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A STATIC MODEL OF A SENDZIMIR MILL
FOR USE IN SHAPE CONTROL
by

GW DM GUNAWARDENE MSc

ABSTRACT

The design of shape control systems is an
area of current interest in the stéel industry. Shape is
defined as the internal stress distribution resulting from
a transverse variation in the reduction of the strip
thickness. The object of shape control is to adjust the
mill so that the rolled strip is free from internal
stresses. Both static and dynamic models of the mill are
required for the control system design.

The subject of this thesis is the static
model of the Sendzimir cold rolling mill, which is a
1-2-3-4 type cluster mill. The static model derived
enables shape profiles to be calculated for a given set of
actuator positions, and is used to generate the steady
state mill gains. The method of calculation of these
shape profiles is discussed. The shape profiles obtained
for different mill schedules are plotted against the
distance across the strip. The corresponding mill gains
are calculated and these relate the shape changes to the
actuator changes. These mill gains are presented in the
form of a square matrix, obtained by measuring shape at
eight points across the strip.
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FOR USE IN SHAPE CONTROL

G ¥ D M GUNAWARDENE MSc

ABSTRACT

The design of shape control systems is an
area of current interest in the steel industry. Shape is
defined as theinternal stress distribution resulting from
a transverse variation in the reduction of the strip
thickness. The object of shape control is to adjust the
mill so that the rolled strip is free from internal
stresses. Both static and dynamic models of the mill are

required for the control system design.

The subject of this thesis is the static

model of the Sendzimir cold rolling mill, which is a

1-2-3”7* type cluster mill. The static model derived enables

shape profiles to be calculated for a given set of

actuator positions, and 1is wused to generate the steady
state mill gains. The method of calculation of these
shape profiles is discussed. The shape profiles obtained

for different mill schedules are plotted against the

distance across the strip. The corresponding mill gains
are calculated andthese relate the shape changes to the
actuator changes. These mill gains are presented in the
form of a square matrix, obtained by measuring shape at

eight points across the strip.
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Chapter 1.
INTRODUCTION.
1.1. Review of the history of rolling mills.

First evidence of a possible attempt +to
design a cold rolling mill appears in a sketch by
Leonardo da Vinchf. The machine was built later to stretch
and 1roll copper strips of sufficient evenness and thinness,
for the making of &mirrors. The history of rolling records
the construction of a hand mill for lead rolling in 1615,
Nearly a century later. there were various piate mills
powered by water wheels or horses for rolling lead and
copper? By around 1700, reasonably large mills were in
operation for rolling hot ferrous metals. The idea of the
three -~ high mill for rolling metal was more +than a
century old before it was first introduced into iron works
in Sweden in 185 and in England in 1862. Its inventor,
Christopher Polheim had realised the value of being able
to pass the metal back and forth without having +to

reverse the rolls,

Another’ idea from the previous century, the
continuous mill, had been patented by William Hazeldine in
1798, but was not used until it was reinvented by George
Bedson in 1862, Here the metal was fed successively into
a series of roller stands placed in 1line so that its

. . 3
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The development of rolling mills has continued
at a higﬁ increasing rate from 1920's onwards. Today there
are a wide range of mill configurations and associated
equipment to suit all applications. The period of greatest
evolutionary change, which spans the last fifty five years,
can be divided into three distinct periods: first generation
mills from 1927 to 1960, second generation from 1961 to
1969 and third generation from 1970 to present dayf

Up to 1960, strip mills operated at low speeds
(with exit speeds not more than 12 m/s) and handled small
coils weighing up to about 10,000 kg. From 1960 the
progress was rapid and the second generation mills were
designed to deal with heavier coils and at faster speeds,
vBy the end of the decade automatic gauge control was
introduced to meet the more demanding market. The third
generation mills emerged in response to the need to roll
much larger coils. These mills were capable of handling

45,000 kg coils at speeds up to about 29 m/s.

Major requirements of rolling may be outlined
as increasing coil sizes, gauge and shape performance, and
led to many new developments. These include the introduction
of more stands per tandem mill, improved automatic gauge
control systems, hydraulically 1loaded mills, automatic roll
changing, strip threading and coil stripping facilities and

. ._ 5
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The development of computers helped the
automation of tandem mills, The first computer controlled
mill was commissioned at British Steel Corporation, Port
Talbot, England in 1964, This was followed by a chain of
developments of computer controlled mills, with the obJjective
of obtaining good shape and accurate gauge. The subject of
automatic gauge control and shape control became more
important in computer control development with the application

of shape measuring devicess.
1.2. The purpose of rolling mill research.

Rolling first started with hot materials, with
the knowledge of how to obtain a desired result. In many
cases the reasons were unknown and the practical knowledge
was more advanced than the theory. Weaknesses and defects
of rolling were -discovered through failures, and succesful
designs were produced by improving the faulty parts. This
experience of success through failure stimulated rthe
urderstanding of rolling, such as what happened +to a.
material when it passed between 1rolls, what forces were
required to deform it, etc. The knowledge was needed by
the designer to estimate, for example, the stresses in his
machine, and by +the operator to produce his product as

cheaply and efficiently as possible.

Later, when cold rolling was introduced, a new
set of problems had to be faced, since the requirements of the

rolling process was to produce materials reasonébly flat and
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of uniform thickness across the width and 1length of the
material. This required that the screwdown mechanism was
carefully adjusted for each pass and that the rolls were
maintained in good condition with the right shape. When
rolling at high speeds, the rolls became heated and 1lost
their shape, so that temperature control of the xrolls
became necessary. The lubricant to use on the strip
demanded further investigation, and the best type to use

for a given case is still a matter for experiment.

Materials also began to be rolled in the
form of very 1long strip, so that it had to be wound on
drums driven from the mill. Front and back tensions were
introduced to obtain a better product. These tensions
affected the performance of the mill and suitable values

had to be found by experience.

The friction forces between two rolls, and
between work rolls and material cannot be directly measured.
It was found, by experience, that the pressure required
to deform the material between -the rolls is much greater
than that needed for a similar reduction between flat
frictionless Vplates, owing to the friction effects. It was
also found +that the pressure varies with tﬁe thickness of
the material. Vertical plane sections of the material
became distorted in an almost unpredictable manner and the
material was found to spread laterally in addition to the

longitudinal spread. The amount of spread was found to Dbe
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dependent not only on the dimensions and type of material
used, but also on the diameter and surface conditions of
the rolls, rolling speed, etc. To understand these it was

necessary to develop the mathematics of rolling.

In addition to these, new materials, higher
outputs, lower rolling costs, better products with uniform
gauge, etc., demand more knowledge of the principles
underlying rolling. The functions of rolling mill research
are to provide +this knowledge and to show the ways of

improvementz
1.3. The Sendzimir cold rolling mill.

The Sendzimir cold rolling mill has achieved
recognition thr§ughout industry in rolling ferrous and
non-ferrous metals. Sendzimir mills are cluster mills and
they differ fundamentally from conventional mills. This
fundamental difference is +the way in which the roll
separating forces are +transmitted from the work rolls,
through the intermediate rolls to the back-up assemblies,
and finally to the rigid housing, As this design permits
the support of the work rolls throughout their 1length,
deflection ié minimised and extremely close gauge tolerances
can be acheived across the full width of the material
being‘ rolled. In comparison to Sendzimir mills, the rigidity
of conventional mills is governed by the size of the work

rolls and the back-up rolls, which are supported by their
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necks in two separate housings. Under rolling pressures
this results in 1roll deflection and therefore thickness

variation, especially near the centre of the strip.

The housing of Sendzimir mills 1is designed to
deflect uniformly across the entire width of the mill., It
provides continuous backing to the roll cluster and has
the heaviest cross section at the centre of the mill
where the forces are greatest. It also has short heavy
columns to carry the roll separating forces which makes
the mill very =rigid. This makes it possible to produce
strips with extremely closei tolerances across and throughout

the 1length,

All bearing shafts (see fig.1.1) of Sendzimir
mills have concentrically mounted roller bearings and are
located eccentrically in saddles. A cross section of one
is shown in fig.l.2. By rotating the bearing shafts, the
position of +the backing bearings can be changed with
respect tq the  housing, to closely control the distance
between the work xolls, This is the basic control movement
of the mill that permits accurate positioning of its rolls,

A detailed description is given in section 2.7.2.

On Sendzimir mills crown control adjustment
operates on the top backing bearings, It is known as
"As-U=-Roll" crown adjustment and is actuated hydraulically
from the operator's desk while the mill is running.
As-U~Roll operation is described in detail in section

2.7.3.



Another feature of Sendzimir mills is the
caﬁability of using small work rolls. Small work rolls are
subject to less flattening and can continue to reduce
metal even after it has become work hardened and very
thin, This means that the mill is capable of rolling
harder metals without intermediate annealing. Another
advantage of the small rolls is that tungsten carbide rolls
can be used economically. Rolls of this material produce
high standard surface finish and maintain it over long
production runs. Small rolls can be changed very easily
and quickly so that strip of various widths and finishes
can be rolled without stopping the mill for long periods

of time.

On Sendzimir mills, lateral adjustment of the
first intermediate rolls provide a means for rolling strip
of various widths with a minimum of set up time, (see
section 2.7.4). These intermediate rolls are furnished with
tapered ends and this exclusive feature adds greatly "to
the flexibility of +the mill.

When rolling materials 1like stainless steel
the rolls and the strip get extremely hot due to friction
effects. Recirculating coolant is used to lubricate and cool
the r0ll gap, rolls and backing bearings of the mill. The
main cooling of the mill is done at the roll gap by
using high pressure sprays. In general, the flow of the

lubricant is directed from the centre to the outside edges
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of the strip so that the lubricant would wash away any
loose particles of the metal being rolled. One of the
requirements for good operation of the mill is good
filtration of the lubricant and good maintenance of the
filters. Normally +the coolant system consists of a dirty
lubricant tank, pumps to send the lubricant to filters, a
clean o0il tank and pumps to send the lubricant to the

mi11?

There are several different types of Sendzimir
mil]1.0 and the four basic types are shown in fig. 1.1. The
subject of this study is the type 1-2-3-4 Sendzimir mill
which is the most powerful and most flexible. The roll
cluster contains twelve rolls and eight backing bearing
assemblies as shown in fig. 2.4, The type 1-2-3-4 mill
also varies with size, and are used to ro0ll different
dimeﬁsion strips. In particular this study is concerned with a
1.7 m wide type 1=2-3~4 mill which is situated af British

Steel Corporation Stainless, Shepcote ILane, Sheffield, England.

1.4, Shape control problem’'™"

Shape describes a deviation from flatness in
sheet or strip of metal. The change in demand from sheet
to coil experienced by wide strip produced over the past
fifteen years has brought about the need for good shape to
be acheived during continuous strip processing. The demands

on shape for domestic products such as washing machines,
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fridges, freezers, etc., are most severe.

Shape is the second 1largest single cause for
the rejection of cold rolled steel strip. Bad shape is
often caused by the mismatch between the r0ll gap profile
and the incoming strip thickness profile. This can
produce transverse variations in thickness (or variations
in reduction of thickness across the width) which result
in differential elongations across the width of +the rolled
strip. These differences can be accommodated only by large
internal stresses within the strip which may cause local
elastic buckling. Shape 1is related ‘to internal stresses of
the strip and shape is defined as  the internal stress
distribution due to a transverse variation in thickness
reduction., The strip is said to have good shape when the
internal stress distribution is uniform (see sections 2.1
and 42.2). Hence shape control refers to control of internal
stress distribution across strip width when undergoing a

thickness reduction,

The assessment of shape during rolling was
simple when waves and +the profile of ends could be seen
in strips. The changing pattern of reflections on the
surface may allow the deviation of flatness to be detected
and the effect of corrective actions to be Judged. However,
with increases 1in strip tension, speed, coolant supply and
enclosure of rolling mills, +the observation is often

unreliable. An instrumental method of detecting shape has

~0 -



thus became desirable and essential for closed loop control.
It was only in the last fifteen years that reliable shape
measuring devices have become commercially available and the

situation with shape control is now rapidly changing.

It has been well known that +transverse
variations in thickness are associated with bad shape and
cambered rolls were used to counteract the mismatch betweeﬂ
roll gap profile and the incoming thickness profile, It
has been suggested that roll deflections should be minimised,
to correct shape defects, by reducing roll force with
smaller work rolls and backing them with stiff support
rolls. It has also been suggested that roll force should
be maintained constant at the correct value to match
camber and +that +thermal camber should be minimised by
efficient cooling. Strips may have localised bad shape due
to uneven coolant application causing hot bands on the
rolls and +this may be remedied using efficient coolant

distribution.

Tension can correct bad shape during rolling,
but its effectiveness is not prominent, and it must be
kept well below the yield stress to avoid fracture. By
regulating screw-down settings, tension or speed it is
possible to adjust roll force and deflection, but this
action may affect the mean gauge as well as the transverse
gauge variation. The resultant effect on shape is Jjudged by

the operator and he will attempt to choose a suitable
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corrective action for improving flatness as well as gauge

uniformity.

One of the main obstacles for automatic
closed 1loop conirol of-‘shape was the commercial availability
of reliable shape measuring devices. In the 1last fifteen years
this has been overcome and reliable shape meters are
available as shape monitoring element. The design of closed
loop shape control systems became the current interest in

the metal rolling industry.
1.5. Objectives and summary of presentation.

The first requirement in +the design of a -
shape control system for a rolling mill is a model of
the mill. Both static and dynamic models are required for
this purpose. The static model is used to calculate the
steady state gains which will then be used in the dynamic.
simulation. The main objective of this study is the
development of the mill model which represents the roll

cluster and the conditions within the ro0ll gap!®

The shape problem 1is discussed in chapter two.
The definition and units of shape are given and shape
measuring devices are discussed briefly. A detailed
discription of the Sendzimir type 1-2-3-4 mill is also

given,

Chapter three describes the basic foundations

of the static model and in chapter four the complete
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static model algorithm is discussed. A discussion of the
state space representation of +the whole shape control syétem
is also given in chapter five. The static model results
are presented and discussed in chapter six and some

suggestions for improvement of +the model are also given.

-~ 12 -



Backing bearing _ )
Bearing shaft °.©
‘ 3 by 3

(a) 1-1 mill (4 high) (b)1-1-2 mill (s high)

Backing bearing

Bearing shaft

(c) 1-2-3 mill (12 high) (d) 1-2-3-4 mill (20 high)

Fig. 1.1. Types of Sendzimir mill.
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Eccentric ring

Backing bearing

Bearing shaft

Foot of the saddle

Fig.1.2. Cross section of a bearing shaft

showing eccentric rings.
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Chapter 2.
THE SHAPE CONTROL PROBLEM.

2.1. Introduction.

In recent years, the problem of the control
of the gauge of steei strip 1leaving a rolling mill, has
largely been solved.%o The major problem of current interest
in cold 1rolling mills involves the control of internal

stresses in the rolled strip?v_z7
)

This is referred to as
shape control, a term which often causes confusion. Strip
with goéd shape does not have internal stresseé rolled into
it. When such a strip is cut into sections, they should
remain flat when laid on a flat surface. Shape measurement.
is generally a difficult problem, since the strip is‘
normally rolled under very high tensions which makes thé
shape defects not visible to the naked eye. It is only

in the 1last fifteen years that reliable shape measuring
devices have become available and this has enabled recent

work on shape control to progress to the closed 1loop

control stage.

To illustrate how bad shape might arise
consider a strip having an entry gauge profile of uniform
thickness. Assume also that the work roll has a profile
such that the diameter of the work roll at the centre is
larger than at the edges (barrel shape). When a strip

having uniform thickness 1is 1rolled using the work roll
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described above the reduction of thickness at the centre of
strip will be greater than at the edges, assuming that
there is no lateral spread. Since strip is one homogeneous
mass such differential elongations cannot occur and internal
stresses result. Clearly if the strip is to be flat after
rolling, the reduction of +thickness as it passes through

the roll gap must be a constant across the strip width.

Shape may be defined as the internal stress
distribution due to a transverse variation of reduction of
the strip thickness. There are two types of bad shape. If
a section of strip is sufficiently stiff to resist
deformation the strip may appear to have good shape, but
latent forces will be released causing deformations during
slitting operations. This type of bad shape 1is referred +to
as latent shape. The second type of bad shape is called
manifest shape, where thin strip having insufficient strength
to resist forces imposed, exhibits bad shape in the form
of wWaves or vripples extending along the length of the
strip and covering the whole or part of the widtﬁ? These

two types of bad shape are illustrated in fig. 2.1.

The stress distribution patterns giving rise
to bad shape may be tensile or compressive in nature. The
actual appearance of buckling will depend upon the
distribution of stresses and some examples28 of * manifest
shape known generally as 1long edge, long middle, herring
bone and quarter buckle are illustrated in fig. 2.2. Long

- 16 ~



edge and long middle arise from-. fairly elementary stress
configurations. As the strip thickness decreases the latent
stress capacity decreases and hence manifest shape defects
are more often observed. Frequently these appear in complex

forms such as herring bone and quarter buckle.

Deformations such as long edge and long
middle are caused by the mismatch between the strip and
roll gap profiles under rolling. The factors which affect
strip shape may be 1listed asfg

1. Incoming hot band strip profile,
2. Roll separating force and its effect on roll
camber,

3. Strip entry and exit tensions,

4, sSlip in the roll gap.
2.2. Definition and units of shape.

Shape may be defined as the internal stress
distribution due to transverse variations of reduction of
the strip thickness. The transverse variation in the
longitudinal stresses is caused by the transverse variations
in the slip and hence the strip velocity at the exit of
the stand (or at the entry to the next stand in a

multistand mill).

14
Pearson has defined a unit of shape called
the 'mon' in terms of the classical long edge or long

middle defects. Pearson relates shape to the amount of
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bowing present in narrow bands slit from the strip. The

mon defines the shape of strip which if slit into bands

of 1 cm wide, would produce a lateral curvature corresponding
to a radius of 104cm. If this definition is applied to a
long edge or long middle defect, the shape in mons is

the fractional difference in elongation between the centre

and edge of the strip multiplied by a factor of 104.

That is, let A/ represent the difference in 1length between

the longest and shortest line segments of the strip, then
mons = 9‘8_‘5.104 (2.1)

For example, for 0.01 % elongation A£/¢ = 0.0001 and this
equals one mon unit. The strip shape may be defined as
the relative length difference per unit width expressed in

mon/cm. That is

Shape = ég—eo-%-loq mon/cm (2.2)
s .

~ where w_ is the width of the strip in cm. For most
applications a shape of 0.05 mon/cm is considered very good
and a shape of 1 monfem is considered very bad in rolling

strip.

Sivilotti et a1’ define another unit for shape

called I units. It is defined as

I unit = %‘3.105 (2.3)

- 18 -



2.3. Shape measuring devices.

The lack of a good shape measuring device
for many years frustrated the proper control of flatness
of strip. As compared to gauge measurement, shape is
rather difficult to measure. The sitrip tension between the
last stand and the coiler is usually high and therefore
the strip appears perfectly flat (latent shape). Here the
visual inspection is no use and is 1little help to the
operator who has to decide whether the shape is acceptable
or not. Therefore a reliable measuring device which
indicates the shape was required, It was only in the 1last
fifteen years that reliable shape measuring devices have
become commercially available and have been applied in the
steel industry. Due to +this fact the situation with shape

control 1is now rapidly changing.

There are various types of shape measuring
devices. The most successful and reliable devices seem to
be the Leowy Robertson Vidimon shapemeter’ and the ASEA

32-34

Stressometer shapemeter. The Japanese have already applied

35,36
the former to open loop control on a Sendzimir mill.
However the latter device will be considered here since
this is +the instrument employed on the steel mill of

interest.
<o s 12,21,22
2.3.1, Principles for shape measurement.
Only two practical basic methods are available

for shape measurement. The first method which can be
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applied to magnetic materials, uses the  fact that magnetic
permeability of ferromagnetic materials changes with stress.
This system consists of two U-shaped iron cores, where one
core 1is magnetised with alternating current which induces a
magnetic field in the strip. The other core is used for
sensing the magnetic potential difference between two points
in the field, which will produce an output voltage
proportional +to the local stress without touching the strip.
A set of devices spaced across the strip or one single
device moving across the strip will produce a measurement

of strip stress distribution.

The second method uses a device which deflects
the strip a certain angle by means of a roll and measures

the deflecting forces on a number of measuring 2zones,
2.3.2. ASFA Stressometer.

The ASEA Stressometer shapemeter uses the second
method mentioned above. The stressometer measuring equipment
consists of a measuring roll, a slip ring device, an
electronic unit and a display unit. A schematic diagram is
shown in fig.2.3. The measuring roll is divided into a
number of measuring zones (for the Sendzimir mill 31 zones)
across the roll, and +the display unit has the same number
of indicating panels. Stress in each section of strip is
measured in the 2zone independent of adjacent 2zones, A
condition for +this independence is that the whole roll

assembly and the individual measuring =zones are very much



" stiffer than the curved part of sitrip. The sensors are a
form of magnetoelastic force transducer and these are placed
in four slots equally spaced around the roll periphery. The
periodic signals from each zone are filtered and the stress
in each 2zone 1is calculated. The average stress is also
calculated and the deviation of actual stress from the mean
is displayed on corresponding display units. To obtain the
best possible representation of the actual stress distribution,
it is required to arrange the measuring roll and coiler
parallel to the roll gap. Any deviation from this will
introduce false stress profiles superimposed on the true

profile.
2.4, Shape control mechanisms,

The main task of any shape control scheme is
to produce a strip with 1low +transverse variation of stress
at the mill exit. The shape can be affected either by
changing the roll deforma.tionf7 by changing the roll profile,
or by changing the thickness profile of the ingoing strip.
Roll deformation can be changed either by varying the
reduction or by applying bending forces to roll bending
mechanisms. It is usual to maintain the correct exit gauge
and thence the reduction must be kept constant. Thus roll
bending mechanisms are used to affect the shape. Another
factor affecting the shape is the strip tension. By
altering the strip tension, the r0ll force can be changed

which in +turn changes the roll gap profile.
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Another method sometimes used is to change the
thermal camber of the rolls. The thermal profiles developed
on the rolls during rolling are due to friction and the
heat input across the strip width in the ro0ll gap. By
varying the amount and/or distribution of the coolant on
different parts of the rolls, the thermal expansion and
hence the strip shape can be modified. Coolant spray
control has the advantage that it can produce a wide
range of 1roll profiles. This +type of control has a 1long
time constant, sometimes several minutes, which can be a
disadvantage?8 Regulation by tension and roll bending can
clearly be faster than the action of the thermél camber
control. Regulation by tension, though it is faster, is
limited by what additional +tensile stress the strip can
sustain. The comparative efficiency of these methods still

remains to be investigated.
2.5. Disturbances +to shape.

Changes in mill entry gauge profile can be
considered as one type of disturbance to shape. Another
disturbance would be due to changes in roll force following
from changes in the mean entry thickness of strip, hardness
or friction. Changes in friction or the properties of the
coolant may cause a change in thermal camber which also
can be considered as a disturbance to shape. Changes in

the thermal profile will always be slow, Roll wear, which
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is very gradual, is also a problem in shape control.
2.6, Interaction between shape and gauge.

If a gauge error is corrected by the screwdown
then the total rolling force changes the resulting shape,
If a shape is corrected by adjusting tension then again
roll force changes affect the gauge. On the other hand if
shape is corrected by roll bending, then in addition to a
change in the distribution of rolling pressures, the
overall pressure between work roll and back-up roll will
change altering their mutual flattenning., This will produce

a change in the roll gap, thus affecting the gauge.

The gauge and shape control therefore always
interact and a combined gauge and shape control system is
required to be effective., However, since shape control
systems are often added to existing steel mills, this is
not always possible. In this study the effect of the

gauge control loop will be neglected.
2.7. Description of the mnmill.

2.7.1. General description of +the mill,

There are various types of Sendzimir mill.
The mill considered here is 1.7 m wide and is a cluster
mill where the work rolls rest between supporting rolls,
The mill has eight backing shafts labelled A to H, six

second intermediate rolls (I to N), four first intermediate
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rolls (0 to R) and two work rolls (S to T) as shown in
fig. 2.4. This type of mill is used for rolling hard

materials such as stainless steel.

The motor drive is applied to the outer
second intermediate rolls (I, X, L and N) and the transmission
of the drive to the work rolls via the first intermediate
rolls is due to inter roll friction. Rolls 1labelled I to T
have free ends and are free to float. The outer rolls (A
to H) are split into seven roll segments as shown in fig.
2.5. The shafts in which these rotate are supported by
eight saddles per shaft, positioned between each pair of
roll segments and at the shaft ends. The saddles are
rigidly fixed to the mill housing. The saddles contain
eccentric rings. The outer circumferences of these rings are
free to rotate in the circular saddle bores, while the inner

circumferences are keyed to the shafis.
2.7.2. Upper and lower screwdown operation,

The upper screwdown racks act on assembles B
and C, while assemblies F and G are responsible for the
lower screwup system. Each saddle of the assemblies B and C
is constructed as shown in fig, 2,6. The saddles on the
F and G assemblies are also constructed in the same way
but without the As-U-Roll eccentric rings. When the shaft is
rotated, the eccentric screwdown ring also rotates in the
saddle bore, since it is keyed to the shaft. This allows

the centre 02 of the shaft to rotate about the centre cl
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of the saddle bore, thus causing a nett movément of the
shaft towards or away from the mill housing. Since the
shaft is keyed to the screwdown eccentric rings in all
eight saddles, the same motion will occur at each end
and the shaft will remain parallel to +the mill housihg.
Essentially, the screwdowns cause the movement of rolls

I, J, XK, 0, P and S up or down vwhich enables the distance
between the two work rolls to be adjusted finely during
rolling. A similar operation takes place at the lower
assemblies F and G, which is used principally for =roll

changing and mill threading.
2.7.3. As-U-Roll operation,

In addition to the screwdown system, the
upper shaft assemblies B and C contain further eccentrics,
which allow roll bending to take place during rolling to
adjust strip shape. Such a facility is referred to as the

'As-U-Roll’.

Each of the saddles supporting these two
shafts is fitted with an extra eccentric ring (fig. 2.6)
situated between the saddle and the screwdown eccentric
ring. This eccentric ring can be rotated independently ‘tq
the shaft and screwdown eccentric ring, by moving a rack
which operates on two annmular cheeks fitted on each side
of this extra ‘ring, as shown in fig, 2.7. Such a rotation
will cause the centre 03 of the inner bore of +this ring

to move in a circular path about the centre c- There
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are eight such As-U=Roll racks on saddles between the
segments., These racks are capable of individual adjustment,
producing a different displacement between the shafts and
the housing at each saddle position. This allows a profile
to be forced on to the shaft as shown in fig. 2.8, which
will propagate to the work roll through the cluster,
Although the As-U~Rolls and upper screwdowns act on the

same common shaft they are essentially non-interactive.
2.7.4. First intermediate roll tapers.

In addition to As-U-Roll control of strip
shape there is another type of control on the Sendzimir
mill. The first intermediate rolls O, P, Q and R are
furnished with tapered off ends., This is 3illustrated in
fig. 2.9. These rolls can be moved laterally in and out
of the cluster. The top and the bottom rolls may be
moved independently and it is +thus possible to control the
pressure at the edges of the strip within certain 1limits.
These rolls are therefore used to control the stresses

at the edge of the strip.
2.8. Elementary shape control scheme (fig. 2.10).

The major part of the shape control scheme
is the Sendzimir mill (section 2.7) which is a reversible
mill, i.e. the mill can be operated in both directions,

There are two ASEA Stressometer shapemeters (section 2.3.1)
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on either side of the mill to measure the shape of the
outgoing strip from the mill. Only one shapemeter is in
operation at any particular pass, There is a decoiler
which feeds the strip to be rolled into the mill, The
purpose of the coiler is to 1roll the outgoing strip into
a coil, When the mill is operating in the reverse
direction the actions of decoiler and coiler are

interchanged.

Between the coiler and the shapemeter, there
is & third roll called the deflector roll. As the strip
is rolled the coiler diameter is increased which changes
the shapemeter deflector angle. The purpose of the
deflector roll is to keep the deflector angle constant
so that the shape is measured relative to this constant

deflector angle.

There are two X-ray measurement devices on
either side of the mill which measure the input and
output mean gauge of the strip, In addition there is a
control computer and an operator desk with <the shape

display unit. The basic scheme is illustrated in fig. 2.10.
2.9. Purpose of the study.

The first requirement in the design of a
shape control system for a cold rolling mill is a model
of the mill, Both static and dynamic models are required

for this purpose. The static model must provide steady
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state gains of the mill which relates the shape to a
given set of actuator positions. Therefore the static model
will calculate the shape profiles for a given set of
actuator positions, from which the mill gain can be
obtained, These gains are used in the dynamic model which
is a simulation of the state equations for the complete

system, including the shapemeter and strip dynamics.

The main objective of the present study is
the static model of the mill representing the roll
cluster and conditions within the roll gap. The strip
width is split into eight 2zones for modelling purposes and
it is assumed that there are eight shape measurements. The
design method, however, is applicable in +the actual
situation where the number of shape measurement zones (<31)
depends upon the strip width being 1rolled. The static model
enables an 8X8 mill gain matrix to be calcuiated, which
can then be used within a state space dynamic model for

the complete system.
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Latent shape on subsequent |
slitting along edge or middle
Manifest shape
with long edges

Fig. 2.1. Various forms of shape defect.
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2nd Intermediate roll

i1st Intermediate roll

work roll

(a) As-U-Roll racks before motion

2nd Intermediate roll

1st Intermediate roll

work roll

(b) As-U-Roll racks after motion

Fig.2.8. Example of As-U-Roll action.
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Chapter 3.
THE STATIC MODEL.
3.1. Introduction.

The study of any scheme Ifor control of strip
shape must be preceded by an accurate analysis of the
formation of the loaded roll gap in the rolling stand, A
static model for the single stand Sendzimir cold rolling
mill is described in +this chapter, which provides a
complete analysis of strip shape. The static model is a
mechanical model for the mill which represents all force
deformation relationships in the 101l cluster and in the
roll gap. It is important for control purposes to note that
these relationships are both non-linear and schedule

~ dependent.

The static model must allow for the bending
and flattening of the rolls in the mill cluster and for
the plastic deformation of the strip in the roll gap. The
" model should provide
(2) mill gains between actuator movements and strip
shape changes based upon a small perturbation
analysis,

(b) details of the degree of control which may be
achieved with a given shape actuator or the first
intermediate 1roll +tapers and

(¢) an understanding of the mechanisms involved in the
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roll cluster and the roll gap which affect strip

shape.

The model was developed in the form of a
Fortran computer program. The model enables the output
shape profile to be calculated corresponding to a given
set of shape actuator (As-U-Roll rack) positions and hence
the éhange in shape for a given change in actuator
positions; Yhe model also enables the shape change due to
a change in the roll cambers to be calculated. Such a
change can result from movement of the first intermediate

rolls.

There are four main sets of calculations
involved in the model which may be 1listed as follows:

1. Roll bending calculation: This is based on the
theory of beams on elastic foundationsi’ This is
justified, as in the mill clus"l:e:r:,S ‘:‘:':olls rest on
each other and will be deflected due to elastic
properties under loading conditions.

2., Roll flattening and inter roll pressure calculations:
This enables the roll flattening between +two rolls
to be found for a given pressure distribution. The
pressure distribution itself depends on roll
flattening and hence this calculation is iterative.

3. Roll force calculation: This enables the roll force

to be calculated for given strip dimensions and

properties.



4, oOutput gauge and shape profiles calculation: This
determines output gauge and shape profiles
corresponding to inter roll pressure and deflection

profiles.

The assumptions made in deriving the static
model described may be 1listed as:
1, HElastic recovery of the strip may be neglected.
2. Horizontal deflections of rolls may be neglected.
3. The centre 1line strip thickness is assumed to be
specified.
4, The mill is symmetrical about a 1line passing
through the work roll centres (this need not be
the case if the side eccentrics are set differently).
5. Strip edge effects may be neglected.

6. Deflections due to shear stresses may be neglected.

The first assumption is Justified as small
work rolls are used in the Sendzimir mill, which 1limit
the arc contact and give small roll gap angles. The work
rolls are laterally supported by the roll cluster and
therefore there are no appfeciable deflections of rolls in
the horizontal direction, hence the second assumption
follows. Because shape control depends on the profile of
the loaded roll gap, it is assumed that the stand 1is
operating under automatic gauge control and assumption

three follows.

- 4] -



The strip is normally placed at ﬁﬁef‘éentre':‘:
of the mill so that the strip width is symmetrical about
the 1line passing through the work roll centres. The side
eccentrics are used to adjust the roll gap and for normal
operation both side eccentrics are moved by the same
amount and hence the fourth assumption follows., The fifth
assumption is made to simplify the calculations and this is
one of the areas where improvements have to be made. The
sixth assumption is Jjustified as +the deflection of a beam
due to shear forces is- very small compared to that due

to bending forces.
3.2. Roll bending calculation.

It is well known that if a force 1is applied
to a beam supported at two ends, the reactions at the
ends and the deflection of the beam can be calculated
using simple beam theory. If the beam 1is resting upon an
elastic foundation, where the whole 1length of the beam is
in contact with the - foundation, the deflection of the beam
may be calculated by assuming that the deflection is
proportional to the reaction at +that point. All the rolls
in the middle 6f the mill cluster are resting upon one
another and since these rolls are elastic bodies it can
be assumed that each roll is resting on an elastic
foundation, Thus the actual bending deflection y can be

calculated as a functionv of the applied force F and the
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distance x from one end of the beam; i.e. y = £f(F,x). To
be more specific if £ is the 1length of the roll and

the force F is applied at a point x = a, then

y(x) = EXKLAY(D) 5 g0y, 2,2) (o< x<a) (3.1)

where X is +the foundation constant for a given roll and

A is a constant given by,

L
M

A A [K/(LhEI)] (3.2)

Here B(\,£,a) is a function of A and the length £ and
a. The gap between the unloaded roll and the foundation
is denoted by Ay(x). m. (3.1) is the solution to the

differential equation,

a* ‘
EI-;‘ZI = F - K(y ~Ay) (3.3)

which follows from +the +theory of elastic foundations??

B. (3.1) is true only when x is less than or equal to
a, Deflections of points on the beam at distances greater
than a may be calculated using the eq. (3.1) but with a

replaced by (£ - a) and with x replaced by (€ - x).
3.3. Roll flattening calculation,

The calculation of the deformation which
occurs Dbetween two touching rolls in the cluster, or
between the work rolls and the strip, is discussed in

this section. The roll surfaces may be assumed to be
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cylindrical, neglecting minor bending distortions. Now when
two infinitely 1long elastic cylinders are in contact the

total interference ylz(x) can be written as a function of

the load per unit length ¢ (x). That is,

e?’/3 (dl +d

2 (3.4)

12() = 1 (-G + G;) 2o, 2q’ (x)-(c, + C,)

where dl and d2 are the diameters of the cylinders and
C, and C, are two elastic constants for respective

1 2

41-43

cylinders. The loading along a 1roll is of course

non-uniform and the roll is also of finite Ilength.
However, the influence of a point load does not extend

far along the ro0ll and, neglecting second order errors,

q' (x) may be replaced by the inter roll specific force

q(x) to calculate the interference ylz(x). That is,

¥y, () = £ (a(x)), (3.5)

The interference ylz(x) can also be calculated

using the roll contours due to bending. If yl(x) and yz(x)

are the deflections of the two rolls respectively, then

the interference ylz(x) is a function of these two

deflections, Also the interference depends upon the thermal

and ground camber yc(x). Thus,
y1,(6) = £,0, (), 7,60, ¥ (). (3.6)
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Now deflections yl(x) and yz(x) will clearly
depend upon the pressure q(x) between the rolls and hence
on ylz(x). Therefore a third equation can be written for
q(x) given by,

a(x) = £5(y;,(x)). (3.7)

From eqs. (3.5) and (3.7) it is seen that ylz(x) depends
on q(x) and q(x) depends on ylz(x) and hence q(x) and
ylz(x) must be solved iteratively. The total pressure

across the roll width w must be equal to the applied

force F for the system to be in equilibrium, i.e.,

P f "a(yax. (3.8)

The method of calculating q(x) and ylz(x) is
to substitute for ylz(x) in eq. (3.7) from eq. (3.6) and to

solve eq. (3.5) and eq. (3.6) iteratively by changing the
distance between the 1r0ll centres until eq. (3.8) is
satisfied to within a specified tolerance.

Orowa.n44

has previously noted that extensive
work roll flattening can occur., He also suggested a
relatively complex method for calculating work roll
flattening, However, for +the present model, approximate

results are used based upon the work of HBwards and

Spooner.z4 They noted that the work roll flattening was
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slightly dependent upon specific roll force and related to
the Hertzian flattening which occurs between two elastic
cylinders of the same diameter. The model proposed by them

for the work roll flattening yws(x) is given by,

Vs () = [y + ,00)] 3, 60) (3.9)
where
2/34
yy(x) = 2p(x)-C-log, |>=ryTel - (3.10)
B. (3.10) is obtained from eq. (3.4) by settihg C,=0C,=¢

and dl = d2 =d. The constants b, and b2

1 are estimated
using plant test results amd CA (1 - vz)/(TtED, where v is
the Poison's ratio and E is the Young's modulus of

elasticity.
3.4, Roll force calculation.,

The roll force calculations are an important
part of the static model. The amount of xreduction in
thickness of the strip is related to the total load in
the mill or roll force. An extensive literature exists on
the calculation of specific rolling force p(x) as a
function of input output thicknesses, input output tensions

and work roll radius® i.e.,

p(x) = £(hy (), hy(x),5 (x),0,(x), R). (3.11)
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When rolling hard materials, 1like stainless
steel, very high forces must be applied. Since work rolls
are elastic bodies they will be deformed and flattened at
the roll gap‘.'6 In order to calculate the roll force,
including the flattening effects, an iterative procedure
must be adopted because the deformed roll radius is a
function of the r0ll force. The deformed roll radius R’

can be calculated using Hitchcock's formula>* given as
B( ¢ p(x
F-1+5% (3.12)

where ¢ is a constant,
5 is the amount of reduction equal to [ﬁl(x) - hz(xj,
R is the initial roll radius.
The roll force may be calculated by solving egs. (3.11)
and (3.12) iteratively.

The disadvantage of <the above approach for
roll force calculation is the time the algorithm takes
to converge, For modelling purposes the width of the strip
is split into 25 mm sections (this is to match the
physical dimensions of the back-up-roll) and the xroll force
must be calculated in each of +these sections., Thus for
one metre wide strip the roll force model must be made
to converge forty times. The shape calculation is also
iterative and thus all the roll force calculations must be
performed on each of the iterations of the shape algorithm.

Thus, although the roll force calculation does not require
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a very large computing time +this is multiplied by the
number of strip sections and the number of shape program

iterations,
3.5. Output gauge and shape profile calculations.

The output gauge profile may be calculated
once a given set of inter ro0ll pressures and deflections
are known. The shape profile then follows from the input

and output gauge profiles and +the input shape profile,
3.5.1. Output gauge profile calculation.

The output gauge profile is determined by the
combined effects of roll bending, thermal and ground roll

cambers and differential strip flattening. The change in

the gauge profile due to these effects is given by

By (x) = 21, (@) = Tyg] + 7,00 +7,(0) + 23,60 (3.13)
where yws(x) and i;s represent interference and mean
interference between the work roll and the strip, ys(x)
and yt(x) represent the upper‘ and lower cluster work roll
deflections and ywc(x) is the total of the thermal and

ground work roll cambers, The mean of the change in
output gauge is thus given by

- W

S
/
An = %S A b (x )ax (3.14)



and hence the deviation of the change in gauge from mean

is given by
Ahy(x) =AK)(x) - AR . (3.15)

The new change in output gauge is calculated from the

iterative formula
Anf* 1(x) = AnE(x) - a[Ah‘z‘(x) - Ahf,f(x)] (3.16)

where a 1is chosen to give a stable solution. The new

output gauge profile is therefore given by
_ k+1
h,(x) = h, +Ah, " ~(x) (3.17)
where th is the specified output géuge.

3.5.2. Input and output stress profile calculation.

The new output stress profile can be
calculated using the new gauge profile and the following
result due to HMwards and Spooner:24

n0 my ] Ag,)
(X)) = hi(x)'hhz—m'l +14(12\( . (3.18)

The input stress profile is given by

Acrl(x) =YA0'2(x) (3.19)
where
o, (x) - a
A O ﬁi (3.20)



and B is a constant (B£0.5); details are described in

section 4,10.

3.6. Brief description of the static model computer
algorithm,

The static model program uses an iterative
procedure as shown in fig, 3.1. The model includes the
calculations for the top half of the cluster as well as
for the bottom half of the mill, It is assumed that the
mill is symmetrical about the 1line passing through work
roll centres. The model can be used for different values
of strip width but for the present analysis the roll
flattening equations ignore strip edge effects. The inpgt
data required by the model may be summarised as follows:

1, Cluster angles (see fig. 2.4)

Roll diameters

Roll profiles (camber, wedge etc.)

As=U=~Roll positions

First intermediate ro0ll positions

Entry gauge profile

-

Mean entry gauge

Mean exit gauge

\003\10\&:;4-‘\»)(\)

Annealed gauge

Yield stress curve

=
o

11, Entry tension

12, Exit tension
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13. Width of strip
The output data may be 1listed as:

1. Inter roll pressures (12 profiles)

2. Roll force profile

3. Roll deflections (12 profiles)

L4, mxit shape (stress distribution) profile
5. mxit gauge profile

The mill width is divided into a number of
section multiples of 67 and the following assumptions are
made (the number 67 is chosen to match the physical
dimensions of the back-up-roll and its segments).

1. The pressure distribution in each section may be
calculated using a point load applied at the
centre of the section amd the width of the
section,

2. The mean deflection of a roll over a section is
taken to be equal to the deflection at +the centre
of the section,

These assumptions also apply to the stress distribution,

strip profile, rolling pressure profile etc.

The computer algorithm enables a change in the
shape profile due to a change in the rack position, and
hence the gains of the mill to be calculated. The flow

chart for the main program is shown in fig. 3.1.

The program begins by initialising all the

variables and the roll force is then calculated using the

e



roll gap model. Symmetry about a 1line passing through the
work roll centres can be assumed so +that calculations are
necessary only for the left half of the mill cluster. The
subroutine BEND calculates the pressure profiles and roll
profiles of one half of either the top or bottom mill
cluster. If symmetry 3is not assumed then the routine BEND
has to be called four times to calculate all +the pressure
and roll profiles. At the emd of each calculation of all
pressure and roll profiles a convergence test is carried
out on the output shape profile. The above calculations
are repeated until the error between two successive shape

profiles is less than a predetermined value.



Calculate constants and initialise hz(x),

roll deflections and inter xroll pressures

Calculate mean roll force D(x)

No

Ad just hz(x)

Yes

Call subroutine BEND to calculate 1ro0ll deflections

and inter-roll opressures of upper half cluster

Call subroutine BEND to calculate roll deflections

and inter-roll pressures of lower half cluster

A
Calculate new output and input stress

profiles Oz(x) and Ul(x)

output stress

converged.?

No

Calculate new gauge profile hz(x)

and update stress profiles

Fig. 3.1. Flow chart for the main program.
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Chapter 4.
COMPLETE STATIC MODEL ALGORITHM,
4.1, Introduction.

The complete description éf the mill gain
calculation is described in this chapter. Sections 4.2 +to
4,7 describe the calculation of mill constants. Sections 4.8
to 4.11 describe the roll force model, roll pressure and
deflection calculation, thickness and stress profile
calculation. The final +two sections describe the complete

model and the gain matrix calculation.

The mill width is divided into 67 sections
or multiples of 67 sections. This odd number 67 is chosen
to match the back-up roll dimensions to its segments. To
be more precise, for one segment of the back-up roll (see
fig. 4.1), the ratio between the portion in contact with
the second intermediate roll b to non contact area (& - D)
is an integer if the mill width is divided into 67
sections, That is lengths b armd (£=-Db) can be divided
into an integer number of sections. The width of each

section is given by

" "
dx = X - 37‘. (4.1)



4,2, Strip width adjustment.

The width of +the strip L has also to be

adjusted so that the strip width will have an integer

number of sections, This is done in the following manner.
The strip is placed in the mill so that thé centre of
the strip width 1lies on the vertical 1line passing through
the mill centre. If the edge of the strip lies inside a
section (see fig. 4.2) the distance between the edge of

section and the edge of the strip is calculated. This is

denoted by Aws.

dx
It Aws> - then

wo= [(N-x-1) - (& +1)]ax = (¥ - 2r - 2)ax (4.2)
Ir Awss—dzﬁ, then
W = [(N -x) - r]dx = (N - 2r)dx (%.3)

where (r + 1) is the integer mumber of the section in

which the strip edge lies inside.
4.3, Strip dimensions.

Since most of the input gauge profiles are
either rectangular or parabolic the model considers only
these +two +types of profile. If the strip centre 1line

thickness hm and the amount of strip camber hc are

specified then the strip profile can be obtained as shown
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below.

An equation for a parabolic profile as shown

in fig. 4.3a can be written as (variables defined in
fig. 4.32)
2 2 |
y(x) = hc[l - (-ﬁ’i -1) (4.4)
n A
As shown in fig. 4.3b the thickness at any point distance

x from the left hand end of the mill can be written as

n(x) = b, + 2y(x) (4.5)
= 2x 2
=h + 2hc|:1 - (w— - 1)}
m
2x 2
=h_ +2h - th(r- 1)%
m
But
h = hwl + 2h
i.e.
_ 2% 2
h(x) = h - 2hc( W; -1)" (4.6)

If the strip is rectangular then this profile can be

obtained by putting h =0 in eq. (4.6).
The input thickness profile is given by
2X .32
hy(x) = hy_ - 2n (22 1) | (4.7)
m

where the suffix 1 stands for the input side of the mill.

The output thickness hz(x) can be calculated if the
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reduction is known, This can be done by specifying the

centreline output strip +thickness. Let +this be h Assuming

2m*

that +there is constant reduction across strip width, hz(x)

is given by

h?.m :
h, (x) = }E‘hl(X). (4.8)

The mean output thickness is given by

W

S
- _1
h, =% f h, (x)ax (4.9)
S
0
therefore the deviation of output gauge from mean is given
by
W
1 S
Ahz(x) = hz(x) - Ws / hz(x)dx. . (4.10)

0

H. (4.8) assumes constant reduction which implies that the
output strip has perfect shape. This is only an

initialization process and the deviation Ah,(x) given by

eq. (4.10) will be updated at later stages, since the work

roll profile will be deformed when forces are applied,
4.4, Back-up roll profile.

When the As<U-Rolls are moved by a certain
distance the back=up roll axis 1is deflected. The back~up

roll profile calculation for a given As-U-Roll movement is
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described here. When the As~U-Roll is moved vertically
upwards or downwards the mechanics are designed in such a

way that the centre c, of disc B rotates about a fixed

1

point c, (see section 2.7.3) as shown in fig.4.ba, If ¢

is the distance between cy and Coy the centre ¢y

describes a circle of radius c¢ with centre at Cse This

means that, since disc B 1is solid, any point on the disc
describes a circular arc with radius c. Let 2z be the
vertical movement made by +the As-U-Roll. Sincg the disc B
is geared to racks, any point on the circumference also
experiences a net movement of z. This point also rotates

about c, and therefore the angle of rotation © about ¢

2 2

as shown in fig.4.4b is given by

6 = (4.11)

2z
R
where R is the distance between c, to the racks. Therefore
the net vertical distance y +travelled by ¢, or any other

point on the circumference is given by
¥y = c-sin® = c-sin( % ). (#.12)

On either side of each segment there are two
such discs which can be moved independently. The profile of
the back-up roll between two racks are calculated assuming
a linear relationship., Fig.4.5 shows the profile when the

first rack is moved by a distance zq with zero movement
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in all other racks. The profile yl(xl) can be calculated

from

Z2.X
yyey) = 7y - =2 (#.13)

where £ is the distance between two racks, Fig.4.5b shows
the profile when only +the first and second racks are

moved by distances Zq and Zoe In this case the profiles
yl(xl) and yz(xz) corresponding to first and -second segments

are given by

(24 - 2,)x
yl(xl) = Zl - “‘1_"‘@—2—]; (L!'. lLP)
amd
z
Tp050) = 2 = 4%y (+.25)

The profile for the case when alternative

racks are moved by the same amount (say Zl) is shown in

fig.4.5c. Fig.4.54 shows the profile when all racks are

moved by different amounts (say Zys o .....28). When all

racks are moved by the same amount then obviously the

whole of the back=-up ro0ll will be moved vertically. The
same result can be achieved by moving the two screwdowns
situated at both ends of the back-up roll, by +the same

amount,
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4,5, First intermediate roll profile calculation.

The first intermediate rolls are furnished
with tapered ends (see section 2.7.4). The top and bottom
rolls can be moved 1laterally in and out independently and
therefore will have diffefent profiles deperding on the
position at which they are placed. These .rolls can be
modelled by defining the position of the tapered edges
(vertical planes e, amd e, in fig,4.6) with respect to

the mill.

I xr is the distance from the 1left hand

corner of the mill +to the plane e and 6 1is the angle
of inclination of the tapered end, then the tapered profile

ytl(x) is given by

0 for O0<x< X,
ytl(x) = (4.16)
(x = x_)tane for X <x<wW_

Similarly for the bottom first intermediate 1roll the tapered

profile y.,,(x) is given by
t2

(xm - x)tand for Osx<x)
Yip(x) = (#.17)
0 for x <x<w
m m

where variables x, x and w_are defined in fig.4.6. These

profiles must be added to the camber profile (if any) to

obtain the +total first intermediate ro0ll profiles.
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4,6, Static forces in the mill cluster.

When three forces are acting on a cylinder

as shown in fig.4.7, the two unknown forces P, and P,

can be calculated in terms of the known force P and the
angles of inclination, If forces are resolved in a

direction XX (fig.4.7a) perpendicular to P,, P, can be

calculated. That is

Picos[6, ~ (90 - 6,)] = Peos[6 - (90 - ©,)]

sin(6 + 62)
= pP-— .
1 sin( 6, + 62)

(4.18)

Similarly if forces are resolved in a direction YY

(fig.4.7b) perpendicular to Py

chos[ez - (90 - 61):] = Pcos[e + 90 - 9]]

sin(e:L - 0)

PZ = P.W - (4.19)

The egs.(%4.18) and (4.19) can be applied to obtain the

static forces Pl’ PZ’ P3, P,+, P5 and R shown in fig,2.4

in terms of +the xroll force P, If symmetry is assumed

then P5 can be written as
=2
P5 - 2cos65 (.20)
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and

s1n(6 + 6 ) y
B, = 5 s:m(e + 64) ' (#.21)
s:m(eq - 6,)
P3 5 sm(e + 645 : | (4.22)
s1n(66 - 4)
P = By sin(8, + §;) ' (&.23)
s1n(6 + 0 )
=By s1n(6 + 96) (4.24)
and finally
. cosg, b.25)
1° 3 cose1 : .

4,7, Elastic foundation constant K.

If two cylinders are in contact 4the elastic
foundation constant K can be found by knowing the force

applied., If the mean force per unit length is Pp then the
Hertzian flattening equa'bion“'43 can be written as

&/ ay +4,)
y = 2Cp log 4Cp

m

(4.26)

where the force Pn is proportional to y and the constant

of proportionality is the foundation constant K (eq. (4.26)

is obtained by putting C

1 = G

, =C in eq. (3.4)). Therefore
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K can be written as

= 1 . 4,27
: e2/3(dl +d,) (.27)

2C 'loge LPCpm

At various points in the roll cluster two
rolls rest on one roll, In order to use bending equations
it is convenient to use a single equivalent value for the

foundation constant, This is illustrated in fig.4.8.

Let the deflection of r0ll A in the direction

of P be Yy The deflection Yap in the direction Pl is

given by

Ypp = yAcos(el -0) (4.28)
and similarly the deflection y AC in the direction P2 is
given by

Yao = yAcos(e + 62). (4.29)

If Kl and K2 are the foundation constants between the

cylinder A and B, and between A and C, respectively, then

Py = K¥,p (4.30)
and

P, = K¥,q- (4.31)
But

P = Pycos(®; - ©) + Pycos(6 + 0,). (4.32)

Substituting for P, and P, from eqs. (4.30) and (4.31) and
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eliminating YaB and Ypo ¥e have

P= KlyAcos,z(e:L -0) + szAcosz(e + 62). (4.33)
But
s
K= v, (4.34)

and we obtain

K = chosz(el -0) + chosz(e + 62). ‘ 4.35)

By applying eq. (4.35) to the mill cluster
(see fig.2.4) the foundation constants for rolls I, J, O

anrd S can be written as

2

K1 = K, cos (66 - 64) + KBIcos2(62 + 64), (4.36)
K, = cos26 + K cosze ' 4 375
g = Kpgoos 6y * Kggeos 6y, .

K. =X cosz(e -06,.) +KX cosz(e + 6.) (4.38)
0] I0 4 5 Jo 3 571 *

K. = K..cos°0, + K_.cos>0 (%.39)
S oS 5 PS 5 *

By, (&.37) is obtained by resolving forces in a vertical

direction and, if symmetry is assumed, K.BJ=KCJ and

Kos = Kpge
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4.8, Roll force model,

For the reasons given in section 3.4 iterative
roll force algorithms are not used in the present mnill
model. Bryant and Osborne“8 developed an explicit roll
force formula which thus avoids iterative calculations. The
formula is not so accurate as the algorithm described in
section 3.4 for this typé of mill but is efficient in
the use of computer time. The error of the roll force

using this method was found to be about one per cent.

The ro0ll force is a function of input/output
thicknesses, input/output stresses and input/output yield

stresses and can be written as
p = £(hy, hy, 0y, Oy, Ky, k). (4. 40)

The Bryant and Osborne model has equation for roll force

given by

PO
=71 ~DbP_ -~ 0.%bD
(o] (o]

P (3.4)

where

P = (k - )R (1 +0.4a ) + Pp

K= 2.
k—3k1+3k2,

=_ 2 1

= =.0 =

g 3 1+3 2 1

R = work roll radius,
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h
a'0= _h_ieao-lv
o =HVRO
° n

L = coefficient of friction,

h = 0,72h, + 0.28h,

z
Pm ='§' 2k = 62)3/2\]1 T

h 2
a =14 _3,(&) Rc,

h

b=s2 - Eb(c/é)z
26 ~ 8 J
b, = (k - 5)JRS,

To calculate the roll force profile eq.(4.41)
must be solved at every point across the strip. If p(x)
is the 1r0ll force profile then to obtain the required
reduction the mean of p(x) must be equal to the mean
roll force P which is the roll force required to obtain

the specific reduction. That is,
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P = /sp(x)dx. (. b2)

5

Every time the roll force "p(x) 1is . calculated it
must satisfy eq.(#.42) and if the mean of p(x) deviates
from P, then p(x) must be adjusted until eq.(4.42) is
satisfied, This can be done by moving the two work rolls
away from or +towards each other, If they are moved away
from each other then the distance. d Dbetween their two
centres will be increased, thus reducing the x0ll force
p(x) (see fig.4.9). The roll force will be increased if
the work rolls are moved towards each other, +that is
decreasing d, The flowchart for this process is shown in

fig.4.10.
4,9, Inter roll pressu:t‘es‘.19

When two elastic cylinders are in contact the

total interference ylz(x) can be written as a function of

the load per unit 1length q(x) as

e2/ 3 (dl + d2)
ylz(x) = (Cl + Cz)Q(X)‘loge 2(C1+ cz)q(x) . (4'“3)

The loading is of course non-uniform but, neglecting second
is
order errors, . given by

ylZ(x)
e2/3(d +a)’
(e + cz>-loee[o.(cl+ éz>q(i)]

q(x) = (4.44)
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By. (4.44) contains q(x) on the right hand side amd q(x)

to be calculated from the knowledge of vylz(x); thus the

term q(x) must be eliminated from the right hand side. A

new variable qd(x) is defined as

x=i(x_)=£) | h.b
W= T (. 45)

where F is the rolling force, £ 1is the 1length of the

roll and @ is the mean specific rolling force. Thus

Y12 (%)

2/3
(Cl + CZ).J.oge ° (dl i dz)
Z(Cl+ Cz)qqd(x)

q(x)

Y15 (%) |
= 2/3(d ) . (4.46)
(¢ + Cz){log {z(c ) - log [qd(x)]}
Now
&/ 3a, +4,)
1o 2(c; +C,)a e 10ge[qd(x)]
as q(x) =3
Thus eq. (4.46) becomes
1) = y}g(X)
(Cl + CZ){log [2(01 e )J + 1oge(dl + dz) - loge(q)}
(4. 47)

. (4.47) is only true for positive values of ylz(x).
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Therefore it is assumed that when ylz(x):S(L qa(x) = 0.
The interference ylz(x) can also be calculated

from roll bending using roll contours, If +two perfectly
flat cylinders (i.e. without any ground camber), one resting
on the other, are considered and if +there are no forces

acting on these cylinders, then ylz(x) must be équal to

zero, That is ylz(x) can be written as
¥,(x) = 3(@; +d,) - dy, = 0 (4.48)

where d

1

and d2 are the diameters of +the two cylinders

and d12 is the distance between the +two centres. Now 1let
an external force be applied to the roll 1 which is the
top roll, so that only r0ll 1 is deflected downwards. If
it is assumed that r0ll 2 has 2zero deflection then the

distance between the +two centres must increase and, to

keep d,, = 3(d; +d,), the roll surface must be flatiened
by yl(x) the actual deflection of roll 1., Therefore the

interference ylz(x) can be written as

Y12 (0) = $(&) + ) = dp, + v, (x), (4. 49)

Similarly 3if forces are applied so that only roll 2 is

deflected upwards the interference ylz(x), to keep the

distance between tWwo centres the same as before, can be
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written as

Y12 (%) = 24y + d;) - dy, - ¥y, (x). (4. 50)
If both cylinders are allowed to deflect then ylz(x)
becomes

Yo (%) = 3(dy + 85) = dy, + y7(x) = ¥y,(x). (. 51)

If both cylinders are grounded with camber (e.g. barrel
shape) then the camber profiles must be added to the

interference term ylz(x) to keep d;, = %(d1 +d,). That is

y]_Z(x) = %(dl + d2) - dlz + yl(x) - YZ(X)

+ ylc(x) + yzc(x), (4.52)
If the cylinders have concave camber profiles then ylc(x)

and y, (x) will be negative in egq. (4. 52).

When a x0ll pressure q(x) between any two
rolls in the mill cluster is to be calculated the mean
of q(x) must be equal to the mean g, to keep the force
balance in the mill. The pressure q(x) can be adjusted by
moving the two rolls either away or towards each other,

This is done by adjusting mathematically the term d12 in

eq. (+.52). The pressure q(x) can be increased by decreasing

d that is moving the rolls towards each other. The

12’

force balance equation is given by

- 70 -



W
== / a(x)ax = g(x). (4. 53)
0] ,

The method of calculation of p(x) is to change d,, 1in
eq. (4.52) to change ylz(x), and hence q(x) iteratively

until eq. (4.53) is satisfied.- A flowchart for this process
is shown in fig.4.11 and the subroutine used in the

computer program is called INFRESS,
4,10, Roll deflections,

An expression for the roll deflection caused
by a point load, applied to a roll resting upon an
elastic foundation is given in this section. From bending
theory the deflection y 1is given by +the differential

equation

EL.EY = F - Ky | (4. 54)

o o
~
ol

where F 1is the applied force and K 1is +the elastic
fbﬁndation constant, This equation is only true if the
roll is in complete contact with its foundation under no
load conditions. However in the mill cluster, this is not
always true as one particular roll may be resting on an
already‘ deflected roll, as shown in fig.4.12, In a case
like this there will be a gap between ‘the roll and its

foundation under no load conditions; let this gap be Ay.
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Then eq. (4.52) becomes

EI.—- = F - K(y - AY)

QPL‘}:

= F - Ky + Kby. (4. 55)

But.

Ky = AF,
B. (4.55) becomes

L
EI.Z—x% = (F +AF) - Ky (4. 56)

where F +AF is the equivalent total force.
The solution to the differential equation

(4.56) ié given by

y(x) = (F—;—A—F).%[B(c - D) + H(J + G)] (4.57)

where
A = sinh®(\8) - sin®(\8),
B = 2cosh(Ax)cos(Ax),
G = sinh(A€)cos(ha)cosh(Ab),
D = sin(\L)cosh(\a)cos(\b),
H = cosh(Ax)sin(Ax) + sinh(\x)cos(Ax),
J = sinh(\f)[sin(Aa)cosh(Ab) ~ cos(ha)sinh(Ab)] ,

G = sin(\0) [sinhO\a.)cos()\b) - cosh()\a)sin(xb):l
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and

+|+

= [ X_
K'_@EJ :

A1l variables not defined are shown in fig.4.13. The
eq.(#.57) is only true for values of x<a, The deflection
for distances a<x< {4 can be calculated using eq. (457)
but with a and b interchanged while measuring +the distance

from right hand end.

At various points in the roll cluster three
rolls are in contact with a fourth r0ll as shown in
fig.4.8. If the deflection of roll A is required the net
force acting on A must be calculated. In direction P the

net force per unit length is given by

F(x) = P(x) = Py(x)cos(6, = 8) ~ P,(x)cos(6 +6,). (4.58)

If an elemental length dx across the roll 1length is
considered, +then the +total net force acting on dx 1is

given by

F(x)dx

F, (x)

I:P(x) - Pl(x)cos(el -0) - Pz(x)cos(e +62)]dx. (4. 59)

If the roll 1length is divided into N such small segments
of length dx then the distributed load can be treated as
a series of point loads acting on each segment.  The
deflection due %o one such force at the jth element,

given ‘by eq. (4.59), can be written as

Vo358 + yp3(x) = £(F5(x)ax, a, b) (%.60)
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where yaj(x) is the deflection for x<a, ybj(x) is the

deflection for a<x<{ and x ="a defines the point of

application of the force Fj(x)dx (see fig.4.13). The total

roll deflection, from the theorem of superposition is given

by

N
y() = > [Fas@) + ry50e)] (4.61)
i=1

Subroutine MUMMY in the computer program calculates the
total deflectidn and a simple flowchart is shown in

“fig. 4,14,
4,11, Strip thickness and stress profiles,

The procedure adopted by Fdwards and S;pooner24

to find the interference yws(x) between work roll and strip

was to compute the roll flattening for numerous rolling
schedules, roll diameters and Young's modulus., From .the
results they found a strong correlation between the total
roll flattening yws(x) and Hertzian flattening yH(x)
occurring between +two infinitely long elastic cylinders
having the same diameters, They computed +the ratio

yﬁs(x)/yH(x) and a model was proposed to match these

results, The proposed model is given by egs.(3.9) and

(3.10). The constants by

square methods to be 0.5 and 0.325 mm/tonne respectively.

and b2 are estimated using least
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First, the mean interference ’iﬁs between strip

and work rolls 1is calculated using mean roll force P

which correspords to the required reduction, If hz(x) is

the actual output thickness, then the change in interference

corresponding to a deviation in strip thickness from th is
(yws(x) - i%s)’ where ,yws(x) is the true interference between

strip and work rolls, That is the change in gauge is
higher if +the change in interference is high. The change
in gauge also 1increases with the increase of work roll
deflection, If work roll camber is included, then the

change in gauge can be written as
Ay () = 3, (6) + To () + [y ) = ¥y (4.62)
where ywc(x) is the work roll camber,

Since +there are two work rolls the effect

will be doubled amd Ahz(x) becomes

Bhy(x) =y, (x) +y,,(x) + 2y, (x) + Zl:yws(x) - ?ws] (4.63)
where ywu(x) and ywe(x) refer to upper and lower work

roll deflections,

The output thickness profile is calculated as

explained in section 3.5.1 and is given by eq. (3.17), i.e.

hy(x) = h, +hh3 * 1 (4. 64)
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The change in outpti’l: stress 1is calculated by
the model proposed by Hiwards and Spooner24 given by
eqs. (3.18) amd (3.19), using the output thickness calculated.
Biwards and Spooner found B to be 0.5 and +that the shape
distribution was insensitive to f3. The constant Y is

calculated as described below,

From the geometry of fig.4,15 it can be

easily shown that
hy 2y + ref . (4.65)
From continuity of mass flow

h, = v.h (4.66)

Vaia nn-"*

By substituting h = from eq. (4.65) in eq. (4.66) we have

re?
v, = Vn(l + —h—?:). (4.67)

The per unit slip is defined as

s=-2_1, 4 (4.68)

From egs.(4.67) and (4.68) the value of s is found to be

%

h,

(4.69)

S
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(4.70)
Hl h, 1 - O'/k "
By gt LR R T o k| (. 72)
R .. -1[R
H, =2/ -tan |2 0]. (4.72)
1 \/;2 {hz]

ms. (4.70), (4.71) and (#.72) can be derived by considering

roll gap variables and are given in Appendix 1.

By differentiating s with xrespect to O, we

1
have
Q‘..s_ = &R-.e . .(.192
dol h2 n dol
de._ dH
= %B.en.aﬂ_n..ﬁa ) (4.73)
2 1 :
But
de h h, H
_n_ 4 2 20| 2,_n
&~ ¥R 1+mn(J;2> (4.74)
and
dH
n_ -1 1
T = —.—-_ . (L‘" 75)
dcl 21 kl Cl

By substituting these values in eq. (4.73) and simplifying we

obtain

ds -a
ds _ (4.76)
do;, kK -0y
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where

=5

NI:::

N g

’ 4.77)

S
- 2 |=2.

Similarly

%‘f‘,‘ - 2 (4.78)

1 k-0

In order that the slip variations are to remain very

small we must have

- ds .4s _
As = Acrl. dol +A0'2 dcz =0. +.79)

By substituting for gg and %g— in eq. (4.79) we have
1 2

A (%.80)

where

-0
Y = %T&i' . (4.81)

4,12, Pressure and deflection profiles for one quarter of

the mill cluster.

Pressure and deflection profiles for one
quarter of the mill are calculated by using the subroutine
called BEND. This routine has to be called four times to
calculate the profiles of all +twenty xrolls, If symmetry
is assumed it 1is only necessary to calculate only one
half of the mill and therefore routine BEND is used only

twice.
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Since the pressure between two rolls deperds
on the interference between them, and the interference is a
function of +the 1r0ll deflections which directly depend on
pressure, the process is iterative. Whenever twov rolls are
in contact this iterative procedure must be adopted to
dalculate the pressure profiles. In the mill cluster every
roll is in contact with more than one roll. Suppose that
the first profile is obtained after satisfying a convergence
criterion. In the process of convergence the roll deflections
and pressures, other than those of the one in question,
change at every iteration., On +the other hand, if
convergence 1is obtained on the second profile then the
first profile may have deviated from +the +true value., The
procedure adopted is therefore to converge the first profile
and then the second profile initially, and then return to
first and then the second until convergence is obtained on
both profiles. If other pressures are included then the

process becomes a nested convergence procedure.
For one such pressure (e.g. gy between r0lls B

and J in cluster) the convergence procedure can be explained.

First the vertical deflection yJ(x) of roll J (see

fig. 4.16) is calculated using existing pressure profiles

qBJ(x) and qJO(x). The deflection yJ(x) is resolved into
py and 450 directions and these together with yB(x) and

Yo(x) are used to calculate new qgp;(x) and qJO(x). That
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qp5(x) = fq(yBcosel, y jeos; ) (4.82)
and

250(x) = £, (¥50088,, ¥4) : (4.83)
since Yy and Yo are calculated in vertical and 450

directions respectively., At this point a convergence test

is carried out on gy using a root mean square error

criteria. If +this criteria is satisfied, the present

profiles qBJ(x) and yJ(x) are taken as the corrected

pressure profile between B and J and +the deflection of J.
If a convergence has not been reached the nett force F

acting on J in the vertical direction 1is calculated, i.e.
F = qj,0088, - qg;c0s0,. (4.84)
Using this value F a new vertical deflection y3(x) is

calculated. This is done using the subroutine MUMMY and

can be written as

y3(x) = £,(F). | , (4.85)

The new deflection yJ(x) is calculated ‘using the iterative

formula
v5 e = v5e a6 - v300] (t.86)

where @ is a convergence parameter chosen to give a stable

solution. The above procedure 1is repeated until a
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convergence is obtained on gy The flowchart for this
procedure is shown in fig.4.17.

There are four main convergence loops in the
subroutine BEND which calculates the pressure and roll
profiles. Referring to fig.2.4, the first iteration loop

is concerned with the convergence of Py- The next loop
is for the convergence of the combined effects of Py and
R in +the direction Py and can be written as

qy) = Reos (6 - 64) + pycos(6, + 64). (4.87)

The third loop is for the calculation of the combined

effect of Py and p3 and the fourth loop is for p5. A

flowchart is shown in fig,4,18 and the procedure is
jllustrated in fig.4.19. Only the top half cluster is

shown in this figure and thick 1lines are drawn to show

the path of calculation., BEach of the small circles denoted by

s Cpy 03 and Cy represents an iterative procedure described

above. A satisfactory convergence in pressure 1is shown by

the letter Y and non-convergence 1is represented by N,

To calculate the pressure profiles and
deflections of +the bottom half cluster the same procedure
described above 1is 7repeated using the corresponding variables,
Once the calculations from subroutine BEND are completed the
two work rolls will have new profiles. These new work

roll profiles are used to calculate the new output thickness
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profile and hence the new stress profile. A final

convergence test is- épplied on the stress deviation
profile as shown in the flowchart of fig.3.1 and described
in section 3.5. The convergence test carried out here is

also based on the root mean square error criterion.

4,13. Mill gain matrix’®

The model calculates output gauge and shape
profiles and 1ro0ll deflection and pressure profiles for a
given set of rack movements., The static gain of the mill
is the ratio of +the change in stress due to a change
in rack pbsition. There are eight racks and the gains
must show the effect of shape at each point on the strip
due +to eaéh rack, Therefore, the gains are calculated by
changing each rack at a time by the same amount., First
the stress profile is calculated by setting all the racks
at a common position., Then eight new stress profiles are
calculated by changing one rack at a +time by the same
amount, The difference between any one of these stress
profiles and +the previous profile is taken as the stress
change due to that particular rack change. For computing
purposes the mill width and the strip width are divided
into a number of sections as explained in section 4,1,
Therefore the gain can be represented as an NX8 matrix,

where N is the number of sections, Any element of this
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matrix is therefore given by

(>
e

0. .
g ==Y i=1,2,...N anld j =1,2,...8 (4.88)

ij A=z,
where Ag and AZ are the changes in stress and rack

position respectively.

The above matrix is not a square matrix amnd
for the use in the dynamic model it is convenient to
have a square matrix, The ngﬁ-équare matrix can be
converted into a square matrix bj considering eight 2zones
in the strip. This is done by dividing the strip into
eight 2zones and calculating_ the average gain in each 2one,

If M is the number of sections in each zone, then each

element Gij in the square matrix is given by
M+ Mx(l-D)
g i = 112.,’.-0-8 .
G..= Zkj (4.89)
ij M j=1,2,....8

k=1 + Mx(i-)
so the gain matrix Gm can be written as

G =G.. i=1,2,....8 and j=1,2,....8. (4. 90)

Therefore each column of Gm contains the shape change at

each zone due to a change in the corresponding rack.
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Fig. 4.3. Strip profile dimensions.
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Fig. 4.4. Back up roll As-U-Roll movement.
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(a) |

(b)

Fig. 4.7. Forces acting on one roll in cluster.
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Fig. 4.8. Equivalent elastic foundation constant.
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Fig, 4.9. Roll force adjustment.
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v
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[

Fig. 4.10. Roll force adjustment.
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¥
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Fig. 4.11. Flow chart for roll pressure calculation

(Subroutine INPRESS),
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Fig. 4.12. Roll deflection.
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Calculate force acting on jth segment

FJ(X) = f(P(x),Pl(x),Pz(x))
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and replace x by (€ - x).
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N
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Fig. 4,14, Flow chart for deflection calculation

(Subroutine MUMMY),
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Fig. 4.16. Inter roll pressure and deflection.
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Fig. 4,17. Flow chart for qpy calculation.
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Fig. 4.18, Flow chart for subroutine BEND.
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Chapter 5.
STATE SPACE REPRESENTATION OF THE MILL.
5.1. Introduction.

The analysis and design of linear systems can
be achieved by using one of +two major approaches, One
method uses ILaplace and z-transforms, transfer functions,
and block diagrams. The other approach, in which modern
control system design techniques are based, is the state

variable . technique.

The state variable method has at 1least the
following advantages over the +transfer function method:
1. It is convenient for computer solutions.
2, It allows a unified representation of digital
systems with various types of sampling schenmes.
3., It allows a unified representation of single ‘and
multivariable systems.
4, It can be applied to certain types of nonlinear

and time varying systems.

In the state variable method a continuoué
data system 1is represented by a set of first order
differential equations called state equations. For a
discrete system the state equations become first order

difference equa.tions?o'51
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5.1.1. State equations for continuous systems.

The multivariable continuous system with m
inputs and r outputs shown in fig.5.1 can be characterised
by the following set of n first order differential

equations:

ax, (t)
= fi[xl(t),...xn(t), ul(t)....um(t)] (i=1,...n) (5.1)

where xl(t),...x n(t) are called state variables., The r
outputs yk(t) (k =1,2,...r), can be related to the state
variables and the inputs in the following manner:

¥ (t) = gkl:xl(t),...xn(t), uy (8),enmy(8)] (k= 1,...1). (5.2)
Bs.(5.1) and (5.2) can be written in compact form using
vector terminology as

x(t) = Ax(t) + Bu(t) | (5.3)
and

y(t) = Gx(t) + Du(t) | (5.4)

where A, B, C and D are constant matrices for 1linear time

invariant systenms,

The solution to eq.(5.3) can be obtained

using the Iaplace transform method and is given by

t
x(t) = 3(¢)x(0) + / 3 (t - t)Bu(t)dr t=0 (5.5)
0

- 104 -



where

_ (00}
o (t) = L1 [(sr - A)‘l] = Ao ZAR

k=0

k

d-

(5.6)

=]

and &(t) is called the state transition matrix., Bq.(5.5)
is true only when the initial time is taken at t =0, If

the initial time is taken to be t  then eq. (5.5) can be

modified to include to and is written as

t
x(£) = ©(t = £ )x(t,) + f o(t - UBu(t)ar  t=t. (57)
%

(o)
5.1.2. State equations for discrete systens.

. A discrete system is shown in fig.5.2. The
inputs to the 1linear system are discretised and they are

described by

ui(t) = ui(lﬂ.‘) = ei(kT)- (5.8)

Now letting t = KT and since u(t) = u(kT) = constant vector,
eq.(5.5) for discrete system can be written as

t

x(t) = &(t - KT)x(kT) + f o (t - tv)Bat|u(kT). (5.9)
kT ,

Fg.(5.9) is only valid for one sampling period. If we are
interested only in the response at the sampling instants
by setting t= (k + 1)T we obtain the discrete version of
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eq. (5.5) as

x[(k + 1)T] = 3(T)x(kT) + A(T)u(kr) | (5.10)
where |
5(r) = & (5.11)
and
r |
A(T) = f Q[(k+1)T- ]Bdt. - (512)
0

5.2, Mill representation in state space form.

5.2.1. Introduction,

The overall block diagram of the shape control
scheme is shown in fig.5.3. The control scheme is divided
into several subsystems, The system has 8 + 2 inputs and a
number of shapemeter measurements (<31) as outputs. The
8 + 2 inputs represent eight As-U-Roll actuators plus the
two first intermediate roll positions. For the present
analysis it is not proposed to control the first
intermediate 1r0ll positions. Therefore only the eight
actuators are considered as inputs., The investigation becomes
easier when the number of inputs are equal to the mumber
of outputs, hence for the initial design it is assumed
that there are eight shapemeter outputs. This is done by
dividing the strip into eight 2zones and treating shape at

each 2zone as constant.
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The set point actuators are assumed to control
their positions by means of a servo type control systenm.
Variations in the actuator positions are assumed to have an
instantaneous additive effect to incoming shape. This 1is
jusfii‘ied, as the dynamics of the mill cluster are much
faster than the overall system dynamics and can be ignored.
A movement in any one actuator affects the shape across
the entire strip width, Any corrective effect of the shape
at the roll gap due to actuator movement is calculated
from the static mill gains) These effects are added to
the incoming strip shape disturbance. The shapemeter is
situated at a fair distance from the roll gap and therefore
the stress distribution of the strip, as it moves
downstream to the shapemeter, is affected by a combination
of pure transport delay and a lag effect. The shapemeter
transducer is effectively a discrete system, as explained in
section 2.3.2, the output from it being electronically

smoothed by filters.

A cascade controller: is p;:opbsed to correct
shape changes and the control is obtained by comparing the
shapemeter measurements with <the actuator signals which

produces zero shape.
5.2.2. The actuator subsysten.

The eight actuators are assumed to Dbe
noninteracting and are modelled as second order systems. In

practice actuators are simple integrators accompanied by a
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dead space arising from the solenoid wvalve spool, and from
friction in the hydraulic motor. The open loop transfer

function for the actuators can be written a.ssz

k

G, (s) = S(T,_a—s'gy (5.13)

The output position can be fed back wvia a position
tranducer to control the actuator positions accurately. .The
forwaxrd path has a variable gain k and the closed loop
system for one actuator is shown in fig.5.4. The closed

loop +transfer function of +the actuator can be written as

_ a
8,(s) = 5@+ ST,) + KKK, ° (5.14)

If the roots of the characteristic equation
of eq.(5.14) are complex then the actuator positions will
have overshoots, Since the mill dynamics are much faster
than the overall system dynamics, these overshoots have
instantaneous effect on shape which will cause a problem
on control. Therefore it is proposed to choose k to give
equal roots for the characteristic equation so that the
actuators will have the fastest response without any
overshoot. Hence the closed loop +transfer function of each

actuator can be written as

K
_ A
ga,(s) - —_“2(1 + sTA) . (5~15)
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The state space form of each actuator is therefore given'
by
% (8) = ax (t) + Bu_(t)
(5.16)
¥, (t) = Cx ()
where
o 1] [0 ]
A = , B, = ) and Q, = [1 o] (5.17)
1 2 A
- -5 _A
(See Appendix 3 for numerical values of K, and TA). Since
there are eight actuators with eight inputs and eight

outputs, and they have the same transfer function, the
state space form of the multivariable nature actuator

subsystem can be written as

%1 ()]

LiaB(tZ
and

[¥,1 (%)

.

728(%)

Aa.l

ENO)

PRI I Y

%5 (®)

ENO)
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ji.e. in compact form we can write the actuator state

equations as

X, () = 8,%, (+) + B,U, (+)

¥, (t) = ¢X,(t) (5.19)

where

X,(t) is a 16X1 column vector,
N (t) is a 8X1 column vector,
X, (t) is a 8X1 column vector,

A, is a 16 X16 square matrix,

B, is a 16X8 matrix

and

C, is a 8X16 matrix,

5.2.3. Mill cluster subsysten.

Among milll plant subsystems, the mill ciuster
model is the most complicated due to its sophi ticated
mechanical design, The mill cluster is assumed to be
non~dynamic so that the relationship between an actuator

change 6x_(t) and a shape profile change 5y1;(t), at the

roll gap, is simply a gain which may be calculated using

the static model. The mill equation therefore can be
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written as

¥ (t) = G¥, () + v (¢). (5.20)

The gain matrix Gh depends upon the material being rolled

and is also schedule dependent. The matrix is a constant
matrix for a given pass and can be calculated off-line
using the static model or on~line using measurement

techniques. The vector gﬁ(t) in eq.(5.20) represents shape

disturbances which may zresult from changes in the input
shape profile or indirectly via changes in the input gauge

profile, material hardness or thermal camber.
5.2.4, Strip dynamics subsysten.

At any instant the stress distribution measured
by the shapemeter differs from that at the roll gap since
the shapemeter is located at some distance downstream from
the roll gap. The representation of the relation between
these two stress profiles is a subject of current interest.
However it was suggested that this be represented as either

a pure time delay or a simple lag.

The strip between the roll gap and the
shapemeter is unsupported and in general will have a catenary
profile. For such a strip processing line Grimble” °° derived
a transfer function relating <tension changes to speed
changes of the strip., He also showed that if +the tension

in the strip is such that the sag can be neglected, then
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the transfer function can be represented by a simple lag
term. Since the stress at the r0ll gap depends on the
input/output strip velocities it can easily be shown that
the relationship between the shape at the roll gap and the
shape at the shapemeter is also a simple lag termf2 The
shapemeter is situated at a certain distance from the roll
gap, and therefore the shape measured at the shapemeter is
not the +true shape, but delayed by time 1. Thus for the
present analysis the transfer function of the strip includes
a time delay term and a simple lag term in cascade,

Therefore the transfer function of the strip is written as

-sT
gy(s) = 1—§—§T; . (5.21)
For simulation purposes the delay term e ST is replaced by
first order Pade approximation and hence the strip transfer

function 1is given by

ga(s) = 11 +(Jét72§1({g-)+ sT,) ° (5.22)

The state space form of one of +the strip zones is given
by

5y () = Agrg(8) + By, (8)

(5.23)
Y3 (t) = Cdﬁd(t)
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where

[ o 1] [ 1 ]
Ta
Ad = ’ Bd = and
2 -'£+2Td 1+Td+t
IT TT
| T4 _ i

¢ = [1 J
(See Appendix 4 for derivation of A, and Bd)‘ The strip

width is divided into eight zones and each 2zone has the
state equations described by eq.(5.23). Hence the strip

dynamics subsystem becomes:

l.icdl(t)- 16.1 0 i F-Edl(t)— rBd?_ 0 ] l‘ym}(t)—
N S I S S S :
édz.s(tz 0 .Adg %38(t) 0 Bag| ymgs(t)_,
and
ba®] fon o JFa®] F o o Jfa®
Van(t) 0 "o |lx.a(t) 0 1 70||x..(%)
Yas\*| | ag| |Za8'\*/| | ’) [Zas\Y].
(5.24)
In compact form the strip subsystem becomes
Xp(t) = ApXp(t) + BpY (t)
(5.25)

XD (t) = CD)-(-D(t)
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Each strip zone is second order and therefore eq.(5.25)

has the dimensions as eq.(5.19).
5.2.5. The shapemeter dynamics subsysten.

The shapemeter forms an output subsystem and
is represented by a second order system with a dominant
shapemeter filter time constant which varies as the strip
speed (see Appendix 5). A series of filters is switched
on at preset mill speeds to smooth the discretised
shapemeter signals. The shapemeter signals from +the +thirty
one measuring zones are assumed to be non-interactive and
are reduced to eight signals to avoid dimensionality
problems, The shapemeter transfer function approximates to a

unity gain second order system anmd is given by

gs(s) = ¥ sTsiil(l +sT_,) (5.26)

where Tsl is the speed deperdent dominant <time constant. 1In

state space form the shapemeter is represented as

x () = Ax (1) + By,(t)
(5.27)
¥ () = Cx (t)

where
[ o 1 [0 ]
A = ,» By = and C = [1 0],
o1 IatTe 1
Ts1%s2 Te1%s2 | Ts1Ts2]



The complete shapemeter subsystem consists of eight zones

and hence this subsystem is represented in state space form

as
xa )] [ag 1ra®]  [Pa EAIQ)
. e . O : * . O :
= . . + :
- o °. . 0 ‘. .
_538(1"2 5 As& _—JESB(t)_ L Bs& _yd8(t)_
and
" (%) 0 o llxie 0 3ol [x it
Ys8\) | s8] LsB | J[=s8M -
(5.28)
In vector form the shapemeter subsystem becomes
Xg(t) = AgKg(t) + B (t)
(5.29)

Xs(t) = Cs)ﬁs(t)- ,
Since each zone is second order eq.(5.29) has the same
dimensions as eq.(5.19).

5.3, State equation of the complete systenm.

Bs. (5.19), (5.20), (5.25) and (5.29) can be

combined, to represent the complete multivariable system in

state space form, as follows:

Y,(t) is substituted from eq.(5.19) in eq. (5.20) to give

Y (t) = G.C\X, (t) + v, (t). (5.30)
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F.(5.30) is substituted in eq.(5.25) to give
Ko (t) = AJK(8) + BD[GchgA(t) + _\{m(t):l
= BDGch)_(A(t) + ADJED(t) + BD\_rm(t). (5.31)

From eq. (5.29) XD(t) is eliminated using eq.(5.25) to give

Xg(£) = BGCX (%) + AgKg(t). (5.32)

The state equations of the complete system in terms of

subsystems can be written as
KA(t) = AA}_(A(t) + BAHA(t).
Xp(t) = ByG C,X, (£) + AXp(t) + Byv (t),
(5.33)
Ks(t> = BSCD&D(t) + As.)gs(t)v
14(8) = O (t).
The set of eq.(5.33) can be put in the matrix form as

X(t) = AX(t) + BU() + Dy, (t),

(5.34)
¥(t) = ax(¢)
where
A, 0 0
A= |BG.C, Ay o, (48 x 48) (5.35)
0 ByCp Agl
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5,
B= |0, | (48 x 8) (5.36)
L0 ]
o
D= |3 , (48x 8) (5.37)
o]
C= :o 0 Cs]’ (8 X 48) (5.38)
fw -5 o fe, (5.39)
) = [uy (8 up®) e w3 (5.40)
FE) = [rg (8 vo®) oo yg(t)]- (5.41)

This state space description of the mill forms
the basis of the dynamic model simulation. In the above
description the A matrix being lower triangular allows some
simplifications in the computation. For control design the
transfer function form of the system is more convenient.
Also the plant structure is indicated far more clearly than:
in the time domain equations. As explained in section 5.2
all the dynamic elements are non-interactive. Therefore the
actuator, strip and shapemeter subsystems can be written

respectively in matrix form as

G, (s) = —2—14, (5.42)

- 117 -



6y(s) = — (A =5/2) g (5.43)

1+ st/2)@ + sT;)

and

Gs(s) T+ sTsl)l(l + sTsz)'IB (5.44)

vwhere 18 is the 8x8 identity matrix,

Therefore the open loop +transfer function

matrix G(s) of the system can be obtained as
6(8) = € ()65 (e)e,2, (5)

K,Q - st/2)
- .G
(L +sT,)%(1L + s7/2) (1 + ST)(L + 8T, )(1 + sT,) °

O (5.45)

where N(s) and D(s) are numerator and denominator

1

polynomials respectively. (See Appendix 6 for polynomials
N(s) and D(s) obtained for low, medium and high speeds).

5.4, Shape profile parameterisation,

The use of parameterisation of the shape
profile presents several advantages and is often used. In
the present system the maximum number of shapemeter outputs
to be controlled are thirty one. The mumber of shape
outputs also varies with the strip width. It is convenient
if the number of outputs to be controlled is fixed for

design purposes. Since the shape profile is a smooth curve
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this can be represented by a polynomial of given oxder. If
the parameters of this polynomial are taken as outputs then
the number of outputs to be controlledA become fixed rather
than controlling the shape outputs directly., If the shape
profile is represented by a third order polynomial (say

ax? + bx% + cx + d) then the number of parameters to be
controlled become four namely a, b, ¢ amd d. This means
that parameterisation reduces the number of outputs to be

controlled.

Let ys(x) be the shape measured or observed
at the shapemeter and x be the distance across the strip
width, The measured shape can be expressed in matrix form
as

¥(x) = Xp+E (5.46)

where B is a vector containing the parameters to be
controlled, € is a vector of errors and X is a known
constant matrix, If the polynomial which describes shape is

third oxder then

gf=[a v < 4. (5.47)

The error sum of squares is

e - @ - 1T - xp)
= ¥y - 2p%"y + gTxTxp . (5.48)

Let é be the least square estimates of  which when
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substituted in eq.(5.48) minimises ge. This can be obtained

by differentiating eq.(5.48) with respect to B and equating

the result to zero. This will give.  a solution +to ﬁ as®

B= ooy | (5.49)
Thus the estimated values of the parameters

representing the shape are taken as +the outputs of the
control system. A modified block diagram of the shape
control system is shown in fig.5.5. In this figure G(s)
represents the transfer function matrix of the plant and is
given by eq.(5.45). There are eight actuator input signals
to this block and the outputs are the eight shapemeter
measurements, These eight signals are transformed into four
estimated parameter outputs using eq.(5.49). These four

estimated parameters are compared with four reference

parameters (r:L to ru) which will produce the desired shape.

The controller is a 4X4 matrix which transforms these
error signals to control signals u(t). These four control
inputs must be +transformed via a matrix to act on the
plant matrix G(s). This transformation matrix may be chosen
freely. However, if same matrix X is selected, as shown in

fig. 5.5, the open loop transfer function becomes

i

(x%x)~xTe (s )X
= g—g-g 0 hTe x

- Ns) @ (5.50)

D(s) mx

Gy (s)
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where G = (XTX)'lXTme and GX(s) will be a 4X4 matrix.

5.5. Shape control system design.

An acceptable control scheme must provide:

1. Transient response with small overshoot and rise
time in the region of say 5 seconds (experience
of mill operators).

‘2. Relative insensitivity to errors of calculation and

variations of static gain matrix Gm.
3. Relative insensitivity to line speed.

Furthermore there are certain shape profiles
which must never be reached, even in transients, for the
safe operation of the mill. These aspects are still under

discussion with +the mill engineers.

As discussed in section 5.2 the mill is a
multivariable plant with eight inputs and eight outputs.
Straight forward application of either of the +two modern
multivariable design methods, i.e. the Characteristic Locus®’
6r the Inverse Nyquist Arrays,8 will produce compensators

highly dependent on G;1 as all the interactions in the
plant comes from Gm' From +the properties of Gm described
by egs.(6.1) and (6.2) in section 6.1, the matrix G, is not

of full rank and therefore the inverse does not exist. But

the matrix Gm’ calculated from the static model described
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in chapters 2 and 3, 1is often full rank and this may be
due to numerical errors, Consequently a control system

cannot be based on G;l.

The use of Ainput-output transformation of the
plant discussed in section 5.4 produces a smaller dimension
system, This yields a four by four multivariable system
with Gx(s) as the forward path transfer function (eq.(5.50)).

The gain matrix G in eq. (5.50) is not diagonal. Suitable
pre and post cgmpensators can be found +to diagonalise Gmx
using singular value decomposition to reduce interactions.
5.5.1. Singular value decomposition,

The singular value decomposition was developed

for real square matrices in the 1870's by Beltrami and

60

59 fThe singular value decomposition <theorem

Jordan, can be
stated as, 'If A is a ‘real nxn square matrix then there

exists orthogonal real square matrices U and V such that

A = Usv? - (5.51)
where
S = diag(0y, Oypureers0)) (5.52)
with
.
>
01202/.....-.201,120 .
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Proof:~
Since A?A is symmetric and positive definite
the characteristic roots or eigenvalues of ATA are real and

positive. Denoting these characteristic roots by

E N

i= l’ 2,0000.'0“

we can arrange that

01202>oooonoco>0n20‘ (5'53)
Let Vis VoyeeoaasVy be the corresponding orthogonal
characteristic vectors. i.e. V = (vi, v2,......vn) is

orthogonal, If
S = diag(0y, Opyeeesra0p) (5.54)

and

s? = diag(of, cg, ceeene .oi) i (5.55)

then we have

ATav = vs? : (5.56)

Since V is orthogonal Viv= 1 and eq.(5.56) can be written

as
s~ LyTaTavs™ = s vTysss™t = 1. (5.57)
Let
P §
U = AVS™. (5.58)
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Therefore
uf = sWRT (5.59)
Then from eq.(5.57) we have

vlu = 1 | (5.60)

which means that U is orthogomal. Then from eq.(5.57) we

have
vlavs™t = 1 (5.61)
from which
_ T
A = USV, (5.62)

From the above theorem, the transformed gain

matrix G nx  Can be written as

_ T
G, = UZV (5.63)

where ¥ is a diagonal matrix, and U and V are orthogonal
matrices. From eq.(5.63)
vle V=1 (5.64)
mx ° :
‘ T 61
If V .and W are chosen’ to be the pre and

post compensators, the forward transfer function of the

plant can be written as

PGP, = N(s) yTe v
X D(S) mx

N(s)
= =<3 (5.65)
D(s)
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and the closed loop +transfer function matrix becomes

GCL(S) = _}LS).):.

D(s)

The
static model and
is not discussed

decomposition are

[I + %s; z:I "~ | (5.66)

present study is only concerned with the
therefore the actual control system design
any further. The results for singular value

given in chapter 6 and the complete block

diagram for +the plant is shown in fig.5.5.
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u,(t) >
um(t) —P

t
eq( )

e_(t)

State variables

X1)X2) LA

» y‘l(t)

. X
n

> yz(t)

+> vy (1)

Fig. 5.1. Multivariable linear continous system.

X e1(t)
» Z.0.H.

u1(t)

X ez(t)
» 7.0.H.
T Z

uz(t)

y

X em(t ). .

.0.H.]

um(t)

State variables

X

1)X2’.-..nA

‘-———vxl(t)

——————»yz(t)

> .yr(t)

Fig. 5.2. Multivariable linear discrete system.
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Chapter 6.
RESULTS AND DISCUSSION OF RESULTS.
6.1. Properties of shape profiles.

The static model provides +two main +types of
result for a given rolling schedule. The first category
is concerned with the physical processes and is the
calculated shape, gauge and pressure profiles. These are
important when the degree of control of a particular
profile is of interest. The shape profiles for eight
actuator changes (RUN 0) are shown in fig.6.1 (e.g. in
fig.6.1la the curve marked with a cross is the
shape profile due to a change of 6 mm in rack 8, keeping
all other racks at zero position etc.). Inspection of
figs.6.1 to 6.22 shows the property of symmetry when the
strip is placed at the centre of the mill. Units used in
these figures are N/u’ for shape and the distance x is
given in terms of number of sections. The actual distance
can be obtained by multiplying the number of sections by
dx the width of one section. Inter roll pressﬁre
distributions and the corresponding roll deflections for a
change in rack 1 are shown in fig.6.24 and fig.6.25
respectively, These profiles are obtained for the mill
schedule given in table 6.1. The corresponding gain matrix

is demoted by G,
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If the shape profiles shown in fig.6.1 are
inspected closely it is seen that the largest shape change
is found in the vicinity of a point, which is directly
under the particular shape actuator which has been moved
from the mull point, across the strip width, It is also
clear that a rack change appears to affect widely separated
sections of the strip. This can be explained by considering
a localised change in the back-up rolls., This change in
the back-up rolls will modify the inter r0ll forces between
the back-up and second intermediate rolls. Similarly, this
change in the inter roll force will change the effective
profiles of both the back-up and second intermediate rolls.
From the study of a point force acting on a roll, it can
be seen that the roll profile 1is changed, not Just below
the point of action of the force but over a region
surrounding the point, The change is significant in the
vicinity of the point of application of +the force. Thus,

a localised changé in the back-up roll profile is converted
to a distributed change in the profile of the second
intermediate 1ro0ll. Further interaction between the second
intermediate rolls and the first intermediate xrolls and
between the first intermediate rolls and work rolls spread
the effect. Thus in general the 1largest shape change occurs

under the actuator which is moved.

In fig.6.1 the negative shape corresponds to

compressive stresses and the positive shape to tensile
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stresses., When rack 1 is moved downwards for example, the
left hand side of all the rolls will be deflected
downwards with respect to the othef end., This results in
an increase in reduction of the thickness at the 1left
hand edge of the strip which will produce a 1longer edge.
To keep the applied tension constant, the left hand edge
of the strip must be compressed and at the same time
the right hand end will have tensile forces. This
corresponds to the compressive and tensile nature of the

stress and is shown in fig.6.la.

~ The static model developed ignores the strip
edge effects. When the strip width is 1less than the mill
width (or the length of the work ro0lls) there will be
two portions from either end of the upper ‘work roll with
no support. The model 1is based on the assumption of =zero
shape directly under these two portions and therefore the
shape changes from zero to a high value at the edge of
the strip, This is shown in fig.6.1 (and in all other
shape profiles where the strip width is 1less +than the
mill width) by +the rapid change at the edges. The
calculated shape near the edge of the strip is therefore

not +the true shape.
6.2, Properties of the mill gain matrix,

The mill gains represent the second major

source of information available from the static model.
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Lingarised mill gains are calculated about a given shape
operating point and +these relate the shape changes to the
As-U~Roll changes. t If the shape is measured at eight 2zones
across the strip, the gain matrix has the form Gg given
in section 6.6 (units = N/mm3 ). The eight rows of the
gain matrix repreéent the eight 2zones across the strip
and the eight columns correspond to eight As-U=-Rolls, e.g.
the elements in the second column give the shape at each
zone across the strip width when the second As~U=Roll is
moved. Thus, g = =0.377 in Gg is the shape at zone 4
when As-U-Roll 6 is moved. The negative gains result from
the assumption that the average tension is maintained
constant. The gains include small errors due to numerical
problems and due to the fact that the mill is non~linear.
The gains are dependent upon the operating point and are
very dependent. upon the strip width., The way the gain
matrices vary with different schedule settings are shown

in table 6.3,

If the strip is centred across the mill then
the gain matrix has a special type of symmetry. The first
four columns of the matrix are repeated as the last four
columns but in reverse order and vice versa. Another
property of the gain matrix is that the elements of each

column and row sum to zero, That is, it must satisfy
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. |
Z 850 (6.1)

and

Z 8350« | 6.2)

Bg.(6.1) describes the condition that the xow
elements sum to 2zero. This 6an be explained by considering
a situation where all actuators are moved together by the
same amount., This would result in a movement of the work
rolls vertically downwards without introducing an& bending
effects, which} is equivalent to a screwdown movement situated
at the sides of the mill. The resulting major effect will
be on the strip thickness and there will be no appreciable
shape chanée. This is the case for RUN 22 amd fig.6.23
shows the corresponding shape profile which illustrates this

point clearly.

B.(6.2) is the condition that the column
elements sum to 2zero. This is so since by the definition
of shape (the deviation in the tensile stress from the

mean), the average value across the strip should be zero.

Table 6.3 is obtained by comparing matrices

G; to Gﬁl with Gg. The diagonal elements are compared and

the changes are expressed as a percentage change. The
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negative sign indicates a reduction in gain compared +to Gﬁ

and the overall, change 1is the average percentage change

when all actuators are considered,
6.3. Shape changes for strip width variation,

The gain matrices Gi to G; given in section

6.6 are obtained by varying the strip width from 1.7m to
1.0m and keeping' all other variables constant, The
corresponding shape profiles are shown in figs.6.1 to 6.7.
All these shape profiles and gain matrices have the
properties discussed in sections 6.1 and 6.2 if minor

numerical errors are ignored.

The maximum shape occurs in the vicinity of
the particular actuator which has been moved. In figs.6.1
to 6.8 this is shown as the minimum or the trough of the
shape profiles, A graphical representation of the variation
of these maximum values is shown in fig.6.26. As seen from
the figure _the maximum shape hardly changes with the strip
width if actuators 3, 4, 5 and 6 are used. This is because
all actuators are situated well within the strip considered.
The distance between racks 3 and 6 is about 0.68m and the
ninimum width considered is 1,0m. Therefore racks 3, 4, 5
and 6 1lie well within the strip widths considered. When
there is any change occurring in these four racks, there is
a portion of the strip directly under the particular rack

moved to support the work roll, For these widths the
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conditions of the strip in the vicinity of racks 3, 4, 5
and 6 do not change considerably, and hence the shape
change due to the same movement in any of these four racks

will be roughly the same (see figs.6.1 to 6.8).

The maximum shape for strip widths 1.7m and
1.6m remain approximately the same when racks 2 and 7 are
used, This is similar to the above case as. racks 2. and 7
are situated well within these +two strip widths. If the

strip width W is zreduced further then the work rolls have no

strip to support and they act as cantilevers. This cantilever
bending action will attempt to reduce the thickness of the
strip at the edges more than at the middle and therefore
will produce higher compressive stresses near the edge. The

length of this cantilever portion increases when W is

reduced, and hence the bending action which produces the
variation in the maximum shape. As seen from fig.6.26, the
variation of maximum shape for racks 1 and 8 has a
maximum (in the negative sense) when W, =1.5m, and for

racks 2 and 7 this occurs at W = 1.4m. When W is

further reduced than these two 1limiting values, the two
work 1rolls will +touch each other. This reduces the
cantilever bending effects on the strip edge and therefore
results in a reduction of the magnitude of the maximum

shape.
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The corresponding gain matrices for the seven
different widths are denoted by Gi to G; in section 6.6.
It is seen from these matrices that the gain elements
reduce in magnitude as L decreases. In table 6.3 the

first seven rows represent the percentage change in diagonal

elements of Gi to GZ compared with Gg which is the gain

matrix when LA 1.4m. The details of RUN numbers are given

in table 6.2. The overall percent change is the average
change in diagonal elements. This overall percent change is
just an indication showing how the gain matrices vary

compared to cg. RUNS 1 to 3 have widths wider than for

RUN -0 (wg = 1l.4m) while RUNS 4 to 7 have narrower widths.

It is seen from table 6.3 that the overall percent change

decreases with W

When using narrower widths the region of work
roll which is in contact with the strip is 1less and therefore
the roll force p(x) must be larger to keep the force
balance in the mill. cluster. The interference between strip
and work roll must be higher for larger roll force and
hence the output thickness becomes smaller. From eq.(3.18)
it is seen that the output stress is smaller for smaller
output thicknesses and hence the gains must decrease withv

the strip width.
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6.4. The effect on gains of changing other variables,

In the previous section the effect of the
variation of strip width was discussed. The matrices Gg

22

to Gm are the gains of the mill for +the cases in which

the strip width is fixed at w_ = 1.4m, All these cases

have the mill schedule used for RUN O (see table 6.1)
with one change in at least one of the input data, Fhese

cases wWill be discussed here.

The test for RUN 8 is to see the effect on
yield stress of the material being rolled. The yield stress
curve (see Appendix 7) is increased by a factor of 0.5 so
that the material rolled is stiffer, It is seen from table
6.3 that the overall gain is reduced by 7% for this case.
When rolling harder materials the rolling force must be
greater to obtain the same reduction. Higher rolling forces
produce more interference between strip and work roll, and
hence the change in output thickness will be more. This
results in a smaller output stress profile and therefore

this case will have smaller gains.

The RUNS 9 and 10 are carried out 1o see
the effect of changing the mean reduction. For RUN g the
input mean thickness is increased by 2.5 times to 6mm with
a reduction of 20% compared to 155 for RUN 0. Ffor RUN 10
the mean input thickness is adjusted to 1.5m with a

reduction of 13%. That is, for the first case the reduction
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is increased by 5 and for the second case this is reduced
by about 2% which is roughly half the value of the

previous case, When the overall gain change figures are
inspected it is seen that for case one it is -40% and

for the second case it is about +21%, which is roughly
half of the previous figure. From these two results it is
seen that the gains of the mill obey approximately a

linear relationship with +the percentage reduction.

The RUNS 11 to 16 correspord to changes in
roll diameters. RUNS 11 to 12 show the effect of work
roll diameters, RUNS 13 to 14 the effect of first
intermediate roll diameters and finally RUNS 15 to 16 the
effect of second intermediate roll diameters. In each case
the. diameters are changed by + 155 and the changes of the
overall gain are given in table 6.3. When the work roll
diameter is reduced the overall change in gain is + 7.9%
and this figure is ~6.7% for the bigger work roll. For
the first and second intermediate xrolls these figures are
+2,3% and - 2.8%, and + 8.8%# and ~ 8,0% respectively. When
the diameter of a 1roll is increased +the deflection caused
by a given mill loading will decrease, that is, the roll
will become stiffer. In other worxrds, the bending effects
will decrease. When the roll diameters are changed by the
same amount ( + 15%) the figures show that the corresponding
changes 'in gain also have the same order of magnitude,

except for the case of the first intermediate xo0ll. This may
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be due to the fact that the first intermediate rolls are
furnished with tapered ends, which will produce a less
bending effect than a 1roll without tapered ends. The i
function of first and second intermediate rolls and back-up
rolls is to prevent excessive bending of the work rolls
which assist the elimination of shape and gauge defects.
Also the ro0ll separating force for a given reduction
increases with roll radius., The effect of increasing roll
diameters is therefore to increase the ro0ll force which in
turn reduces the gains of the mill, Conversely if smaller

rolls are used the corresponding gains will @éfe‘a?'s‘e) NI
For RUN 17 the mill cluster angles 61 to 66

are changed as given in table 6.2. For this RUN the

overall gain is increased by 9.8%. The change in cluster
angles will disturb the mill cluster configuration and the
vertical and horizontal components of roll separating forces
will therefore differ., This will change the roll force and

hence the change in gain follows,

The RUNS 18 and 19 show the effect of
changing the output tensile force, In RUN 18 the tension
is decreased by 50% to 95R94N and for RUN 19 it is
increased to 285882N again by 50%. The overall gain change
figure for these two cases are + 2.4% and - 3.1%
respectively., When rolling metal: strips higher reductions
or smaller output thicknesses can be obtained for higher

output tensions, assuming that the roll force remains the same.
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Smaller outpﬁt thicknesses mean smaller stress profiles and

hence mill gains will be smaller for higher <+ensions.

The first intermediate rolls are moved by
100mm for RUN 20, and there is an increase of 6.2%
in the overall gains of the mill, The edges of the

taperéd‘ wedge positions (vertical planes e; and e, in

fig.4.6.) of the first intermediate rolls are set at the
vertical plane passing through the strip edges for RUN O,
That is, along the strip width, first intermediate rolls have
a flat surface, This is not the case for RUN 20, where
these ro0lls are pushed in by 100mm, so that the xoll
surface is no 3longer flat, That 1is, near the strip edge
area first intermediate rolls have a smaller diameter. This
increases the bending effect of +this roll thus increasing

the gain,

RUN 21 is carried out to see the effect of
increase in the roll rack movement, Here all racks are
moved, individually one at a +time, by twice the distance as

for RUN 0. If ecach element of gain matrices Go amd Go is

compared it is seen that the change is quite small., The
overall gain changes by + 0.3% and theoretically these two
matrices must be the same. The variation is due to

numerical errors.

RUN 22 is a special case where no comparison

is made with matrix G). This is to see the effect of
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moving all racks at the same time by 6mm. As seen from

22

the gain matrix Gm all elements are very small compared

to other cases considered. The shape profile for +this case
is shown in fig.6.23 and the variation is hardly noticable.
The effect of moving all racks by the same amount is +to
move the whole of the back-up roll vertically, This will

not produce an appreciable change in the shape profile as
the incoming strip profile is rectangular, and there will

be no transverse variations in the reduction. The same effect
can be produced by moving the two side .screwdowné by the same

amount and hence the very small gain matrix results.

6.5. Shape control system diagonalisation using singular value

decomposition,

One of the most important results obtained froh
the statié model is the mill gain matrix which is a square
8 X8 matrix, Each column of this matrix represents the
shape at eight 2zones of the strip due to each rack
movement. The overall mill block diagram 3is shown in
fig.5.3 and 1is an eighth oxder multivariable system and the
only interaction comes from the mill gain matrix, It is
convenient to represent +the shape profile by a third order
polynomial and to control the polynomial coefficients, rather
than controlling the shape at eight zones directly (see
section 5.4). By using a transformation matrix (see

Apperdix 8) it is possible to transform the eighth oxder
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system into a fourth order system as explained in section
5.4, The block diagram of the transformed system is shown
in fig.5.5. Here G(s) is the transfer function matrix of
the plant and is given by eq.(5.45). As seen from this
equation G(s) contains the static mill gain matrix G and
therefore will be interactive. The transformed 4 X4 plant
transfer function Gx(s) is given by eq.(5.50), which
contains G_ = (X')"x'G X,

Each transfer matrix for all twenty one RUNS
considered are computed and presented in section 6.6 as
'Transformed gain matrix G mx" A quick glance at these
reduced order matrices show that they are non-diagonal
matrices, To design controls it is convenient if the system
can be made diagonmal by removing interactions. The singular
value decomposition is used for +this purpose and the
orthogonal matrices U and V together with the diagonal
matrix are computed, The diagonal form is obtained by
computing ¥ = vle ! for each case. In section 6,6 the
diagonal elements of I are presented under the heading
'‘Transpose of W vector is', and matrices U and V directly
urder these elements, The pre and post compensators can be

T

chosen as V and U vwhich are pure gain terms and can be

implemented easily.

If these sets of U amd V (for different

schedules considered) are compared, it is seen that the
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variation is quite small and they are remarkably similar,
This is -encouraging as it is possible to use one set of
U and V instead of one set for each schedule., This set
of U and V can be derived, for example, by taking the
average of each element. This has to be investigated
further, By doing this of course the interactions cannot
be removed qompletely, but can be made small so that they
can be ignored, Again this area has to be investigated

further by considering more mill schedules,
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MILL DATA.

Back-up~roll diameter = 0.405m
Second intermediate roll diameter = 0.235 m
First intermediate roll diameter =0.137 m
Work roll diameter = 0.09 m
Work roll crown(camber) = 0.0508 mm
Second intermediate roll crown(camber) = 0.0762 mm

First intermediate roll tapered end gradient = 1 mm/m

Length of +tapered end = 0.355m
Mill cluster angles (see fig., 2.4) 6, = 41.65

o, =3.72

0, = 22.5{

6, = 60.54

o, = 1,04

0y = 79.59
STRIP DATA.
Strip width | =1l4n
Input mean thickness | = 2.4 mm
Output mean thickness = 2,05 mm
Percentage reduction =15%
Input mean tension = 134352, 0 N
Output mean tension = 190588.0 N
Input mean stress = 55.98 MI‘{/m2

I

92.9699 MN/mZ

Coefficient of friction between strip and work roll = 0.06

Output mean stress

Incoming strip is rectangular. The tapered first intermediate
roll is set up so that the end of wedge is in 1line with
the edge of strip.

Table 6.1. Mill schedule for gain matrix Gﬁ (RUN 0).
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RUN1 to RUN 7 :- affect of changing the strip width.

RUN1 :- Strip width = 1.7 m
RUN 2 :~ Strip width = 1.6 m
RUN 3 :- Strip width=1.5n
RUN 4 :- Strip width=1.3 nm

RUN 5 := Strip width = 1.2 m

RUN 6 :~ Strip width =1.1m

RUN 7 := Strip width =1.0m

RUN 8 to RUN 22 :- mffect of changing other variables.

RUN 8 :- Yield stress increased by 50 %.

RUN 9 :- Input mean thickness = 6 mm, output mean
thickness = 4.8mm, mean reduction = 20 %.

RUN 10 :- Input mean thickness = 1.5 mm, output mean
thicknes = 1,3 mm, mean reduction = 13 %.

RUN 11 :=- Work roll diameter reduced by 15% to 0.076 m.

RUN 12 :- Work roll diameter increased by 15% to 0.104 m.

RUN 13 :~ First dintermediate roll diameter reduced by 15 %
to 0.116 m,

RUN 14 ;- First intermediate roll diameter increased by 15 %
to 0.158 m,

RUN 15 :~ Second intermediate roll diameter reduced by 15 %
to 0.198 m.

RUN 16 :- Second intermediate roll diameter increased by 15 %

to 0,272 m.

Table 6.2 cond,
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RUN 17 := Mill cluster angle changes and new angles are

8 = 40.99"
6, = 2.69°
6, = 23.63
8, = 5.43
95 = 37.89
8 = 79.05

RUN 18 :~ Output tension reduced by 50 % to 95294.0 N,
RUN 19 :- Output tension increased by 50 % to 285882.0 N,
" RUN 20 :~ Wedge position moved in by 100 mm,

RUN 21 :~ Fach actuator moved individually by 12 mm,

Run 22 :~ All actuators moved together by 6 mm,

All RUNS given above have the mill schedule used for RUN O
(Table 6.1), and the changes in input data in each

particular RUN are given against that RUN number.

Table 6.2. Input data for different cases considered.
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% Change in Shape Gain

Overall

Rack 1|Rack 2|Rack 3|Rack 4|Rack 5{Rack 6{Rack 7|Rack 8 | % change
RUN 1 7.7 123.9 |10.6 | 7.4 | 54| 101 20.4 |-29.8 7.0
RUN2 | 13.0 | 18.6 | 7.2 | 55| 45| 6.5 17.5 {-17.5 6.9
RUN 3 8.5 6.7 | 4.9 | 3.0 | 2.7 | 49| 7.2 |-7.0 3.9
RUN 4 [-15.3 | =9.5 | =6.1 | =3.4 | 3.0 | =-5.8 | =8.2 | =1.2 -6.6
RUN 5 |-29.0 |-13.8 |[-16.2 | -8.7 | -8.6 |-14.9 | =7.5 | =7.1 |-13.2
RUN 6 |-U41.4 |-25.0 |-28.5 [-16.7 [-16.0 |-24.9 |-10.5 |-15.1 |=22.3
RUN 7 |-47.2 [-31.1 [-38.9 [-24.1 |-24.3 [-32.3 | =5.5 |-24.8 |[-28.5
RUN 8 2,2 |-14,7 | -4,1 | -6.0 | -6.2 | -4,5 | -6.0 |-16.4 | =7.0
RUN 9 |-29.9 |-50.6 [-42.6 [-40.5 |-40.5 |-37.7 |-30.7 |-50.9 |-40.4
RUN 10 7.9 | 33.9 | 23.6 | 22,1 |21.7 | 19.1 |27.4 |17.1 21.6
RUN 11 | 3.0 | 11.4 | 6.8 | 8.2 | 7.8 | 8.7 | 9.8 | 7.2 7.9
RUN 12 | =40 | -9.1 | -6.0 | -6.7 |-6.8 [ =7.7 [=6.9 | -6.5 | =6.7
RUN 13| 0.6 | 2,2 | 2.8 | 3.6 | 3.6 | 3.4 | 2.0 |-0.3 2.3
RUN 14 | =0.9 | =2.5 | =3.7 | ~4.2 | -4.3 | 4.4 [-1.6 |-0.3 | -2.8
RUN 15| 1.2 | 2.6 |15.7 |14.9 |151 |14.5 | 3.1 | 3.2 8.8
RUN 16 | =3.7 | =1.3 [14.5 F12.5 [-13.0 [-13.6 |=1.6 | -4.2 -8.0
RUN 17 | 10.0 9.1 9.7 |10.2 9.5 | 10.0 9.1 |10.6 9.8
RUN 18 | 2,6 | 1.8 | 3.0 | 2.3 | 2.4 | 2.9 | 2.1 | 1.8 2.4
RUN 19 | =4.7 | -3.4 |-2.6 |-2.7 |-2.8 | =3.2 |=3.0 |=-2.5 | -3.1
RUN20 | -0.7 | 9.6 | 3.0 | 6.5 | 7.1 | 7.2 | 9.8 | 7.2 6.3
RUN 21 [ 4.4 2,0 | 0.9 | 1.5 | 0.9 |=-1.5 |-50 |=1.1 0.3
Table 6.3. DPercent changes in gain for RUNS 1 to 21,
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6.6. Gain matrices for different scedules.

2,423
0.405
-0. 447
-0.616
-0, 515
-0.423
-0.341
-0.485

SUM OF

-0.000

3.262
1,520
0.145
-0.710
-1.025
~1.082
~1.003
-1,109

COLUMN

-0.002

GAIN MATRIX

0.453 <1,211
1.631 0.321
1.588 1.324
0.633 1.587
-0.437 0.863
-1,091 -0.234
=1.255 =0,969
-1,523 =1.680
ELEMENTS
-0.003 0.001
TRANSFORMED
7.493 <1.353
-0.367 4.848
0.365 0.234
0.135 0.165
TRANSPOSE OF
8.325 5.271
MATRIX U IS
-0.988 0.145
0.146 0.989
0.057 =0.022
0.003 ~0.009
MATRIX V IS
-0.893 0,135
0.247 0.871
0.368 «0,161
0.080 =0.443

c® FOR RUN O
m
=1.645 -1.,414 <1,095
-0.915 =1,279 =1,057
-0.104 -1.119 =1.178
1,024 -0,377 =1,122
1.618 0.734% -0.758
1,182 1.603 0.180
- 0.147 1,578 1,630
-1,308 0.275 3.399
-0.001 0.001 =~0,001
0
GAIN MATRIX G
-3,038 ~=0.997
-0.369 =2.212
2,004 0,112
0.193 0.407
W VECTOR IS
2.014 o0.422
-0.060 0,004
-0.015 0.007
-0.989 =0.131
-0.131 0.991
-0,409 0,131
-0.121 0.406
~0.903 =0.149
-0.035 0.892
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-1.171
-1.110
-1.221
~1.169
-0.816
0.143
1.661
3.679

-0.005



2,610
0.847
-0.429
-0.750
-0.673
-0, 606
-0,616
-0, 4h7

SUM OF
~0. 064

2,596
1.883
0. 447
-0.663
-1,108
-1,183
-1.177
-0, 841

1

GAIN MATRIX Gm FOR

-0.315
1.243
1.756
0.831

-0,412

~1,045

-1.208

-0.812

-1.135
-0.180
1.189
1.704
0.861
-0.352
-1.083
-0.960

COLUMN ELEMENTS

~0. 046

0.039

TRANSFORMED GAIN MATRIX Gmx

0. 044

6.856 =0.795
©0.032 4,572
-0.937 0.666

0.246 =0.755

TRANSPOSE OF

7.373 4,968

MATRIX U IS
-0.964 0,109

0.091 0.972

0.241 0,051
-0.025 =0,201

MATRIX V IS
-0.929 0,137

0.185 0,914

0.310 =0.,040

0.077 =0.378

RUN 1
-0.981 =0.779
-1,089 =1,268
-0.243 ~1.085
l. 031 -0. 343
1,706 0.969
0.998 1,765
-0.3% 1,046
=1,026 =0,266
0.043 0.038
1
=1.774 =0.683
-0,054 =1.695
2,443  0.340
0.383 0.862
W VECTOR IS
2,171 0.459
-0,226 =0,063
0.023 0.215
-0.940 =0.234
=0.253 0.946
-0.337 0.064
-0,070 0.353
-0.918 ~0.241
-0.194% 0,902
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-0.809
-1.234
~1.25%
~1.194
-0.630
0.6
1,961
2,464

~0,042

-0.849
-1.254
~1.260
=1.220
-0,712
0.604
2.070
2,581



2.739
0.726
-0.471
-0.731
-0.638
-0. 567
-0. 536
-0, 524

SUM OF

~0.002

2

GAIN MATRIX Gm FOR

2.951 =0.121 =-1,216
1.802  1.394 -0.002
0.318 1,702 1.235
-0.701 0.765 1.673
-1,095 ~0.420 0.869
-1.176 -1,081 =0.329
-1.123 ~1,217 =-1.045
-0,977 =1,023 =~1,187
COLUMN ELEMENTS
-0.002 =~0,003 =-0,002

TRANSFORMED GAIN

7.274
~0,082
-0, 445

0.228

-0.961
4,768

0. 564
-0,432

- TRANSPOSE QF

7.789
MATRIX

~0.980
0.108
0.165
-0.017

MATRIX

-0,926
0.200
0.303
0.079

5.128
U IS

0.116
0.984
0.034
~0,130

v IS

0.140
0.908
-0.067
-0.389

RUN 2
-1.172 =0.968
=1,036 =1,269
~0.228 =1,113
1,028 -0.343
1.690 0.896
1.063 1,706
-0.194 1.225
-1,155 =0.138
~0,006 =0,002
MATRIX Gix
-2,072 =0,793
-0.142 -1.848
2,395 0.296
0.35% 0.733
W VECTOR IS
2,237 0.463
-0.15 =0.036
0.023 0,140
-0.963 =0.209
-0.217 0.967
~0.340 0,080
-0.085 0.358
~0.922 =0,221
-0.161 0.903
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~0.924
-1.178
~1.259
-1,190
-0,701
0.478
1,914
2.860

-0.001

~0.989
-1.208
=1.274
-1.220
-0.771
0.432
1.990
3.036

~0,004



2.629
0.515
-0.477
-0.683
-0.582
~0.496
-0, 442
-0.525

SUM OF

-0.062

3.175
1,622
0.210
-0.712
-1,069
-1.133
-1,076
~1.082

COLUMN

GAIN MATRIX Gﬁ FOR

-1,242
0.208
1.317
1.635

. 0.858

~0.271

~1,000
~1.435

0.163
1.536
1,665
.0.713
-0.433
-1,084
-1.242
-1.279

ELEMENTS

0.039 0,069

TRANSFORMED GAIN MATRIX ch

7.446 ~1,169
-0.229 4,85
0.034% 0,411
0.190 =0.075
TRANSPOSE OF
8.099  5.229
MATRIX U IS
-0.986 0.130
0.129 0.989
0.102 0.008
~0,007 -~0.057
MATRIX V IS
-0.910 0.140
0.225 0.891
0.338 -0.114
0.081 ~0,415

RUN 3

-1.433 -1.206
-0,957 =1.271
-0.148 -1.111
1.025 ~-0.366

1.661 0.826

1.15 1.681

0.001 1.436

-1.23% 0.052
0.065 0,037

-2.581 =0.919
=0.268 =2.043
2,232  0.173
0.259 0.549
W VECTOR IS
2.158 0,49
-0.099 =0,016
0.012 0.060
-0.981 =0.161
-0.162 0.985
-0.374 0,109
-0.101 0.380
-0.918 =-0,174
-0.089 0.901

- 15 -

~1.040
-1.128
-1.218
~1,164
-0, 740
0.308
1.747
3.176

~0,058

-1,113
-1,176
-1,255
-1.209
~0. 804
0.269
1,798
3.421

-0,067



2.051

0.292
-0.412
-0.533
~0.436
-0.345
~0.222
-0.455

SUM OF

-0.060

3.129
1.376
0.087
-0.665
-0.956
-1.010
-0.898
-1.138

GAIN MATRIX Gm FOR

0.801 -1.123
1.747  0.502
1.490 1,340
0.560 1,532
-0.449 0.851
-1.081 -0.174
-1,231 =-0.870
-1.809 =1.,971

COLUMN ELEMENTS

-0.075

0.027 0.087

TRANSFORMED GAIN MATRIX Gmx

7.304 <1,551
-0.479 4,700
0.575 0.039
0.098 0,391
TRANSFOSE OF
8.400 5.205
MATRIX U IS
-0.987 0,154
0.155 0.985
0.026 =0.056
0.011 o0.041
MATRIX V IS
-0.865 0.121
0.270 0,846
0.414 =0,209
0.079 =0.474

L

RUN 4

~1.834 -1.640
~0.815 =-1.25%6
-0.046 -1.117
1.003 =0.393

1.570 0.659

1.228 1,510

0.370 1.741

-1.388 0.522
0.026

0.089

L
-3.551 ~1.039
~-0,457 -2.346
1.700 0.081
0.133 0.207
W VECTOR IS
1.774  0.3%4
-0.035 0.0002
-0.045 =0.048
-0.991 =0,116
-0.119 0,991
-0,461 0,155
-0.138  0.437
-0.876 -0.128
0.022 0.876

-153..

~1.144
=0.946
-1,116
-1.055
-0.734
0.067
1.406
3,348

~0.084

-1.223
-1,008
-1,170
-1.111
-0.789
0.041
1.538
3.634

~0.086



1.721
0.251
=0.357
-0, 458
=0.375
-0,282
-0.143
-0.357

SUM OF

-0.002

3.005

1.310

0.073
-0.635
~0.909
-0.955
-0.818
~1.071

GAIN MATRIX Gg FOR

1,301 -1,006
1.784 0.562
1.330 1.298
0.408 1.448
-0.503 0.831
-1,100 =-0,137
-1.245 =0.810
-1.976 -2,186

COLUMN ELEMENTS

-0.002

0.000 0,000

TRANSFORMED GAIN HMATRIX Gflx

7.075 =1.630
-0.451 4,387
0.639 =0.097
0.180 0.472
TRANSPOSE OF
8.424 5,018
MATRIX U IS
-0.992 0,120
0.122 0.987
0.008 =0.072
0.002 0,070
MATRIX V IS
-0.839 0.075
0.255 0.832
0.471 -0.221
0,090 =0, 502

RUN 5

-1.963 -1.819
-0.771 =1.246
-0,024 =1,134
0.957 =0.434

1.479 0.525

1.214  1.364

0.519 1.858

~1.411 0,887
0.000  0.000

-4,053 ~1,062
-0.537 =2.425
1.334% 0.067
0.072 0.074
W VECTOR IS
1.45 0.310
-0,016 =0,009
-0.059 =0.079
-0.986 ~0.143
-0.149 0.986
-0.511 0,166
-0.144 0.470
-0.844 -0,122
0.058 0.857
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-1.138
-0.810
~1.051
-0.988
=0.690
0.049
1. 507
3.118

-0.002

-1.206
-0.869
-1,103
-1,045
-0.750
0.014
1. 540
3.415

-0. 004



1.420

0.158
-0,327
-0.398
-0.328
-0.240
-0.091
-0.244

SUM OF
-0.051

2,848
1,140
0.021

=0. 599
-0, 864

~0.907
-00 ?58
-0.957

COLUMN
-0.076

GAIN MATRIX Gm FOR

1.839 =0.731
1,762 0.637
1.135 1.243
0.261 1,321
-0.579 0.750
-1.125 -0.114
-1.280 =0.755
-1.994 =2.249
ELEMENTS
0.000 0.102

TRANSFORMED GAIN MATRIX

6.728 =1,640
-0.425 3.857
0.650 =0.199
0.290 0.456
TRANSFOSE OF
8.348 4,585
MATRIX U IS
-0.996 0.078
0.080 0.989
-0.006 =-0,088
~-0.016 0,087
MATRIX V IS
-0.808 0,016
0.232 0.816
0.530 =0.226
0.104 -0.530.

6

RUN 6

-1.974 <~1,909
-0.744 =1,251
-0.037 =1,166
0.847 =-0.525
1.359 0.374
1,200 1,203
0.688 1.955
-1.232 1.323
0.105 0.003
6
Gmx

4,498 <1,069
~0.604 ~2,366
0.968 0,061
-0.005 =0.042
W VECTOR IS

1.138 0.254
0.003 =0.023
-0,069 =0,101
~0.976 =0,195
-0.203 0.975
-0.561 0,176
-0.150 0.506
-0.808 -=0.118
0.095 0.835

- 155 -

-1,092
-0.698
-1,000
-0.944
-0.651
0.017
1.458
2.823

~0.089

-1.15%
-0, 762
-1.064
-1,013
-0,717
-0.016

1.510

3,122

-0.098



1.278

0.119
-0.302
-0.367
-0.301
-0.195
~0. 060
-0.168

SUM OF

0.003

2.837
1,047
-0.013
-0. 593
-0.828
-0.839
-0, 703
-0.906

GAIN MATRIX GZI FOR

2.283
1,664
0.969
0.129
-0.618
-1,107
-1.307
-2,013

-0.531
0.629
1.185
1.204
0.693

-0.073

-0, 741

~2.367

COLUMN ELEMENTS

-0, 000

-0.000

TRANSFORMED GAIN MATRIX GZX

-0.000

6.538 =1.595
-0.274 3,427
0.667 =~0,248
0.481 o0.404
TRANSFOSE OF
8.383 4,231
MATRIX U IS
-0.998 =0,031
O. 033 "Ou 991
-0.025 0,084
-0.042 =0,095
MATRIX V IS
-0.784 0,018
0.202 =0.805
0.575 0.195
0.116 0.55%

-2,026
-0.755

-0.019

0.761
1.225
1.171
0.775
-1.132

-0.000

-2,018
-1.252

-1.159
-0.605

0

1.085
2,060
1.684

-0.001

-4,862 ~1.050
-0.617 -2.338
0.616 0.045
-0.082 -=0.126
W VECTOR IS
0.893 0.217
0.036 0.035
-0.050 0.116
-0.942 0.321
-0.327 =0.938
=0.598 =0.162
-0.143 =0.538
-0.783 0.132
0.08 =0,816

- 15 -

-1.119
-0, 591
~-0.913

-0.893 -
~0.599

0.097
1. 540
2.479

0.001

-1,162
-0.638
-0.971
~0.963
-0.674
0.051
1.592
2,766

0.000



2.475

0.287
-0. 467
-0. 577
-0.480
-0.400
~0.319
-0. 519

3.068
1.295
0.126
-0.613
~0.907
-0.966
-0.899
-1.105

GAIN MATRIX
0.286 -1.269
1.496 0.318
1.52 1.275
0.625 1.492
-0.379 0.817
-0.966 =0.174
-1,101 -0.831
-1.484 -1.625

SUM OF COLUMN ELEMENTS

-0. 000

-0,001

-0.001 0.002

8

TRANSFORMED GAIN MATRIX G

6.851 =1.040
-0.078 4,605
0.415 0.350
0.307 0.290
TRANSFOSE OF
7.53% 5.033
MATRIX U IS
-0.994  0.091
0.089 0.995
0.053 0,030
~0,016 0.027
MATRIX V IS
-0.902 0,112
0.194 0.895
0.371 =0,086
0.094 =0.422

G, FOR RUN 8
-1,685 =1,461
~-0.797 =1.113
-0.041 -~0.973

0.971 =0.317
1.518 0.710
1.134% 1.530
0.197 1.515
1,299 0,108
-0.002 =0,002
8
mx
-2.740 =0,902
-0,249 =2,066
1.886 0,107
0.185 0.331
W VECTOR IS
1.951 0.414
~0.046 0,027
0.039 =0,019
-0.981 =0,179
-0.180 0.983
-0.402 0,101
-0,086 0.391
-0.905 =0,185
-0.104 0.895
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-1,118
-0,886
-0,998
-0.962
~0.630
0.229
1.531
2.832

-0.003

-1.191
-0.936
-1.030
-0.994
-0.671
0.201
1. 548
3.075

0.001



1.698
0.228
-0, 344
-0.409
-0.337
-0,282
~0.202
-0.350

SUM OF

-0, 000

2,032
0.750
-0,023
-0.417
-0, 564
-0, 591
-0, 517
-0.665

GAIN MATRIX cg FOR

0.449 <0.695
0.958 0.288
0.910 0.860
0.361 0.944
-0.272 0.466
-0.663 =0.185

-0.726 =0,561
-1,014 -1,116

COLUMN ELEMENTS

0.002 0,000

4,512 ~0,900
0.226 2.990
0.224 0.363
0.346 0.122
TRANSFOSE OF
4,950 3.290
MATRIX U IS

-0.996 0.042

0.039 0.995
0.051 0,077
-0,040 0,027
MATRIX V IS
-0.907 0.135
0.207 0.902
0.357 =~0,104
0.070 =0,394

=1,139
-0, 427
0.095
0.710
0.962
0.640
0.078
-0.919

0.000

TRANSFORMED GAIN MATRIX G

=1,742 -0,408
-0.357 =~1.288
1,069 =0,017
0.098 0.144
W VECTOR IS
1,126 0.195
-0.035 =0,059
0.082 0,007
-0.971 =0,219
0,220 0.973
-0,387 0.087
-0.089 0.365
0,912 =0.168
~0.09% 0,911

- 158 -

RUN 9

-1,083
~0.701
-0. 572
-0.082
0. 567
0.998
0.951
-0.079

0.002

~0.814
~0. 560
-0,687
~0,616
~0.323
10,267
1.128
1.603

-0.858
-0.604
-0.735
-0,671
-0.379
0.249
1.193
1,805

0.000



2,615

0.470
~-0.439
-0,711
-0,617
-0, 503
-0. 447
-0.362

0.004

10

-1.04
~1.4o07
-1.532
~1.468
~1.007
0.258
2.075
4,126

0.002

GAIN MATRIX G~ FOR RUN 10
3.780 0.687 =~1.334 -1.65% -=1.389
2,034 2,231 0.258 =1,349 -1.819
0.204 1,962 1.499 -0,378 =1.656
-0,932 0,623 1.937 1.135 =0.746
-1,372 -0.739 1,050 1,969 0.669
-1,437 ~1.58 =~0.413 1.405 1.908
=1.334 =1,745 <1,374 0.050 2,043
=1,035 =1.447 <1,613 <1.174% 0.995
SUM OF COLUMN ELEMENTS
0.006 0,004 0,010 0,004 0,004
TRANSFORMED GAIN MATRIX Gig
8.953 =1.470 4,142 <1.335
-0.652 5,243 ~-0,367 -2.686
-0.132 0.381 2,65 0,223
0.087 =0.191 0.35 0.766
TRANSPOSE OF W VECTOR IS
10,202 5.882 2,360 0.537
MATRIX U IS
-0.983 0.115 =0.138 0.002
0.121 0.987 =0.037 0,094
0.133 =0.040 =0.979 =0,145
0.010 =0,100 =~0.140 0.984
MATRIX V IS
-0.872 0.065 =0.466 0.129
0.208 0.852 =0,144 o0.457
0.430 =0,166 =-0,872 =0,161
0.100 =0.401 -0,016 0,864

-15 -

-1,110
-1.426
-1,538
-1,484
-1,052
0.215
2,092
4,308

0.004



2,496
0.475
-0, 459
-0.660
-0, 554
~0,448
~0.390
~0.458

suM OoF
-0.001

3.443
1.693
0.161
-0.785
-1.123
-1.174
-1,119
-1.095

COLUMN

-0.001

11

GAIN MATRIX G~ FOR RUN 11
0.612 =1,201 =1.675 =1.451 =1.093
1,767 0.270 =1.065 =1.460 -1.199
1.695 1.413 -0.124 <1,223 -1.282
0.641 1,717 1.101 =-0.425 =1,230
-0.518 0.922 1.744 0,781 -0.834
-1,217 =0.285 1.25% 1.741 0.216
1,443 1,146 0.053 1.655 1.789
-1.537 -1.688 =1.2890 0.384% 3.639
ELEMENTS
~0,001 0.002 0.001 0,001 =0.001
TRANSFORMED GAIN MATRIX GI}DI{
8.05% ~1.525 =3.323 ~1.113
0,424 5,090 =-0,478 ~2.351
0.225 0,281 2,144 0.114
0.123 =0.016 0.209 0,522
TRANSFOSE OF W VECTOR IS
8.997 5.53 2,081 0.449
MATRIX U IS
-0.987 0,138 =0.079 <=0.001
0.140 0.988 =0.025 0.045
0.076 =0.030 =0.989 =0.118
0.001 =0.049 =0,117 0.991
- MATRIX V IS
-0.888 0.122 -0.418 0.142
0.24% 0.865 =-0.135 0.412
0.375 =0,181 -0.897 =~0.141
0.086 =0.450 -0,012 0.888

- 160 ~

~1.178
-1.270
~1.347
-1.299
-0.903
0.188
1.867
3.943

-0.001



2.325

0.366

-0.436
-0, 572

=0. 477

=0.395

~0.292

-0. 518

SUM OF

3.065
1.381
0.130
-0.634
-0.933
-0.995
~0.894
~1.120

GAIN MATRIX Gm

0.353 =-1.214
1.522 0.347
1.402 1.247
0.619 1.481
-0.376 0.820
-0.991 =0.188
-1.103 -0.820
-1,512 =1.677

COLUMN ELEMENTS

0.002 =~0.003

7.025 =1,248
-0.3%2 4.635
0.455 0.190
0.138 0.290
TRANSFOSE (F
7.778  5.020
MATRIX U IS
-0.986 0.157
0.158 0.987
0.040 =0.019
0.004 0.022
MATRIX V IS
-0.895 0.150
0.253 0.872
0.357 =0.152
0.074 =0.438

12

-1,073
-0.937
-1.099
-1.035
-0.695
0.140
1,516
3.181

FOR RUN 12
-1.602 =1.368
-0.793 =1.137
-0,076 =1.038

0.962 =0.335
1.507 0.695
1.109 1.479
0.223 1,517
-1.330 0.181
0.001 =0.005

TRANSFORMED GAIN MATRIX Gii

-2,787 =0.915
=0.295 =2,091
1.873 0.111
0.171 0,305
W VECTOR IS
1,930 0.385
~0,043 ~0.005
-0,010 -0,024
-0.989 =~0.133
~0.134 0,990
-0.398 0.127
-0.113 0.401
~0.908 <=0.152
-0.047 0,894

- 161 -

~1,148
~0,983
-1,132
-1,072
-0, 744
0.108
1.532
3.440

0.000



GAIN MATRIX GiB FOR RUN 13

2.438 3,286 0.415 -1.247
0.392 1.553 1.688 0.296
-0.470 0,117 1.632 1.35
-0.612 =-0.733 0.621 1,643
~0.506 =1.030 =0.473 0.876
~0.421 -1,081 -1.112 =0.265
-0.336 -1,002 ~1,261 =~1.001
~0,488 -1,110 =-1.510 =1.653

SUM OF COLUMN ELEMENTS

-0,005 =-0.001 0,001 0,000

TRANSFORMED GAIN MATRIX Giz

7.517 =1.351
-0.353 4.887
0.357 0.250
0.153 0.140
TRANSFOSE OF
8’ 3% 50 331
MATRIX U IS

-0.988 0,138
0.139 0,989
0.063 =0,022
0,001 =0.019

MATRIX V IS

-0.892 0.128

0.243 0,870
0.370 =0.161
0.085 =0.446

-1.634 -1.M413
-0.950 ~1.286
-0.140 -1,133
1,037 =-0.406
1.676 0.731
1.208 1.657
0.110 1,624
-1.305 0.224

0.000 =0.003

~3,05 ~1,031
-0.389 =2.250
2,093 0.103
0.208 0.471
W VECTOR IS
2,093 0.472
-0.065 =0,004

-0.015 0,016
-0.988 =0.135

-0.13%4 0.990
-0.411 0,135
=0.122 0,409
-0.902 =0,146
-0.029 0,890

- 162 -

-1.104
-1,057
-1,164
-1.117
-0.776
0.167
1,662
3.388

~0.002

-1,180
-1.110
~1,206
-1.164
-0.834
0.130
1,697
3.668

~0,001



2,400
0.425
-0,418
-0.618
~0. 529
-0.431
-0.348
-0, 480

SUM OF

-0.001

3.228
1.481
0.171
-0,676
-1,012
~1.080
~1.005
-1,107

COLUMN

-0.002

GAIN MATRIX G

0.501 =1,161
1.50 0.343
1.529 1,288
0.643 1,50
-0,388 0,845
-1.05% =0.194
-1,247 -0.931
<1.545 =1.711
ELEMENTS
-0,002 =0.001

TRANSFORMED GAIN MATRIX Gmx

7.475 =1,367
-0.384 4,797
0.377 0.211
0.112 0,183
TRANSFOSE OF
8.299 5.191
MATRIX U Is
-0.987 0.15
0.152 0.988
0.048 -0,021
0.003 0,001
MATRIX V IS
-0.893 0.143
0.252 0,872
0.362 =0,160
0.076 =0.438

14

n FOR RUN 14
~1.647 -1,419 -1,082
-0,871 -1.274 -1,063
-0,059 =1,091 =1,195
1.003 =0.337 =-1,123
1.548 0.732 =0.733
1,147 1,532 0.196
0.175 1.515 1.602
-1.298 0.338 3.398
-0.003 =0,003 =0,001
14
-3.007 =0.965
-0.342 =2,153
1.878 0.111
0.170 0.333
W VECTOR IS
1.901 0,364
-0.051 =0,002
-0.013 =0,002
~0.990 =0.123
-0.123 0,992
-0.404 0,129
'=0,119  0.401
-0,905 =0,147
-0.037 0.8o4
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-1.155
-1,114
-1.233
-1.169
-0.790
0.160
1.633
3.666

-0,003



2.452
0.215
-0, 42
-0. 565
-0.419

~0.349
-0.292
~0.497

SUM OF

0.002

GAIN MATRIX Gi5 FOR RUN 15

TRANSFORMED GAIN MATRIX G;g

-1.379
0.282
1.487
1.822
0.915

~0. 364

-1.078

-1.683

0.002

1,434

5.056
0.228

3.35%% 0.297
1.55 1.89%
0.081 1.836
-0.793 0.605
-1.056 =-0.637
-1.062 -1.234
-0,962 =1,268
-1.120 -1.490
COLUMN ZLEMENTS
0.000 0.003
7.526
-0.496
0.402
0.212

0.197

TRANSFOSE OF

8.482
MATRIX

-0.982
0.168
0.081
0.003

MATRIX

-0.877
0.268
0.389
0.078

5.573
U IS

0.163
0.984
-0.059
-0.029

vV IS

0.127
0.847
-0,201
-0.474

1,601 -1.343
-1.068 -1,309
-0.265 =1.276

1.079 =0.570
1.862 0.722
1.343 1.835
0.114 1.804
-1.462 0.136
0.003 =0.001

-3.232 ~1.08%4
=0. 44 2,477
2,487 0.160
0.301 0.624
W VECIOR IS
2,460  0.622

-0.049  0.020
-0.981 -0.163 .
-0.162 0,986
~-0.440 0.139
-0.152 0.4731
-0.884 =0.159
-0.015 0.876
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-1,100
-1.000
-1.137
-1.166
-0, 889
0.082
1.679
3.532

0.002

-1.173
-1.049
-1.175
-1.206
-0. 944
0.044
1.711
3.797

0.003



2.333 3.096
0.570 1.499
-0.310 0.225
-0.609 =0,614
-0.587 =0.975
-0.506 =1.085
-0.403 -1.035
-0.485 -1.108

SUM OF COLUIN

0.002 0.003

GAIN MATRIX

0.583 =1,032
1.408 0.301
1.357 1.14%9
0.614 1,388
~0.283 0.819
-0.938 -0.128
-1.205 =-0.861
-1.540 -1,638
ZLEMINTS
-0.004 -0,001

TRANSFORMED GAIN MATRIX Gmx

7.044  -1,323
0,266 4,568
0.286 0.200
0.077 0.109
TRANSPOSZ OF
8.153 4.913
MATRIX U IS
-0.991 0,126
0.126 0.991
0.038 =~0.006
0.001 =-0,004
MATRIX V IS
-0.907 0,131
0.232 0,887
0.338 ~0,140
0.082 -0.415

16

-1,116
~1,107
-1,199
-1.058
-0.627
0.276
1.603
3.232

0.003

G~ FOR RUN 16
-1.603 =1.474
-0.775 =1,211

0.014 ~0,943

0.962 =0,204

1.408 0.726

1.018 1.384

0.140 1.367

-1.165 0.355
0.001 0,000

16

2,771 =~0.926
-0.332 ~1.940
0.113 0.269
W VECTOR IS
1.552 0.281
-0.038 =~0,001
-0,001 0,003
-0,994 -0,100
-0.100 0,994
-0.374 0,128
-0,107 0,381
-0,919 =0.139
-0.042 0.904
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~1.195
-1.175
~1.259
-1.121
~-0.688
0.253
1.662
3.525

0.000



2,664
0.441
-0.487
-0.675
-0. 565
-0, 464
-0.389
-0. 23

3. 589
1.658
0.154
-0.779
~1.121
-1.180
-1.111
~1.204

GAIN MATRIX 0;7 FOR RUN 17

SUM OF COLUMN ELEMENTS

0.000

0.004

0.542 =1,298 =-1,781 <~1.545
1.779 0,325 =1,019 ~1.425
1.740 1,453 <0.098 =1.214
0.690 1,748 1,128 ~0.401
-0.484 0.954 1.772 0.812
-1,197 =-0,250 1.294 1,761
-1.399 =1,084 0,138 1.708
~1.668 =1.846 -1.437 0.303
0.003 0,002 =0,003 0.001
TRANSFORMED GAIN MATRIX G;z
8.255 =1.533 =-3.328 =-1,091
-0.405 5,329 -0.430 =2.420
0.409 0.240 2,182 0.122
0.138 0.159 0,204 0,462
TRANSFOSE OF W VECTOR IS
9.172 5.789 2,195 0.469
MATRIX U 1IS
-0.987 0.146 =0.058 =~0,002
0.148 0.988 =0.020 0.010
0.054 =0,027 =0.990 =0.125
0.003 =0,014 =0.125 0.992
MATRIX V IS
-0.892 0,138 =0.407 0.133
0.252 0.869 =0,126 0.4o4
0.364 =0,162 =0.904 =0,146
0.071 =0.442 -0.030 0.892

- 166 -~

-1,198
-1.184
~1.290
-1.229
-0.830
0.200
1.777
3.755

0.000

-1.276
-1.246
-1,342
-1.286
-0.896
0.161
1.821
4,068

0.003



2,486
0.424
-0. 462
-0, 629
-0.523
-0.429
-0.342
~0, 526

-0,002

18

GAIN MATRIX G~ FOR RUN 18
3.325 0.429 -1,246 <~1,700 -1.468 -<1,139
1,547 1.675 0.348 -0,916 -1,292 -1,071
0.144 1,635 1.365 =0.086 =~1,125 <=1,194
-0.714 0.660 1,622 1,05 =0,366 =1,137
-1.033 -0.435 0.882 1,657 0,766 =0.769
-1.092 =-1,100 -=0.229 1,216 1.648 0.180
-1,011 -1.264 -0.973 0.167 1.619 1,663
-1,165 =1,597 ~1.768 =1.391 0,215 3.466
SUM OF COLUMN ELEMENTS
0.001 0.002 0,001 0,002 =0,002 =0,002
TRANSFORMED GAIN MATRIX Gi'ﬁ
7.669 -1.409 =-3.076 =0.996
~0.370 5,006 =0.376 =2,267
0.401 0.225 2,051 0,119
0.134 0.208 0.193 0.391
TRANSFOSE OF W VECTOR IS
8.512 5.430 2,073 0.425
MATRIX U IS
-0.986 0.151 =0.056 =0.003
0.152 0.988 =0,016 =0,002
0.053 =0.024 -0,989 =0.129
0.003 =0.001 ~0.129 0.991
MATRIX V IS
-0.893 0,144 -0.405 0.130
0.25%% 0.870 =0.121 0.403
0.362 =0,163 =0.905 =0.148
0.075 =0.440 =0.036 0.893

- 167 -

-1.216
-1.125
-1.237
-1,184
-0.825
0.147
1.698
3. 744

0.001



2.309
0.392
-0.420
-0, 592
-0.497
-0. 408
-0.332
-0. 449

3.158
1,468
0.138
-0.695
-1.000
-1,055

-Oo 9?9
-1,032

GAIN MATRIX Gi9 FOR RUN 19

0.448
1. 590
1. 45
0.609
-0.436
-1,075
-1.239
-1.442

~1,167
0.296
1.278
1. 543
0.841
-0.234
-0.959
-1.596

SUM OF COLUMN ELEMENTS

0.000

0.003

0.000

TRANSFORMED GAIN MATRIX Gﬁ

0.002

7.254 =1.321
-0. 388 L"o 675
0.318 0.223
0.118 0.120
TRANSFOSE OF
8,074 5,092
MATRIX U IS
-0.987 0.146
0.147 0,988
0.062 =0,027
0.003 =0,018
MATRIX V IS
-0.891 0.130
0.248 0,868
0.369 =0,169
0.082 =0.447

-1, 564
-0.910
-0.121
0.985
1.573
1.146
0.126
-1.232

0.003

-1.346
-1,260
-1.101
-0.370
0.712
1.551
1.519
0.297

0.002

-2.95% =0,988
-0.377 =2.148
1.95 0.102
0.185 0.410
W VECTOR IS
1.946 0.407
-0.065 =0.002
-0.020 0,015
-0,989 =0,123
-0,123 0,992
~0.411 0,138
-0.125 0.410
~0.902 =0,141
~0.022 0.890

- 168 -

-1.032
-1.036
~1.154
~1.099
-0, 746
0.170
1.581
3.318

0.001

-1.106
-1,087
-1.195
=1.145
-0.802
0.136
1.614
3.586

-0.001



2.440
0.252
-0.448
-0.658
~0. 563
-0.445

-0. 551
~-0.024

SUM OF

0.002

3.202
1.374
0.136
-0.771
~1.087
-1.108
-1.227
-0. 519

COLUMN

GAIN MATRIX Gm

0.488 -0.981
1.475 0.108
1.540 1.234
0.553 1.484
-0.506  0.769
-1.120 =0.291
-1.506 =1.268
-0.917 =-1.053
ELEMENTS
0.007  0.00k4

TRANSFORMED GAIN

7.435 =1.245
-0.176 4,736
0.270  0.369
0.320 0.047
TRANSPOSE OF
8.245 5,193
MATRIX U IS
-0.993 0.092
0.090 0.995
0.071 0,011
~0,020 =~0.025
MATRIX V IS
-0.895 0,097
0.205 0.885
0.380 =0.131
0.102 -0.434

20

~0.605
-1.275
~1.204
-1.163
~-0.747
0.299
1.470
3.229

0.002

FOR RUN 20
-1.254 -0.950
-1,181 -1, 564
-0.212 -1.215

0.905 =0.494
1.503 0.604
1,096 1.488
-0.192 1,233
-0.663 0,899
0.001 =0.000

_ 20

MATRIX G
-3.060 =~1,052
-0.422 =2.160

1.954 0.082
0.168 0.425
W 'VECTOR IS
1.949 0.416
-0.065 =0.029
0.013 0,031
-0.984 -0,159
-0.161 0.986
-0.415 0.124
-0.115 0.400
-0,900 =~0.164
-0.05% 0.893

- 169 -

-0.653
-1.298
-1,217
~1.204
-0.827

0.248

1,545
3.412

0.005



GAIN MATRIX Gil

FOR RUN 21
2.529 3,319 0.491 -1,172 <1,509 =~1.333 -1.051 <=1.095
0.373 1.550 1,699 0.228 <1,006 =-1,342 <-1,087 -1,106
-0.463 0.167 1,601 1.277 =0.199 =1,178 =-1,168 =1,180
-0.628 =0.724 0,590 1,610 0,971 =0.471 -1,119 =1.133
~0.530 =1.057 =0.499 0.894 1.632 0.642 =0.778 =0.799
-0.440 -1,114 -1,146 -0.239 1,213 1,578 0,143 0.128
~0,374 ~1.049 -~1.315 =1.019 0.120 1,601 1.8%47 1.55
-0.463 -1,088 -1.422 -1.577 =-1.223 0.503 3.513 3.637

SUM OF COLUMN ELEMENTS
0.000 0,002 0.000 0,001 0,000 0.00L 0.000 0,001

TRANSFORMED GAIN MATRIX Gﬁi

7.521 =1,190 =3,175 =0,981
-0.359 4.695 =0.250 =2.219
0.379 0.226 2,068 0.217
0.093 0,104 0.228 0.508

TRANSPOSE OF W VECTOR IS
8.364 5,152 2.079 0.463
MATRIX U IS

-0.990 0,121 =0.067 0,002
0.122 0.991 =0,023 0.026
0.063 =0,027 =0,987 =0,144
0.008 =0.031 =0.143 0.989

MATRIX V IS

-0.892 0,104 -0.426 0,101
0.211 0.874% =-0.129 0,417
0.388 =0.135 =0.891 =-0.189
0.085 =045 -0,081 0,882
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-0.015
0.015
-0,001
0.002
0.002
-0.001
0.015
-0.015

-0,021
0.019
-0, 001
0.003
"0.003
~0.001
0.019
-0, 021

22

GAIN MATRIX Gm FOR RUN 22

-0.028 =0,034 =-0.040 -0.046 -0.052 -0.057
0.023 0.028' 0.033 0.037 0.041 0.044
-0,000 0,000 0,001 0,002 0.002 0,003
0.004 0,005 0,007 0,008 0,009 0,010
0,004 0,005 0,007 0.008 0.009 0.010
-0,000 0,000 0,001 0,002 0,002 0,003
0.023 0.628 0.033 0.037 0.041 0,044
-0.028 =-0.034% =-0.040 -0.046 =-0.052 =0.057
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Chapter 7.
CONCLUSIONS.

7.1. General conclusions.

In early days of rolling, mills were designed
with the knowledge of how to obtain a desired result. 1In
many cases the reasons were unknown and +the practical
knowledge was more advanced +than the theory. The experience
of success through failure stimulated the understanding of
rolling. As technology advanced the demand for better
products with uniform gauge and reasonable flatness increased.
This needed the rolling mill research, which provides the
knowledge and know how of rolling and shows ways of

improvement.

The subject of this study is the 1-2-3-4
Sendzimir mill which has several advantages over conventional
mills. The design of +this mill permits a ro0ll separating
force to be transmitted thrdugh the mill cluster directly
to the rigid mill housing and the support of the work
rolls throughout their 1length, This allows the use of
smaller work rolls, The first intermediate rolls are
furnished with tapered ends which is an added advantage.
Another feature is that the back-up roll has eight racks,
which can be used to set any desired profile on the

back=up 1roll,
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In recent years, the gauge control .problem has
largely been solved. The major problem of current interest
is the shape control problem or the control of internal
stress, The main task of a shape control system is +to
produce a strip with very low or no transverse variations
in stress at the mill exit. If it is a mnultistand mill,
appreciable stress variations may be present between
intermediate stands without affecting the primary aim,
provided that buckling and edge tears do not develop. This
is Dbecause the input stress has 1little influence on the

output stress profile.

In general gauge and shape errors occur
together., A gauge corrective action, such as a change in
side screwdown : settings, alters the roll force distribution
across the roll gap and this influences +the shape.

Likewise a shape corrective action, such as a change in
tension, changes the roll force which alters the mutual
flattening between work roll and strip, and therefore gauge
is affected, As a result separate control of shape and

gauge is, in general, undesirable and it is advantageous

to control both these quantities simultaneously in one
integrated scheme., However, in most existing mills a gauge
control system is already installed. Combined shape and

gauge control schemes must be designed for new mills and the
control system of existing mills must be redesigned by

adding the shape control system. For a shape control
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system to be successful the following requirements should
be met: |
1. The system should be non-interactive. This means
corrective actions should not interfere with one
another,
2. The steady state shape errors after a disturbance
must be zero.
3. The overall system must be stable. This means that
the system will settle to a steady state condition

in a finite +time interval after it is disturbed.

One of the main obstacles for automatic shape
control system design was the availability of a reliable
shape measuring device. There are two basic types of shape
measuring instruments available, namely non-contact and contact
instruments. The non-contact instruments or magnetic
instruments use the properties of the strip itself and so
have to be calibrated for each material and gauge. The
contact instruments have the advantage of making a direct
measurement and hence are independent of any intermediate
material properties. The obvious difficulty is +that of slip
between strip and measuring roll, particularly during
acceleration periods, This can be overcome to a large
degree by wusing a high deflector or wrap angle. The
Serdzinmir mill in question uses a _contact type instrument to

measure the shape.
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7.2. Shape profiles and static gains.

The study of any scheme for control of strip
shape must be preceeded by an accurate analysis of the
mill., The first requirement in the design of the shape
control system for the Sendzimir mill is a mathematical
model of the mili. Both static and dynamic models are
required. The static model is a mechanical model which
represents all force deformation relationships in the roll
cluster and in the roil gap. The static model must allow
for the bending and flattening of the rolls and for the
plastic deformation of the strip in the roll gap. The
model must provide mill gains and an understanding of the
mechanisms involved. Such a model has been derived and
presented in chapters 3 and 4. The model was developed in
the form of a Fortran computer program. The model enabled
the output shape profiles and hence the gains of the mill
to be calculated and‘ these were presented in chapter 6.

When the strip is placed at the centre of
the mill, the shape profiles for racks 1 and 8 must be
symmetrical about the vertical axis passing through the
centre of the mill, (Similarly the profiles for racks 2
and 7, for racks 3 and 6 and for racks 4 and 5 should
be symmetrical.) Inspection of all the shape profiles

presented in chapter 6 verify this point,
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Inspection of gain 'mati'ices presented in
section 6.6 confirms the special property of symmetry
discussed in section 6,2 if minor mumerical errors are
ignored. However, use of these symmetry properties may be
made to reduce the effects of these numerical errors,
Theoretically derived gain matrices must satisfy the
properties described by eqs.(6.1) and (6.2). This means
that Gm is not of full rank and therefore its inverse
does not exist, It is seen, however, from section 6.6 that
these matrices do not satisfy egs.(6.1) and (6.2) and are
of full rank, This is due to mumerical problems and the
sum of the column elements and the sum of the row

elements will never be exactly =zexo.

The calculated gain matrices show that they
are highly dependent on mill schedules, The strip width
has a considerable effect on the shape and the variation
of the gains is significantly large. The gains reduce with
the strip width and the overall percentage change in gain
show that the relationship is roughly 1linear. The hardness
of the material being rolled has an effect on the shape
and the results show that the gain becomes 1less when
rolling harder materials, Softer materials are more 1likely

to have worse shape defects.

The percentage reduction and the magnitude of
mean thicknesses seem to affect the shape quite
significantly, The results show that it is easier to
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control strip shape when rolling thicker materials, It is

a well known fact that shape defects increase as the

strip thickness reduces in size, and there is 2 minimum
thickness of the strip that can be rolled with good shape,

for given rolling conditions.

The shape is affected by the roll diameters
and the variations are discussed in section 6.4. For
bigger rolls the mnill has reduced gains, and results are
consistent for the three cases considered (work roll, first

and second intermediate rolls).

A slight change in the cluster angles will
change the shape profile, as this will move the position
of cluster rolls thus changing rolling pressures. For the

case considered the gain has increased.

-The output tensile force investigation shows
that the shape defects increase with the reduction of
tensile force. This is so as the buckling will increase

with the reduction in tension,

The first intermediate rolls seem 1o have a
greater effect on strip shape. The movement of the first
intermediate rolls 1is available as a control input to the
system. In normal practice the position of the tapered
wedge 1is used to relieve the stress at the strip edge.
Here the gain is increased when these rolls are pushed

into the mill. This area must be investigated <further,
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The gain matrix 1is checked by increasing the
rack position by twice the distance, and obviously the
shape must be +twice as before. It is seen that the gain
matrix remains almost the same, and the small variation

is due %o numerical errors,

The derived model 1is based on theoretical
results and the accuracy of the model will depend upon
the assumptions made. One such assumption is that the
additional stresses at the strip edges due to roll
flattening are neglected. This will introduce errors into
the final results. When calculating the deflections of the
rolls the contribution due to shear is neglected This will

also introduce some minor errors.

The roll force model does not involve an
iterative procedure but uses an approximate explicit
solution. However, +the iterative solution which employs
Hitchcock's formula is more accurate. These two methods of
solution of ro0ll force were compared against different
input/output thicknesses, input/output tensions and - input/output
yield stresses. The error of the approximate solution

was found to be less than 1 %.
7.3. Shape control design.

The design of closed 1loop shape control
systems is a relatively new problem, There is difficulty

in defining the dynamic model of the mill due to 1lack of
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work in +this area. For éxample, the best way to represent
the strip transfer function is still debated. Identification
methods can be helpful in choosing the most appropriate
reperesentation of elements, However, the Sendzimir mill is
used to roll stainless steel and therefore such tests can
be expensive. A dynamic model 1is clearly necessary to test

the controller design under various operating conditions.

Bad shape 1is often caused by the mismatch
between the roll gap profile and the incoming strip
thickness profile. It follows that in order to affect a
change in shape of the rolled strip, one must alter either
the cross sectional profile of the ingoing strip or the
profile of +the loaded roll gap. An idea for altering the
input thickness has been patentafz but so far +this
principle has not been tried. The latter method 1is wused

to regulate the shape of the mill in question,

The actuator movements affect the shape as
seen from the static model results. There are eight
actuators whose movements can be controlled, When the
actuators are moved, a 1roll bending effect 1is introduced,
which is transmitted through the cluster to the work roll,
thus affecting the roll gap profile. From the static model
it is seen that the output tension affects the strip
shape. This is so as the tension alters the xr0ll force,
and so the degree of flattening of the rolls and hence

the loaded roll gap profile. It is also concluded that

- 219 -



the position of the first intermediate rolls has an effect
on shape. Another method which can be used aims at
changing the thermal camber of the rolls by altering the
amount and/or distribution of coolants. However, thermal
effects are not considered for the present analysis.
Basically the shape control system must therefore consist
of feedback loops from the shapemeter to the back-up roll
actuators, tension controls and first intermediate roll

positions.

The mechanical construction of the mill
ensures that there are significant interactions between
actuator inputs and shape changes at each 2zone, This is
confirmed from +the mill gains calculated from the static
model, These interactions are non-dynamic and the dynamic
elements of the mill system are non-interactive. The gain
matrix elements calculated have significant uncertainty due
to the complexity of the model. Due to the properties of
the gain matiix described by egs.(6.1) and (6.2) the
inverse does not exist and +therefore the control system
design cammot be based on G;l. The design must be
relatively insensitive to errors in calculating Gm,
variations in Gm and éhanges in 1line speed, This allows a
minimum number of controller gains‘ and time constants to
be used and stored. Thus, the objective of the
multivariable design must be to produce a design which is

robust to modelling errors. The steps in the design
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procedure may be to calculate the transformation matrix, to
calculate appropriate pre and post compensators U and V

to diagonalise, and to calculate a cascade compensator
using single loop techniques. The control design is not
the main topic of this study and therefore will not be

discussed any further.
7.4, Future work.

The derived model is based on theoretical
analysis and must be tested against plant test results.
This may be expensive as the mill in question is used to

roll stainless steel.

One of +the assumptions used in deriving the
model is that the stresses at the edge of the strip may
be neglected. The work roll flattening is modelled using the
Hertzian expression for flattening between cylinders and
flat plates. The Hertzian expression is true for cylinders
having uniform pressure distributions. Over most of the
strip width +this method provides adequate results as the
variations in the ro0ll force profile are small, In the
region of the strip edges the errors generated will be
high as +the ro0ll force suddenly drops to zero., However,
the model must be modified, to include the roll flattening
at the strip edges, using the influence functions developed
by Spooner and Bryanf? The results from the improved model

must be checked against the present results for accuracy.
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When calculating the deflections of the rolls,
the contribution due to shear 1is neglected. This will
introduce some errors and these errors must be checked by

including +this effect.

Some results are obtained by varying the
constant B which appears in ‘the stress equation. This
constant is varied between 0.2 and 1.0 and the wresults
seem to be insensitive to these values of f. This must
be confirmed by further investigation., The model produces
reasonable results for sitrip shape, but this must be
confirmed by detailed experimental investigations. Normal
operating records can be used where possible to test the

model,
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Appendix 1,

Forces in the Roll Gap.

By referring to fig.4.1% in which the width
of the material is taken as unity, it will be seen that
the normal force L acting on the elemental length AB due

to a stress s is given by
L = sAB. (A1.1)
The horizontal component is

L, = sABsing . . (AL.2)

Similarly the frictional force N acting on AB is
N = usAB _ (A1.3)

where p is the coefficient of friction between strip and

work 1roll.

From the plane of entry to the neutral plane
the force N acts as a tensile pull on the material,
while from the neutral plane to the plane of exit it
acts as a compressive force. If compressive forces are
taken as positive then over the full 1length of the arc

of contact +the horizontal component Nh can be written as

N = + psABcosd . (Al.4)

Here the negative sign refers to the entry =zone. The
total horizontal force is given by

Lh + Nh = sAB(sin¢ ¥ pecosod) (A1.5)
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and by taking both rolls into account the force d4F

acting on the element dx 1is given by

dF = 2sAB(sin¢ + pcosd). (AL.6)
Now

AB = Rd¢
thus

%% = 2Bs(sin¢ Ty coso). (A1.7)

With the assumption of homogeneous plane deformation the
stress f corresponding to a horizontal force F 1is given
by

f = F/h ' (A1.8)

which is taken as one of the three principal stresses,
The other two principal stresses are q, the vertical
component of the radial stress, and w which acts at right
angles to both q and f, Then from Huber-von Mises
equation we have

(@ - )%+ (€= w)+ (w=q) =2 (a1.9)
where K 1is the basic resistance to homogeneous compression.

If it 4is assumed that the width of the

material suffers no strain then

1

'f:[“ - v(g + f)] =0 . ~ (A1.10)
The Poison's ratio v for plastic deformation is % and
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this gives
w=%(q + £). (A1.11)

By substituting this value in eq.(Al.9) and simplifying we
have

f=q-= 1.555K‘

q-k (A1.12)

where k is the resistance to plane homogeneous deformation,

This gives
F = h(q - k) ~ (A1.13)

and
o ¢ g ]
= hk 9%@ + G- 1)‘%2—1‘) ) (A1,14)

Bland and Ford assume the second term of eq.(Al.14) +to
be zero, It 1is also reasonable to. assume the vertical
pressure q 1is approximately equal to s. By eliminating

dF/d¢ from eqs(Al.7) and (Al.14) and rearranging we have

d(a/k) (¢/k) = ZTR(simb ¥ lLcosg). (A1.15)
ao

From fig.4.14
h=2m+h, (A1.16)
and

tan(®/2) = nf . (A1.17)
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In cold rolling small angles are involved and therefore ¢

is very small. i.e,
¢ =2nfp.
But
£ = Rro
and from egs.(Al,16) to (Al.19) we have
h =h, + RoZ
and
sing + pcoso 2 ¢ + L.
. (A1.15) becomes

d(a/k) _2R(¢ +H)
do (/%) h, + RGZ

By integrating both sides of eq.(Al.21) we have

2
h, + Ro< _
log, L-R—— + Zy{l/gz-tan’l ( /%2% + log A

1oge(%9 THH + log A

log (&)

where
H=2/§mn %¢,
2 2
Hy. (Al.22) can be simplified as

q = A'h—é{- sHHE
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At the entry plane the angle ¢ = 0 and

H=H = Zﬁz-tan-l(\/gze) (A1.25)

and putting k =k, at this plane, from eq, (A1.24) we have

A= B P (AL.26)

Rl ®

If a decoiler tension 01 is applied at the entry side

and since tensile forces are negative the wvalue of f in

eq. (A1.12) equals =0, amd

1
Qa=1k -0 (a2.27)
giving
=Rfa.o /5)e Hl. (A1.28)
by
By substituting this in eq. (A1.24) for the entry zone we
have
w(H, = H)
1= - a/ige 1 (entry zone).  (AL.29)

At the exit plane the angle ¢ 1is zero and therefore H
is also zero. By putting k = k2 at this plane in

eq. (A1.24) we have
R
A= g . (Al.BO)
) |
With a coiler tension of 02 the magnitude of q at the
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exit plane is, from eq.(Al.12)

a=k -0, (A1.31)
and

A= %;(1 - 0./x,). (A1.32)

By substituting this value of A in egq.(Al.24) for exit

zone We have

q= -gi;(l - ch/kz)e"LH (exit zone). (AL.33)

By denoting the neutral plane by n the neutral angle 6 h

can be obtained from eq.(A1.29) and (Al.33) since q, has

the same value in both of these equations. 1i.e.,

h_k (H, -H) hk 1H
R VOTRENEE & (EL VISR CER

By simplifying eq.(Al.34) we have

(1 -9,/k,)
H h_oa [?i.afizéiéfi].

n=2 " 2u 19, (A1.35)

Substituting H ~for H in eq. (A1.23) and putting ¢ = 6,

glives
h h, H
e, =\/;2 tan (/gz—n) (A1.36)
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APPENDIX 2.

Theory on Elastic Foundations,

A2.1, The differential equation of the elastic foundation,

Consider a straight beam supported along its
entire length by an elastic medium and subjected to vertical
forces acting on the beam as shown in fig. A2.1, Because of
the action of forces, the beam will bend, producing a
continously distributed reaction force on the elastic foundation.
These reaction forces are assumed /to be proportional to the
deflection of the beam as the supporting medium is elastic,
i.e.

q =Ky (A2.1)
where K is the constant of proportionality known as the

elastic foundation constant.

Consider an infinitely small element whose length
is taken at a distance x from the left hand corner. Consider
also the forces acting on this element as shown in fig. A2.2,
The upward acting shear force Q@ and the clockwise bending
moment M to the left of the cross section are assumed to be

positive. For equilibruim,

Q~ (Q+4dQ) +K-y.dx =0 (A2.2)

CBexy. (2.3)
But

a=4 (42.4)
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=

= K.y o : (Az-j)

|

&8
™)

dx

Now the bending moment M is given by

M= - 51y (2.6
&

Therefore from eqs. (A2.5) and (A2.6),

L
d K
+ =y =0 (a2.7)
Let .
iy
A = (E%-I-) ' (a2.8)
g 4 -
L+ Ny = o, (42.9)
dx
A2.2. The general solution to the elastic foundations -

differential equation,

It is only sufficient to consider +the general

solution to eq. (A2,9), from which the complete solution can

be obtained for the case where there is a point load, by

adding the particular integral. The auxiliary equation for

eq. (A2.9) is given by:

mL" + 14»?\4 = 0,

(2 - 5-222).( + j.29°) =0,

Enz -2 (1 + 52 - 1)]-|:m2 - 2% (1= 52 - 1)] =0,

2 - 221+ 2] [a - o2 1+ 3] = o,

im - ?\-(1+j)]vEn +3\-(1+j)]-[m - 7\-(-1+j)]-[m + 'A-(-l+j)] - 0. (A2.10)

- 242 -



The roots of the auxiliary equation can be wriiten as:

-m, = AL+ 3)

e
I

and

-my, = a(=1 + 3j). (A2.11)

™

The general solution of eq. (A2.9) can therefore be written as:

X m,X m. X my, X
1 2 3 i
y(x) Aje T+ Ae "+ A3e + Ape

- Ay A AT A

e‘Ax(Alej"‘x + Aue-j"x) + e'ax(Aze-jax + ABej"\x)

¥ [(A1+ Aq)cos'o\x + j(Al- Aq)sinax]

+ & [(A2+ A3)cos7\x + j(A3- AZ)sin’o\x]

!_h
[0]

y(x) eu(clcosu + C,sinax) + e-M(CBCOS)X + C,_Fsin;\x). (A2.12)

2

B. (A2.12) represents the general solution for the
deflection of a straight bar supported on an elastic foundation
with no loading., By differentiating eq. (A2.12) we obtain
expressions for slope, bending moment and shear force which are

given by

%% = [Cl(cosS\x ~ sinax) + Cz(cosax +,sin‘4\x)]

NS EJB(cosax + simx) - Cyy (cosxx ~ sin’Ax)], (A2.13)

2

1 d7y _ AX . =X .
;x-z = = ¢ (Cls1n2x - C,cosAx) + e (C351n2\x - Cq_cos‘Ax), (A2.14)

27\2 2
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3

(A2,16)

(A2.17)
. (A2.18)
(A2.19)

G,y Cpy Cg

(A2.20)
(A2.21)
(A2,22)

(a2.23)

-la-g—% = egxx[§3(cos2x - sinax) + Cq(cosax + sinax}]
227 dx
- émxlkl(cosAx + sinax) - Cz(cosax - sinzxf],(A2.15)
and
d dzy d3y
tme=3, N=-EBI—f, Q= -B1.=% .
dx dx
A2,.3. Interpretation of integration constants,
Conditions at left end point can be obtained by
putting x = 0 in egs.(A2.12) to (A2.15) giving,
Yo = C + C3
6, = A(Cl +C, - 03 + cq),
M =2 2°E-I(C, - C,)
o) 4 27!
- 2 »E- -C -C -
Q, 2%E1ml c, c3 %L
By solving egs.(42.16) to (A2.19) for
and Cu in terms of Yor eo, Mo' and Q,o we have,
1 1 1
C, =5y, + 9 +
1 2% T 4RY% 87\3E-I (o]
1 1 1
C, = ;58 - M
2 4A%  ,a2pg © gAdgI O
1 1 1
Cy =5 = 50 =~ —=5—"%
1 1 1
C = —.e + 'M - -Q .
Ll' L!'?\ (o] L"?\ZEI [o} 8?\ E-I o}

If these constants are substituted in egq.(A2.12) the expression



for y(x) can be simplified as,

y(x) = yg8y (W) +3 6.5, (%) - ;\%; MsE, (xx)
1
- W[.Qofq(ax) (A2.21+)
where

:E‘l(?\x) = coshAx-cosAx, (A2.25)
fz(?\x) =-;‘- (coshAx:-sinAx + sinhAx.cosAx), (A2.26)
£,(a%) = L sinhAx-sinax, | (A2.27)
£, (Ax) =%': (coshA x-sinAx ~ sinhAx-cosAx), (A2.28)

Hy. (A2.24) defines the deflection of a beam
resting on an elastic foundation when +there are no external
forces applied,in terms of +the conditions é.'t the left end
point. Now consider the case when there is a point load
applied at a distance x = a, from left hand corner as shown
in fig. 4.13, Assume that quantities Yor eo, Mo and Q’o are
known, The calculations are proceeded from the left end of the
beam towards the right, along the unloaded portion AC until

- the point where the point load is applied. This applied
force F has an effect to the right of ¢ (x>a), similar to
that which the initial shear force QO had on the portion AC
(0>x>a). From eq.(A2.24) it is seen that the factor associated
with Q  is (1/A’EI)-f;(Ax), and it can be concluded that the
force F has a modifying effect of F-(l/?\BEI)-f,_}[A(x - a)] on

the elastic 1line to the right of C (x>a). Thus the deflection
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curve on the portion CB can be obtained by adding this term
to the expression given in eq.(A2.24)., That is,
1

y(x) = ¥, £, (0x) + 56 £,(xx) - 5 00)
1 1
- ——-QFf (?\X) + FF Q\(X - a.) , (A2.29)
g1 ° % WE.I 4[ ]

By differentiating eq.(A2.29) three times with

respect to x expressions for ex, Mx and Qx can be obtained.

That 1is,

e =d_'¥=y-£1+-—o.jd£2_ Mo .EB_ . Qo .EL"

x “a&x Yo dx TATEx T jzpoax T 3. dx

af
F _ 4
+?—?;I = EA(X - a)]- (A2.30)

Now

dfl d

= - (coshA x-cosAx)

= AsinhAX.cosAx - AcoshAx.sinAx
- 4Ag, - - (A2.31)

Similarly it can be shown that,

daf af E4=

—2 _ —3 =
—7\f1, = —9\f2 and T

= 9\f3 . (A2.32)

By substituting these in eq.(A2.30) and simplifying we obtain

an expression for the slope given by,

M q
O = OT (%) = Xy () = 32— £y () = HAY,E, ()

¥ KZFE-I.fB [Ax - 2)] . (a2.33)
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Similarly we can write expressions for Mx

and Q  as:
M= M (%) + %sz(ax) + 4T Ny £, (a%)
+ 4E-I ?\zeofq(%x) - §-f2 [Ax - a)], | (A2.34)
Q = Qfy (%) + 4B-INPy £, (Ax) + 4E-1%6 £, (%)

- 4A Mofa(')‘x) - F-fl[’A(x - a.)]. (A2.35)

Now the conditions of the beam at +the right end
point can be obtained by putting x =€ in egs.(A2.29), (A2.33),
(A2.34) and (A2.35). In the mill cluster the rolls have both
ends free. By applying conditions at the end points of a
beam with free end points an equation for the deflection of

rolls can be obtained for the use in the. mill model.

The bending moment and shear force at +the end
points of a beam having free end points are gzero. That is

M =Q =M =Q =0. By putting x =4 in egs.(A2.34) and (A2.35)

we have, ,
bE-I 7\2y°f3('.\$) + 4B-IAG £, (AD) - g--fz[',\(e - a)]= o (A2.36)
and
4E-I ’A3yof2(7\13) + 4E-I7\260f3(7\€) - Ff) [’,\(e - a)]= 0. (A2.37)

Solving egs.(A2.36) and (A2.37) for y, and O  and expressing

48 I in terms of K from eq(A2.8) we have,

_pa 500 5[AC - 2)] - £,08) 5,[E - o))
£ £(8) - £,(A8) £,(4A8)

Yo (42.38)
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and v
} F?\z.fZ(At)'fz [’)\(8 - a.)] - f3(’)\a) .fl[a(_t - a.)]

°o K £, (A)-£,(AL) - £5(20)

(A2.39)

Substituting these values for Yor & and Mo = Qo =0 in

o
eq. (A2.29) and simplifying we can write an expression for y(x)

ass

FA 1
y(x) =% - 2.A.coshAx cosAx + B(C + D)  (A2.40)
K sinh®Al - sin®Al

where -
= sinhM\f-cosAa.coshA(£ =-a) - sinAlcoshAa-cosA (€~ a),
B = coshAx.sinAx + sinhAx.cos?Ax, |
C = sinhA&{sinAa-coshA (£ - a) - cosAa.sinhA (& - a)],
D = sinAl|sinhAa-cosA (€ - a) - coshAa.sin A(€ - a)].
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Fig.A2.1. Forces acting on a beam.

M fet———— X ————— M+dM

ERERRRARARE

qdx = kydx

!
’Q+dQ

Fig.A22 Forces acting on an element of the beam.
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APPENDIX 3.

Actuator Transfer Function Gains.

A3.1, Actuator integral rate constant ka'

An average value of rack response to a 10V
maximum demand is + 1.5 divisions/sec. where the full scale
deflection of the actuators is roughly + 80 mm. corresponding
to a +5 diviéiﬁns. The input of this block is in volts and
the output is in mm. If it is assumed that the actuator
movement varies linearly with input voltage, then the integral

rate constant ka is given by

1,580
k, = —5-—10 . (A3.1)
= 2.4 mv st

A3.2. The feedback position transducer constant kf.
A full scale movement of actuator is + 80 mm for

a full scale demand of + 10 V. Therefore k

" is given by

ke = 3o = 0.125 V/m . (43.2)

A3.3. Calculation of forward gain k to give two equal roots.
The dead space time constant Ta is 0.1 sec.
(supplied by BSC). The characteristic equation of the closed

loop actuator transfer function from eq.(5.14) is

s(1 +s-T,) +k-kk.=0. : (A3.3)
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A
sTtgp st —=0. (A3.4)
. Ta a
For equal roots,
4k-k_k
Z-—F -0 (43. 5)
7 2
a
which gives,
= —1
k= kx (A3.6)
aarf
i.e.
k= : =8.33 (43.7)
4x0,1%2,4x0,125 it .
Therefore the closed loop transfer function gé(s) becomes,
8.33x2.4
g,(s) = 5 33X (A3.8)
0.1s” + s + 8.33%2.4x0.125 - :
_ 200
% + 10s + 25
8

Q+ 0.25)2

ie K, = 8 and T, = 0.2 .

By substituting these values in eq.(5.17) we have,

A, =10 1], B, =[0] and ca=[1 0] . - (43.9)
-25 =10 200
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APPENDIX 4,

Strip Dynamics.

A4.1. Derivation of the state space form of strip dynamics.

Let
ag= [ o 1], By= [-c and G4 = [2
-3, -b d

Therefore the strip transfer function can be written

_ -1
gd(s) = C4(sI - Ad) By

El 0]' s +b 1 -C

-2 s d
s(s+Db) +a

_=c(s +b) +d

s2 + bs + a

C
l-3-%
2 .
s b a
d-tc Td-weStai-te

5]

From eq.(5.22) we can write gd(s) in terms of time

T, and time delay <t as:

d
1 -%% S
gd(s) T TT 2 T :
—2-@5 + (F+Tg)s +1

Now equating coefficients of egs.(A4.2) and (A4.3) we

- ¢
d - bec ?

A
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0o]. (a+.1)

as

(A4.2)

constant

(AL. 3)

have

(Ak. 4)



a1 |
o1, (2. 5)
T b
2t a3 ¢ (AL.6)
1= g2 . (a8.7)

By solving egs.(A4.4) to (A4.7) for a,b,c and d we have

1+ 2T Ler + 1
a=_—c%, b=—'_c-'r—d' c=—%-a.nd d=——d‘_'—'- (A4-8)
a a a 12

A4, 2, Strip time constant and time delay.
If a medium strip speed is considered, say 5 m/s,
and the distance between the roll gap and the shapemeter is

1.75m, then the time delay T is given by,
T =;45Zg='o.35s. | . (A4 9)

The strip time constant may be derived as:

D _ Distance between coiler and roll gap
Strip speed

v
_4.25 _
= = 0.85 s, (A4.10)

N

By substituting these in eq.(5.23) we have,

Ay = 0 1 , By = [-1.1765
-6.7227  -6.8908 14,8295
and |
c, =1 o] , (Al.11)
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APPENDIX 5.

Shapemeter Time Constants.

A5.1. Shapemeter response time (ASEA manual).

Typical values of shapemeter dominant time

constants for different speeds are given in the table below.

Strip Dominant time 0 - 90 % response
‘speed (m/s) constant (sec) time (sec)
0.3—=1.0 4.35 10.0
1,0——2,0 1.43 3.3
2,0—5,0 0.74 ‘ 1.7
5.0—15,0 0.30 0.7
15,0 —» 50,0 0.11 0.25
Table A5.1.

Assuming a medium speed of 5 m/s T, is 0.74 sec., and the

1
speed independent time constant Téz is 0.01 sec, For the

medium speed considered the matrices which describe the state
space form of the shapemeter can be obtained by substituting

the above values in eq.(5.27) as:

A = 0 1 , B_= 0 and C_ = [1 o].

-135.135 =-101.351 135.135

- 254 -



APPENDIX 6.

Mill Transfer Functions for Low, Medium

and High Speeds.

The -open loop mill transfer function has <the .
form from eq.(5.45),

G(s) = 5246 .
For different speeds G(s) has different functions since the
time constants depend on the speed. Assuming three different
speeds, low, medium and high, the numerator and denominator
polynomials, N(s) and D(s), are calculated and given below. The
low, medium and high speeds used are 2.0 m/s, 5.0 m/s and

15.0 m/s respectively.

For 1low speed,
Ny(s) = 8 (1 - 0.4375s),
D,(s) = (1 +0.28)%(1 + 0.43758) (1 + 2.1255) (1
+ 1.43s)(1 + 0.01s). (45.1)

For medium speed,

N (s) =8 (1 - 0.1758),

D (s) = (1+ 0.25)%(1 + 0.175s)(1 + 0.85s)(1
+ 0.74s)(1 + 0.01s). (A5.2)
For high speed,
Nh(s) =8 (1 - 0.0583s),
D (s) = (1 +0.25)%(1 + 0.0583s) (1 + 0.283s) (L
+ 0.3s)(1 + 0.01s), (a5.3)
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Appendix 7.

Yield Stress Curve for Stainless Steel Type 304.

Fig.A7.1 shows (supplied by the manufacturer)
the yield stress of stainless steel type 304 plotted
against the cold rolling percentage reduction, Data from
this plot is ﬁsed to calculate the yield stress at
different reductions, which is wused in the roll force
model. This curve 1is modelled wusing a least square method
for curve fitting, and a 6th order polynomial is derived

.and is given by
y(r) = 229.819 + 29.0302r - 0.1146341:'2 - 0.03520141‘3

+ 0.001?6116r4 - 0.0000331418r5

+ 0.00000021 5601:-6 (A7.1)

where y(r) is the yield strength in N/mm2 and r is the

percentage reduction,

The numerical values from fig.A7.1 are
tabulated in table A7.1 against the results obtained from
eq.(A7.1) and the third column shows the percentage errors.
The relevent percentage reductions 1lie between 8 % and 26 %

and the percentage error in this region is less than 2 %.
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Yield stress Yield stress
7 reduction | from fig.A7.1| from eq.(A7.1) % error
in N/mm2 in N nn®
0.0 233.33 229.82 -1.5
2.0 293.33 287.16 -2.1
4,0 333.33 342,27 2.7
6.0 386,67 394,30 2.0
8.0 440,00 Liy2,88 0.7
10.0 480.00 487.96 1.7
12.0 520,00 529,76 1.9
14,0 560,00 568.63 1.5
16.0 600,00 605.05 0.8
18.0 633.33 639. 51 1.0
20.0 666.67 672.48 0.9
22.0 700.00 704,38 0.6
24,0 733.33 735.50 0.3
26.0 760,00 766.05 0.8
28.0 800.00 795.07 =0.5
30.0 820.00 825.48 0.7
32.0 850.67 854,07 0.4
34.0 877.33 881. 52 0.5
36.0 900.00 907.41 0.8
38,0 922,67 931.28 0.9
4o.0 940,00 952,67 1.3
42,0 960.00 971.16 1.2
44,0 973.33 986.46 1.3
46.0 986.67 998.48 1.2
48.0 993.33 1007.39 1.4
50.0 1006.33 1013.71 0.7
52.0 1013.33 1018.66 0.5
54.0 1020, 00 1023.17 0.3
5.0 1033.33 1031.31 -0.2
53.0 1040.00 1044, 69 0.5
60,0 1053.33 1068.10 1.4
Table A7.1.
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Fig.A7.1. Yield stress of stainless steel type 304.
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Appendix 8,

The Transformation Matrix.

The transformation matrix may be derived using
Chebychev polynomials given by - w, - sz +1, = lmj + 3w,
- & + 8w2 -1 etc., The strip width is assumed to have a
normalised value of 2 and is divided into eight sections.
Fach polynomial value is calculated at the mid-point of
each section. The first column of X corresponds to the
first order polynomial and the second column to the
second order polynomial etc, The derived matrix X is

given below.

0.875  =0.531 0.055 0.435]
0.625 0.218  -0.898 0. 904
0.375  0.718  -0.91%  =0.033
0.125 0.968  =0.367  =0.877
-0.125 0.968 0.367  =0.877
-0.375 0.718 0.914  =0.033
-0.625 0,218 0.898 0.90k

~0.875 -0, 531 ~0,055 0.435]
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DEVELOPMENT 0F A STAT MODEIL TOR A SINCIIMIR COLD R0LLING MULL.
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.he deveiopment of & computer simulacion for a single stand Semdzimir cold rolling miil is
‘escribed. The zodel enables the ou:put gauge profile to be calculated corrasponding &t siven
-ctuator Sorces. This type of model is required during the <evelopmen: of a shape ceatrdi
system. A shape ccnrrol system coatrols internal stresses in the sirip so that the rolled
strip vill have 2 given stress distribucion and will therefore iie flat on a flat suriac

S-

The computer program ceseribed imvolves an iterztive procedure starting froz given As-U-Roll
actuztor IoTnes. Zach inceriace becween two sets of rolls and berwesen the work rolls aad
the strip also invoives the saxut on of ron—iinear egquaticns dy sn iterztive rcoutine., The
? : 3 3
progrem calzulazes Inter-rell pressure and roll profiies amd the stirip pressufe and gauge
profiles. 3
1. DETINITICH OF SYMSQOLS USID T Reduction ratio
? Neurrzl anglz
(1-v?) /=t n
. c - \ L. g Roliing angle
" Diametsrs of back up Toll, 2nd inter-
medxace~?cll, ist inzermediace roll and 2. NTRODUCTION
work TOll
v ' 133
Young's modulus L.
IO — ; The desiga of shape control is an area of
" Set of forces applied to back up roll ; e i Lo
it S z:q ot current interest In the steel industry.
) Input thickness profile of strit B ; ‘n the -
RPN P Previous provlems in thes design of honc-cl .
) Oucput thickness prot¢le of strip - N _
. . systems for steel mills have mostly been over
Predicted output thickness Irom work s - . . P
come, for example in the design ci the zsugs
roll contours . - . L. ST
control loops. The next mzjor protlex i1s the

%d" /64 where ¢ is the diameter

P Y design ¢ shape control systexms.
¥odulus of the Zoundation sign ¢: &aap L systex

engzn of one segment cf the back u . ; P - ;
Eo" A ef gment cf the b P Bad shape is caused by differencial elomgaciozm
ie;;’“ :'the. zoll across the widzh of the strip waizh results
et Wa ‘ -———— - s - . I3 LN .
) 201- sressura on the strip from a2 variation of internzl stresses within
“‘" r - : < - . = * SV e afreoe
_(x) ZIncer roll pressure betweez back up . the strip. i the strip is to be Iflac aizer
I roll zad 2ad inrermediars roll rolling, the reduccion in thickness as it pzsse
.(x) ZIater oll pressure betveen 2nd incer= threough the rell gap must be a constant 2eToss
L : . : . t Tip wide b t £i zs
meciace roil and lsz incermediace roll ::ieii;i?stligg'd'zzanf ca:vag :e-:nec “’_E:iva
\ . 13 meme o ot Yew 3 - i s cr istribuci ue to & Transvers
(X} Inter roll pressure barween lst inter variacd PRR IR
medizte roil and work roll ariation of reducticn ¢l tha strip thickness.
T Y rk roll - -
. . i s Thus, shape concrol refers =42 the cconzTol of
Werk roll radius : : e T L T
i . . - intrareal rr e ms e in e~ 1 el
Deformed vc:k coll radius the int e nal s e:f‘a_s- ?uh-on in stf2el stTip
(x) Deflection of back up roll exiting from & rolling =ill, There are ws
. . : tyves of bdad shape, (a) zaaz shege whevre the
(x; Deflection of 2ad intermediate roll . strip may appear to have good shape as it
. B . . . tewa £° Srer Vamone 331 Wa wal 3
(x) Deilection of ist intermediate roll . Temains L.af duf tatent Lorees wiil D& reisdsed
) causing deformaticn when slitting, (b) manilest
x) Deflection of werk roll shepe where the strip will nave tad shepe in th
£ - - e ? e Y~ = - -
Trsariaren v nl form of waves or ripplss exzending zleong the
7 (¥ interZerence between back ur roll and lemgth of the strip which are clesrly visizle
‘nc 1::&...__(: ahe 'OLI -t . - -all - :4 b e alT - ey v - - - .
Interlerence tetween 2 cerzedi
. T s e . > -‘d 1‘ er= at Tt iS onl '.1 th lass can yeszrs =hat T 1<%
s0il and lst imcermediace :cl¢ M y in the last ten yezrs that reliztle
e pr s e : shape measuring devices have become availabla
. Interference between lst in y -
A rczl ande:gsbdfoliew st intermeciate and have been appliied in the steel industry.
T -.. -... T , g e - g manl e Vv oee
(s) Tnterference hecween work roll and Most of the rrevious thesretizal work was
se=ina ccncerned with scheduling the mill to cdbtain
ST . - giem =k Soss s i 3
Poisson's racio goed shape and mot with ite desizn of closed
Decciler temsion loop shape control systezs, emploving shage
Coiler tzension mecers.
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represants the Sendzinmir mill cluster aad the -
conditions within the roll gap.

3. MODEL DESCRIPTICON
The procedure Zor calculating the thickness
profile for a given set of ZIorces applied to
tie back ug rolls is discussed in this section.
A flow chart showing the basic prccedure is
given in figure 2. 4all the =athematical
formulae are given in the appendix. Tor the

present analysis che edge of the strip is
ignored and the strip width is assumed o de
the same as the length of the work rolls and
this will be improved in due course. A
simplified model was first davelored which was
based on the mill cecnfiguratioxz shown in
£igure 3. This model can be modifiad ¢
represent the system shown in Iigure
for the present the simpie configurac
in figure 3 will be discussed.

. However
on shown

1
-

<
-

Figure 1
Sendzimir m=ill is a cluscer mill (Fig 1)
e the work rolls rest between supporting
s which permic the roll separating force
e transmitted directly to the aill housing.
e are several types of Sendzimir wmill but T

he following the 1-2-3-4 mill will be
idered as shown in figure 1. 1In chis type
i11 there are eight backing shafts (numbered
. All bearing shafts are conceatrically
ted on roller bearings and are located

.atricaily om saddles. This cype of =ill
four dzive volls,. to which power is

soitted through four large diameter

dles., 3Both werk roils are driven by the
drive rolls through friction contacts with
2rnd intermediate rolls. B8y rotating the

ring shai:z the position of the backing

ring, with respect to the housing, can be

nzed tc closely concrol the discance rtetween
work rolls. This is the basic concrol

exent of a Sendzimir mill that permits -

id parallel and extremely accurate

itioning of :the rolls.

.

b

5 type of mill has the As=U-~Rell crowm
.ustment control rmotorised through small
raulic motors. This adjustment is provided

shafts 2 and 3 acting simultaneously through
ery small eccentric gear train. The - )
iustment can be made under load and therefore
. be changed while the =ill is rolling.

zain objective of the project is to design
losed loop centrol system for the Sendzimir
1, to ccnzrel zhe shace of the szrip.

wever a mathematical dDocel zust first be
veloped to represeat the conditions within

e =ill cluster. This paper is culy concerned
th the developzment of this model. 1In the
llowing the static =ocel is preceated which

e
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' qz,I(x) between the lst intermediate roll and
&

the work roll. Finally the deflecticen yw(x)

of the werk roll, due to this pressure, is

¢k Up Roll -
8a P calculaced.

: S. ROLLING PRESSURE CALCULATION

ermeciate Roll

An extensive literature exists cn the ’ .
1st Intermediate Roll calculation cf the specifiec roll force as a
function of entry and exit thickness and

Work Roll Lp tensions. The volling force is calculated by

NES dividing the strip iato a number of sections
L e J (in this analysis 10). Wichin each seczion all
Figure 3 S the parameters are assuwed to be constant. The

. .' arc of contact is assumed to be circular for
INITIAL ROLL DEFLECTICH AND PRESSURE this simple model. )

DISTRI3UTION CALCULATION

When calculating rolling force a correction
itial roll deflections yBUR(x)' yzz(x). must be made to allow for the affect of roll
* flactening. This is achieved using Hitzheock's

2 > e & £ a ie - . . . N .
and yw(x) due to a ser of applied formuia ctogether with an iterative sclution

are calculated using beam thoery ifor procedure. The solution is obtzined when the
g. Tor the present analysis the i+ roll radius error 'R; - R;_ll is less cthan a
zions due to shear components are ignored. - - .
‘s justified because the rolls with free R; A
1 iing and <k pan/depth . - ) .
ave uo s?gar beECIP° c ?e span/cep h given value, for example 17 (R' is the-new toll
is very nigh. The lef: and right end radius)
s of all the rolls are free and hence the '
hear at ints are zero. . —eareme e ar
€ and shear at these polats ar - 6. INTER ROLL FRESSURE DISTRI3UTION
s ) CALCULATION
the defiection yBUR(x) of the back up —_—
due to a set of forces F is calculated, y The inter roll pressure distribuctions q°2I(X)’
: .. : . )1
ing cthat it is restiag on the 2nd inter- . q -
; . -(x) and .,(x) are calculated from the
te roll.’ As the back up roll is pressed 21;( ) Q1w )
st the 2ad iatermediate roll, dy the degree of interfzrences between the back up roll
ed force, this results in a set of reaction - a2nd 2nd intermediate roll, 2ad and lst ianter—
s between the dack up rell and the 2= cediace rolls, and lst intermediaze roil aad .
wediate roll. This pressuze distributioa .... work rolls respectively. These imter roll
noted by qBZI(x) and is calculated using pressures aust satisfy the Zorce equilibrium
. : : criteria i
quations (1), (5) and (6) im appendix 1. ite for all che rolls, that is
. . [p(x)dx = fquw(x) dx (a)
farces acting at the point of contact of
T an e iace 11 . .
pack up roll and 2nd 1n.er§ed1a_e.ro--, fqllw(x) - fq21,(x)cx ¢-))
e a set of forzes equal and opposite to . * (1
3 . 3 5 : .
(x), acting on the 2ad intermediace roll. quIT(x)dx = [qSZI(x)dx ()
set of Zorces can be considered as the -
es 2cting on the 2nd incermediace roll. IQBZI(X)dx = [T @
deflectieon YZI(X), of the 2ad intermediate If minor bending distortions are Ignored the

roll surfaces can be assumed to be circular.

due to the pressure q (x) is then
’ L - A 13 - - . . -
B2l ¥hen two infinitely long elastic cylinders zre

ulated (assuming the 2nd intermediate roll in contact the total interference between
esting on the lst interzediate roll). This cylinders y can be written as a function of the
ection will cause the 2ad intermediate roll load per unit length q.

ress against the lst incermediate roll, . r /et (0,4D5)

rating another pressure profile, which is . 4 =y = qler+ezdlog { Za(cr1ece)  ° (2) ;

ted q (x). . . .
211 . The inrerference between rolls can be calculated

—— e e b e L

from the roll contours y; and y: using the

larly the pressure orofile gq.._(x) acts on

' ) 211 relation (figure 4) i
lst-fatermedizte roil causing it to tend. !
deflection of the lst inter—ediate roll is V12(x) = y2(3) = y1(x) +y:200) &
ted le(x). Clearly czhis deflec:ign will The method of calculating q(x) is 2o sub=-

stitute y:2(x) zalculated frcm ecuation (3) for
y in equation (2) and to adjust y ;12(0) : .

e the generation of another pressure profile



sclution to equations (1)
This procedure his to be
mes :o cal:ula.e the three

the

. CALCULATION OF NEW ROLL DEFLECTIONS
Yaur(X¥)s ¥op (X, ¥, (x).and y, (%)

ew deflections due to the inter roll

ure profiles are calculated in th

wing manner. Consider one particular roil.
are forces acting upwards and downwards

e roll. The deflection of cthe roll due

e downward forzes and due to the upward

s are calculazed in that order. The

erence between the two daflectioms is

lated to give the total deflection of the

. The deflection due to the downward

es is tzkea to be positive and that due

he upward forzes is taken to be cegative,

1 WORK ROLL AND STRI?

INTZRFZRENCE SETWEE?

aa elasStic cylinder is resting on a flac
ace the iacarference y can be written as

ﬁ:h} - (4)

» chxlog { (zef 1)

e p is the pressure applied. Wnen
ulating the interference berween work roll
the strip, the work roll can be considered

cylinder resting on a flat surface. First
11 the pressure a2t the Toll gap is
ulated using the voll gap model. Then the

sure p(x) is substituted in equaticn (4)
ive the interference yws(x) between the work

and the strip as a function of x.

. PREDICTICH OF TEE NEW STRIP TEICXNESS

variables given below are defined in
ure 5,

x) = Input thickness

x) = Qutput thickness

(s) = Deflaction of the upper werk roll
measured from the =ill housing

(s) = Deflection of the lower work roll .

measured from the mill housing

Distance from the =mill Housing to
the upper side of strip entasring
Distance frcm the =ill housin g to
the lower side of strip entering
Distance from the mill housing to
the uppe: side of

{x) =
(x) =
(x) =

mill housing to
strip entering

= Distance from the

h,, (x)
L the lower side of

hy (%) hlL

Ba(x) = By (1) = by ()

(x_) - hw(x)

Interference between the
andé the strip due to fla:;ening
calculated from Hertzian

expression referring to upper
and lower halves respec:tively.

x)

wsu(x) aad =

Yusy )
and

Bay () = Yy (¥ = Yygy

th(x) = wa(x) + YWSL(x)

ha(x) = hZL(X) - hZU(x)

RRCAS
* Yusy )

If we assume that the syscem it symmetrical
_about the centreline of the strip, cthen

(x) = (x)

Yus. ™ Yusu Tus

kness is given by

Therefore the predicted c
lections plus the

the affective work roll &
£lattening, thus

hi
ef

B(x) = 3..(x) = y,(8) + 2y (x)
Therefore the new estizate of strip thickness
is found by substizutiang this expression for
H(x) in the equation givez beiow.

| . k.

) = 85l + afi0-n

where @ is a convergence paraweter selected to
obtain a stable solution.

M1l Housing
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1. =neSULTS AND CONCLUSTIONS

et

tatic model has been derived to represent the
dzizir sold rolling mill for a shape control
tem, A fypical compucar outpul showing the
k roll srofile for & given actuvztor force
showa in figure 7. This model should be

ted by detailed experizental isvestigatiom.
aumerical values obtained for roll

lections due to bending seem to be feasible.
ip edge effects will be included in the

ure model. A simplified version of this

el can be used to develop the dynamic zodel
the miil which will be used in the closed

» con:trol system design.

11. FUTURE WORK

re are many areas requiring furcher work.
e effects must be incorporated in the model
using influence Zunctions tc represent the
k roll deformation near the s:irip edges.
n a new method of modelling the roll gap
t be developed, which includes the inter—
ion between the strip shape changes and
roll force. A mathematical =odel to
resent the dynamics of the mill will also be

eloped.
n
a] 4
35 d
30 ]
25
20°F -
15 - . v v — - : T
0.0 0¢2 0.4 0.6 0.8 1.0 1.2 1.4 I6 -
Figure 7
APPENDIX
en 2 force P is applied to a beam on an
astic foundation the deflacticn y as a
action of x can be written as: (Fig Al)
2\ 1
yO)-= =« ¢ {S(C“D)*E(?+G)] (1)

ere
- ()

4ET
= Sinh?AZ - sin?)2
2CosAx.cosix

= SinhAl.cesAa.CoshAd

= sinAf.CoshAa.coskd

. (reference 2) (2)

o9 O W B
[}

CoshAx.sinAx + SinhAx.cosix
= SinhA2(sinla.Coshib = cosra.SizhAb)
= sinA2(Sinhla.cosAb = Coshia.sinlb)

i
]

o

e above expressicn for y(x) is only for the
rtior AC. The same Sormulae can te used for

Figure Al

the section CB where x > a by measuring x frecz
B and replacing a by b and b by a.

The value of k is given by the expression

. ET 1
k= 2\ (2 2Dy ,. 2D 3 )
2(1l=v*) (E +logeTLQgeTJ (zes 2) )

where d = width of flattened contact zrea.
When two cylinders are pressed together the
expression for d can be written as

¢ «\[16Q=v)) BY DDy (4)
T E Dy+Da (ref 4)

where F” = load per unit length.

By substituting the value of b in egquation (3)
and using numerical values for £ and V a2nd.’
sinmplifyiag the expression for k can be
written as

. 3.5714 x 10*0 )
26,272+ Tog (D;1+ Dz) = log?~

q(x) = ky(x) : (6)

k

The above expressions are ouly for a case where
there is only one point load acting on the “eam.
The total deilection is calculated by adding

the deflections calculated separately for each
individual force.
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Static model for
Sendzimir
cold-rolling mill

G. W. D. M. Gunawardene

The design of shape-control systems is an area of current interest in the steel industry.
The object of shape control is to adjust the mill so that the rolled strip is free from
internal stresses. Both static and dynamic mill models are required for this purpose.
A static model enables shape profiles to be calculated for a given set of actuator
positions, and is used to generate the steady-state mill gains. Such a model is
presented in this paper. The method of calculation of shape profiles is discussed.
These shape profiles are plotted against the distance across the strip. Linearized mill
gains are calculated about a given shape-operating point and these relate the shape
changes to the actuator changes. A mill gain matrix, obtained by measuring shape at
eight points across the strip, is presented. MT(699

© 1981 The Metals Society. Manuscript received 11 January 1980. G. W. D. M.
Gunawardene is in the Department of Electrical and Electronic Engineering, Robert
Gordon’s Institute of Technology, Aberdeen, Dr Grimble is in the Department of

M. J. Grimble Electrical and Electronic Engineering, Sheffield City Polytechnic, Sheffield, and Dr
A. Thomson Thomson is with GEC Electrical Projects Ltd, Rugby.

. y=ratio of input-output deviation
List of symbols 8 =h1(x) —ha(x)=amount of reduction, m

C=(1 —v?)/mE constant, m2N
di=diameter of roll 1 when two rolls are pressed to-
gether, m
dx=diameter of roll 2 when two rolls are pressed to-
gether, m
E=Young's modulus of the material, Nm-2
F=total force applied, N
Gmn=gain matrix (shape change to rack change)
hi(x)=input-thickness profile, m
h2(x)=output-thickness profile, m
h2=mean change in gauge profile, m
Aha(x)=deviation of gauge profile from mean, m
Ah2'(x)=change in gauge profile, m
I=ndi/64, m?
K=elastic-foundation constant, Nm~2
k =mean yield stress, Nm-2
ki=entry yield stress, Nm~—2
k2=cexit yield stress, Nm~2
N=no. of sections across mill width
p(x)=specific rolling force, Nm~—1
p=mean rolling force, Nm-!
q(x)=inter-roll specific pressure betweentworolls, Nm-!
R=work-roll radius, m
R’=deformed roll radius, m
w=work-roll width, m
W=width of strip, m
x =distance from left-hand corner of mill orroll, m
y(x)=deflection of any roll, m
ys(x)=deflection of upper roll, m
yi(x)=deflection of lower work roll, m
Ywe(x)=work-roll camber, m
yws(x)=interference between work roll and strip, m
Jws(x)=mean interference between work roll and strip, m
yi(x)=deflection of roll 1 when two rolls are pressed to-
gether, m
ya(x)=deflection of roll 2 when two rolls are pressed to-
gether, m
yi2(x)=interference between two rolls pressed together, m

a=output stress-convergence parameter
B =stress-equation constant

p=coefficient of friction
v=DPoisson’s ratio
o1(x)=input tensile stress, Nm~2
o2(x) =output tensile stress, Nm~-2
Aao(x)=input tensile stress deviation of first pass, N/m~-2
doz(x)=output tensile stress deviation from mean, N/m-2
¢éa=neutral angle

The design of shape-control systems is an area of current
interesti-4 in the steel industry. Previous problems in the
design of control systems for steel mills have been over-
come largely, for example, in the design of gauge-control
loops. The next major problem involves the design of
shape-control systems. Shape control refers to the control
of the internal-stress distribution in steel strip leaving a roll-
ing mill.5.¢ It is only in the last ten years that reliable shape-
measuring devices have become available and have been
applied in the steel industry.

To illustrate how bad strip shape might arise, consider
strip having a uniform input thickness and a work roll
which is deformed so that the output strip thickness is
greater near the strip edges than in the central region. In
the absence of lateral spread the strip must be larger in the
central region than at the edges. Since the strip is one
homogeneous mass, such differential elongations cannot
occur and internal stresses result. Clearly, if the strip is to
be flat after rolling the reduction in thickness, as it passes
through the roll gap, must be constant across the strip
width.

Shape may be defined as the internal-stress distribution

‘owing to a transverse variation of reduction of the strip

thickness. There are two types of bad shape: (a) a latent
shape where the strip may appear to have good shape in
the mill under tension, but where bad shape is evident
during slitting operations, and (b) a manifest shape where
the strip being rolled has bad shape in the form of waves
and ripples, extending along the length of the strip, which
are clearly visible, see Fig.1. The stress distributions associ-
ated with these basic defects are illustrated in Fig.2.

The first requirement in the analytical design of a shape-
control system is for the development of a model of the

274 Metals Technology July 1981
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(a)

(b) '

alatent shape on subsequentslitting along middle or long edge ; b manifest
shape with long edges

1 Various forms of shape defect

rolling mill. Both static and dynamic mill models are re-
quired. A static model enables shape profiles to be calcu-
lated for a given set of actuator positions and it is used to
generate the steady-state mill gains. The dynamic model
represents the dynamic performance of all the mill com-
ponents, such as the actuators, and is based upon the
equations of state for the system. The subject of this paper
is the static model for a Sendzimir cold-rolling mill.7-8 A
Sendzimir mill is extremely complex mechanically, as may
be seen from the roll configuration in Fig.3. There has been
little published work on the development of such models
for this type of mill.

N

10007 <
{\\\\\\Q —
T

ool 2

(d)

~
n
~

(a) (b)

along edge . b long middle ; ¢ herringbone ; d quarter buckle
2 Stress distributions and manifestbuckling forms

3 Sendzimir mill roll cluster

Description of mill

GENERAL

The Sendzimir mill (Z mill) to be considered here is 1-7m
wide and is a cluster mill where the work rolls rest between
supporting rolls. The mill has eight backing shafts labelled
A-H, six second intermediate rolls (I~N), four first inter-
mediate rolls (O-R), and two work rolls (S, T), as shown in
Fig.3. This type of mill is used for rolling hard materials
such as stainless steel.

The motor drive is applied to the outer second inter-
mediate rolls (/, K, L, N) and the transmission of the drive
to the work rolls via the first intermediate rolls is due purely
to inter-roll friction. Rolls labelled I-T have free ends and
are free to float. The outer rolls (4-H) are split into seven
roll segments, as shown in Fig.4. The shafts in which these
rotate are supported by eight saddles per shaft, positioned
between each pair of roll segments and at the shaft ends.
The saddles are fixed rigidly to the mill housing, and con-
tain eccentric rings. The outer circumferences of these rings
are free to rotate in the circular saddle bores, while the

" inner circumferences are keyed to the shafts.

saddles bolted
to mill housing

AR

shaft

saddles

roll segments
(backing bearings)
are free to rotate
on shaft

eccentric ring in
each saddle
(keyed to shaft)

4 Backing shaftassembly, shafts A and D-H
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mill housing
/backing bearing
saddle

As-U-Roll
7eccentric ring

screwdown
eccentric ring

roller bearings at
these two interfaces

‘parallel’circular loci
of ¢ and-c3 due to
indicated rotation of
As-U-Roll ring only

5 Saddle detail for shafts B and C (notto scale)

UPPER AND LOWER SCREWDOWN OPERATION

Operation of upper screwdown racks acts on assemblies B
and C, and assemblies F and G are responsible for the
lower screwup system. Each saddle of the assembly Band C
is constructed as shown in Fig.5. The saddles on the F and
G assembly are also constructed in the same way but
without the ‘As-U-Roll’ eccentric rings.* When the shaft is
rotated the eccentric screwdown ring also rotates in the
saddle bore, since it is keyed to the shaft. This allows the
centre ¢z of the shaft to rotate about the centre ¢1 of the
saddle bore, thus causing a net movement of the shaft to-
wards or away from the mill housing. Since the shaft is
keyed to the screwdown eccentric rings in all eight
saddles the same motion will occur at each end and the
shaft will remain parallel to the mill housing. Essentially,
the screwdowns cause the movement of rolls 1, J, K, O, P,
and S up or down which enables the distance between the
two work rolls to be adjusted finely during rolling. A
similar operation, which is used principally for roll chang-
ing and mill threading, takes place at the lower assemblies
Fand G.

‘AS-U-ROLL" OPERATION
In addition to the screwdown system, each of the saddles

*These are made by the Sendzimir Company; they allow roll bending
to take place during rolling to adjust strip shape.

6 As-U-Rollassembly

AU U

TAEA AT aTalal)

second intermediate roll

first intermediate roll
(a) work roll

A=A il i U n =

Il

second intermediate roll

first intermediate roll

(b) work roll

aracks before motion ; b racks after motion
7 Example of As-U-Roll action

supporting the upper shaft assemblies B and C is fitted with
an extra eccentric ring (Fig.5) situated between the saddle
and the screwdown eccentric ring. This eccentric ring can
be rotated independently of the shaft and screwdown eccen-
tric ring, by moving a rack which operates on two annular
cheeks fitted on each side of this extra ring, as shown in
Fig.6. Such rotation will cause the centre cs of the inner
bore of this ring to move in a circular locus about centre c1.
There are eight such As-U-Roll racks on saddles between
segments. These racks are capable of individual adjustment,
producing a different displacement between the shafts and
the housing at each saddle position. This allows a profile
to be forced on to the shaft, as shown in Fig.7, which will
propagate to the work roll through the cluster. Although
the As-U-Rolls and upper screwdowns act on the same
common shaft they are essentially non-interactive.

first intermediate rolt with tapered end

work roll
front
strip of
mill
work roli

first intermediate roll with tapered end

8 Tapered firstintermediate rolls
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FIRST INTERMEDIATE ROLL TAPERS

In addition to As-U-Roll control of strip shape there is
another type of control on the Z-mill. The first inter-
mediate rolls O-R are furnished with tapered-off ends, see
Fig.8. These rolls can be moved laterally in and out of the
cluster. The top and bottom rolls may be moved indepen-
dently, and it is thus possible to control the pressure at the
edges of the strip within certain limits. These rolls are,
therefore, used to control the stresses at the edge of the
strip.

Static model for mill

A static model? for the single-stand cold-rolling mill,
shown in Fig.3, may now be described. The static model is
a mechanical mode] for the mill which represents all force—
deformation relationships in the roll cluster and in the roll
gap. It is important for control purposes to note that these
relationships are very non-linear and schedule dependent.

The static model must allow for the bending and flatten-
ing of the rolls in the cluster and for the plastic deformation
of the strip in the roll gap. The model must provide:

(i) linearized mill gains for use in the control system
simulation (dynamic model) based upon a small
perturbation analysis

(ii) an understanding of the way in which shape is
affected by the mill actuators

(iii) details of the range of control which is available
using the As-U-Roll or the first intermediate roll
tapers.

The assumptions made in deriving the static model may be
listed as:

(i) the mill is symmetrical about a line passing through
the work-roll centres (this need not be the case if the
side eccentrics are set differently)

(ii) strip edge effects may be ignored

(iii) deflections due to shear may be neglected

(iv) elastic recovery of the strip may be neglected

(v) horizontal deflections of rolls may be neglected

(vi) the centreline strip thickness is specified.

The model developed is in the form of a Fortran computer
program. The model enables the output shape profile to be
calculated corresponding to a given set of rack positions.
The mode! is divided into three main sections, namely:

(i) roll bending: for calculating the roll-bending de-
flections due to a set of forces

(ii) roll flattening: for calculating the roll interference or
roll flattening between two rolls forced together

(iii) roll force: for calculating the rolling force required
to reduce the thickness of the strip by a given
amount

(iv) gauge and shape: for calculating the output gauge
and shape profiles corresponding to a given set of
inter-roll pressure and deflection profiles.

The above topics are considered in the sections below.

Roll bending

It is well known that if a force is applied to a beam? sup-
ported at two ends, the reactions at the ends and the de-
flection of the beam can be calculated using simple bending
theory. If the beam is resting upon an elastic foundation,
where the whole length of the beam is in contact with the
foundation, the deflection of the beam may be calculated by
assuming that the deflection is proportional to the reaction

at that point.!® In the mill all the rolls in the middle of the
cluster are resting on one another and, since these rolls are
elastic bodies, it can be assumed that each roll is resting on
an elastic foundation. Thus, the actual bending deflections
y can be calculated (see Appendix 1) as a function of the
applied force F and the distance x from one end of the
beam, i.e.

Roll flattening and inter-roll pressure
distribution

The effect of roll flattening, 11.12 and the resulting inter-roll
pressure distribution, is considered in this section. Recall
that when two elastic cylinders are rolled together under a
load F, the roll axes are deflected. The roll surface of contact
will also be flattened.

The amount of interference, or the flattening y12(x) be-
tween the rolls, can be calculated as a function of the inter-
roll specific force g(x). Alternatively, g(x) can be calculated
as a function of y12(x):

Y2 =F1(G(x)) e e oot e e e 2)
GO)=f2(r12(x)) oo e e A3)

The interference can also be calculated using the roll con-
tours due to bending. This is a function of the deflections
y1(x) and y2(x) of the two rolls.

Y12(X)=f3(r1(x), y2(X)) oo e e 4)

The full expressions are given in Appendix 2.

The deflections y1(x) and y2(x), clearly, will depend upon
the pressure g(x) and, hence, on y12(x). From equation (3)
it may be seen that g(x) depends on y12(x) and, hence, g(x)
and y12(x) must be calculated iteratively. The total pressure
across the roll width must be equal to the applied force F
for the system to be in equilibrium, i.e.

The method of calculating g(x) is to substitute for y12(x) in
equation (3) from equation (4) and to solve equations (3)
and (4) iteratively by changing the distance between the roll
centres until equation (5) is satisfied to within a specified
tolerance. The interference between the work roll and the
strip is calculated in a similar manner (see Appendix 2).

Roll-force model

The amount of reduction in thickness of the strip is related
to the total load in the mill or roll force.13-15 Extensive
literature exists on the calculation of specific rolling force
p(x) as a function of input-output thicknesses, input-
output tensions, and work-roll radius.1®

p(x)=f(hi(x), h(x), 01(x),02(x), R) e vevevernnenn... (6)
When rolling hard materials like stainless steel, very high
forces must be applied. Since the work rolls are elastic
bodies, they will be deformed and flattened at the roll
gap.1? In order to calculate the roll force, including the
flattening effects, an iterative procedure must be adopted
because the deformed roll radius is a function of the roll
force. The deformed radius R’ can be calculated using
Hitchcock's formula, given as

R_ 2
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where c is a constant, R is the initial roll radius, and & is the
amount of reduction equal to (h1(x) —h2(x)). The roll force
may be calculated by solving equations (6) and (7) iterat-
ively.18.18

The disadvantage of the above approach for roll-force
calculation is the time the algorithm takes to converge. For
modelling purposes the width of the strip is split into N
(typically 67) sections and the roll force must be calculated
in each of these sections. The shape calculation is also
iterative and, thus, all the roll-force calculations must be
performed on each of the iterations of the shape algorithm.
Thus, although the roll-force calculation does not require
a very large computing time this is multiplied by the num-
ber of times it is performed. The above implicit roll-force
relations are not, therefore, used in the present mill model.

Bryant and Osborn!5 developed an explicit roll-force
formula which thus avoids iterative calculations. The for-
mula is not as accurate as the above algorithm for this type
of mill but is efficient in the use of computing time. The
present mill model therefore uses this method of calculation.
It may be necessary, however, to either modify or replace
the formula in the light of plant-test results.

Output gauge and shape profile calculations

The output gauge profile may be calculated once a given set
of inter-roll pressures and deflections is known. The shape
profile then follows from the input and output gauge pro-
file and the input shape profile. The equations governing
these profiles are detailed below.

OUTPUT GAUGE PROFILE CALCULATION
The output gauge profile is determined by the combined
effects of roll bending, thermal and ground roll cambers,
and differential strip flattening. The change in the gauge
profile due to these effects is given by

Ah2'(x)=2(ws(x) — Pws) +ys(x) +34(x) +2pwe(x) . .. ... 3)
where yws(x) and jws represent interference and mean inter-
ference between the work roll and the strip, ys(x) and
yi(x) represent the work roll S and T deflections, and ywc(x)
represents the total work-roll camber. The mean deviation
in the output gauge is given by

1,
dhy= —u-,f oAhz GIdx . e ¢))
and, hence, the deviation from the mean is given by
dho(R)=2dhe'(s)=dhz ..coviiiiiii . (10)

The new output gauge deviation is calculated from the
iterative formula

Ahok+1(x)=Ah(x) —a[dh(x) = Ak (X)]. e oo vt (11)

where a is chosen to give a stable solution and the new
gauge profile is calculated using

ho(X)=ho AR +1(x) . oo (12)

INPUT AND OUTPUT STRESS PROFILE
CALCULATION

The new input and output stresses can be calculated using

the ngw gauge profile, and the following results due to
Edwards and Spooner*:

_ ha(x) 5_1_ _ Aao(x)
AOz(X)——,BE(H(—x—) . ﬁz )+'—"'"(1 +‘)’) .............. (13)
do1(X)=pd02(X) .o eereeiii i (14

e

[initialize hy; and deflections |

[ calculate constants |

[ caleulate roll force P |

adjust hy;

yes

calculate inter-roll pressure profiles and
deflections of upper-half cluster by
calling subroutine BEND

4 | calculate inter-roll pressure profiles and
deflections of lower-half cluster by
calling subroutine BEND

v

calculate new output and input stress
profiles Aoy and Aoy;

calculate new gauge profile hy;
— | old output stress = new output stress

9 Flow chart for main program

where y is defined as (g1(x) —&1)/o2(x) —&2), B is a constant
(B=0-5), and E denotes Young’s modulus of elasticity.

Static-model computer algorithm

The static-model program uses an iterative procedure, as
shown in Fig.9. The model includes the calculations for the
top half of the cluster as well as for the bottom half of the
mill. It is assumed that the mill is symmetrical about the
line passing through the work-roll centres. The model can
be used for different values of strip width, but for the
present analysis the roll-flattening equations ignore strip
edge effects. The input data required by the program may
be summarized as follows:
(i) cluster angles (see Fig.3)
(ii) roll diameters
(iii) roll profiles (camber, wedge, etc.)
(iv) As-U-Roll positions
(v) first intermediate-roll positions
(vi) entry gauge profile -
(vii) mean entry gauge
(viii) mean exit gauge
(ix) annealed gauge
(x) yield stress curve
(xi) entry tension
(xii) exit tension
(xiii) width of strip.
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exit enter

10 Path of calculation for subroutine BEND to calcu-
late pressure profiles

The output data may be listed as:

(i) inter-roll pressure (12 profiles)

(ii) roll deflections (12 profiles)

(iii) exit shape (stress-distribution) profile
(iv) exit gauge profile

(V) roll-force profile.

The mill width is divided into a number of section mul-
tiples of 67 and the following assumptions are made (the
number 67 is chosen to match the dimensions of the back-
up roll and its segments):

(i) the pressure distribution in each section may be cal-
culated using a point load applied at the centre of the
section and the width of the section

(ii) the mean deflection of a roll over a section is taken
to be equal to the deflection at the centre of the
section.

initialize q(x)

calculate deflections
Y, and y, of rolls 1
and 2 using q(x)

I

)

calculate interference
between rolls 1and 2
using y, and y,

calculate q(x)

adjust distance
between two
roll centres

old g(x) =
new(x)

11 Flow chart for calculating inter-roll pressure be-
tween two rolls
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This principle also applies to the stress distribution, strip
profile, roll-pressure profile, etc. The computer algorithm
enables a change in the shape profile owing to a change in
the rack position, and hence the gains of the mill, to be
calculated. The flow chart for the main program is shown in
Fig.9. .

The program begins by initializing all the variables, and
the roll force is then calculated using the roll-gap model.
Symmetry about a line passing through the work-roll
centres can be assumed so that calculations are necessary
only for the left side of the cluster. The subroutine BEND
calculates the pressure profiles and roll profiles of one half
of either the top or bottom cluster. If symmetry is not as-
sumed then the routine BEND has to be called four times to
calculate all the pressure and roll profiles. At the end of
each iteration a convergence test is carried out on the shape
profile. The above calculations are repeated until the error
between two successive shape profiles is less than a pre-
determined value.

The pressure and roll-profile calculation procedure is
illustrated in Fig.10. Only the top-half cluster is shown in
this figure and thick lines are drawn to show the path of
calculation. The small circles labelled ci, c2, ¢3, and cs re-
present an iterative process for a particular inter-roll pres-
sure calculation. A satisfactory. convergence in pressure is
shown by Y and non-convergence is represented by N.

As the pressure profile between two rolls depends on the .
interference or flattening of the rolls, and the interference
is itself dependent on the pressure, the process is iterative.
Figure 11 shows the flow chart for one iterative calculation
of inter-roll pressure. Here, y1 and y: are the deflections of
two rolls in contact, and p(x) is the specific pressure profile
between them.

Results and discussion

The model provides the shape, gauge, and pressure profiles
for a given rolling schedule. These are important when the
control of a particular profile is of interest. Shape profiles
for eight rack-position changes are shown in Figs.12-15
(e.g. in Fig.12 the curve represented by the continuous line
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is the shape profile when rack 1 is changed by I mm, keep-
ing all other racks at the zero position. The curve marked
by crosses is the shape profile due to a change of 1mm in
rack 2, keeping all other racks at the zero position, etc.).
The largest shape change is found at a point across the strip
width in the vicinity of a particular rack which has been
changed.

The model discussed in the above sections ignores the
strip edge effects. When the strip width is less than the mill
width (or the length of the work rolls) there will be two
portions from either end of the upper work roll with no
support. The model is based on the assumption of zero
shape directly under these two portions and, therefore,
the shape changes from zero to a high value at the edge of
the strip. This is shown in Figs.12-15 by the rapid change
at the edges. The calculated shape near the edge is not the
true shape. The model must be modified to include edge
effects using work-roll influence functions as described by
Spooner and Bryant.2°

It is clear from Figs.12-15 that a rack change appears to
affect widely separated sections of the strip. This can be
explained by considering a localized change in the back-up
rolls. This change in the back-up rolls will modify the
inter-roll forces between the back-up and second inter-
mediate rolls. Similarly, this change in the inter-roll force
will change the effective profiles of both the back-up and
second intermediate rolls. From the study of a point force
acting on a roll it can be seen that the roll profile is changed,
not just below the point of action of the force but over a
region surrounding the point. The change is significant in
the vicinity of the point of application of the force. Thus,
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a localized change in the back-up roll profile is converted to
a distributed change in the profile of the second inter-
mediate roll.

Further interaction between the second intermediate rolls
and the first intermediate roll, and between the first inter-
mediate rolls and the work rolls, spreads the effect. Thus, in
general, the largest shape change occurs under the actuator
which is varied; however, care must be exercised in inter-
preting the curves since shape is defined in terms of devi-
ations from the mean.

The shape profile for racks 1 and 8 should be sym-
metrized about a vertical axis passing through the mid point
of the work roll. (Similarly, the profiles for racks 2 and 7, for
racks 3 and 6, and for racks 4 and 5 should be symmetrical.)
Figures 12-15 are symmetrical to an accuracy of about
10%. The profiles are not symmetrical at the edges and this
is due to the fact that the edge effects are ignored in the
model.

The model also provides mill gains. Linearized mill gains
are calculated about a given shape-operating point, and
these relate the shape changes to the rack changes. If the.
shape is measured at eight points across the strip the gain
matrix has the form (units=Nmm-3):

X

-1-48 -1-26 -0-76 -0-53
-1-35 -1-12 -0-90

4-09 2-22 065 -0-92
1-67 443 095 -0-21} -1-31
-0-32 017 141 1-06{ -0-63 -1-12 -1-38 -1-16
-0-85 -0-81 176 154} 093 007 ~1-05 -0-99

-0-76 -1-06 -0-42 0-60| 1-91 1-44 -0-29 —0-59

-0-73 -1-14 -119 -0-69| 105 160 0-89 —0-36

-0-57 -0-94 -1-18 -1-15| -0-49 046 213 1-99

-0-46 -0-73 -1-08 -1-13 x—1~43 -096 210 273
The eight rows of the gain matrix represent the eight points
across the strip, and the eight columns correspond to eight
racks, e.g. the elements in the second column give the shape
at each point across the strip width when the second rack is
moved by 1 mm. Thus, g46=0-07 is the shape at point 4 when
rack 6 is moved by I mm. The above matrix was obtained
for a rectangular strip whose width was 1-6m and whose
mean input thickness was 2-42 mm, with 159, reduction. The
gains include small errors due to numerical problems and
the fact that the mill is non-linear. The gains show some
dependence upon the strip width. It is noted that the above
matrix is approximately symmetrical if the matrix is folded
about the line XX and about the line YY. This will always
be the case if the strip is centred in the mill.

Metals Technology July 1981



Gunawardene et al. Model for Sendzimir mill 281

Conclusions

The derived model is based on theoretical results and the
accuracy of the model will depend upon the assumptions
made. One such assumption is that the additional stresses
at the strip edges due to roll flattening are neglected. This
will introduce errors into the final results but the model will
be modified to include the edge effects: The results from the
improved model will be checked against the present results
for accuracy.

When calculating the deflections of the rolls the contri-
bution due to shear was neglected. This will also introduce
some error which will be checked at a later stage.

The roll-force model does not involve an iterative pro-
cedure but uses an approximate explicit solution. However,
the iterative solution which employs Hitchcock’s formula is
more accurate. These two methods of solution were com-
pared and the error of the approximate solution was found
to be less than 1 9 for typical rolling schedules.

The effect on the final results of variations of the con-
stant B which appears in the stress equation must also be
determined. The model seems to produce reasonable re-
sults for strip shape, but this must be confirmed by detailed
experimental investigation. Normal operating records will
be used where possible to test the model, but two coils are
also to be rolled for a specific set of shape experiments.
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Appendix 1

Roll-bending equations and deflection

An expression is derived below for the roll deflection
caused by a point load applied to a roll resting upon an
elastic foundation. From simple bending theory the deflec-
tion y can be written as
dty
El—==F—ky ..ccuurirriiiniiininanrnnes ....(15
oa- -k as)

where Fis applied force and k& is the elastic-foundation con-
stant.1! This equation is true only if the roll is in complete
contact with its foundation, under no load. However, in the
case when the roll is resting on an elastic foundation which
is bent this is not the case (see Fig.16).

Let the gap between roll and foundation be 4y under no-
load conditions. Then equation (15) becomes:

d4y
EI frprt =F—k(y—4y)
=F—ky+kdy

but

kdy=A4F
and

Eld‘t—-y =(F+4F)—k (16)
prprie 5 Z DN

The solution to equation (16) can be written as

Al
y=72[B(C—D) +E(F+G)] T an
where :
A=sinh2\/—sin2A/
B=2coshAx.cosAx
C=sinhAl.cosAa.coshAb
D=sinAl.coshAa.cosAb
E=coshAx.sinAx+sinhAx.cosAx
F=sinhAl(sinAa.coshAb —cosAa.sinhAb)
F' =F+A4F
G=sinAl(sinhAa.cosAb —coshAa. sinAb)

k 1/4 -
A= (4—57)

and constants a, b, and [ are defined in Fig.17. Note also
that equation (17) is true only for a concentrated force and
when 0 <x <a. The method of calculating y when a<x<b
is to substitute a-for 4 and 4 for a, and to measure x from
the end B.

P

(a) (b)
ano-load case; bloaded case
16 Example of loaded roll
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pendix 2

-flattening equation

is section the local deformations due to flattening in
ntact regions between rolls in the cluster and between
rolls and strip are determined. The approach follows
of Timoshenko and Goodier!! and, more recently,
-rds and Spooner.4
en two infinitely long elastic cylinders are in contact
tal interference y12(x) can be written as a function of
ad per unit length g(x) as

213(d,+d>
(x)=qg(x)}(c1+c2)In [%(-;()-(_6‘-1—4-?:)-]

e d1 and d: are the diameters of the cylinder and ¢1 and
e two constants depending on the elastic properties.
loading is, of course, non-uniform but neglecting
d-ordererrors:

)= y1z(x)

e3(d1+dq)
(c1+c2)In [—__Zq e +cz)]

w variable M is defined to eliminate g(x) from the
-hand side of equation (19):

_9()
Fiw
e w is the length of the roll.

)= y12(%)

_ ezla(dl +d2) llllllll
(c1+c2) [ln (m) —]nM]

e23(dy+d-)
M¢ln [Z(F/w)(cr%-cz)]

Y=~ Flw
ation (21) becomes:
y12(x)

(01+Cz){ln [2( "_’F )] +ln(d1+dz)—-ln(F )}

above equation is true only for positive values of
). Therefore, it is assumed that when yi12(x)<O0,
=0.

)~

22

The interference y12(x) can also be calculated from roll
bending using the relation

y12(x)=3(d1 +d2) — D1z +y2(x) —y1(x) +ywe(x) ..... (23)
where D2 is the distance between the two centres.

The model proposed by Edward and Spoonert is used to
calculate the work-roll flattening. The proposed model is

Yus(X)=[b1+b2p(X)ya(X) e (24)
where
3d
yu(x)=2p(x)cln [2 o )] ....................... 25)

is the Hertzian flattening which occurs between two in-
finitély long cylinders having the same diameter and the
same elastic properties. Equation (25) is obtained by
puttingd=di=dz and c=c1=ca. )

Constants b1 and b2 are estimated to be 0-5 and 0-325
mmt-! and p in equation (24) is the rolling pressure.

Appendix 3-

Elastic-foundation constant K calculation

At various points in the roll cluster two rolls rest on one
roll. In order to use the bending equations it is convenient to
use a single equivalent value of the foundation constant K.
This is illustrated in Fig.18. This value of X is determined
below.
Let the deflection of roll A in the direction of P be ya.
The deflection y 4 in the direction Pz can be calculated as
yas=yacos(fz—0)
and, similarly, the deflection yac in direction Pi is given by
yac=yacos(f1+6).
If K, and K: are the foundation constants between the
cylinders A and Band A4 and C, respectively, then
Pi=Kiyac
and
P2=Kz2yas
but
P=Picos(01+0)+Pzxcos(0:—0)
=K1y acos?(01+0)+Kzy acos?(02—6)

but
k=2
YA
and we obtain

K=K cos%(61-+0)+ Kzcos2(f2—0).

18 Equivalentloaded rolls
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Appendix 4

input and output stress profiles

From the geometry of Fig.19 it can be shown easily that

haosshe+RPnZ .ot (26)
from continuity of mass flow

Vehe=Valtn..oooiiiiiiiiiiii i (X))
By substituting An from equation (26) in (27) we get

Va= Vn( 1+ R¢“2) ................... e (28)

h2
The per unit slip is defined as
Ve—Vn
T e (29)

From equations (28) and (29) the value of s is found to be

s=Ret (30)

Fra It
where
h2 h2 Hn

¢n='\/;tan(i-7)

and

Hn:T—Z_p: n I 1—oslks

Equation (31) can be derived by considering the roll-gap
variables, by differentiating s with respect to o1:

H: 1 [hz 1 —O'x/kl-l

ds 2R d¢n
m: = h—2¢n . E .............................. (32)
2R, d¢n dHa
~% I, ag.
but

and

dén  2h2 h: Hn
dHn———E[l-f-tanz(\/I:z-?)] ................ (33)

19 Roll-gap conditions

By substituting these values in equation (32) and simplifying
we obtain

dO’]. k1—0'1 ..................................

where

By substituting for ds/do: and ds/do2 and simplifying we
obtain

Aor=yA02 ..o e (39)
where
_ki—o
r= ke—o2
Edwards and Spooner4 derive an equation to calculate the
output stress which is given by

dor=pEl2. B _y 4 Ao

b b 1+y
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