Sheffield
Hallam
University

The automatic design of experiments : Some practical algorithms.

GREENFIELD, A. A.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19724/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19724/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

PuND SIRFFI
SHEFFIELD SI IVVB

ProQuest Number: 10697026

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10697026

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

The Automatic Design of Ekxperiments

Some Practical 4Algorithms

by A. A. Greenfield B.Sc., F.I.S., F.S.8.

A thesis submitted to the Council for National
Academic Awards for the degree of Doctor of

Philosophy

April 1979 Sheffield City Polytechnic

1 .

The Automatic Design of Experiments

Some Practical Algorithms

AnSTRACT

The purpose of this study was to develop a methodology,
represented as a set of programmable algorithms, for the
design of experiments of the types that are generally likely
to be useful in the physical sciences. This has been
achieved by adding to the established theory and practice

of designing factorial experiments f'or both qualitative and

quantitative variables.

Algorithms were develo,.ed for designing fractional two-level
factorial experiments according to a pre-specified model to

be fitted, expressed in terms of required ef't'ects to be
estimated. These algorithms are extended in two ways.
(ne of' these is to allow a fractioral two-level factorial
design to be augmented with extra points so that quadratic
ef't‘ects can be estimated. The second is to enable fructional
asymretric multi-level factorial expeoeriments to be designed:
balanced fractions first by appiying the theory of cyclic
groups; then f'urther reduction in the size of' the design

by using the trace and determinant of the information matrix.

'he application of the algorithms is illustrated with examples
drawn from the physical sciences, particularly metallurgy.

The algorithms developed in the study have been tully implemented
using standard Fortran 4 with a few specified exceptions. These
prosrams are listed in three appendices. The programs have
been run on computers in research 1aboratqriés‘in Australia and.
the Urnited States as well as in Britain. fThey will benet'it -
research scientists who are planning experiments and have access

to interactive computers.

The principles of algorithmic development are explained and the
whole text is supported by retf'erences und by a glossary of more

important terms.

The

CONTENTS

Chapter one

Chapter two

Chapter three

Chapter four

Chapter five

Chapter six

Automatic Design of Experiments

Some Practical Algorithms

INTRODUCTION
1 Background
2 Objectives
3 Algorithms

CHOICE OF EXPERIMENTAL
CLASSES

TWO-LEVEL FACTORIALS
1 Background
2 Algorithms
3 Examples

QUADRATIC DESIGNS
1 Background
2 Al gorithms
3 Examples

ANALYSIS AND SIMULATION
1 Introduction

2 Examples

FRACTIONAL ASYKMETRIC
MULTI~-LEVEL FACTORIALS
1 Background
2 Al gorithms

Chapter seven REDUCING THE BALANCED
ASYMMETRIC FRACTION
1 Background

2 Using the trace
3 D-optimal algorithms
4 Examples
5 References
Chapter eight CONCLUSIONS

1 Work done
2 Further work

3 Acknowledgements

REFERENCES

GLOSSARY

Appendices APPENLCIX ONE
Programmed algorithms of

chapters three and four

APPENDIX TWO
Programmed al gorithms of

chupter six

APPENDIX THREE
Programmed algorithms of

chapter seven

The Automatic Design of Experiments

Some Practical Algorithms

CHAPTER ONE

INTRODUGCTION

1 Background

2 Objectives

3 Al gorithms

1 Background

Gauss (1809) was the first person to allude to the

design consiceraiions of making physical obsersations.
most of his great work on the theory of the motions of
heévenly bodies was devoted to the development of algorithms
for computing orbits from precise observatiions. Then, .
in the third section of the second book of the work, he
developed the normal, or Gaussian, density function

and the method of maximum likelihood, and he presented
the method of least squares (which he claimed to have
been using since 1795) am the method of weighted least
squares. In the midst of this he commented, as an
aside and without proof, that if only a few observations
were to be made to determine an orbit they should be as
remote from each other as possible to minimise the effects
of observational errors. | When he later developed

this statistical theory into a full treatise (1821) he
discussed at some length the further design problem of

the eff'ect of an extra observation on already estimated
coeft'icients and the conditions that must be imposed to

ensure minimum variance of hhe estimates.

It was a centuryAlater when Smith (1918) suggested maximising
the determinant of X'X, known as the information matrix

or the cross-product of the design matrix (X), as a
criterion for designing experiments. The determinant

is inversely proportional tc¢ the generalised variance of

the estimated coefficients. Smith applied her criterion

to experiments for estimating polynomials of varying

degrees. Givenkthe degree of' the polynomial to be

f'itted, the number of observations to be made, and the

interval over which the polynomial should be f'itted, she
determined the spacings between observation points and

the proportions of observations to be made at those points
in order to minimise the gemeralised variance of the
estimates of the coefficients of the polynomial. The
method is neatly presented in three pages by Kendal and
Stuart (1966) who had the advantage over Smith of modern
matrix notation and algebra. However, despite the
clumsy notation of' her day, Smith went on to consider
the effect of heteroscedasticity of errors on the optimum

allocation of observations.

he concept of experimental design grew most rapidly in
agricultural work. Fisher (1925) introduced the subject.
briefly in his first edition of 'Statistical Methods for
kesearch Workers.' He illustrated that applied statisticians
were mainly concerned with data examination, analysis, and
statistical tests of conirasts, - ‘he method of experimental
desi,n seems to have been: think of an arrangement of
trials, such as a Latin square, then see if the arrangement
meets the experimental criteria. These criteria were: can
the desired contrasts be estimated from the data, and will
the arrangement lead to statistical tests of the estimated

contrasts?

It seems as if' Fisher realised the importance of experimental
desien at the time the book was published, for within a
vear (1926) he published a major paper on 'The arfangement

of field exveriments' and later wrote the first definitive

text {1935) on 'The design of experiments'.

Fisher had a profound eft'ect on the development of
experimental design because his work was based on agricultural

experience in which the independent variables were usually

qualitative factors or could be treated as such, and

the method of analysis was 'analysis of variance'. He

and his contemporaries applied considerable ingenuity to
finding designs which were orthogonal in‘that the contrasts
between levels of different factors could be estimated
independently. A host of design types was developed:
randomised blocks, balanced incomplete blocks, split |
plots, Latin squares,"Youden squares, an~ lattices, among
the better known. Many books were written about these
arricul tural designs, wviriations on them, applications,
their analysis, ani what to do when missing values upset
the balance and made edtimation and testing difticul t.

The most authoritative of' the books covering the subject
were probably Cochran and Cox (1950), Kempthorne (1952),
Brownlee (1953), and Davies (195L). lises were found
for these desiins in other than the agricultural sciences.
They were aprlied with quantitative variables as well as
mialitative: the levels of' the gquantitative factors were
us=uglly egually svaced flor convenience. The criterion

nroposed by Smith in 1918 seemed 1o have passed unnoticed.

"he theoretical unification of the methods of analysing
these tyres of' desipn was presented by Tocher (1952 when
hi at the same time sugrested that computers he set to
wnrk to generate all possibly useful designs. There were
several warnings in the discussion of that paper against

the 'snpusapre michine' anprosch to experimental design.

Tr his 1926 paper, Fisher dirccussed the concept of
tactoriasl experiments. "hmere is no trace of an individual

orisinator of these; ther seem to have grown out of

general discussion at Rothamsted. Fisher argued that
while these could become very large and complex experiments,
they had the advantages that: .

1 the plots are used several times over to determine
the average effects of different factors;

2 only by factorial design can any information be
obtained on how responses to one factor are
affected by another (that is:‘they permit the
estimation of interattions);

3 factorial eX¢eriments provide a wider inductive

basis for conclusions on the effects of the factors;

At the same time he recognised the possibility of
confounding: the deliberate sacrifice of some unimportant
information so as to improve the precision of estimates of
important effects. The methodology for dealing with
confounding was develoned by Yates (1933) who also
designed an alporithm (1937) for easy analysis of
two-level factorials. A further advantage of confounding
wrs soon realised: it could be used to select a fraction
ot' a factorial. The theory of fractional replication

wi.s developed by Finnev (1945) and Kempthorne (1947).

The factorials which have had the widest impact are those

i~ which each factor has only two ievels. Their advantages
are that they are easy to design and to analyse and they can
just a< easily represent cuantitative variables as well as
qualitative. They have further advantages which will be
disrussed in later chapters, since much of' the work ~f

this study is based on the Adesirn of fractional two-level

factorials.

The development of agricultural type experiments by the
Fisher group was represented in so much literature that
for several decades the rest of the scientific worldeas
largely misled into believing that the subject of
experimental design comprised an understanding of only
those agricultural designs. Also, because the

mean effects or contrasts were so easy to compute,
estimation was largely disregarded as an aspect of
analysis and the emphasis was placed on tests of significance.
In'%he Desigﬁ of Experiments' Fisher wrote: 'Every
experiment may be said to exist only in order to give

the facts a chance of disproving the null hypothesis.'

Experimentation in the physical sciences is often much

more complicated than the traditional field trials, and
estimation of effects is not so easy. Thus analysis

tends to be by the regression method of leamst squares as
developed by Gauss rather than by Fisher's analysis of
variancee. Tt was Tocher (1952a) who showed that
reyression analysis was applicable to désigned experiments
as well as to naturally occurring data. This observation,
torether with a growing literature on determining the
relative efficiencies of desipns (see wald (1943) and
“hrenfeld (1953)), led Kiefter (1959) to resurrect the
criterion suprested by Smith in 1918. This criterion,
which is one of several alternaiives described by Kieffer,
has subsequently been the subject of many published papers.
Tt is krown as the criterion of D-optimality and, in simple
terms, it expresses the objective of choosing a desien
which maximises the dete'minant of the 5}5 matrix. It is

unfortunate, however, that the many papers nublished by

the Kieffer school (see Kieffer and Wolfovitz (1959),
Kieffer (1959), Wynn (1970, 1972)) are long, dintricate,
mathematically involved, and literally obscure, so that
they have had little influence on the originally applied
subject of experimental design. Indeed the subject

has gone two ways: at the applied level there have
~been some developments of agricultural type experiments,

" particularly in the augmentation of two-level factorials
with extra points to permit the estimation of quadrétic
effects (which will be described in chapter four); and
on the theoretical level it has become a branch of
optimising mathematics remote ffom the original intended
purpose. The mathematical developménts are summarised

by Fedorov (1972).

2 Ov jectlives

One of' the objectives of' the present research has been
to make a practical contribution which will help non-
statistical research scientists, particularly physical
scientists such as chemists, physicists, metallurgists,
and engineers, with a fairly closely def'ined sub-area
of what has become a massive subject. Just as there
has had to be some selection of material for the
nreceding historical ihtroduction, with many aspects
omitted and many contributors unmentioned, the
choice of' a sub-area that can reasonahly be tackled in
a single study must inevitably leave most of the

sub ject untouched.

The choice will be discussed more fully in chapter two.

"t this stare let it sut'tice that the aim has heen

to meet most of the erperimental desi,m needs of

nhvsical research ani to develop automatlic methods of

desipn that will obviate the need t'or the research worker

to identify the type of design suitable for his work.

The jnferactive nature of' the algorithms that have been
developed will lead naturally, through questaons and
snswers about his research objectives, to the identification

ot a snitable type of derirfn.

1.8

A classical research situation, encountered almost daily in any
industrial laboratory for research and development, can be described

as fbllows:

The objective is first declared as the optimisation of a product
or a process; the characteristics of that product are identified;
precisions of measures of those characteristics are stated§ and the
control variables are identified, usually the compositional and

process variables, with ranges and precisions.

Sometimes the objectives of the experiment are represented as a
mathematical model relating the measures of the product characteristics
with the control variables, but this isvrare. More usually the
research worker has little idea of the pertaining relationships and
can express them only in #ague qualitative terms. Clarity usually
follows questioning, however, so that it is possible to write down at

least a simple linear model including expected first order interactions

and perhaps also to include some quadratic terms.

On the basis of this information an experiment is designed so as
to estimate the parameters of the model as precisely and as accurately
as possible within the limitations of experimental costs. The objectives
of an experiment must always be to answer a precisely stated question
or set of questions., Almost always these gquestions can be stated in
terms of a mathematical model whose parameters are to be estimated or
perhaps compared with an alternative model. Sometimes an objective
goes so far as to include optimisation, but even this is a particular

case of estimation.

Experimental design can be laborious if done manually. Some
research workers, familiar with fractional two-level factorial experi-

ments, have spent days finding a suitable fraction. -Even then the

labour was probably worthwhile because a suitable fraction would
achieve the experimental objectives with considerable cost and time
savings. It was the original purpose of this study to assist the
research worker in obtaining quickly and easily an'experimental

design suitable to his objectives. The aim was for the following
dialogue to take place between the laboratory computer and the research
metallurgist. The dialogue would be thriough a keyboard and typewriter

terminal.

; The user would first establish the date and research name, where-
upon the program would open up a new data file under that name. It

would then begin to ask the user questions.about his variables. Which .
are the dependent variables and which are the independent? The ansﬁErs
may be given as names or as numbers. .Also identified would be the
intermediate variables which, to the physical metallurgist say, may be
worth recording to extend his fundamental understanding of the subject,
but from the viewpoint of a predictive statistical model may be ‘
ignored. An example of this type of variable is grain size. It is not
an independent variable from the viewpoint of experimental design because
it cammot be controlled directly. Strictly it is a dependent variable
because grain size is determined as the response to control or independent
variables such as composition and process treatment. On the other hand
it cannot be claimed to be a commercial characteristic of steel, although
there are said to be relationships between the grain size and the '
commercial characteristics. So I call it an intermediate variable.

Having established the names of the variables and their type, the
computer program would probe deeper. What are the anticipated ranges
of the variable values? What interactions exist between independent
variables? (The meaning of "interaction" will be discussed later). And
what curvatures might be expected for each of the dependent variables?
What accuracies might be expected in meeting the specifications of
independent variables? Are there any practical reésons for dividing
the full set of observations into blocks? Which of the variables
are quantitative, and of these which have continuous values and which
have discrete values? Which of the variables are qualitative and how.
many levels of each quality are there? Are there any mutual constraints
between the variables: such as in a metallurgical experiment when one
element must have a low and narrow range when a second element is at a

high level, and vice versa, so that their mutual region of variation

is banana shaped?

&
constrain ed
expecimentel
regéon
Pigure 1
9('

The computer program would allocate a disk area to the research
project and would store the information so far obtained. It would then
produce the most efficient design corresponding to this information.

The research worker would be expected to follow the computer-
printed design and return to the computer later with his results. The
analysis programs would take into account any missing, spoilt, or
extra data. The computer would produce reports in the form of prints
of the analysis, plots of contours, and sections of response surfaces.
These would assist the user to determine whether to make further observa-
tionsg, in which case the computer would offer its advice on further
observation points, or to produce a final report and clear the disk

area for another user.

Process research increasingly calls for the real-time analysis of
data as it is collected, rather than waiting for an experiment or a
series of experiments to be completed before data analysis begins.
This presents the further challenge of automatic sequential analysis
of data and synchronous revision of eiperimental desién. Thus the aim
of this research included, originally, the prespect of extending to
the on-line situation the automatic design and analysis of experiments
already described. In these cases we should be logging data from and
controlling processes whose properties may not be known in ddvance:
the computer would establish mathematical models describing the
processes and would improve these models as it acquired more data.
Thus the computer would learn from experience, but rather more quickly

than a human being, although admittedly with some limitations.

The system would be entirely flexible so that even if operations
changed overnight from metallurgy to hydroponics it would still be useful.

Within each laboratory there would be a wall-mounted termination board

and keyboard comnected directly to the central computer. Terminals
would be labelled with types of signals that could be connected:
analog input and output, digital input and output; and the permitted
voltage ranges. Within the computer would be a suite of generalised
data analysis, acquisition, and control programs. The user in the
laboratory would comnect leads from his experimental process to the
termination board. Through his keyboard he would have a conversation
with the computer similar to that described for the off-line automatic
design and analysis of experiments. He would signal to the computer
when the experiment was set up andrready to go. And it would go!

The flexibility must be stressed: it would not matter to the system
whether the experimental process under study was a miniature electro-
slag refining plant or a tomato plant, so long as the signal types,
voltage ranges, and sampling frequencies were suitable to the computer.

In some ways the original aim of this research as described |
above was over-ambitious and unrealistic. Within limitations, however,
it is still practical and achievable, certainly worth pursuing, and

some of it is already within reach.

One of these limitations is dictated by the plethora of approaches
to experimental design. The revigw paper by Herzberg and Cox (Vﬂ5q>
listed nearly 900 references. It is notable that most were of a highly
theoretical and non-applied nature and ne was concerned with automatic
design of experiments as an aid to the industrial research scientist.
That paper nevertheless highlighted a point of considerable importance
in this current study: that the class or classes of experiment studied
should be sufficiently narrow to allow significantly noticeable and
useful progress. This point was made by Tocher@&&éwho wrote: "It soon
became clear that any such account, if treated in the detail commensurate
with the importance of the subject, would be excessively‘long and that
some curtailment of the programme would be necessary. Consequently,

... attention is concentrated almost entirely on those experiments

normally referred to as block experiments."

The choice of experimental classes has accordingly been restricted

in this present study and is discussed in the next clhinu.r,

A further limitation is the extent to which a conversation between
research worker and computer can be allowed to proceed without the
guidance of a statistician. While it‘ahould be possible to develop
programs to support question and answer routines with descriptive
text and graphical illustrations to explain difficult points to the
conversing scientist.when he seeks clarification, it became
apparent during the study that such a system would be far from easy
to implement. | Indeed, to be wholly Satistactoxy, it would need
a much deeper study into the psybhology and linguistics of program
instruction. vHence, while the original aim of developing automatic
design procedures was maintained, it has been restricted to
providing an aid to the applied consulting statistician and to the
initiated research scientist rather than providing a conversational
system available to all-comers regardless of their knowledge, or
lack of knowledge, of elementary mathematical modelling and

experimental design and analysis.

The remainder of this thesis comprises chapters on the choice of
experimental classes, approaches adapted to their automatic ‘
design, some computer programming points, data analysis, and
some applied examples. New contributions to the subject and

outstanding problems are identified throughout the thesis.

1.13

3 Al gorithms

In publications related to the earlier stages of this
research (Greenfield (1972,1974)) the procedures that
Were developed were illustrated in program segments
written in an extension of standard Fortran k. The
full vrograms were published as appendices. These
proerams were freely available‘and research laboratories
in several countries tried to implement them. Some
were successful and some were not. The problem‘was
that programs are in general not easily portable from
one machine to another even if the machines are claimed
to supnort the same high level language because differences
between muchines lead to a unique diaiect of' a high level
langruage f'or each. - If a program were written precisely
in Fortran 4 it would be portable. However, dialects
are sufticiently diftf'erent that anlimplgmenter may not
suwe how 1o convert a program, Some dialects have
extensions that are oriented towards the class of
apnlications t'or which &he computer has beenvdesigned.
This applies particularly to scientific computers. It
may he arpued that programmers should stick rigidly to
ths standard, but if they do not use all the available

extensions thev are underusing the facilities.

Tn a later publicition (Greenfield (1976)) the method

of selecting def'ining contrastis in two-level experiments
was iescribed in a sequence of simple steps expeessed -in
I'nzlish. ‘Subsequent correspondence proved that the
nrocedure was immediately more compfehensible to potential
users than if it had been published as a detailed Fortran

OTOFTaN. A list of progsram statements is not the

clearest way to describe a complicated procedure. On

the other hand, a sequence of steps in English is not
adequate to describe other than the simplest of mathematical
procedures, In this thesis, therefore, an algorithmic
 style, which has recently become conventional in the
computing world, will be used. This has advantages

that will be described below.‘

An algorithm is a sequence of rules for solving a problem,
uéually, but not always, mathematical. The word is not
new. It has been used with this meaning in English,'
German, and Létin'(algorismus) for some centuries. Much
of Gauss's astrondmical and statistical work was céuched
in algorithmic terms and he used the word in the modern
sense. However, in recent years it has become clear
in computing circles thut communication would be greatly

. improved if a universal conventiqn for stating algorithms

were adopted.

The primary purpose of an algorithm is to specify the
correct Sequence of rules for transforming an initisl.
value, or a set of inmitdal values, into a final value,
or a set of final values. For example, an'algofithm to
design an experiment will be a sequenée of rules that will
transf'orm an initiai statement of 'model, variables, andv
allowable values' dinto the design of an experiment which
would yield data suitable for the estimation and testing -

of' the model coeff'icients.

A secondary purpose of an algorithm is to Supply a
sequence of rules that will minimise the time and
effort needed to reach the correct solution to the

problem for any arbitrary initial valdes.

Another purpose of an algorithm, and one that has
become increasingly impbrtant, is to provide a

sequence of rules fhat are easy to understand, simple"
to prove correct, and easy to change if the specifications
of the problem and the way to solve it change. As
algorithms become more and more complex there is
increasing difficulty in understanding how they work,
how to find and correct errors, ‘and how to make
development changes. It has been claimed that

more than half a programmer's time is spent dealing‘

with program correction, maintenance, and modification.
Leading programmers, most notably Dijkstra (1973),

Knuth (1973), andGoodman and Hedetniemi (1977), have
developed a convention and a set of tecﬁniques that

have already become widely adopted. These comprise

a notation for flowcharts, a notation for the stepwise
description of an algorithm, and an approach to programming
known as 'top-down structured programming'. These will
be explained here because they are used throughout the
rest of this thésis to describe the experimental design
algorithms. If these are properly understood, then
any programmer, using any programming language, on any
machine, should be able to transcribe the algorithms
into working pnograms.' Furthermore, for simple
experimental designs, the designer should be able to
follow the algorithms using pencil and paper to design

his expériment manually.

A tlowchart is a directed network having three kinds

of box:

A function box, illustrated
here, is used to represent

a function f: X—>Y

A predicate box, illustrated
hére, is used to represent a
logical function

p: X—-‘ri;l‘,F}
which passes control along

one of two paths.

A collecting box, illustrated
here, represents the passage
of conirol from one of two
incoming paths to one outgoing

path.

y

f'unction
(input)

(output)

v

predicate

A structured program is one that can ve expressed as

a composition of the followins four primitive flowcharts:

A functional composition, dillustrated

here, which is simply a sequence of

f'unction boxes.

Figure 5

N

function
one

function
two

v

Figure 2

Figure

Figu#e 4

1.17

A selection, illustrated here,.

which uses a logical test,
predicate

whose outcome is either true

or false, to determine which | n

of two alternative functions .
function function

should be done. In practice, - one two

a teét with more than two

outcomes may be used but this

is equivalent to a sequence of

two-outcome testse.

Two forms of iteration in which
a logical test is used to decide

whether or not & function should

be repeated. The distinction

between the twe.forms is that in o 45
unction .
one the first time the test is function

met is before the first time the

function is met, and in the other

the order of the first meeting is predicate

reversed. predicate

Figure 7

Structured programming is the process of designing algorithms e
in terms o1 structuréd t'lowcharts. Top-down structured 225222—11
programming means starting with a gene:'al statement of a
function and then analysing it a step at a time into levels
of' greater detail until the stage is reached when code can
be writien easily in a high level language to implement the
developed algorithm. This final stage is best done in
certain languages like Algol and Coral which have been
designed with an algorithmic nature. It is much more

difficult, although still possible, with Fortran which has

a different structure, I shéll however use Fortran to
illustrate programming features because it is by far the

Scienkitic . .
. most widely usediprogrammlng language.

The top~down structured programmihg procedure will be
illustrated with reference to Euclid's algorithm for
determining the highest common.factor (hcf) of two integers.
This is also known in America as the greatest common
divisor (gecd). I have chosen Euclid's algorithm as -an
illustration for three reasons: it is needed as a sub-
routine in the experimental design algorithms developed

in chapter six; it is complex enough to illustrate
development at several levels of aetail; it is short

enough and simple enough to serve as an illustration.

At the same time as using the example to illustrate top
down programming in terms of' flow chart representation, I
shall use the occasion to illustrate the conventional
linguistic representation. This bears a striking
resemblance to the programming language Algol, an apt
neologue from 'algorithmic language'. The conventions
used for describing algorithms are however much more
flexible than those of a vrogramming language which has
strict rules rather than useful conventions. Thus an
algorithmic stepkmay be described in the broadest functional
terms using English or mathematical notation, rather than
in explicit computational expressions, assignments and
tests, although at the final stage of developing an

alrorithm these latter will appear.

Une of' the conventions is to exploit different typefaces
to clurif'y meaning. Commonly used words are set in

Jower case boldtf'ace, indicated in typed copy by a wavy

underscore. Examples are: algorithm, and, 'Qg; else,
fi, for, goto, i{, od, set, then, through, to,

while. An algorithm name is set in boldf'ace capitals,
such as HCF. The derivation of an algorithm name may

be italicised in parentheses. In typed copy italics are

indicated by a straight underscore. For example:

Algorithm HCF (Highest Common Factor)

The word 'step' followed by a number, is used to label a
step in the algorithm and is also set in italics: Step 5
This label may be indented to iﬁdicate the level of logic.
Immediately after the label Step i, a brief phrase in roman
medium typeface in square brackets to describe the purpose
of'" the step. Further comments, also in roman medium
type, may appeur within the step and are usually separated

by semi-colons.

Mathematical, logical, and computational expressions are
also put in medium type. The reverse arrow is used for
assignment. For example:

K& 5

means that the variable K is assigned the value 5.

The two words fi and od have been introduced so that the
ends of conditional statements and sequential statements,
initiated bv the words if ani do respectively, can be

identit'ied unequivocally.

1.20

In top déwn structured programming we repeatedly ask
if the function being considered can be expressed as
a primitive flowchart. Top down programming is illustrated
in the following example which starts with a single function
box. In practice, I do not always use strictly structured

programming because it sometimes seems clumsy.

Algorithm HCF (Highest Common Factor)

iven two positive integers, J and k, find
their highest common factor which is the largest

positive integer, h, which divides.both j and k.

} ‘Lread AL I
Step 1 read Jj, k :
Step 2 he—hef(j,k) A
2 .
Step 3 write h h e— hC‘CLK)
N y
- write h "
Figure 9

At this stage the method of evaluating the hef has not
been described, but the function has been expressed
.formally; that is, the function and variables ﬁave

been indicated. The next stage is 1o analyse the function
in terms of' one of the primitive flowcharts. Statements

that can be made immediately are:

a) If j =k then hef(j,k) =

b) If j=1 or k=1 then hef(j,k) = 1
e} If j =0 then hef(j,k) =k

a) If k =0 then hef(j,k) = J

However, the application of this function in experimental
design is to do with factors with more than one level (see
chapter six) and the initial values of 5 and k will always
be greater than one. Thus only question (a) need be asked
and the function meay be replaced by a primitive selection

tf'lowchart:

Alﬁ_orithm l{‘QE (wnowouon)
 step 1 read Jk 4 | |
step 2 if j = k then step 3 hej | * , r—_
. . h‘_k 3) .
glse steo k hehef(4,k) £3 GR he
step 5 write h :

Y

N

Figure 10
Schoolchildren are taught to find HCF's by finding all the -
prime factors of both initial values and comparing them.
Euclid's algorithm is based on the division theorem which
states: If é and b are two positive integers then two
integers q ani r can be found such that
a=bg +7r
It is clear that the highest common flactor of a and b must
also be a factor of r. Thus hef(a,b) = hef(b,r).
If this division theorem is applied repeatedly, a remainder
of zero must ultimately appear and the last positive remainder
hefore that must be the hcf of‘a and b,
Now, substituting j and k f'or a ant b, the function box

marked * in the last flowchart may be analysed as either of‘

the follqwing: ’ 5,
Yie~rem (i,)
.
| he. ;‘(b £ T > heK
(@cem (K "d <
KPS
¢ Ka—¥ ¥ B v
] Figure 11

In both of these, the expressicn rem(j,k) means the remainder
when integer J is divided by inierer k. The first of the
alternativeg?strictly f'nllows the conventional iteration
nrimitive flowchert, but since this would leaa‘to two more
assipnments and one more test than the second alternativ%z)'the

latter is pretferred.

Alternative (a) would be expressed as:

step 4 while k £ 0 do step 5 od
step 5 do re-rem(j,k); jék; ker ad
step 6 he=]

- Whereas alternative (b) would be expressed as:

step &‘ re-rem(j, k)
step 5 if r £ 0 Qg‘step 6 od £

step b do jé&k; ke-r; goto step greg
step 7 hek ‘

The solution of rem(j?k) may be left to the final programming
stage in the knowledge that in many Fortran function libraries
there is a function MOD(J,K) which is assipned the value of
the memainder when J is divided by K. Vithout this function
the expression K;(K/J)*J may be used to give the remainder
since the first part of the engession to be evaluated (K/J)

returns only the partial or integer quotient.

There is one further small refinement to be made to the
algorithm. If at some stage the remainder is one, there is
Ac]early no need to repeat the procedure and determine that the
remainder at the next stage is zero. We cun conclude instead
that j and k are mutually prime, that is hef(J,k) = 1. With

and the Stens rRnumbeed,
this test added,Lthe algorithm and flowchart become:

read Jj,k

re=rem(j, k) 3 Y
he—j

Je=k
ket
Figure 12 ' o

write h

Algorithm HCF (Highest Common Factor) Given two poaitive
integers J and k, find their highest common factor which
is the largest positive integer, h, which divides both j and k.

Step 1 read j, k
Step 2 if Jj =k then step 3 h<—j
else do step 4; step 5 od fi

Step 4 re-rem(j, k) .
Step 5 if r =1 fggg step 6 he—1
Step [if r =0 then step 8 he—k

| else step 9 do Jjek; ker;

goto step b od £i

Step 10 write h

The next stage, writing the program, will be illustrated here
although it will normally be left out of the main text and pdt
in an appendix. Coding in Algol after the final algorithmic
statement is straightforward. However, since Fortran was not
designed with structured programming in view, some departures
from the aigorithm may be indicated. One useful device in
‘Fortran is the three-way conditional statement IF(X)a,b,c

where a, 5, and ¢ are three branch labels according to whether

X is negative, zero, or positive. This is used in the following:

FUNCTION IHCF(JJ,KK)
IF(JJ.EQ.KK) GO TO 5
J=33
K=KK
1 L=K-(X/J)*J
IF(L-1)3,4,2
2 X=J
J=L
GO 10 1
3 IHCF=J
RETURN
L THCF=1
RETURN
5 IHCF=JJ
RETURN .
END

There arc a f'ew minor points t6 note in this function routine.
’he function name has been chaﬁged from HCF to IHCF and the
remainder variable has been called L so that integer values
are implied according to the usual Fortran convention. Also
the function does not operate on the integer variablés passed
to it by the main program but copies them first.. This is to

avoid corruption of the variables in the main program.

This routine will execute Euclid's algorithm for all integers.
The division theorem ensures‘thafleven for pairs of very large
integérs the algorithm wili yield the hef after relatively few
iferations. In the application to bé developed in chapter 6,
however, it will rarely be used with integers greater than, .
say, 20. This suggests that if a difference is usedvinstead
of a remainder, the algorithm will work even more quickly.
The computation of a remainder calls for & division and a
multiplication which are both computationally slow compared
with a subtraction. Thus, reverting to figure 12 and
‘substituting ne=j - k in place of me—rem(j,k), and then
observing that this calls for J to be greater than k, the

flowchart and algorithm may be revised as:

reod J,k

J‘-K

de=g-k

K ed

weike h

Figure 13

Algorithm HCF (Highest Common Factor) Given two positive

integers j and k, find their highest common factor which is
the largest positive integer, h, which divides both j and k.

step 1 read j, k
step 2 1f‘ J)k gogo step 5

step 3 &f J = k goto step
else ste dé~k; kd-j; Jjé=d od 2;
step 5 de=j - k
gtep 6 if d = 0 ggto §t§g 8
€

Noting'that the predicates in steps 2 and 3 may be implemented
in Fortran by a three-~branch conditional statement, this

algorithm may be coded as:

FUHCTION IHCF(JJ,KK)
J=JJ
K=KK
IF(J-K)2,4,3
2 D=K
K=J
J=D
3 D=J-K
IF(D.EQ.0)GOTO 4
J=K
K=D
GO 10 1
L THCF=K
RETURN
END

-

]

This revision @ a function sub-nrogram illustrates that
bv recording the stages of top-down programming, it becomes

easy to make modifications.

The Automatic Design of Experiments

|
Some Practical Algorithms

CHAPTER TWO

CHOICE OF EXPERIMENTAL CLASSES

2.1

The obJjectives of an experiment can usually be stated

in terms of a mathematical model whose ﬁarameters are
.to be estimated. The best experimental design is

that set of combinations of values of the control or:
independent"variables which will permit the estimation
of those parameters with greatest precisioﬁ, with

least bias, and within allowabie dost limitations. A -
further criterion is expressed in terms of the use to
which the fitted model will be put: the design should
lead to the estimation of parameters such that.the

model may be used to predict values of the dependent
variables with the greatest possible precision and the
least bias, in a pre-specified region of the independent

variables.

These criteria are not apparent in the vorks of Fisher
(1925, 1935) whose major objective of experimentation was
to test comparisons between treatments. It is felt,
however, that Fisher tended to lay undue emphasis on the
impoftance of' formal tests of significancé in experimental
work. In part this emphasis on tests of significance is
attributable to the way in which the subject developed in
the agricultural and biologpical sciences, and to the faét
that in the simpler types of experiment the treatment
means are always efficient estimates. The emphasis on
significance tests has had unfortunate consequences, both
at a practical level and in theoretical work. ‘oo much
eft'ort has been devoted to the investigation of minor

- points of little real importance. This has resulted

in a proliferation of alternative metho: s of analysis,
hedged about with restrictions and qualif'ications, to

the confusion of the practical worker.

In 'Statistical Methods for Resear ch Workers' Fisher
"actually encouraged the statistician to look around for
the test ziving the highest significance! It is not
surprising that physical scientists sometimes remark
that they see little of relevénce to their research in
standard texts on experimental design and analysis (such

as Fisher (1935), Cochran and Cox (1950), and Kempthorne
(1952)).

The developing complexity of physical research has Ealled
for a different approach to experimental design based
upon the estimation of' effects rather than upon tests of
the sipniticance of' their comparisons. Indeed, effects
of' treatments can no longer be estimated simply;becauée
we are now faced with multi-paramcter mathematical models
which call for a mbre subtle approach: usua]ly least
squares regression analysis and sometimes with ingenious
coding of the variables. Furthermore, the research
worler usually knows that these effects, as expressed by
parame¢ters or coefficients of the model, exist and what
he needs is an etfficient estimate of tﬁe paraméferskand'

reasonably accurate estimates of their errors.

Two types of variable cun enter a model: qualitative and
quantitative, It may be argued that quantitative
variables should be further sub-divided into continuous
quantitative and discrete quantitative. For example, in
making a cake one might have any continuous measure of
sugar or fat, but discretely only one, two,"three or

four eggs. Hovwever, din reality continuous variables are

2.3

usually measured. and controlled in discrete steps. Cooks
would not specify sugar more vrecisely than to the nearest
half ounce; steelmakers would not specif'v carbon content

more nrecisely than the nearest 0.01 per cent.

In industrial research, where the major objective is
usuallv the optimisation of' a phvsical property or the
cost or yield of a process, this dependent wariatle may
he renresented as the response surface in the space of the
indenendent or control variables. In many cases, the
experimenter has sufticient knowledge of his process to
know, not onlv that eftfects exist, but that he is close
enongh to the optimum he sceks to be ahle to assume a.
response surface that is guadratic in the independent

variahles.

"his sitvation is so common that it was decided for the
nresent to 1imit the development of algorithms f'or the
design of continuous variable experiments to those situations

which could be represented by quadratic models.

Tndustriazl laboratories frcqnentlyvarrange experiments

based entirely on qualit ative variables f'or which there is

no srior justitication f'or ordering. ane ol" the variables
can theret'ore be couded so as to be analorous to discrete
aquantitative veariables. Such an experiment may be to assess
the eftects on a chemical estimation of': ditfferent labecratories;
diftf'erent apparatuées; dift'erent overators; difterent
onreparation; . cleaning or storage methods; diftferent sources
nt' materials; " or difterent types of atmosnhere. Such
variables are usually called factors and their values are
designate levels. The experimental planners are of'ten

faced with the major difficulty that if they wish to examine
more than two or three factors, eiach with several levels,

simple multinlicarion shows that the number of observations to

2.4

be mude is more than is practically vossible, 1limited
verhans b cost, time, and available materials. "This
nroblem has therefore beer studied and algorithms have

been developed to produce fractions of multi-level factorial

experiments.

This studv then is narrowed to an evamination of methods

for desiening experiments to fit ouadratic models in

anantitative variables (chapter four) and for designing experiments

in aqualitative veriables (chapters six and seven). Mixed
neciprs; that i1s desiens to desl with indeperndent variables
that are both qualitative and quantitative, are mentioned

in chizrter eipht as a suvject t'or further development.

There is, however, a class ot' experimentzl desisn which can

he need e a hnsis for peneratines both of these other tyoes

ot desien. This is the two-level tuctorial, or more
articilarlv, the fractional two-level factorial. As will
be rnecscribed in later chapters, the first stace in penersiing
«1ther ot' the two major desiens will be the. generation of a
tractional two-level 1t ctorial. This intersection is

illustrated.

Rox and "unter (1961) make the noint succinctly: 'A full

2k f'actorial design reauires all combinations of' two versions
of each of k variables. Tt a variable is continuous, the two
versinns become the high and low levels of that variable. it
4 variable is qualitative the two versions corresnond to two

tvnes, sometimes the presence and absence ot the variable.'

14

There is a further advantage in including the fractional
two-level factorial in this study: it is suftficiently

simple in concept to have acqﬁired an almost universal

adoption among physical, chemical, and metallurgical

research workers. They have been familiar with it

for some years, due largely to writers like Davies (1954.),
Duckworth (1968), and Mendenhall (1969). Yet these research
workers étill have problems and the most frequent is that of
generating the best fraction of a factorial to suit the

circumstances.

Accordingly, the next chapter of this thesis deals with
algofithms f'or generating fraétional two~level experimental
designs. Subsequent chapters deal with sugmenting these
tractional designs to fit quadratic models and with using two
level fractional factorials as the start of the procedure. for
designing asymmetric multi-level fractional factoriéls.

Figure 15 is a simple flowchart relating these procédures.

I [qencrate

"Do - lgocl
cackional

-(?xc)'or(al

cheptee "Haree)

2 .
Guantitatien_ F

W

S |use group
QMD‘L L ox
aSa—\»-\sh\e.
foackorials

chapter sfx>

Y

% o.usmz-\;w ‘ o A
design, ! wan
‘l“gﬁ:ﬁ;‘s obszrvgﬁu
(chapter four) T -
) ,) F
) Tuse D-eptimel
. | cribeecmt Fo
q rtduce desigw
S<re. .
(chaplerse 02-9

O—

Figure 15

{ stop Kk

The first function (box 1) in the flowchart of figure 15 is the
generation of a two-level fractional factorial design using the
procedure to be developed in chapter three. This follows from
the argument that whether the independent variables are qualitative
or quantitative, the fractional two-level design will form a bése

on which the more complex designs will be built.

If the variables are quantitative (box 2) and if only linear main
effects and interactions are expected (box 3) then the two-level

fractional factorial design satisfies the requirements.

However, if quadratic effects are expected for any of the variables,
then the design must be augmented with extra olservation points to
allow the estimation of those quadratic terms (box 4). The

algorithms for augmentation are developed in chapter four.

If the variables are all qualitative but any of them has more than
two levels, then the design is classed as an asymmetric factorial
(box 5). A procedure for generating balanced fractional asymmetric

factorial designs is developed in chapter six.

Sometimes a balanced fractional asymmetric design has more observations
Lhan is economically éccéptable by the experimenters and is also
grossly over-determined (box 6). It this is so, then the criterion
of balance is abandoned and a subset of the observations in the
balanced traction is selected using the criterion of D-optimality

(box 7). The algorithms f'or this are developed in chapter seven.

A natursl extension of this work would be the development of algorithms
for designing mixed experiments: those with both qualitetive and
quantitative variables. In chapter eight I suggest this among

future work to be tackled.

The Automatic Design of Experiments

Some Practical Algorithms

CHAPTER THREE

TWO-LEVEL FACTORIALS

1 Background

2 Algorithms

3 Examples

1 Backgeround

''he early papers by Fisher (1926 et seq) and Yates (1933 et
seq) stimulated _ a steady flow of papers on both |
the design and analysis of factorial experiments. Their
ability to be divided into blocksBy confounding high order
interactions with block effects appeaied particularly to the
agricultural statisticians and they were helped by Barnard
(1936) who enumerated a selection of confounded arrangements.
These enabled the research. worker tu choose a design by
inspection but they did not give him & uniform procedure for
ensuring that his choice would provide the conditioﬁs for
estimating all the required cbefficients of the.model to be
fitted. Indeed there seems to be litile in the literature
bef'ore the 1950's which discussed explicit mathematical models

when considering experimental design.

Finney (1948) drew attention to this in a paper which described
the estimation and interpretation of main effects and interactio@s.
He commented: "few things betray the iﬁexperienced statistician
more readily than a triumphant presentationzof an elaborate
analyéis of variance table coupled with an almost complete

neglect of treatment means."

(ne of Finney's major contributions was his clear exposition

(1945 and 1946) of the relationship between block confounding

and fractions of two level factorials. In these papers he
explains the notation introduced by Fisher and Yates and which,
through common use, has been accepted generally as standard.

The notation is that both fuctors and their effects are represented
by capital letters; the hipgh and low levels of the factors are
rebresented by the presence or absence, respectively of lower

case letters. Thus if there are three factors, each with

two levels, the factors would be named A, B, and C. The
ef'fects of these factors would also be labelled A, B, and C:

the first order interaction eff'ects would be labelled AB, AC,

and RC;'and the second order interaction effect would be labelled
AKG. An objective of the exneriment would be to estimate these
ef'f'ects together with the mean effect which is denoted by I.
Combinations of lower case letters denote firstly experimental

design noints. For e¢xample: ac represents the observation

point at which factors A and C are both at their high levels and
factor B is at its low level. The case where all fictors are

at their low l.vels is denoted by (1). This lower case notation
is also used, without confusion, to represent the observed

values of the devendent variable at the correspondins observatiion

points.

is well as « standard notation, there is a standard arder for

listing observatlion points and factorial et'fects. The standard

order i¢ clear from the following example. with three factors:

(Observatlion points Factorial ef't'ects

(1) I

a A

b B

ab AB

c G

ac AC

be BC

aonc ARC

his standard notational order will be shown to have value in

the next section when the design algorithms are developed.

. . n .
In the same paper, Finney stated: "In planning a 2 experiment,

using onlv 2P treutment coumbinations in a 1/2n-p replicate,

the ft'irst step is t.. select a suitable alias subgroup of

n- ,
order 27 P and then to determine the complete orthoeonal

3.3

sub-group of this as the set of treatment combinations.™

The "alias sub-~group” to which he refers is also known as the

"set of defining contrasts% which will be described 1ate€)and

their selection ronstitutes the outstanding problem in designing
fractional two-level factorial experiments. Finney gaQe no

formal procedure for choosins the det'inins contrasts. In his
examnle he arbitrarily chose some with high resolution (interactions
betweer morc than three factors) and then tested that they would
not lead to aliasing between main effects and low order interaction

ef'f'ects.

He did, however, describe a formal procedure for developing a
fractional design once a suitable set of det'ining contrastis had
been chosen. This procedure f'ollowed the demonstration by
irher (194.3) of the connection between coﬁfounding and the theory
of' 4belian grouns. This connection is shown to be of value in
the next seciion of this chapter when the implementation of the
desirn alrorithms as computer nroerams is described. It is

shown to have further value in the alyorithms for designing

fractional mixed multi-level factorials which are described in

chanter seven.

Kempthorne (1947) offered an alternative notation for the
desisn points, using ones and zeros. He also described factors
by lower case snb-indexed x's: "If the factors are x1,‘x2, . -
s Yy ani thev take n mutually orthosonal axes ¥4 to Yos
then the point (000...0) represents the control treatment(with
all the fuctors at the low levels), the noint (100...0) has

x, at its hieh level and all other tactors at their lew levels,

1
anid so on.," Kempthorne's notation is known as a bit notation

in computer terms and this is also shown to be ot value when

impiementine the design algorithms as com.uter programs.

Kempthorne also illustrated the procedure f'or designing fr:ctions
once a suitable alias sub-group or set of definine contrasts had

been chosen; but, he admitted, "no simple method has been

found of enumeratins such groups.”

Box and.Hunter (1961) gave a thorough treatment of the notations,
design, and analysis of fractional factorial experiments and

they sugrested a procedure for choosing a set of defining contrasts
in a less than wholly arbitrary way. They defined the resolution
of a design as the smallest number of factors reoresented in the
deéign's set of' def'ining contrasts. The resolution of' a design
would intluence the degree of cbnfuunding of eftects,when they

came to be estimated from the observations, as follows:

In designs of resolution 3, no main eff'ect would be cont'cunded
with any other main effect, but main eff'ects would be conf.unded

with two-factor interactions.

In desirns of resolution 4, no main eftect would be confounded
with any other main effect or any two-factor interaction, but

two-f'actor interactions wenld be confounded with each other.

Tn designs of resolution 5, no main effect or two-fuctor int.raction
would be ronf'oun-ed with anv other main effect or two-factor
interaction, but two-flactor interactions wounld be conf'ounded

wiih three-fauctor interactions.

viit) these resolutions in mind ther suerected the following
srocedure Yor cheosine a suitable set of defining contrasts:
alias the main effects and required interactions with other
interactions assumed to have insignif'icani eftects; this yvields
nossible detinine o ntrasts which must be multiplied together to
rive the comnlete set of possible def'ining ¢ ntrasts which must

then be checled to see if thev Jead to anv undesirable aliasing.

The procedure of Box and Hunter was not, however, a direct path
from an explicit statement of the model to be estimated to the
choic of a suitable set of defining contrasts. Nor was the
similar procedure of Whitwell and Morbey (1961) who dealt
specifiically with designs of resolution five since these would
certainly lead to the estimation of all first order interactions

as well as main effects. Their argument rested on the assumption
that all first order interactions were needed. They did not
consider questioning the experihenter's model to discover if

there could be any a priori discarding of first order interactions.

Addelman (1963) reviewed known techniques for constructing
fractional designs. He commented: "The crucial part of the
specification of a fractional replicate plan is the choice of

the defining or identity relationship. One ehould always attempt
to choose interactions for the identity relationship in such a way
that those interactions that are completely confounded with the

effects or interactions that one wishes to estimate are negligible"

The advocacy of authors such as Cochran ahd Cox (1950),
Kempthorne (1952), Brownlee (1953), Davies (1954),
Duckworth (1968), and Mendenhall (1969), 1led to the two-level
factorial becoming the most cbmmonly ﬁsed type of experimentaly
design in industrial laboratories. Research workers generally
and easily appreciated that fractions of these designs would
achieve economies in both money and time spent on investigations.
The advocates warned, however, that care must be exercised in.
the choice of these designs so as to avoid the aliasing of main

effects and important interactions.

Sometimes, s8till, this point is ignored by the research worker
who, without consultation, uses any available fraction without
consideration of the penalty to be paid on analysis. Subsequently,
the statistician is expected to extract non-existent information

from the experimental results.

The usual prbcedure is to refer to a standard textbook and try to
pick a published‘design to meet the experimental needs. If a
suitable design is not found, a research worker with some
understanding of the subject will try a few arbitrary sets of
defining contrasts, generating aliasing matrices until a suitable
design is found. This introduces an undesirable element of

arbitrariness. A paraphrase of the procedure recommended in

maqytexts is:

"First choose a suitable set of defining contrasts; Secondly use
these definihg contrasts to generate an aliasing matrix and check

if all the main effects and interactions that need to be estimated
can be estimated without being aliased with any others., If this
check fails, start again. If it passes: thirdly‘use’the defining

contrasts to generate the fractional design."

The procedure given for the final stage is satisfactory, but that

for the first is no more than guesswork. The outstanding problem,

that has not previously been solved, is to establish a logical and

easy procedure to select a set of defining contrasts that define an

aliasing matrix in which the experimental requirements are not aliased.

This is not a trivial problem . It is not uncoﬁmon for a research
worker to spend several days searching for a suitable set of defining
contrasts by trial and error. In view of this, and in view of the
historical awareness of the importance of the problem, the simplicity
of the solution comes as a surprise. The purpose 6f this chapter is
to explain the solution which has been published in a brief form,
Greenfield (1976). After publication, Franklin (1977) identified
a case where my algorithm gave an incorrect answer and I immediately
submitted a modification for publication (1978). Meanwhile, Franklin
and Bailey (1977) developed and published an alternative algorithm.‘
which has the added advantage, for agricultural work in which their
main interest lies, that it can lead to division of a fractional
design into blocks for further confounding. However, as I had already
successfully implemented my algorithm and as their extra. feature is
generally of no particular'advantage in an industrial laboratory, I
shall not at this stage change my intention to present my original

algorithm, duly modified slightly, in the rest of this chapter.

2 Algorithms

The objeét of the algorithms to be developed in this section

is to design a fractional two-level factorial experiment that
will admit the estimation of'the coefficients of a prior stated
linear relationéhip between a dependent variable and a set of
independent variables. The latter may be.described as the
main eff'ects and some of the interactions of a set of factors.
In the.earliesﬂ version of' these algorithms interéction; were
restricted to first order: those between two factors. This
was supported by Box and Hunter (1961) who wrote: ®With
continuous variables it is reasonable to expect the response
to'vary smooth}y. With.QUalitative variables certain aspects
of similarity ﬁay be expected in the responses at‘the.difrerent‘
versions. « « . TIn the conditions of smoothness and
similarity commonly encountered, three factor and mulii-factor
interaction eff'ects are often‘negligible." ' Hoﬁever, in
subsequeﬁt applications there have been several cases where
second order interactions, those between thrée factors, have
anticipated f'or physical reasons. Thus' the al gorithms must
allow the inclusion of interactions ot any order.‘ This is a
marked departure from the procedures‘fof producing designs of

resolution 3, 4 or 5.

The full algorithm may be divided into.three'main steps:
1. Enter the requirements set: those main effects and
| interactions which aré required to be estimated;
2. Determine the fraction_size and find the defining contrasts;

3, Generate ard »rint the design.

Since the second =tep of the full alporithm has historically

been the mest taxing, the algorithmic solution will be
‘déveloped in detail. Subsequently, for the sake of brevity, .
the first and third steps will simply be ex:ressed in algorithmic

form, rather than being developed detail by detail.

3.8

The problem is to find a set of defining contrasts which will
define a fractional desien that will allow the unaliased
estimation of all the elements of the requirements set. The

solution to the problem is to generate the defining conirasts

and the eliasine matrix topether, dinstead of first one and then

-the other. Eff'ectively this is done by a tree search which

is most easily described in terms of an evample. The algorithm
will first be expressed ir =trairhttorward knglish dinterspersed
with the steps applied to an example. It will then be develouved

more formally.

>onsider a 25 experiment in which the variables are labelled

AW, C D, B What is required is the smallestpossible balanced
t'ractional design that can be nséd to estimate each of' the main
affects an' alsn the effects of the first-order inferactions ARl
and AW, aésuming that the effects of all other interactions on
the denendent variable are known in advancé to be negligible. The
requiremerts set is: A,B,AR,C,D,E,AE . The design must

also estimate the mean, so in this cése there must be a

minimum of eirht observations.

tlrorithm TEFCCN (DEFinine CONtrasts)
PP PP OSSP,

Step 1. ¥ind m such that Zn_nl;; 1 +n4p

where n is the number of factors, p is the number of

in the requirements set., '
interactions / If the procedure shows that there is no
unaliased design of the size determined by the above
expression, it continues to a friction of double the
size. That is m is decreased by one. In the example,
the t'irst value of' m is 2, so the smallest fraction
likely to provide a suitable design is a quarter.

Step 2. Find the (n-m) majority factors in the requirements set.
These are the f'actors that occur most frequently in the
requirements set of main effects and t'irst order interactbns..
kxample: The. three majority factors-in the requirements

set are A, B, k.

Step 3. Write the first column of the aliasing matrix in terms
of the (n-m) majority factors. This has 2™ elements
(eight in the example). Mark with an asterisk those

elements common to this column and to the requirements

set.
Example:

First column of the I The requirements set:
aliasing matrix: A* | (A*,B* AB* C,D,E* AES)
B*

AR*

E*

AR*
BE
ABE

Step 4. Cenerate the first defining contrast by taking the
product (modulo 2) of the last available element in
the first column and the last available element in the
requirements set.

Example: ABE x D = ABDE

Step 5. Use this defining contrast to generate the next column
of the aliasing matrix. Check at the same time if any
of the required effects have become aliased with those
already marked in the first column. If not, mark those

that have been introduced.

Example:
| First. Second
. column column
I ABRDE The requirements set is:
A% BDE (A%, B¥AB* E* AK* C, D*)
B* ~ ADE
AB* DE
E* ABD
AE* _ BD
BE AD
ARE D*

between required.effects
Step 6. If any aliasing/occurred in step 5, return to step 4,
generating a new first defining contrgét by.taking the
product (modulo 2) of the next from last available elemert
-in the first column and the last available element in the
requirements set. . In the present example this does not

ocCure.

Step (.. When the® are no more available elements in the first
© column, - and if the requirements have not all been mét,

~.decrease m by one and return to step 3.

Steg 8. Generate the next defining contrast as in gtep g.
Example: BE x C = BCE |
As will be explained later, this leads aufomatically to
the third definihg‘copmrast as the product of the first
and the second. ' .

Example: ABDE x BCE = ACD

Step 9. Generate the full aliasing matrix, mark with asterisks
and check for éliaéing as in step 5. ‘

Example:
Column 1 Column 2 Colﬁmn 3 Column 4
I ABDE BCE - ACD
A* BDE ABCE ' GD
B* ADE CE ABCD
AB* . DE "ACE ' BCD
E* ABD BC ~ ACDE
AEX BD ABC CDE
BE M C* . ABCDE

ABE D* . AC ' BCDE
The requirements set is (A*,B‘,AB*,E*,AE*;C*,D*)

The algorithm described above is sufficient to be followed |
manually, és several‘correspondents testified after publication,
Greenfield (1976). The algorithm must however be expressed in |
greaterldetail if anyone is going o use it to develop a computer
program. Some special characteristics of factorials also need
to be explained, together with some ocomputipg ploys, Before

the more detailed algorithm can be stated.

J.11

The connectién between confounding and Abeliaq groups was
.described by Fisher (1943). This connection becomes more
notable when a binary digit coding is adopted for both the '
treatment combinations (design points) anq main éffects and
interactions, eéspecially since digital computers use binary
ihtegers, In the code adopted here, the binary digits, or
bits, are read aml counted from’right to left. Thus:

00000010 = B or b (bit 2 is described as 'up','set’
or 'one')

00000101 = AC or ac (bits 1 and 3 are set)
Since this coding will be used in the programs but alphabetic
coding is preterred for human reading, an‘algorithm will be
needed to convert from binary code to aphabetic code. This
will be described later as part of algorithm ALMAT (print-
Aliasing MATrix).
The binary code permits the direct generation of two-level

factorials by counting upwards from zero as follows:

Denary count Binary code Treztment
combinations
0 00000 (1)
1 00001 a
2 00010 . b
3 00011 : ab
4 00100 . c
5 00101 ac
6 00110 he
7 00111 abe
8 01000 , d
9 01001 ad
10 01010 bd
11 ’ 01011 abd
12 01100 cd

etcetera

The table stops at the denary count of 2" -1, where n is

tlie number of' factors.

The product of any two elements (modulo 2) when using the binary

code is seen by an example:

ABDE x BCE = ACD is equivalent to * 11011 x 10110 = 01101
It is convenient that this can be achieved by the use of the
exclusive-OR operator (referred to in future simply as eor) which

is defined by the following truth table:

A B eor (4,B)

0 0 0
1 0 1

o | 1 1

1 1 0

As Fisher noted, the full factorial aesign and the full aliasing
matrix (see example after step 9 above) are both groups of order
2" under the product (moduio 2) operator. Similarly if a full
design on n factors is expressed as the set of interers from

0 to 2" = 1 in binary code, then the set becomes a group under

the exclusive-Ok operator.

If D = the set (0,1, . . . , 2'-1), then for all x€D and for
all yeD +there is a z€D such that eor(x,y) = z.
The group's identity element is 0, since for all x€ D

eor(0,x) = eor(x,0) = x

Also every elementAx has an inverse which is itself:
eor(x,x) = 0 (the identity)
As an example let n = 2, '
then D = ((1),a,b,ab) in alphabetic coce
or D
or D = (00,01,10,11) in binary code

Application of' the operator to all ten pairs is seen to always

1}

(0,1,2,3) in denary code

yield members of D:

eor(00,00) = 00
eor(00,01) = 01
eor(01,10) = 11

etcetera

3.13

It is also useful to note that as well as the full aliasing matrix

being a group, using the binary notation and the exclusive-OR

operator: | '

.; the first column of the aliasing matrix is a suﬁ-gronp

* the first row of the aliasing matrix (which is the full
set of defining-contrasts including the identity) is a
sub-group '

* the fractional design fhat will be derived using the
def'ining cdntrasts-is a subLgrOQp of the full design

Eroup.

One difticulty that has been met in impleﬁenting these algorithms
on various computers is that iﬁ standard Fortran thé exclusive-0OR
opena¥%¥9cggh€£ %85&°%%1§P%§%E°I821ca1 operands.' However, on
some scientif'ic computers; such as the IBM 1130 and 1800 and the
A SP316, 1logical operatiors can also be used with interer operands
to give an inte;er result. The integer operands are considered
Lo be in their binary representation as described here. The
result reflects wheth@r corresponding bits in the two operands
are set or not. |

The related types of operatur will be distinguished here by
difterent notatibns, acting onblbgicalloperands P and @ and on |

interer operands I and J:

‘LOﬂical operators: P.xor.Q Pe.or.Q P.and.Q

Binary integer operators: eor(I,J) or(I,J) and(I,J)

There should be no objection to using these binary integer

operators. tven if' they are not provided with the high level
languape function library, any competent programmer should be
able to write them using a machine code or assembler language,

and add them to the funciion library.

further useful feature ot the group property described is that
‘each group, or sub-grouvn, can be generated by a sub-set of the
elements of the group or sub-group. Furthermore, this subset

can be identified a simble rule; it the elements of' the group

3.14

) are expressed in standard order (counting from
0 to 2"-1 in the case of the full design or its equivalent
order for a sub-group as illustréted by the first.column of
the aliasing matrix in the earlier example) or in the order
in which they are created (as in the first row of the aliasing
matrix: the defining contrasts), . then:
the generators are those elements in the positions

. T . .
with order numbers 2 +1, where r is any integer 0, 1, 2, « &

As an example, consider the full factorial with n = 3. The
elements of the factorial will be expressed alphabetically for
reading clarity. The order numbers are. set below. The genemators
are marked with asterisks. ‘ ‘

(i) a b ab c - ac be abc

1 2 3 L 5 6 7 8

*

In this case the answer is obvious because the generators are
those elements with single ietters. However the rule may not
seem so obvious when generating the set of defining contrasts and
in the algorithm for doing this the rule is of particular value.
Tt is used as follows: when the elements of a group or sub-group
are developed trom lett to rirht (in the above example), every
time a generator is created the remajning'elements of the group

un to, but not includines, the next penerator can be created by
taking the product of the new generator with each of its preceding

elements in turne.

In the example above, the first element to be written is (1).

The first generator to occur is a. Anplication of the prodedure
described creates the single element a. _ ‘
The second generator to occur is b. Application of the procedufe
creates the elements b and ab.

Tne third generator to occur is c. ‘'he procedure creates the

elements ¢, ac, bc, abe.

»Returning now to the earlier example: consider the first row
of the aliasing matrix as a sub-group. |
The first element to be written was ‘the identity I.
The first defining contrast to be created (by taking the
product ABE x D) was ABDE. This is‘the-first'generator and
it‘creates the element of the sub-group ABDE.
The second defining contrast to bé created (by taking the
product BE x ¢) was BCE. Application of the procedure
described creates two new elements of the sub-group:
BCE (which is BGE x I) and ACD (which is BCE x ABDE).
The rule for identifying a new generator is useful in the main
algorithm in three'ways; First, af'ter the majority factors have
been identitied, it leads to the use Qf.the above generating
procadure for generating the farst column of the aliasing
" matrix. .
Second, when a new det'ining contrast is created it leads to
the use of the above procedure for generating consequent definiﬁg
contrastse. ‘ ' '
Third, it helps in designing a marking, or flagging, systém
so that if aliasing is discovered after a defining contrast
.has been created the algorithm can backtrack to the previous
generator defining contrast., The method and value of this
use will become clearer asthe algorithm unfolds. It may be
noted here that a simple aid. in back tracking is:
if Y is the order number 6f the current generator
(for example, it r =5 then Y = 2541 = 33)
and if X is the order number of the previoﬁS'generator;
then to determine X it is simpler to write XG-(Y>3)/2
than to compute r from Y and then, By decrementing r,

to compute X from 2541,

In the earlier description of the general algorithm DEFCOUN,
asterisks were used to the ruws and the defining contrasts.

£1so backtracking, after discovering aliasing in step 9, was’
implied and not explicitly described. These two actions, markirg

and backtiracking, are closely related and a more complex procedure

than through the use of simple marks like asterisks has to be
developed for a programmable algorithm. Discussion of the

procedure and the development of the algorithm will be helped
by now defining some of the variables to be used: Practical

dimensions of arrays are denoted by (*n).

MV(I) = the Ith element of the requirements set (*32)

NV = * the number of elements in MV

N = the number of two-level factors

M = the fraction index (the design would be a‘1/2M factorial)
K(I,J)= the I,Jth element of the aliasing matrix (*128 x 32)

NF = number of rows in the aliasing matrix

NI = number of columns in the aliasing matrix

KEST = defining contrast being tested for acceptance

JAK = column number of the defining contrast being tested
LNEW = column number of the current generator defining contrast
IN(J) = a marker for the Jth element of the requirements set (*32)
= 0 if accepted
= 100 if currently not being considered
= the value that LNEW had when the Jth element of the
» requirements set was tentatively accepted '
IV(I) = a marker for the Ith row of the aliasing matrix (*128)
= 1 if the row has definitely been assigned
= 0 if the row has been tentatively assigned
= =1 if the row is still available
Kk(I) = another marker for the Ith row of the aliasing matrix (*128)
= 0 if the row has definitely been assigned
= 100 if the row is still available
= +the value that LNEW had when the Ith row of the

aliasing matrix was tentatively assigned

KK(J) = a copy of the Jth element of the first row of the
aliasing matrix: to save ref'erence time when computing (*32)

MAJ(I)= the n factors expressed in majority order (*16)

NB(I) = a temporary array used in producing MAJ(I) (*16)

A function subprogram NEW(I) will be called to test if I has &

value of 2° + 1, where r is any integer.

v

13.17

The. above consnderatlons and notations lead to the follow1ng

more detalled expression of' the algorithm:

Algorithm DEFCUN (VEFining CUNtrasts)
Step O (initialise) given the number of' factors, N, the number

Step 10

bf requirements, NV, and the set of requirements, MV(.),
Ny 1+ v,

the number of columns in the aliasing matrix, NI, and

find the fraction 1ndex M, such that 2

the number of rows, NF, Also-determine the magority

order of the factors, MAJ(.).:

Construct the first column (JAK€—1) ot the aliasing matrlx
using the N - M maJorltv factors as generdtors’and:the
function NEW,. For those elements of the column whlch
equal some of the reouirements, mark the fows each with
two markers (IV(.) and KR(.)) and the correspondingv

requirements with one marker (IN{.)).

Step 20 (increment JAK to go to the next column of' the aliasing

Ste 0

Ste 0

matrix) JAKe=JAK , 1

if JAK = 2' 4 1 then step 30 LNEWe—JAK, LL<-1,

and rese%/marﬁers for which the KR(.) row narkers:> LNEW :
back to -1 (still available),

else goto step 70 1:&

(find LE, the first available requirement counting
from the end of the set)

if (the search is not snccessful) then (the allocation
~ e ™)

of requirements to rows is complete, but the aliasing

matrix must be completed and'checked; so:)

5oto step 20 £i

(find LO, the first available row counting back

from the last row)

if (the search is not successf'ul) LOLO

P .

then (tne search must backtrack to the previous level
of LNEW, or if' the present value of LNEW is 2 then
the number of rows must be doubled and the number of

columns halved) goto step 90 fi

Step 60

Step 70

set the row marker KR(LO)&—LNEW
create the new def'ining contrast to be tested
KEST®€— eor(LE, K(1L0,1)) |
5229 step 80

create each new det'ining contrast to be tested in turn
by eoring each existing det'ining contrast in turn up to,
but not including, the current generating contrast

KK(LNEW) with KK(LNEW)

 LLeLL + 1, KESTe— eor(KK(LL), KK(LNEW))

Step 80

Step 9()

Step 120

(test for aliasing the defining contrast created in

step 60 or step 70, &nd set the markers Iv(.) and IN(.)
to testing values f'or matchine rows and requirements:
IV(.)€&0; IN(.)eLNEW

if (the test is successful) then KK(JAK)&KEST

A . P, s
(indicating that the detining contrast has successfully
passed its test and is assigned to the set of defining

contrasts KK(.)); poto step 20

else goto step 120 i
e e T g e e 2 %

(L0oL0 indicates thut there is no available row, so we
must backtrack to the previous LNEW) _

if LO = 0 (vhich indicates it is possible to backtrack)
then step 100 Jak€—(LNEW - 1)/2 +1 (and reset KR(.)
markers which are now equal to LNEW back to 100)

3139 (LO = =1 implies that LNEW is already at its smallest
value of 2 so backtracking is not possible, therefore a
design of ihe current fraction is not possible, so

double the number of rows and start again)

step 110 NRe—NF*2, NTe-NI/2, goto step 10, fi

(the det'ining contirast KKST that has just been tested
has failed the test so set all requirements markers

IN(.) > Li%W back to 100)

for J‘F—1{29 NV

if IN(J) > LNEW then TN(J)e=100 fi

goto step 50

3.19

.

Each of these major steps will now be expanded and also

represented as a flowchart.

4 problem in step 0 is to find M such that 2 " .4 + NV.

Putting NE = N-M, the apparent solution may be NE&In(4+NV)/1n(2).
However, since NE would be assigned the inte;er falue»of this.
expression, it would ﬁormally take on a value less than that
needed. For example, if NV = 6, then the expression would

be evaluated as 2.80 and N would be assigned the integer value

2, whereas the value needed is 3. Addition of inteper 4 would
correct this, but then there would be cases'when NE would be
assigned too great a Value. For example, if NV = 15, then

the expression would be evaluated as L and NE would be assighed 5.
A compromise which avoids both these errors in assigning integer

values is NE<—1 « 1n(NV)/In(2).

Another problem in step 0 is to determine the majority order

of the factors MAJ(.). It is assumed here that elements of

the requirements set, MV(.). are exnressed in the bit notation
described earlier, The nroblem is to count the incidence of gach
bit in the requirements set and then to order them. For this
purpose an extra array M8(.) is used. Also a function
TTFST(1,Jd) is assumed to be available to test if' the Jth bit

from the right end of intecer I is set or not, returning the

value 1 if the bit is set.

In the earlier evimple the requirements set was (A,B,AB,C,D,E,AE).
This would lead to NB(1) = 3, NB(2) = 2, NB(3) = 1, NB(L) = 1,

NB(5) = 2, reprecenting the occurrences of the bits corresponding

to letters A,B,C.D,E. This would in turn lead, using bit
notation, to: MAJ(1) = 0001, MAJ(2) = 00010, MAJ(3) = 1000Q,

MAJ(4) = 00100, 1ad(5) = 01000.

A further function, TONRP(T,J), is assumed to be available which

‘will return the initial value of T with the Jth bit set whether or

not it was initially set.

Step O now becomes:

Step 0 (initialise) gnter N, NV, MV(.)

Step 1 NEe—1 + ELn(NV)/ln(Z)] (square brackets indicating
integer value); M&—N - NE; NI€— 2%%); NPe—2**NE -

Step 2 for Ie—1 to N do step 3 NB(I)e—0; MAJ(I)«0 od

Step L for I«—1 to NV do step 5 od

Step 5 for Je—1 tg N do step 6 od :

Step 6 if ITEST(iV(I), J) = 1 then set NB(J)e NB(J) + 1 £i

Step 7 for I<-1 to N do step 8; step 801 od

Step 8 MAX€—O0; for Je—1 to N do step 9 od

Step 801 MAJ(I)€—IONBT(MAJ(I), JM); = NB(JIM)€—O

Step 9 if NB(J) > MAX then MAX&—NB(J); JMe—J £i

| [Gater

N, Ny, Mv()

(]
3
>
x
1
O

2[compvte
NE, M, NI, NF

{or X("')j_h N
NB (I)e—0
MaT(1)e-O

[

MAX e~ NB (3
IMe—JT

Fc'au.re 16

Step 10
markers) JAKe—; K(1,1)«=0; MMeO; for Ie—1 kg NV do IN(I)e—100 gd
Step 11 for I«—2%q NF do step 12; step 15 g‘c_i_'

Step 12 if NEW(I) = 1 then step 13 else step 1k

Step 13 Lla~1; MMeMM + 15 K(I,1)e=MAT(MM)

(construct first column of aliasing matrix and set

Step 14 LI®~LL + 1; ¥(T,1)eeor(K(LL,1),MaJ(m))

Step 15
Step 16 if K(I,1) = MV(J) then
IV(T)e=1; KR(T)e0;
V(I)e=-1;

Step 17
Step 18

o

JAke
k(1)eo0
MMe o

+orI 4
1 ko NV
IN(1)* 100

e |

F't'gure 17

for Je1 to NV do step 169&1‘ .
. 4o step 17 gd £

KR(T)a=100"

14

LLeLla)

K(I,l()
16— 8or (K

wJ

A=l

Ivye--1
KR (1)

< 100

Je- ©

-t

Step 20 (will next defining contrast be a generator? .
' if so, reset row markers) ' '
JAK<~— JAK + 1 '
Step 21 if JAK > NI then stop (all defining contrasts found) i
Step 22 if NEW(JAK) = 1 then do step 30 o
else goto step 70 ’t“}'
Step 30 LNEW¢—JAK; LLe—1 :
Step 31 fgzg Je-2 ‘t;.g NF gg step 2229
Step 32 ;3 _KR(1)>, LNEW then set IV(I)e~ -1 ,g‘

31

I+l

¥ | NEwe ThK
LLe—|

' Fc‘gure |8

(find the first available requirement counting from

Step &0
' the end of the set; if none, return to step 20)
for I<—1 to NV do step 41; -step 42 od

Step k1 set JeNV - I 4 1 -

Step 42 if 1IN(J)> LNEW then set LE<—MV(J); goto step 50 f£i
(at some stage, while a previous KEST was being tested
in step 80 at the same level of LNEW, IN(J) may have
been set equal to LNEW, so the test in step 42 must
be 2 and not just)

Step 43 59}2 step 20

from Step 30
‘*0[J<«— O
Je—T 4.1
F T
N 43 vy
4|

Je—=NV-I+| (stp 20)

Fiauce 19 -
~

Step 50 (flnd the first available row countlng back from the
last row)

for Ie=2 to NF do step 51 od

step 51 JeNF - T + 2; if KR(J)>LMEY then step 52 fi
step 52 1L0€=J; goto step 60 ‘
Step 53 iﬁ LNEW »2 then LO€-0 else LO¢-1; poto step 90

Step 60 (mark row and create test det'ining contrast)
KR(LO K~ INEW; KESTeeor(LE,K(L0,1)); ggto step 80

Step 70 (use pgenerator to cre~te st defining contrast)

LLe&= LI 4 1; KNHST&— cor(KK(LL), KK(LNEW))

So Te= |
T«TI+l

¢
- 83

F'\'q uee

Step 80 (test new defining contrast for aliasing and set markers)
Te1 '
Step 81 I€I + 13
| if I>NF then KK(JAK }é&-KEST; goto step 20 ;;i’
Step 82 K(I,JAK}e~eor(K(I,1),KEST); ~JeO
Step 83 Jed + 1;
C if J>NV then goio step 81 53 ‘
Step 84 if MV(J) # K(I,JAK) ther goto step 83 fi
Step 85 if IV(I) # -1 then goto step 120 fi '
Step 86 IV(I)e=0; IN(J }~LNEW; KR(I)€—LNEW; goto step 83

a

fron skep b0
80 Te |
2
Ie=I 41
F T
82 [KEasy)e- RXGoar |
)
(4 d
Je-0o . .

e
‘ SH.p 120) IN(J})é—LEJ)&

KR(D-LNEW,

Step 90 ‘if LO = 0 then do stel 100; step 101 22

Step 100
Step 101
SteE 102
Step 110

else do step 110 od fi

JAKe~ (LNEW-1)/2 + 1;

for -2 to NF do step 102 od;
oto step 30

if XR(I)2 LNEW. then KR(I)e~100 fi

NP&—NF*2; NIe—NI/2; goto step 10 .
100 [TAK < N0 |NrFe-nE%s

Step 120 (since KEST has failed, reset the r‘equirements set markers) T
for Je1 to NV dg step 121 od | |
step 121 if IN(J)>LNEVW then IN(J)€=100 f£i.

Step 122 goto step 50

120

Je— ©

Je=J+

F; liu.t{ 2 3

fin algorithm for the function subprogram NEW(I), which ‘tests if
Tr ' o

I is of the .form 2° + 1, is: :

Algorithm NEW(I) (test if I is of the torm 2° + 1, r an integer)
Step O enter I;' step 1 if I = 2 then set NEW«—1; return fi
Step 2 NEWe-0; Je1; I1€I -1
Step 3 Je=J*2
Step & }vt: J<LI1 then goto step 3

else i’ J = I1 then NEWe—1 fi fi

Step 5 return

enter [

2INEweO| NEN(_—,',,
Je | - .
IleI-| '

NEWe |

Fi%@ce Y

Fekll

Execution of the algorithm DEFCON will yield an aliasing matfix
K(.,.) with NF rows and NI columns. The first row of the aliasing
matrix represents the set of defining contrasts and it is also held
in the vector KK(.). Only the first column and the first row of
the aliasing'matrix are needed to produce the fractional desigﬁ.
Experience has shown, however,that users are more confident in

the design if they are able to inspect the aliasing matrix. The
following algorithm is needed to priht thé matrix. It includes

a procedure to convert the bit notation into alphameriq'notétion.
For example, the 16-bit integer 0060006010t00101‘mu§t be
converted 1nto the printed string ACFH and Jjustified right in

the column in which it is printed.

If the aliasing matrix has more than eight columns (there may
be 16, 32, 64, or 128), - the a]gor:thm w111 divide it into eight-

column wide tlocks for printing.

The algorithm assumes that an array A(16) has already been assigned
thgﬁcharacters A to R, excluding I and 0, and a variable BLANK
has been assigned the blank character. These assignments can be

done in the program with a ‘data statement.

Algorithm ALMAT (print ALiasins MATrix)

Step 0 print heading (*sliasing matrix for (name of experlment))

Step 1 (number of blocks to be printed) NBe-1 + (NI - 1)/8,
(and number of columns per blook) if NI)» 8 then NS« 8

elze NS€NI fi

Step 2 for Tle—1 to MR do step 3 od

Ste NT& (11 -1)*8 for T2€-1 to NF do step 4; step 10 od

Step 4 for Ij‘lNS do step 5; §3gn_§ <§£gg_§ od

Step 5 NX4-NT + T3; Je¥(T2,NX); L0

Step 6 for Tue~1 to 16 do step 7 24

Step 7 if ITEST(J,I4) = O then Ie—=L+1; B(I3,L)e~BLANK f£i

Step 8 for Ike—1 to 16 do step 9 od

Step 9 if ITKST(J,T4) £ (Othen I&~L + 1; B(T3,L)é=A(Ik) fi

Step 10 for I3€~1 to NS print (B(13,L), I&=1 to 16)

EA;?
b?;-
Z"‘r;
b)) ks

R(: hm« & I3e O
| | '
(3% |
F T ' _
| _ I34I34
v v C -
NS&NJ NS« 8
| ’(E: g 2
lo Pm.s B(,)
o of
2 Mﬁll LN
Ite-o g e | Tve O
\{P(
6 ‘Ilwi‘wl
4«0
Ta-Th+1

BE3,L)

&~ BLANK

T2 T2+

@a@

F«gur&

3.31
A practical consideration in implementing the algprithms deVelopgd
so far is the computef store needed for the pfOﬁram and data. By |
far the greatest store requirement is f'or the aliasing matrix. If
the program is expected to generate factqriel desighs with as many
as 16 factors, then an array of size 216 would te needed to store
the aliasing matrix. As mentioned eurlier, however, the aliasing
matrix in its entirety is not essential but may be preserved,
converted and printed only to support the uscrs' confidence. It
is essential to preserve only the first column and the first row
of' the matrix and this can be done with two one-dnmen31onal arreys, oOne
of which is KK(.).
Jf this is done, then the testing of a deflnlng contrast (steps
RO to 86) would be done by creating and testing for aliasing an'
integer scalar (say KT) instead of an elemént of the matrix.
Tha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>