY: Process P aint.V A T im ePerE ntity,D iff.V A T im e,l;
97$ RELEASE: Painter, 1;
146$ STACK , 1 :Destroy:NEX T(145$);

145$ ASSIGN: Process Paint.Num berOut=Process Paint.NumberOut + 1:
Process Paint.W IP=Process Paint.W IP-l:N EX T (32$);

; M odel statements for module: Request 9

32$ QUEUE, Request A G V at Paint Station.Queue;
REQUEST, 1:A G V (C Y C ,A G V #),50:N EX T (13$);

; M odel statements for module: D elay 12

13$ DELAY: Paint_LoadingTim e„Other:NEXT(14$);

; M odel statements for module: Transport 6

14$ TRANSPORT: AG V,PackStation,50;

M odel statements for module: Station 9

19$ STATIO N, MachineCentre;
151$ DELAY: 0.0„V A :N E X T (20$);

163

; Model statements for module: Delay 14

20$ DELAY: TA SK ID (E X PO (3),U nloadingTim e)„O ther:N EX T(21$);

M odel statements for module: Free 8

21$ FREE: A G V (A G V #):N E X T (18$);

M odel statements for module: Process 6

18$ A SSIG N: Process M achining.Num berIn=Process M achining.Num berln + 1:
Process M achining.W IP=Process M achining.W IP+1;

181$ STACK , l:Save:N E X T (155$);

155$ QUEUE, Process M achining.Queue;
154$ SEIZE, 2,VA:

M achinist,1:N EXT(153$);

153$ DELAY: T A SK ID (U N IF(.5,1.5),M achinePart)„V A :N E X T (196$);

196$ ASSIG N: Process M achining.W aitTim e=Process M achining.W aitT im e +
Diff.W aitTim e;
160$ TALLY: Process M achining.W aitTim ePerEntity,Diff.W aitTim e, 1;
162$ TALLY: Process M achining.TotalTim ePerEntity,D iff.StartTim e,l;
186$ ASSIGN: Process M achining.V A Tim e=Process M achining.V A T im e +
D iff.V A T im e;
187$ TALLY: Process M achining.VA Tim ePerE ntity,D iff.V A Tim e, 1;
152$ RELEASE: M achinist, 1;
201$ STACK , 1 :Destroy:NEXT(200$);

200$ ASSIG N: Process M achining.Num berOut=Process M achining.Num berOut +
1:

Process M achining.W IP=Process M achining.W IP-1 :N E X T(30$);

30$ ALLOCATE, 1: AG V(AG V#),M achineCentre;
31$ M OVE: A G V (A G V #) ,PaintStation :NEXT (22$);

M odel statements for module: D elay 15

22$ DELAY: TA SK ID (E X PO (3),LoadingTim e)„O ther:N EX T(23$);

M odel statements for module: Transport 7

23$ TRANSPORT: AG V,PaintStation,50;

164

Model statements for module: Create 2

203$ CREATE, l,M inutesT oB aseT im e(0.0), Entity
1 :M inutesToBaseTim e(EXPO (3)):N EX T(204$);

204$ ASSIG N: Create jobs at staging ares.NumberOut=Create jobs at staging
ares.NumberOut + 1:NEXT(24$);

; M odel statements for module: Station 10

24$ STATION, ArrivalStation;
209$ DELAY: 0 .0„V A :N E X T (25$);

; M odel statements for module: A ssign 2

25$ ASSIG N: Tim eIn=TNO W :NEXT(26$);

; M odel statements for module: Request 8

26$ Q UEUE, Request A G V at ArrivalStation.Queue;
REQ UEST, 1 :AG V (C Y C ,A G V #),50:N EX T (28$);

; M odel statements for module: D elay 16

28$ D ELAY : TA SK ID (EX PO (3),LoadingTim e)„O ther:NEXT(29$);

; M odel statements for module: Transport 8

29$ TRANSPORT: AG V,M achineCentre,50;

165

Appendix E .l RTConsoleMain.frm

Option Explicit
Private Sub cboMessageType_LostFocus()
Call cboMessageType_Click
End Sub
Private Sub cmdSend_Click()
'Send a Message to Arena

'Declarations
Dim blnResponseToTask As Boolean
Dim blnEntityldentifier As Boolean
Dim strMessage As String

blnResponseToTask = (cboMessageType.Text = ”0") Or (cboMessageType.Text = "0 - Response to
Task")
blnEntityldentifier = cboIdentifier.Text <> ""
'If responding to a task, must specify entity identifier
If (blnResponseToTask And Not blnEntityldentifier) Then Exit Sub

'Store message to send in strMessage
If blnResponseToTask Then

strMessage = "0 " & cboIdentifier.Text & "" & txtReturnCode.Text
'Remove entity identifier from combobox
cboIdentifier.Removeltem (cboIdentifier.Listlndex)

Else
strMessage = cboMessageType.Text & "" & txtAssignments.Text

End If
'Send the message
wsArena.SendData (strMessage + Chr(0))
AddLineToTextBox txtSent, strMessage

End Sub
Private Sub cboMessageType_Click()

'Declarations
Dim blnResponseToTask As Boolean

'Response to task?
blnResponseToTask = (cboMessageType.Text = "0") Or (cboMessageType.Text = "0 - Response to
Task")

'Set visible properties o f Send Message fields
txtAssignments.Visible = Not blnResponseToTask
lblAssignments.Visible = Not blnResponseToTask
cboldentifier. Visible = blnResponseToTask
txtRetumCode. Visible = blnResponseToTask
lblldentifier.Visible = blnResponseToTask
lblReturnCode. Visible = blnResponseToTask
End Sub
Private Sub Form_Load()

167

'Setup MessageType combo-box
cboMessageType.Addltem "0 - Response to Task"
cboMessageType.Addltem "1"
cboMessageType.Addltem "2"
cboMessageType.Addltem "3"
cboMessageType.Addltem "4"
cboMessageType.Addltem "5"
cboMessageType.Text = "0 - Response to Task"
Call cboMessageType_Click
End Sub
Private Sub Form_Terminate()
'Close socket if not already closed
If (frmMain.wsArena.State <> sckClosed) Then

frmMain.wsArena.Close
End If
End Sub
Private Sub menuClearAll_Click()
'Clear all textboxes
txtSent.Text =""
txtReceived.Text =""
txtStatus.Text =""
End Sub
Private Sub menuClearReceived_Click()
'Clear Messages Received textbox
txtReceived.Text =""
End Sub
Private Sub menuClearSent_Click()
'Clear Messages Sent textbox
txtSent.Text =""
End Sub
Private Sub menuClearStatus_Click()
'Clear Status textbox
txtStatus.Text =""
End Sub
Private Sub menuFileDisconnect_Click()
'Close socket if not already closed
If (frmMain.wsArena.State o sckClosed) Then

frmMain.wsArena.Close
End If
'Enable Listen and Connect menu items
MenuFileListen.Enabled = True
MenuFileConnect.Enabled = True
'Disable Send button and Disconnect Menu Item
MenuFileDisconnect.Enabled = False
cmdSend.Enabled = False
'Clear Entityldentifier combo-box
cboIdentifier.Clear

AddLineToTextBox txtStatus, "Socket disconnected"

End Sub
Private Sub menuFileListen_Click()
'Set Socket to listen on port

'Declarations
Dim strPort As String
Dim intRet As Integer

168

On Error Resume Next
'Prompt for port number
strPort = InputBox("", "Listen on Port:", "8111")

If (Len(strPort) > 0) Then
wsArena.LocalPort = CLng(strPort)
'Check for error assigning LocalPort property
If (Err.Number o 0) Then

intRet = MsgBox("Error assigning port. Port""" & strPort & may be invalid.", vbCritical)
GoTo ExitHere

End If
'Set socket to listen
wsArena.Listen

AddLineToTextBox txtStatus, "Socket listening on port" & strPort

'Disable Listen and Connect menu items
MenuFileListen.Enabled = False
MenuFileConnect.Enabled = False
'Enable Disconnect menu item
MenuFileDisconnect.Enabled = True

End If

ExitHere:
On Error GoTo 0

End Sub
Private Sub MenuFileConnect_Click()
'Connect to Arena
frmConnect.Show vbModal
End Sub
Private Sub menuFileExit_Click()
Unload Me
End Sub
Private Sub menuHelpAbout_Click()
frmAbout.Show
End Sub
Private Sub wsArena_Connect()
'Winsock event called after successful connection to remote host

'Enable Disconnect menu item and Send button
MenuFileDisconnect.Enabled = True
cmdSend.Enabled = True
'Disable Connect and Listen menu items
MenuFileConnect.Enabled = False
MenuFileListen.Enabled = False

AddLineToTextBox txtStatus, "Socket connected to port" & wsArena.RemotePort & " of h o st" _
& wsArena.RemoteHostIP
End Sub
Private Sub wsArena_ConnectionRequest(ByVal requestID As Long)
'Winsock event called when a remote client is attempting to connect

If wsArena.State <> sckClosed Then wsArena.Close
wsArena.Accept requestID

'Enable Send button

169

cmdSend.Enabled = True

AddLineToTextBox txtStatus, "Socket accepted connection request on port" & wsArena.LocalPort
End Sub
Private Sub wsArena_DataArrival(ByVal bytesTotal As Long)
'Winsock event called when data is received from remote computer

'Declarations
Dim strData As String
Dim strLines() As String
Dim strTokens() As String
Dim lngl As Long

'Store socket data in strData
wsArena.GetData strData, vbString
'First remove any line feed characters from string
strLines = Split(strData, Chr(lO))
strData = Join(strLines)
'Now parse data into the individual lines (Each line should end with a character)
strLines = Split(strData,";")

'Process each line
For lngl = 0 To UBound(strLines)

'Remove ending and leading spaces (if any)
strLines(lngl) = Trim(strLines(lngI))
If (Len(strLines(lngI)) > 0) Then

'Add line to Messages Received textbox
AddLineToTextBox txtReceived, strLines(lngl)
'Parse line into tokens (Each token should be separated by a space)
strTokens() = Split(strLines(lngI),"")
'Filter string array to only the "TGID" token
strTokens = Filter(strTokens, "TGID=")
If (UBound(strTokens) > -1) Then
'There is a "TGID" token. Add the entity identifier
'to the combo-box "Entity Identifier" (so that the user can select
'this value when sending a response back to Arena

cboIdentifier.Addltem Right(strTokens(0), Len(strTokens(0)) - 5)
End If

End If
Next

End Sub
Private Sub wsArena_Error(ByVal Number As Integer, Description As String, ByVal Scode As Long,
ByVal Source As String, ByVal HelpFile As String, ByVal HelpContext As Long, CancelDisplay As
Boolean)
'Winsock event called after an error
MsgBox ("Error" & Number & Chr(13) & Description)
'Close the socket
wsArena.Close
End Sub
Private Sub AddLineToTextBox(txtBox As TextBox, strLine As String)
'Adds strLine to txtBox
txtBox.Text = strLine + Chr(13) + Chr(10) + txtBox.T ext
End Sub

Arena IP Address:

Port: •' ■ i ■’ 8111 ' ;

OK Cancel

LJ

2<]

File Clear Help

Send Message lo Arena -

Message Type:

JcboSendType j*

Entity Number: Return Code:

| cbol dentifi ^ ([o

Assignments (at least one space between
each field]:

Send

M essages ---------

Received from Arena: Sent to Arena:

Status:

171

Appendix E.2 RTConsoleConnect.frm

Option Explicit
Private Sub cmdCancel_Click()
Unload Me
End Sub
Private Sub cmdOK_Click()

On Error Resume Next
'Close socket if not already closed
If (frmMain.wsArena.State o sckClosed) Then

frmMain.wsArena.Close
End If

'Connect to remote host
frmMain.wsArena.Connect txtRemoteHost.Text, txtRemotePort
'Check for error
If (Err.Number <> 0) Then

MsgBox ("Invalid IP address or port.")
GoTo ExitHere

End If
Unload Me

ExitHere:
On Error GoTo 0

End Sub
Private Sub Form_Load()
'Set default IP Address and Port
txtRemoteHost.Text = frmMain.wsArena.LocallP
txtRemotePort.Text = "4334"
End Sub

172

Appendix F

Instructions for Running
MfgPlant_RT_AGV.doe

ON-LINE HELP NOTE: Refer to the help topic "Arena RT" in the on-line help for a
detailed description of Arena RT and its features.

There are two alternative approaches for implementing the inter-process
communications
between Arena and an external client: through VBA or through user-code.
This example demonstrates VBA approach.

Instructions for running MfgPlant_RT_AGV.doe using VBA realtime events:

1. Enter the Visual Basic Editor and double-click the form frmConnect in the
project explorer.

2. Make sure a Microsoft winsock control named 'W insockl' has been added to
the form frmConnect. If the winsock control has not been added, select
View/Toolbox to access the controls tab. Then drag-and-drop a winsock control onto
the form. By default, it should be named 'W insockl'.

Note that you must have a design time license of the Microsoft winsock
control to add it to the project.

3. Spend some time browsing through the VBA code. Then exit the Visual Basic
Editor.

4. In <Run Setup\Run Control>, verify that the model is set to "Run in Execution
Mode".

5. In <Run\Setup\Run Control>, verify that "Load User-Coded .DLL" is NOT
checked.

6. In <Run SetupYRun Speed>, verify that the model will "Advance Simulation
Time Using a Real Time Factor" of 1.

7. Let's now run the example. First, click the icon "RTConsole.exe" in the named
view "Model Description and Instructions" of the model. This starts the client
application that will send and receive messages from Arena.

173

8. From RTConsole's menu bar, click <File\Listen...>. Keep the default of
"8111" for the port and hit <OK>. RTConsole is now waiting to connect to Arena.

9. From Arena's menu bar, click <Run\Go> and begin running
MfgPlant_RT_AGV.doe. Note that the VBA event RealTimelnitialize is called first,
displaying a dialog asking for RTConsole's IP address and port. Keep the defaults and
press <Connect>. The model should display a "Successfully connected to
RTConsole" message that indicates a successful connection. Press <OK>.

10. The model is now running. Notice that the clock is advancing in real-time.

11. Adjust the application windows of Arena and RTConsole such that both of
them are displayed on the screen. If you haven't already, press <A> in Arena to zoom
to the model animation.

12. Notice that entities representing parts have entered the system at time 0.0 and
sent "LoadPart" messages to RTConsole. Once ‘loaded’ the part moves with the
mover to the designated destination. When it reaches the next station it sends a
message "UnloadPart" parts begin processing on the first machines in their sequence,
they also send "ProcessPart" messages to RTConsole.

13. A response is required from RTConsole for each of the "LoadPart" messages.
A response indicates the entity has completed its loading in the "real system", and can
now proceed to the next step in its sequence.

14. To respond to a "LoadPart" message sent by an entity on a mover, in
RTConsole select the entity you want to respond to from the Entity Number pull­
down list. Press <Send> to send the response.

15. Watch the entity you responded to in the model animation. It is now
proceeding to the next step in its sequence which is travelling in the transporter to the
designated station. In the Messages Sent to Arena list box of RTConsole, note the
actual format of the response message sent back to Arena (e.g., "0 2 0" or "0 6 0"). A
more detailed description of the format of messages sent to Arena may be found in
the online help.

16. Through RTConsole, continue entering parts into the simulation and
responding to "UnloadPart", "MachinePart" messages etc. The simulation is
emulating the "real system"!

17. At the end of the session, stop the model.

18. From RTConsole's menu bar, click <File\Disconnect> to close the socket.

174

