
The effect of a magnesia based additive on fly ash depostition in a chain-grate boiler 
system.

HADJFOROOSH, Kambiz.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19738/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19738/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


&>k) 30/30b

Sheffield Hallam University

REFERENCE ONLY



ProQuest Number: 10697040

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697040

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



THE EFFECT OF A MAGNESIA BASED ADDITIVE ON 

FLY ASH DEPOSITION IN A CHAIN-GRATE 

BOILER SYSTEM

KAMBIZ HADJFOROOSH

A thesis submitted in partial fulfilment of the
requirement of 

Sheffield Hallam University 
for the degree of Doctor of Philosophy

October 1993

Collaborating Organisation: Steetley Quarry Products Ltd.



TO

MY PARENTS AND MY BROTHER 

KAMRAN

INSPIRATIONS EVERLASTING



Preface

The work described in this thesis is submitted for the degree of Doctor of Philosophy. 

It was carried out at Sheffield Hallam University in the period May 1986 to 

October 1993.

During this period, the author has attended post graduate level courses in the School 

of Engineering - Division of Materials and Environmental Engineering. These are:

•  Advanced Refractories Technology .

•  Advanced Thermodynamics - Slag Chemistry

•  Process Metallurgy

In addition, the author attended the first European conference on ‘The Influence of 

Inorganic Constituents on Coal Combustion in Small to Medium Sized Boilers’ held by 

the Institute of Energy in London in September 1987. A number of working papers and 

seminars have also been presented by the author to various industrial organisations and 

interested parties. These are:

•  Steetley Quarry Products - Magnesia Materials Division, Hartlepool, 1986-1990

•  West Belfast power station - Northern Ireland, November 1987

•  British Coal Research Establishment, Stoke Orchard, June 1988 & December 1989

•  Coal Research Forum - London, March 1989

•  National Power - Thermal Division, Sheffield, November 1990

The work described herein is to the best of my knowledge original, except where

reference is made to others, and no part of it has been submitted for an award at any 

college or university.



ACKNOWLEDGEMENTS

It is with immense relief and pleasure that I arrive at this final section to thank many 

people. First and foremost I would like to forward my sincere thanks and appreciation 

to Dr. G. Briggs whose didactic approach, guidance and support, particularly during 

the earlier stages of this work was paramount and significantly illuminating. 

Dr. R. Acheson takes the rest of my sincere thanks for his sustained supervision, his 

insight for the subject matter and his constructive criticism over many years, making 

this work possible.

I am thankful for all the help and technical advice which I received from time to time 

during the experimental work, from all the technical staff, particularly Mr. D. Latimer 

and Mr. N. Dziemidko. I would also like to thank the EOSA division and Mr. K. Blake 

for his availablity and advice on X-Ray Diffraction work.

The receptivity, interest and financial assistance of Steetley Quarry Products Ltd. acting 

as the collaborating industrial organisation in this project is greatly appreciated. 

Particular thanks are due to Mr. G. Spoors and Mr. J. Turner.

Also I appreciate the assistance of personnel at West Belfast power station during 

residential monitoring of the boilers under study.

I am grateful for all the help and friendship which I enjoyed at various stages from the 

administrative staff, secretaries, librarians and my fellow research colleagues at the 

School of Engineering.

My final thanks and deepest gratitude are reserved for my family whose financial and 

moral support over many a long and sometimes arduous years was the most decisive 

factor which kept me going. To my aunt Mrs. T. Mostofi goes out my deep and sincere 

gratitude for her care, attention and encouragement.



ABSTRACT

THE EFFECT OF A MAGNESIA BASED ADDITIVE ON 
FLY ASH DEPOSITION IN A CHAIN-GRATE 

BOILER SYSTEM

By: Kambiz Hadjforoosh

Unlike in oil firing, the effective role of additives to alleviate deposition in coal fired power generation 
is still regarded with much scepticism and controversy amongst the power generators and boiler 
operators. The objectives of this research study were principally to explore the mechanisms involved in 
formation of coal ash deposits and thus determine the effectiveness of a magnesium based additive, 
namely Lycal 93HS, in reducing the bonding strength of ash deposits on boiler tube surfaces, by making 
them friable and easily removed by sootblowers during normal operation of the boiler.

The experimental techniques developed involved visual, optical and scanning electron microscopy 
examination of a wide range of matured deposit samples collected over a period of two years, with and 
without injection of Lycal 93HS into the boilers at West Belfast power station. Specimen deposit samples 
"fashioned" into the form of Seger cones and "reconstituted" from their crushed, powder form 
were tested for their softening behaviour at elevated temperatures with and without further 
additions of Lycal 93HS. This technique was further used to evaluate the effect of Lycal 93HS on the 
softening behaviour of a range of coal ash components separated by high temperature ashing 
of coarse particles of coal as well as the bulk ash from the coarse and fine sizes of coal particles. The 
softening behaviour on heating and crystallisation tendency behaviour on cooling for a selected 
range of the ash components was investigated without and with additions of Lycal 93HS, using Hot- 
Stage Microscopy. The possibility of surface adhesion between the fly ash and injected Lycal 93HS 
within the boiler environment was investigated through a series of laboratory based Surface leaching 
experiments of deposit and particulate samples with and without injection of Lycal 93HS. The variation 
in concentration profiles of silicon, iron and magnesium within the collected solutions over a 
period of time were analysed, using Atomic Absorption Flame Spectroscopy. The elemental 
chemical composition of bulk deposit samples, the average high temperature ash and its separated 
components was carried out using X-Ray Fluorescence. Qualitative study of the mineralogy of low 
temperature ash, selected ash components, as well as a range of deposit samples with Lycal injection was 
conducted using X-Ray Diffractometry.

The results of Lycal injection into a boiler were clearly evident from inspections of the boiler where 
Lycal injection over different periods of time had resulted in significantly cleaner boiler tube surfaces. 
Examination of deposit samples with Lycal injection showed lightly sintered, porous, friable textures 
compared to the highly sintered, fused and dense structures for samples without Lycal injection. The 
effect of Lycal on the softening behaviour of reconstituted deposit samples and various components of 
ash was shown to be dependent on their chemical composition, with iron oxide playing an important role. 
For a number of highly acidic ash components, additions of 5 and 10 mass% Lycal promoted 
crystallisation of their fluid melt, when cooled to specific temperatures. For the more ferriferous ash 
components, additions of 1 and 3 mass% Lycal enhanced the surface formation of spikes when their melts 
were cooled to specific temperatures. The results of leaching experiments showed that the initial magnesia 
concentrations were generally much higher for the deposit samples and fly ash particles from ash hoppers 
and grit arrestors with Lycal injection than those without.
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1. INTRODUCTION

Coal is an extremely complex heterogeneous material. However, to simplify its 

constitution, it can be considered as a rock, comprised of different kinds of organic and 

inorganic matter. When coal is heated it ignites and undergoes loss of volatiles and 

pyrolysis. The organic matter is thus released and converted into volatile species, and 

the inorganic matter is released as ash.

In the environment of an industrial boiler where large quantities of coal are burned, the 

ash generated undergoes various reactions resulting in the production of some low 

melting point compounds. These compounds cause the ash to adhere to the boiler tube 

surfaces and promote further deposition of higher melting point alumino-silicate 

compounds. If these deposits are allowed to accumulate, heat transfer and consequently 

the efficiency of the boiler is effected. One method used to alleviate this problem, in 

addition to the conventional on-line cleaning techniques such as sootblowing, is 

chemical treatment in the form of additives to the coal.

Although the role of additives in alleviating deposition problems in oil-fired boilers 

through increasing the sintering temperature of deposits is well established, with coal 

firing however, where the ash burden is roughly 100 times that of fuel oil, the 

effectiveness of the regular use of modest and large amounts of additives is generally 

found to be dependent on the type of the boiler as well as the mode of operation.

The additive employed in this study is a magnesium based additive produced by Steetley 

Quarry Products Ltd under the name of Lycal 93HS. Lycal 93HS is a high quality 

grade of magnesium hydroxide precipitated from sea water and comes in the form of 

a finely divided, fully hydrated powder.
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The opportunity to test Lycal 93HS on an industrial scale arose as a result of 

approaches made by Steetley to the West-Belfast power station in Northern Ireland. The 

power station employs thirteen boilers with a travelling grate combustion system to 

produce steam for generating electricity. The coal is fed into each boiler from a hopper 

on two chain grates and is spontaneously ignited due to the temperature inside the 

boiler. The Lycal 93HS additive was injected into the boiler through a series of 

secondary air ports along the length of the front and rear arches situated just above the 

grates, and was thus available for contact with the ash burden in the flue gases.

As a result of the apparent improvements observed during an initial three months 

"Lycal 93HS injection" trial, long term commitments extending over two years were 

undertaken by the power station operators. During this period deposit samples from 

various locations within the boiler were collected for examination at regular intervals. 

Furthermore, on-site probe sampling of deposits with and without Lycal injection over 

relatively short periods of time were carried out for comparative purposes. Samples of 

the coal as fed into the boiler were occasionally collected for size and ash analysis.

There is considerable conflict both with respect to the limited theoretical and practical 

methodologies explaining the controlling factors and steps in deposit formation 

mechanisms and effective role of any additive in alleviating this problem. The work 

presented here involved a series of both industrial and laboratory based investigations 

in order to elucidate a mechanism for the formation of fly ash deposits in West Belfast 

power station and the effect on these of the Lycal 93HS addition. Such understanding 

contributing to the possible use of the additive in other combustion systems.
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2.1 THE BURNING OF COAL FOR POWER GENERATION

2.1.1 Introduction

All ranks of coal are capable of being combusted on an industrial scale to generate 

heat for conversion into electricity. Some ranks of coal are however more suited to 

combustion by certain techniques than others.1 The three most important means for 

the large scale combustion of coal are:1

(1) Stoker firing

(2) Cyclone furnace firing

(3) Pulverised coal firing

The work reported in this thesis has been concerned entirely with a stoker fired system 

and therefore only this will be considered further in the next part of the literature 

review.

2.1.2 Mechanical Stoker Firing Systems

Mechanical stokers were developed early in the history of steam boilers as an 

improvement over hand firing. Today, despite the more dominant pulverized fuel 

firing systems, many small and medium size boilers employ mechanical stokers. 

Several types of stokers are available, but all are designed to feed coal onto a grate 

within a furnace and to remove the ash residue.

Mechanical stokers can be classified into three distinct groups according to the mode 

of introducing coal onto the grate for combustion:2,3

(1) Overfeed stokers: The main types are; chain and travelling grate, spreader, 

vibrating grate and coking stokers.

(2) Underfeed stokers: The main types are; single and multiple retort stokers.

(3) Composite stokers: This type of stoker is not commonly used and the best known 

of this type is the reciprocating stoker.
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The principle of combustion for these three categories of stokers are schematically 

shown in Figure 2-1. The relative characteristics of the three modes of combustion 

are summarised in Table 2-1.2

The overfeed stokers are the most commonly used type still employed in industry and 

since the combustion system employed in the West Belfast power station was of the 

travelling grate type, this will now be considered further.

Figure 2-24 shows a cross sectional view of a typical travelling grate stoker. The coal 

is fed by gravity from a hopper located at the front of the stoker onto a grate 

moving from the front to the rear of the furnace. The depth of fuel on the grate is 

regulated by a hand adjusted gate. Air enters the furnace from underneath through 

the openings in the grate, thereby promoting combustion of the coal.

Secondary air enters the furnace through ports situated at or above the front and rear 

arches in order to create turbulence for better mixing of the flue gases as well as 

controlling the position and length of the combustion flame.

The front arch promotes ignition by reflecting radiant heat onto the fuel bed. It also 

serves to break up and mix the combustion air with streams of volatile rich gases 

that might otherwise go through the unit unbumed. The rear arch helps to further 

bum off the last remains of carbon before discharge of the ash clinker, by radiating 

heat from its surface onto the grate.

2.1.3 The Combustion of Coal on a Grate

Figure 2-3 illustrates the various combustion zones that exist as coal is 

continuously burned on a grate.5,6 As the bed is ignited from the top, the 

combustion front moves downward against an upward flow of primary air. The 

inherent moisture (H20) and volatile matter (CO,H2,N2 and hydrocarbons) are distilled
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Figure 2-1: The principle of operation for: (a) Overfeed, (b) Underfeed and
(c) Composite modes of c o m b u s t io n .2

Table 2-1: Characteristics of overfeed, underfeed and composite combustion.

Mode of combustion Advantage Disadvantage

Overfeed Rapid ignition, high 
response rate.

Smoke at low burning rates; 
not suitable for small coal. 
Can be sensitive to caking 
properties of coal.

Underfeed Relatively smoke free, can 
bum strongly caking and 
small coals provided that 
these are properly 
conditioned with moisture 
and delivered uniformly 
over the grate.

Relatively slow ignition rate; 
can be difficult with coals with 
less than 20% volatile 
content.

Composite Relatively smoke free, can 
bum small coal with up to 
35% through 3 mm mesh.

Sensitive to caking properties 
of the coal.
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off in the "distillation1' stage. The residual coke thus formed further promotes heat 

transfer down through the bed, leading to the evolution of more volatile matter. In 

the oxidation zone, coke is burned to carbon dioxide with the primary air rising 

through the bed. This carbon dioxide travels up through the zone above and is partly 

reduced to carbon monoxide by contact with the hot coke. The rate of CO formation 

becomes rapid at the beginning of the reduction zone. Usually the temperature within 

the bed is somewhat greater than at the surface. If  this temperature is above that at 

which ash fuses, clinker may form which finally passes into the ash pit.

The travelling grate stokers are limited in their use by certain factors.7,8 These are:

(1) The overall mass rate of combustion is limited due to the confined depth of the 

coal bed. The maximum practical rate per unit cross section is of the order of 

250 Kg.m*2hr'1.

(2) The area of the grate also has to be kept within some reasonable bounds, about 

100m2 will be an upper limit.

(3) High levels of excess air, up to 40% can be required, to maximise combustion 

of the air-born fly ash, hence reducing loss of combustibles.

(4) Smoke and the resulting atmospheric emission is a common problem.

(5) Clinker formation, hot grate and hot ash problems in the bottom ash pit pose 

further maintenance problems. Furthermore carbon losses as high as 40 mass% has 

been reported9 in the bottom ash of some larger stokers. The extent of this 

problem is related to the bed temperatures which are achieved through the burning 

coal on the grate.

Figure 2-42 illustrates the temperature contours measured in the fuel bed of a 

travelling grate stoker.
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A great variety of coals of varying quality can be burned on travelling grate 

stokers.10 However, the most satisfactory results have been found11,12,13 with coals 

having certain chemical and physical characteristics. These are chiefly as outlined 

below:

- Size range of 35mm or 25mm in diameter, with not more than 30% fines, less than 

6 mm in diameter.

- Ash content of 6 to 15 mass% for forced draught stokers and 5 to 9 mass% for 

natural draught stokers.

- Moisture content should generally be low; of the order of 8 to 10 mass%, apart from 

"smalls" which should have a surface moisture of about 1.5 mass% per 10 mass% 

coal less than 3 mm.

- Volatile matter content of greater than 30 mass% on a dry ash free basis.

- Ash softening temperature should be as high as possible, with a minimum of 1150°C 

in order to avoid clinker formation as well as ash deposition on boiler tube surfaces.

- Alkali metal contents in the ash substances promote deposit formation on the 

heated boiler surfaces and thus should be at a minimum.

2.1.4 Fire-Side Boiler Deposits

Deposits occur in those parts of the boiler where the metal temperature is high. 

Most significant are those deposits which are formed on the screen and superheater 

tubes and at the entrance to convection heating surfaces of the upper furnace regions. 

These types of deposits are usually referred to as fouling.

Those deposits which are generally limited to the lower furnace area where the flue 

gas temperatures are highest are known as slagging. These tend to be much harder and 

denser. Deposits form slowly at first but the rate of formation usually increases
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with each successive layer.14 Figure 2-515 illustrates a section through a deposit at 

the inlet to a convection tube of a boiler. The increase in the thickness of the 

outer layers is clearly evident. This in turn causes reduction in cross-sectional area 

and hence increases the resistance to gas flow.15 However, in practice the nature and 

extent of deposits can vary considerably. Apart from the temperatures experienced, 

it is most significantly the heterogeneity of the chemistry and structural complexity of 

the coal ash minerals that determines fly ash morphology and its role in the formation 

of deposits. At least 11 major morphological classes of coal fly ash particles have 

been identified16 on the basis of particle shape and opacity alone.

Fly ash may be partly infusible at furnace temperatures and partly quite readily 

fusible, so that a sticky film or layer may be deposited throughout the high 

temperature zone to which the remainder can adhere. In Figure 2-515 distinct layers 

can be identified, the second of which is fused and thus helps to capture particles 

of fly ash which come into contact with it.

The main constituents of coal ash are silica and alumina, which are not easily 

fusible. Other substances present include oxides of iron, calcium, sodium and 

potassium, which are more easily fusible. The significance of these substances 

in terms of their individual as well as combined role in forming deposits has been 

studied by different workers17,18,19. However, it is most significantly the oxides of 

sodium and potassium which play a dominant part in causing deposits to adhere to 

heated metal boiler surfaces. When in contact with the sulphur oxides present in the 

flue gases, formed by oxidation of sulphur which may be organically or inorganically 

combined within the coal or ash, sodium and potassium sulphates have been 

found19'22 to form various complex sulphates, by reacting with aluminium or iron 

oxides. The low melting temperatures of these complexes as depicted in Table 2-2

-PAGE 10-



1 I Thin layer of alkali sulphates

Fused layer of alkali sulphates (1 mm)

Is ft la Friable layer of alkali sulphates (5 mm) 

m i l ]  Fritted fly. ash 

■ 1  Fused fly ash

Figure 2-5: Section, through a  deposit on a boiler tube.15

Table 2-2: Melting point of complex sulphates formed within depositing 
ash particles on boiler tube surfaces.19,20

COMPOUND MELTING POINT (°C)

K3Fe(S04)j 618

KgAl^OJs 654

KFeCSOO* 693

NagFe(S04)3 613

Na4Al(S04)3 646

NaFe(S04)2 690
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is believed19,20 to be responsible for the formation of the first layers of fly ash 

depositing over the boiler tube surfaces due to their fully softened or molten state.

2.2 MINERAL CONSTITUENTS OF COAL

2.2.1 Geological Origin of Mineral M atter in Coal

The geological environment in which the mineral deposits were laid down determines 

the mode of occurrence and the relative concentration of the mineral impurities.

Coal is a sedimentary rock composed principally of two basic classes of 

material:23,24 inorganic crystalline minerals and organic carbonaceous "macerate". 

The latter form the combustible part of the coal and are in turn divided into three 

groups namely; vitrinite, exinite and inertinite.

Table 2-324,25 lists the most common inorganic mineral components associated with coal. 

The inorganic mineral matter in coal has frequently been classified24,26 as inherent 

or extraneous. The inherent mineral matter has its origin in the organic constituents of 

plants. The extraneous inorganic mineral matter is defined as that which was brought 

into the coal forming deposit from outside, for example as dust carried by winds, or 

as suspended or dissolved material carried by water, after the death of the plant.

The inherent minerals seldom exceed about 2 mass% of the coal and generally make 

up about 3 to 20 mass percentage of the total mineral matter.27 These minerals are 

generally found to be rich in iron, phosphorus, calcium, potassium and magnesium 

which are mostly incorporated in the carbonaceous phases. Other elements such 

as silicon, aluminium, manganese and sodium known to be essential for plant life 

are also found to a lesser extent.28

The extraneous minerals make up about 80 to 95 mass% of the total inorganic 

mineral matter in coal.28 These minerals are principally found to be rich in the 

most abundant elements of the earth’s crust such as silicon, aluminium, iron,
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Mineral Formula

Clay minerals
Montmorillonite Al2Si4O10(OH)2.H2O
Ulite-sericite K^Sig.Al^ A l^C O H ),
Kaolinite Al2Si20 3(0H)4
Halloysite ALSi20 3(0H)4
Chlorite Mg5Al(AlSi3O,0)(OH)8
Mixed-layer clay minerals 

Sulphide minerals
Pyrite FeS2
Marcasite FeS2
Sphalerite ZnS
Galena PbS
Chalcopyrite CuFeS2
Pyrrhotite Fe,.xS
Arsenopyrite FeAsS
Millerite NiS

Carbonate minerals
Calcite CaC03
Dolomite (Ca,Mg)C03
Siderite FeC 03
Ankerite (Ca,Fe,Mg)C03
Witherite BaC03

Sulphate minerals
Barite BaS04
Gypsum CaS04.2H20
Anhydrite CaS04
Bassanite CaS04.l/2H 20
Jarosite (Na,K)Fe3(S04)2(OH)6
Melanterite F eS04.7H20
Coquimbite Fe2(S0)3.9H20
Mirabilite Na2SO4.10H2O
Kieserite M gS04.H20

Chloride minerals
Halite NaCl
Sylvite KC1
Bischofite MgCl2.6H20

Silicate minerals
Quartz S i0 2
Biotite K(Mg,Fe)3(AlSi3OI0)(OH)2
Zircon ZrSi04
Tourmaline Na(Mg,Fe)3Al6(B 03)3(Si60 lg)(0H )<
Garnet (Fe,Ca,Mg)3(Al,Fe)2(S i04)3
Kyanite Al^iOs
Epidote Ca2(Al,Fe)3Si30 12(OH)
Albite NaAlSi30 5
Orthoclase K A lS iA
Augite Ca(Mg,Fe,Al)(Al,Si)20 6
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calcium, magnesium, sodium, potassium and titanium.24,29

In addition, other elements such as cadmium, antimony, arsenic, mercury, etc. which 

are usually detected at less than 0.02 mass% (200ppm) are present in coal as trace 

elements.25

All these elements however are present as minerals in coal either singularly or as 

compounds in the form of oxides, hydroxides, sulphides and suphates, carbonates and 

chlorides. The major groups and their constituents are listed in Table 2-3.25

2.2.2 The Behaviour of Inorganic Mineral Matter When Heated

The inorganic mineral matter in coal undergoes many complex physical and 

chemical changes when it is heated. The chemical changes are essentially the thermal 

decomposition of minerals: the dehydration of hydrated minerals such as shales and 

clays, the loss of C 02 from carbonates of Ca, Mg or Fe, the oxidation of pyrites (FeS2) 

to Fe20 3 with evolution of SOx and the volatilisation of alkalies and chlorides.30,31 

Further changes include interactions between mineral species, reactions between 

mineral matter and the char and reactions between the mineral matter and furnace 

gases.

Table 2-432'35 represents the changes which have been observed on heating samples of 

ash formed by low temperature ashing36 of pulverised coal particles. Low temperature 

ashing produces ash with its mineral matter in a relatively unaltered state. The changes 

illustrated in Table 2-4 are expressed more concisely in Table 2-537 for a range of 

selected components of various mineral groupings.

The physical changes include vaporisation, fusion, disintegration, agglomeration and 

the eventual release of mineral matter into the furnace gases.38 

The transformation of various inorganic mineral constituents of British coals in the 

flame within the combustion zone of a boiler have been comprehensively
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Table 2-4: Effect of temperature on ash mineralogy32*35

KAOLIN GROUP

1. Kaolinite [Al2Si2Os (OH) J

Kaolinite ----------->  Kaolinite  >  Metakaolinite  >  Silicon Spinel
100-120°C (dry) 500-600°C (Al20 3.2Si02) 925-950°C

H20  Si02 i SiOo

Mullite <   1:1 Mullite-type < -----------------1
(3A120 3. 1150-1450°C Phase 1100 °C
2Si02) I (Al20 3.Si02)

Si02
(cristobalite)

SHALE GROUP

2. Illite [K2 (Si6.Al2) Al4O20 (OH)J

Illite ------------->  Illite  >  Illite  >  Destruction of Illite
50-150°C +  200-600°C +  850-900°C Structure

hygroscopic hydroxyl
water group

1400°C 1100°C
Glass < ----------- Mullite < ------------(
Phase !—

Glass < ----------- J
Phase 1300°C

Spinel - Phase < ------
(A120 3 . MgO) 850-950°C

3. Muscovite [KA12 (Si3AlO10) (OH)J

Muscovite ------------->  Destruction of Lattice  >  Alumina or Spinel
940-980°C Structure 1050°C

Liquid Glass < --------------  Glass +  Corundum < ----------- J
1500°C (A120 3) 1400°C
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SULPHIDE GROUP

4. Pyrites [FeSJ

Oxidising

° 2

Pyrites ---------------------- >  H e m a ti te -------------------- >
475-500°C (F eA ) 1300-1400° C

IS , S02

Reducing

Pyrites -------------> Pyrrhotite  >  Iron
280-325 °C (FeS) 700°C (Fe) 

1S,H2S [partial melt] iS ,H 2S

CARBONATE GROUP

5. Calcite [CaC03]

Calcite  >  Lime
710-1000°C (CaO) 

1C02

6. Dolomite [CaMg (C O ^J

D olom ite------------------- >  CaO +  MgO
815-910°C

ICO,

Amorphous Phase
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SULPHATE GROUP

7. Gypsum [CaS04.2H20 ]

G ypsum  >  B assanite >  Anhydrite >  0-CaSO4  >  CaO
145°C (CaS04.1/2H20) 175°C CaS04 365°C 1450°C

SILICATE GROUP

8. Quartz [SiOJ

+ other 
compounds

Quartz ------------- >  /5-Quartz-------------- >  /3-Q uartz------------- >  Amorphous Glass
570°C 950°C (no change) 1200-

Temperature 1300°C
inversion
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Table 2-5: Transformation of selected mineral groupings due to heating.37
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discussed.39,40,41 It has been inferred42 that the inorganic minerals associated with 

British coals are mainly shales and iron compounds. Shales, usually the result of 

consolidation of mud, silt and clay, are complex alumino-silicates in combination with 

a variety of metal compounds of calcium, iron, sodium and potassium. These 

minerals include illite [K2 (Sig.Ay Al4O20 (OH)4] and muscovite 

[KA12 (Si3AlO10) (OH)J. These are forms of mica. Kaolinite [Al2Si20 5 (OH)4] is the 

most common of the clay (Kaolin) minerals which are found in coal in many forms.42,43 

In the flame the shale minerals lose combined moisture and undergo lattice 

transformation. Those particles which are ejected from the flame do not complete 

either the process of fusion or the evolution of moisture before the change of 

shape of silicate particles commences.42 The particles which continue in the flame 

tend to complete both processes, particularly in relatively hot combustion chambers and 

thus, the small irregularly shaped particles are transformed into colourless, rounded, 

solid spheres.42 The change in shape of these irregularly shaped alumino- silicate 

particles on heating has been shown44 to be the result of surface tension of the softened 

matter on their sharp edges.

The iron minerals are most commonly iron pyrite and Marcasite. The iron pyrite 

mineral (FeS2) is known to occur in various physical forms within the coal, for example 

as nodules, lens-shaped masses, in veins and fissures or as discrete particles in 

veinlets.43 When heated, the degree of liberation and the melting temperature of 

pyrite depends on its initial physical form, the fineness of the coal particles45,46 as 

well as the degree of sulphur reduction and iron oxidation.47 It has been established43 

that ignition of pyrite occurs at low temperatures of about 200-500°C depending on 

particle size, the form of pyrites and the presence of oxygen. When pyrites is heated 

in the absence of air, it dissociates to form pyrrhotite (FeS) and sulphur gas, and at
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and sulphur gas, and at higher temperatures the pyrrhotite decomposes into sulphur 

and iron. The two step reaction can be summarised as follows:48

2FeS1 -  2FeS + S2 (2-1)

2FeS =► 2Fe + S2 (2-2)

The first reaction proceeds at a rapid rate while the final reaction requires

considerable time.

Under oxidising conditions, the reactions are found to be much more complex. Pyrites 

may be converted directly to sulphur dioxide and either ferrous or ferric oxide. 

The overall reaction has been represented as follows:49

FeS2 + — 0 2 -  —Fe20 3 + 1S02 (2-3)
4

In excess air the reaction can also proceed as follows:

p eS2 + l 0 l  -  | f , 2(S04)3 + I S 0 2 (2-4)

The melting behaviour of the residue formed on heating iron pyrite mineral shows 

a complicated pattern. Some researchers48 have published phase diagrams of the 

FeO-FeS system, with a minimum liquidus temperature appearing at 940°C. This 

has been supported by another study47 which has claimed a minimum liquidus 

temperature of 948°C. In a study of the phase diagram for the Fe-S system, as shown 

in Figure 2-650, it appears that no liquid would form below 988°C. Hence,
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depending on the origins from which pyrrhotite is produced, the initial melting 

temperature of the product can be significantly different.

Under reducing conditions it has been shown47 that pyrite can form melts at 

temperatures as low as 600°C.

Studies48 of iron pyrite particles allowed to fall freely through an oxidising atmosphere 

in a laboratory furnace have exhibited the formation of a low melting phase, FeS, at 

1027°C which had acquired a rounded shape. Furthermore iron oxide particles found 

in boilers as fly ash or deposits are spherical in shape, with a black colour42 this is 

taken as a proof that a liquid phase exists before oxidation of FeS to FeO:48

FeS—   + -O'. -  + S02 (2-5)

In a stoker system, as the coal bed is ignited, various minerals previously bound 

up within the coal matrix are released. The coal ash thus formed exists in two 

forms; namely "clinker" and "fly ash".

Clinker is the ash which is mostly derived from the larger coal particles that as a result 

of high flame temperatures on the coal bed have formed extended liquid 

phases and consequently agglomerated.30 The clinker remains on the grate and is 

dumped into ash pits at the other end of the grate’s traverse. The clinker comprises 

between 40 to 60 mass% of the total ash content of the coal.28 Depending on the mode 

of operation and the ease of combustion on the grate, carbon contents as high as 40 

mass% have been found associated with the clinker.9

Fly ash is a heterogeneous mixture of inorganic mineral matter and unbumed 

combustibles30 which is lifted from the surface of the coal bed by air or gas 

entrainment, possibly burning and modifying in suspension as it travels upwards
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inside the boiler environment, with the particle temperature continuously decreasing. 

Fly ash can exist in a solid or liquid state before it is deposited on heating surfaces. 

In stoker firing, fly ash is derived mainly from mixed minerals; only a few particles 

are pure shale or iron residues and the rest are mixtures in all proportions.42 Mixing 

of the minerals can take place in at least three ways:42

(1) During burning of relatively large particles of coal containing a variety of inorganic 

minerals when these are released and lifted above the bed.

(2) If the coal forms swelling coke (i.e. becomes plastic at a temperature below the 

ignition point), minerals mix while it is plastic.

(3) For a non-caking coal the minerals are mixed to some extent as a result of sintering 

and slagging during the pyrolysis and burning period of the coal on the grate.

The national average ash content for coals utilised by British power stations is 

estimated28 at 16 mass%. The fly ash comprising about 50 %28 of the total ash content 

for a stoker system and 10% for a typical chain grate stoker52 suggests a comparatively 

limited amount of ash available within the boiler atmosphere to form deposits.

2.3 CHARACTERISATION AND FUSIBILITY OF COAL ASH W ITH  RESPECT 

TO ITS CHEMICAL PROPERTIES

2.3.1 Introduction

Characterisation of coal ash in terms of its fusibility was originally introduced as a 

means of providing guidance on the prediction of clinkering in coal fired stoker 

furnaces.53

In spite of the fact that stoker firing has strongly declined and formation of clinker is 

no longer as important a problem as it once was, ash fusibility measurements are still 

widely used in their original form as a means of predicting the behaviour of coal
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ash in combustion systems, in relation to their slagging propensity on heat receiving 

boiler surfaces.

The fusibility test is based on observing the temperature at which successive 

characteristic stages of fusion occur in a finely ground specimen of ash when heated 

in a laboratory furnace under specified conditions of atmosphere and rate of 

temperature rise.52

Although many studies19’54"57 have regarded standard ash fusibility measurements 

as a relatively good indicator of the softening and melting behaviour of coal ash in 

combustion systems, others have shown58"60 major shortcomings. Never the less, as 

a relatively quick, easy, reliable and reproducible method, ash fusibility measurements 

are still widely used.

2.3.2 The Effect of Chemical Composition on Ash Fusibility

Coal ash, unlike a pure compound, does not exhibit a sharp melting point but 

rather softens over a temperature range as the temperature is increased. This 

temperature range corresponds to the plastic state and depends on the composition 

of the ash and gaseous environment.

The chemical composition of coal ash is usually described in terms of oxides of 

eight major elements. Table 2-661 summarises these in addition to two other elements, 

(i.e. barium and strontium) as elements of major abundance and others as elements of 

minor abundance in coal. These oxides have been defined as "acidic" or "basic".62,63 

The oxides of Al, Si and Ti are regarded as "acidic oxides", the oxides- of Fe, Ca, 

Mg, K and Na are regarded as "basic oxides". The acidic oxides comprise the 

refractory part of the ash, helping to retard ash-melting, whereas the basic oxides acting 

as fluxes promote softening and melting of the ash.
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Table 2-6: Major and minor abundance impurity elements in coal.61

Elements of Major Abundances Elements of Minor Abundances
fZGO to 17.700 a cm) Hess than 200 com)

£7ement pern- in Coal Element ppm in  Coal

STTicsn, Si 17,700 Chromium, Cr 103
Aluminum, AT 11,300 Zirconium, Zr 54
Iron, Fe 3,530 Copper, Cu 55
Calcium, Ca 2,050 Boron, B 43
Potassium, K 1,370 Manganese, Mn 33
Magnas i  um, Mg 1,320 Rubidium, 8b 32
Titanium, Ti 738 Lithium, Li 31
Sodium, Na 546 Zinc, Zn 26
Barium, 3a 255 Hi deal, Mi 20
Strontium, Sr 171 Miooium, Mb 13

Cerium, Ce IS
Tin, Sn 25
Neodymium, Nd 14
Vanadi um, Y 13
Cobalt, Co 12
Lanthanum, La 22
Lead, Pb 11
Scandium, Sc 7.2
Arsenic, As 4.S
Gallium, Ga 3.3
Molybdenum, Ha ' 3 .2
Praseodymium* Pr 2 .3
Cesium, Cs 2.3
Thorium, Til 2 .2
Beryl!iumy Be 1.3
Antimony, Sb < 0 . 5 3
Uranium, (I < 0 .35
Cadmium, Cl 0.43 - •
Germanium, Ge 0.35
Mercury, Hg <: 0.33
Tungsten, )f < 0.33

Majar-abundanca elements are 58.7 weight. percent o f these 4tL elements, 
rtf nor-abundance elements- are the remaining 1 .3  percent.

ffonmetaX elements have appreciable ppm le v e ls , average values: o f
4360 CS3* 223 CCT), 125 GO* 25 (F ), and 0.34- (S e).
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In terms of the ash melting retardation, the most desirable constituent of ash 

is considered58 to be A120 3 and the most undesirable constituents to be Fe203, CaO and 

K20 . Another factor which affects the softening temperatures of the ash is the 

atmosphere. Reducing atmosphere provides a more dependable basis for standardisation 

of ash fusion temperature measurements. However it is generally oxidising conditions 

which are prevalent in local areas or other parts of the furnace and may alter the 

behaviour of the ash independently of actual change in temperature.52 This effect is 

significant in the fouling of heating surfaces as will be discussed in later sections.

2.3.2 (a) oxidising conditions 

Behaviour o f  Alumina (Al2OJ

Alumina is the most refractory component of the ash and is therefore expected to 

increase the softening temperature of the coal ash. In a comprehensive study64 

of the fusion characteristics of a range of coal ashes, it is shown that for four 

different coal ash mixtures the softening temperature of the ashes increased on 

average between 9 to 17°C for every 1.0 mass% of alumina added to the coal ashes. 

It has further been suggested58,64 that mineralogically it is mostly due to the alumina 

in kaolin minerals such as kaolinite, rather than alumina in the shales such as 

Illite, Muscovite or other minerals in this group, that coal ashes rich in alumina 

retain their refractoriness up to relatively high temperatures.

Behaviour o f  Silica (SiOJ

Silica is the major constituent of coal ash and is also regarded as a refractory 

oxide. However it can act as a flux for the more refractory alumina. Additions of 

silica in the various proportions to three different ash mixtures with original silica 

contents varying between 49 to 59 mass% showed64 only a slight decrease in
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softening temperatures with increasing silica content. Addition of silica was believed 

to produce two opposing effects:

(i) An increase in the silica/alumina ratio in the ash which would be expected to 

reduce the softening temperature.

(ii) Lowering of the content of other fluxes present in the coal ash, thereby increasing 

the softening temperature.

Hence, the net lowering in softening temperature is a compromise between these 

two opposite effects.

In the results published by another study65, additions of up to 20 mass% of silica 

as quartz showed a marked decrease in the softening temperature of the ash from the 

washed and then ground large particles of coal. However, no significant effect was 

observed on the softening behaviour of the ash collected from the fines in the coal 

sample. The large coal particles were found to be richer in the basic oxides than the 

fines. It was concluded that should an acidic oxide like silica be introduced into 

a coal, having predominantly basic minerals, on burning of the coal they would 

react together leading to formation of eutectic mixtures of low melting point, 

thereby lowering the softening temperature range.

Behaviour o f  Iron Oxide (Fe20 3)

As an amphoteric transition metal oxide, iron can exist in various oxidation states; 

FeO, Fe203, Fe30 4 or even pure Fe, depending on the availablity of oxygen as well 

as mixing of air with the burning coal.

In an oxidising atmosphere, iron is present mostly as Fe203 within the coal ash. This 

causes the softening temperatures of the coal ash to be higher than in the presence 

of a mildly reducing atmosphere where iron may be present as FeO.64
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Coal ashes and deposits from coal fired units most often are shown62,63,66 to 

contain compounds of about 80% basic FeO plus 20% acidic Fe203 compounds. 

Hence, iron oxide is invariably classified with the bases, even though they are usually 

listed as Fe2 0 3 in the chemical analysis of coal ashes.

The fluxing effect of Fe203 in lowering the softening temperature of ash has 

been shown64,67 to be dependent on the original softening temperature and the Fe2 0 3 

content of the ash. This has been estimated at 15-16°C per 1.0 mass% Fe203 

at Fe203 contents less than 15 mass%. Beyond this point, the fluxing effect 

becomes negligible and sometimes even results in the rise of softening temperature 

with further increase of Fe203 content. Similar results have been documented68 whereby 

the fluxing effect of the Fe2 0 3 content for a series of ash samples increased up to 20 

mass% of F e ^ .  However, in the range of 20 to 40 mass% Fe203 progressively 

increased the melting temperature. In another study69, removal of the magnetic iron 

fraction from fly ash reduced both the softening and melting temperatures by 10 

to 15°C. It has also been shown68 that large particles of iron oxide formed on 

dissociation of carbonates and oxidised pyrite species in the superheater flue gas 

are comparatively inert in an oxidising atmosphere.

Behaviour o f  Alkali Earth Oxides (CaO, MgO)

The effect of CaO and MgO on softening temperature of a series of coal ash samples 

of varying composition has been investigated.64 It was shown64 that the fluxing 

effect of CaO decreases with increase in CaO content, up to 45 mass% for any 

particular ash considered. The extent of the fluxing effect of CaO has been 

divided into three ranges according to the amount of lime added:

(1) For increase in CaO content between 0 to 13 mass%, the softening temperature 

was lowered by 18 to 25 °C per mass% of CaO in the ashes.
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(2) For increase in CaO content between 13 to 30 mass%, the fluxing effect of CaO 

is very small, about 4 to 5°C per mass% of CaO. Sometimes the fluxing effect 

is even negative at the lower end of the range but increases as the CaO content 

approaches 30 mass%.

(3) For increases in CaO content between 30 to 45 mass%, the softening temperature 

rises progressively.

However in consideration of the above observations, it should be added that the 

changes in the softening temperature of the coal ash mixtures as CaO is added, is 

also due to the reduction in the proportion of other oxides in the ash, such as MgO, 

Na20 , K20  and F e ^  or FeO, which possess considerable fluxing affect.

In a study of fusion behaviour of selected ash components70, a contrasting effect of 

CaO content on ash softening and melting temperatures of two low temperature 

ashes was investigated. It was observed that for a coal ash with an original CaO 

content of 34.10 mass%, the first liquid phase was observed at 1240°C and the sample 

was fully liquid by 1400°C. In contrast, a coal ash with a much lower original CaO 

content of 13.60 mass% did not exhibit an observable liquid phase formation and 

formed a fully liquid melt at a lower temperature of 1310°C. These observations 

exemplify the complex softening behaviour of coal ash which can not be predicted from 

its chemical composition.

Magnesium oxide is normally present in coal ash in smaller quantities than CaO. As 

an individual entity, it is highly refractory with a melting point of 2800°C. The 

changes observed64 on softening temperature of two coal ash samples showed the 

fluxing effect of MgO additions to be similar to a limited extent to that of CaO 

at the lower ranges. The fluxing effect was shown to be restricted to an MgO content
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of 4 mass%, with no further lowering in the softening temperatures of the two ash 

samples beyond that.

Additions of MgO to a selected range of coal ash samples rich in iron oxide 

is reported53 to have rendered the ash more refractory by forming the high 

melting compound of magnesium ferrite.

Behaviour o f  Alkali Oxides (K30 , Na20)

The fluxing action of alkali oxide additions has been investigated64 for two coal 

ashes. The lowering of the softening temperature per mass% of alkali oxide additions 

was between 24 to 26°C which is more pronounced than with CaO or MgO.

The effectiveness of alkali oxides as fluxes is particularly dependent on their 

occurrence as "active alkalies" such as simple inorganic salts (e.g. NaCl, KC1) or 

as "inactive alkalies", bonded to organo-metallic molecules, such as those in clays 

and shale minerals.66 Whereas the effective fluxing action of the latter group of 

alkalies is restrained and defined by the alumino-silicate matrix boundaries of coal 

ash minerals, the former group can undergo various reactions to form simple or 

complex silicates and sulphates which are influencial in depressing ash softening 

temperatures to varying degrees.

It has been shown58 by analysis of coal ash quenched from temperatures less than 

1200°C, that the most important fluxing oxide is K20 . Above 1200°C, CaO and to a 

lesser extent F e ^  also become important fluxing agents.

2.3.2 (b) reducing conditions

This condition can exist within restricted regions of the lower furnace atmosphere, due 

to wide variations in oxygen concentration, from undiluted air to fuel rich regions, 

depending on the degree of mixing and the local rate of combustion. Even with ideal
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mixing in the flame, strongly reducing conditions with 0 2 mole fraction <  10*10 

are thought71 to exist within the burning char due to the limiting rate of diffusion of 

oxygen in the pore system.

Behaviour o f  Silica (SiOJ and Alumina (Al3OJ

In the majority of coals, silica is present as quartz or is derived from the decomposition 

of clay minerals. However during combustion, silica may interact with other 

components of the ash, e.g. CaO, FeO and alkalies in the furnace gases to form 

low viscosity oxides. In addition, under reducing conditions, silica in close 

association with the char may undergo carbothermal reduction44,70,71 to its more 

volatile suboxide, SiO. This is a gaseous product and is only thermodynamically 

stable above 1870 °C. On cooling, SiO dissociates to S i02 and Si, the Si subsequently 

reoxidising to Si02:72

S i02 + C -  S iO ^  + CO  (2-6)

-  t f0 2(s) + S i„  (2-7)

Si + 0 2 -  S i0 2 (2-8)

The Si02 thus formed consists of particles of submicron size sometimes known as 

"silica fume". The emission of silica fume has frequently been observed in stoker 

boilers.71

The evidence given in support of the formation of the initial SiO sub-micron size 

fume particles has been challenged by some researchers42 suggesting that if silicon is 

vaporized as the element, the monoxide or sulphides, the vapour will be 

completely oxidised to silica in the combustion chamber. Silica would then condense
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immediately after formation to form a collidal suspension or aerosol.

Alumina existing almost entirely in clay and shale minerals is relatively 

unreactive. However studies71 of coal ash slag heated in a graphite crucible in an 

argon atmosphere containing a trace amount of oxygen, showed that a substantial 

amount of A120 3 was volatilised at 1900°C and subsequently condensed at about 

1330°C. It is purported that volatile suboxides of aluminium were formed at high 

temperatures and condensed and reoxidised on cooling:

A i p % -  A L p2 + - 0 2 (2-9)

Al20 3 -  Al20  + 0 2 (2-10)

Behaviour o f  Iron Oxide (FeO)

The softening temperature of coal ash under reducing atmosphere is lower than in 

its temperature under oxidising atmosphere, as typically illustrated in Figure 2-7.54 

This has been attributed53,73 to the difference in the fluxing action of the different 

states of oxidation of iron oxide in different atmospheres. In an oxidising 

atmosphere, iron is mostly present as Fe2 0 3 whereas in a mildly reducing atmosphere, 

it is present as FeO and in a strongly reducing atmosphere it is completely reduced 

to metallic iron.

Figure 2-852 illustrates the effect of total iron content on ash fusion temperatures of 

coal ash under oxidising and reducing conditions.

A laboratory based study of ash melting behaviour showed58 that melting was 

greatly accelerated under reducing conditions. The percentage of melted ash 

increased rapidly between 900°C and 1100°C, with no further increases above
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1200°C. It is primarily due to the predominant occurrence of iron as FeO, rather 

than F e ^ ,  as the principal fluxing oxide controlling ash melting, that reducing 

conditions become pertinent to the combustion regime within the boiler environment. 

The fluxing effect of iron oxide as Fe203 has been shown73 to diminish considerably 

as its amount in the coal ash, as well as that added to synthetic ash samples was 

increased to 35 mass%. Further increases in the iron oxide content up to 50 mass% 

had no effect on the softening temperatures which varied between 1075 and 

1155°C for the ashes considered. It was further shown in the same study that 

for some ash mixtures with Si02/Al20 3 ratios greater than 1.50 and (CaO +  MgO) 

content greater than 10 mass%, further increases in the iron oxide content as FeO 

beyond 40 mass % increased the softening temperatures. Similar studies of ash fusion 

behaviour have established74 analogous results with the maximum fluxing effect of 

FeO at 30 mass% with slight increase in ash fusion temperature beyond this point.

Behaviour o f  Calcium Oxide (CaO) and Alkalies (Na20 , K20)

An investigation of the softening behaviour of a range of ash mixtures with CaO 

contents varying from 3 to 43 mass% showed74 that the ash fusion temperature was 

at its highest between 3 to 8 mass%. On further additions of CaO, the fusion 

temperatures decreased, reaching a minimum at 22 mass%, beyond which the fusion 

temperatures continued to increase up to 43 mass%. However, the lowering of 

softening temperature by the addition of CaO to a coal ash with high Fe20 3 content 

has been observed73 to be very low or even insignificant in reducing conditions, when 

the original CaO content of the ash is low. Similar observation were made in the same 

study regarding the role of the alkalies.
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2.3.3 Flow Characteristics

An understanding of the behaviour of coal ash in the molten state and its subsequent 

mode of solidification is crucial for any boiler designer and operator whatever the 

mode of operation and firing involved. In stoker systems, the flow characteristics 

are important with respect to the formation of clinker on the grate as well as deposition 

of fly ash on boiler tube surfaces.

The flow characteristics of coal ash slags and deposits formed on boiler tube surfaces 

have been correlated75,76,77 to temperature-viscosity-composition measurements for a 

wide range of coal ashes. The results of one study75 have been published in the 

form of a nomogram relating these properties, with composition expressed in terms 

of the "silica ratio" defined by the expression:

mass% SiO-
Silica r a t io ------------------------------------------------------------------------------(2-11)

mass% [(Si02 + Equivalent Fe20 3 + CaO + MgO)]

where;

Equivalent Fe20 3 -  Fe20 3 + 1.11 FeO + 1.43 Fe (2-12)

The silica ratio of an ash was considered to be a good guide to assessing its behaviour 

in the plant.

In the most comprehensive studies77,78 covering most of the British coals likely to be 

used in practice, correlations have been made between the temperature, 

viscosity and composition of a range of slags derived from blending ashes from actual 

British coals. The viscosities of coal ash slags were generally correlated under two 

conditions:
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(a) For fully liquid slags a logarithmic equation was derived,77 giving satisfactory 

accuracy for the viscosity values:

IQ7 ♦ m a  1Logio n -  ----------   + c (2-13)
(f-150)2

where;

r| -  Viscosity (poises)

m  -  0.00835/nass-% S i0 2 + 0.0060lmass% Al20 3 -  0.109 (2-14)

c -  0.0415 mass % S i02 + 0.0192mass% Al20 3 + 0.027^Equivalent

mass% Fe20 3 + 0.1060mass% CaO + 3.92 (2-15)

t  -  Temperature (°C)

(b) For devitrified slags,the temperature of critical viscosity (Tcv), which is the 

temperature at which, on cooling, crystallisation of the slag is first likely to interfere 

with its flow properties, is expressed78 as follows:

Tw -  2990 -  1470(A) + 360(A2) -  14.7(B) + 0.15(B2) (2-16)

where;

mass% SiO~
T is in ° C, A --------------------- , B -  mass% \Fe-0- + CaO + MgO]

mass% Al20 3

This expression was shown to be best suited to ashes with:

A < 2.0 , based on ^  (Si02 + Al20 3 + Fe20 3 + CaO + MgO) -  100.
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The importance of Tcv is that it greatly influences the thickness of coal fly ash 

depositing on boiler tube surfaces where there is a temperature gradient through 

the overlaying deposit layers. The outermost layer of deposit, being fluid, flows 

under gravitational forces, but the innermost layer behaving as a solid, is unaffected 

by gravity. Hence, the temperature at which this transition occurs between liquid 

and solid, as well as the viscosity of the liquid phase is important in establishing 

just how thick the deposit layer will be.76

Figure 2-975 illustrates the four distinct ways in which coal fly ash deposits can 

act during cooling generated as the result of temperature gradients within the 

maturing deposits. Curve 1 is that for a deposit consisting of pure glass, cooling 

uniformly without formation of any solid phases as precipitates within the coal ash melt. 

Curve 2 represents deposits approaching a glass in behaviour, cooling to a low 

temperature before separation of solids causes the development of plastic flow of 

coal ash melt, with Tcv being very low. Curve 3 represents coal ash slags which 

have a long cooling range but which begin to slowly separate solids at a 

relatively high temperature and freeze to a complete solid at a much lower temperature. 

Tcv is usually high in this case. Curve 4 represents slag deposits having a short 

freezing range, separation of solids being very rapid with the possiblity that Tcv may 

be high or low.

In terms of the individual effect of various components of the coal fly ash on the 

silicate slag deposits, it has been shown79,80 that alumina reduces the viscosity of 

highly siliceous slags, but in highly alkaline melts, it acts to increase the viscosity. 

Additions of alkali or alkali earth oxides usually decreases the viscosity of alumino- 

silicate melts. However, the effect of potassium oxide can be an exception to this rule 

due to its "inactive" status in alumino-silicate shale minerals. Iron being present
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as ferric iron under oxidising conditions, increases the viscosity by behaving as 

a silicate network extender in a manner similar to that of alumina. The slag viscosity 

will also increase as a result of crystallisation of iron-alumina spinels and iron 

containing silicates. In a strongly reducing atmosphere at high temperatures iron oxide 

is reduced and separates out as liquid metal. As a ferrous oxide, it reduces the 

viscosity.

The measurement of viscosity is time consuming, arduous and requires 

specialised equipment not commonly available. Efforts have thus been made to 

correlate the viscosity of coal ash with parameters such as "silica ratio", "ferric 

percentage", "base to acid ratio" and "dolomite percentage".81,82

2.4 THE FORMATION OF FLY ASH DEPOSITS IN BOILER SYSTEMS

2.4.1 Introduction

Generally, formation, growth and consolidation of a deposit is a long term process 

possibly proceeding over periods of thousands of hours in a boiler. The study of 

deposition phenomenon is complicated by the physical and chemical reactions 

and changes of the depositing fly ash particles as well as those within the maturing 

deposit.

The two distinct types of deposits, namely slagging and fouling, have already been 

defined in section 2.1.4. However these types have further been divided into 

high and low temperature deposits according to the region within the boiler unit that 

they are formed as schematically illustrated in Figure 2-10.83 The approximate 

temperature ranges for the various deposition zones are presented in Figure 2-11.83
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2.4.2 Factors Influencing Deposition

2.4.2 (a) The Effect of Ash Chemistry on Deposition

The influence of ash chemistry on deposition has been investigated by many 

workers. However, as yet no comprehensive study of all the chemicals present in the 

ash and their interactive effect on the build up of deposits has been made.

In an investigation of the sintering behaviour of ash from Australian brown coals, 

the effect of five oxides which appeared to influence the rate of deposition of the coal 

ash was considered17 with respect to the amount of deposit formed. It was shown that 

of the five oxides, silica, iron oxide and sodium oxide were consistently significant, 

magnesium oxide was partially significant and calcium oxide was of varying 

significance. On the basis of statistical examination of data from many tests determining 

the fouling rates, the mass of the deposit formed was related to the mass composition 

of the ash in the coal, as follows:

Mass o f deposit -  0.030 (%Si02) + 0.092 (%Fe20 3) + 0.061 (%CaO)

+ 0.264 (%MgO) + 0.423 (%Na20 ) -  10.6 (2-17)

Good agreement was found between the mass of the deposit collected and the 

mass predicted from the above equation.17

Silica - The role of silica in deposit formation is complex. As quartz, it remains 

essentially unaltered if heated in isolation. However, within the boiler atmosphere 

it may interact with other components of the ash, such as CaO and FeO or Fe203 

and alkalies in the furnace gases, to form low viscosity silicates. Clay minerals may 

be involved in similar reactions.22
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The rates of deposition for three bituminous coals with varying ash composition 

showed84 that the coal ashes with higher Si02 contents(at 51.2 and 46.7 mass%) and 

relatively lower F e ^  +  CaO ( 12.8 and 13.4 mass%) were deposited at less than 

one third of the rate of the coal ash with Si02 content of 40.1 mass% and F e ^ + C a O  

content of 21.3 mass %. This illustrates the significance of the role of the potentially 

strong fluxing components of the coal ash over the S i02 content of the ash in 

determining the deposition rate.

The silicate ash particles comprising the bulk of the deposits are by and large 

of a spherodised shape which is acquired through transformation of irregularly shaped 

particles passing through the boiler.44,84 These particles whether present in larger 

quantities as cenospheres, plerospheres (i.e large hollow spheres containing lots of 

smaller spheres) or just dense, solid spheres, or in much smaller quantities as 

dermaspheres and ferrospheres (i.e small, solid spheres containing large amounts of 

iron oxide as fine particles) will be the major "collectors" of various other mineral 

constituents of fly ash such as sulphates of sodium, potassium or calcium or 

pyrite particles which either diffuse through or reside and blend into the siliceous 

matrix to form the deposit agglomerate.84

In Germany, studies85 of the initiation of deposits from bituminous coals in stoker 

fired boilers provided evidence of reaction between Si02 and iron sulphides to 

form iron oxide and silicon sulphide (SiSJ which was subsequently oxidised in the 

deposit to Si02, hence acting as the carrier of iron oxide to boiler tube surfaces. 

Examination of slags formed in large industrial boilers burning Victorian brown 

coals from Australia revealed86 that slags were formed only when silica in the form 

of sand or clay as part of the coal was introduced into the boiler units.
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Alkali - alumino - silicates with inclusions of other oxides such as ferrous oxides 

were considered87 to be the major reason for slag at the walls of the radiative section 

and glassy bridges between particles in the superheater and reheater regions of the 

highest temperature zones of the combustion chamber of a pulverised coal fired boiler.

Iron  Oxides and Iron Pyrites - The effect of iron oxide on the expansion of molten 

ash droplets has been studied and it has been shown88 that at least 5 mass% iron 

oxide should be contained in the ash if any significant quantities of cenospheres are 

to be produced in the flame zone of the boiler unit. The occurrence of hollow ash 

spheres, commonly known as "cenospheres", has been shown44 to increase sharply 

with the iron oxide content of the molten fly ash, reaching its maximum when the iron 

oxide content of the ash comprised 9%88 of the total mass of the ash. This increase is 

thought to be due to volatilisation of iron in the form of metal vapour or via 

formation of volatile iron carbide within the fly ash particles.44 After deposition of 

carbide fly ash particles on the surface of boiler tubes and the gradual formation of 

deposit accretion, the iron carbide within the ash reacts with the S i02 to 

release carbon monoxide:44,72

2Fe3C + S i0 2 -  Fe3Si + 3Fe + IC O  (2-18)

This catalytic effect of iron has further been observed88 through evolution of 

residual gases such as carbon dioxide and nitrogen with traces of oxygen and 

carbon monoxide, when iron was added to silicate melts in the form of oxide or 

metal powder. However, ashes with higher than 20 mass% F e ^  have been found89 

to produce insignificant quantities of cenospheres. This is probably because the
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iron-rich ashes have a low viscosity and the gas evolution is too rapid for the 

formation of stable cenospheres.

Such considerations are particularly justified in the case of stoker systems where 

relatively large quantities of unbumed carbon are associated with the fly ash.

The results from operational units have indicated90,91 that iron oxides, FeO and/or 

Fe2 0 3 acting as fluxes to form low-melting glasses can also be an important factor in 

slagging of the heat exchanger surfaces. An approximate solubility limit of FeO in 

silicate ashes of different compositions has been expressed in the form of the following 

equation:92

FeOSQL -  12(S i02-AL,03) -  O ^CaO + M gO +N ^O +ICp+ riO J  (2-19)

where;

FeOSOL is the mass% solubility limit of iron oxide in slag.

(MxOy) is the mass% of the major oxides in the ash (e.g. Si02, K20).

Table 2-792 gives the calculated solubility limits of FeO in bituminous coal ashes of 

differing composition. The difference between the FeO solubility limit, and the amount 

of iron oxide present in an ash as FeO, has been considered92 as a measure of the 

strength of the ash for developing an adhesive bond with the heat exchanging 

metal surfaces.

Furthermore, the catalytic effect of F e ^  on the conversion of S 02 to S 03 can 

influence the reactions of alkaline constituents in the ash. Iron oxide has been found 

in deposits in the form of iron alkali trisulphates. These are believed93,94 to have 

formed from the reaction between iron oxide and alkali sulphates present in the 

ash, thereby producing sticky ash particles which would further promote the corrosion
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of the boiler tube surfaces. Figure 2-1230 summarises the probable sequence of 

reactions involved in the formation of injurious iron-alkali-sulphate complexes in 

fouling deposits which leads to external corrosion of the tube surfaces by the 

trisulphate route below 650°C and by pyro-sulphates below 480°C, within the 

convective zones of a boiler unit.

In a non-oxidising atmosphere, molten residues of pyrites appeared to be the only 

coal mineral impurities that have an observable tendency for particle-to-particle 

bridging.71 This is helped by the low viscosity, probably below 10 N.s.m '2 of the 

pyrite residue. According to the Frenkel equation71, this would give the time 

required for the formation of a degree of partial bonding at less than 1 ms. The 

low melting point liquids derived from pyrite minerals in the coal ash have been 

suggested53,90 as being instrumental in forming the first layer of deposit on boiler tube 

surfaces through either the formation of a eutectic of FeS and ferrous orthosilicate 

(Fe2Si0 4) or by accelerated slagging through formation of a low melting temperature 

ferrous meta-silicate (FeSi03) compound.46

The selective role of iron pyrites as an independent species of the ash in the 

promotion of slagging, by forming the initial layer of deposit, has been 

suggested by many workers43,47,95,96 based on observations of deposits formed on 

probes and heat exchanger tubes from furnace and convection zones near the 

furnace exit regions. In addition, microstructural examination of laboratory 

prepared deposits has shown50 that porous iron sulphide droplets deformed on impact 

to give a consolidated deposit on an oxidised metal surface.
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Table 2-7: Calculated solubility limit of FeO in coal-ash slags.92

Percent by mass

FeO
Ash
num
ber SiO, AL03 CaO AfgO N a.0 JCjO TIOj

Solubility'
Omit

Amount Differ
ence

r 50.7 34.1 1.7 L7 0.3 12 1 2 1 5 3 62 9.1
2 48.5 28.0 3.4 15 15 3.1 13 173 8.1 9.8
3 43.5 24.5 7.7 2 5 0.7 22 1 3 14.1 11.3 2.8
4 42.2 282. 4.3 1.1 05 12 02 11.5 15.0 -3 .5
5 37.2 21.4 8.1 15 03 1.4 02 115 21.4 - 9 5

NajO, NaCL so , -  0 , Na2S 0 . 
^  _ >  or

K20 . K a '  K^SOt

< «o*c
< 650'S

NajSjOy
or

Kj Sj O,
or

Kj Fe{S04 }3

Figure 2-12: Reaction sequence of iron oxides and alkalies with sulphur oxides.30
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Sodium and Potassium Oxides - Sodium oxide can be considered as the principal 

promoter of corrosive ash formation and deposition in combustion systems. Sodium is 

mostly found in deposits as chloride (NaCl) or sulphate (Na2S04), depending on 

temperature conditions at the collecting surface93 as well as the chlorine content of the 

coal. These are invariably concentrated in the first layer of deposits forming a sticky 

layer adjacent to the boiler tube surface in the convective zones.93,97'99 Laboratory 

based investigations have shown22,100 that the deposition of sodium on the surface of thin 

silicate fly ash particles promotes the formation of sodium silicate. This would make 

the fly ash particle more sticky and therefore easier to adhere to boiler tube surfaces. 

Detailed examination of deposit and fly ash specimen from power station boilers 

has21,101,102 further shown a similar mechanism involved in the depositing ash over the 

surface of heat exchanger tubes.

In other studies20 of boiler deposits which had caused severe corrosion of 

superheater tubes, a large proportion of complex sulphates of potassium-aluminium, 

potassium-iron and sodium-iron were found in the inner layer of deposits. Potassium 

sulphate having a higher temperature stability limit compared with that of sodium 

and calcium sulphates, can be preferentially transported across the ash deposit to the 

surface of cooled boiler tubes when there is a steep temperature gradient. The K2S04 

containing phase, when molten, can cause severe corrosion of tube metals.84 

In the absence of silicate ash, a typical value for the mass of sulphate fume (Na2S04 

+  K2S 04) produced per unit mass of coal, for a series of coals of different volatile 

alkali-metal content, formed in pulverised coal fired boilers has been given as 0.4 with 

a typical value of the mean diameter of the sulphate fume particles being 0.12/tm.69 

Low fouling deposits usually contain less than 1.0 mass% sodium,103 while ashes 

with more than 3 mass% sodium content are regarded as high fouling.
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Calcium and Magnesium Oxide - The role of these oxides in the deposition of fly 

ash on boiler surfaces has not received much attention. Calcium, mostly found as 

sulphate, is frequently found in deposits, but it is considered104 that the sulphate does 

not take part in the initial sintering process. However, this is dependent on the 

availability of calcium sulphate on the surface of fly ash particles, where it can inhibit 

the cohesion of fly ash particles. Conversely, the growth of crystalline CaS04 material 

inside the porous matrix of sintered ash may increase the strength of deposits. The 

presence of small amounts of calcium sulphate in sodium-rich ashes may enhance the 

rate of sintering, but in large concentrations it may retard the process of deposit 

formation.69 Calcium sulphate has also been recognised as the bonding agent in the 

outer, bulky layer of deposits from Victorian brown coals.95

It has been suggested88 that the amount of calcium oxide in the ash may be influential 

in the tendency for the formation of cenospheres rather than dense ash particles, with 

higher calcium oxide contents favouring the latter. However, other investigations of 

the possibility that cenosphere production is limited by the quantity of calcium oxide 

in the ash has not established any correlation for different types of ash89.

It has been shown102 that magnesium sulphate and calcium sulphate in the presence 

of alkali sulphates form low melting eutectics that might lead to serious fouling 

problems. Furthermore, calcium and magnesium are known to have an inhibiting 

effect on the formation of potassium and sodium iron trisulphates by formation 

of the more stable compounds of K2Ca2(S04)3 and K2Mg2(S04)3.105

2.4.2 (b) The Influence of Flue Gas Composition on Deposition

The chemical composition of the flue gases in a boiler environment has been considered 

an important factor in determining the extent of sintering of fly ash and the subsequent
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texture of deposits formed.106 Invariably all flue gases contain major proportions of 

various chemical combinations of four elements; carbon, oxygen, hydrogen and 

nitrogen. In coals with significant quantities of chlorine and sulphur compounds, 

further gaseous compounds result when the coal is combusted creating a corrosive 

environment with high fouling potential.

Studies have shown106,107 that areas of superheater tubes and other heat receiving 

surfaces exhibiting high corrosion rates due to fouling within the combustion chamber, 

existed where high CO levels were present. The sulphur content of particulate matter 

was relatively higher in these areas than the areas which were depleted in CO and 

richer in oxygen.

In a study108 of factors affecting the corrosion of boiler tubes, it has been suggested 

that when oxides of sulphur, carbon monoxide and steam are dissolved as gases in the 

fused slag at temperatures of approximately 1300-1700°C, their presence could 

facilitate the break down of the metal anions such as S iO ^ and S i032", into S i02 and 

O2*, hence enhancing the stability of silicate cohesion within the slag.

An investigation of the composition and origin of gas in ash cenospheres has shown88 

that C 02 and N2 were the main constituents of gas locked in the ash spheres with C 0 2 

being produced via dissociation of carbonates and combustion of carbonaceous matter.

2.4.2 (c) The Effect of Flue Gas Temperature on Deposition

The effect of temperature on the mineral matter as well as the flow properties of 

the coal ash, has already been discussed in sections 2.2.2 and 2.3.3 respectively. 

Of all the factors influencing depositon, temperature and composition of the coal ash 

are probably the most significant. The effect of increasing gas temperature has been 

found103 to be very pronounced, indicated by a three-fold increase in the deposition

- PAGE 49 -



rate over the temperature range of 980°C to 1150°C.

A theoretical study of the effect of flame temperature on the surface temperature 

and thickness of deposits has been carried out.91,109 It was calculated that with a 

flame temperature of 1500°C, even an initial deposit of 0.5 mm would be enough to 

raise the surface temperature by 450°C whereas with a flame temperature of 

1200°C, the same increase in surface temperature would not be achieved until a deposit 

layer of 1.2 mm was formed on the boiler tube. Similar observations on the degree 

of sintering and fusion of various coal ashes as a function of flue gas temperature have 

also been made.110

The importance of flue gas temperatures below 1000°C on the balance between the 

rate of deposition of fly ash and sodium sulphate in the ash and also the effect on the 

physical nature of deposits has also been investigated.111 It was shown that at flue gas 

temperatures greater than 900°C, formation of hard deposits was increased. These 

observations have been confirmed by other workers.112

2.4.2 (d) The Effect of Boiler Design on Ash Deposition

Ash deposition in various boiler zones is an important factor to be considered in 

boiler design and operation. As explained earlier, the occurence and severity of ash 

deposition depends largely on the coal ash composition and amount of coal ash, but 

can be strongly influenced by the method of firing, design of equipment, and the 

operating conditions.82 Some of the design considerations are shown in Table 2-8.

In practice, the design parameters and operating conditions are determined by 

the characteristics of the ash. For example if ash does not tend to form troublesome 

deposits, the furnace wall surface will require few, if any, sootblowers for cleaning. 

The boiler can be designed with deep banks of closely spaced superheater or reheater
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Fuel characteristics

1. Properties of coal substances 2. Properties of coal ash
a. Physical, including density, Determined by the concentration

hardness, specific heat, thermal and type of minerals in the coal
expansion and thermal conductivity containing the following elements:

b. Chemical-behaviour during heating a. Alkalies e. Calcium-Magnesium
i.e. carbonization, gasification b. Sulphur f. Iron
and combustion c. Chlorine g. Silica

d. Phosphorus h. Alumina
Technological properties Technical properties

1. Proximate analysis 1. Fusion temperature
2. Ultimate analysis 2. Viscosity o f slag
3. Free-swelling index 3. Surface tension o f slag
4. Differential thermal analysis 4. Volatility o f constituents in slag
5. Thermogravimetric analysis 5. Sintering temperature and strength
6. Effluent gas analysis o f ash
7. Grindability
8. Calorific value
9. Sieve analysis

10. Ignitability
11. Abrasiveness

Boiler design and operation

1. Firing method
a. Slag tap, PC 

and cyclone
b. Dry ash, PC
c. Fuel bed, chain-grate 

and spreader stoker

2. Furnace design
a. rating
b. Wall construction
c. Type, number and 

arrangement of burners
d. Exit-gas temperature

3. Tube bank design
a. Horizontal or vertical 

tubes
b. Spacing, side and back
c. Depth of bank
d. Alignment
e. Freedom of tube 

movement

4. Combustion conditions
a. Excess air
b. Air temperature
c. Load cycle
d. Residence time

5. Properties of flue gases
a. Temperature
b. Flow patterns
c. Composition

6. Properties of entrained ash
a. Dust loading
b. Size consist
c. Composition
d. Microstructure

Sootblower 
design and operation

1. Blowing medium
a. Air or steam
b. Pressure
c. Temperture

2. Type of sootblower
a. Short retractable
b. Long retractable
c. Fixed position rotating
d. Travelling frame

3. Location and spacing 
of sootblowers

4. Sootblower nozzles
a. Type, size, number
b. Angle of attack

5. Lance-tube attack
a. Rotational
b. Axial

6. Frequency of operation
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tubes located in high - gas - temperature zones. Relatively few sootblowers will be 

required and these can be operated at high speed, with small nozzles and low pressures. 

On the other hand, if the ash produces hard, massive deposits, the superheater and 

reheater tube banks must be designed to permit ease of deposit removal. For 

instance, lateral tube spacing is increased, tube bank depth is decreased and the banks 

are located in cooler gas temperature zones. Additional sootblowers, operating at 

maximum capability, may be required. 82

Further design considerations such as furnace dimension, burner location, heat input 

and width and arrangement of convective tube banks, with respect to the slagging 

of lower and upper furnace regions, have been adequately discussed elsewhere. 113,114

2.4.2 (e) The Effect of Boiler Operation on Ash Deposition

Boiler operating conditions can significantly effect deposition. Some of the 

operating factors that have been studied82,52 are:

- Excess air requirements

- Firing method

- Gas/tube temperature

- Selection and blending of coal

- Humidification of combustion air

- Mixing of flue gases with combustion air

- Compound firing of pulverized coal over stoker fuel beds

- Operating within loading capacity

- Cleaning of the heat receiving boiler tube surfaces at regular intervals either by 

using additives or by soot blowing of these surfaces.
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2.4.3 The Mechanism of Ash Deposition

2.4.3 (a) Formation and Accumulation of Coal Ash on Boiler Tube surfaces

Three types of ash species have been identified103 in the flue gas stream in boiler units:

(1) The relatively physically unaltered extraneous inorganic matter such as quartz, 

kaolinite and iron pyrites which undergo further oxidation.

(2) The coalesced or agglomerated ash particles formed largely from the less volatile 

inherent inorganic ash made up of calcium, magnesium, aluminium and iron 

compounds. Small extraneous silica particles may serve as condensation nuclei for 

these agglomerates.

(3) Sodium, potassium and sulphur compounds derived from organically bound 

volatile constituents of ash.

Similar categorisation of the particulate matter in fly ash has been made in other

studies. 115 It has been proposed that the formation of particulate matter takes place in

three different ways:

(i) By transportation of solid particles of inorganic ash with the flue gas up through 

the boiler unit.

(ii) By volatilisation of portions of the ash and their subsequent transportation with the 

flue gas. The volatilised particulate matter thus formed is the product of 

condensation of vaporised inorganic constituents, such as SiO. On reaching the 

lower temperature zones of the boiler unit, some degree of reaction can occur 

between these particles. The products of these condensation processes generally 

form very small fly ash particles.

(iii) By reaction of metal oxides such as Na20  and K20  in the ash with condensed 

sulphuric acid in the lower temperature zones of the boiler unit.
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Figure 2-13116 gives a simplified view of the evolution of the inorganic ash 

components of fly ash during coal particle combustion.

In a comprehensive study by CEGB workers, 117 of the inhomogeneity of a wide range 

of bituminous coals heated in air, it was observed that the coal particles consistently 

formed ash particulates of four main types. These were described as:

(a), "solid" particles, retaining the original irregular shape of the particles of coal;

(b). thin-walled, hollow cenospheres (balloon type);

(c). "lacey" cenospheres with intricate internal partitions;

(d). thick-walled cenospheres.

The ash derived from the inherent and extraneous mineral matter within the burning 

char substance are released as particles of varying size and composition, as the coal 

is burnt in the furnace region of a mechanical stoker or pulverised fuel burner 

within a boiler unit. In mechanical stokers the majority of particles are from 1 to 

150 fim  in size with some solid particles up to 300 fim and a few hollow particles 

even larger. In pulverised fuel units, there are very few particles outside the range of 

1 to 1 2 0  jtim. 42

Studies relating the morphology of the evolved ash particles to their size ranges 

have demonstrated118 that whereas the relative abundance of amorphous, vesicular and 

cenospherical ash particles decreased with decreasing ash particle size, the abundance 

of solid, non-opaque spherical ash particles increased with decreasing particle size. 

Variations in the structure and morphology of ash matter have been observed 

and catalogued16 with the proportion of various ash particle types depending on the 

origin of the coal. These studies have described the heterogeneity and structural 

complexity of coal fly ash in great detail. In other studies111,119 spherical particles of
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various shapes, sizes, mass and colour were found to be the most dominant structures 

in sampled deposits from boilers. Other studies88,89,120 have exclusively dealt with 

the formation of solid ash spheres and cenospheres.

Accumulation of fly ash particles on boiler surfaces involves at least four 

physical processes: 102,121

(1). Inertial impaction - This is the dominant mechanism in transporting flue gas 

particles with a threshold size of about 5 pm  in diameter to boiler tubes. At 

typical flue gas velocities between 10 to 25 m.s'1 in pulverised and other conventional 

coal fired boilers, the particles above about 10  pm  in diameter have kinetic energy in 

excess of what can be dissipated at impaction on clean tube surfaces, resulting in their 

re-entrainment in the flue gas. 84

(2). Brownian motion (particle diffusion)-This mechanism may account for deposition 

of some fume particles below 0.1 pm  in diameter. It has been suggested122 that 

sulphate particles in the boundary layer of flue gas surrounding a cooled target as 

well as a small mass fraction of silicate ash in the form of fume can be deposited 

via this mechanism.

(3). Molecular (vapour) diffusion  - Flame volatilised species chiefly Na2S 0 4, K2S04, 

are deposited on cooler boiler tubes as condensable salts. This could account for over 

50 mass% of the total of these sulphates, 84 the remainder being carried onto the 

surface of the tubes by the silicate fume particles. This is believed to be a more 

significant transport mechanism than particle diffusion.

(4). Thermophoresic (eddy) and electrophoresic diffusion  - These mechanisms are 

likely to have a marked influence in cooled boiler tubes. Thermophoresis is the 

particle movement resulting from a heat flux121. This is particularly relevant in the
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initial stages of deposit formation, when the surface temperature of a clean boiler 

tube is around 430°C and that of the flame exceeds 1430°C84.

As all heat transfer and combustion systems contain areas of high thermal gradients, 

this form of particle deposition is very significant. Conversely, if  the combustion 

gases are being heated, deposition due to thermophoretic effects will be negligible. 

Electrophoresic diffusion is responsible for the preferential deposition of ash 

particles of comparatively high conductivity. The electrostatic charge is acquired by 

the moving particles in the flue gas as a result of flame ionization or the frictional 

forces on particle collision. The silicate ash surface, enriched by alkalies and iron 

oxide particles are partly deposited via this mechanism. 84

An overall schematic representation of the formation and deposition of coal fly 

ash particles through various physical processes, as discussed previously, is 

depicted in Figure 2-13.116

It is believed that as the size of ash particles increase, the process of accumulation 

changes from (4) to (1) above. However, the combined effects of deposition 

mechanisms (l)-(4) are most conducive to the deposition of 0.1 to 10 pm  fly ash 

particles on boiler tubes.

In the initial stages of deposition the formation of an adhesive bond involves two 

stages; wetting and then bonding. Wetting involves the viscous flow processes required 

to bring the possible liquid phases of the ash in contact with the solid surface. 123 The 

rate of wetting is determined by the interfacial energy of both the liquid and solid, 

the viscosity of the liquid, and the roughness of the solid surface. Bonding may involve 

either the formation of a chemical, physical or electrostatic bonds at the interface. 94 The 

area of contact required between a depositing fly ash particle and a tube to prevent
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detachment of the particle under the influence of gravity, its tendency to rebound on 

impaction, and its ability to resist detachment due to abrasion by other fly ash 

particles depends on various factors. These include the mass of the particle, its 

velocity at the time of impaction, its surface tension, its affinity for the metal oxide 

and other factors relating to viscoelastic properties of the particle. When the particle 

impacts onto a deposit layer already formed on the tube, its retention will also be 

determined by the condition of the deposit surface, especially with respect to any 

liquid phases present. 22

A strength of 10 kN.m*2 is regarded as just sufficient to withstand sootblower 

action. At the adhesive bond strength of 100 kN.m'2, a 500 mm length of boiler tube 

could support a 10 kg mass of slag deposit. 124

2.4.3 (b) Sintering and Coalescence of Coal Ash

The term "sintering" is variously defined and it can connect either individual or 

compound processes of bonding, densification and / or recrystallisation. However in 

general terms it is the extension of the contact area between powder particles in the 

solid state, by the transport of material across or around pores, under 

appropriate conditions of time, temperature, pressure and atmosphere. 125 The driving 

force in the sintering process is the reduction in the surface energy by decreasing the 

surface area. There are four possible mechanisms: 1) viscous flow, 2) vapour

condensation, 3) surface diffusion and 4) volume diffusion. 125*129 

The process of sintering by viscous flow is believed126 to play a dominant role 

in the formation of deposits in coal fired boilers. It has been suggested130 that sintering 

by viscous flow can occur via two mechanisms:

- densification governed by shrinkage of large pores with a sufficient excess of liquid 

phase to fill initial porosity.
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- densification with an abundance of a liquid phase allowing for complete filling of 

the pore spaces.

The dominance of one mechanism over the other is dictated by temperature and 

chemical composition of the liquid phase. In order to quantify the sintering process, 

a model that describes the rate of coalescence of particles, in terms of measurable 

parameters, has been developed. 131 The growth of the interface between two spherical 

particles or a particle and a semi-infinite body as shown in Figure 2-14 is thus 

defined:

x 2 = (2-20)
2r\

where;

x =  radius of interface assumed to be circular
r  =  radius of the spherical particle
7  =  surface tension 
t =  time
7} =  viscosity

Rearranging equation (2-20) in terms of "x/r" and "t", it becomes:126

£  = 1.225 ( ^ - ) M  <2 -2 1 )
r  q r

This equation is applicable when x/r < 0.3.

The ratio x/r can be used to characterise stages in the sintering of ash deposits on 

boiler tubes, as shown in Table 2-9126 from the initial contact between the 

particles to the formation of fused slag where the shape of initial constituent 

particles is no longer distinguishable.
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Figure 2-14: The initial stage of sintering - Frenkel’s two particle model.47,123

Table 2-9: Degree of sintering based on the ratio o f neck bond radius to particle 
radius (x/r) . 126

Value of x /r Degree of entering Comment

04301 Onset of sintering The deposit of this degree of sintering on 
boiler tubes has no significant cohesive 
strength and would probably' fad off 
under the action of gravity and boiler 
vibration.

04)1 Slightly sintered matrix The deposit on boiler tabes would probably 
be removed by soot blowing.

0.1 Strongly sintered deposit The deposit on boder tribes would be 
diffldxit to remove by soot blowing.

>0.5 The ash particles log their original identity 
and the deposit on boiler tabes cannot 
be removed by soot blowing.
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The sintering characteristics of coal ash are effected by many factors such as the 

chemical composition of the ash, the nature of minerals in the original coal, the 

time-temperature history during combustion of the coal, the atmosphere, temperature 

and the time during which the ash particles are in contact with each other on a heat 

receiving surface.

Although the complexity of coal ash systems makes it difficult to relate

composition to sintering tendency, the alkali content of the coal has been shown132 

to correlate well with sinter strength. In a similar study133 the effect of iron 

oxide and water soluble alkalies on the temperatures corresponding to the 

maximum expansion on heating of precipitator ashes was examined. It was 

shown that this temperature was lowered by increasing the iron oxide content of an 

ash and increased by reducing the soluble alkalies present in the ash.

Changes in the iron oxide content and silica ratio of coal ash have been used124 as 

indices for a range of temperatures indicative of slow (10 hours), rapid (2-3 minutes) 

and very rapid (1 second) sintering processes.

2.4.3 (c) Formation of Monolithic and Layer - structured Deposits

By far the most widely investigated feature in ash deposition is the formation of 

"layer-structured" deposits. These are often encountered with high alkali and sulphur 

coals.

Figures 2-515 and 2-15" are the schematic representations of the variations in the form, 

thickness and the role of alkali-sulphates in the formation of layers of ash depositing 

on boiler tube surfaces. In the first investigation134 of these type of deposits, it was 

concluded that the mechanism whereby these deposits are formed is as follows:
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1. Loose unbonded fly ash accumulates on the tube surface.

2. Alkali compounds in this deposit form alkali sulphates by a reaction with S 0 3 in 

the deposit. The S 0 3 may have originated in the flue gas stream and/or has been 

formed from the catalytic oxidation of sulphite by another oxide such as Fe2 0 3, in the 

ash deposit (see Figure 2-12).

3. The deposit nearest the tube metal continuously becomes enriched with S0 3 until 

a major portion of the alkali compounds are converted to sulphates. Up to this point 

there has been no formation of a  "white inner layer",

4. In the presence of alkali sulphates, the red iron oxide (Fe2 0 3) and S 0 3 react to 

form alkali iron sulphates Na3Fe(S04) 3 and K3Fe(S04)3, in a layer immediately next 

to the tube. This is white or yellow-white in colour.

5. In the presence of alkali sulphates, the alkali iron and alkali aluminium sulphates 

form low melting point phases which soften at the tube metal temperatures and form 

a tightly adherent bond to the tube metal.

6 . Both the inner and the outer layers of the deposit increase in thickness, so that 

the temperature of the outer layer is raised and sintering occurs.

7. The surface temperature of the deposit ultimately becomes high enough to melt 

the alkali sulphates capturing more fly ash and thus accelerating the rate of deposit 

build up. In the higher temperature regions, alkali silicates, aluminium silicates as 

well as other complex oxides of silicon, aluminium, iron, sodium and potassium can 

form, producing strong fused, glassy outer layers.

One of the principal reasons for the formation of layer-structured deposit in coal 

fired boilers is that the chief constituents of ash, namely silicates and sulphates such 

as alkali- metal and calcium sulphates, are immiscible. 84
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Investigations carried out by other researchers99,135 burning high-fouling coals, 

have established similar mechanisms, whereby three distinct layers, namely; "inner 

white layer", "inner sinter layer" and "outer sinter layer", which differed in physical 

character but had similar chemical analysis, were formed. In another study92 the 

role of iron oxide in forming layered deposits on the surface of superheater and 

reheater tubes with different physical as well as chemical characters has been 

recognised. Other studies86,97,103 have only identified two layers as inner and 

outer layers. Figure 2-1599 shows the various layers as they are progressively formed 

on a boiler tube.

2.5 ADDITIVES

2.5.1 Additives In Coal-Based Power Generation

The treatment of fuels by addition of certain chemicals directly or indirectly to the 

fuel or fuel ash, has been tried since corrosion and deposits first became a problem in 

industrial and utility boilers. However, chemical additives are just one amongst nine 

potentially applicable techniques for controlling slagging, fouling and corrosion in 

coal-fired boilers. These techniques are briefly summarised in Table 2-10136 along with 

some of the economic considerations in choosing between them.

The range of chemicals and minerals which have been employed in order to assist 

in addressing the various fireside problems is quite diverse. Some perception of this 

diversity can be gained from Table 2-11137 which classifies additives by physical 

form as well as chemical ingredient.

Generally there are four main reasons for using additives: 138

- To minimise catalytic formation of S 0 3 on hot surfaces.

- To prevent formation of corrosive substances on heat receiving surfaces 

(high temperature corrosion).
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Table 2-10: Considerations in choosing 
corrosion. 136

Techniques 

Drop boiler load.

Reduce flame temperature by 
increasing excess air or by 
flue gas recirculation.

Increase frequency of soot 
blowing.

Add more soot blowers or 
water blowers.

Switch to clean or blended 
fuels.

Grind coal more finely. 

Boiler modification.

Closely monitor combustion 
system maintenance/operation.

Chemical additives.

various techniques for controlling slag and

Considerations

Costly if load demand requires 
use of less efficient generation.

Hurts thermal efficiency, increase 
erosion.

Increase tube erosion and operation 
expences.

Increases capital investment and 
operationg cost.

Increases cost of alternate fuel 
or blending expense. Cleaning coal 
may aid or worsen problems.

Increases mill capacity requirement, 
causes higher operating expense.

Increases capital cost.

Increases maintenance cost.

Evolving technology, continuing cost 
may require small investment for feed 
equipment. Feed method, location and 
frequency are important.
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Table 2-11: Physical form of oil and coal additive chemicals.137

Chemical Form
Powder Dispersions Emulsions 

________   oil Water __________

Magnesium oxide x X

Magnesium hydroxide x X X

Aluminium trihydrate X

Manganous oxide X X

Limestone, dolomite X X X

Water-soluble metal salts 
Mg, Mn, Cr, Ba, Si, Fe X X X

oil-soluble metal salts 
Mg, Mn, Cr, Ba, Si, Fe X X

Ammonia

Rare earth oxides X X

Silica X X

Vermiculite X

Sulphur trioxide

Borates X

Amines X

Copper oxychloride X X

-PAGE 6 6 -



- To decrease the sintering tendency of high-temperature deposits.

- To neutralise acids normally condensing on cool surfaces.

In oil-fired boilers, additives have been used for many decades, mainly to 

prevent corrosion on the cooler parts of the system. The extent of their use to date, 

is a measure of their success which has been proven and accepted for many years.

A number of studies concerned with the use of magnesia, the most widely used 

additive in oil-fired boilers have been carried out. In a comprehensive review138, the 

role of magnesia along with some of the more frequently used additives in oil 

firing has been considered.

In coal fired boilers, the use of additives has by no means been as extensive as 

with oil-firing and chemicals have mostly been used to deal with the waterside of the 

boilers, ignoring the potential benefits of fireside chemical treatment. The main 

reason for this seems to originate from the higher ash content of the coal (at 1 0 % 

or greater) compared with the ash content of oil (at around 0.1%). Thus, with nearly 

one hundred times greater solid burden in the flue gas relatively larger quantities of 

additive (from 0.4 to 3 mass% of the coal burned compared with 0.025 mass% for 

oil)i32,i39 have been required to have any significant effect on ash deposition. This 

makes the application of additives to coal-firing uneconomical.

Some studies140,141 have however suggested that it is sometimes possible to use 

chemical treatment effectively to inhibit deposit build ups in coal-fired boilers. Trials 

carried out during the early 1970’s,142 employing fine particle size MgO dispersion 

in pulverized coal fired boilers burning widely different kinds of coal yielded a 

reduction in deposits at very low treatment rates, 0.015 mass% or less.
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In addition to magnesia which is probably the most widely used additive, dolomite 

and limestone are also frequently used with pulverized fuel slag-tap furnaces to lower 

the viscosity of the slag. 96,143

In the early 1960’s the use of copper oxychloride to control slag formation was 

introduced as a relatively cheap, easy to use and readily available additive. 144 By 

the early 1970’s application of small amounts of copper oxychloride directly to the 

coal being burnt at over twenty five power stations in England and Wales, 145 

mostly utilising chain-grate systems, to combat slagging, produced results varying 

from marked improvement to marginal or no improvement. The only ineffective use 

of copper oxychloride was associated with the power station burning a coal with a high 

alkali content. The cost of this treatment was usually between 0.1 and 0.3 pence per 

tonne of coal.

Investigations of the effective use of additive mixtures to combat high 

temperature corrosion and fouling of heat exchange surfaces showed that 

mixtures of magnesia-alumina and magnesia-silica146 as well as silica-antimony147 at 

various compositions performed satisfactorily by forming friable, high-melting 

products under laboratory and furnace conditions.

The choice of any additive used is governed by the particular desired changes in 

slag properties (e.g. more fluid or more powdery) and fuel ash chemistry, coupled 

with cost effectiveness, ease of handling/addition and any side effects.

Tables 2-12, 2-13 136 and 2-14148 provide an overview of the range o f additives most 

widely used for controlling and alleviating slagging and corrosion on dry-bottom 

boilers and on wet-bottom boilers and fouling of the convective passages of 

coal-fired boilers, respectively.
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Table 2-12: Additives for control of slagging and corrosion on P.F dry-bottom
boilers.136

Additive Type8 Treatment Rate Treatm ent cost Remarks
and form ppm Ib/ton coal $/ton coal

HIGH RANK COAL

Copper oxychloride
powder 2-6 0.004-0.012 0.006-0.018 (1)

Magnesium oxide
water slurry 50-70 0.11-0.15b 0.05-0.075 (2)
oil slurry 500-900 1.1 - 1.8b 0.40-0.90

Manganese organic
oil solution 22 0.04 0.20 (3)

Limestone
fine powder c 400 c (4)

LOW RANK COAL

Limestone
gravel 500-1500 1-3 0.03-0.09 (5)

Magnesium oxide
oil slurry 100-160 0.2-0.33 0.075-0.12

Copper oxychloride
diluted powder 5-50d d 0.20-1.00 (6 )

8 In order of suggested consideration by fuel class. 
b Pounds of MgO fed in proprietary slurries which typically weigh

1.5 to 2.0 times the numbers shown. 
c Not meaningful. 
d Equivalent copper oxychloride.

(1) Rate based on current utility practice.
(2) Applied only to the 15-20% of furnace surface that slags.
(3) Only good data is on a cyclone furnace.
(4) Aimed at SOx control; slagging is secondary benefit.
(5) Not effective on cyclone-fired units.
(6 ) In a proprietary additive, costs are high compared to the pure copper 

oxychloride because of the accompanying inert or other active ingredients, 
service, and benefit for the additive vendor.
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Table 2-13: Additives for controlling salg fluidity on wet-bottom P.F boilers.136

Additive Type Treatmnet Rate Treatm net Cost
and form Continuous Feed

____________  lb/ton_____   $/ton

Limestone8 1 to 200 0.01 10 1.00
gravel

Boron mineralsb 1 to 10 0.18 to 0.80
Granular

Mill scale per test Negligible0

powder

Sodium compounds'1 per test e

a Dolomite or waste calcium products are alternates.

b variety of boron minerals are effective.

c Waste from steel making is potentially very low cost.

d Can cause fouling problems; sodium bearing wastes offer low costs.

c Cost dependent on additive source and treatment rate, which are best 
determined by test.

Feed Point

Coal mill 

Coal mill 

Coal mill 

Coal mill
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Table 2-14: Additives for controlling convective pass fouling and corrosion on
coal-fired boilers.148

Additive Type Feed Feed Treatment Rate Treatment Cost
and Form Point Method ib/ton coal S/ton coal

HIGH-RANK COAL

MgO powder Burner Intermittent 0.33 0.04

Mg(OH) 2 water 
dispersion

Furnace
outlet

Continuous 0.26* 0 . 2 0

Vermiculite
powder

Furnace
outlet

Continuous 0 . 6  to 2 . 0 0.03 to 0.10

CaO-Limestone
powder

Coal mill Continuous 2 0 0.60

CaCl2
solution

On coal Continuous 0.2 to 7.0* 0.02 to 0.56

Clay-Kaolin
powder

Lower
furnace

Continuous 7.5 0.25

Mn-Organic
solution

Burners Continuous 0.04* 0 .2 0

LOW-RANK COAL

CaO-Limestone
powder

Coal mill Continuous 1.0 to 1.5 0.07 to 0.15

Vermiculite
powder

Furnace
outlet

Continuous 1.0 to 4.0 0.07 to 0.25

MgO-oil Burner Continuous 0.3 to 0.6* 0.15 to 0.30
dispersion

a Pounds of active ingredient contained in the additive compound per ton of coal.
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2.5.2 Implication of the Use of Additives

2.5.2 (a) Increased Flexibility and Efficiency in Fuel Selection

In most cases of boiler slagging, the cause can be traced back to particular coals 

with low ash fusion temperatures, to specific variations in the boiler operation or 

to some other features of boiler design. Since the formation of deposits is very 

much a function of reactions between the coal ash minerals, any variations in the 

nature and type of coal used can exaggerate any existing fouling and slagging 

problems with inevitable cost penalties incurred.

In addition to the significant expenses and time involved in fuel evaluation and 

in negotiating new supply contracts, the fuel related options are also likely to 

result in increased shipping cost since proximity to the mine normally is a criterion 

for initial selection of fuel. Furthermore, if cleaning or blending of the selected fuel 

is needed, the as-fired expenses will increase significantly. 136

In addition to a wide range of troublesome coals liable to cause slagging, the 

inhibition of external fouling and slagging in a peat-fired chain-grate stoker, through 

the use of copper salts, has further been reported. 145,149

Effective use of magnesia on a few selected lignitic, sub-bituminous and bituminous

coals burnt in various industrial boilers has been demonstrated. 150

Coals from the Western USA, which included a range of sub-bituminous and lignitic

fuels, containing large quantities (10 - 30 mass%) of CaO with substantial sodium

levels were successfully fired using additional limestone as an additive. 151

Cleaner convection passes will allow a reduction in excess air levels; each 1%

reduction being equivalent to an increase in efficiency of about 0.05%.150
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In a number of studies concerned with the catalytic effect of some proprietary 

metallic compound (DG-807) used in different types of stoker boiler systems, boiler 

efficiency gains of 1.25%152 to 1.7%9 via lower excess air and carbon losses in 

fly ash were achieved. The treatment rates of additive added onto coal varied between 

80-365 ppm of coal. In another similar study153 steam generation increased by 6 .1 % 

per tonne of coal burnt as well as an 18% reduction in excess air requirements and 

additional reduction of unbumt carbon and deposits were realised.

Efficiency gains of up to 4.5% for precipitator performance have been reported154 

through injection of a magnesia solutions (liquimag) into a pulverised coal fired boiler. 

Other workers155 have reported gains of between 15-30% in collection efficiency of 

precipitators through conditioning of fly ash with a range of additives at a 

concentration of 50 ppm.

2.5.2 (b) Lower cost boiler operation

Additives can offer a rapid solution to slagging and corrosion problems with 

minimum capital investment and acceptable operating costs. I36,I45J4X-172 

Injection of minor quantities of magnesia into the superheater area on boilers firing 

both high and low fouling coals has resulted in cleaner convection surfaces which 

would result in an increase in superheater temperatures hence increasing thermal 

cycle efficiency of power generation. Consequently boilers can be designed for 

higher heat releases and/or higher steam temperatures. Other cost related activities and 

factors which can lower capital and operating costs are: 150,156

- Boiler shutdown time,

- Reduction in heat transfer and loss in efficiency,

- Metal damage and cost of replacement of tubes,
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- Cleaning and lower rating of units resulting in loss of power output capacity,

- Dependability

2.5.2 (c) Reduction in Acid Smut, S 0 3 and Fly Ash Emission 

Acid smuts are effectively the entrained agglomerates of condensed sulphuric acid 

in combination with sticky carbonaceous and particulate matter of the ash. These can 

contain up to 50% H2S04 and therefore environmentally it is imperative to capture 

these injurious particles before release into the atmosphere.

Injection of magnesium hydroxide and a mixture of magnesium oxide and 

sodium bicarbonate in a 500 MW boiler have been shown157 to reduce the free acidity 

of deposits to a level which would be unlikely to cause an acid smut problem . In 

the same study the overall amount of smut in the flue gases at the top and bottom 

of the stack was greatly reduced after long term trials with magnesium hydroxide 

and sodium bicarbonate injection.

Generally materials effective in reducing S 0 3 levels in flue gases can be classified 

into three main groups:52

(1) Materials that physically absorb S03, such as silica or carbon.

(2) Materials that combine preferentially with the atomic oxygen in the flame zone 

or which promote recombination of the oxygen atoms with consequent inhibition 

of the reaction:

S 0 2 + O -  S 0 3 (2-22)

Carbon tetrachloride and tetraethyl lead are examples of this catagory of additive.

(3) Materials that combine with S0 3 to form non-corrosive compounds, which are 

carried away in the stack gases. Compounds of magnesium fall into this catagory.
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Three mechanisms have been suggested as being influential in reducing soot 

emissions:151

- Ionization effects, which reduce coagulation of soot particles into large 

agglomerations. Na, K, Cs, Ba as elements are believed to act in this way.

- Promotion of oxidizing radicals such as OH". Ba, Ca, St compounds are believed to 

be OH" promoters.

- Oxidation catalysis: Mn, Fe, Co, Ni are recognised catalysts, along with many other 

metals.

Additives are also gradually being accepted as tools for enhancing precipitator 

performance. The characteristics of the fly ash greatly influence the efficiency with 

which an electrostatic precipitator (ESP) can collect fly ash. The most notable 

of these characteristics, is the electrical resistivity of the fly ash, which controls the 

rate at which the electrical charges placed on the fly ash particles by the ionising 

wires can be caught by the collecting plates of the precipitator. This is considered to 

be directly related to the neutralising effect of additives. Additives such as MgO or 

CaO help to neutralise the S 0 3 and Na20  levels in the flue gas which lowers the 

electrical resistivity and therefore reduces the efficiency of the collection process. 158

2.5.3 Magnesium Compounds and their Effect on the Ash Deposition Process 

Magnesium oxide (MgO) is a hygroscopic powder, usually supplied as a fuel additive 

with a size range such that 98% passes through a 325 mesh sieve (44 ^m ). MgO is 

produced by calcining either mineral magnesite (MgC03) or magnesium hydroxide 

(Mg(OH)2) which has been precipitated from magnesium chloride contained in brine or 

sea water. 137 The reactivity of magnesium oxide and hydroxide is a function o f the time- 

temperature history during calcination, thermal exposure in the boiler, the surface
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area, particle size and agglomeration state of the powder. 14,142 

Magnesium oxide and hydroxide have been successful in treating fireside problems, 

deposits and fouling problems, as well as high-temperature and low-temperature 

corrosion in all types of coal-fired boilers. 142,150,159,160

The form in which the magnesium based additives have been applied whether 

as a powder or a water/oil based solution, is very much dependent on the particular 

type of boiler, the feeding position, the mode of firing, the nature of the 

dominating problems and the relevant economics. 136,137 Table 2-15136 and Table 2-16161 

highlight some of the factors mentioned here, involved in utilising magnesium oxide, 

hydroxide or its compounds as additives for different coal fired boilers. A number of 

other additives have also been included in Table 2-15 for comparison.

When fine particulate magnesium oxide is injected separately from the coal, it yields 

a "base" which seems to be more available chemically than the far larger quantities 

(ten to thirty times as much) of alkaline materials in the coal ash. The naturally 

occurring alkaline earth material in the coal ash is present as a silicate which would 

render it "unreactive" .150

When introduced into the boiler atmosphere, magnesia can act as a "scavenger" 

by contacting and absorbing S03 in the combustion gases. The resultant reaction 

produces the high melting point compound, magnesium sulphate:142,146,150,151

MgO + SOs -  M gS04 (2-23)

Removal of sulphur trioxide in this way, reduces not only the amount of sulphur 

available for condensation on the surface of silicate ash particles in the flue gases 

but also restricts the amount of low melting point sodium and potassium sulphates,
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Table 2-15: Methods of feeding additives to P.F coal-fired boilers.136

Additive Type 
and Form

Feed Point Method Capital
Investment

Drv-Bottom Boilers - High Rank Coal

Copper oxychloride Coal mill 
powder

Magnesium oxide 
water slurry 
oil slurry

Sprayed on 
furnace wall 
furnace 
injection

Intermittent

Continuous

Continuous

Manganese organic Special burner Continuous 
oil solution

Limestone 
fine powder

Limestone
gravel

Furnace
injection

Continuous

Negligible

Minor

Modest

Modest

Significant

Drv-Bottom Boilers - Low Rank Coal

Coal mill Intemittent Significant

Magnesium oxide Ignitors 
oil slurry

Continuous

Copper oxychloride Coal bunkers Continuous 
diluted powder

Modest

Modest

Limestone
gravel

Boron minerals 
granular

Mill scale 
powder

Sodium compounds 
Various

Wet-Bottom Boilers

Coal crusher Continuous

Coal crusher 
Slag tap

Coal crusher 

Coal crusher

Continuous 
As needed

Continuous

Continuous

Significant

Significant
Modest

Significant

Significant
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Table 2-16: Characteristic comparison of various types of magnesium fuel additives.161

Comparing Key Characteristics of Various Types of Magnesium Fuel Additives

Characteristic 

Class example

Typical concentration 
active metal (%)

Purchase cost, ($/lbMg)

Freight/unit Mg cost 

Handling and feeding

Feed system investment

Effective particle size

Typical dosage for high- 
temperature corrosion 
and deposits 
(lbs Mg / ton coal)

Control of acid and 
plume

Shelf life

Soluble

Magnesium
sulphonate

8  to 1 0

Very high 
8 to 1 0

High

Meter into 
furnace

Low

<0.1/mi

NR1

Very good

Excellent

oil or water dispersions

MgO or Mg(OH) 2 suspended 
in light oil or water

19 to 42

Moderate to high 
0.47 to 4.17

Moderate 

Meter into furnace

Low

0.7 to 2.0 nm  

0.06 to 1 .2

Fair

Poor to excellent 
depending on manufacture

Powders

MgO,
M gC03,
Mg(OH)2

28 to 58

Low, 
0.18 to 
1.25

Low

Powder 
feeder 
to boiler

High

20 fim

0 . 6  to 
5.0

Some
help

Good,
protect
from
moisture

(1) Not recommended.
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which can form the initial sticky layer on heat receiving surfaces. 108,150,151,162 

However, it has been reported163 that the reactivity of MgO decreases above 

970°C, due to a sharp reduction in the "reactive" surface due to the formation of 

non-porous crystalloids. However, in another study138 it has been claimed that the 

scavenging effect of MgO is not as important as its coating of the otherwise receptive 

tube surfaces with a thin layer of inactive MgO thus preventing the adhesion of sticky 

ash particles.

Formation of low melting point alkaline iron trisulphates has been shown138,142 to 

be inhibited, due to the fact that magnesium oxide reacts faster than iron oxide in 

the coal ash to produce more stable complexes with alkaline sulphates such as 

Na2Mg4(S04)4 :

2Na3Fe(SOJ3 + 3MgO -> 3Na2S 0 4 + Fe20 3 + 3MgSOA (2-24)

In the absence of iron oxide, other researchers94,105 have suggested that MgO can form 

complex systems with potassium and sodium sulphates, e.g.:

K2S 0 4 + 2S 0 3 + IM gO  -> K2Mg2(S 0 ^ 3 (2-25)

In a similar study, 164 it was concluded that the magnesium oxide additive reduced 

corrosion rates by preventing the formation of a molten phase in the inner layer of 

deposits.

The main advantage of using magnesium oxide or hydroxide injection is probably 

the change in the character of deposits which form on superheater tubes. Without the 

additive, the deposits are very dark and extremely difficult to remove. With additive
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the deposits are soft, friable and lightly bonded to the tubes. They are reddish 

brown and can be easily brushed from the tubes. 165 Similar observations have been 

made on deposits collected on sampling probes142 showing the gas stream reaction 

between MgO and S0 3 to have been significant resulting in the formation of more 

friable deposits on the probe surface.

In a comprehensive laboratory based study, 166 the addition of 1 mass% of magnesia 

with particle sizes of 2, 10 and 50 n m reduced the strength of various types of coal 

ashes by half or more. Surface reactions between the ash particles was shown 

to have been modified as a result of diffusion of various species of the ash 

such as Si, P, Fe and Al, as vapours into the magnesia particle. An extension to this 

work167 showed that iron, one of the main components of the ash, was more 

evenly distributed through the "magnesia" particles than the other elements, 

demonstrating it’s high intra-particle mobility.

The role of magnesium based additives as ash and ash deposit fusion modifiers 

which would consequently bring about a change in the physical form of the deposit, 

rendering it more easily removed by normal sootblowing has been demonstrated 

in a number of studies. 168,169 It was found168 that a 10-20 mass% addition of 

magnesium hydroxide to a reconstituted powder sample of a slag fired at a furnace 

temperature of 1200°C raised the liquid phase formation temperature by about 200 °C, 

thus extending the vitrification range sufficiently to alter the deposit texture from a 

fused mass to a light, friable mass. Regular addition of 10-20 mass% Mg(OH) 2 

to the coal ash would be prohibitively expensive. However, other work151 has 

suggested that such large additions of Mg(OH) 2 may not be necessary to modify the 

nature of ash deposits.
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The proposed influence of additives on surface devitrification of silicate ash 

particles has been extensively reviewed. 163 The influence of the ratio of glassy 

to crystalline components of the ash on the rate of sintering has been defined by the 

relationship:

where;

Rd =  rate of deposit formation
xg , l-xg = the glassy and crystalline fractions of the ash 
a =  constant 
b =  rate index

It has been shown163 that the glassy fraction of typical bituminous coal ashes 

from pulverized coal fired boilers was between 71 and 8 8  mass%. The glass content 

has been estimated by difference:

where;

G =  the glassy material 
X =  crystalline species 
C =  carbon content of ash 
S =  sulphur content of ash

The rate of ash sintering could thus be significantly reduced when an additive 

captured on flame-borne ash acts as a nucleating agent, resulting in the transformation 

of glass to crystalline species on the surface layer of silicate ash particles, hence 

forming a surface material of relatively high viscosity. 163

b
(2-26)

G = 100 -  ( X  + C +  5 ) (2-27)
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Measurements of the rate of ash deposition are quite varied. Whereas in some studies 

it has been determined99 that magnesium and calcium additives had little effect on the 

deposition rate, in other studies160 the mass of deposit collected for most of the 

additive injection trials, including MgO, were higher than the mass o f deposit with 

no additive. However in the same study160 the intermittent injection o f high dosages 

of MgO (at 45 kg per tonne of coal, injected for a period of 30 seconds a t  six minute 

intervals) with a resultant average injection of 2.2 - 4.5 kg per tonne of a  high fouling 

coal, was shown to reduce the deposit rate by up to 40 mass%.

2.6 WEST BELFAST POWER STATION

2.6.1 Introduction

West Belfast power station is one of the four power stations operating in 

Northern Ireland, producing electricity for provincial consumption. This power 

station is the one which this study is primarily concerned with. The generating 

capacity of this station along with others are summarised in Table 2-17.170 

West Belfast power station was commissioned in the period between May 1955 

and October 1958 and is capable of generating up to 240 MW of electricity.

2.6.2 Operation of the Plant

Whilst many power stations operate under a unitized generating system with one 

boiler to one generator, West Belfast power station employs a range system in 

generating electricity from the steam produced by its thirteen boilers. This means that 

each generator is connected to a number of boilers and vice versa, using 

pressurised collection vessels known as receivers. This system provides scope 

for maintenance and power generation as it allows for operation o f all other units 

should any particular boiler or generator fail.
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The power station bums 600,000 tonnes of coal per annum at full load, producing 

70,000 tonnes of ash. The flue gases are released into three 73 meter high 

chimneys, with the power station generating electricity of 1 1 .8  kv from the fire 

generators. ,70'171

2.6.3 Boiler Operation

The boiler monitored in the course of this study was supplied by Babcock and Wilcox 

Ltd. Figure 2-16171 and Plate (2-1) show cross-sectional views of the boiler.

The boiler is capable of producing 99,660 kg of steam per hour at a pressure of 

6.55 MPa and a temperature of 496°C. The coal is fed into the boiler from a 

hopper onto two chain grates and is spontaneously ignited due to the temperature 

inside the boiler. The ash falls off the grate at the other side of the boiler and is 

collected in an ash hopper, where it is sluiced away by water to the ash handling plant. 

Combustion of coal is supported by passing air up through the coal bed on the 

grate (primary air) using a forced draught fan and is enhanced using secondary air 

which enters the firing area through ports situated in the front and back walls of the 

boiler just above the level of the grate.

The heat produced by combustion is transferred by radiation and convection in the 

firing chamber of the boiler to the wall tubes and screen tubes and by conduction 

to the water contained within the tubes. The pressurized water rises by natural 

convection to the steam/water drum where the steam is separated from the water. 

This saturated steam is then superheated in the superheater section of the boiler, 

using some of the remaining heat of the flue gases, before passing to the receiver. The 

heat contained in the flue gases is further utilized by passing the gases over the 

economiser tubes, containing the boiler feed water returning from the generator 

turbines as condensate.
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Figure 2-16: Arrangement of boiler no. 6 - sectional view.171
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Plate 2-1;
Pictorial cross-section view of the travelling chain-grate boiler No. 6 , 
monitored for the deposition and additive injection studies.
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The exit flue gases also heat up the inlet air (taken from the warm area at the top 

of the boiler) in the corrugated air heaters. This is illustrated in Figure 2-17.171 The flue 

gases are drawn through the ducting by induced draught fans which pass the 

gases out to the chimneys. The entrained grits present in the flue gases are 

removed by a series of grit arrestors taking the form of cyclones with incorporated 

trickle valves, and are positioned prior to the airheaters.

2.6.4 Additive Injection Equipment

The apparatus used to inject the powder was only temporary since the Lycal 93HS 

was being added as part of a test. The design of the apparatus was based on the 

Nyflow feeder system172, operating essentially with a wedge shaped hopper of 

approximately 25 kg capacity, a discharge screw and a variable speed drive. The 

powder was screw fed into a venturi system where it was drawn into the air stream 

and passed immediately through a venturi oriflce.This assembely is shown schematically 

in Figure 2-18. The air conveying the powder was supplied from the plant compressed 

air supply. The powder was injected with the secondary air through the many 

secondary air ports, ensuring good mixing, into the combustion chamber at both the 

front and rear walls, just above the level of the grate.

The design of the hopper was such that discharge should be by mass flow, where 

the material moved down the hopper as a solid mass with little relative movement 

between the particles; in preference to core flow, where the material slides over 

itself at a place remote from the hopper walls.The configuration of the two type of 

hoppers is schematically shown in Figure 2-19.172 The recommended hopper design 

values for Lycal 93HS are further outlined in Table 2-18.172 

It should be noted however that for the assembled test injection apparatus the discharge 

from the hopper was in fact by core flow.
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Figure 2-17: Diagram of draught system for boiler no. 6 . 171
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Figure 2-18: Schematic representation of Lycal 93HS injection apparatus. 171
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fig u re  2-19: Schematic representation of core and mass flow hoppers. 172

Table 2-18: Recommended hopper design values for Lycal 93HS. 172

TtggntnnwwriM awyte of of hopper outlet
..Measured angle of hopper wall to the Bulk density (instantaneous
wall fciaioiL. in hopper, conditions).
deg deg kg/m3 cm
2S 79 500 25
30 SI 500 25
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(3)

EXPERIMENTAL METHODOLOGY



3.1 INTRODUCTION

Short term injection trials investigating the role of Lycal 93HS in alleviating high 

and low temperature ash deposition problems on boiler surfaces had been carried out 

by investigators from the Magnesium Materials Division of Steetley Quarry Products 

Ltd. Trials had been carried out on a variety of combustion systems. These included 

a refuse incinerator at Wolverhampton, an oil-fired boiler at CEGB in Surrey and a 

coal fired chain-grate shell stoker operated by Rowntree Mackintosh in Halifax. All 

had exhibited marked reductions in fly ash deposition and slagging upon application 

of Lycal 93HS.

Following the success of this work, a long-term investigation extending over a period 

of two years was carried out on a larger boiler unit at West Belfast power station 

where the operators were experiencing slagging and fouling problems, particularly on 

screen and steam generating tubes. It is this part of the work with which the author was 

involved.

Batches of ash deposit samples were obtained at intervals by Steetley personnel from 

West Belfast Power Station. These were mainly from boiler No . 6  which had been set 

up to operate with Lycal 93HS injection through its secondary air ports. In addition 

one batch of deposits was collected from boiler No.5 operating similarly to No . 6  but 

without any additive injection. These samples were sent to Sheffield Hallam University 

for detailed examination by the author.

The deposits observed within boilers No.5 and No. 6  clearly showed that whereas the 

deposits formed under the influence of Lycal 93HS injection in boiler No .6  were 

generally soft, friable and easier to remove as much smaller accretions, the undoped 

deposits in boiler No.5 were mostly dense, hard, glassy accumulations of ash, 

producing larger pieces on removal.
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During the early stages of the research, as a result of the coal strike in 1984/5, West 

Belfast Power Station had become committed to using a variety of imported coals from 

as far afield as China and Australia, long after the strike was over.

The first batch of samples received in February 1986 had therefore resulted from a 

variety of coals of uncertain origin, from which little could be reliably deduced and 

hence were used only to establish different investigative techniques.

By the middle of 1986 a consistent supply of coal from open-cast coal fields in 

Ayrshire, Scotland had become a permanent feature of the operation at the power 

station.

Samples of deposits from various regions within the two boilers were investigated 

using:

•  visual and macroscopic examination.
•  optical and SEM-EDX microscopic examination.
•  X-ray fluorescence chemical analysis.
•  X-ray diffractometry.
•  cone fusion tests.
•  size fraction analysis.
•  surface dissolution of deposit samples and chemical analysis of the leachant.

During the course of the investigation it became apparent that an understanding of the 

mineral matter associated with the Ayrshire coal was required. Hence a series of 

experiments investigating this aspect was embarked on involving:

•  high and low temperature ashing of Ayrshire coal
•  particle size distribution of the coal
•  ash and moisture content determination of coal particle size fractions
•  separation of various components of the coal ash
•  determination of the effect of Lycal 93HS on softening/melting and crystallisation 

behaviour of separated components of the ash, using Hot-Stage Microscopy
•  X-ray fluorescence chemical analysis of ash admixtures
•  X-ray diffractometry of separated ash components
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3.2 RAW MATERIALS

3.2.1 Lvcal 93HS

Lycal 93HS is the additive which was employed in this study and is produced by the 

Magnesium Materials Division of Steetley Quarry Products Ltd. Lycal 93HS is a 

high quality, technical grade of magnesium hydroxide precipitated from sea water and 

takes the form of a finely divided, fully hydrated powder. The production process 

essentially consists of calcining dolomite to produce dolime and reacting this with 

sea water to precipitate magnesium hydroxide:

CaO.MgO+ Mg C l 2 /  MgSOA + 2 Hz O => 2Mg(OH)2 l+ C a S O jC a C l2 ( 3 -1 )

Dolime + Magnesium salts =» Magnesium hydroxide + Calcium salts
in sea water precipitate spent sea water

The chemical and physical properties of Lycal 93HS are presented in Table 3-1. 171 

The particle size distribution of Lycal 93HS, is depicted in Figure 3-1. 172 The fineness 

of the particles, all less than 50/*m, ensures that the powder is free flowing with a 

high specific surface area and large number of particles per unit mass.

On exposure to high temperatures, Lycal 93HS calcines to produce magnesium oxide 

particles with a large effective surface area, as illustrated in Figure 3-2 . 171 

The Lycal injected into the combustion zone of a boiler experiences high temperature, 

short retention time conditions which are analogous to a flash calcination process. It 

is to be expected that the resulting oxide is significantly more reactive than if it was 

pre-calcined prior to injection.
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Table 3-1: Chemical and physical properties of Lycal 93HS additive used in the 
operation of boiler No. 6 . 171

CHEMICAL ANALYSIS (%) TYPICAL RANGE

AS RECEIVED BASIS

MgO 66.7 6 6 . 0  - 6 8 .0

CaO 0 . 6 0.5 - 0.9

Si02 0 . 6 0.5 - 0.8

F62O3 0.9 0 . 8  - 1 .0

AI2O3 0.3 0.2 - 0.4

Sulphates as S 0 3 0.9 0 .7 -  1.1

Loss at 950 C 30.0 29.0 - 31.0

1 0 0 .0

sodium as Na20 0 .1 0.05 - 0.2

Chlorides as NaCl 0.4 0.2 - 0.7

Carbonates as C 0 2 1.4 1 .0  - 2 .0

PHYSICAL PROPERTIES

SIEVE ANALYSIS (GALLDE PORTTT METHOD) 
% GREATER THAN

Microns B.S.S

150 100 0.005 0 . 0  - 0 .0 2

75 200 0.40 0.2 - 0.7

53 300 0.65 0.4 - 0.9

PARTICLE SIZE DISTRIBUTION (%FINER)

Microns

53 99.3 99.1 -99 .6

2 0 97.0 95.0 - 99.0

6 85.0 80.0 - 90.0

4 6 8 . 0 60.0 - 80.0

2 35.0 25.0 - 45.0

1 2 0 . 0 10.0 - 30.0

PACKAGING DENSITY B.S.1460 (kg/m3) 570 550 - 590
N.B. Lycal 93HS is packed in 25 kg moisture proof, multi-ply paper sacks which can be safely stored.
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Figure 3-1; Lycal 93HS particle size distribution curve measured on a Sedigraph 5000D 
particle size analyser.172
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Figure 3-2: The surface area of magnesium oxide formed by the decomposition of 
magnesium hydroxide.171
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3.2.2 Ayrshire Coal

The coal delivered to West Belfast power station during all but the earliest period of 

this investigation, was a bituminous coal, originating from the open-cast coal fields of 

Ayrshire in Scotland. The coal specification as received and analysed at the power 

station and Sheffield Hallam University is shown in Table 3-2.

3.2.3 Boiler Ash Deposit Samples

A wide range of deposit samples were taken from various locations within boilers No . 6  

and No.5, which operated with and without on-line injection of Lycal 93HS 

respectively, over a period of two years. The sampling positions are denoted in the 

schematic diagram shown in Figure 3-3, for the boiler system under study. Table 3-3 

summarises the various positions sampled in each batch of deposits collected over the 

period of the investigation.

All the deposit sample batches, except the fifth which was collected by the author in 

person during a ten day trial period, were collected by Steetley representatives, while 

the boiler was "down" for inspection and/or maintenance.

Batch Number 1 - Samples of deposits taken from boiler No . 6  before the 

commencement of Lycal 93HS treatment, were received in February 1986. The origin 

of the coal from which these deposits had been derived was rather uncertain since 

at the time, the power station was burning a variety of Chinese, Australian as well as 

other coals. Four samples were received, taken from the rear wall, the furnace comer, 

the bottom screen tubes and the passage between the screen tubes and superheater tubes.

Batch Number 2 - Samples o f deposits were received from boiler No.6 , after three 

months of continuous operation with Lycal 93HS injection, in September 1986. Regular
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Table 3-2: Analysis of Ayrshire coal characteristics as received at West Belfast power 
station.

PROXIMATE ANALYSIS (%) ULTIMATE ANALYSIS (%) ADDITIONAL DATA

Fixed Carbon 47.46 Carbon 71.7 Swelling index No. 1-2
Total Moisture 12.14 Hydrogen 4.7 Volatile Matter 29.10
Nitrogen 1.7 Sulphur (ave.) 0.6 B.S.Sieve-size a ii  < r
Ash 11.30 Oxygen (diff.) 9.7 30% <1/8"
Net C.V (kj/kg) 24,900 Chlorine (max.) 0.37 N.C.B.Rank 702

Phosphorous (max.) 0.02

ASH COMPOSITION (%) ASH SOFTENING DATA (Oxidisinc) / ra

S i0 2 48.90 High Temperature Ash
AI203 29.65
T i0 2 1 .2 2 Initial deformation temperature 1432
Fe2 0 3 9.65 Hemisphere temperature 1450+
CaO 6 . 2 0 Flow temperature 1450+
MgO 1.62
K20 1.89 Low Temperature Ash
Na20 0.50
P20 5 0 . 2 0 Initial deformation temperature 1450+
S 0 3 n.d Hemisphere temperature 1450+

Flow temperature 1450+

SPECIFICATIONS FOR UNTREATED SMALLS

Datum Range

Moisture 1 1 % 9-13%
Ash 10.5% 9-12%
Volatile Matter 28.5% 25-32%
Fixed Carbon 48.5% 40-57%
Net C.V (lgVkg) 25,900 25,000-27,800
Sulphur not more than 1 .2 % with an average of <  1 %.
Chloridne not more than 0 .1 %.
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Figure 3-3: Schematic diagram of boiler no. 6  - section view denoting deposit locations. 
(See Table 3-3 for key to abbreviations).
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Table 3-3: Summary of deposits received / collected for examination with and 
without on-line injection of Lycal 93HS.

Batch
No.

Date
Received

Deposit Sampling 
Position

Boiler
No.

Period of Continuous 
Lycal 93HS Injection 

(hour)

1 2 0 -6 - 8 6 RW, Cor., Btm. Sc. T., 
Pass. Sc.T & Sup. T.

6 0

2 5-9-86 FA, FW, RW,Btm.Sc.T., 
Pass.Sc.T & Sup. T.

6 2 1 0 0

3 10-3-87 FWA, FWb, RWa, RWb, 
SWA, SWb, Btm. Sc. Tx, 
Btm. Sc. TB

6 2800

4 31-8-87 FWa, FWb, RWa, RWb, 
SWa, SWb, Btm. Sc.Ta, 
Btm. Sc.Tb, Ec.Ha, 
Ec.Hb, Btm. Clk.

6 4100

5 24-11-87 FAb, FWa, FWb, RAb, 
RWb, SWa, Btm. Sc. TA, 
Stm. Gen. TA, Sup. TB, 
Ec.Ha, Ec.Hb Ec.Ha, 
Ec.Hb, GAa, GAb

5

6 12

6 10-12-87 GAa,GAb
GAa,GAb / GAa,GAb

5
6 4 / -

Key to abbreviation:

FA: Front Arch, FW: Front Wall, RA: Rear Arch, RW: Rear Wall,

SW: Side Wall, Btm. Sc. T.: Bottom Screen Tubes, Stm. Gen. T.: Steam Generating 

Tubes, Pass. Sc. T. & Sup.T.: Passage between Screen Tubes and Superheater Tubes 

Sup. T.: Superheater Tubes, Ec. H.: Economiser Ash Hoppers, GA: Grit Arrestors, 

Btm. Clk.: Bottom Grate Clinker, A / B: Side A or B
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supplies of coal from the Ayrshire coal-field had been restored since March 1986. Five 

deposit samples were received, taken from the front arch near the secondary air ports, 

the front wall tubes above the secondary air ports, the rear wall arch near the 

secondary air ports, the bottom screen tubes, and finally the passage between the 

screen tubes and the superheater section.

Batch Number 3 - Samples of deposits were received from boiler No . 6  after nearly 

four months of continuous operation with Lycal 93HS injection, in March 1987. As a 

result of earlier observations made by Steetley, it had become apparent that due to the 

uneven injection of Lycal 93HS into the furnace region in boiler N o.6 , deposits 

formed on the left hand side of the boiler, referred to as side A, were lighter and 

more friable than deposits formed on the right hand side of the boiler, referred to as 

side B, which also exhibited some bridging. Hence the samples were taken from both 

sides, of the front wall tubes above the secondary air-ports, the rear wall tubes 

above the secondary air-ports, the side walls and the screen tubes.

Batch Number 4 - Samples of deposits were received from boiler No . 6  after almost 

six months of continuous operation with Lycal 93HS injection, in September 1987. 

The deposit samples were taken from the front wall above the secondary air-ports, the 

rear wall above the secondary air-ports, the side walls, the screen tubes, the 

economiser ash hoppers, the soot hopper and a sample of the bottom grate clinker was 

also received.

Batch Number 5 - Samples of deposits were collected.by the author from boiler No.5 

after one month of continuous operation in November 1987. These deposit samples 

were collected principally for comparative purposes, since boiler No.5 had never been
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operated under the influence of any additive injection. The deposit samples from 

boiler No.5 were obtained from the rear arch, the front arch, the front wall above the 

secondary air-ports, the rear wall above the secondary air-ports, the steam 

generating tubes, the screen tubes, the superheater tubes, the economiser ash hopper 

and grit arrestors.

At this time also, short term sampling of fly ash deposition with and without 

Lycal 93HS injection was carried out by the author on boiler No.6 , using the deposition 

probe described in Section 3.3.7.

Batch Number 6 - This batch consisted only of particulate samples taken from the grit 

arrestors at the back-end of the boiler No.6  at periods when Lycal had been both 

on-line and off-line. Similar samples were also taken from boiler No.5 for the purpose 

of comparison.

3.3 INVESTIGATION OF BOILER DEPOSITS

3.3.1 Preliminary Examination of As Received Samples

3.3.1 (a) Chemical Analysis

X-ray fluorescence analysis was used to determine the elemental composition of 

deposit samples. The deposit specimens had to be in the form of a fine powder 

(-72 mesh) before analysis could take place and hence a mechanically driven pestle and 

mortar assembly was used to grind the samples to size.

The analysis was carried out by Mr. J. Hippy of Steetley Refractories in Worksop.

3.3.1 (b) Visual Appearance and Texture of Deposits

All as received samples were first examined visually and general features such as 

colour, texture, friability, strength, layering effects as well as the size of the bulk 

samples were noted.
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More detailed morphological and micro-textural examination of deposit samples was 

carried out by the use of stereo, optical and scanning electron microscopy 

techniques. These techniques are described separately in the following sections.

3.3.1 (c) Stereo-Compound Microscopy (SCM)

SCM was chiefly used to examine and characterize various topographical and 

morphological constituents of deposit samples, by providing a realistic three- 

dimensional image of the specimen.

It was particularly useful for studying the variation in the colour and texture of the ash 

cenospheres which were found to make up the bulk of the friable samples within 

sample batches 2, 3 and 4.

Almost no preparation was required nor desired for the preliminary examination of 

the deposit specimen. For the examination of the fly ash particles from the grit 

arrestors and the economiser ash hoppers in sample batches 4, 5 and 6 , it was 

necessary to spread the particles out uniformly over a smooth surface using a salt 

shaker. The particles spread out in this way could easily be manipulated with a probe 

so that the surface of each particle could be looked at in its entirety. A limitation 

in the SCM however, was found to be its power of magnification, attaining a 

maximum of x40, which was mostly used in this investigation, as well as the limited 

depth of focus at this magnification.

3.3.2 Micro-Examination of As Received Samples

3.3.2 (a) Sample Preparation For Petrological Examination

Hard deposit samples approximately 10 mm to 15 mm across were cut from the bulk 

samples, using a diamond wheel.

Alcohol was used as the lubricant in order to avoid any possible dissolution of
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soluble phases which might be present in the deposit. Those samples which were softer, 

were broken down to approximately the same size.

The samples were oven dried at 100°C for a minimum of one hour. Each sample 

was immersed in a mixture of a cold setting resin and Metset hardener and 

was then impregnated in a vacuum dessicator connected to a single stage rotary pump. 

The vacuum was applied for a minimum of 30 minutes. After setting, the 

mounted specimen was removed and allowed to cure for 24 hours.

Having removed the mounted samples from their moulds, the diamond wheel was 

further used to slice away a layer of a few millimeters thick, to produce a smooth 

exposed deposit surface. The mounted samples were then prepared for micro- 

examination by grinding on 240, 400 and 600 grit silicon carbide papers, using 

paraffin as the lubricant and cooling agent. The samples were then polished using 

25/zm, 14/xm, 6 /xm and l/im  diamond paste on the polishing papers. The polishing 

time with each diamond paste was kept to the minimum necessary to remove all 

scratches from the previous stage, to minimise damage to the deposit specimen. Each 

sample was ultrasonically cleaned in alcohol after polishing on each diamond paste in 

order to remove any loose particles of the deposit as well as any residual abrasive 

paste trapped in the pores. Care was taken to thoroughly wash the samples with 

alcohol and dry them with the aid of a warm air-blower, between each polishing 

operation.

All samples were stored in a desiccator containing silica gel, so that their surfaces 

would not be contaminated by any extraneous and injurious matter in the air, such as 

moisture, dust, etc.

The prepared samples were examined using Ultraphot and Vanox optical microscopes.

-PAGE 102-



3.3.2 (b) Optical Microscopy

An Ultraphot compound photomicroscope and an Olympus Vanox photomicroscope, 

using reflected light, 35mm PANF film and operating in an automatic exposure mode 

were used to examine and photograph deposit specimens in an unpolished and polished 

state. The Ultraphot photomicroscope was further used to obtain colour photographs 

of the morphology of selected deposit samples under cross-polarised light conditions, 

using a blue filter and 50 AS A high-sensitivity film. Magnifications ofxlO  tox200 

were typically employed.

3.3.2 (c) Scanning Electron Microscopy - EDX Elemental Analysis

Samples of deposits and grit were examined using a Phillips (PSEM) 500 scanning 

electron microscope, operating at an accelerating voltage of 25 kv, and a JEOL 840 

scanning electron microscope operating at an accelerating voltage of 2 0  kv and beam 

current of approximately 5 x 10'8A. The JEOL 840 microscope, being equipped with 

back-scattered electron probes in addition to the secondary electron probes, was 

primarily used to obtain micrographs of those features within the samples with limited 

contrast, using the variation in the atomic number of the various elements present in the 

microstructural phases.

Representative as received and polished deposit samples were attached to aluminium 

stubs by means of colloidal silver and were left in air for a few minutes to dry. For 

examination of the particulate matter, from, for example the grit arrestors, economiser 

ash hoppers and superheater section, double-sided adhesive tape was used to mount 

them instead of the colloidal silver. The particles were randomly scattered onto the 

tape. All specimens were coated with a layer of carbon a few microns thick, to render 

the surface electrically conducting, by placing them within the vacuum chamber o f a 

carbon-coating machine.
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The mounted and coated specimens were then examined using the scanning electron 

microscopes identified above. Photo-micrographs were taken as required.

The EDX ("Energy dispersive analysis of X-rays") detector was used to analyse for 

chemical elements in the specimen down to atomic number 11 i.e sodium. This was 

carried out by intensity measurements of the characteristic X-rays generated by each 

individual element present, as a result of bombardment of the specimen by a finely 

focused electron beam. This was set to produce a 50 nm spot on the sample. The 

spectral X-ray peaks thus formed were usually quite easily identifiable. However, when 

features of interest found within cavities or pores were to be analysed, more time and 

better manipulation of spot size and location was essential in order to obtain sufficient 

X-ray counts to give a recognisable peak. The elemental composition of the wide 

ranging phases observed were further characterised.

A hard copy of the elemental peak distributions was obtained by transferring the data 

onto a printer. These could thus be reproduced accompanying the photomicrograph 

of the various features of the specimen.

Both of the EDX micro-analyser units utilised by the PSEM 500 and JEOL 840A 

systems were manufactured by the Link analytical suppliers, with the former 

microscope being fitted with the 860 series unit and the latter with an AN 10,000 series 

unit.

3.3.3 Analysis of X-Rav Diffraction Spectra from Deposits and Coal Ash

A Phillips Norelco X-ray diffractometer was used to analyse and identify the 

crystalline minerals in the deposit samples. In addition, high and low temperature ash 

derived from a mixed size representative sample of Ayrshire coal,as well as the entire 

range of separated high temperature ash components as explained in Section 3.4.2 (b), 

were also analysed.
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3.3.3 (a) Procedure

A representative specimen taken from a deposit sample was firstly ground, using a 

pestle and mortar, to a fine powder passing through a 300-mesh screen.

The powdered sample specimen was then gently compacted into the sample holder and 

the smooth surface of the powder was levelled. The sample in the holder was then 

fitted into the diffractometer. The specimen holder was rotated during the exposure in 

order to produce uniform diffraction lines by increasing the number of crystallographic 

planes in diffracting positions.

The X-ray detector connected to a counting-rate meter was set at an angle of 15° 20 

at the commencement of each separate analysis. The output from the counting rate 

meter was fed into a fast-acting automatic recorder. The detector was driven at a 

constant angular velocity through increasing values of 20 until the whole angular range 

which was considered to be of significance at 15-70° 20 had been scanned. At the 

same time, the paper chart on the recorder moved at a constant speed, so that distances 

along the length of the chart were proportional to 20. The result was a chart which 

gave a record of radiation counts per second (proportional to diffracted intensity) on 

the vertical axis against diffraction angle 20 on the horizontal axis.

The diffractometer was used with monochromatic X-ray radiation, with cobalt or 

copper as the metal target. Diffraction occurred whenever the Bragg law 173 was 

satisfied:

n k  -  2  . d . S i n Q  ( 3 -2 )

where;

n = the order of reflection (equal to unity for diffraction)
X = the wavelength of the radiation (i.e. Co: 1.790 A or Cu: 1.542 A) 
d = inter-planar distance (A)
0 = angle of incidence of X-ray beam
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With n and A, depending on tne metal target (i.e. cooait or copper;, oeing constant ror 

all the runs and values of 9 easily read from the chart recordings, equation (3-1) was 

used to evaluate the corresponding d-spacing values for the recorded diffraction peaks. 

The relative intensities of various peaks was evaluated by measuring their proportional 

heights. These were compared with the relative diffraction peak intensities of a range 

of crystalline mineral substances which were suspected of being present, as a result of 

previous XRF and SEM-EDAX analysis of deposit samples which had given specific 

indications of elements and therefore the groups of compounds possibly present. 

Comparison was facilitated by reference to the standard ASTM card index system, 

classifying an extensive range of crystalline substances on the basis of their relative 

diffraction peak intensities and corresponding d-spacing values.

In order to make a positive identification of any crystalline phase present, at least 

three strongest peaks, as suggested in literature174, had to be in close agreement with 

their standard values on the ASTM cards. However, in the case of some minerals 

with very weak second and third peaks, the strongest peak was considered for possible 

identification.

3.3.4 Determination of Softening and Melting Behaviour of Coal Ash Deposits 

Using the Cone Fusion Test

3.3.4 (a) Introduction

The cone fusion test, as described in B.S.1016175, is probably the most common method 

of determining coal ash and coke ash fusibility under oxidising or reducing conditions. 

The test as performed in this study, is an empirical test to simulate the behaviour of 

coal ash and its admixtures as well as doped and undoped deposit powder 

specimens, when heated in a oxidising atmosphere. Whereas oxidising conditions are
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generally considered as characteristic of the furnace area, particularly with respect to 

the formation of deposits on heating surfaces, reducing conditions are regarded as 

characteristic of the fuel bed and the area just above it.

The test consisted of observing the transformation in shape of triangular pyramidal 

cones of crushed deposit powder specimens in a furnace in which the temperature was 

continuously increasing. In addition to the three characteristic ash fusion temperatures 

as defined by B.S 1016175, a further mid-point in the softening stages, namely the (ST), 

was also considered as being relevant in the thermal behaviour of the ash. These 

stages are as follows:

•  Initial deformation temperature (IDT) - The temperature at which the first sign of 

rounding of the tip of the specimen occurs.

•  Softening temperature (ST) - The temperature at which the height of the specimen 

is equal to the length of the base.

•  Hemisphere temperature (HT) - The temperature at which the height of the specimen 

is equal to half the base, its shape being approximately hemispherical.

•  Flow temperature (FT) - The temperature at which the height of the specimen is 

equal to one-third of that at the softening or hemisphere temperatures.

These stages have beeen illustrated in Figure 3-4.

3.3.4 (b) The Preparation of Cones for Fusibility Measurements 

Small amounts of the bulk deposit samples were crushed in a mechanically driven 

pestle and mortar until a fine powder, passing through a 240 mesh (63/xm) B.S sieve 

was obtained. After weighing out approximately 2.0 grams of powdered specimen, 8% 

by mass of ammonium chloride was added to the powder as a binder. The mixture 

was mixed by hand in a small silica dish, using a spatula. Alcohol was added to
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produce a stiff paste. A three piece brass mould, as shown in Plate 3-1 and Plate 3-2 

was employed to produce a trilateral pyramidal cone. This particular mould produced 

cones which at 26 mm height and 9 mm length of the side of the base, were 

considerably larger than standard cones, as described in B.S.1016175. The larger cone 

size meant a larger surface area of the cone was heated, thus making the observation 

of the cone fusion easier. Furthermore, a larger droplet of molten deposit was thus 

obtained at the end of the test making its subsequent micro-examination easier.

The mould was lined with "Cling film" before the pasty mixture was pressed into the 

cavity, to facilitate the removal of the cone. After careful removal from the mould, 

each cone was mounted on a base made from C60 alumina hydraulic cement, using a 

little C60 powder and water paste as the "glue". The mounted specimen was then dried 

in an oven for at least 1.0 hour at 100°C.

In order to investigate the effect of further additions of Lycal 93HS on the fusion 

characteristics of the already doped deposit samples, cones were made from powdered 

deposit to which up to 8 mass% of Lycal 93HS had been added.

In addition to these "reconstituted" deposit cones, pyramidal shaped test pieces of 

similar size were "fashioned" from the bulk deposit samples for fusibility tests.

3.3.4 (c) Furnace Assembly Used For Fusibility Measurements

The furnace assembly is shown in Figure 3-5. The furnace principally consisted of a 

non-porous, pure, recrystallised alumina tube (50 mm diameter) which was heated 

by silicon-carbide electrical resistance elements surrounding the middle section of the 

tube and covered by the furnace outer casing. The front end of the tube was closed by 

a quartz window and the back end was closed by a metallic disc containing a hole, 

through which the thermocouple sheath was pushed into position at the furnace hot
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Plate 3-1:
The brass mould used to produce test cones.

Plate 3-2:
The assembled form of the brass mould.
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zone. The end fitments were water-cooled and also carried the gas inlet and outlet tubes 

for introduction of various gases, if so required. The gaseous environment for the 

whole series of tests carried out was static air. The temperature was measured using a 

platinum / platinum-13% rhodium thermocouple.

A series of standard pyrometric "Seger" cones, covering a range of temperatures from 

1000 - 1400°C, representative of the critical softening and melting temperature range 

of the deposit cones, were used to calibrate the furnace. The accuracy of the furnace 

tube thermocouple was found to be between + 8 °C and -8 °C.

3.3.4 (d) Procedure

The test-piece mounted on its aluminous base was pushed to the centre of the cold 

furnace tube so that it was close to the hot junction of the Pt/Pt-13 % Rh thermocouple. 

The other end of the thermocouple was connected to a digital temperature recorder, 

with the cold junction temperature set at room temperature.

Care was taken to try and ensure that the vertical face of the cone was perpendicular 

to the longitudinal axis of the tube, but this was difficult as visibility was poor.

The furnace was then switched on. The heating rate of the furnace was controlled via 

a multi - channel programmable controller, type 211 manufactured by Eurotherm 

Instrumentation Ltd. Co. Figure 3-6 illustrates the heating regime which was adopted. 

This allowed the cone to be heated without cracking or disintegrating during the earlier 

stages of heating, as had previously been experienced. A steady temperature rise of 

approximately 5°C per minute from 1000°C to the maximum temperature at 1450°C, 

as recommended by B.S 1016175 was also achieved.

A cathetometer, supplied by Foster Instruments Co. Ltd. was used to observe the 

specimens within the glowing furnace hot-zone during heating at temperatures above
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Figure 3-6: Heating regime selected for the softening assessment of deposit and 
coal ash cones samples in a horizontal tube furnace.
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800°C. The horizontal line of a "cross-wire” on the lens of the cathetometer was 

adjusted to coincide with the top of the specimen, thereby facilitating the observation 

of its reduction in height as a measure of its progressive softening. The "cross-wire” 

was also helpful in recognising the onset of the various stages in the fusion process, 

as described in Section 3.3.4 (a) and Figure 3.4.

The temperature of the furnace was raised until cone fluidity had occurred,or the 

maximum furnace temperature, of 1450°C, was attained. The furnace was then 

switched off and cooled to room temperature which took about 6  hours. The sample 

could then be removed for examination. Optical microscopic and scanning electron 

microscopic examination was carried out on selected cones, after the test.

3.3.5 Heat Treatment of Selected Deposit Specimen

3.3.5 (a) Introduction

Two types of deposits from the third batch of samples which upon visual and stereo- 

microscopic examination been found to have apparently distinct textural differences 

were heat treated for various times and temperatures in an air atmosphere. Chemical 

analysis of these two types of deposits revealed an enrichment of iron oxide in one type 

as compared with the other.

This particular investigation arose from the observation bySteetley personnel that 

there had been a variation in deposition build up in boiler No. 6  due to the uneven 

distribution of Lycal 93HS injection into the furnace region.

The heat treatment was envisaged to demonstrate the sticking ability o f the two friable 

deposit types onto the surface of the silicon-carbide tray containing the two deposit 

types.
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3.3.5 (b) High Temperature Muffle Furnace

A muffle furnace supplied by Carbolite Co. equipped with built in programmable 

temperature controller, capable of achieving a maximum temperature of 1400°C was 

used. The furnace was heated by silicon-carbide electrical resistance heating elements 

situated vertically along the side walls of the inner jacket of the silicon-carbide muffle. 

The temperature inside the furnace chamber was measured using a Pt/Pt-13%Rh 

thermocouple installed at the rear wall inside the furnace.

3.3.5 (c) Procedure

A small specimen approximately 10 mm x 7 mm, from the two types of deposits in 

Batch number 3, was introduced into the muffle furnace, using a silicon-carbide tray 

as a sample holder. The temperature of the relatively small deposit specimen was 

accurately monitored using a Pt/Pt-13% Rh thermocouple, with its hot junction placed 

adjacent to the specimen tray. The specimens were "soaked" for time periods of 10, 

30 and 60 minutes at temperatures of 1200°C, 1275°C and 1350°C.

At the end of each experiment the specimen was air-cooled outside the furnace, and the 

degree of softening or melting and the extent of the "wetting" of the silicon-carbide 

tray by the specimen was assessed.

3.3.6 Determination of the Magnesia Distribution Within Ash Deposit Particles

3.3.6 (a) Introduction

In order to assess the role of Lycal 93HS as a "surface-modifier" of boiler fly ash 

particles, a technique was developed to selectively dissolve the outer layer of ash 

particles from a range of boiler ash deposits, using hydrofluoric acid (HF) as the 

leaching agent. The samples for this work were selected from all of the batches 

received from West Belfast power station during the course of this research programme.
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Initially, in order to optimise the experimental conditions, HF - solutions of varying 

concentrations, ranging from 1 .0  to 0 .0 1  molar were used to leach the ash deposit 

specimens.

The temperature of the solution was also varied between room temperature at 20°C to 

85°C. The time scale for the tests was also varied up to a maximum of 8 hours. 

These initial experiments established that an HF-solution concentration of 0.05 molar 

at a temperature of 22 °C produced a moderate rate of dissolution of the surface layer 

of the deposit specimens, after five to six hours.

3.3.6 (b) Procedure

The apparatus for the leaching experiments is illustrated schematically in Figure 3-7.

A water bath was heated to a constant temperature of 22°C by a controllable

thermostatic heater. The bath was continuously stirred to keep the temperature uniform. 

A 0.05 molar HF - solution was prepared by diluting 22.0 ml of AnalaR grade

40 mass% HF with distilled water in a 10 dm3 plastic beaker.

150 ml of the prepared 0.05 molar HF-solution was transferred to a 500 ml cylindrical 

plastic beaker, which was fitted with a perspex lid through which a plastic stirrer 

passed. The beaker with the stirrer in position was lowered into the bath and positioned 

as shown in Figure 3-7. Once the temperature of the solution had reached the 

predetermined temperature of 22°C, 1.0 gram of ash deposit bulk sample in the form 

of a lump was placed in the solution and the stirrer was switched on.

A 10 ml sample of the leaching solution was removed after 1.0 minute and at further 

intervals of 5, 15, 30, 60, 120, 180, 240, and 300 minutes, using a plastic graduated 

pipette. After each 10 ml sample had been removed, an equal amount of fresh HF 

solution which had been brought to the bath temperature was added to the beaker.
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1 Water tank 7 Two-speed motor
2 Stand & clamp assembly 8 Plastic pipette
3 HF-solution 9 Plastic beaker & lid
4 Thermometer 10 Plastic stirrer
5 Thermostatic heater 5 stirrer 11 Deposit sample
6 Cork

do d o

Figure 3-7: A schematic diagram of the apparatus for the surface leaching o f  ash deposits.
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In order to neutralise the HF-solutions, at the end of each experiment the residual 

leach solution was mixed and washed thoroughly by a concentrated solution of BaCl2 

and tap water before being discarded.

The collected samples of leaching solutions were analyzed for silicon (Si), iron (Fe) 

and magnesium (Mg) by the Chemical Analysis Department within the Division of 

Materials and Process Engineering, using Flame Atomic Absorption Spectrometry.

3.3.7 Ash Deposition on a Probe in West Belfast No.6  Boiler

A limited number of trials were carried out by the author using an air-cooled ash 

fouling probe to collect ash deposits from within the No . 6  boiler at West Belfast. The 

main objective of this test program was to determine the effect of Lycal 93HS 

injection on the rate and texture of ash deposits formed on the probe. Tests were 

carried out for varying exposure times, ranging from 1 .0  hour to 1 2 .0  hours with and 

without continuous injection of Lycal 93HS.

The probe used in this study was a single tube probe manufactured from 25 mass% Cr/ 

20 mass% Ni stainless steel. The length of the probe was approximately 3.0 m, with 

an inner diameter of 20 mm and outer diameter of 25 mm. A sketch of the fouling 

probe is shown in Figure 3-8. The actual probe used is shown in Plate 3-3, inserted 

into the boiler through a viewing port on the side wall of the boiler, with its axes 

perpendicular to the direction of gas flow.

The probe contained a total of five thermocouples, embedded into its walls, three of 

which, all located on the upper side of the probe, were essentially used to measure the 

variation in the temperature of the boiler flue gases in contact with the probe. 

However, only one thermocouple position, namely position 3, was monitored during 

this work, for reasons that will be described later.
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Plate 3-3:
Illustration of ash fouling deposition probe assembly in 
operation through a viewing port.
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Ash deposits were collected from the surface at thermocouple position 3 as well as an 

area approximately 15 cm on each side of the thermocouple position.

The probe was positioned at the level of the screen tubes, since this was one region 

where the effective use of Lycal 93HS was of particular importance. It had been 

intended that the temperature of the probe would be maintained in the range of 

330-350°C in order to simulate the thermal conditions that existed at the surface of 

the screen tubes. However, due to difficulties in maintaining the air flow pressure at 

high enough levels along the probe, temperatures in the range of 350-390°C could only 

be achieved for thermocouple position 3, for the durations of the tests. The air pressure 

was maintained at around 11 x 104 Pa.

An ash deposit had been expected to form on the probe after a short time. However, 

after the initial two and four hour trials, the amount of ash deposited was very small 

and it became apparent that longer exposure periods would be required to obtain a 

significant sample. Unfortunately test runs for longer than twelve hours were not 

deemed feasible due to certain restrictions at the plant such as shortage of personnel 

to assist in monitoring the boiler conditions.

Various boiler conditions and operating parameters were observed and recorded during 

each test by experienced power plant operators. These test parameters are summarised 

in Table 3-4 and recorded using the form shown in Table 3-5.

During periods while the probe was in use, soot-blowing was terminated within the 

lower and upper furnace regions, to avoid any interference with ash flow and Lycal 

injection.

The ash deposits collected at the end of each trial were weighed and XRF-chemical 

analysis of deposits collected after 12 hour tests, with and without Lycal 93HS injection 

was carried out.
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Table 3-4: Summary of boiler operating parameters monitored during the scheduled 
deposition probe test with and without on-line injection of Lycal 93HS.

BOILER OPERATING PARAMETERS BOILER SIDE FREQUENCY

1. STEAM

How Rate (kg/hr) — hourly

Final Temperature (°C) — n

Secondary Superheater Outlet 
Temperature (°C) A,B n

Primary Superheater Outlet 
Temperature (°C) A,B ti

Superheater Steam Pressure (Pa) — «

2. GASES

Boiler Outlet Temperature (°C) A,B n

(Before Economiser)

Economiser Outlet Temperature (°C) A,B n

Air Heater Outlet Temperature (°C) A,B it

3. AIR

Air Heater Outlet Temperature (°C) A,B n

Secondary Air Temperature (°C) A,B tt

Maximum Air How (%) — it

4. FEED WATER

Economiser Inlet Temperature (°C) — i«

Economiser Outlet Temperature (°C) A,B n

5. OXYGEN (%) — ft

6 . SMOKE DENSITY — ti
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3.4 INVESTIGATION OF AYRSHIRE COAL AND ITS ASSOCIATED

MINERAL MATTER/ASH

3.4.1 Analysis of Ayrshire Coal

3.4.1 (a) Introduction

As a result of the investigation of the earlier samples of boiler deposits, particularly 

those found in the third batch, it had become evident that an understanding of the coal 

and the mineral matter in its ash would be essential if  the mechanism of deposit 

formation was to be understood.

3.4.1 (b) Size Analysis of Coal

A sample of air-dried coal weighing 4.783 kg, collected by one of the boiler 

operators at West Belfast power station, from the hopper feeding the chain grate in 

boiler No.6 , was provided for analysis.

The particle size distribution of the coal sample was analysed according to B.S 410176, 

using sieve mesh sizes of 1/4", 3/16",8, 14, 18, 25, 44, 52, 100, 200, 300 and 350. 

The sieving time was kept to a minimum in order to avoid undue fracturing and 

breakage of the larger coal particles.

3.4.1 (c) Determination of Moisture Content

The "inherent" moisture of representative samples of each size fraction of the 

original air-dried batch of Ayrshire coal was determined. Samples were obtained by 

"cone and quartering" each size fraction, and then crushed using a mechanically driven 

pestle and mortar, to pass through a 72 mesh (210 /xm) sieve. The inherent moisture 

content was determined by the "vacuum" method, using the apparatus illustrated in 

Figure 3-9 and according to the procedure specified in B.S 1016.177
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3.4.1 (d) Determination of the Ash Content

The ash content of representative samples of each size fraction of the original coal 

batch was determined using the high temperature ashing (HTA) technique described 

in B.S 1016.177

With each individual size fraction further crushed down to -72 mesh, an average of 

twenty separate ashings in batches of five 1 .0  gram samples were carried out in 

order, not only to examine the reproducibility of the results, but also to accumulate 

large enough quantities of ash from each size fraction to carry out further chemical 

analysis and fusibility tests.

The principle of the ashing operation consisted of heating a 1.0 gram sample of coal 

in air to 500°C in 30 minutes and maintaining it at this temperature for another 30 

minutes, in a confined atmosphere muffle furnace. The sample was further heated at 

815°C in air, using another larger atmosphere muffle furnace, until the sample mass 

remained constant. The percentage of ash was calculated from the mass of residue 

remaining after incineration.

In addition, "low-temperature ash" (LTA) from a 100 gram sample of the Ayrshire coal 

was provided by British Coal Research Establishment (BCRE), using low-temperature 

plasma ashing. This technique involves oxidation of the carbonaceous matrix by 

electronically excited oxygen at comparatively low temperatures (<  150°C), leaving the 

minerals essentially unchanged. 178

3.4.2 The Constitution and Properties of the Mineral Matter/ Ash

3.4.2 (a) Evaluation of Ash Mineral Components

On attempting to ash coarse particles of the coal, it was noted that the mineral matter 

constituents of the coal ash could be distinguished and separated on the basis of
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texture and colour. The individual coal particulates had to be large enough so that when 

combusted under high temperature ashing conditions, the individual particles of ash 

could be easily distinguished. It was found that only coal particles of +6350/xm and 

+4760 fim  (i.e + 1 /4” and 3/16" mesh) size would yield sufficiently large ash residues 

to facilitate a rigorous separation on the basis of the stated criteria.

In total, over 910 nodules of coal, weighing over 522 grams were ashed under high 

temperature conditions, as described in Section 3.4.1 (d), except that the coal particles 

were not crushed.

Individual components of the ash thus obtained were subsequently identified and 

separated on the basis of the previously stated criteria, using visual and stereo- 

microscopic examination. As the work progressed, the frequency of occurrence as well 

as the mass of the individual coal ash components was documented. Thus an assessment 

of the relative abundance of the various coal ash species, which could be related to 

the mineral matter in the original coal, was obtained.

Furthermore XRF-chemical analysis of the more dominant ash species (based on 

either their frequency of occurrence or their mass percentage) was carried out.

3.4.2 (b) Chemical and M ineral Constitution of Coal Ash 

X-Ray Fluorescence (XRF) Chemical Analysis

XRF analysis was carried out by Steetley Refractories Ltd. of Worksop, to determine 

the elemental composition of bulk boiler deposit samples including the fly ash samples 

taken from the deposition probe, the high and low temperature ashes, the ash from 

various coal size fractions and a selected range of separated coal ash species.

The analyses are reported as the mass percentages of the most stable oxides of the 

elements determined. In this study only the eight major oxides mainly present in the
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coal ash have been reported, balanced to 100%. However, occasionally data has also 

been reported for sulphur content of samples as S 03.

X  - Ray Diffraction (XRD) Analysis

The principle operation and procedure for this technique has already been described 

in Section 3.3.3.

The technique which is sensitive to the presence of minerals in concentrations of 

greater than a few mass percentage, was used to determine the crystalline minerals and 

phases in low and high temperature ash sample specimens, as well as the separated 

high temperature ash components.

However, some of the ash components were not found in large enough quantities to 

fill the standard sample plate, and hence the technique had to be modified. A small 

specimen taken from the ash component was sprinkled onto the surface of a micro-thin 

circular glass plate, smeared with a small amount of petroleum jelly. The specimen was 

spread out to form a uniform layer covering the surface area of the glass plate and then 

the plate was mounted onto the sample holder, of the diffractometer, using the standard 

sample plate as the supporting base to rotate it into position inside the sample holder 

assembly.

3.4.2 (c) Determination of Softening and Melting Behaviour of Coal Ash 

Cone fu sion  testing o f  coal ash

A series of cone fusion tests were carried out to determine the softening and melting 

characteristics of high temperature ash samples, with and without additions of 

Lycal 93HS. These were carried out in three different "fashions":

•  Representative specimens of the bulk coal ash sample, with various additions of 

Lycal 93HS between 2.0 to 8.0 mass%
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•  Ash admixtures formed from the coarse (i.e. +6350 +2057 pm) and the smaller 

(i.e. +150 +53 /tm) coal size fractions, with additions of Lycal 93HS between 0.5 

to 3.0 mass%.

•  Representative specimens of selected components of separated ash, with an 

addition of 0.5 mass% of Lycal 93HS.

The furnace operation and cone sample preparation were identical to the procedure 

described in section 3.3.4(a)-(d).

Hot-Stage Microscopy o f  Coal Ash

A  hot-stage microscope was used to study the softening/melting behaviour of HTA , 

LTA and a selected number of components of the high temperature ash. In addition, the 

effect on the melting and crystallisation behaviour of the HTA, LTA and the ash 

components, of varying additions of Lycal 93HS between 1.0 to 10.0 mass % was 

investigated.

The hot-stage microscope used was manufactured by Alison Instruments, a division of 

Alison Engineering Ltd. A 30% Rh/Pt wire and a 6 % Rh/Pt wire, approximately 3 cm. 

in length each, comprise the arms of the thermocouple junction which when welded 

together at the tip; supports, heats and measures the temperature of the sample. The 

temperature was recorded on a digital temperature display. Reactions occuring at 

temperatures up to 1800°C could be observed. In operation, the thermocouple was 

connected to a power supply generating pulses at 300 Hz. For half a cycle, power is 

supplied to the thermocouple to raise the temperture of the sample, while the emf 

generated at the thermocouple tip is measured during the remaining half of each cycle. 

The thermocouple was mounted in a cell fitted with glass windows. The thermal 

behaviour of the ash samples was observed through adjustable binocular xlO
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eyepieces and two parfocal objectives of power x5 and xlO mounted in front of the 

cell, all assembled on a turret. At the rear, the lamp assembly containing a 20 watt 

quartz-iodine source fitted with an adjustable iris, was used to illuminate the sample 

within the cell.

The temperature of the sample could be raised or lowered in the range 20-1800°C 

within a few seconds. It was thus possible to melt the ash samples and, by rapidly 

lowering the temperature, quench to a glass. Subsequent reheating of the ash 

specimens allowed the crystallisation process to be observed.

Procedure

The apparatus was calibrated using a range of reagents which included Na2S0 4 

( melting point =  884°C), K2S0 4 ( melting point =  1069°C) and 2Ca0.Al20 3.Si02 

[Gehlenite- (melting point =  1582-1596°C)], covering the temperature range of interest 

in this study.

Ash samples were crushed to -240 mesh (-63pm) and when applicable 0.2 gram 

specimens were mixed with various quantities of Lycal 93HS in a silica dish, using a 

spatula. Microgram samples of ash to be studied were mounted at the tip of the 

V-shaped junction of the thermocouple. The thermocouple was then introduced into the 

cell and fastened to the microscope stage by means of clamping screws. A small amount 

of argon was passed continuously through the cell to reduce the amount of volatile 

material condensing on the cell windows. The flow rate was monitored using a small 

liquid bubbler.

With the thermocouple centered in the field of view of the objective lens and in focus, 

the sample was heated to about 900°C in a fraction of a second. Further heating was 

carried out more slowly at approximately a rate of between 25 °C to 50 °C per minute.
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Various stages of melting, from sintering to complete fluidity were directly observed 

through the binocular eyepieces. For each stage of melting the corresponding 

temperature was recorded by direct reading off the digital temperature display. 

Equilibrium was achieved at each stage by holding the sample at the specific 

temperature for at least 5 minutes. The temperature was taken up to a maximum of 

1600°C to ensure complete fluidity and homogeneity of the melt.

The nature and the extent of crystallisation was investigated for the whole range of 

HTA, LTA and selected components of ash samples with and without additions of 

Lycal 93HS.

The crystallisation range was determined by cooling the fluid ash to a pre-decided 

temperature at which samples were held for a minimum of 30 minutes in order to allow 

for maximum crystal growth to occur. This process was repeated for lower 

temperatures and the observations were recorded. The various melting stages as well 

as the crystallisation regimes were recorded photographically through the attachment 

of an automatically driven camera which was mounted on the turret extension of a 

single stage eyepiece.
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4.1 INTRODUCTION

The results of the detailed analyses carried out during the course of this investigation 

on coal, coal ash and coal ash deposits, with and without Lycal 93HS are described 

hereafter. The results are presented in two major parts:

In the first part, deposits from boilers No.6  and No.5 are considered for various 

characterisation studies. These include the structural, morphological and chemical 

composition of the deposit samples, the softening characteristics of deposits with and 

without additions of Lycal 93HS, determination of fly ash deposition and its 

composition as well as surface-leaching characterisation of deposit samples from 

boilers No .6  and No.5.

In the second part, characteristics of Ayrshire coal are investigated. These include the 

physical and chemical properties of the coal and its ash as well as the characterisation 

of various ash components in terms of its composition, mineralogy and its softening 

behaviour with and without additions of Lycal 93HS.

4.2 STRUCTURE. MORPHOLOGY AND CHEMICAL CONSTITUTION OF 

BOILER DEPOSITS

4.2.1 Boiler Observations

An overall view of the water wall tubes in the furnace area of boiler No . 6  can be seen 

in Plate 4-1. The photograph shows the extent of deposition on the front, rear and side 

wail tubes after a period of three months of continuous operation with Lycal 93HS. 

As can be seen, the boiler tubes are in a relatively clean condition.

The effectiveness of Lycal 93HS was demonstrated when the injection ports became 

partially blocked in one half of the boiler, namely B-side. The deposits received at the 

end of this period of injection in March 1987, constituted the third batch of deposits.

-PAGE 135-



CHAPTER

(4)

EXPERIMENTAL RESULTS



Plate 4-1:
A view of the A-side of boiler No.6 after 3 months of Lycal 93HS 
injection, showing reasonably clean surfaces of front (LHS), rear 
(RHS) and side wall tubes.
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Plates 4-2 and 4-3 show the extent of deposit formation on the front and rear walls 

respectively of the left hand side (A-side) of the boiler where Lycal 93HS delivery had 

been normal. With the exception of some patches of slag on the front wall and partially 

covered surface of the reclining rear wall tubes, the deposit build-up is very small. In 

comparison, on the right hand side of the boiler (B-side), where Lycal 93HS injection 

had been temporarily hindered, the extent of deposit build-up as shown in Plates 4-4 

and 4-5 is more pronounced.

It is reasonable to suggest that as a consequence of Lycal 93HS depletion, the deposits 

formed are more tenacious than those formed on the A-side of the boiler, and proved 

more difficult to remove by sootblowing.

4.2.2 Bulk Chemical Analysis of Deposit Samples From Boilers No.5 and No.6

The bulk analyses of samples of deposits received at various intervals before and after 

the injection of Lycal 93HS into boiler No .6  as well as those collected from boiler No.5 

under normal operational conditions, i.e. without Lycal 93HS injection, are presented 

in Tables 4-1 to 4-7. All the deposits were essentially made up of aluminosilicates 

with varying amounts of iron, calcium and magnesium compounds, and only small 

traces of sodium and potassium compounds present.

Some interesting aspects of the analyses are worthy of comment:

(a). For all the samples from boilers No.5 and No.6 , it is evident that whereas the

deposits taken from the lower furnace regions have an iron oxide content compatible

with that of the average coal ash i.e. 11 mass% (see Section 3.2.2, Table 3-2), the 

samples from the upper furnace regions have iron oxide contents up to and greater 

than three times that amount (14%-39%).
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Plate 4-2:
A view of the front wall tubes (LHS), from the A-side of boiler No.6 
after 3 months of Lycal 93HS injection, showing a restricted area of 
deposit formation.
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Plate 4-3:
A view of the rear wall tubes from the A-side of boiler No.6 after 
3 months of Lycal 93HS injection, showing a restricted region of 
deposit formation on the surface of the upper section tubes leading 
to the bottom screen tubes.

- PAGE 139 -



Plate 4-4:
A view of the rear wall tubes from the B-side of boiler No.6, where 
due to the blockage of Lycal 93HS injection ports,an extended region 
of relatively thick deposits are formed on the surface of the upper 
section tubes leading to the bottom screen tubes.
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Plate 4-5:
A view of the bottom screen tubes from the B-side of boiler No.6, 
with partial blockage of Lycal 93HS injection ports, showing deposit 
formation between the tube surfaces at the top of the photograph.
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(b). Where there is a layering effect within the deposits, as mainly was observed in 

boiler No.5 samples (see Section 4.2.3), in the lower furnace deposits the outer layer 

is enriched in iron compounds whereas in the upper furnace it is the inner layer which 

is enriched.

(c). For the post Lycal 93HS injection samples from boiler No . 6  (Tables 4-2 to 4-5), 

the higher iron oxide contents whether within the bulk or layering of a sample is 

invariably associated with higher magnesium oxide values.

(d). For the "grit arrestor" and "economiser ash hopper" particulate samples (Table 4-7) 

it can be seen that whereas a high concentration of iron oxide is consistently associated 

with increased amounts of magnesium oxide for samples from boiler No.6 , for the 

samples collected from boiler No.5 such a pattern does not emerge. The increase in 

the amount of iron oxide and magnesium oxide is particularly revealing for the fine 

(-45^m) particulates. The variation in the carbon content of the size fractioned grit 

arrestor and economiser ash hopper particulate samples with and without injection of 

Lycal 93HS is further shown in Table 4-8 and Figure 4-1. This is a measure of the 

ash’s ability to form spheres, as explained in Section 2.4.2.

4.2.3 Visual Examination of Boiler Deposits

The deposit samples from boilers No.5 and No.6 , without and with on-line injection 

of Lycal 93HS respectively, over the period of the injection trials, exhibited a wide 

range of textures, colours and thicknesses. The extent of this variation is illustrated in 

Plate 4-6, showing samples taken from various locations within boilers No.5 and No.6 .

4.2.3 (a) Pre Lycal 93HS Injection - Boiler No.6

A limited number of deposit samples were received for analysis before the 

commencement of the course of Lycal 93HS injection. These constituted the first
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Table 4-1: Bulk chemical analysis of the "first" batch of deposit samples received
before the commencement of Lycal 93HS additive treatment on boiler No.6.

SIDE
OF
BOILER

SAMPLE
ORIGIN

COMPUND MASS PERCENTAGE (%)

S i0 2 A 1 A T i02 F e A CaO MgO K ,0 P A s o 3

A CORNER 46.67 26.22 0.56 13.32 5.78 4.34 2.71 0.38 0.0

A REAR WALL 42.09 26.47 1.02 16.62 5.63 3.76 2.30 2.07 0.0

A Btm. Sc.T 22.52 14.05 0.65 47.18 5.73 3.54 2.49 1.69 2.1

A Ps.Sc.T&Sup.T 24.11 14.79 0.62 38.30 6.32 3.57 5.79 3.15 3.2

Note: Btm. Sc.T - Bottom Screen Tubes.
Ps.Sc.T & Sup.T - Passage Between Screen Tubes and Superheater Tubes.

Table 4-2: Bulk chemical analysis of the "second" batch of deposit samples received 
during the course of Lycal 93HS additive treatment on boiler No.6 .

SIDE
OF

SAMPLE COMPOUND MASS PERCENTAGE (%)

BOILER ORIGIN
S i0 2 A I A T i02 F e A CaO MgO K ,0 p2o s s o 3

- FRONT ARCH 47.51 25.35 0.95 16.23 3.91 3.14 2.43 0.46 0.01

- REAR ARCH 23.72 67.74 1.69 1.90 2.55 1.04 0.98 0.15 0.16

- FRONT WALL 52.04 29.68 1.11 9.98 2.21 1.77 3.07 0.11 0.01

- Btm. Sc.T 47.83 25.33 0.90 16.24 4.79 2.15 2.37 0.37 0.01

- Ps.Sc.T&Sup.T 47.40 25.29 0.95 16.19 3.90 3.13 2.42 0.45 0.01
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Table 4-3: Bulk chemical analysis of the "third" batch of deposit samples received during
the course of Lycal 93HS additive treatment on boiler No.6.

SIDE OF SAMPLE COMPOUND MASS PERCENTAGE (%)
BOlLbK/
TX.TYFE ORIGIN

Si02 AI2O3 TlOj F e A CaO MgO KjO P A s o 3

A / F I FRONT WALL 46.24 31.55 0.93 12.43 5.30 1.66 1.64 0.22 0.01

A / F2 FRONT WALL 33.14 20.17 0.66 32.28 8.87 2.73 1.20 0.56 0.35

B / F l FRONT WALL 46.27 31.85 1.03 12.24 5.03 1.60 1.64 0.31 0.01

B / F 2 FRONT WALL 27.67 17.80 0.62 40.49 9.05 2.56 0.84 0.56 0.35

A / F I REAR WALL 47.66 33.98 1.11 9.83 5.75 1.66 1.72 0.18 n.d

A / F 2 REAR WALL 34.98 22.65 0.86 29.27 7.47 2.31 1.58 0.85 n.d

B / F l REAR WALL 44.98 31.55 1.03 12.92 5.93 1.66 1.53 0.36 n.d

B / F2 REAR WALL 39.26 25.04 0.83 24.93 5.76 1.87 1.73 0.58 n.d

A / F I SIDEWALL 49.16 29.33 1.23 11.30 5.42 1.45 1.83 0.26 n.d

B / F l SIDE WALL 48.92 28.77 1.21 11.70 5.66 1.51 1.97 0.24 n.d

B / F l Btm. Sc. T. 47.59 29.25 1.31 12.12 6.16 1.62 1.71 0.32 n.d

B / F2 Btm. Sc. T. 40.39 22.25 1.09 24.65 6.72 2.04 1.86 0.96 n.d

Note: FI and F2 are the two "Friable" types of deposits which were dominant in this 
batch, with the latter type particularly enriched in Fe2 0 3.
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Table 4-4: Bulk chemical analysis of the "fourth" batch of deposit samples received
during the course of Lycal 93HS additive treatment on boiler No.6.

SIDE OF 
BOILER

SAMPLE
ORIGIN

COMPOUND MASS PERCENTAGE (%)

Si02 a i a Ti02 FeA CaO MgO KjO F A so3

B FRONT WALL 46.81 31.11 0.76 12.78 4.63 1.78 1.46 0.34 0.08

A SIDEWALL 47.83 33.57 0.87 10.65 3.69 1.26 1.44 0.58 0.04

B SIDEWALL 47.60 34.31 0.90 10.94 3.37 1.17 1.25 0.44 0.03

B Btm. Sc. T. 41.80 29.33 0.91 14.83 4.77 1.84 2.41 3.06 0.29

A Btm. Sc. T. 38.26 25.58 0.78 24.57 6.37 1.73 1.29 0.70 0.34

B Ec. ASH Hop 46.72 31.38 0.81 11.94 5.54 1.79 1.26 0.40 0.36

A Ec. ASH Hop 47.52 31.85 0.83 10.90 5.01 1.69 1.39 0.40 0.50

- Btm. Clk. 52.38 35.12 0.91 4.35 4.42 1.07 1.63 0.06 0.11

Table 4-5: Bulk chemical analysis of the "fourth" batch of deposit samples with 
"layering" orientation received during the course of Lycal 93HS 
additive treatment on boiler No.6 .

SIDE OF 
ROTT FR/

SAMPLE COMPOUND MASS PERCENTAGE (%)

LAYER ORIGIN
Si02 AIA Ti02 F e A CaO MgO k 2o P A so3

A / I FRONT WALL 46.28 28.48 0.75 18.71 5.37 1.92 0.99 0.82 0.13

A /O FRONT WALL 27.78 16.05 0.53 39.87 6.89 2.71 1.27 0.69 3.97

A / I REAR WALL 48.12 35.65 0.96 9.05 3.11 1.26 1.33 0.60 0.01

A /O REAR WALL 46.94 38.27 0.96 8.67 2.28 0.86 1.27 0.58 0.21

B / I REAR WALL 47.87 36.05 0.95 9.38 2.91 0.90 1.37 0.58 0.04

B 1 0 REAR WALL 47.69 34.93 0.92 10.17 3.39 1.09 1.31 0.56 0.01

A II Btm. Sc. T. 24.77 14.52 0.50 39.89 7.49 2.00 3.45 0.77 6.11

A /O Btm. Sc. T. 28.33 16.83 0.56 39.92 7.48 2.15 1.24 0.54 2.78
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Table 4-6: Bulk chemical analysis of the "fifth” batch of deposit samples received from
boiler No.5 without any Lycal 93HS additive treatment.

SIDE OF 
■ROTT.KR/

SAMPLE
ORIGIN

COMPOUND MASS PERCENTAGE (%)

LAYER Si02 AIA H 0 2 FeA CaO MgO KsO F A so3

B / I* FRONT ARCH 9.34 34.30 0.22 12.38 0.67 17.80 0.20 0.02 0.06

B /O FRONT ARCH 35.67 25.05 0.63 24.10 7.46 6.24 0.57 0.40 0.09

B / 1 REAR ARCH 49.63 41.54 1.10 3.78 2.44 0.69 0.64 0.69 0.01

B /O REAR ARCH 49.30 35.27 0.96 8.70 3.39 1.21 0.93 0.74 0.01

A / - FRONT WALL 38.38 24.48 0.78 23.87 7.30 2.75 0.76 0.98 0.58

B / 1* FRONT WALL 9.64 31.46 0.22 12.50 0.52 17.98 0.11 0.02 0.75

B/M * FRONT WALL 18.30 30.21 0.32 13.95 1.84 13.90 0.45 0.07 0.66

B /O FRONT WALL 46.50 31.80 0.76 10.43 5.82 3.01 1.26 0.34 0.39

B / - REAR WALL 45.66 33.55 0.97 10.47 4.34 1.96 1.07 0.77 1.06

A !  - SIDEWALL 47.02 34.79 1.09 9.83 4.73 1.42 0.72 0.76 0.04

A / I Btm. Sc. T. 30.86 19.88 0.65 35.57 6.73 2.23 0.51 0.87 0.64

A /O Btm. Sc. T. 47.18 33.89 0.99 10.56 3.70 1.19 1.15 0.77 0.33

A / I Stm. Gen. T. 45.19 29.17 0.84 15.82 5.77 1.66 1.23 0.70 0.14

A /O Stm. Gen. T. 44.77 31.95 0.93 12.82 3.87 1.11 1.75 1.59 1.57

A / - Sup. T. 48.44 31.95 0.93 10.41 4.39 1.59 1.08 0.59 0.59

A / - Ec. ASH Hop. 46.30 33.48 1.03 10.02 3.49 1.07 1.21 1.65 1.77

Note: I=Inner layer, M=Middle layer, 0 = Outer layer
^Samples were found to contain Cr20 3 >  20% - these results have not been 
normalised.
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Table 4-7: Bulk chemical analysis of sieve size ffactioned ash particulate samples from 
boilers No.5 & No .6  without and with Lycal 93HS additive treatment 
respectively, representing the "sixth" batch of samples.

SIDE OF
BOTTFR/

SAMPLE COMPOUND MASS PERCENTAGE (%)

+/-LYC. ORIGIN
Si02 A IA H 0 2 F e A CaO MgO K20 F A s o 3

B / + G.A (C) 51.44 33.10 1.66 6.35 2.68 1.53 1.71 0.85 0.65

B /  + G.A (M) 51.11 29.62 1.46 9.65 4.07 1.53 1.79 0.50 0.27

.B / + G.A (F) 48.03 29.94 1.69 11.17 3.56 2.14 1.68 1.00 0.77

A I + G.A (C) 51.59 32.68 1.61 6.07 2.99 1.43 2.15 0.79 0.66

A /  + G.A CM) 48.01 27.50 1.29 9.01 4.47 1.51 1.92 0.51 0.01

A / + G.A (F) 47.36 28.96 1.75 10.87 4.15 2.12 2.22 1.35 1.19

A / - * G.A (C) 53.22 33.26 1.47 5.85 2.59 0.91 2.06 0.60 0.01

A / - G.A. (M) 50.18 28.40 1.36 10.47 4.84 1.69 1.92 0.56 0.30

A / - G.A (F) 48.47 28.68 1.61 11.86 4.04 1.44 2.05 1.06 0.74

A /  + Ec. Hop. (C) 52.92 31.94 1.55 5.89 3.11 1.42 1.90 0.72 0.47

A / + Ec. Hop. (M) 48.26 27.04 1.33 11.00 6.94 2.68 1.61 0.82 0.23

A / - * Ec. Hop. (C) 50.15 34.90 1.55 6.74 2.90 1.30 1.55 0.40 0.56

A / - Ec. Hop. (M) 49.57 29.78 1.31 10.56 4.35 1.79 1.67 0.50 0.01

Note: C=Coarse (+500^m), M=Medium (-500/xm +63/xm), F = F ine (-45/*m) 
^samples collected from boiler No.5 and the rest from boiler No.6 .
Carbon contents increased in the range of 8 %, 18% and up to 75% for the fine, 
medium and coarse particulates respectively.
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Table 4-8: Bulk analysis of variation in the unbumt carbon content associated 
with particulate fly ash matter in boiler No . 6  with and without on-line 
injection of Lycal 93HS.

ECONOMISER ASH HOPPERS

+LYCAL 93HS -LYCAL 93HS

Side Fly Ash Unbumed Side Fly Ash Unbumed
of Size Carbon of Size Carbon

Boiler (jim) (mass%) Boiler (Atm) (mass%)

B +500 71.8-74.8 B/A +500 73.8-75.1
B/A -500 +63 14.9-18.0 B/A -500 +63 13.0-15.7
B -45 6 .0 -6 .8 B/A -45 4.7-5 .8

GRIT ARRESTORS

_ +500 63.6-67.8 B/A +500 58.2-74.5
- -500 +63 5.8-9.5 B/A -500 +63 8.0-16.0

-45 5.7-7.1 -45 5.1-8.7
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Plate 4-6:
Comparative illustration of a range of deposit samples from boilers 
No.5: (A = FA, B = RA, C = RW, D = FW, E = Stm.Gen.T) and 
No.6: (F = FA, G = RW, H =  SW, J = Btm.Sc.T, K = Pass Sc.T & 
Sup.T).
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batch of deposits summarised in Table 3-3.

The deposits were predominantly made up of hard, dense, fully or partially fused 

structures, ranging from 40 mm to 50 mm in diameter. Investigation of these deposits 

revealed them to have been formed from highly siliceous, fully bonded phases 

exhibiting a limited degree of heterogeneity.

4.2.3 (b) Post Lycal 93HS Injection - Boiler No.6

The range of deposits which were received over a period of two years of Lycal 93HS 

injection have been summarised in Table 3-3. The nominated locations within boiler 

No . 6  from which these deposits were taken have been identified in Figure 3-3. 

The general characteristics of the deposits from each of these locations is summarised 

as follows:

Front Arch - A light and porous deposit which would break down into granules when 

only lightly pressed by hand. It had a dark brown, tinted grey colour with a thickness 

typically of the order of 25-30 mm.

Rear Arch - This material was very similar to the front arch samples, however 

deposited ash particles nearest to the tube surface were very loosely bonded, whereas 

in the rest of the deposit, some degree of bridging and sintering was evident. The 

deposit was a mixture of light and dark brown colours and had a thikcness of about 

1 0  mm.

Front Wall - These samples were mostly taken from above or near the secondary 

air ports. The deposits had a porous, lightly sintered, coarse, brittle structure. The 

degree of sintering varied. Whereas some samples were only slightly sintered with 

limited bridging, others had external surfaces which were more continuous and 

sometimes appeared to have a "glazed" look. This is shown in Plate 4-7, as the less 

ferrous "FI" type deposit sample of the two friable types of deposit samples, namely
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"FI" and "F2", which were characteristic of all of the samples received within the third 

batch, (see Section 3.2.3 and Table 3-3).

Rear Wall - These samples also had a porous, lightly sintered, coarse, brittle 

structure. Like the rear arch samples; a soft, dusty layer of 2-3 mm thickness 

comprised the inner layer. A relatively hard and brittle layer with an outermost surface 

formed from sharp and pointed particles of ash, impinging onto the previously 

molten ash layer, comprised the bulk of the deposit.

In some deposit batches, particularly in the third batch, the presence of some softer 

pieces covered by a yellow/orange dust was noted. These constituted as much as 

40 mass% of the total bulk deposit sample. Similar material was also present, but in 

more limited amount, in the front wall samples. Despite their distinctive appearance, 

structurally and chemically, they were found to be identical to the other, more 

prevalent pieces of deposit, which were also "friable". These two types of deposits are 

thus referred to as "friable-undusted" or "FI" and "friable-dusted" or "F2". They are 

illustrated in Plates 4-7 to 4-10.

Side Wall - These samples were identical to the front and rear wall samples but with 

the total absence of the F2 type of deposit.

Screen Tubes - These samples were mostly received from the bottom screen tubes. 

Once again these samples were of a particulate constitution but with more extensive 

bridging between the particles. The samples were closely compacted and relatively 

dense. In some batches, the (F2) type of deposit comprised as much as 50% by 

mass of the total bulk deposit sample.

The deposits were mostly dark brown to dark red in colour, suggesting iron 

enrichment. In size they varied between 10-20 mm across and about 10-15 mm in 

thickness.
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Plate 4-7:
A partially fused, particulate "FI" type deposit sample with a 
"glazed" surface from lower furnace region of boiler No.6, with 
on-line injection of Lycal 93HS. [Mag: x4]

Plate 4-8:
A particulate and friable "FI" type deposit sample from the lower 
furnace region within boiler No.6, with on-line injection of Lycal.

[Mag: x4]
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Lycal 93HS

Plate 4-10

Plate 4-9:
A particulate and friable "F2" type deposit sample from the lower 
furnace region within boiler No.6, with on-line injection of

A protruded region within a largely "FI" type deposit sample from 
the lower furnace region within boiler No.6, with on-line injection 
of Lycal 93HS, illustrating further the outer orange-brown colour 
layer covering the surface of the sample. [Mag: x4]

- PAGE 154 -



Passage Between Screen Tubes and Superheaters - These samples resembled the 

bottom screen tube deposits. They were either in pieces 10-25 mm thick or smaller 

pieces 5-10 mm thick. When squeezed they would break into smaller pieces. They 

were generally found to have a yellowish brown colour.

G rit Arrestors / Economiser Ash Hoppers - These consisted of individual particles 

of fly ash with varying sizes and shapes. The major bulk of the particles were 

spherical, with lesser amounts of non-spherical particles. The larger particles tended 

to have rough surfaces, while the smaller ones were smooth. The colour of the 

particles was from light to dark grey and they could be opaque or translucent. 

Bottom-grate clinker - Considerable variation existed amongst the received samples. 

Some larger particles which were probably the product of the fusion of the 

residual mineral matter and ash on the grate, had a fully fused, shiney texture 

whilst others were clearly carbonaceous. Plates 4-11 and 4-12 represent typical 

examples of each of these types of sample.

4.2.3 (c) No Lycal 93HS Injection - Boiler No.5

Like boiler No.6 , deposit samples were collected from both sides of the boiler; i.e. the 

left hand side (side A) and the right hand side (side B). Table 3-3 summarises the 

deposits which were collected from boiler No.5 after one month (720 hours) of 

continuous operation before the shut down.

The most striking difference between these samples and those received from boiler 

No .6  was their much greater size, thickness and density. Furthermore, whereas the 

samples received from boiler No .6  were generally monolithic, the boiler No.5 samples 

were mostly of a multi-layered structure with a wider colour variation between samples.
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Plate 4-11:
A piece of bottom grate clinker illustrating a porous, fused,slag-like 
texture. [Mag: x4]

A piece of bottom grate clinker illustrating a stratified carbonaceous 
texture. [Mag: x4]
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Front Arch - This was a very hard, dense deposit which could be divided into two 

layers:

(a) Inner layer. This was the layer closest to the boiler tube surface. This was a 

very hard, dense and fairly smooth layer. The thickness varied between 10 and 15 mm. 

It had a mixed dark and light brown colour.

(b) Outer layer. This was the layer closest to the flame and gas flow. It was a hard 

layer with a spikey texture. This layer was fairly porous and had a thickness of 

2-3 mm. The colour was a mixture of dark brown and grey particles.

Rear Arch - This was hard and brittle with a relatively high degree of sintering and 

fusion between the spherical ash particles. This deposit consisted of two layers:

(a) Inner layer: This was the layer closest to the boiler tube surface. This was a 

soft, powdery particulate layer with a thickness of 2-4 mm.It exhibited a yellow/orange 

range of colours.

(b) Outer layer: This layer comprised the bulk of the deposit, formed closest to the 

gas flow. The sample had a thickness of about 20-30 mm and had a light leadish grey 

colour.

Additionally, some deposit samples with a monolithic, well sintered structures of 

approximately 25-30 mm thick were also found within the deposit batch.

Front Wall - A hard deposit with three layers:

(a) Inner layer: This was hard and dense and well fused into the next layer. The layer 

had a thickness of 1 -2  mm and ranged in colour from brown to orange.

(b) Middle layer: This had a very hard, dense, glassy structure with an abrasive 

surface. The thickness of this layer was approximately 4 mm and ranged in colour from 

grey to dark brown.
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(c) Outer layer: This was a black, fully vitrified layer about 20-23 mm thick and 

comprised the bulk of the deposit. It had a porous structure, but despite this, it had a 

hard and abrasive character. Plate 4-13 shows this deposit with its three distinctly 

coloured and textured layers.

Rear Wall - This was a bulky, highly porous, fully fused, homogenous, vitreous 

deposit. Despite the porosity voids, the deposit was very hard. The thickness of the 

sample was approximately 30-33 mm. It was black in colour.

Side Wall - This sample was identical to the rear wall sample. In some of the 

smaller sample pieces, varying degree of sintering was evident between the ash 

particles.

Steam Generating Tubes - This deposit was comprised of two layers:

(a) Inner layer: This was a porous, hard, abrasive deposit with a moderate degree of 

sintering. It had a thickness of 50-55 mm and had a dark brown and dark grey mixture 

of colours.

(b) Outer layer: This was a soft, dusty, thin layer which enveloped the outer layer. 

It was of a mixed dark brown and orange colours.

Screen Tubes - This deposit sample was collected from the bottom screen tubes and 

was identical to those samples received from the same position within boiler No.6 . 

Superheater Tubes - This was a very fine powder sample and could only be 

collected from the area underneath the superheater tubes since the tubes were clean of 

any particulate matter.This was identical to the following sample from the economiser 

ash hopper samples.

Grit Arrestors and Economiser Ash Hoppers - The samples collected were identical 

to the corresponding samples received from boiler No .6  for the same locations.
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Plate 4-13:
Cross-sectional view of a very hard lower furnace layered deposit from 
boiler No.5, without on-line Lycal 93HS injection, showing a black, 
vesicular, glassy outer layer, a grey middle layer and a brown lustered, 
smooth outer layer.
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4.2.4 Microscopic Examination and Elemental Analysis

All deposit specimens were examined in both the unpolished and polished conditions 

using a stereo-microscope,a standard optical photo-microscope and scanning electron 

microscopes equipped with EDX qualitative elemental analysis.

4.2.4 (a) Unpolished. As Received samples from Boilers No.5 and No . 6

Regardless of their source location within the boiler unit, all deposits mainly 

comprised of agglomerations of a wide range of spherical ash particles of varying 

size, colour and composition, sintered or fused together.

Under the stereomicroscope, the spherical ash particles varied from colourless or 

white, through shades of orange, red and maroon to brown and black, suggesting a 

complex range of compositions, mineralogy and physical states within the deposit 

samples. Scanning electron microscopy, together with EDX analysis, was used to 

examine the ash particles in more detail and to identify their elemental constitution. 

A range of some of the typical structures observed with the aid of the SEM are 

illustrated in plates 4-14 to 4-28.

Boiler No . 6  - Plates 4-14 to 4-22 are representative of deposits taken from boiler 

No.6  with on-line injection of Lycal 93HS.

Plates 4-14 and 4-15 show a typical surface morphology of a "front arch", a "front 

wall" or a "side- wall" sample from boiler No. 6  after Lycal injection. It exhibites a 

limited degree of bonding and sintering between spherical ash particles.

Points "A" and "B" respectively illustrate examples of smooth and rough surface 

textured ash particles with different compositions. Plate 4-15 is a higher magnification 

of the B-region in Plate 4-14. It shows the wide spread, clustered dispersion of 

particles of pure iron oxide covering the surface of the alumino-silicate rich ash
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Plate 4-14:
SEM-micrograpn of an as received, unpolished deposit sample from the 
lower furnace region (i.e. FA, FW or SW) of boiler No.6 with on-line 
Lycal 93HS injection, showing limited degree of bonding and sintering 
between spherical ash particles of various sizes. The EDX-analysis shows 
the surface composition of the smooth "A” and rough "B" textured regions 
respectively (see Plate 4-15 for analysis of area "B"). [Mag: x!30]
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Plate 4-15:
SEM-micrograpn of bridged iron oxide panicles over the surface of the 
bonded ash spheres in Plate 4-14. Finer cenospherical ash beads are 
supponed on the surface of the much larger ash particles. The EDX- 
analysis of the particulate iron oxide dispersion is shown. [Mag: x520]
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matrix. The appearance of such iron oxide dispersions, aitnougn encountered in an uie 

samples taken from various locations within the boiler No. 6 , was most commonly 

present in samples from the upper furnace regions. The EDX analysis illustrates the 

ferriferous nature of these particulates.

Plate 4-16 shows a typical morphology of a "rear arch" or a "rear wall” sample 

from boiler No. 6 , exhibiting a dispersion of alumino-silicate ash particles of 

various sizes illustrated by points "A" and "B" imbedded in a crusty iron-silicate 

matrix, identified as point f,C”. There is very little direct bonding between the ash 

particulates.

Plate 4-17 shows the surface morphology of a "screen tube” deposit sample from 

boiler No. 6 . The main feature of these samples is the extensive dispersion of the 

fine iron rich particles, spread over the surface of the deposits (see the EDX analysis 

for area A). The spherical ash particles are further deposited onto the surface, 

gradually dissolving into the body of the deposit.

Plate 4-18 shows further capture of spherical ash particles of various sizes into the 

molten surface of the body of the "screen tube” deposit from boiler N o.6 . The 

rounded shape outline of some of the larger ash particles which have become 

incorporated into the body of the deposit is evident.

The wide scale dispersion of fine iron oxide particles, as previously shown in 

Plate 4-15 is further evident.

Plates 4-19 to 4-21 are particularly representative of "screen tube" deposit 

samples.

Plate 4-19 shows the agglomeration of a group of smooth ash cenospheres 

exhibiting considerable diversity of size. The large spherical ash particle clearly 

shows a different texture and transparency compared to the ash cenospheres.
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Plate 4-16:
SEM-micrograph o f an as received, unpolished deposit sample from  the 
lower furnace region (Le RA, RW) in boiler No. 6 , with on-line Lycai- 
93HS injection. Tha EDX-analysis shows the surface composition o f the 
Smooth "A" and rough "B" surfaced ash spheres of different sizes, 
imbedded in a crusty iron-silicate matrix, area "C". [M ag: x220]
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Plate 4-17:
SEM-micrograph of an as received*. unpolished deposit sample horn the 
Bottom Screen Tubes in boiler No. 6 ,  with on-line Lycal 93HS injection. 
Roughly surfaced alumino-silicate matrix exhibits the dispersion o f iron 
oxide particles (area *A"). Further deposition of small solid ash spheres 
and cenospheres on the matrix are shown. The EDX-anaiysis shows the 
composition of the fine particulates (area "A"). [M ag: x70]
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P l a t e  4 - 1 8 :
SEM-micrograph of an as received, unpolished deposit sample from the 
Bottom Screen Tubes in boiler No.6, with on-line Lycal 93HS injection. 
Partial fusion of some of ash spheres and cenospheres depositing onto 
the roughlv surfaced matrix are shown. [Mag: xl40]
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Plate 4-20 shows the surface of an ash particle which is encrusted with a range of 

fine, irregularly shaped particles as well as a collection of much smaller, fully or 

partially developed spherical ash particles, growing independently of the underlying 

matrix.

Plate 4-21 illustrates a string of spherical and non-spherical ash particles of 

different sizes coalescing together. The bonding process between the ash particles 

is evidently as a result of full or partial melting of the ash matter. This illustration is 

indicative of the early stages of deposition as fly ash particles come into contact 

together on the tube surfaces.

Plate 4-22 is representative of the deposit taken from the passage between screen 

tubes and steam generating tubes in boiler No.6 . It shows the various stages of "neck" 

formation and growth between spherical ash particles of different sizes which 

would bring about a more fully sintered or fused deposit. The dispersion of iron 

particles is again apparent with the necking areas particularly affected.

Boiler No.5 - Plates 4-23 to 4-28, are representative of deposits taken from boiler 

No.5, operating without Lycal 93HS. Plate 4-23 is typical of a front wall sample, 

showing a high degree of bonding and fusion between the ash particulate matter, 

forming a more uniform and continuous structure than was evident in samples from 

the same position in boiler No.6 . The smaller ash particles would be readily collected 

and absorbed into the surface of such deposits, forming dense accretions.

Plate 4-24 is illustrative of the general bulk of the rear arch sample. A large 

section of spherical ash particles are fused together with further deposition of 

smaller ash particulates being evident. The surface of the agglomerated spherical 

ash particles was observed to be covered by a very fine dispersion of iron oxide 

particles, as illustrated by the EDX analyses.
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Plate 4-19:
SEM-micrograph of an as received, unpolished deposit sample from the 
Bottom Screen Tubes in boiler No.6 , with on-line Lycal 93HS injection. 
It shows the textural and size difference between a number of very fine 
transparent ash cenospheres agglomerated at the base of a much larger 
solid ash sphere imbedded on the rough matrix. [Mag: xl040]

Plate 4-20:
SEM-micrograph of an as received, unpolished deposit sample from the 
Bottom Screen Tubes in boiler No.6 , with on-line Lycal 93HS injection. 
It shows the texture of some of the very fine ash cenospheres and the 
irregularly shaped particulate matter on the surface of the dark matrix.

[Mag: x2040]
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Plate 4-21:
SEM-micrograph of an as received, unpolished deposit sample from the 
Bottom Screen Tubes in boiler No.6, with on-line Lycal 93HS injection. 
It shows a string formation of softened ash spheres and ash matter 
bonded together with various degrees of neck growth between the particles. 
Finer ash cenospheres with a transparent texture can further be seen 
adhering to the softened ash matter. [Mag: xl040]

Plate 4-22:
SEM-micrograph of an as received, unpolished deposit sample from the 
Passage between Screen Tubes & Steam Generating Tubes in boiler 
N o.6, with on-line Lycal 93HS injection. It shows the various stages of 
neck growth between solid ash spheres, forming a highly coalesced bulk 
of ash particulates. [Mag: x240]
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Plate 4-23:
SEM-micrograph of an as received, unpolished deposit sample from the 
Front Walls in boiler No.5, without Lycal 93E1S injection. Extensive 
bonding and fusion between the spherical ash particles has formed a 
uniformly textured, continuous alumino - silicate matrix. The smaller 
smooth ash cenospheres adsorbed onto the surface are further fused into 
the matrix. [Mag: x260]
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Plate 4-24:
SEM-micrograph of an as received, unpolished deposit sample from the 
Rear Arch in boiler No.5, without Lycal 93HS injection. Extended 
bonding and fusion between solid ash spheres of various sizes are shown 
to form a fairly continuous matrix.The EDX-analyses show an alumino- 
silicate matrix with the enrichment o f fine iron oxide particles on the 
outer surface of the matrix. [Mag: x240]
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Plate 4-25 is a general view of the surface morphology of a Rear Wall sample. 

The extensive degree of fusion between the apparently molten, spherical ash 

particles has helped to form a continuous and uniform structure. The presence of iron 

enriched particles associated with the surface chemistry of this samples was 

significantly less than that associated with similar samples from boiler No.6 .

Plate 4-26 is representative of the bottom screen tube sample. Like the samples for 

the same location from boiler No. 6 , this sample has an extensive dispersion of iron 

enriched particles covering the outer surface of the deposit. Some degree of fusion 

and neck growth is apparent between the spherical ash particles.

Plate 4-27 is illustrative of the general matrix of the steam generating tube 

sample. As shown in the plate, the spherical ash particles have undergone extensive 

fusion, producing a continuous, uniform matrix. A large number of fine angular 

and rounded particles, forming small clusters could also be observed as the less 

prevelant feature of this deposit.

Plate 4-28 shows such a cluster of small angular and rounded particles.

Plates 4-29 to 4-31 characterise features which were commonly encountered in the 

SEM-EDX analysis of the particulate matter from the economiser ash hoppers in 

both boilers No.5 and No.6 .

Size fraction analyses were carried out on the grit arrestor and economiser ash 

hopper samples collected from boiler No. 6  with and without Lycal 93HS being 

on-line, in order to establish a quantitative measure of the texture of the as 

received particulate samples. The results tabulated in Tables 4-9 and 4-10 and presented 

graphically in Figures 4-2 and 4-3 show little difference in the particle size distributions 

with and without injection of Lycal. The extent of size variation across the whole 

number of samples from different batches received has been illustrated by range-bars.
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Plate 4-25:
SEM-micrograph of an as received, unpolished deposit sample from  the 
Rear Wall in boiler No.5, without Lycal 93HS injection. Extensive 
fusion of spherical ash particles has formed a coagulated, continuous 
and uniform matrix. Some transverse sections show the highly porous, 
vesicular character of this deposit. The EDX-analysis shows the matrix 
composition. [M ag: x70]
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Plate 4-26:
SEM-micrograph of an as received, unpolished deposit sample from the 
Bottom Screen Tubes in boiler No.5,without Lycal 93HS injection. High 
degree of bonding and fusion is evident between spherical ash particles. 
Like the samples from the same location from boiler No. 6, an extensive 
dispersion of iron oxide particles can be seen on the rough surface of 
the matrix. [Mag: x!40]
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Plate 4-27:
SEM-micrograph of an as received, unpolished deposit sample from the 
Steam Generating Tubes in boiler No.5, without Lycal 93HS injection. 
A continuous matrix contains a number of ash spheres with smaller, 
transparent, rounded and angular siliceous matter imbeded on the 
surface. [Mag: x240]

Plate 4-28:
High magnification of SEM - micrograph in Plate 4-27 showing the 
angular and rounded shape of the fine transparent siliceous particles, 
demonstrating their incomplete melting. [Mag: x480]
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Table 4-9: Results of size fraction analysis of "Economiser ash hopper" samples collected 
during the 12-hour trials on boiler No. 6 with and without on-line injection of 
Lycal 93HS.

ECONOMISER ASH HOPPER

+LYCAL 93HS -LYCAL 93HS

Particle
size

0*m)

Mass
collected

(g)

Mass
percent

(%)

‘ Particle 
size 

Gum)

Mass
collected

(g)

Mass
percent

(%)

+  1200 1.181 2.363 +1200 0.794 1.597

-1200 +1000 2.223 4.448 -1200 +1000 1.552 3.121

-1000 +710 7.679 15.369 -1000 +710 7.173 14.422

-710 +500 8.107 16.225 -710 +500 8.373 16.834

-500 +355 13.380 26.778 -500 +355 12.408 24.947

-355 +250 9.460 18.934 -355 +250 9.689 19.480

-250 +150 5.594 11.196 -250 +150 6.773 13.616

-150 +75 1.572 3.147 -150 +75 2.187 4.397

-75 +45 0.155 0.310 -75 +45 0.333 0.669

-45 0.614 1.229 -45 0.456 0.917

49.965 99.999 49.738 100.00
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Table 4-10: Results of size fraction analysis of "Grit arrester" samples collected during
the 12-hour trials on boiler No. 6 with and without on-line injection of
Lycal 93HS.

GRIT ARRESTORS

+ LYCAL 93HS -LYCAL 93HS

Particle Mass Mass Particle Mass Mass
size collected percent size collected percent

(jim) (g) (%) (jxm) (g) (%)

+1200 0.042 0.042 +1200 0.020 0.021

-1200 +1000 0.097 0.098 -1200 +1000 0.070 0.071

-1000 +710 0.989 0.984 -1000 +710 0.774 0.785

-710 +500 2.251 2.272 -710 +500 1.858 1.884

-500 +355 5.013 5.060 -500 +355 4.127 4.185

-355 +250 7.309 7.377 -355 +250 6.745 6.840

-250 +150 15.177 15.320 -250 +150 14.594 14.799

-150 +75 25.735 25.978 -150 +75 25.682 26.042

-75 +45 11.706 11.816 -75 +45 11.503 11.664

-45 30.748

99.067

31.038

99.985

-45 33.244

98.617

33.710

100.201
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Figure 4-2: Particle size distribution curves for the "economiser ash- 
hopper" samples collected with and without on-line 
injection of Lycal 93HS over the period of 12 hour tests.
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Figure 4-3: Particle size distribution curves for the "grit arrestor" 
samples collected with and without on-line injection of 
Lycal 93HS over the period of 12 hour tests.
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Plate 4-29 shows both smooth and rough surfaced spherical ash particles in the size 

range between 150 /xm to 700 /xm in diameter.

Plate 4-30 shows in more detail a rough surfaced, cenosphere as well as a number of 

relatively smooth surfaced spherical ash particles. The EDX-analyses illustrate the 

differences in composition for the two types of spherical ash particles as well as the 

coagulated matter between two ash spheres. The first appearance of Mg can be seen 

from the EDX spectra for the white particles over the rough ash sphere.

Plate 4-31 shows a number of highly porous, thick-walled, spherical ash particles and 

larger ash agglomerations forming non-spherical particulate matter. The EDX analysis 

shows the surface composition of the porous and smooth, non-porous ash agglomerates. 

Plates 4-32 to 4-35 characterise features which were commonly encountered in the 

SEM-EDX of the "ash clinker" formed on the travelling chain grate.

Plate 4-32 shows a stratified structure which was typically found in the harder, 

vitreous type of residual clinker matter. The matrix composition as shown by the 

EDX-analysis, was found to be silica-alumina rich.

Plate 4-33 shows a highly porous, honeycomb surface texture creating a lace-like 

network appearance. The EDX-analysis shows the enrichment of aluminum, 

sulphur and calcium in this sample, as oxides or compounds, which in appearance was 

also considerably different from the previous clinker sample in Plate 4-32.

Plate 4-34 shows the presence of small, smooth surfaced ash cenospheres in what 

appears to be a molten and fluid matrix. This again shows an entirely different 

morphology to the two previous photomicrographs of the clinker samples, illustrating 

the diversity of clinker samples found on the chain grates in boiler No. 6 .

Plate 4-35 is representative of carbonaceous clinker samples which were rich in 

iron oxides, as shown by the EDX-analysis. The angular ferrous plates embedded
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Plate 4-29:
SEM-micrograph of Economiser Ash Hopper particulate samples from 
boiler No. 6 , showing the spherical and non-spherical form of the 
panicles with smooth and rough outer surface. The particle size range 
varies between -45 +700 /tm. [Mag: x24]
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Plate 4-30:
High magnification of SEM-micrograph in Plate 4-29, showing the 
relatively smooth ash spheres as well as the roughly surfaced ash ceno- 
sphere and non-spherical particles. The EDX-analyses shows the variation 
in the surface composition of the smooth, rough and coagulated fly ash 
particulates. [Mag: x95]
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Plate 4-31:
SEM-micrograph o f Economiser Ash Hopper particulate samples from 
boiler No. 6 , showing the highly porous spheroids with surface crystal
lisation, and larger agglomeration o f ash matter forming non-spherical 
and spherical particulates. The EDX - analyses show the surface 
composition o f porous spheroids and non-porous ash spheres and 
agglomerates. [Mag: xlOO]
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Plate 4-32:
SEM-micrograph of a  Bottom Grate Clinker sample from boiler No. 6 , 
showing a  fully fused, stratified morphology. The matrix composition is 
characterised by the EDX-analysis. [Magi xI20]
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Plate 4-33:
SEM-micrograph of a Bottom Grate Clinker sample from boiler No. 6 , 
showing the lacey skeleton of a highly porous, honeycomb coke residue 
containing ash matter. [Mag: xllO]
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P l a t e  4 - 3 4 :
SEM-micrograph of a Bottom Grate Clinker sample from boiler N o.6, 
showing fine, smoothly surfaced ash cenospheres on a partially fluid 
and viscous matrix. [Mag: x960]
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Plate 4-35:
SEM-micrograph of a Bottom Grate Clinker sample from boiler No. 6 r 
representing a carbonaceous ash matter with angular plates o f iron 
oxide particles forming a crusty matrix. The EDX-anlaysis shows the 
ferriferous composition of this matrix. [Mag: x560]
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within the surface of the sample, essentially forms the bulk of these samples, 

creating a differently textured, less siliceous material compared to the previous 

clinker samples shown in Plates 4-32 to 4-34.

4.2.4 (b) Polished. As Received Samples from Boilers No.5 and No . 6

Polished specimens from various locations and sample batches from boilers No . 6  

after Lycal 93HS injection and from boiler No.5 were examined using both optical and 

scanning electron microscopy.

Boiler No . 6  - The range of structures observed in the samples from boiler No.6 , 

are illustrated in Plates 4-36 to 4-57.

Plate 4-36 is a photo-micrograph representative of a front, rear or side wall deposit. 

It shows the limited degree of bonding between the various spherical and 

non-spherical, porous ash particles under oblique illumination. The spherical, 

ferriferous ash particle (white sphere) features prominantly, with sintered and fused 

regions exhibiting an open matrix.

Plate 4-37 is a photo-micrograph of the identical region represented in Plate 4-36 but 

using polarised, fully crossed incident light for illumination. The morphological 

diversity of various ash components which previously appeared to be the same is now 

further evident through their textural and colour variation. The white particle in 

Plate 4-36 now appears as a finely grained, black and grey coloured sphere. 

Furthermore whereas the ring around the bottom ash sphere (black area) appears to 

be the same as that of the upper one, the dispersion of other white, fine particles 

in Plate 4-36 distinctly appears here as red in colour, suggesting the presence of 

h em a tite^ -F e^ ) crystals.
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Plate 4-36:
Photo-micrograph of a polished lower furnace (i.e FW, RW or SW) 
deposit sample from boiler No.6, with on-line Lycal 93HS injection. It 
shows the limited degree of bonding within the matrix of spherical and 
non-spherical porous ash matter, under oblique illumination. The Iron 
oxide skeleton sphere (white) is in contrast to the other spherical (solid 
sphere with white rim) and non-spherical ash matter. [Mag: x32]
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Plate 4-37:
Photo-micrograph of the feature in Plate 4-36, under polarised, fully 
crossed illumination. The black and grey angular form of the iron oxide 
sphere is seemingly similar to the rim around the lower solid sphere, 
but different to the the large, porous, ash skeleton (red) adjacent to the 
iron oxide sphere,which had also shown large traces of the white matter.

[Mag: x32]
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Plate 4-38 is a photo-micrograph representative of the deposit from the bottom screen 

tubes or the passage between screen and steam generating tubes. It shows two separate 

regions of discontinuous matrix under oblique incident illumination. The two regions 

appear to be identical in colour and texture.

Plate 4-39 is a photo-micrograph of the identical region displayed in Plate 4-38, 

using polarised, fully crossed incident light for illumination. Clearly the two 

segments which appeared to have an identical internal texture have distinctly 

different compositions and textures represented by the variation in colour, mainly 

black and red. The spherical ash particle at the top is markedly red in colour, 

suggesting the presence of hematite crystals. The other distiguishable spherical ash 

particles within the left hand side segment, each appear as orange and black in 

colour, further illustrating the textural and compositional variation between spherical 

ash particles.

Plate 4-40 is a photo-micrograph representative of a screen tube deposit. It shows 

the continuous area of the matrix under oblique incident light. The angular cuboid 

particles (creamy white) are scattered in a matrix (dark grey) marked with the 

presence of another phase (light grey) as well as a very fine array of dendritic 

crystals (cream-white) at the top of the micrograph.

Plate 4-41 is a photomicrograph of the identical region in Plate 4-40, but using 

polarised,fully-crossed incident light. The various features mentioned previously are 

thus further shown through colour variations. The various crystalline constituents 

such as the angular ferrous cuboids (greyish green), the fine array of dendrites 

(orange) and the other phase (bright yellow) are clearly evident and can be 

distinguished within the matrix.
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Plate 4-38:
Photo-micrograph of a upper furnace (Btm Screen Tubes or Steam Gen. 
Tubes) deposit sample from boiler No.6, with on-line Lycal 93HS 
injection. It shows two separate regions of discontinuous matrix under 
oblique incident illumination. The two regions appear to be identical in 
colour and texture. [Mag: x64]
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Plate 4-39:
Photo-micrograph of the feature in Plate 4-38, under polarised, fully 
crossed illumination. The black iron oxide region (RHS) appears now 
to be distinctly different to the red and orange crystalline region (LHS), 
with a black outer edge similar to the RHS. A ferrosphere of iron oxide 
crystallisation appearing as a red sphere is also present. [Mag: x64]
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Plate 4-40:
Photo-micrograph of a deposit sample from Bottom Screen Tubes in boiler 
No.6, with on-line Lycal 93HS injection. It shows a fused siliceous matrix 
(dark grey) with a scatter of angular cuboidal and euhedral iron-spinel 
crystals (creamy white), and the very fine array of dendritic region 
(cream-white crossing lines) at the centre or as a cluster at the top LHS of 
the photograph. [Mag: x64]
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Plate 4-41:
Photo-micrograph of the feature in Plate 4-40, under polarised, fully 
crossed illumination. The angular and euhedral iron spinel phase (greyish- 
green), dendritic crystalline region at the centre (yellow and orange) and 
the very fine dendriric cluster at the top LHS (red) can be more clearly 
distinguished. . [Mag:x64]
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Plate 4-42 shows the typical open skeletal structure which is representative of the 

deposits received from the front or rear arches / walls or side walls from boiler No.6 , 

at the lower furnace region, during the course of Lycal 93HS injection.

Plate 4-43 is a higher magnification back-scattered electron image (BSE) of the 

same sample, demonstrating the chemical and phase heterogeneity within the deposit 

sample. The photomicrograph shows the formation of a range of truncated laths 

(dark grey) as precipitates within the underlying matrix (darker grey), with a 

spread of angular iron oxide rich cuboids (light grey), a large spherical formation of 

dendritic hematite (top right) and a pure metallic iron oxide ash sphere (bottom 

left). The black areas are porosity.

Plate 4-44 is representative of an "F2" type front or rear wall deposit sample from 

the third batch. It shows the sintering of a range of spherical ash paticles of 

various sizes and chemical composition as illustrated by the EDX-analyses. The large 

ash sphere denoted by "A" was found to be silica, iron oxide and calcium oxide 

rich. The boundary region between the large perforated spherical ash particle and 

the smaller smooth ash particle which is denoted by "B" is most probably a 

calcium sulphate rich phase. The perforated ash sphere denoted by "C" is enriched 

in a mixture of calcium, magnesium, iron and sulphur as oxides and/or sulphates. 

The EDX-analysis further demonstrates the chemical heterogeneity of such samples 

despite their homogenous external appearance.

Plate 4-45 illustrates the variation in matrix composition of a lower furnace deposit 

from the rear wall; showing a continuous phase (areas "A","B" and "C"), with area 

"C" showing evidence of dendritic solidification and the honeycomb, porous phase 

(area "D"). The EDX-analyses show areas "A" and "B" to be siliceous, area "C" 

to be iron oxide rich crystallisation on solidification of the deposit, and area "D"
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P l a t e  4 - 4 2 :
SEM-micrograph of a polished lower fumace deposit (i.e. FA, RA, FW, 
RW and/or SW) from boiler No.6, with on-line Lycal 93HS injection. 
The open skeletal structure is typical of post Lycal injected deposit 
samples. [Mag: x30]
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Plate 4-43:
Higher magnification SEM-micro graph o f the deposit specimen in Plate 4-42, 
showing the extent of crystalline heterogeneity present within the sample. 
The EDX-analyses show the composition of the precipitate phase within the 
matrix (dark grey), the angular cuboids (light grey) and the siliceous matrix. 
A large sphere of hematite dendrites (creamy white) at the top RHS and a 
deformed sphere of pure iron oxide crystal (white) at the bottom LHS of the 
photograph are further evident.
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Plate 4-44:
SEM-micrograph of a lower furnace (i.e. FW, RW) "F2" type deposit 
sample from boiler No.6 , with on-line Lycal 93HS injection. It shows 
the sintering of a range of spherical ash particles of various sizes and 
textures. The EDX-analyses show the composition of the areas "A", "B" 
and "C". [Mag: x460]
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Plate 4-45:
SEM-micro graph of a deposit sample from the Rear Wall in boiler No.6 , 
with on-line Lycal 93HS injection. An area of continuous matrix, "A-B-C" 
is connected to a highly porous, honeycomb textured area, "D". The 
EDX-analyses show the composition of the siliceous matrix, "A-B" with 
crystalline phase,"C" and skeletal matrix, "D '\ {Mag: xl040]
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is shown to be of an alumino-silicate composition.

Plate 4-46 is the BSE image of neck growth between two spherical ash particles within 

an "FI" type rear wall deposit sample from the third batch. The EDX analysis 

shows that the larger sphere has a siliceous matrix (grey). There are small 

dendritic iron-alumina enriched precipitates at the inner periphery of the larger ash 

sphere and larger lath shaped growths, enriched in titanium oxide, as well as 

alumina, silica and iron oxide, towards the centre. The smaller ash particle at the top 

is shown to be made up of fine crystals of hematite (white) with minor impurity oxides. 

Plate 4-47 reveals the occurrence of iron oxide-alumina dendritic crystals (light 

grey) which may possibly be Fe0.Al20 3 spinels, hercynite, in a siliceous matrix 

(dark grey). The EDX-analysis shows a finer iron oxide enriched surface layer (white) 

outlining the edge of the spherical ash particle. The black areas are porosity.

Plate 4-48 is a BSE-image of a broken cluster of what could be angular, iron 

oxide-alumina spinel crystals, hercynite, concentrated at the surface of a large pore 

within a front wall sample. The angular shape of these crystals is evidently different 

to the dendritic type crystals observed in Plate 4-47, illustrating a variation in 

crystalline structure despite an identical chemical composition.

Plate 4-49 is the BSE-image of a front wall deposit sample, containing fine cuboidal 

crystals (white) dispersed within a siliceous matrix (dark grey) with a range of laths 

(light grey). The presence of minor quantities of magnesium oxide with silica, alumina 

and iron oxide as the major components is shown by the EDX analysis.

Plate 4-50 is the BSE-image from a front wall deposit sample showing an area within 

the periphery of a cavity, where extremely fine crystalline needles (white) have 

grown. The EDX analysis illustrates the silica-alumina enrichment in the relative 

proportions which could suggest the fine needles to be mullite crystals. A range of
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Plate 4-46:
SEM-micro graph of a "FI" type deposit sample from the Rear Wall in 
boiler N o.6 , with on-line Lycal 93HS injection.lt shows the neck growth 
between a large sphere and a smaller white-sphere. The EDX-analyses 
illustrate the composition of different phases. (Mag: x960]
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Plate 4-47:
SEM-microgiaph of a deposit sample from the Rear Wall in boiler N o.6 , 
with on-line Lycal 93HS injection. It shows the solidification of fine and 
large dendrites in a siliceous matrix (dark grey) with a  white layer 
outlining the periphery of the ash sphere. The EDX-analyses show the 
dendrites to be of the iron-spinel type and the white layer is pure iron 
oxide. [Mag: x ll2 0 ]
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Plate 4-48:
SEM-micrograph of a deposit sample from the Front Wall in boiler N o.6 , 
with on-line Lycal 93HS injection. It shows a broken spherical cluster of 
o f white crystals at the surfkce o f a  large pore. The EDX-analysis shows 
the crystals to be iron oxide-alumina rich, suggesting iron-spinei crystals.
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Plate 4-49:
SEM-micrograph of a deposit sample from the Front Wall in boiler N o.6 , 
with on-line Lycal 93HS injection. It shows cuboidal and euhedral crystals 
(white) and large, long needles(light grey) in a siliceous matrix (dark grey). 
The EDX-anaiysis shows the composition of cuboid crystals.
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Plate 4-50:
SEM-micrograph of a deposit sample from the Rear Wall in boiler N o.6 , 
with on-line Lycal 93HS injection. It shows an array of fine ( <  5/xm) 
crystalline needles (white). The EDX-analysis is characteristic o f the 
mullite phase.

-PA G E  2 0 5 -



angular iron rich cuboids as well as lathes can be seen in the background.

Plate 4-51 shows a large porosity hole in a front wall deposit filled with a 

"fiberous" agglomeration. The EDX-analysis shows these to be mostly made up 

of a silica-alumina phase enriched with oxides of iron and titanium. This 

observation was not very common and furthermore was only evident in lower 

furnace deposits.

Plate 4-52 shows the neck between two sintering spherical ash particles in a front 

arch deposit sample. Fine needle shaped crystals have precipitated at the periphery of 

the lower ash sphere and coarse ones at its centre. The EDX-analysis shows the 

needles to be relatively enriched in the four major oxides in the ash matter, 

namely; silica, alumina, iron oxide and calcium oxide.

Plate 4-53 shows the arrangement of sintering ash particles within an upper furnace 

screen tube deposit sample. The iron oxide rich phase (white) acts as a bridge between 

spherical alumino silicate ash particles (dark and lightgrey) to form a discontinuous 

matrix with an extensive dispersion of finer spherical ash particles of a few micrometers 

in size.The EDX- analysis shows the composition of the two major components in this 

micrograph.

Plate 4-54 shows a highly porous (black), screen tube deposit containing a number 

of highly sintered and deformed siliceous (dark grey) ash particles which are bonded 

together via a network of iron oxide enriched phase (white).

Plate 4-55 is a photo-micrograph of a bottom screen tube sample, showing a number 

of larger spherical ash particles with fine dendritic crystals of hematite or iron-spinel 

(white-lines) within the matrix of the joined ash spheres and iron oxide rich phase 

as the bonding layer (white area) around the periphery of the ash spheres.
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Plate 4-51:
SEM-micrograph of a deposit sample from the Front Wall in boiler No.6, 
with on-line Lycal 93HS injection. It shows a fibrous agglomeration of 
long laths inside a large pore within a siliceous matrix. The EDX-analysis 
of the laths is alumino-silicate, enriched with iron oxide and titania.
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Plate 4-52:
SEM-micrograph of a deposit sample from the Front Arch in boiler No.6, 
with on-line Lycal 93HS injection. It shows the bonding and neck growth 
between two ash spheres and the crystalline precipitates- o f fine and coarse 
needles in the lower sphere. The EDX-analyses characterise the composition 
of matrix and the fine needles. [Mag: x!120]
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Plate 4-53:
SEM-micrograph of a deposit sample from the Bottom Screen: Tubes in boiler 
N o.6 , with on-line Lycal 93HS injection. The iron rich phase (white) acts as 
the binder in an open - skeletal matrix of large (100-400/im) spherical ash 
particles. The EDX-analysis illustrates the composition of the binding phase.
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Plate 4-54:
SEM-micrograph of a deposit sample from the Bottom Screen Tubes in boiler 
N o.6 , with on-line Lycal 93HS injection. A highly porous (black) skeleton of 
sintered and fused,siliceous ash spheres and spheroids (dark grey) are connected 
together via a network of ferrous phase (white-light grey) round the edge of the 
particles.

} p l

Plate 4-55:
Optical photo-micrograph of a deposit sample from Bottom Screen Tubes in 
N o.6 , with on-line Lycal 93HS injection. A number of large ash spheres and 
spheroids (200-700 nm) containing fine dendritic crystals of iron oxide 
(hematite) are bonded together via a continuous network of a white phase 
around the ash particles. [Mag: x50]
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Plate 4-56 is a photo-micrograph of a deposit from the passage between screen 

tubes and steam generating tubes. It shows a number of loosely sintered spherical 

ash particles with iron rich spherical and non spherical ash particles (white) 

forming a layer around and between the joining ash particles.

Plate 4-57 is a photo-micrograph of a deposit from the "passage between screen 

tubes and steam generating tubes". It shows a porous (black areas) surface, with 

angular iron oxide- alumina spinel type particles (white) as well as finer dendrites 

(white) scattered throughout the matrix (dark grey).

Boiler No.5 - The range of structures observed for samples from boiler No.5, are 

illustrated in Plates 4-58 to 4-69.

Plate 4-58 is a micrograph typical of the outer and middle layers within the front 

wall deposit from boiler No.5. It shows a porous, fully fused, chemically uniform 

structure. The EDX-analysis shows these layers to be mainly alumino-silicate 

compounds.

The most notable feature of this deposit compared with the deposits taken from the 

same region of boiler No . 6  with Lycal 93HS injection (see plate 4-42), is its 

continuity and physical uniformity which results in the formation of a hard, 

non-friable and dense structure.

Plate 4-59 is a micrograph typical of the inner layer within the same front wall 

deposit. It shows a continuous matrix with some fracture lines which were probably 

caused during sampling and sample preparation. The EDX-analysis illustrates the 

siliceous nature of the matrix (dark grey) and randomly dispersed iron oxide - silica 

rich particulate phase (light grey) within some sections of the matrix.
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Plate 4-56:
Optical photo-micrograph of a deposit sample from the Passage between 
Screen Tubes and Steam Generating Tubes deposit sample from boiler No.6 , 
with on-line Lycal 93HS injection. A number of ash spheres and spheroids are 
loosely sintered together through stretches of ferro-spheres and the other iron 
oxide rich phase (white), forming a porous, open-skeletal matrix. [Mag: x75]

Plate 4-57:
Optical photo-micrograph of a deposit sample from the Passage between Screen 
Tubes and Steam Generating tubes in boiler No.6 , with on-line Lycal 93HS 
injection. A porous area of matrix is shown to contain a range of angular iron 
oxide, iron spinel type crystals (white-light grey) within the matrix and around 
around the porosity holes, with much finer dendritic hematite crystals (white- 
light grey) scattered in the matrix. [Mag: xl25]
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Plate 4-58:
SEM-micrograph representing the outer and middle layers o f a  deposit sample 
from the Front Wall in boiler N o.5, without on-line Lycal 93HS injection. A 
highly porous, fully fused, continuous matrix is shown. The EDX-analysis 
shows an alumino-silicate rich matrix.
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Plate 4-59:
SEM-micrograph representing the inner layer of the Front Wall deposit sample 
in Plate 4-58. It shows a continuous siliceous matrix (dark/light grey) with 
some fracture lines and very limited crystallinity (dark grey) in the centre of 
the plate. The EDX-analyses show the phase compositions o f matrix and 
crystalline matter.
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Plate 4-60 is a micrograph typical of the structure associated with the rear wall 

deposit sample. It shows a fully molten ash network with an irregular distribution 

of porosity. The notable feature of this sample compared with a sample taken from 

the same region in boiler No . 6  with Lycal 93HS injection (see plate 4-42), is its 

continuity and physical uniformity. As a result of coalescence, the ash particles seem 

to have lost their original spherical shape.

Plate 4-61 is a micrograph of the rear arch deposit sample showing the discontinuous 

nature of the inner layer matrix (left hand side) and the relatively continuous matrix 

of the outer layer (right hand side). The limited bonding which evidently exists 

between the two layers suggests the discrete formation of these layers from each other 

compared to that of the front wall deposit sample in Plates 4-58 and 4-59.

Plate 4-62 is a micrograph of the outer layer from the rear arch sample showing 

a porous but continuous matrix, containing distributions of two precipitated 

crystalline phases. These latter phases are shown in more detail in Plate 4-63 where 

they are seen to take the form of laths (light grey) and dendritic crystals of ferriferous 

type precipitate (white) within the matrix phase (dark grey).

Plate 4-64 is a micrograph typical of the structure associated with the steam 

generating tube deposit sample. It shows a molten lattice network with extensive 

porosity. The EDX- analysis illustrates the ferriferous nature of the matrix of this 

deposit.

Plate 4-65 is a micrograph of the steam generating tube sample. It shows a 

porous, fully fused matrix (light grey) with some residual spherical ash particles 

lodged in the pores at the outer boundary of the sample. A distribution of fine 

precipitates (white) can also be seen throughout the matrix.
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Plate 4-60:
SEM-micrograph of a deposit sample from the Rear Wail in boiler No.5 ,without 
on-line Lycal 93HS injection. It shows a fully fused, highly siliceous, porous 
matrix. The EDX-analysis was similar to that of Plate 4-59.

Plate 4-61:
Optical photo-micrograph of the inner layer of a deposit sample from the 
Rear Wall in boiler No.5, without on-line Lycal 93HS injection. The 
discontinuous inner layer (LHS) is in contrast to the continuous, porous 
outer layer (RHS). [Mag: xl3]
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Plate 4-62:
Optical photo-micrograph of the outer layer of a deposit sample from the Rear 
Arch in boiler No.5, without on-line Lycal 93HS injection. It shows a porous 
(black/dark grey), continuous matrix (light grey) containing two precipitated 
crystalline phases (white and light grey). [Mag: x25]

Plate 4-63:
Higher magnification optical photo-micrograph of Plate 4-62, showing the iron 
oxide dendritic precipitates (white), and long and large mullite-like needles.

[Mag: xl25]
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Plate 4-64:
SEM-micrograph of a deposit sample from Steam Generating Tubes in boiler 
No.5, without on-line Lycal 93HS injection. It shows a highly porous, 
fully fused, continuous matrix. The EDX-analysis of the matrix shows a 
iron rich composition.
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Plate 4-66 is a BSE-image from the bottom screen tube deposit sample. The 

spherical shape of an ash particle, which has been fully incorporated into the rest of 

the matrix, is defined by a fine dispersion of iron oxide crystals around its 

boundary. The extent of the dispersion of iron oxide crystals in these deposits, is 

similar to the deposits taken from the same region within boiler No . 6  with Lycal 93HS 

injection.

Plate 4-67 is a higher magnification view of the iron oxide crystals and a cluster 

of dendrites. The angular shape of these crystals suggests that they have precipitated 

at temperatures before they had become softened and therefore the edges have not 

become rounded as would otherwise be expected.

Plate 4-68 is a micrograph of the screen tube deposit showing a uniformly fused 

matrix (light grey) with a number of pores (dark grey/black) and an extensive 

dispersion of iron oxide crystals (white). The continuity and the physical uniformity 

of this sample is in total contrast to those from boiler No. 6  with Lycal 93HS 

injection. This is evident when compared with Plates 4-53 to 4-56. However, the 

extent of iron oxide dispersion in these deposits is identical to those from the same 

region within boiler No.6 .

Plate 4-69 is a higher magnification view of angular cuboidal and irregularly 

shaped iron oxide crystals (white) as well as a dispersion of fine dendritic crystals 

of iron oxide as hematite (white). The EDX-analysis is identical to that in Plate 4-67.

4.2.4 (c) Comparison of Deposit Samples from Boilers No.5 and No . 6

The range of similarities and differences observed for the deposits from boilers No.5 

and No . 6  can be summarised as follows:

(a) For the range of post Lycal 93HS injection samples received from the upper and 

lower furnace regions within boiler No.6 ,the general matrix was of a discontinuous and

-PA G E 219-



Plate 4-65:
Optical photo-micrograph of a deposit sample from Steam Generating Tubes in 
boiler No.5, without on-line Lycal 93HS injection. It shows a porous, fused 
matrix (light grey) with some residual spherical ash panicles lodged at the 
outer boundaries of the matrix. Fine precipitates of iron oxide (white) crystals 
are dispersed throughout the matrix.

Plate 4-66:
SEM-micrograph of a deposit sample from Bottom Screen Tubes in boiler No.5, 
without on-line Lycal 93HS injection. It shows a spherical ash particle, 
outlined by a fine dispersion of euhedral and angular iron oxide or iron spinel 
crystals (light grey), fused into the rest of the matrix.
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Plate 4-67:
High magnification SEM-micrograph o f Plate 4-66, showing the euhedral and 
angular iron oxide or iron spinel type crystals. The EDX-anlaysis shows the 
composition of the crystalline phase.
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Plate 4-68:
Optical photo-micrograph of a deposit sample from Bottom Screen Tubes in 
boiler No.5, without on-line Lycal 93HS injection. It shows a porous, fully 
fused, continuous matrix (grey) with an extensive dispersion of particles 
(white/light grey) within the matrix. [Mag: x!2]

Plate 4-69:
High magnification optical photo-micrograph of Plate 4-68, showing the 
euhedral and angular crystalline iron oxide or iron spinel (light grey) and 
the pure iron oxide phase (white) as well as fine ferriferous dendrites.

[Mag: x6 6 ]
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highly porous alumino-silicate form. The limited samples collected from corresponding 

regions within boiler No.5 predominantly displayed a structure which had been fully 

molten, physically uniform and continuous siliceous matrix with limited cavities and 

pores.

(b) Whereas the deposit samples received from boiler No. 6  over the two years 

period of Lycal 93HS injection trials were predominantly "monolithic", the deposit 

samples collected from boiler No.5, particularly those from the lower furnace region 

were found to be of a "layered" structure with significant chemical and limited 

morphological variation across the layers.

(c) Despite apparent homogeneity of the samples, extensive variations in morphological 

and textural combinations were common place for the whole range of samples from 

both boilers No .6  and No.5. This was particulary significant for the upper furnace 

samples.

(d) Dispersion and segregation of ferriferous crystalline matter in the form of 

precipitates of angular particles as iron oxides or iron oxide - alumina spinel type 

cuboidal and dendritic crystalline matter were found to be prevalent. This was 

particularly significant in the case of upper-fumace deposit samples compared to the 

lower furnace samples from both boilers No .6  and No.5, where the iron oxide 

segregation at the surface boundary of spherical ash particles acted as bridges between 

these particles.

4.2.5 Determination and Study of Crvstallinitv of Deposits 

This study was primarily carried out in order to investigate the possible effects 

of Lycal 93HS on the crystallisation behaviour of the deposits formed on boiler tube 

surfaces. The crystalline mineral compounds present were determined by carrying out
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x-ray diffractometry on powdered samples of various deposits from boilers No.5 and 

No.6 . The previously obtained SEM-EDX analyses as well as the bulk chemical 

analyses of the samples previously obtained were utilised to assist in recognition of 

the crystalline phases present. The results are listed in Table 4-11.

4.3 SOFTENING CHARACTERISTICS OF DEPOSITS WITH AND WITHOUT 

ADDITIONS OF LYCAL 93HS

The softening behaviour of the deposit samples obtained from boiler No.6 , with 

on-line injection of Lycal, was investigated with and without further additions of Lycal 

93HS, as described in Section 3.3.4. Cones for testing were produced in two ways:

(a) "Fashioned" from as received deposit specimens,

(b) "Reconstituted" deposit specimens,

4.3.1 Cones "Fashioned" From As Received Deposit Specimens 

A series of samples were "fashioned" out of the bulk deposits in the form of 

cones as described in section 3.3.4(b). The results of the cone fusion tests 

carried out are presented in Table 4-12. With no further additions of Lycal 93HS 

into these deposits, the results simulate the softening behaviour of the fully formed 

as opposed to forming bulk deposits. It is evident from the results that the lower 

furnace deposit samples, i.e. front, rear arch and front, rear wall samples, have a 

more refractory nature, compared to the upper furnace bottom screen tube deposits 

and the deposits from the passage between screen tubes and superheaters. This would 

also be expected from the composition of the upper and lower furnace deposits in 

Table 4-2, with the former deposits having a much higher basic oxides content 

compared to the lower furnace deposits which are shown to have a higher acidic 

oxide content.
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Table 4-11: X-ray diffraction analysis of crystalline phases within deposits from 
batches No.2 and No.3, received from boiler No.6 .

Batch
No.

Side of 
Boiler

Deposit
Location

Text.
Type

Crystalline Phases

2 - FRONT ARCH - M, Mag, Her, (Cor)

2 - REAR ARCH - M, Her, Cor, U, (Cs.)

2 - FRONT WALL - M, (aCs.), U

2 - Btm. Sc. T. - M, H, W, (Cs., Sil)

2 - Pas.Sc.T&SupT - M, H, U

3 A FRONT WALL FI M, H, A, Cs., U

3 A FRONT WALL F2 M, H, A, Her, Cor, Cs., U

3 B FRONT WALL FI M, Her, U, (Cor, Cs.)

3 B FRONT WALL F2 H, Mag, Her, Ca.mAl, (aCs)

3 A REAR WALL FI M, H, A, aCs., U, (Ca.mAl)

3 A REAR WALL F2 M, H, Her, Cs., U

3 B REAR WALL FI M, H, A, aCs., Ca.mAl., U

3 B REAR WALL F2 M, H, Cs., U, (Ca.mAl.)

3 A SIDE WALL FI M, H, (ceCs.,A)

3 B SIDE WALL FI M, H, A, W, Mag, Cor, Cs., U

3 A Btm. Sc. T. FI M, H, A, W, Cs, Her, U, (Cor)

3 B Btm. Sc. T. FI M, H, aCs., U

3 B Btm. Sc. T. F2 H, aCs., U

Note: The symbols for the crystalline phases identified are as follows:
M: Mullite, Mag: Magnetite, Her: Hercynite, Cor: corundum, Cs: Cristobalite 
H: Hematite, aCs: a-Cristobalite, W: Wustite, Sil: Sillimanite, A: Anhydrite, 
Ca.mAl: Calcium mono-Aluminate, U: Unknown.
The mineral phases in brackets could also be present as minor phases.

- PAGE 225 -



Table 4-12: Results of cone-fusion tests for "fashioned" cone pieces
of deposits from "second" batch received during the course
of Lycal 93HS additive treatment on boiler No.6.

DEPOSIT
SPECIFICATION

SOFTENING TEMPERATURE (°C)

IDT ST HT FT

FRONT ARCH 1435 >1450 - -

REAR ARCH 1384 >1450 - -

FRONT WALL 1385 >1450 - -

Btm. Sc.T 1355 1374 1394 1411

Pas. Sc.T & Sup.T 1345 1382 1428 1440

Note: All of the softening temperature values presented for each location 
in this and other tables are average values for two samples tested 
from each location, with a maximum variation of +10°C.

Table 4-13: Results of cone-fusion tests for cones produced from 
"Reconstituted" deposit samples from the "second" 
batch received during the course of Lycal 93HS 
additive treatment from boiler No.6 .

DEPOSIT
SPECIFICATION

SOFTENING TEMPERATURE (°C)

IDT ST HT FT

FRONT ARCH 1311 1395 >1450 -

REAR ARCH 1420 >1450 - -

FRONT WALL 1430 >1450 - -

Btm. Sc.T 1309 1385 1413 1446

Pas. Sc.T & Sup.T 1292 1312 1354 1436
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4.3.2 Cones Produced From "Reconstituted" Deposit Specimens 

Additional pieces taken from identical regions within the deposits used to produce 

the "fashioned" cones were crushed into powder form as described in Section 

3.3.4(b) and were made into cones using the brass mould illustrated in Plate 3-1 and 

Plate 3-2. These are referred to as "reconstituted" samples and are intended to 

simulate the process of formation of the thick agglomerates as the coal fly ash sticks 

onto the surface of boiler tubes and then undergoes sintering and fusion to form 

finally the coalesced bulk of the coal ash deposits. Table 4-13 presents the results 

of fusion tests carried out on the "reconstituted" samples from the second batch of 

deposits, on an as received basis without any further additions of Lycal 93HS. Like 

the previous results in Table 4-13, the lower furnace deposit samples were found 

to have higher softening temperatures than the upper furnace deposits. On 

comparison of the results in Tables 4-12 and 4-13, it is evident that the 

reconstituted lower furnace samples had higher softening temperatures and the 

upper furnace samples had lower softening temperatures compared to the

corresponding fashioned samples. This identifies the significance of the

morphological variation of the various coal ash particles in the make up of deposits 

in terms of their softening characteristics.

Table 4-14 presents the results of similar fusion tests performed on 

"reconstituted" samples of the two type of friable deposits, "FI" and "F2" found 

within the third batch and the clinker sample from boiler No.6 .

The softening temperatures for all the samples were higher for the "FI" type of 

samples than the "F2". It is further evident that whereas the "FI" type deposits did 

not assume the fluidity state range, the "F2" type samples formed fluid melts within 

the experimental temperature range. In addition the "FI" type samples taken from
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Table 4-14: Results of cone-fusion tests for the "reconstituted" cones of the two 
"friable" samples namely FI and F2 received in the "third" batch 
of deposits from boiler No.6 .

DEPOSIT
SPECIFICATION

BOILER
SIDE

TEXT.
TYPE

SOFTENING TEMPERATURE (°C)

IDT ST HT FT

FRONT WALL A F I 1406 1440 >1450 -

FRONT WALL B FI 1380 1393 >1450 -

FRONT WALL A F2 1338 - 1366 1420

FRONT WALL B F2 1350 - 1380 >1450

REAR WALL A F I 1358 1406 1446 >1450

REAR WALL B FI 1351 1368 1416 >1450

REAR WALL A F2 1320 1363 1395 1428

REAR WALL B F2 1325 1344 1378 1422

SIDE WALL A FI 1375 1418 >1450 -

SIDE WALL B FI 1358 1415 >1450 -

Btm. Sc.T A FI 1354 1386 1419 >1450

Btm. Sc.T B FI 1372 1383 1450 >1450

Btm. Sc.T B F2 1320 1350 1386 1402

Btm. Clink. - - 1436 >1450 - -
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side "A" of the lower furnace region, where Lycal 93HS injection was unhindered, 

displayed higher softening temperatures than those samples taken from side "B" 

where temporary blockage of Lycal 93HS injection ports had occurred. This trend 

was reversed in the case of "F2" type deposit samples.

4.3.3 Effect of Additional Lvcal 93HS on the Softening Behaviour of Deposits 

The effect of adding 2 and 8  mass% Lycal 93HS on the softening and fusion 

behaviour of deposits was investigated for samples from the first batch received from 

boiler No.6 . These samples were received prior to the commencement of the course of 

Lycal 93HS injection. The results of these experiments are tabulated in Table 4-15 and 

presented grahically in Figure 4-4. Additions of Lycal 93HS are shown to decrease the 

softening temperatures for the lower furnace deposit samples whereas for the upper 

furnace samples, the softening temperatures show an increase on further additions of 

Lycal at 8  mass%.

Further cone fusion tests were carried out on reconstituted cone samples to which a 

single addition of 3 mass% Lycal 93HS had been made. The two "friable” types 

of textures, namely "FI" and "F2", found within the third batch of deposits received 

from boiler No.6  were considered for this experiment. The results of this study 

are shown in Table 4-16, with the variation in the extent of the fluxing effect of 

Lycal 93HS further depicted in Figure 4-5. On comparison of the results from Tables 

4-14 and 4-16, it is evident that the softening temperatures of the "FI" type deposit 

samples were significantly reduced but the reduction in the softening temperature 

of the "F2" type samples was relatively restrained.
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deposit samples from the "first" sample batch received, 
investigating the effect of laboratory additions of Lycal 93HS 
on the softening behaviour of deposits from boiler No .6  

prior to injection of Lycal 93HS.

DEPOSIT
SPECIFICATION

LYCAL
ADDITION

(mass%)

SOFTENING TEMPERATURE (°Q

IDT ST HT FT

CORNER 0 1335 1365 1372 1418

CORNER 2 1293 1310 1320 1342

CORNER 8 1262 1284 1303 1340

REAR WALL 0 1330 1352 1363 1392

REAR WALL 2 1246 1269 1318 1380

REAR WALL 8 1223 1260 1325 1399

Btm. Sc.T 0 1315 >1450 - -

Btm. Sc.T 2 1297 1395 >1450 -

Btm. Sc.T 8 1345 >1450 - -

Pas.Sc.T & Sup.T 0 1315 1345 1364 1397

Pas.Sc.T & Sup.T 2 1256 1319 1369 1415

Pas.Sc.T & Sup.T 8 1301 1329 1368 1430
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Figure 4-4: Effect of Lycal 93HS on the softening characteristics of the lower furnace 
"Rear wall” deposit samples from the first batch of deposits before on
line injection of Lycal.
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Table 4-16: Results of cone-fusion tests for the "Reconstituted" cone samples of FI and 
F2 type of deposits for selected deposits from the "third" sample batch, 
investigating the effect of 3 mass% additional Lycal 93 HS.

DEPOSIT
SPECIFICATION

BOILER
SIDE

TEXT.
TYPE

SOFTENING TEMPERATURE (°Q

IDT ST H T FT

FRONT WALL A FI 1314 1382 1444 >1450

FRONT WALL B FI 1322 - 1385 >1450

FRONT WALL A F2 1310 - 1363 1446

FRONT WALL B F2 1324 - 1375 1443

REAR WALL A FI 1324 - 1403 >1450

REAR WALL B FI 1325 - 1385 1429

REAR WALL A F2 1321 1360 1343 1433

REAR WALL B F2 1319 - 1345 1420
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Figure 4-5: Effect of 3 mass% Lycal 93HS addition on the softening 
characteristics of the " F I"  and "F2" type " Rear wall" 
deposit samples received from the (i) A-side (normal 
injection) and (ii) B-side (reduced injection) of boiler N o.6 .
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4.3.4 Heat Treatment of Selected Deposits Under Controlled Conditions

The two "friable" types of deposit sample," FI" and "F2", were investigated in 

this experiment. The samples were heat treated as described in Section 3.3.5.

A total of eighteen samples, nine of each type, were tested over a range of 

temperatures and time periods. The results of this study are tabulated in Table 4-17. 

It is evident that the "FI" type deposit samples were physically unaltered even 

after 60 minutes of heat treatment at 1275°C. After 60 minutes of heating at 1350°C, 

the sample was found to be in a molten state. The "F2" samples however experienced 

a partial physical deformation after just 10 minutes of heat treatment at 1200°C with 

more extensive melting at longer intervals and higher temperatures.

4.4 DEPOSITION PROBE SAMPLING OF THE COAL FLY ASH

The retention of coal fly ash as well as simultaneous involvement of injected 

Lycal 93HS within the upper furnace region of boiler No .6  was investigated through 

a series of short run residential tests, using an air cooled deposition probe.

The probe was inserted at the vicinity of the bottom screen tubes, where fly ash 

deposition was of particular importance to the boiler operators at the power station. 

The probe used in this study, has been previously described in Section 3.3.7 and 

Figure 3-8 and is shown in action in Plate 3-3.

4.4.1 Chemical Analysis of the Collected Fly Ash

Table 4-18 gives the chemical composition of the thin layer (i.e. l-2mm) of fly ash 

collected after twelve hours of exposure with and without injection of Lycal 93HS into 

the boiler. In addition to various boiler conditions and parameters which were 

recorded during the tests (see Table 3-5), samples of stack emissions were also 

collected and the results of their analyses are presented in Table 4-18. It is clearly
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boiler No.6.

DEPOSIT
ORIGIN

TYPE OF 
TEXTURE

FIRING TEMP 
(°Q

FIRING TIME 
(min.)

OBSERVATION

FRONT WALL FI 1200 10 No change

FRONT WALL FI 1200 30 No change

FRONT WALL FI 1200 60 No change

FRONT WALL FI 1275 10 No change

FRONT WALL FI 1275 30 No change

FRONT WALL FI 1275 60 No change

FRONT WALL FI 1350 10 Partial melting of larger 
spheres. No change in the 
smaller spheres

FRONT WALL FI 1350 30 Extensive necking between 
spheres. Formation of a 
glassy melt

FRONT WALL FI 1350 60 Complete melting of larger 
spheres partial melting of 
smaller spheres 
Formation of a glassy melt

FRONT WALL F2 1200 10 Deformation of larger 
spheres

FRONT WALL F2 1200 30 Partial melting and restricted 
fusion of ash spheres and 
cenospheres

FRONT WALL F2 1200 60 Further fusion of ash 
spheres,dissolution of outer 
dust layer into the matrix

FRONT WALL F2 1275 10 Restricted surface melting of 
some ash spheres and 
cenospheres

FRONT WALL F2 1275 30 Extensive melting of matrix 
with local formation of pits

FRONT WALL F2 1275 60 Extensive melting/fusion to 
form a thick layer with local 
pitting

FRONT WALL F2 1350 10 Complete melting of surface- 
glassy melt with pitting & 
porosity holes

FRONT WALL F2 1350 30 Complete melting-flow of a 
glassy,porous melt-wetting of 
the surface

FRONT WALL F2 1350 60 Extensive melting-flow of a 
glassy porous melt-wetting of 
the surface
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the test probe after twelve hours of exposure with and without injection 
of Lycal 93HS on boiler No.6 .

SIDE OF 
BOTUR/

SAMPLING COMPOUND MASS PERCENTAGE (%)

+/-LYC. AREA
Si02 AI2O3 Ti0 2 FejOj CaO MgO k2o p2o 5 S 03

A/+ Btm. Sc.T 29.82 19.91 1.01 24.92 3.56 5.76 2.69 6.91 5.41

A/- Btm. Sc.T 34.59 23.29 1.06 28.94 3.59 1.58 2.24 3.17 1.62

+ STACK 43.04 27.80 1.16 14.90 3.91 3.80 2.30 2.45 0.95

- STACK 42.42 29.24 1.14 13.50 3.46 1.25 3.14 3.90 1.17

Note: The stack analysis is included as a reference to the comparative effect of 
Lycal 93HS on the effluent ash burden being discharged with and without 
injection of Lycal 93HS into the boiler.
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evident from this table that the amount of MgO in the bottom screen tube deposit has 

increased by almost four fold when Lycal 93HS was being injected into the boiler. 

Also noticeable are the three and two fold increases in the S03 and P20 5 contents 

respectively.

4.4.2 Determination of Deposition Rate

The rate of fly ash depositing on the surface of the probe was evaluated in a series 

of tests carried out over a period of one, two, four and twelve hours with and without 

on-line injection of Lycal 93HS. Table 4-19 and Figure 4-6 show the results of the 

deposition rate determinations.

4.5 THE SURFACE-LEACHING OF DEPOSIT SAMPLES

A range of deposit samples from sample batches 2 to 6 , with and without Lycal 93HS 

injection, were selected for this series of experiments as described in Section 3.3.6. 

The results of these experiments have been presented in Tables 4-20 to 4-42. 

Comparative analyses of the surface chemistry of the deposits, in terms of three 

oxides, namely Si02, Fe20 3 and MgO has further been depicted in Figures 4-7 to 4-13 

for deposits with and without Lycal 93HS injection, received or collected from the 

same areas within boilers No . 6  and No.5 respectively.

Figure 4-7 presents the results of surface leaching for the three nominated oxides, Si02, 

F e ^  and MgO, from front wall deposits taken from Tables 4-20, 4-21 and 4-22 for 

the samples with Lycal injection and the single set of results taken from Table 4-23 

for the corresponding sampling position within boiler No.5 without Lycal injection. 

Figure 4-8 presents the results for the rear wall deposits taken from Tables 4-24 and 

4-25 for the with and without Lycal injection samples respectively.
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Screen Tubes” in boiler No.b, witn ana wiuiuui uu-uuc 
injection of Lycal 93HS.

BOILER No . 6

Exposure Run Lycal 93HS Mass of Fly Ash
Period (hr.) No. Injection Collected (g)

1 1 ON 0.165

1 ON 0.406
2 2 ON 0.389

3 ON 0.440
4 OFF 0.494

1 ON 0.581
4 2 ON 0.329

3 ON 0.629

1 2 1 ON 0.671
2 OFF 0.969
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figure 4-6: Comparison of probe deposition rates before the "Bottom screen tubes 
with and without on-line injection of Lycal 93HS in boiler N o.6 .
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Figure 4-7: Determination of HF-solubility rates for (a) [SiOJ, (b) [Fe2 0 3] and 
(c) [MgO] concentrations for the "front wall" samples from boilers 
No.5 and No . 6  without and with on-line injection of Lycal 93HS 
respectively.
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received in the "second" batch of samples from boiler No.6 with on-line
injection of Lycal 93HS.

FRONT WALL

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 7.7 3.59 0.19 0.07 2.7 1.61

2 5.0 7.6 3.52 0.18 0.07 2 . 6 1.54

3 15.0 9.1 4.26 0.23 0.07 2.5 1.54

4 30.0 10.9 5.05 0.30 0.13 2.7 1.61

5 60.0 14.6 6.78 0.59 0 . 2 0 2 . 8 1 .6 8

6 1 2 0 .0 19.8 9.24 0.97 0.34 2.7 1.61

7 180.0 25.3 11.77 0.85 0.27 2 . 8 1 .6 8

8 240.0 29.4 13.70 1 .0 0 0.34 2 . 8 1 .6 8

9 300.0 33.5 15.63 1 .2 0 0.40 2 . 8 1 .6 8
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in the "third" batch of samples from boiler No.6 with on-line injection oi
Lycal 93HS.

FRONT WALL

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

F e A
(mg/L)

Mg
(mg/L)

MgO 
(mg/L)

1 1 .0 3.0 1.40 0 .1 0.07 0.4 0.27

2 5.0 3.5 1 .6 6 0 .2 0.07 0.3 0 .2 0

3 15.0 6.5 3.06 0.4 0.13 0.5 0.34

4 30.0 14.0 6.52 0.7 0.27 0.7 0.40

5 60.0 24.0 11.17 1.3 0.47 1 .0 0.60

6 1 2 0 .0 38.0 17.69 2 .0 0.74 1.5 0.94

7 180.0 55.0 25.67 2 .8 1 .0 1 2 . 0 1 .2 1

8 240.0 58.0 27.07 3.1 1.08 2 . 2 1.34

9 300.0 6 8 .0 31.72 3.4 1 .2 1 2.4 1.47

Note: The deposit analysed was a "Front wall" deposit but it is representative of this type 
of deposits taken from other locations within the boiler.
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received in the "fourth" batch of samples from boiler No.6 with on-line
injection of Lycal 93HS.

FRONT WALL

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 4.7 2.19 0.18 0.07 3.0 1.81

2 5.0 4.9 2.26 0.07 0 .0 2 3.0 1.81

3 ' 15.0 6.7 3.13 0.39 0.13 3.0 1.81

4 30.0 9.4 4.39 0.41 0.13 3.1 1 .8 8

5 60.0 16.1 7.51 0.85 0.34 3.3 2 .0 1

6 1 2 0 .0 29.1 13.57 1.5 0.54 3.5 2.08

7 180.0 39.9 18.62 2 . 0 0.74 3.6 2 .2 1

8 240.0 46.8 21.81 2.3 0.81 3.6 2 .2 1

9 300.0 54.2 25.27 2.5 0.87 3.8 2.28

10 360.0 55.8 26.00 2.5 0.87 3.7 2.28
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in the "fifth" batch of samples from boiler No.5 without any injection of
Lycal 93HS.

FRONT WALL

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

S i02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 <2.5 < 1 .2 0 0 . 6 0 .2 0 1 .0 0.60

2 5.0 <2.5 < 1 .2 0 1 .0 0.34 1 .2 0.74

3 15.0 < 2 .5 < 1 .2 0 1 .1 0.40 2.4 1.47

4 30.0 < 2.5 < 1 .2 0 1.3 0.47 3.0 1.81

5 60.0 <2.5 < 1 .2 0 1.4 0.47 3.6 2 .2 1

6 1 2 0 .0 7.5 3.52 3.3 1.14 4.6 2.81

7 180.0 9.5 4.46 1.9 0.67 5.1 3.08

8 240.0 13.0 6.05 2 . 0 0.74 5.3 3.22

9 300.0 15.5 7.25 2.3 0.81 5.5 3.35

Note: This was a layered sample which was found to contain large quantities of MgO 
and Cr20 3 > 2 0 % .
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Figure 4-8: Determination of HF-solubility rates for (a) [SiOJ, (b) [F ^ C y  and 
(c) [MgO] concentrations for the "rear wall" deposit samples from 
boilers No.5 and No.6 , without and with injection of Lycal 93HS 
respectively.
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in the "fourth” batch of samples from boiler jnu.o wim on-une mjeuium ui
Lycal 93HS.

REAR WALL

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 7.0 3.26 0.7 0.27 0.5 0.34

2 5.0 1 1 .0 5.12 1 .1 0.40 0.7 0.40

3 15.0 13.0 6.05 1.9 0.67 1 .1 0.67

4 30.0 48.0 22.41 5.3 1 .8 8 2 . 1 1.27

5 60.0 57.0 26.60 6.3 2 .2 2 2.4 1.47

6 1 2 0 .0 64.0 29.86 6 .8 2.42 2.9 1.74

7 180.0 79.0 36.84 8 .0 2.82 3.4 2.08

8 240.0 74.0 34.51 8 .0 2.82 3.4 2.08

9 300.0 79.0 36.84 8.3 2.96 3.6 2 .2 1

10 360.0 81.0 37.77 8.5 3.02 3.7 2 .2 1
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in the "fifth" batch of samples from boiler No.5 without any injection or
Lycal 93HS.

REAR WALL

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 3.4 1.60 0.80 0.27 2 . 6 1.61

2 5.0 3.8 1.80 0.27 0.07 2 . 8 1 .6 8

3 15.0 4.0 1 .8 6 0.18 0.07 3.0 1.81

4 30.0 4.8 2.26 0.32 0.13 2.9 1.74

5 60.0 6 . 2 2 .8 6 0.27 0.07 3.0 1.81

6 1 2 0 .0 8.7 4.06 0.42 0.13 3.2 1.94

7 180.0 11.7 5.45 0.60 0 . 2 0 3.3 2 .0 1

8 240.0 13.5 6.32 0.85 0.27 3.2 1.94

9 300.0 15.6 7.25 0.72 0.27 3.4 2.08

10 360.0 16.8 10.64 0.81 0.27 3.3 2 .0 1
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4-27 for the with and without Lycal 93HS injection samples respectively.

Figure 4-10 presents the results for the bottom screen tubes deposit taken from 

Tables 4-28, 4-29, 4-30 and 4-31 for the samples with Lycal 93HS injection and 

the single set of results taken from Table 4-32 corresponding to values for the sample 

without Lycal 93HS injection from boiler No.5.

Figure 4-11 presents the results for the economiser ash hopper medium size 

particulate samples (-500/zm +63jim) taken from Table 4-33 for the samples with 

Lycal injection and Table 4-34 is the corresponding values for the samples without 

Lycal 93HS injection from boiler No.5.

Figure 4-12 presents the result for the grit arrestor medium size particulate samples 

(-500jLtm +63/xm) taken from Table 4-35 for the samples with Lycal 93HS injection 

and Table 4-36 is the corresponding results for the samples without Lycal 

injection from boiler No.5.

Figure 4-13 presents the result for the grit arrestor fine size particulate samples 

(-45jLtm) taken from Table 4-37 and Table 4-38 for the samples with and without 

Lycal 93HS injection respectively. The relatively higher concentration values 

obtained for the particulate grit arrestor and economiser ash hopper samples compared 

to the values obtained for the bulk deposit samples is due to the larger surface area 

of the samples being available for surface leaching in the HF-solutions.

Tables 4-39 to 4-42 represent the results for those samples which were received or 

collected from dissimilar areas within boilers No . 6  and No.5 and as such are only 

presented in the tabular form.

Comparative analysis of the corresponding results for the samples from boilers No . 6  

and No.5 show that:
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Figure 4-9: Determination of HF-solubility rates for (a) [SiOJ, (b) and
(c) [MgO] concentrations for the "side wall" deposit samples from 
boilers No.5 and No.6 , without and with on-line injection o f Lycal 93HS 
respectively.
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in the "third" batch of samples from boiler No.6 with on-line injection 01
Lycal 93HS.

SIDE WALL

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

S i0 2
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO 
(mg/L)

1 1 .0 1 1 .2 5.25 0.56 0 . 2 0 3.4 2.08

2 5.0 5.5 2.59 0.37 0.13 3.3 2 .0 1

3 15.0 7.1 3.33 0.27 0.07 3.4 2.08

4 30.0 1 0 .8 5.05 0.53 0 .2 0 3.5 2.14

5 60.0 17.9 8.38 1 .1 0.40 3.6 2 .2 1

6 1 2 0 .0 32.9 15.36 2 . 0 0.74 3.9 2.35

7 180.0 45.2 21.08 2.9 1 .0 1 4.0 2.41

8 240.0 54.7 25.54 3.4 1 .2 1 4.1 2.48

9 300.0 64.7 30.19 4.1 1.48 4.4 2 . 6 8

Note: The deposit analysed was a "side wall" deposit but it is representative of this type of 
deposits taken from other locations within the boiler.
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in the "fifth" batch of samples from boiler No.5 without any injection 01
Lycal 93HS.

SIDE WALL

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe 
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 7.2 3.39 0.82 0.27 0.39 0 .2 0

2 5.0 5.4 2.53 0.54 0 . 2 0 0.48 0.27

3 15.0 13.3 6.18 0.94 0.34 1 .0 0 0.60

4 30.0 24.9 11.64 1.60 0.60 1.50 0.94

5 60.0 50.4 23.47 2.80 1 .0 1 2.60 1.61

6 1 2 0 .0 83.2 38.77 4.50 1.61 3.80 2.28

7 180.0 1 1 0 .6 51.60 5.90 2.15 4.70 2 .8 8

8 240.0 119.3 55.66 6.40 2.28 4.90 2.95

9 300.0 130.5 60.85 7.20 2.55 5.60 3.42

1 0 360.0 135.9 63.37 7.30 2.62 5.40 3.28
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Figure 4-10: Determination of HF-solubility rates for (a) [SiOJ, (b) and
(c) [MgO] concentrations for the "bottom screen tubes" deposit sample 
from boilers No.5 and No.6, without and with on-line injection of 
Lycal 93HS respectively.

-PA G E 2 52-



received in the "second" batch of samples from boiler No.6 with on-line
injection of Lycal 93HS.

BOTTOM SCREEN TUBES

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si0 2
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg 
(mg/L)

MgO
(mg/L)

1 1 .0 4.7 2.19 0.37 0.13 3.6 2 .2 1

2 5.0 5.0 2.33 0.40 0.13 3.8 2.28

3 15.0 5.9 2.73 0.34 0.13 4.4 2 .6 8

4 30.0 8 .0 3.72 0.42 0.13 4.3 2.61

5 60.0 12.7 5.92 0.69 0.27 4.6 2.81

6 1 2 0 .0 20.9 9.78 1.3 0.47 4.7 2 .8 8

7 180.0 30.4 14.16 1.7 0.60 4.8 2 .8 8

8 240.0 38.4 17.89 2 . 1 0.74 4.7 2 .8 8

9 300.0 50.7 23.61 2.9 1 .0 1 5.4 3.28

10 360.0 49.8 23.21 2.9 1 .0 1 4.8 2 .8 8
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received in the "third” batch of samples from boiler No.6 with on-line
injection of Lycal 93HS.

BOTTOM SCREEN TUBES

Solut.
No.

Leach. Time 
(min.)

Si
(mg/L)

S i0 2
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 6 .1 2 . 8 6 0.60 0 .2 0 3.3 2 .0 1

2 5.0 7.1 3.33 1 .1 0.40 3.2 1.94

3 15.0 10.5 4.92 0.57 0 .2 0 3.3 2 .0 1

4 30.0 18.6 8.65 1 .1 0.40 3.6 2 .2 1

5 60.0 33.8 15.76 2 . 0 0.67 3.9 2.35

6 1 2 0 .0 57.2 26.67 3.6 1.28 4.0 2.41

7 180.0 75.7 35.31 5.1 1.81 4.3 2.61

8 240.0 118.0 55.00 7.9 2.76 6 .1 3.69

9 300.0 104.0 48.48 7.2 2.55 4.9 2.95

10 360.0 125.0 58.25 8.5 3.02 5.7 3.48

Note: The deposit analysed was a "Bottom screen tubes" deposit but it is representative of 
this type of deposits taken from other locations within the boiler.
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in the "third11 batch of samples from boiler No.6 with on-line injection of
Lycal 93HS.

BOTTOM  SCREEN TUBES

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3 

(mg/L)
Mg

(mg/L)
MgO

(mg/L)

1 1 .0 < 2.5 < 1 .2 0 0 .2 0.07 0 . 2 0.13

2 5.0 2.5 1 .2 0 0 .2 0.07 0 . 2 0.13

3 15.0 4.0 1 .8 6 0.3 0.13 0 . 2 0.13

4 30.0 8 .0 3.72 0.5 0 . 2 0 0.3 0 . 2 0

5 60.0 1 2 .0 5.85 1 .0 0.34 0 . 6 0.34

6 1 2 0 .0 2 2 . 0 10.24 1 .8 0.60 1 .1 0.67

7 180.0 27.0 12.83 2.7 0.94 1 .6 1 .0 1

8 240.0 35.0 16.29 3.6 1.28 2 . 1 1.27

9 300.0 38.0 17.69 4.2 1.48 2.5 1.54

Note: The deposit analysed was a "Bottom screen tubes" deposit but it is representative of 
this type of deposits taken from other locations within the boiler.
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sample received in tne "iourur oaten or samples irom oouer jn o .o  wim
on-line injection of Lycal 93HS.

BOTTOM SCREEN TUBES

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

FejC^
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 5.0 2.33 0.3 0.13 0 . 6 0.34

2 5.0 2 .0 0.93 0 . 1 0.03 1.3 0.80

3 15.0 2.5 1 .2 0 0 . 2 0.07 2 . 6 1.61

4 30.0 3.5 1 .6 6 0 . 2 0.07 3.7 2.28

5 60.0 7.0 3.26 0.4 0.13 4.7 2 .8 8

6 1 2 0 .0 1 2 .0 5.59 0 . 6 0 . 2 0 6 . 2 3.75

7 180.0 18.0 8.38 0 . 8 0.27 7.4 4.49

8 240.0 2 2 .0 10.24 1 .0 0.34 7.8 4.76

9 300.0 25.0 11.64 1 .2 0.40 8.3 5.03

10 360.0 28.0 13.03 1.3 0.47 8.5 5.16
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sample collected in the "fifth” batch of samples from boiler No.5 without any 
injection of Lycal 93HS.

BOTTOM SCREEN TUBES

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 <2.5 < 1 .2 0 0.50 0 .2 0 0.30 0 . 2 0

2 5.0 < 2.5 < 1 .2 0 1.30 0.47 0 . 1 0 0.07

3 15.0 <2.5 < 1 .2 0 1.40 0.47 0 . 1 0 0.07

4 30.0 <2.5 < 1 .2 0 1.60 0.54 0.50 0.34

5 60.0 7.5 3.52 2.30 0.81 0.30 0 . 2 0

6 1 2 0 .0 1 2 .0 5.59 3.40 1 .2 1 0.45 0.27

7 180.0 16.0 7.45 3.50 1 .2 1 0.60 0.34

8 240.0 22.5 10.51 4.70 1 .6 8 0.80 0.47

9 300.0 26.0 1 2 .1 0 4.40 1.55 1 .0 0 0.60
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Figure 4-11: Determination of HF-solubility rates for (a) [SiOJ, (b) P ^ C y  and 
(c) [MgO] concentrations for "economiser ash hopper" medium size 
particulate samples (-500/tm +63jnm) from boiler N o.6 with and 
without on-line injection of Lycal 93HS.
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"Economiser ash hopper" sample collected in the "fifth" batch of samples
from boiler No.6 with on-line injection of Lycal 93HS.

ECONOMISER ASH HOPPERS

Solut.
No.

Leach. Time 
(min.)

Si 
(mg/L)

S i02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 1 1 .8 5.52 0.9 0.34 3.7 2.28

2 5.0 1 0 .6 4.92 1.4 0.47 4.0 2.41

3 15.0 22.4 10.44 5.3 1 .8 8 5.3 3.22

4 30.0 22.3 10.37 5.7 2 .0 2 5.2 3.15

5 60.0 36.3 16.96 1 0 .8 3.83 6.7 4.09

6 1 2 0 .0 57.6 26.87 19.4 6.85 8.9 5.43

7 180.0 73.4 34.25 26.4 9.34 10.5 6.37

8 240.0 81.9 38.17 30.5 10.75 11.4 6.90

9 300.0 83.9 39.10 32.1 11.29 11.7 7.10

10 360.0 92.3 43.03 35.4 12.50 12.7 7.71

Note: This sample was collected during the deposition probe studies.
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"Economiser ash hopper"sample collected in the "fifth" batch of samples
from boiler No.6 without injection of Lycal 93HS.

ECONOMISER ASH HOPPERS

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 43.3 2 0 .2 2 21.5 7.73 5.8 3.55

2 5.0 40.4 18.82 2 0 . 0 7.19 5.6 3.42

3 15.0 60.4 28.20 26.8 9.61 8.3 5.03

4 30.0 91.5 42.69 35.9 12.90 11.3 6.83

5 60.0 104.0 48.48 41.1 14.78 12.5 7.57

6 1 2 0 .0 117.7 54.86 46.9 16.87 13.2 7.97

7 180.0 131.2 61.18 51.6 18.55 13.9 8.44

8 240.0 139.6 65.10 54.3 19.49 13.9 8.44

9 300.0 133.9 62.44 53.3 19.15 13.4 8 .1 1

10 360.0 142.2 66.30 55.8 20.03 13.5 8.17

Note: This sample was collected during the deposition probe studies.

-PAGE 260-



o  —Lycal 93H S(batch  5)
40.0

zo
F= 30.0 
t r
z
LUO 20.0zoo
o
W 10.0

300120 240 3600 60 180
LEACHING TIME (min.)

20.0

■ +Lycal 93H S(batch  5) 
□ —Lycal 93H S(batch  5)

E 15.0

cc.
10.0

UJ

5.0

240 300 360120 180600
LEACHING TIME (min.)

12.0
♦  +Lycal 93H S (bstch  5) 
o —Lycal 93H S(batch 5)10.0

E
8.0zo

t—<c
cc(—z 6.0
LUOzoo 4.0
o

2.0

180 240 300 3600 60 1 2 0
LEACHING TIME (min.)

Figure 4-12: Determination of HF-solubility rates for (a) [SiOJ, (b) [ F e ^ ]  and 
(c) [MgO] concentrations for the ”grit arrester” medium size particulate 
samples (-500/im +63/xm) from boiler No.6 , with and without on-line 
injection of Lycal 93HS.
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"Grit arrestor" sample collected in the "fifth" batch of samples from boiler
No. 6 with on-line injection of Lycal 93HS.

GRIT ARRESTORS

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

S i0 2
(mg/L)

Fe
(mg/L)

F e A
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 1 2 .1 5.65 2.5 0.87 6 . 0 3.62

2 5.0 1 1 .1 5.19 2 .1 0.74 6.4 3.89

3 15.0 2 1 .1 9.84 5.1 1.81 1 0 .6 6.43

4 30.0 32.8 15.30 8 .2 2.89 12.3 7.44

5 60.0 44.9 20.95 11.7 4.10 13.4 8 .1 1

6 1 2 0 .0 63.9 29.79 17.9 6.32 14.9 9.05

7 180.0 74.2 34.58 2 2 . 0 7.73 15.3 9.25

8 240.0 82.4 38.44 25.1 8.87 15.5 9.38

9 300.0 90.6 42.23 28.2 9.95 15.8 9.58

Note: This sample was collected during the deposition probe tests.
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"Grit arrestor" sample collected in the "fifth" batch of samples from boiler
No. 6 without injection of Lycal 93HS.

GRIT ARRESTORS

Solut
No.

Leach. Time 
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 58.7 27.40 14.7 5.31 2 . 6 1.61

2 5.0 34.9 16.29 9.3 3.36 2 . 0 1 .2 1

3 15.0 28.4 13.23 9.1 3.29 2.5 - 1.54

4 30.0 34.8 16.23 1 2 .0 4.30 3.7 2.28

5 60.0 46.0 21.48 17.5 6.32 5.5 3.35

6 1 2 0 .0 67.6 31.52 27.7 9.95 8.4 5.09

7 180.0 81.1 37.84 34.5 12.36 1 0 .1 6 . 1 0

8 240.0 87.6 40.83 38.2 13.71 1 1 .0 6.70

9 300.0 93.6 43.62 41.7 14.99 11.7 7.10

10 360.0 97.9 45.62 44.1 15.86 1 2 .0 7.30

Note: This sample was collected during the deposition probe tests.
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Figure 4-13: Determination of HF-solubility rates for (a) [SiOJ, (b) [Fe2 0 3] and 
(c) [MgO] concentrations for the "grit arrester" fine size particulate 
samples (-45/xm) from boiler N o . 6  with and without on-line injection 
of Lycal 93HS.
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"Grit arrestor” sample collected in the "fifth" batch of samples from boiler
No.6 with on-line injection of Lycal 93HS.

GRIT ARRESTORS

Solut.
No.

Leach. Time 
(min.)

Si
(mg/L)

S i0 2
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 45.2 21.08 9.7 3.43 12.3 7.44

2 5.0 46.5 2 1 . 6 8 13.0 4.57 19.0 11.52

3 15.0 61.6 28.73 16.1 5.71 40.6 24.59

4 30.0 91.5 42.69 26.1 9.21 31.6 19.16

5 60.0 133.0 62.04 34.3 1 2 .1 0 33.7 20.44

6 1 2 0 .0 174.0 81.13 44.9 15.86 37.9 22.98

7 180.0 174.0 81.13 44.7 15.79 36.0 21.84

8 240.0 172.0 80.20 44.4 15.66 34.8 2 1 .1 1

9 300.0 172.0 80.20 45.3 15.99 34.6 20.97

1 0 360.0 180.0 83.92 48.1 16.93 34.5 20.90

Note: This was a sieve size fractioned sample collected on the pan (-45um).
The bulk sample was originally collected during the deposition probe tests.
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Table 4-38: Results of surface leaching analysis of "fine" size fractioned particulate 
"Grit arrestor"sample collected in the "fifth" batch of samples from boiler 
No . 6  without injection of Lycal 93HS.

GRIT ARRESTORS

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 9.1 4.26 1.4 0.47 3.2 1.94

2 5.0 9.6 4.46 1 .6 0.54 4.0 2.41

3 15.0 27.7 12.90 6.4 2.28 8.4 5.09

4 30.0 31.5 14.70 7.7 2.69 9.6 5.83

5 60.0 50.0 23.34 1 2 .8 4.50 1 1 .6 7.04

6 1 2 0 .0 80.8 37.71 22.3 7.86 14.0 8.51

7 180.0 89.1 41.56 25.4 8.94 14.8 8.98

8 240.0 96.1 44.82 28.4 1 0 .0 1 15.2 9.18

9 300.0 83.8 39.10 24.8 8.74 14.0 8.51

1 0 360.0 91.3 42.56 27.9 9.81 14.3 8.64

Note: This was a sieve size fractioned sample collected on the pan (-45) from the 
original bulk sample.
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Table 4-39: Results of surface leaching analysis of a "Passage between Screen Tubes & 
Superheaters" deposit sample received in the "second" batch of samples from 
boiler No . 6  with on-line injection of Lycal 93HS.

PASSAGE BETWEEN SCREEN TUBES & SUPERHEATERS

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 8 .2 3.79 0.35 0.13 3.7 2 .2 1

2 5.0 9.8 4.59 0.62 0 . 2 0 3.9 2.35

3 15.0 15.9 7.38 1 .0 0.34 4.3 2.61

4 30.0 24.9 11.64 1 .2 0.40 4.7 2 .8 8

5 60.0 41.5 19.35 2 . 2 0.81 5.2 3.15

6 1 2 0 .0 67.9 31.65 4.0 1.41 5.9 3.55

7 180.0 81.0 37.77 5.2 1.81 6 .0 3.62

8 240.0 92.6 43.16 6.4 2.28 6.4 3.89

9 300.0 105.0 48.94 7.6 2.69 7.4 4.49

1 0 360.0 118.0 55.00 9.0 3.16 7.6 4.62
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Table 4-40: Results of surface leaching analysis of a "Front Arch" deposit sample
collected in the "fifth" batch of samples from boiler No.5 without any
injection of Lycal 93HS.

FRONT ARCH

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 3.4 1.60 0.91 0.34 0.24 0.13

2 5.0 2 .1 1 .0 0 0.26 0.07 0 .1 0 0.06

3 15.0 2 .2 1 .0 0 0 .2 0 0.07 0 .1 1 0.07

4 30.0 2 . 6 1 .2 0 0 .2 2 0.07 0.15 0.07

5 60.0 3.6 1 .6 6 0.25 0.07 0.25 0.13

6 1 2 0 .0 5.6 2.59 0.32 0.13 0.46 0.27

7 180.0 7.6 3.52 0.39 0.13 0.67 0.40

8 240.0 9.2 4.32 0.44 0.13 0.84 0.54

9 300.0 10.9 5.05 0.48 0 . 2 0 1 .0 0 0.60

1 0 360.0 1 2 .6 5.85 0.58 0 . 2 0 1 .0 2 0.60
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Table 4-41: Results of surface leaching analysi of a "Rear Arch" deposit sample collected
in the "fifth" batch of samples from boiler No.5 without any injection of
Lycal 93HS.

REAR ARCH

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

Si02
(mg/L)

Fe
(mg/L)

Fe2 0 3
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 <2.5 < 1 .2 0 0.30 0.13 0.30 0 .2 0

2 5.0 <2.5 < 1 .2 0 0 .2 0 0.07 0 .1 0 0.07

3 15.0 <2.5 < 1 .2 0 0.25 0.07 0 . 1 0 0.07

4 30.0 4.0 1 .8 6 0.30 0.13 0.50 0.34

5 60.0 9.0 4.19 0.60 0 . 2 0 0.30 0 .2 0

6 1 2 0 .0 19.0 8.84 0.90 0.34 0.45 0.27

7 180.0 28.0 13.03 1 .2 0 0.40 0.60 0.34

8 240.0 33.0 15.36 1.40 0.47 0.80 0.47

9 300.0 39.5 18.42 1.60 0.54 1 .0 0 0.60
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Table 4-42: Results of surface leaching of a "Steam Generating Tubes" deposit sample 
collected in the "fifth" batch of samples from boiler No.5 without any 
injection of Lycal 93HS.

STEAM GENERATING TUBES

Solut.
No.

Leach.Time
(min.)

Si
(mg/L)

S i02
(mg/L)

Fe
(mg/L)

F e A
(mg/L)

Mg
(mg/L)

MgO
(mg/L)

1 1 .0 3.0 1.40 0.5 0 .2 0 0.5 0.34

2 5.0 3.0 1.40 0.4 0.13 1 .2 0.74

3 15.0 4.0 1 .8 6 0.5 0 .2 0 2 .1 1.27

4 30.0 7.0 3.26 0 . 6 0 .2 0 3.0 1.81

5 60.0 13.0 6.05 1 .1 0.40 3.5 2.14

6 1 2 0 .0 23.0 10.71 1.9 0.67 3.9 2.35

7 180.0 33.0 15.36 2.3 0.81 4.0 2.41

8 240.0 33.5 15.63 2 .8 1 .0 1 4.2 2.55

9 300.0 37.0 17.22 3.2 1.14 4.1 2.48
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•  After the period of 5 to 6  hours, the [MgO] concentrations for samples from 

boiler No.6 , with Lycal injection, had reached a saturation level within the leaching 

solutions.

•  The [MgO] concentrations for the corresponding samples from boiler No.5, 

without Lycal 93HS injection, did not as clearly reach a saturation level by the 

end of the experimentation.

•  The ratio of the [MgO] concentration to [Fe2 0 3] and [Si02] concentrations leached 

from the surface of each deposit sample from boiler No. 6 , is invariably significantly 

greater than the ratio of the amount of MgO to F e A  and Si0 2 in mass%, for each 

of these samples.

•  The amount of [MgO] leached from the surface of the samples from boiler No.6 , 

particularly at the initial stages of the leaching process is significantly higher than 

the values for the corresponding samples from boiler No.5.

•  The concentration of the [MgO], F e A  and Si02 for the particulate economiser ash 

hopper and grit arrester samples in solution, with and without Lycal injection is 

much greater than the corresponding concentrations from the bulk deposit samples.

•  The ratio of [MgO] concentration to [F eA ] and [Si02] concentrations for the 

particulate samples with Lycal 93HS injection is significantly greater than the same 

ratios for the particulate samples without Lycal 93HS injection. This is also the 

case for the corresponding ratios for the bulk deposit samples with and without 

Lycal 93HS injection.

4.6 COAL CHARACTERISATION

The coal used at West-Belfast power station was of a mixed lump and smalls,

bituminous type, mined from open-cast coal fields in the Ayrshire region of
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Scotland. The coal was taken from a number of pits and inevitably from different 

seams within the pits. This coal is especially suitable for stocking and storage for 

long periods without the possiblity of spontaneous combustion.

The investigation of the coal and its residual ash, which will be considered in this 

section, was based on a sample weighing 4.783 kg obtained from the boiler 

feeders by one of the operators at the power station.

4.6.1 Proximate Analysis

The proximate analysis of a coal involves the determination of moisture, volatile 

matter, ash and fixed carbon content by difference, 175,176 as described in Section 

3.4.1. This data was determined by the power station personnel and the author and 

is presented in Table 3-2.

4.6.2 Ultimate Analysis

The ultimate analysis expresses the composition of a coal in mass percentages of 

carbon, hydrogen, nitrogen, sulphur, chlorine and oxygen regardless of the origin . 176 

This data as well as additional data for the Ayrshire coal has been included in 

Table 3-2.

4.6.3 Particle Size Analysis

The whole sample, representing the coal as introduced onto the chain-grate for 

burning, was subjected to a sieve analysis to determine the quantity of various size 

fractions present. This was carried out before samples were taken from the bulk 

for the proximate and ultimate analysis.

Table 4-43 presents the results which are plotted as a bar chart in Figure 4-14. 

This shows that approximately 80% of the total mass of the coal in the sample 

had a size greater than 8 mesh.
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Table 4-43: Result of sieve size analysis of the sample batch of coal collected from the
chain-grate before it’s introduction to boiler No.6.

Sieve Size (B.S.410) Mass Oversize 
Collected 

(kg)

Mass Percent. 
Oversize 

(%)Mesh No. Aperture (fim)

>  >  1/4" > > 6 3 5 0 1.832 38.30

+  1/4" +6350 0.727 15.20

-1/4" +3/16" -6350 +4760 0.385 8.05

-3/16"+8 -4760 +2057 0.760 15.90

-8  +14 -2057 +1200 0.325 6.80

-14 +18 -1200 +850 0.159 3.32

-18 +25 -850 +600 0.137 2.90

-25 +44 -600 +355 0.138 2.90

-44 +52 -355 +300 0.032 0.67

-52 +100 -300 +150 0.116 2.40

- 1 0 0  + 2 0 0 -150 +75 0.062 1.30

-200 +300 -75 +53 0.016 0.30

-300 +350 -53 +45 0.094 1.96

4.783 1 0 0 %
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4.6.4 Variation of Moisture with Coal Particle Size

The inherent moisture content for each particle size range from the sieve analysis 

was determined using the "vacuum" method described in Section 3.4.1 (b). The 

results are presented in Table 4-44.

As can be seen for the same results plotted in Figure 4-15, the inherent moisture 

content generally increased as the particle size decreased. The values plotted are 

averages of a number of determination for each size band. The bars represent 

the maximum and minimum values in each set of results.

4.6.5 Variation of Ash Content with Particle Size

The sub-samples of each size fractioned samples of coal were ground to -72 

mesh (-210 fim) and subsequently ashed as previously described in Section 3.4.1(c). 

Table 4-45 shows the ash content of each particle size fraction.

Figure 4-16 illustrates the variation in ash content with particle size. This is 

quite considerable, ranging from 5 mass% for +1/4" mesh size (>6350 /zm) coal upto 

20% for -200 +300 mesh size (-75 +53 /zm) coal particles. The average ash content 

for the coal as received at the power station was 11.3 mass% (see Table 4-43).

4.6.6 Variation of Ash Chemistry with Coal Particle Size

In order to determine whether the variation in the ash content of the different coal 

particle size fractions would also result in a compositional change, four different 

groups of "Ash admixtures" designated AMI to AM4 were prepared. These 

admixtures were made up from the coal ash derived from four different groups of 

coal size particles which are defined in Table 4-46. The results of the chemical 

analysis of the admixtures is given in Table 4-47.
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Table 4-44: Result of inherent moisture determination for sieve size particle 
fractions of Ayrshire coal collected from the chain-grate before 
it’s introduction to boiler No.6 .

Particle size
(fim)

M in. Moisture 
(mass%)

Max. Moisture 
(mass%)

M ean M oisture 
(mass%)

> > 6 3 5 0 3.625 3.889 3.761

+6350 4.138 4.227 4.184

-6350 +4760 4.132 4.360 4.240

-4760 +2057 4.996 5.266 5.135

-2057 +1200 4.950 5.728 5.362

-1200 +850 5.150 5.334 5.255

-850 +600 4.458 4.559 4.491

-600 +355 5.096 5.371 5.194 ;

-355 +300 4.743 5.081 4.907

-300 +150 4.926 5.012 4.966

-150 +75 4.992 5.574 5.277

-75 +53 5.266 5.731 5.564
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Figure 4-15: Variation in moisture content with particle size for the Ayrshire 
coal sample.

B.S.410 Sieve Size (pm)

1: >>6350 5 
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Table 4-45: Result of ash content determination (a.d.b) for sieve size particle 
fractions of Ayrshire coal collected from the chain-grate before 
it’s introduction to boiler No.6 .

Particle size 
Oim)

Ash Content 
M in. (mass%)

Ash Content 
Max. (mass%)

Ash Content 
Mean (mass%)

> > 6 3 5 0 4.675 5.213 4.889

+6350 5.557 5.988 5.724

-6350 +4760 5.195 7.146 5.926

-4760 +2057 5.526 5.890 5.681

-2057 +1200 6.074 6.402 6.265

-1200 +  850 6.940 8.199 7.557

-850 +600 8.571 10.169 9.157

-600 +355 9.237 1 0 .1 0 1 9.752

-355 +300 14.952 16.621 15.764

-300 +150 15.746 16.577 16.271

-150 +75 17.047 18.850 18.064

-75 +53 18.588 19.930 19.395
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sample batch on air-dried basis.

-PA G E 279 -



Table 4-46: Description of various "ash admixture" groups derived 
from the Ayrshire coal size ranges present in the 
sample batch.

ASH ADMIX. 
NO.

SCREEN SIZE SPECIFICATIONS 
(fim)

AMI +6350, -6350 +4760, -4760 +2057

AM2 -2057 +1200, -1200 +  850

AM3 -850 +600, -600 +355, -355 +300

AM4 -300 +150, -150 +75, -75 +53

C.A +6350 -53

Note: C.A is the average coal ash comprising the entire range of 
the size fractioned coal particles.

Table 4-47: Chemical analysis of "ash admixture" groups made from various coal size 
fractions.

ASH
ADMIX.

NO.

COMPOUND MASS PERCENTAGE (%)

S i0 2 a i 2o 3 TiOz Fe20 3 CaO M gO k 2o p2o5 so3
AMI 48.10 30.60 1.40 12.25 4.74 1.24 1.45 0 .2 1 n.d

AM2 50.40 30.77 1.25 8.96 4.73 1.73 1.95 0.16 n.d

AM3 49.40 30.00 1.17 8.61 6 .6 8 1.79 2 .2 0 0.13 n.d

AM4 49.35 27.66 1.08 9.12 8.84 1.79 1.98 0.16 n.d

C.A 49.30 29.75 1 .2 2 9.73 6.25 1.64 1.90 0 . 2 0 n.d

Note: The "ash admixture" groups have been described in Table 4-46.
The average coal ash analysis (C.A) has been included for comparative purposes. 
The Na20  content has been omitted for the same reason, 
n.d : not determined.
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There appears to be a relative depletion in Fe2 0 3, T i0 2 and A120 3 and enrichment in 

CaO, MgO and possibly K20  contents as the coal particle size decreases. There 

appears to be no correlatable trend in the Si02 content.

4.6.7 Determination of the Softening Characteristics of Selected Ash Admixtures 

With and Without Additions of Lvcal 93HS.

The ash admixtures AMI andAM4 representing the upper and lower particle size 

ranges were selected for a series of softening tests with up to 3 mass% additions of 

Lycal 93HS, using the cone fusion technique described previously in Section 3.3.4. 

Table 4-48 shows the effect of additions of Lycal 93HS on the two selected 

admixtures. It can be seen that whereas the additions of Lycal 93HS had no 

discernible effect on the temperature of the various softening stages of the AMI 

admixture, it proved to decrease them for the AM4 admixture. These results seem 

to indicate that AMI admixture is relatively more refractory than the AM4 

admixture. From the chemical analysis results in Table 4-47, the higher CaO content 

and lower A120 3 content of the AM4 admixture compared to the corresponding 

oxides in AMI admixture tend to confirm these observations.

Figure 4-17 further highlights the effect of increasing additions of Lycal 93HS on 

the various softening stages of the AM4 admixture.

4.7 THE CHARACTERISATION OF ASH COMPONENTS IN AYRSHIRE 

COAL

The reason for carrying out this work, as explained in Section 3.4.2(a), was four fold: 

•  To assess the degree of variation in the individual components comprising the coal 

ash matter.
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Table 4-48: Results of cone-fusion tests for the "ash admixture" cone samples 
of the upper and lower size fractions (AMI & AM4) with the 
effect of additions of Lycal 93HS on their softening behaviour.

ASH
ADMIX.

NO.

LYCAL 93HS 
(mass%)

SOFTENING TEMPERATURE (°C)

IDT ST HT FT

AMI 0 . 0 >1450 - - -

AMI 0.5 >1450 - - -

AMI 1.5 >1450 - - -

AMI 3.0 1420 >1450 - -

AM4 0 .0 1392 1419 1436 >1450

AM4 0.5 1380 >1450 - -

AM4 1.5 1365 - 1396 1427

AM4 3.0 1334 1360 1392 1430
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•  To determine the chemical composition of the main constituents within the separated 

ash components.

•  To investigate the softening characteristics of the individual ash components.

•  To evaluate the effect of additions of Lycal 93HS in the range of 0% to 10%, on 

the softening characteristics of a selected number of ash components.

4.7.1 Separation of Coal Ash Components

Plates 4-70 to 4-73 illustrate the entire range of the ash components separated on the 

basis of their colour and textural differences as described in Section 3.4.2.

Table 4-49 further summarises the characteristics of the separated ash 

components. Table 4-50 is the evaluation of the amount and the degree of occurrence 

of each of the separated ash components. The mass percentage distribution of the 

various ash components which has been calculated from the results shown in 

Table 4-50, is further illustrated in the form of a bar-chart in Figure 4-18.

4.7.2 Chemical Constituents of the Coal Ash Components

Table 4-51 gives the chemical analyses of the separated ash components which 

featured more prominantly. The selection criteria was either in favour of those 

components which had occurred more than 60 times and/or those with a collected 

total mass of more than 0.3 grams. Overall, 29 of the ash components met one or 

both of these criteria and as such were selected for further analysis.

As can be seen from Table 4-51, compositions of the ash components varied 

significantly. The Si02 content of the analysed ash components varied between 23% and 

91%, the A120 3 content between 4% and 40%, the F e ^  content between 2% and 

61%, the CaO content between 0.1% and 7.5% and the K20  content between 0.08% 

and 5.71%.
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Plate 4-70:
The separated high temperature coal ash components.
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Plate 4-71;
Illustration of the soft, powdery ash components of the high 
temperature coal ash.
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Plate 4-72:
Illustration of semi-hard, layered, ash components of the high 
temperature coal ash.

Plate 4-73:
Illustration of hard, densely compacted or layered ash components 
of the high temperature coal ash.
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Table 4-49: The characterisation of the coal ash components on the basis of texture and colour.

ASH
COMP.
NO.

TEXTURE & COLOUR 
DESCRIPTION

ASH
COMP.
NO.

TEXTURE & COLOUR 
DESCRIPTION

1 semi-hard,stratified - milky white outer 
surface, light grey / blue inner matrix.

14 semi-hard dissociating into
brittle thin layers-light/tuffy-brown colour
matrix.

2 soft,light white powder matrix with 
limited bands of beige/ creamy 
intertwinings.

15 hard,smoothly surfaced slab type texture- 
brown/dark purple tone matrix.

3 highly porous,light powder with a 
reddish-brown colour.

16 very hard, dense, dark brown/ black 
matrix-intermitant white dust over the 
surface.

4 semi-soft,pad-like,layered - white/ light 
beige matrix.

17 hard, densely layered matrix with a 
pinky/purple colour.

5 very hard, dense, beige matrix smooth 
yellow outer surface.

18 semi-soft layered breaking into coarse 
particles-pink/blue matrix, orange 
surface.

6 soft, dusty, non-porous powder milky 
white matrix with white patches dispersed 
randomly.

19 soft, granular texture with a red-brown 
"saphron" colour matrix.

7 soft, porous, dark maroon powder matrix 
enveloped in a thin brittle layer.

2 0 soft, granular, spongy powder - dark 
brown/red colour matrix.

8 spongy, thinly layered white and beige 
powder mixture.

2 1 very soft,coagulated powder light 
grey/purple matrix - a thin,beige outer 
surface.

9 spongy, dusty matrix - light grey/ creamy 
colour.

2 2 very soft powder like "21". 
light grey/white matrix.

1 0 soft powder with a beige matrix and 
darker exterior.

23 honeycomb,lightly bonded-spread of 
white thin plate-like particles- 
brown/white.

11 very soft, granular powder - yellow / 
beige colour matrix.

24 soft powder in the form of 
cream / light brown strands.

1 2 soft powder of mixed matrix-light 
grey/creamy matrix.

25 very soft granular,spongy - milky 
white/creamy matrix.

13 finely layered, soft, smooth powdery 
carbonaceous - like light and dark grey 
matrix.

26 granular, spongy powder - dark brown/ 
maroon colour matrix.
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Table 4-49: (Continued.)

ASH
COMP.
NO.

TEXTURE & COLOUR 
DESCRIPTION

ASH
COMP.
NO.

TEXTURE & COLOUR !
DESCRIPTION |

j

27 hard, densely layered - purple internal 
layer,light brown outer surface.

39 soft,fiberous,white matrix with an 
inseparable thin creamy layer on the 
outside. i

28 highly porous, light powder - light/dark 
brown colour - this is very similar to 
sample"3".

40 soft,padded powder matrix of orange/ 
light brown colour-a smooth brown outer 
surface.

29 very hard, dense, smooth, white matrix - 
similar to sample "5".

41 soft,granular ,honey-comb kharky colour 
matrix.

30 soft,thinly padded,layered light grey 
powdery matrix enveloped by a light 
brown, very thin inseparable layer.

42 granular, white/creamy powder matrix 
with a creamy fragmentable, granular 
shell.

31 soft dark brown powder similar to sample 
"20" & "3".

43 soft, fragmentory granular powder- 
homogenously beige.

32 soft,thinly layered compact- milky 
white/beige matrix - similar to samples 
"1" & "4"

44 soft,layered light brown/beige matrix 
with the layers forming a fine powder.

33 spongy powder-beige/light brown with 
occasionally very thin white plates.

45 soft,spongy,porous matrix forming a thin 
waferous structure-light brown/beige.

34 soft, plated, powder formation milky 
white / creamy matrix.

46 hard,rock-like matrix with shiny-glassy 
fine nodules.

35 semi-soft, homogenous matrix - fragile 
texture, fragment into smaller parts-beige 
colour.

47 coarse,bulky,carbonaceous black powder 
matrix with sporadic white patches.

36 soft, particulate, fragmentory matrix- 
orange/light brown.

48 hard,brittle,smooth, rocky matrix - - 
purple/ light grey-similar to sample "27".

37 particulate white powder,with thin creamy 
outer surface.

49 very soft,porous,particulate powder - 
uniform light grey.

38 soft powder of light grey / beige matrix - 
similar to "30".

50 soft,compact powder matrix-milky grey/ 
creamy surface.
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Table 4-50: Quantitative analysis of the separated ash components from high temperature 
ashing of the coal particle size (+6350, -6350 +4760 /xm),stating the amount 
and frequency of occurrence of the ash components after a total of 1 0 0  
ashing sessions.

ASH
COMP.
NO.

AMOUNT
COLLECT.

<8>

FREQ.
OF
OCCUR.

ASH
COMP.
NO.

AMOUNT
COLLECT.

(g)

FREQ.
OF
OCCUR.

ASH
COMP.
NO.

AMOUNT
COLLECT.

(g)

FREQ.
OF
OCCUR

1 i 3.383 i 52 18
i

0.106 ! 4 35
i ■ -

0.224 ! 8

2 ! 1.346 1 96 19 0.077 ! 36 36 0.074 ! 8

3 ! 1.007 ! 100 2 0 0.053 ! 12 37 0.063 ! 4

4 ! 2.241 ! 80 2 1 0.427 ! 28 38 0.379 ! 8

5 ! 2.589 ! 24 2 2 0.189 ! 20 39 0.123 i 4

6  i 0.494 ! 80 23 0.345 i 56 40 0.044 ! 8

7 ! 0.561 ! 60 24 0.284 ! 44 41 0.036 ! 12

8 i 0.162 ! 52 25 0.225 ! 40 42 0.039 ! 8

9 ! 0.043 ! 40 26 0 .0 1 1  ! 8 43 1.915 ! 4

10 ! 0.344 ! 92 27 3.122 '« 12 44 0.130 '■ 4

11  I 0.410 ! 52 28 0.412 ! 96 45 0.030 ! 8

12 ! 0.128 ! 4 29 8.087 I 36 46 2.664 ! 16

13 ! 0.669 ! 48 30 0.616 ! 24 47 0.136 ! 4

14 ! 0.439 ! 20 31 0.059 i 32 48 1.680 I 8

15 ! 0.869 1 4 32 0.470 ! 40 49 0.090 ! 8

16 i 0.621 ! 4 33 0.579 ! 52 50 0.017 ! 4

17 j 0.642 j 4-------------1-------------------1 34 0 .1 1 2  ! 8  ---------1
TOTAL= 38.766 j -i
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Table 4-51: The chemical analysis of the major separated ash components.

ASH
COMP.
NO.

COMPOUND MASS PERCENTAGE (%)

Si02 A1A Ti02 FeA CaO MgO K ,0 P2Os so3
1 59.13 33.61 1.66 2.11 0.37 0.63 2.23 0.15 n.d

2 55.70 38.34 1.22 1.45 2.20 0.35 0.52 0.21 n.d

3 39.60 32.65 1.93 15.25 7.48 1.64 0.75 0.62 n.d

4 58.28 35.44 1.75 1.69 0.44 0.51 1.71 0.18 n.d

5 62.27 25.12 1.18 2.04 0.23 1.09 2.10 0.06 n.d

6 58.16 33.23 2.21 2.66 2.10 0.52 0.67 0.42 n.d

7 23.41 12.95 0.52 60.89 1.19 0.18 0.79 0.06 n.d

1 0 58.97 27.86 2.90 4.11 3.86 0.86 0.52 0.92 n.d

11 54.63 39.40 1.43 1.31 1.95 0.41 0.50 0.35 n.d

13 36.33 15.66 0.88 38.99 3.11 2.61 1.14 1.28 n.d

14 57.08 25.50 1.18 9.90 1.73 1.24 2.31 1.05 n.d

15 60.38 26.20 0.86 4.42 0.43 1.84 5.71 0.14 n.d

16 52.42 34.19 1.52 3.41 1.93 1.64 3.98 0.88 n.d

17 58.58 30.21 1.05 5.08 0.73 0.98 2.86 0.44 n.d

2 1 54.50 26.45 1.41 12.02 1.62 1.10 1.81 1.10 n.d

Note: n.d =  not determined
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Table 4-51: (Continued)

ASH
COMP.
NO.

COMPOUND MASS PERCENTAGE (%)

Si02 A1A Ti02 F e A CaO MgO KjO P2Os so3

23 53.90 33.40 1.59 6.26 2.71 0.81 0.86 0.46 n.d

24 59.98 31.33 2.03 4.17 2.22 0.51 0.59 0.16 n.d

25 61.73 27.52 2.87 2.98 2.96 0.37 0.43 1.12 n.d

27 47.80 19.80 0.58 22.43 0.97 3.85 4.29 0.27 n.d

28 45.45 30.51 2.74 10.70 7.55 1.73 0.85 0.48 n.d

29 59.05 32.93 1.25 2.92 0.31 1.31 2.12 0.09 n.d

30 63.14 29.52 1.70 2.91 0.52 0.37 1.53 0.29 n.d

32 56.10 37.63 1.97 1.33 0.61 0.34 1.81 0.19 n.d

33 56.02 37.95 1.44 1.88 0.90 0.50 1.07 0.29 n.d

35 62.74 27.52 1.27 3.02 0.23 1.26 3.85 0.11 n.d

38 55.97 40.14 1.09 0.78 1.18 0.10 0.33 0.41 n.d

43 91.60 4.41 3.41 0.21 0.12 0.01 0.08 0.16 n.d

46 69.24 25.85 1.51 1.18 0.11 0.43 1.61 0.04 n.d

48 59.10 28.21 0.79 4.69 0.32 1.35 5.28 0.29 n.d

Note: n .d=  not determined
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4.7.3 Mineralogy of the LTA and Separated HTA Components

Figure 4-19 characterises the X-ray diffraction spectrum of the mineral constituents in 

the LTA sample of the Ayrshire coal, using X-ray diffractometry analysis, as 

described in Section 3.3.3.

The major minerals identified were quartz, illite, kaolinite, chlorite, muscovite, 

calcite, dolomite, anhydrite, pyrite and iron sulphate. Other minerals which were also 

present in minor amounts were rutile, jarosite, ankerite and halite.

The mineralogical constitution of 24 of the 29 more prominantly featured, 

separated ash components as shown in Table 4-51 were also determined using X-ray 

diffractometry analysis as described in Section 3.3.3. Unfortunately the other 5 

samples were damaged and could not be considered for this analysis.

Further to the wide variation in physical and chemical characteristics of the 

ash components, as summarised in Tables 4-49 and 4-51 respectively, the 

mineralogical constitution of the selected ash components are catagorised in 

Figures 4-20 to 4-22. Figure 4-20 characterises mainly the diffraction spectra for 

the "acidic" ash components with Si02+Al20 3 >  90 mass%. Figure 4-21 characterises 

mainly the diffraction spectra for the "basic" ash components with CaO +  KzO > 

3.50 mass%. Figure 4-22 characterises the diffraction spectra for the "ferriferous" ash 

components with Fe20 3 > 9 .0  mass%, and the sum of their basic oxides, i.e. K20  +  

CaO +  MgO < 10 mass%.

The major and minor minerals in the LTA sample, the separated ash components as 

well as those for the selected deposit samples from batches No.2 and No.3, 

included for comparative reasons, are listed in Table 4-52.

Peak intensities reflect the relative quantities of the various phases in ash, if only 

on a semi-quantitative basis. It is also evident from the diffraction spectra,
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samples from batches No.2 and No.3 received from boiler No.6.

Minerals (Symbol) Formula LTA HTA Deposit

Silicates:
Quartz (Q) S i02 • •
Cristobalite (aCs.) S i02 •
Mullite (Mul) 3Al20 3.2Si02 •
Sillimanite (Sil) Al2Si05 O
Anorthite (An) CaAl2Si20 8 o

Clays:
Kaolinite (K) Al2Si20 5(0H )4 • O
Illite (I) (K,H3O)Al2Si3AlO10(OH)2 •
Chlorite (Cl) Mg5Al(AlSi3O,0)(OH)8 •
Muscovite (M) KAl2(Si3AlO10)(OH)2 •

Sulphides:
Pyrite (P) FeS2 •

Carbonates:
Calcite (C) CaC03 •
Dolomite (D) (Ca,Mg)C03 • o
Ankerite (Ank) (Ca,Fe,Mg)C03 O

Sulphates:
Anhydrite (A) CaS04 • •
Jarosite (J) KFe3(S04)2(0H )6 •
Iron Sulphate (IS) Fe2(S04)3 o

Oxides:
Hematite (H) a-Fe20 3 • •
Magnetite (Mag) Fe30 4 • o
Wustite (W) FeO o o
Hercynite (Her) Fe0.A l20 3 • •
Corundum (Cor) a-Al20 3 • o
Spinel (S) MgAl20 4 o
Rutile (R) T i02 o o
Calcium Aluminate(Ca.mAl.) CaAl20 4 o

Chlorides:
Halite (Hal) NaCl o

Others:
Glass - ?

Unknown (U) ?

Note: • ,  Major phases:(LTA > 2 d-spacing values-HTA components >  6  occurrences
in the 24 separated ash components - Deposit is the deposit samples from 
batches No.2 and 3 > 6  occurrences in the 17 samples analysed). 

O , Minor phases: (LTA < 2 d-spacing values-HTA components <  6  occurrences 
in the 24 separated ash components - Deposit <  6  occurrences in the 17 
samples analysed).
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particularly those designated within the "acidic" catagory in Figure 4-20, that a large 

fraction of the minerals transformed into undetectable amoiphous phases.

Despite physical, textural and chemical variations for the reviewed ash 

components, presence of the same group of minerals are in evidence through similar 

diffraction spectra. For example; ash component numbers 3, 23, 24 and 33 were found 

to be mainly comprised of quartz (Si02), muscovite [KjM* (Si6Al20 2o)(OH)4], 

hem atitefa-Fe^) and anhydrite (CaS04). Ash component numbers 13,14 and 16 were 

found to be comprised of quartz, muscovite, hematite and magnetite (Fe3<I>4). Ash 

component numbers 6 , 11 and 17 were found to be comprised of quartz, muscovite, 

hematite and hercynite (Fe0.Al20 3).

4.7.4 Softening Characteristics of Selected Coal Ash Components With and 

Without Additions of Lvcal 93HS

Separated ash components which had met the selection criteria specified in Section

3.4.2 were further investigated for their softening characteristics using both cone 

fusion and hot-stage microscopy techniques. In addition, samples of high and low 

temperature ashes (HTA & LTA) from the Ayrshire coal sample were also investigated 

using hot-stage microscopy.

4.7.4 (a) Cone-Fusion Investigation

Table 4-53 summarises the results of the cone fusion tests carried out on undoped 

and Lycal 93HS doped ash component samples. It is evident that the majority of the 

separated ash components did not exhibit any degree of softening. This was 

consistent with their respective chemical compositions. The ash components with 

relatively larger F e ^  and/or CaO contents were more readily softened and melted. 

The effect of a 0.5 mass% addition of Lycal 93HS on the softening characteristics
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lao ie  4 -3 J: Result ot the cone-tusion tests for the selected ash component cone samples 
with and without Lycal 93HS addition.

ASH
COMP.
NO.

N O  L Y C A L  93H S 0.5%  L Y C A L  9 3 H S

SOFTENING TEMPERATURE 
(°C)

SOFTENING TEMPERATURE 
(°C)

IDT ST HT FT IDT ST HT FT

1 >1450 - - - >1450 - - -

2 >1450 - - - >1450 - - -

3 1343 - 1368 1385 1346 1366 1420 >1450

4 >1450 - - - >1450 - - -

5 >1450 - - - >1450 - - -

6 >1450 - - - >1450 - - -

7 1411 >1450 - - 1380 1438 >1450 -

10 >1450 - - - >1450 - - -

11 >1450 - - - >1450 - - -

13 1286 - 1319 1334 1301 1313 1328 1338

14 1392 1439 >1450 - 1386 1432 >1450 -

15 >1450 - - - >1450 - - -

16 1388 1420 >1450 - 1371 1399 1438 >1450

-PA G E 305 -



xaoie (^L.onunueaj

ASH
rnivfp

N O  L Y C A L  93H S 0 .5%  L Y C A L  9 3 H S

NO. SOFTENING TEMPERATURE 
(°Q

SOFTENING TEMPERATURE 
(°Q

IDT ST HT FT IDT ST HT FT

17 >1450 - - - >1450 - - -

21 1364 1395 1420 >1450 1357 1389 1425 >1450

23 >1450 - - >1450 - - -

24 >1450 - - - >1450 - - -

25 >1450 - - - >1450 - - -

2 7 1310 1332 1359 1392 1319 1341 - 1398

28 1405 1428 1433 1449 1408 - 1431 1446

29 >1450 - - - >1450 - - -

3 0 >1450 - - - >1450 - - -

32 >1450 - - - >1450 - - -

33 >1450 - - - >1450 - - -

35 1432 >1450 - - 1424 >1450 - -

38 >1450 - - - >1450 - - -

43 >1450 - - - >1450 - - -

46 >1450 - - - >1450 - - -

48 1418 >1450 - - 1410 >1450 - -
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of the ash components was found to be inconsistent, in some cases promoting 

softening and melting, in others inhibiting it. This single addition of 0.5 mass% is 

compatible with the actual amount available for reaction within the boiler atmosphere, 

as calculated below, based on the information provided by Steetley personnel171, 

concerning Lycal 93HS injection trials at West Belfast power station:

Rate of Lycal 93HS injection is: 5 Kg / hr =  0.05 mass% of fuel consumed,

5 x 100
.*. Hourly rate of fuel consumption is:   =  10,000 Kg / hr

0.05
=  1 0  tonnes / hr

5
.*. Amount of Lycal 93HS per tonne of coal per hour is: ------  =  0.5 Kg / tonne,hr

10

At 66.7% purity of MgO in Lycal 93HS;
66.7

.'. 0.5 Kg of Lycal 93HS is: =    x 0.5
100

= 0.3335 Kg MgO

Hence, considering 10 mass% ash content in the coal; 

The ash yield from 1 tonne of coal is:
1 0 0 0  x 1 0

100 
100 Kg

.*. The mean MgO content present within the boiler for 0.3335
reaction due to Lycal 93HS injection should be: =    x 100

100
= 0.3335 mass% MgO

The effect of Lycal 93HS addition on decreasing the softening and melting 

temperatures of ash component numbers 7, 14, 21 and 28 was in agreement 

with the previous observations of the softening and melting behaviour o f deposit 

samples and ash admixtures of similar composition. However the inhibitive influence
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of Lycal 93HS on the softening and melting temperatures of certain ash 

components was unexpected. This latter phenomenon was evidently associated with 

those ash components which had Fe2 0 3 contents, in the range of 15% to 40%, such 

as ash components number 3, 13 and 27.

4.7.4 (b) Hot-stage Microscopic Investigation

The effect of additions of Lycal 93HS in the range of 0 - 10 mass% on the various 

stages of the softening process as well as the crystallisation behaviour on cooling, from 

the fluid melt, of the selected ash components, the HTA and LTA samples are 

summarised in Tables 4-54 to 4-74. It is evident from these observations as depicted 

in the following plates that in the iron enriched ash components No. 3, 7, 13 and 

27, additions of only 1 mass% and for No. 21 an addition of3mass%  Lycal 93HS 

was sufficient to cause the formation and growth of crystalline needles over the surface 

of the molten ash components. These observations are presented in Plates 4-76, 

4-80, 4-84, 4-87 and 4-85 (b) - (c) respectively. However, in the case of other 

selected ash components, additions of 5 mass% and 10 mass% were necessary to 

cause crystallisation of their fluid melts. These observations are presented in 

Plates 4-75 (a) - (c), 4-77 (a) - (d), 4-79 (a) - (f), 4-81, 4-82 (a) - (d), 4-83 (a) - (d).

Plates 4-74 (a)-(c) are generally representative of the fully softened, fully molten and 

fluid stages respectively, of an ash component sample being heated within the 

thermocouple junction of the hot-stage microscope’s furnace cell.

Plates 4-75 (a)-(c) show the consecutive stages in the transformation of the fluid 

ash component No.(l) after 15 minutes, containing 10 mass% Lycal 93HS.

Plate 4-76 shows the formation and growth of fine needles from the viscous fluid 

melt of ash component No. (3) after 20 minutes, containing 1 mass% Lycal 93HS.
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Table 4-54: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No.(l) without and with additions of
Lycal 93HS.

ASH COMPONENT NO. (1)

Lycal Run Melt. Crystal. Observations
(%) No. Temp.(°C) Temp.rC)

0 1 1600 - No trace of softening.

1 1 1600 - No trace of softening.

3 1 1588 - Traces of softening near thermocouple 
tip.

5
1 1440 - Formation of a molten layer near 

thermocouple wires-softened tip.
2 1500 Extended fluid melt on thermocouple 

wires-fully softened bulk.

1 1270
1370
1450

-
Initiation of softening. 
Partially molten bulk. 
Fully molten bulk.

1 0 1550 - Formation of a viscous fluid.
2 1600 1400 Formation of very fine crystals, 

after 15 minutes, filling the melt.
3 1600 1 2 0 0 No change.
4 1600 1 0 0 0 No change.
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Table 4-55: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (2) with and without additions of
Lycal 93HS.

ASH COMPONENT NO. (2)

Lycal Run Melt. Crystal. Observations
(%) No. Temp.(°C) Temp.(°C)

0 1 1580 - Very small trace of softening.

1 1 1560 - Very small trace of softening.

3 1 1400 - Restricted trace of softening.

5 1 1260 - Initiation of softening.
1400 - Partial softening of the bulk.
1550 - Extended softening of the bulk.

1 1300 - Trace of softening-sample tilted.
10 1400 - Partial softening & bond formation.

1500 - Partially molten bulk.
1600

'

Fully molten bulk.
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Table 4-56: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (3) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (3)

Lycal Run Melt. Crystal. Observations
(%) No. Temp.(°C) Temp.(°C)

1 1215 - Initiation of bulk softening.
1310 - Partially molten bulk.
1340 - Fully molten bulk.

0 1370 - Onset of fluidity-viscous flow.
2 1400 - Fully fluid bulk-free flow.
3 1450 1300 No change.

1450 1150 very limited and segragated,fine
dendrites.

1 1240 - Initiation of softening.
1 1280 - Fully molten bulk.

1320 - Formation of a viscous fluid.
2 1450 1350 Formation and growth of fine needle.
3 1450 1150 No change after 30 minutes.

1 1255 - Initiation of softening.
1330 - Fully molten bulk.

3 1380 - Fully fluid-free flow.
2 1550 1350 No change after 30 minutes.
3 1550 1150 No change after 30 minutes.

1 1270 - Initiation of softening.
1300 - Full softening & bond formation.

5 1370 - Fully molten bulk.
1400 - Fully fluid-free flow.

2 1550 1350 No change after 30 minutes.
3 1550 1150 No change after 30 minutes.

1 1160 - Initiation of softening.
1240 - Fully softened bulk.
1280 - Fully molten bulk.

10 1310 - Fully fluid-viscous flow.
1370 - Fully fluid-free liquid flow.

2 1550 1350 No change after 30 minutes.
3 1550 1150 No change after 30 minutes.
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Table 4-57: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (4) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (4)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.(°C)

0 1 1600 - No trace of softening.

1 1 1310 - Very limited trace of softening.
1590 - Fully softened bulk.

1 1350 - Initiation of softening-bonding of
ash to the thermocouple wire.

3 1560 - Formation of viscous melt next to the
thermocouple surface.

1600 - Fully softrened bulk.

1 1360 - partial softening of the bulk.
5 1560 - Fully softened bulk.

1600 - Extensive mlting of the bulk.

1 1290 - Partial softening-restricted bondage
between ash & wire surface.

10 1385 - Formation of a molten bulk.
1480 - Formation of a free flowing liquid.

2 1600 1300 No change after 30 minutes.
3 1600 1 1 0 0 No change after 30 minutes.
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lao te  4 -3 5 : wot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (5) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (5)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.CC)

0 1 1500 - Initiation of softening.
1600 - No change.

1 1420 - Limited softening & bonding
1 between ash & thermocouple wire.

1540 - Partial softening of the bulk.

1 1260 - Limited softening & bonding
between ash & thermocouple wire.

3 1340 - Fully softened.
1480 - Fully molten.
1600 - Partial fluidity.

1 1312 - Initiation of softening.
5 1420 - Fully softened bulk-limited bonding

between ash and thermocouple wire.
1590 - Partially molten bulk.

1 1270 - Initiation of softening.
1360 - Extensive softening of the bulk.
1458 - Fully molten bulk.
1510 - Fully fluid-free flow.

2 1600 1400 Inter-crossing formation of fine lath
like stacks of crystals after 2-5

1 0 seconds, growing conically.Full
3 crystalisation of melt after 1 min.

1600 1350 Identical to previous run-slower
4 formation & growth of crystals.

1600 1300 Similar but slower recurrence and
growth of crystals as observed in
previous runs.
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Table 4-59: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (6) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (6 )

Lycal Run Melt. Crystal. Observation
(%) No. Temp(°C) Temp(°C)

1 1350 - Initiation of softening.
0 1480

1600
- Fully softened bulk. 

No change.

1 1350 - Initiation of softening.
1 1470

1600
— Fully softened bulk. 

No change.

1 1330 - Initiation of softening.
3 1417

1480
1575

-
Fully softened bulk. 
Fully molten bulk. 
Fully fluid-free flow.

2 1600 1350 No change after 30 minutes.
3 1600 1 2 0 0 No change after 30 minutes.

1 1 2 2 0
1370
1410
1485

-

Initiation of softening.
Fully softened bulk.
Fully molten bulk.
Formation of fluid-free flow.

5

2 1550 1350 Formation of Large laths across the 
melt & finer laths from the tip of 
thermocouple towards the centre after a 
few minutes.

3 1550 1 2 0 0 As before wtih further extension of finer 
lathes from all comers of the melt 
towards the centre.

4 1550 1 1 0 0 Limited formation of fine laths.

1 1235
1360
1418

-
Fully softened bulk.
Fully molten bulk.
Formation of fluid-free flow.

2 1550 1400 Large & smaller laths growing from the 
top to the bottom of the melt after 2  

minutes.Little growth after 75 minutes.
1 0 3 1550 1300 Formation and growth of laths after 10 

seconds. Further formation and growth of 
lath-like stacks crystallising the melt after 
8  min.

4 1550 1 2 0 0 As above-full crystallinity- 5 min.
5 1550 1 1 0 0 Limited growth of laths after 10 min.
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Table 4-60: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (7) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (7)

Lycal Run M elt Crystal. Observation
(%) No. Temp(°C) Temp(°C)

1 1245
1340
1480

-
Initiation of softening. 
Fully softened.
Fully molten.

0 1516 - Formation of fluid-free flow.
2 1600 1300 Formation and growth of fine, short 

needles after 30 minutes.
3 1600 1 2 0 0 No change after 30 minutes.
4 1600 1 1 0 0 No change after 30 minutes.

1 1260
1380
1424

-
Initiation of softening. 
Fully softened bulk. 
Fully molten bulk.

3 1504 - Formation of fluid-free flow.
2 1600 1350 Formation of white stretch marks after 20 

minutes.
3 1600 1 2 0 0 No change.

1 1 2 0 0
1350
1450
1540

-

Initiation of softening.
Fully softened bulk.
Fully molten bulk.
Formation of fluid-free flow.

5
2 1600 1300 Formation of a precipitating phase after 

1 0  minutes.
3 1600 1 1 0 0 Formation of truncated laths within the 

melt after 20 minutes. Growth of fan type 
structure needles outwards from the 
surface of the fluid meniscus.

1 1235
1270
1450
1600

-

Initiation of softening.
Fully softened bulk.
Partially molten bulk.
Formation of a fluid-free flow after 30 
minutes.

1 0 2 1600 1300 Formation and growth of biforcating and 
singular needles up to 60 mins. Further 
formation of precipitating arrow head-like 
phase within melt.

3 1600 1 1 0 0 As above - thickening of the needles.
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Table 4-61: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No.(11) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (11)

Lycal Run Melt. Crystal. Observation
(%) No. Temp(°Q Temp(°C)

1 1325 - Initiation of softening.
0 1470 - Fully softened bulk.

1600 - No further change.

1 1350 - Initiation of softening.
1 1550 - Fully softened bulk.

1600 - No further change.

1 1250 - Initiation of softening.
3 1440 - Formation of restricted bonds between the

softened ash and thermocouple wire.
1600 - No further change.

1 1280 - Initiation of softening.
5 1547 - Fully softened bulk.

1600 - Fully molten bulk-partial fluidity.

1 1250 - Initiation of softening.
1460 - Fully molten bulk.

1 0 1525 - Formation of a fluid-viscous flow.
1580 Formation of liquid-free flow.

2 1600 1350 No change after 30 minutes.
3 1600 1150 No change after 30 minutes.
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Table 4-62: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (13) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (13)

Lycal Run Melt. Crystal. Observation
(%) No. Temp(°C) TempCC)

1 1190 - Initiation of softening.
1280 - Fully softened bulk.
1350 - Fully molten bulk.
1405 - Formation of a fluid-free flow.

2 1550 1300 Formation of needles after 15 min.
0 Further formation of arrow head-like

phase. Growth of needles-75min.
3 1550 1150 Formation of smaller, thicker needles-

branching after 30 minutes.

1 1197 - Initiation of softening.
1310 - Flly softened bulk.
1360 - Fully molten bulk.
1410 - Formation of a fluid-free flow.

1 2 1550 1500 Formation of needles after 15 min.
Formation of arrow head-like phase

3 1550 1350 Further branching of needles.

1 1160 - Initiation of softening.
1230 - Fully molten bulk.

3 1285 - Formation of fluid-free flow.
2 1500 1450 No change after 30 minutes.
3 1500 1350 No change after 30 minutes.
4 1500 1150 No change after 30 minutes.

1 1 1 0 0 - Initiation of softening.
1130 - Fully softened bulk.

5 1 2 2 0 - Fully molten bulk.
1290 - Formation of fluid-viscous flow.
1340 - Formation of fluid-free flow.

2 1450 1350 No change after 30 minutes.
3 1450 1150 No change after 30 minutes.

1 1180 _ Fully softened bulk.
1235 - Fully molten bulk.

1 0 1365 - Formation of fluid-free flow.
2 1500 1350 No change after 30 minutes.
3 1500 1150 No change after 30 minutes.
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lao ie  4-0.5: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No.(14) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (14)

Lycal Run Melt. Crystal. Observation
(%) No. Temp (°C) Temp (°C)

1 1 2 2 0 - Initiation of softening.
1335 - Partially molten bulk.

0 2 1400 - Fully fluid bulk.
3 1500 1350 No change after 30 minutes.

1500 1150 No change after 30 minutes.

1 1 1 2 0 - Initiation of softening.
1260 - Fully molten bulk.
1350 - Formation of fluid-viscous flow.

3 1400 - Formation of fluid-free flow.
2 1500 1350 No change after 30 minutes.
3 1500 1150 Formation of white colour angular

particles suspended within melt.

1 1075 - Initiation of softening.
1 2 0 0 - Fully softened bulk.
1360 - Fully molten bulk.
1410 - Formation of fluid-viscous flow.

5 1550 - No change.
2 1600 1350 No change after 30 minutes.
3 1600 1150 No change after 30 minutes.

1 1125 - Initiation of softening.
1 2 0 0 - Fully softened bulk.

1 0 1275 - Fully molten bulk.
1300 - Formation of fluid-free flow.

2 1400 1350 No change after 30 minutes.
3 1440 1150 No change after 30 minutes.
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Table 4-64: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (21) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (21)

Lycal Run Melt. Crystal. Observation
(%) No. Temp (°C) Temp (°C)

1 1180 - Initiation of softening.
1285 - Fully softened bulk.
1380 - Fully molten bulk.
1420 - Formation of fluid-free flow.

0 2 1500 1300 Formation and growth of fine and
large needles after 15 minutes.

3 1500 1150 As above-limited branching of fine
needles.Presence of a second phase
as stretched and truncated laths.

1 1170 - Initiation of softening.
1300 - Fully softened bulk.

1 1350 - Fully molten bulk.
1405 - Formation of fluid-free flow.

2 1450 1300 No change after 30 minutes.
3 1450 1150 No change after 30 minutes.

1 1205 - Initiation of softening.
1280 - Fully softened bulk.
1350 - Fully molten bulk.

3 1415 - Formation of fluid-free flow.
2 1500 1300 Formation and growth of fine

needles after 30 minutes.
3 1500 1150 As above.

1 1215 - Initiation of softening.
1260 - Fully softened bulk.
1305 - Fully molten bulk.

5 1485 - Formation of fluid-free flow.
2 1500 1300 Formation of thick, short needles

after 17 minutes.
3 1500 1150 As above-branching of some

needles.

1 1235 - Initiation of softening.
1280 - Fully softened bulk.
1360 - Fully molten bulk.
1450 - Formation of fluid-free flow.

10 2 1500 1300 Formation of fine needles after 15
minutes. Expansion of tips by time.

3 1500 1150 As above-No change after 30 min.

-PA G E 319-



Table 4-65: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (27) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (27)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°Q Temp.CQ

1 1130 - Initiation of softening.
1250 - Fully softened bulk.

0 1330 - Fully molten bulk.
1420 - Formatioin of fluid-free flow.

2 1500 1300 No change after 30 minutes.
3 1500 1 1 0 0 No change after 30 minutes.

1 1 1 1 0 - Initiatiion of softening.
1240 - Fully softened bulk.
1280 - Fully molten bulk.

1 1330 - Formation of fluid-free flow.
2 1400 1300 No change after 30 minutes.
3 1400 1 1 0 0 Formatioin of very fine, small

needles after 2 0  minutes.

1 1265 - Fully softened bulk.
1330 - Fully molten bulk-partially fluid.

3 1380 - Formation of fluidity-viscous flow.
1400 - Partial evaporation of melt.

2 1380 1300 No change after 30 minutes.
3 1380 1 1 0 0 No change after 30 minutes.

1 1250 - Sudden formation of partially molten
bulk.

1355 - Fully molten bulk.
5 1370 - Formation of fluid-viscous flow.

1400 - Evaporation of melt.
2 1380 1300 No change after 30 minutes.
3 1380 1 1 0 0 No change after 30 minutes.

1 1170 - Partial softening of the bulk.
1305 - Fully molten bulk.
1348 - Formation of fluid-free flow.

1 0 1400 - Evaporation of fluid melt.
2 1350 1300 No change after 30 minutes.
3 1350 1 1 0 0 Formation o f very fine needles after

40 minutes.
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Table 4-66: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (28) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (28)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°Q Temp.(°C)

1 1 1 2 0 - Initiation of softening.
1230 - Fully softened bulk.
1330 - Fully molten bulk.

0 1450 - Formation of fluid-viscous flow.
1600 - No change.

2 1600 1300 No change after 30 minutes.
3 1600 1 1 0 0 No change after 30 minutes.

1 1 2 2 0 - Initiation of softening.
1310 - Fully molten bulk.

1 1390 - Formation of fluid-free flow.
2 1450 1300 No change after 30 minutes.
3 1450 1 1 0 0 No change after 30 minutes.

1 1240 - Initiation of softening.
1370 - Fully molten bulk.

3 1540 - Partial fluidity-visous flow.
2 1600 1300 No change after 30 minutes.
3 1600 1 1 0 0 No change after 30 minutes.

1 1 2 1 0 Partial softening of the bulk.
1310 - Fully molten bulk.
1340 - Formation of fluid-viscous flow.

5 1400 - Formation of fluid-free flow.
. 2 1450 1300 No change after 30 minutes.

3 1450 1 1 0 0 No change after 30 minutes.

1 1 2 0 0 - Initiation of softening.
1240 - Fully softened bulk.
1280 - Fully molten bulk.

10 1340 - Formation of fluid-free flow.
2 1400 1300 No change after 30 minutes.
3 1400 1 1 0 0 No change after 30 minutes.
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lao ie  4-07: Jtiot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (29) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (29)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.(°Q

1 1205 - Initiation of softening.
1300 - Fully softened bulk.

0 1550 - Partially molten bulk.

1 1 1490 - Initiation of softening.
1550 - No further change.

3 1 1380 - Initiation of softening.
1550 - No further change.

5 1 1330 - Initiation of softening.
1550 - Fully softened bulk.

1 1 2 0 0 - Initiation of softening.
1410 - Fully softened bulk.

1 0 1470 - Fully molten bulk.
1500 - Formation of fluid-free flow.

2 1550 1300 No change after 30 minutes.
3 1550 1 1 0 0 No change after 30 minutes.
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Table 4-68: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (30) with and without additions of
Lycal93HS.

ASH COMPONENT No. (30)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.(°C)

1 1310 - Initiation of softening.
0 1470 - Fully softened bulk.

1550 - Partially molten bulk.

1 1315 - Initiation of softening.
1 1480 - Fully softened bulk.

1550 - Partially molten bulk.

1 1340 - Initiation of softening.
3 1480 . - Fully softened bulk.

1550 - Fully molten bulk.

1 1360 _ Initiation of softening.
1430 - Fully softened bulk.

5 1500 - Fully molten bulk.
1550 - Formation of fluid-viscous flow.

2 1600 1300 No change after 30 minutes.
3 1600 1 1 0 0 No change after 30 minutes.

1 1260 - Initiation of softening.
1300 - Fully softened bulk.

10 1400 - Fully molten bulk.
1440 - Formation of fluid-free flow.

2 1500 1300 No change after 30 minutes.
3 1500 1 1 0 0 No change after 30 minutes.
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Table 4-69: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (32) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (32)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.CC)

1 1300 - Initiation of softening.
0 1460 - Fully softened bulk.

1550 - No change.

1 1300 - Initiation of softening.
1 1445 - Fully softened bulk.

1550 - No change.

1 1320 - Initiation of softening.
1420 - Fully softend bulk. "Neck" growth

between the softened ash at the top
3 and bottom thermocouple wires.

1550 - Formation of a glassy, shiny melt.
2 1600 2 0 Formation of a transparent residue,

confirming the vitreous nature of the
softened residue.

1 1320 - Initiation of softening.
1550 - Partially softened bulk.

5 2 1600 2 0 Formation of some transparent parts
confirming the partially vitreous
nature of the residue.

1 1260 - Initiation of softening.
1360 - Fully softened bulk.

1 0 1465 - Fully molten bulk.
1540 - Formation of fluid-viscous flow.

2 1600 2 0 No transformation of the melt.
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xaoie 4-/u: jtioi-siage microscopic ooservation of softening and crystallisation
behaviour of ash component No. (33) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (33)

Lycal Run Melt. Crystal. Observation
(%) No. Temp(°C) Temp(°C)

1 1350 - Initiation of softening.
0 1450 - Partial softening of the bulk.

1550 - No change.
2 1600 2 0 Transparency of the softened parts.

1 1380 - Initiation of softening.
1 1550 - Partial softening of the bulk.

2 1600 2 0 Tranparency of the softened parts.

1 1330 - Initiation of softening.
3 1420 - Partial softening of the bulk.

1550 - No change.
2 1600 2 0 Transparency of the softened parts.

1 1240 - Initiation of softening.
5 1420 - Fully softened bulk.

1550 - Partially molten bulk.
2 1600 2 0 Transparency of the softened parts.

1 1280 - Initiation of softening.
1370 - Fully softened bulk.

10 1420 - Fully molten bulk.
1515 - Formation of fluid-viscous flow.

2 1600 1300 No change after 30 minutes.
3 1600 1 1 0 0 No change after 30 minutes.
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Table 4-71: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (46) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (46)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.(°C)

0 1 1380 - Initiation of softening.
1550 - No change.

1 1 1350 - Initiation of softening.
1540 - Partial softening of the bulk.

1 1340 - Initiation of softening.
1470 - Formation of bonds between separate

3 parts of softened ash.
1550 - Fully softened bulk- limited

transparency of some parts.

1 1240 - Initiation of softening.
1450 - Fully softened bulk.

5 1550 - No change.
2 1600 2 0 No change-No degree of

transparency

1 1 2 1 0 - Initiatioin of softening.
1340 - Fully softened bulk.
1380 Fully molten bulk.

1 0 1520 - Formatioin of fluid-viscous flow.
1600 - No change.

2 1600 1300 No change after 30 minutes.
3 1600 1 1 0 0 No change after 30 minutes.
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Table 4-72: Hot-stage microscopic observation of softening and crystallisation
behaviour of ash component No. (48) with and without additions of
Lycal 93HS.

ASH COMPONENT No. (48)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.(°C)

1 1240 - Initiation of softening.
1380 - Fully softened bulk.

0 - 1490 - Fully molten bulk.
1550 - Formation of fluid-viscous flow.

2 1600 1300 No change after 30 minutes.
3 1600 1 1 0 0 No change after 30 minutes.

1 1230 - Initiation of softening.
1350 - Fully softened bulk.

1 1520 - Fully molten bulk.
1550 - Limited fluidity.
1600 1300 No change after 30 minutes.
1600 1 1 0 0 No change after 30 minutes.

1 1140 - Initiatioin of softening.
1310 - Fully softened bulk.

3 1400 - Fully molten bulk.
1480 - Formation of fluid-free flow.

2 1500 1300 No change after 30 minutes.
3 1500 1 1 0 0 No change after 30 minutes.

1 1 2 0 0 - Initiation of softening.
1270 - Fully softened bulk.
1340 - Fully molten bulk.
1385 - Formation of fluid-free flow.

5 2 1400 1300 Formation and limited growth of fine
needles after 2 0  minutes.

3 1400 1 1 0 0 Formation and growth of a few fine
needles after 15 minutes.

1 1180 - Initiation of softening.
1270 - Fully softened bulk.

1 0 1315 - Fully molten bulk.
1360 - Formation of fluid-free flow.

2 1400 1300 No change after 30 minutes.
3 1400 1 1 0 0 No change after 30 minutes.
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T a b le  4-75: Hot-stage microscopic observation of softening and crystallisation
behaviour of a high-temperature ash (HTA) sample with and without
additions of Lycal 93HS.

HIGH TEMPERATURE ASH (HTA)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.CC)

1 1250 - Initiation of softening.
0 1450 - Fully softened bulk.

1550 - Partially molten bulk.
1600 - No further change.

1 1240 - Initiation of softening.
1 1430 - Fully softened bulk.

1510 - Fully molten bulk.
1600 - No further change.

1 1 2 1 0 - Initiation of softening.
1240 - Fully softened.

3 1360 - Fully molten bulk.
1435 - Formation of fluid-free flow.

2 1500 1300 No change after 30 minutes.
3 1500 1 1 0 0 No change after 30 minutes.

1 1 2 0 0 - Initiatiion of softening.
1290 - Fully softened bulk.
1390 - Fully molten bulk.

5 1435 Formation of fluid-free flow.
2 1500 1300 No change after 30 minutes.
3 1500 1 1 0 0 Formation and growth of two fine

needles after 8  minutes.

1 1 2 2 0 _ Fully softened bulk.
1280 - Fully molten bulk.

1 0 1320 - Formation of fluid-viscous flow.
1370 - Formation of fluid-free flow.

2 1400 1300 No change after 30 minutes.
3 1400 1 1 0 0 No change after 30 minutes.
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Table 4-74: Hot-stage microscopic observation or softening and crystallisation
behaviour of a low-temperature ash (LTA) sample with and without
additions of Lycal 93HS.

LOW TEMPERATURE ASH (LTA)

Lycal Run Melt. Crystal. Observation
(%) No. Temp.(°C) Temp.(°C)

1 1235 - Initiation of softening.
1280 - Fully softened bulk.

0 1380 - Fully molten bulk.
1520 - Formation of fluid-free flow.

2 1550 1300 No change after 30 minutes.
3 1550 1 1 0 0 No change after 30 minutes.

1 1 2 2 0 - Initiation of softening.
1290 - Fully softened bulk.

1 1350 - Fully molten bulk.
1470 - Formation of fluid-free flow.

2 1500 1300 No change after 30 minutes.
3 1500 1 1 0 0 No change after 30 minutes.

1 1 2 1 0 - Initiation of softening.
1330 - Fully molten bulk.

3 1420 - Formation of fluid-free flow.
2 1450 1300 No change after 30 minutes.
3 1450 1 1 0 0 No change after 30 minutes.

1 1 2 0 0 Initiatiion of softening.
1320 - Fully molten bulk.

5 1460 - Formation of fluid-free flow.
2 1500 1300 No change after 30 minutes.
3 1500 1 1 0 0 No change after 30 minutes.

1 1 1 1 0 - Initiation of softening.
1230 - Fully softened bulk.

10 1270 - Fully molten bulk.
1330 - Formation of fluid-free flow.

2 1400 1300 No change after 30 minutes.
3 1400 1 1 0 0 No change after 30 minutes.
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Plate 4-74:
Illustration of different stages of deformation for the separated ash 
components heated between the thermocouple wires of the hot-stage 
microscope: (a) softening, (b) melting, (c) fluid.
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Plate 4-75:
Transformation of a drop of fluid ash component N o.(l) with the addition 
of 10 mass% Lycal 93HS, at 1400°C: (a) fluid (b) crystallisation of fluid 
melt after 10 minutes, (c) crystallisation of fluid melt after 15 minutes.
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Plate 4-76:
Formation and growth of fine needles from the surface of viscous fluid 
melt of ash component No.(3) with the addition of 1 mass% Lycal 93HS, 
after 20 minutes at 1350°C.
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Plates 4-77 (a)-(d) show the consecutive stages in the transformation of the fluid 

ash component No.(5), containing 10 mass% Lycal 93HS. The formation of long, 

conical crystalline needles in the liquid melt was completed between 1-2 minutes 

depending on the crystallisation temperature. Plate 4-78 is a scanning electron 

micrograph of this sample, illustrating the extent of crystallisation, the crystalline 

phase resembling the shape of lozenges with well defined boundaries.The accompanying 

EDX-analysis denotes the relative enrichment o f MgO in the crystalline phase, by 

approximately 47% compared to that found within the matrix.

Plates 4-79 (a)-(f) show the consecutive stages in the transformation of fluid ash 

component No. (6), when it contains 5 mass% and 10 mass% Lycal 93HS. The 

formation and growth of the crystalline phase was completed between 2 to 10 

minutes, with the crystallisation temperatures held at 1400°C and 1100°C respectively. 

Plate 4-80 shows the formation of a precipitating phase within the fluid ash 

component No.(7) containing 1 mass% Lycal 93HS, after being kept at 1300°C for 

10 minutes.

Plate 4-81 shows the formation of truncated, arrow-head like phase within the molten 

ash component No. (7), with additional fine needles growing outwards from the 

surface of the melt. Samples containing 5 mass% and 10 mass% Lycal 93HS both 

behaved in this way when kept at crystallisation temperatures of 1100°C and 

1300°C for up to 30 minutes respectively.

Plates 4-82 (a)-(d) show the formation and growth of needles from the surface of 

molten ash component No.(7) containing 10 mass% Lycal 93HS. The samples 

were kept at 1100°C and 1300°C between 40 minutes to 2 hours. No further 

growth or bifurcation (branching) of needles was detected beyond this time.
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CRYSTALLISED  
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CRYSTALLINE  
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Plate 4-78:
SEM-micrograph of the fluid ash component No.(5) with the addition of 10 
mass% Lycal 93HS, showing crystalline lozenges with well defined boundaries. 
The EDX-analyses show the composition of the matrix and crystalline phase.

[Mag: x880]
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Plate 4-79:
Transformation of fluid ash component No.(6) with the additions of 5 mass% 
Lycal 93HS, at 1350°C: (a) fluid pool, (b) formation of crystals from the 
meniscus and the tip regions, (c) growth of crystals into the centre of the 
pool, (d) further growth of crystals, (e) conversion of the pool into a 
crystalline phase, (f) complete crystallisation of the fluid pool.
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Plate 4-80:
Formation of a precipitating phase within the fluid ash component N o.(7) 
with the addition of 1 mass% Lycal 93HS, after 10 minutes held at 1300°C.
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Plate 4-81:
Formation of needles and arrow-head crystals from the surface and within 
the viscous fluid melt of ash component No.(7) with the addition of 5 
mass% Lycal 93HS, after up to 30 minutes held at 1100°C.
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Plates 4-83 (a)-(b) are the scanning electron micrographs depicting the fully grown 

status of needles from the surface of ash component No. (7) containing 10 mass% 

Lycal 93HS. The EDX-analysis of the needles indicates an eight-fold enrichment 

of MgO content associated with an Fe203 rich substrate. Plate 4-83 (b) 

particularly shows the bifurcation of the needles as they have grown in length.

Plate 4-84 shows the growth of fine needles from the surface of ash component 

No.(13) with 1 mass% of Lycal. The sample was kept at 1500°C for over 1 hour 

until no further growth was evident. Some needles had bifurcated when cooled to 

1350°C and kept at this temperature for 30 minutes.

Plates 4-85 (a)-(c) represent the formation and growth of a single needle from the 

fluid melt of ash component No.(21) without any addition of Lycal 93HS. Plates 

4-85 (b) and 4-85 (c) depict the growth of the needles after being held at 1300°C for 

30 and 45 minutes respectively. Similar observations were made for the sample with 

3 mass% addition of Lycal 93HS.

Plates 4-86 (a)-(b) represent the growth and thickening of the needles from the 

molten surface of ash component No.(21) with 10 mass% addition of Lycal 93HS 

after 30 and 60 minutes respectively, held at 1300°C.

Plate 4-87 shows the growth of very fine needles from the surface of the molten 

bulk of the ash component No. (27) with 1 mass% addition of Lycal 93HS held at 

1100°C for 20 minutes.
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Plate 4-84:
Formation and growth of fine needles from the surface of the viscous fluid 
melt of ash component No. (13) with the addition of 1 mass% Lycal 93HS, 
after 1 hour at 1500°C.

- PAGE 343 -



Plate 4-85;
Formation and growth of a single needle from the fluid meniscus of ash 
component No.(21), without and with addition of 3 mass % Lycal 93HS, at 
1300°C: (a) after 10 minutes, (b) after 30 minutes, (c) after 45 minutes.
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Plate 4-86:
Formation and growth of fine needles from the surface of viscous fluid melt 
of ash component No.(21), with the addition of 10 mass% Lycal 93HS at 
1300°C: (a) after 30 minutes, (b) after 1 hour.
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Plate 4-87:
Formation and growth of fine needles from the surface of viscous fluid melt 
of ash component No.(27), with the addition of 1 mass% Lycal 93HS, after 
20 minutes at 1100°C.
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5.1 GENERAL INTRODUCTION

It is generally accepted that formation of fire-side deposits within a coal fired boiler 

system is as a result of many different and complex processes which the coal ash 

particles undergo during their deposition onto boiler tube surfaces. In order to be able 

to discuss the role of Lycal 93HS as an additive to alleviate deposit formation, a 

thorough understanding of the characteristics of the coal ash and fly ash participates 

formed within the boiler system is important.

The work presented in this thesis, then, will initially be discussed from the point of 

view of the characterisation of the physical and chemical constitution of the LTA, HTA 

and the economiser ash hopper particulates as the fly ash, and the softening behaviour 

of the LTA and HTA components with and without additions of Lycal 93HS. Secondly 

the physical, morphological and chemical composition of deposit samples received with 

and without on-line injection of Lycal 93HS will be discussed through a range of 

macro/microscopic observations. The role of Lycal 93HS will then be discussed with 

respect to two possible ways through which it could become associated with the 

depositing ash matter within the boiler environment. As an "internal" modifier, 

simulated effect of Lycal 93HS is discussed through softening behaviour of the 

reconstituted cone samples of the original deposits. As an "external" modifier, the 

variation in the surface chemistry of the selected deposits formed under the influence 

of Lycal 93HS injection will be comparatively discussed against those collected from 

boiler No.5 without on-line injection of Lycal 93HS.

Finally a number of mechanisms for the formation of deposits and the possible 

interaction of Lycal 93HS within the boiler system will be proposed. These will be 

based on the extended range of observations for the ash and deposit samples studied.
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5.2 THE CHARACTERISATION AND BEHAVIOUR OF ASH DERIVED FROM

AYRSHIRE COAL

The characterisation of ash from Ayrshire coal is significant so as to understand better 

its possible deposit behaviour. This was carried out for both the LTA and HTA.

The LTA being the unadulterated, original ash from the coal, formed the definitive ash 

to be used to describe its mineralogical constitution. It was also used to show the 

softening behaviour of this ash under a regime of Lycal 93HS additions.

The HTA was used not only to define the basic composition of the ash, but also to yield 

the composition of the ash derived from different size fractions of the coal, forming 

admixtures of ash. The use of these admixtures in the cone fusion tests, with and 

without additions of Lycal 93HS, was instrumental in showing the softening behaviour 

of the ash and the effect of its heterogeneity which was in turn dependent on the coal 

particle size. Also since the HTA was formed at much higher temperatures than the 

LTA and the ash could be derived from bigger particles of coal than are usually used 

as standard (i.e. -210/xm), the ash was investigated in terms of physical variations 

between some fifty different separated components. These formed the basis to establish 

the morphological heterogeneity, the compositional variation and the mineralogical 

diversity of the ash. The extent of interaction between these components would then be 

expected to be a measure of deposit heterogeneity. The subsequent softening behaviour 

of these components with and without on-line injection of Lycal 93HS within the boiler 

environment would then be inferred from the discussion of hot-stage microscopy and 

cone fusion tests. The possible effect of Lycal 93HS on the degree of crystallinity of 

the various ash components is also important with respect to their deposit forming 

propensities, and as such will be discussed.
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5.2.1 Physical and Chemical Constitution of Ash Derived from Ayrshire Coal

X-ray diffraction analysis of both the LTA and HTA samples from the Ayrshire coal 

established the presence of a wide range of mineral species. In the LTA sample, 14 

mineral species were detected to be present, although diffraction peak intensities 

suggested that four of these were present in only minor amounts, suggesting 10 major 

species (see Figure 4-19 and Table 4-52).

X-ray diffraction analysis (Figures 4-20 to 4-22) of HTA indicated the presence of 12 

mineral species with 7 of these being particularly abundant - see Table 4-52 for a 

comparison of the HTA and LTA. On the basis of visual appearance, texture and 

chemical composition, the separated ash components derived from ashing +1/4" and 

+3/16" coal particles (see Plates 4-70 to 4-73 and Table 4-51) appeared to exhibit a 

much greater diversity - 50 different types being identified. The overall results of these 

investigations illustrated the complex nature of the coal ash, although based on the 

limited number of major minerals identified, this complexity simply arises from the way 

the ash components are mixed together.

Considering that the minerals identified for the LTA are as near to the coal minerals 

as one can get, the evolution of other minerals identified for the HTA components 

(see Table 4-52) are clearly as a result of changes taken place on heating, as suggested 

in Table 2-4. The clays and quartz can both be considered as the source of silica as the 

coal bums and mineral constituents of its ash are released. The oxidation of pyrites, 

ankerite and other sulphates (e.g. anhydrite and jarosite) as the original minerals can 

form different compositions of iron oxides (e.g. hematite, magnetite, wustite). 

The decomposition of carbonates (e.g. calcite and dolomite) singularly and in 

combination with minerals from previous groups, form the source of various 

oxides found in the HTA (e.g. lime, hercynite, corundum, spinel). Hence, the 50 ash
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components serve to illustrate the heterogeneities of the ash mineral distribution in 

the original coal, especially the clay, silica and pyrite distribution. Differences in these 

have given rise to the different mixes in the ash components, with further subtle 

differences in the route by which the same mineral species may have formed from 

different origin in the coal mineral. These explain the differing texture, colour (see 

Plates 4-70 to 4-73) and composition (see Table 4-51). However, this is less important 

here than later on where similar differences will manifest themselves in the deposits in 

the boiler giving rise to differences in colour, texture, composition, hardness and 

softening behaviour.

The variations in the chemical composition of various ash components can further be 

illustrated through a rationalised ternary phase diagram for S i02 - A120 3 - F e ^  

system. Figure 5-1179 shows the dispersion of the ash components at equilibrium with 

respect to their phase stabilities at 1000°C. Apart from ash components No.(13) and 

No. (7) which are shown to lie in the Si02 +  F e ^  region, all of the ash components 

lie in the main Mullite+Si02+Fe20 3 region. The distribution profile of ash components 

is further depicted in terms of five main regions, each region comprised of ash 

components with similar mineralogies, as previously identified in Figures 4-20 to 4-22. 

These regions are outlined in Figure 5-2. The ash component within Region A which 

is the smallest region, is almost entirely comprised of silica derived from quartz, 

whereas ash components within region B, which forms the largest region and contains 

the highest proportion of the ash components, can be seen to have derived mainly from 

the quartz - kaolinite - muscovite type minerals with limited amount of hematite and/or 

magnetite minerals derived from the pyrites. The ash components within Regions C and 

D are identified in terms of their similar mineralogical characteristics ( see Figures 4-21 

and 4-22). The marginal difference in terms of the distribution profile of the ash
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Figure 5-1: Variation in the dispersion of various ash components illustrated through 
a rationalised ternary Si02 - AI2O3 - Fe2 0 3 phase diagram at 1000° C.
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Figure 5-2: Distribution profile of ash components with similar mineralogies illustrated 
in terms of five main regions on a  rationalised ternary S iQ  - A120 3 - F e ^  
phase diagram at 1000°C.

-PAGE 352 -



components within regions C and D confirms the extent of variation in the proportion 

of quartz - kaolinite - muscovite type minerals as well as hematite and/or magnetite 

minerals for the ash components within the two regions as suggested by the relevant 

peak intensities in Figures 4-21 and 4-22.Region E is comprised of two ash components 

namely ash components No.(7) and (13).The strong concentration of iron oxide in these 

components within region E, suggested by their presence within the iron rich comer of 

the phase diagram, is compatible with the X-ray diffraction spectra for the two 

components in Figure 4-22 which exhibited strong peak intensities for hematite and/or 

magnetite peaks. However, whereas in ash component No.(13), the silica could have 

derived from quartz and/or muscovite minerals, for ash component No.(7), silica must 

have formed through dissociation of muscovite minerals, since only this mineral was 

identified in its X-ray diffraction spectra. This further highlights the variation in the 

source and routes through which similar ash compounds can be formed.

The variation in the size distribution of the coal showed that the coal lumps constituted 

about 40 mass% of the coal batch whereas the fines constituted only 4 mass% of the 

total coal burned (see Table 4-43 and Figure 4-14). However as a result of the variation 

in the ash content with respect to the coal particle size (see Table 4-45 and 

Figure 4-16), the coal lumps (excluding >  > 6350 fim) would only produce 

j-̂ 5.724 + 5.926 + 5.681̂  Y ~i qq%] = 13.93 mass% of the total ash whereas the fines would
124.445

produce [(.t(h271 * 18,064 + 19-395) x 100%] = 43.175 mass% of the total ash. It is therefore
124.445

reasonable to suggest that since the fine coal particles are also more likely to 

become airborne, the depositing fly ash would be mostly derived from the fines, 

whereas the lumps are more likely to remain on the grate to form the grate clinker. 

From measurements on operational plants it has been inferred179 that under typical 

stoker conditions, between 10 and 40 mass% of the coal ash was elutriated from the
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bed. The amount of ash becoming air bom as fly ash has been found181,180 to be 

dependent on the amount of fine elutriable material in the original coal, the velocity of 

combustion air through the bed and the general structure of the fuel bed.

The variation in the elemental chemical composition of the ash derived from the coal 

lumps, coarse, smalls and fines - see Table 4-46, for size description - was shown in 

Table 4-47 in comparison to the mean ash composition. The resultant ash admixtures, 

AMI to AM4 showed some relative enrichment of the main basic oxides (i.e. CaO, 

MgO and K20 ) as well as depletion of A120 3 in the ash from the fines (i.e. AM4) 

compared to the ash from the lumps and coarse particles (i.e. AMI and AM2 

respectively). Although the iron content (as F e ^ )  of the AMI is higher than in AM4, 

CaO alone is generally considered to be a much stronger basic oxide to act as a flux 

under oxidising conditioins.58

The mean ash composition, perhaps expectedly, showed a composition representing the 

averaged position of the ash admixtures AMI to AM4 (see Table 4-47).

5.2.2 Assessment of Softening Behaviour of High Temperature Ash and its 

Relationship to Ash Deposition

The softening characteristics of high temperature ash were investigated for:

(i) Ash admixtures AMI (derived from the coal lumps) and AM4 (derived from the 

coal fines) as described in Section 3.4.2 (c).

(ii) Ash components of sufficient quantity, as described in Sections 3.4.2 and 4.7.

5.2.2 (a) Critical Assessment of the Cone Fusion Technique

It is believed58182 that most coal ashes are almost completely molten at IDT, and the 

progression to the FT, illustrated in Figure 3-4, is principally the result of lowering slag 

viscosity rather than production of more molten ash. It has also been shown in these

-PAGE 354 -



studies that the degree of partial melting is significant at temperatures as low as 200 to 

400°C below IDT. This is indicative of the difference in behaviour when the ash matter 

is coalesced to form a complex compound as opposed to its original form, comprised 

of a range of inorganic compounds and minerals. The significance of temperature 

would thus tend to diminish progressively as some or all of the inorganic mineral matter 

within the ash are transformed into various crystalline and glassy compounds (see 

Tables 2-4 and 2-5).

Another factor is that cone fusion temperatures represent the temperatures at which a 

thorough "mixture" of the whole ash of the coal would melt. This mixing, prior to the 

application of heat, does not simulate what takes place in practice, as also pointed out 

by other researchers.45183 The significance of this observation can be seen when the 

results of the softening temperatures for the HTA of the Ayrshire coal in Table 3-2 is 

compared to the corresponding temperature regimes for the reconstituted deposit 

samples in Table 4-14. All the reconstituted deposit samples show lower temperatures 

for the various stages in their softening than the HTA sample. Also with respect to 

the possiblity of extensive particle to particle bonding without any visible sign of 

deformation in the shape of the cones, some workers have found misleading results 

using this technique.126

Despite these limitations, the cone fusion test is probably the most widely used method 

for ash fusion characterisation, allowing comparative analysis to be made between 

different studies. The various stages in the softening of the ash as described in Section 

3.3.4(a) and Figure 3-4 have further been related56,126 to the progressive stages in 

deposit formation of ash inside a boiler. These are as follows:

IDT - Corresponds to the temperature in an operating furnace at which the 

particles of ash, in transit through the furnace, have been cooled sufficiently to stick
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together and gradually form a deposit on heat exchanger surfaces.

ST / HT - Correspond to conditions at which coal ash shows a greatly accelerated 

tendency to conglomerate together and stick in large quantities to heat exchange 

surfaces.

FT - Corresponds to the temperature at which the coal ash may be expected to flow 

in drips or streams from furnace walls.

If the ash fusion range of the deposit is wide, i.e. if  the temperature difference between 

IDT and ST is greater than 150°C, the deposit remains plastic over a wide range of 

temperatures without becoming actually fluid. This has been shown182,184 to cause the 

deposit layer to become thicker than if the fusion range was narrow. If the temperture 

difference between the IDT and ST is less than 100°C, the ash has been shown184 to 

form "short slags". Such ashes were found to be particularly sensitive to small 

temperature differences, because they move from the solid into the liquid phase and 

vice versa, within a closely defined range. They also crystallise quickly out of the 

molten state.

The use of cone fusion test in this study was based on the relative ease of sample 

preparation, the immediacy of the results through observation of the cone softening 

temperatures and the high degree of reproduciblity of results.

5.2.2 (b) Variation in the Softening Behaviour of Coal Ash with Respect to its 

Size and Composition and its Relevance to Deposition

The results of ash admixture softening tests presented in Table 4-48 and Figure 4-17 

clearly demonstrated that the ash admixture derived from the coal lumps (AMI) has a 

much more refractory nature than that derived from the fine coal particles (AM4). 

These results mostly reflect the collective influence of the strong fluxing oxides such
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as CaO, MgO and K20  at 7.43 mass% for the AMI and 12.61 mass% for the AM4. 

The appreciation of the relationship between the nature of the ash in terms of its 

refractory and fusible constitution, and the coal particle size is directly relevant to the 

deposit formation on boiler tubes. The free fusible matter in the ash can quickly melt 

in the furnace and adhere to walls to form a sticky film. This can also act as a bonding 

agent for less fusible constituents, as superheater slag deposits from p.f. fired boilers 

have been shown183 to be composed entirely of refractory material bound by a very 

small proportion of fusible ash. The role of Lycal 93HS on the softening behaviour of 

the ash will be discussed in later Sections.

5.2.2 (c) Variation in the Softening Behaviour of the Coal Ash Components and 

its Relevance to Deposition 

The results of the ash softening tests presented in Table 4-53 show that 23 of the 29 

ash components which comprised the major part of the separated ash, had a refractory 

nature with IDT values greater than 1400°C. Moreover, 19 of the 23 components had 

IDT values greater than 1450°C. These constituted approximately 80 mass% of the total 

separated ash and more than 83 mass% of the major separated ash components (see 

Figure 4-18).

The analysis of the ash fusion characterisitics (see Table 4-53) for the separated ash 

components with respect to their chemical composition (see Table 4-51) shows that:

a. All the refractory ash components (i.e IDT > 1400°C), with the exception of ash 

components N o.(7) and (28) had a very acidic composition (i.e. S i02 +  A120 3 +  

Ti02 > 87 mass%). This is consistent with the mineral constitution of these two 

components (see Figures 4-21 and 4-22) where anhydrite, hematite, magnetite and 

dolomite comprised a basic mineralogy. Similar observations have already been made
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for the softening behaviour of the more acidic ash admixture AMI as compared to 

that of the more basic ash admixture AM4, discussed previously in Section 5.1.2 (b).

b. Despite an Fc203 > 60 mass%, ash component No. (7) displayed a refractory nature 

(i.e. IDT > 1400°C). This can be as a result of the way the pyritic iron (as Fe203) and 

in the form of hematite and magnetite (see Figure 4-22), is distributed within the 

extraneous ash. For example if the Fe203 was present as discrete particles, the ash 

softening temperatures would be expected to be much lower than if these particles were 

to be ’contaminated’ by alumino-silicates within the extraneous ash as could in this 

case, suggested by the chemical analysis shown in Table 4-51. Furthermore the degree 

of sulphur reduction and iron oxidation has been shown47 to influence the melting 

temperature of the pyrite, increasing with increase in oxidation. It is expected that at 

the ashing temperature of 815°C, all of the pyrite in the ash component would have 

been converted to iron oxide, as illustrated in Table 2-4.

c. Despite very similar chemical compositions, ash component No.(48) was shown to 

have an IDT value at least 32°C lower than No.(15) which did not exhibit any 

deformation at all. Since the mineralogy of these two components is almost identical 

(see Figure 4-21), the variation in the IDT could perhaps be attributed to the state of 

oxidation of iron oxide, as FeO in ash component No.(15) and Fe203 in ash component 

No. (48). This variation in the IDT temperatures could also reflect the extent of the 

distribution of other minerals, detected from their peak intensities.

d. Ash component No.(16) with a highly acidic composition (i.e. S i02 +  A120 3 +  T i02 

= 88 mass%) was the only such component which was softened at the temperature of 

1420°C, with its IDT =  1388°C. This is consistent with the mineral constitution of this 

component (see Figure 4-21), showing a highly basic mineralogy in the form of 

hematite and magnetite comprising the major constituents of the ash minerals.
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e. Ash component No. (28) with large concentration of basic fluxing oxides (i.e Fe203 

= 11 mass% and CaO = 7.5 mass%), unexpectedly exhibited a refractory nature with 

IDT > 1400°C. This apparent anomaly could be due to the presence of calcium as 

CaS04 as determined in Figure 4-21 or anorthite (CaAl2Si20 8) as shown formed in 

minor quantities in some ash deposits (see Table 4-52) as well as the extent of clay 

(muscovite) and silica as quartz minerals exhibited by their corresponding peak 

intensities.

The softening behaviour of the separated ash components defined by their corresponding 

compositions in Table 4-51 are in general agreement with that shown in Figure 2-7.54,19 

For the most acidic components (i.e r[Fe203+C a0+M g0+K 20 + P 20 5] < 10%), the 

recorded temperatures correlated well with those evaluated from Figure 2-7. This is 

evident from Table 5-1 which shows that the softening temperatures (i.e. HT values) 

for all of these components at > 1450°C, is compatible with the softening temperatures 

for a range of bulk ash samples with basic oxide contents identical to the ash 

components.

For the basic ash components (i.e E[Fe203+C a0+M g0+K 20 + P 20 5] =  10-15 %) such 

as ash No. (10),(15),(16),(17),(23),(48), the recorded fusion temperatures were all 

higher than those evaluated from Figure 2-7. This is evident from Table 5-2 which 

shows that the HT-values determined in this study are approximately 30-55 °C higher 

than those evaluated from Figure 2-7 for bulk ash samples with basic oxide contents 

identical to the ash components.

Similarly, for the ferriferous ash components (i.e Fe20 3 > 9.5% andS[Fe20 3+  CaO+ 

MgO+ K20 + P20 5] > 15%) such as ash No. (3),(7),(13),(14),(21),(27),(28), the 

recorded fusion temperatures are significantly higher than those evaluated from 

Figure 2-7. This is evident from Table 5-3 which shows that the HT-values determined
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Table 5-1: Results of cone fusion tests for the selected range of acidic ash components 
showing the softening temperatures as determined in this study, compared 
to those evaluated in the literature for a range of ash compositions with 
identical basic oxide contents.

HIGH TEMPERATURE ASH

ASH
COMP.

No.

MASS PERCENTAGE BASIC** 
(%EFe203+Ca0 +M g0 +K 20 + P 20 5)

EXPERIMENTAL*
HT-VALUES

(°C)

LITERATURE*}-
HT-VALUES

(°C)

1 5.49 >1450 >1450

2 4.73 w it

4 4.53 n n

5 5.52 n it

6 6.37 a it

11 4.52 a it

24 7.65 n n

25 7.86 n it

29 6.32 it n

30 5.62 it n

32 4.28 a it

33 4.64 a a

35 8.47 n it

38 2.80 n u

43 0.58 a n

46 3.37 a it

Note: acidic ash components are those components with Si02 +  A120 3 > 9 0 % .
* these values were evaluated from Table 4-53.
** these values were previously presented in Table 4-51.
t  these values were evaluated from Figure 2-7 (oxidising atmosphere) and

correspond to bulk ash compositions haveing identical basic oxide content 
as ash components inwhis study.
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Table 5-2: Results of cone fusion tests for the selected range of basic ash components 
showing the softening temperatures as determined in this study, compared 
to those evaluated in the literature for a range of ash compositions with 
identical basic oxide contents.

HIGH TEMPERATURE ASH

ASH
COMP.

No.

MASS PERCENTAGE BASIC**
(%EFe203+Ca0+Mg0+K20+P 20 5)

EXPERIMENTAL*
HT-VALUES

(°Q

LITERATUREf
HT-VALUES

(°Q

10 10.27 >1450 1418

15 12.54 it 1394

16 11.84 H 1406

17 10.09 tt 1414

23 11.10 tt 1410

48 11.93 tr 1398

Note: basic ash components here are those with the basic oxide content between 10-15 
mass percentage.
* these values were evaluated from Table 4-53.
** these values were previously presented in Table 4-51.
f  these values were evaluated from Figure 2-7 (oxidising atmosphere) and

correspond to bulk ash compositions having identical basic oxide content
as ash components in this study.
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Table 5-3: Results of cone fusion tests for the selected range of ferriferous ash 
components showing the softening temperatures as determined in this study, 
compared to those evaluated in the literature for a range of ash 
compositions with identical basic oxide contents.

HIGH TEMPERATURE ASH

ASH
COMP.

No.

MASS PERCENTAGE BASIC**
(%£FeA+CaO+MgO+K20+P20 5)

EXPERIMENTAL*
HT-VALUES

(°C)

LITERATUREf
HT-VALUES

(°C)

3 25.74 1368 1264

7 63.11 >1450 1432

13 47.13 1319 1272

14 16.23 >1450 1353

21 17.65 1420 1337

27 31.81 1359 1248

28 21.31 1433 1308

Note: ferriferous ash components here are those with approximately 10% Fe203 and 
total basic oxide content greater than 15 mass percentage.
* these values were evaluated from Table 4-53.
** these values were previously presented in Table 4-51.
t  these values were evaluated from Figure 2-7 (oxidising atmosphere) and

correspond to bulk ash compositions having identical basic oxide content
as ash components in this study.
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in this study are approximately 47-125°C higher than those evaluated from Figure 2-7 

for bulk ash samples with basic oxide contents identical to the ash components.

These variations in the softening temperatures for the basic and ferriferous ash 

components and comparable bulk ash samples could be due to factors such as the 

mineralogical distribution or the extent of free fusible material in the ash as well as 

variations in the experimental procedures between this and other studies.

Further investigation of the softening characteristics of the major ash components on 

heating and their possible crystallisation behaviour on cooling was carried out using 

high temperature microscopy. This technique has frequently been used for such 

determinations.185 187 The comparable temperatures for various stages of ash fusion using 

this technique have in some studies185 been found to be much lower than those 

determined by the cone fusion technique. In other studies188 they have been found to be 

slightly higher.

Comparison of the two techniques in this work shows that the IDT values determined 

by the cone fusion test and shown in Table 4-53, are between 166-173°C and >  130- 

227°C higher for the fusible and refractory ash components respectively than 

temperatures determined by high temperature microscopy, as presented in Tables 4-54 

to 4-72.

The HTA and LTA samples of the bulk coal were observed to have IDT values of 1432 

and > 1450°C respectively, determined by cone fusion tests (see Table 3-2). Comparing 

these values with those determined through hot-stage microscopy tests for the LTA and 

HTA samples (see Tables 4-73 and 4-74), shows that the corresponding values for the 

initiation of softening are respectively 180 and >215°C lower using this method.
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These differences are comparable to those of the refractory ash components described 

previously.

The differences in softening initiation temperatures between the two techniques could 

be attributed to the ease by which the samples could be observed as they were being 

heated in the microscope’s cell. This allowed close observation and more accurate 

determination of changes incurred in the study of the samples. This would mean that 

liquid phases are present at lower temperatures and therefore the fusible part of the ash 

acting as the bonding agents within the ash would be active over longer period of time. 

The implication for the formation of deposits within the boiler environment would be 

that contrary to the refractoriness of the ash determined by cone fusion test (see 

Table 3-2), deposits are formed at lower temperatures.

These observations seem to generally support the previous ones concerning the 

refractoriness of the ash derived from the larger coal particulates. Hence as far as the 

formation of deposits on boiler tubes is concerned, it can be said that the fusible 

components of the ash are derived from the finer coal, which would then help to glue 

the more refractory part of the ash to form extended areas of deposition at much lower 

temperatures than otherwise predicted.

5.3 INTERPRETATION OF THE TRANSFORMATION AND 

CRYSTALLISATION BEHAVIOUR OF ASH COMPONENTS ON 

PROGRESSIVE HEATING

5.3.1 Without Additions of Lvcal 93HS

Although the study of melting and solidification behaviour of ash components on 

heating and cooling respectively in the hot-stage microscope was carried out for all the
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major ash components, as defined in Section 4.7.2, the discussion here would be 

limited to only those components which were more readily fusible in the operating 

temperature range of the microscope. These were mainly those components with high 

Fe203 and CaO content, namely No.(3), (7), (13) and (21).

Solidification commenced with the formation of very fine dendrites or a precipitating 

phase within the semi-fluid melt and generation and growth of fine needle-like 

structures outwards from the surface of the melt. Such features are illustrated in 

Plates 4-76, 4-80, 4-81, 4-84 and 4-85. The rather peculiar formation of the fine 

needles from the surface of the melts have also uniquely been observed in another 

study.189 It was noted that the first product of oxidation of a variety of steel alloys was 

a fine needle-like growth. These needles were identified as a-Fe203, with the main 

oxide compositon as a-Fe203 and (Fe30 4. Fe203) was also found in the scale. Although 

the oxidation of steel is a solid oxidation and does not include a liquid phase, the 

purpose and the relevance of this analogy here is merely to draw on the formation of 

the needle-like features, which seemingly were formed as a consequence of iron oxide 

participation, in the case of this study as well as the one cited above.

For the ash components, the presence of iron oxide in the constitution of the needles 

is illustrated in the EDX-analysis for the SEM-micrograph in Plate 4-83(a). The 

formation of iron oxide rich needles from a crusty, ferriferous region of ash component 

No. (7), also representative of the other three components examined in this way, was 

clearly evident. The iron oxide in needles could be due to the hematite (a-Fe203) and/or 

magnetite (F e ^ )  minerals as the major crystalline phases present within these 

components.

The implication of these needle formations is that they could act to trap the very fine 

solid ash particles in the burnt gases and thus act as nucleation sites for the build-up of
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ash deposits. This would be particularly significant for the upper furnace regions 

(i.e. screen tubes, passage between screen tubes and superheaters) where the deposits 

from boilers No.6 were found to contain on average more than 25 mass% iron oxide 

(see Tables 4-1 to 4-5).

5.3.2 With Additions of Lvcal 93HS

The deposit forming propensity of the selected ash components under increasing 

additions of Lycal 93HS can be discussed in terms of two main catagories:

1. Ferriferous

2. Acid and Basic

1. For all the "ferriferous" ash components as defined in terms of their constitution in 

Figure 4-22 and Table 4-51, increasing additions of Lycal 93HS effected their softening 

regimes differently. For ash components with higher Fe203 and basic oxide 

concentrations [e.g. ash components No. (7), (13)] small additions of Lycal 93HS 

increased their initial softening temperatures but higher additions depressed it (see 

Tables 4-60 and 4-62). With Fe203 concentrations of 60.89 and 38.99 mass% (see 

Table 4-51) and mineral compositions almost entirely made up of hematite and/or 

magnetite (see Figure 4-22), the increasing additions of Lycal 93HS to ash components 

No.(7) and (13) would act as a strong fluxing oxide, decreasing the softening 

temperatures.

For ash components No. (21) and (27) with very different chemical compositon (see 

Table 4-51) but almost identical mineralogy (see Figure 4-22), small additions of 

Lycal 93HS decreased their initial softening temperatures but higher additions increased 

them (see Tables 4-64 and 4-65). This apparent anomaly in the effect of Lycal 93HS 

on the softening characteristics of these two components could be due to the formation
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of complex compounds between the added Lycal 93HS and other mineral oxides such 

as calcite (see Figure 4-22) as well as masking the usual fluxing effect of iron oxide.

The effect of Lycal 93HS on the crystallisation behaviour of the ferriferous ash 

components has been described in Section 4.7.4 (b). It was observed that in some 

components, e.g. ash No. (7), increases in Lycal 93HS additions promoted the growth 

of needles. This can be seen in Plates 4-82, 4-86 and 4-83(b) with the accompanying 

EDX-analysis, showing an eight fold increase in MgO, presumably derived from 

Lycal 93HS in the fully grown needles compared to the substrate. In other ferriferous 

components the change in crystalline configuration of the fluid melts, under higher 

additions of Lycal 93HS was negligible. This variation in behaviour could be attributed 

to the reactions between MgO (i.e Lycal 93HS) and hematite and magnetite (see 

Table 4-51 and Figure 4-22), forming the highly refractory magnesium ferrite and thus 

increasing the ash softening temperatures. This is in accordance with observations in 

other studies.53

2. For the "acidic" and "basic" ash components as defined in terms of their constitution 

in Figures 4-20, 4-21 and Table 4-51, increasing additions of Lycal 93HS effected their 

softening regimes differently. Whereas increasing additions of Lycal 93HS up to 3 

mass% caused a reduction in softening, melting and fluid temperatures for some ash 

components [e.g No. (1), (2), (4), (11), (46)] (seeTables 4-54, 4-55, 4-57, 4-61, 4-71), 

in others it only did so for the melting and fluid temperatures. However, the higher 

additions of 5 and 10 mass% Lycal 93HS invariably reduced the temperatures for the 

three stages in all the components ( see Tables 4-54, 4-55, 4-57 to 4-59, 4-61, 4-63, 

4-66 to 4-72).
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Like the observations for the ferriferous ash components, the influence of ash 

mineralogy is not apparent. Consider for example ash components No. (6) and (11) with 

very similar chemical composition (see Table 4-51) and identical mineralogy (see 

Figure 4-20), additions of Lycal 93HS between 1-10 mass% decreased the softening, 

melting and fluid temperatures for ash component No. (6) (see Table 4-59). 

However for ash component No.(11), the effect of Lycal 93HS on the softening 

temperatures was inconsistent and only higher additions of 5 and 10 mass% showed a 

fluxing effect on the melting and fluid temperatures (see Table 4-61). On the other hand 

ash components No.(5) and (48) with different chemical composition and mineralogy 

(see Table 4-51 and Figures 4-20 and 4-21), exhibited identical regimes for the various 

stages in their softening with additions of Lycal 93HS between 1-10 mass%. Ash 

components No.(29) and (30) with very similar composition (see Table 4-51) and 

mineralogy (Figure 4-20), also exhibited identical regimes for the various stages in their 

softening with additions of Lycal 93HS between 1-10 mass%.

Ash components No. (5) and (6) were the only samples amongst the "acidic" and "basic" 

ash components in which additions of 5 and 10 mass% Lycal 93HS promoted 

crystallisation within the fluid melt(see Tables 4-58 and 4-59). The rate and extent of 

crystallisation was found to increase with decreasing temperatures between 1400- 

1300°C for ash No.(5) and 1400-1100°C for ash N o.(6).

A quantitative evaluation of the EDX-analyses presented for Plate 4-78 showed a 47% 

increase in the MgO content of the crystalline phase compared to the matrix of the ash 

component No. (5) with 10 mass% Lycal 93HS. Similar observations were made for ash 

component No. (6).
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It is evident from these examples that it is difficult to arrive at any unique 

correlations between ash mineralogy, its composition and its softening behaviour under 

the influence of Lycal 93HS additions. However, in terms of the softening behaviour 

of the ash components, it is clear that whereas additions of Lycal 93HS can both 

increase and decrease the softening of "ferriferous" ash components, for the "acidic" 

and "basic" components Lycal 93HS always acts as a flux, thereby reducing their 

softening temperatures. In terms of the transformation and crystallisation of fluid melts, 

additions of Lycal 93HS promoted growth of needles on the surface of the "ferriferous" 

ash components. In the "acidic" ash components, Lycal 93HS additions promoted 

crystallisalion of fluid melt and did not have any surface effect. In the "basic" ash 

components, additions of Lycal 93HS did not seem to have any effect on their 

transformations.

5.4 CHARACTERISATION OF PARTICULATE FLY ASH SAMPLES FROM 

ASII HOPPERS AND GRIT ARRESTORS

5.4.1 Introduction

The previous sections looked at the coal and its ash in terms of its chemical and 

mineralogical constitution as well as its softening behaviour and the effect of 

Lycal 93HS on it. Now within the boiler system, the combustion releases the mineral 

matter which changes to form the clinker on the grate and the fly ash airborne within 

the boiler atmosphere. The nearest thing to the bulk of the original airborne fly ash 

particles are the samples in the economiser ash hoppers and grit arrestors. As illustrated 

in Plate 4-29, these are small, discrete, mostly spherical particles in the range of -45 

to 700/zm in diameter. These samples having cooled and solidified rapidly, have had 

little time for coalescence and since the temperatures in the economiser hoppers and grit
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arrestors are much lower than the furnace region, these samples have little time for 

further heat treatment and unlike in boiler deposits maintain their original form.

5.4.2 Variation in Flv Ash Morphology and Chemistry

Plates 4-30 and 4-31 showed the extent of variation in fly ash morphology, with the 

EDX - analyses similarly showing corresponding variation in the composition of the 

smooth and rough surface fly ash spheres as well as non-spherical particulates. 

Although some limited degree of coalescence can be seen between some fly ash 

particles, they can still be considered as representative of the bulk fly ash matter within 

the furnace. The differences in the morphology and chemistry of the fly ash particulates 

can be related to the conditions of formation and the amount of crystalline and 

non-crystalline components in them. The EDX analyses show that:

(a). Rough textured coarse spheres had a surface chemistry rich in phosphorus, 

magnesium, iron, calcium, silicon and sulphur which could be present as oxides, 

sulphates, phosphates or other compounds. The enrichment of these substances can be 

due to their migration from within to the surface of the siliceous ash sphere as it 

developes to its final size during its flight within the boiler. They can also have arrived 

on the surface of the ash spheres as broken fine fragments of ash mineral matter 

suspended in the gases flowing upward within the boiler environment (see Figure 2-13).

(b). Smooth textured coarse spheres had a surface chemistry rich in silicon, aluminium, 

iron and calcium present as silicates. The smoothness of the surface of these ash 

spheres which are the dominant feature amongst the spherical particles, could be 

explained by either their rapid formation and exit from the furnace environment, 

thereby not allowing for the migration of minor oxides or by the lack of interaction 

between ash spheres and suspended ash mineral fragments as explained above.
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(c). The coagulated ash matter with a semi-smooth, porous surface was shown to have 

an alumino-silicate rich surface. The non-spherical shape of these particles suggests 

some degree of coalescence between different ash particles.

(d). Some medium size (-55 +63/xm) ash spheroids had a highly porous structure (see 

Plate 4-31), indicative of the evolution of carbon and other gases from the centre of the 

particles. The EDX analysis of the surface illustrates a composition mainly enriched by 

silicon, aluminium, calcium and sulphur oxides.

Table 4-7 further characterised the variation in the chemical composition of the bulk 

grit arrestor and economiser ash hopper particulate samples. It can be seen that with 

or without on-line injection of Lycal 93HS, fine particulates exhibited higher 

concentrations of iron, magnesium, phosphorus and sulphurous oxides than those 

associated with the medium and coarse particles. This size related variation in the 

elemental composition of fly ash particulates could be as a result of the natural 

distribution of the mineral matter which exists as large bits and finely divided and 

uniformly dispersed particles within the coal. Depending on the degree of segregation 

of various mineral species within a coal particle as well as the conditions within the 

furnace, the ash derived from various mineral concentrates can assume wide ranging 

sizes and exhibit different elemental compositions.

The significance of these observations is to illustrate the morphological and 

compositional non-uniformities which are present amongst the particulate fly ash matter 

representative of the ash particulates depositing on boiler tube surfaces. It is interesting 

to note that whereas the smaller and smooth surfaced ash spheres seem to have 

coalesced to form larger, irregularly shaped agglomerates of similar composition, the 

rough surfaced spheres and spheroids have essentially remained as individual
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particulates. This is indicative of the propensity of the smooth fly ash spheres to fuse 

together and form larger conglomerates which may be propelled upwards and exit the 

furnace or be projected side ways and impact the boiler tube surfaces. Hence, it can be 

deduced that upon deposition on boiler tube surfaces, the smooth surfaced ash spheres 

proceed much more quickly to form a bond with the cooler metal surfaces or the 

existing oxide films on the metal surfaces. The smooth ash spheres can also adhere 

more freely to each other and the rough surfaced ash spheres, forming a bonded 

sintered deposit layer.

5.4.3 Comparative Analysis of the Effect of Lvcal 93HS on the Flv Ash and Ash 

Particles Collected on a Probe Surface 

The compositional analysis of the white particles over the surface of the rough surfaced 

ash spheres from economiser ash hoppers (see EDX for Plate 4-30) in terms of its 

phosphorus, magnesium and sulphur content was proportionally similar to their ratios 

in the ash particulates from the bottom screen tubes region collected on the probe, with 

on-line injection of Lycal 93HS (see Table 4-18). These particles could either have 

deposited as fine fumes present in the entrained fly ash or as condensing volatile vapour 

phases.

It can also be seen from Table 4-7 that when Lycal 93HS was on-line, the fine grit 

arrestor particles which were generally of the same size range as the ash particulates 

from the probe, also had higher concentrations of magnesium associated with higher 

amounts of phosphorus and sulphur oxides than the coarse or medium size particles. 

This demonstrates that it is the fine ash particles impacting and covering the boiler 

tube surfaces with a fine layer of ash dust, which act as carriers for the injected Lycal. 

The presence of Lycal 93HS can further be deduced by higher concentrations of MgO
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for all the various size fractions of gnt arrestor and economiser ash hopper samples 

with Lycal 93HS injection compared to those without Lycal 93HS injection.

The difficulty in identifying the causes of morphological variations of fly ash 

particulates as discussed here, have been considered by other researchers190,191 who have 

shown the dependence of these variations on:

(a) Particle properties such as chemistry, mineralogy, residual carbon content, degree 

of coalescence or fragmentation of minerals and size, and

(b) Boiler conditions such as local furnace temperatures, furnace gas flow and generated 

eddies, concentration gradient of gases and solids and excess oxygen levels.

Further to the chemical variations amongst the paticulate grit arrestor and economiser 

ash hoppers samples, the unbumed carbon content associated with different particulate 

size fractions with and without Lycal 93HS were shown to decrease significantly with 

particle size (see Table 4-8 and Figure 4-1). The role of carbon is important since 

higher concentrations of carbon would allow for extended burning of the fly ash 

particles in suspension, rendering them more softened and therefore more likely to 

coalesce with other fly ash particles192. For those softened fly ash particles which 

impact the heat receiving tube surfaces, the burning of the residual carbon could also 

further expand their collapse and enhance the growth of bond formation between these 

and other ash particles residing on tube surfaces.

Although additions of magnesia (MgO) to an oil-fired boiler have been shown165 to 

reduce the unbumt carbon portion of the fly ash, the same effect can not conclusively 

be shown for the grit arrestor and ash hopper samples(see Table 4-8). However, for the 

fine grit arrestor particles which have previously been shown in Table 4-7 to carry the 

highest amount of magnesia, the amount of unbumt carbon are lower when Lycal 93HS 

was on-line than when it was off-line. The effect of Lycal 93HS can similarly be seen
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for the fine economiser ash hopper samples.

It is perhaps important to note that with stoker fired boilers, like the one in this study, 

the bulk of the fly ash is collected as coarse ashes (75-85%) from the boiler furnaces 

and comparatively little grit (10-20%) from the boiler passes181. Tables 4-9 and 4-10 

similarly show that the amount of coarse (+1200 +75/zm) fly ash particles with and 

without Lycal 93HS varied between 57-98% and 54-98% respectively. It has already 

been shown in Table 4-7 that most of the injected Lycal 93HS was associated with the 

fine (-45/xm) grit arrestor or medium (-500 +63 fxm) economiser ash hopper particulate 

samples. It would therefore be expected that as the bulk of particulate fly ash adheres 

onto the boiler tubes, the coarser particles would form a higher proportion of the fused 

deposit and finer particles, present in lower proportions would less readily become 

incorporated into the fused deposit and would act to retard the coalescence of ash 

particulates.

5.5 COMPARATIVE EXAMINATION AND ASSESSMENT OF THE EFFECT 

OF LYCAL 93HS ON BOILER DEPOSIT SAMPLES

5.5.1 Macroscopic-Scale Examination

The most clear indication of the beneficial effect on ash deposit adhesion of Lycal 93HS 

into the atmosphere of boiler No.6 is illustrated by Plate 4-1. The furnace area was 

generally found to be clear of the usual extensive deposit accumulation. Plates 4-2 and 

4-3 show how over three months period of regular,unhindered injection of Lycal 93HS 

to the left hand side (i.e. A-side), boiler tubes had remained relatively clean. Plates 4-4 

and 4-5 showed on the other hand that over the same period because of irregularity in 

the injection of Lycal 93HS to the right hand side (i.e. B-side), relatively extended 

areas of deposit had formed on the boiler tubes leading to the upper furnace regions.
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The variation in physical and textural differences observed between deposit samples 

collected from boilers No.6 and No.5 with and without Lycal 93HS injection 

respectively, are illustrated in Plate 4-6 and described in Section 4.2.3. The two boilers 

were of the same size, operating under the same conditions with similar furnace 

temperatures and gas flow regimes and used the same coal for burning. Therefore it 

must be considered that the variations in the deposit samples from the two boilers is as 

a consequence of Lycal 93HS injection.

The most notable differences between the range of deposit samples from boilers No.6 

and No.5, as previously described in Section 4.2.3(c), were found to be the greater 

size, thickness and density of samples from boiler No.5 compared to those from boiler 

No.6. Furthermore, most of deposits, except some within the fourth batch from boiler 

No.6, were monolithic, whereas for boiler No.5 samples were mostly layered. They 

either displayed an inner and outer layer or they had an inner, middle and outer 

layer (see Plate 4-13).

Contrary to a large number of observations in the literature82,86,97*99’104,134'135, deposits on 

boiler tubes in boilers No.6 or No.5 did not exhibit a thin inner white layer of ash. 

However,in other studies60,96 where increased amounts of alkali oxides(i.e. Na20 , K20), 

sulphurous oxides(i.e. S03) or chlorides104 (i.e. NaCl) responsible for the white colour, 

were absent from the inner layer, the colour variations across the deposit layers were 

generally compatible with those in this study. This suggests that the chemical and/or 

mineralogical variations have a more determinant effect on the colour and layering 

orientation of deposits than the temperature ranges and their variations within the boiler 

furnaces. Other workers have shown47 the existence of an initial layer to be related to 

the potassium level alone or to have been due to calcium sulphate and iron oxide 

enrichment.109 In the absence of significant amounts of potassium oxide in the coal ash
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(see Table 3-2) and the deposit samples, high concentrations of iron, calcium and 

sulphur oxides within the layered bottom screen tube deposit samples were significantly 

shown in Tables 4-5 and 4-6. This is particularly revealing since most of the deposition 

problems within boiler No.6 was associated with this region. The role of Lycal 93HS 

and its combination with a calcium sulphate and iron oxide enriched ash sphere was 

shown in Plate 4-44 (see EDX anlyses for regions B and C). Although the micrograph 

is representative of a lower furnace (i.e. front or rear walls) deposit sample, it 

still illustrates the way these components are combined to form the ash sphere. The 

presence of Lycal 93HS can be detected from the magnesium peak.

5.5.2 Microscopic Examination and Analysis of Boiler Deposits

5.5.2 (a) Unpolished Deposit Samples

For the unpolished deposit samples in Plates 4-14 to 4-22 and 4-23 to 4-28, with and 

without Lycal 93HS injections respectively, the main points of observations were:

•  For boiler No.6, the degree of bonding, neck growth and coalescence between 

spherical ash particles was found to be much more limited in the lower furnace deposits 

(i.e. Plates 4-14, 4-16) than the upper furnace samples (i.e.Plates 4-17, 4-18, 4-21, 

4-22). For boiler No.5, both lower furnace and upper furnace deposit samples 

(i.e. Plates 4-23 to 4-25 and 4-26 to 4-27 respectively), appeared to have the same 

degree of bonding and coalescence. This was much more extensive, forming larger 

agglomerates of fused, sometimes porous morphologies (e.g Plate 4-25).

•  A crusty iron-silicate matrix was found acting as the bonding agent between spherical 

ash particles in deposits from the lower furnace region within boiler No.6 (see Plates 

4-14, 4-16). The two elemental oxides of Si and Fe have been found193 to have a 

strongly adhesive affect, even at relatively low temperatures, in binding the ash

-PAGE 376 -



particles. A small amount of magnesia was shown associated with the crusty region (see 

Plate 4-16: EDX for point C). The presence of magnesia could be as the result of 

Lycal 93HS injection.

•  Lower and upper furnace deposit samples from boilers No.6 and No.5 contained 

particles of pure iron oxide spread over the surface of singular or bonded ash spheres 

(see Plates 4-15, 4-17 and 4-24). This was particularly extensive for the upper furnace 

samples, where coalesced ash particles were found to be enveloped in iron oxide 

enriched phases (see Plates 4-17, 4-18 and 4-26). This produces a surface texture which 

can readily act as an anchoring site for finer ash cenospheres or solid spheres (see 

Plates 4-17, 4-18).

The enrichment of the upper furnace deposit samples in iron rich particles has been 

suggested47 to be due to their concentration in the centre of the gas flow streams within 

the boiler, therefore impinging on the screen tubes laid horizontally on their path 

upward in the direction of furnace roof. This means that due to accelerated gas flow 

regimes, iron rich gravity fractions of the fly ash particulates are carried upwards and 

not sideways towards the front, rear or side walls.

•  A selection of cenospheres of a few microns in size as well as angular molten ash 

particles of similar texture and size within upper furnace deposit samples from boilers 

No.6 and No.5 are illustrated in Plates 4-19, 4-20 and Plates 4-27, 4-28 respectively. 

The variation in shape and the extent of softening for these particles could be a measure 

of their softening and melting charcteristics within the boiler environment.

5.5.2 (b) Polished Deposit Samples

For the polished deposit samples in Plates 4-42 to 4-57 and 4-58 to 4-69, with and 

without Lycal 93HS injections respectively, the main points of observations were:
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•  The low magnification photographs of lower and upper furnace deposit samples from 

boiler No.6, shown in Plates 4-42 and 4-53 respectively, showed a very open, highly 

porous, skeletal structure. The corresponding photographs from boiler No.5, shown in 

Plates 4-58, 4-60 and 4-62 for the lower furnace and Plates 4-64, 4-65 and 4-68 for the 

upper furnace deposit samples showed highly porous, fully fused, continuous structures. 

The changes thus observed show that Lycal 93HS has changed the microstucture of the 

deposits in a fundamental way. In addition Plates 4-1 to 4-5 in Section 4.2.1 have 

shown catagorically that Lycal 93HS has a bulk effect on the extent of deposit 

formation on boiler tube surfaces by making them friable and more easily removed 

through the intermittent action of soot blowers.

•  The enrichment of deposits in iron oxide, was most evident with the upper furnace 

samples from both boilers. These are depicted in Plates 4-53 to 4-57 and 4-65 to 4-69 

for boilers No.6 and No.5 respectively. The iron oxide was found in a variety of 

crystalline forms such as: euhedral hematite particles (see Plates 4-46, 4-47,4-49,4-66, 

4-68), dendritic hematite particles (see Plates 4-43, 4-45, 4-55, 4-57, 4-69), dendritic 

iron-spinel particles (see Plate 4-47, 4-63, 4-69), angular iron-spinel particles (see Plate 

4-48), angular cuboid particles (see Plate 4-43, 4-66, 4-67, 4-69), very fine dendritic 

particles (see Plate 4-45).

The variation in the morphology of iron oxide and iron oxide containing compounds are 

further displayed under polarised, crossed illumination in Plates 4-37, 4-39, 4-41. The 

iron rich regions and phases as fused, coalesced or well rounded spheres appeared as 

black and grey, red, orange or greyish green depending on their mineralogy (i.e. as 

hematite, magnetite, wustite or iron-spinel) and morphology (i.e. as dendrites, euhedral 

spheres, angular cuboids, hexagonal particles). The non-ferrous regions of the matrix 

and spherical ash particles appeared as mixtures of white, yellow, beige and colourless
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thus reflecting the mineralogical variations between the heavier (i.e. iron rich minerals) 

and lighter (alumino-silicate based minerals) components of the ash.

Iron oxide predominantly appeared as the bonding phase between spherical ash 

particles, particularly for the upper furnace deposit samples (see Plates 4-53 to 4-56).

•  In some samples it was found that at the point where two spherical ash particles were 

joined together, significantly higher concentrations of calcium and sulphur were present 

(see Plate 4-44: EDX for point B). These two elements alone104,194 as oxides or 

sulphates or in conjunction with iron18 or sodium98 have been found to be responsible 

for bond formation between ash spheres. Identification of these oxides is important with 

respect to characterisation of the possible phases in the boundary regions of spherical 

ash particles.

•  The main crystalline phases in addition to the ferrous ones described previously, 

were also observed in a variety of forms such as:

Large mullite needles (see Plate 4-63), medium-sized mullite needles (see Plate 4-49), 

fine mullite needles (see Plate 4-50), fine dendrites of iron - aluminium - magnesium 

oxides (see Plate 4-46).

These variations in the form and type of ferrous and non-ferrous crystalline phases are 

further indications of the heterogeneous environment in which the crystal phases 

nucleate and develop. Formation of crystal phases present within various ash particles 

are thus influenced by the local environment, the rate of cooling and the general boiler 

atmosphere.
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5.6 APPLICATION OF LABORATORY-BASED TECHNIQUES TO DEPOSIT

SOFTENING BEHAVIOUR INSIDE THE BOILER SYSTEM

5.6.1 Correlation of the Softening Regimes for Fashioned Deposits to Boiler 

Environment

From Table 4-12 it can be seen that the IDT values for all of the deposit samples 

collected under the influence of Lycal 93HS injection were invariably higher than 

1340°C. The ST values were in turn above 1450°C and 1370°C for the lower and 

upper furnace samples respectively. Studies of ash fusion have shown55,183 that ashes 

with IDT values between 1260-1430°C and ST (i.e. melting temperature) values 

between 1300-1500°C have respectively been designated as marginally fusible and 

relatively non-fusable. Therefore, considering that the furnace gas temperatures inside 

a stoker boiler system, depending on the furnace residence time and location, can vary 

between 1200 and 700°C180, no deposit formation would have been expected. The fact 

that formation of deposits did occur, can only further indicate the complex interaction 

between the ash matter and its environment within the boiler system. The combination 

of these complex interactions make any characterisation of factors responsible for 

deposit formations extremely difficult and therefore the use of an additive such as 

Lycal 93HS, towards alleviation of deposit formation would have to be based on the 

analysis of deposit samples.

5.6.2 Relevance of Deposit Reconstitution to it’s Softening Behaviour Within the 

Boiler Environment

The formation and morphology of the deposit is the result of coalescence of softened 

or molten ash particles that arrive on the boiler tubes, largely as a matter of chance. 

This was simulated through evaluation of the softening of the "reconstituted" deposit
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samples. The dependence of the segregation of individual ash constituents on the 

softening of resulting deposits can be detected from comparison of the results presented 

in Tables 4-12 and 4-13. The reconstituted samples displayed a decrease in their 

softening temperatures, ranging from 36 to 124°C and 10 to 70°C for their IDT and 

ST values respectively compared to their corresponding values in the fashioned state. 

Furthermore, the reconstituted samples were plastic over broader temperature ranges 

for the ST to HT and HT to FT than the fashioned samples. This is significant in terms 

of deposit build up since deposits most difficult to remove have been shown82 to have 

been plastic over a broader temperature range.

5.6.3 Role of Iron Oxide on the Softening Behaviour of Deposits on Boiler Tube 

Surfaces

Results of the heat treatment of the fashioned FI and F2 type deposit samples are 

shown in Table 4-17. It is clear that the FI type samples with much lower Fe203 

content (9-13 mass%) could be considered as difficultly fusible at 1350°C whereas the 

F2 type samples with much higher Fe203 content (24-40 mass%), were readily fusible 

at 1200°C.

The variation in the extent of melting and fusion of the two type of samples was seen 

to be very much as a result of both the production of more molten ash and the lowering 

of deposit viscosity. It seemed that at lower temperatures (i.e. 1200°C), further 

softening was due to the increase in the molten matter whereas at higher temperatures 

(i.e. 1275 and 1350°C), the reduction in the viscosity of the bulk sample seemed to be 

the main cause for further softening. This was particularly evident for the F2 type 

samples. These observations are in agreement with other studies.58,182 

The results of the cone fusion tests on the reconstituted FI and F2 deposit samples
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presented in Table 4-14 showed relatively smaller differences in the softening stage (i.e. 

ST) compared to the results for fashioned deposit specimens presented in Table 4-17. 

The IDT values of 1350-1400°C for the reconstituted FI type samples are close to the 

equivalent values for the fashioned samples at 1350°C. However, for the iron enriched 

F2 type samples, the IDT values of 1320-1350°C were significantly higher than the 

equivalent value of 1200°C for the fashioned samples. The difference in these 

observations can be related to the role of iron rich particles of ash. In the fashioned 

state these particles were mostly associated with the outer surface of the deposit (see 

Plates 4-9, 4-10). The evidence for the presence of iron oxide enriched outer dust layer 

for the F2 type deposits can be deduced from their significantly high iron oxide contents 

compared to the FI type deposits (see Table 4-3). On heating, the surface of the sample 

first softens and forms a glazed structure. Gradually molten matter flows into the 

sample as the temperature is raised and the whole of the sample becomes molten. 

However in the reconstituted samples, the iron rich particles are well mixed with other 

particles within the sample. The iron rich particles can now only form soft or molten 

spots within the sample, bonding other solid ash spheres together. Also as suggested 

in other investigations50,185 these particles can be the main source of deposit strength, 

and hence support for massive slagging deposits by re-enforcing the adhesive bonds 

between the slag and the collecting tube surfaces. Therefore higher temperature would 

be required before the whole of the sample becomes molten. This could account for the 

particular deposition problems associated with the upper furnace regions with much 

higher iron oxide concentrations in deposits, as stated previously and observed in other 

investigations. 45’47>50>111
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5.7 PROPOSALS FOR THE ROLE OF LYCAL 93HS IN BOILER No.6

5.7.1 Introduction

The most evident bulk effect of Lycal 93HS can be observed from Plates 4-1 to 4-5 

which demonstrate how its continuous injection has effectively helped to maintain the 

boiler tube surfaces clean. At some regions (side B) where Lycal 93HS injection had 

been reduced some deposit formation can be seen (see Plates 4-4, 4-5). Lycal 93HS was 

injected with the secondary air (138°C)171 into the combustion chamber at both the front 

and rear of the grate along the width of the furnace in a position about 30 cm above the 

fuel bed. This ensures good mixing with the air-borne fly ash before it is thrown 

outwards toward the front, rear and side walls. The fine Lycal 93HS particles can thus 

react with the fly ash matter before they are deposited on boiler tube surfaces or 

escape the boiler environment.

The formation of friable deposits under the influence of Lycal 93HS injection into 

boiler No.6 has already established its beneficial effect (see PLates 4-8 to 4-10). The 

evidence of microstructural changes previously discussed in Section 5.4.2 (b) has shown 

how Lycal 93HS injection into boiler No.6 was instrumental in transforming highly 

porous, fully fused deposit samples with continuous structures into highly porous, very 

open skeletal structures. In order to determine the possible mechanisms involved, the 

effect of Lycal 93HS has been investigated in two ways:

1. As an "internal" modifier of the molten fly ash particles with respect to their bulk 

softening behaviour.

2. As a "external" surface modifier of the molten fly ash particles with respect to their 

adhesion and coalescence properties.

Additives can also act on the gaseous and vapour phases as well as on the particulate 

materials in the system. However the results of elemental chemical composition for the
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deposit samples (see Tables 4-2 to 4-6) and particulate ash hopper and grit arrestor 

samples (see Table 4-7) did not show any significant enrichment in the volatile alkali 

oxides (Na,K)20  and sulphur oxide (S03). Furthermore, the SEM-EDX analysis of the 

bulk deposit samples from boilers No.6 and No.5 did not exhibit any notable 

association of these oxides which are usually indicative of their presence within the 

inner layer of deposits as K2S04, Na2S04 and / or more complex sulphates (see 

Table 2-2). Hence, these aspects were not considered in this study.

The role of Lycal 93HS in terms of the first, second or both of the particulate 

mechanisms above, can occur before, during or after the deposition of fly ash particles. 

This would be dependent on the prevailing conditions at various regions within the 

boiler, subsequently affecting the texture and morphology of the deposit.

5.7.2 The Role of Lvcal 93HS as an Internal Modifier of Deposit Particles With 

Respect to their Softening Behaviour

Table 4-15 shows that for a range of deposit samples collected under the pre-Lycal 

injection conditions, additions of Lycal 93HS upto 8 mass% acted as a strong fluxing 

agent under cone fusing test conditions. The temperatures for various softening stages 

were progressively decreased with increasing additions for all of the upper furnace 

deposit samples. However for the lower furnace deposit samples, the fluxing effects of 

Lycal 93HS were more limited, in some cases even increasing the HT and FT values. 

For all of the deposit samples the extent of plasticity was enhanced by the additions of 

Lycal 93HS, thus delaying or preventing the fluid formation for the maximum operating 

furnace temperature of 1450°C.

The fluxing action of Lycal 93HS is further demonstrated by comparison of Tables 4-14 

and 4-16 for a selected number of lower furnace deposit samples collected during the

-PAGE 384 -



samples collected under the pre-Lycal 93HS conditions, the iron enriched F2 type 

samples showed either little reduction or indeed increased FT values. The extent of 

plasticity was again extended for both the FI and F2 type deposits.

These observations can be correlated to the behaviour of depositing fly ash particles by 

comparing them with the ash admixture results (see Table 4-48 and Figure 4-17). It can 

clearly be seen that increasing additions of Lycal had only a marginal effect on the 

softening temperatures of AMI ash admixture but generally decreased the 

corresponding temperatures for the AM4 admixture. Comparison of these results with 

those from the reconstituted deposits (see Figures 4-4 and 4-5) shows that ash from the 

fine particles (AM4) had behaved similarly to the deposit samples. The IDT values 

for AM4 and deposit samples were lowered by an average of 19.4 and 9 .4°C per 

1 mass% of added Lycal 93HS respectively. However, the ash from the coarse particles 

(AMI) had behaved very differently and had shown only marginal sintering with 3 

mass% addition of Lycal 93HS. This behaviour could be attributed to the lower basic 

oxide (i.e. CaO +  MgO +  K20) content (see Table 4-47) or the presence of more 

refractory mineral phases within the AMI compared to AM4.

These reductions in cone fusion temperature values are somewhat higher than data in 

the literature195 reporting that up to about 18 mass% magnesia in a magnesia-kaolin 

system would lower the IDT values by 2.7°C for every 1 mass% of magnesia present. 

Others196 197 have also shown that additions of magnesia produced effects dependent on 

the composition of the ash. If much iron was present, magnesium ferrite196 might form, 

making the ash more refractory.

The relevance of these observations to the effect of Lycal 93HS injection on the ash 

within boiler atmosphere can be summarised as follows:
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For the ash particles in flight, their plasticity over lower and extended temperature 

ranges would make them stickier over a longer period of time. Therefore their 

propensity to adhere onto the boiler tubes would be significantly increased. However 

if Lycal 93HS is absorbed onto the surface of the fly ash particulates, it can 

significantly reduce their sintering through transformation of glass to crystalline species 

on the surface layer of silicate ash particles.163 For the softened ash particles already 

impacted onto the boiler tubes to form part of a maturing deposit, the extended 

plasticity range would cause the enhancement of devitrification range. This could be 

achieved via increased rate of crystallisation and crystalline growth induced by the 

presence of Lycal 93HS. The ratio of glassy to crystalline fraction of the ash as 

previously expressed in equation (2-27) significantly determines the rate of deposit 

formation, increasing with increase in glassy fraction. Additions of 2 and 8 mass% 

Lycal 93HS increased the sinter point of the pre-Lycal 93HS injected samples by 50 and 

30°C respectively. This would provide an extended vitrification range for the deposited 

ash over the boiler tubes.

The possible devitrification enhancing mechanism of Lycal 93HS may involve the 

promotion of nucleating agents or phases derived from iron rich particles within the 

melt. These agents or iron rich phases can promote the separation of various phases 

within the fluid ash, assisted by the temperature gradients across the thickness of the 

forming deposit layer. The enrichment of iron oxide in the deposits from bottom screen 

tubes region within boiler No.6 could hence particularly influence the effectiveness of 

injected Lycal 93HS. Formation of nucleating sites promoted by copper oxychloride as 

the additive have been proposed by other researchers.144,145,198,199 A general trend was 

shown163 whereby this additive was more effective with ashes containing 10-20 mass%

F6 2 O3 .
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5.7.3 The Role of Lvcal 93HS as an External Modifier of Deposit Particles With

Respect to their Surface Properties 

If the solid particles of Lycal 93HS (as MgO) come into contact with the spherical ash 

particles during their flight or immediately after their deposition on boiler tube surfaces, 

the particles and hence resulting deposit would have a different characteristic. 

This difference however would depend on the degree of impingement of the fine MgO 

particles which might fully or partially cover the surface of the ash particle. Although, 

contrary to suggestions in one study162 which has proposed a change in terms of 

crystallisation of ash particles through their instantaneous reaction between an additive, 

it would seem unlikely, due to very short residence times, that an instantaneous reaction 

between an additive (e.g MgO) and ash particulates would modify their crystallisation 

and hence by making them harder, render them less sticky. If Lycal 93HS modifies the 

surface properties, it might be expected to also modify the strength of deposits formed 

by the fly ash. It should be mentioned that the ability of small amounts of an additive 

to transform the surface of the ash matter would be dependent on whether the surface 

constitution of the ash was of a glassy or crystalline nature. This aspect has been 

discussed by some other researchers.84,164 Furthermore it has been shown that the 

surface properties of the ash particles could change in two ways:167,168

1. Indirectly, through substantial migration of major elements towards the injected 

additive (i.e. MgO) within deposits, in sufficiently large enough quantities. These 

elements were found to react with the MgO particles as volatile species. The MgO 

particles would thus have neutralised them and inhibited their deleterious softening 

effect on the ash.
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2. Directly, by adherence of MgO to the molten surface of the glassy ash spheres, 

forming an insulating layer. This layer would thus neutralise the effect of volatile 

species which on condensation on and coating of the ash particles would form a sticky 

layer. The layer of MgO coating can also act as a physical, refractory barrier to ash 

particle - ash particle contact.

The results of HF-dissolution experiments for a range of samples from boiler No. 6 and 

No.5 with and without injection of Lycal 93HS respectively are presented in Figures 

4-7 to 4-13 and can thus be discussed with respect to the above observations. This 

series of experiments were carried out to determine if the propositions regarding the 

surface effects of Lycal 93HS on matured deposit samples and fly ash particulate matter 

(i.e. economiser ash hoppers and grit arrestors) could be detected from comparison of 

results with and without Lycal injection. The bulk solubility is clearly a property of 

both the glassy and crystalline matrix which was discussed previously, and it would be 

expected that those elements that are either chemically or physically trapped within this 

matrix to exhibit low solubility. The provision of fresh solvent immediately after 

extraction of solutions at every point during the tests further allowed for the potentially 

soluble material to ultimately enter the solutions.

Figures 4-8 and 4-9 show that the MgO concentrations in the leachate were initially 

much higher for samples with Lycal 93HS injection than the corresponding samples 

without Lycal 93HS injection for rear and side wall deposits respectively. The initial 

high concentrations ( 1.68-2.35 mg/L) are indicative of the readily soluble nature of 

MgO from the surface of the deposit samples with Lycal 93HS injection compared to 

much lower values (0.34-2.0 mg/L) for the samples without Lycal 93HS injection. The 

MgO concentrations for the samples with Lycal 93HS approached a constant value after

-PAGE 388 -



one hour, increasing only marginally from the initial leachate concentration. The MgO 

concentrations for the samples without Lycal 93HS increased rapidly, approaching 

similar values after two hours. Thereafter the rate of increase in the MgO concentration 

is relatively slower, final concentration values are found to be higher than the samples 

with Lycal 93HS injection and particularly for the side wall sample, where the values 

continue to increase and do not level off. The bulk elemental oxide concentrations of 

MgO are found to be very similar for both the samples with and without Lycal 93HS 

injection (see Tables 4-4 to 4-6). This further emphasises the point that significantly 

higher concentrations of MgO in the leachates for the two samples with on-line injection 

of Lycal 93HS must be due to the free MgO (from Lycal 93HS).

The concentrations of Fe203 and Si02 in the leachate in Figure 4-8 are much higher for 

the deposit sample with Lycal 93HS injection than the sample without. Although the 

initial concentrations after 15 minutes are very similar for all the samples. Furthermore, 

the leachate concentrations increase only marginally after 3 hours for the sample with 

Lycal, the Si02 concentration for the sample without Lycal shows a continuous increase 

up to 6 hours. With respect to the bulk elemental composition of these oxides in Table 

4-4 to 4-6 which show very similar concentrations, the difference in behaviour can be 

accounted for by the way these oxides could be associated. If Fe203 and S i02 are 

absorbed indirectly as volatile species onto the suface of fine microcrystalline MgO 

particles, they would show much higher solubility than the Fe203 and S i02 compounds 

which could be present as part of the alumino-silicate matrix. The variation in the 

leachate concentration of these two oxides, despite their similar concentrations in the 

bulk samples could depend on their status within the bulk deposit samples. If for 

example the source of S i02 and Fe20 3 in one sample happened to be quartz and 

hematite / magnetite or iron-spinel respectively, then they can much more readily
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dissolve in the solution than if they are present as part of a complex alumino-silicate 

matrix structure. These results are reversed for the side wall samples in Figure 4-9 

which showed the enrichment of F e ^  and Si02 for the sample without Lycal 93HS 

injection despite very similar values for the bulk samples (see Tables 4-4 and 4-6). 

This time, the variation could reflect the status of the two oxides as discrete minerals 

within the sample without Lycal 93HS injection.

Figure 4-10 for bottom screen tube deposit samples illustrated significantly higher initial 

leachate concentration of MgO for the sample with Lycal 93HS injection from the 

second batch. Other samples with and without Lycal showed almost identical initial 

concentrations. However, whereas for two of the samples with Lycal injection, the 

concentration changes, from their initial to their final values, were limited over the test 

period (i.e. maximum of 0.2 mg/L), for the other sample (i.e. batch 4), the 

concentration change was 0.7 mg/L. The higher initial MgO concentration for the 

second batch sample can be reflected from its higher concentration in the bulk sample 

(see Table 4-2) compared to similar samples from other batches (see Tables 4-3 and 

4-4). Furthermore, it is evident that whereas concentration values for the samples from 

the second and fourth batches approached a constant level, the values for the sample 

from the third batch (i.e. FI type) increased continuously. This can be attributed to the 

highly porous nature of this sample (see Plate 4-8), allowing for a more gradual and 

continuous leaching of the sample.

The greater F e ^  leachate concentrations for the deposit sample without Lycal 93HS 

compared to other samples, is reflected in the bulk composition of this sample (see the 

composition for the inner layer in Table 4-6 compared to Tables 4-2 to 4-4). 

Continuous dissolution of F e ^  for all of the samples, reflected by the slope of their
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leachate concentrations is indicative of their availability as discrete minerals. However, 

the general Fe203 leachate concentrations for all of the samples were comparatively 

lower than corresponding values for the lower furnace deposit samples in Figures 4-8 

and 4-9. This is unexpected considering the much higher Fe203 contents of the upper 

furnace samples. However, it could indicate that the Fe203 is mostly concentrated 

within rather than on the surface of the upper furnace deposits. This however was 

certainly not the case for the F2 type deposits which have already been shown to have 

a coating of iron rich particles (see Plate 4-9, 4-10).

The Si02 contents of the leachate for all of the samples were generally lower than 

corresponding values from lower furnace deposit samples (see Figures 4-7 to 4-9). 

Continuous dissolution of Si02 for all of the samples, reflected by the slope of their 

leachate concentrations is indicative of its availability on the surface. Furthermore, the 

extent of variation in the leachate concentrations is compatible with the concentration 

differences for the bulk compositions, with higher Si02 contents for samples from 

second and third batches compared to samples from the fourth and fifth batches (see 

Tables 4-2 to 4-4 and Table 4-6).

Figure 4-7 for front wall deposit samples illustrated significantly high initial leachate 

concentrations of MgO for samples with Lycal injection from the second and fourth 

batches. For the other samples with and without Lycal injection, initial leachate 

concentrations were similar but much lower. However, whereas the leachate 

concentration profiles increased only marginally after 5 hours for the samples with 

Lycal, the leachate concentration profile for the sample (inner layer) without Lycal 

increased rapidly by threefold after 1 hour and thereafter it increased at a slower rate, 

approaching a constant value at 5 mg/L. This high leachate concentration of MgO could
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be due to the residual effect of chrome-magnesite refractory brick lining between boiler 

tubes which was shown in the bulk chemical composition in Table 4-6. It is further 

evident that although MgO concentration in the bulk sample without Lycal was more 

than eight fold higher than that of Lycal injected samples, its initial leachate 

concentration after 15 minutes was still lower. This could be due to the nature of MgO, 

as particulates (i.e. from Lycal 93HS), readily available for dissolution compared to the 

MgO in the Mg0-Cr20 3 refractory layer contaminating the deposit sample.

The leachate concentration profiles for Fe20 3 in samples with Lycal shows similar rates 

of increase with Lycal, although the sample from the second batch with the highest 

F e ^  content amongst the bulk samples (compare Table 4-2 with Tables 4-3 and 4-4) 

showed the lowest leachate concentration profile. The leachate concentration for the 

sample without Lycal shows higher initial values up to 1 hour followed by a sudden 

jump after 2 hours and decreasing thereafter to a final concentration which is lower 

than samples from the third and fourth batch. This anomalous behaviour can reflect the 

nature of Pe20  , within the inner layer, mixed with the alumino-silicate matrix of the ash 

and not as discrete individual minerals, as was the case for the bottom screen tubes. 

For the Si02, the leachate concentration profiles for the samples with Lycal are 

comparable to those for the corresponding Fe20 3 concentrations, the leachate 

concentration profile is significantly lower for the sample without Lycal, reaching a 

maximum value of 1 mg/L after 5 hours. The difference in the S i02 concentrations 

between samples with and without Lycal can however be clearly expected from their 

bulk compositions (see Tables 4-2 to 4-4 and Table 4-6). The concentration profiles for 

all of the samples however shows a continuous and constant increase which could 

indicate that Si02 is mostly present as discrete particles such as quartz.

For the particulate ash hopper and grit arrestor samples in Figures 4-11 to 4-13, the
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leachate concentration values for all of the three oxides were relatively higher than the 

the leachate concentration values for the bulk deposit samples (Figures 4-7 to 4-10). 

This can be attributed to the fact that although the amount of particulate samples was 

identical to the mass of bulk deposit samples (i.e. 1 gram), the particulate samples 

would have larger surface areas available for leaching in the solution.

Figure 4-11 shows that leachate concentrations of the three oxides were higher for the 

particulate sample without Lycal 93HS, despite lower bulk values (see Table 4-7). 

However, although the initial and final values of MgO concentrations are higher for the 

sample without Lycal, it’s leachate concentration values remain almost constant after 

1 hour. This is unlike the leachate concentration profile for the sample with Lycal, 

which shows a continuous increase at an almost constant rate. The higher initial MgO 

values for the particulate sample without Lycal is despite lower MgO content for the 

bulk sample as determined in Table 4-7. However, since this sample was collected from 

boiler No.6 during the time when Lycal was off-line, the relatively high MgO leachate 

concentration could be due to the residual Lycal in the system, which could have been 

collected by the particles as they traversed through the boiler and down the 

economisers.

The Fe203 and Si02 leachate concentration profiles are very similar for both samples. 

However, significantly higher initial values for the sample without Lycal is indicative 

of the relative availability of these components on the surface of the ash particles 

possibly as discrete minerals. The results of the bulk composition for the two samples 

(see Table 4-7), does not show any significant difference in terms of Fe20 3 and Si02 

contents, suggesting therefore the presence of the more easily soluble components for 

the sample without Lycal. However, the leachate concentration profiles for the two 

oxides continue at a relatively more constant rate for the sample with Lycal, indicating
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a constant rate of dissolution which could be due to the masking effect of Lycal, 

promoting a slower but more continuous rate of release for these components into the 

solution.

Figure 4-12 showed significantly higher initial MgO leachate concentration for the grit 

sample with Lycal injection, increasing by two-fold after 1 hour, after which the 

leachate concentration remained almost constant. This suggests that a state of chemical 

equilibrium might have been achieved with respect to the MgO dissolution. The 

leachate concentration for the sample without Lycal decreased initially up to 5 seconds 

and then increased gradually thereafter. The possibility that Lycal is the source of MgO 

in the leachate for the sample with Lycal injection, can further be deduced from 

Table 4-7. It can be seen that the bulk MgO contents are higher for the sample without 

Lycal than the samples with Lycal. It is evident therefore that although lower in 

content, the MgO from sample with Lycal was more readily soluble than sample 

without Lycal but with originally higher MgO content.

The leachate concentration profiles for Fe203 and Si02 for samples with and without 

Lycal showed similar patterns. However, despite initial reductions up to 15 seconds 

which could be due to sampling errors, the leachate concentration values of Fe203 and 

Si02 were generally higher for the sample without Lycal. Since the amount of these two 

oxides in the bulk composition of the sample with Lycal were either slightly higher (i.e. 

Si02) or lower (i.e. F e ^ )  than their content in the bulk composition of sample without 

Lycal, the variation in the profiles can be attributed to the masking effect o f Lycal 

which could inhibit the dissolution of these oxides.

Figure 4-13 showed much higher leachate concentration levels for all the three oxides 

than the other particulate samples in Figures 4-11 and 4-12. This is due to the very fine 

size of the particles and their extended surface area. MgO leachate concentration
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significantly increased initially up to 15 seconds for the particulate sample with Lycal 

injection and then decreased up to 1 hour before it increased again and approached a 

constant value thereafter. The unusual shape of the leachate concentration profile can 

be due to the residual effect of some of the very fine particulates in sampling process. 

The high initial leachate concentration values and the final levelling of the profile can 

once again be attributed to the availablity of MgO as Lycal 93HS over the surface 

of the fine particles and the subsequent attainment of equilibria. The MgO leachate 

concentration values for the sample without Lycal are significantly lower and remained 

relatively constant after an initial increase up to 1 hour. It is further evident from 

Table 4-7 that the MgO content in the bulk composition for the sample with Lycal is 

higher. This could be attributed to the presence of Lycal which would more readily be 

available as MgO on the surface of the particles.

The leachate concentration values for Fe203 and S i02 for the sample with Lycal are 

significantly higher than the values for the sample without Lycal. After initial increases 

up to 2 hours, the concentration profiles for the two oxides approached a constant 

value. This suggests a continuous dissolution at a constant rate which could be 

attributed to separate mineral species such as hematite/magnetite and/or iron-spinels 

(i.e. F e ^  enriched) and quartz (i.e. Si02) on the surface of particles.

Studies of coal fly ash surface chemistry have shown16 that unlike many trace elements, 

the major oxides such as those of Si, Al, Mg, Na and P do not segregate to the surface. 

The percentage of some of these elements is shown in Table 5-416. Therefore, 

considering the very low concentrations of hydrofluoric acid used in this study (i.e. 

0.05 molar), the evaluated concentrations for the three oxides including MgO must be 

attributed to the surface of the samples. Also it can further be seen that whereas for
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Table 5-4: Percentage of elements leached 
from a typical coal fly ash16

Element % Leached

A1 0.2

B 5

Ba 4

Ca 35

Cr 30

K 40

Mg 0.2

Mn 0.4

Mo 85

Na 10

P 6

Pb 100

Si 0.1

Sr 6

Zn 6
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most of the samples, particularly the non-particulate samples, the MgO leachate 

concentration profiles for samples with Lycal were almost level after 5 to 6 hours, those 

for samples without Lycal increased continuously at reduced rates.

5.8 PROPOSALS FOR A MECHANISM FOR THE EFFECT OF LYCAL 93HS 

ON DEPOSIT FORMATION

5.8.1 Introduction

The formation of fly ash deposits in boilers is a very complex process and it is 

generally believed that it is mainly the combination of coal ash composition and the 

high temperatures within boiler environment which determine the type of deposit. 

Many other factors contributing to deposit formation, such as high alkali oxides, 

sulphur and chlorine contents of the ash or very high temperatures within the boiler 

environment as in p.f. fired boilers, found responsible for deposit formation, were not 

present in significant amounts in this study. In spite of this, deposits were formed and 

operational problems were encountered by boiler operators at West Belfast power 

station as discussed previously. The injection of Lycal 93HS alleviated these problems 

by making the boiler deposits weaker and more friable and thus more easily removable 

through the action of sootblowers.

5.8.2 Consideration of Factors Involved in Deposition

The various stages contributing to the formation of deposits in this study could be 

characterised as follows:

On entry into the boiler, as the coal particles on the grate become subjected to heat, 

they undergo pyrolysis, releasing their water and volatile matter with subsequent 

burning of the carbonaceous residue. However, unlike the coal lumps, which release 

most of their mineral matter which becomes airborne as ash whilst they are burning on
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the grate, the coal smalls and fines because of their size and density are readily 

elutriated and bum in suspension above the grate. The ash derived from the smalls and 

fines was shown to be much more readily fusible than the ash derived from the larger 

coal lumps (see Table 4-48 ). This softened ash which exists mostly as fine solid or 

hollow spheres (cenospheres) within the boiler environment may arrive on boiler tube 

surfaces as single particles or agglomerates of two or more spheres of similar or 

different sizes as was observed for some of the fly ash particles from the ash hoppers 

presented in Plates 4-30 and 4-31.

The significantly lower unbumed carbon content for the medium and fine spherical ash 

hopper and grit arrestor particles compared to the coarse particles (see Table 4-8 and 

Figure 4-1) is indicative of a much higher release and burning of carbon within these 

particles, which could enhance their softened and/or molten status as they are propelled 

towards boiler tube surfaces. On impaction on the boiler tube surfaces, these particles 

may either freeze and stick or may rebound and become entrained in the gas flow, 

depending on their physical status and surface texture as well as regional gas flow 

regimes and temperatures. The formation of a very thin layer (i.e. 1-2 mm) of fine ash 

particles on the test probe after 12 hours as explained in Section 4.4.1, further indicates 

their role in deposit formation.

The larger spherical and cenospherical ash particles derived from the larger ash 

particles would then start adhering to the finer ash spheres once a layer of some 

thickness (i.e. a few millimeters) with a sticky molten layer has been formed. However, 

the very high unbumed carbon content (see Table 4-8 and Figure 4-1) and the 

refractory nature of the ash derived from the coal lumps, as presented in Table 4-48 

would suggest that these ash spheres and cenospheres would less readily be in a 

softened state and therefore would not easily coalesce with other ash particles during
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their flight within the boiler environment. Significant bond formation and bridging 

between spherical ash particles would take place after these larger ash spheres have 

impinged on the forming deposit layer.

Regions of significant iron enrichment around and in between spherical ash particles 

were found to be particularly instrumental in bond formation within the upper furnace 

deposit samples (see Plates 4-53,4-54 and 4-55). For the lower furnace deposit samples 

with generally much lower iron oxide contents (see Tables 4-2, 4-4, 4-5 and 4-6), the 

influence of ferrous regions was less pronounced. For the layered deposits, the bulk 

analyses of the lower furnace samples showed that iron oxide (i.e. Fe2 0 3) 

concentrations in the outer layers were almost similar or twice those in the inner layers. 

For the upper furnace deposits the situation was reversed and the inner layers showed 

similar or much higher Fe2 0 3 contents, up to three times, compared to the outer layers 

(see Tables 4-3, 4-5, 4-6).

This enrichment of Fe203 can take place via different processes. For the upper furnace 

deposits, the ferro-spheres impact the tubes directly on their flow path. Since the 

temperature gradients due to lower gas temperatures are not high enough, the cross 

boundary diffusion of volatilised oxides (i.e. iron oxides or sulphides) from inner to 

outer layers would be limited. For the lower furnace deposits, the enrichment of 

iron oxides or sulphides in the outer layer could be assisted by the process of 

cross boundary diffusion outwards, towards the much higher flame temperatures. 

This could also be promoted by the higher temperature gradients across the 

somewhat thicker deposit which could further advance the combustion of residual 

carbon within the deposited ash particles which in conjunction with iron could either 

be present as carbonates (see Section 2.3.2(a)) or as iron carbide (F e ^ )  which on 

further reaction with the silica within the deposit would release the iron and further

-PAGE 399 -



form an iron-silicon compound (F^Si) as explained in Section 2.4.2 (a). Iron can thus 

be released to migrate to the outer surface of the molten deposit layer.

In addition to iron compounds, calcium and sulphur (as calcium sulphate, CaS04) were 

also shown to act as the bonding agent within the boundary layer between some 

spherical ash particles in lower furnace deposits (see Plate 4-44). This is a compound 

which could have derived either directly from the sulphatic minerals (e.g. CaS04) or 

indirectly through decomposition of carbonate minerals (e.g CaC03) and their further 

reactions with sulphurous oxides within the boiler atmosphere.

5.8.3 The Role of Lvcal 93HS With Respect to Deposit Formation

As Lycal 93HS which is principally Mg(OH)2 enters the furnace, it calcines and forms 

magnesia, MgO by the release of H20 . This may further cause the fragmentation of 

already small MgO particles to even smaller particles. It is expected that as a highly 

refractory oxide (i.e. melting point =  2800°C), the pure MgO would not melt or even 

soften within the furnace atmosphere and thus keep its solid form. It has been shown167 

that MgO has a very fine microcrystalline structure capable of absorbing the volatile 

species of silica, phosphorus and sulphur present within the gas flow regime or on the 

surface of particulate ash matter within sintered coal ash compounds.

The analysis of collected fine fly ash from the surface of the deposition probe after 

the 12 hour tests (see Table 4-18) showed that with Lycal 93HS injection the amount 

of sulphate, phosphate and MgO were significantly higher than the trials without 

Lycal 93HS injection. The association of the volatile species with the deposited ash 

particles on the probe after only 12 hours seems to have been promoted by the Lycal 

injection, although the possiblity and the extent of this association was not firmly 

established. However, in essence if there is an interaction between the MgO particles
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and the volatile species, this could have taken place via two routes:

(a). Direct impingement of volatile species onto the surface of the solid MgO 

particles and further diffusion into the body of the particle where they are absorbed 

by the microcrystalline constituents of MgO particles. This would immobilise these 

deleterious compounds and would render them ineffective.

(b). Indirectly through coating of the fine ash spheroids and cenospheres which have 

already absorbed the deleterious volatile species. This would inhibit any further 

participation of these species over the surface of the ash particulates to form 

further bonds with other ash matter.

Although direct supportive evidence can not be given for the first of these processes, 

it could feasibly occur when Lycal 93HS is in flight within the gas flow stream. For 

the second process, the evidence could be found in the form of association between Mg 

and P, Fe and S as oxides which were shown to form the bulk of composition for a 

dispersion of fine, white particles on cenospherical ash matter from economiser ash 

hopper region (see Plate 4-30: EDX analysis). Further evidence of such association 

between MgO and some volatile species could also be suggested from the bulk analysis 

of the thin layer of fine ash matter collected on the surface of the test probe with and 

without injection of Lycal 93HS (see Table 4-18). The collection of MgO particles on 

the surface of fly ash particles would most effectively take place when they are in a 

softened state within the boiler atmosphere or on boiler tube surfaces.

Limited short term probe deposition trials showed that Lycal 93HS injection was 

influential in lowering the deposition rate (see Figure 4-6). In view of the different 

routes suggested concerning the role of Lycal 93HS, the neutralisation of volatile 

species would create less "sticky" fly ash particles and/or the deposit surfaces. Further 

deposition of colliding ash particles onto the deposit layer already formed may
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consequently be hindered by their rebound and re-entrainment into the gas flow stream. 

In a separate study carried out on boiler No.6, it was shown200 that the fly ash dust 

emission rates from the discharge side of the I.D fans (i.e. approach duct to stack), 

with Lycal 93HS injection, were more than twice the emission rates without Lycal 

injection. This would mean a lowering of the fly ash content available for deposition 

within the furnace atmosphere although the higher ash burden was also shown200 to 

lower the collector efficiencies by 10%.

The extent of crystallinity within the deposit samples with and without Lycal 93HS 

injection was found to be similar. However, laboratory determinations showed that 

additions of Lycal 93HS between 5-10 mass % influenced the formation of crystalline 

laths similar in composition to mullite, within the fluid melt of same acidic ash 

components. Although many of the other acidic ash components had very similar 

compositions, they did not exhibit any crystallisation on cooling their fluid melt which 

contained increasing additions of Lycal 93HS. This could be due to mineralogical 

variations or the extent of misciblity of Lycal 93HS and the fluid melt of the ashes. 

For the iron enriched ash components, even lower additions of Lycal 93HS at 1-3 

mass% transformed the molten ashes and formed highly enriched iron-magnesium oxide 

or compounds in the form of spikes growing from a siliceous matrix. This has been 

previously described in Section 5.3.2.

These additions of Lycal 93HS, particularly in the range of 3-10 mass%, are 

significantly higher than the amount of Lycal 93HS (i.e. at mean value of 0.3 mass%) 

which was available for reaction with the fly ash matter within the boiler atmosphere. 

However, the MgO concentration increased significantly by more than threefold to 

approximately 5.8 mass% within the thin layer of ash sample collected on the surface
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of the test probe (see Table 4-18) wiyh on-line injection of Lycal 93HS. This is 

indicative of the enrichment of ash by amounts relatively compatible with the Lycal 

additions for the ash components in this study.

The work reported in this thesis suggests that the presence of Lycal 93HS as an additive 

has an important role to play in reducing the strength of coal ash deposits formed on 

boiler tube surfaces, by making them friable and easily removed by soot-blowers. 

Depending on certain factors, most importantly the composition of the coal fly ash and 

the temperature distribution within the boiler regions, Lycal can assume more than one 

role. If much iron (i.e. as iron oxide) was present within the ash, increasing additions 

of Lycal 93HS lead to increases in the softening temperatures of the ash. This would 

prevent the ash from becoming readily softened and thus reduce its tendency to 

coalesce and form regions of hard, fully fused, slag-type deposits on boiler surfaces. 

If the ash was of an acidic nature, as defined in this study, increasing additions of Lycal 

was influencial in both reducing its devitrification temperature as well as increasing the 

rate of its crystallisation. This would make the fluid ash more viscous and at deposit 

forming temperatures and therefore less prone to make extended regions of molten ash 

deposit on boiler tube surfaces.

The presence of fine particulate matter enriched in oxides of Mg, P, S and Fe on the 

surface of some spherical fly ash particles suggested a certain degree of interaction 

between Lycal 93HS and these injurious species. However it could not be ascertained 

whether such interactions would mostly occur before or after the fly ash particulates 

have deposited on the boiler surfaces as suggested by the analysis of the collected layer 

of ash on the test probe.
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The results attained here certainly suggest that a full understanding of the principles and 

the extent of interaction between the additive (i.e. Lycal 93HS) and ash requires a 

thorough study of the softening and melting behaviour of ash and its components under 

various temperature and gas flow regimes and compositions.
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6. CONCLUSIONS

(1). External trials at West Belfast Power Station have shown Lycal 93HS injection at 

the rate of 5 kg/hr to be effective in reducing ash deposit build up by making it 

more easily removed through the action of soot-blowers.

(2). The role of Lycal 93HS in formation of friable deposits is very much dependent 

on the chemical composition of the coal ash within the boiler, particularly its iron 

oxide content which affects its softening behaviour, determined by laboratory based 

cone fusion technique.

(3). The role of Lycal 93HS on the softening behaviour of boiler deposits, using 

laboratory based cone fusion technique, is dependent on the composition and the 

arrangement of ash particulates within the softening bulk sample.

(4). For iron rich components of ash (i.e. 15-39 mass% Fe203), addition of 0.5 mass% 

Lycal 93HS, which was compatible with its injection rate into boiler No.6, 

increased softening temperatures, using the laboratory based cone fusion technique. 

For other ash components below or above this range (i.e. 12 and 60 mass%) the 

cone fusion softening temperatures decreased through fluxing action of Lycal 93HS.

(5). Additions of 5 and 10 mass% Lycal 93HS to the acidic components of the coal ash 

induced crystallisation of the fluid melt, using laboratory based hot - stage 

microscopy technique. The crystalline phase was similar to large mullite needles 

in terms of its composition and structure.
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(6). Additions of 1 to 10 mass% Lycal 93HS to the ferriferous components of the coal 

ash encourages the formation and growth of fine needles from the surface of some 

melts but hinders their formation in others, determined by hot-stage microscopy 

technique. This was shown to be dependent on the iron oxide content of the ash 

component.

(7). The proportion of the acidic, basic and ferriferous components of ash either 

remaining on the grate or becoming air-born as fly ash was shown to be partly 

dependent on the physical form that these components assume within the coal ash. 

The basic components were found to be mostly associated with the hard parts of the 

ash probably remaining on the grate. The acidic and ferriferous components with 

a powdery texture would readily become air-born as fly ash.

(8). For the upper furnace deposits, iron oxide was found to invariably act as the 

bonding phase between spherical ash matter within the deposits. Calcium and 

sulphur (probably as Ca2S04) was also found in the binding region within spherical 

ash particles in some lower furnace deposits.

(9). For the particulate fly ash matter, MgO (i.e. Lycal 93HS) was mostly associated 

with the fine (-45/xm) particles. The presence of Lycal 93HS on the surface of these 

particles was also found to be rich in sulphur and phosphorus oxides or compounds. 

This suggests a form of interaction between Lycal 93HS and these injurious species.

-PAGE 406 -



CHAPTER

( 7 )

SUGGESTIONS FOR FURTHER WORK



7. SUGGESTIONS FOR FURTHER WORK

The present work was carried out through a wide range of investigations which would 

directly or indirectly affect the formation of deposits. However, in order to investigate 

the role of any additive in the way that we have been concerned with in this study, the 

use of small physical models is conceived to be invaluable. This would allow for the 

comparative analysis of the pilot scale observations and results with those obtained 

through the model which provides a more controlled environment.

By using the physical model, the role of Lycal 93HS can also be evaluated for a wide 

range of gaseous environments and heat cycles as well as its physical interaction with 

and its effect on the generated ash particles.

The use of hot-stage microscopy technique can be further realised through more 

elaborate investigation with known minerals and mineral compounds simulating a range 

of mineralogical compositions. The role of Lycal 93HS through various additions can 

be more fully investigated and the extent of its influence on each of these minerals and 

their various combinations can further be shown . These can further be compared 

against known phase-equilibria diagrams for similar mineralogical compositions.

More sophisticated techniques such as Auger spectroscopy could be used to determine 

the surface effect of Lycal 93HS in terms of its reaction or combination with a wide 

range of major, minor or trace elements within the ash. This can also provide 

information on the extent of reactions of Lycal 93HS with volatile species. This is 

particularly important with respect to the emission of injurious by-products such as 

sulphates and phosphates, towards cleaner coal combustion technology.
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