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(Ferrocenylmethyl)dimethylammonium chloride has been synthesised and the cation 
intercalated into the montmorillonite Westone-L. Variable temperature Mossbauer 
spectroscopy indicated that the molecule had a similar Debye temperature in each 
environment (144 ± 5 K and 140 ± 5 K respectively). The intercalated Mossbauer 
spectra revealed a Karayagin effect above 80 K. The cation occupies 80 % o f the total 
exchange capacity o f the clay, most likely orientated with the cyclopentadienyl rings 
perpendicular to the silicate layers. Thermal decomposition o f the intercalate involved the 
volatilisation o f iron containing fragments below 350°C. Variable-temperature XRD 
showed the intercalated sample had a dooi-spacing o f 1.55 nm at room temperature, 
which decreased at 200°C to give a dooi-spacing of 1.3 nm. An iron oxide probably 
remains within the interlayer after the inserted molecule has decomposed.

2 , 2”-bis[(dimethylamino)methyl]biferrocene has been synthesised and intercalated into 
acid exchanged Westone-L. Variable temperature Mossbauer spectroscopy revealed a 
Debye temperature o f 172 ± 5 K which dropped to 150 ± 5 K on intercalation. The 
molecule was shown to occupy 75 % o f the total CEC of the clay and most likely resides 
with the cyclopentadienyl rings perpendicular to the silicate sheet. Thermal 
decomposition o f the bifeirocene intercalate indicated the loss o f iron containing 
fragments below 430°C. Variable-temperature XRD indicated a dooi-spacing o f 1.65 nm 
at room temperature which collapsed to 1.41 nm at 250°C, after which it slowly 
decreased to 1.29 nm at 400°C. An iron oxide was probably left within the interlayer 
after the intercalated molecule had decomposed.

Contact o f the biferrocene with the acid Westone-L for 3 and 48 hours resulted in 2 and 
11 % oxidation to biferrocenium respectively. Contact o f iodine with a suspension o f the 
intercalated biferrocene resulted in ca. 16 % oxidation to biferrocene. The biferrocenium 
intercalate exhibited “domain” type valence electron de-trapping above 200 K until by 
250 K only a single charge averaged doublet was observed.

The molecule N, N-dimethylaminomethylferrocene was successfully intercalated into 
aluminium pillared Westone-L, occupying 30 % o f the total CEC o f the original clay. 
The inserted molecule was found to have a Debye temperature o f 113 ± 5 K as 
determined by variable temperature Mossbauer spectroscopy. Decomposition o f the 
inserted molecule involved the loss of iron containing fragments below 350°C.

When heated in air the inserted molecule gave rise to high spin iron(IH) in a distorted 
octahedral environment. Heating the sample in nitrogen and hydrogen resulted in a 
species characteristic o f high spin octahedrally co-ordinated iron(II). At the higher 
temperatures, the sample heated in hydrogen exhibited a further high spin octahedrally 
co-ordinated iron(II) species, with a less symmetric co-ordination sphere than the first.
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1. Introduction.

1.1 Composite Materials.

Composite materials are the result o f a incorporating a “guest” species into a “host” 

lattice. The resulting materials often show different physical properties to either o f the 

precursors. Such properties include changes, either enhancing or diminishing by many

1 2 3 4 5
orders magnitude, the electrical resistivity ’ , the super-conducting temperature ” , the 

specific heat and related properties o f the solid6, the optical7,8,9 and magnetic10,11 

properties, and even the structural properties o f the system12,13,14.

Although exchange of cations within clays (see section 1.2) and zeolites (see section 

1.1.2 .1.1) has been known for some time15, it was not until the early sixties when

1 F. Kanamaru, M. Shimada, M. Koizumi, and T. Takada, J. Solid State Chem., 1973, 7, 1.
2 S. Kikkawa, F. Fanamaru, andM. Koizumi, Bull. Chem. Soc. Jpn., 1979, 52, 963.
3 S. M. Whittingham, Prog. Solid State Chem., 1978,12, 41.
4 R. Schollhom, A  Lerf, F. Semetz, Z. Naturorsch, 1974, 29B, 810.
5Mater. Res. Bull, 1974, 9, 1597.
6 S. F. Meyer, R. E. Howard, G. R. Stewart, J. U. Acrivos, T. H. Geballe, J. Chem. Phys., 1975, 62, 441.

S. A. Solin, Physica B+C, 1980, 99, 443.
8 R. J. Nemanich, S. A  Solin, and D. Guerard, Phys. Rev. B, 1977,16, 2965.
9

C. Underhill, S. Y. Leung, G. Dresselhaus, andM. S. Dresselhaus, Solid State Commun., 1979, 29,
769.
10

T. R. Halbert, D. C. Johnston, L. E. McCandlish, A. H. Thompson, J. C. Scanlon, and J. A. Dumesic, 
Physica B+C, 1980, 99, 128.
11 M. Eibschutz andF. DiSalvo, Phys. Rev. Lett., 1976, 36, 104.
12 R. R. Chianelli, J. C. Scanlon, M. S. Whittingham, andF. R. Gamble,Inorg. Chem., 1975,14, 1691.
13 R. R. Gamble, J. H. Osiecki, andF. J. DiSalvo, J. Chem. Phys., 1971, 55, 3525.

G. A  Wiegers, Physica B+C, 1971, 9 9 ,151.
15 R. L. Grim, “Clay Mineralogy”, 1953, McGraw and Hill, London, UK.
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Hagenmuller et a lm i demonstrated the ability o f lamellar oxide halides o f transition 

metals MmOX (X = Cl, Br) to undergo intercalation, that interest in composite materials 

began to really take-off. In an effort to give an idea o f how composite materials are 

formed, we are going to divide them into two groups. In the first instance we will 

consider those materials formed using a soluble host, and later on we will consider 

insoluble hosts. (As this work is concerned with ferrocene type molecules, most o f the 

following will be centred around composite materials containing a metallocene).

1.1.1 Soluble Hosts.

1.1.1.1 Inclusion Compounds.

Inclusion compounds are formed by crystallisation from a solution containing both the 

host and guest species. Common hosts include such structures as urea, thiourea and 

cyclodextrins. Lately the unusual and somewhat exotic, Buckminster fullerene or C6o

18 •  19
molecule, has not only been used as a host , but also as a guest within a y-cyclodextrin . 

Thiourea and urea have similar structures formed o f hexagonal channels with trigonal

symmetry, stacking in a spiral arrangement. Urea has a smaller channel diameter able

20
encapsulate small linear and branched hydrocarbon chains , while thiourea can

16 P. Hagenmuller, J. Rouxel, J. David, A. Colin, and B. Le Neindre, Z. Anorg. Allg. Chem., 1963,323, 
1- 12 .

17 P. Hagenmuller, J. Portier, B. Barbe, and P. Bouclier, Id., 1967, 355, 209.
18

J. Reichenbach, F. Rachdi, I. Lukyanchuk, M. Ribet, G. Zimmer, and M. Mehring, J. Chem. Phys., 
1994,101(6), 4585-4592.
19

K. Kanazawa, H. Nakanishi, Y. Ishizuka, T. Nakamura, andM. Marsumoto, Fullerene Science and
Technology, 1994, 2(2), 189-194.
20

W. Schlenk, Justus Liebigs Ann. Chem., 1949, 565, 204.
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21
accommodate larger bulky molecules such as cyclic hydrocarbons . The first metallocene

22
inclusion was a clathrate formed o f ferrocene and thiourea by Clement et al . in 1974. 

As far as the author is aware, this is the first composite material to contain a metallocene. 

Cyclodextrins are naturally occurring macrocyclic glucose polymers containing a 

minimum of six D(+)-gluco-pyranose units, attached by a -(l,4 ) linkages. These usually 

stack-up side by side to give a channel type structure. Interestingly, it is only recently 

(1984), that a metallocene has been incorporated within a cyclodextrin23.

One o f the main obstacles in characterising a composite material is in trying to verify that 

the guest moiety is actually contained within the host, and not merely a physical mixture 

or chemisorbed to the surface. Techniques such as infra-red and ultra-violet/visible 

spectroscopy can be used to establish an interaction between the host and guest, but are 

not often conclusive. In the case o f most inclusion compounds, the use of single crystal 

x-ray diffraction is critical to unambiguous assignment o f the structure.

In some cases even this does not give the whole story. Guest dynamics and electron 

transfer can lead to complicated and misleading spectra. For instance, the ferrocene-

22 •  24
thiourea clathrate was originally synthesised in 1974 . A Mossbauer study by Gibb in 

1976 indicated that the ferrocene molecules were orientated either parallel or 

perpendicular to the channels (but not tilted) in approximately a 50:50 ratio, possibly 

alternating between the two. In addition, between 141 and 153 K all the ferrocenes 

perpendicular to the channels began to reorient rapidly about the channel axis (A further

W. Schlenk, Justus Liebigs Ann. Chem., 1951, 573, 142.
22

R. Clement, R. Claude, C. Mazieres, J. Chem. Soc., Chem. Commun., 1974, 654-655.
23

A. Harada and S. Takahashi, J. Chem. Soc., Chem. Commun., 1984, 645.
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Mossbauer study refined the phase change temperature to 160 K25). By 200 K 

transformation between the perpendicular and parallel orientations occurs, so that by 295

7
K almost all the ferrocene molecules are averaged on the Mossbauer time-scale (<10 s 

*). In 1978 this was confirmed using single crystal x-ray diffraction26. In 1980, a study 

using !H nuclear magnetic resonance (NMR) showed a proton second moment below 

140 K consistent with a reorientation process about the C5 axis of the ferrocene 

molecules. This decreased steadily until 200 K, where it decreased only marginally, until 

by 295 K it had reached a value consistent with an isotropic distribution o f ferrocene. 

This is broadly consistent with the phase changes at 160 and 200 K observed in the

27 13
Mossbauer experiment . In 1986 a further study using cross polarisation C NMR,

28
confirmed that there were at least two reorientation processes in effect . The first 

involved the onset o f rotation about the C5 axis o f the ferrocene at 160 K, and the 

second process involved a switching between the parallel and perpendicular arrangement 

in the channels over the temperature range 125-294 K. In 1991 yet another study was 

published. In this, 2H NMR was used to show that the ferrocenes did indeed reorientate 

about the C5 axis at 160 K, and more specifically that the molecule switched between

29
three orientations perpendicular to the channels . In addition it appeared that 

interchange between the perpendicular and parallel orientations also began at this 

temperature, and that by 220K, the reorientation was too fast to observe by 2H NMR.

24 T. C. Gibb, J. Phys. C: Solid State Phys., 1976, 9, 2627-2642.
25 M. D. Lowery, R. J. Wittebort, M. Sorai, and D. N. Hendrickson, J. Am. Chem. Soc., 1990,112, 4214-
4225.
26

E. Hough andD. G. Nicholson, J. Chem. Soc., Dalton. Trans., 1978,15-18.
R. Clement, M. Gourdji and L. Guibd, Chem. Phys. Letters, 1980, 72, 466.

28
T. Nalai, T. Terao, F. Imashiro and A. Saika, Chem. Phys. Letters, 1986,132, 554-557.

29
S. J. Heyes, N. J. Clayden, and C. M. Dobson, J. Phys. Chem., 1991, 9 5 ,1547-1554.

8



The preceding 17 year saga demonstrates that guest species dynamics can be a 

complicated field, requiring many techniques to obtain a full picture o f the composite 

material produced.

1.1.2 Insoluble Hosts.

1.1.2.1 3-Dimensional Structures.

Channel structures are porous networks similar to a bath sponge. Common examples 

include zeolites and aluminium phosphates. Insertion o f the guest is normally achieved by 

one o f two methods. The first involves contacting the dehydrated host with a solution of 

the guest, while the second involves contacting the dehydrated host with a liquid or 

gaseous guest.

1.1.2.1.1 Zeolites.

Zeolite chemistry is a large field, so here follows a brief overview for those unfamiliar 

with the basic features o f these materials. Zeolites are 3-dimensional porous networks o f 

AIO4 and Si04 tetrahedra, linked by the sharing o f oxygen atoms. The general 

composition can be written as [(Mn+)x/n(A102)x(Si02)i.x]; where M"+ is a charge 

compensating cation, and x can assume values between 0 and 0.5. They are widespread

30
naturally, although chemical synthesis has been possible since the early 1940’s .

30
R. M. Barrer, “Hydrothermal Chemistry o f Zeolites”, 1972, Academic Press, New York, USA.
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Substitution o f the A1 and Si ions is common, leaving the framework with a net negative 

charge which is counterbalanced by the aforementioned cations. Under favourable 

conditions it is possible to exchange these cations. The zeolites occur in numerous 

structures, some o f which are constituted o f channels (mordenite, zeolite-L, mazzite), 

and others which are comprised o f cage-like voids called super-cages (faujasite).

Many different types o f molecules have been inserted into zeolites since the 1960’s,

31
although the earliest metallocene insertion did not occur until 1986 . It was found that 

the uptake o f ferrocene by the zeolite Na-Y (zeolite Y is a faujasite type zeolite), was 

prevented by water molecules blocking the entrance to the super-cages. However, after 

extensive dehydration o f the zeolite followed by contact o f a pentane solution o f 

ferrocene, 90% of the ferrocene was absorbed within 3 minutes32, An attempt to insert 

ferrocene into the acid zeolite HjgNagY resulted in the exclusive incorporation o f 

ferrocenium ions32. It was discovered that this was concurrent with the loss o f a-cage 

hydroxyl groups. As these groups are homogeneously distributed throughout the zeolite 

lattice, this is a good indication that the ferrocenium molecules are evenly distributed 

throughout, and more importantly within, the zeolite crystals. This was confirmed by 

using isotopically H/D labelled zeolites. The results showed an a-cage Bronsted acid 

site-specific electron transfer, a redox-induced H atom/lattice OH radical production o f 

H2O, and concurrent production of ferrocenium, with three co-ordinate A1 and Si

32
framework radical centres , Thermal treatment o f the resulting material led to a zeolite

31
G. A. Ozin and J. P. Godber, “In Intrazeolite Organometallics: Spectroscopic Probes of Internal versus 

External Confinement of Metal Guests. Excited States and Reactive Intermediates: Photochemistry, 
Photophysics and Electrochemistry", 1986, ACS Symposium Series 307, American Chemical Society, 
Washington DC, USA.
32 G. A. Ozin, J. Godber, J. Phys. Chem., 1989, 93, 878.
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anchored half-sandwich complex . These studies illustrate that metallocenes are well 

suited for anchoring organoiron fragments to specific binding sites in molecular sieve 

supports, by establishing a stable bond to the ring-shaped oxygen co-ordination sites in 

the cage system. This is a very valuable property in the synthesis o f heterogeneous 

catalysts (see section 1.3).

1.1.2.1.2 Aluminium Phosphates.

Aluminium phosphates (AIPO4) are channel structures formed from alternating AIO4 and 

PO4 tetrahedra. The framework is electrically neutral, without ion-exchange properties or 

strong acid sites. The two main structural isotopes are the orthorhombic AIPO4-8 and the 

smaller hexagonal AIPO4-534, although a larger channel version designated VPI-535 is also 

widespread. The VPI-5 structures converts to AIPO4-8 at temperatures greater than 

60°C36.

To date various metallocenes have been incorporated in aluminium phosphates, the first

37
being ferrocene in 1991 .

33 A. Borvomwattanont, K. Moller, T. Bein, J. Phys. Chem., 1989, 93, 4562.
34 S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, andE. M. Flanigen, J. Am. Chem. Soc., 1982,
104, 1146.
35

M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowder, Nature (London), 1988, 698.
36

E. T. C. Vogt and J. W. Richardson, J. Solid State Chem., 1990, 87, 469.
37 T. Lindblad and B. Rebenstorf, J. Chem. Soc. Faraday Trans., 1991, 87(15), 2473-2478.
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1.1.2.2 Characterisation.

Characterisation o f these 3-dimensional networks is extremely difficult. Single crystal x- 

ray diffraction is not possible due to the inability to grow a single crystal. Powder 

diffraction techniques are limited in use as the dimensions o f the host do not usually 

change on insertion, and the inserted molecule may be very dilute or arranged with little 

or no long range order. In order to confirm that the guest has successfully inserted, other 

techniques have to be utilised. These include: (i) size exclusion involving both host and

38 •  39 • • •  •

guest variations ; (ii) size/shape-disceming chemical/catalytic reactions ; (iii) size 

dependant poisoning reactions40; (iv) mid-IR vibrational symmetry/frequency 

perturbations of the guest molecule41; (v) perturbations o f the far IR cation translatory

42 43 * 44
modes by the guest ; (vi) electron paramagnetic resonance (EPR) and NMR 

relaxation effects; (vii) surface and bulk sensitive spectroscopy probes (e.g. x-ray 

photoelectron spectroscopy45 (XPS), tunnelling emission microscopy46 (TEM) and 

XRD47); (viii) in the case of zeolites, spatially resolved intra-zeolite redox titrations 

involving Bronsted acid sites (see section 1.1.2 .1.1, page 10). In the quest for an

38 G. A. Ozin, D. M. Haddleton, and C. J. Gil, J. Phys. Chem., 1989, 93, 6710.
39 T. Huang and . Schwartz, J. Am. Chem. Soc., 1982,104, 5244.
40

N. Herron, G. D. Stucky, and C. A. Tolman, Inorg. Chim. Acta., 1985,100, 135.
41 T. Bein, S. J. McLain, D. R  Corbin, R  D. Farlee, K. Moller, G. D. Stucky, G. Woolery, and D.
Sayers, J. Am. Chem. Soc., 1988,110, 1801.
42

G. A. Ozin and J. P. Godber, “In Intrazeolite Organometallics: Spectroscopic Probes of Internal versus 
External Confinement of Metal Guests. Excited States and Reactive Intermediates: Photochemistry, 
Photophysics and Electrochemistry", 1986, ACS Symposium Series 307, American Chemical Society, 
Washington DC* USA 

M. Koichi, S. Imamura, and J. H. Lunsford, Inorg. Chem., 1984, 23, 3510.
44

E. H. Yonemoto, Y. I. Kim, R  H. Schmehl, J. O. Wallin, B. A. Shoulders, B. R  Richardson, J. F. 
Haw, andT. E. Mallouk, J. Am. Chem. Soc., 1994,116(23), 10557-10563.
45 Y. S. Yong andR. F. Howe, J. Chem. Soc., Faraday Trans., 1986, 82, 2887.
46

G. Meyer, D. Wohrle, M. Mohl, and G. Schultz=Ekloff, Zeolites, 1984, 4, 30.
7 W. V. Cruz, P. C. W. Leung, andK. Seff, J. Am. Chem. Soc., 1978,100, 6997.
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unambiguous characterisation o f the structure, a combination o f two or more o f the 

techniques listed above are used. For instance, in the case o f the ferrocene-AlP04-5 and 

ferrocene-AlP04-8 complexes, a combination o f extended x-ray absorption fine structure 

(EXAFS) analysis and Mossbauer Spectroscopy was used to characterise the 

materials48’49. This revealed that the ferrocene resided within the channel, and that apart 

from the AIPO4-5 at temperatures below 20 K, the ferrocene exhibited a dynamically

49
averaged spectrum . Calcination o f the complexes indicated that the ferrocene had 

decomposed within the channel (none was sublimed), and that the iron had not formed 

clusters, but had been co-ordinated within one of the six-membered oxygen rings 

surrounding the channel48.

1.1.2.3 2-Dimensional (Layered) Compounds.

2-dimensional compounds generally consist o f strong covalently bonded layers in the ab 

plane, which then stack up with weak Van der Waals or Coulombic interactions in the c 

direction. The best known examples of layered structures are probably graphite and clay 

(see section 1.2). In 1975 the first metallocene intercalation into a layered structure was 

reported by Dines50, since when this area o f research has grown into a field in it’s own

51 52 •

right ’ . Layered compounds fall into two main categories, non-swelling and swelling 

hosts.

48
A. Lund, D. G. Nicholson, G. Lamble, andB. Beagley, J. Mater. Chem., 1994, 4(11), 1723-1730.

49
A. Lund, D. G. Nicholson, R. V. Parish, and J. P. Wright, Acta Chemica Scandinavica, 1994, 48, 

738-741.
50

M. B. Dines, Science, 1975,188, 1210.
51 R. P. Clement, W. B. Davies, K. A. Ford, M. L. H. Green, and A  J. Jacobson, Inorg. Chem., 1978, 
77,2754.
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1.1.2.3.1 Non-Swelling hosts.

Non-swelling hosts have a constant distance separating the layers. They do not normally 

have molecules (such as water) present in the interlayer, and so are impervious to 

atmospheric conditions. In addition they are unlikely to separate when placed in solution. 

As an example o f a non-swelling host, let us consider graphite.

To date a number of atomic and molecular species have been inserted into graphite, from 

alkali metals53 to transition metal halides54. The author has found no reports concerning 

the intercalation o f metallocenes. Intercalation into graphite normally involves the use of 

high temperatures and reduced pressure, which is normally accompanied by some sort o f 

redox process. These conditions are not conducive to the innocuous insertion o f 

metallocenes. It is likely that any attempt to insert a metallocene by this route would 

result in the decomposition o f the metallocene, or in serious disruption o f the graphite 

lattice.

Non-swelling lattices have provided many novel materials. For instance, there are 

examples o f semi-conducting layered structures resulting from the introduction o f metals 

into a layered hosts such as LiTiS255. The layered structure FePS3 is a semiconductor. 

However, intercalation with tetraethylammonium, followed by reaction with 

(TTF)3(BF4)2 affords Fe(1.x)PS3(TTF)2, (x «  0.18, TTF = tetrathiafulvalene), which is

52
J. Rouxel, “Layered Materials and Intercalates”, 1980, pp 3-11, North Holland, Amsterdam, 

Netherlands.
53 L. E. Campbell, G. L. Montet, and G. J. Perlow, Phys. Rev. B , 1977, B15, 3318.
54

N. Saito, T. Tominaga, M. Takeda, Y. Ohe, F. Ambe, and H. Sano, Nippon Arsatapu Kaigi 
Hobunshu, 1967, 231.

14



metallic in character . In effect, by introducing an organic molecule into a semi-

57
conducting material, a metal-like material is produced. In addition Gamble et al. have 

intercalated organic amides into tantalum/niobium dichalogenides to give a two 

dimensional superconductor.

5S
O'Hare and co-workers have intercalated cobaltocene into tin dichalogenides (SnSxSe(1_ 

x)), and by a combination o f neutron diffraction and deuterium NMR showed that the 

inserted cobaltocene molecules line up with their principal (C5) axis parallel to the layers. 

They went on to show that the conductivity o f the intercalated material varied, from 

metallic in character, where there was a high sulphur and low selenium ratio, through 

semi-conducting, to super-conducting materials where the sulphur ratio was low and the 

selenium ratio high.

The most cogent information on the characterisation o f these intercalated compounds 

comes from x-ray diffraction. When a molecule is inserted within the layers, an increase 

in the interlayer spacing is observed on the XRD trace. This increase is directly related to 

the size o f the inserted molecule. Therefore, if the inserted molecule is not 

spherical/cubic, then the orientation o f the molecule in the interlayer can be deduced. In 

addition, if  the molecule is distributed homogeneously throughout the solid, then only the 

one spacing will be observed. If  the molecule is present only in certain domains, then a 

peak will be observed for both the inserted and non-inserted regions. Coupled with the

P. C. Klipstein andR. H. Friend, J. Phys. Chem., 1984,17, 2713-2721.
56

L. Lomas, P. Lacroix, J. P. Audiere, andR  Clement, J. Mater. Chem., 1991,1(3), 475-476.
57 F. R. Gamble, F. J. DiSalvo, R  A. Klemm, and T. H. Gaballe, Science, 1970, 568-575.
58 D. O’Hare, Chem. Soc. Rev., 1992, 121-126.
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techniques utilised in the characterisation o f zeolitic type hosts (see section 1.1.2 .2), this 

makes the explicit assignment o f structures considerably less obscure.

1.1.2.3.2 Swelling hosts.

Swelling hosts have a variable interlayer distance. Often they have molecules (such as 

water) present in the interlayer, and so the interlayer gap can vary with different 

atmospheric conditions or solvents. Generally, intercalation involves the contact o f the 

dried host with a solution o f the guest.

The sheer volume o f literature on intercalation compounds with swelling hosts is 

staggering. As an example, Rodriguez-Castellon et al. have intercalated pyridine type

59 •

compounds into tin hydrogenphosphate hydrate . Successful intercalation into the tm 

hydrogenphosphate hydrate, was found to depend on the basicity o f the nitrogen. Hence, 

weak bases such as bipyridines were not intercalated, whereas stronger bases, such as 

pyridines were intercalated. Interestingly, only 20% exchange was achieved with pyridine 

itself. It was suggested that the pyridine was binding to the strong Bronsted acid sites 

within the structure, thus preventing further access to the weaker Lewis acid sites.

Other work has focused upon the intercalation o f organometallic molecules, notably

60
metallocenes. Reports by Palvadeau et al. , show that inclusion o f ferrocene into FeOCl,

E. Rodriguez-Castellon, A. Rodriguez-Garcia, and S. Braque, Inorg. Chem., 1985, 24(8), 1187-1190.
60

P. Palvadeau, L. Coic, J. Rouxel, F. Menil, andL. Foumes, Mat. Res. Bull., 1981,16, 1055-1065.
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leads to partial oxidation o f the ferrocene, which then exhibits an electron delocalised 

structure above 245 K.

Ferrocene, together with the associated alkyl derivatives, have also been inserted into 

vanadylphosphates61. This is basically a redox process. The ferrocene is oxidised and the 

vanadium reduced. This reaction provides the driving force for the intercalation. It was 

found that progressively extending the alkyl chain resulted in less intercalation. This was 

possibly due to the increasing bulkiness o f the side chain approaching some steric limit. 

Investigations o f the intercalation and subsequent oxidation o f ferrocenylalkylammonium 

cations into vanadylphosphates, indicated that the orientation and amount o f oxidation o f 

the inserted molecule, was related to a) the length o f the alkyl chain, and b) the 

interaction between the ammonium group and the vanadium centre62.

O'Hare et al.63 have also studied the intercalation o f aminoferrocenes into layered hosts. 

Using a variety o f techniques, it was demonstrated that when 2 -aminoethylfeirocene was 

intercalated into M o03, the inserted molecules formed a bilayer, with the C5 axis o f the 

rings perpendicular to the layers. However, when inserted into Zr(H P04)2, the 2- 

aminoethylferrocene formed a bilayer with the C5 axis o f the rings parallel to the layers.

Lately there have been reports o f the intercalation o f biferrocene molecules into VOPO4 

and V2O564. The intercalation o f VOPO4 with a biferrocene containing a methylene

61 G. Matsubayashi, S. Ohta, and S. Okanu, Inorg, Chim. Acta, 1991,184, 47-52.
62 S. Okanu and G. Matsubayashi, J. Chem. Soc., Dalton Trans., 1992,2441-2445.
63 S. J. Mason, L. M. Bull, C. P. Grey, S. J. Heyes, andD. O’Hare, J. Mater. Chem., 1992, 2(11), 1189- 
1194.
64

S. Okuno and G-E. Matsubayashi, Chemistry Letters, 1993, 799-802.
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bridge resulted in one o f the ferrocene centres being oxidised to give biferrocenium. 

However, when a biferrocene containing an ethylene bridge was intercalated, both the 

ferrocene centres were oxidised. Both the molecules were thought to lie with their long 

axis parallel to the host lattice sheet. The ethylene bridged complex however, was just 

long enough for the second ferrocene centre to interact with next nearest vanadium 

centre, enabling the second oxidation to occur. In the V2O5 the vanadium centres are 

closer together and both the methylene and ethylene bridged complexes are fully oxidised 

upon intercalation.

It is obvious from these findings, that there is a subtle interplay between host and guest 

which defines the orientation of the included molecule, and also the final properties o f 

the material.

Once again the principal technique in the characterisation of swelling hosts is x-ray 

diffraction. As with the swelling hosts this can provide information as to whether and to 

what extent the molecule has inserted, and also how it is orientated. However, there is a 

limiting factor with swelling lattices. It has been noted by various people, that the 

increase in interlayer distance is not commensurate with the dimensions o f the inserted 

molecule65,66. Typically there is a 0.1-0.2 nm deficit between the observed and predicted 

values. In the case o f molecules which are close to spherical/cubic in shape, this prevents 

definitive conclusions concerning the orientation o f the inserted molecule.

J. W. Johnson, J. Chem. Soc. Chem. Commun., 1980, 263.
66

P. Aldebert and V. Paul-Boncour, Mater. Res. Bull., 1983,18, 1263.
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1.2 Clay

1.2.1 Background

Clays are layered aluminosilicate materials, a little like a 2-dimensional zeolite but 

without the channels. Phyllosilicates, as they are sometimes known, are essentially made 

up o f layers formed by the condensation o f sheets o f linked S i(0 ,0H )4 tetrahedra with 

those o f linked M2-3(OH)6 octahedra, where M is either a divalent or trivalent cation. 

Condensation in a 1:1 ratio gives rise to the two-sheet or dimorphic minerals o f general 

formula M2-3Si20s(0 H)4, o f which kaolinite is the best known example. Condensation in 

a 2:1 ratio gives rise to the three sheet or trimorphic clays o f general formula M2. 

3Si4 0 io(OH)2, o f which mica is probably the best known. Four-sheet or tetramorphic 

minerals also exist, in which the trimorphic units alternate with M(OH)2-3 sheets o f 

octahedrally co-ordinated M2+ or M3+ ions. An example o f this sort o f structure would be 

chlorite. These layers stack up like a pile of paper, although a more realistic analogy 

would be to throw the pile o f paper in the air, and then look at the resulting disordered 

arrangement on the floor.

The Si4+ and /  or M2+/3+ in the layers can be replaced by cations o f similar size, but a 

different, usually lower, valency. This is known as isomorphous substitution or 

replacement. As a result o f isomorphous substitution, the layers in many phyllosilicates 

are negatively charged. This is usually overcome by the sorption o f cations into the 

interlayer spaces, and very occasionally by internal substitution. Under favourable 

conditions these interlayer cations can be exchanged. The amount as well as the site of 

the isomorphous replacement influences the surface and colloidal properties o f the clay

19



(e.g. swelling in water), since they dictate the surface density o f charge and the cation- 

silicate layer interaction. The charge per unit formula, (x), thus becomes an important 

parameter and can be used to classify phyllosilicates (as recommended by the 

Nomenclature Committee o f the Clay Minerals Society67). The resident interlayer cations 

play an important role in determining the interlayer spacing. A high, densely charged 

cation will pull the layers closer together, while a large highly hydrated cation will push 

the layers apart.

1.2.2 Montmorillonite

In our work, we used the Texas montmorillonite Westone-L. Montmorillonite is a 

dioctahedral smectite, a subgroup of the 2:1 type minerals. The basic structure was first 

given by Hofmann, Endell, and Wilm68, although further modifications by Marshall69,

70 71
Maegdefrau and Hofmann , and Hendricks were later incorporated to give the

72
structure generally accepted today . The structure is based on that o f pyrophyllite, 

composed o f a sheet o f edge sharing alumina octahedra, sandwiched between two sheets 

o f comer sharing silica tetrahedra. The silica tetrahedra all point inwards towards the 

alumina octahedra. The octahedral aluminium is frequently replaced by such ions as Mg2+ 

and Fe2+/3+, and somewhat less frequently the tetrahedral silicon is replaced by Al3+. 

Although a little internal compensation may occur, the final result is a layer that carries a

P. G. Nahin, Clays Clay Minerals, 1963,10, 257-271.

68 U. Hofmann, K. Endell, andD. Wilm, Z. Krist., 1933, 86, 340-348.
69 C. E. Marshall, Z. Krist, 1935, 91, 433-449.
70

E. Maegdefrau and U. Hofmann, Z. Krist, 1937, 98, 299-323.
71 S. B. Hendricks, J. Geo!., 1942, 50, 276-290.
72 J. W. Jordan, Clays Clay Minerals., 1963,10, 299-308.
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permanent net negative charge. This is counterbalanced by the sorption of exchangeable 

cations, a fraction (20%) of which are associated with external crystal surfaces, although 

the majority (80%) are situated between the randomly superposed layers within the 

crystal70 (see Figure 1.1)I5.

Figure 1.1 The structure of montmorillonite.

Exchangeable Cations
mH j.0

O O xygen s © H ydroxyls ^ A lu m in iu m , iron, m agnesium  
O and #  Silicon, occasionally alum inium .

Water is readily absorbed into this interlayer space, where it appears to enter as an

15 73 74 •  *

integral number o f layers of molecules . As each successive layer o f water is 

absorbed, the interlayer spacing will increase. This is known as the swelling o f the clay. 

The d(001) spacing in Na+ exchanged montmorillonite varies from 0.95 nm when totally

73 R. W. Mooney, A, G. Keenan andL. A. Wood, J. Am. Chem. Soc., 1952, 74 ,1367-1374.
K. Norrish, Disc. Faraday. Soc., 1954,18, 120-134.
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75
dehydrated, to 1.9 nm when hydrated . I f  montmorillonite exchanged with a small 

monovalent cation such as Na+ is placed in a dilute (<0.03 M) salt solution, extensive 

interlayer expansion is possible, and under optimum conditions the layers can dissociate 

completely. It has been pointed out by Walker et al ™ that there are in fact two main 

types o f interlayer water. The first type (I) constitutes the inner (primary) hydration shell 

around the exchangeable cation. The second type (II), forms the outer co-ordination 

sphere o f the cation; being indirectly linked to the cation and being more mobile, this 

water is more labile than that o f the type I. It is obvious that the size and charge (and 

consequently the polarising power) o f the exchangeable cation is responsible for both the

77
adsorption and character o f the interlayer water .

1.2.3 Bronsted and Lewis Acidity.

Clays contain both Bronsted and Lewis acid sites. The Bronsted acid activity in 

montmorillonite is derived from two sources. The first is from structural hydroxyl groups 

in the clay layer. This is most likely located at the Al(VI)-0-Mg linkage, where Al(VI) is 

the octahedrally co-ordinated aluminium, and magnesium has substituted another 

aluminium in the octahedral layer. The second is from the dissociation o f water

78
molecules in the interlayer, caused by polarisation by the exchangeable cations . This 

proton-donating ability is also dependant on the hydration o f the clay and the interlayer

5 B. K. G. Theng, “The Chemistry o f  Clay-Organic Reactions”, 1974, plO, Adam Hilger, London, UK.
76 G. F. Walker, “The X-Ray Identification and Crystal Structures o f  Clay Minerals”, 1961, p297-324, 
Mineral Soc., London, UK.
77 R. A. Leonard, SoilSci. Soc. Am. Proc., 1970, 34, 339-343.
78

B. K. G. Theng, “The Chemistry o f  Clay-Organic Reactions”, 1974, p261, Adam Hilger, London, 
UK.
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79 • • • •
charge . In the case o f high humidity, the polarisation effect o f the cation is dissipated 

among a large number of water molecules, and the pK  approaches that o f the 

exchangeable ion in aqueous solution. As the water content o f the system decreases, the 

polarising forces act on the few residual water molecules causing an increase in their 

dissociation, and hence, their proton donating properties (i.e. The interlayer shows more 

Bronsted acidity).

Lewis acidity arises from exposed octahedrally co-ordinated aluminium ions at the crystal 

edges80, and also ferric (or other isomorphous) ions within layers81,82,83,84. Because o f the 

nature o f these sites, it is difficult to assign a precise value to the Bronsted or Lewis 

acidity o f the clay.

1.2.4 Inserting Molecules into the Clay Interlayer.

As has been mentioned in the previous section (1.2.2), under favourable conditions it is 

possible to exchange the cations present in the interlayer. It is also possible to absorb 

molecules without displacing these cations. All types o f materials have been inserted into 

clays, from inorganic ions, through organometallic compounds to organic molecules. The 

method o f insertion is essentially the same for all. The material to be inserted is placed in 

solution with the clay, separated, washed and dried.

79 M. M. Mortland and K. V. Raman, Clays Clay Minerals, 1968,16, 393-398.
80

D. H. Solomon, B. C. Loft, and J. D. Swift, Clays Clay Minerals, 1968, 7, 399-408.
81 H. Weil-Malherbe and J. Weis, J. Chem. Soc., 1948,2164-2169.
82

S. B. Hendricks andL. T. Alexander, J. Am. Chem. Soc. Argron., 1940, 32, 455-458.
83 J. B. Page, SoilSci., 1941, 51, 133-140.
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The key phrase in the preceding paragraph is “under favourable conditions”. Just what 

these conditions are is a complex and sometimes unpredictable science. I f  the clay 

contains small highly charged cations, the layers are unlikely to separate when placed in 

suspension. In addition, polar molecules are unlikely to compete effectively with water

85
molecules for ligand positions or sites around this sort o f cation . For this reason, the 

exchange is usually carried out in water, or as polar a solvent as possible, so as to ensure 

the clay platelets have the greatest possible chance to separate. Furthermore, the clay is 

normally exchanged with a large diffuse cation such as Na which can be easily displaced. 

In addition, if the insertion reaction is not to be carried out in water, then the clay is dried 

prior to use.

For example, Traynor et a /.86 intercalated iron, copper, and ruthenium trisbipryridyl 

complexes into a sodium exchanged hectorite using a fourfold excess o f the complex 

salts. They found that prior to washing excess salt could be intersalated within the clay 

interlayer, although this salt was lost upon washing. This suggests that the M(bipy)32+ 

ions are very effective at shielding the anions from the charge o f the silicate layer. The 

molecules lined up with their pseudo threefold axis perpendicular to the silicate sheet. 

The complexes were found to be unusually resistant to oxidation, although whether this 

was due to a modification o f their redox potentials or the reaction was simply kinetically 

slow was unclear.

84
J. M. Bloch, J. Charbonelle, andF. Kayser, C. R. Acad. Sci. (Paris), 1953, 237, 57-59.

85
V. C. Farmer, andM. M. Mortland, J. Chem. Soc., 1966, 344-351.

86
M. F. Traynor, M. M. Mortland, andT. J. Pinnavaia, Clays and Clay Minerals, 1978, 26(5), 318-326.
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1.2.5 Pillared Clays.

Considerable effort has been directed towards permanently propping the layers apart, in 

order to leave a permanently porous network. This can be done by the insertion o f large 

organometallic molecules, or more frequently, by the formation o f metal oxide pillars.

The latter method o f pillaring o f the clay involves the exchange o f the small inorganic 

cations by large oxyhydroxy cations, which upon insertion form pillars in the interlayer, 

permanently holding the layers apart and leading to a three dimensional structure similar

87 •
to a zeolite. This was first achieved by Brindley and Sempels in the late nineteen- 

seventies. However, whereas a zeolite has a set cavity size, almost any cavity size is 

conceivable with clays, by careful manipulation of the pillaring conditions. In addition the 

pillared clays exhibit a higher thermal stability. These pillared clays, apart from their 

potential as molecular sieves, may then have other molecules inserted in them, leading to 

a new range o f materials. For instance, the insertion o f organoiron compounds, followed

by calcination could lead to finely dispersed catalytic iron nodules in a matrix which

88
exhibits shape selectivity .

The insertion o f organometallic molecules as pillars opens up a whole new field. For 

instance, complex metal catalysts such as RhH(CO)x(PPh3)2 (x = 1,2), have been

57
immobilised by intercalation into clays such as montmorillonite . The introduction o f 

large organometallic molecules can impart high interlayer areas and large pore volumes. 

For instance, the intercalation o f N-methyl-(3-triphenylstannyl)pyridinium into

87
G. W. Brindley andR. E. Sempels, Clay Miner., 1977,12, 107.
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89
montmorillonite gives an interlayer spacing of 1.9 nm, with only 40% of the exchange 

sites occupied. By careful manipulation of the tin oxidation state, and further exchange 

with catalytically active molecules, it may be possible to engineer a heterogeneous

90
catalyst with size/shape/stereo-chemical selectivity .

1.2.6 Properties and Uses.

Clays have many uses. One o f the earliest recorded use o f clay, the Fulling process, can 

be traced back to biblical times. In this, an aqueous slurry o f crude clay is used to remove 

the grease from raw wool. Since then, it has been used in diverse situations, from the 

decolourising o f edible oils91 to the clarifying o f alcoholic beverages92. Modem uses o f

93 94
clays are even more diverse, from house bricks and catalysts , to paper and toothpaste.

The potential o f pillared clays to act as catalysts has enjoyed a remarkable amount o f

95 • •
interest since their inception . To date they have been used for various reactions, from

catalytic cracking96’97 and alkylation98, to alcohol dehydration" ’100 and the reduction of

. , 101
mtrogen oxides .

88 G. Ozin and C. Gil, Chem. Rev., 1989, 89, 1749-1764.
89

K. C. Molloy, C. Breen, andK. Quill, Applied Organometallic Chemistry, 1987,1, 21-27.
90
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The use o f clays as catalysts touches on the edge o f this work. Although the use o f clays 

as catalysts is a diverse field in itself, most o f  the reactions make use o f either the Lewis 

or Bronsted acidity o f the clay. In order to demonstrate this, let us consider two types o f 

reaction; polymerisation, and transformation and decomposition.

Polymerisation reactions are o f great industrial importance. For instance, using acid 

washed montmorillonite it is possible to obtain polystyrene in substantial yields102. The 

mechanism is thought to involve the octahedrally co-ordinated aluminium at the crystal 

edges. These Lewis acid sites can receive an electron from an absorbed styrene monomer

103
to produce a radical cation, which then reacts further to produce a dimer . In this case 

the clay is acting as an initiator. This sort o f behaviour has also been utilised in the 

polymerisation o f olefins104, dienes105 and 4-vinylpyridine106. This Lewis acidity can also 

inhibit polymerisation however. Methyl methacrylate normally polymerises by free radical 

initiation, the reactive species being formed by heating. Addition o f montmorillonite 

inhibits this reaction. This is due to  the reactive intermediate being absorbed at the 

mineral edge and losing an electron to form an unreactive cation. In addition to  mineral 

edge reactions, reactions within the interlayer have also been reported. For example, 

certain hydroxymethacrylate monomers form interlayer complexes with

J.-R. Butruille and T. J. Pinnavaia, Catalysis Today, 1992,14, 141-154.
R. Burch and C. I. Warburton, J. Catal, 1986,97, 511.
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101
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107 •
montmorillonite . These compounds spontaneously polymerise if the montmorillonite 

contains a transition metal ion, usually iron, in its lower valency state in the silicate layer. 

In the case o f hydroxyethylmethacrylate, an electron is accepted from the clay to form a 

radical anion. Abstraction of a proton from any handy water molecule gives rise to a free 

radical which then propagates from between the layers outwards.

The ability o f clays to activate transformation and decomposition reactions has long been 

recognised108. Probably the best known example is the cracking o f petroleum109. In the 

presence of an acid clay, a hydride ion can be abstracted to form a carbonium ion. This 

can then undergo various rearrangements and reactions, such as P-splitting, methyl group 

shift, hydride ion abstraction and hydrogen shift. This is known as catalytic cracking. 

There is a second type o f cracking known as thermal cracking. In this, a hydrogen atom 

is lost giving rise to a hydrocarbon radical. This can then crack or undergo radical 

isomerisation, which involves rearrangement to form a more stable cation. Cracking 

occurs at the C-C bond in the (3-position to the carbon lacking a hydrogen atom, forming 

a primary radical and an a-olefin” 0. It is probable that in clays both types o f cracking, 

catalytic and thermal, are in operation at the same time.

107
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1.3 Catalysts

Even the most minimal literature search is likely to encounter some reference to catalysis 

(See section 1.2.6). The vast majority o f chemical products rely at some point on a 

catalyst, whether to reduce operating temperatures (and cost) or to favour a particular 

product. Not surprisingly, the amount o f literature available is enormous, and even a 

most basic overview would overwhelm the scope of this work. Consequently this 

summary concentrates on one particular group o f catalysts, heterogeneous, and one 

particular element, iron.

1.3.1 H eterogeneous Iron Catalysts.

There has been a considerable amount o f work lately, in trying to disperse catalysts on a 

solid support. This has several advantages. Firstly, the ease of separation o f the reactants, 

products and catalyst over homogenous systems, where often the catalyst is abandoned 

after use1"’ 112. Secondly, the possibility o f using a wider range o f solvents since the 

catalyst’s solubility is no longer an issue113’ ” 4. Finally, the ability to work at elevated 

temperatures should overcome any diffusional impediments, and promote reactions with

, . t . . 115.88
high activation energies

111 B. V. Romanovski, “Proc. 5th Int. Symp. on Relations between Homog. Heterog. Catal”, 1986, p343,
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114
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115 R. F. Parton, D. R. C. Huybrechts, Ph. Buskens, and P. A. Jacobs, Stud. Surf. Sci. Catal., 1991, 65, 
47-54.
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Iron is very commonly used in catalysts. It is relatively cheap, widely available, and also 

extremely versatile. Iron catalysts come in many different forms. Metallic iron is the 

catalyst used in the ammonia and Fischer-Tropsch synthesis"6. In other instances it is

117
combined with other metals such as palladium . Iron oxide is used in the high 

temperature carbon monoxide shift conversion, the hydrogenation o f ethylbenzene to

styrene, and the removal o f hydrogen sulfide from reducing gas mixtures"6. Other iron

118
oxides such as FeAs04 are used in reactions such as the dehydration to olefins .

1.3.2 N ecessary Requirements

In order to produce a likely heterogeneous catalyst, a number o f factors need to be 

considered. The first is the oxidation state o f the iron. The Fischer-Tropsch and ammonia 

synthesis require metallic (Fe°), and will not proceed if the catalyst is oxidised. However, 

in the carbon monoxide shift conversion, and the removal o f hydrogen sulfide from 

reducing gas mixtures, the presence o f metallic iron causes unwanted side-reactions. 

Therefore, not only should the iron be in the correct oxidation state, but also reasonably 

resistant to a change in oxidation state"9.

120
The second factor to consider is the presence o f water within the host . The reaction for 

the removal o f hydrogen sulfide requires water to be present in order to prevent

116
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poisoning o f the catalyst. However, periodically the catalyst has to be heated to over

121 • 

250°C in order to remove sulphur deposits . The ability to readily re-hydrate is

therefore necessary. In the carbon monoxide conversion and Fischer-Tropsch synthesis,

the presence of water is not desired. Any water present in these reactions reduces

activity, either by blocking active sites in the former case, or by oxidising the iron surface

in the latter.

122
The third factor to consider is reaction o f the iron species with the support . In the 

removal o f hydrogen sulfide, interaction with the support can prevent reduction to 

metallic iron, which is desirable. In the carbon monoxide conversion, the prevention o f 

formation of metallic iron is again desirable. However, an intermediate state, FeO, is

123 •
sometimes stabilised . This is not as active as the preferred oxide Fe3C>4, and so 

interaction with the support in this case is not so beneficial. In the Fischer-Tropsch 

synthesis, interaction with the support can prevent the reduction to metallic iron, and 

thus the production o f the active catalyst.

The forth factor to consider is the pore volume. This has several consequences. Firstly 

the required reactant molecules must be able to enter the host (undesired molecules 

should preferably be excluded). Secondly, the product molecules must be free to exit the 

host. Thirdly, structures with small pores will tend to absorb and retain more water. This 

is advantageous in reactions such as the removal o f hydrogen sulfide. Structures with

121
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large pores will allow water to escape easily. This is important in reactions such as the

124
carbon monoxide shift and Fischer-Tropsch synthesis.

The final factor to consider is the iron particle size. Large particles have been shown to 

have a shape bounded almost exclusively by (110) surfaces, whereas small particles 

contain a number o f crystallographic planes. The (110) surface is the only surface where 

complete removal o f oxygen occurs. The removal o f oxygen from the other planes,

125
notably the (100), does not occur measurably . Any oxygen present will prevent 

hydrogen or nitrogen adsorption, and thus large particles are preferred in the ammonia 

synthesis. In addition, it has been shown that water is more firmly held by small particles. 

This favours reactions such as the removal o f hydrogen sulfide.

1.3.3 Synthesis of Iron Impregnated Materials

Pertinent to us is the use o f zeolites and related compounds as a solid support for small 

particles o f iron126. There are four main methods o f synthesising such materials. The first 

involves incorporating the iron at the same time as the synthesis o f the support. This is

127 *
done in zeolites by using the iron cation as a template for the zeolite super-cage , and in

128
pillared clays the iron becomes part o f the pillar propping the layers apart . However, 

this method can leave the iron in dense clusters or inaccessible to reactants. The second

124
H. Bohlbro, “An Investigation on the Kinetics o f the Conversion o f Carbon Monoxide by Water 

Vapour over Iron Oxide Based Catalysts”, 1966, GjeUerap, Copenhagen, Denmark.
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method involves cationic exchange into the host. In clays and zeolites, cations within the 

host can be readily exchanged with cations in solution (See sections 1.2 and 1.1.2.1.1).

. 129
Exchange with iron cations can thus give rise to an iron impregnated solid . Again 

however, the number o f iron cations per super-cage is difficult to control, and isolated 

clumps o f iron atoms are possible. The third method involves the adsorption o f a neutral 

gaseous iron complex into the (usually dried) solid host. The resulting material is then 

heated until the iron complex decomposes leaving the iron behind. This has been

130 131 •
attempted veiy successfully with iron carbonyl compounds ’ . The final route is a

variation o f the second method. In this, large organo-metallic molecules are exchanged in 

solution, and then decomposed by heating in the host matrix. Again, much success has 

been attained in this field, such as the introduction o f ferrocene into the zeolite Na-Y33.
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1.4 Biferrocene and Biferrocenium

1.4.1 Background

The background to biferrocene synthesis starts with the discovery o f the

132
cyclopentadienyl anion by Thiele in 1900. Half a century later in 1951, a remarkably 

stable complex incorporating an iron atom sandwiched between two cyclopentadienyl

133
rings, ferrocene, was reported by Kealy and Pauson . The earliest recorded biferrocene 

was, surprisingly perhaps, biferrocene itself. In a communication to the editor of 

Chemistry and Industry in 1959, Goldberg and Mayo described how they had isolated an 

orange crystalline material from the reaction of a mixture o f mono- and di-lithioferrocene

134
with tri-u-hexylbromosilane, which they called “diferrocene” . Since then, biferrocene, 

as it has become known, and its substituted derivatives, have been synthesised by a

135
number o f different methods. Previous routes have included the use o f silylferrocene , 

diferrocenylmercuiy136, ferrocenylboronic acid; coupling reactions o f haloferrocenes

137 138 138
using copper (Ullman ), halogens , and even polyhalogenated alkanes , but all are 

restricted by the many different isomers and oligomers formed, and consequently low 

yields. One o f the more successful reactions was the synthesis of
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133

M. Rosenblum, “Chemistry o f  the Iron Group Metallocene”, 1965, Wiley, New York, New York, 
USA.
134

S. I. Goldberg and D. W. Mayo, Chemistry and Industry, 1959, 671.
135

M. Rausch, M. Vogel, andH. Rosenberg, J. Organic Chem., 1957, 22, 900-908.
136

M. D. Rausch, Inorganic Chemistry, 1962,1(2), 414-417.
137

M. D. Rausch, J. Organic Chem., 1961, 20, 1802-1805.
138

R. F. Kovar, M. D. Rausch, and H. Rosenberg, Organometallic Chemical Synthesis, 1970,1, 173- 
181.

34



139 •
bis[(dimethylamino)methyl]biferrocene by Rockett et a l from dimethylammo- 

ferrocene. Using butyl-lithium to remove a proton, and the amine functionality on the 

ferrocene ring to stabilise the intermediate complex, the addition o f cobalt(II)chloride 

affords a mix of unreacted ferrocene, with the 2, 2”- and 2, 5”- bis[(dimethylamino)- 

methyl]biferrocene in 85% yield overall. This high yield is especially necessary herein, 

since large amounts are required for successful intercalation into the clay.

1.4.2 Properties.

Biferrocenes are not particularly interesting molecules in themselves, but partial 

oxidation to biferrocenium compounds opens a whole new vista. Biferrocenium 

compounds have one Fe(II) and one Fe(III) centre which have the potential to transfer 

an electron between themselves via the cyclopentadienyl rings. This electron transfer is 

similar to that found in many biological processes, such as electron transport 

trains140,141’142. However, in the biological processes many o f the rates are considerably 

slower than they should be. The precise factors influencing the rate o f  this electron 

transfer are still poorly understood. It has been suggested that motion o f one or more

2 4 - i
amino acid moieties at a rate o f 10-10  s in a region near to the heme in cytochrome-c 

modulates the rate o f electron transfer into or out o f the redox site o f this important

143
respiratory electron transport protein . By studying simpler systems like biferrocenium,
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it is possible to determine which factors influence the electron transfer rate, and help to 

unravel the complexity found in nature.

On a more academic front, the discussion into whether slow reorganisation o f the 

immediate solvent structure affects the rate o f outer sphere electron transfer between

144 •
transition metal complexes in solution is ongoing . One o f the problems in studying 

solution chemistry is the uncertainty involved in the precise arrangement and structure of 

the molecules during the experiment. By studying biferrocenium compounds which are 

solids, this uncertainty is removed, as the crystal structure can be determined by such 

techniques as X-ray diffraction.

In a slightly different vein, a large third order non-linear optical response has been 

measured for similar compounds such as 1, 4-bis(ferrocenyl)butadiyne145. This leads to 

the possibility that some biferrocenium compounds may behave in a similar manner.

Following on the back of this work is the possibility that if the factors influencing the 

electron transport process are known, then a compound could be designed that showed 

novel electronic properties, e.g. super-conductivity.
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1.4.3 Valence Electron De-trapping Phenom ena.

The transfer o f an electron between atoms in a molecule above a certain temperature is 

known as valence electron de-trapping (VEDT). The factors determining the rate o f 

electron transfer in biferrocenium compounds have been studied extensively by a few 

select groups since about 1967146,147,148, but most notably by Hendrickson et a/.149. By a 

careful choice of substituent on the biferrocene ring, and systematically changing the 

anion and solvate molecules in the crystal, Hendrickson et al. discovered that the 

temperature o f the onset o f VEDT was extremely sensitive to the immediate environment 

around the biferrocenium cation. For instance, while studying the cation F , r ,5-dibenzyl- 

biferrocenium triiodide, Hendrickson et a l noted that upon changing the anion from PF6 

to SbF6 to I3 , the cation de-trapped at 170 K, 220 K and 270 K, respectively150. Even 

more interesting perhaps, was what was observed in a later study o f the V ,V ”-

149
dibenzylbiferrocenium triiodide compound . Hendrickson et a l discovered that the 

compound was composed o f two distinct crystal structures, one formed o f needle-like 

crystals and the other o f plate-like crystals. The plate-like crystals were valence trapped 

on the Mossbauer time scale. The needle-like crystals on the other hand showed signs of 

de-trapping above 25 K, until by 150 K the sample had completely de-trapped. However, 

grinding o f the needle-like crystals produced a resonance characteristic o f a valence 

trapped species, which persisted even up to and above 300 K. This was ascribed to the

146
M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem, 1967,10, 247.

147
G. C. Allen andN. S. Hush, Prog. Inorg. Chem., 1967, 8, 357.
N. S. Hush, Prog. Inorg. Chem., 1967, 8, 391.

149
R. J. Webb, T.-Y. Dong, G. C. Pierpont, S. R. Boone, R. K. Chadha, and D. N. Hendrickson, J. Am. 

Chem. Soc., 1991,113, 4806-4812.
150

R. J. Webb, S. J. Geib, D. L. Staley, A. L. Rheingold, andD. N. Hendrickson, J. Am. Chem. Soc.,
1990,112, 5031-5042.

37



formation o f defects in the crystal. Defects in the crystal will lead to a more asymmetric 

environment around the cation, which in turn leads to a more asymmetric ground state 

potential. This means that more energy is required to overcome the potential gap to 

enable electron transfer, leaving a valence trapped species to higher temperatures.

It should be noted that three separate examples o f de-trapping have been observed in 

biferrocenium salts.

The first is really more a case o f de-trapped than de-trapping. Dibromo-biferrocenium 

triiodide is de-trapped on the Mossbauer time-scale even down to 4K151. In this case the 

cation is in an extremely symmetric environment, and so only a very small amount of 

energy is required to allow an electron to transfer between the two atoms. As the 

temperature was raised this transfer rate occurred faster and faster. By 4K the rate was 

so fast that only a single valence averaged doublet was seen. Note however that no line 

broadening was evident in the spectra. This indicates that the cause o f the increased 

electron transfer was not internal to the molecule (i.e. the activation barrier to transfer 

one electron), but the result o f some external process.

In the case o f the PF6 and SbF6 salts o f 1’, 1’ ’ ’-dibenzylbiferrocenium, the resonances 

due to the iron(II) and iron(ID) species moved together with increasing temperature, 

until a single resonance was observed150. Again, at no point was any line broadening 

evident. This type of de-trapping is sometimes called “fusion” type de-trapping. In this 

case, it was proposed that the anion changed from being static to dynamic in the

151 T.-Y. Dong, D. N. Hendrickson, C. G. Pierpont, andM. F. Moore, J. Am. Chem. Soc., 1986,108, 
963-971.
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temperature region where valance electron de-trapping became evident. This led to a 

more symmetric environment around the cation, leading to a more symmetric ground 

state potential, allowing electrons to tunnel between the states. As the temperature was 

raised, this transfer became faster, until only the one resonance characteristic o f iron(2.5) 

was seen.

Figure 1.2 Diagram showing VEDT type II.

"Fusion" type Valence Electron Detrapping.
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In the case o f 1’, 1’5 ’-dibenzylbiferrocenium triiodide a third type o f de-trapping was 

observed150. In this example, both the iron(II) and iron(IH) resonances were visible, but a 

third average doublet with parameters consistent with an iron(2.5) species, grows at the 

expense of the two former doublets with increasing temperature. This they claimed was 

due to defects within the crystal. The domains far from the defect would be quite 

symmetric and so de-trap early. The closer to the defect, the more asymmetric the
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environment around the cation, and so more energy was required for the transfer o f an 

electron. Therefore as the temperature was raised, the domains away from the defect 

would de-trap first, followed gradually by those closer to the defects until the whole 

solid had de-trapped. Interestingly, this behaviour was observed by Hendrickson et al

152
when studying the diethylbiferrocenium - SWY-1 montmorillonite clay composite . 

Figure 1.3 Diagram showing de-trapping type ID.

"Domain" type Valence Electron Detrapping
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1.5 Mdssbauer Spectroscopy

1.5.1 Introduction.

Ever since Victorian times, people have used radiation to probe the nature o f matter. 

One o f the first was a German chemist called Robert Bunsen who tried to identify the 

elements by their individual emission spectra.

In 1900 a physicist called Max Planck came up with the idea that radiation, like matter, 

was composed o f discrete packets, which he called “quanta”.

In 1907 Einstein wrote that a solid can be thought of as a large number o f independent 

linear harmonic oscillators, each vibrating at a frequency ©E. This view was somewhat 

simplistic, but a useful model to explain the specific heat o f solids.

In 1912, Debye proposed another model for solids, based on a continuum o f oscillator 

frequencies ranging from 0 up to a maximum ©D. This was again somewhat simplistic, 

but can be used cautiously.

In 1913 another physicist Neils Bohr, using Planck’s idea, proposed a model for the 

hydrogen atom, where the electrons were only allowed a fixed set o f allowed orbits, 

based on their energy. Although later shown to be strictly incorrect, he was on the right 

track.
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In 1924 De Broglie proposed the theory o f wave-particle duality. This idea was further 

expanded in 1927 by Schrodinger. Schrodinger proposed that electrons could be 

described by considering the electron as a wave function, where the square o f the wave 

function represents the probability o f finding the electron at that point. A working model 

for the atom was now in place, which could be used as a fundamental base for the theory 

o f spectroscopy.

In 1939, Lamb set out his theory for the absorption o f neutrons based on zero-phonon

153
events . This is particularly pertinent to the discussion in this section, as it shares the 

same basic theory as the Mossbauer effect.

The principle o f modem spectroscopy is surprisingly simple. A sample is excited using 

radiation. The sample absorbs the radiation, and then re-emits it in all directions. The 

emitted radiation enters a detector, and any difference between the initial and final 

radiation is measured. Considering the theory was in place by 1927, it is perhaps 

surprising that the phenomenon o f resonant absorption followed by recoil free emission

154
by nuclei, was in fact not discovered until 1957 .

1.5.2 Theory.

When an atom emits radiation it experiences recoil, in accordance with the principle o f 

the conservation o f momentum. With most spectroscopic techniques the recoil is too

W. E. Lamb, Jr, Phys. Rev., 1939, 55, 190.
154
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small to have any noticeable effect. With nuclear transitions however, the radiation 

energy is comparable to that required to recoil the atom. This can be represented by a 

simple model using mathematics. Consider an atom in the x plane. Assume that it is in 

the excited state. Its internal energy above the ground (0) state is therefore,

E=E -E^ Equation 1.1

It also has some kinetic energy, VfcmV. The total energy of the nucleus above the 

ground state before emission is E + 14m V2. It then emits a y-ray. Assuming the mass 

hasn’t changed, the velocity o f the atom must have, in accordance with the law of 

conservation o f energy. Therefore, the atom now has an energy ^m fV +v) .

Figure 1.4 Diagram showing atom before and after recoil.

(Atom at rest). (Atom after recoil)

velocity Vx

energy E  + 14mV

momentum m V

V + v
x

Ey + 'Am(V + v): 

m(V+v) + Ej/c

(Ey is the energy o f the y-ray). v is a vector and so can be (and probably is) negative.

Also by the law o f the conversation of energy,

E  + 14m Vx = Ey+ 14m(Vx+ v) E quation 1.2

The difference between E  and Ey is the difference in energy between the excited and 

ground state o f the atom 5E. This may be written as,
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SE = E -E v= Vimv2 + VimvV
I  X

Equation 1.3

It is immediately apparent that the first term is dependent only on the velocity after 

emission, and hence on the amount o f recoil o f the atom ( = E r). This is an inherent 

property o f the nucleus, and cannot be altered. The second term, however, is dependent 

on the velocity o f the atom before emission. This is known as the Doppler-effect energy 

term, for obvious reasons ( = E d).

As the speeds involved are well below the speed of light, traditional mechanics can be 

used to give an idea o f the random thermal energy possessed by the atom, and hence an 

indication of its speed. The random thermal energy o f a perfect gas is VikT, where k is 

the Boltzmann constant and T is the absolute temperature. Therefore,

So, based on the above equation, when the atom emits a y-ray, there will be a 

distribution o f energies, displaced by ER from E, and broadened by twice the geometric 

mean o f the recoil energy and the average thermal energy, which is equal to the Doppler- 

effect energy.

2

kT „  m V
~— ^E k=  ——

This can be rearranged to give;

Equation 1.4
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Now by the same arguments outlined above, it can be assumed that a nucleus absorbing a 

y-ray will also recoil, but by the same amount in the opposite direction. Thus, there will 

be another distribution o f energies broadened by is , and displaced from E in the 

opposite direction by ER. This is shown diagrammatically in Figure 1.5.

Thus, in order for an atom to absorb a y-ray and then re-emit it, there must be an overlap 

o f the two distributions, implying that the Doppler-effect energy must be o f the same 

order o f magnitude as 2ER. This was first achieved by Moon155 in 1950, using an 

ultracentrifuge to accelerate the sample to 1600 mph. Others have repeated the 

experiment using high temperatures or nuclear reactions to increase the Doppler 

broadening and increase the overlap of the distributions. Note that all these people are 

compensating for the recoil energy. This remained the case until 1957 when a young 

physicist named Rudolf Mossbauer appeared.

As far the author is aware, Mossbauer tried to increase the overlap by increasing the 

temperature. By increasing the temperature, the molecules have more energy and vibrate 

faster about their lattice positions, broadening the energy distributions and providing 

increased overlap. What was observed in fact, was a decrease, with a lower recoil free 

fraction at higher temperatures. From here it was recognised that it was not the high 

energy atoms that were causing the spectrum, but those with no energy.

155
P. B. Moon, Proc. Phys. Soc., 1950, 6 3 ,1189.
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Figure 1.5 Diagram of overlapping distributions 2Et? apart and broadened bv En.

Figure 1.5 showing overlapping distributions.

Mossbauer154 reasoned that if the atom was part o f a solid, then it was not the atom that 

would recoil, but the whole lattice. Even in a powder, a crystallite contains around 1015 

atoms, reducing E r  by 1015 and making it negligible. By the same argument, ED can also 

be considered negligible.

Mossbauer dutifully took his findings to his supervisor and told him his theory. His 

supervisor informed him that he was mistaken. Mossbauer persevered and published154 

his findings in a little known journal hoping his supervisor would not notice. Several
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others did however. They repeated his experiments and came to the same conclusions. 

The phenomenon of resonant absorption followed by recoil free emission is thus 

attributed to Mossbauer, and gained him the Nobel prize at a later date.

1.5.2.1 Line-width and Resolution

One of the remarkable things about Mossbauer Spectroscopy is its incredible resolution. 

This is a consequence o f the very narrow band o f energies associated with the y-ray, 

defined by the Heisenberg uncertainty principle. The ground state o f a nuclear level has

an infinite lifetime, and hence no uncertainty in energy. However, an excited state has a

mean life (At) o f a microsecond or less. For a y-ray o f energy AE

AFAt = h Equation 1.5

This means that when the nucleus decays there will be a range o f energies produced with 

a width at half-height (T), where

Y -T i l  At Equation 1.6

and At = ln2 x t .

57 57
For all o f the experiments herein Fe was used. Fe has a half-life t o f 97.7 ns.

-9
Working back, this gives a width at half height Y o f 4.67 x 10 eV. The resolution can be 

written as T/AE. In the case o f the Mossbauer effect, E  and ED are effectively 

eliminated. This indicates that for the 14.4 keV transition in 57Fe, if  thermal broadening

13
could be avoided, a monochromaticity o f 1 part in 10 is theoretically possible. This
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compares very favourably with such techniques as U.V.-visible ( 1 in 101), gas phase

-3 -8
infra-red ( 1 in 10 ) and atomic line spectra ( 1 in 10 ).

1.5.2.2 Recoil Free Fraction

So far it has been seen that as long as the chemical binding energy is considerably greater 

than the free atom recoil energy (E r), then the recoiling mass can be considered to be the 

whole crystal rather than that of the atom.

However, this argument ignores one important factor. The atom is not held rigidly on its 

lattice position, but is constantly vibrating about it. Fortunately, during the time o f the 

nuclear decay, the mean displacement o f the atom averages to zero. Therefore, a transfer 

o f momentum to the atom is not possible, and any transfer o f momentum to the random 

translational motion o f the lattice is negligible. This leaves two processes by which the 

recoil energy could be dispersed. The first is by absorption o f the recoil energy by the 

lattice vibrations, and the second is to emit a y-photon.

In an Einstein solid, the vibrational energy o f the lattice as a whole is quantised, so it can 

only change by discrete amounts, 0, ±hco, ±2 ft ©, etc. If  E r  < tico then either zero or 

tico units o f vibrational energy are transferred. Therefore, if a fraction, f, o f y-photons 

are emitted without transfer o f recoil to lattice vibrations (zero phonon transitions), then 

a fraction (1-f) will transfer one phonon, neglecting all higher multiples o f Tico to a first
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approximation. Lipkin156 has shown that if many emission processes are considered, the 

average energy transferred per event is exactly the ffee-atom recoil energy: or using the 

present model,

ER = (]-/) hco

which can be rearranged to give,

E r
f  = 1  ----  Equation 1.7

hoo

This fraction f, does not transfer any energy to the lattice vibrations, and all the energy is 

released in the y-photon energy (E=Ey).

This is still, however, a very simplistic model. A more realistic model would be to use a 

Debye model, where there are a range o f frequencies that converge at a upper limit of 

fi?D. Fortunately, the lower frequencies which are dealt with here are difficult to excite, 

and similar to the Einstein model, otherwise the Mossbauer effect would not exist.

Thus far it is known that there is a finite probability o f a y-emitter emitting a y-ray 

without recoil or thermal broadening, and that the line-width derives from the 

Heisenberg uncertainty principle. The question remains however, as to how much this 

finite probability actually is.

So far it has been seen that the recoil free fraction or probability o f zero phonon events is 

related to three variables:

156
H. J. Lipkin, Ann. Phys., 1960, 9, 194.
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a) the free atom recoil energy

b) the properties o f the solid lattice

c) the ambient temperature.

So, the smaller the y-ray energy, the firmer the binding o f the lattice, and the lower the 

temperature, the higher the proportion o f zero phonon events (j) there are likely to be.

The forces acting within the nucleus are extremely short range whereas those holding

153
the lattice together are o f much longer range . Hence the nuclear decay is independent 

o f the vibrational state and vice versa. The probability for recoilless emission can be

157
written as ,

-iJx2f -  e Equation 1.8

2 2 x  is a random vibration vector. Therefore x  can be replaced by <x >, the component of

the mean square vibrational amplitude o f the emitting atom in the direction o f the y-ray.

Since k2 = 4n /  7? = Er2 / (Tic), where X is the wavelength of the y-ray,

-  4 n < x >................ , Ey < X  >  „  «
/  = exp ---------2-------  = exp — — j—  Equation 1.9

V a  J \  (nc) y

Looking at equation 1.9 it is seen that the probability o f zero-phonon emission decreases 

exponentially with the square o f the y-ray energy (this confirms what had been deduced 

qualitatively earlier). This indicates an upper limit on the value o f E' that can

157
N. N. Greenwood and T. C. Gibb, “Mossbauer Spectroscopy\ Chapman and Hall, 1971, London, 

United Kingdom.

50



be used in the Mossbauer experiment (the highest transition energy for which a 

measurable Mossbauer effect has been reported is 155 keV for 1880s). Equation 1.9 also 

shows that /  increases exponentially with a decrease in <x2>, which in turn depends on 

the firmness o f the binding o f the lattice, and on the ambient temperature. The 

displacement o f the nucleus must be small with respect to the wavelength o f the y-ray. 

This explains why the Mossbauer effect is not visible in gases and non-viscous liquids. 

However, it does afford a valuable insight into the lattice dynamics o f a solid.

In order to do so, however, a model o f the vibrational modes within the solid is required. 

The simplest model is, as has been mentioned earlier, the Einstein model. This is rather 

too simplistic and will not be mentioned further. A better model, though still limited to a 

monatomic cubic solid, is the Debye model. The Debye model envisions a continuum of 

oscillator frequencies, ranging from zero upwards, to converge at a maximum frequency 

g>d. The frequencies are distributed according to the following formula, N(<y) = constant 

x co. A characteristic temperature called the Debye temperature 0D is defined as hcoD = 

k&D, and the average frequency is

The Debye temperature 0D gives an indication o f the approximate lattice properties, but it 

should be remembered that the values are grossly inadequate for most pure metals, let 

alone chemical compounds.

The Debye model leads to
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* ^ = J L j « cothf * £ l |£to
2 M  J0 6) 2 kT.

which can be written as,

/  = exp
-6 j&  1 (T_ 
kOo 14

\  2] |-&)/r x 
J ex - 1

dx, Equation 1.10

-2 W
This is often written as /  = e’ . The factor W is sometimes loosely called the Debye- 

Waller factor. The Debye-Waller factor was originally derived for X-ray scattering. The 

major difference is that X-ray scattering is fast compared to lattice vibrations, whereas 

the mean lifetime of a Mossbauer nucleus is long. At low temperatures where T «  0D 

equation 1.12 approximates to

/  = exp
- E r [3 r !f
U6d 2 0d2

T « 0. Equation 1.11

and at absolute zero

/  = exp
— 3 E r 

2k (h
T = 0 K Equation 1.12

Finally, at the high temperature limit

/  = exp
- 6 E rT

kfo2
T > 540. Equation 1.13

The mechanism by which an atom can emit a y-ray without recoil is now known. The 

same arguments can be used to explain how an atom absorbs one. In addition, an idea of 

how much o f the sample is likely to experience resonant absorption / recoil free emission 

is also known.
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1.5.2.3 Resonant Absorption Cross Section and Re-absorption

Take this a stage further. In order to perform a Mossbauer experiment, a radioactive 

emitter is used for a source, followed by subsequent recoil free absorption/emission by 

the absorbing material being studied. However, what would happen if  the source material 

reabsorbed the y-ray before it even reached the absorber? Alternatively, what happens if 

the absorber reabsorbs the y-ray after it has emitted it? In order to answer these 

questions it is necessary to consider the resonant absorption cross-section o f the 

material. Common sense dictates that the thicker the material is, the more likely it is to 

reabsorb the y-ray, but this should be examined more closely. The preceding paragraph 

showed that the probability o f recoilless emission is f s. This radiation has a Heisenberg 

width at half-height of Ts, with a distribution of energy in accordance with the Breit-

158
Wigner formula . This in turn shows that the number o f transitions between (Er - E) and 

(Er-E +  dE) follows a Lorentzian distribution defined by

This is described diagrammatically in Figure 1.6. In a similar way, the resonant 

absorption cross section o(E) can be expressed as

where r a is the Heisenberg width at half-height o f the absorption profile and cr0 is the 

effective cross section given by

f i n _______dE
Equation 1.14

Equation 1.15
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„ , / 2 / .  + l V  1 ^
( j o  =

\ 2 1? + 1 / \1 + ccJ
Equation 1.16

where Ie and / g are the nuclear spin quantum numbers of the excited and ground states, 

and a  is the internal conversion coefficient o f the y-ray of wavelength X.

Figure 1.6 Diagram of Lorentzian Line. Evwith Heisenberg-width T.

Figure  1 .6  s h o w i n g  d i s tr ib u t io n  o f  e n e r g i e s  a r o u n d  E

(Note: Not all y transitions produce a physically detectable y-ray; a proportion eject 

electrons from the atomic orbitals, giving X-rays and these internal conversion electrons 

instead. The internal conversion coefficient o f a y-transition is defined as the ratio o f the 

number of conversion electrons to the number o f y-ray photons emitted.). Equation 1.18

158
G. Breit andE. Wigner, Phys. Rev., 1936, 49, 519.
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shows that a high absorption cross section requires that a  has a low value. The resonant 

absorption process will also be in competition with other absorption processes such as 

photoelectric absorption, and it is important that the cross-section for nuclear resonance 

absorption should be higher than that for any other method o f y-ray attenuation. So, it is 

clear that the intensity o f an emission-absorption resonance depends on three main 

properties:

a) nuclear properties: the cross-section o f y-ray absorption and hence 7e, 7g, and a

b) source properties: the recoil free frac tion / and the Heisenberg width 77

c) absorber properties: the recoil free fraction for absorption/, and the Heisenberg width

ra.

Unfortunately, a completely general evaluation o f the problem is impossible, but useful 

results are obtained if it is assumed that both the source and the absorber have the same

159
Heisenberg line-width (7" = 77 = 77). Using this assumption, Margulies and Ehrman 

showed that the decrease in y-transmission through a uniform resonant absorber which 

has a thickness tending towards zero (i.e. ideally thin) can be represented by,

77 1
1(e) = t -  x 7----- j-> \ 2  , /r . j n{i Equation 1.17In  (s -  Er) + (77 / 2)

poo

This was normalised so that J I(s)diS = 1

8 is the energy displacement between the source and absorber distribution maxima, 77 is 

the sum of the emission and absorption half-widths, i.e. 77 = 27" and the distribution is 

still Lorentzian. If  the absorber has an effective thickness t = fanaaaaota, (where f a is the
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recoil free fraction o f the absorber, na is the number o f atoms o f the element concerned 

per cm3 in the absorber, aa is the fractional abundance o f the resonant isotope, oo is the 

absorption cross section, and ta is the thickness o f the absorber in cm), the shape is still 

basically Lorentzian but will be broadened so that

R
—  = 2.00 + 0.27/ 0 < / < 5  Equation 1.18

and

rr
—  = 2.02 + 0.29/ -  0.005/2 4 < / < 10r
By measuring rx for a series o f thickness’, /, it is possible to obtain the true value o f r=
YzTr (/->0).

So, if  the source has a substantial recoil free fraction, and the emitted y-rays pass through 

an absorber made o f the same material, there will be a decrease in the transmission of the 

y-rays on the other side due to their resonant re-absorption and subsequent re-emission 

over a 4n angle. This concludes the basic principles o f the Mossbauer experiment.

159
S. Margulies and J. R. Ehrman, Nuclear Instr. Methods, 1961,12, 131.
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1.5.3 Experimental

1.5.3.1 Source choice

Before starting a Mossbauer experiment a source o f y-rays is required. More importantly, 

a source o f y-rays that can easily be utilised. To start, take another look at the preceding 

section to see what sort o f material is needed for the source.

First o f all consider the energy o f the y-ray. Too little energy and the y-ray will simply be 

absorbed into the surrounding matter. Too much energy, and the recoil free fraction 

(proportional to exp(-£’y2) falls to a very low value, and in addition could disrupt the 

surrounding matrix. This last consideration is also important for any preceding transitions 

o f the excited nucleus. Moreover the absorption cross section Go, which is proportional 

to -Ey2, and so also decreases rapidly as E  increases. Ideally a y-ray with an energy 

between 10 and 100 keV is required.

The first variable was the Heisenberg line-width. This is dependent on the half-life o f  the 

excited state. I f  the half-life o f the excited state is too long, a very narrow band o f 

energies will be produced, which is difficult to record accurately due to vibrations within 

the spectrometer. Alternatively, too short a half-life leads to a very broad range o f 

energies, and a broad spectrum results with little or no fine structure. In practice, the 

optimal half-life lies somewhere between 1 and 100 ns. Still on the subject o f half-life, the 

source should last months if not years in order to maximise consistency and minimise 

handling (unhealthy!). Therefore, the precursor to the excited state should have a long 

half-life.



The second variable considered was the recoil free fraction. In order to maximise the 

number o f y-rays, this should be as high as possible. The recoil free fraction depended on 

three main factors.

1) The free atom recoil energy (E r). This should be as low as possible (usually E r < 6 x 

10'2 eV) in order to minimise the chance o f a transfer o f energy to lattice vibrations.

2) The properties o f the solid lattice. The more rigidly the atom is held, the higher the 

recoil free fraction. This indicates that materials with a high value o f 0d (such as 

metals and oxides) are likely candidates.

3) The ambient temperature. Sources with a high 0D are more likely to have a higher 

proportion o f zero phonon events at room temperature. This eliminates the need to 

cool the source, minimising vibration and calibration complications.

The next variable to consider is the absorption cross section ( go) .  This should be as large 

as possible (generally Go > 0.06 x 10*18 cm2) in order to maximise the number o f y-rays 

being released. In order for this to happen, the internal conversion coefficient a  should 

be as small as possible, so as to favour the production o f a y-photon rather than a 

conversion electron. Also, in theory the y-ray produced should be o f as long a wave

length (>,) as possible, although in practice this is not necessary.

Other factors to consider include;

a) the number of emission lines, as multiple lines lead to complicated spectra (1 is 

preferable),

b) no appreciable quantity o f the ground state isotope in the source material (as this 

increases the source line-width).
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c) Non-resonant scattering should be minimised. This is achieved either by careful choice 

o f the other elements in the host matrix, or, in the case o f a metal foil, by keeping the 

depth that the radioactive material diffuses into the foil as small as possible.

d) Last, but far from least, the ground state isotope should be stable, and in a high 

natural abundance. This reduces the inconvenience (and cost) of having to prepare 

artificially enriched compounds.

In this project a foil o f 57Co in a rhodium matrix was used as the source. This source is 

readily available from commercial outlets at a reasonably low cost (a 30mCi source costs 

just over £1000 at the time of these experiments). 57Co undergoes electron capture with 

99.84% efficiency to give 57Fe26 in an excited state. The half-life o f this process is about 

270 days, ensuring a reasonably long lived source. This then releases the energy in order 

to reach the ground state. 11% o f the energy is lost as a 136.3 keV y-ray, and 85% as a 

121.9 keV y-ray. The 121.9 keV y-ray can then go on to give rise to a 14.4 keV y-ray 

leaving the atom in its ground state. This is outlined in the diagram Figure 1.7. Of 

interest is the 3/2 to % transition which gives rise to the 14.4 keV y-ray. This is within 

the 10-100 keV criterion discussed earlier. The half-life o f 99.3 ns again matches the 

criterion o f a value between 1 and 100 ns, giving rise to a Heisenberg line-width o f 0.192 

mm s'1. The free atom recoil energy for Fe is 1.95 x 10'3 eV (at 300 K), which is well 

below the upper limit o f 6 x 10'2 eV. The absorption cross-section for iron is large with a 

value o f 2.57 x 10'18 cm2 (greater than the 0.06 x 10'18 cm2 criterion). This is particularly 

useful as the internal conversion coefficient a  is fairly large (a  = 8.17), which indicates 

that only 11% of the 3/2 to % transition actually emits a y-ray.
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Figure 1.7 Diagram showing y-decav scheme for 57Co.

'Co
7
2 270 days

Electron Capture (99J84%)

E2 89 ns

Ml 99 J  ns

Fe

The source gives rise to a single emission line preventing complex overlapping spectra. 

The ground state isotope 57Fe has a natural abundance of just over 2% naturally. While 

this is not large, considering the large absorption cross section o f iron, it does not require 

further enrichment artificially. The final reason that this source was used was that the 

compounds being studied contained iron.

1.5.3.2 Sample Preparation.

Sample preparation, in general terms, is extremely easy. The main problem lies in 

deciding how much sample to use. Too little sample and nothing is likely to be observed. 

Too much, and the spectrum will be broad, reducing both resolution and precision. In 

addition the transmission o f the y-rays also diminishes as a result o f non-resonant 

scattering. It would appear that an optimum thickness is achievable, where resonance and

159
transmission are maximised, and the line-width minimised. Margulies and Ehrman
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showed that for a uniform resonant absorber and an ideally thin source, the transmission 

at the resonance maximum can be written as

7X0) = e ^ U l  -  fs) + fsQ 2 ~Jo(~ita)
4 r . _ 1

Equation 1.19

160
where Jo is the zero order Bessel function and 4  -f/iaPaObt ’a. They went on to show 

that the absorption o f the final transmitted radiation can be represented as 

A7o = e -^ -r (0 )

= e -M ys 1 -  e lTa Jo\ iTa Equation 1.20

If  a plot o f AT(0) is plotted versus 4  (where //a = 0.067, f s = 0.7, aa = 0.0219, <Jo = 2.57 x 

10'18 cm2), using values for f a between 0 and 1.0, it quickly becomes apparent that the 

optimum value for ATifS) is about 10 mg cm'2 o f total iron. This is the value that was 

used in calculating the amount o f material to be used in all the experiments.

There was one other consideration in the preparation o f the sample. If  the sample was 

not ground thoroughly prior to use, a reduction in transmission, broadened half-widths, 

and orientation effects disrupted the spectrum. This can be demonstrated mathematically 

to be linked to particle size161.

160

161

Jo(ix) = 1 + f -  2 
^2

+
l 2.22 

V J

+ I2 2 2 32

v J

Equation 1.20b

Cotton, Wilkinson and Gaus, “Basic Inorganic Chemistry”, pp44,reference 53,1987, Wiley, New 
York, U. S. A.
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1.5.3.3 Equipment.

1.5.3.3.1 Transducers

The chances o f the source and absorber sharing the same nuclear energy gap is 

somewhat small. In addition, to observe hyperfine effects a range o f energies is required. 

A means o f varying the energy o f the source to match that o f the absorber is therefore 

needed. This is accomplished, somewhat ingeniously, by Doppler shifting the y-rays of 

the source material. This requires a repetitive motion o f small amplitude, which must be 

achieved with high reproducibility. A number o f highly innovative and imaginative 

solutions have been found to this problem.

The earliest experiments involved the use o f constant velocity drives. Sources have been 

mounted on numerous devices, from lathes and pendulums, to cams and spinning discs. 

One set-up even involved mounting the source on the piston o f a V8 engine! However, 

the need to almost constantly supervise these instruments in order to change the velocity 

settings proved the downfall o f most o f these instruments.

It was de Bennedetti157 who pioneered the use o f small transistorised, multi-channel 

analysers for Mossbauer Spectroscopy. The source is mounted on an electromechanical 

drive system (similar to a hi-fi loud speaker), which is fed a reference voltage wave-form 

from a servo-amplifier.
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The electro-mechanical device incorporates two coils. One is fed the signal from the 

servo-amplifier, the other produces a signal proportional to the velocity o f the drive, 

which is fed back into the servo-amplifier. The servo-amplifier compares the return signal 

with the original reference signal, and then minimises any discrepancies between them. 

The use o f these electromechanical devices opened a new range o f possibilities. By 

feeding different wave-forms to the transducer, different motions could be produced. In 

particular, the use o f a triangular wave-form produced a constant acceleration o f the 

source. This is the means by which most experiments are carried out to this day.

1.5.3.3.2 Counters

The next problem lies in detecting the y-rays. There are four main types o f counter.

For high energy y-rays lithium-drifted germanium detectors provide an exceptionally high 

resolution spectrum. However, sensitivity is low, and resolution falls away quickly at 

lower energies. In addition they need to be kept at liquid nitrogen temperatures.

More frequently, scintillation-crystal type detectors such as Nal/Tl are often utilised. Yet 

again however, resolution falls away rapidly with the lower energy y-rays.
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A more efficient method is the use o f a resonance scintillation counter162. A standard 13- 

detection plastic scintillator is doped with the resonant absorber. This is insensitive to the 

non-resonant background o f primary y- and X-photons, but detects instead the secondary 

conversion electrons after y-ray capture by the resonant nuclei. The main problem here is 

the necessity o f preparing a new counter for each experiment.

In order to detect the lower energy y-rays, a gas filled proportional counter is more 

commonly used. Although the efficiency and reliability are fairly low, the relatively high 

resolution at low energies, and its versatility have made it very popular. There are a 

number o f theories concerning the design o f proportional counters, although the most 

successful work appears to have been achieved on a trial and error basis.

The counters however have the same basic principle. Below is a diagram o f the counter 

used in these experiments.

Figure 1.8 Diagram of a typical Proportional Counter.

Insulating Polythene Spacer. Argon / Methane Gas (90:10). ■Lead casing. 

Aluminium Case.

Signal 
to Pre-amp ■Insulating Polythene 

spacer.

Stainless Steel Anode Wire.

162
L. Levy, L. Mitrani, and S. Ormandjiev, Nuclear Instr. Methods, 1964,31, 233.
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The counter is basically a hollow cylinder with a central anode wire, and a window 

transparent to y-rays at one end. The cylinder is filled with an ionising gas to a little

57
above atmospheric pressure. In order to detect the 14.4 keV y-ray produced by Fe, an 

argon /  methane (90:10) mix is used. The y- /  X-rays enter the chamber and ionise the 

argon gas. The electrons produced accelerate away from the cathode tube ionising more 

gas, and releasing more electrons producing an avalanche effect. This reaches the anode 

wire (0 V) producing a pulse. The methane mops up any extra electrons generated, 

providing a sharp pulse. This is amplified by a pre-amp and then further amplified and 

integrated by a pulse amplifier. In some counters the anode wire is held at a positive 

voltage while the outer casing acts as the cathode. This has the disadvantage o f needing 

to de-couple the signal before it can be used. This is done by feeding the pre-amp with 

the required bias voltage.

1.5.3.3.3 Cryogenics

In order to maximise the number o f zero phonon emissions (the recoil free fraction), it is 

normal to cool the sample. In addition, the dependence o f the spectra on temperature can 

frequently provide interesting information. Somewhat less frequently, the source is also

57 57
cooled. This requires cryogenic equipment. Fortunately with Fe, the source Co is 

active enough at room temperature and only the sample needs to be cooled. Many 

commercial cryostats are available for this. There are two considerations however, which 

are peculiar to Mossbauer spectroscopy. The first o f these, is the need for the path
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between the source, absorber and detector to be transparent to the y-rays. This is 

accomplished by the use o f purified beryllium, aluminium or aluminised mylar. The 

second requisite, is the need to eliminate all vibration from the system. Any vibration will 

cause a Doppler broadening o f the spectrum. This is achieved by a variety o f methods, 

such as rubber mats, or the isolation o f the sample from any moving parts. There are two 

main types o f cryostat, both o f which were used during the course o f this work.

The simplest, the liquid cryostat, is outlined in Figure 1.9. This is basically a rather 

extrovert vacuum flask. The sample is placed in the central chamber and surrounded with 

the exchange gas. Since the present project involved working at liquid nitrogen 

temperatures, nitrogen gas was used. Tightly coiled around the bottom o f the sample 

chamber is the heat exchanger. Here nitrogen drawn from the reservoir tank boils off 

cooling the chamber before it exits. The sample is thus at around 77 K, the boiling point 

o f liquid nitrogen. In order to study compounds at temperatures above this, a heating coil 

is wrapped around the heat exchanger. A platinum thermocouple gives the temperature 

reading to within ±2 K. The signal from the thermocouple is fed into a temperature 

controller, allowing it to adjust the power the heater requires to keep the sample at the 

desired temperature. There are no moving parts so there is no vibration to worry about. 

The only draw back in this design is the need to top up the nitrogen reservoir every other 

day.

66



Figure 1.9 Diagram of Liquid Cryostat.
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A rather more sophisticated design is the displex cryostat system. This has the advantage 

o f infrequent recharging and low maintenance. The overall principle is somewhat similar
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to the domestic refrigerator. Gas is compressed, then allowed to expand adiabatically 

causing cooling. The gas is then recycled and the process starts again.

Figure 1.10 Schematic Diagram of the Expander Module for the Displex.
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In this case an Air Products Compressor (1R02W) and Expander (DE202) were used, 

coupled with an Air Products temperature controller (DE3700). The compressor is o f a 

fairly standard design and so will not be mentioned further. Suffice to say the compressor 

is charged and then switched on. The compressed gas is then pumped to the expander 

module.

The operation o f the expander is worthy o f note however. Once the compressed gas 

reaches the expander module, the inlet valve opens. The gas enters the first chamber via 

the cold regenerators, expanding and cooling. The inlet valve closes. Within this chamber 

is a piston type rod. As the gas enters, the rod is driven upwards forcing gas at the heat 

stations to expand and cool further. The exhaust valve now opens, and the rod drives 

back downwards. The gas expands once more cooling the regenerators ready for the new 

gas coming in. The gas exits back to the compressor and the process starts again. In this 

way, the gas is effectively cooled in three stages during one cycle, allowing temperatures 

as low as 6-10 K to be achieved.

Although efficient, this method produces a problem. The action o f the rod driving up and 

down causes considerable vibration in the system. In order to overcome this, a second 

casing is placed around the cold finger, almost, but not quite touching. It is to the bottom 

o f this casing that the sample is attached. The expander unit and sample casing are then 

mounted separately, joined only by a thin pair o f neoprene latex bellows. Helium 

exchange gas is then introduced into the gap between the sample casing and the cold 

finger. Although this reduces efficiency by 3-4 K, it almost completely eliminates the 

vibration caused by the expander module.



Surrounding the sample casing is a radiation shield, and finally the vacuum shroud. The 

sample has to be kept under vacuum in order to prevent heat transfer from the outside 

world.

Figure 1.11 The Air Products Displex Cryostat.
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X I  V  i J C r u p  U 1  £ * ) .

(Removed during Operation).

Vibration Isolation 
Bellows.

Vacuum Pumpout Port,
% Vacuum Shroud 
Mounting Flange.

Gas TransferHeat 
Exchangers.
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Again a small note is needed here. The vacuum is provided by a diffusion pump complete 

with roughing line for fast change-over o f samples. The pumps are mounted on rubber 

mats to prevent vibration. Now, at temperatures below 50 K air will start to condense on 

the sample casing, causing it to act as a cryo-pump. In the normal order o f events, it
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would be necessary to isolate the chamber from the pumps below 50 K, to prevent oil 

being sucked into the chamber. Fortunately, in this particular case the vacuum hose is so 

long and thin, it causes a considerable pressure gradient between the chamber and the 

pump, and so this is no longer necessary.

Wrapped around the bottom half o f the sample casing is a heating element, with a gold / 

chromium alloy thermocouple attached to the base. These are connected to a 

temperature controller which keeps the sample to within ± 2K of the desired 

temperature. It is thus possible to study the sample at temperatures between 12 and 

350K.

1.5.3.4 Acquiring a Spectrum.

These days almost all data collection is done by computer. In this case a small PC (286) 

is equipped with an analogue to digital converter, and multi-channel analysing /  scaling 

software (ACE™-MCS by EG&G-Ortec). The signal from the amplifier163 is split into 

two, one half o f which passes through a delay amplifier164, and the other half o f which 

passes through a single channel analyser165 (SCA). This can occur either internally or 

externally to the computer.

163
The signal from the counter initially passes through an Ortec 109PC pre-amplifier and then an Ortec 

579A amplifier.
164

Ortec 427A.
165

Ortec 406A
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Figure 1.12 Schematic Diagram of the Mossbauer Laboratory.

1) Drive Unit.
2) Transducer.
3) Source.
4) Absorber.

5) Cryostat.
6) Proportional Counter.
7) High Tension Supply.
8) Pre-amp.

9) Amplifier.
10) Delay Amp.

11) Single Channel Analyser.
12) Analogue to Digital Converter?
13) Coimcidence Circuit.
14) Most Significant Bit.

'Personal Computer.

With the computer in multi-channel analysing mode a continuum o f energies is displayed. 

The desired energy is then selected by means o f the single channel analyser. The 

computer is then placed in multi-channel scaling mode, and a count is recorded when a 

pulse from the SCA and reference signal coincide. The advantage o f this set-up is that 

the computer can also provide the signal sent to the drive unit166, in order to control the 

movement o f the transducer167. This is all the equipment necessary to carry out a 

Mossbauer experiment. A typical arrangement (and in fact the one used), is outlined in 

Figure 1.12.

Elscint MDR-N-5167
Elscint MVT4
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Figure 1.13 Diagram of triangle wave and how this is related to energy.

Triangle wave and how this  re lates  to the  energy  spec tru m .

+  E

T \

As has been mentioned earlier, most spectrometers these days utilise constant 

acceleration drives. In order to achieve this a triangular wave-form, either from a signal 

generator or the PC, is fed to the transducer. In this way, a range o f energies are swept 

from Ey-SE to Ey+8E, and then back to Ey-8E. I f  an absorber is placed between the 

source and detector, a lower count will be recorded at the energy which matches that of 

the nuclear energy gap o f the absorber (see Figure 1.13). However, a close examination 

o f Figure 1.13, shows that two spectra are in fact recorded, one on the forward sweep 

and then a mirror image spectrum on the reverse sweep. In order to overcome this, the 

finished spectrum is folded on itself using a simple minimisation routine. In this, a 

computer attempts to fold the spectrum ten channels either side o f the middle channel.
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The sum of the squared differences are then calculated, and the minimum value is 

considered to be the optimum position to fold the spectrum. This gives the completed 

Mossbauer spectrum.

1.5.3.4.1 Isomer Shift.

The position o f the peak relative to 0 (Ey), is the amount by which the nuclear energy 

gap o f the absorber nucleus differs from that o f the source material. A smaller energy gap 

will show a resonance at a negative value, while a larger energy gap will show a 

resonance at a positive value. The difference in energy between the source and absorber 

nuclear energy gap is known as the chemical, or isomer shift (8).

This arises because the ‘s’ electrons have a finite probability o f residing at the nucleus. 

The value o f the isomer shift can be calculated mathematically by considering the 

Coulombic interaction between the nucleus and the ‘s’ electrons.

The nucleus is assumed to be a point charge, with the ‘s’ electron density given by Dirac 

theory. When simplified, this gives rise to an expression which is the product o f a nuclear 

term and a chemical term. The nuclear term is constant for a given transition, so the 

equation can be reduced to

8  = constant x {| ̂ (0 )a |2 - |  ̂ (0)b |2 } Equation 1.21
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A and B refer to the absorber and source respectively. | ̂ s(0)|2 refers to the ‘s’ electron 

density at the nucleus. This is sensitive to ‘p’, £d’, and ‘f  electron screening effects, and 

also to covalency and bond formation.

Figure 1.14 Diagram Showing spectrum with isomer shift (5).

- V O S  + v

So far only the effect o f the chemical environment o f the nucleus on the isomer shift (S) 

has been discussed. However, the isomer shift is also affected by two other minor 

factors, temperature and pressure. Since all the experiments in this work were done at 

constant pressure it shall not be considered further. However, most o f the work was 

carried out at different temperatures and so this will have to be considered. The existence 

o f a relativistic temperature-dependant contribution to the isomer shift was pointed out
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independently by both Pound and Rebka168, and also by Josephson169. As has been

12
mentioned, the atom is vibrating about its lattice position at a rate o f 10 per second.

The lifetime o f the excited state in the Mossbauer experiment is of the order o f 10‘7 of a 

second, so the average displacement is zero. However, there is a term in the Doppler 

shift which depends on v2, so that the mean value <v>2 is non-zero. The relativistic

170
equation for the Doppler effect on an emitted photon gives the observed frequency /  

for a closing velocity v as

Hence

'  v2 
1— T  V c .

f/  = v I 1 — — J 1 + t ~t  Equation 1.22
v
c

where v is the frequency for a stationary system. The first-order term in velocity is a 

function o f the velocity o f the atom vibrating about its lattice site and will average to 

zero. The second-order term depends on v2 however, and so is independent o f direction 

leading to a non-zero value. This is commonly known as the Second Order Doppler 

Shift, and for a Mossbauer resonance can be written as

<v2>'
f  = v 1 +

2c2

The shift in the Mossbauer line is therefore given by

168
R. V. Pound and G. A  Rebka, Jr, Phys. Rev. Letters, 1960, 4, 274.

169
B. D. Josephson, Phys. Rev. Letters, 1960, 4, 341.

170
W. G. V. Rosser, ''An Introduction to the Theory o f Relativity', Butterworths, 1964, 114.

76



SEy Sv <v2> .
 = —  = - — r- Equation 1.23
Ey V 2c H

The kinetic energy per mole o f the solid, 1AM<v2>, can be related to the total energy of

the solid per unit mass, U, Q/2M<vl> = V2MU) so that

Sv__ U__ 
v ~ ~ 2 c 2

It is useful to consider the second order Doppler shift (SODS) in terms o f lattice

171 •
dynamics. The following is a simplification o f a treatment used by Hazony . A harmonic 

approximation is used, and the average energy associated with each atom is

—M(v2) = + ^hcoj Equation 1.24

where tij = exp( l r . 1 - 1
and cq is the oscillation frequency. I f  this is summed over

all possible frequencies and modes o f vibration

Sv
v 2MclJ-ri \ 22 ]  Aj2hm — + Wj] Equation 1.25

where the A f terms are weighting factors such that 2 ]  A? = 1. M is the atomic mass o f
j

the Mossbauer nuclide. The classical high temperature limit o f this expression is 

Sv 3 RT
v 2 Me2

Equation 1.26

From the point o f view o f inter-comparison o f chemical shifts, it is useful to consider the 

general equation as J -» 0. There is a zero-point motion term given by

1 1 Y. Hazony, J. Chem. Phys., 1966, 45, 2664.
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greater than I  = Vi then a non-symmetric charge distribution results. Hence it follows that 

if either or both o f the nuclear states have a quadrupole moment, this will interact with 

electric field gradients in the vicinity. The magnitude o f the charge deformation is 

described as the nuclear quadrupole moment, Q, and is given by

eQ = \ p r 2 (3 cos2 6 -  l)d r  Equation 1.30

where e is the charge o f the proton, p  is the charge density in a volume element dr, 

which is at a distance r from the centre o f the nucleus and making an included angle 6 to 

the nuclear spin quantisation axis. The sign o f Q depends on the shape o f the 

deformation. A negative quadrupole moment indicates the nucleus is oblate or flattened 

along the spin axis, whereas a positive moment is prolate or elongated. In a chemically 

bonded atom, the electric charge distribution is rarely spherically symmetric, and so the 

electric field gradient at the nucleus is defined as the tensor

E h = -Vij = -
r d 1V

|\Xi,Xj = x,y,z)  where Vis the electrostatic potential.
\ckiXj,

Figure 1.15 Diagram of Flat (Oblate) and Prolate (Elongated) Nucleus.

Oblate Prolate

It is customary to define the axis system of the resonant atom such that Vzz =  eq  is the 

maximum value o f the field gradient. The orientation o f the nuclear axis with respect to
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Sv o 3 1 ?
—  = - — -— r \ A j  hcoi Equation 1.27
v 4 Me j

The magnitude o f the zero-point motion will be dependent on the exact mode o f 

vibration in the crystal, so that SvQ/v will not in general be the same for all compounds.

I f  the Debye model is adopted, can have any frequency between 0 and coq with a

3
probability o f 9Ngĵ Icoq, the average value o f tic% being given by -̂ Ticod . Hence

Svo 9 Ticod

v 16 Me2

or using the Debye temperature defined as Ticod =  k O o

Svo 9 kOa
v 16 Me2

Equation 1.28

Equation 1.29

The zero-point motion term is proportional to the Debye temperature o f the solid if this 

model is valid. Unfortunately, in the compounds studied here, the vibrational modes o f 

the compounds are extremely complex and this theory falls apart rapidly. The final values 

obtained are wildly inaccurate, although a comparison of the relative magnitude can be 

made between similar compounds.

1.5.3.4.2 Quadrupole Splitting.

The vast majority o f Mossbauer nuclei have a non-zero-spin, and o f those, most have a 

half-integral spin. In addition, the spin of the excited state is invariably different to that o f 

the ground state (selection rules in fact demand it). If  the nucleus has a spin number
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the principal axis, r, is quantised. There is an interaction energy between Q and eq which 

is different for each possible orientation o f the nucleus.

The Laplace equation requires that the electric field gradient be a traceless tensor, i.e. the 

sum o f the second derivatives o f the electrostatic potential vanish

Consequently only two independent parameters are needed to specify the electric field 

gradient completely, and the two which are usually chosen are Vzz and an asymmetry 

parameter 77 defined as

Using the convention that \VZZ\ >\Vyy\>\Vxx\ ensures that 0 < tj< 1. The simplest case to 

consider is when the electric field gradient has axial symmetry, i.e. Vxx=Vyy and 77 = 0 . 

The energy levels are then given directly by

Instead o f a single energy level there is now a series o f Kramers’ doublets identified by 

the \IZ\ quantum number. For /  = V2 there is only one level, but for /  = 3/2 there are two 

distinct eigenvalues o f energy +(e2qQ/4) (for Iz = ±3/2) and -(e2qQ/4) (for Iz =  ±  1/2). In 

general, a Mossbauer transition occurs between two nuclear levels, each o f which may 

have a nuclear spin and quadrupole moment. This means that both the ground-state and 

excited-state levels may show a quadrupole interaction. Because the energy separations 

due to these interactions are so small, all the levels connected with a given nuclear spin 

are equally populated at temperatures above 1 K. A change in the Iz quantum number is

Vzz + VXX + Vyy -  0 Equation 1.31

Equation 1.32

Equation 1.33
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allowed during the y-ray transition, where [ ( / z) e- ( / r ) g ]  = m is 0  or ± 1 . This means that for 

57Fe with /  = 3 / 2 ,  two transitions are possible arising from the {/ = 3 / 2  | ± 3 / 2  >} sub- 

levels to the unsplit {/ = 14 ± lA >} level. The resultant spectrum consists o f two lines of 

equal intensity, centred around the isomer shift (which is equal to the energy o f the y-ray 

transition without a quadrupole interaction), at a distance o f \e2qQ/2\ apart. A lack o f 

axial symmetry in the electric field gradient introduces matrix elements which are off 

diagonal with [ ( / r) e - ( / z ) g]  = ± 2 .  For a /=  3 / 2  nucleus the eigenvalues become

i

Eq =  ■ - * &  ~ [ 3 / , 2 - 1(1  +  l ) ] ( l  +  i - J 2 Equation 1.34

The magnitude o f the quadrupole interaction is a product o f two factors, eQ  is a nuclear 

constant for the resonant isotope, while eq is a function of the chemical environment.

Figure 1.16 Diagram Showing Splitting of Energy Levels and Spectrum.
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It should be noted that the electric field gradient, q, is the negative second derivative o f 

the potential at the nucleus and o f all the surrounding charge. It thus contains
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contributions from both the valence electrons and the surrounding chemical environment. 

In general the valence part is the major contribution to the electric field gradient, unless 

the ion has a high intrinsic symmetry, such as high spin Fe3+ (d5). In such cases, the 

charge and distribution o f the counter-ions is the major contributor.

1.5.3.4.3 Hyperfine Splitting.

Although the magnetic hyperfine interaction does not really concern us, it does deserve a 

brief mention. An electric field gradient at the nucleus leads to a partial loss o f 

degeneracy o f the nuclear energy levels, which gives rise to a nuclear quadrupole 

interaction. A magnetic field at the nucleus leads to a complete loss o f degeneracy o f the

172
nuclear levels, and produces the nuclear Zeeman effect . The magnetic field can be 

either within the atom, or within the crystal, or as the result o f an externally applied field. 

A general expression would be

H  = H o-DM+4/37tM + H s + Hl + Hd Equation 1.35

Ho refers to the external magnetic field. -DM is the demagnetising field and 4/3tM  is the 

Lorentz field (the coefficient being strictly applicable to cubic symmetry), but both are 

small. Hs arises as a result o f an interaction o f the nucleus with an imbalance in the V -  

electron spin density at the nucleus. This is sometimes referred to as the Fermi contact 

term. It may arise from intrinsic impairing o f actual V-electrons, or as a result o f 

polarisation effects on V-electrons. Hl arises if the orbital magnetic moment o f the 

parent atom is non-zero. The final term, HD, arises from the dipolar interaction o f the

172
A. Abragam, ‘The principles o f  Nuclear Magnetism’, 1961, Clarendon Press, Oxford, UK.
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nucleus with the spin moment o f the atom. The sum of Hs, HL and Hd is usually known 

as the internal magnetic field, and in most cases is the dominant contribution.

Figure 1.17 Diagram showing H, and H + O effect on nuclear levels and spectrum.

Splitting of Energy Levels Spectrum Recorded

"7TC
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At first glance it would appear that any compound containing unpaired electrons will 

show a magnetic hyperfine effect. However, the magnetic field contains a directional 

element, so if the spins that generate the magnetic field change direction (electronic spin 

relaxation) faster than the time o f the Mossbauer experiment (10 s), the magnetic field 

averages to zero and nothing is seen. If  the relaxation time is comparable to the time o f 

the Mossbauer experiment, then a complex overlapping spectrum will be seen. If  

however the relaxation is slower than the time o f the Mossbauer experiment, then a 

magnetic hyperfine interaction will be seen. For a /  = 3/2 nucleus, this results in a six line 

spectrum, equally spaced around the isomer shift position. If  a quadrupolar moment is 

present along with a magnetic moment at the nucleus, the nuclear energy levels are 

further separated by the requisite amount. This results in an asymmetry o f  the six line 

spectrum (see Figure 1.17).
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1.5.3.4.4 Calibration of the Spectrum.

The next task is to calibrate the spectrum. This usually involves the use o f a reference 

compound whose spectrum is well known. This was achieved by the use o f  enriched iron 

foil for high energy range spectra, and sodium nitroprusside in the case o f low energy 

range spectra. Sodium nitroprusside has a single quadrupole spectrum which shows a 

constant splitting under normal laboratory conditions (A=1.705 mm/s). Using this it is 

possible to work out how many channels there are per mm/s. This value can then be used 

to calibrate the unknown spectrum. A similar process is used with the enriched a-iron 

foil. The number of channels between lines 1 and 6, 2 and 5, and 3 and 4, are compared

173
to the literature values o f 5.312 mm/s, 3.076 mm/s, and 0.841 mm/s respectively. The 

results are then averaged with a statistical weighting o f 2:2:1 given to the differences 

between lines 1 and 6, 2 and 5, and 3 and 4, to give the final calibration constant. In this 

particular case an initial estimate of the line positions is fed into a computer program 

which automatically calculates the best fit based on a Lorentzian line, and then calculates 

the calibration constant. It should be noted that any values for the isomer shift obtained 

from spectra calibrated in this way, are by definition quoted as relative to the source 

used. In this case this is 51 Co. In order to try to standardise these values, most 

publications quote the isomer shifts relative to natural iron. This requires the addition of 

0.11 mm/s to the isomer shift values obtained from the spectra quoted here.

173
Mossbauer Effect Reference Data Journal, 1980, 3, 99.
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1.5.3.5 Data analysis.

1.5.3.5.1 The Lorentzian Line.

Almost all data analysis is carried out using computers. In principle this allows far greater 

accuracy in the fitting and interpretation o f spectra. A Mossbauer peak can be readily 

approximated to a Lorentzian curve or line. This is a remarkably simple function that for 

a single line defined by N  points can be represented by;

N(i) = -----t— ----- — Equation 1.36

where i is the f th  point, 5 is the isomer shift at point i, and T  is the half-width at half 

height o f the line. This is then compared to the data points collected, and the parameters 

allowed to vary slightly. A minimisation routine is employed to determine the best fit. 

The programs used to fit the spectra in this work were written by Marc Dominic DeLuca 

of Sheffield Hallam University, and were based on a program written at UKAEA,

174
Harwell, by Geoff Longworth and Ted Cranshaw . (These programs were then further 

modified to match more specific needs by the author). The fitting values are allowed to 

vary as determined by the user. The program then uses a hybrid non-linear least squares 

routine to produce a minimisation surface. The valley with the steepest descent 

determines the best fit, then the parameters are varied again within the routine from that 

point. This continues until a requisite number of attempts has been made. The user may 

then accept or change the parameters and the process is repeated until a reasonable fit is

174
G. J. Longworth, “Mossbauer Spectroscopy Applied to Inorganic Chemistry”, 1984, chapter 4,

Plenum Press, New York, USA
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obtained. One problem with this system, is the possibility o f local minima on the 

minimisation surface, which lead to erroneous values. This is more common with 

complex overlapping spectra, requiring the user to constrain most parameters and vary 

them manually.

1.5.3.5.2 The Fitting of Complex Spectra.

In a perfect world all spectra would consist o f clearly resolved, symmetric Lorentzian 

curves. In practice however, this is not always the case. Orientation effects, magnetic

175
relaxation, a Karyagin effect , or the presence of a large number o f similar sites can lead 

to an asymmetric spectrum, with many o f the lines o f a Gaussian type character.

Selective orientation o f the sample can affect the line intensities, as the intensity ratio is 

dependent on the angle between the electric field gradient axis and the direction o f the y- 

ray.

A magnetic relaxation effect could broaden and weaken the ± 3/2 transition line more 

than the ± Vz transition. This creates an asymmetry in the spectrum which becomes more 

pronounced at lower temperatures.

175 S. V. Karyagin, Proc. Acad. Sci. USSR, Phys. Chem. Soc., 1964,148, 110-125.
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The Karyagin effect is caused by anisotropy in the recoil free fraction o f Mossbauer 

events. In other words, a difference in the mean square amplitude o f molecular vibrations 

o f the iron nucleus may exist so that Mossbauer transitions to the m = ±  3/2 and m = ±  

V2  states occur with different probabilities. This vibrational anisotropy increases as the 

temperature is raised, causing an increase in the asymmetry o f the observed spectrum.

The last case is known as the Jahn-Teller effect. In effect, this gives rise to many 

overlapping spectra with very small differences in the hyperfine parameters. The fitting of 

these spectra is difficult, as the precise positioning o f the overlapping spectra is often 

ambiguous. In addition, with very similar fitting parameters, the fitting program may 

assume the parameters are in fact identical, and merely fit one o f the phases with a 

negative area. This is then offset by a excessively positive area for the other phases. In 

order to fit spectra o f this type, a Poly-Quadrupole/Hyperfine (PQH) fitting routine is 

used. In this a linear relationship is assumed between the isomer shift and quadrupole 

splitting, where

6 = esq + s. A.

(6 = overall isomer shift o f peak, esq = centre o f the isomer shifts o f the range of 

quadrupoles, s = correlation coefficient for the range o f quadrupoles, and A = the 

observed quadrupole splitting).

Using an algorithm developed by Philips, Twomey and Morup176, the spectrum is divided 

up equally into a spread o f quadrupole splittings between a maximum and minimum

176
According to source code.
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value defined by the user. The minimisation routine then calculates the relative area each 

quadrupole contributes to the overall spectrum. This can be represented as a probability 

o f the molecule existing in that environment. Consider the spectrum shown in Figure 

1.18.

Figure 1.18 Asymmetric Quadrupole Spectrum.

A s y m m e t r i c  q u a d r u p o l e  s p e c t r u m .

Three possible results are outlined in Figure 1.19. In example a) there is only one distinct 

environment. Any asymmetry is due to orientation effects, magnetic relaxation, or a 

Karyagin effect. In b) there is a broad range o f very similar environments (Jahn-Teller
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effect). In example c) there are two distinct, separate environments. This information can 

then be used to refine the original fit obtained as necessary.

Figure 1.19 P. Q. fitting results plotted for A) One narrow environment, B) One 
broad environment, C) Two distinct environments.

Although an extremely useful tool, the fitting technique has its limits. In practice, a very 

careful selection o f the fitting parameters has to be chosen, even as far as the number o f 

quadrupoles to fit in the distribution per observed Quadrupole. Failure to do so causes 

the program to exceed the error threshold and fail almost immediately.

1.5.3.5.3 The Analysis of Variable Temperature Data; LNAT and ISODS.

If  a number o f spectra are collected at different temperatures, it is possible to gain further 

information about the material under study. The spectral area for each phase is 

proportional to its recoilless fraction. However, the relationship between the recoilless 

fraction and temperature is not so simple. In section 1.5.2.2 the recoilless fraction (f) was 

defined as
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— 6Er f  1 ( T \ 2 rfa/T X 1
/  =  exp l ^ ) r y  I  e7^ !  j Equation 1.10

where T= temperature, 6D = the Debye temperature o f the solid, ER = the recoil energy, 

c = speed o f light, k  = the Boltzmann constant The integral in this equation has no exact 

solution, but approximations can be made for the low and high temperature limits. As 

before, if T  -»  0 then

/  = exp
— 3 Er 
2k(h T = 0 K Equation 1.12

If however T>V2 6D then

/  = exp
-  6ErT

k6o2 T > VaGD Equation 1.13

For a thin absorber (Mossbauer thickness, t, less than or equal to 1 (see section 1.5.2.3)) 

where t = f j ix o , the area At oc t , so

A = K ( n x o ) f a Equation 1.37

where K  is a constant, n = number o f resonant nuclei/cm3, o = the resonant cross section 

/cm2, x = the actual thickness A m  Returning to the approximation and rearranging, it is 

seen that for the low temperature limit

In A(T) -  In Knxa.
— 3Er
2k(k>

and for the high temperature limit

= a constant. Equation 1.38
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In A(T) =  In Knxa.
— 3 E r — 3 E r

U6d
+ ln Knxor. kOo

.T Equation 1.39

By measuring the area under the absorption peak at different temperatures and using 

equations (6) and (7), it is then possible to obtain a value for 6D. If  In A is plotted against 

T, then the line produced will be flat where it intercepts the y axis, then slowly bend to 

give a straight line o f gradient (-3ER /  kOo). In practice the line will bend again towards 

the high temperature limit due to anharmonicity in the lattice. Alternatively, this is done 

using a program originally written by Gavin Williams o f Sheffield Hallam University, 

based on the Levenberg-Marquant algorithm. In this the normalised areas, together with 

the respective temperatures, are used to evaluate the Debye integral (see equation 1.10) 

numerically. This gives the Debye Temperature (6y , and the recoilless fraction at 29 IK. 

A least squares minimisation routine then compares the theoretical and experimental 

values to give a goodness of fit approximation.

A similar process is performed on the isomer shift data. Looking back to section 

1.9.3.4.1, it is seen that the isomer shift is shifted from its expected position by vibration 

within the solid according to the following equation,

Svo 9 k6o
v 16 Me2 Equation 1.29

where 6b = Using a program written by E. Vanderberge177, the experimental
K

isomer shifts and temperatures are fitted using a least squares minimisation routine to the 

theoretical values. Once again a value for 0D is produced, together with a value for the

177
See source code.
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intrinsic isomer shift for the compound. The program is somewhat limited, as a value for 

the recoiling mass (M) is difficult to predict, and in addition the complex vibrational 

modes within the compounds studied leads to gross inaccuracies in 0D. However, it does 

permit comparison o f 0d for different compounds.

1.5.3.6 Information available from experiment

1.5.3.6.1 Oxidation state

To a first approximation, the oxidation state o f a compound can be readily correlated to 

its isomer shift. In section 1.5.3.4.1 it was shown that the isomer shift depends on the 

4s’-electron density at the nucleus. Bonding has little effect on the inner 4s’-electron 

density and so has little effect on the isomer shift. However, the outermost V-electrons 

are very sensitive to the shielding effects o f valence 4p ’-, ’d’- and 4f-electrons, and 

therefore so is the isomer shift. In section 1.5.3.4.1 it was seen that the isomer shift could 

be expressed as

<5 = constantx{|^(0)A|2-|Y«(0)B|2} Equation 1.21

57
For Fe the constant has a negative value. Therefore, any factors leading to a reduction 

in the 4s’ electron density at the nucleus will lead to a more positive isomer shift relative 

to the source. For instance, oxidation of Fe2+ to Fe3+ leads to a reduction in 4d’ electron 

density. The decreased shielding experienced by the nucleus leads to an increase in 4s’ 

electron density and a less positive isomer shift is seen. Typically Fe(II) compounds have 

a large isomer shift (>0.5 mm s’1), whilst Fe(IH) compounds have small isomer shifts (0- 

0.5 mm s'1). Similarly, the introduction o f electron-withdrawing groups around the iron
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will lead to a reduction in ‘s’ electron density leading to a more posive isomer shift. The 

more electronegative the ligands the more positive the isomer shift.

1.5.3.6.2 Local environment

Information concerning the local environment can be deduced from the quadrupole 

splitting o f the compound under consideration. In section 1.5.3.4.2 it was seen that the 

quadrupole splitting arose due to an electric field gradient across the nucleus. This is 

mainly dependent on the oxidation state and electronic configuration o f the atom. It is 

also dependent to some extent on the charge, polarity and arrangement o f molecules 

around the resonant atom. In the first instance, an idea o f the origin o f the electric field 

gradient can be gained from considering the shape o f the molecule / ion and using crystal

178 (\
field theory . For instance, consider Fe(II) (d ) in an octahedral environment.

Figure 1.20 Diagram showing different electronic configurations for Fe(II).

High
Spin

Low
Spin

For the high spin species there will be a considerable electric field gradient across the 

nucleus and hence a quadrupole interaction is likely to be observed. For the low spin

178
Cotton, Wilkinson, and Gaus, “Basic Inorganic Chemistry”, 1987, Second Edition, Wiley, UK.
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species however the charge is balanced and so no electric field gradient will be observed 

across the nucleus. No quadrupole interaction will be seen in the Mossbauer spectrum. 

Surrounding ligands will also have an affect. The less symmetric the balance o f charge 

around the nucleus, the bigger the quadrupole splitting. An octahedral complex with 

identical ligands will not give rise to quadrupole interaction. Asymmetry resulting from 

replacing one or more o f the ligands will increase the quadrupole splitting. The greater 

the difference in electronegativity o f the ligands the greater the quadrupole splitting. Less 

symmetric arrangements of ligands, tetrahedral for instance, will tend to give a lower 

quadrupole splitting.

Information can also be acquired from variable temperature studies. For instance, while

179
studying organo-tin complexes supported on montmorillonite, Breen et al. observed a 

change in gradient in the In Area vs. temperature data around 210 K. This was attributed 

to the melting o f the interlayer layer which left the organo-tin molecules with greater

vibrational freedom. A similar change in gradient was also observed by Hendrickson et

180al when studying valence electron de-trapping phenomena in biferrocenium salts . The 

change in gradient was found to coincide with the start o f the valence electron de

trapping. They discovered that the change in gradient was caused by oscillation o f the 

counter ion which started at this temperature. This produced a less rigid lattice and also 

led to a more symmetric environment around the biferrocenium cation. This in turn 

allowed the transfer of an electron between the iron centres. The phase transition was 

subsequently confirmed by scanning differential calorimetiy.

C. Breen, K. C. Molloy, andK. Quill, Clay. Min, 1992, 27,445-455.
180

T-Y. Dong, D. N. Hendrickson, K. Iwai, M. J. Cohn, S. J. Geib, A  L. Rheingold, H. Sano, I. 
Motoyama, and S. Nakashima, J. Am. Chem. Soc., 1985,107,7996-8008.
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1.5.3.6.3 More Complicated Spectra.

So far an attempt to correlate the electronic and molecular structure o f a compound to 

its Mossbauer Spectrum has been made. However, in practice this is not always 

immediately apparent. In order to observe a hyperfine interaction the effect must last 

longer than the Lamour frequency, which for iron is approximately 100ns157. This is quite 

long at an electronic level, which can lead to complications. For instance, imagine a 

molecule with a quadrupole splitting Q. If  the molecule rotates at a speed so great that 

the electric field gradient is averaged out over the time o f the experiment, then no 

quadrupole will be seen in the spectrum, i.e. Q(observed) = 0.

Alternatively, consider two atoms with different oxidation states, but able to transfer an 

electron between them. At low transfer rates ( « 1 0 7 s'1), both of the resonances due to 

each oxidation state will be seen. At transfer rates similar to that o f the lifetime o f the 

excited state («107 s'1), both resonances will be seen, but also an average resonance. At 

high transfer rates ( » 1 0 ? s'1), only the average resonance will be seen. This process is 

known as valence electron de-trapping (see section 1.4.3). In the above processes it is 

also wise to scrutinise the line-widths. If  the resonances start to broaden, this implies that 

the process involves the resonant atom directly. If  the line-widths remain the same, then 

it implies that it involves some indirect process surrounding the resonant atom.
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1.6 Other Techniques

1.6.1 Ultra-Violet Spectrometry (U.V.)

Measurements were made using a Hitachi U-2000 double beam UV-spectrometer, with 

cells o f path-length 1 cm. Although o f limited use in our work, Ultra-Violet spectrometry 

gives us an indication o f how much compound has exchanged with the clay.

1.6.2 C, H, N Analysis

CHN analysis was carried out by Brunei University. The figures provide not only 

confirmation that the compound synthesised was the one desired, but also exchange 

ratios for the clay contact experiments, and an internal check that the molecule had not 

decomposed upon entering the clay.

1.6.3 X-Ray Fluorescence Spectrometry (XRF).

X-Ray fluorescence spectrometry is another technique which is not particularly well 

known. In an effort to enlighten those unfamiliar with the technique, a quick summary 

follows.
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In principle XRF is the same as many other spectrometric techniques. A sample is 

exposed to incident radiation, the intensity of the scattered radiation is measured, and 

then compared to a standard calibration curve to give a measure o f the material present. 

In the first instance, the sample needs to be in a form suitable to introduce into the 

spectrometer. In the present case this was achieved by fusing the dried sample with 

lithium borate (typically 1 g: 9 g) to form a glass bead. The radiation used is a continuum 

o f X-rays. The sample is bombarded with x-rays and the fluorescent radiation measured. 

The detector scans through a range o f angles, and the elements present are identified by 

their characteristic wavelengths (As the d-spacings for the dispersion crystals are known, 

the wavelength is related to the angle the radiation is detected at). The intensity o f each 

element is then compared with a suitable calibration curve collected earlier for that 

element. In practice almost everything is controlled by a PC, and analysis takes a matter 

o f minutes.

1.6.4 Variable Temperature Infra-Red Spectroscopy (VT-IR).

Spectra were recorded o f a 5 mg, 15 mm diameter disc, using a 200 times KBr dilution 

o f sample pressed at 10 tons pressure for 2 minutes. Spectra were initially recorded using 

a Perkin-Elmer 783, and later an ATI Mattson Genesis series FTIR, over the range 200- 

4000 cm*1 with a resolution o f 2.0 cm’1. In the variable temperature experiments, the 

discs were heated under vacuum in 50°C increments, and left to stabilise for 15 minutes 

prior to recording the spectrum. (When studying clays, VT-IR removes most o f  the 

interlayer water, permitting observation o f the bands which may otherwise have been 

obscured).
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1.6.5 Thermogravimetric Analysis.

Thermogravimetric analysis was performed using a Mettler M3 balance/TG50 furnace, 

connected to a Mettler TC10A processor. Samples (typically 5-10mg) , were heated 

from 25-800°C, at a rate o f 20 °C/min, in a dynamic atmosphere of diy N2 gas flowing at 

20 ml/min. Although somewhat ambiguous, the technique is useful where there is a 

distinct weight loss, such as a cyclopentadienyl ring, or as a fingerprint for a specific 

compound.

1.6.6 Thermal Desorption M ass Spectroscopy (TD-MS)

TD-MS was carried out on a Viglen Trio Mass Spectrometer. The sample, (ca. lmg), 

was placed on the probe and inserted directly into the mass spectrometer. The probe was 

heated from 50-750°C, at a rate o f 20°C min"1, and then cooled from 750-50°C at a rate 

o f 250°C min'1. The total collection time is theoretically 37.8 minutes, 35 minutes o f 

which corresponds to the heating phase. The total number o f scans is approximately 

1320. The spectra are therefore composed o f a heating phase of 1-1224 scans, where 

there are 1.75 scans/°C, and a cooling phase from 1224-1320 scans, where there are 0.14 

scans/°C. The computer software controlling the experiment is not very efficient 

however, and the total experiment time is actually 46 minutes. This lag is due to the time 

it takes the data to be read and stored by the processor. This does not have much affect 

on the recorded temperatures, although the heating rate can be assumed to have a 

discrepancy o f up to 20%. Therefore it must be remembered when comparing with other
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dynamic techniques (such as thermogravimetric analysis), that compounds may 

decompose somewhat faster than predicted. This technique is still extremely useful 

however. Not only does it give an idea o f a stability o f the products, but it also allows 

identification o f the breakdown products.

1.6.7 Variable Temperature X-Ray Diffraction (VT-XRD).

VT-XRD o f partially orientated clay on glass slides and also o f  powder samples, was 

accomplished using a Philips PW1050/25 goniometer, with a Philips PW2236/20 cobalt 

tube operating at 40 kV, 40 mA. The beam was passed through a nickel filter and was 

detected by a Philips PW1965/30 detector connected to an IBM compatible personal 

computer. This scanned between 2-50° 20, counting for 1 second in 0.02° 20 increments. 

A heating stage manufactured according to Brown181 was used to heat the samples in the 

temperature range 20-400°C. By studying the d-spacings at different temperatures, it is 

possible to determine if and how the molecule has successfully inserted between the 

layers of the clay. In addition it is also possible to get an idea o f how thermally stable the 

inserted molecule is.

181
G. Brown, B. Edwards, E. G. Ormerod and A. H. Weir, Clay Minerals, 1972, 9, 407.
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1.7 The project

1.7.1 N, N - di methyl am inomethylferrocene on clay.

182
Previous work by Breen et al. on the uptake of organo-metallic compounds onto clay, 

had shown that a high loading was difficult to achieve and by no means predictable. The 

first part o f the project was to try to find a means to maximise the uptake o f the organo- 

metallic compound onto the clay. The clay used was chosen because o f the low iron 

content, but there is still a small amount which can cause problems with the higher

temperature Mossbauer spectra, especially if the exchanged material is only present in

182
small amounts. Breen et a l had achieved a loading o f about 40% while studying the 

uptake o f the tricarbonyl(?/5-2,4-dimethylcyclohexadienyl)iron+ and tricarbonyl(^5-2- 

methoxycyclohexadienyl)iron+ cations onto the montmorillonite Westone-L. Following 

on this work, Westone-L was exchanged with the unsubstituted cation, tricarbonyl(775- 

cyclohexadienyl)iron+. However only 7% o f the cation was exchanged. Although this 

cation has approximately the same size, shape and charge as those before, it is obvious 

that the factors affecting uptake are finely balanced. As an attempt to study biferrocenes 

within the clay was to be tried later on, it was decided to try contacting ferrocene with 

the clay. This attempt failed with no observable exchange at all. It was noticed at this 

stage that the exchange process seemed to favour compounds with substituted rings. 

Breen et al.'*2 had noted that the tricarbonyl(775-2-methoxy-cyclohexadienyl)iron+ was 

more firmly anchored in the clay, and tentatively suggested that the methoxy group may 

be interacting with the hydroxyl groups in the aluminosilicate sheet o f the clay. In order

182
C. Breen, J. S. Brookes, S. Forder, A  Maggs, G. Marshall, and G. R. Stephenson, J. Materials 

Chemistry, 1995, 5(1), 97-104.
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to take advantage o f this, an attempt to exchange the clay with N, N, -dimethylamino- 

methylferrocene (A) was made. The decision to use A was arrived at after a lot of careful 

thought. Firstly it was hoped that the side chain would behave similarly to the methoxy 

group used before, able to interact with the aluminosilicate lattice, and possibly be 

trapped in a hole surrounding the main anchoring site. Secondly, the amine functionality 

has the ability to protonate to form a charged side-chain. It was anticipated that this 

might help displace the sodium ions in the clay, enabling an even higher exchange ratio.

1.7.2 Biferrocene/Biferrocenium on clay

The first stage o f this part o f the project was to see if the biferrocene could be 

incorporated into the clay in a manner similar to that o f A. If  successful, the second stage 

involves seeing if  the molecule could be oxidised up in situ, or alternatively oxidised and 

then contacted with the clay afterwards. These materials are difficult to produce in large 

amounts, so excess CEC and multiple contacts are not a viable option. In addition, each 

biferrocenium has two amine groups capable o f being protonated, giving a possible 

overall charge o f +3. In practice this could reduce the exchange ratio by a third, so the 

first option o f oxidising up in situ would be preferred. The second stage o f this part o f 

the project, was to investigate the effect o f incorporating the molecule into the clay. As 

has been mentioned in section 1.4, the extreme sensitivity o f the biferrocenium cation to

its local environment has been an exciting area o f research lately. In the work of

180Hendrickson et al. , they synthesised a number o f different compounds, varying the 

anion or solvent molecules present and then compared them. This can cause problems as 

different crystal structures, defects, different ionic radii etc. can complicate direct
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comparisons. In our work the clay should act as a consistent “dilute” anion, which can 

absorb differing amounts of solvent, which can then be directly compared.

1.7.3 Synthesis and Heat treatm ents of A-APWL

An area o f ever expanding interest is that o f heterogeneous catalysis. The requirements in 

the synthesis of such catalysts have been mentioned elsewhere (see section 1.3.2). In an 

effort to achieve this, an attempt to introduce the molecule into aluminium pillared 

Westone-L was made. When pillaring a clay, the exchange capacity is greatly reduced by 

the migration of protons into the intralaminar spaces. The use o f a base can restore the 

exchange capacity however. Using A, it was hoped that the molecule would be drawn 

into the cavities in the structure formed by the pillaring, by forming the protonated 

species in situ. After characterisation to ensure the molecule is within the cavity and not 

just residing on the clay surface, the molecule is heated until it decomposes. It is hoped 

that this will leave discrete iron particles dispersed throughout the pillared matrix, 

residing in the main cavities formed by the pillaring o f the clay. Careful study o f the 

breakdown products in an order to elucidate the iron species formed, should give us an 

idea of how suitable the material is likely to be as a catalyst.
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1.7.4 Glossary of Terms.

Many o f the compounds used in this project have somewhat long winded names. In an 

effort to reduce tedious reading (and typing), the following abbreviations have been

used.

Na-WL Sodium Exchanged Westone-L

HWL Acid exchanged Westone-L

APWL Aluminium Pillared Westone-L

A N, N-dimethylaminomethylferrocene

AA 2,2”-bis[(dimethylamino)methyl]biferrocene

AA’ 2,5” ”-bis[(dimethylamino)methyl]biferrocene

AA+ 2,2”-bis[(dimethylamino)methyl]biferrocenium

AH ferrocenylmethyldimethylammonium

A-WL Product o f contact o f A + Na-WL

AH-WL Product o f contact o f AHC1 + Na-WL

A-HWL Product o f contact o f A + HWL

A-H-WL Product o f contact o f A + H7 + Na-WL

A-APWL Product o f contact o f A + APWL

AA-HWL Product o f 3 hr contact o f AA + HWL

AA-HWL(48) 48 hr contact o f AA + HWL

AA+-HWL Product o f iodine oxidation of AA-HWL

+AA-HWL Product o f contact o f AA+ + HWL
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2. N, N-dimethylaminomethylferrocene on Westone-L.

2.1 Experimental Methods.

2.1.1 Materials.

Clay. The clay used in all the experiments was the montmorillonite W estone-L from 

Texas, supplied by ECC International, which was found to have a cation exchange 

capacity (CEC) o f 91meq/100g. N,N-dimethyIaminomethyIferrocene and A1CI3.6H20  

were supplied by Aldrich Chemicals. NaOH was supplied by BDH Chemicals.

2.1.2 Preparation.

2.1.2.1 Sodium Exchanged Westone-L

This was produced by a three step process. First the raw Westone-L was sedimented to 

remove heavy particles such as quartz and iron oxide. Secondly, the lighter clay fraction

183
(nominally < 2 pm particle size ) was contacted (three times) with aqueous 1M NaCl, 

and finally washed, by repeated suspension in deionised water followed by centrifugation 

and removal o f supernatant, until a residual conductivity o f less than 50 pS was 

achieved. This is hereafter referred to as Na-WL.

183
Stokes’ Law for a particle of radius a falling with a terminal velocity v, through a liquid medium of 

viscosity ct can be written as F= 6avm, where F  is the force on the particle. For a spherical particle of 
density tj, this can be re-written as t = (9/2)ru{d/Tjga2), where t is the time in seconds, g  is the 
acceleration due to gravity (9.8 m s'2), and d  is the distance in metres. So, if t  > 16 hours, tu -  10'3 Kg 
m'1 s"2 (20°C), d = 0.1 m, then the particles obtained will have a radius a < 1.4 jim.
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2.1.2.2 Acid Exchanged Westone-L

Na-WL was contacted with aqueous 1 M sulphuric acid for two hours at 20 °C, followed 

by washing, as for the Na-WL above. This will subsequently be referred to as H-WL.

2.1.2.3 (ferrocenylmethyl)dimethylammonium chloride

1 g (4.12 mmol) o f N,N-dimethylaminomethylferrocene was added drop-wise with 

stirring to 50 ml o f 1M HC1. This was evaporated (in vacuo) to give a green solid. 

Recrystallisation from CHC13/Et20  gave long golden brown crystals in 87% yield. C, H, 

N, analysis: theory C=55.85, H=6.49, N=5.01; found C=55.59, H=6.40, N=5.02.

2.1.3 Exchange Procedures.

2.1.3.1 The intercalation of (ferrocenylmethyl)dimethylammonium into 

Westone-L.

METHOD (1). N,N-dimethylaminomethylferrocene (1 g, 2 CEC, 4.12 mmol) was 

suspended in 50 ml deionised water, and 5 ml o f 1 M HC1 (an excess) added drop-wise 

with stirring to give a solution of (ferrocenylmethyl)dimethylammonium-chloride. 1 g o f 

ground Na-WL powder (dried at 120°C) was then added and the resulting suspension left 

to stir overnight. The clay was isolated by centrifugation and the process repeated twice 

more. Finally, the product (referred to as A-H-WL) was washed with deionised water 

(5x 120 ml), and air dried at room temperature.
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METHOD (2). N,N-dimethylaminomethylferrocene (1 g, 2 CEC, 4.12 mmol) was 

dissolved in 50 ml o f methanol and lg  of H-WL (dried at 120°C) added. The resulting 

suspension was left to stir overnight, centrifuged and finally washed with methanol 

(5x120 ml). The product (referred to as A-HWL) was then air dried at room 

temperature.

METHOD (3). (ferrocenylmethyl)dimethylammonium chloride (2.8 g, 1.0 CEC) was 

dissolved in 50 ml o f deionised water, and 1 g o f powdered Na-WL (dried at 120°C) 

added. The suspension was then left to stir for 8 hours. The clay was isolated and the 

process repeated twice more. The product was then washed (5x120 ml de-ionised water) 

as above. The product is hereafter referred to as AH-WL. C, H, N, analysis; Theory: 

100% exchange C = 14.2, found 11.0, equivalent to 80% exchange).

2.1.3.2 Intercalation of N,N-Dimethylaminomethylferrocene into Na-WL.

N,N-dimethylaminomethylferrocene (3 g, 3 CEC, 12.46 mmol) was suspended in 100 ml 

o f deionised water, and 1 g o f powdered Na-WL (dried at 120°C) was added. The 

suspension was left to stir for 6 hours at 25°C. The clay was then isolated by 

centrifugation and the process repeated twice more. The final product (hereafter referred 

to as A-WL) was then washed (3 x 120 ml HjO, 3 x 120 ml MeOH, 1x120 ml H20 )  in 

the normal manner.
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2.1.4 Adsorption Isotherms.

20 ml methanolic solutions o f N,N-dimethylaminomethylferrocene /  (ferrocenyl- 

methyl)dimethylammonium chloride in the range 0-3 CEC were prepared, and the 

absorption at 435 nm, characteristic o f N,N-dimethylaminomethylferrocene measured. 

0.1 g o f clay dried at 120°C was then added and the suspensions shaken overnight. These 

were then centrifuged, and the absorption o f the supernatant measured.
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2.2 Results and Discussion.

2.2.1 Adsorption Isotherms

The results for the adsorption of N,N-dimethylaminoferrocene (A) and 

(ferrocenylmethyl)dimethylammonium chloride (AH+C1) onto Westone-L are shown in 

Figure 2.1 and Table 2.1.

Figure 2.1 Adsorption Isotherms for different contact methods.
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Contact o f N,N-dimethylaminomethylferrocene with Na-WL (A + Na-WL) proved o f 

little success, giving an uptake equal to only 10% exchange of the CEC. This lack of 

success was attributed to a combination o f two distinct factors. Firstly, incomplete 

separation o f the layers due to the solvent, methanol; and secondly there was little to 

favour incorporation o f a neutral species between the layers. In the first instance there 

was little choice as the neutral compound was only sparingly soluble in water. Synthesis
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of the hydrochloride salt followed by contact with the clay (AHC1 + Na-WL) in methanol 

proved successful yielding 53% exchange. It was however expensive in material, with 

20% being lost during the conversion o f A to AHC1. Thus an attempt to produce the acid 

salt in situ, by addition o f acid to the methanolic solutions, followed by contact with the 

clay (A + H + Na-WL) was undertaken. This would be very important for future work as 

the biferrocenes are difficult to produce in large amounts. This approach proved 

successful giving 48% exchange. In the final experiment o f the series, the N,N- 

dimethylaminomethylferrocene was contacted with an acid clay (A + H-WL). Exchange 

was successful although the loading was still only about 45% of the theoretical value. 

Based upon these results, the upper limit for exchange in methanol is about 50 % (see 

Table 2.1).

Table 2.1 U pper limits of exchange achieved by contacting in methanol.

M ethod of contact. M aximum exchange observed in suspension (% )
A + Na-WL 10
AH+C t + Na-WL 53
A +H + + Na-WL 48
A + H-WL 45

This is in stark contrast to the incorporation o f ferrocene in dehydrated zeolites where 90

88% exchange is achieved in under three minutes .
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2.2.2 X-Ray Fluorescence

XRF provided details of the extent o f the exchange in centrifuged and dried samples. In 

calculating the % exchange shown in Table 2.2, two assumptions were made. Firstly, that 

no iron was lost by volatilisation during either the drying process, or during the fusing o f 

the bead. Secondly, it was assumed that the iron content o f the clay was already 0.35 %, 

although figures have been known as high as 0.5 %. The figures for the amount o f iron 

exchanged are based on a univalent iron species. The theoretical value for the Na content 

of the clay, if completely exchanged is 2.09 %, assuming the CEC to be equal to 

91meq/100g. The value o f 1.85% is at first a mystery. However, it was found that after 

passage through an ion exchange column, the water is ca. pH 5. It is possible therefore, 

that protons may well have displaced some o f the sodium during the washing o f the clay. 

The theoretical value for 100% exchange, based on an Fe+ species is 5.1% although 

together with the 0.5% initially present this gives a final value o f 5.6%. It is immediately 

apparent that the Na and Fe values do not agree. There are three possible explanations 

for this. One, some o f the organoiron species has oxidised during the exchange process 

and so is now doubly charged. This would displace two sodium ions instead o f one per 

inserted molecule.

Table 2.2 Summary of XRF results for each exchange method.

Compound % Fe % Na % exchange %  Na displaced
Na-WL 0.36 1.85 - -

H-WL 0.43 0.09 - 94
APWL 0.41 0.03 - 100
AH-WL 3.42 0.47 50 76
A-H-WL* 4.09 0.12 73 94
A-HWL 3.37 0.08 59 92
A-WL* 3.26 0.67 57 68
A = N,N-dimdhyIaminomethylferrocaie, AH = (ferrocenylmethyl)dimethylammonium. 
* Contacted three times with the clay.
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Two, where water is the exchange solvent, it is possible that protons may have displaced 

some o f the sodium (see Table 2.2). Three, the assumption that no iron was volatilised 

during the fusing o f the bead was incorrect. The anomalously high value for the direct 

contact o f A with the sodium clay (A-WL) is the result o f three separate contacts in 

water. It is proposed that there were sufficient protons present during this process, to 

protonate enough A to promote exchange. Interestingly, the AH-C1 contact with Na-WL 

only gave 50% o f the total CEC exchanged, based on Fe (see Table 2.2). However, the 

C, H, N  analysis (see section 2.3.1) gave a figure o f 80% o f the CEC exchanged, which 

is in good agreement with the % exchange based on the sodium displaced (76%). This 

would seem to indicate that some o f the iron has in fact been volatilised during the 

manufacture o f the bead. However, thermal desorption mass spectrometry would be 

needed to confirm this. It should be noted that both the XRF and CHN figures seem to 

give higher exchange than had been predicted from the isotherm data. However, the 

solvent used for the preparation o f most o f the above samples was water - not methanol, 

as in the isotherm experiments, and so no direct comparison between the two techniques 

would be valid. In addition, in some instances more than one contact was utilised in the 

sample preparation.
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2.2.3 Infra-Red Spectroscopy

Infra-red spectroscopy provided little information in the characterisation o f these 

compounds. (Ferrocenylmethyl)dimethylammonium chloride (AHC1) had absorption 

bands at 2940 and 2641 assigned to aliphatic C-H stretches, and another band 

characteristic o f hydrogen strongly hydrogen bonded to nitrogen, at 2463 cm'1. It also 

showed further absorptions between 1400-1500 cnr1 attributed to the cyclopentadienyl 

rings. After introduction into the clay, most o f these bands were overlaid by absorptions 

from either adsorbed interlayer water, or absorptions from the aluminosilicate lattice. 

However, weak absorptions were just visible at 3136 and 2694 cm'1 corresponding to the 

C-H stretches, and further bands at 1472 and 1410 cm'1 corresponding to stretches 

within the cyclopentadienyl rings. The problem of the water swamping other possible 

absorptions present was removed by heating the disc in situ. Unfortunately this did not 

provide any further information.
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2.2.4 Thermogravimetric Analysis

The derivative thennogram o f Na-WL (Figure 2.2) shows that the desorption o f 

physisorbed water was essentially complete by 100°C, with dehydroxylation o f the 

structure reaching a maximum at 660°C184. A further small weight loss was occasionally 

visible at 480°C in some o f the samples tested. This was attributed to a kaolinite 

impurity.

The liquid N,N,dimethylaminomethylferrocene (A) boils at 200°C and so little 

information about its decomposition was gained. The corresponding ammonium salt 

(AHC1) decomposed at ca. 200°C with an associated weight loss o f 27%. This was 

followed by further weight losses of 15%, 9.4% and 14.5% at 350°C, 460°C and 610°C, 

respectively (Figure 2.2). Although little information can be gleaned from this without 

the use o f mass spectrometry, it provides a useful fingerprint for the protonated moiety. 

The fingerprint o f the (ferrocenylmethyl)dimethylammonium cation was sharply defined 

in the traces obtained o f (ferrocenylmethyl)dimethylammonium-WL.

In the trace o f (ferrocenylmethyl)dimethylammonium-WL (Figure 2.2), the characteristic 

sharp weight loss at 200°C was clearly visible. In addition there was clear evidence o f 

those occurring at 350°C and 6 10°C being present. There was however a new peak 

around 740°C, which has approximately twice the weight loss o f the 200°C peak. This 

could possibly be caused by carbon from the decomposed organic fragments being lost as

184 C. Breen, J. J. Flynn, and G. M. B. Parkes, Clay Min., 1993, 28, 123-137.
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C 02, although it is difficult to confirm the origin o f this weight loss without the use o f 

mass spectrometry. However, this does indicate that the decomposition pathway in the 

clay may well occur by a different mechanism.

Figure 2.2 Derivative thermogram traces for the samples indicated.
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2.2.5 Thermal Desorption M ass Spectroscopy.

The total ion current (TIC) for the AH-WL samples (Figure 2.3) showed two broad 

features at approximately 110 and 215°C, although the TIC remained high throughout.

Figure 2.3 TIC for AH-WL.

100

50-

736393 621164 279
T/*C

Closer examination o f the single ion chromatograms in Figure 2.4 revealed that the 

110°C peak had a shoulder at approximately 70°C. The shoulder was o f veiy low 

intensity, exhibiting fragments o f m/z = 65, 79, 121, and 186. A very small amount o f 

m/z = 214 was also detected, (m/z 243 = CpFeCpCH2NMe2 (Cp = cyclopentadienyl, Me 

= methyl), 214 = CpFeCpCH2NH, 200 = CpFeCpCH3, 186 = CpFeCp, 134 = FeCpCH2, 

121 = FeCp, 79 = CpCH3, Cp = 65). These fragments are consistent with loss o f an 

entire (ferrocenylmethyl)dimethylammonium molecule, possibly from surface exchange 

sites on the clay. The 110°C peak itself was mainly comprised o f fragments with m/z = 

121 and 186, although fragments with m/z = 65 and 200 are also visible. These are 

consistent with the loss o f ferrocene, possibly from the edge sites o f the clay. These edge 

sites exhibit a high Lewis acidity (see section 1.2.3), which is conducive to formation o f a 

ferrocene and dimethylammonium radical (see section 1.2.6). A simple electron transfer 

followed by a proton abstraction from the abundant water nearby, would then lead to a 

ferrocene ion and a dimethylammonium cation.

115



Figure 2.4 Thermal Desorption Mass Spectra for AH-WL
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The loss of iron containing fragment^ in both the 70 and 110°C peaks, confirmed earlier 

suspicions (see section 2.2.2) that iron had been volatilised during the manufacture of the

bead for XRF. This is in direct contradiction to the behaviour observed both by Breen et

182al. with the half-sandwich tricarbonyl-iron compounds supported on montmodllonite,

33
and also by Borvomwattanont et al. with the ferrocenium-zeolite-Y composite. It is 

interesting to note that no fragments corresponding to the ammonium side chain are 

apparent. This would seem to indicate a strong interaction between the ammonium group 

and the clay.

The major loss occurred at 215°C. Fragments o f m/z 65, 79, 121, 134, 186, 200, and 

214 were recorded. This agrees closely with the decomposition temperature observed in 

the derivative thermograms o f AHC1 and AH-WL (see section 2.2.4). Further heating 

resulted in a sharp decrease in the ion current due to fragments of m/z = 121, 134, 186, 

and 200, although the ion current due to fragments m/z = 65 and 79 decreased slightly 

before increasing to a higher level than before. The current due to fragment m/z = 214 is 

no longer visible. It would appear that at least two decomposition routes are in 

operation. The first, peaking at around 215°C is due to the straightforward 

decomposition o f the AH ion, resulting in a loss o f some iron+ and ammonium+ 

containing fragments. However, a further decomposition process peaking at 

approximately 480°C, in which the cyclopentadienyl rings are lost, and the iron+ and 

ammonium+ containing fragments remain on the clay, dominates at higher temperatures. 

This second process is similar to that observed by Borvomwattanont et al,33. (Note that 

the kaolinite impurity mentioned in section 2.2.4 was in too small a quantity to be 

responsible for the 480°C “peak”).
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2.2.6 Variable Temperature X-Ray Diffraction

VTXRD gives the first real indication that the exchanged molecule was present within 

the interlayer. Na-WL has a typical dooi-spacing of ca. 1.25nm at room temperature and 

average humidity, which collapses around 55°C to ca. 0.96nm (see section 1.2.2 and 

Figure 2.5). The decrease in dooi-spacing in the Na-WL, was caused by the loss o f the 

loosely bound water from the interlayer, together with water from the sodium ions 

hydration spheres. When a large molecule such as (ferrocenylmethyl)dimethyl-ammonium 

is inserted, the interlayer spacing increases. However, as noted for other swelling lattices 

such as the vanadylphosphate series mentioned earlier183, (see section 1.1.2.3.2), the 

increase in spacing here is typically 0.1-0.2 nm less than that expected from the insertion 

o f the organoiron species. In addition, these organometallic molecules are not hydrated 

to the same extent as the Na+ ion, and so the spacing remains relatively constant until the 

molecule itself decomposes. The (ferrocenylmethyl)dimethyl-ammonium cation is 

estimated to have a perpendicular height o f ca. 0.7 nm, with a width o f ca. 0.6 nm for 

the unsubstituted ring, and a length ca. 0.8 nm for the ring together with side chain183,186. 

Considering the uncertainty in the increase o f the dooi-spacing of swelling lattices, this 

makes conclusions regarding the orientation o f the molecule somewhat difficult. 

However, the observed dooi-spacing for AH-WL of 1.55 nm, indicates that the molecule 

may well lie with the cyclopentadienyl rings perpendicular to the silicate layers with the 

side chain accommodated in the interlamellar space, thus making no contribution to the 

layer expansion. Taking the (ferrocenylmethyl)dimethylammonium cation as roughly

185
G. Matsubatashi, S, Ohta, and S, Okanu, Jnorganica ChimicaActa, 1991,184,47-52,
K. Chatakondy, C. Formstone, M. Green, D. O’Hare, J. Twyman, and P. Wireman, J. Mater. Chem., 

1991,1(2), 205-212.
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spherical with a diameter o f ca. 0.7nm187, the predicted increase in the dooi-spacing agrees 

well with that observed (Figure 2.5). It is interesting to note that in contrast to the

present study, when A was incorporated into a-SnP from aqueous solution, a bilayer of

188
the protonated amine formed in the interlayer space . Similarly, a bilayer was also 

formed on the intercalation o f FcCH2CH215NH2 into both a-ZrP and M 0O3. Large 

increases in dooi-spacing, i.e. layer expansion, were also observed when 

ferrocenylalkylammonium iodides were incorporated between the layers o f VOPO4. In 

the latter case the length o f the alkyl bridging unit influenced both the layer spacing and 

the extent to which the ferrocene moiety was oxidised62.

(Ferrocenylmethyl)dimethylammonium-WL has a spacing o f 1.55 nm which remains 

essentially constant until 200°C, whereupon it collapses to 1.3nm. The decrease in door 

spacing seen in Figure 2.5, coincides with the first major weight loss seen during the 

TGA experiment (see section 2.2.4), and also with the major decomposition peak in the 

TD-MS at 215°C (see section 2.2.5). Furthermore, if the inserted molecule had not 

exchanged uniformly, but only onto edge sites for instance, then above 60°C the 

domains which contain the sodium ions would have collapsed. This would produce a 

separate higher angle peak on the XRD trace. It is immediately apparent from Figure 2.6 

that the (ferrocenylmethyl)dimethylammonium-WL trace shows no sign o f  any peaks 

corresponding to such a sodium ion domain, and so although only 80% exchange was 

achieved, the XRD data suggests that the organometallic molecule was uniformly 

dispersed throughout the layers.

187
S. Okanu and G. Matsubayashi, J, Chem. Soc, Dalton Trans., 1992,2441-2445.
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Figure 2.5 XRD d-spacing vs. T
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It should be noted here that uncertainty in the measurement of the d-spacing may be 

quite high (+/-0.05nm). This is due to the very low angle o f the incident beam. A very 

small difference in the thickness o f the film on the glass slide could have quite a dramatic 

effect on the d-spacing. This will not however affect comparisons within each set o f 

temperature data.

188
E. Rodriguez-Castellon, A  Jiminez-Lopez, M. Martinez-Lara and L. Moreno-Real, J, Inclusion 

Phenom., 1987, 6, 335-342.
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Figure 2.6 A-WL VT-XRD
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Although between 150-200 C the d-spacing for (ferrocenylmethyl)dimethyl-ammonium- 

WL (see Figure 2.5 and Figure 2.6) collapses from 1.6 nm to 1.3 nm, it does not reach 

the 0.96 nm spacing characteristic o f a completely collapsed clay. This indicates that 

something was left between the layers, most likely an iron oxide o f some kind. This 

reinforces the observation, that only a minor amount o f iron was lost by volatilisation 

(see section 2.2.5), during the manufacture o f the bead for x-ray fluorescence 

spectrometry.
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2.2.7 Variable Temperature Mossbauer Spectroscopy

N,N-dimethylaminomethylferrocene (A) is a liquid. Although it is possible to obtain a 

spectrum by freezing the sample, it is not clear how well this would relate to the 

intercalated state, especially at temperatures above the melting point o f A. Therefore, in 

order to understand the behaviour o f the species before intercalation, an alternative had 

to be found. Utilising the amine group functionality, the hydrochloride salt, which is a 

solid, was prepared and a variable temperature Mossbauer study performed. The 

spectrum consisted o f a single, symmetric doublet with a quadrupole splitting (A) o f 2.34 

± 0.02 mm/s, which remained constant between 15-300 K. The isomer shift (8) exhibited 

a typical second order Doppler shift effect, with a shift from 57Co in a rhodium matrix, o f 

0.41 ± 0.02 mm/s at 15 K, which fell steadily to a final value o f 0.34 mm/s at 300 K (see 

Table 2.3).

Table 2.3 Least squares fitting parameters for AHC1.

T K 5 mm/s A mm/s F(l) mm/s T(r) mm/s Norm. Area i '
X

15 0.41 2.36 0.26 0.26 2.041 0.504
33 0.41 2.36 0.26 0.26 1.888 0.772
50 0.41 2.36 0.28 0.28 1.817 1.074
80 0.40 2.34 0.32 0.30 1.564 0.663
100 0.40 2.34 0.28 0.28 1.350 1.065
120 0.39 2.34 0.32 0.30 1.214 0.872
140 0.39 2.34 0.30 0.28 1.045 0.810
160 0.39 2.34 0.34 0.32 0.934 0.934
200 0.36 2.34 0.34 0.32 0.698 0.698
250 0.34 2.32 0.36 0.32 0.455 0.975
300 0.34 2.32 0.36 0.32 0.300 1.060

Errors: T = ± 2 K, 8 = ± 0.02 mm/s, A = 0.02 mm/s, T = 0.02 mm/s.

The total counts for each phase, i.e. the area under each phase in the spectrum, are 

divided by the background count (obtained by averaging the first and last five data points 

o f the spectrum), to give the normalised area for that phase.
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Figure 2.7 Variable Temperature Mossbauer Spectra of AHC1
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Subsequent analysis o f the normalised area/temperature data (Figure 2.9) gave a Debye 

temperature (0D) o f 144 ± 5 K and a recoil free fraction (f29l) o f 0.14 ± 0.02 using an 

effective recoiling mass o f 57 amu. This rather low 0D is typical o f organometallic 

compounds. In the present case this was heightened by the increased vibrational freedom, 

allowed by the large difference in size between the large organoiron cation and small 

chloride anion. The width o f the peaks at half height (T) varied from 0.26 mm/s at 15 K 

to 0.32 mm/s at 300 K. This broadening is caused by increased vibration within the 

lattice as the solid is warmed. The slight asymmetry in the spectrum at higher 

temperatures is most likely due to the Karyagin effect (see section 1.5.3.5.2).

The results (see Table 2.4, Table 2.5, Table 2.6, and Table 2.7) for the species 

intercalated into Westone-L, show that the method o f insertion did not affect either the 

isomer shift or the quadrupole splitting o f the intercalated molecule.

Table 2.4 Least squares fitting parameters for AH-WL

T K Phase 8 mm/s A mm/s r(l) mm/s T(r) mm/s Norm. Area %  Area
2"

X
15 Fe2+ 0.43 2.42 0.28 0.30 0.933 81 0.604
80 Fe*+ 0.42 2.42 0.28 0.30 0.687 75 0.582
160 Fe2+ 0.39 2.41 0.24 0.26 0.387 61 0.572
240 Fe2+ 0.36 2.41 0.24 0.28 0.233 49 0.540
300 Fe2+ 0.32 2.40 0.26 0.28 0.134 40 0.607
15 Fe3+ 0.33 0.82 0.48 0.48 0.054 5 0.604
80 Fe3+ 0.33 0.82 0.48 0.48 0.066 7 0.582
160 Fe3" 0.29 0.84 0.48 0.48 0.071 11 0.572
240 Fe3" 0.29 0.90 0.46 0.46 0.031 7 0.540
300 Fe3+ 0.30 0.99 0.40 0.40 0.021 6 0.607
15 Fe° 0.24 0.96 0.175 15 0.604
80 Fe° 0.24 0.96 0.169 18 0.582
160 Fe° 0.24 0.98 0.174 28 0.572
240 Fe° 0.24 1.00 0.202 44 0.540
300 Fe° 0.23 0.96 0.178 54 0.607

Errors: T = ± 2 K ,  5 = ± 0.02 mm/s, A = 0.02 mm/s, T = 0.02 mm/s.
Fe2+ = Iron(II) present in the ferrocene unit of the inserted molecule.
Fe3+ = Iron(III) present in the clay from isomorphous substitution.
Fe° = Iron(0) present in the graphite sample holder.
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Figure 2.8 Mossbauer Spectra of A-H-WL.
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Figure 2.9 Log Area vs. Temperature Graphs.
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Table 2.5 showing least squares fitting parameters for A-HWL

T K Phase 8 mm/s A mm/s r(l) mm/s T(r) mm/s Norm. Area % Area " i
X _

14 Fe2+ 0.43 2.44 0.28 0.30 1.103 82 0.540
16 Fe2f 0.43 2.44 0.28 0.30 1.041 80 0.622
20 Fe2* 0.43 2.42 0.28 0.32 1.022 79 0.697
32 Fe2+ 0.42 2.44 0.26 0.30 0.980 78 0.923
50 Fe2+ 0.42 2.44 0.28 0.30 0.890 75 0.557
80 Fe2+ 0.42 2.44 0.28 0.32 0.716 73 0.543
100 Fe2+ 0.41 2.42 0.28 0.32 0.632 71 0.618
120 Fe2+ 0.41 2.42 0.28 0.30 0.537 66 0.543
140 Fe2+ 0.40 2.44 0.28 0.32 0.478 63 0.555
160 Fe2+ 0.39 2.42 0.26 0.30 0.410 59 0.708
180 Fe2+ 0.38 2.44 0.26 0.30 0.341 56 0.531
200 Fe2+ 0.37 2.44 0.26 0.30 0.286 52 _ J 0.582
225 Fe2+ 0.36 2.44 0.26 0.32 0.233 47 0.566
250 Fe2+ 0.35 2.44 0.32 0.34 0.197 42 0.605
275 Fe2+ 0.33 2.44 0.28 0.34 0.151 36 0.584
300 Fe2+ 0.34 2.46 0.26 0.32 0.147 37 0.661
14 Fe3+ 0.22 0.54 0.90 0.96 0.236 18 0.540
16 Fe3' 0.24 0.58 0.98 0.96 0.261 20 0.622
20 Fe3+ 0.24 0.58 0.96 1.10 0.263 21 0.697
32 Fe3' 0.23 0.54 0.96 1.14 0.270 22 0.923
50 Fe3+ 0.23 0.54 0.96 1.22 0.289 25 0.557
80 Fe3+ 0.23 0.54 0.96 1.22 0.267 27 0.543
100 Fe3+ 0.23 0.54 0.94 1.22 0.263 29 0.618
120 Fe3+ 0.23 0.54 0.94 1.22 0.270 34 0.543
140 Fe3* 0.23 0.56 0.94 1.40 0.281 37 0.555
160 Fe3+ 0.23 0.56 0.94 1.38 0.287 41 0.708
180 Fe3+ 0.23 0.56 0.94 1.38 0.272 44 0.531
200 Fe3* 0.23 0.56 0.94 1.38 0.269 48 0.582
225 Fe3+ 0.23 0.56 0.94 1.38 0.265 53 0.566
250 Fe3" 0.23 0.58 0.94 1.42 0.272 58 0.605
275 Fe3* 0.22 0.56 0.94 1.48 0.265 64 0.584
300 Fe3+ 0.23 0.60 0.96 1.38 0.253 63 0.661

Errors: T = ± 2 K , 8  = ± 0.02 mm/s, A = 0.02 mm/s, F = 0.02 mm/s.
Fe2+ = Iron(II) present in the ferrocene unit of the inserted molecule.
Fe3+ = Iron(III) present in the clay from isomorphous substitution.

All of the intercalated samples showed a large outer doublet attributable to the Fe(II) o f 

the ferrocene unit, and a broader, ill defined absorption o f smaller quadrupole value 

between the arms o f this doublet (Figure 2.8). As can be seen from Table 2.4, Table 2.5, 

Table 2.6, and Table 2.7, the hyperfine parameters do not vary significantly from those 

obtained for the acid chloride salt (Table 2.3). This indicates that no substantial changes, 

such as oxidation, have occurred within the organoiron cation.
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Table 2.6 Least squares fitting parameters for A-H-WL

T K Phase 5 mm/s A mm/s r(l) mm/s T(r) mm/s Norm. Area % Area i
X

14 Fe2+ 0.43 2.44 0.26 0.30 1.241 84 0.544
14 Fe2+ 0.43 2.46 0.28 0.28 1.259 84 0.645
16 Fe2* 0.43 2.46 0.30 0.32 1.295 84 0.464
20 Fe2+ 0.43 2.46 0.32 0.34 1.313 85 0.946
32 Fe2f 0.43 2.46 0.34 0.36 1.282 84 0.855
50 Fe2+ 0.42 2.44 0.30 0.32 1.104 81 0.653
80 Fe2+ 0.42 2.42 0.34 0.34 0.934 79 0.756
100 Fe2+ 0.43 2.46 0.28 0.30 0.774 66 0.559
120 Fe2+ 0.41 2.40 0.34 0.36 0.749 74 0.664
140 Fe2+ 0.41 2.46 0.30 0.32 0.619 68 0.607
160 Fe2+ 0.39 2.44 0.30 0.34 0.530 74 0.641
180 Fe2f 0.39 2.46 0.32 0.34 0.448 62 0.474
200 Fe2+ 0.38 2.44 0.30 0.34 0.401 61 0.716
225 Fe2+ 0.37 2.46 0.24 0.28 0.326 53 0.663
250 Fe2f 0.35 2.42 0.30 0.36 0.291 52 0.603
300 Fe2+ 0.33 2.44 0.30 0.34 0.219 46 0.728
14 Fe3+ 0.23 0.60 0.72 0.88 0.228 16 0.544
14 Fe3* 0.23 0.56 0.92 0.92 0.247 16 0.645
16 Fe^ 0.21 0.60 0.84 0.90 0.251 16 0.464
20 Fe3" 0.23 0.54 0.90 0.90 0.240 15 0.946
32 Fe3+ 0.24 0.54 0.90 0.90 0.245 16 0.855
50 Fe3+ 0.27 0.60 0.72 0.88 0.266 19 0.653
80 Fe3+ 0.26 0.58 0.64 0.70 0.254 21 0.756
100 Fe3+ 0.36 0.52 1.06 1.08 0.377 33 0.559
120 Fe3+ 0.27 0.58 0.70 0.70 0.261 26 0.664
140 Fe3* 0.21 0.52 0.88 0.82 0.289 32 0.607
160 Fe3" 0.26 0.56 0.74 0.72 0.259 26 0.641
180 Fe3+ 0.22 0.48 0.88 0.88 0.296 38 0.474
200 Fe3" 0.26 0.56 0.74 0.78 0.260 39 0.716
225 Fe3* 0.22 0.48 0.94 0.98 0.293 47 0.663
250 Fe3+ 0.24 0.54 0.84 0.86 0.266 48 0.603
300 Fe3+ 0.19 0.52 0.82 0.86 0.254 54 0.728

Errors: T = ± 2 K , 5  = ± 0.02 mm/s, A = 0.02 mm/s, T = 0.02 mm/s.
Fe2+ = Iron(II) present in the ferrocene unit of the inserted molecule.
Fe3+ = Ircn(III) present in the clay from isomoiphous substitution.

Furthermore, it may be inferred from the similar quadrupole splittings and isomer shifts, 

that the interlayer separation o f the clay merely expanded to  accommodate the 

(ferrocenylmethyl)dimethylammonium cation, with no detectable distortion in the 

orientation o f the cyclopentadienyl rings or the oxidation state o f the iron centre. 

Calculations on the effect of tilting the rings, has shown that a 9° tilt in the 

cyclopentadienyl rings, reduces the isomer shift by 0.02mm/s, and the quadrupole
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splitting by 0.11mm/s189. Considering the expansion in the d-spacing o f the clay was 0.1

nm less than may have been expected (see section 2.2.6), this observation seems

182
remarkable, although it is consistent with similar work by Breen et al. on the 

introduction o f half sandwich organoiron compounds into Westone-L.

Table 2.7 Least squares fitting parameters for A-WL

T K Phase S mm/s A mm/s F (I) mm/s T(r) mm/s Norm. Area % Area
1

X
15 Fe2+ 0.42 2.42 0.26 0.27 0.946 83 0.563
80 Fe2+ 0.41 2.42 0.26 0.26 0.675 77 0.588
160 Fe2+ 0.39 2.40 0.26 0.27 0.395 68 0.508
240 Fe2+ 0.38 2.40 0.26 0.31 0.200 55 0.537
300 Fe2+ 0.33 2.38 0.32 0.34 0.146 46 0.550
15 Fe3+ 0.25 0.80 0.48 0.48 0.127 11 0.563
80 Fe3+ 0.28 0.80 0.48 0.48 0.134 15 0.588
160 Fe3+ 0.28 0.82 0.48 0.48 0.130 22 0.508
240 Fe3+ 0.22 0.86 0.48 0.48 0.114 31 0.537
300 Fe3+ 0.16 0.86 0.48 0.48 0.117 37 0.550
15 Fe° 0.25 - 0.40 0.067 6 0.563
80 Fe° 0.25 - 0.40 0.064 7 0.588
160 Fe° 0.25 - 0.40 0.055 10 0.508
240 Fe° 0.19 - 0.40 0.053 14 0.537
300 Fe° 0.16 - 0.40 0.056 17 0.550

Errors:T = ± 2 K , 8  = ± 0.02mm/s, A = 0.02mm/s, T = 0.02mm/s.
Fe2+ = Iron(II) atom of the ferrocene unit in the inserted molecule.
Fe2+ = Iron(III) present in the clay from isomorphous substitution.
Fe° = Iron present in graphite sample holder.

The broad, ill defined absorption, seen between the (ferrocenylmethyl)dimethyl- 

ammonium doublet, was composed o f a smaller broad doublet, corresponding to the 

Fe(III) present in the clay which arises due to isomorphous substitution, and a broad 

singlet, characteristic o f Fe(0), which apparently is added as particles to the graphite rod 

from which the sample holders were made. The purpose o f this iron is to aid machining 

o f the rod. It is present in veiy low concentrations, and is not normally visible. 

Unfortunately, due to the low iron content o f the materials under study and a higher than 

normal concentration o f Fe(0) in the holder, the absorption became significant (Figure

189
J. S. Brookes, C. M. Care, and S. Plimley, Hyperfine Interactions, 1984, 20, 151-167.
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2.8). It should be noted that the presence o f this iron was not intentional. Indeed, until 

the present work its presence was unknown to the author. The broadness of the Fe(III) 

doublet indicates that the iron present in the clay was in a variety o f sites. Although the 

iron already present on the clay was o f veiy low concentration (0.35% w/w), it is bound 

tightly within the lattice, and the recoil free fraction was relatively unaffected by 

temperature. This means that as the temperature was increased, the absorption made a 

steadily more significant contribution to the overall spectrum. (Figure 2.8), because the 

recoil free fraction of the organoiron compound decreased rapidly with temperature.

The intercalation o f the (ferrocenylmethyl)dimethylammonium cation into Westone-L, 

gave a Debye temperature (0D) o f 140 K (see Table 2.4, Table 2.5, Table 2.6, Table 2.7, 

Table 4.1, Table 2.8, and Figure 2.9) with a recoil free fraction at 291 K (f^ )  o f 0.13 for 

the inserted species. This was veiy similar to the acid chloride salt (AHC1) where 0D =

144 K + 5 K  and i  = 0.14 ± 0.02. This indicates that the molecule was in a very similar

182
pseudo-cubic environment. Interestingly, this was not what Breen et ah observed with 

the organoiron half sandwich compounds. The half sandwich cations, tricarbonyl(i f -2,4- 

dimethylcyclohexadienyl)iron( 1 +), and tricarbonyl( 775-2-methoxycycIohexadienyl)-

iron(l+), typically gave a Debye temperature 30 K lower when intercalated into the clay, 

than when incorporated in a PF6' lattice. This was ascribed to the cations being less 

tightly bound when sandwiched between the layers o f the clay, than when locked within 

the anionic lattice. The similar Debye temperature obtained for the intercalated 

(ferrocenylmethyl)dimethylammonium cation, might tentatively be due to, a) an 

interaction between the protonated amine group and the silicate lattice, b) the locking o f 

the ammonium group in one o f the surrounding ditrigonal holes, or c) the half sandwich
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compounds were more rigidly held in the salt as the anions were o f similar size. In this 

case the ferrocene molecule can thus be viewed as having moved from one fairly free 

environment to another. The second suggestion (b) agrees well with the suggestion in 

section 2 .2 .6 , that the molecule is parallel to the layers, with the side chain in the same 

plane. Another argument for the similar Debye temperature, could be a restriction o f 

movement o f the molecule by the freezing o f the surrounding interlayer water molecules. 

This however seems unlikely. Other work by Simopoulos et al!" on organotin 

compounds intercalated into montmorillonites, showed an elbow near 210 K in the log 

Area vs. Temperature data. They observed that the value o f the gradient o f the line 

increased considerably at this temperature, although linearity was retained. This was 

attributed to the melting o f the interlayer water. Collisions with the interlayer water 

increased the mean square displacement o f the tin nuclei, which in turn reduced the recoil 

free fraction. This was verified by the disappearance o f this elbow when the samples 

were dehydrated in vacuum before collecting the VT-119Sn Mossbauer data. The lack o f 

this elbow in our data (see Figure 2.9) may be attributed to two factors. Firstly, the 

hydrophobic nature of the ferrocene centre, means that the water molecules are only 

weakly associated with the iron nuclei. Hence, the onset o f motion in the water 

molecules is unlikely to have any significant affect on the iron nuclei. This agrees well

89 •
with similar Mossbauer studies carried out by Molloy et al. , on the intercalation o f N- 

methyl-3-(triphenylstannyl)pyridinium onto montmorillonite. Secondly, when mounted 

within the cryostat the samples were in a vacuum. The samples were then cooled, and 

spectra recorded from 12K to room temperature. Hence, the samples may well have been 

“freeze dried” by the time the experiment commenced. Similar studies on unsubstituted 

ferrocene incorporated into AIPO4-5 and AIPO4-8 have shown that the ferrocene has

190
A. Simopoulos, D. Petridis, A. Kostikas, andN. Gangas, Hyperfine Interactions, 1988, 41, 843-848.
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191
almost complete three-dimensional freedom at room temperature . This averages the 

electric field gradient across the ferrocene molecule during the life-time o f the excited 

state, and hence a singlet is seen in the Mossbauer spectrum. The ferrocene molecule is 

essentially spherical, with an effective diameter o f 0.7 nm which is somewhat smaller 

than the 0.78 nm channel width in the AIPO4 channels allowing the molecule to rotate. In 

the present case a doublet was observed at all temperatures. This indicates that either no 

reorientation process is taking place, or that any reorientation process is occurring much 

slower than the sampling time o f the Mossbauer experiment (see section 1.5.3.6.3). As 

has been mentioned previously (see section 2.2.6) the interlayer spacing is ca. 0.1 nm 

smaller than would be expected on inserting AFT into clay. This leaves little room for the 

organometallic to rotate. In addition the bulky side chain on AH* is likely to inhibit

rotation within the interlayer. The influence o f bulky side-chains on the freedom of

182
organoiron compounds has been noted previously .

Once again there was evidence o f increasing asymmetry in the spectrum at higher 

temperatures. This again could possibly be attributed to the Karyagin effect. A similar

192
effect has been noticed for bis(fiilvalene)diiron .

The Debye temperatures and recoil free fractions from the various methods o f insertion 

o f the (ferrocenylmethyl)dimethylammonium cation are summarised in Table 2.8.

A  Lund, D. G. Nicholson, R. V. Parish and J. P. Wright, Acta Chem. Scand, 1994, 4, 1723-1729.
192

C. LeVanda, K. Bechaard, D. O. Cowan, U. T. Muella-Westerhoff, P. Eilbracht, G. A  Candela, and 
R. L. Collins, J. Am.Chem. Soc., 1976, 98(11), 3183-3187.
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Table 2.8 showing summary of 0D and -&91. values for the variable temperature
experiments performed.

Compound 0
D

f
291

AH-Cl 144 0.143
AH-WL 139 0.128
A-H-WL 144 0.147
A-HWL 139 0.125
A-WL 138 0.123
(A-APWL) (118) (0.057)
Errors: 0D -  ± 5 K, f29i = 0.02.
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2.3 Conclusions.

The hydrochloride salt (ferrocenylmethyl)dimethylammonium chloride has been prepared 

and characterised by a variety o f techniques. VT-Mossbauer data indicated that no 

reorientation processes were in effect and that the molecule had a Debye temperature of 

144 ± 5 K and a recoil free fraction at 291 K o f 0.14 ± 0.02.

In addition, the (ferrocenylmethyl)dimethylammonium cation has been intercalated into 

the montmorillonite Westone-L by several different methods. By a combination of 

techniques, it has been shown that the cation occupies 80% o f the exchange sites, that it 

is most likely orientated with the cyclopentadienyl rings perpendicular to the silicate 

layers, with no discernible distortion o f the cyclopentadienyl rings. The cation is veiy 

probably in a site similar in environment to that found in the chloride salt. Moreover, it

appears that the decomposition o f the supported complex, in contrast to the half-

182 •  

sandwich compounds studied by Breen et al. , involves the volatilisation o f iron below

350°C. Above 350°C the decomposition occurs by a different mechanism, with the loss

o f the cyclopentadienyl rings and the retention o f the iron on the clay. Once again VT-

Mossbauer data showed that reorientation processes are evident and that the inserted

molecule gave a Debye temperature of 140 K. In addition the molecule was not affected

by the melting o f the interlayer water.
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2.4 Future Work.

In this project, the (ferrocenylmethyl)dimethylammonium cation has been intercalated 

into the montmorillonite Westone-L, with a maximum o f 80% o f the total CEC 

exchanged ( = AH-WL). Intercalation did not affect any o f the Mossbauer fitting 

parameters.

The use o f Raman spectroscopy may provide information which was not available using 

infra-red spectroscopy. In Raman spectroscopy the bands due to the aluminosilicate 

lattice o f the clay appear as two sharp peaks. This is in stark contrast to the broad feature 

seen in infra-red spectroscopy, and means that bands from the intercalated molecule may 

be visible.

The use o f EXAFS may provide further information on the position and orientation o f 

the molecule within the clay interlayer.

Information on the factors effecting intercalation may be obtained by varying the length 

o f the carbon side-chain in the amine functionality o f the substituted ferrocene. Using the 

techniques utilised in this study and by comparing the amount incorporated, the means o f 

predicting and maximising the uptake of organometallics onto the clay may be achieved.

The materials studied here may have applications as a clay modified electrode. Since 

clays are low cost, with high thermal stability and offer resistance to extreme chemical
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conditions, the use o f impregnated clays in order to modify electrode surfaces has been

193
widespread .

Alternatively, AH-WL could be used in solid state batteries for overcharge protection. 

The compound A has in fact already been suggested for this very purpose for use in

194
lithium batteries .

193
M. T. Carter and A  J. Bard, J. Electroanal. Chem., 1987, 229,191-214.

194
M. N. Golovin, D. P. Wilkinson, J. T. Dudley, D. Holonko, and S. Woo, J. Electrochem. Soc., 1992, 

139(1), 5-10.

137



3. Biferrocene / biferrocenium on clay.

The study o f factors affecting electron transfer between metal complexes in solution and

144
within biological processes has been ongoing for many years now . Some o f the most 

revealing work in recent years has been carried out by Hendrickson et a l , by using

149 • * i
various substituted biferrocenium complexes as a model . By systematically varying the 

ring substituent, anion and solvent molecules in the ciystal structure, it was discovered 

that the rate and temperature o f the onset o f valence electron de-trapping (VEDT) was 

extremely sensitive to the immediate environment around the biferrocenium cation. So 

sensitive is this effect, that different isomorphs o f the same material were found to exhibit 

VEDT at different temperatures. As changing the anion or solvent molecule has an 

impact on the crystal structure, a means o f eliminating one or more variables was 

necessary. An attempt to intercalate a biferrocenium compound between the layers o f a 

clay was thus attempted. The clay acts as a dilute anion with no distinct cluster of 

charge. In addition the layers o f the clay act as an insulator, effectively screening the 

biferrocenium molecules from each other. Further, the clay is able to reversibly absorb 

differing amounts o f solvent. A direct means o f studying the effect o f solvent on VEDT 

within the biferrocenium molecule should now be possible. It was with this thought in 

mind that the following study was undertaken.
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3.1 Experimental

3.1.1 Materials.

N,N-dimethylaminomethylferrocene, butyllithium, anhydrous cobaIt(II)chIoride, 

and the Brockm ann G rade II  alum ina were supplied by Aldrich Chemicals. 

Tetrahydrofuran, supplied by Aldrich, was distilled over potassium using 

benzophenone as an indicator. Benzene, diethyl-ether, methanol and petroleum -ether

(b.p.40-60°C) were supplied by BDH chemicals. The acid clay used was the same as 

prepared earlier (see section 2.1.2.2).

3.1.2 Compound Preparation.

3.1.2.1 2,2” - and 2,5” - bis[(dimethylamino)methyl]biferrocene

195This was based on the method o f Booth et a l . [(Dimethylamino)methyl]ferrocene 

(4.86 g, 0.02 mol) was dissolved in dry tetrahydrofuran (100 ml), and n-butyllithium 

(0.03 mol) in hexane was added. After stirring for 3 hours at room temperature a solid 

bright orange precipitate is seen. The mixture was then cooled to -80 °C, and anhydrous 

cobalt(II)chloride was added. The mixture was stirred for 1 hour at -80 °C, and then left 

stirring overnight to warm to room temperature. The mixture was quenched by the 

addition o f water, and then made basic with an excess o f 1 M sodium hydroxide. The

195
D. J. Booth, G. Marr, andB. Rockett, J. Organometallic Chem., 1971, 227.
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black suspension resulting was extracted repeatedly with benzene, and the extracts dried 

over anhydrous magnesium sulphate. This was then evaporated to low bulk and 

chromatographed on alumina in benzene /  light petroleum ether. Diethylether /  light 

petroleum ether eluted the 2,5”-bis[(dimethylamino)methyl]-biferrocene (AA5) (1.5 g, 

31% yield). Diethylether eluted the starting material (1.9 g). Finally, methanol / 

diethylether eluted the 2,2” - bis[(dimethylamino)methyl]-biferrocene (AA) (1.2 g, 25% 

yield). C, H, N  analysis: theory; C = 64.49, H = 6.66, N = 5.78; found C = 64.39, H  = 

6.71, N  = 5.66.

3.1.2.2 [2,2” - bis[(dimethylammonium)methyl]biferrocene] Westone-L.

2,2” - bis[(dimethylamino)methyl]biferrocene (0.2 g, 1 CEC, 0.41 mmol) was dissolved 

in 50 ml tetrahydrofuran /  methanol and 0.5 g o f HWL (dried 120 °C) was added. The 

resulting suspension was left to stir for 3 hours, then centrifuged and the supernatant 

removed. The residue was then washed with petroleum ether (3 x 50 ml), diethylether (1 

x 50 ml), and finally methanol (3 x 50 ml). C, H, N  analysis: theory (100% exchange o f 

+2 species) C = 12.1, H  = 1.25, N = 1.09; found C = 9.10, H = 1.25, N  = 0.81. This is 

consistent with 75 % exchange o f the total CEC. The product (referred to as AA-HWL) 

was split into two equal parts, one half o f which was left to diy in air at room 

temperature, and the other half which was contacted once again with the supernatant for 

a further 45 hours. This was isolated, washed as before, and left to dry in air at room 

temperature. This second product is referred to as AA-HWL(48).
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3.1.2.3 [2,2” - bis[(dimethylammonium)methyl]biferrocenium]-HWL.

Iodine (0.01 g, 0.09 mmol) was dissolved in 30 ml o f hexane and [2,2” - 

bis[(dimethylammonium)methyl]biferrocene]-HWL (AA-HWL) (0.1 g) added. The 

resulting suspension was left to stir for 12 hours, then centrifuged, washed (3 x 50 ml 

hexane, 1 x 50 ml diethylether, 3 x 50 ml methanol), and then left to diy in air at room 

temperature. The product will be referred to as AA -HWL.
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3.2 Results and Discussion.

3.2.1 Infra-Red Spectroscopy.

Infra-red spectroscopy proved o f little use in identifying the products. Ferrocene has a C- 

H stretch at 815 cm’1. This shifts to 851 cm'1 in ferrocenium triiodide, providing a useful 

insight into the oxidation state o f the molecule. The compound AA exhibited two strong 

C-H stretches at 801 and 818 cm'1. Typically, with biferrocenium compounds one o f the 

bands shifts to around 845 cm'1. This gives an immediate indication o f the oxidation state 

o f the compound, potentially allowing an important insight into the interaction o f the 

molecule upon intercalation into the clay. Unfortunately, in this case these bands are 

totally obscured by the overlying aluminosilicate bands which swamp the whole spectrum 

in this region. There should be a symmetric ring-metal-ring Raman active stretch in this 

spectral region, which could be useful since the aluminosilicate region is very sharp and 

unobtrusive in the raman spectrum. Unfortunately, the opportunity to test this has not 

arisen at the present time.

3.2.2 Thermogravimetric Analysis.

The derivative thermogram of AA (see Figure 3.1) exhibited a maximum at 330°C, 

corresponding to 74 % o f the total weight lost. A smaller weight loss, associated with 9 

% o f the total weight loss, was also observed at 620 °C. These weight losses cannot be
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equated to the loss of any specific fragments, but does show that the molecule 

decomposes above 300 °C in a nitrogen atmosphere.

Figure 3.1 Derivative thermograms of AA, HW L, AA-HWL.
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The derivative thermogram for AA-HWL shows the desorption of physisorbed water

184
below 100°C , as observed for H-WL (Figure 3.1) but after this there was little fine
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structure. The derivative thermogram suggested a weight loss beginning at 190 °C, 

peaking at 360 °C and then tailing away towards 430 °C. 20 % o f the overall weight loss 

occurred over this range. This is broadly consistent with the major weight loss seen with 

AA. Above 430 °C, the derivative thermogram once again rises, peaking at 480 °C, and 

then diminishing towards 520 °C. A further 9 % was lost in this range. This amount is 

too large to be attributed to the kaolinite impurity alone. At 520 °C the major loss 

corresponding to 55 % o f the overall weight loss started to occur. There was some 

evidence o f a shoulder at 650°C before the derivative thermogram peaked at 740 °C, and 

then fell sharply away. It is interesting to note that this peak was also present in the AH- 

WL sample. Again it is difficult to establish the source o f this weight loss without mass 

spectrometry, but it does suggest that as with A, AA may also decompose by a different 

route when supported on the clay.

3.2.3 Thermal Desorption M ass Spectroscopy.

The total ion current for the AA-HWL sample remained relatively constant throughout 

the temperature range (Figure 3.2). The TIC was comprised o f three main features. The 

first was a sharp peak around 75°C, which was caused by the loss o f physisorbed solvent 

(methanol/THF) and water from the interlayer o f the clay. Two further features were 

visible. The first started at 280°C, reached a maximum at 450°C, and then fell away until 

490°C. The second began at 490°C, peaked at 660°C, and diminished towards 690°C. 

Beneath the second peak (maximum 430°C), fragments o f m/z = 65, 121 and 186 were 

abundant, although fragments o f m/z = 79, 134, and 200 were also present in small 

quantities(Figure 3.3).
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Figure 3.2 TIC for AA-HWL
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A veiy small amount o f m/z = 214 was also detected, (m/z 243 = CpFeCpCH2NMe2 (Cp 

= cyclopentadienyl, Me = methyl), 214 = CpFeCpCH2NH, 200 = CpFeCpCFfe, 186 = 

CpFeCp, 134 = FeCpCH2, 121 = FeCp, 79 = CpCH3, Cp = 65). Once again it is clear 

that ferrocene was being lost from the interlayer as it had been with the AH-WL samples

(see section 2.2.5). As has been mentioned before (see section 2.2.5) this is in direct

182
contradiction to previous work by both Breen et al. on iron tricarbonyls supported on

33 •

montmorillonite and Borvomwattanont et al. on the ferrocenium-zeolite-Y composite. 

In general the results agree favourably with those obtained from thermogravimetric 

analysis. It should be noted at this stage that the TD-MS was carried out in vacuo 

whereas the TGA was carried out under a dynamic atmosphere o f nitrogen gas.
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Figure 3.3 Thermal Desorption Mass Spectra for AA and AA-HWL
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As with the AH-WL samples, further heating above 490°C led to a decrease in the ion 

current due to fragments m/z = 121  and 186, with an increase in the ion current from 

fragments o f m/z = 65 and 79. A small amount o f m/z = 1 3 4  and a trace o f m/z = 214 

were also detected. This behaviour continued until 660°C where a decrease in all 

fragment intensities was observed. It would appear that as with the AH-WL samples, at 

least two decomposition processes are in operation. The first dominating below 490°C 

involves the loss o f fragments containing iron. The second dominates above 490°C 

during which the iron remains on the clay and only organic fragments are lost. Once 

again (see section 2.2.5) there was no sign o f fragments from the ammonium side chain 

being lost throughout the temperature range. This indicates a strong interaction between 

the ammonium side chain and the clay lattice.

3.2.4 Variable Temperature X-Ray Diffraction.

As noted earlier (see section 1.2.2), Na-WL has a d0oi-spacing of 1.25nm at 25°C, which 

collapses at temperatures near 55°C to yield a spacing o f 0.95nm. The room temperature 

scan o f AAHWL exhibited a d-spacing o f 1.65 nm, indicating that the molecule AA was 

indeed residing within the interlayer. Molecular modelling using Microsoft 

Chemwindows indicated that the molecule AA had dimensions o f 0.7nm ring-ring, 0.6nm 

ring depth, and 1.7nm width from amine to amine (see Figure 3.4). As seen in section 

2.2.6 swelling lattices present a measure o f uncertainty when attempting to correlate the
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196
increase in the interlayer distance with the dimensions of the guest molecule . With 

clays the interlayer distance is typically 0.1-0.2 nm less than the predicted increase.

Figure 3.4 Diagram of AA and door-spacing.

/K

Fe0.7nm

The observed interlayer distance o f 1.65 nm is therefore consistent with the molecule 

being orientated with the cyclopentadienyl rings perpendicular and the long axis o f the 

molecule parallel to the interlayer sheet. This is in agreement with the work by 

Hendrickson et al. on the diethylbiferrocenium - SWY-1 montmorillonite clay 

composite152. This conforms with the assumed orientation o f AH* in AH-WL discussed in 

section 2, and agrees well with other work by Okuno et al. on the intercalation o f

197
biferrocenes into VOPO4 and V2O5 . This is in accord with the majority o f ferrocene 

intercalates, which produce a single layer o f ferrocene molecules sandwiched between

196
F. Faizenah andT. J. Pinnavaia, Inorganic Chemistry, 1983,22, 2210-2216.
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the layers of the host, although bilayers have been observed by O’Hare et al ̂  with 

M 0O3 and Zr(HPC>4)2. However, the possibility that the molecule lies with the rings 

parallel to the interlayer sheet cannot be discounted (see Figure 3.4). At a temperature o f 

250°C the spacing decreased to 1.41 nm, after which it slowly decreased to 1.29 nm at 

400°C (Figure 3.5).

Figure 3.5 Variable Temperature XRD spectra for AA-HWL
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Considering both the TGA and TD-MS measurements were carried out under dynamic 

conditions, whereas in this case the compound is held for a long period o f time at an

197
S. Okuno and G-E. Matsubayashi, Chem. Lett., 1993, 799-802.
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elevated temperature, this is in good agreement with the TGA /  TD-MS measurements 

which show a gradual weight loss from 200°C onwards (see section 3.2.2 and 3.2.3).

The diffraction profiles in Figure 3.5 provide no evidence o f a peak corresponding to a 

fully collapsed spacing which would indicate that all the organometallic component had 

been lost. This indicates that not only is the molecule between the layers, but that it may 

also be homogeneously distributed throughout the interlayer.

Table 3.1 Peak Index ofVT-XRD of AA-HW L

T/°C Peak 20/° I / % d /nm h k I Assignment
20 1 06.22 100 16.49 0 0 1 AA-HWL
20 2 12.37 8 8.31 0 0 2 AA-HWL
20 3 19.28 15 5.35 0 0 3 AA-HWL
20 4 22.93 8 4.50 0 0 1 Opaline Silica
20 6 32.62 7 3.19 0 0 6 AA-HWL
50 1 6.32 100 16.28 0 0 1 AA-HWL
50 2 12.66 8 8.12 0 0 2 AA-HWL
50 3 19.47 14 5.29 0 0 3 AA-HWL
50 4 23.02 8 4.49 0 0 1 Opaline Silica
50 6 32.91 7 3.16 0 0 6 AA-HWL
100 1 6.42 100 16.00 0 0 1 AA-HWL
100 2 12.75 8 8.06 0 0 2 AA-HWL
100 3 19.47 13 5.29 0 0 3 AA-HWL
100 4 23.02 8 4.49 0 0 1 Opaline Silica
100 6 32.62 5 3.19 0 0 6 AA-HWL
150 1 6.42 100 16.00 0 0 1 AA-HWL
150 2 12.56 9 8.18 0 0 2 AA-HWL
150 3 19.38 13 5.32 0 0 3 AA-HWL
150 4 22.93 9 4.50 0 0 1 Opaline Silica
150 6 33.10 7 3.14 0 0 6 AA-HWL
200 1 6.51 100 15.76 0 0 1 AA-HWL
200 3 19.57 9 5.27 0 0 3 AA-HWL
200 4 23.02 12 4.49 0 0 1 Opaline Silica
200 6 31.38 10 3.31 0 0 6 AA-HWL
250 1 7.18 100 14.29 0 0 1 AA-HWL
250 2 12.18 13 8.44 0 0 2 AA-HWL
250 3 19.28 11 5.35 0 0 3 AA-HWL
250 4 23.12 16 4.47 0 0 1 Opaline Silica
250 6 31.76 15 3.27 0 0 6 AA-HWL
300 1 7.66 100 13.39 0 0 1 AA-HWL
300 2 13.81 14 7.45 0 0 2 AA-HWL
300 4 22.93 17 4.50 0 0 1 Opaline Silica
300 6 32.05 15 3.24 0 0 6 AA-HWL
350 1 7.95 100 12.93 0 0 1 AA-HWL
350 2 13.90 16 7.40 0 0 2 AA-HWL
350 3 18.70 12 5.51 0 0 3 AA-HWL
350 4 22.93 5 4.50 0 0 1 Opaline Silica
350 6 31.95 18 3.25 0 0 6 AA-HWL
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3.2.5 Variable Temperature Mossbauer Spectroscopy.

3.2.5.1 2,2”-bis[(dimethylammonium)methyl]biferrocene.

The Mossbauer spectrum o f 2,2”-bis[(dimethylammonium)methyl]biferrocene consisted 

o f a single doublet (A = 2.36 ± 0.02 mm/s) which remained constant between 15 and 300 

K (see Table 3.2). The isomer shift exhibited a standard second order Doppler shift 

effect, with a value o f 0.41 ± 0.02 mm/s at 15 K decreasing to 0.33 ± 0.02 mm/s at 300 

K. Analysis o f the normalised spectral areas led to a Debye temperature (0D) o f 172 ± 5 

K, and a recoil free fraction at 29IK ( f 9i) o f 0.26 ± 0.02. The Debye temperature was 

higher than that observed in the chloride salt o f N,N-dimethylaminomethylferrocene (0D= 

144 ± 5 K), indicating that the lattice in the 2,2”-bis[(dimethylammonium)methyl]- 

biferrocene is more rigid. The half-widths o f the doublet increase from 0.23 mm/s at 15 

K to 0.25 mm/s at 300K. This is due to increased vibration within the solid as the

temperature is raised. These values are typical for this type o f material and agree well

180  •

with similar work published by Hendrickson et a l on other biferrocenes and 

biferrocenium salts. Unfortunately a complete comparison is not possible due to a lack o f 

published low temperature data (i.e. below 120 K).
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Figure 3.6 VT-Mossbauer spectra of AA.
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Table 3.2 Fitting parameters for AA

T (K) Phase 8 (mm/s) A (mm/s) r, (mm/s) rr (mm/s) Norm. Area %  Area X2
16 Fe3+ 0.03 0.50 0.60 0.48 0.124 05.69 2.4
16 Fe2+ 0.41 2.35 0.23 0.23 2.048 94.31 2.4
55 Fe3+ 0.03 0.30 0.76 0.48 0.133 06.69 0.5
55 Fe2* 0.40 2.35 0.23 0.24 1.855 93.31 0.5
100 Fe3+ 0.05 0.56 0.66 0.48 0.120 06.68 0.6
100 Fe2+ 0.39 2.36 0.24 0.24 1.683 93.32 0.6
150 Fe3+ 0.06 0.55 0.65 0.48 0.123 06.68 0.6
150 Fe2+ 0.38 2.37 0.25 0.25 1.340 93.32 0.6
200 Fe3+ 0.06 0.55 0.65 0.48 0.108 9.22 0.4
200 Fe2+ 0.36 2.36 0.27 0.26 1.059 90.78 0.4
250 Fe3+ 0.06 0.55 0.64 0.51 0.133 15.09 0.6
250 Fe2+ 0.34 2.37 0.25 0.25 0.750 84.91 0.6
300 Fe3+ 0.04 0.47 0.50 0.36 0.105 16.46 0.7
300 Fe2+ 0.33 2.35 0.25 0.24 0.535 83.54 0.7

Errors: T = ±2K,S  = ± 0.02 mm/s, A = ± 0.02 mm/s, T = ± 0.02 mm/s. 
Fe3+ = A ferric inpurity.
Fe2+ = Iron (II) in biferrocene.

3.2.5.2 Mossbauer spectra of AA-HWL, AA-HWL(48) and AA+-HWL

The Mossbauer spectra o f AA-HWL, AA-HWL(48) and AA+-HWL appear at first to 

consist o f two “nested” doublets. A sharp outer doublet characteristic o f AA, and a 

broad inner doublet consistent with HWL. However, subsequent fitting proved more 

complex. A close examination o f the spectra revealed that the intensity o f the biferrocene 

peaks had decreased from the AA-HWL spectra to the AA-HWL(48) and AA+-HWL 

spectra. It was considered that some o f the biferrocene may have oxidised during the 

contact time with the clay, so a third doublet, with the fitting parameters o f (8i6k = 0.34 

mm/s, A=1.17 mm/s), was introduced. As the reduction in the intensity o f the biferrocene 

doublet was most pronounced for the AA+-HWL sample, the fitting was first performed 

using these data sets in order to reduce possible errors. The fitted values were then taken 

and an attempt to fit the AA-HWL(48) and AA-HWL spectra was attempted.
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Figure 3.7 Spectra of A) AA-HWL, B) AA-HWL(48) and C) AA+-HWL.
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Table 3.3 AA+-HWL fitting parameters for 3 phase model.

T (K) Phase 6 (mm/s) A (mm/s) r, (mm/s) rr (mm/s) Norm. Area %  Area t
16 Fe3+(i) 0.29 0.58 0.56 0.56 0.368 20.81 0.7
16 Fe2+ 0.45 2.35 0.32 0.35 1.362 77.11 0.7
16 Fe3+ 0.34 1.17 0.32 0.32 0.037 02.08 0.7

100 Fe3+(i) 0.30 0.58 0.56 0.56 0.360 28.44 0.5
100 Fe2+ 0.43 2.34 0.32 0.37 0.882 69.64 0.5
100 Fe3+ 0.34 1.17 0.32 0.32 0.024 01.90 0.5
150 Fe3+(i) 0.30 0.58 0.56 0.56 0.367 33.52 0.6
150 Fe2+ 0.42 2.32 0.38 0.41 0.709 64.74 0.6
150 Fe3+ 0.34 1.17 0.32 0.32 0.019 01.74 0.6
200 Fe3+(i) 0.28 0.58 0.56 0.56 0.344 38.74 0.7
200 Fe2+ 0.40 2.31 0.38 0.42 0.530 59.68 0.7
200 Fe3+ 0.36 1.17 0.32 0.32 0.014 01.58 0.7
250 F e^ i) 0.25 0.58 0.56 0.56 0.277 46.71 0.6
250 Fe2+ 0.36 2.31 0.39 0.43 0.325 54.75 0.6
250 Fe3+ 0.37 1.17 0.32 0.32 0.009 01.46 0.6
0D(Clay)=286K, f291(Clay)=0.61 0D (AA)=149K, f291(AA)=0.17 0d  (Fe3+)=170K, f29i(Fe3+)=0.25

Errors:T = ± 2K ,8  = ± 0.02mm/s, A = ± 0.02mm/s,T = ± 0.02mm/s,9d = ± 5 K,f29i = 0.02. 
Fe3+ (i) = Inorganic iron present in the clay.
Fe2+ = Iron(II) biferrocene/biferrocenium molecules.
Fe3+ = Iron(III) in the biferrocenium molecules.

It was noticed that the Debye temperature o f the extra phase was characteristic o f an 

organometallic compound (0D= 170 K), rather than that o f an inorganic salt (Typically > 

300 K), and that although the fit worked well for the lower temperatures, it became 

increasingly erroneous at higher temperatures. This indicated that the biferrocene had not 

decomposed during the contact with the clay, but had merely oxidised to biferrocenium. 

This is in good agreement with both the TGA, TD-MS and XRD data (see sections 

3.2.2, 3.2.3, 3.2.4 respectively), which showed that the compound was stable in the 

interlayer up to 200°C. In order to account for this high temperature discrepancy, a 

fourth doublet was added, this time characteristic o f a charge averaged biferrocenium 

species (83ook = 0.37mm/s, A = 1.22 mm/s). The transfer o f an electron between the two 

iron centres above a certain temperature is known as valence electron de-trapping

(VEDT), and has been studied extensively by both Hendrickson, Dong and co-

180
workers . At this stage there were a number o f ways o f fitting the observed spectra.
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VEDT proceeds by one o f three scenarios (see section 1.4.3). Hendrickson notes that 

each iron atom sits in a potential energy well defined by the local environment.

Figure 3.8 Potential well diagrams.
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environmental effects. B  resu lts  i f  the environm ent about the mixed valence com plex is  
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The symmetry o f the environment surrounding the biferrocene molecule affects the depth 

o f these potential energy wells. In scenario one, the difference in the depth o f the wells is 

o f a similar magnitude to the random thermal energy available in the crystal (kT). I f  the 

transfer is initially slower than the time scale o f the Mossbauer experiment (i.e. <10 s'1), 

then only two resonances, one for iron(H) and one for iron(III) will be seen. As the 

temperature is raised, some o f the molecules gain enough energy to be able to transfer an 

electron. I f  the transfer occurs at a rate comparable to the time scale o f the Mossbauer 

experiment (i.e. ~10 s'1), then an additional resonance characteristic o f iron(2.5) will also 

be seen. In this case a broadening o f all the resonances will also be observed. Any further 

rise in temperature leads to an increase in the number o f molecules transferring an 

electron, and also the electron transfer rate. This causes the iron(2.5) resonance to grow 

at the expense o f the iron(II) and iron(III) resonances.
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In scenario two, a change occurs within the crystal which alters the shape o f the potential 

wells. This could be caused by the onset o f motion o f a counter ion or solvate molecule. 

This produces a more symmetric environment around the molecule. As the symmetry of 

the environment around each iron centre becomes similar, a mirror like, double well type 

potential is produced, and the likelihood o f the transfer o f an electron between the two 

centres increases. As the temperature is increased the motion o f the counter ion or 

solvate molecule increases, and so in turn does the intramolecular electron transfer 

(vibronic coupling). In this model, if the transfer is comparable to the Mossbauer 

experiment time-scale, the Fe(II) and Fe(III) resonances simply move towards each 

other, until they finally merge to form an average resonance. At no stage is there any line 

broadening. This type o f de-trapping is sometimes referred to as “fusion” type de

trapping, and has been observed in compounds such as 1’, 1 ’’ ’-dibenzylbiferrocenium 

hexafluorophosphate150.

In scenario three there is once again some change within the solid as in scenario two. 

However, in this case it is restricted to small domains within the solid. As the 

temperature is raised these domains become larger and larger, until finally the whole 

solid is affected. In this case, the resonances due to the Fe(II) and Fe(III) will be present, 

and if the electron transfer in the ‘changed’ domains is greater than 10 Hz, a further 

average resonance representing the valence de-trapped domains will be seen. This 

average resonance will increase in intensity as the temperature increases, while the 

intensity o f the Fe(II) and Fe(IH) resonances decreases. Eventually only the average 

resonance will be present. Again, no line broadening is seen. This type o f de-trapping is
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sometimes referred to as “domain” de-trapping, and has been observed in compounds

149
such as 1 1 ” ’-dibenzylbiferrocenium triiodide .

In this present case the problem was compounded by the broad Fe3+ doublet (arising 

from the clay) overlying the central area o f the spectrum. Under this resonance it is 

almost impossible to fit any precise features, making the temperature range at which any 

de-trapping starts almost impossible to determine. A close inspection o f the fit, the 

normalised areas and finally the spectral intensities was needed to solve the puzzle. A 

close examination o f the normalised area temperature data for the organometallic phase 

in the AA+-HWL spectra revealed an “elbow” in the data around 200 K (see Figure 3.9), 

where the data switched from one type o f straight line behaviour to another. This has

been seen by several groups who have attributed its cause to a number o f different

180 • •
reasons. Pertinent to this study is the observation o f Hendrickson et a l While studying 

the biferrocenium, compounds they also noticed a break from the standard straight line 

behaviour in the normalised area vs. temperature data as the compound de-trapped. This 

was a direct result o f a phase transition producing a “softer” lattice, whilst also inducing 

the valence electron de-trapping. This argument was backed up by both differential 

scanning calorimetry (D.S.C.) and variable temperature electron paramagnetic resonance

198
(V.T.E.P.R.) measurements .

However, once again the problem herein was compounded by the physiochemical 

characteristics o f the clay. A similar elbow in the normalised area temperature data had

198
R. J. Webb, P. M. Hagen, R. J. Wittebort, M. Sorai, andD. N. Hendrickson, Inorg. Chem., 1992, 32, 

1791-1801.
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89 190 •
been observed by both Breen et a l and Simopoulos et al. whilst studying organotin 

cations exchanged on montmorillonite, and more interestingly, around the same 

temperature observed here.

Figure 3.9 LNAT plot for AA+-HWL organometallic phase.
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Their conclusion was that the molecule gained a degree o f freedom as the interlayer 

water melted. This left a softer lattice, thus producing a second region o f straight line 

behaviour from the point the interlayer water melted. It should be noted here that this 

behaviour was not seen in the monomer N,N-dimethylaminomethylferrocene (see section 

2.2.7). It should be noted here that a third possibility also exists. Whilst studying

199 •
polyvinylferrocenes Plimley et al. noted a similar deviation from straight line 

behaviour. It was concluded that this was caused by an anharmonic bending mode within 

the molecule. However this behaviour was not observed in AA. It was therefore possible 

that any or indeed all o f these possibilities could be contributing to the elbow in Figure

199
S. Plimley, G. C. Corfield, J. S. Brooks, and C. M. Care, Hyperfine Interactions, 1984, 20, 151-167.

159



3.9. An attempt was therefore made to fit the spectra using scenario two (“fusion” de

trapping) with the assumption that the de-trapping occurred after 200K. This produced a 

good fit (see Table 3.4, Table 3.5, and Table 3.6), and a subsequent analysis o f the 

normalised spectral areas yielded a Debye temperature of 343 K for the clay, and 147 K 

for the organometallic phases. As a concluding check, the ratio o f Fe(II,n) to Fe (II,III) 

was compared. Assuming the two systems have similar Debye temperatures, this ratio 

should be constant throughout the temperature range. When calculated the relative areas 

o f the biferrocene/biferrocenium were reasonably constant (AA-HWL = 5 5 + 3 ,  AA- 

HWL(48) = 8 ± 3 and AA+-HWL = 6 + 2) indicating that the “fusion” model was 

theoretically consistent.

Table 3.4 AA-HWL fitting parameters for “fusion” de-trapping.

T (K) Phase 5 (mm/s) A (mm/s) D (mm/s) rr (mm/s) Norm. Area % Area t
16 Fe3+(i) 0.27 0.58 0.56 0.56 0.315 10.88 0.8
16 Fe2" 0.44 2.41 0.24 0.27 2.555 88.32 0.8
16 Fe3" 0.49 0.60 0.32 0.32 0.023 00.79 0.8
50 Fe*"(i) 0.27 0.58 0.56 0.56 0.330 12.92 1.6
50 Fe2" 0.43 2.41 0.25 0.27 2.203 86.30 1.6
50 J Fe3" 0.49 0.60 0.32 0.32 0.02 00.78 1.6
100 Fe3" (i) 0.26 0.58 0.56 0.56 0.322 16.94 1.1
100 Fe2" 0.42 2.40 0.24 0.27 1.574 82.33 1.1
100 Fe3" 0.49 0.60 0.32 0.32 0.028 01.48 1.1
150 Fe*"(i) 0.26 0.58 0.56 0.56 0.308 21.11 0.8
150 Fe2" 0.41 2.39 0.24 0.28 1.132 77.50 0.8
150 Fe3" 0.47 0.60 0.32 0.32 0.020 01.40 0.8
200 Fe3"(i) 0.23 0.58 0.56 0.56 0.303 27.40 1.1
200 Fe2" 0.39 2.38 0.24 0.27 0.789 71.31 1.1
200 Fe(2+X>" 0.38 1.51 0.32 0.32 0.007 00.64 1.1
200 Fe(3‘x>" 0.40 1.07 0.32 0.32 0.007 00.64 1.1
250 Fe3"(i) 0.23 0.58 0.56 0.56 0.281 33.21 1.0
250 Fe2" 0.36 2.38 0.25 0.28 0.555 65.61 1.0
250 Fe25" 0.37 1.22 0.32 0.32 0.010 01.18 1.0
300 Fe3"(i) 0.18 0.58 0.56 0.56 0.284 40.13 0.9
300 Fe2" 0.34 2.38 0.26 0.28 0.417 58.81 0.9
300 Fei5" 0.34 1.22 0.32 0.32 0.008 01.06 0.9

0D (Clay) = 480 K,f»i (Clay) = 0.83 0D (Biferrocene) = 139 K, fwitBiferrocene) = 0.13
Errors: T = ± 2 K ,S  = ± 0.02mm/s, A = ± 0.02mm/s,T  = ± 0.02mm/s,0d = ± 5 K, f&i = ± 0.02.
Fe3" (i) = Inorganic iron present in the clay. Fe2" = Iron(II) biferrocene/biferrocenium molecules.
Fe3" = Iron(III) in the biferrocenium molecules. Fe2J+ = Charge averaged iron(2.5) in the biferrocenium molecules.
Fe(2+X>f = Partially de-trapped Fe2+ Fe(3'x) = Partially de-trapped Fe3"
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Table 3.5 AA-HWL(48) fitting parameters for “fusion” de-trapping.

T (K) Phase 8 (mm/s) A (mm/s) r ,  (mm/s) r r (mm/s) Norm. Area % Area t
16 Fe3+(i) 0.27 0.58 0.56 0.56 0.298 21.93 1.1
16 Fe2+ 0.43 2.37 0.29 0.30 1.019 74.94 1.1
16 Fe3" 0.49 0.60 0.32 0.32 0.042 03.13 1.1

100 Fe3+(i) 0.22 0.58 0.56 0.56 0.316 31.06 1.1
100 Fe2" 0.42 2.36 0.30 0.32 0.649 63.66 1.1
100 Fe3+ 0.46 0.60 0.32 0.32 0.054 05.28 1.1
150 Fe3+(i) 0.23 0.58 0.56 0.56 0.296 37.59 2.1
150 Fe2+ 0.40 2.37 0.30 0.31 0.452 57.52 2.1
150 Fe3" 0.43 0.60 0.32 0.32 0.038 04.89 2.1
200 Fe3"^) 0.25 0.58 0.56 0.56 0.286 43.48 1.7
200 Fe2+ 0.39 2.37 0.31 0.32 0.343 52.17 1.7
200 Fe3" 0.40 0.60 0.32 0.32 0.029 04.35 1.7
250 Fe3" (i) 0.23 0.58 0.56 0.56 0.273 50.71 1.1
250 Fe2" 0.36 2.35 0.33 0.32 0.245 45.51 1.1
250 Fe*3" 0.37 1.22 0.32 0.32 0.020 03.78 1.1
300 Fe3"(i) 0.18 0.58 0.56 0.56 0.270 57.87 1.4
300 Fe2" 0.33 2.35 0.33 0.34 0.182 38.90 1.4
300 Fe*5" 0.34 1.22 0.32 0.32 0.015 03.23 1.4

0D (Clay) = 449 K, f29i (Clay) = 0.81 0D (Biferrocene) = 142 K, f29i(Biferrocene) = 0.14
Errors: T = ± 2K ,  8 = ± 0.02 mm/s, A = ± 0.02 mm/s, T = ± 0.02 mm/s, 0d = ± 5 K, f2gi = ± 0.02.
Fe3"(i) = Inorganic iron present in the clay. Fe2+ = Iron(II) biferrocene/biferrocenium molecules.
Fe3" = Iron(III) in the biferrocenium molecules. Fe*3" = Charge averaged iron(2.5) in the biferrocenium molecules.

Table 3.6 AA+-HWL fitting parameters for “fusion” de-trapping.

T (K) Phase 8 (mm/s) A (mm/s) T] (mm/s) r r (mm/s) Norm. Area % Area t
16 Fe3"(i) 0.28 0.58 0.56 0.56 0.337 19.20 0.6
16 Fe2" 0.45 2.35 0.32 0.35 1.368 77.84 0.6
16 Fe3" 0.49 0.60 0.32 0.32 0.052 02.96 0.6

100 Fe3"(i) 0.26 0.58 0.56 0.56 0.344 26.88 0.6
100 Fe2" 0.43 2.34 0.32 0.37 0.872 68.01 0.6
100 Fe3" 0.46 0.60 0.32 0.32 0.065 05.11 0.6
150 Fe3"(i) 0.28 0.58 0.56 0.56 0.323 29.67 0.7
150 Fe2" 0.42 2.32 0.38 0.41 0.711 65.28 0.7
150 Fe3" 0.43 0.60 0.32 0.32 0.055 05.04 0.7
200 Fe3"(i) 0.27 0.58 0.56 0.56 0.314 33.46 0.7
200 Fe2" 0.39 2.31 0.38 0.42 0.533 60.28 0.7
200 Fe3" 0.40 0.60 0.32 0.32 0.038 04.26 0.7
250 F e^ i) 0.21 0.58 0.60 0.60 0.268 44.59 0.6
250 Fe2" 0.36 2.31 0.35 0.39 0.295 49.08 0.6
250 Fe*5" 0.37 1.22 0.32 0.32 0.038 06.32 0.6

0D (Clay) = 343 K, f291 (Clay) = 0.70 0D (Biferrocene) = 147 K, f29i (Biferrocene) = 0.16
Errors: T = ± 2 K , 6  = ± 0.02 mm/s, A = ± 0.02 mm/s, T = ± 0.02 mm/s, 0D = ± 5 K, f29i = ± 0.02.
Fe3+ (i) = Inorganic iron present in the clay. Fe2" = Iron(II) biferrocene/biferrocenium molecules.
Fe3+ = Iron(III) in the biferrocenium molecules. Fe*3" = Charge averaged iron(2.5) in the biferrocenium molecules.
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An attempt to fit the data using scenario three (“domain” de-trapping) was then 

attempted, with the assumption that de-trapping again occurred at 200 K. Reasonable fits 

were again obtained, and the normalised area temperature data appeared to be consistent 

with an inorganic clay phase and three organometallic phases (see Table 3.7, Table 3.8, 

and Table 3.9). A close inspection o f the biferrocene/biferrocenium ratio indicated that 

this model could also be considered consistent, although more scatter was observed in 

the biferrocene/biferrocenium ratio than for the “fusion” type de-trapping constant (AA- 

HWL = 40 ± 14, AA-HWL(48) = 8 ± 4 and AA+-HWL = 7 ± 3). The increased scatter is 

most likely a consequence o f the fitting routine. More consistent values could be 

produced if the areas o f the phases were fixed. The phase areas in this case are o f a 

similar magnitude to the spectral noise making precise fitting difficult.

Table 3.7 AA-HWL fitting parameters for “Domain” de-trapping.

T(K) Phase 8 (mm/s) A (mm/s) Ti (mm/s) rr (mm/s) Norm. Area %  Area t
16 Fe3"(i) 0.23 0.58 0.56 0.56 0.302 10.44 0.8
16 Fe2" 0.44 2.41 0.24 0.27 2.554 88.24 0.8
16 Fe3+ 0.50 0.60 0.32 0.32 0.038 01.32 0.8
50 Fe3+(i) 0.23 0.58 0.56 0.56 0.302 11.81 1.4
50 Fe2+ 0.43 2.41 0.25 0.27 2.203 86.23 1.4
50 Fe3" 0.49 0.60 0.32 0.32 0.050 01.96 1.4
100 Fe3+(i) 0.21 0.58 0.56 0.56 0.264 13.68 1.0
100 Fe2" 0.42 2.40 0.24 0.27 1.582 81.94 1.0
100 Fe3" 0.48 0.60 0.32 0.32 0.085 04.38 1.0
150 Fe3+(i) 0.22 0.58 0.56 0.56 0.268 18.33 0.7
150 Fe2" 0.41 2.39 0.24 0.28 1.135 77.59 0.7
150 Fe3" 0.47 0.60 0.32 0.32 0.059 04.09 0.7
200 Fe3"(i) 0.20 0.58 0.56 0.56 0.262 23.50 0.8
200 Fe2" 0.39 2.38 0.24 0.27 0.787 70.63 0.8
200 Fe3" 0.46 0.60 0.32 0.32 0.065 05.87 0.8
250 Fe3"(i) 0.20 0.58 0.56 0.56 0.247 28.99 0.8
250 Fe2" 0.36 2.38 0.25 0.28 0.554 65.03 0.8
250 Fe15" 0.37 1.26 0.32 0.32 0.030 03.51 0.8
250 Fe3" 0.41 0.60 0.32 0.32 0.021 02.47 0.8
300 Fe3"^) 0.17 0.58 0.56 0.56 0.248 35.23 0.9
300 Fe2" 0.34 2.38 0.26 0.28 0.422 59.90 0.9
300 Fe13" 0.34 1.26 0.32 0.32 0.034 04.87 0.9

0D (Clay) = 283 K, f29i (Clay) = 0.60 0D (Biferrocene) = 151 K, f29i(Biferrocene) = 0.18
Errors: T = ± 2 K , 8  = ± 0.02mm/s, A = ± 0 .02mm/s, T = ± 0.02mm/s, 0D = ± 5 K ,f29J = ± 0.02.
Fe3+ (i) = Inorganic iron present in the clay. Fe2" = Iron(II) biferrocene/biferrocenium molecules.
Fe3+ =Iron(III) in the biferrocenium molecules. Fe23" = Charge averaged iron(2.5) in the biferrocenium molecules.
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Table 3.8 AA-HWL(48) fitting parameters for “domain” de-trapping.

T (K) Phase 8 (mm/s) A (mm/s) Ti (mm/s) r r (mm/s) Norm. Area % Area X2
16 Fe3'(i) 0.27 0.58 0.56 0.56 0.298 21.93 1.1
16 Fe2' 0.43 2.37 0.29 0.30 1.019 74.94 1.1
16 Fe3+ 0.49 0.60 0.32 0.32 0.042 03.13 1.1

100 Fe3+(i) 0.26 0.58 0.56 0.56 0.277 27.48 1.1
100 Fe2+ 0.42 2.36 0.30 0.32 0.659 65.27 1.1
100 Fe3+ 0.49 0.60 0.32 0.32 0.074 07.26 1.1
150 Fe3'(i) 0.26 0.58 0.56 0.56 0.266 33.96 2.0
150 Fe2+ 0.40 2.37 0.30 0.31 0.460 58.72 2.0
150 Fe3' 0.47 0.60 0.32 0.32 0.057 07.32 2.0
200 F e^ i) 0.25 0.58 0.56 0.56 0.263 39.87 1.5
200 Fe2+ 0.39 2.37 0.31 0.32 0.346 52.50 1.5
200 Fe25' 0.40 1.26 0.32 0.32 0.026 04.02 1.5
200 Fe3' 0.45 0.60 0.32 0.32 0.024 03.61 1.5
250 Fe3'(i) 0.23 0.58 0.56 0.56 0.271 50.21 1.1
250 Fe2+ 0.36 2.35 0.33 0.32 0.244 45.35 1.1
250 Fe23' 0.37 0.74 0.32 0.32 0.024 04.44 1.1
300 Fe3'(i) 0.18 0.58 0.56 0.56 0.267 57.01 1.4
300 Fe2' 0.33 2.35 0.33 0.34 0.181 38.67 1.4
300 Fe23' 0.34 1.22 0.32 0.32 0.020 04.32 1.4

0D (Clay) = 535 K, f29i (Clay) = 0.86 0D (Biferrocene) = 149 K, f29i(Biferrocene) = 0.17
Errors: T = ± 2 K ,  5 = ± 0.02 mm/s, A = ± 0.02 mm/s, T = ± 0.02 mm/s, 9d = ± 5 K, f29] = ± 0.02.
Fe3+(i) = Inorganic iron present in the clay. Fe2'  = Iron(II) biferrocene/biferrocenium molecules.
Fe3'  =Iron(IH) hi the biferrocenium molecules. Fe23'  = Charge averaged iron(2.5) in the biferrocenium molecules.

Table 3.9 AA+-HWL fitting parameters for “domain” de-trapping.

T (K) Phase 8 (mm/s) A (mm/s) Ti (mm/s) rr (mm/s) Norm. Area %  Area t
20 Fe3+(i) 0.27 0.58 0.56 0.56 0.323 18.39 0.6
20 Fe2+ 0.45 2.35 0.32 0.35 1.368 77.80 0.6
20 Fe3' 0.51 0.60 0.32 0.32 0.067 03.82 0.6
100 Fe3+(i) 0.26 0.58 0.56 0.56 0.304 23.93 0.5
100 Fe2+ 0.43 2.34 0.32 0.37 0.882 69.41 0.5
100 Fe3' 0.49 0.62 0.32 0.32 0.084 06.66 0.5
150 Fe3'  (i) 0.27 0.58 0.56 0.56 0.311 28.45 0.6
150 Fe2' 0.42 2.32 0.38 0.41 0.711 65.02 0.6
150 Fe3' 0.47 0.60 0.32 0.32 0.072 06.52 0.6
200 Fe3'(i) 0.25 0.58 0.56 0.56 0.282 31.80 0.7
200 Fe2' 0.40 2.31 0.38 0.42 0.535 60.42 0.7
200 Fe2-3' 0.40 1.26 0.32 0.32 0.036 04.09 0.7
200 Fe3' 0.46 0.60 0.32 0.32 0.033 03.69 0.7
250 F e^ i) 0.23 0.58 0.56 0.56 0.229 38.56 0.6
250 Fe2' 0.36 2.31 0.39 0.43 0.325 54.64 0.6
250 Fe23' 0.37 1.22 0.32 0.32 0.040 06.81 0.6

0D (Clay) = 299 K, f291 (Clay) = 0.63 0D (Biferrocene) = 153 K, f291 (Biferrocene) = 0.18
Errors: T = ± 2 K ,  8 = ± 0.02 mm/s, A = ± 0.02 mm/s, T = ± 0.02 mm/s, 0D = ± 5 K, f29i = ± 0.02.
Fe3+ (i) = Inorganic iron present in the clay. Fe2'  = Iron(II) biferrocene/biferrocenium molecules.
Fe3+ =Iron(III) in the biferrocenium molecules. Fe25+ = Charge averaged iron(2.5) in the biferrocenium molecules.
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Figure 3.10 AA+-HWL Spectra fitted using “domain” de-trapping model.
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It should be noted that Hendrickson et a l observed this “domain” type de-trapping when

152
studying the diethylbiferrocenium - SWy-1 montmorillonite clay composite . The de

trapping in that case started around 125 K, 75 K earlier than the present case. In addition 

only 76 % of the diethylbiferrocenium - SWy-1 montmorillonite had de-trapped by 300 

K. Unfortunately the diagrams o f the spectra and a complete listing o f the fitting 

parameters were never published. This makes comparisons somewhat subjective.

In order to cover every eventuality the lower temperature spectra (below 200K) were 

also fitted with charge-averaged doublets. Although a reasonable fit was obtained, the 

biferrocene/biferrocenium ratios were not consistent and after repeated analysis o f the 

areas and intensities, it was concluded that the solid most likely started de-trapping 

around 200 K. From the limited evidence available, it seems likely that this continued 

until near 250 K where only the average Fe(2.5) peak was justifiable. Unfortunately this 

effect was not noticed until after the experiment had concluded and so a complete 

investigation was not possible.

It is possible that the onset o f the VEDT was a direct result o f the melting o f the 

interlayer water. The onset o f motion o f the water molecules could produce a more 

symmetric environment around the biferrocene molecule. Furthermore, it is conceivable 

that there may be some sort o f vibronic coupling between the water molecules and the 

biferrocene, possibly through the amine functionality. It should be noted however that 

due to the nature o f the spectra, it is possible that a combination o f the models described 

above may be in effect. The clay peak obscures all sharp features, and the fitted areas are 

very small. The amount o f scatter present in the background count makes any definite
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conclusions difficult to justify. It is also possible that within the sample, there were a 

range o f environments, some o f which de-trapped at low temperatures, for instance 

around 100 K and some o f which de-trapped at higher temperatures, say around 250 K. 

Fitting as any one distinct model may therefore be erroneous.

To conclude, the materials studied consisted o f an outer doublet due to the biferrocene. 

Within this was a broad doublet caused by Fe(III) in the clay and two to three further 

doublets attributed to the oxidation o f biferrocene to biferrocenium, and the subsequent 

de-trapping o f the biferrocenium was observed to occur between 200 and 250 K. 

Considering the nature o f these materials and previous work by Hendrickson et a l on

152
diethylbiferrocenium - SWy-1 montmorillonite , it is thought that the “domain” de

trapping model was most probable, despite the fact that the “fusion” type de-trapping 

scenario provided a fit with greater internal integrity. Analysis o f the biferrocene / 

biferrocenium ratios indicated that 2 % of AA had oxidised to AA+ during the 3 hour 

contact with HWL in suspension. 11 % of AA had oxidised after 48 hours contact with 

the clay in suspension. Contact o f AA-HWL with iodine solution for 3 hours resulted in a 

16 % conversion o f AA to AA+.

The organometallic intercalate was finally found to have a Debye temperature (0D) of 

150 ± 5 K. This is 20 K less than that observed for the biferrocene. This indicates that 

the molecule resides in a less rigid environment when intercalated into Westone-L. This

mimics the behaviour o f the half-sandwich iron tricarbonyl compounds studied by Breen

182 • et a l which typically saw a reduction o f 20-30 K in the Debye Temperature upon

intercalation. The quadrupole splittings and isomer shifts indicate that significant

166



distortion o f the cyclopentadienyl rings has not occurred. Previous work by Brooks et

189al. on polyvinylferrocenes has shown that a 9° tilt in the cyclopentadienyl rings results 

in a reduction o f the isomer shift by 0.02 mm/s and the quadrupole splitting by 1.11

■ 189
mm/s .

As can be seen from Table 3.2 to Table 3.6 no such reduction in either quadrupole 

splitting or isomer shift occurs. A slight increase in asymmetry in the spectra with 

temperature is discernible, although whether this is a result o f the regions o f the material 

selectively de-trapping (e.g. surface exchange sites), or a Karyagin effect is difficult to 

determine.
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3.3 Conclusions.

2, 2”-bis[(dimethylamino)methyl]biferrocene has been intercalated into the 

montmorillonite Westone-L. It has been shown that the cation accounts for 75% of the 

C.E.C. o f the clay, and that the molecule most probably lies with the rings perpendicular 

to the silicate sheet. There was no indication o f any distortion of the cyclopentadienyl 

rings upon intercalation. The Debye temperature (0D) for the intercalate was 150 ± 5 K. 

This is 20 K less than that observed for 2, 2”-bis[(dimethyl-amino)methyl]biferrocene (0D 

= 170 K), indicating that the molecule resides in a less rigid environment when

intercalated into the clay. This reflects the trend observed by Breen et al. when

182
intercalating half-sandwich irontricarbonyl compounds into Westone-L .

If the contact time o f the biferrocene with the clay is extended, partial oxidation (ca. 

11%) o f the biferrocene to biferrocenium occurs. Contact o f the biferrocene intercalated 

with iodine results in ca. 16 % oxidation to biferrocene. The biferrocenium intercalate 

exhibited valence electron de-trapping above 200 K, until by 250 K only a single charge 

averaged (Fe(2.5)) resonance was seen in the Mossbauer spectrum. It is possible that the 

de-trapping was occurring by either the “fusion” or “domain” fashion, although most 

likely the latter.

Thermal decomposition of 2, 2”-bis[(dimethylamino)methyl]biferrocene under nitrogen 

shows two major weight losses as identified by maxima in the derivative thermogram at 

330 and 620°C. The intercalate also shows signs o f weight loss in these regions (360°C 

and 650°C), but also shows an extra peak in the derivative thermogram at 480°C.
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Thermal desorption mass spectroscopy indicates that two decomposition processes are in 

operation. The first dominates up to 430°C and involves the loss o f ferrocene fragments.

This is in contradiction to the work o f Breen et ah with the half-sandwich iron

182
tricarbonyl compounds on Westone-L , and also o f Borvomwattanont et ah on the

33
ferrocene-zeolite composite but is in accord with the work on A on WL and APWL 

(see chapters 2 and 4). The second decomposition process dominates above 490°C and 

involves the loss o f cyclopentadienyl rings from the intercalate.
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3.4 Future Work.

A number o f further studies could be considered necessary to complete this work. 

Firstly, Raman spectroscopy could provide information where infra-red spectroscopy 

was o f little help. For instance, the aluminosilicate bands in the Raman spectrum o f the 

clay are very sharp and so do not interfere with other bands in that region o f the 

spectrum. In addition a further Mossbauer study utilising data collected between 200 and 

250 K is needed to obtain a clearer picture o f the de-trapping process.

The use of XPS could provide more accurate information on the proportion of 

biferrocene that was oxidised on contact with the clay. In addition, it is possible that the 

use o f EXAFS may provide information on the position and alignment o f the biferrocene 

molecule within the interlayer.

An attempt to produce AA+ and subsequent characterisation, especially by Mossbauer 

spectroscopy is urgently required. Moreover, an attempt to intercalate AA+ into H-WL 

should also be seriously considered, although a high occupation o f the exchange capacity 

is not likely.

The insertion o f AA into a synthetic, non-iron containing clay would be worth 

attempting. This would remove the complication o f the underlying iron phase in the 

Mossbauer spectra, allowing more accurate and precise fitting. This could be followed by 

the doping o f the sample with specific amounts o f water into the interlayer to see how
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this affected the temperature at which valence electron de-trapping occurred. In addition, 

the use o f different solvents to dope the biferrocene-clay composite could provide further 

information on the factors affecting valence electron de-trapping phenomena.

Cun200 has reported the synthesis o f biferrocene Schiff base complexes with varying 

lengths o f polyunsaturated bridges. By oxidising and then intercalating these compounds 

into clays, the electron transfer between the two iron centres can be fully investigated. 

This would provide information on the interactions between the bimetallic species and 

the supporting lattice, which in turn may prove useful in the future design o f two 

dimensional conducting materials. For instance, if successful, it is possible that these 

studies could lead to a two dimensional super-conducting material.

200
L. Cun, P. Xin, and Y. Zeng, Synth. React. Inorg. Met.-Org. Chern., 1990, 20(9), 1231-1239.
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4. The Synthesis and Heat treatments of A-APWL.

There has been a considerable amount o f work lately attempting to disperse catalysts on 

a solid support. This has numerous advantages from ease o f separation o f products to the 

ability to work at elevated temperatures"5. Some o f the most important industrial 

catalysts require iron particles dispersed on a porous solid matrix. The most successful 

attempts to produce such materials have involved the exchange o f zeolites with

organoiron compounds, followed by calcination in order to remove the organic part and

88
leave finely divided iron particles behind .

Pillared clays have a thermal stability comparable to zeolites, and in addition can be easily 

manufactured with larger cavity sizes making them preferable hosts. During the 

production of a pillared clay, protons are released into the aluminosilicate sheet. 

Following the success o f the exchange o f an acid montmorillonite with A (see section 2), 

it was thought that the same technique could provide an organoiron containing pillared 

clay. The protons would hopefully be drawn out from the aluminosilicate sheet and 

anchor the organoiron compound within the cavities. As the organoiron compound is o f 

comparable size to the cavity, only one molecule could reside in each cavity. This could 

ensure that the iron was finely dispersed throughout the solid on calcination. The high

porosity o f the material should prevent reduction o f the iron to the zero oxidation state,

201
making it ideal for the reduction o f hydrogen sulfide from reducing gas mixtures . As 

the final iron concentration was likely to be very dilute, the use o f Mossbauer 

spectroscopy would be vital in characterisation o f the finished products.

201
J. W. Geus, Applied Catal., 1986, 25, 313-333.
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4.1 Experimental.

4.1.1 Materials.

Clay. The clay used in all the experiments was the montmorillonite W estone-L from 

Texas, supplied by ECC International, which was found to have a cation exchange 

capacity (CEC) o f 91meq/100g. N,N-dimethyIammomethyIferrocene and AICI3.6H20  

were supplied by Aldrich Chemicals. NaOH was supplied by BDH Chemicals.

4.1.2 Sample Preparation.

4.1.2.1 Sodium Exchanged Westone-L.

This was produced by a three step process. First the raw Westone-L was sedimented to 

remove heavy particles such as quartz and iron oxide. Secondly, the lighter clay fraction

183
(nominally < 2 pm particle size ) was contacted (three times) with aqueous 1M NaCl, 

and finally washed, by repeated suspension in deionised water followed by centrifugation 

and removal o f supernatant, until a residual conductivity o f less than 50 pS was 

achieved. This is hereafter referred to as Na-WL.
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4.1.2.2 Pillaring of Westone-L.

This was achieved using a method described by Schoonheydt et al.202. Na-WL was 

suspended in 100 ml of water and left to stir for 6 hours. An aqueous solution o f NaOH 

(17 ml, 0.4 M) was added drop-wise at 1 ml / minute to an aqueous solution of 

A1C13.6H20 (17 ml, 0.2 M , 10 CEC) with vigorous stirring. The resulting solution was 

refluxed for 3 hours and then added drop-wise (8 ml /  minute) to the Na-WL suspension. 

This was left to stir for 12 hours, and then washed with de-ionised water until the 

conductivity o f the supernatant fell below 30 juS. The clay was then calcined at 500°C 

for 1 hour. This yields aluminium pillared Westone-L (abbreviated to APWL) with an 

interlayer spacing of 1.8-1.9 nm.

4.1.2.3 Insertion of N,N-Dimethylaminornethylferrocene into APWL.

N,N-dimethylaminomethylferrocene (1 g, 2 CEC, 4.12 mmol) was dissolved in 50 ml o f 

methanol and 1 g o f the pillared clay (dried at 120°C) added. The suspension was left to 

stir overnight, washed (5 x 120 ml methanol), and collected in the normal manner. The 

product is hereafter referred to as A-APWL. C, H, N  analysis: Theory; (based on 100% 

exchange in the original Westone-L. The pillared clay will have a much reduced CEC 

which unfortunately is not known). C = 14.2. Found C = 4.2, (equivalent to 29% 

exchange). XRF found 1.95 % iron, equivalent to 22 % exchange.

202
R. Schoonheydt, J. Van Den Eynde, and W. Stone, Clay and Clay Minerals, 1993, 41(5), 598-607.
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4.1.2.4 Heat Treatment of A-APWL in Air.

80 mg o f A-APWL powder was ground, then pressed to give a disc o f diameter 1.5 cm 

and 0.25 cm thickness. This gives an approximate Mossbauer thickness o f 0.2. The 

sample was placed in a closed furnace at the appropriate temperature for a 1 hour period, 

cooled and a Mossbauer spectrum recorded at 80K. The sample was then returned to the 

furnace for treatment at the next temperature. Spectra were recorded after treatment of 

the sample at 20, 100, 200, 300, 400, 500, and 600°C.

4.1.2.5 Heat Treatment of A-APWL in Nitrogen.

A disc of A-APWL (prepared as above) was placed in a flow o f dry, oxygen free, 

nitrogen gas, at a flow rate o f ~50 ml /  min for 20 minutes. The sample was then moved 

into the body o f a tube furnace and the nitrogen flow rate reduced to ca. 5 ml /  min. The 

sample was left for 1 hour at the required temperature, before being removed from the 

body o f the furnace, and left to cool under nitrogen at the end o f the tube. A Mossbauer 

spectrum was then recorded at 80 K. The sample was then returned to the furnace, as 

before, for the next heat treatment. Spectra (80 K) were collected after the sample had 

been heated to 20, 100, 200, 300, 400, 500, and 600°C.
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4.1.2.6 Heat Treatment of A-APWL in Hydrogen.

A disc o f A-APWL was prepared as above. This was then cut to give a square (1 cm2), 

to allow the sample to fit into the apparatus used for the hydrogen treatment. The 

hydrogen was purified by passage through a Pd membrane held at 400°C. The sample 

was placed in a flow o f dry, oxygen free, nitrogen gas (ca. 5 ml / min) within the glass 

sample chamber for 15 minutes. The gas was then switched to hydrogen and maintained 

at a flow rate o f 5 ml / min for a further 45 minutes. The sample was heated to the 

required temperature by means o f a coil wrapped around the sample chamber, and left 

for one hour. (The time required to reach 600°C and stabilise was approximately 10 

minutes, although considerably less time was required at the lower treatment 

temperatures. Cooling was more rapid, typically 5 minutes). The sample was cooled 

under hydrogen to room temperature. Nitrogen was then blown over the sample during 

its removal and transfer to a dewar o f liquid nitrogen. Mossbauer spectra (80 K) were 

recorded after treatment o f the sample at 20, 150, 350, and 600°C.

4.1.2.7 Heat treatment of Na-WL and APWL.

A sample o f Na-WL and APWL was placed in a furnace at 600°C in air in order to 

determine if any structural changes occurred. An 80 K Mossbauer spectrum was 

recorded o f the original sample and also of the heat treated sample in order to determine 

any differences in the structural iron o f the clay.
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4.2 Results and Discussion.

4.2.1 XRF and CHN Analysis.

The molecule N,N-dimethylaminomethylferrocene was incorporated into APWL at a 

level equivalent to 29% of the CEC o f the original clay, as determined by C, H, N  

analysis. XRF analysis only gave an exchange o f 22%. This lower value from XRF 

analysis has been observed before (see section 2.2.2), in the exchange o f A into 

Westone-L. In that case the lower reading from the XRF experiment was caused by the 

loss o f iron-containing fragments during the manufacture o f the bead for analysis (see 

section 1.6.3). The low loading o f the A-APWL compared to the AH-WL (see section

2.2.2) was a combination o f two factors. Firstly, when the pillared clay is calcined, the

202
CEC is not completely regenerated . Secondly, it is possible that the outer exchange 

sites became filled first. The inserted molecule may then become anchored, preventing 

the diffusion o f further molecules into the structure.

4.2.2 Infra-Red Spectroscopy.

The infra-red spectrum o f A-APWL showed a weak absorption at 1472 cm-1 

characteristic o f a cyclopentadienyl ring. In addition the lattice OH stretch at 3620 cm'1 

present in APWL has moved to 3647 cm'1. This shift to a higher frequency indicates a 

stronger bond. This is most likely due to the inserted molecule causing a more 

hydrophobic environment around the lattice OH. Further bands however, were obscured 

by absorptions from internal physisorbed water within the pillared lattice, and also by the 

aluminosilicate bands from the clay.
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4.2.3 Thermogravimetric Analysis.

Thermogravimetric analysis showed a large weight loss accounting for 43% of the total 

weight lost (ca. 8% o f the initial mass) at 550°C, in addition to the usual bands at 60 and 

660°C expected from a pillared clay (see Figure 4.1).

The 60°C peak arises from the loss o f solvent (methanol) from the exchange procedure, 

and also from physisorbed water within the pillared lattice. The 660°C peak is due to 

dehydroxylation o f the silicate lattice184. The origin o f the peak at 550°C is difficult to 

establish without the use o f mass spectroscopy, but could indicate an enhanced stability 

o f ca. 300°C for the major weight loss, compared to that seen for the 

(ferrocenylmethyl)dimethylammonium-WL (see section 2.2.4). This suggests that the 

molecule decomposes by a different mechanism when supported on the pillared clay 

compared to when intercalated in the non-pillared clay (see section 2.2.4). However, it is 

more likely that the weight loss is caused by the oxidation o f coke from the 

decomposition o f the organic part o f the molecule to CO2. This has been observed with 

alkyltrimethylammonium exchanged smectites at 660°C.
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Figure 4.1 Derivative Thermograms for Na-WL, AHC1, APWL and A-APWL.

dW
A-APW LdT

APWL

AHC1

N a - W L

200 400 600 800
T / C

179



4.2.4 Thermal Desorption Mass Spectroscopy.

The decomposition o f A-APWL is characterised by three main phases. Around 120°C 

there was a small peak in the TIC, concurrent with the loss o f ferrocene and its daughter 

fragments. It is likely that this is lost from edge sites since there was only a very small 

amount and it was desorbed over a short temperature interval. Interestingly, no side 

chain fragments were observed at this stage.

Figure 4.2 TIC for A-APWL.
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At 280°C the major peak in the TIC began, with fragments o f m/z = 200, 186, 121, and 

134 being lost, (m/z 243 = CpFeCpCH2NMe2 (Cp = cyclopentadienyl, Me = methyl), 

214 = CpFeCpCH2NH, 200 = CpFeCpCH3, 186 = CpFeCp, 134 = FeCpCH2, 121 = 

FeCp, 79 = CpCH3, Cp = 65). The loss o f ferrocene maximised at 310°C, although the 

TIC was still rising at this stage, until by 500°C the loss o f ferrocene had finished. It is 

likely that most o f this ferrocene was from edge sites. As has been mentioned before (see 

2.2.5) these sites exhibit a high Lewis acidity which is conducive to the formation o f a 

ferrocene and dimethylammonium radical.
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Figure 4.3 TD-MS Spectra of A-APWL.
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A simple electron transfer and proton abstraction from the abundant water nearby would

then lead to a ferrocene ion and dimethylammonium cation. This behaviour is in

182
contradiction to that observed by both Breen et al. on the iron tricarbonyl compounds

33
supported on Montmorillonite, and also by Borvomwattanont et al. with the 

ferrocenium- zeolite-Y composite.

By 470°C the TIC maximised, and then began to drop. The major portion o f the TIC in 

this region was due to ring fragments, although some iron-containing fragments were still 

being de-sorbed. As with the AH-WL and AA-HWL samples there was no evidence o f 

the loss o f any amine-containing fragments. This indicates a strong interaction between 

the amine group and the pillared clay lattice. By 500°C no fragments containing iron 

were visible, and only ring fragments were de-sorbed.

At 550°C, there was a small increase in the ion current as amine and ring fragments were 

lost, but there were still no fragments containing iron. This suggests that a different 

decomposition mechanism may come into operation above 550°C.

4.2.5 X-Ray Diffraction.

The pillared clay has alumina pillars propping the layers apart. Therefore the interlayer 

spacing o f the pillared clay is constant regardless o f the inserted molecule. In addition the 

spacing is not dependant on temperature. This is reflected in the XRD trace obtained o f 

the pillared clay, which provided little information except that the APWL exhibited a
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constant spacing o f 1.85 nm. No extra peaks due to the inserted cation were seen, 

indicating that A was not in a powder form mixed with the APWL.

4.2.6 M ossbauer Spectroscopy.

4.2.6.1 APWL

The clay Westone-L exhibits a Mossbauer spectrum which contains a single broad 

doublet (8 = 0.36 ± 0.02 mm/s, A = 0.32 ± 0.02 mm/s ). This is caused by high spin, 

octahedrally co-ordinated iron(IQ) in the clay structure. The broadness is caused by iron 

nuclei in number o f very similar but not identical sites. Heating in air for 1 hour at 500°C 

had little effect on these parameters. After contact with the pillaring solution, drying in 

air, and subsequent firing at 500°C for 1 hour, an even broader, unsymmetrical resonance 

was observed. Various interpretations o f the data were considered, but after much 

deliberation, was finally fitted as two nested overlapping doublets, with fitting 

parameters Q(outer), 8 = 0.28 mm/s, A = 1.28 mm/s, and Q(inner), 8 = 0.18 mm/s, A = 

0.56 mm/s. It has been shown that the aluminium tetrahedra invert at the point at which

203
the pillar meets the clay sheet . This inversion will leave a defect in the clay sheet and 

the proximity o f this defect to the iron centre will influence the amount to which the 

Mossbauer spectrum is affected.

203
D. Plee, F. Borg, L. Gatineau, and J. J. Fripiat, J. Am. Chem. Soc, 1985,107, 2362-2369.
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Figure 4.4 Spectra of WL, WL(500), APWL, APWL(600).

Effect of heating Na-WL and APWL for 1 hour.
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If  the defect was two or three atoms away, it is unlikely that any change would be 

observed in the spectrum. However, if the inversion was next to the iron centre, a

204
considerable change in the Mossbauer spectrum would be expected .

204
M. F. de Jesus-Filho, M. A. Congalves, J. C. Bosch-Neto, and V. K. Garg, Hyperfine Interactions, 

1992, 70, 961-964.
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In an attempt to clarify the origin o f the broad asymmetric resonance seen, a poly- 

quadrupole fitting routine was utilised. In this, a range o f quadrupole splittings are used 

to fit the spectrum. The relative areas o f the phases represent the probability o f the iron 

residing in that environment.

Figure 4.5 PQ H  plot of %  A rea vs. QS for APWL.
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The plot o f % Area vs. QS (Figure 4.5), shows that only one “distinct” iron site was 

found. However, the broadness o f the plot indicates a wide range o f similar sites. This 

reflects the diverse array o f iron sites produced by the varying proximity o f the defect to 

the iron centres. The two doublets quoted in the fit therefore represent the extremes o f a 

wide range o f similar sites. Further heating o f APWL to 500°C for 1 hour in air, led to 

the regeneration o f a single doublet. The fitting parameters were however, different to 

those observed for the original clay (6=0.36 ± 0.02 mm/s , A = 1.37 ±  0.02 mm/s ). The 

larger quadrupole splitting indicated that the system had reorganised to give a more 

symmetric environment around the iron centres than was present in the original clay. The 

smaller half-width shows that the distribution o f iron centres was now more uniform. As 

far as the author is aware, this is the first time that this behaviour has been observed. It
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would be interesting to see MASNMR of the samples to see if the defects exist. Work by

205 •Roch et al. using MASNMR on montmorillonite, has shown that above 550°C there is 

an increase in the amount o f tetrahedral and pentahedral aluminium sites. Other work 

(Schoonheydt et al.202) has shown that during the pillaring process, protons are released 

into the aluminosilicate layer. Under these conditions it is not unreasonable to assume 

that some measure o f dehydroxylation may well be occurring, possibly within the 

aluminosilicate layer itself, leaving a more uniform crystalline aluminosilicate sheet 

behind. This would account for the lower than expected number o f protons in the pillared 

clay observed by Schoonheydt et a f 02.

205
G. Roch, M. E. Smith, and S. Drachman, Abstract from Mineralogical Society spring 1996Meeting, 

1996, “Investigation o f thermal transformations o f  clay minerals by 27Al and29Si solid-state nuclear 
magnetic resonance”.
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4.2.6.2 A-APWL

The Mossbauer spectrum contained two doublets as observed with (ferrocenylmethyl)- 

dimethylammonium-WL. It consisted o f a large outer doublet characteristic o f A, and a 

smaller broad resonance distinctive o f the APWL.

Table 4.1 showing least squares fitting parameters for A-APWL.

T K Phase 8 mm/s A mm/s r, mm/s rr mm/s Norm. Area %  Area x2
14 Fe3+ 0.18 0.56 0.60 0.60 0.130 16.01 0.7
14 Fe3+ 0.28 1.28 0.60 0.60 0.058 7.10 0.7
14 Fe2+ 0.43 2.43 0.37 0.37 0.624 76.89 0.7
25 Fe3' 0.17 0.56 0.60 0.60 0.124 15.92 0.7
25 Fe3+ 0.28 1.28 0.60 0.60 0.076 9.67 0.7
25 Fe2+ 0.43 2.43 0.37 0.37 0.581 74.41 0.7
50 Fe3* 0.17 0.56 0.62 0.62 0.142 21.19 0.6
50 Fe3+ 0.28 1.28 0.60 0.60 0.081 12.10 0.6
50 Fe2+ 0.43 2.43 0.32 0.34 0.448 66.71 0.6
80 Fe3+ 0.16 0.36 0.64 0.64 0.117 22.53 0.7
80 Fe3+ 0.28 1.28 0.64 0.64 0.085 16.31 0.7
80 Fe2+ 0.42 2.42 0.40 0.40 0.318 61.17 0.7
100 Fe3+ 0.17 0.56 0.60 0.60 0.123 23.76 0.6
100 Fe3+ 0.29 1.28 0.62 0.62 0.103 19.89 0.6
100 Fe2+ 0.41 2.44 0.39 0.39 0.292 56.35 0.6
140 Fe3+ 0.16 0.56 0.64 0.64 0.122 29.77 0.5
140 Fe3+ 0.29 1.28 0.64 0.64 0.086 21.07 0.5
140 Fe2+ 0.41 2.40 0.46 0.46 0.201 49.16 0.5
180 Fe3+ 0.16 0.56 0.64 0.64 0.118 35.15 0.7
180 Fe3* 0.28 1.28 0.62 0.62 0.086 25.53 0.7
180 Fe2+ 0.39 2.40 0.38 0.34 0.132 39.32 0.7
220 Fe3+ 0.16 0.56 0.68 0.68 0.107 39.34 0.6
220 Fe3+ 0.28 1.28 0.68 0.68 0.083 30.63 0.6
220 Fe2+ 0.42 2.42 0.40 0.40 0.082 30.03 0.6
250 Fe3+ 0.16 0.56 0.68 0.68 0.105 43.26 0.8
250 Fe3+ 0.28 1.28 0.66 0.66 0.070 29.02 0.8
250 Fe2> 0.37 2.44 0.39 0.42 0.067 27.71 0.8
300 Fe3* 0.16 0.38 0.68 0.68 0.111 50.73 0.6
300 Fe3+ 0.28 1.28 0.66 0.66 0.072 32.93 0.6
300 Fe2+ 0.37 2.44 0.44 0.42 0.036 16.34 0.6

Errors: T = ± 2K ,  5 = ± 0.02 mm/s, A = ± 0.02 mm/s, T = ± 0.02 mm/s
Fe3+ = Iron(III) present in the clay from isomorphous substitution.
Fe2+ = Iron(II) present in the ferrocene unit of the inserted molecule.

As with ATr-WL (section 2.2.7), the insertion o f A into the pillared clay made little 

difference to the fitting parameters (see Table 4.1), which indicated that it may again be 

the protonated species present.
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Figure 4.6 A-APWL Spectra.
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This is likely as strong bases such as A have been shown to entice the protons generated 

during the pillaring process from out of the aluminosilicate sheet. Variable temperature 

Mossbauer spectroscopy revealed that the Debye temperature o f A-APWL was much 

lower than that observed with the AH-WL samples. A-APWL was found to have a 

Debye temperature (0d) o f 113 ± 5 K (compare 0D(AH-WL) = 140 + 5 K), with a 

correspondingly lower recoil free fraction, f 9i=0.05 ± 0.02 ( fgi(AH-WL) = 0.13 ± 0.02). 

This indicated that the molecule was much less tightly bound, consistent with the 

molecule enjoying considerable freedom in the large pores o f APWL which are similar to 

the cages found in a zeolite.

Figure 4.7 LNAT plot for A-APW L Fe2+
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Figure 4.8 Diagram Showing PQH fitted spectra.
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The line-widths for A were somewhat larger than those seen in either AHC1 or AH-WL 

(see section 2.2.7), suggesting that the inserted molecule could reside in more than one 

type o f site. Therefore an attempt to fit the spectra using a polyquadrupole routine was 

attempted. The results are shown diagrammatically in Figure 4.9 and the resultant spectra 

are shown in Figure 4.8. Figure 4.9 clearly shows that there was only one distinct iron(II) 

environment which supports the fitting routine used above.

Figure 4.9 PQH plots of % Area vs. QS for A in A-APWL.
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It should be noted that whereas a zeolite consists o f distinct cages linked together, a 

pillared clay basically has an open plan interlayer space with the supporting pillars 

randomly distributed throughout. The large line-widths are therefore a result o f either the 

molecule’s environment, i.e. the molecule is free to vibrate, or the micro-crystalline 

nature o f the material.
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4.2.6.3 Fitting of Mossbauer spectra for heated samples.

The spectra o f the heat treated samples tended to be extremely broad doublets, 

composed o f one or more overlapping phases. Precise fitting was difficult and 

interpretation was very challenging. In the fitting parameters quoted, the number of 

phases has been kept to a minimum, whilst at the same time maintaining chemical 

integrity. For instance, the insertion o f a tetrahedral iron (iii) phase may have improved 

the fit, but such a phase would not likely be produced in a reducing atmosphere of 

hydrogen gas at 600°C. In assigning the phases guidelines were formulated using the 

extensive literature available for Fe-exchanged zeolites and used in assigning the phases. 

These are summarised in Table 4.2.

Table 4.2 Summary of Mossbauer parameters for iron in different co-ordination
geometry’s.

Isomer Shift Quadrupole Splitting Assignment

p i/i i P 00 0 1 p *00 _  _  206,207,129,208,209
Fe (H) Td

0.5 - 1.4 1 .7-3 .3 -r-. / m  ^  206,207,129,208,210,211,212,213,214,215
Fe (II) Oh

0.1 -0.3

001© T7 /T T T \ T /Ut>’ ZU1Fe (III) Td
0.3 - 0.7 0.5 - 1.3 _  206,207,208,213,214,215,216,217

Fe (ID) Oh

206
A. Mulaba-Bafubiandi, J. Helsen, A. Maes, and G. Langouche, Hyperfine Interactions, 1992, 70, 

1049-1052.
207

K. Lazar, A. M. Szeleczky, G. Voibeck, R. Fricke, A. Vondrova, and J. Cejka, J. Radioanalytical
and Nuclear Chemistry, 1995,190(2), 407-411.
208

M. Petrera, A. Gennaro, P. Gherardi, G. Gubitosa, and N. Pemicone, J. Chem. Soc., Faraday Trans. 
1 ,1984, 80, 709-720.
209

W. N. Deglass, R. L. Garten, and M. Boudart, J. Chem. Phys, 1969, SO, 4603-4610.
210

W. N. Deglass, R. L. Garten, and M. Boudart, J. Phys. Chem., 1969, 73, 2970-2977.
211

Z. Gao andL. V. C. Rees, Zeolites, 1982, 2 ,205-214.
212

B. L. Dickson andL. V. C. Rees, J. Chem. Soc., Faraday Trans. 1 ,1974, 70, 2051.
213

R. Schmidt, M. D. Amiridis, J. A. Dumesic, L. M. Zelewski, and W. S. Millman, J. Phys. Chem., 
1992, 96, 8142-8149.
214

V. Luca and C. M. Cardile, Clay Miner., 1989, 24, 555-560.
215

B. A. Goodman, Clay Miner., 1987,22, 36-41.
216 C. M. Cardile and I. W. M. Brown, Clay Miner., 1988,2 3 ,13-18.
217

I. Rozenson and A. Heller-Kallai, Inorg. Chem., 1978, 26, 173-178.
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Clearly several o f these assignments overlap. It was therefore necessary to consider the 

conditions under which the material was formed. In an oxidising atmosphere, reduction 

was unlikely. Similarly, in a reducing atmosphere, oxidation was unlikely. Finally, the 

environment o f the starting material was considered. In A-APWL, the complex resides in 

a large cavity similar to the super-cage in a zeolite. The lower symmetiy tetrahedral 

species quoted in Table 4.2 were found in narrow channels within the zeolites, co

ordinated to the framework oxygen atoms. The higher symmetry complexes occurred in 

the super-cages where more space was available. It is probable therefore, that the 

decomposition products o f A-APWL would tend towards octahedral symmetiy, 

assuming that there was no migration or agglomeration o f the iron.

4.2.6.3.1 Sample Heat Treated in Air.

Heating at 100°C for 1 hour in air resulted in little change in the spectrum (see Figure 

4.10), although the relative area o f A decreased from 81 to 73% of the total spectral 

area. This is in good agreement with the TD-MS results which showed that no side chain 

fragments were lost, but a small amount o f ferrocene was volatilised at this temperature.

After heating to 200°C for 1 hour in air, the spectrum changed dramatically. The greater 

part o f the spectral area arose from a new doublet with parameters, 5 = 0.34 ± 0.02 

mm/s, and A= 1.17 ± 0.02 mm/s. This could be assigned to either octahedral high spin 

iron(III), or possibly tetrahedral high spin iron(III) (see Table 4.2). Considering the initial 

complex A was assumed to be in a large cavity, the tetrahedral species seems unlikely.
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Table 4.3 Least squares fitting parameters for air heat treated sample.

T(C) Phase 6 (mm/s) A (mm/s) T| (mm/s) r r (mm/s) Norm. Area % Area t .  .
100 APWL 0.17 0.36 0.78 0.78 0.073 10.13 0.001
100 APWL 0.26 1.28 0.73 0.73 0.122 17.05 0.001
100 A 0.41 2.34 035 0.39 0.522 72.82 0.001
200 APWL 0.16 0.37 0.84 0.84 0.015 00.94 0.003
200 APWL 0.27 1.28 0.69 0.69 0.015 00.94 0.003
200 Feina 0.34 1.17 0.78 0.74 1.460 89.62 0.003
200 Fe”Oh 1.21 2.45 0.70 0.88 0.138 08.49 0.003
300 APWL 0.16 0.37 0.84 0.84 0.020 00.98 0.004
300 APWL 0.27 1.28 0.69 0.69 0.020 00.98 0.004
300 Fe^Oh 0.34 1.22 0.77 0.77 1.872 93.14 0.004
300 Fena 1.20 2.63 0.70 0.88 0.099 04.90 0.004
400 APWL 0.16 0.37 0.84 0.84 0.020 01.00 0.004
400 APWL 0.27 1.28 0.69 0.69 0.020 01.00 0.004
400 Feffla 0.33 1.32 0.82 0.75 1.928 94.53 0.004
400 Fe“Oh 1.19 2.61 0.70 0.88 0.071 03.48 0.004
500 APWL 0.16 0.37 0.84 0.84 0.016 01.01 0.003
500 APWL 0.27 1.28 0.69 0.69 0.016 01.01 0.003
500 Feraa 0.34 1.39 0.84 0.77 1.510 95.96 0.003
500 Fe“a 1.19 2.61 0.70 0.44 0.032 02.02 0.003
600 APWL 0.27 1.28 0.61 0.61 0.040 02.00 0.004
600 Fe111̂ , 0.35 1.43 0.83 0.76 1.941 98.00 0.004

Errors: T = ± 2 K, 5= ± 0 .02mm/s, A = ± 0 .02mm/s, r =  ± 0 .02mm/s

The isomer shift does indeed seem to indicate an octahedral species, although it is

possibly distorted. This has been observed for both structural iron in reduced charge

206 208 
montmorillonites , and also in iron-exchanged zeolites . In addition, a further new

doublet (parameters, 8 = 1.21 ± 0.02 mm/s , A = 2.45 + 0.02 mm/s) appeared. This was

characteristic o f a high spin octahedral iron(II) species (see Table 4.2), similar to the

211
species found in the ferrous ion-exchanged NH4-A zeolites .

No evidence of A can be found. This decomposition was in good agreement with that 

observed in the TGA and TD-MS data which indicated a significant loss o f intercalated 

material around 200°C.
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Figure 4.10 Diagram showing 80 K spectra of samples heated in air.
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The numbers in the top-left comer of each spectrum refer to the treatment temperature in °C.
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The APWL resonance slowly reverted to a single doublet (see earlier), although this was 

lost under the area o f the new iron(III) peak. The area o f the iron(II) phase was reduced 

at higher temperatures until by 600°C it was no longer present. This indicates the rate 

limiting step in the oxidation process was possibly dependent on the diffusion o f oxygen 

into the matrix.

The isomer shift o f the component phases remained constant within experimental error. 

The quadrupole splitting o f the two new phases however, showed a slight increase as the 

treatment temperature was increased.

Figure 4.11 Relative Areas of phases for Sample Treated in Air.

Relative areas of phases for sample heated in air.
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According to TD-MS no nitrogen containing fragments were lost. In addition, unlike the

33
work by Borvomwattanont et al. using EXAFS on (COT)Fe(CO)3 supported on the 

H-Y zeolite, there was at no time justification for including a half-sandwich iron species 

in the Mossbauer fitting routine. This suggested that both cyclopentadienyl rings split off 

leaving both the iron and the amine side-chain behind.
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Figure 4.12 QS vs. HT for Sample Heated in Air.

Quadrupole splittings of phases for sample heated in air.
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It is possible that if  the iron species was co-ordinated to the oxygens o f the clay sheet or 

alumina pillar, the residual amine species could reduce the effective charge from the 

lattice, causing a greater contribution from the other ligands to the electric field gradient

across the iron nucleus. A similar effect has been seen by Rees et al. when heating the

211 • 
ferrous ion-exchanged NTLrzeolite A composite . This is consistent with a high spin

octahedral iron(IQ) complex co-ordinated trigonally to three lattice oxygens, and also to

three H20 / 'O H .

48
It should be noted that Lund et al. observed no clustering o f iron atoms during the 

thermal decomposition o f ferrocene on A1P05. Instead the iron atoms were shown to 

reside in the double six-rings o f the twelve ring channel system. This agrees favourably 

with the interpretation stated above.
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4.2.6.3.2 Sample heat treated in nitrogen.

Treatment at 100°C in nitrogen again had little effect on the Mossbauer spectrum (Figure 

4.14). The area o f A was again reduced indicating the volatilisation o f iron in some form, 

although no decomposition o f the compound was evident. This was consistent with the 

TD-MS data which showed a loss o f ferrocene at this temperature. After treatment at 

200°C there was evidence o f decomposition in the Mossbauer spectrum. A new doublet 

(8 = 1.11 mm/s , A = 2.88 mm/s ) was observed. These parameters indicate a high spin 

iron(II) species in an octahedral environment (see Table 4.2). A similar species has been 

observed during the thermal decomposition o f an iron dipyridyl complex supported on

2og
zeolites X and Y, and also with the Fe-ZSM-5 zeolite composite .

Figure 4.13 Relative Areas of Phases for Sample Heated in Nitrogen.

Relative areas of phases for sample heated in nitrogen
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The doublet arising from A still represents the major component in the spectrum 

however, which suggests a different decomposition mechanism to that observed for the 

samples heat-treated in air. Heating to 300°C caused the new doublet (8 = 1.11 ± 0 .0 2  

mm/s, A = 2.88 ± 0.02 mm/s) to grow at the expense o f that for A. By 400°C there was
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no spectral evidence for the original organometallic species, A. The pillared clay doublet 

was now transformed (see section 4.2.6.1), and was present as a single doublet (8 = 0.38 

mm/s, A = 1.36 mm/s ). Further heating caused the high spin octahedral iron(II) to grow 

in intensity at the expense o f the other components.

Table 4.4 Least squares fitting parameters for sample heated in nitrogen.

T(C) Phase 8 (mm/s) A (mm/s) T| (mm/s) rr (mm/s) Norm. Area % Area t
100 APWL 0.13 0.35 0.86 0.86 0.20 11.09 0.003
100 APWL 0.27 1.26 0.64 0.64 0.20 11.20 0.003
100 A 0.41 2.37 0.34 0.38 1.40 77.72 0.003
200 APWL 0.19 0.36 0.86 0.86 0.23 12.36 0.003
200 APWL 0.27 0.98 0.69 0.69 0.23 12.61 0.003
200 A 0.42 2.26 0.43 0.47 1.19 64.66 0.003
200 F e " a 1.11 2.89 0.77 0.64 0.19 10.38 0.003
300 APWL 0.18 0.36 0.86 0.86 0.14 12.53 0.002
300 APWL 0.27 1.02 0.67 0.67 0.14 12.54 0.002
300 A 0.42 2.25 0.44 0.46 0.63 58.01 0.002
300 FeDa 1.15 2.77 0.93 0.66 0.18 16.92 0.002
400 APWL 0.38 1.36 0.84 0.84 0.75 27.33 0.005
400 F e " a 1.13 2.48 0.70 0.84 2.00 72.67 0.005
500 APWL 0.34 1.37 0.70 0.70 0.39 11.70 0.006
500 F e " a 1.12 2.44 0.66 0.82 2.94 88.30 0.006
600 APWL 0.40 1.41 0.38 0.38 0.11 04.33 0.005
600 F e " a 1.12 2.27 0.70 0.69 2.45 95.67 0.005

Errors: T = ± 2 K, 8= ± 0 .02mm/s, A = ±0 .02mm/s, r =  ± 0 .02mm/s

The isomer shifts o f the phases were unaffected by the heat treatments. However, the 

quadrupole splitting values for A and the new iron(II) phase fell steadily with higher 

temperature treatments (Figure 4.15).

The same phenomenon was observed by Rees et a l  when studying the ferrous

211
exchanged NFL-zeolite-A composite .
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Figure 4.14 Diagram showing 80 K spectra of the sample heated in nitrogen.
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The numbers in the top-left comer of each spectrum refer to the treatment temperature in °C.
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They concluded that this was caused by dehydration o f the cavity, which led to a more 

asymmetric environment around the complexes and hence a smaller quadrupole splitting 

was observed.

Figure 4.15 QS vs. T for Sample Heated in Nitrogen.

Quadrupole splittings of phases for sample heated in nitrogen.
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The effect was less for A because the distance between the water molecules and the iron 

nucleus was much greater. This greatly reduces the polarising effect o f the water 

molecules and hence their contribution to the electric field gradient across the iron 

nucleus. In addition the cyclopentadienyl rings are hydrophobic which again prevents the 

interaction o f water with the iron nucleus.

4.2.6.3.3 Samples Heat Treated In Hydrogen.

Treatment at 150°C gave rise to a new peak with fitting parameters 8 = 1.07 ±  0.02 

mm/s and A = 2.89 ± 0.02 mm/s (see Table 4.5, Figure 4.16). This was assigned to high 

spin iron(II) in an octahedral environment, similar to that which occurred in the samples
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heat-treated in nitrogen. The doublet arising from A was still the major phase however 

(75%).

Further heating to 350°C caused a reduction in the spectral area of A, and an increase in 

the area o f the high-spin, octahedrally co-ordinated iron(II) component.

By 600°C there was no evidence for A. The spectral area was dominated by the high spin 

octahedral iron(II), although a further new peak with least squares fitting parameters, 8 = 

0.52 ± 0.02 mm/s , A = 1.90 ± 0.02 mm/s had appeared, contributing -20%  to the total 

area. This again was characteristic o f high spin iron(II) (see Table 4.2), although the 

lower quadrupole splitting indicates that the species resided in a less symmetric 

environment than the first high spin octahedral iron(II) component. This was most likely 

formed by the reduction o f one or more o f the trigonally co-ordinated iron(II) - lattice 

oxygen bonds o f the first high spin octahedral iron(II) species parameters. It follows 

therefore that further heating at 600°C under hydrogen should lead to a single isolated 

iron(II) species with no direct chemical attachment to the clay lattice. I f  the process was 

then continued further, a physisorbed iron(O) species could possibly result. It should be 

noted however, that a report by Anderson et a l stated that zeolites exchanged with iron

cannot be reduced below the ferrous state without the use o f hydrogen/ammonia

218
mixtures, or hydrogen spill-over from platinum metal .

218
Y. Y. Huang and J. R. Anderson, J. Catal, 1975, 40,143-150.
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Figure 4.16 Diagram showing spectra of the sample heated in hydrogen.
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The extended velocity range (±12 mm/s) for the 150, 350 and first 600 °C spectra was used in case a 
magnetic hyperfine interaction arose. This was possible i f  reduction below Fe(Il) occurred. The 

numbers in the top-left comer o f  each spectrum refer to the treatment temperature in °C.
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Table 4.5 Least squares fitting parameters for sample heated in hydrogen.

T (C) Phase 8 (mm/s) A (mm/s) Ti (mm/s) r r (mm/s) Norm. Area % Area
150 APWL 0.19 0.36 0.86 0.86 0.032 06.53 0.001
150 APWL 0.27 0.98 0.69 0.69 0.080 16.50 0.001
150 A 0.41 2.34 0.36 0.41 0.366 75.75 0.001
150 Fe“Oh 1.07 2.89 0.64 0.67 0.006 01.22 0.001
350 APWL 0.19 0.36 0.86 0.86 0.056 10.99 0.001
350 APWL 0.27 0.98 0.69 0.69 0.056 10.99 0.001
350 A 0.41 2.32 0.38 0.42 0.293 57.85 0.001
350 F e " a 1.15 2.77 0.75 0.69 0.102 20.17 0.001
600 APWL 0.40 1.41 0.44 0.44 0.027 04.01 0.001
600 Fe“a ' 0.52 1.90 0.63 0.66 0.133 20.07 0.001
600 Fe“a 1.13 2.41 0.66 0.82 0.501 75.91 0.001
600* APWL 0.40 1.41 0.44 0.44 0.076 03.65 0.004
600* F ^ a 0.53 1.89 0.63 0.66 0.380 18.25 0.004
600* F ^Q , 1.15 2.44 0.73 0.89 1.627 78.10 0.004
* Spectrum velocity range +/- 4 mm/s as opposed to +/-12 mm/s. 
Errors: T = ± 2  K, 8  = ±0.02 mm/s, A = ±0.02 mm/s, JT= ±0.02 mm/s

Figure 4.17 Relative Areas of Sample heated in Hydrogen.

Relative areas of phases for hydrogen heat treated sample.
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If  some agglomeration had occurred this could also prevent further reduction. Small 

particles contain a large number o f crystallographic planes, hence most o f the particle has 

a layer o f oxygen which could prevent the hydrogen from being adsorbed. Note that by 

600°C the APWL was once again represented by a single doublet (8 = 0.40 ± 0.02 mm/s, 

A=1.41 ± 0.02 mm/s ).
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Figure 4.18 QS vs. T for Sample Heated in Hydrogen.

Quadrupole splittings of phases for sample heated in hydrogen.

o  2.5

2 - -

0.5 -

600350 600150

 APWLQ1
 APWLQ2
 A
 FeOh*
 FeO h

H e a t  t r e a t m e n t  t e m p e r a t u r e

The isomer shifts and quadrupole splittings o f the phases did not vary significantly, apart 

from the more symmetric high spin iron(II) species. This showed a steady decrease o f the 

quadrupole splitting energy which, as with the sample heated in nitrogen (see 4.2.6.3.2), 

was again attributed to dehydration o f the cavity. This increased the asymmetry around

the iron species leading to a decrease in the observed quadrupole splitting. This was seen

211
earlier for the A-APWL sample heat treated in nitrogen, and also by Rees et a l  in the 

ferrous exchanged NH4-A zeolite.
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Author’s note.

Thought a little extra explanation might help on the theories regarding the slight change 
in quadrupole splittings observed in this section.

Both theories are based on the same assumption. The observed quadrupole splitting 
(Qobserved) IS made up of two parts; a valence electron contribution ( Q vaience) and a 
surrounding contribution ( Q SUrround)- i-e-

Qobserved — Qvaience Qsurround

Assume both are the same sign, and also that the clay has a charge o f about 0.3' versus 
the 2.7' from the other ligands. Yes, it’s hard to believe but bear with it...

A ir sample.

clay lattice
\ I /

Fem
/ I \

2h o  o h  o h

The thought here was that the amine species might dissociate letting protons migrate 
into the clay lattice. This would reduce the effective charge on the clay lattice further 
causing a larger Q surround and hence a larger Qobserved- A later thought (after submission) 
was that, “hey, the air sample was grey after heating whereas the other two were black. 
Wonder if all the nitrogen and hydrocarbon were lost as N 0 2, C 0 2 and H20 ? ”. The 
driving force for the dissociation reaction?

N2 and H2 samples.

clay lattice
\ I /

Fe11
/ I \

2h o  o h  o h 2

Here the idea was that a proton was hopping between the OH / H20  molecules very fast 
(quicker than the Lamorr frequency). As water was lost from around the complex, the 
residual amine species (the sample was black so presumably it’s all still there 
somewhere. Decomposed mind you, but there), could have an affect on the complex. 
This could be one o f three things. A simple distortion o f the complex would lower 
Qvaience (but also isomer shift). The amine could polarise the surrounding water 
distorting the charge and therefore lower Q surTOund (unlikely to make much difference). 
Alternatively, the amine could polarise the OH / H20  groups enough to slow down the 
proton hopping below the Lamorr frequency. This would effectively show a less 
symmetric species and hence a lower Q surr0und (and so a lower Qobserved)-

Dr J. C. E. Hamer, 29/04/1998.



4.3 Conclusions.

The molecule N,N-dimethylaminomethylferrocene has been inserted into aluminium 

pillared Westone-L and characterised. It was apparent that the molecule had exchanged 

up to 30% of the total cation exchange capacity, and that the inserted molecule was 

much less tightly bound than in either the acid chloride salt, or the non-pillared clay. This 

is consistent with the molecule residing within a large cavity. There was however no sign 

o f a reorientation process. Yet again the decomposition o f the supported complex 

involved the volatilisation o f iron below 350°C.

The sample heat treated in air began to decompose at 200°C, probably by a mechanism 

involving molecular oxygen, to give a high spin iron(III) in a distorted octahedral 

environment. This was possibly co-ordinated trigonally to three lattice oxygens and also 

to three water /  hydroxyl groups. On treatment at higher temperatures the quadrupole 

splitting showed a slight increase. This was tentatively attributed to amine fragments 

reducing the lattice contribution to the electric field gradient across the iron(III) nucleus.

The sample heated in nitrogen started to decompose at 200°C, although the process 

continued up to 400°C leaving a high spin octahedrally co-ordinated iron(II) species. 

This was believed to be co-ordinated trigonally to three lattice oxygen, and also to three 

water /  hydroxyl molecules.

Heat treatment o f A-APWL in hydrogen gave spectra similar to those observed in the 

nitrogen heated samples. Decomposition was evident at 150°C and continued through to



350°C, leading to high spin iron(II) in an octahedral environment. Further heating at 

600°C led to the reduction o f one or more o f the iron(II) - lattice oxygen bonds, leading 

to a second high spin iron(II) species, with a less symmetric co-ordination sphere than 

the first. It is possible that further reduction could lead to an isolated iron(H) species.

This is likely to have catalytic properties, such as the removal o f hydrogen sulfide from

, . 2 0 1  
reducing gas mixtures .

On heating, there was a slight decrease in the quadrupole splitting for the octahedral 

iron(II) in the samples heated under nitrogen and hydrogen, which was ascribed to 

dehydration o f the cavity causing a more asymmetric environment around the co

ordinated iron species.
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4.4 Future Work.

There is a considerable amount o f work needed on these materials. Initially MASNMR of 

the APWL should give an insight into the change in the Mossbauer spectrum before and 

after the pillaring and the heat treatments.

It would be interesting to see if  further heating o f the sample heat treated in hydrogen 

produced any further changes in the Mossbauer spectrum. In addition the effect o f using 

a hydrogen /  ammonia mixture as the reducing gas would again be intriguing.

Moreover, EXAFS and possibly XPS o f the heat treated samples should give a clearer 

picture o f the ligands and immediate environment surrounding the iron nuclei. In addition 

the use o f TEM (Transmission Electron Microscopy) may elucidate whether any 

migration or agglomeration o f the iron nuclei has occurred.

The samples heat treated in hydrogen show all the requirements necessaiy to act as a 

catalyst in the reduction o f hydrogen sulfide from reducing gas mixtures. A test o f its 

suitability as a catalyst is definitely needed as this is o f great importance in industry.

Work by Lee219 has produced mixed metal pillared clays. Insertion o f N,N- 

dimethylaminoferrocene into iron/aluminium pillared clays together with variable

219
W. Lee andB. J. Tartarchuk, Hyperjine Interactions, 1988, 41, 661-664.
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temperature Mossbauer spectroscopy could elucidate the electronic interactions between 

pillar and inserted molecule.

Furthermore, the introduction o f other metallocenes or catalytically active molecules into 

the aluminium pillared and mixed-metal pillared clays, followed by the use o f the 

spectroscopic techniques mentioned above, could provide a valuable insight into the 

interactions between host and guest in composite materials and catalysts.

In addition, by varying the pillaring conditions and hence the pillar height, it may be 

possible to produce a heterogeneous catalyst which favours a specific reactant or 

product molecule.

One other consideration is the use o f A-APWL in solid state batteries for overcharge 

protection. The molecule A has already been suggested for use in rechargeable lithium 

batteries for this specific use194.
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5. Conclusions.

(Ferrocenylmethyl)dimethylammonium chloride has been synthesised and characterised 

by a variety o f techniques. Variable temperature Mossbauer spectroscopy indicated that 

no reorientation effects were in effect between 12 and 300 K, and that the molecule had 

a Debye temperature o f 144 ± 5 K with corresponding recoilless fraction at 291 K o f 

0.14 + 0.02.

The (ferrocenylmethyl)dimethylammonium cation has been intercalated into the 

montmorillonite Westone-L by a variety o f different methods. The cation was shown to 

occupy 80 % o f the total exchange capacity of the clay, and that the molecule was most 

likely orientated with the cyclopentadienyl rings perpendicular to the silicate layers with 

no discernible distortion o f the cyclopentadienyl rings. Once again variable temperature 

Mossbauer spectroscopy revealed that no reorientation effects were in operation between 

12 and 300 K, and that the intercalated cation exhibited a Debye temperature o f 140 ± 

5K (f29i = 0.13 ± 0.02). This suggests that the cation resides in an environment similar to

89
that found in the hydrochloride salt. In contrast to the work by Molloy et al. on 

organotin compounds on clay, the cation was unaffected by the melting o f the interlayer 

water. In addition close examination o f the intercalated Mossbauer spectra revealed a 

Karayagin effect above 80 K. Thermal decomposition o f the intercalated cation involved 

the volatilisation o f iron below 350°C, which contrasts to the behaviour observed by 

Breen et a/.182 on the decomposition o f half-sandwich tricarbonyl iron compounds on 

montmorillonite clay. Above 350°C the decomposition occurred by a different 

mechanism, with loss o f the cyclopentadienyl rings and the retention o f iron on the clay.

2 1 0



Variable-temperature XRD showed that the d^-spacing of 1.55 nm, decreased at 200°C 

to give a d^-spacing o f 1.3 nm. This confirmed that some sort o f complex, probably an 

iron oxide, remained within the interlayer after the inserted molecule had decomposed.

Based on the intercalation o f the (ferrocenylmethyl)dimethylammonium into acid 

Westone-L, 2, 2”-bis[(dimethylamino)methyl]biferrocene was successfully intercalated 

into acid exchanged Westone-L. This saved valuable material which would have been 

lost synthesising and recrystallising the acid salt o f the biferrocene. The cation was 

shown to occupy 75 % o f the total CEC o f the clay. As with the intercalated 

(ferrocenylmethyl)dimethylammonium cation the molecule most likely resides with the 

cyclopentadienyl rings perpendicular to the silicate sheet with no discernible distortion o f 

the cyclopentadienyl rings. Variable temperature Mossbauer spectroscopy indicated a 

Debye temperature o f 150 ± 5 K (f29i = 0.17 ± 0.02) for the intercalated molecule. This 

was 20 K lower than that observed for 2, 2”-bis[(dimethylamino)methyl]biferrocene

consistent with the molecule residing in a less rigid environment. This reflects the trend

182 • 

observed by Breen et al. on the intercalation o f half-sandwich tricarbonyliron

compounds on montmorillonite. Once again close examination o f the Mossbauer spectra

revealed a slight Karyagin effect.

During the three hour contact o f the biferrocene with the acid Westone-L, ca. 2%  o f the 

biferrocene supported on the clay was oxidised to biferrocenium. A 45 hour extension of 

the contact time o f the biferrocene with the clay resulted in further oxidation {ca. 11% ) 

to biferrocenium. Contact o f iodine with a suspension o f the intercalated biferrocene 

resulted in ca. 16 % oxidation to biferrocene. The biferrocenium intercalate exhibited
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valence electron de-trapping above 200 K until by 250 K only a single charge averaged 

doublet was observed. The de-trapping was most likely occurring in small domains to 

start with, which then spread throughout the material as the temperature was raised.

Thermal decomposition o f the biferrocene under nitrogen revealed two major weight 

losses at 330 and 620 °C as identified by maxima in the derivative thermogram. Similar 

decomposition o f the intercalate revealed an extra peak in the derivative thermogram at 

480°C. Studies utilising thermal desorption mass spectroscopy, indicated that as with the 

(ferrocenylmethyl)dimethylammonium intercalate, two different decomposition 

mechanisms were in effect. The first involving the loss o f ferrocene dominated up to 

430°C. The second, involving the loss o f the cyclopentadienyl rings whilst retaining the 

iron on the clay, dominated above this temperature. Variable-temperature XRD indicated 

a d^-spacing o f 1.65 nm at room temperature which collapsed to 1.41 nm at 250°C, 

after which it slowly decreased to 1.29 nm at 400°C. This confirms that some sort o f 

species, probably an iron oxide, was left within the interlayer after the intercalated 

molecule had decomposed:

The molecule N, N-dimethylaminomethylferrocene was successfully intercalated into 

aluminium pillared Westone-L. The molecule occupied 30 % o f the total CEC o f the 

original clay. The inserted molecule was found to have a Debye temperature o f 113 ± 5  

K (f29i = 0.05 ± 0.02) as determined by variable temperature Mossbauer spectroscopy. 

This is consistent with the molecule residing in a much less rigid environment than that 

found in either the chloride salt or Westone-L intercalate. Although residing in a much 

less rigid environment, there was still no indication o f a reorientation process. This may
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be due to strong interactions between the ammonium side group and the aluminosilicate 

lattice. As with the (ferrocenylmethyl)dimethylammonium and biferrocene Westone-L 

intercalates, decomposition o f the inserted molecule involved the loss o f iron below 

350°C.

When heated in air the inserted molecule decomposed above 200°C giving rise to high 

spin iron(III) in a distorted octahedral environment. This was possibly co-ordinated 

trigonally to three silicate lattice oxygens and also trigonally to three water / hydroxy 

groups. Further heating led to a slight rise in the quadrupole splitting o f the new species. 

This was tentatively ascribed to amine fragments reducing the lattice contribution to the 

electric field gradient across the iron nucleus.

Heating the sample in nitrogen again resulted in decomposition above 200°C, although 

this continued up to 400°C. The resulting species was characteristic o f high spin 

octahedrally co-ordinated iron(II). This was also believed to be trigonally co-ordinated to 

three silicate lattice oxygens and also trigonally to three hydroxy /  water molecules.

Heat treatment in hydrogen showed that decomposition was evident at 150°C. This 

continued through to 350°C, leading to high spin iron(II) in an octahedral environment. 

This also was believed to be trigonally co-ordinated to three silicate lattice oxygen atoms 

and trigonally to three hydroxyl / water molecules. Further heating at 600°C led to a 

second high spin iron(II) species with a less symmetric co-ordination sphere than the 

first. This is believed to be caused by the reduction o f one or more o f the iron(II)- silicate
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lattice bonds. It is possible that further reduction at this temperature could lead to an 

isolated physisorbed iron (II) species within the pillared clay gallery. This is likely to have

catalytic properties such as the removal o f hydrogen sulfide from reducing gas

211
mixtures .

On heating there was a slight decrease in quadrupole splitting for the octahedral iron(II) 

in the samples heated under nitrogen and hydrogen. This was ascribed to dehydration o f 

the cavity causing a more symmetric environment around the co-ordinated iron species.
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Manchester University. 2 days.

1993 X-ray methods o f analysis Sheffield Hallam 
University

16 x 1  hour.

1993-1996 Mdssbauer discussion 
group annual conference ’

Nottingham University. 2 days.

1994 Rutherford Appleton 
Laboratory Synchatron 

Workshop.

Rutherford Appleton 
Laboratory.

1 day.

1994 M. R. I. open day.T Sheffield Hallam 
University.

1 day.

1995 X-ray fluorescence 
workshop.

Sheffield Hallam 
University.

5 days.

1995 M. R. I. open day.v Sheffield Hallam 
University.

1 day.

1996 Mineralogical Society, 
Clay Minerals group, 

spring meeting.

Sheffield Hallam 
University.

2 days.

♦  A paper titled “Organometallic cation-exchangedphyllosilicaies: variable- 

temperarure 57Fe Mdssbauer spectroscopic and related studies o f the adsorption o f N, 

N-dimethylaminomethylferrocene on clays and pillared clays^ was presented at this 

meeting.

T  A poster was presented at this event.
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10.2 Publications.

The following article has been published by the author.

“Organometallic cation-exchanged phyllosilicates: variable-temperanire 57Fe

Mdssbauer spectroscopic and related studies o f the adsorption o f N, N- 

dimethylaminomethylferrocene on clays and pillared clays”. Christopher Breen, John S. 

Brooks, Susan D. Forder and Julian C. E. Hamer, J. Mater. Chem., 1996, 6(5), 849-859.

The following manuscripts are awaiting submission for publication.

“Organometallic cation-exchanged phyllosilicates: variable-temperature 57Fe

Mdssbauer spectroscopic and related studies o f 2, 2 ”-bis[dimethylamino)methyl]- 

ferrocene on clay.”

“Organometallic cation-exchanged phyllosilicates: variable-temperature 57Fe

Mdssbauer spectroscopic and related studies o f a N, N-dimethylaminomethylferrocene - 

aluminium pillared Texas montmorillonite composite and its thermal decomposition 

products.
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Organometallic cation-exchanged phyllosilicates: variable-temperature 57Fe 
Mossbauer spectroscopic and related studies of the adsorption of 
dimethylaminomethylferrocene on clays and pillared clays

Christopher Breen,* John S. Brooks, Susan Forder and Julian C. E. Hamer
M aterials Research Institute, Sheffield H allam  University, Sheffield, U K  S I 1 W B

Variable-temperature 57Fe Mossbauer spectroscopy, thermogravimetry (TG), powder X-ray diffraction (PXRD) and temperature- 
programmed solid insertion probe mass spectrometry (TP-SIP-M S) have been used to study the interaction of 
dimethylaminomethylferrocene (D M AM F) with Westone-L (WL), a low iron montmorillonite. The hydrochloride salt of 
DM AM F, (ferrocenylmethyl)dimethylammonium chloride (FMDMAC1), was prepared and studied both prior and subsequent to 
exchange on the interlamellar sites of WL. X-Ray diffraction confirmed that the F M D M A + cations were incorporated between the 
clay lamellae and the observed spacing of 15.1 A was thermally stable up to 200 °C in air. TP-SIP-MS indicated that a small 
proportion of the incorporated metallocene was volatilised at temperatures below 400 °C, but that the majority decomposed via 
loss of cyclopentadienyl ligands leaving the metal centre between the sheets. A similar thermal degradation path was observed for 
D M AM F on aluminium pillared clay (Al-PILC). 57Fe Mossbauer spectroscopy revealed that the F M D M A + cation occupied a 
similar environment in the chloride salt, F M D M A +-W L  and DM AM F-A1-PILC insofar as the isomer shift, 5, and quadrupole 
splitting, A, of the incorporated metallocene were essentially the same in all complexes and virtually identical to that observed for 
FMDMAC1 (5 =  0.34 mm s -1 , A =  2.32 mm s _ 1  at 300 K). The values for the Debye temperature 0D and recoil-free fraction/  
determined from variable-temperature 57Fe Mossbauer spectroscopy, were typically 140 K and 0.12, respectively, for FMDMAC1 
and F M D M A +-W L, thus confirming the similar environment occupied by the cation in the chloride salt and in WL. In contrast, 
the corresponding values for DMAMF-A1-PILC were 118 K and 0.06, respectively, indicating that the the metallocene enjoyed 
much greater freedom in the galleries of the Al-PILC which exceed the dimensions of the metallocene compared to 
FM D M A +-W L  where the organoiron cation itself determines the layer separation.

The incorporation of metallocenes into zeolites and zeotypes 
continues to attract interest. One particularly attractive goal 
is the production of catalytically active molecular fragments 
or small metallic clusters within a host matrix which, in 
addition to its thermal stability, can impart size and shape 
selectivity on the product distribution. In pursuit of this goal, 
considerable emphasis is placed on proving that the molecule 
is in the channel network and not bound to the surface, the 
characterisation of the incorporated species, and an expla
nation of how it interacts with its new environment before 
undertaking a detailed investigation of how it degrades upon 
thermal treatment.

Moller et al.1 have presented a detailed investigation of the 
pyrolysis of ferrocene in zeolites presenting EXAFS and sup
porting mass spectral data which indicate the presence of half- 
sandwich fragments bound to the oxygens of the zeolite lattice. 
Indeed, attempts to incorporate neutral metallocenes within 
the confines of the zeolite framework can prove problematic 
since protons arising from residual water molecules readily, 
oxidise ferrocene to ferrocenium . 1 , 2  Recent studies3 , 4  have 
resulted in the successful inclusion of ferrocene into the channel 
network of A lP 0 4-5 and AIPO 4 - 8  from which it cannot be 
sublimed. 57Fe Mossbauer spectroscopy3  indicates that the 
metallocene is (i) rapidly reorientating within the channel 
network and (ii) largely unchanged following incorporation. 
EXAFS analysis, 4  which provided independent evidence for 
the presence of unaltered ferrocene at temperatures up to 
200 °C, indicated that the thermally degraded composite did 
not show any evidence of the clustering of iron atoms through 
either Fe-Fe or F e-O -F e interactions. Cobaltocene, however, 
was oxidised to cobalticenium upon incorporation within 
the channels of VPI-5 . 5  Once produced the cobalticenium  
remained thermally stable up to 130 °C, even though VPI-5 
converted to A lP 0 4-8 over this temperature interval.

An increase in layer separation, which exhibits enhanced

thermal stability, usually confirms incorporation of metallo
cenes into layered componds but the nature of the included 
species, its interaction with the host and its thermal degradation 
path are still important. Ferrocenylalkylammonium cations 
have been adsorbed into a number of layered hosts including 
a -S n (H P 0 4 )2 -H20  (a-SnP), a -Z r(H P 0 4 )2 H20  (a-ZrP), M 0 O 3  

and V O P 0 4. Dimethylaminomethylferrocene (D M A M F) 
was readily intercalated into a-SnP from aqueous solution  
forming a bilayer of protonated amines . 6  In M 0 O 3 , 15N  CP 
MAS N M R  provides evidence for two distinct environments 
for 15N  between the layers. 7  A minor resonance was tentatively 
assigned to a small amount o f oxidised guest species 
whilst the major resonance was intermediate between 
that for (FcCH 2 CH 2 1 5 N H 3 )+C1“ and FcCH 2 CH 2 1 5 N H 2, 
where F c=Fe(j/-C 5 H 5 )(>/-C5 H4). N M R  evidence was also 
utilised to show that the amino group was interacting with 
the host layer via P —O - H —N  hydrogen bonds in 
Zr(H PO 4 )2 (FcCH 2 CH 2 1 5 N H 2 )0 .5 (H 2 O)jC (x =  0 .1-0 .5 ) . 7  The 
increase in layer expansion upon incorporation of 
FcCH 2 CH 2 1 5 N H 2  in both a-ZrP and M o 0 3  suggests that the 
guests formed bilayers between the layers of each host. Large 
increases in d spacing, i.e. layer expansion, were also observed 
when ferrocenylalkylammonium iodides were incorporated 
between the layers of V O P 0 4. The length of the alkyl bridging 
unit apparently influences both the layer spacing and the 
extent to which the ferrocene moiety is oxidised upon  
intercalation . 8

D M A M F was the molecule of choice in this investigation  
for several reasons. Firstly, it is easily transformed into the 
hydrochloride salt thus allowing straightforward replacement 
of the N a + cations resident on the exchange sites o f a low- 
iron Texas bentonite. Secondly, incorporation into H +- 
exchanged WL (H +-W L ) should be possible via the in situ 
formation of the conjugate base, ferrocenylmethyldimethylam- 
monium (F M D M A +), in the interlamellar region. This second
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approach also has the added attraction of neutralising the 
protons which may contribute to the oxidation of the ferrocene 
unit . 1 , 2  Thirdly, it was our intention to incorporate D M A M F  
into the interlamellar gallery of an aluminium pillared inter
layer clay (Al-PILC) by using the protons, formed during 
calcination of the pillar, to produce F M D M A + ions. All these 
approaches have proven successful and the products have been 
characterised using a range of instrumental techniques includ
ing X-ray fluorescence spectrometry (XRF), powder X-ray 
diffraction (PXRD), thermo gravimetry (TG), temperature-pro
grammed solid insertion probe mass spectrometry (TP-SIP- 
MS), and Fourier transform IR (FTIR) spectroscopy. 
Moreover, variable-temperature Mossbauer spectroscopy 
has been extensively employed to determine how strongly 
D M A M F is held within the Al-PILC, where the gallery height 
exceeds the dimensions of the metallocene, compared to the 
situation in FM D M A +-W L  where the dimensions of the 
metallocene itself determines the interlayer separation.

Experimental
Materials

The clay used in all the experiments was Westone-L (WL) a 
Texas bentonite, supplied by ECC International, which has a 
cation exchange capacity (cec) of 81 mequiv ( 1 0 0  g ) - 1  and a 
low iron content of 0.5% m/m Fe2 0 3. This clay and the 
procedures used to convert it into the (nominal) < 2  pm particle 
size, Na-exchanged form, subsequently referred to as N a +-W L, 
have been described in detail elsewhere. 9

The H +-exchanged form of Westone-L, H +-W L, was 
obtained by treating N a +-W L  with aqueous 1 mol dm - 3  

sulfuric acid for 2 h at 25 °C, and washing until the residual 
conductivity of the supernatant was <  30 pS. The product was 
dried at room temperature. Elemental analysis using XRF  
spectrometry indicated that this treatment, as anticipated based 
on related results, 1 0  had little effect on the layer composition. 
This was confirmed when 2 7 A1 and 29Si MAS NM R spectra of 
WL were unchanged following the acid treatment.

The aluminum pillared clay was prepared using the method 
described by Schoonheydt et al.11 N a +-W L  was suspended in 
100 cm 3  of water and stirred for 6  h. An aqueous solution of 
N aO H  (17 cm3, 0.4 mol dm -3 ) was added dropwise at 1 cm 3  

m in - 1  to an aqueous solution of A1C13 -6H20  (17 cm3, 0.2 mol 
dm -3 , 10 cec) with vigorous stirring. The resulting solution 
was heated at reflux for 3 h and then added dropwise at 8  cm3  

m in - 1  to the N a +-W L  suspension. This was stirred for 12 h, 
and then washed with deionised water until the conductivity 
of the supernatant fell below 30 pS. The clay was air-dried and 
then calcined at 500 °C for 1 h. This yielded aluminium pillared 
WL (Al-PILC) with an interlayer spacing of 18.8 A.

(Ferroccnylmethyl)dimethylammonium chloride (FM D - 
MAC1) was prepared using N,lV-dimethylaminomethylferro- 
cene (D M A M F) supplied by Aldrich Chemicals. DM AM F  
(1 g, 4.12 mmol) was added dropwise with stirring to 50 cm 3  

of 1 mol dm - 3  HC1. This was evaporated (in vacuo) to give a 
green solid. Recrystallisation from CHC13 -E t20  gave long 
golden brown crystals in 87% yield. (Analysis: Found C, 55.59; 
H, 6.40; N , 5.02. Calc. C, 55.85; H, 6.49; N , 5.01%). The 
cationic portion of this salt will subsequently be referred to as 
F M D M A + .

F M D M A +-W L  was prepared using three different methods. 
In the first method FMDMAC1 (0.23 g, 1 cec, 0.81 mmol) was 
dissolved in 50 cm3  of deionised water, and 1 g of powdered 
N a +-W L , dried at 120 °C, was added. The suspension was 
stirred for 8 h at 25 °C before the clay was isolated and the 
process repeated twice more. The product was then washed 
(5 x 1 2 0  cm 3  deionised water) as above. The product is sub
sequently referred to as F M D M A +-W L (1). (Analysis: Calc. 
100% exchange; C, 14.2. Found C, 11.0%, equivalent to 80%

exchange). In the second method DM AM F (0.46 g, 2 cec, 
1.62 mmol) was suspended in 50 cm3  deionised water, and 
5 cm 3  of 1 mol dm - 3  HC1 (an excess) added dropwise with 
stirring to give a solution of FMDMAC1. Ground N a +-W L  
powder ( lg ) ,  dried at 120 °C, was added and the resulting 
suspension was stirred for 18 h at 25 °C. The clay was isolated 
by centrifugation and the process repeated twice more. Finally, 
the product [referred to as FM D M A +-W L (2)] was washed 
with deionised water (5 x 120 cm3), and air dried at room  
temperature. In the third method, 1 g of H +-W L , dried at at 
120 °C, was added to D M A M F (0.46 g, 2 cec, 1.62 mmol) 
dissolved in 50 cm 3  of methanol. The resulting suspension 
was stirred for 18 h at 25 °C, centrifuged and finally washed 
with methanol (5 x 120 cm3). The product [referred to as 
F M D M A +-W L (3)] was then air dried at room temperature.

D M AM F (1.29 g, 3 cec, 2.43 mmol) was suspended in 
100 cm3  of deionised water, and 1 g of powdered N a +-W L  
(dried at 120 °C) was added. The suspension was left to stir 
for 6  h at 25 °C. The clay was then isolated by centrifuga
tion and the process repeated twice more. The final prod
uct, D M AM F-W L, was then washed (3 x 120 cm 3  H 2 0 ,  
3 x 120 cm3  MeOH, 1 x 120 cm 3  H 2 0 ) .

D M AM F (0.43 g, 2 cec, 1.62 mmol) was dissolved in 50 cm3  

of methanol and 1 g of the calcined pillared clay, pretreated at 
120 °C, added. The suspension was stirred for 18 h, washed 
(5 x 120 cm 3 methanol), and collected in the normal manner. 
The product is subsequently referred to as DMAMF-A1-PILC. 
(Analysis: Calc. 100% exchange; C, 14.2. Found C, 4.2% 
equivalent to 29% exchange).

Adsorption isotherms

Methanolic solutions (20 cm3) of DM AM F-FM DM AC1 in 
the range 0 -3  cec were prepared, and the absorption at 435 nm, 
characteristic of both D M A M F and FMDMAC1, measured. 
Clay (0.1 g) dried at 120 °C was then added and the suspensions 
shaken overnight. These were then centrifuged, and the absorb
ance of the supernatant measured using a Hitachi U-2000 
double-beam U V-V IS spectrophotometer, with cells of path- 
length 1  cm.

Thermogravimetry

Thermogravimetry was performed using a Mcttler TG50 ther
mobalance connected to a Mettler TC10A processor. Samples 
(5 -10  mg) were heated from 25 to 800 °C, at a rate of 20 °C 
m in-1 , in a dynamic atmosphere of dry N 2  gas flowing at 
2 0  cm3  m in-1 .

X-Ray diffraction

X-Ray diffraction traces of pressed powder samples were 
recorded using a Philips PW1830 diffractometer using Cu-Ka 
radiation (2 =  1.5418 A) whereas a Philips PW1050, using Co- 
Ka radiation (2 =  1.789 A) was used to study partially oriented 
samples on glass slides. A heating stage manufactured accord
ing to Brown et al}2 was used to heat the partially oriented 
samples in the temperature range 20-400 °C.

X-Ray fluorescence

XRF analyses of samples presented as lithium tetraborate 
beads were obtained using a Philips PW2400 X-ray spec
trometer calibrated using certified reference materials. C,H,N  
analyses were obtained from Medac Ltd.

Mossbauer

The Mossbauer spectrometer, cryostat, sample presentation 
and fitting routines have been described in detail elsewhere . 9  

Absorbers of Mossbauer t values <  1, with a maximum iron 
concentration of 7 mg cm - 2  for FMDMAC1, were studied. The
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Fig. 1 Isotherms for the adsorption, from methanol, of DMAMF on 
N a+-W L ( • )  and Al-PILC (O) and FMDMA+ on N a+-W L (A), 
H +-W L (■) and on N a+-W L in the presence of [H +] (□)

values of the isomer shift, <5, the quadrupole splitting, A, and 
the linewidths, r, quoted are relative to the source, 57Co in a 
rhodium matrix at room temperature.

Results
Adsorption isotherms

The adsorption of D M AM F onto N a +-W L  and Al-PILC  
from methanol resulted in an uptake equivalent to only 1 0 % 
of the cec (Fig. 1). The loading on the Al-PILC was disap
pointing given that when the pillared clay is calcined at 500 °C, 
protons are released as the aluminium oxide pillars are formed, 
which then migrate into the layers. These protons can be 
enticed into the interlayer using strong bases such as 
ammonia . 1 3  Thus it was anticipated that interaction with these 
protons might provide the driving force to draw D M A M F  
into the galleries in the pillared clay. Formation of the hydro
chloride salt, FMDMAC1, followed by contact with the clay 
in methanol proved successful yielding 53% exchange. 
Production of the chloride salt in situ, by the addition of acid 
to the methanolic solutions followed by contact with the clay, 
was undertaken and this resulted in 48% exchange. In the 
final experiment of the series, D M A M F was contacted with 
H +-W L. Exchange was successful although the loading 
achieved was only 45% of the theoretical value, perhaps 
implying that the upper limit for exchange using methanol as 
solvent was near 50% cec.

Elemental analyses

The loadings achieved following one contact in methanol were 
disappointing so attempts were made to increase the level of 
exchange by contacting N a +-  or H +-W L  three times with the 
metallocene using water as solvent. In the main this proved 
more successful as the following results show. The theoretical 
value for the N a20  content of fully N a +-exchanged WL, given 
a cec of 81 mequiv (100 g clay)-1 , is 2.09 mass% whereas the 
Fe2 0 3  content should increase from 0.5 to 5.6% m/m if 
F M D M A + ions occupy all the exchange sites. Note, however, 
that the calculations for iron content assume that no oxidation 
or volatilisation of the metallocene occurred, in line with 
previous observations . 3 , 4 , 9  Table 1 lists the results of the XRF 
and C,H,N analyses and expresses these values as the percent
age of exchange sites occupied by the metallocene or vacated 
by the N a + ions. When the metallocene is adsorbed in the 
cationic form the number of resident N a + ions replaced should 
correlate with the amount of iron adsorbed given that both 
species carry a single positive charge. Thus the discrepancy 
between the number of N a + ions displaced, the amount of 
iron adsorbed and the C,H,N analysis was a cause of initial 
concern (Table 1). For example, C,H,N analysis indicated that 
FM D M A + ions occupied 80% of the exchange sites in 
F M D M A +-W L (1), a figure which agreed with the number of 
N a + ions displaced (76% cec) but not with the amount of iron

determined by XRF (59%). The figures for DMAMF-A1-PILC  
behave in a similar manner. C,H,N analysis indicated that 
D M A M F occupied 29% of the exchange sites, whereas XRF 
data suggested a value of 33%. The value of 67% N a + 
displacement when D M A M F was contacted directly with 
N a +-W L  (D M A M F-W L ) was unexpected. It is proposed that 
there were sufficient protons present during this process to 
protonate enough D M AM F to cause this level of exchange.

Thermogravimetry

The derivative thermograms presented in Fig. 2 were obtained 
after each sample had been pre-conditioned in the nitrogen 
purge gas for 15 min. This procedure removes much of the 
physisorbed water, which contributes little information, and 
serves to emphasise the maxima associated with desorption of 
strongly bonded species. The derivative thermogram for 
N a +-W L  [Fig. 2(a)] shows that the desorption of the remain
ing physisorbed water was essentially complete by 100 °C, with 
dehydroxylation of the structure reaching a maximum at 
680°C.14 Liquid D M A M F boils at 200 °C and so little infor
mation regarding its decomposition was gained. The corre
sponding chloride salt, FMDMAC1, began to decompose at 
ca. 150 °C with an associated mass loss of 27%. Further mass 
losses of 15, 9.4 and 14.5% occurred with associated maxima 
at 350, 460 and 520°C, respectively [Fig. 2(b)]. The derivative 
thermogram for FMDMAC1 provides a useful fingerprint for 
the protonated moiety insofar as a number of the mass losses 
were also observed in F M D M A +-W L (1) [Fig. 2(c)]. For 
example, a maximum in the derivative thermogram for 
F M D M A +-W L (1) at 200 °C was clearly visible and there was 
evidence for the presence of a maximum at 350 °C. The 
maximum at 625 °C may reflect some combination of the 
FMDMAC1 maximum at 620 °C and the structural dehydrox
ylation of WL which maximised at 680 °C [Fig. 2(a)]. In 
addition, a new maximum at 740 °C which corresponded to 
twice the mass loss associated with the maximum at 200 °C 
was observed, perhaps indicating that the F M D M A + cation 
follows a different decomposition pathway when exchanged 
onto WL. The derivative thermogram for the desorption of 
D M AM F from Al-PILC exhibited a small maximum at 200 °C 
but was dominated by a peak at 550 °C, which accounted for 
8 % of the initial mass or 43% of the total mass loss.

TP-SIP-MS

TP-SIP-M S was used to explore the way in which the various 
complexes were thermally degraded. The maxima in the total 
ion current (TIC) for the desorption o f metallocene from WL 
and Al-PILC correlate quite well with those observed in the 
derivative thermograms, which is reassuring given the different 
conditions under which they are obtained . 1 5  The TIC for the 
thermal decomposition of the incorporated metallocene, which 
reached maxima for F M D M A +-W L  and DM AM F-A1-PILC  
at 225 and 250 °C respectively, represented the combination of 
a large number of mass fractions. In particular, peaks at m/z 
214 (N C H 2 Fc), 200 (CH 2 Fc), 186 (Cp2 Fe), 134 [CH 2 (fj5- 
C5 H 4 )Fe] and 121 (CpFe) [F c =  Fe(^-C5 H 5 )(f;-C5 H 4); Cp = t]5- 
CsH5] proved that iron was volatilised from the sample, 
although this process was essentially complete by 400 °C. 
Above 400 °C the decomposition products contained only 
ligand, with characteristic peaks at m/z 79 (CH 2 Cp) and 6 6  

(Cp). N o iron was desorbed. This behaviour is summarised in 
Fig. 3 where the intensity of peaks, selected to distinguish 
between metallocene and ligand desorption, are plotted as a 
function of sample temperature. It is important not to equate 
TIC with the amount of metallocene desorbed. Reference to 
the derivative thermograms in Fig. 2, where the area under the 
peaks is directly related to the mass loss, indicates that the 
amount of material desorbed below 400 °C was not as signifi
cant as the TIC suggests, yet the mass spectra quite clearly
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Table 1 Summary of elemental analysis data for the samples described in the text

Fe content0 
(±0.1)% 

(m/m)

Na content0 
(±0.1)% 

(m/m)
Fe adsorbed0 

(% cec)
Na desorbed0 

(% cec)
metallocene
adsorbed6

N a+-W L 0.4 1.9 _ __ _
H +-W L 0.4 0.1 — 94 —
Al-PILC 0.4 0.0 — 100 —
FMDMA+-WL(1) 3.4 0.5 59 76 80
FMDMA+-WL(2) 4.1 0.1 72 95 —
FMDMA+-WL(3) 3.4 0.1 59 95 —
DMAMF-WL 3.3 0.7 57 67 —
DMAMF-A1-PILC 2.0 0.1 33 29

0 Based on XRF analysis figures. b Based on C,H,N analysis figures.

d W 
d T

800600400200
77"C

Fig. 2 Derivative thermograms for (a) N a+-WL, (b) FMDMAC1, 
(c) FMDMA+-WL(1), (d) Al-PILC and (e) DMAMF-A1-PILC

corroborate the loss of some iron which explains the discrep
ancies noted in the elemental analyses above. Mass spectral 
analysis of the peaks contributing to the large maximum at 
680 °C in the TIC for the desorption of D M A M F from Al- 
PILC proved that this maximum was due to dehydroxylation 
of the structure and the pillar.

Powder X-ray diffraction

The quality of the X-ray diffraction traces collected using 
pressed powder samples is shown in Fig. 4 and the index 
for each pattern is given in Table 2. The basal spacing for 
N a +-W L  was 12.5 A, which is commensurate with one water 
layer between adjacent clay layers, whilst the spacing for 
F M D M A +-W L (1) [F ig  4(b)] was 15.1 A. The diffraction trace 
for the Al-PILC, after firing for 1 h at 500 °C, exhibited a

spacing of 18.8 A, thus confirming that the pillaring process 
had been successful.

Variable-temperature X-ray diffraction

VTXRD provides the first real indication that the metallocene 
cation was present within the interlayer of WL. At room  
temperature and humidity N a +-W L  exhibits a d spacing of 
12.5 A which upon heating to 50 °C decreases to 9.6 A. This 
latter value is diagnostic of an N a +-exchanged clay from which 
all the interlamellar water has been expelled. Incorporation of 
a large species such as the F M D M A + cation between the 
aluminosilicate layers increases the d spacing and makes it 
more thermally stable than the corresponding water-expanded 
material. The 15.1 A  spacing, as evidenced by the 0 0 1  and 003 
reflections, remained essentially constant until the composite 
was heated to 2 0 0  °C, whereupon it collapsed to 13.0 A  (Fig. 5). 
This reduction in the d spacing coincides with the onset of the 
first major mass loss in the derivative thermogram for 
F M D M A +-W L (1) [F ig  2(c)] and there was no evidence of a 
9.6 A  spacing, characteristic of a completely collapsed clay, 
which indicates that the decomposition products of the 
F M D M A + cations remained in the interlayer region. The 
PXRD trace for the pillared clay provided little information 
regarding the location of the metallocene because the spacing 
remained constant at 18.8 A  and no extra peaks were observed, 
suggesting that the metallocene was not mixed with Al-PILC  
in a powder form. The variable-temperature Mossbauer spec
troscopic data (vide infra) support this observation.

Mossbauer spectroscopy

57Fe Mossbauer data were obtained for FM DM A + , as the 
chloride salt, and after incorporation into Westone-L, 
F M D M A +-W L (l)-(3 )  and Al-PILC, respectively, over the 
temperature range 15-300 K. Selected spectra are shown in 
Fig. 6  and 7 and the parameters derived from the fitting process 
are listed in Tables 3-5 . FMDMAC1 was fitted as a resolved 
quadrupole doublet whereas the fitting strategies for the clay- 
supported complexes had to allow for the small amount of 
iron in the clay structure, the absorption of which became 
increasingly more significant as the temperature increased. It 
is common for the recoil-free fraction of inorganic species to 
decrease more slowly with temperature than that for an 
organometallic species. This was particularly evident in 
DM AMF-A1-PILC (Fig. 7) where the combination of a low  
loading, equivalent to 29% cec, and the much lower recoil- 
free fraction meant that the contribution from the structural 
iron in WL dominated the spectrum above 200 K. The 
similarity of the Mossbauer parameters, <5 and A, for 
F M D M A + as the chloride salt and when incorporated in the 
host aluminosilicate indicates that there was no substantial 
change in the organometallic cations upon exchange. In par
ticular, the absence of a component with a reduced quadrupole 
splitting suggested that the ferrocene unit had not been oxidised
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Table 2 PXRD data for N a+-W L and FMDMA+-W L(1)

6 4 0 0 -

4 9 0 0

3 0  00

2000
004

110, 020
O S+ 003

002

&tnca>
6 4 0 0

001 (b)
4 9 0 0

3 6 0 0

2000

110, 020
1 6 0 0

003

OS

I0?* 005 13°
002 060007

20/degrees I h k / ^obs/A 4calc/A

N a+-W L“
7.06 100 0 0 1 12.51 12.50

14.17 8 0 0 2 6.24 6.25
19,87 3 1 1 0 4.46 4.45

0 2 0
28.43 27 0 0 4 3.14 3.13
35.96 2 0 0 5 2.49 2.50
43.48 3 0 0 6 2.08 2.08

FMDMA+--W L(l)b
5.86 100 0 0 1 15.10 15.10

11.65 3 0 0 2 7.59 7.55
17.65 17 0 0 3 5.02 5.03
19.84 8 1 1 0 4.47 4.45

0 2 0
23.62 4 0 0 4 3.76 3.78
29.63 5 0 0 5 3.01 3.02
34.71 2 1 3 0 2.58 2.60
41.91 1 0 0 7 2.15 2.16
61.94 2 0 6 0 1.49 1.50

Fig. 4 PXRD profiles, obtained using Cu-Ka radiation, for 
(a) N a+-W L and (b) FMDMA+-WL(1) (OS small quantity of fine 
grained opaline silica impurity, K =  kaolin)

“a — 5.2, b = 9.3, c=  12.5 A. "a  =  5.2, 6 =  9.3, c =  15.1 A.

upon intercalation. The variation of the absorption area data 
with temperature, for the organometallic cation, was analysed 
and the resulting plots of log (area) vs. temperature for the 
samples under investigation are presented in Fig. 8 . The values 
of 6d and f  obtained using software which uses the full Debye 
integral, are presented in Table 6 . The illustrative data pre
sented concentrates on F M D M A +-W L  and DM AM F-A1- 
PILC, but these are representative of all the samples studied 
as the data in Table 6  and the plots in Fig. 8  confirm.

Discussion
The adsorption isotherm data (Fig. 1) and the results of the 
elemental analyses confirm that DM AM F, and the correspond
ing F M D M A + cation, was adsorbed onto W L from both  
methanol and water with varying degrees of success to produce 
a composite with a basal spacing of 15.1 A. The method of
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introduction of the F M D M A + cation into the interlayer region 
influences the amount of cation adsorbed but, in general, 
acceptable levels of incorporation are achieved from multiple 
contacts in water. The poor uptake of D M AM F from methanol 
was attributed to a combination of two distinct factors. Firstly, 
incomplete separation of the layers due to the solvent (meth
anol), and secondly, there was little to favour incorporation 
of a neutral species between the layers of N a +-W L. Indeed, 
similar loadings of cationic half-sandwich compounds of iron 
were achieved using methanol as solvent . 9  The low loading of 
the D M A M F on Al-PILC, from both methanol and water, 
was a combination of two factors. Firstly, the protons generated 
during the firing process may not have been available for 
complexation with the dimethylamino group on the metallo
cene. Secondly, it is probable that sites at the periphery of the 
interlayer region were filled first thus preventing the diffusion 
of further molecules into the structure.

The observed basal spacing of 15.1 A indicates that, in 
contrast to the bilayer formation in a-SnP , 6  M o 0 3  and a- 
ZrP , 7  and V O P 0 4 , 8  only a single layer of metallocene resides 
in the interlamellar region of WL. The reduction in the basal 
spacing from 15.1 to 13.0 A  when F M D M A +-W L (1) was 
heated to 200 °C must be attributed to the decomposition of 
the F M D M A + cation within the interlayer region. Moreover, 
the final value of 13.0 A  indicates quite clearly that the 
decomposition was not complete. These observations are in 
accord with both the derivative thermograms (Fig. 2) and the 
TP-SIP-M S results (Fig. 3) and suggest that some residue 
containing iron was left between the aluminosilicate lamellae. 
The volatilisation of some of the metallocene, which contrasts 
with recent studies of organoiron species on WL 9  and A lP 0 4- 
5, 3 , 4  at temperatures around 200 °C may contribute, at least 
in part, to the reduction in basal spacing. The data presented 
in Table 1 indicate that the F M D M A + cation displaced N a + 
ions from the exchange sites on WL; thus it is unlikely that 
the volatilised metallocene arose solely from surface sites,

although the possibility is not rejected. The similarity of the 
desorption profiles, derived from mass spectrometry (Fig. 3), 
for F M D M A +-W L (1) and DMAMF-A1-PILC suggest that 
the metallocene molecules are desorbed from similar sites with 
the proportion of strongly bonded molecules, which only lose 
ligand upon thermal treatment, outnumbering those which 
desorb near 200 °C. The mass spectral data give no indication 
that the aminomethylmetallocene is changed upon incorpor
ation into the host structures and this is supported by the 
parameters for the incorporated metallocenes derived from the 
57Fe Mossbauer data.

Fig. 5 shows that the 15.1 A  basal spacing was stable at 
2 0 0  °C. The thickness of the metallocene is 6.65 A 16 which, 
when added to the layer thickness of 9.6 A , should result in a 
d spacing of 16.3 A . However, the incorporation of F M D M A + 
cations in V 0 P 0 4 8  only resulted in an expansion of 5.8 A , a 
value close to that of 5.5 A  observed here. It is common for 
metallocene expanded layered materials to display d spacings 
up to 1  A  less than the value anticipated from the molecular 
dimensions of the guest, particularly in swelling layer lattices 
such as a-Z r(H P 0 4 ) 2 , 1 7  V 0 P 0 4 , 1 8  and V 2 0 5 . 7 , 1 9  Given the 
uncertainty regarding the increase in d spacing of metallocene 
expanded layered hosts, conclusions regarding the orientation 
of the F M D M A + cation are difficult to reach. However, the 
observed 15.1 A  d spacing of F M D M A +-W L (1) is consistent 
with the cation adopting an orientation where the plane of the 
cyclopentadienyl ring is perpendicular to the basal surface with 
the side chain accommodated in the interlamellar space, thus 
making no contribution to the layer expansion [Fig. 9(a)]. It 
is more difficult to ascertain the orientation of the metallocene 
in DMAMF-A1-PILC because the height of the pillars, which 
exceed the dimensions of DM AM F, determine the interlayer 
spacing [Fig. 9(b)] and this spacing does not alter after the 
PILC has been fired.

The 57Fe Mossbauer spectrum for FMDMAC1 consisted of 
a single symmetric doublet, with a quadrupole splitting, A, of 
2.34 mm s -1 , which remained constant between 15 and 300 K, 
whereas the isomer shift, 5, exhibited a typical second-order 
Doppler shift effect, falling steadily from an initial value of 
0.41 mm s - 1  at 15 K to a final value of 0.34 mm s - 1  at 300 K 
(Table 3). Analysis of the normalised area vs temperature data 
(Fig. 7) yielded a Debye temperature, 0D, of 144 K and a recoil 
free fraction , / 2 9 1  K, of 0.14 when an effective recoiling mass of 
57 u was assumed. The low 0D, which is typical of organometal
lic compounds, may be further reduced in this instance owing 
to the difference in size between the large FM D M A + cation 
and the smaller chloride anion. The halfwidth at half height, 
772, of the absorption peaks varied from 0.13 mm s - 1  at 15 K  
to 0.16 mm s - 1  at 300 K. This broadening arises owing to 
increased vibration within the lattice as the temperature of the 
solid was increased.

Fig. 6  illustrates how the 57Fe Mossbauer spectrum for 
F M D M A +-W L  varied with temperature. The sharp, outer 
doublet, which dominates the spectra at low temperatures, was 
assigned to the F M D M A + cation {vide infra). The broad, ill 
defined absorption seen between the wings of this sharp, outer 
doublet has been attributed to two components. The first is a 
weak, broad doublet arising from the small amount of Fe111, 
present owing to isomorphous substitution in the octahedral 
sheet of WL [Q (l)  in Table 4 ] , whilst the second is a broad 
singlet, characteristic of Fe° [S ( 1) in Table 4 ]. This singlet 
arises from the small quantity of iron which was added to the 
graphite rod to aid machining when making , the sample 
holders. This contribution is not normally observed, but owing 
to the low iron content of the materials under study, the 
absorption becomes significant. The broadness of the Fem 
doublet indicates that the iron present in the clay occupies a 
range of closely related sites.

When exchanged into WL the F M D M A + cations exhibited 
isomer shifts and quadrupole splittings which were very similar 
to those determined for FMDMAC1 (Table 3) and varied little
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Fig. 6 Variable-temperature 57Fe Mossbauer spectra collected for FMDMA+-WL(1) at the temperatures indicated

despite the different routes by which the clay/metallocene were 
prepared. The similarity of these values indicates that the 
FM D M A + cations occupied similar environments in both the 
chloride salt and in WL. This is firm evidence that WL simply 
expanded to accommodate the F M D M A + cation, with no 
oxidation of the iron centre nor distortion in the orientation 
of the cyclopentadienyl rings. Given that the increase in the d 
spacing upon incorporation of the F M D M A + cation into WL

was 1.0 A less than anticipated, and that previous studies2 0  

have shown that a 9° tilt in the cyclopentadienyl rings reduces 
the isomer shift by 0 . 0 2  mm s - 1  and the quadrupole splitting 
by 0 . 1 1  mm s -1 , the similarity of the observed parameters was 
surprising. Nonetheless, it is consistent with an earlier study 
where a similar low d spacing did not alter appreciably the 
Mossbauer parameters of half sandwich organoiron com 
pounds when they were incorporated into W L . 9
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Fig. 7 Variable-temperature 57Fe Mossbauer spectra collected for DMAMF-A1-PILC at the temperatures indicated

The Mossbauer spectra for the complex formed when Al- 
PILC was treated with D M A M F (Fig. 7) were of lower quality 
than those recorded for the F M D M A +-W L (l) - (3 )  samples 
because the amount of iron present was only equivalent to  
29% cec, and the recoil-free fraction fell off much more rapidly. 
Nonetheless, the values of <5 and A determined from these 
spectra (Table 5), together with the resistance of the incorpor
ated metallocene to the washing procedures, suggests that the

incorporated species was the F M D M A + cation. The narrow 
doublet [Q ( l)  in Table 5] became evident in the Mossbauer 
spectrum of the fired Al-PILC prior to contact with DM AM F. 
The origin of this doublet has not been studied extensively.

The consistency of the values of A and 5 determined for the 
F M D M A + cations in WL together with their similarity to the 
values for the chloride salt suggested that the organoiron 
species was the same in all the samples. Yet the TP-SIP-MS
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Table 3 Isomer shifts, quadrupole splittings and linewidths derived from a variable-temperature 57Fe Mossbauer study of FMDMAC1

77 K
8

(±0.02)/mm s-1
A/2

(+0.02)/mm s-1
772(1) 

(±0.02)/mm s 1
T/2(r) 

(+0.02)/mm s 1
normalised

area x2

15 0.41 1.18 0.13 0.13 2.04 0.504
33 0.41 1.18 0.13 0.13 1.89 0.772
50 0.41 1.18 0.14 0.14 1.82 1.074
80 0.40 1.17 0.16 0.15 1.56 0.663

100 0.40 1.17 0.14 0.14 1.35 1.065
120 0.39 1.17 0.16 0.15 1.21 0.872
140 0.39 1.17 0.15 0.14 1.05 0.810
160 0.39 1.17 0.17 0.16 0.93 0.897
200 0.36 1.17 0.17 0.16 0.70 0.799
250 0.34 1.16 0.18 0.16 0.46 0.975
300 0.34 1.16 0.20 0.16 0.31 1.726

Table 4 Isomer shifts, quadrupole splittings, linewidths and areas derived from a variable-temperature 57Fe Mossbauer study of FMDMA+-W L

T/K phase"
s

(+0.02)/mm s_1
A/2

(+0.02)/mm s-1
772(1) 

(+0.02)/mm s 1
r/2(r) 

(+0.02)/mm s 1
normalised

area
relative 

area (+2.5%) *2

15 S(l) 0.24 0.48 0.18 15 0.604
15 Q(i) 0.33 0.41 0.24 0.24 0.05 5 0.604
15 Q(2) 0.43 1.21 0.14 0.15 0.93 80 0.604

50 S(l) 0.24 0.48 0.17 16 0.559
50 Q(i) 0.33 0.43 0.24 0.24 0.54 5 0.559
50 Q(2) 0.42 1.22 0.15 0.15 0.82 79 0.559

80 S(l) 0.24 0.48 0.17 18 0.582
80 Q(i) 0.33 0.41 0.24 0.24 0.07 7 0.582
80 Q(2) 0.42 1.21 0.14 0.15 0.69 75 0.582

160 S(l) 0.24 0.49 0.17 28 0.572
160 Q(i) 0.29 0.42 0.24 0.24 0.07 11 0.572
160 Q(2) 0.39 1.21 0.13 0.13 0.39 61 0.572

240 S(l) 0.24 0.50 0.20 44 0.540
240 Q(l) 0.29 0.45 0.23 0.23 0.03 7 0.540
240 Q(2) 0.35 1.20 0.12 0.14 0.23 49 0.540

300 S(l) 0.23 0.48 0.18 54 0.607
300 Q(i) 0.30 0.49 0.20 0.20 0.02 6 0.607
300 Q(2) 0.32 1.20 0.13 0.14 0.13 40 0.607

flS(l) =  Fein present in sample holder; Q (l) =  Fem present due to isomorphous substitution in WL; Q (2)=Fen present in ferrocene unit of 
incorporated metallocene.

results suggested quite strongly that there were two adsorption 
sites, one where the entire metallocene was desorbed at tem
peratures below 400 °C, and a second environment where the 
metal centre was retained and only ligand was desorbed. In 
an effort to determine whether the fitting of the 57Fe Mossbauer 
absorption data would support a two site model the spectra 
obtained at 15, 25, 50, 80, 100, 140, 180, 220 and 300 K for 
both FM D M A +-W L (3) and DM AM F-A1-PILC were sub
jected to a P(Q) analysis. The P(Q) fitting program assumes 
a distribution of sites and an effective distribution of electric 
field gradients and corresponding quadrupole splittings. Some 
line broadening away from the theoretical natural linewidth is 
expected owing to saturation effects and sample inhomogen
eity. This fitting procedure indicated that there was no evidence 
for more than one unique site which would result in changes 
in the quadrupole splitting larger than the normal line broaden
ing effects. This indicated that the Mossbauer data would only 
support one type of site. Consequently, it must be considered 
that at temperatures below 300 K the adsorption sites for 
FM D M A + cations were indistinguishable.

The Debye temperature, 6D, and corresponding recoil-free 
fraction,^ provide information regarding how tightly the iron- 
containing species is bound within a structure. Previous varia
ble-temperature Mossbauer studies of organometallic species 
adsorbed in clays have shown that incorporation may result 
in a lower Debye temperature and recoil-free fraction. The In

(area) vs. temperature data reported by Simopoulos et al.21 for 
dimethyltin species adsorbed on montmorillonite exhibited a 
discontinuity near 210 K at which the gradient of the line 
increased considerably, although linearity was retained. This 
feature was attributed to the melting of the interlayer water 
which resulted in a lower recoil-free fraction for the Sn atoms. 
Dehydration of the samples removed the discontinuity, hence 
corroborating the interpretation. In contrast, the Debye tem
perature and recoil-free fraction of the iV-methyl-3-(triphenyl- 
stannyl)pyridinium cation changed little upon adsorption onto  
the cation-exchange sites in montmorillonite , 2 2  whereas the 
half-sandwich iron cations, tricarbonyl (^5 -2 ,4-dimethylcyclo- 
hexadienyl)iron(l+), and tricarbonyl(^5 -2 -methoxycyclohex- 
adienyl)iron(l-f), typically gave Debye temperatures 30 K  
lower when occupying the exchange sites in W L than when 
incorporated in a PF6-  lattice . 9  This was attributed to the 
cations being less tightly bound when incorporated between 
the layers of the clay than when locked within the anionic 
(P F 6“ ) lattice. Clearly, the more hydrophobic the incorporated 
organometallic species, the less influence the melting of incor
porated solvent has on the recoil free fraction, hence no 
discontinuities are observed.

The values for 0D and / 2 9 1  K for the samples studied here 
are collected in Table 6 . The similar Debye temperatures 
obtained for the F M D M A + cation in WL, irrespective of 
preparation method, suggests that the recoiling mass in W L is
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Table 5 Isomer shifts, quadrupole splittings, linewidths and areas derived from a variable-temperature 57Fe Mossbauer study of DMAMF-A1-
PILC

T/K phasea
d

(±0.02)/mm s -1
A/2

(+0.02)/mm s-1
772(1) 

(+0.02)/mm s 1
r/ 2(r) 

(+0.02)/mm s 1
normalised

area
relative 

area (+2.5%) X2

14 Q (l) -0 .0 3 0.19 0.20 0.20 0.10 13 0.674
14 Q(2) 0.66 0.19 0.30 0.30 0.07 9 0.674
14 Q(3) 0.43 1.22 0.18 0.18 0.61 78 0.674

25 Qd) -0 .0 3 0.19 0.20 0.20 0.11 14 0.586
25 Q(2) 0.66 0.19 0.30 0.30 0.07 10 0.586
25 Q(3) 0.43 1.22 0.18 0.18 0.57 76 0.586

50 Q (l) -0 .0 3 0.19 0.20 0.20 0.12 18 0.591
50 Q(2) 0.66 0.19 0.30 0.30 0.09 14 0.591
50 Q(3) 0.43 1.22 0.14 0.15 0.42 68 0.591

80 Q(l) -0 .0 8 0.17 0.20 0.20 0.09 17 0.720
80 Q(2) 0.63 0.19 0.30 0.30 0.09 17 0.720
80 Q(3) 0.42 1.20 0.21 0.21 0.34 66 0.720

100 Qd) -0 .0 3 0.19 0.20 0.20 0.11 22 0.599
100 Q(2) 0.66 0.19 0.30 0.30 0.08 16 0.599
100 Q(3) 0.41 1.21 0.20 0.20 0.31 62 0.599

140 Qd) -0 .0 5 0.19 0.20 0.20 0.10 25 0.573
140 Q(2) 0.66 0.19 0.30 0.30 0.08 19 0.573
140 Q(3) 0.41 1.20 0.25 0.25 0.23 56 0.573

180 Q(i) -0 .0 5 0.19 0.20 0.20 0.10 32 0.575
180 Q(2) 0.68 0.19 0.30 0.30 0.08 24 0.575
180 Q(3) 0.40 1.20 0.17 0.17 0.14 44 0.575

220 Q(i) -0 .0 8 0.18 0.20 0.20 0.09 35 0.571
220 Q(2) 0.66 0.19 0.30 0.30 0.07 28 0.571
220 Q(3) 0.39 1.20 0.18 0.18 0.09 36 0.571

300 Q(i) -0 .0 8 0.19 0.20 0.20 0.09 45 0.594
300 Q(2) 0.68 0.19 0.30 0.30 0.07 35 0.594
300 Q(3) 0.37 1.20 0.16 0.17 0.04 20 0.594

“ Q (l) =  Fcm present in fired Al-PILC; Q (2)=FeUI present due to isomorphous substitution in WL; Q(3) =  Fen present in ferrocene unit of 
incorporated metallocene.

0.4

0.0 -

- 1.0 -

-1.5
3002000 100

Table 6 Values for the Debye temperature and recoil free fraction for 
samples described in the text

T/K

Fig. 8 Variation of Mossbauer absorption line area with temperature 
for □ , FMDMAC1; A, FMDMA+-WL(1); O, FMDMA+-WL(2); 
V, FMDMA+-WL(3); ■ ,DMAMF-WL and • ,  DMAMF-A1-PILC

the same as that in chloride salt. In contrast, the Debye 
temperature, 0 D, and corresponding recoil-free fraction , / 2 9 1  K, 
for the DM AM F-A1-PILC complex were much lower at 118 K 
and 0.06, respectively, revealing that the metallocene was much 
less tightly bound. This is commensurate with a model in 
which the metallocene, which is probably the F M D M A + 
cation, resides in a much freer environment in the PILC where 
the gallery height is larger than the F M D M A + cation. This

sample M ± 4 )/K /2 9 1  k ( ± 0 .01)

FMDMAC1 144 0.14
FMDMA+-WL(1) 139 0.13
FMDMA+-WL(2) 144 0.15
FMDMA+-WL(3) 139 0.12
DMAMF-WL 138 0.12
DMAMF-A1-PILC 118 0.06

Clay Layer

NH(Me)

Clay Layer

NH(Me)

15.0 A

18.8 A

Fig. 9 Schematic illustrations of the probable orientation of the 
FMDMA+ cation in (a) WL and (b) Al-PILC
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contrasts with the situation in F M D M A +-W L  where the 
organoiron cation itself determines the layer expansion. 
Consequently, it is envisaged that in F M D M A +-W L  the rings 
of the metallocene unit are keyed into the aluminosilicate layer 
and are tightly held [Fig. 9(a)]. This would account for the 
lower than expected layer expansion and would mean that the 
Fe would be the only recoiling mass. In the DMAMF-A1- 
PILC it is reasonable to assume that the metallocene is 
anchored via the dimethylamino group and that the cyclopen
tadienyl rings are not tightly held [Fig. 9(b)]. Hence the 
metallocene unit would enjoy considerably more freedom in 
the gallery space of the PILC than in the cramped, interlayer 
environs of FM D M A +-W L (l)-(3 ) .

Other workers3  have found that unsubstituted ferrocene, 
which is essentially spherical with an effective diameter of 7 A, 
appears to have almost complete three-dimensional freedom 
at room temperature in A lP 0 4-5 and AIPO4 -8 , both of which 
have channels of diameter greater than 7.8 A. This rapid 
rotation of the ferrocene molecule changes the average electric- 
field gradient for 57Fe to zero and consequently a singlet is 
observed in the Mossbauer spectrum. In F M D M A +-W L  and 
DMAMF-A1-PILC, a doublet is observed at all temperatures 
indicating that the aminomethylmetallocene does not rotate 
rapidly within these layered hosts. Fig. 9, which depicts the 
schematic orientation of F M D M A + ion in both WL and Al- 
PILC, shows that there is little room for the FM DM A  + cation 
to rotate in WL and the bulky side chain must prevent this 
cation rotating within the larger gallery space in Al-PILC. The 
influence of bulky side chains on the freedom of organoiron 
species in clays has been noted previously . 9

Conclusions
FMDMAC1 has been prepared and characterised using a 
number of techniques. F M D M A + cations have been success
fully used to displace the resident N a + cations from the 
interlamellar exchange sites in WL and loadings up to 80% 
cec have been achieved. PXRD indicates that a single layer of 
metallocene is incorporated between the sheets and the 
resulting layer spacing of 15.1 A is lower than anticipated, 
suggesting some keying of the molecule into the aluminosilicate 
layer. The single-layer complex is stable to 200 °C whereupon 
it collapses to 13.0 A. TP-SIP-MS data clearly show that a 
small proportion of the incorporated metallocene is volatilised 
at temperatures below 400 °C, but that the majority of the 
metallocene degrades via loss of the cyclopentadienyl ligands. 
A similar thermal degradation path was observed for

DMAMF-A1-PILC. 57Fe Mossbauer spectroscopy revealed 
that the F M D M A + cation occupied a similar environment in 
the chloride salt, F M D M A +-W L  and DMAMF-A1-PILC, 
insofar as the isomer shift and quadrupole splitting of the 
incorporated metallocene were essentially the same in all 
complexes. However, variable-temperature 57Fe Mossbauer 
spectroscopy confirmed that the metallocene enjoyed much 
greater freedom in the galleries of the Al-PILC.

We are indebted to Dr. Rob Brown and Gareth Parkes of the 
Catalysis Research Unit at Leeds Metropolitan University for 
the TP-SIP-M S results.
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