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TH E DEVELOPMENT OF ANALYSIS OF VARIANCE TECHNIQUES FOR

ANGULAR DA TA

D  HARRISON

ABSTRACT

In many areas of research, such as within medical statistics, biology and geostatistics, 
problems arise requiring the analysis of angular (or directional) data. Many possess 
experimental design problems and require analysis of variance techniques for suitable 
analysis of the angular data. These techniques have been developed for very limited 
cases and the sensitivity of such techniques to the violation of assumptions made, and 
their possible extension to larger experimental models, has yet to be investigated.

The general aim of this project is therefore to develop suitable experimental design 
models and analysis of variance type techniques for the analysis of directional data.

Initially a generalised linear modelling approach is used to derive parameter estimates 
for one-way classification designs leading to maximum likelihood methods. This 
approach however, when applied to larger experimental designs is shown to be 
intractable due to optimization problems.

The limited analysis of variance techniques presently available for angular data are 
reviewed and extended to take account of the possible addition of further factors 
within an experimental design. These are shown to breakdown under varying 
conditions and question basic underlying assumptions regarding the components within 
the original approach.

A new analysis of variance approach is developed which possesses many desirable 
properties held in standard 'linear' statistical analysis of variance.

Finally several data sets are analysed to support the validity of the new techniques.
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CHAPTER 1

INTRODUCTION

1.1 Directional Data

In many scientific fields the experimenter is interested primarily in the direction of a 

measured variable. These observations will be bearings from some central point, or 

origin, ending on a sphere or circumference of a circle, and may be regarded as 

vectors. The radius can be represented as a unit vector, while the length or 

magnitude of the vector is not important. Directions may be thought of in any 

number of dimensions but in practice they are invariably collected in two or three 

dimensional space. The tests and new results presented in this thesis are solely 

concerned with directions in two-dimensions. Directions are measured by angles 

ranging from 0* to 360*, or, equivalently, from 0 to 2x radians. Circular or 

directional data is the name given to data which arise when the observations are

angles.

There are many examples of circular data originating from various disciplines. For 

example, geologists study the orientation of fractures in deformed rocks to interpret

structural changes, and the orientation of cross-bedding or particles in undisturbed

sediments to the direction of depositing currents of wind and water. (Pincus (1953),

Curray (1956), Sengupta and Rao (1966), and Sanderson (1976)). The classic example 

of directional data is from the study of bird orientation in homing or migration 

which involves observing the birds vanishing angles from their release point. 

Zoologists use such data to investigate consistency of bird migration under certain 

conditions. Many examples from this field of study are well cited and illustrated by 

Batschelet (1965, 1981).
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Directional data is not confined to observations directly measured in degrees or 

radians, but may also occur in the area of biological rhythms. A  period of 24 hours 

corresponds to a full turn of 360 degrees. Similarly, a month, a year or any other 

period of a cyclic event may be represented by a rotation of 360 degrees. The 

number of deaths due to a disease or the number of onsets of a disease in each 

month over years fall in this category and can be treated as directional or circular 

data. Other examples of this type can be seen in Gumbel (1954).

It is tempting to use the conventional measures of location and spread used in linear

analysis to analyse directional data. For example, suppose our data are the four 

values 5, 14, 351 and 10, a simple arithmetic mean would give a value of 95. For 

linear analysis this is understandable as the value of 351 has a large influence and

draws the mean away from the other data points. If  these values are now regarded

as angles the spread of the whole sample is reduced, since in angular terms the 

sample value of 351* is now situated close to the other data points. Similarly the 

point of central location will have changed considerably and can now be seen to be 

around zero degrees. Then the simple arithmetic mean would not, in general, give a 

meaningful mean direction of the sample, similarly, the standard deviation would not 

give a good measure of dispersion. If, however, the zero direction was taken at a 

different position on the circle such as the y-axis in place of the x-axis then the 

linear measure may give a sensible result. For example, if the above sample values 

were rotated by 90*, to become 95*, 104*, 81* and 100*, the arithmetic mean would 

give a sensible result of 95*. It is therefore not possible to define an arithmetic 

mean or standard deviation in such a way that it is invariant under a rotation of the 

circle. This heavy dependence on the zero direction shows the inappropriate use of 

basic linear methods for circular statistics. Simple examples of such problems are 

given by Batschelet (1965, 1981), Mardia (1972) and Watson (1983). Distribution 

functions, characteristic functions and moments all suffer from the same draw-back 

and must in some way take account of the natural periodicity of the circle.
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1.2 A  General Thesis Review

Having introduced the study of directional data, this section gives a brief review of 

the work discussed within each of the following chapters, whilst indicating the 

structure and progression of the thesis as a whole. The following two sections within 

this chapter give further background to the subject of directional data. The first 

discusses different types of probability distributions that may exist on the circle, whilst 

the second states the elementary statistics of angular data required for further use in 

later chapters.

In Chapter 2 the von Mises distribution is discussed from estimation and distributional 

view points. The maximum likelihood estimates of the von Mises parameters are

seen to be asymptotically independent so that construction of simple large-sample

tests, for differing hypotheses regarding the parameters, may be carried out. Interest

is focused on the distributional form of the resultant length on the random (Uniform) 

distribution, k -  0, and the von Mises distribution. The results from the special 

case of the random distribution are required since terms in its solution arise again in

the general distribution theory. A  summary of exact and approximate moments of

the resultant length, R, are given in preparation for the derivation of further circular 

statistical tests.

Chapter 3 is a review of the maximum likelihood results and tests for the von Mises 

distribution. Extensive investigation of the many approximations for the von Mises

concentration parameter, k, for both small and large k, has been undertaken. Seven

approximations for the maximum likelihood estimate of small k, k, which have been 

cited by various authors are reviewed. Their corresponding values, residuals and

relative residuals are plotted to enable comparison and evaluation of their accuracy.
A

Similar work is carried out for nine approximations to large k, k. A  summary of 

the 'best' and 'best simple1 approximations is given in Section 3.5 against varying
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ranges of the concentration parameter.

Chapter 4 gives an historical review of the development of analysis of variance 

techniques. The work covers the exact and approximate tests for differing mean 

directions derived by Watson (1956), Watson and Williams (1956) and Stephens 

(1962a, b and c), to multi-sample tests for the equality of concentration parameters. 

The homogeneity tests for varying ranges of concentration parameter are cited for 

later use with new design tests.

Chapter 5 discusses the use of the generalised linear modelling approach for circular 

statistics to derive parameter estimates leading to maximum likelihood methods. For 

circular statistics it is shown to be desirable to choose the constraint on the angles 

specifying the factor parameters so that their sines sum to zero. Section 5.3 shows 

how parameter estimates for the one-way classification design may be found and 

therefore assist in further understanding of the underlying structure under 

investigation. The approach, however, when applied to larger experimental designs is 

seen, at this time, to be intractable since the optimization procedures cannot be 

solved due to the numerous local maxima found within the constrained equations.

Chapters 6 and 7 examine the possibility of extending the original procedure for the 

one-way analysis, derived by Watson and Williams (1956), to larger designs, for large 

k. Chapter 6 shows the construction of the nested or hierarchical design, the 

randomised complete block and two-way classification design with interaction together 

with a comparison of their accuracy to the chi-squared and F distributions. Chapter 

7, however, shows the possible collapse of these test statistics under particular 

circumstances. The problems associated with the combining of circular mean 

directions are shown to be influential in this collapse whilst the cross-product terms 

are seen to be non-zero and requiring a correction factor to eliminate them.

-  4 -



Chapter 8 develops a new analysis of variance approach by taking account of the 

resultant lengths together with their corresponding mean directions to eliminate the 

possible collapse discussed in Chapter 7. The method is still based on maximum 

likelihood techniques but requires the user to test for equality of concentration 

parameters prior to testing for any difference between mean directions. The 

cross-product terms are examined and found to equal their desired combined value of 

zero. An investigation of the interpretation and representation of interaction on the 

circle is given in Section 8.4 prior to its calculation via the new approach. For the 

two-way design the cross-product terms are again shown to equal zero. Further 

designs are then constructed in the same manner.

Following the development of the procedures in Chapter 8, Chapter 9 examines the 

statistical theory and distributions behind the new design components and test 

statistics. The exact theoretical distributions are seen to be intractable, and therefore 

distribution approximations are used to examine the theory whilst simulation 

techniques reproduce the distributions of the test statistics for comparison with their 

assumed expected distributions. The comparisons are carried out for both large and 

small k and test statistic improvements are made using the component moments. 

The power of the new tests are also compared with existing tests for the 

multi-sample case and are seen to compare favourably for both large and small k.

Chapter 10 reproduces the components within the new procedure for the randomised 

complete block and two-way designs together with their improvement factor derived 

in Chapter 9. The component statistics and test statistics are compared to their 

respective exact chi-squared and F distributions. These two designs are used to 

illustrate the validity of the approach for larger more complex design situations.
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Chapter 11 gives several examples where the new approach is applied to real data 

sets with varying sizes of concentration parameter. The examples vary from the 

one-way design to the Graeco-Latin square and split plot designs.

Finally Chapter 12 summarises the development of the new analysis of variance 

techniques. The adequacy of the new procedures, produced for both large and small 

concentration parameter, are discussed together with their respective components and 

test statistics.

Appendix A  gives a list of notations used throughout the thesis together with the 

design notations set out in tabular form. Appendix B reviews the techniques used to 

simulate the von Mises distribution and the required experimental designs. The size 

and accuracy of the numerical results are also discussed.

1.3 Probability Distributions on the Circle

There is no single distribution on the circle which has all the desirable properties 

which the Normal distribution possesses on the line. Most of the distributions on the 

circle have been derived either from transformations of the standard univariate (or 

bivariate) distributions or as circular analogues of important univariate characteristics. 

Linear distributions may have a finite range, range to infinity, or may even extend 

over the whole straight line. Circular distributions, however, are always finite 

ranging from 0* to 360’ (or, equivalently, 0 to 2ir), or are fractions within this 

range.

In general, circular distributions are continuous over the circumference of the circle 

and may be specified by a probability density function f(0), which is a periodic 

function satisfying
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f ( 0 )  d0 -  1 ( 1 . 3 . 1 )

. o

Although no circular distribution holds all the desirable properties seen in the Normal 

distribution, the von Mises distribution (originally referred to as the Circular Normal 

distribution) is the most generally used distribution in statistical inference on the 

circle. The importance of the von Mises distribution on the circle is often compared 

to that of the Normal distribution on the line.

The distribution has probability density function

f ( 0 )  = 2ffT (E) exp^  cos( 6 ~ Mo)l 0 < 6 < 2x ( 1 . 3 . 2 )

where I 0(fc) is a modified Bessel function, and A: is a parameter of concentration of 

the data about a mean direction nQ. A complete discussion of the von Mises and 

its properties can be seen in Chapter 2.

There are two limiting cases of circular distributions. The first case occurs when all 

the angles are the same i.e. concentrated at one single point 8 = fiQ. The 'point' 

distribution has little if no practical or theoretical interest here, but has been used 

for the analysis of Brownian movement and the paths of beta rays.

The second limiting case is the Uniform distribution, where every angle on the unit 

circle has an equal chance of occurring or no sector is preferred to any other sector. 

The probability density of 6 is constant over the whole circumference and is defined 

by

f ( 0 )  = 0 < 8 < 2tt ( 1 . 3 . 3 )

As there is no concentration of points about any given direction on the circle, then 

no mean direction exists. Polya (1935) used an analogue of this when he investigated 

whether the stars are distributed at random over the celestial sphere.
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As in the linear case an infinite number of circular distributions exist. Among these,

a few, possessing some desirable properties, have received attention. After the von

Mises, probably the most important is the wrapped Normal distribution. This

distribution is a natural conversion of the Normal distribution and is obtained, as its 

name suggests, by wrapping the Normal distribution around the circumference of the 

circle and adding those probabilities that fall into the same sector of the circle. The 

addition of the overlapping tails leads to a rather complicated density function, 

though when cr is small the distribution will be approximately Gaussian in (0 ,2k ).

Like the Circular Uniform distribution the wrapped Normal distribution possess the 

additive property i.e. the sum of two or more wrapped Normal distributions produces

another wrapped Normal distribution with related parameters. The probability density

of a random variable 0, with mean angle / i0 = 0* , from the wrapped Normal 

distribution is

f ( 0 ) ----------- —  T exp[~ (<> t A m ) 2 ] o < e < 2x ( 1 . 3 . 4 )
O' V 2 7 1 L 1 2<r 1n=-oo

where the mean vector length is

- c r 2exp

As p tends to zero, the wrapped Normal distribution approaches the Uniform 

distribution, and as p tends to one it is concentrated at a single point. The 

distribution has applications in the study of diffusion processes, and amongst others 

has been examined by Stephens (1963) and Bingham (1971).

Another distribution which has been wrapped around the circle in a similar manner 

to the Normal is the Cauchy distribution. The result is again a unimodal and 

symmetric circular distribution possessing the additive property. With mean angle fiQ 

and mean vector length p the probability density function for the wrapped Cauchy is

-  8 -



introduced by Levy (1939) and studied by Wintner (1947).

Other circular distributions of less importance include the cosine distribution, also 

called the sine wave distribution, with mean vector length p and mean angle p 0, and 

has the density function

f ( 0 )  — 7s— + — cos(0 -  p 0) ( 1 . 3 . 6 )
Z tt tt

and the cardioid distribution with the density function

f ( 0 )  -  [1 + 2p cos(0 -  (iQ) ]  ( 1 . 3 . 7 )

introduced by Jeffreys (1948).

All the circular distributions discussed so far have been unimodal distributions, with a 

single preferred direction of p Q. There are, however, circular distributions with 

multimodal directions. (1.3.8) gives the density function of a multimodal von Mises 

distribution where v denotes the number of modes.

f (0)  = 2^1 ( k ) exP ^  cos v ( 0 " ^o)3 ( 1 . 3 . 8 )

This was suggested by Breitenberger (1963) and further investigated by Stephens 

(1965).

Many examples of bimodal data can be found, particularly in scientific fields where 

orientation is measurable but direction is not. Batschelet (1965, 1981) gives many 

examples of bimodal data from animal orientation and navigation. A  similar situation 

occurs if we observe the position of undirected straight lines or undirected axes. 

Gadsden and Kanji (1983) collected this type of data on clay particles following the



removal of their electric charge. These particles do not have a 'head' or 'tail' and 

so the observations lie in the range 0 to x radians.

Other unimodal circular distributions were discussed by Mardia (1972 p.48-61). 

Batschelet (1981 p.275-90) also reviews skewed, flat-topped and sharply peaked 

circular distributions.

The most widely used circular distribution, however, is the von Mises distribution and 

it is on this distribution that this thesis is based. The following chapters investigate 

and extend the theory and uses of this distribution.

1.4 Statistics of a Circular Distribution

As we noted in Section 1.1 the simple arithmetic mean would not, in general, give a 

meaningful mean direction of a sample of angles 0 1> e 2, ...., %• The mean 

direction in circular statistics is determined by applying trigonometric functions.

Let Pj be one of the N observed angles 0j, i = 1, 2,...,N , with origin 0. Let q  

and S[ be the rectangular components of Pj. Then by definition of sine and cosine,

c j = cos 0j s j = s in  ( 1 . 4 . 1 )

where

N N

( 1 . 4 . 2 )
i = l

Therefore, if R is the length of the resultant vector with components

mean direction, with components C and S, then

r  = (C 2 + S2) 2 ( 1 . 4 . 3 )

N N

R -  Nr ( 1 . 4 . 4 )

i= l i= l -  10 -



Applying basic trigonometry to calculate 6, the mean direction of the sample

arc tan

180 + arc tan

i f  C > 0

i f  C < 0

with the exceptional cases of

90* i f  C = 0 and S > 0 

270* i f  C = 0 and S < 0 

undetermined i f  C -  0 and S = 0

Figure 1.4.1 illustrates these circular measures:

( 1 . 4 . 5 )

( 1 . 4 . 6 )

uni

=  Sin 0£.

Cc = coS Oc

Figure 1.4.1 The Circular Statistics
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It is clear from Figure 1.4.1 that the length of the resultant cannot exceed N and 

similarly, from (1.4.4), that r cannot exceed 1.

Hence,

In the extreme case when all sample points fall onto the same point, the length of 

the mean vector, r, equals 1. When points are close together, concentrated over a 

small arc, the centre of mass is still very close to the circumference of the unit 

circle, and r is close to 1. Less concentration leads to smaller values of r. At the

lower end r = 0, with no concentration around a single direction. Hence, in

unimodal samples, the mean vector length, r, serves as a measure of concentration.

From the above results we may now see that 6 has some desirable properties as a 

measure of location. One such property is that the mean vector does not depend on 

the zero direction of the sample. If a rotation of \p is applied to each angle, then 

the sample values 6\ turn into 6[ = 6\ -  \p. Similarly the new mean angle is

6" = 6 -  \p, but the mean vector length, r, remains invariant.

Examining the sine of the difference between the mean angular direction and the 

sample angles, it is easily shown that

( 1 . 4 . 7 )

and

( 1 . 4 . 8 )

N

d . 4 . 9 )

i = l

which is analogous to

N

( 1 . 4 . 1 0 )

in linear statistical analysis.
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Similarly, for the cosine of the difference 

N

J cos(6{ -  6) = R ( 1 . 4 . 1 1 )

i = l

and therefore 

N

i  T 2[1 -  cos( 9 j -  ? ) ]  -  2(1 -  r )  ( 1 . 4 . 1 2 )

1=1

For small deviations, 6\ -  6

2[1 -  cos( 0 j -  0) ]  « ( e i -  I ) 2 ( 1 . 4 . 1 3 )

hence,

N

1 J (« i -  9 ) 2  *  2(1 -  r )  ( 1 . 4 . 1 4 )

i= l

which is analogous to 

N

i  ^ (X | -  x ) 2 = s 2 ( 1 . 4 . 1 5 )

i = l

in linear statistics.

Equation (1.4.12) may be defined as the angular variance and, from (1.4.14), is

asymptotically equivalent to the variance in linear statistics.

Taking the square root of (1.4.12) gives a measure of dispersion, equivalent to the

standard deviation

s = [2(1 -  r ) ] i  ( 1 . 4 . 1 6 )

called the mean angular deviation.
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The basic results of this section were adapted from Batschelet (1981) where further 

discussion of the properties are given. The analogies have been reiterated here so 

further use may be made of them in later chapters.
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CHAPTER 2

TH E VON MISES DISTRIBUTION

2.1 Derivation

Gauss showed that the Normal distribution can be derived by the method of 

maximum likelihood with the single assumption that the mean is the most probable 

value. Von Mises (1918) applied this to a circular variate, and for this reason 

Gumbel, Greenwood and Durand (1953) referred to the distribution as the Circular 

Normal Distribution. Von Mises procedure was for a distribution f(0| -  n 0), such

that the direction f iQ upon N observations 0 lt 0 2, ......   0^  is a maximum given by

the constraints

where f(0) is the required distribution and f'(0 ) is the first derivative of f(0) with 

respect to n Q. Since the equations (2.1.1) and (2.1.2) are identical for each 0j, 

therefore

N

(2 . 1 . 1)
i= l

and

(2 . 1 .2 )

f ' ( *  -  Mo)
-------------------------s in (0  -  /t0)
f  (0 -  H0)

( 2 . 1 . 3 )

The equation has the solution

f (0  -  j i0) -  U exp[/c cos(0 -  / i0) ] ( 2 . 1 . 4 )

where the two variables U  and k are linked by the condition (1.3.1).
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Hence

U -
1

exp[k cos (6 -  n Q) ]  d(0 -  /tQ)
o

1 ( 2 . 1 . 5 )
2x10(k)

where 10(k) is the modified Bessel function of the first kind and order zero. A  

proof of (2.1.5) can be seen in Mardia (1972, p.58).

The von Mises distribution then, denoted as M (/*0,fc), is given by

The von Mises distribution is unimodal and symmetric with its mode at f iQ and 

anti-mode at n Q + x. For k=0, the von Mises degenerates into the Uniform 

distribution, and for large k the distribution concentrates around the mean direction. 

Therefore, k is called the parameter of concentration. The concentration parameter 

k is analogous to the inverse of the variance parameter cr2 of the Normal 

distribution in its effect on the shape of the distribution. For sufficiently large k we 

may approximate the von Mises by the Normal distribution. Using an approximation 

quoted by Bickley (1957), for large k

 2x10(k)  exP ^  cos(0 “ *o>] (2 . 1 .6)

2.2 Properties of the von Mises Distribution and its Parameters

1 exp (k)
10c «  -  —  -----------

(2 r k ) i  ( c ( k ) )

where

2 1
(2 .2 . 1)
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Extending the limits of this approximation would be reasonable since, when k is 

large, the additional area is negligible. Replacing this into (2.2.2), a von Mises with 

mean at zero;

f (» )
1

2x 1n(k) exp(/c cos 0) ( -X  < 0 < x) (2 .2 .2)

gives

f (0 )  * c(/c) k_
2x exp{k((cos 0) -  1)} ( —go < 0 < °°) ( 2 . 2 . 3 )

Gumbel, Greenwood and Durand (1953) simplified (2.2.3) to obtain 

M(0, k) » N ( 0 , / H )  

alternatively

0 V F  « N( 0 ,1) ( 2 . 2 . 4 )

Upton (1974) considered more accurate approximations by taking further terms in the 

power series of ((cos 0) -  1), and produced two new approximations

v / F 0 » N ( 0 ,1) ( 2 . 2 . 5 )

and more accurately,

J T 1 - 8k
1
24 1 + 4k ' )■

03 « N ( 0 , 1) (2 .2 .6)

A fourth approximation was considered by Upton (1974) given by Mardia (1972, 

p.64), without proof;

i
0 « N ( 0 , 1) ( 2 . 2 . 7 )

Upton tested the power of all the approximations, finding that all four consistently 

overestimated the upper tail probability. Approximation (2.2.6) was found to be the 

best, and this was later confirmed from further work by Hill (1978). 

Stephens
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(1962c) gave another approach to the equality of the two distributions using the 

moment generating function.

Estimates of the parameters k and /x0 may be obtained by means of the maximum 

likelihood method.

A  sample of N angles •••% are collected from a von Mises distribution with

unknown population parameters k and pL0 which we wish to estimate. The 

probability density for these angles is

CN exp[/c cos(0 1 -  /*0) ]  exp[/c cos(0 2 -  /*0) ]  ............

-  CN exp k[cos(6^  -  / i0) + cos(0 2 -  fiQ) + (2 .2 . 8)

where

1
2x10(k)

The log likelihood function is

N

log L(f i0 ,k)  -  -N log 10 (k ) + k ^ cos(0 j -  / i0) + const

i= l

( 2 . 2 . 9 )

For the maximum likelihood estimate of the parameter (i0

“  k [ s i n ( 6 ,  -  n 0) + s in (0 2 -  fLQ) +

N

(2 .2 . 10)

a
and vanishes for the particular value (nQ) with

N
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From (1.4.yj we Know mat mis equauon is sausriea ior me sampie mean angie a 

which we calculated in (1.4.5). Hence, the maximum likelihood estimate of the

parameter p Q of a von Mises distribution is the sample mean angle 0. Bingham and 

Mardia (1975) showed that there exists only one circular distribution for which the 

sample mean angle is the maximum likelihood estimate of the population mean angle, 

namely the von Mises distribution.

For the maximum likelihood estimate of the parameter k

Ndlog L 1, (10
------------------N ---------

d(/c) I 0(k)
+ ^ c o s ( 0 { -  H0) ( 2 . 2 . 1 1 )

Therefore dlog Ud{k)  is zero if 

N

-  £ cos( 0 j -  IX0) ( 2 . 2 . 1 2 )
I 00 0  N ^

The right hand side is the mean vector length of the sample, r, as indicated by 

equation (1.4.11). Hence, the maximum likelihood estimate of k is the solution of

I , < £ )  R
A ( k ) ------------------------ r ( 2 . 2 . 1 3 )

I 0<£) N

If  the mean direction is known to be p Qt then the maximum likelihood estimate of 

k, k, is no longer given by equation (2.2.13), but instead by equation (2.2.14)

I , ( * )  X
-----------------  ( 2 . 2 . 1 4 )
I 0W  N

where X  is the component of R on 6, when /x0 is known.

The solution of (2.2.14) is obtained numerically. Tables are not provided here since 

adequate tables have been produced by Upton (1970, Appendix G), Mardia (1972,
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Appendix 2.2) and Batschelet (1981, Table B). For the extreme cases, there are 

approximate solutions to (2.2.13) which will be discussed in Chapter 3.

Figure 2.2.1, taken from Upton (1970), illustrates the measures R and X  with their 

relationship to C and S from (1.4.2). 5 is the angle between R and X.

2
encjfh O Z  = R

OT = X
v z = c = 2cos Q
O V  = < 5 = 2 Sin ©£

VO

Figure 2.2.1 Statistics R, X, C and S

Clearly from Figure 2.2.1 

C = R cos(0 -  6)

S = R sin(0 -  6)

R2 = C 2 + S2

The estimates of /<0 and k by the method of moments are the solutions of

C — A(/c)cos fiQ S = A(/c)sin (iQ ( 2 . 2 . 1 5 )
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which give the same results as the maximum likelihood estimates. Hogg and Craig 

(1965) have shown that 8 and R are jointly complete sufficient statistics for p 0 and 

k. However, if k  is known then Rcos 8 and Rsin 8 are minimal sufficient statistics 

for p 0 which implies that 8 itself does not contain all the information about fiQ.

This underlines the difficulty in constructing an optimal criterion for estimating the 

circular mean direction. Yet if n 0 is known then C is a complete sufficient statistic 

of k, and C an unbiased estimate of A (k).

2.3 The Distribution of R for the Uniform and von Mises Distributions

The distribution of R for the Uniform and von Mises distributions were derived and 

discussed by Stephens (1962a, 62b), Upton (1970) and Mardia (1972) and therefore 

will not be fully reiterated here. A brief summary of results, however, will be given 

in order that they may be utilised in later chapters.

2.3.1 Preliminary Results

Using the notation of Mardia (1972)

(a) Let i/{p,$) be the characteristic function of a continuous two-dimensional random 

variable (x,y) where

x — r  cos 8 y — r  s in  8 ( 2 . 3 . 1 )

^(p,3>) -  E [exp { ip r  cos(0 -  $ ) } ] ( 2 . 3 . 2 )

The joint density of r and 8 is given by

00 f  27T

e x p [ - ip r c o s (0 -  <i>) ] p ^ (p ,<!>) dpd$ ( 2 . 3 . 3 )
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Integrating over 0 gives the density of r

P(r) <2t )

2ir
( 2 . 3 . 4 )

where Jm(x) is the standard Bessel function of order m and real argument.

Equation (2.3.4) is described as an inversion formula for the distribution of r.

Let 0 j,j= l,2 ...,N  be distributed independently with probability density function fj(0), 

j= l,2 ,...,N  and of unit length and

N N

C -  ^  cos 0j  S -  J  s in  0 j

J - l  J - l

The joint characteristic function of (C,S) is given by 

N
n imp.*>

J -l

where ^j(p,$) is the joint characteristic function of (cos0j,sin0j).

( 2 . 3 . 5 )

Hence, from equation (2.3.5) the probability density function of R is given by

P(R) <2x)

2ir N
J 0<PR) (II l h < P . * ) ) P  dpd4»

j “ l
( 2 . 3 . 6 )

2.3.2 Distribution of R for the Uniform Distribution

To enable the construction of the distribution of R when the observations are taken 

from the von Mises we shall initially consider the special case of the von Mises when 

k - 0 and the distribution is Uniform.
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The problem of finding the density of R is analogous to the problem of random 

walk. Pearson (1905) required the probability that after N steps a man is at a 

distance between R and R+5R from his starting point, 0. Here his steps, /, are 

regarded as of unit length.

Using (1.3.3), the Uniform distribution, in (2.3.2), the characteristic function of 

(cos0j,sin0j)  is given by

* & ■ * >  -  < h
exp[ ip  cos(0  -  <£)] d0 ( 2 . 3 . 7 )

o

From (2.3.5) the c.f. of (C,S) is given by

J„N(P) ' ( 2 . 3 . 8 )

Then substituting (2.3.8) into the inversion formula (2.3.6) for R, the probability 

density function of R for the Uniform distribution is

pu (R) -  R uJ0 (Ru) J N(u) du ( 2 . 3 . 9 )

where

pu (R) = 0  fo r  R > N

The integral (2.3.9) is often referred to as Kluyver’s integral (1906). The asymptotic 

solution of Pearson had been obtained already by Lord Rayleigh (1880). Pearson 

(1906) gave another proof of Kluyvers result. Rayleigh (1919) used Kluyvers 

technique to obtain the solution to the problem in three dimensions, or random 

flights. Tables of pu(R) for differing N are given by Greenwood and Durand (1955) 

and updated and extended by Durand and Greenwood (1957). Asymptotic 

approximations will be discussed in Chapter 4.
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2.3.3 Distribution of R  for the von Mises Distribution

The joint probability density function of C and S is given by

1 Pu<R>
g(C,S)  -   7J  exp[k#C + /cvS] ---------  ( 2 . 3 . 1 0 )

2*1  ” (lc) R

where

H — cos fi0 v  -  s in  p0

On transforming C and S to 0 and R by C = R cos 0 and S = R sin 8 in (2.3.10) 

the joint p.d.f. of 8 and R is seen to be

1
g ( 0 , R ) -rr  exp[RR co s (0 -  p 0) ] pu (R) ( 2 . 3 . 1 1 )

2x I q( /c)

0 < 0 < 2 *  0 < R < N

Integrating with respect to 0, the p.d.f. of R for the von Mises is given by 

1
pv ( R ) -------------------10(RR) PU(R) 0 < R < N ( 2 . 3 . 1 2 )

( i „ W ] N

where pu(R) denotes the p.d.f. for the Uniform distribution given by (2.3.9). 

Equation (2.3.12) is due to Greenwood and Durand (1955). Asymptotic 

approximations will be discussed in Chapter 4.

2.4 Combining von Mises Distributions

Let 0 j , 0 2 be independently distributed as von Mises M M ( v Qtk 2) respectively. 

The probability distribution function of 0 = 8 y + 0 2, using the convolution formula 

is given by

f 2 7r
exp[r  cos($-  /3) ] d£ ( 2 . 4 . 1 )

o47r21 0 (k,  ) I 0 (/c2)
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where

r cos (3 - k., + k2cos(0 - a )  

r sin /3 - k2sin(0 - a )  

a “ Mo + v0

Proof of Equation (2.4.1), Outlined by Mardia (1972)

The convolution formula is given by

2*
f 1( 0 ) f 2( r  -  0) d0

2 *

2x 1 ^ ; -  exP[fc.cos<« - /*»)] 2tIq(Ic2) exP[*2cos(f - 0

4 x * I 0 ( k , ) l 0 ( k 2)

2 *

exp[/c1cos(0 - f i0) + k 2cos(T - (0 - v,

Taking the exponential term of the integral

k ,c o s (0 -  p 0) + k 2cos( f  -  (0 -  v Q) )

Let £ = 0 -  p 0 

Then (2.4.4) becomes

k,cos £ + k 2c o s ( f  -  ( £ . +  p0 -  v Q) )

Expanding and using the sine and cosine rules produces

[k , + k 2cos( f  -  p 0 -  v 0)]cos  £ + [ k 2s i n ( f  -  p 0 -  v 0) ] s i n  £

Using the equalities (2.4.2)

-  [ r  cos /3]cos £ + [ r  s in  /3]sin £

r cos(£ - 0)

(2.4.2)

(2.4.3) 

-  v 0) ) ]

) ) ]  d0

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)
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Replacing (2.4.7) into (2.4.4) gives equation (2.4.1)

As
2x

exp[/c cos 0 ] d0 -  2 x l 0 (/c) ( 2 . 4 . 9 )
o

(2.4.1) may be reduced i.e.

2 X
exp[/c cos 0] d0

o

2X
exp[r  cos(£ -  0 ) ]  d£

o

where k=r

r  » [ + k 2 cos(0 -  a ) ] 2 + [ k 2 s in (0 -  a ) ] 2 ]^

= k 2 + k 2 + 2k.k? cos (0 -  a)  ( 2 . 4 . 1 0 )
1 2 1

From (2.4.9), (2.4.4) now becomes

2xl„(fe)4 x M 0( k , ) I 0(/c2) ‘•“ ‘ 0

~ a , i B( O l B(ic2) l o K * ?  + * i  + 2 M 2 o o . ( * - a ) ) i ]  ( 2 . 4 . 1 1 )

If  k^=k2=k, and using cos20 = 2cos20 - l ,  (2.4.11) becomes

I 0 [2k COS j ( e  -  Of)] ( 2 . 4 . 1 2 )
0

The expression (2.4.12) is not the density of a von Mises distribution, i.e. the

convolution of von Mises distributions is not a von Mises distribution. However,

expression (2.4.12) may be approximated by a von Mises distribution. Without loss 

of generality, let fiQ and v0 equal zero, the distributions M (0 ,k t) and M(0,fc2) may 

now be approximated by the wrapped Normal distribution. The wrapped Normal, as 

discussed in Section 1.3, holds the additive property, therefore two wrapped Normals 

gives another wrapped Normal with parameter <r| = c f  + a \ .  This distribution can 

then be approximated by M(0,fc3) where k 3 is the solution of

A(fc3) -  A(/c1 )A(/c2) ( 2 . 4 . 1 3 )
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Hence

( 0 1 + 6 2) mod 2x is  approximately M (/i0 + v 0 , k 3)

and ( 2 . 4 . 1 4 )

( 0 1 -  6 2) mod 2 t  is approximately M(f iQ -  v Q, k 3)

Stephens (1963) has shown numerically that this approximation is satisfactory, 

although reducing in accuracy as k decreases.

Full details of the exact and approximate moments of R may be found in Upton 

(1970) and Mardia (1972). Here only those necessary for the improvement and 

examination of tests discussed in later chapters will be given.

The distribution (2.3.12) cannot be used directly to obtain the expected values of R, 

however, for large or small values of k (2.3.12) may be replaced by approximation 

expressions from which the expectation of R for differing k may be calculated.

Stephens (1969) was the first to suggest and undertake the method of repeated 

differentiation of the probability density function to obtain the exact even moments of 

R. Upton (1970) having defined S and C by

N N

utilised the moment generating functions of S and C to obtain their exact 

expectations and in turn produce the expectation of R 2 as did Stephens, as

2.5 A  Summary of Exact and Approximate Moments of R

i-1 i-1

where R2 -  S2 + C2 ( 2 . 5 . 1 )

E(R2) -  N + N(N -  l ) p 2 ( 2 . 5 . 2 )
where



As k-*0, then p-»0 and E (R 2)-*N, a result expected for the Uniform distribution. As 

the distribution becomes more concentrated about its angular mean direction (&-*») 

then p-»1 and E (R 2)—»N2.

Using both these approaches the exact expectation of R 4 has been calculated and 

given as

Upton (1970) gives several approximations to the expectation of R by equating 

distribution approximations given by Watson and Williams (1956) and Stephens (1969) 

to their associated expected chi-squared values for large and small values of k. The 

expectation of R for the von Mises distribution, as N— is given by

( 2 . 5 . 3 )

where

1 - 2  —(Q.
k

E(R) -  Np + i - ( l  -  p ’ ) + 0 -4 p
1

IN J

( 2 . 5 . 4 )

From Watson and Williams approximation, for large k

( 2 . 5 . 5 )

From Stephens approximation, for large k

( 2 . 5 . 6 )
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I f  k and N are large, by substituting the Bessel functions, discussed later in Chapter 

3;

E(R) -  N -  ^  ( 2 . 5 . 7 )

which is in close agreement with the result (2.5.5).

If  k is small, without being too small for the approximation to the ratio of Bessel 

function to be invalid.



CHAPTER 3

LIKELIHOOD RATIO TESTS AND APPROXIMATIONS TO TH E  M A XIM U M

LIKELIHOOD ESTIMATES

In the early 1920's, R A  Fisher proposed a general method of estimation, called the 

method of maximum likelihood. Fisher demonstrated the advantage of this method 

by showing that (1) it yields sufficient estimates whenever they exist, and (2) it yields 

estimates which are asymptotically (when N—*») minimum variance unbiased 

estimators. In principle, the method of maximum likelihood consists of selecting that 

value of the parameter 0 under consideration for which f(x 1,x2,...,xn;^), the 

probability of obtaining the sample values, is a maximum.

The joint likelihood of the N observations 0 1, 0 2, . . . ,0 N from a von Mises

distribution with parameters k and fi0 is

as was given and used in Chapter 2.2.

Likelihood ratio tests utilise maximum likelihood estimates to test whether a particular 

set of data is consistent with some hypothesis about its underlying distribution. The 

likelihood ratio test is a uniformly most powerful test. A  detailed discussion of these 

tests originally formulated by Neyman and Pearson, can be seen in Kendall and 

Stuart (1967).

3.1 The Method of Maximum Likelihood and Likelihood Ratio Tests

N

( 3 . 1 . 1 )

i= l
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The likelihood ratio test provides a means by which a null hypothesis can be tested 

against an alternative hypothesis. A null hypothesis k = k Q, fiQ = j tQ may be tested

against an alternative hypothesis A: = & ,, /*0 = ? 0 parameters of the population given

by f(0 ; k, fiQ). Let L 0 and L ,  denote the likelihoods of k Q, / *0 and k ,  given

the population with its parameters k and /t0. Symbolically,

N N

L 0 -  II f ( 0 iJ k 0 , ?0) and L 1 — II f  (0 j ; k , , £ , )  ( 3 . 1 . 2 )
i - 1  i - 1

These quantities are both values of random variables, they depend on the observed 

sample values 0 , ,  0 2,... 0N, and their ratio.

max {L 0}  under null hypothesis
X -------------------: ------------------------------------------------ ( 3 . 1 . 3 )

max { L , }  under alternative hypothesis

which is referred to as a value of the likelihood ratio statistic X.

Since max L 0 is apt to be small compared to max L , when the null hypothesis is 

false, then the null hypothesis should be rejected when X is small.

Usually the natural logarithm of the ratio (3.1.3) is taken since, for large N, the 

distribution of -21og X approaches, under very general conditions, the chi-squared 

distribution with its degrees of freedom given by the number of parameters which are 

constrained by the null hypothesis. Let, under the null hypothesis, the best estimates
a a

of k and /i0 be k Q and /*0 respectively, where these are either given values specified 

by the hypothesis or the maximum likelihood estimates of the parameters under the 

null hypothesis.

-  31 -



Similarly, let k y and be the corresponding estimates under the alternative 

hypothesis. Then, using (3.1.3) the likelihood ratio statistic is

( 3 . 1 . 4 )X -

For observations from the von Mises distribution

X -

It is, therefore, not necessary to rely on being able to derive the distribution of our 

test statistic theoretically since a good approximation to the distribution, using 

-21og X, is available.

Since this, and as we will see later, several other successive approximations to the 

likelihood ratio test statistics are used, invariably the tests are biased. However, by 

equating the expectation of the test statistic to its associated chi-square expectation 

(given by its degrees of freedom), we may attempt to remove this bias, and hence 

obtain a more effective test.

Upton (1973, 76) utilizes this method extensively to improve his statistics for 

single-sample and multi-sample tests of the von Mises distribution. (These tests will 

be discussed and summarised in Chapter 4.) Many of the test statistics resulting 

from the likelihood ratio method could be used without simplication. By using the 

various approximations, test statistics which are simpler, both in form and use, may 

be derived.
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3.2 Approximations for the von Mises Concentration Statistic, k,  when k is 

Small

In Chapter 2, we have seen that if  0N are a random sample from M ( f iQik)

then the maximum likelihood estimate of k, k, is the solution of

M * )  R
A ( k ) ----------------------   ( c 2 + s 2) *

I „ ( k )  N
( 3 . 2 . 1 )

thus

k  = A" 1 ( 3 . 2 . 2 )

where the ratio of the Bessel functions I ,(k)/10(k) will be denoted as A (k).

Limited tables of A -1  are given by Mardia (1972, p 298) and Batschelet (1980, 

Tables B, C and D) based on those in Gumbel, Greenwood and Durand (1953). 

Mardia and Zemroch (1975) gave a computer algorithm for calculating k and other 

circular statistics by an iterative process.

In this and section 3.3 several approximations to A ” 1, which do not need tables or 

large computing equipment, are given. From these functions the statistic k can be 

obtained fairly accurately. The approximations stated here are taken from Dobson 

(1978) and Upton (1970). In a similar manner to Upton we shall denote R/N and 

X/N by x. This causes no problems since the choice is determined by whether or 

not the mean direction is known or not.

Dobson initially states four approximations to A -1  which are global approximations 

for all values of k. The first uses Amos (1974) equation that



and hence that A" 1 (x) is approximately 

A 7 ' (x ) [ l  -  x 2
l f l *'

: f  +
C (1 -  x 2) + -  h ( 3 . 2 . 4 )

where c = 1.46 to minimize the maximum relative error, and so k can be estimated 

using k =

The other three global approximations use a noticed feature that A(x) behaves like 

(2/x)tan~1x and so A_ 1(x) is like tan(xx/2). From this Dobson states the 

approximation

a ; 1( x ) i  + x 2| -  4X | 4 X
XXtan 2 ( 3 . 2 . 5 )

Improvements are found by replacing terms in (3.2.5) by minimax values, giving

1
A ; 1( x ) 1.32  + X‘ 1.32 -  1.32 tan xx

2~ ( 3 . 2 . 6 )

and

A"1(x)  = (1 .28  -  0 .5 3 x 2) t a n xx ( 3 . 2 . 7 )

Compared to these global approximations, approximations to A - 1 (x) for particular 

parts of its range were studied by Upton. The power series for the Bessel functions 

I 0(x) and I , (x )  for small x gives

A(/c) "  2 ^ ( 3 . 2 . 8 )

On inverting the series and taking the first three terms an approximation of A  *00  

is given by

a ; 1(x ) -  x^2 + x 2 + ] ( 3 . 2 . 9 )
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Using the first two terms

A ^ C x )  -  x [2  + x 2 ] -  k 6 ( 3 . 2 . 1 0 )

Finally if k is expected to be very small, then we may simply use the first term 

approximation of the power series, which gives

A7 1(x ) -  2x -  k 7 ( 3 . 2 . 1 1 )

To examine these approximations further Table 3.1 lists the true value of k against 

the approximations k , to k 7 between 0 and 1. For quicker and easier appreciation 

of the accuracy of the approximations Figures 3.1(a) to 3.1(g) plot the residuals, 

k-k'v against the true k. Figures 3.2(a) to 3.2(g) plot the relative percentage errors, 

\ k-k{ \ lk,  for each of the approximations.

A A A A

From the global approximations, k , , . . . , for values of k less than 1, k 2 and k 4 

are clearly the best, with maximum relative errors, illustrated in Figures 3.2(b) and 

3.2(d), of 0.71% and 0.84%, respectively at k=l .

A

By far the best approximation obtained from the power series is k 5, for all values of 

k < 1, with maximum relative error of 0.35%. For very small values of k (less
A

than 0.2 or R/N less than 0.1), however, k 7 is by far the simplest and quickest 

method of estimating. From Figures 3.1(g) and 3.2(g) we can see that, outside the 

range of 0 < /: < 0 .2 , k 7 deteriorates rapidly.

A

A disappointing function approximation is k , with maximum relative error of 9.61% 

for k=0.05 (the minimum value of k tested). For values of x (ie R/N) near to
A A

zero, the global approximations k A are not as good as those obtained from the

power series.
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T A B L E  3 . 1

A P P R O X I M A T I O N S  T O  S M A L L  K

T r u e  k X N

A

K 2 * 3 * 4 * 5 * 6 *7
0 0 0 0 0 0 0 0 0

0 . 0 5 0 . 0 2 5 0 0 . 0 4 5 2 0 . 0 5 0 0 0 . 0 5 1 8 0 . 0 5 0 3 0 . 0 5 0 0 0 . 0 5 0 0 0 . 0 5 0 0

0 . 1 0 0 . 0 4 9 9 0 . 0 9 0 4 0 . 1 0 0 0 0 . 1 0 3 6 0 . 1 0 0 5 0 . 1 0 0 0 0 . 1 0 0 0 0 . 0 9 9 9

0 . 1 5 0 . 0 7 4 8 0 . 1 3 5 7 0 . 1 4 9 9 0 . 1 5 5 4 0 . 1 5 0 7 0 . 1 5 0 0 0 . 1 5 0 0 0 . 1 4 9 6

0 . 2 0 0 . 0 9 9 5 0 . 1 8 1 1 0 . 1 9 9 9 0 . 2 0 7 1 0 . 2 0 0 9 0 . 2 0 0 0 0 . 2 0 0 0 0 . 1 9 9 0

0 . 2 5 0 . 1 2 4 0 0 . 2 2 6 6 0 . 2 4 9 8 0 . 2 5 8 8 0 . 2 5 1 0 0 . 2 5 0 0 0 . 2 5 0 0 0 . 2 4 8 1

0 . 3 0 0 . 1 4 8 3 0 . 2 7 2 3 0 . 2 9 9 6 0 . 3 1 0 3 0 . 3 0 1 0 0 . 3 0 0 0 0 . 2 9 9 9 0 . 2 9 6 7

0 . 3 5 0 . 1 7 2 4 0 . 3 1 8 2 0 . 3 4 9 4 0 . 3 6 1 8 0 . 3 5 0 9 0 . 3 5 0 0 0 . 3 4 9 9 0 . 3 4 4 7

0 . 4 0 0 . 1 9 6 1 0 . 3 6 4 3 0 . 3 9 9 1 0 . 4 1 3 1 0 . 4 0 0 8 0 . 4 0 0 0 0 . 3 9 9 7 0 . 3 9 2 2

0 . 4 5 0 . 2 1 9 5 0 . 4 1 0 6 0 . 4 4 8 8 0 . 4 6 4 3 0 . 4 5 0 5 0 . 4 5 0 0 0 . 4 4 9 6 0 . 4 3 9 0

0 . 5 0 0 . 2 4 2 5 0 . 4 5 7 2 0 . 4 9 8 4 0 . 5 1 5 4 0 . 5 0 0 1 0 . 5 0 0 0 0 . 4 9 9 3 0 . 4 8 5 0

0 . 5 5 0 . 2 6 5 1 0 . 5 0 4 1  ' 0 . 5 4 8 0 0 . 5 6 6 3 0 . 5 4 9 6 0 . 5 4 9 9 0 . 5 4 8 8 0 . 5 3 0 2

0 . 6 0 0 . 2 8 7 3 0 . 5 5 1 3 0 . 5 9 7 5 0 . 6 1 7 1 0 . 5 9 9 1 0 . 5 9 9 9 0 . 5 9 8 2 0 . 5 7 4 2

0 . 6 5 0 . 3 0 9 0 0 . 5 9 8 9 0 . 6 4 6 9 0 . 6 6 7 8 0 . 6 4 8 4 0 . 6 4 9 8 0 . 6 4 7 4 0 . 6 1 7 9

0 . 7 0 0 . 3 3 0 2 0 . 6 4 6 8 0 . 6 9 6 4 0 . 7 1 8 4 0 . 6 9 7 6 0 . 6 9 9 6 0 . 6 9 6 3 0 . 6 6 0 4

0 . 7 5 0 . 3 5 0 9 0 . 6 9 5 1 0 . 7 4 5 8 0 . 7 6 8 9 0 . 7 4 6 7 0 . 7 4 9 4 0 . 7 4 5 0 0 . 7 0 1 8

0 . 8 0 0 . 3 7 1 1 0 . 7 4 3 8 0 . 7 9 5 2 0 . 8 1 9 2 0 . 7 9 5 8 0 . 7 9 9 1 0 . 7 9 3 2 0 . 7 4 2 1

0 . 8 5 0 . 3 9 0 7 0 . 7 9 2 9 0 . 8 4 4 6 0 . 8 6 9 5 0 . 8 4 4 8 0 . 8 4 8 7 0 . 8 4 1 1 0 . 7 8 1 5

0 . 9 0 0 . 4 0 9 8 0 . 8 4 2 4 0 . 8 9 4 0 0 . 9 1 9 7 0 . 8 9 3 7 0 . 8 9 8 1 0 . 8 8 8 5 0 . 8 1 9 7

0 . 9 5 0 . 4 2 8 4 0 . 8 9 2 4 0 . 9 4 3 4 0 . 9 6 9 8 0 . 9 4 2 7 0 . 9 4 7 4 0 . 9 3 5 4 0 . 8 5 6 8

1 . 0 0 0 . 4 4 6 4 0 . 9 4 2 8 0 . 9 9 2 9 1 . 0 1 9 9 0 . 9 9 1 6 0 . 9 9 6 5 0 . 9 8 1 7 0 . 8 9 2 8

- 36 "



approximations .for small k against k.
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3.3 Approximations for the von Mises Concentration Statistic, k, when k is 

Large

For large values of k the power series expansion of Bessel functions does not provide 

a simple approximation to (3.2.1), however, the asymptotic expansion quoted by 

Abramowitz and Stegun (1965) may be used

exp[lc]
I PW  *

( 21c) i

m -  1 (m -  l ) ( m  -  9) (m -  l ) ( m  -  9 ) (m -  25) 
1  + --------------------------------------------------------------------------

81c 2! (81c)2 3! (81c) 3

( 3 . 3 . 1 )

where m = 4p2. Using this relation 

1 1 1
A(k)  *  1 ------------------------------+ 0 ( k “ 4) ( 3 . 3 . 2 )

2k 8 k 2 8 k 3

Denoting R/N and X/N by x, using Maclaurins theorem the solution of (3.3.2) is 

1
-  = 2(1 -  x )  -  (1 -  x ) 2 -  (1 -  x ) 3 ( 3 . 3 . 3 )
k

On inverting we obtain, as the first three terms

^ - 2 ( r - h o  + ? + §  (1 + x) ( 3 -3 -4)

9 — 8x — 3x2 a
A; 1(*> -  8 ( r -  x) = ( 3 - 3 -5)

Using the first two terms of (3.3.3) only

- 4(1 I x) - (3-3-6)
If  k is expected to be very large, then we may simply use the first term

approximation of the power series, giving

A-1 (x ) -  75-7-=—"— r  “  K o  ( 3 . 3 . 7 )i o 2 ( l - x ) 10

Upton (1970) gives his solution of (3.3.2) as
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1 3
-  = 2(1 -  x) -  (1 -  x ) 2 -  - ( 1  -  x ) 3 ( 3 . 3 . 8 )
k 2

On inverting

k = * + — + ^  (3 3 9)2(1 -  x) 4 2

5 — 5v + 2v2 a

A71<*> <3 - 3 - 10)

Upton does not explain how he derives equation (3.3.8) and therefore does not state 

why the third term is different to that of equation (3.3.3), however, as we shall see
A /V

later in the chapter, the approximation is better than k Q.

Upton (1973) states an approximation suggested by M  A  Stephens where the variance 

of the maximum likelihood estimator is considered, giving

AT2( x ) “ T - ^  - k , 2  ( 3 . 3 . 1 1 )

A A A A

To examine the approximations k 8, . . . .k12 and the global approximations k 1 k A,

given in Section 3.2 for large values of k, Table 3.2 lists the true values of k 

between 1 and 20 against these approximations.

A

As with small values of k , the residuals, k-k'v have been plotted for each 

approximation for easier appreciation of their accuracy, given in Figures 3.3(a) to 

3.3(i). Similarly Figures 3.4(a) to 3.4(i) plot the relative percentage errors for each 

of the approximations.

Figures 3.3(a) to 3.3(d) show the residuals for the global approximations, k 1, . . . .k4. 

Due to the large residuals shown within these approximations the graph scales, for 

analysis of large k t have been increased compared to those of small k (Figures 3.1 

(a) to 3.1(g)). Although these scales have increased, k , equation (3.2.4), has such 

large residuals and relative errors, compared to the other approximations, that the
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plots 3.3(a) and 3.4(a) still leave the graph. A  residual of -0.8183 would be seen 

at k=20, and a maximum relative error of 9.6 at approximately k - 4.5. Function 

approximation, is unexpectedly poor for both small and large k especially

considering its complex form.

From the remaining global approximations, k 3 has the smallest maximum actual

residual, in the range k - 1 to 20, of 0.2634 at k - 20, in comparison k A has maximum

actual residual of 0.4944 at k=20. However, k A may be seen as the best global

function approximation since it has a maximum relative error of 2.47% at k=20,

while k 3 has a maximum relative error of 3.42 at k=3.85.

O f the five power series functions, from examination of Figures 3.3(e) to 3.3(i), k 8 

and k 1 n are the better two approximations, with maximum residuals of 0.048 at 

k=3.1, and 0.025 at k - 3.2, respectively, for values of k\ > 2.5. On examination of 

the relative percentage errors k , 1 is the best approximation with maximum relative 

error of 0.79% at k - 3.1, compared to 1.61% at k - 2.85 for k Q, for values of 

k^> 2.5.

A

It is interesting to note the adequacy of k 10, equation (3.3.7), as this is often 

quoted as a good approximation for large k. Form Figure 3.3(g) we can see that a 

far greater improvement would be seen if 0.25 was added to the approximation, 

producing k g.

A A

For almost all k , ......... k , 2 approximations the actual and relative errors fluctuate

most in the range 1 <  k <  2.5.
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T A B L E  3 . 2

A P P R O X I M A T I O N S  T O  L A R G E  K

T r u e  k X
S k 3 *4 "a

CD
<

K  _  1 0 k 1 1 K 1 2

1 . 0 0 . 4 4 6 4 0 . 9 4 2 8 0 . 9 9 2 9 1 . 0 1 9 9 0 . 9 9 1 6 1 . 3 6 0 8 1 . 1 5 3 2 0 . 9 0 3 2 1 . 4 3 0 0 1 . 2 4 8 9

1 . 5 0 . 5 9 6 1 1 . 4 7 1 7 1 . 4 9 4 7 1 . 5 2 2 2 1 . 4 8 3 5 1 . 6 3 9 5 1 . 4 8 8 0 1 . 2 3 8 0 1 . 6 9 0 0 1 . 5 5 1 3

2 . 0 0 . 6 9 7 8 2 . 0 3 9 2 2 . 0 1 5 3 2 . 0 3 5 6 1 . 9 8 8 5 2 . 0 1 7 7 1 . 9 0 4 4 1 . 6 5 4 4 2 . 0 5 5 5 1 . 9 4 8 9

2 . 5 0 . 7 6 5 0 2 . 6 2 8 1 2 . 5 5 3 1 2 . 5 6 1 2 2 . 5 0 6 8 2 . 4 6 5 8 2 . 3 7 7 6 2 . 1 2 7 6 2 . 4 9 5 1 2 . 4 1 0 9

3 . 0 0 . 8 1 0 0 3 . 2 2 0 0 3 . 0 9 8 1 3 . 0 9 1 0 3 . 0 3 0 2 2 . 9 5 2 6 2 . 8 8 1 4 2 . 6 3 1 4 2 . 9 7 6 4 2 . 9 0 7 6

3 . 5 0 . 8 4 1 1 3 . 8 0 3 4 3 . 6 4 0 9 3 . 6 1 7 4 3 . 5 5 0 5 3 . 4 5 6 3 3 . 3 9 6 7 3 , 1 4 6 7 3 . 4 7 6 2 3 , 4 1 8 3

4 . 0 0 . 8 6 3 5 4 , 3 7 4 0 4 . 1 7 7 2 4 . 1 3 6 5 1 . 0 6 3 8 3 . 9 6 4 8 3 . 9 1 3 6 3 . 6 6 3 6 3 . 9 8 1 8 3 . 9 3 1 9

4 . 5 0 . 8 8 0 3 4 . 9 3 1 9 4 . 7 0 5 9 4 . 6 4 7 9 4 . 5 6 9 7 4 . 4 7 3 1 4 . 4 2 8 2 4 . 1 7 8 2 4 . 4 8 8 0 4 . 4 4 4 1

5 . 0 0 . 8 9 3 4 5 . 4 7 9 1 5 . 2 2 8 2 5 . 1 5 2 7 5 . 0 6 9 2 4 . 9 7 9 6 4 . 9 3 9 6 4 . 6 8 9 7 4 . 9 9 3 0 4 . 9 5 3 7

5 . 5 0 . 9 0 3 8 6 . 0 1 8 0 5 . 7 4 5 5 5 . 6 5 2 5 5 . 5 6 3 7 5 . 4 8 4 5 5 . 4 4 8 4 5 . 1 9 8 4 5 . 4 9 6 5 5 , 4 6 1 0

6 . 0 0 . 9 1 2 4 6 . 5 5 0 6 6 . 2 5 9 2 6 . 1 4 8 6 6 . 0 5 4 7 5 . 9 8 8 0 5 . 9 5 5 1 5 . 7 0 5 1 5 . 9 9 8 9 5 . 9 6 6 6

6 . 5 0 . 9 1 9 5 7 . 0 7 8 1 6 . 7 7 0 0 6 . 6 4 1 8 6 . 5 4 2 8 6 . 4 9 0 4 6 . 4 9 0 2 6 . 2 1 0 2 6 . 5 0 0 5 6 . 4 7 0 7

7 . 0 0 . 9 2 5 5 7 . 6 0 2 0 7 . 2 7 8 9 7 . 1 3 3 2 7 . 0 2 9 1 6 . 9 9 2 3 6 . 9 6 4 2 6 . 7 1 4 3 7 . 0 0 1 6 6 . 9 7 4 0

7 . 5 0 . 9 3 0 7 8 . 1 2 2 7 7 . 7 8 6 3 7 . 6 2 2 9 7 . 5 1 3 9 7 . 4 9 2 5 7 . 4 6 7 5 7 . 2 1 7 5 7 . 5 0 2 2 7 . 4 7 6 5

8 . 0 0 . 9 3 5 2 8 . 6 4 1 0 8 . 2 9 2 4 8 . 1 1 1 5 7 . 9 9 7 5 7 . 9 9 4 5 7 . 9 7 0 2 7 . 7 2 0 2 8 . 0 0 2 6 7 . 9 7 8 6

8 . 5 0 . 9 3 9 2 9 . 1 5 7 2 8 . 7 9 7 8 8 . 5 9 9 2 8 . 4 8 0 2 8 . 4 9 5 2 8 . 4 7 2 4 8 . 2 2 2 4 8 . 5 0 2 8 8 . 4 8 0 3

9 . 0 0 . 9 4 2 7 9 . 6 7 2 0 9 . 3 0 2 5 0 . 0 8 6 3 8 . 9 6 2 4 8 . 9 9 6 0 8 . 9 7 4 5 8 . 7 2 4 5 9 . 0 0 3 1 8 . 9 8 1 8

9 . 5 0 . 9 4 5 8 1 0 . 1 8 5 2 9 . 8 0 6 6 9 . 5 7 2 7 9 . 4 4 3 9 9 . 4 9 6 5 9 . 4 7 6 2 9 . 2 2 6 2 9 . 5 0 3 3 9 . 4 8 3 1

1 0 . 0 0 . 9 4 8 6 1 0 . 6 9 7 2 1 0 . 3 1 0 2 1 0 . 0 5 8 7 9 . 9 2 4 9 9 . 9 9 6 8 9 . 9 7 7 6 9 . 7 2 7 6 1 0 . 0 0 3 3 9 . 9 8 4 1

1 1 . 0 0 . 9 5 3 4 1 1 . 7 1 8 0 1 1 . 3 1 6 1 1 1 . 0 2 9 3 1 0 . 8 8 5 7 1 0 . 9 9 7 3 1 0 . 9 7 9 8 1 0 . 7 2 9 8 1 1 . 0 0 3 1 1 0 . 9 8 5 9

1 2 . 0 0 . 9 5 7 4 1 2 . 7 3 5 9 1 2 . 3 2 1 2 1 1 . 9 9 9 0 1 1 . 8 4 5 7 1 1  . 9 9 7 8 1 1 . 9 8 1 8 1 1 . 7 3 1 8 1 2 . 0 0 3 1 1 1 . 9 8 7 3

1 3 . 0 0 . 9 6 0 7 1 3 . 7 5 1 4 1 3 . 3 2 5 4 1 2 . 9 6 7 9 1 2 . 8 0 4 8 1 2 . 9 9 8 3 1 2 . 9 8 3 6 1 2 . 7 3 3 6 1 3 . 0 0 3 2 1 2 . 9 8 8 6

1 4 . 0 0 . 9 6 3 6 1 4 . 7 6 4 7 1 4 . 3 2 8 9 1 3 . 9 3 6 0 1 3 . 7 6 3 1 1 3 . 9 9 8 5 1 3 . 9 8 4 9 1 3 . 7 3 4 9 1 4 . 0 0 3 1 1 3 . 9 8 9 5

1 5 . 0 0 . 9 6 6 1 1 5 . 7 7 6 6 1 5 . 3 3 1 9 1 4 . 9 0 3 7 1 4 . 7 2 1 1 1 4 . 9 9 8 9 1 4 . 9 8 6 2 1 4 . 7 3 6 2 1 5 . 0 0 3 2 1 4 . 9 9 0 5

1 6 . 0 0 . 9 6 8 2 1 6 . 7 8 6 7 1 6 . 3 3 4 3 1 5 . 8 7 0 7 1 5 . 6 7 8 4 1 5 . 9 9 8 8 1 5 . 9 8 6 9 1 5 . 7 3 6 9 1 6 . 0 0 2 8 1 5 . 9 9 0 9

1 7 . 0 0 . 9 7 0 1 1 7 . 7 9 5 9 1 7 . 3 3 6 4 1 6 . 8 3 7 4 1 6 . 6 3 5 5 1 6 . 9 9 8 9 1 6 . 9 8 7 7 1 6 . 7 3 7 7 1 7 . 0 0 2 7 1 6 . 9 9 1 5

1 8 . 0 0 . 9 7 1 8 1 8 . 8 0 4 4 1 8 . 3 3 8 8 1 7 . 8 0 4 4 1 7 . 5 9 2 9 1 7 . 9 9 9 3 1 7 . 9 8 8 7 1 7 . 7 3 8 7 1 8 . 0 0 2 8 1 7 . 9 9 2 2

1 9 . 0 0 . 9 7 3 3 1 9 . 8 1 1 4 1 9 . 3 4 0 1 1 8 . 7 7 0 3 1 8 . 5 4 9 0 1 8 . 9 9 9 0 1 8 . 9 8 9 0 1 8 . 7 3 9 0 1 9 . 0 0 2 4 1 8 . 9 9 2 4

2 0 . 0 0 . 9 7 4 7 2 0 . 8 1 8 2 2 0 . 3 4 1 8 1 9 . 7 3 6 6 1 9 . 5 0 5 6 1 9 . 9 9 9 0 1 9 . 9 8 9 5 1 9 . 7 3 9 5 2 0 . 0 0 2 1 1 9 . 9 9 2 7
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3.4 The Best Approximation for the von Mises Concentration Statistic, k,  in

the Range 1 <  k <  2.5

From examining the results and graphs for the approximations for large and small k t 

all the power series functions are very poor estimators in the range 1 < k < 2 .5 .

From the global approximations, Figures 3.3(a) to 3.3(d) and 3.4(a) to 3.4(d), k , is 

a poor approximation and may be removed. Taking a closer examination of k 2, k 3 

and k A in the range 1 < k < 2.5, the residuals for these are given in Figures 3.5(a) 

to (c) respectively. Here we can see that all three are good approximations, 

however, k A is the best with maximum residual of 0.0168 at k - 1.6. The maximum 

percentage relative errors for k v  k z and k 4 in this range are, 2.125%, 2.446% and 

1 .12% respectively.
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3.5 Summary of Approximations

For the twelve approximations examined, Table 3.5.1 gives the best three 

approximations of k with their respective ranges. Also shown are the best 'simple' 

approximations of k.

TABLE 3.5.1

Range o f k

Best Function  

Approxim ation Range o f k

Best 'S imple '  

Funct ion  

Approximat ion

0 < k < 1.25  

or

0 < r  < 0.528

5 r 4
r  [2+ r 2 + ^ i - ]

0 < k  < 0 . 2  

or

0 < r  < 0 .1

2 r

0 .2  < k  < 1.45  

or

0.1  < r  < 0.584

r [ 2+ r 2]1.25 < k « 2.45  

or

0.528 < r  < 0.759

[ 1 . 2 8 - 0 . 5 3 r 2] ta n  ™

k > 1.45  

or

r  > 0.584

1

1 - r  2k >  2 .45  

or

r  > 0.759

5 -5 r+ 2 r 2
4 ( l - r )

Figures 3.6(a) and (b) plot the absolute residuals for the best and best 'simple' 

approximations in their respective ranges as continuous functions.
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Naturally we obtain better and better approximations using further terms in the power 

series (3.3.4) and (3.3.9), however we wish to find and use fairly simple

approximations to (3.2.2) in order that tables or large computing equipment are not

required.

3.6 Expansion of [ I0(A )/IQ(B)]N

When calculating the likelihood ratio test for large or small values of k an expansion

and approximation of (3.6.1) is required.

N log
In (A)

I 0( B>
( 3 . 6 . 1 )

If  A  and B are both small we may use the standard series expansion of Bessel 

functions quoted by Bickley (1957) to obtain

i „<a >

I n ( B )

A2 A4
1 +  —  +    +

4 64

1 + (A2 -  B2) + 1
64

B2 B4 
1 + —  + —  + 

4 64

(A4 -  4A2B2 + 3B4) ( 3 . 6 . 2 )

For (3.6.1) the power series for log(l+x) is used to produce

N log
I o (A) N

1 o ( B) 4
(A 2 -  B2) -

N

64
(A4 -  B4) ( 3 . 6 . 3 )

For very small values of A and B the second term may be neglected to give

N log
' lo (A) ' N

1 o (B) 4
(A2 -  B2) ( 3 . 6 . 4 )

-  56 -



For large values of A  and B the Bessel functions are expanded using the asymptotic 

expansion (3.3.1) to obtain

M A> B i 1 1 1 1
— exp[A -  B] • 1 + - — ------- + --------

I 0<B> A 8 A B 128

9 2 7

A2 AB B2

For (3.6.1) we again expand the logorithm as a power series.

1 (A + B)’l 0(A) N B
N log- , « - log -

I 0(B) 2 A
+ N(A -  B) 1 -

8AB 16A2B2

( 3 . 6 . 5 )

( 3 . 6 . 7 )

For very large A and B we may neglect the higher powers of 1/A and 1/B to give

’ l 0(A> N B
N log . « - log -

I 0 (B) 2 A
+ N(A -  B) ( 3 . 6 . 7 )
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CHAPTER 4

TH E DEVELOPMENT OF CIRCULAR ANALYSIS OF VARIANCE TECHNIQUES

4.1 Introduction

The analysis of data of a circular or spherical nature began when Lord Rayleigh

(1880) developed a one-sample test for uniformly distributed random vectors using 

the resultant length. Investigation into circular distributions other than the uniform

distribution began in the early part of this century. The most important of which, 

and the assumed circular distribution for much of this thesis, was the von Mises 

distribution. True development of significance tests, however, did not appear until 

Fisher (1953), whilst investigating the remanent magnetism of a sample of rock

specimens, considered the spherical analogue of the von Mises distribution where

observations are regarded as points on a sphere. Fisher derived the maximum 

likelihood estimates of the concentration parameter and the mean direction and 

provided the basic distribution theory in order to test a prescribed mean direction 

when k is unknown. Watson (1956) gave a significance table for the test of k -  0

i.e. uniformity, and approximate tests for the equality of concentration parameters 

and mean directions. As discussed in Chapter 2.3 Greenwood and Durand (1955) 

utilised Fishers work to produce a similar distribution theory for the circular case. 

In 1956 Watson and Williams derived tests for the direction and homogeneity in both 

the two- and three-dimensional cases. Their exact test for the two-dimensional case 

is summarised in the following section.
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4.2 Exact and Approximate Tests of Significance from Watson and Williams

4.2.1 An Exact Test

Stephens (1972) produced an exact two-sample test for the null hypothesis that two 

samples, size N 1 and N 2, have identical modal vectors, assuming they have the same 

unknown value of k. For each sample the resultant lengths are found and the test 

statistic Z  calculated

R, + R2
Z  --------  ( 4 . 2 . 1 )

N

The resultant R of R , and R 2 is also found and W = R/N calculated.

The test consists of finding a critical value z satisfying Pr(Z >  z/W ) = a,  for

appropriate significance level a. Tables for the critical value z are presented by

Stephens (1972) and the null hypothesis is rejected at level a if Z  = z. The exact 

test is a conditional test based on the joint distribution of R 1t R 2 given R i.e.

P u  ( R , ) P u  ( R 2 )
f ( R , , R 2 lR)--------------------------------- '■-------------1-------------------------  ( 4 . 2 . 2 )

*Pu<R>{[(R, + R2) 2 -  r2HR2 -  (R, -  R2>2]}*

where

0 < R 1 < n, 0 < R 2 < n 2 |R , -  R 2 I < R < R , + R 2

and pu(R) is given by equation (2.3.9). Equation (4.2.2) was derived by Watson and

Williams (1956) for the circle following the derivation for the sphere by Fisher

(1953).

4.2.2 Approximate Tests

If 0 is an observation from the von Mises distribution with mode at zero then for

large k we have shown, (2.2.4), that 0 J~k is approximately N(0,1) and hence k 6 2

-  59 -



to be chi-squared distribution with 1 degree of freedom. Using this result we may 

approximate for 0 2 to obtain the result that 2fc(l-cos0) is chi-squared distributed 

with 1 degree of freedom.

Watson and Williams used this result and the additive properties of x 2 distributions

to produce the approximations

2 /c(l -  cos 0 ) »

2/c(N -  X) ( 4 . 2 . 3 )

2k(N  -  R)

for single sample tests.

In the two sample case, if 0 1 ( the mean direction for sample 1) equals 0 2 (the 

mean direction for sample 2) then

R 1 + R 2 = R

However, if 0 1 *  0 2

then R 1 + R 2 >  R

Therefore the greater the difference between 0 1 and 0 2 the greater the value of

R 1 + R 2 -  R. Via equations (4.2.3), Watson and Williams showed

2/c(R1 + R2 -  R) « x 2

Equations (4.2.4) are independently distributed. (Further proof of (4.2.4) and (4.2.3) 

can be seen in Mardia (1972 p.114)).
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2k(N  -  (R , +  R2) ) ( 4 . 2 . 4 )

q
where

J -l



Watson and Williams then stated that to test the equality of mean vectors for several 

samples (for large k ), generalising Watson (1956), we should use

q

In 1962 two papers by M  A  Stephens produced exact and approximate tests for the 

null hypothesis, concerning single sample tests, that the mean vector is a given 

vector when k is unknown. For the exact test, given in section 4.2.1, Stephens 

produced nomograms for differing significance levels to find R 0 given N and X, 

where Pr(P >  R 0 |X) = a . X  being the component of R on 0, when /x 0 is known 

(Figure 2.2.1).

Stephens' three approximate tests were also for the above null hypothesis, for 

different ranges of N and X. For large concentration parameter the approximate test 

was given by

calculating R 0 from (4.3.1). If  R >  R 0 , reject the null hypothesis.

Equation (4.3.1) was first suggested by Watson and Williams using the equations of

(4.2.3). Using these equations the chi-squared approximations may also be shown as;

( 4 . 2 . 5 )
q

where q is the number of samples.

4.3 Hypothesis Testing Concerning the Mean Direction

<R0 -  *>
(N -  1) ( 4 . 3 . 1 )

2/c(N -  X) = 2/c(R -  X) + 2k(N  -  R) ( 4 . 3 . 2 )
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For large k, this obeys the x 2 decomposition property parallel to

( 4 . 3 . 3 )

where x iy...,xN is a random sample from N(/t,cr) for linear statistics.

Equation (4.3.1) is therefore similar to the F-statistic for linear statistics, which is 

the ratio square-root of the first and second terms on the right-hand side of

In 1969 Stephens stated that in practice the asympototic results of (4.2.3) are not 

adequate for moderately large values of k. Illustrating this via Pearson curve 

approximations and Monte Carlo studies, an improvement in (4.2.3) was found by 

examining the expansion of A (k) for large k (equation (3.2.2)). This suggested that 

the chi-squared form would be improved by replacing k by y  in (4.2.3), where

y k 8k2 

and that this should be used for tests when k > 2 .

In 1974 Upton considered further improvements of (4.2.3) by investigating the 

distributions of 0, X  and R. Taking the expectation of these distributions and 

approximating the Bessel functions involved, Upton derived 0, to replace k in

(4.3.3).

1 1 3
( 4 . 3 . 4 )

(4.2.3).

1 3
0 -  k 1 ( 4 . 3 . 5 )

4k 16k2

Upton concluded that (1) both y  and 0 approximations improve as k increases (2) 

both 7  and 0 are considerable improvements over the original, and (3) there is little 

to choose between the 0 and y  approximations



Assuming equal concentration parameters k , and k 2 for the two sample case, we are 

now interested in testing

Ho : Voi  “  ̂ 02 “  ( 4 . 3 . 6 )

against

Hi : *  0̂2 ( 4 . 3 . 7 )

where fi0 and k are unknown.

Using Stephens approximation improvement 7 , for large k , (4.2.5) from Watson and 

Williams becomes

3
•2 “ 1 + — (N -2 )

8k

(R, + R2 -  R)

(N 1 JO 1 to

f 1 ,N -2  -  1 + —  (N -2 )   ( 4 . 3 . 8 )

where for unknown k , k can be replaced by its maximum likelihood estimate,

k -  A" 1

given by (3.3.11) or (3.3.10).

For value of k >  10 (R/N >  0.95) the improvement factor 7  is negligible.

Using the likelihood ratio test procedure, discussed in Chapter 3.1, to test H 0 and 

H 1 defined by (4.3.6) and (4.3.7) we may obtain a test statistic for small k, assumed 

equal, given by

log X -  N log
I 0( * i )

M * o >

p 2

+ k Q £ £ cos(0 i j  -  0)

i-1 j-1

P 2

" k ' I  I  cos(0 i j  -  0j )

i-1  j-1

( 4 . 3 . 9 )
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From (1.4.11)

P 2
^ ^ c o s ( 0 j j  -  0) -  R

i - 1  j - 1

P 2

^ ^ c o s (0 } j  -  0j )  -  R, +

i - 1  j - 1

Using (3.2.11) for small k

k n -  —
2R 

N

2(R, + R2) 

N

( 4 . 3 . 1 0 )

where

N -  Nt + N2

Using approximation (3.6.4) we obtain the test statistic

“2 log X -  jj (R, + R2) 2 -  R2 = X] ( 4 . 3 . 1 1 )

In the same manner the likelihood ratio test of the equality of the mean directions 

of two samples having unknown concentration parameters, assumed to be equal and 

large, may be obtained from (4.3.9).

With k assumed large we may use the approximation (3.3.7) to give

N
0 2(N -  R)

N
2(N -  R, -  R j)

( 4 . 3 . 1 2 )
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Using the approximation (3.6.7) for large k we obtain our test statistic

Nlog ( 4 . 3 . 1 3 )

Mardia (1972) shows this to be a monotonic function of the F-statistic given by

For both the single and two sample cases Upton (1970, 74), using likelihood ratio 

techniques, produced significance tests concerning the mean direction and the

concentration parameter for all permutations of k known or unknown, k large or

small, and mean direction known or unknown. Upton also improved these test

statistics using their expectations and associated degrees of freedom, as discussed in

Chapter 3.1

Many single and two sample tests have not been fully reviewed and reproduced here

as this thesis is concerned with the further development of analysis of variance

techniques and only those having a bearing on such development have been

introduced. An excellent review of single and two sample testing can be seen in

Mardia (1972, p 132-).

4.4 Multi-sample Tests Concerning the Mean Direction

Let 6\j (i= l,2 ......p ,j= l,2 ,...... ,q) be q independent random samples of sizes Nj from

M(/x0j,A:j). Let Rj be the length of the resultant of the jth sample, and R be the 

length of the resultant of the whole or combined sample.

We wish to test

against the alternative that at least one of the equalities does not hold. We assume 

that k y = ... kq = k , where k is unknown.

(4.3.8).

H0 • ^ 0,1 “  , 2 = ^o,q ( 4 . 4 . 1 )
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4.4.1 For Small Concentration Parameter, k

For values of k in the range 0 to 1 the likelihood ratio test for q samples extended 

from (4.3.11) gives

q
- 2 Io g  X -  ^  ( ( £  R j ) 2 -  R2> -  X2_ j  ( 4 . 4 . 2 )

j - 1

Since this test uses the approximation (3.2.11) for small k, which was shown in

Chapter 3 to be unreliable as k-41, the test may be improved by using the

expectation approximations from (2.5.2) and (2.5.4)

E(Rj ) " n jp  + k  k > 0

E (R j )  -  Nj  + N j (N j  -  l ) p 2 

in (4.4.2) to produce the test statistic

q

I  « ( ( £  R j ) 2 -  R2) )  ( 4 . 4 . 3 )

j - 1

where

k 2 q
5 - 1 = 1 ---------+   ( 4 . 4 . 4 )

8 2Nk2

4.4.2 For Large Concentration Parameter, k

Using Stephens improvement (4.3.4) and extending Watson and Williams test statistic 

of (4.2.5), the new test statistic, under the null hypothesis (4.4.1), becomes

3
1 +  — -

8 k

(N -  q) ( J Rj -  R) 

j - 1

(q -  1) (N -  Y Rj )

j - 1

Fq - 1 ,N-q ( 4 . 4 . 5 )
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where k is the m .l.e. of k  given in (3.2.2).

Mardia (1972) states that from Monte Carlo trials this approximation is adequate for 

k > 1, i.e R/N > 0.45 Stephens (1969, 72), however, shows that the test is adequate 

for k > 2, i.e. R/N > 0.7, and requires a further improvement to be satisfactory for 

k > 1. Stephens (1972) produced an approximate multi-sample test based on the

exact test given in section 4.2.1, where

R, + R2 + ................ + Rq R
Z -  ----------------------------------------------  and W — — ( 4 . 4 . 6 )

N N

With test statistic;

z  -  ( 4 . 4 . 7 )

where

f  _ g p (q -  * )
(N -  q)

Let g be the upper percentage point, at level ot, of the F distribution with q-1 and

N -q  degrees of freedom, and let D be a parameter taking the following values, for

W between 0.45 and 1.0.

W : 0 .45 0 .50  0.55  0 .60 0 .65 0 .70  0 .80  0 .90  1.00

D : 0 .92  0 .87 0 .84  0.83  0 .82  0 .84  0 .88  0 .93  1.00

If  Z  >  z, reject H 0 at significance level ct

This test is equivalent to (4.4.5) for k > 2, but as (4.4.5) deviates from the 

F-distribution below k-2  the factor D is introduced. For values of k > 2 D is the 

reciprocal of the factor 1 + (318k).
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Upton (1976) produced an approximate test for q samples, known as the G-test, 

related to the joint distribution of Z  and W, where Z  and W are given by (4.4.6).

The G-test is derived from the method of maximum likelihood which gave (4.3.13) 

for the two-sample case. Upton states the test statistic

2N2 logi 1 -  w
1 -  z

N(1 + W) + q Xq-1 ( 4 . 4 . 8 )

suitable when all Nj  ̂ 10 and R/N > 0.6.

In exactly the same procedure as the two-sample case, k 0 and k , are produced 

from (3.3.7) to give

kr, =0 2 (1 -  W)

k -  11 2(1 -  Z)

Using the approximation (3.6.7) for large k and the log likelihood ratio

( 4 . 4 . 9 )

<-̂
r

'w
'O

H
H

A A

N log + k 0W -  k , Z
I 0 (£o>.

we obtain the test statistic

-2  logX = N logj ( 1 -  W)
( 1 i N

( 4 . 4 . 1 0 )

This may be improved by equating the test statistic to its associated chi-squared 

expectation. On expanding the logarithm as a power series we may neglect terms 

beyond the first two since W and Z  will be smaller than 1, to produce

N - | - w 2 + z  + § !
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using the expectations E(R) and E (R 2) given by equations (2.5.4) and (2.5.2). 

E(G) “  (q2k 1 “ A(/c) + 4En

On equating with (q-1) and simplifying we obtain the correction 

2N
N + R + q 

to produce the test statistic (4.4.8).

Throughout Uptons paper, conditions, ranges and tables for the statistic W/N are 

given, however, this is a notation error and should be read as R/N or simply W.

The above multi-sample tests will be investigated further in Chapter 9 when suitable 

comparisons to an alternative test will be given.

4.5 Multi-Sample Tests for the Equality of Concentration Parameters, ^

In this section three tests for the homogeneity of concentration parameters for 

differing values of Rj/Nj are given. The construction of tests (4.5.2), (4.5.4) and

(4.5.5) can be seen in Mardia (1972, p 165-). The composite hypothesis under 

consideration is

Ho : - ............. -  *q  -  k  ( 4 . 5 . 1 )

where j i , ,   îq and k are not specified.

-  69 -



4.5.1 Rj/Nj <  0.45

Test statistic

q 1 I  WJg ’ ( * P

u - “  I  -  - T 1---------------
j - i

q

I  wj

j - i

q - i

where

R
2R

N
g , ( R j )  = s in - 1 (aRj )  a

1
wj 4 (N j  -  4)

The test statistic (4.5.2) is based on the approximation

2R
k,

2(1  -  a 2k 2)
N

which is obtained from the approximation

A(fc) « |

from (3.2.8).

1 - 8

( 4 . 5 . 2 )

( 4 . 5 . 3 )

The functional form of the transformation to normality is 

g , ( k ) -  s i n " 1 (ak)

under H 0 (4.5.1) the g,(R j) are approximately distributed as independent N(g1(A:),o’j) 

where

2 _ 3 _ 1_
° j  "  4 (N j  -  4) “  wj
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4.5.2 0.45 < Rj/Nj < 0.70

Test Statistic

U . - I  wjS  
j - 1

R

iNj

f 3
v [R j|
L WJS2

U - i kJ ■ *
=  x,

I -J
j -1

q-1

where

( 4 . 5 . 4 )

1 0.7979

wj  <Nj  -  3>

R 90 1 O

g 2 - = s inh“ 1 -
N C 2

c, = 1.0894

c 2 = 0.25789

Test Statistic (4.5.4) is built in the same manner as for (4.5.2).

4.5.3 Rj/Nj >  0.70

This test is the analogue of Bartlett's test for homogeneity of variance and was given 

by Stephens (1972) and Mardia (1972).

Let d j = N j -  1

Test Statistic

D = N-q = ^ d j

J-1

Z, -  D{ loge £ (Nj -  R j ) }  -  DlogeD -  £ d j lo g e (Nj -  R j )  + J d j l o g edj

j - 1  j - 1  J- 1
( 4 . 5 . 5 )
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then U 3 = Z y C  where

C = 1 +

n

i
J - i

3(q  -  1)

IL  is d is t r i b u t e d  as y 2 3 ^n-1

The above tests will be used when techniques in later chapters assume that k is 

equal in value for all the subpopulations being tested under the composite hypothesis.
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CHAPTER 5

PARAMETER ESTIM ATION LEADING TO  M A XIM U M  LIKELIHO OD METHODS  

FOR LARGER EXPERIMENTAL DESIGNS

In the first four chapters of this thesis, a general review and critique of the 

problems, theory, approximations and tests associated with circular statistics have been 

discussed. The thesis will now begin to extend these techniques and discuss alternative 

methods to construct new tests for experimental designs and their required analysis of 

variance.

Gould (1969) gave a regression analysis procedure for use when the dependent 

variable is the position of a point on the circumference of a circle or the surface of 

a sphere. Gould used an analogue of the normal theory of linear regression for the 

circular variable problem, where

0j, i= l,...,N  is independently distributed as M ( / i0 + @t'v k)  where t j , . . . , tN are known 

numbers while fi0, 0 and k are unknown parameters. The maximum likelihood 

method, as discussed in Chapter 2, is used to estimate the parameters f iQ and j3. 

The logarithm of the likelihood function is

5.1 Introduction

( 5 . 1 . 1 )

N

-  constant + k cos( 0 j -  / i0 -  0 t i )

i - 1

The maximum likelihood solutions, fiQ and 0 for the parameters are then obtained as 

the solutions to the two equations

N

( 5 . 1 . 2 )

i - 1
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and

N

^ t | s i n ( 0 j  -  Jt0 -  -  0 ( 5 . 1 . 3 )

i - 1  

From (5.1.2)

N

£ s i n ( 0 j -  ^ t j )

tan fiQ -  ^ -----------------------  ( 5 . 1 . 4 )

^ cos( 0 j -  3 t i )  

i - 1

P is obtained by a straightforward iterative procedure where P is an initial estimate 

of P and fi0 the corresponding value of /z0 from (5 .1 .4), for the iteration

N

J t j s i n ( 0 j -  ? 0 -  ^ t j )

P - P  + ^ --------------------------------------  ( 5 . 1 . 5 )

£ t?cos( 0 j “ ?o ~ ^ i )
i - 1

From these estimates is developed an appropriate test for p=0. For this model, 

maximum likelihood estimation coincides with least squares estimation.

Johnson and Wehrly (1978) showed that the most serious drawback to Goulds 

approach is that the likelihood function has infinitely many large peaks.

In this section a similar modelling approach to Gould will be discussed, however, for 

experimental design models, as in linear modelling, constraints will be placed on the 

estimating parameters. The maximum likelihood estimates of the model parameters 

will be produced for the required hypothesis test for the first time. The attainment 

of these not only enables hypothesis analysis but greater data appreciation, as will be 

shown in the following sections.
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5.2 Constraints for Circular Models

For the development of experimental models each angular variate in a one-way 

classification may be made up of some overall mean direction f iQ, some effect due to 

a particular treatment, /3j, and some random variable representing unassignable 

(residual) effect, q j. Hence /3j = (fij -  / i0) where /ij is the mean direction of the 

jth population.

The form of the model which is used can be expressed as;

As in linear analysis of variance the assumptions on the treatment effects are:

a) the treatment terms add on to the mean direction term rather than, for 

example, multiplying

b) the treatment effects are constant

c) the observation on one block or unit is unaffected by the treatment applied to

other units.

In linear analysis it is usually convenient to choose the constraint on the treatment

parameters so that they sum to zero; in circular analysis it is correspondingly

convenient to choose the constraint on the angles specifying the treatment parameters 

so that their sines sum to zero. A  proof and simple example shows the need for 

this constraint; using expression (5.2.1) and assuming zero residual

0i j  “ + + 6i j ( 5 . 2 . 1 )

P q p q

i - i  j - i i-1  j-1
( 5 . 2 . 2 )
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ta n  0

q q
cos /i0 ^ s in  f i j  + s in  f iQ ^ cos 0j

j-1________________ j ° l
q q

cos /i0 ^ cos 0j -  s in  /i0 I  s i n

j- i j - i

under the constraint I  s l n  h  -  0
j- i

q
s in M0 \ cos 0j

tan 0 -  --------------i —5--------------- -  tan (iQ ( 5 . 2 . 3 )

COS /l0 I  cos /3j

j -1

Example 5.2.1

4

i )  Let fiQ -  100* £ -  0

j -1

and

0, = 48.5* 02 -  19.38* ft -  -54 .04*

therefore 0 4 = -13.84* with zero residual

0 M -  148.5* 012 -  119.38* 013 -  45.96* q 4 -  86.16*

Using (1.4.5) to calculate the mean direction gives 

0 -  100.582*

4

i i )  However under the co n stra in t  ^ s In 0 j  — 0

j-1

then 0 4 = -15.745* and 0 14 = 84.255* 

to give 0 = 100*

-  76 -



In the first example the sample mean direction differs from the stated population 

mean direction when zero residual effect is assumed. When the constraint is that 

the sine of the treatments sum to zero, the sample mean equals the stated population 

mean direction, i.e. 0 = fiQ. This must hold for all factor effects in larger circular 

experimental designs.

Using this notation each observation 0jj is an independent observation from a von 

Mises distributed population with a mean direction of / i0 + /3j and whose

concentration parameter is k , i.e.

0 i j  *  IVM( ^ 0 + 0 j , k )  ( 5 . 2 . 4 )

where q is the number of treatments, and p is the number of observations on each 

treatment, with the constraint

q
^ s in  /3j -  0 ( 5 . 2 . 5 )

J-1

and IV M  is read as 'independently von Mises distributed1.

5.3 One-way Classification

Assuming the fly's (i= l,2...p , j= l,2 ...q ) are independently distributed as 

M (fi0 + (3j,k), let us construct a test of:

H0 : (3, -  P:

H, : at least  one |3j /  0
( 5 . 3 . 1 )

Let fiQ and ( / i0, j3j) be the maximum likelihood estimates of ( iQ and / i 0, /?j under 

H 0 and H 1 respectively. The logarithm of the likelihood function is given by:

P q
log L -  constant + ^ cos( f l j j  -  /*0 -  /3j)

i-1  j-1

( 5 . 3 . 2 )
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a) Under H 0 the maximum likelihood estimate fiQ of nQ is the solution ot:

P q
^ J  s i n ( 0 j j  -  J 0) -  0 ( 5 . 3 . 3 )

i -1  j -1

Therefore

P q

I  l sin i j

tan  un -    -  tan  8 . .  ( 5 . 3 . 4 )
P q

I I 008 9ij
i -1  j -1

Hence Jt0, under H 0, is the overall sample mean direction, 8.

b) Under H 1 the maximum likelihood estimates fiQ and /3j are the solution of:

P q
£ £ s in (0 j j  -  -  j3j) -  0 ( 5 . 3 . 5 )

i-1  j-1

and

P
^ s in (0 j j  -  n 0 -  /3j) -  0 'q' equations ( 5 . 3 . 6 )

i=*l

q
under the constraint ^ s in  |3j — 0

J-1

Let Aj -  £ 0 + 0j 

Substituting Aj into (5.3.6)

P
J s in (0 j j  -  Aj) =* 0 ( 5 . 3 . 7 )

i= l

From (1.4.9) Aj is the mean direction of the jth block i.e. 8 j.
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Therefore we may solve for £ 0> 0 ,,  (32.........  0q from the q equations:

0- i  “  M0 +

0-2 "  Mo + h

0 -q “  M0 + 0q

under the c onstra in t  I  s in  3j -  0

j -1

Taking the sine and summing the q equations of (5.3.8) produces

qP q
0 . j  -  s in  fL0 2 cos fij

A

+  COS fL0 2 s i n  0j

j -1 j-1J-1

under the given constraint

q
^ s in  0.j -  s in  n0

J-1

^ COS |3j

j-1

Taking the cosine and summing the q equations of (5.3.8) produces

J  cos 0.j —  cos f l Q

j - 1

^ COS /3j

j -1

Dividing equation (5.3.9) by (5.3.10) gives

q
I  s in  » . j  

j -1  s in  )t0

q cos /*0
COS 0. {2

j - 1
-  79 -
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Therefore

J-1fiQ — tan ” 1 ( 5 . 3 . 1 1 )
q

Hence, under H lt jz0 is the circular mean of the q equations, 0 .j

The 3j treatment effects are calculated directly from the q equations of (5.3.8), given 

H0 found by (5.3.11) i.e.

Unlike linear analysis the maximum likelihood of the overall mean direction, n Q, 

alters depending on the hypothesis test. Example 5.3.1 shows the parameter 

estimation and the following hypothesis test at work for a hypothetical data set 

concerning animal orientations.

Example 5.3.1

In an orientation experiment four samples of animals were observed: one was a 

control group, the other three were experimental groups. Following treatment, their 

direction of movement was noted and reproduced in Table 5.3.1.

( 5 . 3 . 1 2 )

-  80 -



Table 5.3.1

Control
Group

Experim ental 
Group 1

Experim ental 
Group 2

Experimental  
Group 3

156* 168* 137* 214*

111*

•VOC" 184* 155’

174* 102* 222 * 129’

140* 137* 163* 153*

213* 184* 236* 125’

121 * 112* 133* 228*

2 0 0 * 62* 161* 185’

166* 133* 193* 176*

Statistic:

Resultant

R. j

Sample Mean 
D ire c t  ion

' .J k

Control Group 6.7031 159.9322’ 3.415

Experimental Group 1 6.231 121.5483* 2 .622

Experimental Group 2 6.5938 177.9278* 3 .182

Experimental Group 3 6.5938 169.9278* 3.182

Overall sample mean direction, 0.. = 158.3153*

Overall resultant length, R.. = 24.362

Concentration parameter estimate k -  2.464

Circular mean of the individual _
group mean directions 6 -  157.8013*

Each of the sample populations have been tested by Watsons statistic (1961), 

using the critical values supplied by Stephens (1964), to show von Mises distributed 

data sets. Similarly, the homogeneity of the concentration parameters have been 

tested and validated via test statistic (4.5.5).
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Parameter Estimates:

Under H 0 of (5.3.1) /t0 = 158.3153* (from (5.3.4))

Under H , of (5.3.1) £ 0 = 157.8013* (from (5.3.11))

0 ,
A

^2

e 3

h

. l

. 2

. 3

. A

M0
A

M0
A

^0
y\

Mo

2.1309

-36.253*

20.1265*

12.1265*

I sin 3j
j - i

Hypothesis Testing:

The likelihood ratio test for H 0 and H 1 gives the test statistic

N loge
I 0C/c0)

p q

+ I  \  cos^ i j  " M0)
i -1  j -1

p q
£ £ COS(0f j - f t Q - 0j)

i - i  j - i

( 5 . 3 . 1 3 )

which produces the same test statistic given by Watson and Williams and built in 

Chapter 4.3 where

P q

£ £ cos (  ̂j j  -  J*0) “  R. .

i -1  j -1

p q q

I  I  cos(f l iJ -  -  3 j )  -  J  R. j
i - i  j - i  j - i

Using the approximations (3.3.7) and (3.6.7) for large fc the one-way classification 

test statistic is seen as
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N l o g e
N -  R

N -  J r . j

j -1

~ Xq-1
( 5 . 3 . 1 4 )

which is a monotonic function of the F statistic given by (4.4.5). For Example 

5.3.1, applying test statistic (5.3.14) gives:

32 loge
7.638

5.8783
8.38 *  x 2

3

x l  (5%) -  7 . 8 i  x |  ( 1%) -  n *34

Indicating a significant difference, at the 5% level, between the four treatments 

shown in Table 5.3.1 . Having rejected H 0 the above method has shown means by 

which the parameter estimates of a one-way classification design may be obtained 

and examined further. Figure 5.3.1 illustrates the angular difference between the four 

effects or treatments, given in Example 5.3.1, against the model derived mean 

direction estimate, n 0. Treatment 1 is seen to possess the greatest divergence from

'0*

-  83 -



E*f> I

* ------------2 0 - 13*

Figure 5.3.1 Angular differences between the treatment mean directions and the 

overall sample mean direction found in Example 5.3.1 .

5.4 Randomised Complete Block and Larger Experimental Designs

If  the maximum likelihood estimates for other circular experimental design models can 

be found in a similar manner to the one-way classification shown above, the testing

of differing hypotheses for 'larger' experimental designs may be undertaken. However,

unlike the one-way classification, the parameter estimates for these designs may not 

be found by simple algebraic manipulation.

Let us investigate, for example, parameter estimation for the randomised complete 

block design. Here the form of the model may be expressed as

0 i j  = /*o + a i + 0j  + e i j  ( 5 . 4 . 1 )
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Assuming the fly's (i= l,2 ,......,p, j= l,2 ,...... ,q) are independently distributed as

M (pLQ +Oj+/?j, k), let us test the 'column' effects for the hypothesis given in (5.3.1) 

under the constraints:

P
£ s in  a j — 0 ( 5 . 4 . 2 )

i -1

q
J  s in  /3j -  0 ( 5 . 4 . 3 )

j -1

A A

let ( / i0,ay and ( / i0*, cq*, (Sj*) be the maximum likelihood estimates under H 0 and

H 1 respectively. (The starred parameters represent parameter estimates found under

H , ) .

A A

Under H 0 the maximum likelihood estimates / i0 and aj of /x0 and cq are the 

solutions of:

P q
^ ^sin(f l  j j  -  j i0 -  cij) -  0 ( 5 . 4 . 4 )

i -1  j -1

q
^ s i n ( f l j j  -  n Q -  a j )  = 0 'p '  equations ( 5 . 4 . 5 )

j “ l

under the c onst ra in t  ^ s in  a j  -  0

i -1

Equations (5.4.4) and (5.4.5) are in precisely the same form as (5.3.5) and (5.3.6), 

and therefore give the same parameter estimates as (5.3.12) and (5.3.11) for aj and 

/z0 respectively.

Under H 1 the maximum likelihood estimates / t0*, a *  and of f iQ, aj and /3j are 

the solutions of
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p q
£  J  s in (0  j j .  £ 0* -  5 i *  -  j3j*> -  0 ( 5 . 4 . 6 )

i -1  j -1

P
£ s i n ( 0 j j  _ £ 0* -  cq* -  3 j*)  -  0 'q' equations ( 5 . 4 . 7 )

i -1

P
under the co n stra in t  ^ s i n  a** = 0

i-1

tr
^ s i n  cq*

J  s i n ( 0 j j  _ n0* -  cq* -  3 j* )  -  0 'p' equations ( 5 . 4 . 8 )

J-1

q
under the co n stra in t  ^ s in  3 j*  ” 0

J-1

Unlike the one-way classification of section 5.3, these constrained equations may not 

be simplified in the same manner. In 'linear' statistical analysis the equivalent 

expressions would simplify to their respective 'column' or 'row' means. This 

produces a simple statement where, some overall mean plus a particular 'row' effect 

gives the respective row mean; and similarly for column effects. In circular analysis 

these expressions will not simplify and require lagrange multipliers to take account of 

the given constraints.

For the solution of the system of equations (5.4.6), (5.4.7) and (5.4.8), under the 

constraints (5.4.2) and (5.4.3), computer programs have been utilised. Several 

algorithms were applied to the constrained optimisation problems in an attempt to 

find a global maximum subject to equality constraints. O f main use were sequential 

lagrangian methods with the maximisation being solved by quasi-Newton procedures. 

The functions, however, are not unimodal in nature and are indeed very heavily 

multimodal. Therefore unless the initial estimates are very good approximations,
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the algorithms simply find local constrained maximums and not the required global 

maximum.

In order to solve merely small randomised block designs a lengthy and inefficient 

program has been written using a direct search method. Example 5.4.1 gives a 

small hypothetical data set on which the direct search program has been applied.

Example 5.4.1

'Column* E f fe c ts Resultant
Mean 

D ire c t  ion

0 i 02 03 Ri . * i .

«i 115* 105* 2 0 * 2.229 83.347

' Row' «2 170* 180’ 65* 1.899 145.343

E f fe c ts « 3 75* 90* 325* 1.761 52.253

«4 120* 150* 45* 2.175 107.632

Resultant

R . j 3.346 3.255 3.202

Mean 
Di rect  ion

* . j

119.517* 130.751* 25.566*

N -  12

R . .  -  6.817 ? . .  -  97.458*

H 0 • 01 “  0 2 ™ 0 3  ”  ®

Ht : at least one /5j ^ 0
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Parameter Estimation;

Under H0 : n 0 -  a rc tan

pp

Z s in e i .
i -1
Pp

Z cos ®i.
i -1

A

“  * 1 .
A

-  V- 0 “ -13,.508

«2 “  * 2 . -  ?o " 48,.487

A
« 3 “  * 3 . -  ?0 “ -44,.603

« 4 “  * 4 .
A

-  ^0 - 1 0 ,.776

P
^ s in  a j  

i -1

P q P
J  £  cos(8 j j  _ /t„ -  oii) -  2  Ri

i -1  j -1  i-1

k using approximation (3.2.7) equals 1.838 

Under H , : Via the direct search method

?o* " 97.065*

s , * - -11 .78*

S 2* - 46.49*

-48 .49*

« < * - 13.164

? , *  “ 23.13*

0 2*  " 3 4 .3 5 ’

£ 3 *  “ -73 .15*

P

i
i -1

^ s in  04 '

^ s in  /3j* -  0

J-1

p q
£ £ cos( 0 i j  _ £ 0*  -  04 *  -  3 j * )

i -1  j -1

96.856*

0

8.0646

11 .878
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Maximum likelihood estimate k , is given by

p q

" " I I  c o s ( 0 U  “ £o* ~ « i*  -  0 j* )
M M  N i=i j„i 

Using approximation (3.3.11) k y = 49.4

Replacing the parameter estimates under H 0 and H t into the likelihood ratio test 

statistic (5.3.13) and using the approximation (3.6.7) produces a chi-squared value of 

41.88. Comparing this to a x \  indicates that there is a highly significant difference 

between the column or block effects.

A A

Under a null hypothesis testing the row or treatment effects the m.l.e. of / i 0 and /3j 

are

r qn

I s i n 6-i
m-a j- i

O il

q

Z 005 ? . j
L j - i

-  V -  i t "  22 777'

-  * 2 .
A

- "  34 O i l ’

- -  i t -  -71 . 174"

96.74

I sin h
j - i

p q q

£ J cos(0ij - - 3j) = 2 R.j “ 9-
i-1  j -1  j-1

8034

k 0 -  3.01

The alternative hypothesis estimates will be unchanged producing a chi-squared value 

of 34.74. Comparing this to a x \  indicates a highly significant difference between 

the row or treatment effects.
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5.5 Summary

In linear statistical analysis the generalised linear model approach may be used to 

find the factor parameter estimates for a particular design. These are then utilized 

within a maximum likelihood testing procedure to examine for any significant 

difference between the factor effects. A  similar approach has been used within this 

section for circular statistics. In linear analysis the factor effects sum to zero, here 

we have seen that for circular analysis, it is convenient to choose the constraint on 

the angles specifying the treatment parameters so that their sines sum to zero. From 

this, section 5.3 has shown how parameter estimation for the design model of a 

one-way classification may be produced, and assist in further understanding the 

underlying structure of the data sample under investigation.

For larger designs, however, the solution of the likelihood function under the given 

constraints may not be found by the same simple algebraic manipulation. Due to 

the complexity of the maximising problems involved many local maxima may be 

found and the discovery of the global maxima extremely difficult. Many computer 

programs for the optimisation of constrained equations have been tried with little 

success and further investigation into improved computer algorithms will be necessary.

If  the null hypothesis for a particular test is rejected, the neatness of this approach 

helps us to appreciate and to look at the contrasts between the effects within a 

factor. Such procedures exist for linear analysis derived by Tukey or Scheffe known 

as methods for multiple comparison. If  the approach of this section can be extended 

to larger design methods using computer algorithms to help find and understand the 

parameter estimates, similar procedures of multiple comparison may be derived for 

the circular case.
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CHAPTER 6

THE EXTENSION OF EXISTING TECHNIQUES TO LARGER EXPERIMENTAL

DESIGNS

6.1 Introduction

From Chapter 4 we have seen how, for tightly clustered populations, Watson and 

Williams (1956) developed a one-way classification technique which has been widely 

used for 2 and 3 dimensional vectors. This original technique has been refined and 

used to produce tests for several samples having common mean direction. Chapter 5 

has shown how the parameter estimates may be found for the one-way classification 

design. In Section 6.2 this analysis of variance is extended from the one-way layout 

to the nested or hierarchical design as an initial step to the analysis of larger more 

complex experimental situations. Section 6.3 extends the design further to enable 

analysis of randomised complete block designs and the two-way analysis of variance 

design, for large k.

It should be noted that within linear analysis of variance the factor components 

within an experimental design are correctly referred to as sums of squares, however, 

in circular analysis of variance the measures of each factor are not calculated in the 

same manner and will be referred to as measures of variation. For examples, the 

one-way analysis of variance procedure will be analysed using a total, between and 

residual measure of variation.
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6.2 Nested or Hierarchical Design

There are many occasions when a researcher wishes to study the effect of a single 

factor such as light intensity or magnetic charge on the displacement of 

micro-organisms but because of the nature in which these are obtained a more 

complex one-way design is required. The nested or hierarchical model is such a 

design.

It is often necessary to measure the response to a treatment on each individual of a 

subsample of a unit factor than on the entire unit to which the treatment is applied. 

In a drug experiment, for example, the treatments may have been applied to a 

particular animal type within different groups, from each group several animals may 

be picked at random and their response (perhaps their angle of movement) measured. 

To this end a model for the nested design may be built, under the general 

assumptions;

i) The samples are drawn from populations with a von Mises distribution

ii) The parameter of concentration has the same value in each population,

that is,

k , = k 2 - ............ -  kq = k

iii) The overall and individual parameters of concentration are sufficiently

large, namely

k > 2

Let p be the number of treatments, given by i = 1,2...... ,p, qj the number of groups

or experimental units within treatment i, given by j = 1 , 2  qj, and n the number

of observations within each qj group. Let N be the total number of observations 

and U be the number of cells. Extending the expression given by Watson and

Williams (1956), that
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p p
( 6 . 2 . 1)

i= l i= l

produces:

+ 21c(J R2 j . -  R2 . . )  + 

j - 2

+ 2k(  -t -  R p _ )  + 2k(^  2  n i j  . “ Ri j . >

j -1  i -1  j -1

(6 .2 .2 )

with associated independent chi-squared distributions with known degrees of freedom, 

for large k :

The first term on the right hand side of the expression (6.2.2) is essentially the 

measure of variation among treatments, the next qp terms of similar form are the 

measures of variation within treatment i but among the qj groups. The final term 

represents the within or residual variation within treatment and within group but 

among the sub-groups. As a nested design we may consider differences between 

rows, or difference between columns within any one row.

As in the one-way analyses a test statistic for examining the differences between 

rows may be given as

P

( 6 . 2 . 3 )
p qi
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which has an F distribution with (p—1) and (N -U ) degrees of freedom. Similarly a 

test statistic for the difference between columns within row i is calculated in the 

same manner.

which has an F distribution with (qj—1) and (N -U ) degrees of freedom.

Stephens (1982) produced the same expression (6.2.2) and quotients (6.2.3) and

(6.2.4) in m dimensions for the analysis of data which are proportions of a 

continuum such as time or volume. Stephens also gives a good example of the

methodology when studying the proportion of time spent in various activities by 130 

students.

6.3 The Randomised Complete Block Design and Two-way Classification with

The randomised block design is a widely used method of dealing with factors that are 

known to be important and which the researcher wishes to eliminate rather than to 

study. Here the factor is blocked so that each is as homogeneous as possible and 

the treatments under study are each used exactly once in each block for the design 

to be balanced. The observed differences among the treatments should be largely 

unaffected by the factor that has been blocked.

There are many situations where a randomised block plan can be profitably utilised. 

For example, a testing scheme may take several days to complete. If  we expect 

some systematic differences between days, we might plan to observe each item on

( 6 . 2 . 4 )
P Qi

Interaction Design
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each day; a day would then represent a block. Since each treatment occurs exactly 

once in every block, the treatment totals or means are directly comparable without 

adjustment.

By again extending the simple expression (6.2.1) and its associated results concerning 

the chi-squared decomposition we may now take account of a possible block effect, i, 

as well as the treatment effect, j, to produce the randomised complete block model;

P q
2/c(N -  R ) -  2/c(^ Rj -  R ) + 2/c(^ R j  -  R )

i -1  j -1

p q
+ 2k(N -  £ Ri -  £ R j  + R ) ( 6 . 3 . 1 )

i -1  j -1

with associated independent chi-squared distributions, for large k,

XN-1 "  Xp-1 + Xq-1 + X ( p - 1 ) ( q - 1 )

Expression (6.3.1) obeys the x 2 decomposition property parallel to the linear form of 

the randomised complete block design. The first term on the right hand side of the 

expression is essentially a measure of variation due to treatments, the second term of 

similar form being a measure of variation due to blocks. The final term represents 

the residual variation after variation due to treatments and blocks have been

removed.

From (6.3.1) the test statistic (6.3.2) is produced to test the null hypothesis that

there is no difference between the treatments.



which has an F distribution with (p—1) and (p - l) (q - l)  degrees of freedom. 

Similarly, the test statistic (6.3.3) will be produced to test the null hypothesis that 

there is no difference between the blocks

which has an F distribution with (q-1) and (p - l) (q - l)  degrees of freedom.

In the case of significance, we may only state that the mean directions are or are 

not equal. The test does not allow for discrimination among single mean directions.

Before the accuracy of the approximations to the distributions of the components of

(6.3.1) and the F distribution approximations Z., and Z 2 are examined, the 

associated model for the two-way analysis with interaction will be discussed. A  

discussion of interaction in directional data analysis will be given in Chapter 8 .

Using the same approach as for the nested and randomised complete block designs a 

two-way classification with interaction may be built;

q

Z i -1 ( 6 . 3 . 3 )2 P q

i - i  j - i

p q

R. j .  " R . . . >

p q

p q p q
( 6 . 3 . 4 )

i - i  j - i  i - i  j - i
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The first three terms on the right hand side of (6.3.4) have been shown to be 

chi-squared distributed by Watson and Williams (1956) and Stephens (1963) 

representing measures of variation due to row i and column j effects and a measure 

of residual variation. The final term represents the possible interaction within the 

experiment. F test statistics may be produced in the same manner as for the nested 

and randomised block designs. (/ represents the number of observations on each 

treatment combination).

Testing row effects

P

Z i -1 ( 6 . 3 . 5 )3 p q

F ( p - i ) , p q ( * - i )

Testing column effects

q

j -1 ( 6 . 3 . 6 )
P q

= F ( q - l ) , p q ( / - l )

Testing interaction effects

P q P q

Z ( 6 . 3 . 7 )5
p q

F(p -  i ) ( q  -  i ) , p q ( *  -  i )
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6.4 Accuracy of the Associated Component x2 Approximations for the

Randomised Block Design and Two-way Classification and their 

Corresponding F Statistics

The expressions (6.3.1) and (6.3.4) are based on a sequence of approximations, and 

the accuracy of their chi-squared approximations may best be determined by 

simulation. An examination may be made by taking Monte Carlo samples from a 

von Mises distribution specified with fixed k. Observations from the distribution 

specified by the null hypothesis were generated by computer methods outlined in 

Appendix B and were grouped into samples of size N. This has been carried out 

for 10,000 sets of samples of various size and were drawn from von Mises 

distributions with k = 2, 3, 4, 5 and 10. For the testing of the randomised block 

model three designs were investigated varying in sizes of N. Tables 6.4.1 to 6.4.5 

examine the chi-squared approximations for each of the components within each of 

the models. Table 6.4.1 shows the accuracy for the total measure of variation 

component, 2k(N-R  ), and Stephens improved approximation, 2y(N -R  ), where y  is 

given by (4.3.4). It is clearly seen that cq, the simulated proportion of the 

component, approaches a, the x 2 value theoretical proportion or significance level, 

when y  is applied. This is further illustrated when the first two moments for both 

approximations are given in Table 6.4.2. When Stephens improvement is used both 

moments approach their expected values and with increased accuracy as k increases. 

Accuracy for both approximations increases as k increases.

Similar results are also found when the component of error or residual is also 

adjusted by Stephens improvement, y. Table 6.4.3 compares the accuracy of the 

X2(p - i) (q - i)  approximations, and shows that the accuracy for both approximations 

improves as k increases. Table 6.4.4 shows the effect on the two approximations 

first two moments when Stephens improvement is applied. As with the total 

measure
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of variation component, when y  is applied, both moments approach their expected 

values with increased accuracy as k increases.

Table 6.4.5 gives the accuracy of the two components measuring block and treatment 

effects. Comparing the tables of the two effects shows how the number of 

observations as well as the size of concentration parameter affects the accuracy of 

the chi-squared approximation. As N and k increase the accuracy of the 

chi-squared increases.
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Tables 6.4.6 and 6.4.7, probably the most important, show the results for the old

and new F-approximations. The tables give the proportion cq of Monte Carlo results

less than the F-value for the appropriate statistics when the theoretical proportion 

should be a. The old F-approximations being Z 1 and Z 2 given by (6.3.2) and

(6.3.3) respectively, and the new F-approximations being m Z, and m Z 2 where m is 

given by (6.4.1) and is the statistic due to Stephens improvement of the residual 

measure of variation.

( 6 .4 .1 )

The conclusions here are the same as for the F-statistic for one-way analysis given 

by Stephens (1972). The new tests are clearly very good F-statistics and increase in 

accuracy as k and N increase. The approximations are very good, even for N as 

low as 10, and improve quickly for larger values of N.

The chi-squared approximations of (6.3.4) is examined in the same manner as above. 

Tables 6.4.8, 6.4.9 and 6.4.10 show the chi-squared approximations for all five

components of (6.3.4). The total and residual measures have been adjusted by 

Stephens improvements, y, the original approximations of the total and residual 

measures were of similar form to those already seen in the randomised block design.

All five approximations, including the interaction measure built in section 6.2, show 

excellent chi-squared approximations for k > 2. Accuracy is seen to improve as k 

increases.

Tables 6.4.11, 6.4.12 and 6.4.13 give the results for the old and new

F-approximations for testing the two main effects and the interaction component. 

The old F-approximations being Z 3, Z 4, and Z 5 given by (6.3.5), (6.3.6) and

(6.3.7), and the new F-approximations given by m Z 3, m Z4, and m Z 5. Clearly all 

three F-statistics improve when Stephens improvement is used, similarly and as for 

the randomised block design, increased accuracy is seen as k and N increase.
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6.5 Summary

As discussed in Chapter 5 the likelihood ratio function has infinitely many equally

large peaks and may not be broken down under the set hypotheses using the

parameter constraints, as is the case for linear analysis. Because of this the tests

derived initially by Watson and Williams and improved by Stephens have been

extended, for large k , to enable analysis of further experimental designs. The

components within each of the model expressions are shown to be very good

chi-squared approximations and their appropriate quotients to be excellent

F-distributed approximations, both increasing in accuracy as N and k increase.

Simple extensions to the likelihood criterion for the one-way classification with small 

concentration parameter showed the test components to be poor chi-squared

approximations with little justification for their construction.
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CHAPTER 7

TH E ROBUSTNESS AND POSSIBLE COLLAPSE OF TH E  EXTENDED

TECHNIQUES

7.1 Introduction

Chapter 6 has shown how we may extend the original techniques for the one-way 

classification with large k, to examine further experimental designs. This chapter 

examines the robustness of the test statistics and shows the sensitivity of the 

assumptions and possible flaws or breakdowns within the new techniques. Section 7.3 

gives further understanding to the construction of Watson and Williams test statistic 

and the reasons for its possible failure when larger designs are considered.

7.2 Robustness of Assumptions

Section 6.2 gave the assumptions which must be observed in order that the new 

extended techniques may be applied. The third assumption, that the overall 

concentration parameter is sufficiently large, namely k 2 , is an extremely restrictive 

assumption when analysing larger designs. Equation (1.4.16) gave an angular measure 

equivalent to the standard deviation in linear statistics. In order that the assumption 

of large overall concentration parameter may be satisfied, the measure of angular 

deviation must not exceed 44* i.e. the overall sample data set must be closely 

packed. This will not be the case if substantial differences result between or within 

factors.

Further and more important problems are noted as the size of the concentration 

parameter decreases towards and below 2. During the many thousands of simulation 

runs discussed in Section 6.3 many other statistics were collected for each of the
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varying hypothesised models. These included the distributions maximum and 

minimum values. The simulations for the two-way classification procedure produced 

several occurrences within each hypothesised model of a negative interaction 

component. The frequency and magnitude of these negative components increased as 

the size of the concentration parameter, k, decreased. When simulations were run 

to further examine the power of the tests and specified differences were given 

between treatments, blocks or cells, (i.e. separate von Mises distributions with equal 

concentration parameters but differing mean directions) the frequency of the negative 

interaction components increased.

An example of the two-way classification with interaction and its analysis is given in 

Tables 7.2.1 and 7.2.2. It demonstrates the situation where the individual factor

concentration parameters (i.e. k 1, k 2, ......) are not significantly different and are

large, but the overall concentration parameter k is small. Other less dramatic data 

sets may be shown with a larger overall concentration parameter but producing 

similar, although less pronounced, results.
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Example 7.2.1

Table 7.2.1 A Two-way Classification

FACTOR

^0 An

61* 177*

48* 139’

Ro 87* R , t . = 4 .7303 155* R 12> -  4 .760 4 R i . . = 6 .6 5

102* N 11 = 5 1 9 1 ’ N 12< = 5 N i . = 10

73* 164*

FACTOR

318* 240*

353* 28 1 ’

358 ’ R21 = 4 .8 284 229* R22 -  4 .7623 r 2 . . = 6 .6 5 4 8

328* N 21 . = 5 25 2 ’ N 22> -  5 N 2 . . =  1 0

34 4 ’ 2 40 ’

R n = 6.5247 R 2 = 7 .1363 R = 0 .6117

N . 1 . =  10 N 2 . -  10 N = 2 0

P q P q
^ R i . .  = 13.3058 ^ R j  = 13.661 J ^ Ri j < = 19.0814

i= l  j = l  i = l  j = l

p = q = 2,  1 =  5
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Table 7.2.2 Two-Way Analysis of Variance Table

Var i at i on Component Value Degrees o f  
Freedom

Due to Factor A i*i.. - R . 12.6931

i=l

Due to Factor B ^ ^ . j .  “ .

j -1

13.0493

( p - 1 ) -  1

(q -1 )  -  1

I n t e r ­
act ion

Residual

Tota l

P q P

I I Ri j -  -
i-1  j-1  i-1

q

h -  j .  + r ...
j - i

p q

n - I  I Ri j
i-1  j-1

N -  R

-7 .2727

0.9186

( p - l ) ( q - l ) - l

p q ( Z - l )  -  16

19.3883 N -  1 = 19

It should be noted from Table 7.2.2 that the sum of the two main effects measure 

of variation is greater than the total measure of variation and therefore the 

interaction measure is negative.

As noted the above example does not satisfy the assumption of large overall 

concentration parameter k but has been used to illustrate the associated problems 

when k approaches and decreases below 2. This type of data set questions the 

independence of the test components in less dramatic cases. [The presence of a 

negative interaction measure of variation does not occur if the data is axial in nature 

and the general assumptions are upheld.]
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7.3 A  Further Approach to Watson and Williams Design Using a Regression

Model

Section 7.2 has given an example of where the extended techniques for the 

randomised and two-way analysis designs may breakdown. In this section we will 

briefly reiterate how the one-way analysis design was constructed and then 

investigate, via a regression approach, the structure of the individual components. 

From this approach the possible reasons for the breakdown of the present statistics in 

larger designs may then be seen.

When testing the hypothesis that there is no difference between a number of 

treatments, a basic result given in all texts, for the simple linear one-way analysis, is

P q P P q

where Xjj represents the individual observations, xj the treatment sample mean values 

and x the overall sample mean. The left hand side measures the dispersion or 

scatter of the whole sample about the true mean. The first term on the right hand 

side measures the dispersion of the sample about the estimated mean x, whilst the 

last term measures the dispersion of the sample means about the true mean.

It is easily shown that N -R  represents the dispersion of the sample of directions 

about the estimated mean direction in circular statistics. Equally N -X  represents the 

dispersion of the sample about the true mean direction, giving the expression

( 7 . 3 . 1 )

(N -  X) ■= (N -  R ) + (R -  X) ( 7 . 3 . 2 )

in our analogue of (7.3.1).
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Using the results of (4.2.3)

2k(N -  X) = 2k(N -  R _ )  + 2k(R -  X) ( 7 .3 .3 )

has the associated chi-squared distributions

“  *N -1  + *1

This was developed further by Watson (1956) to examine 2 or more samples with 

assumed equal concentration parameter. It may be seen that if the mean direction

of two samples differ greatly the sum of their resultants R , and R 2, would be 

much greater than the overall resultant R . Similarly, if the mean directions are 

equal R , + R 2 = R . This is then used as a measure of variation between 

samples. The variation within the samples is measured by comparing the maximum 

length of a sample resultant, N j, to its actual resultant, R j. For a two sample test 

the within variation is therefore

(N tl  -  Re l ) + (N . 2 -  R . 2)

This suggests the analysis of variance expression

2k(N -  R ) -  2k( N ' t -  R .2 + N# 2 -  R. 2) + 2k (R. i  + R . 2 " R . . >

( 7 . 3 . 4 )

It is easy to see from these analogies how the test for the one way analysis is 

derived. Nevertheless, it is not until we investigate the individual components of the 

analysis of variance expression that we see an underlying problem that is not fully 

appreciated until larger, more complex designs are constructed.

A  simple alternative way of building the analysis of variance expression is via a 

regression approach using basic vector analysis. Figure 7.3.1 gives the notation that 

we will use to construct the components.
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j icon oj* sample, neon  
dii'e.ch’on

Overall sample
\  f^ean direohor

.22

JZ

Angular Notation for the Construction of ComponentsFigure 7.3.1

Assuming the 0jj's (i= l,2 ,...,p ; j= l ,2, ,q) are independently distributed as

M(/<i0+/3j,/:), where /*0 is some mean direction and fij is the possible effect due to 

treatment j. Let us test

H0 : 0 , -  (32 -  .........

H1 : at least one /3j *  0

-  0 q "  0

A A A

Let fi0 and (pi0, /3j) be the maximum likelihood estimates of ( iQ and / i0; under 

H 0 and H , .  Let

P q

S0 -  N " I  I C0S( 0iJ " " 3j)
i -1  j -1
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From the statistical results of (4.2.3), 2A:S0 has a x 2 distribution with N degrees of 

freedom, for large k. Using approximation (1.4.13), 2fcS0 is equivalent to

P q

k I I
i= l  j -1

A 2 ( 7 . 3 . 6 )

Using this approximation we may construct the individual components of the 

expression.

7.3.1 Total Measure of Variation

From equation (7.3.6) the component for the total measure of variation is calculated 

from the sum of the squared distances between each sample point, 0 jj and the 

overall sample mean direction, 6 , as illustrated in Figure 7.3.2.

2.1

22.

12

32

Figure 7.3.2 Distances Between the Sample Points, and the Overall Sample 

Mean Direction, 0
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From vector algebra and basic directional data properties we have, denoting 10jj | as 

the vector length;

P q

k l  I  ( £ i j  -  I..)2 ( 7 . 3 . 7 )

i - 1  j -1

p q

-  k ^ ^ ( ' i i j * 2 + ^ . J 2 " 2cos(0 j j  -  0 m' ) )

i - 1  j -1

= /c(N + N -  2R )

= 2/c(N -  R ) ( 7 . 3 . 8 )

Producing the same total measure of variation as in (7.3.4).

7.3.2 Residual or Within Measure of Variation

The residual measure of variation is calculated from the sum of the squared distances 

between each sample point, j, and its own sample mean direction, 6 j

Figure 7.3.3 Distances Between Sample Points, and Sample Mean 

Directions, 6j
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p q

* 1  I  < £ ij  -  £ . j > 2 ( 7 .3 .9 )

i -1  j-1

p q

“ k \  \  j 1 2 + 1̂ .. j 1 2 -  2cos(0  j j -  0 . j ) )

i -1  j -1

q
k{ N + N -  2 ^ R j )

q
-  2k(N -  £ R j )

J-1

Producing the same residual measure as in (7.3.4).

( 7 . 3 . 1 0 )

7.3.3 Between Measure of Variation

If, as is shown in 'linear' statistical analysis, the total measure of variation is split 

into two parts, a residual or within measure and a between measure, then the 

between measure may be found from

However, equation (7.3.11) assumes, as in 'linear' analysis, that when circular mean 

directions are combined the same overall mean direction is produced. It was first 

observed in Example 5.3.1 that this property does not exist for circular statistical 

analysis, the following sub-section investigates this prior to deriving the 'true' between 

measure of variation.

q q
( 7 . 3 . 1 1 )
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7.3.3.1 Combining Mean Angular Directions and Resultant Lengths

Expressed algebraically by (7.3.12) a simple proof shows that when angular mean 

directions are combined the overall angular mean direction may not be produced, and 

is dependent on the resultant lengths found within each of the combined samples.

q P q

I  s in  e . j  2 I  s i n  # i j

i —!---------------  ^ 1 y-1---------------  ( 7 . 3 . 1 2 )
q p q
2 COS e . j  I  2  cos 0 j j

j-1 i-1 j-1

An angular mean direction, 0 is given by

cos 0 = ^ s in  0 = ^ ( 7 . 3 . 1 3 )
R R

Similarly for 0 j

C j  _  S j
cos 0 j = -- s in  0 | = ——

s .j  5 -j

Therefore

q q p p q

I s i n ? . j  I v T ]  l s i n  "i j  I  I  s in  # i j
/  —  U — -----------  ( 7 . 3 . 1 4 )

q q p p q

I c o s 9 -j I  F T  l c o s e i j 2 2 c o s e
j-1 j-1 i -1 i -1 j-1

Figure 7.3.1 gave the mean direction of the sample means as T  with resultant length 

Rfl. This result gives further understanding and an alternative calculation of the 

overall mean direction and its associated resultant length. By utilising the resultant 

lengths associated with each sample mean direction, the mean directions may be
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combined, as in standard statistical analysis, to give the overall mean direction. 

Using a rectangular co-ordinate system with X  and Y  axes and origin 0, let 6 j be 

one of the q mean angles with corresponding mean resultant length r y Let x j and 

y j be the rectangular components of r j, as seen in Figure 7.3.4. Then by 

definition

x.j - r jcos e.j y.j " r.jsin 0.j

Then

( 7 . 3 . 1 5 )

x = — (r,cos 6  ̂ + r 2cos 6 2 + . .  + r #qCos 0 q) ( 7 . 3 . 1 6 )

y = — (r#1sin 6 ^  + r 2sin 6 2 + .. .. + r qSin 6 q ) ( 7 . 3 . 1 7 )

Therefore

M *1

= [(i I  r.jcos ? j)’ + (I I  r.jsin ?.j)2]i ( 7 . 3 . 1 8 )

R = Nr 

Similarly for p row mean directions 

P
[(i ^ rj cos )2 + (I ^ri SinOj ) ^

i=l i=l
( 7 . 3 . 1 9 )

Giving the overall mean direction as

6 = arc tan

q
1
q I  r - j s in

j= i
q

i Y —

q I  r . j cos

( 7 . 3 . 2 0 )
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Figure 7.3.4 The Rectangular Components of a Non-Unit Vector

This may be further understood by a simple illustration given in Figure 7.3.5. Here 

two samples have four observations within each, by taking account of the sample 

mean resultant lengths the true overall mean direction is obtained.
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Uni^ lenqfil

Figure 7.3.5 Combining Samples Using Angular Mean Directions and their Mean

Resultant Lengths

Note: (a) Fisher and Lewis (1983) considered the problem of forming a pooled

estimate of the common mean direction of several circular samples with possibly 

differing concentration parameters. In brief their work discussed the introduction of 

some arbitrary non-random weighting factor to each sample defining

'W
i -1 i -1

P2 = + C 2 ( W j  > 0 J Wj  -  1 )  

i - 1

The general pooled estimate for ’ p, given by defined by
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cw sw
cos Aw -  —  s in  Aw = Z“

Rw Rw

Using the central limit theorem Fisher and Lewis produced a confidence interval of 

the pooled estimate comparing this to the approximate confidence cone for the single 

sample case. (Further approximate confidence intervals for a mean direction of a 

von Mises distribution were later given by Upton (1986)). Fisher and Lewis showed 

the consequences of specific choices of weights, considering equal weighting of 1/q 

and proportional weighting of Nj/N.

(b) An alternative calculation of the overall resultant length from the sample

angular mean directions and resultant lengths is via the dot product rule for vectors

Using the q column statistics

q q q
R2 . + 2 ) ) R . R cos( 0* . -  0 J  ( 7 . 3 . 2 1 )

.J L L . J . t  . j  . t
j=l j^i t - l

j  7* t 

j  < t

Similarly for the p row statistics 

P P P

R?."IRi. + 2l
1=1 i= l  t= l

i ? t

i < t

For example, if the overall resultant was to be found from three sets of sample 

statistics

R2 = R2 + R2 + R2 + 2R. R , cos(0.  -  )
1 . 2 . 3 . 1 . 2 . ' 1 . 2 .

+ 2R1 R3 cos( 0̂  t -  0 3>)

+  2 R 2>R 3 > c o s ( 0 2> -  0 3 > )

R. R̂  cos(0 .  -  0. ) ( 7 . 3 . 2 2 )l . t .  l . t .
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Returning to the calculation of the between measure of variation, it is evident that 

this should be calculated from the sum of squared distances between each sample 

mean direction 6 j and their combined mean direction T. As an identity this will 

leave a further component measuring the difference between the combined mean 

direction, 6, and the overall mean direction, 6 , as in (7.3.23)

( 0 i j  -  * . . >  ”  < * i j  “ * . j >  + < * . j  - « ) + ( * -  7  . )  ( 7 . 3 . 2 3 )

t o t a l  res idua l  between d i f fe re n c e  between
the combined mean 
d i r e c t i o n  and the  
o v e r a l l  mean 
d i r e c t  ion.

Therefore the 'true' between measure of variation is given by;

P q kl
i - i  j - i  

p q
~ ^ ^ ^ ( l£ . j 1 2 + \8_\2 -  2cos (0 j -  6 ) )

i -1  j -1

-  /c(N + N -  2Rd)

-  2k(N -  Re) ( 7 . 3 . 2 4 )

7.4 Cross Product Terms and the Analysis of Cross-Classification

In 'linear' statistics the corresponding expression to (7.3.23) will produce cross 

product terms equal to zero. On the circle these terms are found to be non-zero;

P q P q p q

I I (£ij - I . ) * - I  I<lu + 1 I<Z.j-Z>2
i -1  j -1  i -1  j -1  i - 1  j -1

p q p q
+ l + J <£i j  - I.jXZ.j - I>

i -1  j - 1  i -1  j -1
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p q _  p q

+ 2 1 1 + 2 1 1 (- Jj ■
i -1  j -1  i - 1  j -1

( 7 .4 .1 )

The left hand side and the first two terms on the right hand side of (7.4.1) have 

been simplified in Section 7.3, giving

P q

k ]j ^ ( .^i j  ~ Z . . ) 2 "  2/c<N “ R. . )  from ( 7 . 3 . 8 )
i - 1  j - 1

p q q

k £ 2  (- i J " ^ * j )2  "  2/c(N ” 1  R - j ) from ( 7 *3 * 10)
i - i  j - i  j - i

p q

k 1 1 ( - - J  " "  2/c(N " R0) from ( 7 - 4 -24)
i - i  j - i

The following term is the measure of the difference between the combined means 

and the overall mean direction.

P q
k J  J (0 -  0 ) 2 -  /cN(|0 | 2 + | 0 _ l 2 _ 2cos(0 -  0 )

i - 1  j - 1

-  2kN (l -  cos(0 -  0 ) )  ( 7 . 4 . 2 )

The final three terms are the corresponding cross product terms.

P q _  q R .

2 k l  1  ( - ! J '  Z . j H l . j  -  £> “  2fcP I  (— - £ . j ) < Z . j  -  £>
i - 1  j - 1  j - 1  p

P q =  u _  _

2k I  J ( £ . j  - £ ) < £ - £ . . )  -  2feN< £ ) < £ - £ . . )
i - i  j - i  N
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P q R R q _
2k  J J ( 0 ; :  -  0 0 ( 0  -  0 ) -  2/cN(— * ------- ) (0 -  0 ) ( 7 . 4 . 3 )

. - . - "  N Ni - l  j -1

Summing the cross product terms of (7.4.3) equals

q
-  2k (^  R j  -  2N + Rfl -  R + Ncos(0 -  # . . ) )  ( 7 . 4 . 4 )

j - 1

Producing the circular model

q
2k(N -  R . . )  -  2/c(N -  J Rmj )  + 2k(N -  R0) + 2/cN(l -  cos(0 -  0 . . ) )

j “ l

(T o t a l )  (Residual)  (Between) (D i f fe re n c e  between
combined and o v e r a l l  
mean.)

q
+ 2k(N -  J R j  -  2N + Re -  R + Ncos(0 -  0 ) )

j - 1

(Cross product terms)

Reducing

2k(N -  R ) -  2k(N -  y R j )  + 2ic(N -  R0)

j - 1

(T o t a l )  (Residual)  (Between)

q
+ 2 * ( J  R . j  +  Re -  R . .  -  N) ( 7 . 4 . 5 )

j - 1

(C orrect ion)

Unless the residual term does not exist the correction will always be negative since 

the between measure in (7.4.5) will always be greater than the between measure in

(7.3.4) from Watson and Williams.
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When larger designs are considered in 'linear' statistics the between sum of squares 

can be broken down into three components measuring differences between rows, 

differences between columns and the interaction within the design. In directional 

analysis, from extending Watson and Williams, this splitting produces

P q P q

( I  2 Rij .  - R. . .> -  ( J r i . .  - R . . )  + c 2 r j .  
i -1 j-1 i-1 j-1

(Between rows) (Between columns)

P q P q

+ ( I  I  Ri j .  -  -  ] r .  j .  + R . . . )
i -1 j-1 i -1 j-1

( I n t e r a c t io n )  ( 7 . 4 . 6 )

If the first and second terms on the right hand side of (7.4.6) are calculated their 

sum may be greater than the total measure of variation, as was illustrated in 

Example 5.3.1. In this situation the value of the interaction will be negative, 

whether interaction exists or not. It is only when the between measure is broken 

down in this manner for larger designs is the problem within its derivation fully 

realised.
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7.5 Summary

Chapter 7 has shown via a simple alternative approach to Watson and Williams

how,as k decreases, the model components begin to breakdown. The most obvious 

consequence is seen when analysing two-way classification designs when a negative

component may be produced. These are shown to be a consequence of the way in 

which circular mean directions combine. Unlike linear statistics, if the overall mean 

direction of a sample is found, 6 , and then the same sample is split into equally 

weighted samples and the overall mean direction re-calculated from the resulting 

combined means, a different overall direction, 0, may be produced.

For the one-way analysis this does not cause any major problems. However, when 

the technique is extended to larger analyses the sum of the main effect components 

may give a result greater than the total measure of variation.

It is important to re-emphasise that the above only occurs as the overall 

concentration parameter k decreases towards and below 2. The new extended

procedures, developed in Chapter 6, are satisfactory for highly clustered data sets

since the larger the value of the overall concentration parameter the smaller the 

correction value of Section 7.4, and similarly the closer the two mean directions, 0 

and 0, become.
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CHAPTER 8

DEVELOPMENT OF A  NEW  ANALYSIS OF VARIANCE PROCEDURE

8.1 Introduction

Chapters 6 and 7 have shown (1) how the modified components for the one-way 

classification have excellent chi-squared approximations for large k (2) how the 

extended components for further design models also follow good chi-squared 

approximations, for large k (3) how the underlying structure of the components may 

breakdown as k decreases (4) the dependence of the components as k varies and (5) 

since the overall concentration parameter must be large as well as the sample 

concentration parameters, the tests may be good approximations only when applied to 

highly clustered data sets.

This chapter is concerned with developing new test statistics which may be 

generalised across all values of k and are based on likelihood ratio statistics for 

testing both the mean direction and the concentration parameter, k.

The main reason for the breakdown of the extended models as k diminishes is 

concerned with the combining of the angular mean directions, discussed in Section 

7.3. A  new procedure is shown to overcome this problem and therefore enable 

components such as interaction to be investigated as k decreases.

Section 7.33 showed how the overall mean direction will remain unaltered if the 

sample resultant lengths are retained when combining sample mean directions. Using 

this fact, Section 8.2 constructs new components via a regression approximation 

approach previously utilised to show the construction of Watson and Williams original 

test statistic.
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Following the discussion of the cross product terms in Chapter 7, Section 8.4

discusses the interpretation and calculation of interaction for the procedures.

8.2 Minimising Chord Distances to Build New Test Statistic Components

Using exactly the same approach as Section 7.3 a design procedure may be built via 

a regression approach using basic vector analysis but also taking account of the mean 

resultant lengths. This method will minimise the chord lengths between points within 

the circle.

Assume the 0jj's (i = 1, 2 ,...., p; j = 1, 2 ,...., q) are independently distributed as 

M (/t0 + /3j, k) where /*0 is some overall mean direction and 0j is the possible effect 

due to treatment j. The null and alternative hypotheses are

H0 'Pi  @ 2  ** .........  “  Pq — k 2 — .............— kq

against

H1 *  0 2 *  .........  *  /3q k , *  k 2 * .............*  kq

or the testing of different populations. To overcome this, the equality of the

concentration parameters must be examined prior to any examination of the main 

effects, in a similar manner to that undertaken in standard 'linear' analysis of 

variance.

8.2.1 Total Measure of Variation (TM V)

It was shown in Section 7.3 that 2kS0 is equivalent to

P q

k I 1 (6U " Vo ~ Pj>2 (8.2.1)
i= l  j - 1
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Hence under H 0:

P q P q

kl I <#u -f» -ep2 = kl I
i - 1  j - 1  i -1  j - 1

Using the above expression the total measure of variation will be calculated from the 

sum of the squared distances between each sample point, 0jj, and the overall sample 

mean direction, 0 , as illustrated in Figure 8.2.1.

22

3Z

Figure 8.2.1 Vector Lengths for the Total Measure of Variation

Here the mean resultant length of 0 _ is utilised rather than effectively extending it 

to the circumference of the circle. From vector algebra and basic directional data 

properties we have, denoting 10jj i as the vector length:
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p q

kl
i -1 J- l

(8 .2 .2 )

p q

 ̂ [ *^.ij 1 2 + !£. . ,2 “ 2 *£.ij 1 *£... 1 c o s i j  “ 0. . ) ]  
i -1  j - l

p q

‘ 2 2
i -1  j - l

R2 2R
1 + ——  cos(0js  -  0 )

N2 N

R2 2R2
N +  -

N N

TMV -  k
R2

N  -
N

( 8 . 2 . 3 )

8.2.2 Residual Measure of Variation (RMV)

The residual measure of variation will be calculated from the sum of the squared 

distances between each sample point, 0jj, and its own sample mean direction, 0 j, as 

illustrated in Figure 8.2.2.

P q

k l  h i a - t . p 2
i - i  j - i

( 8 . 2 . 4 )

p q

k J  J [ *£.i j  1 2 + ' i . j ' 2 ■ 2 ,£ i j l lL.  j  1 c°s i j  -  0 j ) ]

i - 1  j - l

p q

‘ 2 2
i - 1  j - l

RJ.i 1 + - J
R .(N1

Nf j N . j .

c o s ( 0 j j  -  0 j )

r q R2 . 
• J

q R2 . 
• Jk N + ) -  2 yL

L J - l N - j .
L a

J - l
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r q R2 . 
• JRMV -  k n -  j

L
L J-i N - i

22,

32.

Figure 8.2.2 Vector Lengths for the Residual Measure of Variation

8.2.3 Between Measure of Variation (BMV)

By incorporating the resultant length with its respective angular mean, as discussed in 

Section 7.3.3, we may produce the same overall resultant length and angular mean 

when they are combined.

Let us now construct the between measure of variation in the same manner as for 

the residual and total measures. The between component will be calculated from the 

sum of the squared distances between the sample angular means and the overall 

angular mean. This measure is illustrated in Figure 8.2.3.
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Figure 8.2.3 Vector Length for the Between Measure of Variation

P Q

k l hi-
i - i  j - i

j
( 8 .2 .6 )

p q 

i - 1  j - l

p q

* 2 2
i - 1  j = l

R2 . R2
• J

N2 . N 2 
• J

R . 
•J

N Jj

R
cos(0 #j  -  6 ' )

3 R 2 . 
• J

R2 R 2
y + — -  2 — ( 8 . 2 . 7 )
L

U - 1 N - j . N. . N ' * 4

f 3 R2 . 
•J

R2
BMV -  k I _  _J_L

L
Lj-i N - j . N. .

( 8 . 2 . 8)
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Lemma. To show ^ Rjcos(0j - 8 ) - Nr  ̂ -
j “ l

fo r  equation ( 8 . 2 . 7 )

Proof

J  R^ jcos(0 j - 0 ' ' )

j “ l

q
* J N j r  j (cos  0 cos 8 j  + s in  0 s in  0 . j )

j - l

■ i
j - i

N . j r . j

X X • J

r  r •Jj

y . .  y . j

lr,- r-jJ

X y . .

r * * -

Nx +
r

Ny

N
[x2 + y 2 J - N r

8.3 Cross Product Terms

As discussed in Section 7.4, in standard 'linear' analysis the cross product terms sum 

to zero, however, with the extended models for circular statistics a non-zero value is 

obtained. By taking account of the mean resultant lengths this property is 

re-established. Expression (8.3.1) shows the components within the design
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p q p q

k l  h e n - I  -  » . j >  +
i - i  j - i

( T o t a l )

i - 1  j - l

(Res idual )

p q p q

k  1 1 ( $ -J ‘  6- - )2 ‘  2k 1 1 ( 9 iJ ‘  ( 8 . 3 . 1 )
i - 1  j - l  i - 1  j - l

(Between) (Cross-Product)

From (8.3.1) the cross product term may be broken down as follows; 

P q

2kl I <*IJ -  ‘
i - i  j - l

p q

“ i  i
i= i  j - i

! (£ j  j  I l£ .  j  |cos(0 j  j  -  0 j )

( 8 . 3 . 2 )

-  i£ i  j  I 10 |cos(0 j  j  -  0 ) -  l £ . j M 0 . j l  + 10. j  I l£ .  . lcos(0 j  -  0 _ )

p q

“ i  i
i - 1  j - l

R
• J

N JJ

c o s ( 0 j j  -  0 . j )  “
R

N
c o s ( 0 j j  -  0 )

R2 . 
• J +

R . 
•J

R

N2 . 
•J-l ln j J N . ^

cos(0 < j  -  0. . )

2k
r ^

y
R . 

• J
R2 q

-  I
R2 . 

• J
R2

L
U - i N J . N. .

L
j - l N - j . N. .

i.e. The cross product terms sum to zero.

-  142 -



Hence the one-way classification design model can be decomposed as:

R2 r qr» R2 . 
•J

R2 r qr* R2 . 
•Jk N ------ — -  k i -  — — + k n -  y

N L
L j - i N . i N . # L

L j - i N J .

(TMV) (BMV) (RMV)

8.4 Analysis of Cross-Classification and Interaction

8.4.1 The Interpretation of Interaction on the Circle

The extent of the problem within the original approach was not fully appreciated 

until extensions were made to larger designs. Before constructing the statistical test 

components for larger designs using the approach of Section 8.2 the understanding 

and interpretation of interaction on the circle will be discussed.

To illustrate the meaning of interaction on the circle a simple example giving 

population angular means for a particular design may be show. (Table 8.4.1).

Table 8.4.1

Treatment Level

A B C

1 356* 6* 357*
F a c to r

2 0* 14* 1*

Unlike standard 'linear' statistics a simple subtraction of level mean directions may 

not be used to indicate the presence of interaction since here periodic values are 

given and not quantities. The true angle between each of the directions must be 

calculated in order to observe any differences. (Table 8.4.2).

-  143 -



Table 8.4.2

Treatment Level

A D i f f B D i f f C

F a c to r

1

D i f f

2

356*

( 4 * )

0*

( 1 0 * )

( 1 4 * )

6*

( 8 * )

14*

( 9 * )

( 1 3 * )

357*

( 4 * )

1*

We note that the difference in direction between the two Factor types is larger for 

the middle level of treatment than for the low and high levels. Similar differences 

are seen between any two treatment levels and the two Factor types. With unequal 

differences in sample angular means we may state that interaction exists between 

factor and treatment levels.

As in linear statistics graphing the cell mean directions can be an aid in interpreting 

the interaction. For example, consider an experimental design that involves three 

levels of treatment and two levels of a factor. Lines are used within a unit circle to 

represent the cell mean directions for the experiment. Table 8.4.3 gives the sample 

means for the design, with equal concentration parameter within each cell.

Table 8.4.3

Treatment Level

A B C

1 270* 320 ’ 40*
F a c to r

2 170* 220 ’ 300*
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Figure 8.4.1(a) indicates no difference in the length of the line segments between 

level A and level B of the treatment. Figure 8.4.1(b) shows no difference in the

length of line segments between level B and C of the treatment. Similarly Figure 

8.4.1(c) shows no difference in the length of the line segments between level 1 and 

level 2 of the factor. Here Figure 8.4.1 illustrates an experimental design where no 

interaction is present.

(a ) D i f fe renc e  between (b) D i f f e re n c e  between
lev e ls  A and B o f  treatment leve ls  B and C o f  treatment

—

2Z

(c)  D i f fe rence  between 
leve ls  1 and 2 o f  f a c t o r

Figure 8.4.1 Mean Responses without Interaction
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Alternatively Table 8.4.4 and Figure 8.4.2 illustrates the same design layout but with 

interaction present.

Tab1e 8 . 4 . 4

Treatment Levels

A B C

1 270* 240’ 340*
Factor

2 280* 360’ 60*

23

(a)  D i f fe rence  between (b) D i f fe ren ce  between
lev e ls  A and B o f  treatment lev e ls  B and C o f  treatment

22.

23

(c)  D i f fe rence  between 
leve ls  1 and 2 o f  f a c to r

Figure 8.4.2 Mean Responses with Interaction
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As in 'linear' statistics when the data indicates that large interactions exist, it is 

important to consider whether large interactions actually are present in the sample 

means or whether there may be some other explanation for the occurrence of the 

interactions in the data.

Unexpected interactions may be caused by a problem in the data, there may be an 

outlier or an erroneous response. Possibly another effect may be taking place which 

has not been accounted for. In experiments involving animals, for example, where 

room or time of day may give an apparent interaction when none exists. In such a 

case, the errors can no longer be said to be random or independent. Thus an 

unexpected interaction may be a clue to a failure in meeting the assumptions of the 

model being used.

8.4.2 The Calculation of Interaction on the Circle

The between cells sum of squares in 'linear' statistics can be split up to produce a 

between rows, between columns and interaction sum of squares. For a two way 

analysis the individual cell interaction values are made up of three components, the 

distance from the overall mean to the cell mean (x -  xjj ), from the row mean to 

to the cell mean (xj -  xjj ), and from the column mean to the cell mean

( \ j .  -  % ) •

(x -  x j j  ) -  (Xj  -  X i j  ) -  ( x j i -  x i j . )

Giving

X i j  -  x j -  x j  + x ( 8 . 4 . 1 )

For the overall interaction this distance is squared and summed over all observations. 

For interaction on the circle Figure 8.4.3 illustrates the sample mean direction for 

the three vector lengths involved.
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Figure 8.4.3 The Components of Interaction

Interaction on the circle may then be given by;

p q m

* 1  I  I  < £ i j .  - £ i . .  - i . j .  - L . J
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( 8 . 4 . 2 )

p q m

- * I  I I
i - 1  j - l  Z- l

R? . R? 
+ - 1

N? . N?. i j .  l

R2 . R2
+ - 1I 1 + —

N2 . N2

-  2
R. .

i j
Ni j

R.
1 cos(0 j j^  -  0 i m' )  -  2

‘i j

L« i j

R

N
cosC^jj^ -  8 j  )

-  2
R.

1

Ni
cos( 0 j -  8'  ' )  -  2 VJ_

LN. j - j N
cos (6 j  -  8 )

-  148 -



+  2
R

N
L L

i J . J
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N

‘i . .

N i . .

•J

N
cos(0j   ̂ -  0 s )̂

j .

( 8 . 4 . 3 )
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It can be shown that 

p q in

1 1 1
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Replacing these into (8.4.3) gives

r p q

y y R2 .
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p_ y R?l . .z z
Li-1 j - l Ni j . .

z
i - 1 Ni . . .

I
j “ l

RJ
N
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( 8 . 4 . 4 )
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A comparable breakdown of the between measure of variation for the circle can now 

be seen as

r p q

y y N j .] R2 r p y R? . . ' R2
+ kr qy fRJ . l R2L Il i - i  j - i Ni j . . N. . .

z
Li - l Ni . . . N. . .

zLj-i NJ . . N. . .

(Between Factor 1 (Between F acto r 2 
or Rows) or Columns)

+ k

r p q

I I fR?J.l
p

- I
R? 

i  .. q

- I
R2 . 

•J
R2 

+ ■ - - -
La La

L i - l  j - l [ " t J . J
L

i - 1 [ N i . J
L

J - l k j j N
( 8 . 4 . 5 )

( In t e r a c t  ion)

In the same manner as Section 7.4 the cross product terms may be found for the 

two-way classification with interaction design. Following lengthy vector algebra we 

may show that the cross product terms listed below all equal zero.

p q m
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Finally the two-way analysis of variance model with interaction may be given as
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8.5 Other Design Models

8.5.1 The Randomised Complete Block Design

Section 6.3 discussed the requirement and structure of the randomised complete block 

design where the blocks are formed so that each is as homogeneous as possible. 

Within this design no interaction exists. The vector difference (0jj -  0 ) i.e. the 

total measure of variation, may be expressed as the sum of three terms

<®ij  “ " (Z i .  " I .  .> + (Z . j  -  + (i i j  " Z i .  ~ Z . j  + Z.  .>

( 8 . 5 . 1 )

Both the first two terms on the right hand side of (8.5.1) have been seen in Section

7.3.3 and give

P q
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( 8 . 5 . 3 )
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Note that (8.5.2) provides an estimate of the measure of variation between p 

treatments and that (8.5.3) provides an estimate of the measure of variation between 

q blocks. The third term on the right hand side of (8.5.1) is an estimate of the 

residual measure within the design. Using the same procedure as Sections 8.2 and

8.4 it can be shown that

i -1  j - l

r pv qV R2
+ 0 ) 2 -  k N -  ) -  / + — —

L
i -1 Ni .

L»

j - l N-j. N . .

( 8 . 5 . 4 )

In the same manner as for the two way classification with interaction the cross 

product terms all equal zero. Hence the randomised complete block design may be

given as

R2 r pV’ Ri . ‘ R2 r
[R’ j]

R2
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L
i-1 Ni*.
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8.5.2

+ k

Latin Squares Design

( 8 . 5 . 5 )

In the randomised complete block design, the effect of a single factor was removed. 

It is occasionally possible to eliminate two sources of non-homogeneity simultaneously 

in the same experiment by using the Latin square design. Such designs were 

originally applied in agricultural experimentation when the two directional sources of 

non-homogeneity were simply the two directions on the field, and the "square" was 

literally a square plot of land. Its usage has been extended to many other 

applications where there are two sources of non-homogeneity that may affect 

experimental results, for example, machines, positions, operators, runs, days. A  third 

variable, the experimental treatment, is then associated with the two source variables
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in a prescribed fashion. The use of Latin squares is restricted by two conditions:

(i) the number of rows, columns and treatments must all be the same

(ii) there must be no interaction between row and column factors

The analysis of Latin squares is based on essentially the same assumptions as the

analysis of randomised blocks. The essential difference is that in the case of 

randomised blocks we allow for one source of non-homogeneity (represented by

blocks) while in the case of Latin squares we are simultaneously allowing for two 

kinds of non-homogeneity (represented by rows and columns). As with the 

randomised complete block design the relatively simple but lengthy proof of

construction via vector algebra has not been reiterated, however, all cross product 

terms can be shown to equal zero, producing the model expression:-
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8.5.3 Nested or Hierarchical Design

Section 6.2 discussed the structure of the nested design; as with the randomised 

complete block and Latin square designs the nested design may also be constructed in 

the same manner to produce the model expression;



8.5.4 Three-Way Classification

Clearly larger and larger designs can be constructed in the above manner, here a 

three-way classification design has been built to illustrate the generalised nature of 

the approach;
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Chapter 11 shows further use of this generalised method with the implimentation of a 

split plot design to real data arising in an angular form.

8.6 Summary

It was seen in Chapter 7 how the combining of angular mean directions may give a 

false overall mean direction. Taking account of the mean resultant lengths together 

with their corresponding mean directions has been shown to eliminate this problem 

and has helped to indicate a new approach to the circular analysis of variance. It 

has been emphasised that the approach is, in the first instance, an analysis of 

differing populations, via the maximum likelihood ratio test, rather than differing 

mean directions. The requirement for the testing of the equality of concentration 

parameters is essential in order that a true test of mean directions may be 

undertaken.

Using the knowledge of angular mean combinations, the use of vector algebra and 

directional data properties, new components for the total, residual and between 

measures of variation have been built. The significance of this method has shown 

how the cross product terms, found to be non-zero for the original approach in 

Chapter 7 and requiring a correction factor, are now zero.

This method has then been extended to discuss, explain and illustrate the construction

of interaction on the circle and hence build the new procedure for the two-way 

classification design, showing zero cross product terms.

Finally this generalised method has been further extended to construct other larger

designs such as the Latin square and three-way classification design.
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CHAPTER 9

TH E DISTRIBUTION OF TH E NEW  COMPONENTS AND TEST STATISTICS

Having developed the generalised procedures in Chapter 8 it is necessary to examine 

the theory of the associated statistical tests for all experimental situations which may 

occur. Some attempt was made to evaluate theoretically the exact distributions of 

the test statistics. However, as was found by Upton (1972) and Stephens (1969, 72), 

even for simple single sample tests the numerical integration involved was extremely 

tedious. R does not have a simple density function and a direct evaluation of the 

significance points is not straightforward. Stephens (1969) gave the upper and lower 

1% and 5% points for several values of k and N for R/N and X/N. Stephens 

(1972) has also evaluated the exact two-sample test given by equation (4.2.2) for 

differing values of k and N. In 1969 Stephens discussed the problem of obtaining 

the exact theoretical distribution of

for the sphere and circle developed by Watson (1956) and Watson and Williams 

(1956). Stephens also stated that the analysis is not so straightforward as for the 

Normal distribution; with the distribution of the test statistic being intractable. This, 

unfortunately, is also true for the distribution of the test statistic

from (8.3.3). However, the asymptotic results, as for the test statistic by Watson 

and Williams, may be investigated.

9.1 Introduction

9

u
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Sections 9.2 and 9.3 will examine the component statistics for small and large k 

respectively. In addition the first two moments for each of the components are

found and used to improve the associated approximation. The accuracy of the

chi-squared distributions and their corresponding F statistics are examined via the

same simulation techniques used in Chapter 6.

As with standard 'linear' analysis of variance, it is important to reiterate that because

of the way in which the new procedures are constructed, the equality of the

concentration parameters are examined prior to any analysis of variance.

9.2 Small Concentration Parameter, k

As given in Chapter 8 the new procedure is based on the likelihood ratio test for

the null hypothesis /31 = ...... = /3q, k 1 = .... = kq against its general alternative

hypothesis. Let X be the likelihood ratio criterion for this problem, as in (3.1.5), 

giving the test criterion

-2  logX = 2 J f c j R . j  - i j l  + l  N . j l o g

j - l  J- l

10( ^ 0)

M * J ) .

A A

where k 0 and kj are given by

R RJ
A (k 0) = - A ( k j )  =

• J

N
N-j.

j  = 1 , 2  q

( 9 . 2 . 1 )

(9 .2 .2 )

The power series for the ratio of Bessel functions I Q(k) and I,(A:) for small k are 

given in (3.2.8). The first term approximation, A (k) = kl2, has been shown to be 

tolerable for k z 1. Using this in (9.2.2) gives

^0

2R

N

2R

N Jj

j  = 1 ,2 ,  . . . , q ( 9 . 2 . 3 )
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also given in (3.2.11) as approximation k 7. Hence for small k (9.2.1) reduces to

( 9 . 2 . 4 )

This same procedure is given by Mardia (1972) for his S statistic. Identity (9.2.4) is 

seen as the between measure of variation (8.2.8), for small k.

From Rayleigh (1919) and Lord (1954) it has been shown that 2R 2/N  has a 

chi-squared distribution with 2 degrees of freedom. This result was given by 

Rayleigh after finding the form of the p.d.f. of R, equation (2.3.14), for large N. 

This result has been used to test whether the population from which a sample is 

drawn differs significantly from uniformity. We cannot, however, show 2 (N -R 2/N ) to 

be chi-squared in a similar manner. Following preliminary investigations and

simulation routines both 2 (N -R 2/N) and

are found to be what may be termed as negative or reflected chi-squared 

distributions (or random variables), negatively rather than positively skewed. With 

the inclusion of N the chi-squared is effectively transformed to a reflected 

chi-squared with its variance decreasing as k increases.

For small k we may only investigate the between measure as produced from 

maximum likelihood. This chi-squared may be improved following the equating of 

expectations, using

E(R2j )  -  N . j  + N j ( N j  -  l ) p 2 from ( 2 . 5 . 2 )

M*>
where p = A(k)  = and

I 0W

E< * I ( q - l ) >  "
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Producing the improvement factor 

1
( 9 . 2 . 5 )

1 -  p 2

Therefore we may approximate the distribution

2 r 9 y [R‘jl R2

1 -  p2 z
Lj-i N

( 9 . 2 . 6 )

by a x 2 variable with 2 (q -l) degrees of freedom. When k is unknown, the

maximum likelihood estimator k , given by (3.2.2), will be used.

9.3 Large Concentration Parameter, k

Watson and Williams showed that 2k(N-R) is approximately distributed as a 

chi-squared with (N - l)  degrees of freedom. For the procedure discussed in Chapter 

8 we are required to show that fc(N-R2/N) is distributed as chi-squared with (N - l)  

degrees of freedom, for large k. As a simple initial proof we may show that

n - N k(N -  R) 

For large k, R/N—>1, therefore 

2k(N -  R)

1 + I

R2
N -  —  N

Alternatively we may adapt the approach of Mardia (1972, p 114) where the 

distributions of 2fc(N-C), 2fc(R-C) and 2fc(N-R) are found. Here the distributions of 

& (N -C 2/N )), fc((R2/N )- (C 2/N )) and fc(N-(R2/N )) are required.
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9.3.1 Distribution of k {N -  C 2/N)

Let 0 be distributed as M(0,fc), then for large k we wish to show that

~(N  -  C)k(N + C) -  * 2 ( 9 . 3 . 1 )

Let

N

€ — J /c(l -  COS 0 j ) ( l  + COS 0 . j )

j - l

N

i -
j=l

N

i -
j “ l

1 -

e 2 . e A .
i  +

2! 4!
1 +

®?j 6U  
1  1 + —

2! 4!

2 e A . e A. 0 G.
2  l i  _ • J _ -j
• j  4! 212! 4!2!

For large k,  0 j is small 

N

e *  J 

j“ l

From (2.2.2) 0 j may be approximated by N(0 ,k~%) and therefore kd j 2 will be 

distributed as the square of the standard normal variate which is approximately a 

chi-squared distribution with 1 degree of freedom. Hence, by the additive property 

of chi-squared

N

i
j “ l

kd2 . « k 
• J

C2
N " N~ *  *N ( 9 . 3 . 2 )
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9.3.2 Distribution of fc((R2/N) -  (C2/N))

It can be seen that

£ (R  + c )(R  -  C) -  k (1 -  cos0) (1  + cos0) ( 9 .3 .3 )

It has been shown by Mardia (1972, p 98) that the conditional distribution of 0 

(sample mean direction) given R is M (0 ,kR). On using (9.3.1) the conditional 

distribution of (9.3.3) for given R is x? which does not depend on R.

9.3.3 Distribution of k{N -  (R2/N ))

Following the identity

c 2 R2 C2 R2
N =■ k N " N + k N -  —  N

and using (9.3.2) and (9.3.3), by the additive property of chi-squared it can be 

shown that

where k ((R 2/N )- (C 2/N )) and k (N -(R 2/N )) are independently distributed.

In the same manner as Watson and Williams original expression, (9.3.4) behaves like 

the similar form found in 'linear' analysis of variance.

Using a similar approach, it follows that for large k

( 9 . 3 . 5 )

k N ( 9 . 3 . 6 )
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Therefore

H -  I

j “ l

R2
.J

N • j j
XN-q k

r v̂ R?j' R2
) -  — fS
L

U-i N.j. N
» V 2

Lq - i
( 9 .3 .7 )

As for small k these approximations may be improved following the use of 

expectation (2.5.2). For large k , equating expectations gives an improvement factor

1
( 9 . 3 . 8 )

k ( l  -  P2)

Therefore an improvement, when k is unknown, is made by replacing k by (9.2.5)

1
N -

R2

N N -l ( 9 . 3 . 9 )
1 -  p 2

The remaining components also require the same improvement factor, giving;

1 R2
N -------

N

1 r *
y R?j' R2

-  P2 1 -  p 2 L
L j- i N . j . N

1

1 -  p » - 1
j -1

R2 . 
•J

N.JJ 

( 9 . 3 . 1 0 )

with associated chi-squared distributions

*N -1 "  Xq-1 + XN-q

9.4 The Variance of the Component Chi-Squared Approximations

9 . 4 . 1  Variance o f

Var R2 R2
2

R2N -  —— 
N -  E N -  —— 

N E N -  —  N

= E(N2) -  2E(R2) + E
R4

N2
-  [ ( N  -  l ) 2 -  2(N -  l ) 2p 2 + (N -  l ) 2p4 ]
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Using expectations E (R 2) and E (R 4) given by (2.5.2) and (2.5.3) 

-  2(1 -  N ) p ’  -  1 -  (N -  1 ) V  +  575 ■(N -" 4 ) |P/I

+ (T ^ 3 ) T p2(2 + + ( N ^ 2 ) I (2 + 4p2 + p V  + N ( 9 .4 .1 )

Let (9.4.1) be represented by T . For large k, equating T  to the variance of its 

associated chi-squared

k 2T -  2(N -  1)

Let S be the improvement for variance, therefore

S2 2(N -  1) 
k 2T

Re-equating expectations gives

( 9 . 4 . 2 )

( 9 . 4 . 3 )

N - N + (N -  1 ) [1  -  Sk( l  -  p 2) ]  « ( 9 . 4 . 4 )

This lengthy expression has been tested on simulations for large k (> 2) and 

excellent chi-squared approximations produced. However, with the adjustment for the 

expectation given in (9.4.4) it is possible for negative values to be obtained. 

Similarly, as part of an analysis of variance procedure (9.4.4) would be impracticable.
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In order to study the variance (9.4.1) further, the asymptotic expansion of p has 

been used. For reasonably accurate approximations the first four terms of the series 

A(k) are required; for large k

1 -

1 1 1

2k 8k 2 8k 3

1

from ( 3 . 3 . 2 )

1 9  1 1
1  +   +   + -------

k 8k 3 64k4 32k s 64k6

2 1 1 1

k k 2 4 k 3 4k4

( 9 . 4 . 5 )

When these equations and those of p i  and p 4 are substituted into (9.4.1), the 

variance of the chi-squared approximation,

Var R2 1 1 -53 89 5NM -  __
N ~ *£ t(2N 2 ) + N " N + k 4 32N + 32 “ 32

Therefore

1 -9  ^ 7 5N 1 -1 7 9N 1
k 5 m  + 8 ~ T T + k 6 T3n " 32 32 + 0 k 7

( 9 . 4 . 6 )

Var
D 2

N -  —  
N 2(N -  1) + £ ( 9 . 4 . 7 )

This interesting result shows that the variance of the component is equal to the 

variance of the chi-squared approximation plus further smaller terms. These terms 

are found to be negative and heavily dependent on the size of k and N. Higher 

terms may only be neglected when k and N are relatively large. Further proof of 

this is discussed in Section 9.5.
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r q
[R f j l9 . 4 . 2  V ariance o f n -  yLa

j - 1 N -j .

Following the same procedure as Section 9.4.1, let q be the number of samples and 

c the number of observations within each sample and of equal size

Var ■ - 1 
j - i

R2

lN-jJ
-q  -  p 2[ 2 (c  -  l ) q ]  -  p4[ q ( c  -  l ) 2 ]

c! 2c!
P4 + --------------- P2( 2 + p 2)

(c -  4 ) !  (c -  3 ) !

c!

(c -  2 ) !

Using the series equations of (9.4.5), for large k

(2 + 4p2 + p 2) + c

Var
r q
N -  I [Rj ]

1
------- ( 2qc

1
-  2q) + —

q
-qc + —

U
j -1 N -j . k 2 /c3 c

( 9 . 4 . 8 )

1 -5qc 89q 53q 1 -5qc 7q 9q '
+ — ------------------  + -------------- -  -------------- + — -------  + — -  -----

32 32 32c /c5 16 8 16c

1 9qc 7q lq 1
+ — -----  + —  _ ----- + 0

k 6 32 32 16c k 7
( 9 . 4 . 9 )

Therefore

r q 
v 1 q

Var< k N -  ) -  2q(c -  1 ) + - -qc + —
La

J-1 N . j . k c
- - ■

( 9 . 4 . 1 0 )

As with the total component of variation the variance of the residual component is 

equal to the variance of the chi-squared approximation plus smaller negative terms 

dependent on the size of k and N.
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r q R2 . 
• J

R2
9 . 4 . 3 V ariance o f ) -  —

Li
L j- i N J . N

Let q be the number of samples and c be the number of observations within each 

sample of equal size

Var
f q

y R?j' R2 1 (qc) !

z
U - i N-j. N (qc) ( (cq)  -  4 ) !

2 ( q c ) ! (qc) !
+ --------------------- p 2( 2 + p 2) H--------------------------(2 + 4p2 + p 2) + c

( ( qc)  -  3 ) ! ( (qc)  -  2 ) !

c ! 2c!
P4 + ---------------  p 2( 2 + p 2) +

(c -  4 ) !  (c -  3 ) !

c !

(c -  2 ) !
(2 + 4p2 + p 2) + c

+ (q -  1) -  2(q -  l ) p 2 + p4 (qc2 -  (qc ) 2 + q -  1) ( 9 . 4 . 1 1 )

Using the series equations of (9.4.5), for large k

r qv *■ } R2 1 1 -1 1
Var y ------- ------- ( 2 (q - D )  + — q -  -L>

L j- i N -J. N k 2 R3 c q

k A

-53 53q 89q 89

32qc 32c 32 32

1
+ ---

/C5

-9  9q 7q 7

16qc 16c 8 8

+ 0
k G

( 9 .4 .1 2 )
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Therefore

r * R2 1 -1 l '
k y ------- . -  2 (q -  1) + - — q -  - +

L ,

L j- i N - j . N k c q -

Again it is important to note that the variance of the between component is equal to 

the variance of the chi-squared approximation plus smaller further terms. However, 

Section 9.5 shows how the size of k and N within the components have substantial 

effect on the size and accuracy of the variance, particularly so on the between 

measure of variation.

9.5 The Adequacy of the New Procedure, for Large k

As we have discussed in Chapter 4 and showed in Chapter 6 , the approach by 

Watson and Williams, and adapted by Stephens, is the principal approach for testing 

differences between mean directions of different samples with assumed equal 

concentration parameter. The procedure developed in Chapter 8 is ultimately 

designed to analyse larger experimental situations where extensions to Watson and 

Williams have been shown to breakdown. However, it is necessary to compare the 

accuracy and power of the new test statistics with the alternative tests for the 

one-way classification before investigating its suitability for larger designs.

As in Chapter 5, for testing the adequacy of the extended techniques from Watson 

and Williams, simulation techniques have been used to examine the accuracy of the 

approximations to the distributions of the components of (8.3.3). The observations 

from the von Mises distribution specified by the null hypothesis were generated by 

the computer method outlined in Appendix B. 10,000 sets of samples of various size 

were drawn from the von Mises distribution with k = 2, 3, 4, 5 and 10. For the 

sake of conformity and in order to further check that the simulation techniques
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being used were satisfactory, the same sample sizes are analysed as in Upton (1974). 

Five multi-sample experimental designs are examined varying in size, with N ranging 

from 10 to 60.

To verify the findings of Section 9.4, the first two moments of the components for 

total and residual measures of variation are given in Table 9.5.1. The mean of the 

chi-squared approximation value for each component is seen to be an excellent fit 

increasing in accuracy as k increases. If  k is unknown and the improvement factor

(9 .2 .5) is used the accuracy of the chi-squared approximation mean value is 

maintained. As shown in Section 9.4 the variance of each component is seen to be 

below its chi-squared approximation value and dependent on the size of N and k. 

As N and predominantly k increase, the accuracy of the variance increases.

This deficiency within both components is reflected in Table 9.5.2 and 9.5.3, showing 

the accuracy of the upper percentage points to the x 2 distribution with associated 

degrees of freedom. It is clearly seen that cq, the simulated proportion of the 

components, approaches a, the x 2 theoretical or significance level, as N and k 

increase. Similarly, due to the size of the chi-squared approximation variance values 

the probability of accepting the null hypothesis when in fact it is false, a type II 

error, is increased; and unacceptedly so for k=2 and small N. Tables 9.5.2 and

9.5.3 also give the comparable accuracy of the Watson and Williams component 

improved by Stephens. For increased understanding the same 10,000 sets of 

observations for each set of samples were used. It is seen for both components that 

while the new procedure components overestimate the theoretical proportion, following 

Stephens improvement Watson and Williams components slightly underestimate the 

theoretical proportion or significance level of the associated x 2-
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Table 9.5.4 gives the first two moments for the between measure of variation

component. Once again the mean value of the component chi-squared approximation

is a very good fit increasing in accuracy as k increases. The deficiency in the 

accuracy of the chi-squared approximation variance is again shown. This is slightly 

worse than for the total and residual components.

Following examination of the fitted components percentiles to the upper 50% of the 

theoretical x 2 distribution, several improvement factors were tested to increase the 

accuracy of the chi-squared approximation variance without greatly impairing the

accuracy of the mean. The improvement factor 0, (9.5.1), was chosen as a balance 

between the two moments, acceptable for all large k

1 1 1
“  "  1 -  — ------ ~  ( 9 . 5 . 1 )
(3 5k 10k2

Table 9.5.4 gives the comparable moments for each set of sample sizes multiplying k 

by (3 and shows how the mean of the chi-squared approximation has increased 

slightly from its desired value whilst the associated variance has improved appreciably.

Table 9.5.5 gives the accuracy of the improved between measure of variation to the 

upper percentage points of the associated x 2 distribution with comparable statistics for 

Stephens measure. By introducing (3 the accuracy of cq the simulated proportion, is 

greatly improved, increasing in accuracy as k increases.

It is important to note that to acquire this accuracy with the component distribution 

variances being below the desired theoretical values implies that the accuracy of the 

lower percentage points have deteriorated. However, the accuracy of the whole 

component distribution is still very good, although Stephens measure has the superior 

fit across all percentage points.
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Following the introduction of (3 the test statistic components can now be expressed 

as;

R2 r qv RJ r qv R?j'
N ------- -  k(3 y -  --- + k n -  y

N Li

L j - i ."•J. N L.

j - i N-j. •

( 9 . 5 . 2 )

The associated test statistic, Q ,,  for the null hypothesis of no difference between q 

treatments or samples is given as;

Qi

r q
V 'R?J RJ

*0 (N  -  q) ) -  —
L i

Lj-1 N - j . N

k (q -  1 ) N -  I

j = l

R2

N JJ

( 9 . 5 . 3 )

which has an approximate F-distribution with (q-1) and (N-q) degrees of freedom.

This may now be examined and compared to the associated test statistics from 

Stephens (4.4.7), and Uptons G-test (4.4.8). (See Table 9.5.6.) Test statistic

(9.5.3) and (4.4.7) are compared to the theoretical significance levels of an 

F-distribution, while (4.4.8) is compared to those of the x 2 distribution.

Test statistic (9.5.3) is seen to be accurate for large concentration parameter and 

increasing slightly in accuracy as N increases. This dependence on the size of N is 

more pronounced for k equal to 2. As stated by Upton (1974) the G-test is greatly 

affected by the size of N and is inappropriate for small sample sizes. Stephens test 

statistic is again seen as the 'best fitting' statistic when examined across all large k 

and varying sizes of N.
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9.6 Comparing the Power of the Tests, for Large k

In previous sections the components and test statistics introduced have been compared 

with each other principally on the basis of their apparent goodness of fit to their 

respective distributions. All these tests involve the use of many approximations in

their construction;

a) The approximation of the ratio of Bessel functions in the likelihood ratio 

test as a short power series (Chapter 3.6).

b) The approximation to obtain an explicit value for the maximum likelihood 

estimate of the concentration parameter (Chapter 3).

c) The use of the asymptotic result about the distribution of -21og\

(Chapter 3.1).

d) Occasionally an approximation is introduced to simplify the test statistic.

e) The modification of the statistic by correcting its expected value 

(Chapter 2.5).

It was similarly noted by Upton (1970) that because of all these approximations it is 

often surprising that so many of the tests derived using this procedure are good fits 

to their respective x 2 anc* F distributions. It is for these reasons that it is important 

to examine the statistics relative goodness of fit and establish their range of validity.

What is also important is to examine the relative power of the statistics against any 

available alternatives. In order to compare the test statistic (9.5.3) against alternative 

multi-sample tests given by Stephens (4.4.7) and Upton (4.4.8) it is unnecessary to 

conduct a complete investigation of all the different sample situations we have already 

used. Table 9.6.1 gives the relative power of the three tests by studying two sets of 

samples, with one sample mean direction set approximately 30* from the true value
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of the other samples. It is clear from the table that Uptons and Stephens tests are 

virtually identical in power, with the Q-test slightly less powerful improving in 

comparison as k increases. The power of all three tests naturally increases as the 

underlying distribution becomes more peaked.

As has previously been noted likelihood ratio theory produces tests that are 

asymptotically uniformly most powerful. Therefore the tests derived in this manner 

examining the required hypothesis will be at least as powerful as any other test. 

The test statistic (9.5.3) initially constructed by likelihood methods but requiring a 

further test to eliminate an assumption of unequal concentration parameter would not, 

expectedly, be quite as powerful as that derived without this restriction. Nevertheless 

this loss of power is not very large and is compensated by its increased range of 

application as a generalised approach for larger experimental designs.
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9.7 The Adequacy of the New Procedure, for Small k

As previously stated, the new procedure for small k is based on the likelihood ratio 

test for the null hypothesis /31 = ... = /3q, = ... = kq against its general

alternative hypothesis. For one-way analysis problems Mardia's likelihood ratio test

(4.4.3) for the null hypothesis /31 = ... = /3q with assumed equal k will be 

asymptotically uniformly most powerful as a direct test of the mean directions. As 

with test statistic (4.4.3) the comparable test statistic (9.2.6) only involves the main 

factor effect and cannot take account of the total or more importantly the residual 

or error effect. However, unlike (4.4.3) the loss of power of test statistic (9.2.6) 

may be compensated by its possible application in larger experimental situations to be 

discussed in Chapter 10. Table 9.7.1 compares the accuracy of the two x 2 

approximations (4.4.3) and (9.2.6) following 10,000 simulations of varying 

concentration parameter and sample size. The sample sizes range from 10 to 60 

using the same sample sets as for large k. Before the tests are applied the equality 

of concentration parameter is checked using the appropriate tests from Section 4.5. 

Ranges of small k are given as its accuracy cannot be assured for such small values. 

From Table 9.7.1, test statistic (9.2.6) is seen to be less susceptible to smaller 

sample sizes than (4.4.3). As the sample sizes increase the accuracy of the two tests 

become more comparable with both showing good fits to the upper percentage points 

of the x 2 distribution with associated degrees of freedom. For both tests cq, the 

simulated proportion of the component, approaches a, the x 2 theoretical proportion 

or significance, as N and k increases.
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Table 9.7.2 takes the tests statistic (9.2.6) out of its proven range and compares it 

to equivalent tests in the concentration parameter range 1 to 2. The comparable 

tests are those stated by Stephens and Upton given in Section 4.4, and used 

previously when examining tests for large k. Stephens test is shown to be suitable 

for k as small as 1, while Upton's test is suitable for R/N as small as 0.6 (fc~1.5). 

Table 9.7.2 shows test statistic (9.2.6) to be comparable to the equivalent tests, whilst 

all three tests show good fits to the upper percentage points. Once again it is 

important to note that the equality of concentration parameters has been tested prior 

to examination of mean directions.
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9.8 Comparing the Power of the Tests, for Small k

As for large k , it is important to examine the relative power of the test statistic 

against any available alternatives. To compare test statistic (9.2.6) against Mardia's 

test statistic (4.4.3) for k <  1, and against Stephens (4.4.7) and Uptons (4.4.8) for 

k >  1 it is unnecessary to investigate all the different sample situations of Section 

9.7. Tables 9.8.1 and 9.8.2 show the relative power of the four tests by studying 

two sets of samples, one with equal sample sizes of 20, the other with differing 

sample sizes of 10, 20 and 30. Table 9.8.1 examines the power of the test with 

one sample mean direction set approximately 30* from the true value of the other 

samples, as in the power examination for large k. Table 9.8.2, however, gives a 

further test when one sample mean direction is set 90* from the other samples. A  

larger displacement has been used for the examination of small k , since to acquire a 

significant difference between samples when simulating almost randomness is difficult 

and larger fluctuations in test statistic would be expected. In both tables it is clearly 

seen how the detection of a significant difference is increased as k increases. When 

a displacement of 90* is used with k = 1.75 all three test statistics indicate the 

presence of a displacement on almost 100 percent of occasions.

Examining the power between the tests for k <  1 shows Mardia's statistic (4.4.3) to 

be slightly more powerful than test statistic (9.2.6) in both situations and across all 

percentage points. For k between 1 and 2 Stephens test statistic dominates close to 

1 while all three tests appear to be identical in power for k increasing towards 2.

Test statistic (9.2.6), constructed using maximum likelihood techniques but requiring 

examination of the sample concentration parameter, is seen to be almost as powerful 

as test statistics (4.4.3) and (4.4.7) but with the possible added application to larger 

experimental situations.
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9.9 Summary

As the exact distribution of the new test statistic components have been seen to be 

intractable by an exact theoretical approach for both large and small k , other 

methods to examine their distribution have been used. A  comprehensive step 

approach was initiated for both situations of large or small concentration parameter

(1) to test the components validity by use of approximations in a theoretical 

manner

(2) to obtain the expectation and variance of each chi-squared approximation 

component via Bessel function approximations

(3) simulation testing of the components to examine their accuracy to the 

upper percentage points of their associated chi-squared approximation and 

obtain and examine their first two moments

(4) to compare the new F or chi-squared test statistic against available 

alternatives, and finally

(5) to examine the power and robustness of the test statistics against these 

alternatives

Following the production of the first two moments, via the Bessel function

approximation and simulation, an improvement factor /3 was derived to increase the 

accuracy of the distribution approximations for large k and therefore improve the 

final test statistic. The comparison of the new test statistic (9.5.3) to associated 

one-way classification tests was favourable although as it requires the prior testing of 

sample concentration parameters it is not a uniformly most powerful test. 

Nevertheless the new approach lends itself to an increased range of applications 

unlike the alternative techniques.
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For small k only the associated component chi-squared approximation can be used as 

a test of difference since the corresponding total and residual components for small 

concentration parameter do not form chi-squared distributions. The test statistic 

chi-squared (9.2.6) also compared favourably to the available alternatives for small k.

As for large k, the tests of (4.4.3) and (4.4.7) are uniformly most powerful although 

generalisations of these tests to alternative experimental designs is not feasible.
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CHAPTER 10

THE RANDOMISED COMPLETE BLOCK AND TW O -W A Y  DESIGNS V IA  TH E

NEW APPROACH

10.1 Introduction

A comprehensive analysis of the distribution functions for the generalised approach 

has been carried out in Chapter 9. Here the new test statistics for the randomised 

complete block and two-way classification designs, together with their associated

improvement factors, are produced. The relevant component statistics and test 

statistics are compared with their respective chi-squared and F distributions to 

ascertain their reliability and robustness for larger designs. In order not to repeat 

this analysis for every possibility the randomised complete block and two-way 

classification designs are used to represent and examine the adequacy of other larger 

more complex design situations. Although the components and test statistics are not 

investigated here, Chapter 11 extends the approach and analyses experimental 

situations using such methods as Latin-square and Split-plot designs.

10.2 Randomised Complete Block and Two-way Classification with Interaction

Designs, for Large k

In Section 8.5 the randomised complete block design for the new approach was 

constructed via vector analysis and was shown to produce zero cross product terms. 

We may now test for any possible block effect, i, as well as any treatment effect, j, 

to produce the randomised complete block expression;
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with associated independent chi-squared distributions

X (N -1 ) “  X (p -1 )+ X( q - 1 ) + X( p - l ) ( q - l )

As noted in Section 8.5 the first term on the right hand side of the expression is 

the measure of variation due to p treatments, the second term of similar form being 

a measure of variation due to q blocks. The final term represents the residual 

variation, where we assume that the experimental errors are independent and von 

Mises distributed.

Equation (10.2.1) produces the test statistic Z g to examine the null hypothesis that 

there is no difference between the p treatments

r p R2l . R2
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( 10 . 2 . 2)

which has an F distribution with (p-1) and (p - l) (q - l)  degrees of freedom. 

Similarly, the test statistic Z 7 is produced to test the null hypothesis that there is no 

difference between the q blocks

r q
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which has an F distribution with (q-1) and (p - l) (q - l)  degrees of freedom.

Test statistics Z 6 and Z ? indicate whether or not the mean directions are equal, they 

do not allow for discrimination amongst single mean directions which we were able to 

derive for the one-way analysis in Chapter 5.

Prior to examining the accuracy of the component chi-squared approximations of

(10.2.1) and the associated F approximations Z 6 and Z ?, the test statistics for the 

two-way analysis with interaction may be constructed.

Using the same approach as above, the two-way classification with interaction may be 

seen as;

R2
M -  * * *

r p 
y RL' R2 r v

y R2 .
•J-

R2

N
ft L

. i - l Ni . . N L
LJ-l N - j , N

+ k - 11 
i-1 J- l

R?. 
i j

lNU.J

+ k i i
i-1 j - l

R? . 
U

lNU.J
-  I
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l
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R2 .
•J

N J-J

R2

N

with associated independent chi-squared distributions

( 1 0 . 2 . 4 )

CN-1 X (P -1 ) + X( q - 1 )  + Xpq(m-1) + X( p - 1 ) ( q - 1 )

where m represents the number of observations within each cell. F test statistics are 

built as for the randomised complete block design;
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10.3 Accuracy of the Associated x 2 Approximations for the Randomised

Complete Block and the Two-way Classification Designs with their

Corresponding F Statistics, for Large k

The accuracy of the expressions (10.2.1) and (10.2.4) are determined by simulation 

methods. Monte Carlo samples from a von Mises distribution with fixed k are made 

for the distribution specified by the null hypothesis. The computer method used for 

the generated observations is outlined in Appendix B. As for the testing of the

one-way classification and the extended techniques of Watson and Williams in 

Chapter 6, 10,000 sets of samples of various size were drawn from the von Mises 

distribution with k = 2,3,4,5 and 10. The same experimental designs investigated in 

Chapter 6 are used here to enable comparison between tests. For the randomised

block three designs are examined varying in size of N.

10.3.1 The Randomised Complete Block Design

Tables 10.3.1 to 10.3.6 examine the chi-squared approximations for each component 

within the randomised complete block design. Table 10.3.1 gives the first two 

moments of the components for total and residual measures of variation. The 

simulated mean value of the chi-squared approximation for each component is seen 

as a good fit, although slightly over-estimated, and increasing in accuracy as k 

increases. This follows the findings of Section 9.5. When k is unknown and 

equation (9.2.5) is used as its replacement the accuracy of the simulated mean value 

is increased. Again, as in Section 9.4, the simulated variance of the chi-squared 

approximation of each component is seen to be below its expected value and 

dependent of the size of N and k. As N and predominantly k increase the accuracy 

of the variance increases.

-  200  -



Table 10.3.2 shows the accuracy of the total and residual measures of variation 

components to their associated chi-squared. The goodness of fit in the upper 10 

percent significance levels, for concentration parameter greater than 2, is seen to be 

very good, and increasing in accuracy with increasing size of k. For concentration 

parameter equal to 2 the approximations under estimate their associated significance 

levels. Although not shown within the tables, the fit of the simulated distributions in 

the lower percentile levels is not as good as in the upper tails, but this would be 

expected given the simulated means and variances of Table 10.3.1.

Tables 10.3.3 and 10.3.4 give the first two moments for the treatment and block 

measures of variation components, respectively. As for the one-way analysis the 

simulated mean value of the component is approximately equal to the mean of the 

chi-squared approximation and increasing in accuracy as k increases. Similarly the 

variance is seen to be rather poor, most noticeably for small k. As in Section 9.5 

the improvement factor (3 is used and multiplies k in order to increase the accuracy 

of the chi-squared approximation variance and therefore the distribution fit. The 

comparable moments are given in adjacent columns in Tables 10.3.3 and 10.3.4 and 

show a slight increase in the simulated mean value but an important improvement in 

the accuracy of the variance. This is reflected in the accuracy of the improved

treatment and block components to the upper percentage points of their associated 

chi-squared distributions given in Tables 10.3.5 and 10.3.6.
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The accuracy of the F distribution approximations are provided in Tables 10.3.7 and 

10.3.8. Table 10.3.7 examines the F distribution statistic for the testing of the p 

treatments Z e, against its improved F distribution where the term (3 has been 

included. Table 10.3.8 examines the corresponding test for q blocks, Z ?. The 

improvement tests show better fits for both factors across all significance levels,

although it is important to note that it still slightly under-estimates the proportion a

leading to an increased probability of a type I I  error.

In Chapters 6 and 7 the extension of Watson and Williams and Stephens approaches 

to larger experimental designs was shown to breakdown due to the combination of 

sample means. Examination of the chi-squared approximations for randomised 

complete block and two-way classification designs were, however, carried out since 

the combination problem was negligible for very large k and did not affect the 

associated test statistics. On the assumption that the extended techniques were valid, 

direct comparison may be made to the corresponding tables in this section. The

associated tables for the randomised complete block design are Tables 6.4.1 to 6.4.7. 

For all the components within (10.2.1), incorporating the correction factor /3, show a 

comparable fit for large k and an improved fit for small k for both the chi-squared 

approximation and moment calculations.
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10.3.2 Two-way Classification with Interaction

As for the randomised complete block comparable statistics for the two-way 

classification with interaction design, examining the component chi-squared 

approximations, are produced in the six tables from 10.3.9 to 10.3.14. Here the 

chi-squared approximation moments are not reproduced as similar terms from other 

models have already indicated their adequacy. Similarly the correction factor 0 has 

been included for the main effect and interaction terms.

There are four two-way designs simulated, each varying in size from N=30 to N=90 

and varying in concentration parameter from k=2 to k=10. Table 10.3.9 indicates 

the accuracy of the total measure of variation and the first main effect to their 

respective chi-squareds for 10,000 simulations. Table 10.3.10 for the second main 

effect and interaction terms and finally Table 10.3.11 for the residual term. The 

main effect and interaction terms show excellent fits across all values of k, while the 

total and residual terms are relatively poor fits for concentration parameter as low as 

2.

The accuracy of the three test statistics Z 8, Z g and Z 10 are shown in Tables 

10.3.12, 10.3.13 and 10.3.14 respectively, with the corresponding improvement factor 

/3 applied. The F distribution approximations for the main effects show similar good 

fits as in the one-way classification and randomised block designs, with the accuracy

decreasing at 2. The final Table, 10.3.14, indicates the accuracy of the

interaction test statistic to the F distribution and shows an excellent fit across all

concentration parameters.

Comparing the Tables 10.3.9 to 10.3.14 with the corresponding Tables 6.4.8 to

6.4.13 of Chapter 6, and on the assumption that the extended techniques are valid 

for large k, shows once again an improvement in the chi-squared accuracy for the 

new approach.
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10.4 Randomised Complete Block and Two-way Classification with Interaction 

Designs for Small k

As discussed in Sections 9.7 and 9.8 only the associated component chi-squared 

approximation may be used as a test of difference, since the corresponding total and 

residual components, for small concentration parameter, do not form chi-squared 

distributions. For the randomised complete block and two-way analysis designs with 

small k the models may be seen as given in (10.2.1) and (10.2.4) but the total and 

residual terms may not be assumed to be chi-squared distributed. From (10.2.1),

(10.2.4) and Section 9.2 the test statistic to examine the null hypothesis that there is 

no difference between the p treatments gives:

which has a chi-squared distribution with 2 (p -l) degrees of freedom.

Similarly, the test statistic Z 1 2 will be produced to test the null hypothesis that there 

is no difference between the q blocks within the randomised complete block, or q 

treatments within the two-way design:

which has a chi-squared distribution with 2 (q -l) degrees of freedom. Testing for 

differences between interaction terms within the two-way analysis gives test statistic

( 1 0 .4 . 1 )

( 1 0 .4 . 2 )



As for large concentration parameter, test statistics (10.4.1), (10.4.2) and (10.4.3) 

indicate whether or not . the mean directions are equal, they do not allow for 

discrimination amongst single mean directions.

10.5 Accuracy of the Associated Chi-Squared Approximations for Small k

The accuracy of the test statistics (10.4.1), (10.4.2) and (10.4.3) are determined by 

simulation methods. The Monte Carlo samples from a von Mises distribution are 

generated by the computer method described in Appendix B. As for the testing of 

large k, 10,000 sets of samples of various size were drawn with varying concentration 

parameter values. Before the tests are applied the equality of concentration 

parameter is checked using test statistic (4.5.2). Ranges of small k are given as its 

accuracy cannot be assumed for such small values. The test statistics are examined 

with equivalent sample sizes and components within the two-way classification, since 

the main effects for both the randomised block and two-way designs are similar.

Table 10.5.1 gives the first two moments of the chi-squared approximations for the 

two main effects within the two-way design. The simulated mean value for each 

component is seen to be a very good fit to the mean of the chi-squared 

approximation. The variances are also good fits, increasing in accuracy as the size 

of sample and k increase. Table 10.5.2 shows the accuracy of the first two 

moments for the interaction term to the expected values. As for the main effects 

the simulated means and variances are comparable to their associated chi-squared 

approximations notably increasing in accuracy as N and predominantly k increase.

Tables 10.5.3 and 10.5.4 compare the accuracy of the test statistics, Z 11t Z 12 and 

Z 13 to their corresponding chi-squared distributions in the upper 10 percent 

significant levels. The goodness of fit for the tests with concentration parameter less
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than 1 are seen to be very good for all the test statistics, and as for all previous 

goodness of fit examinations, the accuracy is seen to increase as the size of sample 

increases.

Tables 10.5.5 and 10.5.6 take the test statistics out of their proven range and 

examine their accuracy for concentration parameter values of 1.25 and 1.75. The 

test statistic for both main effects and interaction terms are tested. The tables 

clearly indicate that the test statistics show very good fits to the upper 10 percent 

significance levels and are reliable tests for experimental designs with concentration 

parameters in the range 1 to 2.
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10.6 Summary

This Chapter has investigated the adequacy of the generalised approach for the 

randomised complete block and two-way classification designs, with particular 

reference to their accuracy compared to the associated chi-squared and F 

approximations. The randomised complete block and two-way classification designs 

have been used to illustrate the validity of the approach for larger more complex 

design situations.

Section 10.3 has show that for large k (k>2), and with the inclusion of the

correction factor /3, the new test statistics are reliable and show excellent 

approximations to their associated F distributions. For small k only the main factors 

may be tested against their corresponding chi-squared distributions, nevertheless, the 

tests show excellent fits for a concentration parameter range of 0 to 1.

Of most interest is the examination of the test statistics in the concentration

parameter range 1 to 2. Ideally the test statistics for large k would be desirable

since measures of total and residual variation may be found and utilised. However, 

the test statistics for small k show very good distribution fits and indicate that these 

tests should be used for all experimental situations where the concentration parameter 

is in the range 0 to 2.
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U t lA T l i iK  11

ANALYSIS OF VARIANCE EXAMPLES FOR CIRCULAR STATISTICS

11.1 Introduction

Having discounted the possibility of extending the previous one-way analysis of 

variance approach to larger designs, we will now proceed to test the new approaches 

and their validity with real data sets. The designs range from the simple one-way 

design to the Graeco-Latin square and split plot designs. This section not only 

demonstrates the application of the new procedures but also indicates how they may 

be used to analyses other designs not discussed in this thesis.

11.2 One-way Analysis 

Example 11.2.1 for Large k

For a one-way classification analysis with large k an example given by Gadsden and 

Kanji (1983) will be used. The examination concerns the orientation of particles in 

clay strata observed from photographs for various magnifications. The data, given in 

Table 11.2.1, has been reproduced from Gadsden and Kanji (1983).
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Table 11.2.1 Raw Data From Photographs

Magnification:
100 8 2 , 7 1 , 8 5 ,8 9 , 7 8 , 7 7 , 7 4 , 7 1 . 6 8 , 8 3 , 7 2 ,7 3 , 8 1 , 6 5 , 6 2 , 9 0 ,

9 2 ,8 0 ,7 7 ,9 3 , 7 5 , 8 0 , 6 9 , 7 4 , 7 7 , 7 5 , 7 1 ,8 2 , 8 4 , 7 9 , 7 8 , 8 1 ,  
8 9 , 7 9 , 8 2 , 8 1 , 8 5 , 7 6 , 7 1 , 8 0 , 9 4 , 6 8 , 7 2 ,7 0 , 5 9 , 8 0 , 8 6 , 9 8 ,  
82,73

200 7 5 , 7 4 , 7 1 ,6 3 , 8 3 , 7 4 , 8 2 , 7 8 , 8 7 , 8 7 , 8 2 ,7 1 , 6 0 , 6 6 , 6 3 , 8 5 ,
8 1 , 7 8 , 8 0 , 8 9 , 8 2 , 8 2 , 9 2 , 8 0 , 8 1 , 7 4 , 9 0 ,7 8 , 7 3 , 7 2 , 8 0 , 5 9 ,  
6 4 , 7 8 , 7 3 , 7 0 , 7 9 , 7 9 , 7 7 , 8 1 , 7 2 , 7 6 , 6 9 ,7 3 , 7 5 , 8 4 , 8 1 , 5 1 ,
76,88

400 7 0 ,7 6 ,7 9 ,8 6 , 7 7 , 8 6 , 7 7 , 9 0 , 8 8 , 8 2 , 8 4 ,7 0 , 8 7 , 6 1 , 7 1 , 8 9 ,
7 2 , 9 0 , 7 4 ,8 8 , 8 2 , 6 8 , 8 3 , 7 5 , 9 0 , 7 9 , 8 9 ,7 8 , 7 4 , 7 3 , 7 1 , 8 0 ,  
8 3 , 8 9 , 6 8 , 8 1 , 4 7 , 8 8 , 6 9 , 7 6 , 7 1 , 6 7 , 7 6 ,9 0 , 8 4 , 7 0 , 8 0 , 7 7 ,
93,89

1200 7 3 , 9 0 , 7 2 ,9 1 , 7 3 , 7 9 , 8 2 , 8 7 , 7 8 , 8 3 , 7 4 ,8 2 , 8 5 , 7 5 , 6 7 , 7 2 ,
7 8 , 8 8 , 8 9 ,7 1 , 7 3 , 7 7 , 9 0 , 8 2 , 8 0 , 8 1 , 8 9 ,8 7 , 7 8 , 7 3 , 7 8 , 8 6 ,
7 3 . 8 4 . 6 8 .7 5 . 7 0 . 8 9 . 5 4 . 8 0 . 9 0 . 8 8 . 8 1 .8 2 . 8 8 . 8 2 . 7 5 . 7 9 ,  
83,82

400x1.3 8 8 , 6 9 , 6 4 , 7 8 , 7 1 , 6 8 , 5 4 , 8 0 , 7 3 , 7 2 , 6 5 ,7 3 , 9 3 , 8 4 , 8 0 , 4 9 ,
7 8 . 8 2 . 9 5 . 6 9 . 8 7 . 8 3 . 5 2 . 7 9 . 8 5 . 6 7 . 8 2 .8 4 . 8 7 . 8 3 . 8 8 . 7 9 ,
8 3 , 7 7 , 7 8 , 8 9 , 7 5 , 7 2 , 8 8 , 7 8 , 6 2 , 6 8 , 8 9 ,7 4 , 7 1 , 7 3 , 8 4 , 5 6 ,  
77,71

For the photograph magnifications we wish to test the null hypothesis

H0 • ^ o , i  “  ^0 , 2  ” .............“  ^o , q

against the alternative hypothesis that at least one of the equalities does not hold. 

Prior to testing the hypothesis it is necessary to test the assumptions that (a) the 

samples are drawn from a von Mises population and (b) the concentration parameter 

k has the same value in each sample. Each of the sample populations have been 

tested by Watsons U 2 statistic (1961), using the critical values supplied by Stephens 

(1964), to show von Mises distributed data sets. Similarly, the homogeneity of the 

concentration parameters have been tested and validated via test statistic (4.5.5)

(U 3= 5.584 distributed as x |)*
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The one-way analysis components of variation are given by:

R2 r q R2 . 
•J

R2 r qv R2 . 
•Jk N ------— -  k y -  —LL + k n -  y

N L
L j - i N . i N L

L J - i N . i

and the modified test for the null hypothesis will provide an F-ratio:

F ( q - l ) ( N - q )  -  P

(N-q)

r 
-

\
*T 

c—

R2 .
•J

N . i

R2 1 

N

( q - D
r q 
C H -  J

L j - i

CM 
• 

•
f*. 

a
.

(11.2 .2)

The analysis of variance for Gadsden and Kanji's data is given in Table 11.2.2.

Table 11.2.2 Analysis of Variance Table

Source o f  V a r ia t io n d . f . Measure o f  V a r ia t io n

Between Photographs q - i H r j 1  r ?. 

j - i k j J  N

W ith in  Photographs N-q
S ("r2 .1

n  -  y  , j
• 1 n ij “ i

To ta l N - l
R2

N ------—
N

Stat is t  ics i
j - 1

R2
228.1931

N JJ

R2

N
227.6244

q=5 N . 1 N. 2 N.q -  50 N -  250
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which gives the following ANOVA table:

Table 11.2.3 Analysis of Variance Table:

Source o f V a r ia t io n d . f . Measure
o f

V a r ia t  ion

Mean
MV

F

Between Photographs 4 0.5687 0.14217
1.5974

W ith in  Photographs 245 21.8069 0.089

Tota l 249 22.3756

1 1 1 ,
k -  11.02 -  -  1 ------------------------------ or 0 -  1.01959

f3 5k 10k2

The value of k is found via approximation (3.3.11) for large k. The modified F' 

value is 0 x F 4>245 = 1.628; and as the table value of F 4>245(0.05) = 2.37, the 

result is not significant and we can conclude (like Gadsden and Kanji) that there is 

no observed significant difference between the orientation of the clay particles under 

differing photographic magnifications.

Example 11.2.2 for Small k

An example of the test procedure for small k is given by using Mardia's (1972) 

example on wind directions in degrees at Gorleston, England, at 11 hr -  12hr on 

Sundays in 1968 classified according to the four seasons. The data has been 

reproduced from Mardia (1972).
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Table 11.2.4 Wind Directions in Degrees at Gorleston on Sundays in 1968 

According to the Four Seasons

Season Wind D i rec t io n s  in  Degrees

Winter 5 0 ,1 2 0 ,1 9 0 ,2 1 0 ,2 2 0 ,2 5 0 ,2 60 ,2 90 ,29 0 ,3 2 0 ,3 2 0 ,3 40

Spring 0 ,2 0 ,4 0 ,6 0 ,1 6 0 ,1 7 0 ,2 0 0 ,2 2 0 ,2 7 0 ,2 9 0 ,3 4 0 ,3 5 0

Summer 1 0 ,1 0 ,2 0 ,2 0 ,3 0 ,3 0 ,4 0 ,1 5 0 ,1 5 0 ,1 5 0 ,1 7 0 ,1 9 0 ,2 9 0

Autumn 3 0 ,7 0 ,1 1 0 ,1 7 0 ,1 8 0 ,1 9 0 ,2 4 0 ,2 5 0 ,2 6 0 ,2 6 0 ,2 9 0 ,3 5 0

Do the wind directions for the four seasons differ significantly within the given data 

set? In this case the test statistic to be used is given by;

2
r q 

y R2 . 
‘ J

R2

-  P2 L
• ja l N- j . N .  ^

( 1 1 . 2 . 3 )

The associated circular statistics are given in Table 11.2.5

Table 11.2.5 Statistics for the Wind Directions

Season N. j R. j ^ o , j
A

R. j

Winter 12 5.1185 272* 0 .94

Spring 12 2.1321 330* 0 .36

Summer 13 3.8680 57 ’ 0 .62

Aut umn 12 3.1878 232* 0.55

Combined Sample 49 5.8771 292* 0 .24

i
J-l

R2 .

N JJ

4 .5 5 9 8
R2

N
0.7049
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The values of k j are found via the 'simple' approximation (3.2.11)

R

M*0 “  2 —

CN1
5

N ." . j .

Prior to examining any difference between the four seasons the assumption that the 

concentration parameters are equal must be tested. Test statistic (4.5.2) is used to 

test their homogeneity and was also used by Mardia (1972). A  statistic value of 

U , = 0.6013 (distributed as x§) indicates that the concentration parameters for the 

wind directions may be regarded as homogeneous.

Applying the test statistic leads to

i
J - l

RJ

N -j .

I , ( & )  

l 0W

R2

N

and

3.8549

1 -  p 2 2.0288

Hence

2 r s
y R2 . 

• J
R2

-  P2 L
Lj-i N.j. N

7.82

Table value x l  (0-05) = 12.59

Therefore the wind direction for the four seasons are seen not to be significantly 

different (the same solution as given by Mardia (1972)).
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11.3 Randomised Complete Block Design

Example 11.3.1 for Large k

This example is taken from the field of clinical psychology and is an example given 

by Ramano (1977). A  psychiatrist was aware that certain organic compounds in the 

fluid surrounding the brain will, when purified and separately placed into solution 

rotate the plane of a polarized light source. The psychiatrist was interested in 

determining whether the optical activity of a specific compound was measurably 

different for various degrees of schizophrenia. Five distinct levels of schizophrenic 

behaviour were recognised and for each level 4 patients were selected. Measurements 

were taken as to the extent to which each sample rotated the plane of polarized 

light under specified conditions.

In the original example a one-way analysis of the difference between schizophrenic 

levels of behaviour was examined. Here an added factor of blocking will be

introduced as a 'row' effect where we may assume a blocking by, for example, age 

of patient.

In the example given by Ramano, although the angle of rotation had been measured 

a standard arithmetic mean had been calculated and a 'linear' analysis of variance 

carried out. However, although this is an incorrect approach to the analysis, the 

estimated concentration parameters are shown to be very large and therefore the 

Normal approximation to the von Mises distribution may be used. Table 11.3.1 

reproduces the data given in Ramano (1977):
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Table 11.3.1 Optical Activity Measurements of a Specific Compound Contained in 

the Brain Fluid of Persons Classified According to Levels of 

Schizophrenic Behaviour

Blocks
1 2

Leve1s 
3 4 5

Angular
Mean

1 11.51* 12.80* 14.98* 15.71* 20.45* 1 5 .0 9 ’

2 1 1 .74 ’ 12.49* 12 .90 ’ 15.42* 1 9 .4 2 ’ 14.39*

3 1 2 .07 ’ 12 .01 ’ 14.25* 15.77* 2 0 .2 5 ’ 14.87*

4 13.15* 13.97* 15.27* 15.07* 17.17* 14.92*

Angular
Mean 1 2 .1 2 ’ 12.82* 14 .35 ’ 15.49* 1 9 .32 ’

Testing the homogeneity of concentration parameters utilises test statistic (4.5.5). A

test statistic value of U 3 = 4.7477 (distributed as x |)  f ° r the 5 levels and 

U 3 = 2.5107 (distributed as x§) f° r 4 blocks, indicates that the concentration 

parameters may be regarded as homogeneous for both factors.

The randomised complete block components of variation are given by:

R2 r pv R? R2 r qv R2 . 
• J

R2
k N ------— -  k y l . -  —— +  k y _ —Ll

N L
■ i-1 Ni - . N L

L j - i N - j . N

f P
N -  I

R?l .
q

-  1
R2 . 

•J
R2

L
i » l Ni . L

J - l NJ . N

and the modified test for the null hypothesis of no difference between the q levels 

will provide an F-ratio:
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F( q - 0 . ( p - 0 ( q - 0  “ ^

r
[R’ j |

R2
(p**i) (q - i ) I ------—

Li
Lj-i k . j J N

r p R L q h ] R2
(q - i ) N -  I - 1 + —

Lt
L i - 1 k J Lt

j - i k j J N

( i i

For the null hypothesis of no difference between the p blocks

F( p - i ) . ( p - 0 ( q - 0  “ ^

r pv R2
( p - l ) ( q - l ) I ------—

La
Li-i [Ni.J N

r p
Ri . '

qv h ]
R2

(P-D N -  I - I + —
L t

i -1 LNi J
La

j - i k j J N

(11

The analysis of variance for the optical activity measurements is given in 

11.3.2.

Table 11.3.2 Analysis of Variance Table

Source o f  
V a r ia t  ion

d . f . Measure o f  V a r ia t io n

Due to
schizophrenic
lev e l

Due to Block

q-i

p - i

Residual ( q - l ) ( p - l )

i
J - l

P

i
i-1

P

N "  I
i -1

R2
• j

LN J J

Ri .

N i.

R?l

R2

N

R2

N

q
■ I

R2 . 
•J

R2

L
j - l k j J N

Tota l N -  1 N -
R2

N

. 3 . 2 )

. 3 . 3 )

Table
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r

I
i= l

R?
JL

Ni
19.9957

R2

N
19.9564

i
J- l

R2 . 
• J

lN.Jj
19.9568 p = 4 q => 5 N = 20

which gives the following ANOVA table.

Table 11.3.3 Analysis of Variance Table

Source o f  
V a r ia t  ion

d . f . Measure o f  
V a r ia t  ion  

MV

Mean
MV

F

Due to
schizophrenic  
leve 1

4 0.039263 0.009816 30.311

Due to Block 3 0.000414 0.000138 0.426

Residual 12 0.003886 0.0003288

Tota l 19 0.043563

A A

From concentration parameter approximation (3.3.11) k « 459, as k is so large the 

correction factor (3 may be neglected (j3 = 1.00043). Hence F 4>12 = 30.311 and as 

the table values of F 4>12(0.05) = 3.26, F 4 1 2 (0.01) = 5.41, the analysis shows that 

the optical activity of the compound differs significantly for schizophrenic behaviour 

recognised by the psychiatrist.

Testing the difference between the blocks gives F 3>1 2 = 0.426, as the table value of 

F 3, 12(0*05) = 3.49, the analysis indicates no significant difference between the 4 

blocks under investigation.
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Example 11.3.2

This example of a randomised complete block analyses a hypothetical data set where 

the concentration parameter is close to two. As was discussed in Chapter 6, a data 

set of this nature may not be analysed via extension of the original techniques. 

Table 11.3.4 shows the hypothetical data set which will be used to illustrate the 

application and robustness of the new approach.

Table 11.3.4

Block
1 2

Treatment 
3 4 5 6

Angular
Mean

1 311' 299’ 338* 298’ 286’ 305* 305 .966 ’

2 326* 39’ 354* 47* 10* 354* 8.283*

3 10* 45* 309’ 319* 25* 339* 345.974*

4 55* 48 ’ 54* 17* 29* 69* 4 5 .4 4 0 ’

Angular
Mean 353 .9 8 ’ 7.657* 351.89* 349.795* 2 .2 5 6 ’ 353.053*

As with all the previous examples the homogeneity of the concentration parameters 

must be tested prior to the analysis of variance. Test statistic values of 

U 3 = 0.0821 (distributed as x§) f° r the 6 treatments, and U 3 = 2.7967 (distributed 

as x Q  f° r the 4 blocks, indicates that the concentration parameters may be regarded 

as homogeneous for both factors.
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Using the test statistic (11.3.2) and (11.3.3) and the Analysis of Variance Table

11.3.2 from the previous example the resulting statistics are obtained.

r

I
i -1

R?l .
Ni

20.519145
R2

N
13.360056

i
J - l

R2
R. j
N

13.539216 pq -  N -  24

which gives the following ANOVA table

Table 11.3.5 Analysis of Variance

Source o f  
V a r ia t io n

d . f . Measure o f  
V a r ia t  ion 

MV

Mean
MV

F

Due to  
treatments 3 0.178658 0.05955 0.2705

Due to Blocks 5 7.158587 1.43172 6.5035

Residual 15 3.302197 0.22015

Tota l 23 10.639442

A

From concentration parameter approximation (3.2.7) k = 2.34, hence /? = 1.1159. 

The modified F ' value for the testing of the differing blocks becomes 1.1159 x 

6.5035 = 7.257 and as the table values of F 5>15(0.05) = 2.9 and F 5>15(0.01) =

4.56, the analysis shows that there is a significant difference between the blocks.

The modified F ' value for the testing of the differing treatments becomes 1.1159 x 

0.2705 = 0.3019. The table value of F 3>1 5(0.05) = 3.29 indicates that there is no 

significant difference between the observed values within the treatments. Figures

11.3.1 and 11.3.2 illustrate the differences between treatments and blocks, and help



to understand and confirm the results obtained- Figure 11.3.1 shows the large spread

between the 4 blocks, whilst Figure 11.3.2 shows little spread between the 6 

treatments, both confirmed by the analysis of variance

Figure 11.3.1 Angular Mean Responses for the Block Effects

Figure 11.3.2 Angular Mean Responses for the Treatment Effects
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11.4 Two-way Classification with Interaction

Example 11.4.1 for large k

Table 11.4.1, overleaf, gives a hypothetical example data set for the two-way 

classification design with large k. The data may, for example, be representative of 

the time of on-set of an illness with relation to new drugs and differing groups of 

people.

The two-way analysis components of variation are given by:

R2
M ’ ' * a U

r p y R?l . . R2
4- k

r *y R2 .
•J*

R2

N z
. i« l Ni . .

N zLj“ i N-j . . N

r p q
V V R2 .

+ k n -  y y 1J •
La La

L i - l  j - i Ni j . .

+  /c

p q

1 1
■i~i j = i

R? . 
1J

N

r

-  I
i j i = l

R?i_

N* - 1
J - l

R2 . 
• J

N J-J N

( 1 1 . 4 . 1 )

Testing the homogeneity of concentration parameters between cells produces a test 

statistic of U 3 = 0.682 (distributed as x§) indicating the equality of concentration 

parameters. Table 11.4.2 provides the analysis of variance statistics required.
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Table 11.4.2 Analysis of Variance Table

Source o f
V aria t ion

d . f . Measure o f  V a r ia t io n

In te r a c t  ion 
AB

Residual

Tota l

Due to
q - i

qy R2

Factor  A Lj-1 NJ , N

Due to
py Ri . . ' R2

Factor  B P 1 Li-1 Ni . .
N

( p - l ) ( q - l )
p q

I 1
i - 1  j - 1  

q

- 1
J-i

[ f j .l P.  y R?l . .

Nu . .
L

i - 1 Ni . . .

R2 . 
•J

p q ( l - l )

N -  1

p q

■ - 1 1
i - i  J - i

R2
N -  —

N

R2 
+ - * - -  

N

R2 .
i j

tr

I
i - 1

Ri
Ni

R2
-  21.601414 -  17.935976

N

i
j - 1

R2 . 
•J

N J-J

22.44784 p - 2  q -  3 / -  5

N — pq — 30

p q

i  i
i - 1  j - 1

*11 
lNU

28 .550744
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which gives the following ANOVA table: 

Table 11.4.3 Analysis of Variance Table

Sources o f d . f . Measure o f Mean F
V a r ia t  ion V a r ia t  ion 

MV
MV

Due to  
Factor  A 2 4.51186 2.25593 37.35877

Due to  
Factor  B 1 3.66544 3.66544 60.7005

In te ra c t  ion  
AB 2 2.43747 1.218735 20.1825

Residual 24 1.44925 0.060385

Tota l 29 12.06402

From concentration parameter approximation (3.3.10) k = 2.57, hence /3 = 1.1025.

The modified test for the null hypothesis of no significant difference between the q 

levels of Factor A  provides the F-ratio:

F ( q - l ) , p q ( Z - l )  "  0

p q ( Z - l )
f ^

y R2 .
* J*

R2L
U=i N* J , N

( q - 1 )

p q

■ -  I  I
i - i  j - i

Ru

iNi j

( 1 1 . 4 . 2 )

Therefore F ' 2>24 = 1.1025 x 37.35877 = 41.188 and as the table values of 

F 2>24(0.05) = 3.4, F 2>24(0.01) = 5.61, the analysis indicates a very large significant 

difference between the q levels of Factor A.
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Similarly, F-ratios (11.4.3) and (11.4.4) provide the null hypothesis tests with regards 

to the p levels of Factor B and the pq levels of interaction AB respectively.

p q ( f - l )
9
y R2

L
U - i

N,* N* * * -

(P -1 ) » - 2  I
i - 1  j - 1

RU
N i j

( 1 1 . 4 . 3 )

F(p - i ) (q - i )»pq(f - i )1

pq(/-D
p q
V V [Ri i  1

p
v Ri . /

q
v [R2j . l

R2
)  )

1J • - ) - ) +
L L

Li-1 j - 1 LNi j  J
L

i - 1 [N i . .  J
u

j - 1 k j j N

( p r l ) ( q - l ) »-l I
i - 1  j - 1

Rfj

lNi j . J

( 1 1 . 4 . 4 )

F ' 1>24 = 1.1025 x 60.7005 = 66.922 and as the table values of F 1>24(0.05) = 4.26,

1 , 2 4 (0.01) = 7.82, the analysis shows there to be a very large significant difference

between the observed results for Factor B. Testing the difference between the

interaction terms AB shows a similarly large significant difference, F ' 2,  24 = 22.25.

Figures 11.4.1, 11.4.2 and 11.4.3 emphasize the observed differences found between 

the q levels of Factor A, the p levels of Factor B, and the pq levels of interaction 

respectively.
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e...

Figure 11.4.1 Angular Differences between the q Levels of Factor A

6 ,
e...

Figure 11.4.2 Angular Differences between the p levels of Factor B

Figures 11.4.1 and 11.4.2 illustrate the angular mean differences between the q and p 

levels of Factors A  and B, the solid lines represent the angular mean for each level, 

while the dotted line indicates the associated range of values accounting for that 

mean. The larger significant differences between levels within both factors are 

clearly -seen.
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( a )  D i f f e r e n c e  between  
l e v e l s  o f  A0 and A1 

F a c t o r  A

(b)  D i f f e r e n c e  between  
l e v e l s  o f  A, and A 2 

F a c t o r  2
a

( c )  D i f f e r e n c e  between  
l e v e l s  o f  B0 and B,

F a c t o r  B

Figures 11.4.3 Mean Responses Indicating Interaction

Figures (a)-(c) indicate the presence of interaction between the two Factors, 

represented by the length of the line segments between the differing levels.
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The hypothetical example above shows a design data set where all the differing

groupings of, cells, rows, columns and overall, produce a large value of concentration 

parameter. The problems arise, in the majority of cases, where the concentration

parameters for the differing groupings do not remain large and equal. As the

complexity of designs grow the chance that all the cells, rows, columns etc have the 

same large and equal concentration parameter becomes highly unlikely. Confusion

arises in the original 'simple' one-way analysis when the q samples all have large 

equal k, but their combined sample gives a small k. Batschelet (1981) assumes that 

the parameter of concentration has the same value in each population and that k is 

found from the average of the sample resultant lengths, and therefore ignores the

combined overall sample. The test statistic derived by Watson and William (1956) is 

based, however, on the combined overall sample concentration parameter k, and it is 

this value that should be used. This problem limits the usage of the original test 

statistic and was highlighted in the data set of Example 7.2.1 where a two-way

design was examined. The new generalised approach was constructed in such a

manner as not to breakdown under such conditions. The following example

re-analyses the data set of Example 7.2.1, this time using the new approach.

Example 11.4.2 for small k

In Example 7.2.1 the possible breakdown of the original extended techniques was 

discussed, here this data set is re-analysed via the new approach. Using the 

component statistics of (11.4.1) and the analysis of variance Table 11.4.2 the 

following ANOVA Table is produced:
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Table 11.4.4 Analysis of Variance Table

Source o f V a r ia t io n d . f . Measure o f  V a r ia t io n

Due to  Factor A 1 9.33114

Due to  Factor B 1 8.83213

In te ra c t io n  AB 1 0.02437

Residual 16 1.7936

T o ta l 19 19.98129

r

2
i - 1

q

2
j - 1

Ri

R2 . 
• J

8.85089
R2

N
0.01871

N
• J

9.34985 p -  2  q -  2  

N -  pqZ -  20

2 2 
i - 1  j - 1

Ri j

Ni j .

18.2064

In Example 7.2.1 the sum of the two mean effects measure of variation was greater 

than the total measure of variation and consequently the interaction term was 

negative. The first, and most important, property shown in Table 11.4.4 is that the

component measures of variation for the new approach remain positive and sum to 

the associated total measure of variation.

The concentration parameters of Table 7.2.1 may be shown to be equal within cells 

and between factors, however, the overall k  is very small. Chapter 10 has shown 

the residual and total measures are not chi-squared distributed when k  is small and 

therefore the F-ratio cannot be computed, and examination of the main effects and

-  249 -



interaction must oe carried out using me associated cm-squareu test statistic ior smau

k.

Test Statistic

k  -  0 .0612 t  2_ -2- -  2 .00187 where p -  A( k )
I, (k)

Between measure of variation for Factor A

18.68

This is distributed as x i(q -l)>  from tables x i ^ - ^ )  = 5.991 x  2^ * 0 1 ) = 4.605, 

indicating a significant difference between the observed responses of Factor A.

Between measure of variation of Factor B

Distributed as X 2 (p-1)> once aSa n̂ indicating a significant difference between the 

observed responses of Factor B.

Between measure of variation for interaction term AB

2
r p  q

y y C—

P
y * ? . '

q
y

[R f j ]

R2
4- # *

-  P 2 L L 
Li-1 j - 1 N i j .

L
i - 1 N i * .

i
j-i N.i N

Distributed as x 2(p -l)(q -l)»  indicating that no interaction exists between Factors A  

and B.
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This hypothetical data set was designed solely to emphasize the possible breakdown of 

the original extended techniques. The main effects were purposely set with maximum 

distance from each other to produce a large significant difference within both 

factors.

11.5 The Latin or Graeco-Latin Square 

Example 11.5.1

The object of the experiment was to ascertain whether a modified annealing 

procedure (to heat and then cool slowly to prevent brittleness) could be introduced 

into the production of light gauge domestic copper tube. The original experiment 

measured the subsequent tensile strength of the tube (Davies (1963)), here the results 

will be taken as the breaking angle of the tube. In deciding the form of the tests it 

is necessary to consider possible causes of variation in the results, including variation 

in the material itself and variations in temperature over the annealing furnace. 

Material variations are studied by taking samples of eight tubes at random on each 

of eight days spread over a period of three weeks, thus allowing normal process 

variations to be covered adequately. The 64 tubes were held in the furnace in a jig 

having eight horizontal rows and eight vertical columns of holes i.e. on 8  x 8  

square. The construction of the furnace indicated that temperature variations, if 

present, would be horizontal or vertical, and no appreciable interaction was expected 

between rows and columns.

The absence of appreciable interaction enabled factors to be examined by means of a 

Latin or Graeco-Latin Square. For this example the Graeco-Latin arrangement is 

employed in the experiment, so that two factors each of eight treatments could be 

allotted to the 64 cells in such a way that the two factors and row and column 

effects could be determined independently. The two factors were:
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1. Day of Manufacture

2. Number allotted to an individual tube within the sample of eight.

From the point of view of this example the second is a dummy factor, since the 

numbering of the tubes did not correspond to any physical reality.

A  separate square selected at random was used for each temperature, and the rows, 

columns, and letters were themselves randomised. The results for a nominal 

temperature of 300 *C are shown in Table 11.5.1, in which the rows and columns 

represent positions in the furnace, the letters A  to H  the day of manufacture, and 

the numbers 1 to 8  the designation within the sample. The figures in brackets are 

the associated breaking angles.

The Latin or Graeco-Latin square components are given by:

R2M * *
r p y R2 i . R2 r p y R2 .

• J - •
R2

N l
. i - 1 N i. N L

. i - 1 N J . . . N

Tota l measure Measure o f V a r ia t io n  Measure o f V a r ia t io n  
o f  v a r ia t io n  due to row o f j i g  due to column o f j i g

+  k
R?.z. R2 r p y R2 . . .  a R2

N z
.a - l N. . . a N

Measure o f V a r ia t io n  
due to day o f  

manufacture

Measure o f V a r ia t io n  
due to number 

designation  w i th in  
the sample

+ k

i - 1

R? 
i  ..

- 1 
J-1

R2

N - i
Z—1

R?.z.'
Pn R2 R2_ y . . .  a + 3 ’ ’ * •
L

a - l N . . . a N

Residual Measure o f V a r ia t io n ( 1 1 . 5 . 1 )

Carrying out the analysis of variance we obtain Table 11.5.2.
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Table 11.5.2 Analysis of Variance of Data from Table 11.5.1

Source o f  
V a r ia t  ion

d . f . Measure o f  
V a r ia t ion  

MV

Mean
MV

F

Between
rows o f
J ig

7 1.657 x !0 “ 3 2 .3 6 7 x l0 “ 4 1 .5

Between
columns
o f j i g

7 2.347 x l0 “ 3 3 .3 5 3 x l0 - 4 2 . 1 2 *

Between 
pos it ions 14 4.004  xlO-3 2 . 8 6  x l 0 “ 4 1 .8 1 *

Between
lo ts
( l e t t e r s )

7 1 .4 7 17 x l0 “ 2 2.102x10-3 1 3 .3 2 * *

Between
numbers 7

-  42

9 . 83x l0“ 4

"  6.629x10-3

1 .4 0 4 x l0 " 4

-  1 .5 7 8 x l0 “ 4

Residuals 35 5.646x10-3 1 .6 1 3 x l0 -4

T ota l 63 2 .5 3 5 x l0 - 2

P
y T? 2

Ri . . .
L

i - 1 Ni ...
P
y R2

• j . .L
j - i

p
yL

/= i

p
y R2 . . .  a
L

a - l N - - - a

63.976307

63.976997

63.989367

63.975633

R2

-  63.97465
N

N -  64

p -  8
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rne concentration parameter approximation is so large me correction iacior p may 

be neglected ( 0  = 1 )

* = significant at the 1 0 % level * *  = highly significant (1 % level)

As expected, the mean measure of variation of the factor representing number 

designation within the sample does not differ significantly from the mean measure of 

variation. The number factor may therefore be combined with that for the residual 

to provide a new estimate of error with 42 degrees of freedom.

Variation between columns (i.e. across the furnace) and total variation among

positions (variation over all positions in the furnace) may be judged significantly

different at the 10 percent level. Clearly the major factor causing variation in the

breaking angle was variation in the lots of tubes; position in the furnace is of little

or no importance.

F 7 t 4 2 ( 0 * 1 0 )  =  1 . 8 7  

F 7>42(0.05) = 2.25 

F 7, 4  2 (0 .0 1 ) = 3.12

F i 4 , 4 2 ( 0 * 1 0 )  =  I - 6 6  

F 14|42(0.05) = 1.92 

F i 4 ,4 2 (0*01) = 2.52
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11.6 The Split Plot Design

Although the theory behind a design such as the split plot has not been derived and 

fully checked, the new generalised approach is robust enough (particularly for large 

k)  to analyse any experimental design if the components are adapted appropriately 

and the assumptions are checked sufficiently.

Example 11.6.1

In an experiment on the preparation of chocolate cakes three recipes for preparing 

the mixture were compared. Recipes I  and I I  differed in that the chocolate was

added at 40 *C and 60 *C, respectively, while Recipe m  contained extra sugar. For 

each recipe enough mixture was made for six cakes. These 18 cakes were then

placed in an oven which was then heated slowly. When the temperature had 

reached 175*C three cakes, one from each recipe, were selected at random for

removal, another three at 185*C, and so on until the last three cakes were removed 

at 225 *C. In this manner the recipes are representative of the "whole-unit"

treatments, while the baking temperatures are representative of the "sub-unit" 

treatments. There were 7 replications, one replication was completed before starting 

the next, so that differences among replicates represented a time difference.

A  number of measurements were made on the cakes. Table 11.6.1 presents the

measurements of the breaking angle. One half of the cake was held fixed, while the 

other half was pivoted about the middle until breakage occured.
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The split components of variation are given by:
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Carrying out the analysis of variance we obtain Table 11.6.2.
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Table 11.6.1 Examination of Breaking Angles

Rep1ic a t  ions

175* 185*

Temperature 

195’ 205’ 215* 225’

Angular
Mean

1 42 46 47 39 53 42

2 47 29 35 47 57 45

3 32 32 37 43 45 45

Recipe
I 4 26 32 35 24 39 26 3 5 .3 7 ’

5 28 30 31 37 41 47

6 24 2 2 2 2 29 35 26

7 26 23 25 27 33 35

1 39 46 51 49 55 42

2 35 46 47 39 52 61

3 34 30 42 35 42 35

Recipe
I I

4 25 26 28 46 37 37 3 6 .0 2 ’

5 31 30 29 35 40 36

6 24 29 29 29 24 35

7 2 2 25 26 26 29 36

1 46 44 45 46 48 63

2 43 43 43 46 47 58

3 33 24 40 37 41 38

Recipe
I I I 4 38 41 38 30 36 35 3 6 .1 4 ’

5 2 1 25 31 35 33 23

6 24 33 30 30 37 35

7 2 0 2 1 31 24 30 33

Angular Mean 31.42* 3 2 .2 2 ’ 3 5 .3 3 ’ 3 5 .8 5 ’ 4 0 .6 6 ’ 3 9 .6 2 ’ 35.84*
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Table 11.6.1 Continued

R e p lica t ion 1 2 3 4 5 6 7

Angular Mean 46.82* 45.55* 36.95* 33.28* 3 2 .3 8 ’ 2 8 .7 2 ’ 27.33*

Table 11.6.2 Analysis of Variance of Data from Table 11.6.1

Source o f  
V a r ia t  ion

d . f . Measure o f  
V a r ia t  ion  

MV

Mean
MV

F

Between
Recipes 2 0.00207 0.001035 0.081

Between 
R e p lica t ions

In te ra c t  ion

6 1.92835 0.3213916 2 5 .1 6 9 *

R ec ipe /
R ep lica t ion

1 2 0.15323 0.0127691

Between
Temperatures

In te ra c t  ion

5 0.44041 0.088082 1 3 .4 7 *

Recipes/
Temperatures

30 0.17493 0.005831 0 .677

Residual 60 0.51635 0.00860583

Tota l 125 3.28073
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I
i = l

q

i
j - i

m

i
Z=1

R2

N

R L . 122.72134
N l . .

R2 . 
• J 123.15968

P 2
K..z

N . .Z
-  124.64762

122.71927 p -  3

*  = Highly significant { \%  level)

P q

1 1
i - 1 j - 1

p m

1 1
i=*l Z=T

q m

1 1  
j - 1 Z - l

R? . 
i j

R?.Z

123.22714

N i .  Z
124.80292

N • JJJ

125.26296

q = 6  m = 7

N — pqm *= 126

The concentration parameter approximation is large and therefore the correction 

factor may be neglected ((3 = 1)

From tables , 2(0.05) = 3.89

F s, , 2(°-05) = 3.00 Fb, 1 2 (0 -0 1 ) = 4.82

F s. , o(°*05) = 3.33 F s, ,o(0 -0 1 ) = 5.64
oCO ,B0 (°*05) = 1.65

The analysis of variance Table 11.6.2, indicates that there was no significant 

difference observed between the recipes. This is shown more clearly from 

examination of the angular mean breaking angles associated with the three recipes, 

given in Table 11.6.1, where little difference may be noted. Variation between 

replicates and temperatures, however, are significantly large and are the dominating 

factors causing variation in the breaking angle. The angular mean breaking angle is 

seen to increase as the temperature of the oven increases and may be an 

understandable effect. The angular mean breaking angle of the replications, however,
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show an even clearer decrease in value as the experiments are carried out. This 

heavy dependence on time is less understandable and may indicate, for example, that 

another factor or condition may be affecting the oven state.

11.7 Summary

This chapter has shown how the new generalised approach may be applied to real 

situations where directional data values are measured. The effect of large and small 

concentration parameters have been emphasized together with the requirement to test 

for the homogeneity of concentration parameters. The Graeco-latin square and split 

plot examples have helped to show the suitability of the approach for many 

experimental design situations and indicate the method by which further test statistics 

may be built.
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CHAPTER 12

SYNOPSIS OF RESULTS AND CONCLUSIONS

The aims of this study have been to extend the knowledge of the present methods of 

analysis of directional data and to develop suitable analysis of variance techniques for 

differing experimental design models. These objectives have been achieved, although 

it has not been possible to produce a single unified approach for both large and 

small concentration parameter. However, separate techniques were produced under a 

generalised approach which has been shown to be applicable to many experimental 

design problems. To obtain this approach the work has followed several steps 

individually discussed within the thesis.

Before discussing the development of the new techniques an understanding of the 

development, constructions and distributional form of the original methods was 

required. Within the first four chapters a simple yet informative review of the many 

approximations for the concentration parameter k ,  both large and small, was given. 

This work included the plotting of the residuals and relative residuals for each 

approximation to indicate the accuracy and range of application for the statistics. 

Several were shown to be inappropriate despite their complex form. The analysis 

culminated in a summary table of the 'best' and 'best simple' approximations for 

both large and small k  (Table 3.5.1) and indicated the required approximations for 

use with the techniques to be developed.

Chapter 5 discussed a generalised linear modelling approach, analogous to the normal 

theory of linear regression, in order to estimate the individual parameter values for 

application to the maximum likelihood method. The work showed how the 

observations may be 'added together' under the constraint that the sum of the sines 

of the factor effects equals zero. Using this fact parameter estimates may be found
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for the one-way analysis of variance giving further understanding to the underlying 

structure of the data. The approach, under the above constraint, was found to 

produce the original one-way analysis of variance technique developed by Watson and 

Williams. When applied to larger experimental design problems, however, the 

optimisation of the circular constrained simultaneous equations could not be found, 

without very good initial estimates, due to numerous local maxima. Further work in 

this particular area, using improved techniques for convergence and ever increasing 

improvements in computing methods, is worthy of investigation.

Although it would have been useful to have produced a computer optimisation 

program to solve the constrained equations, the constant need for a computer 

program as a general method for analysing circular experimental designs, would be 

rather restrictive. Therefore, a simple construction of an analysis of variance was 

still required. Chapter 6  investigated the possibility of extending the original 

approach, with large k , for other designs such as the nested or hierarchical, the 

randomised complete block and the two-way design with interaction. The methods 

were seen to extend for these designs (k  >  2 ) and with good chi-squared

approximations. However the assumption of equal and large k  must hold, not only 

for the cell, column and row observations, but for the overall sample. This, under 

larger and larger designs i.e. with an increasing number of factors, is extremely 

restrictive. For example, in situations where the individual row and column factors 

have large concentration parameters and the mean directions differ, the overall 

concentration parameter may be small. Under these conditions within a two-way 

design the 'sum of squares' for the factor effects may add to a value greater than 

the total 'sum of squares'. A  full investigation followed in Chapter 7 where the 

one-way analysis was reconstructed via a regression approach using basic vector 

analysis to examine the make-up of the individual components. This brought to light 

the possible lack of independence between the model components and the non-zero
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existence of a cross-product term. This questioned not only the use of the original 

techniques for larger designs but the adequacy of the original one-way analysis.

The development of the new approach needed to overcome the faults of the original

techniques but be relatively simple and, if possible, be capable of generalising across 

all designs. The vector approach used to investigate the original techniques was used 

again to construct the new test statistics. The method utilizes the resultant lengths 

associated with each sample mean direction, in order that when sample means are 

combined the overall mean direction is still obtained. The vector approach 

minimised the chord distance between mean directions to construct the test statistics. 

Nevertheless, this is not only testing the difference between mean directions but the 

associated concentration parameters as well. Hence, a separate examination of the 

individual concentration parameters must also be carried out for a valid test of the 

mean directions to be feasible.

The beauty of the construction of components in this manner is its simplicity and, in 

comparison to the original techniques the independence of the individual components 

and the zero cross product terms produced. The interpretation and calculation of 

interaction is discussed and the generalised nature of the technique is illustrated in 

the construction and proof of the interaction component.

As with Stephens (1969) and Upton (1970) an attempt was made to evaluate 

numerically the exact distribution of the old and new test statistics. However, even 

for the simplest single sample test statistics the numerical integration involved was 

found to be very tedious.

R does not have a simply stated density function, and indeed a direct computation of

the significance points of R/N or R 2/N is not simple.
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The majority of the tests are complicated by involving R v  R 2 and R, and, since 

these statistics are not for the most part independent of one another, either one or 

another of the conditional distributions needs to be employed. These distributions are 

exceedingly complicated as are the relevant bounds for integration, and no results of 

any use were obtained by attempting to integrate numerically.

Alternative investigations were carried out using the power series expansion of p to 

examine the moments of the test statistics to compare with their associated 

chi-squared distributions. This showed good approximations to the first moment but 

worsening accuracy to higher moments, depending on the size of k. In a similar 

manner to the adjustment advocated by Stephens, an important factor is produced to 

increase the test statistics accuracy.

The simulation techniques, discussed in Appendix B, have been successful in obtaining 

the characteristics of the von Mises distribution and hence the various test statistics. 

Elaborate examination of the components for varying designs, concentration parameter 

and sample size have been carried out together with tests of the statistics power and 

robustness in comparison to any available alternative techniques. Compared to the

alternatives in the one-way analysis the new technique is seen as slightly less accurate 

and powerful, although it does possess desirable properties as previously described.

For small concentration parameter the new approach, as with alternative tests, can 

only examine the between measure of variation, seen to be chi-squared distributed. 

No account can therefore be taken of the residual variation.

Following further justification for the new approach via examination of the 

randomised complete block and two-way analysis designs, the test statistics were 

successfully applied to differing problems with varying concentration parameter.
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APPENDIX A

INDEX OF NOTATION

A (k) or p : ratio of I^A:) to I 0 (fc)

C : sum of cosines of angles

C : mean of cosines of angles

F (0 ) : distribution function

f ( 0 ) : circular density

H 0, H , : null and alternative hypothesis

Ip(fc) : modified Bessel function of the first kind and order p

i : subscript ranging from 1 ,2 , ....... ,p

j : subscript ranging from 1 , 2 ........ ,q

I : subscript ranging from 1 ,2 , ....... ,m

m : number of levels for factor 3

N : size of sample

p : number of levels for factor 1

q : number of levels for factor 2

R : the resultant length

Rj : R for the ith sample

r : mean resultant length of sample

S : sum of sines of angles

S : mean of sines of angles

VM ( p 0,k) : von Mises distribution with mean direction p 0 and

concentration parameter k  

(3 : improvement factor for the new approach

7  : Stephens improvement factor

k : parameter of concentration
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population mean direction 

standard deviation 

circular random variable 

overall mean direction of sample

General Tabular Notation

FACTOR A

A 0 A 1 A 2

* 1 1 1 * 1 2 1 *  1 3 1

* 1 1 2 R 1 1 *  1 2 2 R 1 2 *  1 3  2 R 1 3 R 1 .

B o *  1 1 3 

* 1 1 4

N n *  1 2 3

*  1 2 4

N 1 2 * 1 3 3

* 1 3 4

^ 1  3 N 1 .

F a c t o r  B

* 2 1 1 *  2  2 1 * 2 3 1

* 2 1 2 R 2 j *  2  2 2 R 2 2 * 2 3 2

COCM
Pi

R 2 .

B i * 2 1 3 N 2 i *  2  2  3 N 2 2 * 2 3 3 N 2 3 N 2 .

* 2 1 4 *  2  2 4 *  2  3 4

R 1 R . 2

CO R

N . 1 N . 2 CO N

Mo

a

6

or 0
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where
the resultant length of cell observations in row i
( i= l , 2  p) and the column j ( j= l ,2 , .,q)

the resultant length of all observations in row i
(i= l,2 ,  p)

the resultant length of all observations in column j
( j= l , 2  q)

the resultant length of all observations in the sample 

the total number of observations in the sample
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APPENDIX B

THE SIMULATION AND ACCURACY OF NUMERICAL RESULTS

All the numerical results presented in this thesis are the product of simulations; all 

simulations carried out had a minimum of 10,000 samples. For standard simulation a 

random number z is generated in the range 0 to 1, for a distribution function F (0 ) 

the number z corresponds to an observation 0 from this distribution which is the 

solution of the equation

F (0 ) = z

For many distributions this equation can be inverted directly to obtain 

0 = F“ ’ (z )

but this is not possible for the von Mises distribution. In addition generation of a 

pseudo-random observation from VM(0,fc) cannot be obtained by a simple 

transformation of VM(0,1) to VM(0,fc) and an alternative procedure was used.

The approach used was to fit a probability density function as an envelope around 

the von Mises distribution to give an acceptance -  rejection method which is both 

simple to program and fast for all values of the concentration parameter. Initially 

the simplest p.d.f. used was the Uniform function, simple but very slow. Best and 

Fisher (1979) produced an algorithm to simulate samples from the von Mises 

distribution using the wrapped Cauchy density (Equation 1.3.5) as the p.d.f. for the 

envelope. Let f(x) be the p.d.f. of a random variable x which is to be sampled. 

Let Y be a random variable with p.d.f. proportional to g(x), an upper envelope for 

f(x) (i.e. g(x)^f(x)) and let U be a U(0,1) random variable. If  (y,u) is a realization 

of (Y,U), y is accepted as a realization of x if f(y)/g(y)>u. The distribution of the 

accepted values is then exactly the required distribution. Once the observations from 

the distribution specified by the null hypothesis are generated 1 0 , 0 0 0  sets of samples
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of various size and various concentration parameters may be grouped and analysed as 

required. The homogeneity of concentration parameters was tested prior to all 

analyses.
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