
The automatic design of experiments : Some practical algorithms.

GREENFIELD, A. A.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19724/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19724/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

PuND S IR FF I I
SHEFFIELD SI IVVB J

y % o ^

ProQuest Number: 10697026

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697026

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

The Automatic Design of Experiments

Some Practical Algorithms

by A. A. Greenfield B.Sc., F.I.S., F.S.S.

A thesis submitted to the Council for National
Academic Awards for the degree of Doctor of
Philosophy

April 1979 Sheffield City Polytechnic

l\w mmcmii

The Automatic Design of Experiments

Some Practical Algorithms

ABSTRACT

The purpose of this study was to develop a methodology,
represented as a set of programmable algorithms, for the
design of experiments of the types that are generally likely
to be useful in the physical sciences. This has been
achieved by adding to the established theory and practice
of designing factorial experiments for both qualitative and
quantitative variables.

Algorithms were developed for designing fractional two-level
factorial experiments according to a pre-specified model to
be fitted, expressed in terms of required effects to be
estimated. These algorithms are extended in two ways.
One of these is to allow a fractional two-level factorial
design to be augmented with extra points so that quadratic
effects can be estimated. The second is to enable fractional
asymmetric multi-level factorial experiments to be designed:
balanced fractions first by applying the theory of cyclic
groups; then further reduction in the size of the design
by using the trace and determinant of the information matrix.

The application of the algorithms is illustrated with examples
drawn from the physical sciences, particularly metallurgy.
The algorithms developed in the study have been fully implemented
using standard Fortran 4 with a few specified exceptions. These
programs are listed in three appendices. The programs have
been run on computers in research laboratories in Australia' and .
the United States as well as in Britain. They will benefit
research scientists who are planning experiments and have access
to interactive computers.

Trie principles of algorithmic development are explained and the
whole text is supported by references and by a glossary of more
important terms.

The Automatic Design of Experiments

Some Practical Algorithms

CONTENTS

Chapter one INTRODUCTION
1 Background
2 Objectives
3 Algorithms

Chapter two CHOICE OF EXPERIMENTAL
CLASSES

Chapter three TWO-LEVEL FACTORIALS
1 Background
2 Algorithms
3 Examples

Chapter four QUADRATIC DESIONS
1 Background
2 Algorithms
3 Examples

Chapter five ANALYSIS AND SIMULATION
1 Introduction
2 Examples

Chapter six FRACTIONAL ASYMMETRIC
MULTI-LEVEL FACTORIALS

1 Background
2 Algorithms

Chapter seven

Chapter eight

Appendices

REDUCING THE BALANCED
ASYMMETRIC FRACTION

1 Background
2 Using the trace
3 D-optimal algorithms
4 Examples
3 References

CONCLUSIONS
1 Work done
2 Further work
3 Acknowledgements

REFERENCES

CLOSSARY

APPENDIX ONE
Programmed algorithms of
chapters three and four

APPENDIX TWO
Programmed algorithms of
chapter six

APPENDIX THREE
Programmed algorithms of
chapter seven

CHAPTER

The Automatic Design of Experiments

Some Practical Algorithms

ONE

INTRODUCTION

1 Background

2 Objectives

3 Algorithms

1 Background

Gauss (1809) was the first person to allude to the
design considerations of making physical observations.
Most of his great work on the theory of the motions of
heavenly bodies was devoted to the development of algorithms
for computing orbits from precise observations. Then,,
in the third section of the second book of the work, he
developed the normal, or Gaussian, density function
and the method of maximum likelihood, and he presented
the method of least squares (which he claimed to have
been using since 1793) aril the method of weighted least
squares. In the midst of this he commented, as an
aside and without proof, that if only a few observations
were to be made to determine an orbit they should be as
remote from each other as possible to minimise the effects
of observational errors. When he later developed
this statistical theory into a full treatise (1821) he
discussed at some length the further design problem of
the effect of an extra observation on already estimated
coefficients and the conditions that must be imposed to
ensure minimum variance of jfahe estimates.

It was a century later when Smith (1918) suggested' maximising
the determinant of X'X, known as the information matrix
or the cross-product of the design matrix (X), as a
criterion for designing experiments. The determinant
is inversely proportional to the generalised variance of
the estimated coefficients. Smith applied her criterion
to experiments for estimating polynomials of varying
degrees* Given the degree of the polynomial to be
fitted, the number of observations to be made, and the

interval over which the polynomial should be fitted, she
determined the spacings between observation points and
the proportions of observations to be made at those points
in order to minimise the generalised variance of the
estimates of the coefficients of the polynomial. The
method is neatly presented in three pages by Kendal and
Stuart (1966) who had the advantage over Smith of modern
matrix notation and algebra. However, despite the
clumsy notation of her day, Smith went on to consider
the effect of heteroscedasticity of errors on the optimum
allocation of observations.

The concept of experimental design grew most rapidly in
agricultural work. Fisher (1923) introduced the subject
briefly in his first edition of ’Statistical Methods for
Research Workers.' He illustrated that applied statisticians
were mainly concerned with data examination, analysis, and
statistical tests of conirasts. The method of experimental
design seems to have been: think of an arrangement of
trials, such as a Latin square, then see if the arrangement
meets the experimental criteria. These criteria were: can
the desired contrasts be estimated from the data, and will
the arrangement lead to statistical tests of the estimated
contrasts?

It seems as if Fisher realised the importance of experimental
design at the time the book was published, for within a
year (1926) he published a major paper on 'The arrangement
of field experiments' and later wrote the first definitive
text (1933) on 'The design of experiments'.

Fisher had a profound effect on the development of
experimental design because his work was based on agricultural
experience in which the independent variables were usual^h

qualitative factors or could be treated as such, and
the method of analysis was 'analysis of variance'. He
and his contemporaries applied considerable ingenuity to
finding designs which were orthogonal in that the contrasts
between levels of different factors could be estimated
independently. A host of design types was developed:
randomised blocks, balanced incomplete blocks, split
plots, Latin squares, Youden squares, anr< lattices, among
the better known. Many books were written about these
agricultural designs, variations on them, applications,
their analysis, and what to do when missing values upset
the balance and made estimation and testing difficult.
The most authoritative of the books covering the subject
were probably Cochran and Cox (1950), Kempthorne (1952),
Brownlee (1953)> and Davies (1954)* Uses were found
for these designs in other than the agricultural sciences.
They were applied with quantitative variables as well as
qualitative: the levels of the quantitative factors were
usually equally spaced for convenience. The criterion
proposed by Smith in 1918 seemed to have passed unnoticed.

theoretical unification of the methods of analysing
these types of design was presented by Tocher (l952cj) when
h'- at the same time suggested that, computers be set to
work to generate all possibly useful designs. There were
several warnings in the discussion of that paper against
the 'sausage machine' approach to experimental design.

Tn his 1926 paper, Fisher discussed the concept of
factorial experiments. There is no trace of an individual
ori ••’•inator of these;. they seem to have grown out of

general discussion at Rotfaaasted. Fisher argued that
while these could become very large and complex experiments,
they had the advantages that:

1 the plots are used several times over to determine
the average effects of different factors;

2 only by factorial design can any information be
obtained on how responses to one factor are
affected by another (that is: they permit the
estimation of interactions);

3 factorial experiments provide a wider inductive
basis for conclusions on the effects of the factors;

At the same time he recognised the possibility of
confounding: the deliberate sacrifice of some unimportant
information so as to improve the precision of estimates of
important effects. The methodology for dealing with
confounding was developed by Yates (1933) who also
designed an algorithm (1937) for easy analysis of
two-level factorials. A further advantage of confounding
was soon realised: it could be used to select a fraction
of a factorial. The theory of fractional replication
was developed by Finney (1945) and Kempthorne (1947)»

The factorials which have had the widest impact are those
it' which each factor has only two levels. Their advantages
are that they are easy to design and to analyse and they can
just as easily represent quantitative variables as well as
qualitative. They have further advantages which will be
discussed in later chapters, since much of the work r'f
this study is based on the design of fractional two-level
fsc tori nls.

The development of agricultural type experiments by the
Fisher group was represented in so much literature that
for several decades the rest of the scientific world was
largely misled into believing that the subject of
experimental design comprised an understanding of only
those agricultural designs. Also, because the
mean effects or contrasts were so easy to compute,
estimation was largely disregarded as an aspect of
analysis and the emphasis was placed on tests of significance
In'The Design of Experiments' Fisher wrote: 'Every
experiment may be said to exist only in order to give
the facts a chance of disproving the null hypothesis,'

Experimentation in the physical sciences is often much
more complicated than the traditional field trials, and
estimation of effects is not so easy. Thus analysis
tends to be by the regression method of least squares as
developed by Gauss rather than by Fisher's analysis of
variance. It was Tocher (1952a) who showed that
regression analysis was applicable to designed experiments
as well as to naturally occurring data. This observation,
together with a growing literature on determining the
relative efficiencies of designs (see Wald (1943) ard
Ehrenfeld (1953))> led Kieffer (1959) to resurrect the
criterion suggested by Smith in 1918. This criterion,
which is one of several alternatives described by Kieffer,
has subsequently been the subject of many published papers.
Tt is known as the criterion of D-optimality and, in simple
terms, it expresses the objective of choosing a design
which maximises the determinant of the X'X matrix. It is
unfortunate, however, that the many papers published by

the Kieffer school (see. Kieffer and Wolfovitz (1959)*
Kieffer (1959), Wynn (1970, 1972)) are long, intricate,
mathematically involved, and literally obscure, so that
they have had little influence on the originally applied
subject of experimental design. Indeed the subject
has gone two ways: at the applied level there have
been some developments of agricultural type experiments,
particularly in the augmentation of two-level factorials
with extra points to permit the estimation of quadratic
effects (which will be described in chapter four); and
on the theoretical level it has become a branch of
optimising mathematics remote from the original intended
purpose. The mathematical developments are summarised
by Fedorov (1972).

2 Onjectives

One of the objectives of the present research has been
to make a practical contribution which will help non-
statistical research scientists, particularly physical
scientists such as chemists, physicists, metallurgists,
and engineers, with a fairly closely defined sub-area
of what has become a massive subject. Just as there
has had to he some selection of material for the
preceding historical introduction, with many aspects
omitted and many contributors unmentioned, the
choice of a sub-area that can reasonably be tackled in
a single study must inevitably leave most of the
subject untouched.

The choice will be discussed more fully in chapter two.
■ t. this stage let it suffice that the aim has been
to meet most of the experimental design needs of
physical research and to develop automatic methods of
design that will obviate the need for the research worker
1f' identify the type of design suitable for his work.
''’he interactive nature of the algorithms that have been
developed will lead naturally, through questions and
answers about, his research objectives, to the identification
of a suitable type of desi?T..

A classical research situation, encountered almost daily in any
industrial laboratory for research and development, can be described
as follows:

The objective is first declared as the optimisation of a product
or a process; the characteristics of that product are identified;
precisions of measures of those characteristics are stated; and the
control variables are identified, usually the compositional and
process variables, with ranges and precisions.

Sometimes the objectives of the experiment are represented as a
mathematical model relating the measures of the product characteristics
with the control variables, but this is rare. More usually the
research worker has little idea of the pertaining relationships and
can express them only in vague qualitative terms. Clarity usually
follows questioning, however, so that it is possible to write down at
least a simple linear model including expected first order interactions
and perhaps also to include some quadratic terms.

On the basis of this information an experiment is designed so as
to estimate the parameters of the model as precisely and as accurately
as possible within the limitations of experimental costs. The objectives
of an experiment must always be to answer a precisely stated question
or set of questions. Almost always these questions can be stated in
terms of a mathematical model whose parameters are to be estimated or
perhaps compared with an alternative model. Sometimes an objective
goes so far as to include optimisation, but even this is a particular
case of estimation.

Experimental design can be laborious if done manually. Some
research workers, familiar with fractional two-level factorial experi­
ments, have spent days finding a suitable fraction. Even then the

labour was probably worthwhile■because a suitable fraction Would
achieve the experimental objectives with considerable cost and time
savings. It was the original purpose of this study to assist the
research worker in obtaining quickly and easily an experimental
design suitable to his objectives. The aim was for the following
dialogue to take place between the laboratory computer and the research
metallurgist. The dialogue would be through a keyboard and typewriter
terminal.

The user would first establish the date and research name, where­
upon the program would open up a new data file under that name. It
would then begin to ask the user questions about his variables. Which .
are the dependent variables and which are the independent? The answers
may be given as names or as numbers. Also identified would be the
intermediate variables which, to the physical metallurgist say, may be
worth recording to extend his fundamental understanding of the subject,
but from the viewpoint of a predictive statistical model may be
ignored. An example of this type of variable is grain size. It is not
an independent variable from the viewpoint of experimental design because
it cannot be controlled directly. Strictly it is a dependent variable
because grain size is determined as the response to control or independent
variables such as composition and process treatment. On the other hand
it cannot be claimed to be a commercial characteristic of steel, although
there are said to be relationships between the grain size and the
commercial characteristics. So I call it an intermediate variable.

Having established the names of the variables and their type, the
computer program would probe deeper. What are the anticipated ranges
of the variable values? What interactions exist between independent
variables? (The meaning of "interaction11 will be discussed later). And
what curvatures might be expected for each of the dependent variables?
What accuracies might be expected in meeting the specifications of
independent variables? Are there any practical reasoiis for dividing
the full set of observations into blocks? Which of the variables
are quantitative, and of these which have continuous values and which
have discrete values? Which of the variables are qualitative and how.
many levels of each quality are there? Are there any mutual constraints
between the variables: such as in a metallurgical experiment when one
element must have a low and narrow range when a second element is at a
high level, and vice versa, so that their mutual region of variation
is banana shaped?

Figure 1

x »

The computer program would allocate a disk area to the research
project and would store the information so far obtained. It would then
produce the most efficient design corresponding to this information.

The research worker would be expected to follow the computer-
printed design and return to the computer later with his results. The
analysis programs would take into account any missing, spoilt, or
extra data. The computer would produce reports in the form of prints
of the analysis, plots of contours, and sections of response surfaces.
These would assist the user to determine whether to make further observa­
tions, in which case the computer would offer its advice on further
observation points, or to produce a final report and clear the disk
area for another user.

Process research increasingly calls for the real-ti»e analysis of
data as it is collected, rather than waiting for an experiment or a
series of experiments to be completed before data analysis begins.
This presents the further challenge of automatic sequential analysis
of data and synchronous revision of experimental design. Thus the aim
of this research included, originally, the prospect of extending to
the on-line situation the automatic design and analysis of experiments
already described. In these cases we should be logging data from and
controlling processes whose properties may not be known in advance:
the computer would establish mathematical models describing the
processes and would improve these models as it acquired more data.
Thus the computer would learn from experience, but rather more quickly
than a human being, although admittedly with some limitations.

The system would be entirely flexible so that even if operations
changed overnight from metallurgy to hydroponics it would still be useful.
Within each laboratory there would be a wall-mounted termination board

and keyboard connected directly to the central computer. Terminals
would be labelled with types of signals that could be connected:
analog input and output, digital input and output; and the permitted
voltage ranges. Within the computer would be a suite of generalised
data analysis, acquisition, and control programs. The user in the
laboratory would connect leads from his experimental process to the
termination board. Through his keyboard he would have a conversation
with the computer similar to that described for the off-line automatic
design and analysis of experiments. He would signal to the computer
when the experiment was set up and ready to go. And it would go!
The flexibility must be stressed: it would not matter to the system
whether the experimental process under study was a miniature electro­
slag refining plant or a tomato plant, so long as the signal types,
voltage ranges, and sampling frequencies were suitable to the computer.

In some ways the original aim of this research as described
above was over-ambitious and unrealistic. Within limitations, however,
it is still practical and achievable, certainly worth pursuing, and
some of it is already within reach.

One of these limitations is dictated by the plethora of approaches
to experimental design. The review paper by Herzberg and Cox
listed nearly 900 references. It is notable that most were of a highly
theoretical and non-applied nature and rone was concerned with automatic
design of experiments as an aid to the industrial research scientist.
That paper nevertheless highlighted a point of considerable importance
in this current study: that the class or classes of experiment studied
should be sufficiently narrow to allow significantly noticeable and
useful progress. This point was made by Tocher(t^S2§who wrote: "It soon
became clear that any such account, if treated in the detail commensurate
with the importance of the subject, would be excessively long and that
some curtailment of the programme would be necessary. Consequently,
... attention is concentrated almost entirely on those experiments
normally referred to as block experiments."

The choice of experimental classes has accordingly been restricted
in this present study and is discussed in the next c:> r.

A further limitation is the extent to which a conversation between
research worker and computer can be allowed to proceed without the
guidance of a statistician* While it should be possible to develop
programs to support question a nd answer routines with descriptive
text and graphical illustrations to explain difficult points to the
conversing scientist, when he seeks clarification, it became
apparent during the study that such a system would be far from easy
to implement* Indeed, to be wholly satisfactory, it would need
a much deeper study into the psychology and linguistics of program
instruction* Hence, while the original aim of developing automatic
design procedures was maintained, it has been restricted to
providing an aid to the applied consulting statistician and to the
initiated research scientist rather than providing a conversational
system available to all-comers regardless of their knowledge, or
lack of knowledge, of elementary mathematical modelling and
experimental design and analysis.

The remainder of this thesis comprises chapters on the choice of
experimental classes, approaches adapted to their automatic
design, some computer programming points, data analysis, and
some applied examples* New contributions to the subject and
outstanding problems are identified throughout the thesis*

3 Algorithms

In publications related to the earlier stages of this
research (Greenfield (1972,1974)) the procedures that
were developed were illustrated in program segments
written in an extension of standard Fortran 4. The
full programs were published as appendices. These
programs were freely available and research laboratories
in several countries tried to Implement them. Some
were successful and some were not* The problem was
that programs are in general not easily portable from
one machine to another even if the machines are claimed
to support the same high level language because differences
between machines lead to a unique dialect of a high level
language for each. If a program were written precisely
in Fortran 4 it would be portable. However, dialects
are sufficiently different that an•implementer may not
see how to convert a program. Some dialects have
extensions that are oriented towards toe class of
applications for which <the computer has been designed.
This applies particularly to scientific computers. It
may he argued that programmers should stick rigidly to
th*' standard, but if they do not use all the available
extensions they are underusing the facilities.

In a later public?.tion (Greenfield (1976)) the method
of selecting defining contrasts in two-level experiments
was described in a sequence of simple steps expressed in
Knglish. ‘Subsequent correspondence proved that the
procedure was immediately more comprehensible to potential
users than if it had been published as a detailed Fortran
oropram. a list of program.statements is not the

clearest way to describe a complicated procedure. On
the other hand, a sequence of steps in English is not.
adequate to describe other than the simplest of mathematical
procedures. In this thesis, therefore, an algorithmic
style, which has recently become conventional in the
computing world, will be used. This has advantages
that will be described below.

An algorithm is a sequence of rules for solving a problem,
usually, but not always, mathematical. The word is not
new. It has been used with this meaning in English,
German, and Latin (algorismus) for some centuries. Much
of Gauss's astronomical and statistical work was couched
in algorithmic terms and he used the word in the modern
sense. However, in recent years it has become clear
in computing circles that communication would be greatly
improved if a universal convention for stating algorithms
were adopted.

The primary purpose of an algorithm is to specify the
correct sequence of rules for transforming an initial'
value, or a set of initial values, into a final value,
or a set of final values. For example, an algorithm to
design an experiment will be a sequence of rules that will
transform an initial statement of 'model, variables, and
allowable values’ into the design of an experiment which
would yield data suitable for the estimation and testing
of the model coefficients.

A secondary purpose of an algorithm is to supply a
sequence of rules that will minimise the time and
effort needed to reach the correct solution to the
problem for any arbitrary initial values.

Another purpose of an algorithm, and one that h»s
become increasingly important, is to provide a*
sequence of rules that are easy to understand, simple
to prove correct, and easy to change if the specifications
of the problem and the way to solve it change. As
algorithms become more and more complex there is
increasing difficulty in understanding how they work,
how to find and correct errors, and how to make
development changes. It. has been claimed that
more than half a programmer's time is spent dealing
with program correction, maintenance, and modification.
Leading programmers, most notably Dijkstra (1973),
Knuth (1973), andGoodman and Hedetniemi (1977), have
developed a convention and a set of techniques that
have already become widely adopted. These comprise
a notation for flowcharts, a notation for the stepwise
description of an algorithm, and an approach to programming
known as ’top-down structured programming*• These will
be explained here because they are used throughout the
rest of this thesis to describe the experimental design
algorithms. If these are properly understood, then
any programmer, using any programming language, on any
machine, should be able to transcribe the algorithms
into working programs. Furthermore, for simple
experimental designs, the designer should be able to
follow the algorithms using pencil and paper to design
his experiment manually.

A flowchart is a directed network having three, kinds
of box:

A function box,, illustrated
here, is used to represent
a function f: X—

function
(input)
(output)

Figure 2

A predicate box,, illustrated
here, is used to represent a
logical function

p: X — *[t,f|
which passes control along
one of two paths.

Figure 5

redicate

A collecting box, illustrated
here, represents the passage
of control from one of two
incoming paths to one outgoing
path.

O
V

Figure U

A structured program is one that can ue expressed as
a composition of the fol]owing four primitive flowcharts:

A functional composition, illustrated
here, which is simply a sequence of
function boxes.

functi on
one

Figure 5
function

two

A selection, illustrated here,,
which uses a logical test,
whose outcome is either true
or false* to determine which
of two alternative functions
should be done. In practice,
a test with more than two
outcomes may be used but this
is equivalent to a sequence of
two-outcome tests.

Two forms of iteration in which
a logical test is used to decide
whether or not a function should
be repeated. The distinction
between the two.forms is that in
one the first time the test is
met is before the f irst time the
function is met, and in the other
the order of the first meeting is
reversed.

Figure 6

predicate

function
two

function
one

functDon

Figure

function

predicate

thms
in terms 01. structured flowcharts. Top-down structured
programming means starting with a general statement of a
function and then analysing it a step at a time into levels
of greater detail until the stage is reached when code can
be written easily in a high level language to implement the
developed algorithm. This final stage is best done in
certain languages like Algol and Coral which have been
designed with an algorithmic nature. It is much more
difficult, although still possible, with Fortran which has

Figure 8

a different structure. I shall however use Fortran to
illustrate programming features because it is by far the ScJê KKcmost widely used^programming language.

The topr-down structured programming procedure will be
illustrated with reference to Euclid's algorithm for
determining the highest common, factor (hcf) of two integers.
This is also known in America as the greatest common
divisor (gcd). I have chosen Euclid's algorithm as an
illustration for three reasons: it is needed as a sub­
routine in the experimental design algorithms developed
in chapter six; it is complex enough to illustrate
development at several levels of detail; it is short
enough and simple enough to serve as an illustration.

At the same time as using the example to illustrate top
down programming in terms of flow chart representation, I
Shall use the occasion to illustrate the conventional
linguistic representation. This bears a striking
resemblance to the programming language Algol, an apt
neologue from 'algorithmic language'. The conventions
used for describing algorithms are however much more
flexible than those of a programming language which has
strict rules rather than useful conventions. Thus an
algorithmic step may be described in the broadest functional
terms using English or mathematical notation, rather than
in explicit computational expressions, assignments and
tests, although at the final stage of developing an
algorithm these latter will appear.

One of the conventions is to exploit different typefaces
to clarify meaning. Commonly used words are set in
lower case boldface, indicated in typed copy by a wavy

underscore. Examples are: algorithm, and, do, else,r ̂ AAA/ 7 Â »7 7
fi, for> goto, if, od, set, then, through, to,
while. An algorithm name is set in holdface capitals,
such as HCF. The derivation of an algorithm name may
be italicised in parentheses* In typed copy italics are
indicated by a straight underscore. For example:

Algorithm I1CF (Highest Common Factor)

The word 'step' followed by a number, is used to label a
step in the algorithm and is also set in italics: Step 5
This label may be indented to indicate the level of logic.
Immediately after the label Step i, a brief phrase in roman
medium typeface in square brackets to describe the purpose
of the step. Further comments, also in roman medium
type, may appear within the step and are usually separated
by semi-colons.

Mathematical, logical, and computational expressions are
also put in medium type. The reverse arrow is used for
assignment. For example:

means that the variable K is assigned the value

The two words fi and od have been introduced so that the
ends of conditional statements and sequential statements,
initiated by the words if and do respectively, can be
identified unequivocally.

1.20

In top down structured programming we repeatedly ask
if the function being considered can be expressed as
a primitive flowchart. Top down programming is illustrated
in the following example which starts with a single function
box. In practice* I do not always use strictly structured
programming because it sometimes seems clumsy.

Algorithm HCF (Highest Common Factor)

Given two positive integers, j and k, find
their highest common factor which is the largest
positive integer, h, which divides.both j and k.

Step 1
Step 2
Stepj 3

read j, k
h«— hcf (j,k)
write h

Figure 3

At this stage the method of evaluating the hcf has not
been described* but the function has been expressed
formally; that is, the function and variables have
been indicated. The next stage is to analyse the function
in terms of one of the primitive flowcharts. Statements
that can be made immediately are:
a) If j = k then hcf(j,k) = j
b) If j = 1 or k = 1 then hcf(j,k) = 1
c} If j = O' then hcf(j,k) = k
d) If k = 0 then hcf(,j,k) = j

However, the application of this function in experimental
design is to do with factors with more than one level (see
chapter six) and the initial values of j and k will always
be greater than one. Thus only question (a) need be asked
and the function meay be replaced by a primitive selection
flowchart:

Algorithm HCF (11 " " " 11)
step 1 read j,k
step 2 if j = k then step 3 h<-*j

else steo 4 h*-hcf(j,k) fi
step 5 write h

prime factors of both initial values and comparing them.
Euclid's algorithm is based on the division theorem which
states: If a and b are two positive integers then two
integers q and r can be found such that

a - bg + r
It is clear that the highest common factor of a and b must
also be a factor of r. Thus hcf(a,b) = hcf(b,r).
If this division theorem is applied repeatedly, a remainder
of zero must ultimately appear and the last positive remainder
before that must be the hcf of a and b.
Now, substituting j and k for a and b, the function box

k * - J

Figure 10
finding all the

marked * in the last flowchart may be analysed as either of
the following: v. r \

Figure 11

k « - K

In both of these, the expression rem(j,k) means the remainder
when integer j is divided by integer k. The first of the

toalternateves^strictly follows the conventional iteration
primitive flowchart, but since this would lead to two more

O)assignments and one more test tnun the second alternative^, the
latter is preferred.

Alternative (a) would be expressed as:

while k / 0 do step 5 od
step 5 do r*-rem(j,k); j«-k; k«-r od

step 6 h*—j

Whereas alternative (b) would be expressed as:

step 1+ r*-rem(j,k)
step 5 if r / 0 do step 6 od fi1 * •'N— ' , , ---

step b do k; k<r-r; goto step od
step 7 h*—k

The solution of rera(j,k) may be left to the final programming
stage in the knowledge that in many Fortran function libraries
there is a function MOD(«J,K) which is assigned the value of
the remainder when J is divided by K. Y/ithout this function
the expression K-(K/j)*J may be used to give the remainder
since the first part of the expression to be evaluated (K/j)
returns only the partial or integer quotient*

There is one further small refinement to be made to the
algorithm. If at some stage the remainder is one, there is
ciearly no need to repeat the procedure and determine that the
remainder at the next stage is zero. We can conclude instead
that j and k are mutually prime, that is hcf(j,k) =1. With a* A sk(7i r* ►vwiA.btred-j
this test added,I the algorithm and flowchart become:

X*
C_1.

Figure 12
write h

read j,k

Algoritlm (Highest Common Factor) Given two positive
integers j and k, find their highest common factor which
is the largest positive integer, h, which divides both j and

Step 1 read j, k
Step 2 if j s k then step 3 h^— j

else do step 4: step 5 od fi
Step 4 r<— rem(j, k)
Step 5 if r as 1 then step 6 h«— 1

else do step 7 od fi
Step 7 if r = 0 then step 8 h*— k

else step 9 do j <- k; k<— r;
goto step 4 od fi

Step 10 write h

The next stage, writing the program, will be illustrated here
although it will normally be left out of the main text and put
in an appendix. Coding in Algol after the final algorithmic
statement is straightforward. However, since Fortran was not
designed with structured programming in view, some departures
from the algorithm may be indicated* One useful device in
Fortran is the three-way conditional statement IF(X)a,b,c
where a, b, and c are three branch labels according to whether
X is negative, zero, or positive. This is used in the following

FUNCTION IHCF(JJ,KK)
if(Jj.eq.kk) go to 5
J=JJ
IG=KK

1 L=K-(K/J)*J
IF(L-1)3,4,2

2 K=J
J=L
GO TO t

3 IHCF=J
RETURN

4 IHCF=1
RETURN

3 IHCF=JJ
RETURN,
END

There are a few minor points to note in this function routine.
The function name has been changed from HCF to IHCF and the
remainder variable has been called L so that integer values
are implied according to the usual Fortran convention. Also
the function does not operate on the integer variables passed
to it by the main program but copies them first.• This is to
avoid corruption of the variables in the main program*

This routine will execute Euclid's algorithm for all integers.
The division theorem ensures that even for pairs of very large
integers the algorithm will yield the hcf after relatively few
iterations* In the application to be developed in chapter 6,
however, it will rarely be used with integers greater than,
say, 20. This suggests that if a difference is used instead
of a remainder, the algorithm will work even more quickly.
The computation of a remainder calls for a division and a
multiplication which are both computationally slow compared
with a subtraction. Thus, reverting to figure 12 and
substituting . r4— j - k in place of i*-rem(j,k), and then
observing that this calls for j to be greater than k, the
flowchart and algorithm may be revised as:

Figure 13

*
k *-<a

K
K j

A1 gorithm Jg£F (Highest Common Factor) Given two positive
integers j and k, find their highest common factor which is
the largest positive integer, h, which divides both j and k.

step 1 read j, k
step 2 J>k $212

&££ & £i
S te p 5 jf j = k goto step .8

else step 4 d*r»k; k>*<—j; j*-<d od fi
step 5 d^—j - k
step 6 if d = 0 ggto step 8

else step 7 j*-k; k<~d; goto, step 2 gd £i
step 8 h*-k
step 9 write h

Noting that the predicates in steps 2 and 3 may be implemented
in Fortran by a three-branch conditional statement, this
algorithm may be coded as:

FUNCTION IHCF(JJ,KK)
.T=JJ
K=KK

t IF(J-K)2,4,3
2 D=K
K=J
J=D

3 D=J-K
IF(D.EQ.0)G0T0 4
J=K
K=D
GO TO 1

4 IHGF=K
RETURN
END

This revision at a function sub-program illustrates that
by recording the stages.of top-down programming, it becomes
easy to make modifications.

The Automatic Design of Experiments

i.
Some Practical Algorithms

CHAPTER TWO

CHOICE OF EXPERIMENTAL CLASSES

The objectives of an experiment can usually be stated
in terms of a mathematical model whose parameters are
.to be estimated* The best experimental design is
that set of combinations of values of the control or
independent variables which will permit the estimation
of those parameters with greatest precision, with
least bias, and within allowable cost limitations. A ;
further criterion is expressed in terms of the use to
which the fitted model will be put: the design should
lead to the estimation of parameters such that the
model may be used to predict values of the dependent
variables with the greatest possible precision and the
least bias, in a pre-specified region of the independent
variables.

These criteria are not apparent in the works of Fisher
(1923, 1935) whose major objective of experimentation was
to test comparisons between treatments- It is felt,
however, that Fisher tended to lay undue emphasis on the
importance of formal tests of significance in experimental
work. In part this emphasis on tests of significance is
attributable to the way in which the subject developed in
the agricultural and biological sciences, and to the fact
that in the simpler types of experiment the treatment
means are always efficient estimates. The emphasis on
significance tests has had unfortunate consequences, both
at a practical level and in theoretical work. Too much
effort has been devoted to the investigation of minor
points of little real importance. This has resulted

in a proliferation of alternative methot s of analysis,
hedged about with restrictions and qualifications, to
the confusion of the practical worker.

In 'Statistical Methods for Research Workers' Fisher
actually encouraged the statistician to look around for
the test giving the highest significance! It is not
surprising that physical scientists some limes remark
that they see little of relevance to their research in
standard texts on experimental design and analysis (such
as Fisher (1933)> Cochran and Cox (195C), and Kempthorne
(1952)).

The developing complexity of physical research has called
for a different approach to experimental design based
upon the estimation of effects rather than upon tests of
the significance of their comparisons. Indeed, effects
of treatments can no longer be estimated simply, because
we are now faced with multi-parameter mathematical models
which call for a more subtle approach: usually least
squares regression analysis and sometimes with ingenious
coding of the variables. Furthermore, the research
worker usually knows that these effects, as expressed by
parameters or coefficients of the model, exist and what
he needs is an efficient estimate of the parameters and
reasonably accurate estimates of their errors.

Two types of variable can enter a model: qualitative and
quantitative. It may be argued that quantitative
variables should be further sub-divided into continuous
quantitative and discrete quantitative. For example, in
making a cake one might have any continuous measure of
sugar or fat, but discretely only one, two, three or
four eggs. However, in reality continuous variables are

2.3

usually measurer] and non trolled in discrete steps. Cooks
would not specify sugar more precisely than to the nearest-
half ounce; steelmakers would not specify carbon content
more nrecisely than the nearest 0.01 per cent.

In industrial research, where the major objective is
usually the optimisation of a physical property or the
cost or yield of a process, this dependent variable may
he reoresenied as the response surface in the space of the
independent or control variables. In many cases, the
experimenter has sufficient knowledge of his process to
know, not only that effects exist, but that he is close
enough to the optimum he seeks to be able to assume a
response surface that is quadratic in the independent
variables.

'Phis situation is so common that it v/as decided for the
nresent to limit the development of algorithms for the
design of continuous variable experiments to those situations
which could be represented by quadratic models.

Industrial laboratories frequently arrange experiments
based entirely on qualit ative variables for which there is
no orior justification for ordering. None of the variables
can therefore be coded so as to be analogous to discrete
quantitative variables. Such an experiment may be to assess
the effects on a chemical estimation of: different laboratories;
different apparatuses; different operators; different
preparation;,cleaning or storage methods;, different sources
of materials; or different types of atmosnhere. Such
variables are usually called factors and their values are
designate levels. The experimental planners are often
faced with the major difficulty that if they wish to examine
more than two or three factors, each with several levels,
si mule multinli.cai.ion shows that the number of observations to

2.4

be made is more than is practically oossible, limited
nerhans by cost, time, and available materials- This
problem has rherefore beer studied and algorithms have
been developed to prodnce fractions of multi-level factorial
experiments.

r|'hi s study then is narrowed to an examination of methods
for designing experiments to fit quadratic models in
Quantitative variables (chapter four) and for designing experiments
in qualitative variables (chapters six and seven). Mixed
nesi pns, that is designs to deal with independent variables
that are both qualitative and quantitative, are mentioned
in chanter eight as a suoject for further development.

There is, however-, a class of experimental desirn which can
bn used as a Via sis for genera tin *T both of these other types
of desirn. This is the two-level factorial, or more
ar-fi oii I arl v, the fractional two-level factorial. A.s will
be described in later chapters, the first st.a(re in genera ling
i ther of the two matior designs will be the. generation of a

fractional two-level f-ctorial. This intersection is
illustrated.

Figure 14

box and TJunter (1960 make the point succinctly: ’A full
k
2 factorial design requires all combinations of two versions
of each of* k variables. Tf a variable is continuous, the two
versions become the high and low levels of that variable. If
a variable is qualitative the two versions corresnond to two
tvnps, sometimes the presence and absence of the variable.’

There is a further advantage in including the fractional
two-level factorial in this study: it is sufficiently
simple in concept to have acquired an almost universal
adoption among physical, chemical, and metallurgical
research workers. They have been familiar with it
for some years, due largely to writers like Davies (1954),
Duckworth (1968), and Mendenhall (1969). Yet these research
workers still have problems and the most frequent is that of 1
generating the best fraction of a factorial to suit the
circumstances.

Accordingly, the next chapter of this thesis deals with
algorithms for generating fractional two«»level experimental
designs. Subsequent chapters deal with augmenting these
fractional designs to fit quadratic models and with using two
level fractional factorials as the start of the procedure for
designing asymmetric multi-level fractional factorials.
Figure 15 is a simple flowchart relating these procedures.

The first function (box 1) in the flowchart of figure 15 is the
generation of a two-level fractional factorial design using the
procedure to be developed in chapter three. This follows from
the argument that whether the independent variables are qualitative
or quantitative, the fractional two-level design will form a base
on which the more complex designs will be built.

If the variables are quantitative (box 2) and if only linear main
effects and interactions are expected (box 3) then the two-level
fractional factorial design satisfies the requirements.

However, if quadratic effects are expected for any of the variables,
then the design must be augmented with extra observation points to
allow the estimation of those quadratic terms (box 4)« The
algorithms for augmentation are developed in chapter four.

If the variables are all qualitative but any of them has more than
two levels, then the design is classed as an asymmetric factorial
(box 5). A procedure for generating balanced fractional asymmetric
factorial designs is developed in chapter six.

Sometimes a balanced fractional asymmetric design has more observations
than is economically acceptable by the experimenters and is also
grossly over-determined (box 6). If this is so, then the criterion
of balance is abandoned and a subset of the observations in the
balanced fraction is selected using the criterion of D-optimality
(box 7). The algorithms for this are developed in chapter seven.

A natural extension of this work would be the development of algorithms
for designing mixed experiments: those with both qualitative and
quantitative variables. In chapter eight I suggest this among
future work to be tackled.

The Automatic Design of Experiments

Some Practical Algorithms

CHAPTER THREE

TWO-LEVEL

1

2

3

FACTORIALS

Background

Algorithms

Examples

1 Background

The early papers by Fisher (1926 et seq) and Yates (1933 et
seq) stimulated a steady flow of papers on both
the design and analysis of factorial experiments. Their
ability to be divided into blocks by confounding high order
interactions with block effects appealed particularly to the
agricultural statisticians and they were helped by Barnard
(1936) who enumerated a selection of confounded arrangements.
These enabled the research.worker to choose a design by
inspection but they did not give him a uniform procedure for
ensuring that his choice would provide the conditions for
estimating all the required coefficients of the model to be
fitted. Indeed there seems to be little in the literature
before the 1950's which discussed explicit mathematical models
when considering experimental design.

Finney (1948) drew attention to this in a paper which described
the estimation and interpretation of main effects and interactions.
He commented: "few things betray the inexperienced statistician
more readily than a triumphant presentation of an elaborate
analysis of variance table coupled with an almost complete
neglect of treatment means."

One of Finney's major contributions was his clear exposition
(1945 and 1946) of the relationship between block confounding
and fractions of two level factorials. In these papers he
explains the notation introduced by Fisher and Yates and which,
through common use, has been accepted generally as standard.
The notation is that both factors and their effects are represented
by capital letters; the high and low levels of the factors are
represented by the presence or absence, respectively of lower
case letters. Thus if there are three factors, each with

two levels, the factors would be named A, B, and C. The
effects of these factors would also be labelled A, B, and C:
the first order interaction effects would be labelled AB, AC,
and RC; and the second order interaction effect would be labelled
ARC. An objective of the experiment would be to estimate these
effects together with the mean effect which is denoted by I.
Combinations of lower case letters denote firstly experimental
desirn points. For example: ac represents the observation
point at which factors A and C are both at their high levels and
factor B is at its low level. The case where all f; ctors are
at their low l.vels is denoted by (l). This lower case notation
is also used, without confusion, to represent the observed
values of the dependent variable at the corresponding observation
points.

As well asra standard notation, there is a standard crder for
lisfinr observation points and factorial effects. The standard
order is clear from the following example, with three factors:

This standard not.ationai order will be shown to have value in
the next section when the design algorithms are developed.

Observation points Factorial effects
I

a A
b B
ab AB
c C
ac AC
be BC

ABC

In the same paper, Finney stated: "In planning a 2n experiment,
using only 2? treatment combinations in a l/^n-p replicate,

the first step is t. select a suitable alias subgroup of
n-porder 2 and then to determine the complete orthogonal

3.3

sub-group of this as the set of treatment combinations."

The "alias sub-group" to which he refers is also known as the
"set of defining contrasts''̂ which will be described later^ and
their selection constitutes the outstanding problem in designing
fractional two-level factorial experiments. Finney gave no
formal procedure for choosing the defining contrasts. In his
example he arbitrarily chose some with high resolution (interactions
b e t w e e n more than three factors) and then tested, that they would
not. lead to aliasing between main effects and low order interaction
effects.

He did, however, describe a formal procedure for developing a
fractional design once a suitable set of defining contrasts had
been chosen. This procedure followed the demonstration by
Hi: her (194-i) of the connection between confounding and the theory
of Abelian groups. This connection is shown to be of value in
the next section of this chapter when the implementation of the
design algorithms as computer programs is described. It is
shown to have further value in the algorithms for designing
fractional mixed multi-level factorials which are described in
char'ter seven.

Kempthorne (1947) offered an alternative notation for the
design points, using ones and zeros. He also described factors
by lov/er case sub-indexed x's: "If the factors are x^, x^, . •
. . . x an'1 thev take n mutually orthogonal axes y. to v ,’ n J 1 *” n
then the point (000...0) represents the control treatment(with
all the factors at the low levels), the point (100...0) has
x̂ at its high level and all other factors at their low levels,
arni so on." 'Kempthorne' s notation is kno wn as a bit notation
in computer terms ana this is also shown to be of value when
implementing Ihe design algorithms as corn-uter programs.

J.4

kempthorne also illustrated the procedure for designing fractions
once a suitable alias sub-group or set of defining contrasts had
been chosen; but, he admitted, "no simple method has been
found of enumerating such groups."

Box and Hunter (1961) gave a thorough treatment of the notations,
design, and analysis of fractional factorial experiments and
they suggested a procedure for choosing a set of defining contrasts
in a less than wholly arbitrary way. They defined the resolution
of a design as the smallest number of factors represented in the
design's set of defining contrasts. The resolution of a design
would influence the degree of confounding of effects, when they
came to be estimated from the observations, as follows:

In designs of resolution 3, no main effect would be confounded
wii.h any other main effect, but main effects would be confounded
with two-factor interactions.

In designs of resolution 4, no main effect would be confounded
with any other main effect or any two-factor interaction, but
two-factor interactions would be confounded with each other.

Tn designs of resolution 5, no main effect or two-factor interaction
would be confounded with any other main effect or two-factor
interaction, but two-factor interactions would be confounded
with three-factor* interactions..

V/ it1, these re sol ulm '%ns in mind they suggested the foil owing
procedure for choosinr a suitable set of defining contrasts:
alias the main effects and required interactions with other
interactions assumed to have insignificant effects; this yields
uossible defining c- ntrasts which must be multiplied together to
eive the complete set of possible defining c ntrasts which must
then be checbod to see if th-v lead to anv undesirable aliasing.

The procedure of Box and Hunter was hot, however, a direct path
from an explicit statement of the model to be estimated to the
choic of a suitable set of defining contrasts* Nor was the
similar procedure of Whitwell and Morbey (1961) who dealt
specifically with designs of resolution five since these would
certainly lead to the estimation of all first order interactions
as well as main effects. Their argument rested on the assumption
that all first order interactions were needed. They did not
consider questioning the experimenter's model to discover if
there could be any a priori discarding of first order interactions.

Addelman (19&3) reviewed known techniques for constructing
fractional designs. He commented: "The crucial part of the
specification of a fractional replicate plan is the choice of
the defining or identity relationship. One should always attempt
to choose interactions for the identity relationship in such a way
that those interactions that are completely confounded with the
effects or interactions that one wishes to estimate are negligible"

The advocacy of authors such as Cochran aiid Cox (1950),
Kempthorne (1952), Brownlee (1953), Davies (1954),
Duckworth (1968), and Mendenhall (I9t>9), led to the two-level
factorial becoming the most commonly used type of experimental
design in industrial laboratories. Research workers generally
and easily appreciated that fractions of these designs would
achieve economies in both money and time spent on investigations.
The advocates warned, however, that care must be exercised in
the choice of these designs so as to avoid the aliasing of main
effects and important interactions.

Sometimes, still, this point is ignored by the research worker
who, without consultation, uses any available fraction without
consideration of the penally to be paid on analysis. Subsequently,
the statistician is expected to extract non-existent information
from the experimental results.

The usual procedure is to refer to a standard textbook and try to
pick a published design to meet the experimental needs. If a
suitable design is not found, a research worker with some
understanding of the subject will try a few arbitrary sets of
defining contrasts, generating aliasing matrices until a suitable
design is found. This introduces an undesirable element of
arbitrariness. A paraphrase of the procedure recommended in
man^texts is:

"First choose a suitable set of defining contrasts. Secondly use
these defining contrasts to generate an aliasing matrix and check
if all the main effects and interactions that need to be estimated
can be estimated without being aliased with any others. If this
check fails, start again. If it passes: thirdly use the defining
contrasts to generate the fractional design."

The procedure given for the final stage is satisfactory, but that
for the first is no more than guesswork. The outstanding problem,
that has not previously been solved, is to establish a logical and
easy procedure to select a set of defining contrasts: that define an
aliasing matrix in which the experimental requirements are not aliased.

This is not a trivial problem . It is not uncommon for a research
worker to spend several days searching for a suitable set of defining
contrasts by trial and error. In view of this, and in view of the
historical awareness of the importance of the problem, the simplicity
of the solution comes as a surprise. The purpose of this chapter is
to explain the solution which has been published in a brief form,
Greenfield (1976). After publication, Franklin (1977) identified
a case where my algorithm gave an incorrect answer and I immediately
submitted a modification for publication (1978). Meanwhile, Franklin
and Bailey (1977) developed and published an alternative algorithm,
which has the added advantage, for agricultural work in which their
main interest lies, that it can lead to division of a fractional
design into blocks for further confounding. However, as I had already
successfully implemented ray algorithm and as their extra, feature is
generally of no particular advantage in an industrial laboratory, I
shall not at this stage change ny intention to present ny original
algorithm, duly modified slightly, in the rest of this chapter.

2 Algorithms

The object of the algorithms to be developed in this section
is to design a fractional two-level factorial experiment that
will admit the estimation ofthe coefficients of a prior stated
linear relationship between a dependent variable and a set of
independent variables. The latter may be.described as the a
main effects and some of the interactions of a set of factors.
In the.earliest version of these algorithms interactions were
restricted to first order: those between two factors. This
was supported by Box and Hunter (1961) who wrote: "With
continuous variables it is reasonable to expect the response
to vary smoothly. With qualitative variables certain aspects
of similarity may be expected in the responses at the.different
versions. . . . In the conditions of smoothness and
similarity commonly encountered, three, factor and multi-factor
interaction effects are often negligible." However, in
subsequent applications there have been several cases where
second order interactions, those between three factor*, have
anticipated for physical reasons. Thus'the al gorithms must
allow the inclusion of interactions of any order. This is a
marked departure from the procedures for producing designs of
resolution 3, 4 or 5*

The full algorithm may be divided into.three main steps:
1. Enter the requirements set: those main effects and

interactions which are required to be estimated;
2. Determine the fraction, size and find the defining contrasts
3. Generate and print the design.

Since the second step of the full algorithm has historically
been the most taxing, the algorithmic solution will be
•developed in detail. Subsequently, for the sake of brevity,
the first and third steps will simply be expressed in algorithmic
form, rather than being developed detail by detail.

The problem is to find a set of defining contrasts which will
define a fractional design that will allow the unaliased
estimation of all the elements of the requirements set. The
solution to the problem is to generate the defining contrasts
and the aliasing matrix together, instead of first one and then
the other. Effectively this is done by a tree search which
is most easily described in terms of an example. The algorithm
will first, be- expressed in strai ghtforward English interspersed
with the steps applied to an'example. It will then be developed
more formally.

5Consider a 2 experiment in'which the variables are labell ed
-',B,C,D,E. What is required is the small estpossible balanced
fractional design that can be used to estimate each of the main
effects an' also the effects of the first-order interactions AB
and AE, assuming that the effects of all other interactions on
the dependent variable are known in advance to be negligible. The
requirements set is: A,B,AB,C,D,E,AE . The design must
also estimate the mean, so in this case there must be a
minimum of eight observations.

Algorithm tyjpfpj\[fuEFining CONtrasts)
Sten 1. Find m such that 2n m ^ 1 + n - i p

where n is the number of factors, p is the number of
in the requirements set.

interactions / if the procedure shows that there is no
unaliased design of the size determined by the above
expression, it continues to a fraction of double the
size. That is m is decreased by one. In the example,
the first value of m is 2, so the smallest fraction
likely to provide a suitable design is a quarter.

Step 2. Find the (n-m) majority factors in the requirements set.
These are the factors that occur most frequently in the
requirements set of main effects and first order interactions.
Example: The three majorit}' factors in the requirements

Step 3» Write the first column of the aliasing matrix in terms
of the (n-m) majority factors. This has 2n m element
(eight in the example). Mark with an asterisk those
elements common to this column and to the requirements
set.
Example:
First column of the
aliasing matrix:

I
A*
B*
AB*
E*

AE*
BE
ABE

The requirements set:
(A*,B*,AB*,C,D,E*,AE*)

Step 4. Generate the first defining contrast by taking the
product (modulo 2) of the last available element in
the first column and the last available element in the
requirements set.
Example: ABE x D = ABDE

Step 5. Use this defining contrast to generate the next column
of the aliasing matrix. Check at the same time if any
of the required effects have become aliased with those
already marked in the first column. If not, mark those
that have been introduced.
Example:

The requirements set is:
(a *.b *;a b *,e *,a e *,c , d *)

First. Second
column column

I ABDE
A* BDE
B* ADE

AB* DE
E* ABD

AE* BD .
BE AD
ABE D*

between required effects
Step 6. If any aliasingoccurred in step return to step 4.

generating a new first defining contrast by taking the
product (modulo 2) of the next from last available element
in the first column and the last available element in the
requirements set. In the present example this does not
occur.

Step 7..When the* are no more available elements in the first
column, and if the requirements have not all been met,
decrease m by one and return to step 5.

Step 8. Generate the next defining contrast as in step 4.
Example: BE x C = BCE
As will be explained later, this leads automatically to
the third defining contrast as the product of the first
and the second.
Example: ABDE x BCE = ACD

Step 9« Generate the full aliasing matrix, mark with asterisks
and check for aliasing as in step 5.
Example:

Column 1, Column 2 Column 3 Column
I ABDE BCE ACD
A* BDE ;ABCE ‘ CD
B* ADE CE ABCD

AB* DE ACE BCD
E* ' ABD BC ACDE

AE* BD ABC CDE
BE AD C* ABODE

ABE D* AC BCDE

The requirements set is (A*,B*,AB*,K*,AE*,C*,D*)

The algorithm described above is sufficient to be followed
manually, as several correspondents testified after publication,
Greenfield (1976). The algorithm must however be expressed in
greater detail if anyone is going to use it to develop a computer
program. Some special characteristics of factorials also need
to be explained, together with some computing plwys, before
the more detailed algorithm can be stated.

The connection between confounding and Abelian groups was
^described by Fisher (1943)* This connection becomes more
notable when a binary digit coding is adopted for both the
treatment combinations (design points) and main effects and
interactions,. especially since digital computers use binary
integers. In the code adopted here, the binary digits, or
bits, are read ard counted from right to left. Thus:

00000010 b B or b (bit 2 is described as 'up','set'
or 'one1)

00000101 = AC or ac (bits 1 and 3 are set)
Since this coding will be used in the programs but alphabetic
coding is preferred for human reading, an algorithm will be
needed to convert from binary code to aphabetic code. This
will be described later as part of algorithm ALMAT (print-
ALiasing MATrix).
The binary code permits the direct generation of two-level
factorials by counting upwards from zero as follows:

Denary count Binary oode Treatment
combinations

0
1
2
3
4
3
6

7
8
9

10

11

12

•
etcetera

The table stops at the denary count of 2n - 1, where n is
the number of factors.

00000 (1,)
00001 a
00010 b
00011 ab
00100 c

00101 ac
00110 be
00111 abc
01000 d
01001 ad
01010 bd
01011 abd
01100 cd

The product of any two elements (modulo 2) when using the binary
code is seen by an example:

ABDE x BCE = ACD is equivalent to 11011 x 101,10 = 01101
It is convenient that this can be achieved by the use of the
exclusive-OR operator (referred to in future simply as eor) which
is defined by the following truth table:

A B eor (A,B)
0 0 0
1 0 1
0 1 1
1 1 0

As Fisher noted, the full factorial design and, the full aliasing
matrix (see example after step 9 above) are both groups of order
2n under the product (modulo 2) operator. Similarly if a full
design on n factors is expressed as the set of integers from
0 to 2n - 1 in binary code, then the set becomes a group under
the exclusive-OR operator.

If D = the set (0,1, . . . , 2n-l), then for all x C D and for
all yC D there is a z£D such that eor(x,y) = z.
The group's identity element is 0, since for all x£ D

eor(0,x) = eor(x,0) = x

Also every element x has an inverse which is itself:
eor(x,x) = 0 (the identity)

As an example let n = 2,
then D = ((l),a,b,ab) in alphabetic code
or D = (0,1,2,3) in denary code
or D = (00,01,10,11) in binary code

Application of the operator to all ten pairs is seen to always
yield members of D:

eor(00,00) = 00
eor(00,01) = 01
eor(01,10) = 11

etcetera

3.13

It is also useful to note that as well as the full aliasing matrix
being a group, using the binary notation and the exclusive-OR
operator:

* the first column of the aliasing matrix is a sub-group
* the first row of the aliasing matrix (which is the full
set of defining contrasts including the identity) is a
sub-group

* the fractional design that will be derived using the
defining contrasts is a sub-group of the full design
group.

One difficulty that has been met in implementing these algorithms
on various computers is that in standard Fortran the exclusive-OR

(and other logical., operators). n TToperator/can T5e used onlyrwith logical operands. However, on
some scientific computers, such as the IBM 1130 and 1800 and the
OA SPCl6r logical operators can also be used with integer operands
to give an integer result. The integer operands arq considered
to be in their binary representation as described here. The
result reflects whether corresponding bits in the two operands
are set or not.
The related types of operator will be distinguished here by
different notations, acting on logical operands P and Q and on
integer operands I and J:

Logical operators: P.xor.Q P.or.Q P.and.Q
Binary integer operators: eor(l,j) or(l,$) and(l,J)

There should be no objection to using these binary integer
operators. hven if they are not provided with the high level
language function library, any competent programmer should be
able to write them using a machine code or assembler language,
and add them to the function library.

a further useful feature of the group property described is that
each group, or sub-group, can be generated by a sub-set of the
elements of the group or sub-group. Furthermore, this subset
can be identified a simple rule; if the elements of the group

3.14

are expressed in standard order (counting from
0 to 2n-1 in the case of the full design or its equivalent
order for a sub-group as illustrated by the first column of
the aliasing matrix in the earlier example) or in the order
in which they are created (as in the first row of the aliasing
matrix: the defining contrasts), , then:

the generators are those elements in the positions
with order numbers 2+1, where r is any integer 0, 1, 2, . .

As an example, consider the full factorial with n = 3* The
elements of the factorial will be expressed alphabetically for
reading clarity. The order numbers are, set below. The genenator
are marked with asterisks.

(1) a b ab c ac be abc

1 2 3 4 5 6 7 8
* * *

In this case the answer is obvious because the generators are
those elements with single letters. However the rule may not
seem so obvious when generating the set of defining contrasts and
in the algorithm for doing this the rule is of particular value.
Tt is used as follows: when the elements of a group or sub-group
are developed from left to right (in the above example), every
time a generator is created the remaining elements of the group
un to, but not including, the next generator can be created by
taking the product of the new generator with each of its preceding
elements in turn.

In the example above, the first element to be written is (l).
The first generator to occur is a. Aoplication of the prodedure
described creates the single element a.
The second generator to occur is b. Application of the procedure
creates the elements b and ab.
The third generator to occur is c. The procedure creates the
elements c, ac, be, abc.

Returning now to the earlier example: consider the first row
of the aliasing matrix as a sub-group.
The first element to be written was the identity I.
The first defining contrast to be created (by taking the
product ABE x D) was ABDE. This is the first generator and
it creates the element of the sub-group ABDE.
The second defining contrast to be created (by taking the
product BE x C) was BCE. Application of the procedure
described creates two new elements of the sub-group:
BCE (which is BCE x i) and ACD (which is BCE x ABDE).
The rule for identifying a new generator is useful in the main
algorithm in three ways; First, after the majority factors have
been identified, it leads to the use of the above generating
procedure for generating the first column of the aliasing
matrix.
Second, when a new defining contrast is created it leads to
the use of the above procedure for generating consequent defining
contrasts.
Third, it helps in designing a marking, or flagging, system
so that if aliasing is discovered after a defining contrast
has been created the algorithm can backtrack to the previous
generator defining contrast. The method and value of this
use will become clearer as 1he algorithm unfolds. It may be,
noted here that a simple aid in back tracking is:

if Y is the order number of the current generator
(for example, if r = 5 then Y = 2r+1 =■ 33)
and if X is the order number of the previous generator,
then to determine X it is simpler to write X<-(Y-l)/2
than to compute r from Y and then, by decrementing r,

rto compute X from 2 +1.

In the earlier description of the general algorithm DEFCON,
asterisks were used to the rows and the defining contrasts.
Also backtracking, after discovering aliasing in step 9, was
implied and not explicitly described. These two actions, markirg
and backtracking, are closely related and a more complex procedure

than through the use of simple marks like asterisks has to be
developed for a programmable algorithm. Discussion of the
procedure and the development of the algorithm will be helped
by now defining some of the variables to be used; Practical
dimensions of arrays are denoted by (*n).

MV(l) = the Ith element of the requirements set (*32)
NV = the number of elements in MV
N the number of two-level factors
M = the fraction index (the design would be a 1/2^ factorial)
K(l,J)s= the I, Jth element of the aliasing matrix (*128 x 32)

number of rows in the aliasing matrix
number of columns in the aliasing matrix
defining contrast being tested for acceptance
column number of the defining contrast being tested
column number of the current generator defining contrast
a marker for the Jth element of the requirements set (*32)
0 if accepted
100 if currently not being considered
the value that LNEW had when the Jth element of the
requirements set was tentatively accepted
a marker for the Ith row of the aliasing matrix (*128)
1 if the row has definitely been assigned
0 if the row has been tentatively assigned
-1 if the row is still available
another marker for the Ith row of the aliasing matrix (*128)
0 if the row has definitely been assigned
100 if the row is still available
the value that LNEW had when the Ith row of the
aliasing matrix was tentatively assigned
a copy of the Jth element of the first row of the
aliasing matrix: to save reference time when computing (*32)
the n factors expressed in majority order (*16)
a temporary array used in producing MAJ(l) (*16)

A function subprogram NEW(l) will be called to test if I has a
I*value of 2 +1, where r is any integer.

NF
NI
KEST =
JAK =
LNEW =
IN(J) =

IV(I) =

KR(I) =

KK(J) =

MAJ(I)=
NB(I) =

3.17

The above considerations and notations lead tp the following
more detailed expression of the algorithm:

Algorithm DEFCON (bEFining CONtrasts)
IV/V w V W V S * . A A / N A m M --------------------- -

Step; 0 (initialise) given the number of factors, jy, the number
of requirements, NV, and the set of requirements, MV(*),
find the fraction index, M, such that 1 + NV,.
the number of columns in the aliasing matrix, NT,, and
the number of rows, NF. Also determine the majority
order of the factors, MAJ(.).;

Step 10 Construct the first column (JAKf—1) of the aliasing matrix
using the N - M majority factors as generators:andTthe
function NEW. For those elements of the column which
equal some of the requirements, mark the rows each with
two markers (IV[.) and KR(..)) and the corresponding
requirements with one marker (IN(.)).

Step 20 (increment JAK to go to the next column of the aliasing
matrix) JAK*—JAK 4 1
if JAK = 2r 4 1 then step 30 LNEW ♦— JAK, LL*-1, .
and resel/'marlcers for which the KR(.) row markers^ LNEW ■
back to -1 (still available),
else goto step 70 fi 1

Step 40 (find LE, the first available requirement counting
from the end of the set)
if (the search is not successful) then (the allocation
of requirements to rows is complete, but the aliasing
matrix must be completed and checked, so:)
goto step 20 fî

Step 50 (find L0, the first available row counting back
from the Host row)
if (the search is not successful) L0< 0
thgn (the search must backtrack to the previous level
of LNEW, or if the present value of LNEW is 2 then
the number of rows must be doubled and the number of
columns halved) goto step 90 fi •

Step 60 set the row marker KH(LO)*-—LNEW
create tfoe new defining contrast to be tested
KEST<- eor(LE,K(LO, 1))
goto step 80

Step 70 create each new defining contrast to be tested in turn
by eoring each existing defining contrast in turn up to,
but not including, the current generating contrast
KK(LNEW) with KK(LNEW)
LL^-LL + 1, KEST<— eor(KK(LL), KK(LNEW))

Step 80 (test for aliasing the defining contrast created in
step 60 or step 70, and set the markers IV(.) and IN(.)
to testing values for matching rows and requirements: '
IV(.)<-0; IN(.)«-™iW
if (the test is successful) then KK(JAK)<-KEST
(indicating that the defining contrast has successfully
passed its test and is assigned to the set of defining
contrasts KK(.)); ££££ step 20
else goto step 120 fi

Step 90 (LO^O indicates that there is no available row, so we
must backtrack to the previous LNEW)
if LO = 0 (vhich indicates it is possible to backtrack)
Jlieri steo 100 J — (LNEW - 1)/2 +1 (and reset KH(.)'
markers which are now equal to LNEW back to 100)
el.se (L0 = -1 implies that LNEW is already at' its smallest
value of 2 so backtracking is not possible, therefore a
design of the current fraction is not possible, so
double the number of rows and start again)
step 110 NR*-NF*2, NT«-Nl/2, £oto step.10, fi

Step 120 (the defining contrast KKST that has just been tested
has failed the test so set all requirements markers

LNEW back to 100)
for J«- t to NV
if 1N(J) X LNEW then TN(J)<-100 fi
goto step 30

3.19

Each of these major steps will now be expanded and also
represented as a flowchart.

A problem in step 0 is to find M such that 2^ ^ ̂ ,1 + NV.
Putting NE = N-M, the apparent solution may be NE«-ln(l+NV)/ln(2).
However, since NE would be assigned the inte/er value of this
expression, it would normally take on a value less than that
needed* Eor example, if NV = 6, then the expression would
be evaluated as 2.80 and NE would be assigned the integer value
2, whereas the value needed is 3» .Addition of* integer 1i would
correct this,. but then there would be cases when NE would be .
assigned too great a value. Eor example,, if NV = 15> then
the expression would be evaluated as 4 and NE would be assigned 5»
A compromise which avoids both these errors in assigning integer
values is NE«f— 1 ln(NV)/ln(2).

Another problem in step 0 is to determine the majority order
of the factors MAJ(.). It is assumed here that elements of
the requirements set, MV(.''. are expressed in the bit notation
described earlier. r|,he problem is to count the incidence of each
bit in the requirements set and t,hen to order them. For this
purpose an extra array is used. Also a function
TTEST(I,J) is assumed to be available to test if the Jth bit
from the right end of integer I is set or not, returning the
value 1 if the bit is set.

In the earlier example the requirements set was (A,B,AB, C,D,E,AE).
This would lead to NB(1) = 3, NB(2) = 2, NB(3) = 1, NB(4) = 1-,
NH(5) = 2, representing the occurrences of the bits corresponding
to letters A,B,C.D,E. This would in turn lead, using bit
notation, to: = 0001, MAJ(2) = 00010, MAJ(3) = 1000Q,
MAJ(4) = 00100, KAJ(5) = 01000.

A further function, TONBTfI,j), is assumed to be available which
will return the initial value of I with the Jth bit set whether or
not it was initially set.

t

Step 0 now becomes:

Step 0 (initialise) gnter N, NV, MV(.)
Step 1 NE«— 1 + |ln(NV)/ln(2)] (square brackets indicating

integer value); — N - NE; N K — 2**M; NF<— 2**NE
Step 2 for I*— 1 to N do step 3 NB(l)«— -0; MAj(l)<— 0 od
Step 4 for I*— 1 to NV do step 5 od
Step 5 for J<— 1 t£ N do step 6 od
Step 6 if ITEST(MV(l), J) = 1 then set NB(j)«-NB(j) + 1 fi
Step 7 for I*— 1 to N do step 8; step 801 od
Step 8 MAX*— 0; £or J<— 1 to N $o step 9 od
Step 801 MAJ(l)<— I0NBT(MAJ(l), JM); NB(JM)«-0
Step 9 if NB(j) ̂ MAX then MAX^— NB(J); JM4r— J fj,

Tt- l

•T > N

I >NV

S >N

Step 10 (construct first column of aliasing matrix and. set
markers) JAK*-'I; K(l,l)*-0; MM*-0; for I«_1 to NV do IN(lV-100 od
Step _n I*— • 2 I'SF d£ step 12; step 15 od

Step 12 if NKW(I) = 1 then step 13 else step 14 fi
Step 13 LIA— 1; MM4-MM + 1; K(l, i >-MAJ(MM)
Step 14 LI/*~LL + 1; K(l, 1 V-eor(K(LL, 1),MAJ(MK))
Step 15 for J<— 1 tô NV do step 16 od
Step 16 if K(I,1) = MV(J) then . jlo step 17 $cL Q

Step 17 IV(T >*-1; KH (J ŷ—0 j IN (J)*■» 0
Step 18 IV(I>--1; KR(lW-100‘

IO
>f

3AK4- 1
k (u)*-o
MM*- 0

'f
V i < -
l K MV
In (i)«-ioo

>>

I*-/

\t

1 > NF>£->(Step i o)

LL4-LUI
K#,.\

LC*- I MMa-HHtt KR(lV*0

R gare I?

Step 20 (will next defining contrast be a generator?
if so, reset row markers)
JAK<~ JAK + 1
if JAK > NI then stop (all defining contrasts found) fi
if NEW(JAK) = 1 then jjlo step 30 o£

else goto step 70 fi
LNEW<— JAK; LL4-1
for K — 2 to NF do step 32 od
if KR(I)> LNEW then sej IV(l)4- -1 fi

Step 21
Step 22

Step , 50
Step 31
Step ?2

20

I > N F

m y

Step 40

Step 41
Step 42

Step 43

(find the first available requirement counting from
the end of the set; if none, return to step 20)
for I<— 1 to NV do step VI; .step U2 od
set J*— NV - I a- 1
if IN(j)^. LNEW then set LE<— MV(j); goto step 50 fi
(at some stage, while a previous KEST was being tested
in step 80 at the same level of LNEW, IN(j) may have

been set equal to LNEW, so the test in step 1*2 must
be and not just >)

step. 20

k o

Step 3 o ^

\f
I > — O

J

l«-l -H

j*-n v -i+ i

. -.-. J
LE<r-f*

'_____ _
ovfr)

>*
(s|-ef SO)

F i g urg 19

Step 50 (find the first available row counting back from the
last row)

for I<— 2 to NF do step 51 od
step 51 J*-NF - T + 2; if KR(J)^LNEV/ then step 52
step 52 LO*-J; j^to step 60

Step 53 if LNEW *>2 then L0*-0 else L0*--1; goto step 90

Step 60 (mark row and create test defining contrast)
KR(LO>-LKKW; KEST*- eor(LK,K(LO, 1)) ; goto step 80

Step 70 (use generator to create lest defining contrast)
LL*-LL a 1; KEST*-eor(KK(LL), KK(LNEW))

I > N F

bo

I*~ I

L04--1

Ft <j ul«. $L o

Step 80 (test new defining contrast for aliasing and set'markers)
I<-1

Step 81 I*-I + 1;
if I>NF then KK(JAK)f — KEST; goto step 20 fi

Step 82 K(l,JAK)e-eor(K(l, 1),KEST); <JeO
Step 83 J<-J + 1;

if J>NV then iggĵo step 81 fi
Step 84 if MV(J) ^ K(l, JAK) then go.tg step 83 fi
Step 85 if IV(l) / -1 then goto step 120 fi
Step 86 IV(l)f-0; IN(J)<—LNEW; KR(l)^— LNEW; gpto step 83

J*- I

I > N F

12.0

z\

Step 90 if LO = 0 then do step 100; step 101 od
else do step 110 od jPi

Step 100 JAKf- (LNEW-1)/2 + 1;
for I*-2 tô NF dp step 102 od;

Step 101 goto step 30
Step 102 if KR(I)J^LNEW then KR(I>*t-1,00 fi'
Step 110 NF*~NF*2; NI*-Nl/2; goto step 10

step

(00 T flK *-
£.1^- i)/z

no

1
- 1

^ Shep l o j

r*-r+i

O

m e

>t
k(?d)<-ioc

(S k p 3 o)

w.r< 2 Z

Step 120 (since KEST has failed^ reset the requirements set markers)
for J<—1 to NV do step 121 od
step 121 if IN(J)^LNEV/ then IN(j)«-100 fi

Step 122 goto step 50

J > NV

vJW" O

+I

An algorithm for the function subprogram NEW(l), which tests if
I is of the form 2r + 1, is: '

Algorithm NEW(l) (test if I is of the form 2r + 1, r an integer)
Step 0 enter I; step 1 if I = 2 then set NEW*-1; return fi
Step- 2 NEW«-0; J*-1; I1«-I - 1
Step 3
Step 4 if J<I1 then gotjo step 3

else it* J =11 then NEW«— 1 fi fi
Step 3 return

NEW*- I

• -j «

Execution of the algorithm DEFCON will yield an aiiasihg matrix
K(.,.) with NF rows and NI columns. The first row of the aliasing
matrix represents the set of defining contrasts and it is also held
in the vector KK(.). Only the first column and the first row of
the aliasing matrix are needed to produce the fractional design*
Experience has shown, however,that users are more confident in
the design if they are able to inspect the aliasing matrix. The
following algorithm is needed to print the matrix. It includes
a procedure to convert the bit notation into alphameric notation.
For example, the 16-bit integer Q6000000101i00101 must be
converted into the printed string ACFff and justified right in
the column in which it is printed.

If the aliasing matrix has more than eight columns (there may
be 16, 32, 64, or 128), the algorithm will divide it into eight-
column wide blocks for printing. •

The algorithm assumes that an array A(l6) has already been assigned
the^characters A to R, excluding I and 0, and a variable BLANK
has been assigned the blank character. These assignments can be
done in the program with a data statement.

Algorithm ALMAT (print ALiasing MATrix)
Step 0 print heading (‘Aliasing matrix for (name of experiment)’)
Step 1 (number of blocks to be printed) NB<-t + (NI - l)/8;

(and number of columns per block) if NI^ 8 then NS«r8
else NS«-NI fi

Step 2
Step 3
Step 4
Step 3
Step 6
Step 7
Step 8
Step 9
Step 10

for I1<— 1 to NR do step 3 od
NT^*(I1 -1)*8; for I2<-*1 to NF do step 4: step 10 od

I to ~ ^ Mfor 13̂ /ETS ck>̂ step 3; step 6: step 8 od
NX-*-NT + 13; J*-K(I2,NX); L+ 0
for I4€-1 to 16 do step 7 od
if ITEST(J, 14) = 0 then I^-Lrl; B(l3,L>-BLANK fi
for I4<—1 to 16 do step 9 od ***— —

if ITEST(J,J4) / Q then ijinL + 1; B(I3,L>-A(I4) fi
for —>1 to MS grjnt (B(l3,L), L*-1 to 16)

ri*- o

3.31

A practical consideration in implementing the algorithms developed
so far is the computer store needed for the program and data. By
far the greatest store requirement is for the aliasing matrix. If
the program is expected to generate factorial designs with as many
as 16 factors, then an array of size 2 ^ would be needed to store
the .aliasing matrix. As mentioned earlier, however, the aliasing
matrix in its entirety is not essential but may be preserved,.
converted and printed only to support the users* confidence. It
is essential to preserve only the first column and the first row
of the matrix and this can be done with two one~dimensi'onal arrays, one
of which is KK(«).If this is done, then the testing of a defining contrast (steps
80 to 86) would be done by creating and. testing for aliasing an

K T < - eor(K(T), KKST)
K(I, JAK) eor(K(1,1),KEST
if MV(j) KT
if MV(J) / K(I,.7AX)

Some corresponding alterations would be needed to ALMAT.

integer sealar (say
That is:

in step 82
instead of step 82

and in step 00 ■P-

instead of step 84

However, in continuing the development of these algorithms that
the full aliasing matrix has been carried forward with full dimensions
available. The first row is also available as a one dimension array
of the defining contrasts, KK(.)

The exoerimental design is defined by the aliasing matrix.. There
is a choice of 2m designs, each being a block of the full 2™ design.
That block usual.lv chosen, however, is the principal block containing
the identity element (1) which is the noint at which all the factors
are at there lowest levels. This happens to be a sub-group of the
full design, which has advantages that will become apparent in
chapter seven. The other* possible fractional blocks are cosets
of the principal block. Once the defining contrasts have been
determined by a well-known procedure which is described in numerous
textbooks (see, f. r example, Duckworth (1988)). In simple
algorithmic terms, the procedure is as follows:

Algorithm FRADE (FRActional DEsign)
Step 0 Copy the first column of the aliasing matrix into

a design vector, KD(•)
Step 10 Determine the first zero bit from the right in the

last element of KD(.). This represents the factor
to be added to the design, (j)

Step 20 Find a defining contrast which contains that bit and
any of the others already included in the design. (JIP)

Step 30 Copy that defining contrast, removing the bit
corresponding to the factor to be added. (NT)

Step 40 For each element of the design, starting from KD(2),
determine the number of bits it has in common with the
copied contrast.

Step 30 If the number of bits is even return to step 40, but
if it is odd add the new factor to the design element
being checked and tnen return to step 40.

Step 60 Return to step 10 until all factors are in the design.

In the example discussed e; rlier, in which the defining
contrasts were: I, ABDE, BCE, ACD, the procedure would be:

Step 0 KD^-(I, 00000), (A, 00001.), (B, 00010), (AB, 00011)
(E, 10000), (Ah', 10001), (BE, 10010), (ABE, 10011)

Step 10 J<-(C, 00100)
Step 20 .TIP*-(BCE, 10110)
Step 30 NT*- eor(00100, 10110' = 10010
Step 40 and(00001, 10010) has zero bits (step t>0) .

and(00010, 10010) has one bit, so add (C,00100) to
(00010) to give (DC, 00110)

continuing until
KD = (I, 00000), (a , 00001), (BC, 00110), (ABC, 00111.),

(E, 10000), (AE, 10001), (BCE, 10110), (ABCE, 1.0111)
Then, returning to step 10 J*— (D, 01000)

step 20 JIP*- (ABDE, 11011)

Passing again through stens iO. A0, and pO, we finally arrive at
the following design;

I , AD. BCD, a.BC. DE, AE. BCE, ABCDE

To conform with convention, this principal block should be
printed in lower case and the identity represented as (l).
However, few computer printers have character sets which
include lower case so the same capital notation that was
used to represent effects will be used to represent the design.
In the computer printout, the context will make the distinction
quite clear. The algorithm may now be expressed in more detail:

Algorithm KjADE (FRActional DEsign)
Step 0 for I*— 1 to NF do KD(l)<— K(l,1) od
Step 10 JJ<—• KD(NF)
Step 15 NE*— NE + 1
Step 16 for I*—1 to N step J I od^o
S.teo 17 J«—I0NBT(0,1); and(J,Jj)^then ^oto step 20. fi
Step 20 JJ*— or(J,.!J)
Steo 21 for K — 2 to NI do step 22 od
Step 22 JIP*-KK(l); if J = and(J,JIP) then if JIP = and(jJ,JIP)

gpto step 50 fi fi_
Step 30 NT*- eor(J,JIP)
Step 40 for I*—2 to NF dô step 41; step 42; step 50 od
Step 41 NB*~ and(Nrp, KD(l)); L«-0
Step 42 for I K —'1 to N do step 43 od
Step W 2) if T,',K2T(NP, Il) = 1 then I*-L + 1 fi
Sten 50 if ITKST(L,1) - 1 then KD(l)fc-or(KD(I),J) fi

Step 60 if NlAN then goto step 15‘ •''V— — ■ ■
else go^o step 70 (to decode and print design) fi

(step 73 and the following steps are equivalent to steps 6 to 10
in algorithm AhNAT)
Step 7/0 B(1,36)*- * I *; for to 15&h(l,l)*rBLANK •
Step 71 for J1e2 to MF d£ step 72; step 73; step 75 j)d
Step 72 K —KD(11); K - 0
Step 73 for 12*-1 to_ 16 Jo s tep 74 od
Step 74 if 1TKST(J, 12) = n then K-L + 1; B(I1,L)*— BJA.MK
Step 75 fgr TK-1 to 16^0 step 76 od
Step 76 if ITKST(J,I2) ^ 0 then Ij*-L + 1; B(I1,L>*-A(I2) fi
Step 78 prinf heeding (’Design for (name of experiment)*)
Step 79 for 11*— 1 to MF mdnt^ (B(l1, L), I*— 1 to 16)

NF, NE, N, N I
K

II >w

I i > It
x > Nr.

n

12. >/b

There still remains the first major step of the total algorithm:
setting up the initial conditions# That is, entering the
number of factors and the requirements set. In a later chapter
this will be considered from the broad viewpoint of a conversation
between the user and the computer, in which the user will be led
through a question and answer routine to establish first the, type
of experimental design and then the conditions. Only a simple
algorithm will be described here for entering/ the requirements
in alphameric form and converting them into the binary1 form needed
by DEFCON. In general terms the algorithm is:

e£JM. (KNter FACtorial requirements)
enter N (the numberof factors) and experiment name
generate the first N requirements (the main effects)
enter each required interaction as a set of letters
and convert to binary form
when there are no more entered, terminate and link..
to DEFCON

Developing each step more fully, the algorithm becomes:

Algorithm ENFAC ('EM ter FACtorial requirements)
Step 1
Step 2
Step 3
Step 10
Step 11

Step 12
Step- 13
Step 14
Step 15

Step 20
Step 2%

Print 'Hoy/ many factors are there?'; read N .
NW~ 1 to N do step 3 £d (assume all main effects

MV(NV)<— 0; MV(NV)^— I0NBT(MV(NV), NV) wanted) s
Print 'enter required interaction'
for I*— 1 16 read KK(l) (using in Fortran, a .

16A1 format)
3f-NV + 1; MV (J — 0; L<— 0
for it— 1 to 16 do step 14 od
for 114— 1 to 16 do step 15 od
jf KK(T) = A(l1) tjier̂ MV(J)*— »I0NHT(MV(J), 11.);

I*— L + 1 fi
if 0 then NVfc-J; goto step 10 fi
link to uypgON

Step 1
Step 2
Step 10

Step 20

The algorithm makes use of the array A(.) also used in ALMAT.
The 16 characters, A toRr excluding I and’0, have been
assigned to the 16 elements of A(.)« The algorithm checks
each entry for the presence of any of these characters and sets
corresponding bits in an element of MV(,). The flowchart is:

T

L > O

3 Example

An example has been chosen that is simple enough to be used
as an illustration but awkward enough to demonstrate the
backtracking features of the algorithm.

5Consider a 2 experiment m which m which it is required to
estimate the interactions AC and I)E as well as the main effects.
(For easy reading, alphameric representation will be used
throughout, remembering all the while that the algorithms will
actually be converting to, working in, and converting from binary
coding).

Algorithm ENFAC
How many factors are there?

5
The first five elements of MV(.) are generated as (A,B,C,D,E)
tkiter required interaction
AC
Enter required interaction
DK
Enter required interaction
(blank)
There are now seven elements of MV(.) which are (A,B,C,D,E,AC,DE)
These, with the values of N = 5 and NV = 7> are passed to:

Algorithm DBFCON
The fraction index M is computed to have a minimum value of 2,
indicating a ouarter design.
The requirements, MV(.), are scanned to determine the majority
factors, MAJ(.), as (A. C, I), E, B).
The first three elements of MAJ(.) become the generators of the
first column of the aliasing matrix K(.,1), which with the help
of function NEW, becomes:
(I, A, C, AC, D, AD, CD, a CD)J where T indicates that

the vector is a column.

The rows containing the elements (a, C, AC, D) are marked with
the markers IV(.) and KR(.), and the corresponding elements of
MV(.) are marked with markers IN(.).

The column index, «TAK, is incremented to the value 2 which,
i*by the function NEW is noted to be of the form 2 + 1 so

LNEW4-2 and LL*-1. At this stage no markers need resetting*

The first available requirement, counting from the end, is DE.
The first available row element is ACD in row 8.
The row marker for row 8 is set to the value of LNEW =2.
The defining contrast to be tested is created by eor(ACD, DE),
which is ACE.
This is found to produce aliasing between AC and E i,n the fourth
row.. The test has set the value of the seventh defining contrast
marker IN(7) to 2, so it is reset to 100 indicating that it is'
still available.
The next lowest available row element is CD in row 7»'
The marker for row 7 is set to the value of LNEW =2*
The defining contrast to be tested is eor(CD, DE) =CE.
This also produces aliasing, between C and E, and the procedure
is repeated.
The next lowest available row element is AD, leading to1the
defining contrast to be tested: eor (AD, DE) = AE.
This also produces aliasing.
There is no further available row. The value of L0 = -1
indicates that LNEW is already at its smallest value of 2 so
no backtracking is possible with the current fraction.
The fraction is effectively doubled by doubling the number of
rows to 16 and halving the number of columns to 2.
The first four elements of MAJ(.) become the generators of the
first column of the aliasing matrix K(.,1), which withsthe help
of function NEW, becomes:
(T, A, C, AC, D, AD, CD, ACD, E, AE, CE, ACE, DE, ADE, CDE, ACDE)T

, except B,
All the requirements/now appear in this column. The row markers
are set and the corresponding requirements markers are set.

The column index JAKis incremented to 2.
The first available requirement is B..
The first available row is the 16th which contains ACDE.
The defining contrast to be tested is eor(ACDE, B) t= ABCDE.
No aliasing is found, so the defining contrasts are (I,ABCDE).

Algorithm ALMAT
The aliasing matrix is printed:

I ABCDE
A BCDE
C ABDE

AC. BDE
D ■ ABCE

AD BCE
CD ABE

ACD BE
S ABCD

AE BCD
CE ABD

ACE BD
DE ABC

ADE BC
CDE AB

ACDE B

Algorithm Eg APE
folloivs the well-established procedure to produce the half-design
given the defining contrasts. This is printed in capitals (due
to the restriction of most computers) as: '
I, AB, BG, AC, BD, AD , CD, ABCD, BE, AE, CE, DE, ABDE, BCDE, ACDE

All that is needed now to complete the exercise is a set of random
numbers for the order of observations. However, algorithms for

the generation of random numbers will be left to a later chapter
dealing with a wider range of experimental designs,

CHAPTER

The Automatic Design of Experiments

Some Practical Algorithms

FOUR

QUADRATIC DESIGNS

,1 Background

2 Algorithms

3 Examples

4.1

1 Background

As I explained in chapter two, most physical processes met
in industrial research situations can be described by models
which are either linear or quadratic in the independent continuous
variables. In my experience this has always been so, provided
the ranges of the independent variables were carefully chosen..
Since we now have the algorithm developed in chapter three to
design the smallest fraction of a two-level factorial for the
estimation of the coefficients of explicitly required main
effects and interactions, the question arises: can this
fractional design be augmented in any way so that the coefficients
of specified nuadratic terms can be estimated? The answer is
that it can, but in several wavs. The choice of the method
depends unon the criteria used to determine a good design.,

Consider the simple case of two .indenendent variables, x^ and.x^,
such that their relationship to a response variable y is:

y = + 8.̂ -j t a2r2 1 al2^1^2 (4»1)
then a simple two-level factorial experiment would provide'
observations suitable for the estimation of the model parameters

aJ(a~, a,„), These are transformations t>f the effects ' O’ 1* 2’ 12-
and interactions conventionally estinr ted from a factorial
experiment.

If, however, some curvature is suspected so that a more
appropriate model would be:

y = aQ , » a,p<2 h h X '? ‘ ° 11^1 '* a22 *2 (4.2)
then the factoricl must lie nurm'r.ted by further design points
to nermit the estimation of the additional parameters (a^ and a22^

If the design points of an n-factorial experiment are represented
as points in n-space, the}' occur at the vertices of an
n-dimensional hypercube. The question is: where should the
further design points be created so as to allow the fitting of
a nuadratic model?

Criteria considered in the answer to this question relate to
the estimates of the above model which can be expressed niore
generally as: '

y = f(a, X) (4.3)
where a" .are the estimates of the model coefficients a, usingA# 7

«Athe available data, and y -is an estimate of a particular
value of the response variable, riven the coefficient estimates
a and a set of values of the independent variables' x.

The criteria are:
1. The estimators a should he unbiased. That is: their

exnected values sho\ild he a.
P. The variance of * should he minimised in relation to theAj

choice of design ooints.

.Consi -'ering thie first cri terion, one approach is to ensure that
esliinators are not biased bv the inclusion of more or less
parameters, f-r •̂ e-ffici er.ts, in the model. Box and Wilson
(19h> 1) showed 1 ha-> this could be achieved by making the estimators
mutually indece^c'-t and th'11 this could be done by making the
design orthogore'1 .

A design is said to be orthogonal if all the vectors of the
design matriv ;,re mutually orthoronal; that is, if the

inrif.r. product of <-• e-v oair of vectors is equal to zero.

Orthogonality also satisfies the second criterion that the
estimated coefficients should have minimum variance This
was proved by Tocher (1952c) as follows:
Given the design m a t r i x M a r k o f f ’s least squares theorem
gives the minimum variance unbiased estimates of the parameters
a as a = (X X)~1 X y and var(a) = (X X)~1or'U .
If the elements of X are allov/ed to increase indefinitely, then

* _ -]
the elements of (X X) will decrease indefinitely, so some
restraint must, be imposed on the elements of ̂ X to ensure a
realistic solution. Assume this restraint fixes the sum of
squares of the i^ 1 column of X as c..
Let IJ be an unner triangular matrix such that X X = II TJ.
Since X X is positive definite, TJ is non-singular and has
an inverse V wMch is also upoer triangular. Cl earl v

• -1 •v. . =, 1/u. . and (X j) = W .
th 1 —1Sunpose the i ’ diagonal element of (x X) is w. , then

w. = S.v.^ ^ v?. = 1/u?. ^ 1/ J u .2 = 1/c.i r ij ii • ii ^ ji i

For to achieve its lower bou^d 1/c^, both inequalities must
reduce to equalities, andfor this to occur for all i, all the
elements vt. with i / j must vanish. Thus V will be diagonal
and so will IJ. Thus the condition to achieve the lower bounds

I
simultaneously is that X X is diagonal: that is that X has
orthogonal columns.

Returning now to the simple two-factor example (equation 4»1)>
the values of the vi riahles x.1 and x^ may be scaled to have
the values: -1 for low level and + 1 for high level. If a
dummy variable x^ wi th a constant value of -t-1 is attached to
the coefficient a , then the desirn matrix X becomes:

xo *1 X P. X1X2
" 1 -1 -1 s1

1 1 -1 -1
1 -1 1 -1

^ 1 1 1 1 ^

This design is clearly orthogonal since the inner product of
any pair of column vectors is equal to zero. If, instead of
the above linear model, the quadratic model (equation 4.2)
is to be fitted, the design must be augmented so as to maintain
orthogonality when the extra rows and columns are added. Box
and Wilson (1951) showed how to do this with the following
composite designs.

Since curvature, or quadratic effects, needs intermediate
points for its estimation, it seems reasonable to put one or
more points at the centre of the design, and to put other points
on the axes, so that variables will have values midway between
+1 and -1. The distance, oc , of each axial point from the
origin is determined by the orthogonality condition. Thus,
in the two factor design, assuming that only one observation
is made at the design centre, the design matrix becomes:

X1 X2 Y V 2
X1

2
X2

-
xo 1 2
1 -1 -1 . 1 1 1 •

1
1

-1
1

1
-1

-1
-1

1
1

1 ,
1

1 1 1 1 1 1i

1 0 0 « 2 0
1 u 0 0 * 2 0
1 0 -c* 0 0 ©t2
1 0 OC 0 0 <x2
1 0 0 0 0 0

The vectors corresponding to x? and 1
2

X2 are not orthogonal
to the Xq

iables
vector nor to each other, but by transforming the

var *to x1 and x
*
p such that

*
'*1

2= X. l -
2 , 2 . ./n = x.* i J 1 - (4 ■1 2<^)/9

orthogonality is achieved when fitting the equivalent model

(4.4)

Total orthogonality of the design then demands that

& £ 2 = 0
with only one central point,

In the two factor case,/ the value oC =='1 satisfies this
equation so that a simple three level (or 3 x 3) experiment
is suitable. However, in* the augmentation of fractional
designs, and with more factors, the value of is usually
different from 1. This procedure, developed by Box and
Wilson, was further illustrated by Davies (1954) and
Mendenhall (1968) who gave values foroc for designs with
more factors but with the assumption that quadratic terms
were to be added to the models for all the factors. In
practice, however, prior knowledge often enables the experimenter
to state that whereas some factors may have quadratic terms,
others do not. Thus the design need not be augmented with (
so many additional observation points for. the estimation, of
quadratic terms in all factors. This is important from the
viewpoint of keeping the cost of the experiment as low’as possible.
On the other hand, Mendenhall illustrated that the addition of
some central points will lead to greater uniformity of.var(y^)
without destroying the orthogonality. Furthermore,, the
addition of some extra central points may sometimes be necessary
to provide sufficient degrees of freedom for the estimation of
residual variance. In the algorithm to be developed in this
chapter, the number of design centre points will be chosen
so as to allow a minimum of six degrees of freedom for residual
variance estimation.

The objective of this chapter is to present a prooedure which
avoids the condition of including quadratic terms for all factors
and enables the experimenter to define which factors have quadratic
effects and whioh do not.

2 Algorithms

The following theorem is needed to develop the main algorithm.

Theorem If a fractional two level factorial design, in which
high and low levels of the factors are scaled t 1 respectively, is
augmented with central and axial points to permit the estimation
of quadratic terms in some of the variables, then in order to
retain orthogonality the axial points should be at distances t
from the origin, where

— | 0.5* ̂ |nf *(nf + 2*nq + no)J - n*)}

and nf = number of rows in the basic two-level fractional
factorial;

nq = number of factors for which quadratic effects
are to be estimated;

no = number of design centre observations.

Let n = total number of rows in the design,
then n = nf + 2*nq + no 4*6

Let x. and x, be any two variables for which
X J *

quadratic effects are to be estimated,
and . x^ and x^ be corresponding second degree transformation

as described in the previous section
Then the required tranformations are of the form:

* 2 r 2 / . 7x. = x. -) x., / n 4*7l i 4 lk '

Since x ^ takes nf/2 values of +1, nf/2 values of -1, one value
of + ex , one value of - oC , and all other values of 0, then

5-v xik = nf + 2<X^ 4*8
K

Now let p = S xik / n
K

then p = (nf + 2o<^) / (nf + 2*nq + no) 4*10

* *so that x̂ x.4 (the inner product of the two column vectors
* */VI /Vj

But from 4*9 52 x?v ~ n*P
K lic

and because of the 11 coding of variables,
C 1 2 2 -
L. xikx ik = ^

therefore 4*11 becomes

*x. x ./v#l /vj nf - n*p‘

and orthogonality requires this to equal zero,

Therefore p = nf / n

Using both 4«10 and 4*13

(nf + 2cx?)^ / (nf + 2*nq + no)^

nf/(nf + 2*nq + no)

which is rearranged as

Od = 0.5' nf*(nf + 2*nq + no)}

and the theorem is proved.

The algorithm to augment the fractional factorial may now be
expressed as:

Algorithm AUGFAC (AUGment fractional FACtorial design)
Step 0 (initialise) Given the number of factors, N, the

number of requirements, NV, (main effects plus
interactions), the number of quadratic terms, NQ,
and each factor I identified as linear or quadratic
with LO(.T) = 'Tj• or ’O', if NO^ 1 find the number,NO,
of desian centre points needed (at least one) so
that the number of residual degrees of freedom is
at least six. Then find the value of ALPHA,

■Step 10 Given the least value, R(I,1), the greatest value
R(I,2), and the smallest step R(l,3)> for each
variable, compute the design intervals for each
Variable. Hin^ the number of increments each side
of the '^id-range point; find the mid-range point and
the points either side of it. ' •

Step 20 Print the unsealed values of the variables in each
row of the fractional design.

Step 30 Print the unseal el values of the variables in each
row of the augmenting design, including the design
centre points.

Step 10 Randomise the order of observations.

Steps 10, 20, a^d AO are used even if there are no quadratic
terms and the desirn is therefore not augmented.
A routine, RAI'T'h, borrowed from the IBM 1130 scientific
subroutine package, is used in step 40• This returns a
random number from the uniform distribution (0,1). The
Fortran listing is in the nnoen-ix.

In detail the algorithm becomes:

Algorithm AUGFAC (AUGment fractional FACtorial design)
Step 0 Given N,NV,NQ, LQ(.) ; print column headings;

1 do steps 1 to 3 J>d el.se goto step 10
Step 1 NP«— NV + NQ + 1i; ND<r-NF + 2*NQ;

M^-KD - NP
Step 2 if then N0«- 6 - M

else N(Xr— 1 fi
step 3 (calculate ALPHA IF NQ>1)

if NQ > 1 then do step A; step 5 od
else ALPHA<— 1 fi

Step A Z*— NF * (ND -t NO)
Step 5 ALPHAe— sqrt(0.5 * (sqrt(z) - NF)) ■

Step 10 Given R(.,.) for each variable
for I<—1 to N do sten 11; step 12 od

Step 11 M*-integer((R(l,2) - R(l,1)) / R(l,3))
M«— M/2 + itest(M,l); P<— M * R(l,3); .
X(.I,3)*-R(I,1) + P . '

Step 12 î£ LQ(l) = "0U the_n do step 15 ocj
else do step 1A od fi

Step 15 integer(P/(ALPHA * R(l,3)) + 0,3)
Q*— M * P (1,3);
X(l,1>*— R(I,1):
X(T,2)*— X(T,3) - 0;
X(I,AH— X(I,3) -r Q;
X(l,3><— P(l. 1) v 2.- P

Step 1A X(l,2)<— P(T,1);
^(I j A)^ R(1, 2)

Step 20 for I*— 1 to NF do step 21; step 23 od
Step 21 for 1 to N do step 22 o.d'
Step 22 L«— 2 *(itest(l0 (l), J) + 1); Y(j)*-x(J,L)
Step 23 print I. (YCj), 2-*— 1 to :!)

Step 30
Step 31
Step 32
Step 33
Step 34
Step 35
Step 36

Step 37
Step 38
Step 39

Step 40

Step M

Step 42
Step 43
Step 44
Step M
Step 46
Step 47
Step AS
Step Ag
Step 50
Step 51
Step 52

Step 53
Step 54
Step 33.
Step 56
Step 57

JAK<— NF
if NQ < 1 then goto step 40 fi
for I<— 1 to N do step 33 od
if LQ(I) « "Q" then do step 3A; step 36 od fi
for Jt— 1 Jô N do step 33 od
if I / J then Y(J)<— X(J,3) fi
JAK<—-JAK + 1; Y(I)*-X(I,1);
jgrigt JAK, (Y(J), J«-1 $0 N);
JAKt— JAK + 1; Y(l)*-X(l,5);
grint JAK, (Y(j), J * - 1 to N)
for Jt*- 1 to NO do step 38 od
JAKt— JAK + 1; print JAK. (x(l,3),, I«— 1 ' N)
if N 0 > 1 then ̂ rint 'note that there are* NO
’design centre,points* fi

(Given the number of observations in the full design,
JAK, and the last defining oontrast to be tested
(see chapter 3)» KEST, randomise the integers 1 to
JAR* Repeat if necessary*)

print 'randomised observation order'
IX«-1 + 2 * and(8l91, KEST)
(sea explanation on next page)
XX t— JAK (integer to real)
£or I«-1 to JAK £o Il(l)t- 0
J<T“ 0
Jt"— J + 1
if J > JAK then goto step 56 fj
W+-1./XX
Ii— 0
It— I + 1
Jf I > JAK then goto step UB fi
if II(I) / 0 then goto step 49 fi
call RANDU(lX,IX, YY)
(the IBM Fortran subroutine RANDU is listed in appendix
if YY > W then goto stepJtg fi
XXtr-XX - 1; JJ(l)«-I; Il(l}<— 1
goto step 45
grint (JJ(J), for J*-*1 to JAK)
if^(another random number stream requested)

then goto step U2 else stojs fi

The explanation of step 41 is:
The subroutine RANDU for generating a uniformly distributed
random number, Y, in the interval (0,1) needs to be seeded
with an odd integer, IX, in the interval (0,32767). If a
constant starting value were put into the program, the random
number streams for all experimental designs with the same
number of observations would all be the same* A different
starting value for each occasion is created by the assignment
in step 41. The last defining contrast to be tested/ KEST,
provides a different integer for each design. The integer
8191 is an array of bits with the rightmost 12 bits all set
to one and the rest set to zero* By anding these two integers
we chose the rightmost 12 bits of KEST which when multiplied by
two and incremented by one ensures that IX is an odd integer
approximately in the middle of tie required interval*

The flowchart for algorithm AUGFAC follows*

MO*- I

J>- o

J > N F

T— 3HI

T / \ F— < J > N > —

prial' Kbfĵ T̂ -f 0
cr*- Yto-̂ -Xfti.)

f i * arc. ____ 3 0

NQ<

I r«-V» i I

J >N0

T > N PrC».t-
NO

I

Figure 3JI

I«- r+i

I

£2.

A final stage in the development of the sequence of algorithms
for quadratic designs is to link them back to those developed
in chapter three for generating fractional two-level factorials.
!This oalls for some simple changes to algorithm.ENFAC and for
algorithm AUGFAC to follow algorithm FRADE.

The alteration needed for algorithm ENFAC is to extend it so that
the user will enter, for each variable, the nam? of the variable,
whether or not a quadratic term is to be included (LQ(.) wQw)>
and the range and increments of the variable values* The addition

NQ*— 0
£or I*— 1 tQ N 0L0 step 23; step 24; step 25 £d.
Print 'For variable' I 'type variable name,
L or Q, least value, greatest value, and least interval'
(the L or Q response referes to whether only linear
effects are to be included in the model, or if quadratic
terms are to be added)
read (NAMVAR(l,J), for J*-1 to 10), LQ(l),
(R(l,J), for J<— 1 to 3)
££ LQ(l) « "Q" then NQw— NQ + 1 fi

Step 26 link $o DEFCON

Since this modification is so simple the addition to the
flowchart of algorithm ENFAC is omitted* A further small
change to AUGFAC is needed to print the variable names as
column headings*

is:
Step 21
Step 22
Step 23

Step 24

Step 23

3 Examples

The algorithms developed in chapters three and four have
been implemented in Fortran and applied to many practical
experiments involving the development of metallurgical
processes and test procedures and the optimisation of
material properties* Three examples are presented: the
first deals with a simple quadratic model in two independent
variables and one dependent variable; the second is much
more complicated in that there are seven independent variables
and a particular set of interactions and quadratic effects
that have been specified for inclusion in the model; the
third example shows how to deal with multiple responses.

The first example was chosen to portray a real situation in
which there are only two independent variables and little is
known about the relationships between them and the dependent
variables* In fact, there were more than two independent
variables but for the sake of a limited initial experiment
all but two were held constant.

The experiment was part of a study of the rolling of powder
into strip. The two control variables chosen for variation
were:

roll gap (thousandths of an inch)

x^ angle of powder feed plates to the
vertical (degrees)

There were several dependent variables, representing resultant
properties of the product and the behaviour of the mill* In the
absence of prior knowledge about the relationships it was assumed
that a simple linear effects model would not be adequate and that
extra terms would be needed to express the interaction between
the two variables and the curvature due to each one of them.

4.18

The quadratic model to be fitted was that of equation 4.2.
It was agreed in advance with the experimenter that the two
independent variables could range as follows:-
GAP from -40 thou to +60 thou in increments of one thou*
The negative gap refers to the statio screw setting before
rolling begins* Clearly the physical gap cannot be less
than zero* The increment of one thou is a constraint on
the experimental design in that any attempt at specification
of a gap with a precision smaller than one thou would not
be realisable* The experimental design procedure copes
with this constraint.
A N G L E from four degrees to 14 degrees in increments of
one degree*.

After all the above information was entered on the teletypewriter
terminal in response to printed questions, the following results
were printed:

ALIASING MATRIX FOR POWDER

I
A
B
AB

DESIGN IS
(1) A B AB .

EXPERIMENTAL DESIGN FOR POWDER
OBSERVATION GAP ANGLE

1 -31.0 5.0
2 31.0 5.0
3 -31.0 13.0
4 31.0 13.0
5 -40.0 9.0
6 60.0 9.0
7 10.0 4.0
8 10.0 14.0
9 10.0 9.0
10 10.0 9.0
11 i 10.0 9.0
12 10.0 9.0

NOTE THERE ARE 4 DESIGN CENTRE POINTS
RANDOMISED OBSERVATION ORDER
4 5 7 1 6 12 11 8 3 9 2 10

Tha interpretation of this printed output is:

1) The aliasing matrix demonstrates that all the main
linear effects and required first order interactions will
be independently estimable from the experiment. In this
oast there is no doubt since a full factorial is essential
with only two independent variables: a fraction is not
possible.

2) The factorial design, using standard notation, has the
four points (1), a, b, ab. These correspond to the first
four of the 12 observations in the fully augmented composite
design.
3) Observations 3 to 8 have been added according to the
computed value pf Of , and observations 9 to 12 are design
centre points which, as well as contributing to the estimation
of quadratic effects, also provide additional degrees of freedom
for variance estimation.

Equation 4.15 gives an exact value of 1.21 for oC for this
design. However, the minimum increment constraints of the
two variables detract slightly from perfect orthogonality.
Thus, after scaling the variables so that their high and low
values in observations 1 to 4 are +1 and -1, adding columns
for the interactive and squared values, and applying the
further transformations of equation 4*6, the cross products
matrix becomes:

*0
X1

12
0 6.9743

*2 0 0 7*125

v 2 0 0 0
V 0 0 0
V 0 0 0

4.0
0 4.2982
0 -0.1174 4.6621

For simplicity only the lower half of the symmetric matrix
is shewn. The capital X's denote the transformed variables.
This slight loss of orthogonality is the penalty that must be
paid for the incremental constraints of practical physical
experiments although it can be avoided in conputer simulated
experiments.

The second example represents a hypothetical situation although
it will be recognised as being typical of many real research
situations. The problem is to establish a mathematical model
to predict the hardness of a low alloy steel given seven
independent variables, four of which are alloying elements
and three are processing treatments. These variables are
given in the following table together with ranges and increments
of their values and whether the relationship between each variable
and hardness is expected, from technioal consideration, to be
simply linear or quadratic over the experimental range*

Independent Variable Q or L Least
Value

Greatest
Value

Least
Interval

Units

xi - Carbon
x3 - Chromium
x3 - Molybdenum
x4 - Vanadium
xB - Solution treatment

temperature
xB - Solution treatment

time
x7 - Cooling rate to

room temperature

Q
L
L
L

Q
L

Q

0.1
0.2
0.01
0.01

900.

0.5

50.

0.5
3.0
0.5
0.2

1200,

1.0

6000. ,

6.05
0.01
0.01
0.01

5.0

0.01

5.0

Wt.%
wt.%
Wt.%
Wt.%

°c
hours

°C/hour

The following interactions are expected to be effective:
Carbon and chromium (XiXs or AB)
Carbon and molybdenum (xxx3 or AC) ,
Carbon and vanadium (Xj.x4 or AD)
Carbon and cooling rate (XiX7 or A,G)
Vanadium and solution temperature (x4xB or DE)
Vanadium and solution time (x4xe or DF)

Thus the mathematical model to be fitted by the analysis of
experimentally observed data is:

y = aj, + aixi + a3x3 + a3x3 + a*x4 + a5xB + aexfl
+ a7x7 + auXj2+ a3 3 X22 + a33x32 + a44x42 + aBBx B2 .
+ aeax62 + a77x72 + ai3xix2 + a13xix3 + a14XiX4
+ ai7xix7 + a4Bx4x5 + a46x4x6 + e

where y represents the hardness, the a are coefficients
of the model to be estimated, and e is experimental error.
The above information is entered in response to the questions
in ENFAC. The printed output is shown in the following tables*

Aliasing matrix
I ABCF BCE AEF CDG ABDFG BDEG ACDEFG
A BCF ABCE EF ACDG BDFG ABDEG CDEFG
D ABCDF BCDE ADEF CG ABFG BEG ACEFG
AD BCDF ABODE DEF ACG BFG ABEG CEFG
B ACF CE ABEF BCDG ADFG DEG ABCDEFG
AB CF ACE BEF ABCDG DFG ADEG BCDEFG
BD ACDF CDE ABDEF BCG AFG EG ABCEFG
ABD CDF ACDE BDEF ABCG FG i AEG BCEFG
C ABF BE ACEF DG ABCDFG BCDEG ADEFG
AC BF ABE CEF ADG BCDFG ABCDEG DEFG
CD ABDF BDE AGDEF G ABCFG BCEG AEFG
ACD BDF ABDE CDEF AG BCFG ABCEG EFG
BC AF E ABCEF BDG ACDFG CDEG ABDEFG
ABC F AE bcef ABDG CDFG ACDEG BDEFG
BCD ADF DE ABCDEF BG ACFG CEG ABEFG
ABCD DF ADE BCDEF ABG CFG ACEG BEFG

Design is

I AF DC ADFG BEF ABE BDEFG ABDEG
CEFG , ACEG CDEF ACDE BCG ABCFG BCD ABCDF

Obser­ Carbon Chrom­ Molyb­ Vanad­ Temper­ Time Cooling
vation ium denum ium ature Rate

1 0.15 0.20 0.01 0.01 930.0 , 0.50 665.0 ’
2 0*45 0*20 0.01 0.01 930.0 1.00 665.0
3 0*15 0*20 0.01 0.20 930.0 0.50 5385.0
4 0*45 0.20 0.01 0*20 930.0 1.00, 5385.0
5 0*15 3.00 0.01 0.01 1170.0 1.00 665.O
6 0*45 3.00 0*01 0.01 1170.0 0.50 665.O
7 0*15 3.00 0*01 0.20 11-70.0 1.00 5385.0
8 0*45 3.00 0.01 0*20 1170.0 0.50 5385.0
9 0*15 0*20 0.05 0.01 1170.0 1.00 5385.0 1
10 0.45 0*20 0.05 0.01 1170.0 0.50 5385.0
11 0.15 0*20 0.05 0.20 1170.0 1.00 665.O
12 0*45 0.20 0.05 0.20 1170.0 0.50 665.0
13 0*15 3.00 0.05 0.01 930.0 0.50 5385.0
14 0*45 3.00 0.05 0.01 930.0 1.00 5385.0
15 0.15 3.00 0.05 0.20 930.0 0.50 665.O
16 0.45 3.00 0.05 0.20 930.0 1.00 665.O
17 0.10 1.60 0.03 0.11 1050.0 0.75 3025.0
18 0.50 1.60 0.03 0.11 1050.0 0.75 3025.0
19 0.30 1.60 0.03 0.11 900.0 0.75 3025.0
20 0.30 1.60 0.03 0.11 1200.0 0.75 3025.0
21 0.30 1.60 0.03 0.11 1050.0 0.75 50.0
22 0.30 1.60 0.03 O . U 1050.0 0.75 6000.0
23 0*30 1.60 0.03 0.11 1050.0 0.75 3025.0

Randomised observation order
21 18 1 20 12 14 6 16 11 7 23 17 13 10 15
9 8 4 3 22 19 5 2.

4.22

The interpretation of the output is as follows:
1) The aliasing matrix in the first table demonstrates that
the one-eighth factorial design, using only 16 observations
out of a possible total of 128, will be adequate to estimate
eaoh of the main linear effects and each of the required
interactive effects* The design to do this is expressed in
the usual literal notation beneath the aliasing matrix*

2) The full design, with actual values specified for eaoh
independent variable at each design point, is displayed, in
the second.table• This design is the basic fractional
factorial printed under the first table augmented by six points
to make possible the estimation of the three specified quadratic
effects (carbon, solution treatment temperature, and cooling
rate) and a 23rd point at the design centre to improve the I ;
estimation of observational variance*.

3) The 23 numbered observations should be made in the,
order: 21, 18, 1, 20, 12, 14, 6, 16, 11, 7, 23, 17,

13, 10, 15, 9, 8, 4, 3, 22, 19, 5, 2. '

Equation 4*15 gives a value for of 1*2616* However, the
minimum increment constraints lead to practical values of
for carbon, solution temperature, and cooling rate of 1.3333,
1.25, and 1.2606 respectively. The third value is very
close the aimed value because the increments (5.0) are very
small relative to the full range (50*0 to 6000.0).

After scaling the variables so that their high and low values in
observations 1 to 16 are +1 and -1, adding columns for the
interactive and squared values, and applying the further
transformations of equation 4*6, the cross products matrix
has zero off-diagonal elements except for relatively small
values in the three positions shown here:

X *A1 5.694
X *5 -0.261 4.980
X *7 -0*306 0.053 5*059

4.23

The third example is not of a complete design problem as
were the earlier examples. It simply serves to illustrate
the procedure to be adopted when there are several dependent
variables and some prior technical knowledge exists about
the relationships to be expected between each of the dependent
variables and the independent variables. The procedure is
to write the model for each dependent variable in terms of
the independent variables, and then add the models together.

Suppose there are five independent variables (x^, Xg, Xy x x *.)
and three dependent variables (y^, y^)« The former may
be alloying elements of steel, and the latter may be hardness,
tensile strength and toughness, each of which could be represented
as a function of the set of independent variables, expressed
simply as follows:

X1 x2 X3 x5 interactions
y1 Q L L L L x1x2> X4X5

CM
>»

!

L L Q Q L X-jXg, x^

y3 Q L L Q L X2X3
where the relationships L (linear), Q (quadratic) and the
interactions are expected from previous experience or from
theoretical studies to be significant terms in the respective
models.

The way in which to use this set of relationships in the
experimental design procedure is to assume a single general
dependent variable (Y) with the following relationships:

X1 x2 x3 x4 x3 interactions
Y Q L Q Q L 3’V 3 ' V 5

This results from choosing the higher order term in each oolumn.
Thus aqy design based on this composite model will permit the
estimation of all parameters in the three separate models.

CHAPTER

The Automatic Design of Experiments

Some Practical Algorithms

FIVE

ANALYSIS AND SIMULATION

1 Introduction

2 Examples

1 Introduction

The criterion of orthogonality used in chapter four for
the generation of quadratic designs has the advantage
that the estimation of effects, or coefficients, and of
the residual sums of squares, can be reduced to fairly
simple formulae•

In practice, the data should eventually be submitted to
the full least squares procedure for two reasons: first
that continuous variables are measured in discrete steps
which are used in the experimental design so that exact ,
orthogonality is lost at that stage (this was shown in
the examples of chapter four); second, that during
the actual experiment it is rare for target values of
control variables to be achieved exactly so that perfect
orthogonality is also lost at this stage.

Nevertheless, it is sometimes useful for the experimenter
to have a quick method of estimation before submitting his
data to a full analysis. Also there is an exceptional
situation where perfect orthogonality can be maintained:
this is when the experiments are simulated on the computer
Examples of this will be given in the second section of
this chapter*.

In both these cases it is useful to have formulae for
estimation of effects. Furthermore, as will be
shown, some parts of the computation can be done at the
design stage and therefore can be included in the earlier
algorithms so as to save subsequent effort.

If we be an n x 1 vector of observations, and let
I be the n x p design matrix, and 8 be the p x 1 vector
of coefficients to be estimated, then the linear model is:

E(y) = x e (5.1)

and the least squares solution is:

X»X§ = X'y (5*2)**■ «*. sv Z+
£where v are the least squares estimators of 7 •

Also, since ̂ X is orthogonal, by virtue of the design
method, X'X s D a diagonal matrix* So

6 = D_1X'y (5.3)/V N ** (s<

The residual sum of squares, R, is

R - (5.4)

= r z - z*i 2 _1 i ’z '
= y ’y - y ’X D-1 D D_1 X'y (5.5)X, Xj Xt ~ ~ ^ r* ~ x, v

Hence, from (5»3) and (5*5)
R = y* y - 0 D 6 (5.6)

»«/ v

Formulae may therefore be provided with the experimental
design, for estimation of the coefficients in terms of

— 1a matrix A s D X' from equation (5*3)j and for
estimation of the residual sum of squares in terms of the
matrix D from equation (5*6)* The experimental design

"v -1program may be augmented to print Jb, , and Â.

It should be remembered, from chapter four, that the
independent variables were scaled to lie between jf o< or
+ 1, depending on whether or not quadratic terms were
included, and then the scaled quadratic terms were standardised
by subtracting their mean values* Thus the coefficients
estimated by equation (5*3) need rescaling if they are to
be applied to raw data.

Rewriting y = XG

as
a/

= C +£*‘ixi + I g ixJ• + I f h X X 1 + i A' ij i j (5.7)

where nv is the number of variables and

| * [c, f±, 6i, h j

and some g^ and some h ^ are zero if the quadratic
terms and interaction terms to which they are attached are
excluded from the model;
also c.. = 4 - p (5.8)

where (5 is the mean of the x^ , that is
nf + '2sx

* nf + 2nq + no
where nf is the number of rows in the basic fractional
factorial, nq is the number of variables with quadratic
terms, no is the number of design centre points,' and
cx is as defined in chapter four.

(5.9)

Then, with obvious summation intervals omitted,
y = C + 1 ^ + I 8i(xf - |i)

2

where
Wow put

where

and

= C + EfiXi + I g ^

c' = c
x± = p. + ^

p. = -*(wi("1“ 0 + *i(“in))
W7(max) - w,(min)

2 ex_________
Wi(max) - wi(min)

(5.10)

(5.11)

(5.12)
(5.13)

(5.11.)

(5.15)

and the w^ are the independent variables in unsealed
units, and the maxima and minima are data range limits.

Then equation (5*11) becomes:

(5.16)

(5.17)

where the rescaled coefficients K, P^, G^, can be
calculated by comparison between equations (5.16) and (5*17).

In preparation for oomputing the rescaled coefficients, the
experimental design program may be augmented further to print:

These simple additions to the algorithms of chapter four
will not be developed here, but they will be implemented
in the program listings in the appendix*

Additionally, the following expressions may be used to
compute the elements of the diagonal matrix D*

First element, corresponding to the mean = n (5*18)
2Each element corresponding to a main effect = nf + 2P< (5*19)

Each element corresponding to an interaction & nf (5*20)
Each element corresponding to a transformed quadratic

f , all p±, all q^, all P±Pj» all <1̂ * and all P^j*

term nf(l - (3)2 + 2(<X2 - (i)2
+ (n - nf - 2) (&2 (5.21)

2 Examples

The intention here is to show how the algorithms of .
chapters three and four, together with the analysis
aids of the first section of this chapter, may be used
to estimate the optimal conditions of a physical prooess
which has been modelled mathematically in a form that
defies optimisation by analysis*

The first example is a re-presentation of the powder
rolling experiment described in chapter four* In fact,
this was not coogmter simulated but it is ohosen as a
Bimple example to illustrate the procedure*

Suppose that the powder compaction process has been desoribed
dynamically in terms of partial differential equations ,
representing the amount of compaction at every point in
space and time as the powder descends between the feed plates
and the rolls* Suppose further that these pde's haye been
translated into numerical procedures so that, given a roll
gap setting and an angle of feed plates, the degree of
powder connection (y) as it emerges from between the rolls <
may be computed* Thus the computer may be used to simulate
a real e:q>erimental process* We still need an experimental
design and the cong>osite designs introduced in chapter four
will be suitable. However* we need not concern ourselves
with errors of observation so the additional design centre
points introduced in the earlier example are not needed*
Without these, of b 1. Also we need not be constrained by
practical increments in the values of independent variables
so we can achieve perfect orthogonality* Furthermore,
there is no need for randomisation of the order of observations.

With these changeb there will only be nine observations and,
using the experimental design program with the extra features
described in the first part of this chapter, we obtain the
following data.

Ctf as 1 @ = §

The scaled design matrix is X =

observation X 0 X X2 x1x2 x1*

•CMX

1 1 -1 -1 1 i i
2 -1 -1 i i

3 1 -1 1 -1 i i

4 1 11 i i

5 1< -1 0 0 i 4
6 1 1 0 0 i 4
7 11 0 -1 0 *4 1

J
8 1 0 1 0 4 t

9 1 0 0 0 4 4

The orthogonality is easily checked.
The diagonal cross-products matrix £VX is

£ = diag(9, 6, 6, 4, 2, 2)
so £ 1 = diag(

Using ranges of roll gap and plate angle of (-40,60) and
(4.14) the following values are obtained using equations
(5.14) and (5.15):

p̂ s - 0.2 jpg * - 1.8 = 0.02 s 0*^
Suppose now that the simulation program yields the following
values of y, corresponding to observations 1 to 9:

y*s (2.0, 1*3) 2.0, 2.5* 2.0, 1.9» 4«5» 5*1 $ 4*8)
The vector is obtained by taking the inner product of
each column of X in turn with Thus

X'y = (26.1, -0.3, 1.8, 1.2, -5.7, 0)A.
so that from equation (5*3)

A
6 = (2.9, -0.05, 0.3, 0.3, -2.85, 0)

In the notation of equation (5*7)
G = 2.9 f1 « - 0.05 f2 = 0.3 g1 = - 2.85

g2 = 0 h12 = 0.3

From (5.12) C* = 2.9 - § (- 2.85) « 4.8
The transformations indicated by equations (5*16) and
(5*17) are

K = C* + f 1p1 + t2p2 *► ĝ * + ggPg + h12p1p2
= f1q1 + 2g1p1q1 + h12p2qi

?2 s *2^2 + 2g2P2q2 + h12P1q2

G1 c *1*1 G2 “ *2*2 H 12 “ ht2*1*2

whioh yield the following values:
K = 4.264 P1 = 0.011 F2 = 0.048 Qr̂ = - 0.00114

G2 “ 0 H12 = 0.0012

These are the coefficients of a quadratic function in the
two variables which may then be further analysed to predict
the values of those two variables at which maximum compaction
may be expected to occur in a real trial.

Clearly this is a fictitious simulation because with only
two variables we should probably proceed immediately to a
real trial rather than resort to the expense of mathematical
modelling and computer simulation.

The second example, however, is a practical situation
involving six independent, or control, variables. In this
case the cost of a large number of observations needed to fit
a full quadratic function was considered to be high enough to
make preliminary mathematical modelling and simulation worth
while.

The physical objective of the research was to produce a carbon
distribution profile through the thickness of steel strip, such
that the carbon composition at the oentre of the strip was higher
than that at the surface. Ideally the centralscomposition should
be about 0*7 per cent carbon- The purpose was to produce a hard
sharp outting edge when the strip was sharpened* The proposed
method of achieving this was by two-stage diffusion* In figure
33 the surfaces of the strip are represented by the two vertical
lines* In 33(a)> the initial low level uniform distribution
of carbon is shown by the horizontal line* After the first
stage of diffusion, at a high temperature in an atmosphere of
high oarbon potential, the carbon distribution is as shown in
33(b)* After the second stage, in an atmosphere of lower carbon
potential, the oarbon distribution should be as shown in 33(c)*

(a) (b)
Figure 33

A mathematical model of the process was developed by Pavlossoglou
and Clay (1975) using Fick's diffusion law and a computer simulation
using this model was developed by Pavlossoglou (1973). These were
in terms of the physical properties of the materials and, in the
simulation, small finite step lengths and time intervals were used. .
However, they enabled simulation eaqieriments to be run on the
computer to determine the optimal values of the operational variables*
The optimal values were those which would make in figure 33(c)
as great as possible with close to 0.7 per cent. The operational
variables were:

X1 time of the first stage
X2 time of the second stage
X3 temperature of the first stage
X4 temperature of the second stage
X3 carbon potentialbof carburising gas, first, stage
X6 carbon potential of carburising gaa» second stage

As well as main effects and quadratio effects, first order
interactions were expected between the following pairs:
X1X3, X1*5, *3*5, X2X4, X2X6, X4X6

The procedures of chapters three and four were used to produoe
the design tabulated in scaled variables on the next page*
The design parameter values were

C* = 1.724432
p = 0.843274

Since the experiment was a simulation it was possible to use
increments in the values of the independent variables that were
small enough to correspond to the above values of parameters to
six decimal places, thus preserving orthogonality. The ranges
of the independent variables were:

X1 50, 100 minutes
X2 10, 30 minutes
*3 800, 1000 °C
X4 CD O O O O O O O

X5 1.0, 1.5 percent carbon potential
X6 0.5, 1.0 percent carbon potential

These values were used in the simulations according to the scaled
values in the tabulated design. The total time for each simulated
trial was about half a minute. Each physical trial, had they
been done, would have taken half a day plus the time to analyse
the material to determine the carbon distributions.

The simulated results are also shown under the columns headed
Y1 and Y2. Since most of the values of Y1 are negative, it is
clear that the experimental region was misplaced. However, using
the methods described earlier in this chapter, quadratio models in
the operational variables were fitted to predict the dependent
variables. These functions, together with some constraints
(such as the need to keep the operational variables positive),
were used to determine the conditions for further simulations
which yielded the desired results.

row X1 X2 X3 X4
1
2 1 *•1 . ‘j
3 -1 1 -1 -1
4 -1 -1
3 -1 -1 1 -1
6 1 -1 1 -1
7 -1 1 -1
8
Q

1 1
47

10 1
1

11 -1 -1 1
12 1 1 -1 1
13 , -1 -1 1 1
14 1 -1 1 1
15 -1 1 1 1
16 1 1 1
17 -1 -1 -1 -1
18 1 -1 -1 -1
19 -1 1 -1 -1
20 1 -1 -1
21 •1 -1 1 -1
22 1 -1 1 -1
23 -1 1 -1
24 1 1 1 -1
25 -1 -1 -1 1
26 1 •1 -1 1
27 -1 1 -1 1
28 1 1 -1
29 -1 -1 %
30 -1 1. 1
31 -1 1 1
32 1 1 1 1

33 0 0 0
34 0 0 0
35 0 - f . 0 0
36 0 0 0
37 0 0 0
38 0 0 cx 0
39 0 0 0 -w
40 0 0 0 a*
41 0 0 0 0
42 0 0 0 0
43 0 0 0 0
44 0 0 0 0
45 0 0 0 0

X5 X6 Y1 •T2
-0.163 0.277

—1 1 -0.184 0.346
—1 1 -0.175 0.310
-1 -1 -0.089 0.373

1 -0.101 0.474-1 -1 -0.037 0.605
-1 •1 -0.042 0.483

1 -0.077 0.616
-1 -0.076 0.389
-1 1 -0.093 0.458
-1 1 -0.047 0.476
-1 0.000 0.492
-1 1 -0.038 0.526
-1 -1 -0.012 0.638
-1 -1 -0*003 0.536
•1 1 -0.029 0.678
1 1 *0.236 0.308
1 -1 -0.178 0.399

-1 -0*t11 0.347
1 1 -0.155 0.436
1 -1 -0.068 0.569
1 1 -0.069 0.743
1 1 -0.092 0.587
1 -1 0.018 0.753
1 1 -0.117 0.462
1 -1 -0.070 0.534
1 -1 0.011 0.511
1 1 -0.022 0.612
1 1 -0.054 , 0.632
1 1 -0.032 0.789
1 1 -0.028 0.872
1 -1 -0.054 0.632
0 0 -0.059 0.440
0 0 -0.026 0.614
0 0 -0.094 0.485
0 0 -0.063 0.505
0 0 -0.090 0.363
0 0 -0.001 0.757
0 0 -0.123 0.466
0 0 -0.022 0.594

-*< 0 -0.062 0.1*47
0 -0.039 0.595

0 -0.006 0.510
0 <v -0.095 0.531
0 0 -0.050 0.520

5.11

The results obtained by optimisation using the regression
functions and checked by further simulation were:

X1 = 15 minutes
X2 = 20 minutes
X3 = 1100°C
Xif = 900°C
X5 = 1.3 % C
X6 = 0.1 % C

with simulated results:
Y1 = 0.132 % C
Y2 = 0.696 % C

These results were considered satisfactory in that the use ,
of the recommended procedures had achieved the stated objective.
A more detailed description was reported by Pavlossoglou and
Greenfield (1975)*

CHAPTER

The Automatic Design of Experiments

Some Practical Algorithms

SIX

FRACTIONAL ASYMMETRIC
MULTI-LEVEL FACTORIALS

1 Background

2 Algorithms

1 Background

As I mentioned in chapter two, industrial laboratories
frequently arrange experiments based on qualitative
variables for which there is no prior justification for
ordering* Such variables are called factors and their
different states are called levels.

These experiments are commonly devised by generating the
full product of all the different levels of all the factors:
the set of all possible combinations. This set may be
replicated an arbitrary number of times and the observations
may be made in a random order. When these total designs
become too massive, the research worker may resort to the
classical agricultural research artifacts of graeco-latin
squares, lattices, split plots and balanced incomplete
blocks.

The aim of this chapter is to present an extension of the
methodology developed in chapter three for the generation
of fractions of two-level factorials suitable for estimating
a pre-specified set of required effects. The approach to
be adopted is based on the group properties of factorial
designs, which have been used by other workers. Original
features here include the link between two-level factorials
and multi-level factorials to provide the generators for
fractions of the latter, and the general algorithmic
approach. The method to be described does not always
yield fractions that are small enough in terms of cost of
experimentation. A method for further reduction will be
developed in chapter seven.

As with two-level factorials, the search for fractional
designs was preceded by the related problem of dividing
full designs into blocks in such a way that block effects
and high order interaction effects were confounded. Fisher
(1943 and 1945) realised that there was an association
between the theory of abelian groups and the relationships
recognisable in the choice of interactions for confounding
in 2n experiments. He extended the association to produce
block confounding of pn experiments, where p is prime.
However his method did not lead to asymmetric designs with
non-prime levels, nor did it enable one to proceed from
a predefined model, expressed as a requirements set, to
a fractional design. Finney (1945) used the same notion
for developing fractional replicates of pn experiments,
giving particular attention to 3° arrangements. He showed
that the set of defining contrasts was a sub-group and that
once this had been determined the fractional design followed.
He did not,however, suggest any way of determining the
defining contrasts from the requirements set.

Kempthorne (1947) also restricted his attention to symmetric
designs (those with the same number of levels for all factors)
with a prime number of levels, but he made a useful contribution
with the use of a modulo algebra to proceed from the set of defining
contrasts to the experimental design. This method.was, however,
restricted to symmetric designs.

Asymmetric factorials (those which do not have the same number
of levels for all factors) were considered by Plackett (1946)
who usefully proved that a necessary and sufficient condition
for the main effect estimates of two factors to be orthogonal
is that the levels of one factor occur with each of the levels
of the other factor with proportional frequencies. Thus the
widely held assumption that each level of one factor must occur
an equal number of times with each level of the other factor
is incorrect.

6.3

The modulo algebra applied by Kempthorne was a special case
of Galois field theory which had been used by Bose (1939)
for the construction of graeco-latin squares. This method
was used again by Kishen and Srivastava (1959) to generate
asymmetric designs. Their method was to generate first a
set of symmetric designs, with the number of levels in each
not necessarily prime, and then to combine them together.

The algebraic approach was extended to asymmetric designs
by White and Hultquist (1965) w*10 used the theory of rings
but again the number of levels for each factor was restricted
to a prime. Worthley and Bannerjee (1974) went a stage
further by combining elements from distinct finite rings
which led to block confounded asymmetric designs with factors
with non-prime numbers of levels.

A general review of techniques was published by Addelman (1963)*

I developed wy approach at about the same time as John and
Dean (1975) who showed how to generate designs, both symmetric
and asymmetric, given a set of group generators which will be
described in the next section of this chapter. They showed
how the confounding pattern could be determined from the
generators and they listed some commonly needed designs with
their generators and confounded interactions. Like earlier
contributors, however, they did not offer a procedure going
logically from model to generators to design.

The object of this chapter is to develop and describe a procedure
which moves logically from the model (the experimental requirements)
to a set of generators and hence to a balanced fraction of an
asymmetric factorial.

2 Algorithms

The general asymmetric factorial experiment may be described
by the notation

a°* b*3 o*
where « is the number of factors with 'a' levels, etcetera.
Since, in ny experience, there is a continual demand in
research laboratories for fractional designs of this type,
where the factors are qualitative, an algorithm has been
developed to generate them, given first a model in terms
of a set of effects that are required to be estimated.

The algorithm makes use of certain group properties which will
be introduced with simple examples and then stated as formal
requirements in the development of the algorithm.

The simplest class of group is the cyclic group which can be
generated by one of its elements. A cyclic group G is said
to be of order m if it has m elements. If x is the element

(2 m'which generates the group, then G = 11, x, x , . . . , x
and xm = 1.

The set of integers, modulo m, form a cyclic group under
addition, with order m. For example, the cyclic group of
order 2 may be represented by Gg ={o, 1 } • The element 1
generates the complete group since 1 + 1 = 0 (mod 2).
Similarly, the cyclic group of order 3 niay be represented by
G^ = [o, 1, 2^. Again, the element 1 generates the complete
group since 1 + 1 = 2 (mod 3) and 2 + 1 = 0 (mod 3)*

The cartesian product of these two cyclic group is obtained
by taking all possible pairs, one from each group* Thus

&2 x Cr = {00, 10, 01, 11, 02, 12}

where the first integer of each pair is an element of Gg

and the second is an element of G^ • Now, in this case,
it can readily be seen that the cartesian product of these
two cyclic group8 is itself a cyclic group if the element
11 is used as a generator. Using the addition sign to
indicate addition modulo 2 for the first integer at the same
time as addition modulo 3 for the second integer, the element
11 generates the sequence:
1 1 + 1 1 = 02 02 + 11 = 10 10 + 11 = 01

01 + 11 = 12 12 + 11 = 00 00 + 11 * 11

However, it should be noted that the cartesian product of
two cyclic groups of orders m and n is itself a cyclic group

onlyof order mn/wnen m and n are relatively prime. Thus, if
m = 3 and n = 4 the cartesian product is a cyclic group of
order 12, but if m = 3 and n = 6 the cartesian product is
not a cyclic group of order 18. It is, however, an abelian group.

The notation introduced above is suitable for the representation
of multi-factorial experimental designs. Thus, quoting John
and Dean (1975)> a treatment combination is denoted by the
n-tuple a = a^a2 an where a^ is an integer between
0 and m^-1 and where a^ corresponds to the (a^+l)th level of
the ith factor (i = 1, . . . , n) . Addition of treatment
combinations is defined as

a .a0. • • .a + b*b/_«.«.b — c.c0.«.*c1 2 n 1 2 n 1 2 n
where c. = a. + b. (mod m.) for i = 1,. • • , n1 1 1 ' l' 9 9

In the above example, n = 2, m^ = 2, = 3»

A f u l l 2 n f a c t o r i a l c a n b e e x p r e s s e d a s t h e c a r t e s i a n p r o d u c t
3o f n c y c l i c g r o u p s e a c h o f o r d e r 2. F o r e x a m p l e , a 2 f a c t o r i a l

i s t h e c a r t e s i a n p r o d u c t o f (C O O , 1 0 0) x (0 0 0 , 0 1 0) x (0 0 0 , 0 0 1) *
T h e f u l l d e s i g n i s g e n e r a t e d b y w r i t i n g t h e t w o e l e m e n t s o f t h e
f i r s t c y d l i c g r o u p (0 0 0 , 1 0 0) , a d d i n g t h e g e n e r a t o r o f t h e
s e c o n d c y c l i c g r o u p t o e a c h o f t h e p r e v i o u s e l e m e n t s i n t u r n
g i v i n g t h e s e q u e n c e (0 0 0 , 1 0 0 , 0 1 0 , 1 1 0) , t h e n a d d i n g t h e
g e n e r a t o r o f t h e t h i r d c y c l i c g r o u p t o e a c h o f t h e p r e v i o u s
e l e m e n t s i n t u r n g i v i n g t h e s e q u e n c e (0 0 0 , 1 0 0 , 0 1 0 , 1 1 0 , 0 0 1 ,
1 0 1 , 0 1 1 , 1 1 1) . T h i s p r o c e d u r e i s g i v e n h e r e t o i n t r o d u c e t h e
g e n e r a l m e t h o d a n d n o t a s a r e c o m m e n d a t i o n f o r g e n e r a t i n g a f u l l
2 n d e s i g n w h i c h * a s e x p l a i n e d i n c h a p t e r t h r e e , c a n m o s t
e a s i l y b e g e n e r a t e d b y s i m p l y c o u n t i n g f r o m 0 t o (2 n - 1) i n
b i n a r y .

T h e m e t h o d d e s c r i b e d i n c h a p t e r t h r e e f o r d e t e r m i n i n g t h e f r a c t i o n
o f a 2 n d e s i g n f o r t h e e s t i m a t i o n o f a p r e - s p e c i f i e d s e t o f

3r e q u i r e m e n t s g i v e s t h e f o l l o w i n g h a l f o f a 2 d e s i g n f o r t h e
e s t i m a t i o n o f m a i n e f f e c t s o n l y : (0 0 0 , 1 1 0 , 1 0 1 , 0 1 1) • T h e
e l e m e n t 1 1 0 i s t h e o r d e r - 2 g e n e r a t o r c f t h e c y l i c g r o u p (0 0 0 , 1 1 0) .
S i m i l a r l y , t h e e l e m e n t 1 01 i s t h e o r d e r - 2 g e n e r a t o r o f t h e c y c l i c
g r o u p (0 0 0 , 1 0 1) . T h e c a r t e s i a n p r o d u c t o f t h e s e t w o c y c l i c
g r o u p s i s t h e s e t o f f o u r e l e m e n t s w h i c h c o n s t i t u t e t h e h a l f
d e s i g n .

n — kI n g e n e r a l , t h e g e n e r a t o r s o f a 2 d e s i g n a r e t h o s e e l e m e n t s
J*w h i c h a r e f o u n d i n t h e r o w s o f t h e d e s i g n n u m b e r e d 2 + 1 f o r

i n t e g e r s r = 0, • . , (n - k - 1) .

C o n s i d e r n o w a f a c t o r i a l w i t h t h r e e f a c t o r s : t w o w i t h t w o l e v e l s
e a c h a n d t h e t h i r d w i t h f o u r l e v e l s . T h i s w o u l d b e d e s c r i b e d a s

>2a 2 x 4 f a c t o r i a l ,
t h e m o d e l w o u l d b e :

y = m

I f o n l y m a i n e f f e c t s a r e t o b e e s t i m a t e d ,
c

> +

1
e r r o r

w i t h a^ + a 2 = b 1 + b2 °1 + °2 + °3 + cj = 0

T h e t o t a l n u m b e r of' e f f e c t s t o b e e s t i m a t e d i s 6 : o n e m e a n ,
o n e m a i n e f f e c t f o r e a c h o f t h e f i r s t t w o f a c t o r s , a n d t h r e e
m a i n e f f e c t s f o r t h e t h i r d f a c t o r . S i n c e t h i s i s l e s s t h a n
h a l f t h e n u m b e r o f o b s e r v a t i o n s i n t h e f u l l f a c t o r i a l (16), i t
w o u l d b e e c o n o m i c a l t o f i n d a h a l f d e s i g n * T h i s m a y b e d o n e

3b y t a k i n g t h e t w o g e n e r a t o r s o f t h e h a l f 2 d e s i g n a n d p r o c e e d i n g
a s b e f o r e , e x c e p t t h a t t h e t h i r d i n t e g e r w i l l b e r e d u c e d m o d u l o 4

i n s t e a d o f m o d u l o 2. T h e t w o g e n e r a t o r s a n d t h e c y c l i c g r o u p s
t h e y g e n e r a t e a r e :

110 — > 000, 110 (o r d e r 2)
101 000, 101, 002, t03 (o r d e r 4)

T h e c a r t e s i a n p r o d u c t o f t h e s e t w o c y c l i c g r o u p s i s o b t a i n e d b y
a d d i n g a l l p a i r s o f e l e m e n t s , o n e f r o m e a c h g r o u p , t o p r o d u c e
a s e t o f e i g h t e l e m e n t s , w h i c h a l s o h a p p e n s t o b e a g r o u p b u t
n o t a c y c l i c g r o u p :

000, 110, 101, 011, 002, 112, 103, 013

T h i s h a l f d e s i g n w i l l p e r m i t t h e e s t i m a t i o n o f t h e m e a n a n d
t h e m a i n e f f e c t s *

C o n s i d e r n o w a n o t h e r f a c t o r i a l w i t h t h r e e f a c t o r s : e a c h w i t h
3t h r e e l e v e l s : a 3 f a c t o r i a l * I f o n l y m a i n e f f e c t s a r e

t o b e e s t i m a t e d , t h e t o t a l n u m b e r i s 7: o n e m e a n a n d t w o m a i n
e f f e c t s f o r e a c h o f t h e t h r e e f a c t o r s * T h i s s u g g e s t s t h a t a

3s u i t a b l e f r a c t i o n o f t h e 3 f a c t o r i a l w o u l d b e a t h i r d d e s i g n .
T h i s m a y b e d o n e b y t a k i n g t h e t w o g e n e r a t o r s o f t h e h a l f 2 ^
d e s i g n a n d p r o c e e d i n g a s b e f o r e , e x c e p t t h a t e a c h i n t e g e r w i l l
b e r e d u c e d m o d u l o 3 i n s t e a d o f m o d u l o 2. T h e t w o g e n e r a t o r s
a n d t h e c y c l i c g r o u p s t h e y g e n e r a t e a r e :

(o r d e r 3)

(o r d e r 3)

110

101

000, 110, 220

000, 101, 202

T h e c a r t e s i a n p r o d u c t o f t h e s e t w o c y c l i c g r o u p s i s o b t a i n e d b y

a d d i n g a l l p a i r s o f e l e m e n t s , o n e f r o m e a c h g r o u p , t o p r o d u c e
a s e t o f n i n e e l e m e n t s , w h i c h i s a l s o a g r o u p b u t n o t a c y c l i c
g r o u p :

000, 110, 220, 101, 211, 021, 202, 012, 122

This third design will permit the estimation of the mean and
the main effects.

T h e p r o c e d u r e i l l u s t r a t e d a b o v e i s d e s c r i b e d m o r e g e n e r a l l y i n
t h e f o l l o w i n g a l g o r i t h m :

A l g o r i t h m M U ^ F A C (M u l t i - l e v e l a s y m m e t r i c F A C t o r i a l)
S t e p 0 E n t e r t h e n u m b e r o f f a c t o r s , t h e n u m b e r o f l e v e l s

f o r e a c h f a c t o r , a n d t h e r e q u i r e m e n t s i n t e r m s o f
t h e m a i n e f f e c t s a n d i n t e r a c t i o n s t h a t n e e d t o b e
e s t i m a t e d .

S t e p 2 0 A s s u m e t h a t e a c h f a c t o r h a s o n l y t w o l e v e l s a n d
use the method of chapter three to design a

n - ks u i t a b l e 2 d e s i g n .

S t e p 4 0 U s i n g a l g o r i t h m N E W (o h a p t e r t h r e e) s e l e c t t h e
(n - k) g e n e r a t o r s *

S t e p 6 0 G e n e r a t e t h e (n - k) c y c l i c g r o u p a, u s i n g
m o d u l o nk f o r t h e i t h i n t e g e r i n e a c h g e n e r a t o r
w h e r e m ^ i s t h e n u m b e r o f l e v e l s f o r t h e i t h f a c t o r *

S t e p 8 0 G e n e r a t e t h e f r a c t i o n a l d e s i g n b y t a k i n g t h e
c a r t e s i a n p r o d u c t o f t h e s e (n - k) c y c l i c g r o u p .

S i n c e t h e n u m b e r o f e l e m e n t s i n t h e f r a c t i o n a l d e s i g n w i l l b e t h e
p r o d u c t o f t h e o r d e r s o f t h e (n - k) c y c l i c g e n e r a t o r s , i t
s o m e t i m e s h a p p e n s t h a t t h e f r a c t i o n a l d e s i g n m a y s t i l l h a v e t o o
m a n y e l e m e n t s t o s a t i s f y t h e r e q u i r e d e x p e r i m e n t a l e c o n o n y . i n
t h i s c a s e , a f t e r a p p l y i n g a l l o f a l g o r i t h m M U L F A C , a f u r t h e r

procedure, to be developed in chapter seven, will be applied
to select the best subset of the elements in the fractional
design. It also sometimes happens that the fractional design
generated by algorithm MULFAC is exactly equal to the full
design* This situation may be determined after step 40 by
calculating the order of each generator and testing if the
product of the orders is equal to the product of the numbers
of levels of all the factors. In this case the algorithm
will immediately switch to the procedure to be developed in
chapter seven to select the best subset of the elements in the
full design. The criterion for 'best* will be discussed*
The reason that the chapter seven procedure is not used generally
instead ofMULFAC is that it is very much slower*

T h e f o l l o w i n g e l e m e n t a r y g r o u p t h e o r y i s n e e d e d t o d e v e l o p
t h e a l g o r i t h m M U L F A C :

1. A m u l t i - l e v e l f a c t o r i a l e x p e r i m e n t c a n b e e x p r e s s e d a s a
p r o d u c t g r o u p G, c r e a t e d b y t h e c a r t e s i a n p r o d u c t o f t h e c y c l i c
g r o u p s , e a c h r e p r e s e n t i n g a f a c t o r . T h e o r d e r o f e a c h
c o n s t i t u e n t c y c l i c g r o u p i s t h e n u m b e r o f l e v e l s i n t h e f a c t o r
w h i c h t h a t c o n s t i t u e n t c y c l i c g r o u p r e p r e s e n t s . T h e o r d e r o f
t h e p r o d u c t g r o u p G i s t h e p r o d u c t o f t h e o r d e r s o f t h e c o n s t i t u e n t
c y c l i c g r o u p s .

G = , ^2* • • • • • > L ^ ^
= C T x C x x C T

1 2 n

2. T h e o r d e r o f a n y e l e m e n t i n a c y c l i c g r o u p i s a d i v i s o r o f
t h e o r d e r o f t h e g r o u p . N o t a l l e l e m e n t s h a v e t h e s a m e o r d e r *
L e t t h e c y c l i c g r o u p b e C T , t h e n a n e l e m e n t o f C T i s
(x J x c { 0 , 1, • . . , L - 1 J) , a n d t h e o r d e r o f x i s 0 (x) .

1. i f x = 0 t h e n 0 (x) = 1
2. i f x i s p r i m e t o L t h e n 0 (x) = L
3. i f x ̂ - t h e n 0 (x) = —' c. X

i f x ^ If t h e n 0 (x) = ~ - ■

T h e s e a l l r e d u c e t o : 0 (x) = ^ / h c f (L x)

It will be remembered here that an algorithm for computing
the highest common: factor of a pair of integers was developed
by way of illustrating the algorithmic procedure in chapter one

As well as using the notation 0(x) to represent the order of
an element, the following more precise notation may also be
used: 0(x(y)) to denote the order of an element x from a
cyclic group of order y.

3* The order of an element in a cartesian product of cyclic
groups, or the order of an element in a cyclic group which has
integers representing more than one factor, is the lowest
common multiple (lcm) of the orders of the cyclic constituent
elements.

E x a m p l e :
For the group G = (2, 3, 6> the order of the element
x s (1 , 2 , 4) i s
0(1,2,4) = lom(0(l(2)), 0(2(3)), 0(4(6)))

= lcm (1, 3, 3)
= 3

4* Given a full mixed factorial design F represented by a
product cyclic group G ^ = ^a, b, c, • . . ̂

where = T T a b c • . . is the prder of G
then all balanced fractions £fj of F may be represented by
proper sub-groups of G, with properties to be described, or
by cosets of those sub-groups which may be regarded spatially
as rotations of those sub-groups* Thus the initial problem
may be reduced to the search for proper sub-groups with the
required properties. I use the notation g^ to represent
a sub-group of G^ with order and with the required propertie

5. T h e required properties of g^ are:
5*1 The order of g^ is

^ ^ 1 + (a - 1) + (b - 1) + (c — 1) + . .

i f w e a r e c o n s i d e r i n g a f a c t o r i a l e x p e r i m e n t f o r t h e
e s t i m a t i o n o f m e a n p l u s m a i n e f f e c t s o n l y , w i t h o u t
i n t e r a c t i o n s . T h a t i s : t h e d e s i g n m u s t c o n t a i n a t
l e a s t a s m a n y p o i n t s o f o b s e r v a t i o n a s t h e n u m b e r o f
i n d e p e n d e n t c o e f f i c i e n t s t o b e e s t i m a t e d *

I f , f o r e x a m p l e , t h e r e a r e t h r e e f a c t o r s A, B, C, w i t h
a, b , c l e v e l s r e s p e c t i v e l y , a n d t h e i n t e r a c t i o n b e t w e e n
A a n d B i s to b e e s t i m a t e d , t h e n t h e o r d e r o f m u s t b e :

^ ^ 1 + (a - 1) + (b - 1) + (c - 1) + (a b - 1)

5 . 2 (J d i v i d e s (X

T h i s i s L a g r a n g e ' s t h e o r e m : t h e o r d e r o f a s u b g r o u p g o f
a f i n i t e g r o u p G d i v i d e s t h e o r d e r o f G.

5 * 3 £ i s d i v i s i b l e b y t h e o r d e r o f e a c h c o n s t i t u e n t
c y c l i c g r o u p r e p r e s e n t i n g e a c h f a c t o r . I t i s o b v i o u s
f r o m t h e m e t h o d o f c o n s t r u c t i n g t h e s u b g r o u p g ^ t h a t
^ m u s t b e d i v i s i b l e b y t h e o r d e r o f e a c h c o n s t i t u e n t c y c l i c
g r o u p r e p r e s e n t i n g e a c h g e n e r a t o r .

U s i n g t h e n o t a t i o n B/A t o i n d i c a t e t h a t A i s d i v i s i b l e
b y B, t h e n f r o m 5*2 a n d 5*3i

^ /oC t » b/^$, c/fy .
o r a n d (x J x (£ a , b , c, . . . i)/f>

H e n c e p i s c h o s e n b y f i r s t f i n d i n g t h e l o w e s t i n t e g e r t h a t
s a t i s f i e s 5 * 1 a n d t h e n f i n d i n g t h e n e a r e s t i n t e g e r a b o v e o r
e q u a l t o i t t h a t i s a m u l t i p l e o f t h e l c m o f t h e f a c t o r l e v e l s .

5.4 Each factor must be represented by a non-zero integer
in at least one of the generators of g^ • If this were not
so, that factor would not be included in the fractional
design except at a single level.

5*5 In at least one of the generators in which a factor is
represented by a non-zero integer, the order of that integer

(relatively prime)
must be co-prime/to the order of the factor. If this were
not so, that factor would not be included in the fractional
design at all of its defined levels.

For example, for the group G- = (2, 3, 6) there must be
at least one generator among the generators of a subgroup
balanced in the third factor with a 1 or a 5 as the third
integer so as to achieve that balance.

5.6 If several factors have an equal number of levels, then
in the set of generators all pairs of those factors must occur
at relatively prime levels. If this were not so, the effects
of those factors would be confounded. The simplest way to
achieve this is to ensure that in the set of generators, all
except one of these factors occur at least once at the zero
level.

Eor example, for the group G- = <2, 2, 2> generators for
a half design are 110 and 101. Thus of the three factors
two of them occur at least once at the zero level.

We have already noted that generators selected at step 4-0 of
algorithm MULFAC mayhave orders such that their product is too
great for experimental economy. Alternative and equivalent
generators with smaller orders may however be obtained by
examination of the cosets of the initial fractional two-level
design which, as we also noted, may be regarded spatially as
rotations of the proper sub-group. These cosets are obtained
by taking the product of the proper sub-group representing the
fractional two-level design and elements of the group not in
the sub-group•

For example, consider the group = <2, 3, a n d t h e
o b j e c t o f o b t a i n i n g a f r a c t i o n a l d e s i g n t h a t w i l l e s t i m a t e m a i n
e f f e c t s o n l y . T h e a i m i s t o f i n d g e n e r a t o r s f o r t h e s u b ­
g r o u p g^ • F i r s t a s u i t a b l e m i n i m u m v a l u e o f {3 m u s t b e
f o u n d .

from 3.1 (i ^ 7
f r o m 3 . 2 $ = 9 o r 1 2 o r 1 8
f r o m 3 . 3 $ = 1 2 o r 1 8

from paragraph (3) (referring to the order of an element in a
cartesian product of cyclic groups) we compute that the cyclic
sub-group of highest order has order lcm(2,3,6) which is 6;
therefore there is no cyclic sub-group of order 12.

O r d e r s o f t h e g e n e r a t o r s f r o m t h e ^ 2 ^ f a c t o r i a l w h e n a p p l i e d
t o t h e (2 , 3 * 6) f a c t o r i a l a r e (f r o m p r o p e r t y (3)) :

0(1,1,0) = lcm(0(l(2)), 0(1(3)), 0(0(6))) = 6
0(1,0,1) = lcm(0(l(2)), 0(0(3)), 0(1(6))) = 6
a n d t h e p r o d u c t o f t h e s e i s 36 w h i c h i s t h e s i z e o f t h e f u l l
f a c t o r i a l .

C o s e t s o f t h e ^ 2? f a c t o r i a l s u b g r o u p (0 0 0 , 1 1 0 , 1 0 1 , 0 1 1)
a r e o b t a i n e d b y t a k i n g t h e f o l l o w i n g p r o d u c t s :
(100) x (000, 110, 101, 011) ---> (100, 010, 001, 111)
(010) x (ooo, 110, 101, 011) — > (010, 100, m ; 001)

(001) x (000, 110, 101, 011) — > (001, 111, 100, 010)

C l e a r l y t h e s e c o s e t s a r e i d e n t i c a l , e x c e p t i n t h e o r d e r s o f
t h e e l e m e n t s . I n d e e d t h i s m u s t b e s o i n t h e c a s e o f a h a l f
s u b - g r c u p s i n c e i t s c o s e t m u s t b e t h e s e t o f e l e m e n t s o f t h e
f u l l g r o u p w h e n t h e s u b - g r o u p i s r e m o v e d . O f i m p o r t a n c e ,
h o w e v e r , a r e t h e e l e m e n t s i n t h e g e n e r a t o r (2 n d a n d 3 r d)
p o s i t i o n s . T h o s e f r o m t h e f i r s t c o s e t a r e n o t s u i t a b l e , b y
p r o p e r t y 3 * 4 . H o w e v e r , t h o s e f r o m t h e s e c o n d c o s e t a r e , a n d
t h e i r o r d e r s , u s i n g p r o p e r t y (3) , a r e :
0(1,0,0) = lcm(0(K2)), 0(0(3)), 0(0(6))) = 2
0(1,1,1) = lem(0(1(2)), 0(1(3)), 0(1(6))) = 6
a n d t h e p r o d u c t o f t h e s e is 12 which is the desired size o f

the fractional factorial,
elements generate are:

100 -> 000, 100

The cyclic groups which these

(order 2)
111 — > 000, 111, 022, 103, 014, 123 (order 6)

The cartesian product is:

000, 111, 022, 103, 014, 123
100, 011, 122, 003, 114, 023

This fractional (one third) design is adequate to estimate
the mean and eight (1 + 2 + 3) main effects.

Another useful point in designing the algorithm is that since the
factor levels are qualitative, they are order independent. Hence
the choice of generators can be simplified to those containing
factor levels 0 and 1. On the other hand, other levels with
lower orders may be indicated by examination of the cosets as
described. The consideration of cosets is used in algorithm
SELG (selection of alternative generators) which is developed
on a later page.

Apart from the main algorithm, we already have one for hcf, but
we also need once for lcm. This may be developed using the
following considerations:
1. The lcm of a set of integers must be equal at least to
the largest integer in the set.
2. If the lcm is greater than the largest integer' in the set,
then it must be equal to an integer multiple of the largest
integer in the set.
3» Every integer in the set must divide the lcm.
Thus the outline algorithm is:
Algorithm LCM (Lowest Common Multiple)
Step 0 Enter a set of integers l(.) of length NN
Step 10 Find the largest integer in the set and allocate

this value to two integer variables M and LCM
Step 20 For each Kth integer, l(K), not yet included in the

lcm, determine if l(K) divides LCM. If it does, then
it is included in the lcm. If it does not, then
increase LCM by M.
Repeat step 20 until all the integers have been
included in the lcm.

In’more detail, the algorithm becomes:

Algorithm LCM (Lowest Common Multiple)

Step 0 Enter a set of integers l(.) of length NN
set N*— NN; J<-0; LCM«-0; K*- 0
set K<— K + 1
if K > N then goto step 20 i*i
if l(K)^ LCM then goto step 10 fi
set LCM*— l(K); MM*— K; gpto step 10

set K*— MM
set J<— ionbt(J,K); M*— LCM; N*— N - 1
if- N = 0 then return fi
sgt K*— 0
set K*— K + 1 *«**•»
if K > NN then return fi
if itest(j,K) = 1 then goto step 23 fi
if LCM/l(K)*l(K) = LCM (l(K) divides LGM) then goto step 21 fi
set LCM**— LCM + M; goto step 28

A function itest(j,K) is used to test if the Kth bit of J is
set to 1; itest returns a value of 1 if it is, or 0 if it is not*.
The flowchart for algorithm LCM is in figure 34*

Step 1
Step 10
Step 11
Step 12
Step 13

Step 20
Step 21
Step 22
Step 23
Step 23
Step 26
Step 27
Step 28
Step 29

>- k-h

K >MAJ

Two further simple functions are needed. One of them (JORD)
computes the order of an element L in a cyclic group of order N.
The other (MOD) computes the sum of two integers, J and K,
modulo L. The algorithms are:

Algorithm JORD (ORDer of an element L from a cyclic groupf * i i — ii i ■ ■ — ■ i — i—

of order N)
Step 1 Enter L and N
Step 2 If L= 0 then J0RD<— 1- m mm

else J0RD4— N/hcf(L,N) fi

Algorithm MOD (addition of J and K MODulo L)* |" ' 1 1 ■ ■■■■»— < ■ ■mu i m
Step 0 enter J, K and L
Step 1 set M0D<̂ -J + K
Step 2 if MOD^ L then set M0D<-M0D - L fi

A more complex procedure that is needed is to solve the
following problem: G-iven a set of generators and the number
of levels of each factor, determine the level.of each factor
for the Kth observation. This requires products of generators
as follows:

Algorithm LEV (determine all factor levels for K-th observation)
Step 100 Suppose the first generator has order IL(l). Then by

the time we have reached the K~th observation it will
have been cycled L times where
L is the integer value of (K - 1)/IL(1)
The number of observations passed in those L cycles of
the first generator is L*IL(1)
Therefore we are now at the M-th level of the first
generator, where M is K - L*IL(1)

Step 200 Consider the effect of M increments of the first
generator on the levels of the first factor.
The first integer (corresponding to some level of the
first factor) which occurs in the first generator is
ID(1,1). Usually it haB value 0 or 1 but it may be
some other integer value.

H e n c e t h e u n m o d u l a t e d l e v e l o f t h e f i r s t f a c t o r i n
t h e c u r r e n t ((L + l) t h) c y c l e o f t h e f i r s t g e n e r a t o r
i s K K , w h e r e K K i s M * I D (1 , 1)
I f N L (1) i s t h e n u m b e r o f l e v e l s o f t h e f i r s t f a c t o r ,
t h e n t h e m o d u l a t e d l e v e l o f t h e f i r s t f a c t o r i s L L ,
w h e r e L L i s K K - N L (1) * (K I 0 ? L (1))

T h e s e c o n d g e n e r a t o r p a s s e s t h r o u g h o n e l e v e l f o r e a c h c o m p l e t e
c y c l e o f t h e f i r s t . T h u s w h e r e a s i n s t e p 1 0 0 w e w e r e c o n s i d e r i n g
t h e K - t h o b s e r v a t i o n s o f a r a s t h e f i r s t g e n e r a t o r w a s c o n c e r n e d ,
w e m a y n o w c o n s i d e r t h e (L + l) t h o b s e r v a t i o n s o f a r a s t h e s e c o n d
g e n e r a t o r i s c o n c e r n e d . T h e r e f o r e a t t h e e n d o f s t e p 1 0 0 w e
c o u l d s e t K * * - L + 1 t o p r e p a r e f o r d e a l i n g w i t h . t h e s e c o n d
g e n e r a t o r . T h i s w i l l l e a d , i n s t e p 1 0 0 , t o d e t e r m i n i n g a n e w
v a l u e o f M, w h e r e M i s t h e M - t h l e v e l o f t h e s e c o n d g e n e r a t o r .

H e n c e , i n s t e p 2 0 0 , a n e w m o d u l a t e d l e v e l (L L) o f t h e f i r s t f a c t o r ,
d u e t o M i n c r e m e n t s o f t h e s e c o n d g e n e r a t o r , w i l l b e d e t e r m i n e d .
T h i s m u s t b e c o m b i n e d , u s i n g a l g o r i t h m M O D , w i t h t h e p r e v i o u s l y
c o m p u t e d m o d u l a t e d l e v e l o f t h e f i r s t f a c t o r d u e t o t h e f i r s t
g e n e r a t o r . I n o r d e r t o g e n e r a l i s e t h i s p r o c e d u r e , t h e l e v e l s o f
a l l f a c t o r s a r e s e t t o z e r o b e f o r e s t e p 1 0 0 .

T h e n u m b e r o f o b s e r v a t i o n s (N O) i n t h e d e s i g n i s t h e p r o d u c t o f
t h e o r d e r s o f a l l t h e g e n e r a t o r s . I f t h e p r o c e d u r e d e s c r i b e d s o
f a r i s c a r r i e d t h r o u g h t o d e a l w i t h a l l t h e g e n e r a t o r s , i t w i l l
l e a d t o t h e f i n a l (N 0 - t h) o b s e r v a t i o n h a v i n g a l l f a c t o r s a t t h e
z e r o l e v e l . F o r a r e a s o n w h i c h w i l l b e s t a t e d i n c h a p t e r s e v e n ,
i t i s d e s i r a b l e t o h a v e t h i s a s t h e f i r s t o b s e r v a t i o n . T h e r e f o r e
i n a l g o r i t h m L E V w e s h a l l e n t e r a r e q u e s t f o r t h e f a c t o r l e v e l s o f
t h e I - t h o b s e r v a t i o n , t h e n u s e t h e p r o c e d u r e d e s c r i b e d t o
c o m p u t e t h e f a c t o r l e v e l s o f t h e K - t h , w h e r e K i s 1 - 1 .
I f 1 = 1 t h e n t h e a l g o r i t h m w i l l r e t u r n a l l f a c t o r l e v e l s s e t
t o z e r o .

T h e f u l l a l g o r i t h m f o l l o w s .
T h e f l o w c h a r t i s i n f i g u r e 3 5 *

Algorithm LEV (determine all factor LEVels for the I-th■*— — ■..... trnrnarn̂̂imm , lm* ,

observation in the design: return them in array IK(.))

Step 1

Step 2
Step 3
Step 4

Step 100
Step 101
Step 102
Step 1Q3

Step 200
Step 201
Step 202
Step 203
Step 204-
Step 205

Another algorithm that will be useful is FASET, which determines
the subsets of factors with equal numbers of levels. If the
experiment has N1 factors with P1 levels, N2 factors with P2
levels, etcetera, which may have been entered in any order through
algorithm ENFAC, then algorithm FASET will give values to an array
IX(. , .) as follows;

IX(1,1) = P1 , IX(1,2) = N1 IX(1,3) = 0 IX(1,4) = 0
IX(2,1) = P2 IX(2,2) = N2 IX(2,3) = 0 IX(2,4) = 0

etcetera

The zero values in the third and fourth elements of each row will be
described in the full description of the main algorithm MULFAC.

The full algorithm FASET follows.
The flowchart is in figure 36.

Enter I; N (number of factors); N& (number of
generators); IL(.) (the order of each generator);
ID(•,.) (the generators); NL(.) (the number of
levels of each factor).
for J<— 1 to N set IK(j)«— 0
if 1 = 1 then re_turn fi
set K 1 I - 1

. se t J<— 0
set J<— J + 1
if J>NG then return fi
set L«— (K1- 1)/lL(J); M<-K1- IL(j)*L; K14-L + 1

set JJ«— 0
set + 1
if JJ>N thgn goto 3tep 101 fî
set KK1«rID(j,JJ)*M; L4— NL(jj); LL«— KK1- L*(KK1 / L)
set IK(JJ)«40D(IK(JJ), LL, L)
goto step 201

100

103

Algorithm FAtm' iffActor subsats) ^return witn ut^±,i; = modulus
of I'th subset of factors, IX(l,2) = number of factors in I*th subset,
IX(I,3) = 0, IX(l,4) = 0 , LI = number of subsets, JG =. number of
subsets with IX(I,1)>2)
Step 0 ent^r N, NL(.)
Step 1 set L*- 0; LI*-0; IXI«-0j JG*— 0
Step 2 set IXI<-IXI + 1
Step 3 set J<— 0
Step 4 set J«*— J + 1
Step 3 if J = IXI then §oto step 7 fi
Step 6 if NL(J)« NL(lXl) then goto step 2 §£^2 step 4 JPi
Step 7 set LI*— LI + 1; IX(LI,1)*-NL(lXl); IX(LI,2)*-1j

IX(LI,3)*- 0; IX(LI,4)*r~ 0; L*— L + 1
Step 8 if L = N then return fi
Step 9 set J*— J + 1
Step 10 if J> N tjien̂ ffoto step 14 j£i
Step 11 if IX(LI,1) / NL(J) then fi.oto step 9 f̂i.
Step 12 set IX(LI,2)<— IX(LI,2) + 1; L*-L + 1
Step 13 if L / N g^tg step 9 else return JFi_
Step 14 if IX(LI,2)> 2 then set JG*-JG + 1 fi
Step 13 go£o step 2

UI«- U f I
rx^Vk-wL&trt

~Hr-L + i

N ,NL(->

T*I<— O

ixr«-T*r+i

41Ixl

**W,V -+-I U + l■ Nu(jM)

— >̂ fet-urr\ ^

Ft ̂ urg 3 6

algorithm to construct. This is algorithm SELG which will select
better generators, if there are any, than the prime generators
taken from the underlying fractional two-level factorial. In
MULFAC the algorithm DEFGEN (a slightly modified version of
algorithm DEFCON developed in chapter three for the generation of
two-level fractional factorials) is used to produce prime generators.
At this stage they are in binary form: that is each generator is
represented as bit values set to 0 or 1 within an integer. For

3-1example, the generators for a 2 design may be represented by
integers 5 and 6 with bit patterns 101 and 110 respectively.
The first task of algorithm SELG is to convert the prime generators
from binary to integer form ard, according to the generator orders,
find how large a design they would generate. Thereafter the
generators are cycled, tested for acceptability, according to the
criteria specified earlier in this chapter, and for any reduction
in the size of design the would generate provided the size would not
be too small.

As will be seen later in the development of MULFAC, algorithm
SELG will be used only after DEFGEN has been applied to those factors
with unique numbers of levels plus those pairs of factors which have
equal numbers of levels. For example, i n a 2 x 2 x 2 x 3 * 3 x 5
factorial, SELG will be applied to the generators concerned with
the last three factorso Some aspects of it will however be introduced
to other parts of MULFa C.

The outline algorithm is:

Algorithm SELG (SELect Generators)
Step 0 Enter prime generators in binary form.
Step 10 Convert generators from binary to integer form; compute

generator orders and their product.
Step 30 Cycle the generators; compute the orders and products of

the cycled generators; test for improvement; for those
pairs of factors with equal numbers of levels, check there
is at least one generator in which these two factors have
integer values that are co-prime; if there is an improvement,
note the cycle (the Mth) to which it relates.

Step 70 If no improvement has been found, use the prime generators;
if an improvement has been found reconstruct the Mth cycle
generators.

The full algorithm follows. The flowchart is figure 37*

Algorithm SELG (SEIed* Generators for multi-level asymmetric
factorial, given the equivalent generators for a two-level
factorial in binary form)
(enter with NGI (number of generators), IB(.) (generators in
binary form), NIG (number of factors), NLL(.) (number of levels
to each factor), LI (number of factor subsets), IX(. , •)
(properties of factor subsets): return with IDD(. , .) (generators
in integer form))

Step 0 (initialise)
set NOMINE— 1 ; NB<— 1 - NIG
£et I<— 0
set- I*~ 1 + 1
if I > NIG then goto step 6 fi
set NC-MIN^— NOMIN * NLL(l) ; NB<-NB + NLL(l);, goto step 2
set N01«- NOMIN - 1

Step 1
Step 2
Step 3
Step 5
Step 6

Step 10

Step 11
Step 12
Step 13
Step
Step 15
Step 16
Step 17
Step 18
Step 19
Step 20
Step 21
Step 22

Step 30

Step 31
Step 32

compute generator orders and their products)
set J*- 0; NO*— 1

-I + 1
IIG thgn goto step 19 fi
J,I)*~ ITEST(lb(j), I)

se t M*— 0; NOMINE-NO; N 0 K - N 0 -1

(cycle generators; compute orders and
for improvement)
set I<— 0

Step 3 3 f o r J « - 1 t o M I G set I K K (j) * - 0 ; I K (j) « — 0
Step 3 4 N0<— 1; KJ^— Ij IJ<-— 0
Step 3 5 set I J « — I J + 1
S t e p 3 0 i f I J > N G I t h e n g o t o s t e p 4 7 j£i
S t e p 3 7 s e t L « — (K J - 1) / I L (I J) ; M M < — K J - I L (I J) * L; K J < — L + 1
S t e p 3 8 s e t J K < — 0
S t e p 3 9 s e t J K « - J K + 1
S t e p 4 0 i f J K > N I G t h e n g o t o s t e p 4 6 f i
S t e p 4 1 s e t K K K « - I D D (l J , J K) ♦ M M ; L « — N L L (J K) ;

I D T (I J , J K) « - K K K - L ♦ (K K K / L) ; I T « ~ I D T (l J , K K) ;
I I (J K) < ~ J O R D (IT, L)

S t e p U2 i £ I T = 0 t h e n g o t o s t e p 3 9 J£i
S t e p 1+3 s e t I K (J K) < - I K (J K) + I T
S t e p 4 4 i f I H C P (I T , L) = 1 t h e n s e t I K K (J K) « — 1 f i
S t e p 4 5 s t e p 3 9
S t e p 2f6 s e t I L T « — L C M (I I , N I G) ; N 0 < — N O ♦ I L T ; g o t o s t e p 3 5
S t e p 4 7 £ e t J 4 — ■ 0
S t e p s e t J < — J + 1
S t e p 4 9 i f J > N I G t h e n g o t o s t e p 5 2 f i
S t e p 5 0 i f I K (J) » 0 t h e n g o t o s t e p 31 f i
S t e p 5 1 i f I K K (j) = 0 t h e n g o t o s t e p 31 ej.se g o t o s t e p 4 8 fl

S t e p 3 2 (f o r t h o s e p a i r s o f f a c t o r s w i t h e q u a l n u m b e r s o f l e v e l s ,
c h e c k t h e r e i s a t l e a s t o n e g e n e r a t o r i n w h i c h t h e s e t w o
f a c t o r s h a v e d i f f e r e n t i n t e g e r v a l u e s)
s e t I X J «* - 0

S t e p 5 3 s e t I X J * - I X J + 1
S t e p 5 4 i f I X J > L I t h ^ n g o t o s t e p 67 £L.
S t e p 5 5 I X (I X J , 2) / 2 t h e n g o t o s t e p 5 3 f i
S t e p 56 (f i n d f i r s t f a c t o r i n p a i r)

se.t I X - 0
S t e p 5 7 s e t I X — 1 3 + 1
S t e p 5 8 i f N L L (I 3) / I X (I X J , 1) t h e n g o t o s t e p 5 7 fi^
S t e p 5 9 (f i n d s e c o n d f a c t o r i n p a i r)

s e t I 4 < — 1 3
S t e p 6 0 s e t 1 4 ^ — 1 4 + 1
S t e p 61 ii^ N L L (I 4) / I X (I X J , 1) t h e n g o t o s t e p 6 0 f i
S t e p 6 2 s e t J 3 ^ ~ 0
S t e p 63 s e t J 3 < — J 3 + 1

S t e p 64 i f J 3 > * N & I t h e n ffotp s t e p 31 f i (n o i n e q u a l i t y f o u n d)
Stq) 63 jif I D T (J 3 , I 3) / I D T (J 3 , I 4) t h e n g o t o s t e p 5 3 f i (i n e q u a l i t y f o u n d)
S t e p 6 6 g o t o s t e p 63

S t e p 6 7 (a l l g e n e r a t o r s c h e c k e d)
if, N O < N B o r N 0 > N O M I N t h e n g o t o s t e p 31 ft

S t e p 6 8 s e t M ^ - I; N 0 M I N < — N O ; g o t o s t e p 31

S t e p 7 0 (i f M » 0 u s e p r i m e g e n e r a t o r s ; o t h e r w i s e M i n d i c a t e s
b e s t s e t o f c y c l e d g e n e r a t o r s)
i f M > 0 t h e n g o t o s t e p 7 3 fi_

S t e p 71 s e t N O < — N O M I N ; r e t u p n
S t e p 7 5 (u s e M t o r e c o m p u t e b e s t s e t o f g e n e r a t o r s)

s e t I < — 0
S t e p 7 6 s e t I < — 1 + 1
S t e p 7 7 i f I > N G I t h e n r e t u r n f i
S t e p 7 8 s e t L « — (M - 1) / I L (I) ; M M « - I L (l) * L ; M « - L + 1
S t e p 7 9 s e t J < — 0
S t e p 8 0 s e t — J + 1
S t e p 8 1 i f J >• N I G f h ^ 2 s t e p 83 f i
S t e p 8 2 s e t K J « — I D D (l , J) * M M; L « - N L L (j)
S t e p 8 3 s e t I D D (l , J) * - K J - L * (K J / L) ; I l (j) f - J Q R D (I D D (I , J) , L)
S t e p 84 g o t o s t e p 8 0
S t e p 8 3 s e t I L (l K - L C M (I I , N)
S t e p 8 6 g o t o s t e p 76

I now return to the development of the main algorithm MULFAC and in
describing it I refer to the outline flowchart in figure 3 8 . Some
of the ideas introduced have arisen in the practical pursuit of an
effective algorithm and not simply in the implementation of the theory
already described. For example, take the case of six factors of
which three have two levels each and the other three have three
levels each. If all six factors are considered together in DEFGEN,
three generators are produced, each with an order of six. The
product of the generator orders is 216: the largest possible
number of observations. Alternatively, the three two-level factors
yield two generators, each with an order two, and the three three-
level factors yield two generators, each with an order three. The

NdmIn <-NONlM*Nu{l.)
Hfct-Ng t

Mut-Cl)

%C|

no*]n<~ I
M04-1 -NIC

lfi<-r + 1

M o H -M o n l'N - t T*-"0
N04-1

I r<—j 41

J> N(JI

I i*-r+i

rcgR vlLCM (It, NX GJ No*-Nomura

o
NortIN «-NO
NoH—"No -1

**1'1*— i-u

IKK0)<— O
IK(-^ O

n<~ir+i 1

I >K01>J— >(J<)

It
K3"«-L+t
;re<- o

*v®,

l£.T<-i.cM(rr Nrc>
H04~ho* jr L"j*

3 7 a.

M>0

K A — I
NoMlM-4— NO

product of the orders of the four generators is now only 36. This
is generalised in MULFAC by looking separately at those subsets of
factors each with three or more factors with the same number of levels
for each. It was for this reason that algorithm FASET, already
described, was developed to determine the subsets of factors with
equal numbers of levels*

A further practical consideration, related to the one described above,
was that sometimes the product of orders of generators pertaining to
a subset of factors was equal to the number of levels of another one or
two factors* For example, take the case of five factors of which
three have two levels each and the other two have four levels each.
The three two-level factors yield two generators, each with an order
two. The product of the generator orders is four which is equal to
the number of levels of each of the other two factors. The practical
way to deal with this is to attach one of the four-level factors to one
generator and the other factor to the other generator. That is: we
have two generators 10100 and 01100, each of order two. The fourth
and fifth factors are attached to yield the generators 10110 and 01101,
each of order four. The product of the generator orders is 16; the
number of observations in the experimental design they will generate.

The structure of the algorithm is new :

AJj^riJLhm MULFAC (MULti level asymmetric FACtorials)

Call ENFAC to enter the experimental requirements in terms
of the factors, factor levels, and interactions.
Call FASET to analyse the requirements in terms of subsets
of factors with equal numbers of levels.
Find a subset of factors with three or more factors with
equal numbers of levels, or a subset of only one or two
factors related to another subset as described above.
If the search is successful then goto step 26 else goto step 100
if it is a small subset related, or linked as described, then

Step 0

Step 10

Step 20

Step 26

Step 27 The chosen subset of factors will now be treated as an
independent set of factors for which an experimental design
is required. Initialise for a call to DEFGEN by setting up
the main effect and interaction requirements for these factors.

Step 30 Call DEFGEN which first finds the smallest two-level fractional
factorial design and then from this design extracts the generators.

Step 63 If this is a subset of three or more factors which have been
linked to a previously considered subset, then goto step 66
else goto step 70.

Step 66 Merge the linked subsets by setting flags which indicate
the merging; goto step 80.

Step 70 If the product of tie orders of the generators produced by
DEFGEN is equal to the modulus (number of levels per factor)
of any remaining factor subset, then link the two subsets.

Step 80 Convert the generators from binary to integer form. (For example
a generator may be expressed in binary as an integer with bit
values 01011 which, in integer form, would become a set of
integers with values 0,1,0,1,1).

Step 90 Return to step 20.

Step 100 If there are no factors left, that is all factors have now been
represented in generators, then goto step 200.

Step 106 If there are only one or two factors left then goto step 107
else if there are more than two factors left then goto step 120.

Step 107 Create one or two elementary generators for the one or two remaining
factors. An elementary generator is one in which only one factor
is represented by 1 and all the other factors- are represented by 0.
Then goto step 200.

Step 120 Initialise for a call to DEFGEN by setting up the main effect and
interaction requirements for the remaining factors.

Step 130 Call DEFGEN.
Step 133 Initialise for a call to SELG.
Step 170 Call SELG to select the generators for a multi-level asymmetric

factorial, given the equivalent generators for a two-level factorial.
Step 180 Copy the generators from SELG into the set of generators for all

factors.
Step 200 Find the design size (product of generator orders) and call LEV

repeatedly to generate the experimental design.
Step 1000 randomise the experimental order, then stop.

Tee outline flowchart for MULFAC (figure 38) is followed by the detailed
algorithm and corresponding flowchart (figure 39)•

to

•jf
in lft& lise■tor ■fce.pQê

D£FGe*

_ tSX5uMi.
T >rU*.Ktd h>V rfttirioaj So.bSt.tr

ySvtryUA«3 iO ywder
S u b S cr

— tv.cdUU«̂ rfc**aUitM SoJoStl'

I Ob X
F T■ffcjttoct ieft

Co*reri Ĉntro-Nr* V>Ikw ̂
io utt-Mtf -f»0»

cre * J e one
or K oo

Ĉw.eraHri

3.(2

I Ooo

p.- 3 8

■tvvi
a« 13̂ site

>'
L E V

.. ._ t'
f<X»aAo»*i5t

«t

iro

tfer

Ho

tSo

+*r
>£FG£Ai

>1
be'Fc.ersi

>'
iwiti#-
+or S

iff
£uG

t

S E L G

fc o p f__^e*«nvror$

C E o

The main variables to he used in algorithm MULFAC are:

N the total number of factors to be included.
NL(l) the number of levels of the I'th factor. (*16)
NFULL the size of the full factorial = the product of the NL(l).
MB the minimum number of observations needed to estimate all the

required coefficients (see section 5,1 earlier in this chapter).
IX(I,1) the modulus of the I'th subset of factors (number of levels).
IX(I,2) the number of factors in the I’th subset. (*16,4)
IX(I,3) ' a value J (less than I) which points to the J'th subset of

factors to which the I'th subset is linked, with the
following exception:

IX(l,4) set to zero if the I'th subset has not yet been used to
produce generators, or set to one if it has been used.
However, if IX(l,4) is greater than one, then the values
of IX(I,3) and IX(l,4) indicate the range (first and final)
of generators associated with the I'th subset of factors.

LI the number of factor subsets.
JG the number of subsets with moduli greater than two, plus

the number of subsets with moduli less than or equal to two
that are linked with larger subsets.,

NV the total number of requirements for the design.
MV(l) the I'th requirement indicated by the bit pattern of the integer,
NVI the number of requirements taken into account when ent^rin^

DEFGEN on behalf of a subset of factors.
MVl(l) the I'th requirement relative to a subset of factors. (*16)
NG the total number of generators.
ID(I,J) the J'th integer in the I'th generator./ (*8,16)
NGI the number of generators relative to a subset of factors.
IDD(l,J) the J'th integer in the I'th generator for a subset of factors.

(*8,16)
IL(I) the order of the I'th generator. (*8)
NO the product of the orders of the generators.
IDT(l,J) the J'th integer of the I'th test generator. (*8,16)
ILT(l) the order of the I'th test generator. (*8)
NIG the number of factors considered in a call to DEFGEN.
NLL(l) the number of levels of the I'th of those factors considered

by DEFGEN and SELG. (*16)
LF(l) the factor in the full set corresponding to the I'th factor

in the subset being considered by SELG. (*16)
IB(l) the I'th generator returned by DEFGEN in binary form. (*8)
Practical dimensions of arrays are denoted by (*n)

i^orithm J^ULFAC (MULti level asymmetric FACtorials)

Step 0 Call (to enter experimental name, number of factors,
number of factor levels (their moduli), and their interactions)

Step 1 set to zero ID(*,.); NG<— 0
Step 10 cadjL FASET (to determine subsets of factors with equal moduli)
Step 20 (find the next suitable factor subset (see note in text))

get IGV— 0 j MIN«— 100
Step 21 set IGt— IG + 1
Step 22 ij (IX(IG,1)< MIN) and ((IX(IG,2) > 2) $£

(IX(IG,3) / 0)) then do step 23 od Ĵ i
Step 23 set MIN«-IX(lG, 1); IMt— IG
Step 24 if IG = LI tlien do step 25 od else gpto step 21 fi
Step 25 if MIN =100 then goto step 100

else if IX(lM,2)>> 2 thjjn gotp step 27
else set NGI^—0; ^oto step 26 fi fj

Step 26 set NGI^-NGI + 1; IB(NGI)*— 2**(NGI - 1):
if NGI = IX(IM, 2) then goto step 66 else gffjfco step 26 fi

Step 27 (initialise for entry to DEFGEN)
set NIG<— IX(IM,2) + IX(lM,4)
(IX(IM,4) = 1 if subset linked to previous one, otherwise = 0)

Step 28 set NVI*- IX(lM,4)

Step 29 set N V I N V I + 1 J MVl(NVl)<— 0
Step 30 set MVl(NVl)-*- I0NBT(MVl(NVl),NVl)
Step 31 if NVI< NIG then goto step 29
Step 32 (look for interactions which contain only those gactors in

the current subset; set up mask first)
set MASK<— 0; I<— 0

Step 33 set̂ 14— I + 1
Step 34 if I > N then goto step 37 fi
Step 35 if. NL(I) « IX(lM, 1) then set MASK *— I0NBT(MASK, I) fi
Step 36 step 33
Step 37 set K — N
Step 38 §£t I 1 + 1
Step 39 if I NV then goto step 50 fi
Step 40 i£ ar^(MASK,MV(l)) = 0 then step 38 fi.
Step 41 set I1<— 0; J*-0; NVI*— NVI + 1; MVl(NVl)f~0
Step 42 set J^“" J + 1
Step 43 if J > N then goto step 38 fi

Step 44 1£ ITEST(MASK,J) * 1 then do steps 45,46 fi
Step 4 5 set 11 <— 11 + 1
Step 46 if ITEST(MV(I),J) = 1 then set MVl(NVl)*-IONBT(MVl(NVl), 11) fi
Step 47 step 42

Step 50 pall DEFGEN (to produce generators from an equivalent
two level fractional factorial)
(enter with NIG, NVI, MVI(.)» return NGl(numuer of generators)
and IB(.) (generators in binary representation)

Step 60 sat N0G<-IX(lM, 1) ** NGI
(the number of levels in each factor of this subset is the
order of each generator, thus the full order of the subset
is the product of the orders of the generators which is the
same as the order of the generators raided to the power of
the number of generators)

S t e p 66

S t e p 6 7
S t e p 7 0

S t e p 71
S t e p 7 2
S t e p 7 ?
S t e p 7 ^
S t e p 7 5
S t e p 7 6

S t e p 8 0

S t e p 81
S t e p 8 2
S t e p 8 3
S t e p 84
S t e p 8 5
S t e p 86

if^IX(lM,3) = 0 then §oto step 70 (not linked)
set J«4— IX(IM,4); J14— IX(J,3) - 1

(if NOG is equal to any of the remaining subset moduli,
then relate the subsets)
set 14— 0; L4-0; LL4-0; J14-NG
set I<— I + 1

££t IX(lj 3)4-IM; IX(IM,3)*-NG + 1; JG4-JG + 1;
IX(IM,4)«*-NG + NGI: IX(l,4)*~ 1

(convert generators from binary to integer form)
14-0

14— I + 1
if I NGI t]ien go£o step 83 fi
se£ IX(IM, 1)4— 100; if J1 > NG then get NG<— J1 fi

s e t J14— J1 + 1; L4-0; J4-0
s e t J 4 — J + 1

Step 87 if J >,N then jgoto step 81 fi
Step 88 if NL(J) / IX(IM,1) then gojo step 86 fi
Step 89 set L*— -L + 1; ID(J1, J) ITEST(lB(l),L)
Step 90 £3^° step 86

Step 100 (find how many factors have not been included in generators)
set L*— 0: I#— 0«V\A 7

Step 101 set I*— 1 + 1
Step 102 if I > LI then goto step 105 fi
Step 103 if IX(I, 1)^ 100 then set L*-L + IX(l,2) fi
Step 104 goto step 101
Step 105 if L = 0 then goto step 200 fi■■■ .» ■ ii— ‘ a 11 ■ r*v_n
Step 106 if L > 2 thep goto step 120 fi
Step 107 set I*— 0
Step 108 set I*— 1 + 1
■■ ■■

Step 109 if I ̂ LI thep ggto step 200 fi
Step 110 if IX(l,4) / 0 then goto step 108 fi
Step 111 set 114— IX(I,1); I2«-0j I3«-0
Step 112 set I2«*~I2 + 1
Step 113 i£ I2>IX(I,2) then goto Btep 108 fi
Step 114 sjit 13*— 13 + V
Step 115 if̂ 13)> N then^ goto step 108 fi
Step 116 if̂ NL(I3) / 11 then goto step 114 j£i
Step 117 set NG*-NG + 1; ID(NG,I3)*— t; goto step 112

Step 120 (initialise for DEFGEN)
get NIG*- L; NVI+— 0

Step 121 set NVJ<— NVI + 1; MVl(NVl)<r- 0
Step 122 set MVl(NVl)*- I0NBT(MVl(NVl),NVl)
Step 123 if NVI ̂ NIG then goto step 121 fi

A A . A A A * ■ i ,

Step 125 (set up MASK to detect interactions)
set MASK*1 • 0; I*— 0

Step 126 set I*— I + 1
Step 127 if I > LI then goto step 135 fi
Step 128 if IX(l,4) £ 0 then goto step 126 fi
Step 129 set I1*-IX(l,l)j 12*- 0
Step 130 set I2<— 12 + 1

Step 131 Jf 12 > N then goto step 126 fi
Step 132 if NL(I2) / 11 then goto step 130 fi
Step 133 set MASK*— I0NBT(MASK, 12); goto step 130 fi

Step 135 r8gt i*— N
Step 136 get I«— I + 1
Step 137 if I > NV then goto step 150 fi
Step 138 if and(MASK, MV(l)) = 0 then §££9 step 136 £i

Step 139 set 11*-0; J<— 0; NVI<— NVI + 1; MVl(NVl)*- 0
Step 140 get̂ J*— J + 1
Step 1/4-1 if J > N tjien ggto step 136 fi
Step 142 if ITEST(MASK,J) = 1 t£en do steps 143. 144 od fi
Step 143 s6t 11*— 11 + 1
Step 144 if ITEST(MV(l),J) = 1 t£en set MVl(NVI>6-I0NBT(MVl(NVl), 11) fi
Step 145 step 140

Step 150 call DEFGEN (to produce generators from, an equivalent
two level fractional factorial)
(enter with NIG, NVI, MVl(.)> return with NGI and IB(.))

Step 155 (set number of factor levels for entry to SELG)
set I<— 0; I2<— 0rv-''- '

Step 15^ set K — 1 + 1
Step 157 if I > N then goto step 170 fi
Step 158 Sj5t_ I1<— 0
Step 139 set I1<— 11 + 1
Step 160 if 11 > LI then goto step 156 fi
S t e p 161 i f I X (I 1 , 4) / 0 t h e n g o t o s t e p 1 5 9 fi
Step 162 if NL(I) / IX(I1,1) then goto step 159 fi
Step 163 jset I2<— 12 + 1; NLL(I2)*— NL(l); LF(I2)*— I; goto step 159

Step 170 call SELG (to select generators for multi-level asymmetric
factorial, given the equivalent generators for a two-level
factorial)
(enter with NGI, IB(.)> NIG,NLL(.), LI (number of factor
subsets), IX(. , .) (properties of factor subsets);
return with IDD(. , .) (generators in integer form))

Step 180

Step 181
Step 182
Step 183
Step 184
Step 185
Step 186

Step 200

Step 201
Step 202
Step 203
Step 204
Step 205
Step 206
Step 207

Step 208
Step 209
Step 2090
Step 2091

Step 2092

Step 2093
Step 2094
Step 2093
Step 2096
Step 210
Step 211
Step 212

Step 213

(copy generators from SELG- into generators for all factors)
set I<— 0
set I<— I + 1; NG<— NG + 1
if I > NGI t-hen goto step 200 fi
set J*— 0
set — J + 1
if J > NIG tjien goto step 181 fî
set 11 <— LF(J); ID(NG, I1)4— IDD(l, J); step 184

(find full design size NO = product of generator orders)
set 14— 0; N0«— t
set I <— 1 + 1
if I > NG then goto step 208 fi
set J<— 0
s££ J<- J + 1
if J > N then gojô step 207
set Il(j)<— J0RD(ID(I,J), NL(j)); goto step 204
se£ IL(l)<— LCM(lI, N); N04-N0*IL(l); goto step 201

set NFUL I*-1; 14— 0
se£ 14— I + 1; ,if I > N goto step 2091 fi

set NPULL4 - NFULL * NL(l); goto step 209
if N 0 ^ NFULL then goto step 210

elge g£t N04- NFULL; NG4— N; I*— 0 fi
set 14— I + 1i; if I > N tften goto step 210

else set J4-0; IL(l)4— NL(l) fi
set J4— J +1; if N then step 2092 fi
set ID(I,J)4- 0
if I = J then set ID(l,J)*~1 fi
goto steg 2093

print heading; set 14— 0
s_et 14 — I + 1; jLf I ̂ NO t]ien gpto step 1000 fi
call LEV (to find levels of all factors for I'th observation)
(enter with I, N, NG, IL, ID; return with IK)

grint N values of IK(.); goto step 211

Step 1000 randomise order of NO observations; sto;

10

/ £ HIM) X x
^ ((lk(TL,V>?l)N-^(n(rw)/ons'

100

NGI

f t °-

!<-£+•

w

I - Ih

So

r«-r*t 1

3 W + T 1 >N<1

urg

I > LI

103,
fl,i) £ lo<

Uo

•off

I > L I

no,

in

i*v

IS > N

in

U o NK
NVI

111

I IT
I >LI

tfo

M#fK •<---

urC 39c

I > NV

II* OJ-*— o NVX«— N/r-MMvr(N/r̂ «— o

| H*— H -vl I

MVI (NVI W— itMbt
y frlVT(M»l), IQ

IfO

/~7 ̂ u~ r€. 3 9 c(

no S E L G

J«— J-» t |

I<— It I

J > N

L E V looo

111

F^ure

The Automatic Design of Experiments

Some Practical Algorithms

CHAPTER SEVEN

REDUCING THE BALANCED
ASYMMETRIC FRACTION

1 Background

2 Using the trace

3 D-optimal algorithms

4 Examples

1_____Background

The method developed in chapter six leads to the generation
of balanced fractional designs which are adequate for estimating
all specified main effects and interactions. Sometimes however
the generated designs are more than adequate: the number of
observations exceeds the number of contrasts to be estimated by
many more than the few extra needed for error estimation. In
these cases the costs of practical experimentation dictate that
the size of the design should be reduced further. In this
chapter I present two criteria that are widely applied in reducing
experimental designs. See Fedorov (1972). The two criteria, are:

A-optimality: The trace of the inverted information (cross-product)
matrix is minimised. In the case of a discrete design, such as
an asymmetric factorial using qualitative variables, the use of
the A-optimality criterion means choosing a subset of r points
from a design with n points (n> r) such that the trace of the
inverted information matrix of the r-subdesign is no greater than
that of any other r-subdesign.
D-optimality: The determinant of the inverted information matrix
is minimised. In the case of a discrete design, the use of the
D-optimality criterion means choosing a subset of r points from a
design with n points (n > r) such that the determinant of the
inverted information matrix of the r-subdesign is no greater than
that of any other r-subdesign.

Several papers have been published on procedures for sequentially
designing experiments using the criterion of D-optimality. See,

i
for example, Goldsmith (1974) and Wynn (1970). A common
problem, however, was that the sequence had to start with a
basic subdesign: one whose information matrix is non-singular.
Published procedures were not helpful in choosing the best basic
subdesign. It was in tackling this problem that I developed
the algebra of section 2 of this chapter and hence to an algorithm
based on the criterion of A-optimality. Unfortunately, this led
to a computing problem: the computing time was too long for the
algorithm to be of practical use. I therefore abandoned it and

returned to the D-optimality criterion. However, I am including
6 report of the algebraic development for the record, in case it
may be useful elsewhere, and an outline of suggested algorithms.

Box and Draper (1971) pose practical arguments in favour of D-optimalityj
1. It forces experimenters to give some thought to the model to be
postulated before experiments are actually done.
2. The number of observations is not restricted in any way so long
as it is sufficient (the information matrix is non-singular). Extra
observations can be added to the design so long as the experimenter
chooses*
3. Since the search for the best design can be made over any specified
region in the design variables, regions of special shape can be handled.

These arguments are particularly apposite with respect to asymmetric
factorials. The first argument has been considered in earlier chapters
when dealing with the design requirements (see algorithm ENFAC). The
second answers the problem with which we opened this chapter: so long
as we can find the best smallest basic subdesign, then we can add any
number of points we like to it. The third argument also suits us.
The special shape of the region specified by our design variables, is
that it must have as many dimensions as there are contrasts to be
estimated and the variable represented in each of these dimensions can
be set at one of only two values. This matter of coding the contrasts,
and an algorithm to effect it, will be described fully in section three
of this chapter. In that section I shall also present a new contribution
to this field: an algorithm for choosing the best smallest basic
subdesign. This will be followed by the full sequential algorithm
for building on to the basic subdesign and, in section four, some
examples. Fortran listings are in appendix three.

2 Using the trace

The sum of the diagonal elements of a square matrix is called the
trace of that matrix. A practical argument for the. A-optimality
criterion is: When a set of linear coefficients is estimated by
least squares, the variance of each estimated coefficient is
proportional to the corresponding diagonal element of the inverted
information matrix. Hence if the experiment is designed by choosing
r observations such that the trace of the inverted information matrix
is no greater than the corresponding trace for any other subset of
r observations, we may fairly assume that the variance of each
estimated coefficient is reasonably close to its minimum. Thus
we may take the trace as a measure of the precision with which the
coefficients may be estimated from the experimental results.

This leads to the simply stated algorithm: given that a basic
subdesign has already been chosen, search among all observation
points not yet included in the design for the point whose inclusion
would cause the maximum reduction in the trace.

This still leaves the problem of choosing the best smallest basic
subdesign, since the above algorithm relies upon the non-singularity
of the information matrix so that it can have an inverse. I had an
idea, however, that a generalised inverse might be used so that the
search could begin as soon as a single row had been chosen as an
anchor point for the design. If this were possible, as it proved
to be, then the algorithm would become:

1. choose any point on the periphery of the design region (for example,
if all the variables are coded (0,1) then choose the point 0)}

2. although the information matrix of one design point is singular
so that the trace of its inverse is non-existent, assume that the
trace does exist and let it be T;

3. using the concept of a generalised inverse, test every non-inoluded
point in turn and find the point whose inclusion would cause the
maximum reduction (AT), in T (it turns out that A T is a real

• “ quantity);

4. repeat step 3 until a basic design is achieved;

3. use a modification of step 3 with a normal inverse,instead
of a generalised inverse, to augment the basic design until
it has the required number of points.

In developing the algebra to support this algorithm, I also
considered the possibility of removing points from the design.
There are now four possibilities:

1. Stepping into a non-basic design;
2. Stepping out of a non-basic design;
3. Stepping into a basic design;
4. Stepping out of the basic design.

A flather requirement is clearly a test for the basicity of a
design. This emerges from the theory developed to provide the
four stepping procedures. The following initial relationships
are needed:

1. Partitioned inverse

It is well established and easy to demonstrate that if a square
matrix A is partitioned as

A,„ ~11 A., o ~12
A«. _~21 CMCM

7.1

if A has an inverse A'1,A S 7

A'1 =
-1 -1 -1A ' + A, ' A,0 M ~11 ~11 ~12 ~ ~21 ~11

-1 -1
-in £12 i T

/V
-m"1a 0, a 7]L /S/ ~21 ->'11 M-1

7.2

where M = A,,„ - A„. A. . A.„~ ~22 ~>21 ~11 /v/12

2. Generalised inverse

If a non-basic, or singular, matrix A can be factored symmetrically
as A = uu' 7.3/V
where A is n-square and u is n by m, then a generalised
inverse A* is defined as

— 1 —*1‘ 111A* £ u (u'u) (u'u) u 1
^ ^ A/ * ' A/ /V

so that A*A = u (u'u) ̂ u 1
AJ A/ AT AJ /V

7.4

7.5

It will be noted that although the rank of A is less than n,
since A is singular, provided the rank of A is greater than
or equal to m then the rank of'(u'u) will be full so its inverse
will exist. If, in fact, A is basic, or non-singular, it
can be shown that the above definition (equation 7*4) satisfies
the usual algebra of inversion. Suppose in this case that A
can be similarly factored symmetrically:

A = uu1 7*3
so that A-1 = (uu-)"1rv ' /V(V 7.6
Let '<1IIS»HI 7*7
or 1 —i. II 7.8
then u'u(u’u) u' = u*A/ A/'/V /V' As 7*9
or u1 = u1A/ /sy 7.10
Thus the left hand side of 7*7 conforms with the right hand side
so that the relationships 7*6 and 7*7 apply equally well to all
factorable square matrices whether basic or non-basic►

3. Trace of a product

It is well known that if a square matrix A is a product of two
square matrices B and C such that

A = B C 7.11'v v A S

then,, although A / CB, necessarily,

trace (a) = trace (B C) = trace (£B,) 7*12

That is: the components of a matrix product may be rotated
when computing the trace.

4. Trace of a generalised inverse

Applying equation 7*12 to rotate the components of equation 7»4

trace (A*) = trfu(u’u) \u'u)”^u'l
a s ' V a/' '/v v J

S tr f u'u(u'u)"Vulu)",*|
Thus tr (A*) = tr[(u’u)"1j 7-13

We now consider each of the four sequential design possibilities
stated earlier and prove four corresponding theorems.

Theorem one: When a row is stepped into a non-basic design, the
trace of the inverted information matrix is decreased by

x' A* x + 1
x 1 A* A x - x'x
/ V ' V ’ A /

where x' is the row stepped in, A is the information matrix,
and A* is its generalised inverse.

Proof Let u' be the non-basic sub-matrix of the full design
matrix; that is, û' represents the non-basic design*
Let x̂ be a single row of the full design matrix, not yet
included in the sub-design iP .
Let JLJ* be the augmented design: the sub-design plus the row x' .

Then U ‘ = I ~ I 7*14E]
If A is the cross products (or information) matrix of the
initial sub-design ju'

A = uu1 7.13

and the cross products matrix of the augmented design is

(A + xx1) = fu xl UU'/VV. 7.16

The generalised inverse of the augmented design cross products
matrix is

(A + x x ‘)* = U(UIU)“1(UIU)“1U ’
A. A_' 'a. a. ' a.

= (-u *)

(from 7*4)
— "I -1 r -1 r 1u u ufx u u u'x U 1/v *v- -■v- A/ .A-
X u X 'x X u x ’x x'A.

-1 -1U D D U ’A/ 7.17

where is the inner product of the augmented design matrix U

D = U ‘U 7.18

Let D-1

£2

D,

J?4
7.19

and, noting that 1)̂ is a scalar, apply equation 7.2 to give:

where M = x ’x - x'u(u'u) u'x
/V <V Af /V /V <v- A*.

= x fx - x 1 A* A x (from 7«5) 7*23
/V Ar a* ' '

and M is a scalar.

Application to equation 7*17 first of equation 7*14 and then
of equations 7*19 to 7*23 yields:

trf(A + xx1)*J = tr [(U’U)"1\

= I a"1}

-1
= tr (Sil + tri ^]
= tr [(uiP) + tr |(u,̂)~^u^xx,u(u'u) 4

=■ tr(A*) + M ^[tr[u(u'u)*”̂ (ij'u J^^u 'x x 'J + l]
(from 7»12 and 7.13)

= tr(A*) + M ̂[tr(A*xx') + ij 7*24
(from 7.4)

Therefore the trace is decreased by

tr(A*) - tr((A + xx1)*) = -M ^rtr(A*xx') + 1*1 7*23/V- A- L* A* Ar ̂ I

But, by equation 7*12, tr(A*xx') = tr(x’A*x) 7*26ly\J. A i A . %

and since x is a vector then x'A*x is a scalar

thus tr(x'A*x) = x'A*x 7*27

From 7*23, 7*23 and 7*27 the decrease in trace is

A t = £ + 1 7.28
x'A*A x - x'xA — /V̂ A^ A*.

which was to be proved*

Note that in order to minimise the trace of (A + xx1)* it is necessary✓V, /V. A*-

to choose a row x' to step into the design such that the quantity A t
is a maximum.

Theorem two: When a row is stepped out,of a non-basic design, the
trace of the inverted insforraation matrix is decreased by

x* A* x - 1

where xj is the row stepped out, Â is the information matrix,
and Af is its generalised inverse.

Proof Let ĵ ’ be the non-basic sub-matrix of the full design
matrix; that is, u1 represents the non-basic design, with a
cross-products matrix A = uu’.A /"W A# ̂
Let xj be a row contained in uf which may be stepped out of uj to
form a decremented non-basic sub-matrix IJ*.
The analysis requires a partitioning of U in terras of u and x so
that the new cross-products matrix is:

UU’ = A - xx1 7.29
A/An' A " A .

This may be done by using the operator i to represent the
square root of minus one and partitioning as:

x 1 A* A x - x ’x/ V A. -V <V

u (u ix) 7.30

Thus u’
(A - xx’) = UU1- = (u ix) 7*31

ix’

and from 7*11

tr l(i- a.')*] = tr fCiL’u)-1 }

7.32

= tr (£,) + D. (as in proof of theorem one)

where D1 = (u'u)-1 + (u'u)_1u'(ix)(ix')' u(u'u)"1 i f 1 7.33

\ = «'1 7.34
7.33

Therefore

w here A T

^u'xx'fu'u) +
^ A. ' A. ' I

7*33

7.36
x 1 A* A x - x'x

which was to be proved

Theorem three: When a row is stepped into a basic design, the
trace of the inverted information matrix is decreased by

-1 -1x* A A X
*' * 1

Proof Let u| be the basic sub-matrix of the full design matrix;
that is, represents the basic design.
Let x 1 be a single row of the full design matrix, not yet
included in the sub-design u', and let UJ be the augmented
design, as in 7*14.
Let A be the information matrix of the design ut, so that

A = uv£* which is non-singular 7*37

and the information matrix of the augmented design is
W = A + xx' 7»38
(V* f\S Nr"

There is a well known theorem, for which a novel proof is presented
in the next section of this chapter, that:

W ^ = (A + x x ') ^

= A"1 - A~^x (i + x'A ^x) ^x'A ̂ 7.39
-1Since x' is a single row x'A x is a scalar

/V-' A /1
thus, from 709, 1 1 }

tr i(A + xx')"1] = tr[A'1j - tr { ± Z Z ' f J 7.40
~ 1 + x'A x

A - A r A r

Hence, applying 7*12 to the numerator of the second terra, the
trace is decreased by . .

0 * • 7.41x' A x + 1
Ar- A»

which proves the theorem.

Theorem four: When a row is stepped out of a basic design, the
trace of the inverted information matrix is decreased by

-1 -1x' A A x~ ^ 7.42
t * “1

The proof follows from the proof of theorem three by changing
signs appropriately.

T h e f o u r t r a c e c h a n g e s d e m o n s t r a t e d i n t h e f o u r t h e o r e m s 'm a y b e
u s e d i n a n a l g o r i t h m f o r s t e p p i n g r o w s i n t o a n d o u t o f a d e s i g n ,
p r o v i d e d i t i s k n o w n w h e n t h e d e s i g n i s b a s i c o r n o n - b a s i c .
S i n c e t h e d e n o m i n a t o r s i n 7 . 2 8 a n d 7 * 3 6 a r e f i n i t e o n l y w h e n
A ^ £ I, a s u i t a b l e t e s t f o r b a s i c i t y i s to t e s t e a c h d i a g o n a l
e l e m e n t o f A*A (o r u (u lu) ’*^ u*) a g a i n s t u n i t y ./V/ V* a.7 /w 7 w U

E x a m i n a t i o n o f t h e f o u r t r a c e c h a n g e s s h o w s t h a t q u a n t i t i e s t o
b e c o m p u t e d a r e :

x 1 A * x 7 * 4 3A/ \̂/

x 1 A * A x 7 * 4 4/v- ^ /v-

x » x 7 . 4 3
Am-

x 1 A “ 1 x 7 * 4 6<v /W

x * a " 1 A “ 1 X 7 . 4 7A/

T h e e a s i e s t o f t h e s e q u a n t i t i e s t o c o m p u t e i s x 1 x . A l t h o u g h
/V''

I l e a v e a f u l l d e s c r i p t i o n o f t h e c o d i n g o f q u a n t i t a t i v e v a r i a b l e s
u n t i l t h e n e x t s e c t i o n o f t h i s c h a p t e r (s e c t i o n 3 : D - o p t i m a l
a l g o r i t h m s) i t i s u s e f u l t o n o t e a t t h i s s t a g e t h a t t h e c o d i n g
l e a d s to x 1 b e i n g r e p r e s e n t e d a s a r o w w i t h a o n e i n t h e f i r s tA/
e l e m e n t , a o n e s o m e w h e r e f o r e a c h c o n t r a s t , a n d z e r o s e l s e w h e r e .
I n s e c t i o n 3, a l g o r i t h m s C O N T R A a n d D R O W a r e d e v e l o p e d t o p r o d u c e
t h i s c o d i n g . T h e r e s u l t o f t h i s c o d i n g i s t h a t

x * x = N C + 1 7 . 4 8f\y A/
w h e r e N C i s t h e n u m b e r o f c o n t r a s t s t o b e e s t i m a t e d .

F r o m e q u a t i o n s 7 * 3 t o 7 . 1 0 w h e r e i t w a s s h o w n t h a t t h e
g e n e r a l i s e d i n v e r s e s a t i s f i e s t h e r e q u i r e m e n t s o f a n o n - s i n g u l a r
i n v e r s e , 7 * 4 3 a n d 7 * 4 6 a r e e q u i v a l e n t . E x p r e s s i n g t h e s e i n
t e r m s o f t h e s u b - d e s i g n m a t r i x u :

Similarly, expressing 7*44 in terras of u

x 1 A * A x = x ’u f u ' u) ^ u ' x 7 * 5 0/V #V« /V* ^

A n d , e x p r e s s i n g 7 » 4 7 i n terras o f u :
x* A ~ ^ A ” 1 x = x ' u (u ' u) ^ (u ' u) ^ u ' u (u ' u) ^ (u fu) ̂

= (u '3i)*’1 [(u 5u) “ 1u ‘x l 7I—* ^ ̂ -J ^ L I

T h u s , b y p u t t i n g

v = (u ' u j " 1 7 * 5 2A- XÂ A/

w = u (u ' u) ^ = u v 7 * 5 3
/V _ /O/v* /v̂*~

T h e q u a n t i t i e s t o b e c o m p u t e d a r e :

x 1 A* x = x 1 A ^ x = (x ' w) (w ' x) 7 * 5 4Aŵ <V*» A/' A> /X*

x ’ A* A x = (x ' w) (u ' x) 7 * 5 5A- ^ ^ , ' /v A*. v AZ A-7 y ^

x 1 A x = (x ' w) v (w ' x) • 7.56A- ^ A' A/ /V- A/ A-"

a n d , i n t h e s a m e t e r m s , t h e t e s t f o r b a s i c i t y i s t o t e s t i n t u r n
a g a i n s t u n i t y t h e d i a g o n a l e l e m e n t s o f w u ^ 1 7« 5 7
O n e p r o b l e m t h a t a r i s e s i n c o m p u t i n g t h e s e q u a n t i t i e s i s t h a t
w h e n t h e d e s i g n b e c o m e b a s i c , a n d t h e n u m b e r o f r o w s i s h e n a e e q u a l
t o o r g r e a t e r t h a n t h e n u m b e r o f c o l u m n s , t h e d i m e n s i o n s o f t h e
m a t r i c e s v a n d w c o n t i n u e t o i n c r e a s e . H o w e v e r , i n s t e a dv -V' *
o f c o m p u t i n g t h e q u a n t i t i e s i n t e r m s o f v a n d w, t h e y m a y
t h e n b e c o m p u t e d i n t e r m s o f A w h i c h w i l l b e a s q u a r e m a t r i x
o f d i m e n s i o n N C 1 . W h e n a n e w r o w x 1 i s e n t e r e d i n t o t h e d e s i g n ,

- 1 ~A i s a u g m e n t e d b y a p p l y i n g e q u a t i o n e q u a t i o n 7 * 3 9 •

Using these computed quantities, the algorithm to select a
reduced fraction of the balanced fraction produced by MULFAC
may be described. This is the algorithm TRADES (to produce
a TRAce based DESign), as follows:

Algorithm TRABES (TRAce based DESign)

Step 0 enter with number of factors N, number of levels for
each factor NL(.), number of generators NG, the
set of generators ID(.,.), generated design size NO,
number of contrasts to be estimated NC, the set of
contrasts IC0N(.,.), and NC1 (NC + 1)

Step 1 enter ND (design size wanted ̂ NC1)
Step 2 for I<-— 1 to NO set BITS(l)<— .FALSE, (to indicate that

no rows have yet been entered into the design)
Step 3 choose row 1 as the first row in the design

set NI *— 1
the design matrix at this stage is a single row
u' = (1,0, . . . , 0)
so the matrix v (equation 7»52) has a single element = 1
and the matrix jw (equation 7*53) = u
set BITS(1)< .TRUE.

Step A (design is still non-basic)
set. N I N I + 1;
for J <— 1 t^ NO

i f B I T S (J) = . F A L S E , t h e n u s e a l g o r i t h m s D R O W a n d L E V
t o f i n d a d e s i g n r o w I X (.) (ac1)
a n d c o m p u t e B E L T * — ((&.'w) (w + 1) / ((x ' w) (u ' x j - N C 1)
a n d h e n c e f i n d t h e v a l u e o f J (J M A X) s u c h t h a t
D E L T i s m a x i m u m

S t e p 5 s e t B I T S (J M A X) <r~. T R U E .
increment dimension of matrix v

~ _i
and compute new matrix v̂ (û 1 \i) (by equation 7*52)

and new matrix w. (uv) (by equation 7*33)
test diagonal elements of wû 1 for equality to unity
if design still non-basic then goto step 3 else‘§°££ step 6

Step 6 (design is now basic)

Let set of rows for which BITS(j) = .TRUE.
(those rows that are now in the design)

compute A“1 ^— (uu’)“^

if BITS(j) = .FALSE, then use algorithms DHOW and LEV
to find a design row IX(») (x*)
and compute CELT<~ (x îa"’*[a”^)/(x 'A.~̂ x + 1)
and hence find the value of J (JMAX) such that
DELT is maximum

set BITS(JMAX) .TRUE.
compute augmented Â ̂ By applying equation (7.39)
goto step 7

for J <— 1 to NO
if BITS(j) = .TRUE. then use algorithm. PROW
to compute levels of factors for each design row,
hence ££int design with ND rows, as required.

randomise order

3 D-optimal algorithms

In this section I shall develop all the detail needed for algorithm
REDDES (REDduce DESign) based on the D-optimality criterion. In
outline, the algorithm must have the following steps:

1* Given the set of generators computed in MULFAC (see chapter six),
find the subset of all possible design rows that will represent
the best smallest basic sub-design.

2. Augment the sub-design, one row at a time from the remaining rows,
until the specified design size has been achieved.

Several problems remain to be solved. The first is to develop an
algorithm which will map a design row into a fully coded row of values
of variables representing all contrasts to be estimated. The two
alternative codings that may be used for the least squares analysis
of categorical data are described fully by Scheffe (1939)* Both use
zeros and ones to represent absence or presence of a factor level. One
method is to have a dummy variable to represent eveiy level of each
factor or required interaction and then to add dummy rows to the
observation matrix to represent the constraints that the effects of
the levels of each factor, or interaction, must sum to zero. The
second, algebraically equivalent, method deals with the constraints
by having one less variable for each factor than the number of levels
for that factor. The second method is computationally preferable.

For example, consider a 2 x 3 x 4 design with the three factors
labelled A,B, and C respectively and the requirement to estimate
three main effects and the AB interaction, the second method would
need one dummy variable to represent the contrast between the two levels
of factor A: also called the main effect of factor A. Two dumiay
variables are needed for the main effect of factor B: one represents
the contrast between level 2 and level 1, and the second represents the
contrast between level 3 and level 1. Similarly three dummy variables
are needed for the main effect of factor C: one to represent the
contrast between level 2 and level 1; the second to represent the
contrast between level 3 and level 1j and the third for the contrast
between level 4 and level 1.

The interaction AB needs two dummy variables: one to represent the
comparison of the effect of A with the first B contrast, and the second
to represent the comparison of the effect of A with the second B contrast
One further dummy variable, with a constant value of one, is needed to
represent the general mean of all observed values of the dependent
variable. Thus, even without requiring the AC and BC interactions,
this design calls for eight dummy variables, representing the contrasts,
plus one for the mean.

Two algorithms are needed to deal with this coding. One of these,
CONTRA, determines how many contrasts are needed, given the number
of levels for each factor, and the requirements of the design. It
also sets up arrays (lCON(l,j)) to specify the contrasts,. where
1 = 1 to NC (the number of contrasts) and J = 1 to N (number of factors)

In the example, the first contrast, the main effect of A,would be
represented by: IC0N(1,1) = 1 IC0N(1,2) = 0 IC0N(1,3) = 0
The second and third contrasts, those of factor B, are represented
by: IC0N(2,1) = 0 IC0N(2,2) = 1 IC0N(2,3)' = 0

IC0N(3,1) = 0 IC0N(3,2) = 2 IC0N(3,3) = 0

There are three similar rows ol' IC0N(.,.) to represent the contrasts
of factor C.
The two remaining contrasts, for the AB interaction, are represented
by: IC0N(7,1) = 1 IC0N(7,2) = 1 ICON(7,3) = 0

IC0N(8,1) = 1 IC0N(8,2) = 2 IC0N(8,3) = 0

The pattern of values is similar that of the observation matrix
generated by MULFAC. The simi]a rity led to the use of generators
to generate the values of IC0N(.,.) in algorithm CONTRA. The
full algorithm follows with a flowchart (figure 40).

The second algorithm, DROW, uses the values of IC0N(.,.) to convert
a design row, IK(.), into a fully coded row of values of variables
representing all the contrasts to be estimated Il(j), J = 1. to NC.
The method is to count the number of times a non-zero value of IC0N(l,J)
is equal to the value of IK(j) for all J = 1 to N. If this value is
odd then the value of Il(l) is coded 1. If it is even then the value
of II(I) is coded 0.

In the example, consider the design row, or vector, 1 2 0. This
indicates, as described in chapter six, that the factor A is at
its second level, the factor B is at its third level, and the
factor C is at its first level. It is represented by the vector
IK(.) as: IK(1) = 1 IK(2) = 2 IK(3) = 0.
The first contrast, represented by the first row of the array IC0N(.,.),
has the following equalities and inequalities with IK(.):

IC0N(1,1) =- IK(1) IC0N(1,2) / IK(2) IC0N(1,3) = 0
There is one non-zero equality: an odd number. Therefore code
n(i) = 1.

Further similar comparisons give the complete design row codes, apart
from the dummy variable representing the mean, as follows:

11(1) = 1 11(2) = 0 11(3) = 1 11(4) = 0
11(5) = 0 11(6) = 0 11(7) = 1 11(8) = 0

This illustrates a feature of using an odd number of equalities as
the criterion for coding a value of 1. The value assigned to the
dummy variable representing an interaction is contrary to the value
that may have been expected from the earlier decription. Thus the
interaction indicated by the factor levels would be AB^ rather than
AB^; hence we may have expected Il(7) = 0 and Il(8) =1. The
fact that the odd number criterion leads to contrary values is not
important since the choice of values 0 and 1 to represent the absence
and presence of a contrast was arbitrary: contrary values are just as
satisfactory.

The dummy variable representing the mean is introduced in the main
algorithm REDDES by using an EQUIVALENCE statement. In the Fortran
program: EQUIVALENCE(IY(2),II(1)) and IY(1) = 1 ensure that
in a vector IY(.), representing the full set of dummy variables, the
first value is permanently set to 1 and the subsequent values are those
of the Il(.) vector.

The full algorithm, DROW, follows with a flowchart (figure 41)•

Algorithm CONTRA (establish the CONTRAsts corresponding to the
required main effects and interactions)

Step 0 enter with the number of factors N, the number of levels
for each factor NL(.), the number of requirements NV,
and the requirements set MV(.)

Step 10 set I<—*0; I1<— 0 (find main effect contrasts)
Step 11 set I<— I + 1; L<— 0
Step 12 if I > N then gpto step 30 jfi
Step 13 set L<— L + 1
Step 14 if L = NL(l) then goto step 11 fi
Step 15 set I1*—I1 + 1; J*— 0
Step 16 set J*— J + 1
Step 17 if J ̂ N then goto step 19 fi
Step 18 set IC0N(l1,j)*- 0; goto step 16
Step 19 set IC0N(l1,l)*— L; go£9 step 13
Step 30 (find number of contrasts NN related to an interaction MV(l))

if I ̂ NY then goto step 80
else set J-*— 0; NN*— 1 fi

Step 31 set J<— J + 1
Step 32 if J > N then goto step 35 fi
Step 33 if itest(MV(l), j) = 0 then go.tp step 31 fi
Step 34 set NN<— NN * (NL(l) - 1); ^oto step 31

Step 35 (set up contrast generators IDT(.,.) and their ciders ILT(.).
set KG<— 0; J<— 0

Step 36 set J*— J + 1
Step 37 if J > N ttien goto step 46 fi
Step 38 if MV(I) , j) = 0 then go'fro step 36 Ĵ i
Step 39 set KG«— KG + 1; L*— 0
Step 40 set L<— L + 1— *
Step 41 if_ L > N then go^£ step 36 ĵ i
Step 42 if L / J then £££9. step 45 f̂i
Step 44 set̂ IDT(KG,L)<-1; ILT(KG)<— NL(J)j goto step 40
Step 45 set IDT(KG,L)*r— 0; goto step 40

Step 46 (use generators to create interaction contrasts)
set IJ^ — 0

Step 47 set IJ<— IJ + 1
Step 48 i£ IJ > NN then goto step 30 fi
Step 49 set I1<««— 11 + 1 ; J*—-0
Step 50 set J*— J + 1
Step 31 if J > N then goto step 55 j*i
Step 32 set IC0N(l1, J)'*— 0 ; step 50
Step 55 set K<— IJ; J*— 0
Step 56 set J*—.J + 1
Step 37 if J > KG then gpto step 69 fi
Step 58 j>et (K - l)/lLT(j) ; M*-K - ILT(j) * L
Step 60 set K*— L + 1 ; JJ4— 0
Step 62 s^t JJ<— JJ + 1
Step 63 if J J N then goto step
Step 64 set KK<— IDT(J,JJ) * U ; L*-NL(JJ) ; LL<— KK - L

IC0N(I1,JJ)«- M0D(IC0N(I1,JJ), LL, L) ; < gptp step 6
Step 69 s£t J<— 0
Step 70 set, J*— J + 1
Step 71 if J > N tjien gpto step 75 fi
Step 72 if = ^ then goto step 70 fi
Step 73 if IC0N(I1, j) / 0 tjien go^o step 70 fi
Step 74 set 11*— 11 - 1 ; ggtp step 47
Step 75 set I*— I + 1 ; goto step 30

Step 80 set NC*— 11 ; N C K — NC + 1 ; return 7 7

* (kk/l)

Algorithm PROW (find the complete Design ROW, Il(.), corresponding
to the observation vector at a point, IK(.), given
the matrix of contrasts. IC0N(.t.))

Step 0

Step 1
Step 2
Step 3
Step A
Step 5
Step 6
Step 7
Step 8
Step 9
Step 10
Step 11.

Whereas the two algorithms, CONTRA, and DROW, are elements of the
set of experimental design algorithms, they would clearly be useful
in the automatic coding of dummy variables for the analysis of the
experimental results. This application will be a component of further
work.

The algorithm CONTRA needs to be used only once in the complete design
procedure. One of its results is the value of NC, the number of
contrasts. The smallest number of observations needed to construct a
basic design is NC + 1. Since this value is needed early in algorithm
REDDES, it was more convenient to call CONTRA before entering REDDES.
I have therefore changed the Fortran program representing algorithm MULFAC
so that it calls CONTRA. This small change is shown in the new listing
of the program MULFAC in appendix three.

enter with design roy IK(.), number of factors N,
matrix of contrasts IC0N(.,.), and number of contrasts NC

set H — 0
set I<— I + 1
if I > NC then return
se£ Il(l)-*— 0 j lAs— 0; 3*— 0
set — J + 1
if J > N t|ien goto step 11, fî

ICON (l,J) = 0 then fioto step 5 fi.
if IK(J) s= 0 then g£to step 3 fi
if IC0N(l,J) IK(J) then goto step 2 ĵ i
set — L + 1 ; f;otQ step 5
set Il(l)«— ITEST(L,1); gotft step 2 •

I > N

J > N

F~ic\ure 4-0 GL

30. NC
NCI 4— NC-* I

KG *— O

I J >NN

J-H

is

J >KG

JJ >N

I > NC

J" > N

K J

Ic o n (t,?

id --- ---
L<— L. + |

We need an algorithm to select the subset of all possible design
rows that will represent the best smallest basic sub-design. That
is, we need to find NC + 1 rows, where NC is the number of
contrasts to be estimated, such that when all dummy variables have
been fully coded, using algorithm DROW, a square matrix _X is
formed. The determinant of (X'X) must be a minimum: that is,

A / ' 9
there must be no other (NC +, l)-subset of rows for which the corresponding
determinant is less.

Since the matrix X will be square, this criterion is equivalent to
the criterion that the determinant of X must be a maximum. In order/v
to meet this criterion, we need the following theorem:

non-singular
Theorem five: When the r-th row, x^ , of a/matrix X, is
replaced by a new row, a, then the determinant of the new matrix ̂ X
is equal to the determinant of the matrix JC times y^ where y^ is
the r-th element of the vector y such that a = X'y. Also, the
inverse of X is equal to the inverse of X times E' where E is
the identity matrix with the r-th column replaced by the vector

= Z— i-1 » • • • * 1. » • • • > *̂ k \ and k is the matrix order.
\ y r . y r y r /

-1P r o o f (riven a s q u a r e m a t r i x X o f o r d e r k, w i t h a n i n v e r s e X ,
r e p l a c e t h e r - t h r o w x ^ b y a n e w r o w ^ a . L e t t h e v e c t o r y b e
s u c h t h a t v f ~7) za = X'y 7 » 4 3/V v
t h a t i s : a = / y.x, w i t h s u m m a t i o n o v e r i * 7*44l^i
a n d e a c h x. i s t h e i - t h c o l u m n o f X .#V>1 ~

o r: a' = y ' X 7 * 4 3

t h e n , f r o m 7*44, y x = a - £ y . x . 7*46r«<r i**i
V 1 ̂ V —i i -ia n d x = -JL 1 xA - . . . + __ a - . • • - k x. 7 * 4 7A.r /v-1 ^ ~-k
yr yr yr

7.4B
w h e r e Jp » 7.49

where ^ is a column vector with 1 in the i-th position
and 0 elsewhere and *7 is the r-th column vector.
then, from 7*48 and 7*50,

X' . * X 1 Eac /v a 7.31'

hence —1 —1 X * X E'
va AC Ac

7.32

and det(X) = det(x)/det(E)
A/& AC /AC 7*33

now det(Ê) = sum of products of elements of the vector
and their cofactors. 7.34

Let C. « cofactor of 0. the i-th 1 11 element of

= (-l)1+rdet(M.r) 7*33

where det(M^r) is the minor of y^

hence det(E) = C. 7*36

Since
column

the columns of E are the vectors e. ,
Ac 'VL 1

which is 5 * then the cofactors of all
except the r-th
elements of ̂ >

» ̂ *v
except for that in which i = r, are zero, and the cofactor
of the r-th element of V} is 1.

So, :Prom 7.56, det(E) = ^ = —

^ r yr
7.37

and, :fr~om 7*53 and 7*37>
det(X) = det(x) y/V“ Ac X 7.38

Thus the theorem is proved.

It is useful to note that, from 7»43» y = (X ̂)' a
<ac a/ ^

which is a step in calculating y from 7*49*

7.59

Also note that r may be chosen such that y^ and hence det(X^)
are maxima.

If we are now able to choose a (NC + l)-subset of rows from the
full design matrix such that they form a non-singular square
matrix X, we may apply the theorem to exchange a row that is
in the sub-design with a row that is not in. Repeated application
will lead to the best smallest basic sub-design. We can be sure
of a non-singular starting matrix b^hoosing rows such that the
j-th choice has a 1 in the j-th element and zeros to the right
of it. An example will be given. Thus the outline algorithm
for finding the best NC + 1 rows is:

choose a non-singular starting matrix X, set A<— X/V 'V A**
set — X^ and DETA <— det(x)
(an algorithm will be given for this)
find the next row to enter (one that has not yet been in
the subdesign)j let this vector a1 be the array IX(.)

A
calculate the vector y = (x “)' a : call this array Y(.)

/ A*' ' '
find the maximum element of £ ; the r-th element y
exchange the r-th row of £ with the vector £
find the new determinant: set DETA * v * DETA•'r
compute n using 7.49, and hence EAt ^
find the new matrix inverse using 7.52
return to step 3 unless there are no more rows to be tested.

step 1
step 2

step 3

step 4
step 5
step 6
step 7
step 8
step 3
step 10

At this stage it is instructive to consider a simple example; this
helps to identify some of the minor computational nuances.

Consider the full 2 factorial design with dummy variables representing
the mean and the three main effect contrasts. For simplicity I exclude
interactions:

1 0 0 0 row 1
1 1 0 0 row 2
1 0 1 0 row 3
1 1 1 0 row 4
1 0 0 1 row 5
1 1 0 1 row 6
1 0 1 1 row 7
1 1 1 1 row 8

The procedure described above leads to the choice of rows 1,2,3, and 5
as the non-singular starting matrix.

Thus the algorithm leads through the following steps:

step 1

steE 2 & 1 = f.\ 1 n n \ det^) = 1

/ I 0 0 0
1 0 0

1 1 0 1 0
0 0 1

' 1 0 0 0
-1 1 0 0
-1 0 1 0
-1 0 0 1

step 3 next row to try is row 4 = 1 1 1* 0
set IN <-*>4

step 4 y' = (- 1 1 1 0)
—

step 5 first maximum value from the left is y 0 = 1
set OUT 4- 2

step 6 X - -- /v a 1 0 0 0

1 0 1 0
1 0 0 1

step 7 det(Xa) = y2*det(x) = 1

step 8 Y)1 = (1 1 -1 0)
/€■
-1 / 1 0 0 0

step 9 X = [0 1-10
** 1 - 1 0 1 0

- V 1 0 0 1,
- 1 —1step 3 (matrices X and X now become X and X) —— — ' A/a »va ^ ~

next row to try is row 6 = 1 1 0 1
set IN *— 6

step 4 £ = (0 1 - 1 1)

step 3 first maximum value from the left is y = 1, but the
second row has already been changed once, so look for
the next : y^ = 1
set OUT*-4
(this suggests an improvement to the algorithm: keep a
tally of the times a row has been moved out of the sub-matrix,
and if two rows otherwise equally qualify then move out that
'for which the tally is lesser)

step 6 X = £--- 1 0 0 0

1 0 1 0
1 1 0 1

step 7 det(ja) = y4*det(£) = 1
step 8 rj* = (0 -1 1 1)

I

next row to try is row 7 = 1 0 11
set IN <----7

y' = (- 1 - 1 2 1)

maximum value is y^ = 2
set OUT <— 3

step 6

step 7

step 8

step 9

step 3 next row to try is row 8 = 1 1 1 1

step 4 y' = (4 5 H)

thus any row chosen to move out would lead to a decrease
in the determinant, so stop
(the test for stopping to he included in the algorithm is
that there should be no value in y greater than or equal
to 1) ~ •

In this example it is encouraging to note that the final half-design
at step 6 is the balanced half design that would be achieved by the
method of chapter three. In general, however, the best NC + 1
rows will not constitute a balanced fraction.

X

detQcJ =

1 0 0 0
1 1 1 0
1 0 1 1
1 1 0 1.

2

X/v8-

7 =/ V

-1
(i 1

1 0 0 0
1 ± 1 ±i n ?
1 ? f i ‘2~2 2 2.

step 3

step 4

step 3

The second stage of the main algorithm REDDES, to augment the
sub-design one row at a time, follows the procedure used by
Goldsmith (1974) in which the row chosen is such that the increase
in det(X'X) is a maximum. The algorithm uses the following two
well known theorems for which a novel joint proof is given.

-1Theorem six: If a square matrix A, whose inverse is A, ,

is augmented by the vector product xx.*, then the inverse of the
augmented matrix is

where d

Theorem seven: If a square matrix A, whose determinant is det(A)
-1 ^ ~ and inverse is ^ , is augmented by the vector product xx*, then

the determinant of the augmented matrix is

det(A + xxj) = d*det(A)

where d

Proof Dempster (1969) uses the sweep operator for matrix
inversion* He shows that if a matrix A is partitioned a»s

A 7*60

where the a. . are sub-matrices then the matrix may be inverted

in a succession of sweeps defined as follow®

where f

7.62

b . . = a. , - a,.a.,a, .^lk^kk^kj

where k may be given successive values of 1,2 or 2,1 with
the same resultant inverse.

Consider now a matrix partitioned as
; 1 /

and invert it

using the sweep operator in each of the two sequences. Thus

A
/V

X
/V (D

-A-1

x'A

A“1x/v a /

1 -x'A ^x

^-A A x̂ (1 + x'A ^x) ^x'A ^/V /v v̂' /V ̂v/ /V A/ -A x̂ (1 - x'A ^x) ^^ "V /w

l (1 + x'A ^x) ^x'A ^
\ ' <V V *v ' <w

-(1 + x'A~1x)"1> <w'
and

/ V < v i
A + xx' | -x

-1

-(A + xx') ^
HU - - _ y

x' (A + xx')
l/v '<V ■v 'V- <

-(a + xx' r 1x

-1 + x '(Â + xx’) x

Now, flinoe the two inverses are identical, the top left component
of one may be equated with the top left component of the other.
Hence

(A + xx') ̂ = A ̂ - A ^x(l + x'A ^x) ^x'A ^
'/V* VA> -V- <V <V- A> /W -X* A<

= a “1(I -
•"1where d = (1 + x'A x)x ^ ^ /v/

7.65

which proves theorem six.

The determinant of the starting matrix is equal to the product
of the determinants of the pivoting sub-matrices. Hence by
equating determinants by inspection of the two sequences:

det(A + xx') = det(A)*det(l + x'A x̂.)U A. ' ^ ̂ /N̂
= d*det(A) 7.66

which proves theorem seven.

These theorems now complete the development needed to construct
algorithm REDDES, which follows* The flowchart is in figure 42.
An algorithm INVERT, to invert a square non-singular matrix, also
follows with a flowchart in figure 43.

The main variables to be used in algorithm REDDES are:

N the total number of factors to be included

BITS(l) a bit array indicating inclusion or exclusion of a row
ini the design (*3200)

NL(l) the number of levels of the I'th factor (*16)
NO the number of generators
ID(l,J) the J'th integer of the I'th generator (*8,16)
NO generated design size = product of orders of generators
NC number of contrasts to be estimated
NC1 - NC + 1
IC0N(l,J) the J'th integer of the I'th contrast (*20,20)
ND design size (number of rows) wanted
IY(l) I'th integer of fully (dummy) coded design row (*20)
Il(l) I’th integer of row of contrasts (see algorithm step 85 for

equivalence with IY(.)) (*20)
IK(l) level of I'th factor in a design row (*16)
A(I,J) the (l,j)th element of a square matrix (*20,20)
B(I,J) the (l,j)th element of the inverse of matrix A (.*20,20) ,
C(I,J) a copy of B(l,J) ’ (*20,20)
ETA(l) the I'th element of vector ETA (*20)
DETA determinant of matrix A
Y(l) the I'th value in the vector Y used in the row exchange

procedure (*20)
IC(l) the I'th value of the vector IC used in the row exchange

procedure to keep a tally of the number of times a row has
been exchanged (*20)

IA(I) the I'th integer in the vector IA, used in the row exchange
procedure to record which design row is in the I'th row of
the initial basic design. (*20)

Practical dimensions of arrays are denoted by (*n)

Algorithm

Step 0

Step 1
Step 80

Step 120
Step 125

Step 130

Step 140

Step 150

Step 160

Step 180
Step 200

Step 215

Step 240

Step 250

REDDES (REDuce DESign)

enter with number of factors N, number of levels for
each factor NL(.), number of generators NG, the set
of generators ID(.,.), generated design size (product
of generator orders) NO, number of contrasts to be
estimated RC, the set of contrasts I C 0 N (, and
NC1= (NC + 1)

initialise and enter the design sire wanted ND
find a subset of NC1 rows from the full set of NO rows
such that the NC1 square matrix is non-singular; A(.,.)
invert the matrix into R(.,.)
find the next row to enter, noting that bits have been
set to 1 if rows have already been in the sub-design;
use algorithms LEV and DR0W to put the row into vector IY(.)

calculate the vector Y(.) (B* * IY)

find the maximum value of Y(.); if there are several equal
maximum values, choose the first for which the tally IC(.)
is the least; -increment that IC(.)

compute E!EA (q) and DETA, the determinant of‘the new matrix

compute the new matrix inverse C(.,.); copy C(.,.) into
B(.,.); return to step 125> but if there are no more rows
to test go to step 180

write the basic design
compute the cross-products matrix (set — A'A)
and the inverse cross-products matrix (set BB'_)
and the determinant of the cross products matrix :
(set DETA*— DETA*DETA)

find the row for which the test quantity ('x'^^x from
equation 7*66) is greatest. (computation is speeded by
noting that all elements of a row (IY(.)) are either 0 or 1

compute the new inverse using equation then return
to step 215 unless the required number of rows has been reached

randomise the order of observations, then stop

The detailed algorithm follows.

Algorithm REDDES (REDuce DESign)

Step 0 enter with number of factors N, number of levels for
each factor NL(,), number of generators NG, the
set of generators ID(.,.), generated design size NO,
number of contrasts to be estimated. NC, the set of
contrasts IC0N(.,f), and NC1 (NC + 1)
enter ND (design'size wanted > NC1)
£°T I*— 1 to NO sat BITS(l) <— .FALSE,
set IY(1)<— 1; JJJ<— 1; K<— 0
sbt K — 0; K«g— K + 1; if K > NO then goto step 98 fi
set I<— I + 1; ĵf I > NO then goto step 81 fi
if BITS(I) = .TRUE, then goto step 82 fi
call algorithm LEV (to find vector IK(.) corresponding
to the I’th row)
call algorithm DROW (to map the vector IK(.) into the
full row of contrasts Il(.) and hence, by an equivalence
statement (in Fortran: EQUIVALENCE(IY(2), 11(1))) into IY(.))
if IY(JJJ) / 1 then^ step 82 fi
set L<— J JJ
set L*— L + 1
if L > NC1 t̂ eji goto step 92 fi
if IY(L) £ 0 then goto step 82 else goto step 88 fî
(steps 86 to 90 ensure that the rows selected constitute a
non-singular matrix)
set L*— 0
get L*— L + 1
if L > NC1. then goto step 96 fi
set A(JJJ,L)«— IY(L); goto step 93
£et IA(JJJ)< I; JJJ-*-JJJ + 1; BITS(l)<— .TRUE.
if JJJ ̂ NC1 then goto step 81 j£i
set IC(l)<— 1000 (a high tally value(ensures that the
first row is never a candidate for removing from the design)
for I<-2toNC1 se£ IG(l)*— 0
(if any extra rows are needed to complete the square matrix,
find those for which the diagonal element will be 1)
if JJJ ̂ NC1 then, goto step 120 fi
set I<— 1

Step 1

Step 5
Step 80

Step 81

Step 82

Step 83
Step 8A

Step 85

Step 86

Step 87
Step 88

Step 89
Step 90

Step 92
Step 93
Step 94
Step 95
Step 96

Step 97
Step 58

Step 99
Step 100

Step 101

Step 102 set I<— I + 1 ; if_ I > NO tlien goto step 101 fi
set — 0
set K*— K + 1 ; if K)> NC1 then goto step 109 fi
if I s IA(K) then goto step 104- fi
set BITS (I)<— • FALSE.
call algorithm LEV(I, IK)
call algorithm gR0W(lK,Il)
if IY(JJJ) ^ 1 then goto step 102 fi
set K<— 0
set K<- '■ K + 1
if K > NC1 then goto step 117 f̂ L
set̂ A(JJJ,K)<£— IY(K)j goto^ step 114

. set̂ IA(JJJ)<— Ij BITS(l)«-.TRUE. ; JJJ<— JJJ + 1
if JJJ^ NC1 then go£o step 102 f̂i
call algorithm INVERT (to invert square array A of
size NC1 into array B and compute DETA, the determinant
of A)
set_ IN4— 1
set IN<— IN + 1
if IN > NO then goto step 180 f̂i.
if_ BITS(IN) = .TRUE, then goto step 126 fi
call algorithm IjEV (IN,IK)
call algorithm DRgW(lK,Il)
se£ I«— 0; YMAX+— -1000. ; ICMIN«-1000
set I<" ■■ 1 + 1
if. I > NC1 then goto step 146 fi_
set Y(l)«~0. ; J < - 0
seĵ J^—• J + 1
if J >■ NC1 $hen goto step 140 fi
set Y(l)4— Y(l) + B(J,l)*IY(j); goto step 136
if Y(I) < YMAX or Y(l) < 1 then. gotg. step 133 Xi.
if 1 = 1 then.. goto. step 133 - fi
if Y(l) > YMAX then goto step 144 fi
if IC(I) < ICMIN then goto step 143 else goto step 133 fi
set_ ICMIN«-IC(l)
set YMAX<— Y(l); IOUT^c— I; goto step 133
if̂ YMAX = -1000. then go&l step 126
set J*— IA(IOUT); IA(I0UT)«^IN ; IC(l0UT)<e- IC(lOUT) + 1
set DETA*--YMAX * DETA; I 0
set I«<— I + 1<V\A
if_ I y NC1 then goto step i60 fi

Step 103
Step 104
Step 105
Step 109
Step 110
Step 111
Step 112
Step 113
Step 114
Step 115
Step 116
Step 117
Step 118
Step 120

Step 125
Step 126
Step 127
Step 128
Step 129
Step 130
Step 131
Step 133
Step 134-
Step 135
Step 136
Step 137
Step 138
Step 140
Step 141
Step 142
Step 143
Step 144
Step 145
Step 146
Step 147
Step 150
Step 151
Step 152

set ETA(l)< Y(l)/YMAX
if I = IOUT then set ETA(l)<— 1.O/YMAX fi ; goto step 151
set I<— 0
set I*— I + 1
if I > NC1 then goto step 175 fi
set J*— 0
set J<— J + 1
if J > NC1 then goto step 161 fi
set C(I,J)<— 0.; Kf-0
set K<— K + 1
if K > NC1 then goto step 164 fi
if K / IOUT ihen step 172 fi_
set C(l,J)<— C(l,j) + B.(l,K)*ETA(j) ; goto step 167
if K / J then̂ goto step 167 fi
set C(l,J)<— C(l,j) + B(l,K) ; goto step 167
call algorithm SWAP(B,C,NC1) ; goto step 125
(to copy the NC1 order C array into the B prray)
write heading 'Basic Design1
set NI<- 0
set NI<— NI +.1
if NI > NC1 then goto step 190
set J <— IA(NI)
call algorithm LEV (j, IK) (find the J-th row)
write IK(L), L*-1 to N (print the J-th row)
goto step 182
write heading 'Extra Rows'
set I<— 0
set I<— I + 1
if I > NO then goto step 200 fi
se£ BITS(I)<— .FALSE. ; J<- 0
set J<— J + 1
if J > NC1 then goto step 192 fi
if I s IA(J) then do-step 198 od else goto step 193 fi:
set^ BITS(l)<— .TRUE. ; goto, step 192
(in the early part of the algorithm the array BITS(.) was
used to record if a row had been in the basic sub-design
at any time during the stepping in/out procedure. Now the
array records that a row is either in or out of the design)

Step 200 (set A*— A'A) for I*— 1 to NC1 do step 201 od

Step 153
Step 154
Step 160
Step 161
Step 162
Step 163
Step 164
Step 1b5
Step 166
Step 167
Step 168
Step 169
Step 170
Step 172
Step 173
Step 175

Step 180
Step 181
Step 182
Step 183
Step 184
Step 165
Step 186
Step 167
Step 190
Step 191
Step 192
Step .193
Step 194
Step 195
Step 196
Step 197
Step 198

Step 202 set C(l,j)<— 0,
Step 203 for K«— 1 to NG1 do step 205 od
Step 205 S£t C(I,J)<— C(I,J) + A(K,l)*A(K,J)
Step 206 call algorithm SWAP(A, C,NC1)
Step 207 (ge$ B<— BB1) for 1<— 1 to NC1 do step 208 od
Step 208 for J<— 1 t£NC1 d£ step 209; step 210 od
Step 209 set C(l,j)<— 0
Step 210 for K<— 1 to^NCI , £0 step 211 jd̂
Step 211 set C(l,J)^— C(l,J) + B(l,K)*B(J,K)
Step 212 call algorithm BW^(B>C,NC1t)
Step 213 set DETA DETA*DETA
Step 215 (find best row to enter) set — 1; DTMAX* 1
Step 216 'set I*— I +1; if I > NO then goto step 233 fi
Step 217 i£ BITS(l) = .TRUE, then goto step 216 fi
Step 218 call algorithm LEV(l,IK)
Step 219 call algorithm DR0W(lK,Il)
Step 220 set J*— 0; DTEST*— 0
Step 222 set_ J*— J + 1,; if J y NC1 then gotô step 231 fi
Step 223 if IY(J) = 0 t^en gotô step 222 fi
Step 225 set K*— d; DTEST*— DTEST + B(j,j.)
Step 227 get^ K*— K + 1; if K y NC1 then goto step 222 fi
Step 228 jLf IY(K) = 0 then goto step 227 fd.
Step 229 set DTEST DTEST + 2*B(J,K); goto step 227
Step 231 if DTEST < DTMAX then goto Btep 216 fi
Step 232 set̂ DTMAX <— DTEST; IN*r-I; goto step 216
Step 233 call algorithm LEV(lN,IK)
Step 234 set BITS(lN)«— .TRUE.
Step 235 qrite IK(L), L*— 1 tô N (print the IN-th row)
Step 236 if NI ̂ ND step 250 fi_
Step 237 zet NI*— NI + 1; D*— 1 + DTMAX; DETA*— D * DETA
Step 238 call algorithm DR0W(lK,II)
Step 239 if D.^ O.OOOt then goto step 215 fi
Step 2A0 for I*— 1 to_ NC1 dô set Y(l)*— 0.
Step 241 spt I<— 0
Step 242 sejk I<— I + 1; if I > NG1 then goto step 246 jfi
Step 243 if IY(l) ss. 0 then goto step 242 fi
Step 2AA for J*-1 tô NC1 do set Y(j)*-Y(j) + B(l,j) od; goto step 2A2
Step 24-6 for I*-1 to NC1 do step 247 £d
Step 247 for J<~1 to NC1 do set B(l,J)«— B(l,J) - Y(l)*Y(j)/D od
Step 248 goto step 215
Step 230 call algorithm RANDOM : stoD Ay\^* 9 -

Algorithm INVERT (INVERT matrix A, of order M into matrix
and compute derterminant oi‘ A: D)

enter with matrix A of order M
set D<— 1. j TH <— 10“7
call algorithm SWAP (to copy A into B,)
set_ 14— 0
sejt 14— I + 1 ; if I^> M then return fi
£et D * B(I,I)
if B(l,l) <. TH then do' set D*— 0.; return od fi_
set B(l, i) <— 1 ./B(l,i); J«— 0
set J4— J +1; if J > M then goto step 1 ji fi
if* J fi I tjien set B(I,J)<-B(I,J)*B(I,I) fi
goto, step 8
sert 11̂ — 0
set II<“-II + 1 ; if II > M then goto step 18 fi
if̂ II = I then go£o step 12 fi
se t J <— 0
set J<— J +1; if J > M then. got£ step 12 J[i

if̂ J = I then goto step 15 fi,
jjet B(ll,J)<— B(ll,J) - B(I,J)*B(II,I); goto step 13
ĵ et J 4— 0
set J4— J + 1 j if J > M then goto step 4 fi
if J ^ I then set̂ B(j,lK-B(j,l) * B(l,l) fi
goto step 19

Step 0
Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Step 9
Step 10
Step 11.
Step 12
Step 13
Step 14
Step 13
Step 16
Step 17
Step 18
Step 19
Step 20
Step 21

The full set of programs representing the algorithms of this
chapter are in appendix three.

7'nN<'
^(v), NO*Mt, rCeŵ N̂el

80

■ '
ND

\t

B|rj(0*— .fmst.

>■It(») <- »J-XJ <-- 1K *--0

®

I >N0

DROW

L > NCJ

A(WJ>.)«-IU0<

lAfJ-JJ) <— I
JXT*-XJX -t I BIP(0 — ,T<̂.

IC(l)«— 1000

101 I<— I
'

<5>
loZ1 i<— r * 1 1

h (# oV t-~»(b)

I >N0

k<— k •♦• i

K>NCl

t[Fin(ih7^]
I (\ It rc k-Z a.

DROW

V"■♦1 K4-.K+ 1 |

|iS/V\
-r»M

111 inC-r”)*— £
BlTS(l)*~.7£tfE.
jvrs>- jji +1

IN VERT

INV— IN ♦ |

BrTs(in)

°| bROU I

I u

T

*W

IV]

I<— oYHAX.4- -1000. ICMfÛ loco

Fi ̂ u r c 4-2 ̂

•** | W'«t<
[lDatit t>C»lO

NI <— HI i I

MI > NCI

L£ V

*1
I > NO

MS

X >AIC|

i “ if̂ y

I > NC I

I > NC 1

at

J + l

,C7[K+-K + I

Pa i
Jc(r̂ r)a— c(r>y

g«— bb'

pem <---fcer* * fcet/i

>TMAK 4--1

DTEST" < v f pm***— prEjr
in«— rJm/JA

•J* | orift ,tu^<i rt»i

r*6)

R WNDo.vj

Ml«- NI I
J4— l-f t>TH4X
J>£TX*—fc“̂>CTfl

IJ----- * ------ ,1 J>Row |

C E iD

. *____ClEV I
r

<%0
*(.)<

01

J<— o
t>resr<— o

EliZZ&LiLllbA

G - ^ » -

,---4____ ,I K«— K -»I |

^ - 0

1 Uhci

L. '
2 * 6 t*V Y*-

»*4 X*-
l l»MCI
1 N **ci

> B(* iy)<— B (c j)

- Yto'YltO/D

i’

f- c'q 14 4 Zd

 1----
I

*1 SWAP 1

D-*— O.

1'
TtUrrv

(V< J > M

F____

4_____ Examples

In this section I present a few examples chosen to illustrate
the results of using the combined methods of chapters six
and seven.

As a simple illustration, consider a 2 x 4 experiment without
interactions. That is: there are two factors, one with
two levels and one with four levels. Thus for the first
factor there is one contrast to estimate and for the second
there are three. The assumption that there are no interactions
means that the contrasts of one factor are assumed to be the
same at all levels of the other factor. The conversation at
the computer terminal proceeds as:

Computer:
User:
Computer:
User:
Computer:
User:
Computer:
User:
Computer:
User:
Computer:

User:
Computer:
User:
Computer:

Enter title of experiment
T24
How many factors are there?
2
Enter required interaction
(blank)
For factor 1 type the number of levels
2
For factor 2 type the number of levels
4
Generators for T24

1 0
0 1

Balanced design has 8 points. At least 5 are needed.
2type Y for balanced design, else N.
N
Enter ND: design size wanted
6
Basic design

Extra rows
1 3

Computer: Randomised order
3 4 1 3 2 6

Is another random number stream wanted? I^pe Y or N.
User: N

Further examples are illustrated more briei'ly with a statement
of the requirements, the full design size (product of the factor
levels), the balanced fraction size, (product of the generator
orders), the design size wanted, the least number of rows in a
basic design (number of contrasts plus one), and the extra rows*
For the sake of brevity, the conversation and the random number
stream are omitted*

Requirements: 2 x 6 , no interactions.
Full design: 12 points. Balanced fraction: 12 points.
Design size wanted: 8 points* At least 3 needed*
G-enerators: 1 0 ; 0 1
Basic design: 0 0

1 0
0 1
0 2
0 3
0 4
0 3

Extra rows: 1 3

Requirements: 2 x 2 x 4 , no interactions*
Full design: 16 points. Balanced fraction: 16 points*
Design size wanted: 8 points. At least 6 needed.
Generators: 1 0 3 j 0 1 3
Basic design: 0 0 0

1 1 0
1 0 1
1 0 3
0 0 2
0 1 3

Extra rows: 0 11
1 1 2

Requirements: 2 x 2 x 2 x 3> no interactions.
Pull design: 24 points. Balanced fraction: 12 points.
Design size v;anted: 9 points. At least 6 needed.
Generators: 1 0 1 0 ; 0 1 1 0 ; 0 0 0 1
Basic design: 0 0 0 0

1 1 0 1
0 1 1 0
1 0 1 0
0 0 0 2
1 1 0 0

Extra rows: 1 0 1 2
0 1 1 1
0 1 1 2

Requirements: 2 x 2 x 2 x 4, no interactions.
Full design: 32 points. Balanced fraction: 8 points.
Design size wanted: 8 points.. At least 7 needed.
Generators: 1 0 1 1 ; 0 1 1 0
Balanced design:

0 0 0 0
1 1 0 1
0 1 1. 2
1 1 0 3
0 1 1 0
1 0 11
0 0 0 2
1 0 1 3

Requirements: 2 x 2 x 3 x 3, no interactions.
Pull design: 36 points. Balanced fraction: 36 points.
Design size wanted: 12 points. At least 7 needed.
Generators: 1 0 0 0 ; 0 1 0 2 ; 0 0 1 1
Basic design: 0 0 0 0

1 0 11
1 1 0 2
0 1 1 0
1 0 2 0
0 0 2 1
0 0 1 2

Extra rows: 0 1 2 2
0 1 0 1
1 1 1 0
1 0 0 2
1 1 2 1

Requirements: 2 x 2 x 2 x 4 x 4 , no interactions.
Full design: 64 points. Balanced fraction: 16 points.
Design size wanted: 12 points • At least 10 needed.
Generators: 1 0 1 1 0 ; 01 1 0 1
Basic design: 0 0 0 0 0

1 1 0 1 1
0 1 1 2 1
1 0 1 3 2
1 0 1 1 2
0 1 1 0 3
1 0 1 3 0
1 1 0 1 1
0 0 0 2 2
1 0 1 1 0

Extra rows: 1 1 0 3 3
0 1 1 2 3

Requirements: 2 X 3 x 6 , no interactions.
Full design: 36 points. . Balanced fraction: 12 points.
Design size wanted: 12 points, At least 9 needed.
Generators: 1 0 3 ; 0 2 3
Balanced design:

0 0 0
1 2 2
0 2 5
1 1 1
0 1 4
1 0 0
0 0 3
1 2 3
0 2 2
1 1 4
0 1 1 *
1 0 3

Requirements: 2 x 2 x 2 x 3 x 3, CD interaction (that is, the
interaction between the third and fourth factors).

Full design: 72 points. Balanced fraction: 72 points.
Design size wanted: 12 points. At least 10 needed.
Generators: 0 0 1 0 0
Basic design:

1 0 0 0 0 : 0 1 0 0 0 : 0 0 0 1 0 : 0 0 0 0 1

Extra rows:

0 0 0 0 0
0 1 1 2 2
1 1 0 0 1
1 0 1 1 0
0 1 0 1 0
1 1 1 2 1
0 0 0 2 1
0 1 1 0 2
1 1 0 1 1
1 0 0 1 2
1 1 0 2 2
1 0 1 0 1

Requirements: 2 x 2 x 4 , AB interaction,
Full design: 16 points. Balanced fraction: 16 points.
Design size wanted: 8 points. At least 7 needed.

Generators: 1 0 0 i
Basic design: 0 0 0

1 0 0
1 1 0
0 0 1
0 0 2
0 1 0
0 1 3

Extra rows: 0 0 3

R e q u i r e m e n t s : 2 x 2 x 2 x 3 x 3 x 3 x 4 x 4, n o i n t e r a c t i o n .
F u l l d e s i g n : 3 4 5 8 p o i n t s . B a l a n c e d f r a c t i o n : 1 4 4 p o i n t s .
D e s i g n s i z e w a n t e d : 2 4 p o i n t . A t l e a s t 16 n e e d e d .
Generators: 1 0 1 0 0 0 1 0 ; 0 1 1 0 0 0 0 1 ;

0 0 0 1 0 1 0 0 ; 0 0 0 0 1 1 0 0

Basic design: 0 0 0 0 0 0 0 0
1 1 0 1 1 2 1 1
0 0 0 2 2 1 0 2
0 1 1 2 0 2 0 3
0 1 1 1 2 0 2 3
0 1 1 2 1 0 0 1
0 1 1 2 1 0 2 1
1 0 1 0 1 1 1 2
1 0 1 2 1 0 3 0
1 1 0 1 0 1 3 3
1 1 0 0 2 2 3 1
0 0 0 2 2 1 2 0
1 1 0 1 0 1 1 1
0 0 0 1 1 2 2 2
1 1 0 2 1 0 1 3
1 0 1 1 2 0 1 0

Extra rows: 0 1 1 1 0 1 2 1
1 0 1, 0 0 0 3 2
0 1 1 0 1 1 2 3
1 0 1 2 0 2 1 0
0 0 0 1 1 2 0 0
1 1 0 0 0 0 1 1
0 1 1 0 2 2 0 3
0 0 0 2 0 2 2 2

This example illustrates the power of the combined procedures*
Since the full design has 3456 points, the rapid reduction to
a balanced fraction of only 144 points by using the generators
(algorithm MULFAC) before switching to the further reduction to
24 points using algorithm REDDES, effects a substantial saving in
computing time.

The following examples illustrate the changes made by varying
interaction requirements.

Requirements:
Full design:

2 x 3 x 3 ,
18 points.

AC interaction.
Balanced fraction: 18 points,

Design size wanted: 12 points. At least 8 needed.
0 0 2 : 0 2 0Generators: 1 0 0 1

Basic design: 0 0 Q,
1 2 0
1 0 0
0 1 0
0 0 1
1 0 2
0 2 2
1 1 0

Extra rows: 1 2 1
0 1 1
1 1 2
0 1 2

Requirements:
Full design:
Design size wanted:
Generators: 0 2 0
Basic design:

2 x 3 x 3 , BC interaction.
18 points. Balanced fraction: 18 points.

12 points. At least 10 needed.
0 0 2 ; 1 0 0

Extra rows:

0 0 0
1 0 0
1 1 2
0 2 1
0 1 2
1 2 0
1 1 0
1 0 1
0 0 2
1 0 2

1 2 2
1 1 1

Requirements:
Full design:
Design size wanted:
Generators:

2 x 3 x 3 , AC and BC interactions.
18 points. Balanced fraction: 18 points,

12 points. At least 12 needed.
1 0 0 : 0 2 0

Balanced design:
0 2 •

0 0 0
0 1 2
1 1 1
1 2 2
0 0 1
0 2 2
0 2 1
0 2 0
0 1 0
1 0 1
0 0 2
1 0 2

The Automatic Design of Experiments

Some Practical Algorithms

CHAPTER EIGHT

CONCLUSIONS

1 Work done

2 Further work

3 Acknowledgements

1 Work done

In chapter one I briefly outlined the history of experimental
design. Although this could not be complete because so much
literature exists on the subject, it led to the objective of
the study: to develop a methodology, represented as a set
of programmable algorithms, for the design of experiments of
the types that are generally likely to be useful in the physical
sciences. The chapter concluded with a diversion into the
relatively new subject of designing algorithms. This was
needed to set the scene for subsequent chapters in which the
design of algorithms was a major theme*

In chapter two I discussed in more detail my choice of types
of experimental design for the study. Here, I am confident
of the choice because it is based on eleven years' experience
of experimental design and analysis in industrial research.
The experimental designs chosen are intended to lead to the
fitting of linear and quadratia models with quantitative variables,
and of factorial models with qualitative variables. However,
in both cases, fractional two-level factorial designs form a
base on which the more complex designs may be built.

Chapter three was accordingly devoted to the development of
algorithms for designing fractional two-level factorials. An
important feature of these fractional designs is that in the
physical situations to which they are applied, it is usual to
assume that some first order interactions and most higher order
interactions are negligible. The usual design procedure is to
design a fractional experiment and then to check, by way of the
aliasing matrix, if all the required main effects and interactions
are aliased only with interactions assumed negligible. If they
are found to be aliased with each other, then the experiment is
redesigned and re-checked. My simple but practically important

contribution has been a new algorithm which leads directly from
the requirements set to a set of defining contrasts, and hence to
a fractional design in which none of the required effects is
aliased with any other.

In chapter four I developed algorithms for augmenting a fractional
two level factorial experiment with points that would enable the
fitting of quadratic terms as well as linear and interaction terms
with quantitative variables. Although this was based on standard
theory leading to estimators of quadratic terms orthogonal to
estimators of linear and interactive terms, I modified the usual
procedure which imposes the condition of including quadratic terms
for all factors. This enables the experimenter to define which
factors have quadratic effects and which do not, using prior
knowledge of the physical situation.

A note on the analysis of these designs was introduced in chapter
five, followed by an example. This example was chosen to illustrate
in detail the usefulness of methodology developed so far and applied
successfully to the computer simulation of a physical experiment.

Fractional designs of asymmetric factorial experiments have long
been a problem. The literature abounds with studies of factorials
in which the numbers of levels of factors are prime. Indeed the
subject seems to have become a purely theoretical branch of
combinatorial mathematics: the needs of practical experimentation
have largely been ignored. In chapter six, therefore, I provided
the theory and the consequent algorithms for constructing balanced
fractional asymmetric factorial designs using group generators.
These were not always successful in producing balanced fractions that
were as small as desirable from an economic viewpoint. The well-known
criterion of minimising the determinant of the inverted cross-products
matrix was used in chapter seven for developing algorithms for further
reduction in the size of a fractional experimental design. There
were several important innovations here. One was a procedure for
ensuring that the smallest basic design, to which other points would
be added according to the determinant criterion, would be the best in
terms of that criterion. Another valuable contribution was the

algorithm for automatically coding as dumny variables the
contrasts representing main effects and interactions. Since
this was developed as a step in constructing the cross-products
matrix which is also needed in analysing experimental data, the
algorithm should be useful to anybody writing an analysis program.
A new joint proof of two known theorems in matrix algebra was
presented. Chapter seven concluded with a set of examples of
experiments designed by the linked methods of chapters six and
seven.

Finally, the algorithms developed in this study have been fully
implemented using standard Fortran with a few specified exceptions.
These programs are listed in three appendices.

I understand from correspondence that the programs listed in
appendix one, implementing the algorithms of chapters three
and four, have been implemented successfully at: the United
States Arny Logistics Center in Virginia; the Department of
Metallurgy in The University of Newcastle, New South Wales;
the research laboratories of Comalco Aluminium (Bell Bay)Limited
in Tasmania; and at the Union Carbide Corporation in West Virginia.

They have also been used intensely at the Sheffield laboratories
and at the Teesside laboratories of the British Steel Corporation.

2• Further work

Despite careful checking, I fully expect that in such a complex
set of algorithms and their program implementations there must be
some mistakes. There must also be room for improved efficiency.
Further work must therefore include corrections of mistakes and
improvements in programming efficiency of work done so far.

The question of efficiency should also be studied in relation to
the experimental designs themselves. We may, for example, define
the efficiency of a design as the determinant of the information
matrix divided by the number of observations. With such a
definition we could compare designs with the same requirements
and answer questions like: When we lose orthogonality (for example,
by using rough approximations to <x in algorithm AUSFAC, or by making
unbalanced experiments as with algorithm REDDES) do we lose so much
in efficiency as to be. important?

A natural extension of the work done will be the development of
algorithms for designing mixed experiments: those with both qualitative
and quantitative variables: allocating two levels to those with linear
effects and three levels to those with quadratic effects. However, a
general technique calls for more thought and development than I have
been able to give.

Other extensions include consideration of experimental constraints, as
suggested in chapter one, figure one; inclusion of prior data for
consideration when applying the determinant criterion; dealing with
multi-variate situations when more than one dependent variable is
present (one approach was suggested in the example at the end of
chapter four); sequential design and analysis; and experimental
simulation using probabilistic models.

Another major problem to be tackled is that of the psychology and
language needed to develop reliable conversations between the computer
and the experimental research wcrker who does not have the benefit of
a statistician to guide him. This was discussed briefly at the end of
section two,, chapter one. It is a problem of such magnitude that
deserves a complete research study.

3 Acknowledgements

I am grateful to Dr A Huitson and Dr W t Gilchrist of

Sheffield City Polytechnic and to Mr S E Siday of the

British Steel Corporation for their guidance during this

research program.

The Automatic Design of Experiments

Some Practical Algorithms

REFERENCES

• replicate plans. JASA, March 45-71*

Addelman S. (1963b) Techniques for constructing fractional
replicate plans in factorial experiments. Biometrika,
34, 255-272*

Barnard M. M. (1936) An enumeration of the confounded
arrangements in the 2n factorial designs. JRSS
supplement, 3, 195-202.

Bose R. C. (1939) On the application of Galois fields
to the problem of the construction of hyper-graeco-latin
squares. Sankhya, 3, 323-338*

Box G. E. P. and Behnken D. W. (i960) Some new three
level designs for the study of quantitative variables*
Technometrics* 2, 4, 455-476.

Box G. E. P. and Hunter J. S. (1961) The 2^"^ fractional
factorial designs. Part 1: Technometries* 3, 3> 311-351*
Part 2: Technometrics, 3, 4, 449-458.

Box G. E. P. and Wilson K. B. (1951) On the experimental
attainment of optimum conditions. JRSS(B), 13, 1, 1-45*

Box M. J. and Draper N. R. (1971) Factorial designs,
the det(X'X) criterion and some related matters*
Technometrics, 13, 4, 731-742.

Brownlee K. A. (1953) Industrial experimentation*
(Chemical Publishing Co*, N.Y.).

Cochran W. G. and Cox G. M. (1950) Experimental
designs. (Wiley).

Davies 0. L. (1954) Design and analysis of industrial
experiments. (Oliver and Boyd).

Dempster A. P. (1969) Elements of continuous multivariate
analysis. (Addison-Wesley)

Dijkstra E. W. (1973) Notes on structured programming.
(Academic Press).

Draper N. R. and Mitchell T. J. (1967) The construction
|r,. uof saturated 2^ designs. Ann. Math. Stat., 38, 1110-1126.

Duckworth W. E. (1968) Statistical techniques in
technological research. (Methuen).

Ehrenfeld S. (1953) On the efficiency of experimental
designs. Ann. Math* Stat*, 26, 247-255*

Fedorov V. V. (1972) Theory of optimal experiments.
(Academic Press).

Finney D. J. (1945) The fractional replication of factorial
experiments. Ann. Eugen., 12, 4* 291-301.

Finney D. J. (1946) Recent developments in the design
of field experiments, part 3: fractional replication.
Jnl* Agr. Sci., 36, 184-191*

Finney D. J. (1948) Main effects and interactions*
JASA, 566-571 *

Fisher R. A. (1925) Statistical methods for research
workers* (Oliver and Boyd).

Fisher R. A. (1926) The arrangement of field experiments.
Jnl. Ministry of Agriculture, 33, 503-513*

Fisher R. A. (1935) The design of experiments.
(Oliver and Boyd).

Fisher R. A. (1943) The theory of confounding in
factorial experiments in relation to the theory of
groups* Ann. Eugen*, 11, 4, 341-353*

Fisher R. A. (1945) A system of confounding for factors
with more than two alternatives* giving completely
orthogonal cubes and high powers* Ann. Eugen*,\ ,12,
4,.. 283-290.

FORTRAN 4 manuals for the IBM 1130 and 1800 computers
and the General Automation SPC 16 computer: all editions
published between about 1965 and 1978.

Franklin M. F. (1977) Private communication, March 17,
from the ARC Unit, Edinburgh.

Franklin M. F. and Bailey R. A. (1977)* Selection of
defining contrasts and confounded effects in two-level
experiments. JRSS(C), Applied Statistics, 26, 3> 321-326

Gauss C. F. (1809) Theoria Motus Corporum Coelestium,
book 2, section 3, articles 174 to 189*

Gauss C. F. (1821) Theoria Combinationis Observationum
Erroribus Minimis Obnoxiae.

Goldsmith P. L. (1974) Computer-aided design of experiments
using cells from a pre-specified repertoire. A report
of the ICI conversational computing service.

Goodman S. E. and Hedetniemi S. T. (1977) Introduction
to the design and analysis of algorithms. (McGraw Hill)

Greenfield A. A. (1972) Automatic design of experiments
with qualitative variables* British Steel Corporation
open report MG/44/72.

Greenfield A. A. (1974) Design of balanced experiments
with continuous variables - mathematical and programming
aspects.. British Steel Corporation open report MG/57/71
revised.

Greenfield A. A. (1976) Selection of defining contrasts
in two-level experiments. JRSS(C), Applied Statistics,
25, 1, 64-67.

Greenfield A. A. (1978) Selection of defining contrasts
in two-level experiments - a modification. JRSS(C),
Applied Statistics, 27, 1, p78.

Herzberg A. M. and Cox D. R. (1969) Recent work on
the design of experiments. JRSS(A), 132, 29-67.

John J. A. and Dean A. M. (1975) Single replicate
factorial experiments in generalised cyclic designs.
JRSS(B), 37, 1,
Part 1: Symmetrical arrangements. 63-71.
Part 2: Asymmetrical arrangements. 72-76.

Kendall M. G. and Stuart A. (1966) The advanced theory
of statistics. Volume 3,. 158-160. (Griffin).

Kempthorne 0. (1947) A simple approach to confounding
and fractional replication in factorial experiments.
Biometrika, 34 255-272.

Kempthorne 0. (1952) Design and analysis of experiments.
(Wiley).

Kieffer J. and Wolfovitz J. (1959) Optimum designs
in regression problems. Ann. Math. Stat., 30, 271-295*

Kieffer J. (1959a) On the non-randomised optimality and
randomised non-optimality of symmetrical designs.
Ann. Math. Stat., 29, 675-699*

Kieffer J. (1959b) Optimum experimental designs.
JRSS(B), 21, 2, 272-319*

Kishen K. and Srivastava J. N. (1959) Mathematical
theory of confounding in asymmetrical and symmetrical
factorial designs. Jnl. Indian Soc. Agr. Stat., 11, 73-110.

Knuth D. E. (1973) Fundamental algorithms. Volume
one: the art of computing. (Adison Wesley).

Mendenhall W. (1969) The design and analysis of
experiments. (Wordsworth).

Pavlossoglou J. and Clay W. (1975) Mathematical
modelling for the razor strip (13% Cr, low carbon steel)
carburising processes. British Steel Corporation open
report CDL/MT/105/75•

Pavlossoglou J. (1975) Computer simulation of the razor
strip two stage carburising processes. British Steel
Corporation open report CDL/MT/108/75*

Pavlossoglou J. and Greenfield A. A. (1975) Optimisation
of the razor strip two stage processes. British Steel
Corporation open report CDL/MT/113/75*

Plackett R. L. (1946) Some generalisations in the multi­
factorial design. Biometrika,. 33, 328-332.

Smith K. (1918) On the standard deviations of adjusted and
interpolated values of an observed polynomial function and
its constants and the guidance they give towards a proper
choice of the distribution of observations. Biometrika,
12, 1, 1-85*

Tocher K. D. (1952a) The design and analysis of block
experiments. JRSS(B) 45-100.

Tocher K. D. (1952b) The design and analysis of experiments.
Ph.D. thesis, London.

Tocher K. D. (1952c) A note on the design problem*
Biometrika, 39, pl89»

Wald A. (1943) On the efficient design of statistical
investigations. Ann. Math. Stat*, 14, 134-140.

White D. and Hultquist R. A. (1965) Construction of
confounding plans for mixed factorial designs.
Ann* Math* Stat., 36, 1256-1271•

Whitwell J. C. and Morbey C. K. (1961) Reduced designs
of resolution five. Technometrics, 3, 459-477*

Worthley R. and Banerjee K. S. (1974) A general approach
to confounding plans in mixed factorial experiments when the
number of levels of a factor is any positive integer*
Ann* Stat., 2, 3, 579-585*

Wynn H. P. (1970) The sequential generation of D-optimum
experimental designs* Ann. Math. Stat., *41, 1655-1664*

Wynn H. P. (1972) Results in the theory and construction
of D-optimum experimental designs. JRSS(B), 34, 2, 133-147*

Yates F. (1933) The principles of orthogonality and confounding
in replicated experiments. Jnl Ag. Sci., 23, 108-145.

Yates F. (1935) Complex experiments* Suppl. JRSS, 2, 181-223

Yates F. (1937) The design and analysis of factorial experiments.
Tech. Comm* Bur* Soil* Sci*, Harpenden, number 35.

The Automatic Design of Experiments

Some Practical Algorithms

GLOSSARY

Abelian group

Algorithm

Alias .

Aliasing matrix

Asymmetric factorial

Balanced experiment

Confounding

Contrast

Control variable

Co-prime

Coset

A group G- with binary operation @ is
abelian if, for all g,heG, g@h = h@g .

A sequence of rules for solving a problem.

Two effects are said to be aliased with
one another in an experiment if they cannot
be distinguished from each other.

The aliasing matrix of an experiment is
an array of all effects and interactions
that could be estimated from the experimental
results, such that all the effects and
interactions on any row of the array are
aliased with one another.

A factorial experiment in which at least two
of the factors have unequal numbers of levels..

An experiment in which, for every factor,
the numbers of observations at every level
of the factor are equal.

An interaction is said to be confounded
when it is aliased with the mean effect and
is used as a basis for'dividing or taking a
fraction of an experiment.

The difference between the mean values
observed at two different levels of a factor.

A variable whose values can be specified by
the experimenter, (see Independent variable).

Two integers are co-prime if they have no
factors in common other than 1.

If H is a subgroup in a group G with binary
operation @ , then a coset of H is a set of
elements (x such that x = h@g for all h€ H
and some

Cross products matrix

Cyclic group

Defining contrast

Dependent variable

Design matrix

Design point

Discrete step

Effect

Experimental design

Experimental design
point

Factor

If X is a matrix of values of independent
variables in an experiment, then the product
X'X is the cross-products matrix, where X*
is the transpose of X.

A group G- with binary operation @ is cyclic
if it can be generated completely by some
element g.

The interactions confounded in any system
of confounding are the defining contrasts.

A variable whose observed value depends on
the values of the control (or independent)
variables.

The matrix of values of independent variables,
including specified functions of the .
independent variables, in an experiment.

A single combination of specified values of
independent variables at which the dependent
variable(s) will be observed. A row of the
observation matrix.

A distinct interval.

A contrast. The difference between the
mean values observed at two different levels
of a factor. Equivalently, the coefficient
of a term in a linear model.

A specified set of conditions for an experiment,

see design point

An independent variable. Usually a qualitative
variable, but may refer to a quantitative
variable. '

i

Factorial
experiment

Fractional
replication

Fractional two-
level factorial

Group

Group generator

Independent variable

Information matrix

Interaction

An experiment in which observations are
made at different combinations of levels,
or values, of factors.

The selection of only a fraction of all
possible combinations of levels of factors.

A fractionally replicated two-level factorial
experiment

S
A group is a non-empty set/with a binary
operation (@, say) such that there is an
identity element in S, every element in S
has an inverse in S, and the operation is
associative.

Some element in a group G that can generate
the group, either on its own (see cyclic
group) or together with other generators.

A variable whose values can be specified by
the experimenter; or a variable on whose
value the value of the response or dependent
variable depends.

see cross products matrix

The difference in effect of a control variable
on a response variable at difference levels
of another control variable. Higher order
interactions are defined as the differences
of the next lower order interactions at
different levels of another control variable.
If a dependent variable is represented as a
function of independent variables, then an
interaction is the partial derivative of the
function with respect to two or more of the
independent variables.

Level

Multi-level factorial

Observation matrix

Observation point

Observed value

Optimisation

Optimal design

Orthogonal

Prime

A distinct value of an independent
variable or factor. If the variable is
qualitative such that an ordinal value
cannot be ascribed to it, then the level
is only a nominal label.

A factorial experiment in which each factor
has more than two levels*

A matrix X in which each row represents
a vector of values of the independent variables
at which dependent, or response, variable is
to be observed.

A point in the space of independent variables
defined by a row in the observation matrix.

The value of the dependent, or response,
variable observed at an observation point*

The determination of conditions at which
some criterion is at its best.

An experimental design at which some criterion
is at its best.

Two unequal vectors are orthogonal if their
inner product is equal to zero.
An experimental design is orthogonal if the
cross products matrix is a diagonal matrix.

An integer is prime if it is divisible by no
integer other than itself and 1•

Quadratic design An experimental design in quantitative
variables which will allow for the estimation
of coeeficients of quadratic terms.

Qualitative variable A variable, or factor, whose levels are
nominal qualities or categories.

Quantitative variable

Relatively prime

Requirements

Response

Subgroup

Two-level factorial

Standard order

A variable whose values can be designated
by reference to some measure.

see Co-prime .

The effects and interactions that are required
to be estimated from the observations to be
made in an experiment.
Also: experimental requirements, and

requirements set.

The observed value of a dependent variable
at an observation point.

A subset of a group which is also a group
with the same operators

A factorial experiment in which each factor
is at exactly two levels.

The order in which effects or treatment
combinations in two level factorials may be
stated, in alphabetic notation, introducing
one letter at a time in alphabetic order.

The Automatic Design of Experiments

Some Practical Algorithms

APPENDICES

The Automatic Design of Experiments

Some Practical Algorithms

APPENDIX ONE

The programs listed in this appendix represent a full implementation
of the algorithms developed in chapters three and four* They have
been written in standard Fortran 4 with the following exceptions and
extra functions:

The logical operators *AND*, *0R., .XOR. have been used with .
integer operands to give integer results, as described in chapter
three, section two*.

The function ITEST(l,J) returns a value of 1 if the J'th bit
from the right in the integer I is set to I, and a value of
0 if the J'th bit is set to 0.

The function I0NBT(l,J) sets to 1 the J'th bit from the right
in the integer I.

The subrouting FREMAT which is called from subroutine ENFAC is
a system subroutine supplied by General Automation for their SPC-16
computers to allow data to be entered in free format by reference in
READ statements to FORMAT(V). Alternative statements are available
on most other computers for allowing data to be read in free format*

Users of these programs should carefully check that the dimension
statements in all the programs are adequate for their problems*

Contents Page

Main program DESIGN
(implementing algorithm
DEFCON) A1. - 1

ENFAC A1 - 5

ALMAT A1 - 6

FRADE A1 - 7

AUGFAC A1 - 9

NEW A1 - 12

RANDU A1 - 12

Main Program DESIGN

DIMENSION IV(128),IA(16),NB(16),MAJ(16),IN(32),KR(128)
COMMON/DES/ N,NF,KD(128),NI,K(128),NAMEX(10),KK (512),N E ,N V ,MV (32)

1 ,Lq(16) ,R(16,3) ,NQ,NAMVAR (16,5) ,KEST
DATA IA/'A ','B ','C ','D ','E ','F ','G ','H ','J

l'K ' / L ' / M ','N ','P ','R '/
* * * *

STEP 0 (INITIALISE)

* * * *
CALL ENFAC(IA)
NE=1,+ALOG(FLOAT(NV))/ALOG(2.0)
M = N - N E
1F(M.GT.9)M=9
NE=N-M
NI=2**M
NF=2**NE
DO 1 1 = 1 , N
N B (I) = 0

1 MAJ(I)=0
DO 3 1=1,NV
DO 2 J = 1 , N
IF (ITEST(MV(I),J).EQ.1)NB(J)=NB(J)+l

2 CONTINUE
3 CONTINUE

DO 4 1 = 1,N
MAX = 0
DO 5 J = 1,N
IF(NB(J).LE.MAX)G0 TO 5
M A X = N B (J)
J !1 = J

5 CONTINUE
MAJ(I) = I ON BT (MAJ (I) , JM)
1J B (J M) = 0

4 CONTINUE
* * * *

STEP 10 (CONSTRUCT FIRST COLUMN OF ALIASING MATRIX AND
SET MARKERS)

A k * k

210 J A K=1
K (1) = 0
MM = 0
DO 6 1=1,NV

6 IN(I)=100
DO 7 1=2,NF
IF(NEW(I).NE.1)GO TO 8
L L= 1
MM=MM+1

n
o

n
o

o
K (I) = MAJ(MM)
GO TO 11

8 LL=LL+1
K(I)=K(LL).XOR.MAJ(MM)

11 DO 9 J = 1 , N V
IF(K(I).NE.MV(J))GO TO 9
IV (I) = 1
KR (I) = 0
IN(J)=0
GO TO 7

9 CONTINUE
K R (I)=100
IV(I)=-1

7 CONTINUE
IF(M.EQ.O)GO TO 1001

C * * * *
C
C STEP 20 (WILL NEXT DEFINING CONTRAST BE A GENERATOR?
C IF SO, RESET ROW MARKERS)
C
£ it #c & -k

2 0 J A K = J A K+1
IF(JAK.GT.NI)GO TO 1000
IF(NEW(JAK).NE.l)GO TO 7 0 -

30 L N E W = J A K
LL= 1
DO 13 1=2,NF
IF(KR(I).GE.LNEW)IV(I)=-1

13 CONTINUE
Q * -k * *
c
C STEP 40 (FIND FIRST AVAILABLE REQUIREMENT COUNTING FROM
C END OF SET. IF NONE, RETURN TO STEP 20)
C
Q rt * * *

DO 14 1=1,NV
J =N V- I + 1
IF(IN(J),GE.LNEW)GO TO 15

14 CONTINUE
N 1=JAK-1
GO TO 1000

15 LE=MV(J)
* * * *

STEP 50 (FIND FIRST AVAILABLE ROW AND CREATE TEST
DEFINING CONTRAST (KEST))

C * * * •
50 DO 16 1 = 2,NF

J=NF-I+2

XF(KR(J),GT.LNEW)GO TO 52
GO TO 16

52 LO = J
GO TO 60

16 CONTINUE
IF(LNEW.GT.2)GO TO 17
LO = - 1
GO TO 90

17 L0 = 0
GO TO 90
* •* * *

STEP 60 (MARK ROW AND CREATE TEST DEFINING CONTRAST)

* * * *
60 KR(LO)=LNEW

KEST=LE.XOR.K(LO)
GO TO 80
* * * *

STEP 70 (USE GENERATOR TO CREATE DEFINING CONTRAST)

* Jc * *
70 LL = LL+1

KEST=KK(LL).XOR.KK(LNEW)
* * * *

STEP 80 (TEST NEW DEFINING CONTRAST FOR ALIASING AND
SET MARKERS)

* * * *
80 1 = 1
81 1=1+1

IF(I.GT.NF)GO TO 18
KJAK=K(I).XOR.KEST
J = 0

83 J=J+1
, I F (J .G T .NV)GO TO 81
IF(MV(J).NE.KJAK)GO TO 83
I F (IV (I).NE.-l)GO TO 120
IV(I)=0
IN (J)=LNEW
K R (I)=LNEW
GO TO 83

18 K K (JAK)=KEST
GO TO 20

n
n

o
n

o
n

n
n

C * * * *

STEP 90 (BACKTRACK TO PREVIOUS LNEW)

* * * *
90 IF(LO.EQ.0)GO TO 19

N F = N F * 2
NI=NI/2
GO TO 210

19 JAK=(LNEW-1)/2+1
DO 21 1=2,NF
IF(KR(I).GE.LNEW)KR(I)=100

21 CONTINUE
GO TO 30
* * * *

STEP 120 (SINCE KEST HAS FAILED, RESET REQUIREMENTS
SET MARKERS)

C
C * * * *

120 DO 22 J=1,NV
IF(IN(J).GE.LNEW)IN(J)=100

22 CONTINUE
GO TO 5 0

1000 K K (1) = 0
CALL ALMAT(IA)
CALL FRADE(IA)

1001 CALL AUGFAC
STOP
END

SUBROUTINE ENFAC(IA)
DIMENSION IA (16)
COMMON/DES/ N,NF,KD(128),NI,K(128),NAMEX(10),KK(512),NE,NV,MV(32)

1,LQ(16),R(16,3),NQ,NAMVAR(16,5),KEST
C * * * *
c
C ENTER EXPERIMENTAL REQUIREMENTS
C
C * * * *

CALL FREMAT
WRITE(5,2 0)

20 FORMAT('ENTER TITLE FOR THIS EXPERIMENT')
READ(5,108)NAMEX

108 FORMAT(10A2)
602 WRIT E (5, 1)

1 FORMAT('HOW MANY FACTORS ARE THERE')
READ(5,100)N .
IF(N .GT.16)GO TO 600

100 FORMAT(V)
DO 2 NV=1,N
M V (N V) = 0

2 M V (N V) = 10 N B T (M V (N V) , N V)
10 W RIT E(5 , 3)
3 FORMAT('ENTER REQUIRED INTERACTION')
A READ(5,60)(KK(I),1=1,16)

60 FOR MAT(16A 1)
J=NV+1
IF(J.GT.32)GO TO 700
M V (J) = 0
L = 0
DO 5 1=1,16
DO 6 11=1,16
IF(KK(I).NE .IA(I1))GO TO 6
M V (J) = 10 N B T (M V (J) ,11)
L = L + 1

6 CONTINUE
5 CONTINUE

IF(L.LE.O)GO TO 7
N V = J
GO TO 10

7 NQ = 0
DO 13 1 = 1 , N
WRITE(5,12)1

12 FORMAT('FOR VARIABLE ',16,' TYPE '/'VARIABLE NAME')
READ(5,108)(NAMVAR(I,J) ,J=1,5)
WRITE(5,5 0)

5 0 FORMAT('L OR Q ')
READ(5,60)LQ(I)
WRITE(5 , 51) r

51 FORMAT('LEAST VALUE,GREATEST VALUE AND INTERVAL ')

READ(5,100)(R(I,J),J=1,3)
IF(LQ(I).EQ.'Q')NQ=NQ+1

13 CONTINUE
RETURN

600 WRITE(5,601)
601 FORMAT('NO MORE THAN 16 FACTORS ALLOWED TRY AGAIN')

GO TO 602
700 WRITE(5,7 01)
701 FORMAT('NO MORE THAN 31 FACTORS+INTERACTIONS ALLOWED TRY AGAIN')

GO TO 6 02
END

SUBROUTINE ALMAT(IA)
DIMENSION IA (16)
DIMENSION IB (8 , 1 6)
COMMON/DES/ N,NF,kD(128),NI,K(l28),NAMEX(I 0)

1,KK(512),NE,NV,MV(32),LQ(16),R (16,3),N Q ,NAMVAR(16,5),REST
DATA I BLANK/' '/

10 FORMAT (8(16A1))
* * * *

PRINT ALIASING MATRIX

* * * *
11 FOR MAT(/////)

WRITE(5,1)NAMEX
1 FORMAT('ALIASING MATRIX FOR ',10A2)

NB=l+(NI-l)/8
IF(NI.GT.8)G0 TO 2
N S = N I
GO TO 3 .

2 NS = 8
3 DO 8 11=1,NB

NT=(I1-1)*8
DO 7 12=1,NF
DO 5 13=1,NS
N X = N T + 1 3
J=K(12).XOR.KK(NX)
L = 0
DO 4 14=1,16
IF(ITEST(J,I4).NE.O)GO TO 4
L = L + 1
IB(I3,L)=IBLANK

4 CONTINUE
DO 6 14 = 1 , 1 6
1F(ITEST(J,I4).EQ.O)GO TO 6
L = L+1
IB(I3,L)=IA(I4)

6 CONTINUE
5 CONTINUE

WRITE(5,10) ((IB(I3,L) ,L=1,16),13 = 1 ,NS)
7 CONTINUE

W R IT E (5 , 1 1)
8 CONTINUE

RETURN
END

o
n
r
s
n
o
n

n
n
o
o
o

o
n

n
n

o

SUBROUTINE FRADE(IA)
DIMENSION I B (1 28,i 6) ,IA(16)
COMMON/DES/ N , N F ,K U (128),N I ,K (128) ,NAMEX(10) ,KK (5 1 2),NE

1,NV,MV(32) , LQ(16), R(16,3),N Q ,NAMVAR(16,5),KE ST
DATA I BLANK/' '/

C * * * * ' .

STEP 0 (COPY FIRST COLUMN OF ALIASING MATRIX
TO DESIGN VECTOR)

* * * *
DO 1 1=1,NF

1 KD(I)=K(I)
k k k k

STEP 10 (FIND ' J ' : FACTOR TO BE ADDED)

k k k k

10 J J =KD(N F)
15 NE=NE+1

DO 2 1=1,N
J=I0NBT(0,I)
JTEST=J.AND.JJ
IF(JTEST.EQ.0)G0 TO 20

2 CONTINUE
* * * *

STEP 20 (FIND 'JIP' : DEFINING CONTRAST WITH
FACTOR TO BE ADDED)

* * * *
20 JJ = J .O R .J J

DO 22 1=2,NI
JI P = K K (I)
JT EST = J .A N D .JIP
IF(J .NE.JTEST)GO TO 22
JTEST=JJ.A N D .JIP
IF(JIP.EQ.JTEST)GO TO 30

22 CONTINUE
Q k k k k

C
C STEP 30 (COPY 'JIP', REMOVING 'J')
C
C * * * *

30 NT=J.XOR.JIP

o
n
o
n
n

n
n

o
n

o
n * * * *

STEP 40 (FIND NUMBER OF BITS IN COMMON BETWEEN
EACH DESIGN ELEMENT AND 'NT')

* * * *
DO 4 1=2,NF
NB=NT.AND.KD(I)
L = 0
DO 3 11=1,N
IF(ITEST(NB,II).EQ.1)L=L+1

3 CONTINUE
* * * *

STEP 50 (ADD FACTOR TO DESIGN ELEMENT IF NUMBER
OF BITS (L) IS ODD)

C * * * *
IF(ITEST(L,l).EQ.l)KD(I)=KD(I).OR.J

4 CONTINUE
IF(NE.LT.N)GO TO 15

C * * * * .

C
C PRINT DESIGN
C
C * * * *

IB(1,16)='I '
DO 5 1 = 1 ,15

5 IB(1,I)=IBLANK
DO 9 11=2,NF
J =KD(II)
L = 0
DO 7 12=1,16
IF(ITEST(J,I2).NE.O)GO TO 7
L = L + 1
IB(II,L)=IBLANK

7 CONTINUE
DO 8 12=1,16
IF(ITEST(J,12).EQ.0)GO TO 8
L = L + 1
IB(I1,L)=IA(I2)

8 CONTINUE
9 CONTINUE

WRITE(5, 1 10) NAMEX
110 FOR MAT('DESIGN FOR ',1OA2)
11 FORMAT(16A1) r

DO 12 11=1,NF
12 WRITE(5, 11) (IB (II,L) ,L=1,16)

RETURN
END

o
o

o
n

n
n

n
on

n

SUBROUTINE AUG FAC
DIMENSION X(16,5),Y(16),11(200), JJ(200)
COMMON/DES/ N ,N F ,KD (128),N I ,K (I 28),NAMEX(10),KK (512),N E ,NV,M V (32)

1 ,LQ(16) ,R(16,3) ,NQ,NAMVAR(16,5) , K.EST
C * * * * 1

STEP 0 (INITIALISE AND PRINT COLUMN HEADINGS
FIND ALPHA)

* * * *
WRITE(5,600)NAMEX

600 FORMAT('EXPERIMENTAL DESIGN FOR ',10A2)
WRITE(5,90)((NAMVAR(I,J) ,J = 1,5),1 = 1,N)

90 FORMAT('OBSERVATIONS ',3X ,10(5A 2,1X))
IF(N Q .L T .1)GO TO 10
NP = N V+NQ+1
N D = NF + 2 *NQ
M = N D - N P
IF(M.LE.5)GO TO 1
N0 = 1
GO TO 2

1 N 0 = 6 - M
2 1 F(N Q .GT .1)GO TO 3

AL P HA=1
GO TO 10

3 Z = N F*(ND+N 0)
ALPHA=SQRT(0.5*(SQRT(Z)-NF))
* * * *

STEP 10 (COMPUTE DESIGN INTERVALS)

* * * *
10 DO 4 1= 1 , N

M =IFIX((R(I,2)-R(I,1)) /R (I ,3))
M=M/2 + 1 TEST(M , 1)
P = M*R (I ,3)
X (I ,3)= R (1,1)+P
IF(LQ(I).EQ.'Q')GO TO 13
GO TO 14

13 M= 1 FIX (P / (AL P11A*R (1,3))+0 . 5)
Q=M*R(I,3)
X (I ,1)=R (1,1)
X (I , 2)= X (I ,3)-Q
X (I ,4)= X (1,3)+Q
X(I,5)=R(I,1)+2.0*P
GO TO 4

14 X (I ,2)= R (1,1)
X(I,4)=R(I,2)

4 CONTINUE

n
o
n
o

n
o
o
n

C
STEP 20 (PRINT TWO-LEVEL FRACTIONAL PART

OF DESIGN)

* * * *
DO 7 1=1,NF
DO 5 J= 1 , N
L = 2 * (ITE ST(KD(I), J) +1)

5 Y(J)=X(J,L)
WRITE(5,6)I , (Y(J) ,J = 1,N)

7 CONTINUE
* * * *

STEP 30 (PRINT AUGMENTING PART OF DESIGN)

C * * * *
J A K = N F
IF (N Q .LT. 1)GO TO 40
DO 8 1 = 1,N
IF(LQ(1).NE.'Q ')GO TO 8
DO 9 J = 1 , N
IF(I.NE.J)Y(J)=X(J,3)

9 CONTINUE
JAK = J AK+1
Y(I)=X(I,1)
WRIT E (5 , 2 00)J A K ,(Y(J) ,J = 1 ,N)
JAK=JAK+1
Y(I)=X(I,5)
WRITE(5, 200)JAK,(Y(J),J=1 ,N)

8 CONTINUE
DO 15 J =1,NO
JAK=JAK+1
WRITE(5, 200)JAK, (X(I,3) ,I = 1,N)

15 CONTINUE
IF(NO.GT.1)WRITE(5,1 l)NO

11 FORMAT('NOTE THAT THERE ARE ',16,' DESIGN CENTRE POINTS')
C * * * *
C
C STEP 40 (RANDOMISE ORDER OF OBSERVATIONS)
C
C * * * *

40 IX=l+2*(8191.AND.KEST)
WRITE(5,601)

601 FORMAT('RANl)OMISED OBS ERVATION. ORDER ')
604 XX=JAK '

DO 12 1=1,JAK
12 II (I)=0

DO 17 J=1,JAK
W=1./XX

200 FORMAT(16,6X,10(F10.4,IX))

201 FORMAT(1016)
6 FORMAT(I6,6X,10(F 10.4 ,IX))

18 DO 16 1=1,JAK
IF(II(I).NE.0)GO TO 16
CALL RAND U(IX,IX,YY)
IF(YY.GT.W)GO TO 16
XX=XX-1
J J (J) = I
I I (I) = 1
GO TO 17

16 CONTINUE
GO TO 18

1 7 CONTINUE
WRITE(5,201) (JJ(J) ,J=1,JAK)
WRITE(5,602)

602 FOR MAT('IS ANOTHER RANDOM • NUMBER STREAM WANTED,TYPE YES OR NO'
READ(5,603)IY

603 FOR MAT(1 A 1)
IF(IY.EQ.'Y')GO TO 604
RETURN
END

FUNCTION NEW(I)
C * * * *
c
C TEST IF "I" IS OF FORM 2 * *R + 1
C
C * . * * *

IF(I.EQ .2) GO TO 4
N EW = 0
J=1
11=1-1

3 J = J* 2
IF(J.LT.II)GO TO 3
IF (J .E Q .11)NEW=1
RETURN

4 NEW=1
RETURN
END

SUBROUTINE RANDU(IX,IY,YFL)
IY = IX* 89 9
IF(IY)5,6,6

•5 IY = IY + 32 7 67 + 1
6 Y FL = IY

YFL=YFL/32767.0
RETURN
END

(note: the value 327^7 used because this is the largest
positive integer on a 16-bit word computer: 2 - 1 = 327&7«
If these programs are implemented on a computer with a different
word length, this integer must be altered accordingly).

The Automatic Design of Experiments

Some Preotical Algorithms

APPENDIX TWO

The programs listed in this appendix represent a full
implementation of the algorithms developed in chapter
six. Algorithms DEFCON (renamed DEFGEN) and
ENFAC, whose program implementations were listed in
appendix one, have been modified to link with the
multi-factorial algorithms as described in chapter six.

The programs have been written in standard Fortran 4
with the same exceptions and extra functions as were
described in appendix one.

Again, users should carefully check that the dimension
statements are adequate for their problems.

Contents Page

MULFAC

ENFAC

FASET

DEFGEN

FRADE

SELG

LCM

MOD

LEV

IHCF

NEW

JORD

RANDU

A2 - 1

A2 - 7
A2 - 8

A2 - 9
A2 - 13
A2 - 14
A2 - 17
A2 - 17
A2 - 18

A2 - 18

A2 - 19
A2 - 19
A2 — 19

Main Program MULFAC

C MULFAC
BIT BITS(3200)
DIMENSION I D (8 , 16), IX(16 , 4), MVI(16),IA(16) ,IK(1 6) ,L F (16)

1,IL(8),IDD(8,16),IB(8),JJ(200),11(16),NLL(16)
COMMON N ,N F ,K D (12 8), Nl’,K(128),N A M E X (10),K K(512),NE,NV,MV(32),

1N L (16),KEST
DATA IA/'A ','B ' ,'C ','D ','E ','F ','G ','H ','J

l'K ' , 'L ' , 'M ' , 'N ' , 'P. ' , 'Q ' ,'R '/
CALL ENFAC(IA)
DO 1 1=1,8
DO 1 J= 1,16

1 ID (I , J) = 0
N G = 0
CALL FASET(IX,JG,LI)

C * * * *
C
C FIND NEXT SUITABLE FACTOR SUBSET
C
C * * * *

20 IG=0 ’
M 1 N = 1 0 0 . * •

21 LG = IG+1
I. F((1X(IG,1).LT.MIN)

1.AND.((IX(IG,2).GT.2).O R .
1(IX(IG,3).NE.O)))GO TO 23
GO TO 24

2 3 MIN=I X (IG , 1)
IM= 1 G

2 4 1F(1G.EQ.LI)G0 TO 2 5
GO TO 21

23 IF(MIN.EQ.100)GO TO 100
IF(IX(IM,2).GT.2)GO TO 27
N G I = 0

26 NGI=NGI+1
IB(NGI)=2**(NGI-1)
IF(NGI.EQ.IX(I M ,2))GO TO 66
GO TO 26

C * * * ■ *

INITIALISE FOR ENTRY TO DEFGEN

* * * *
27 NIG=1X(IM,2)+IX(IM,4)

N V I = IX (I M , 4)
29 NV1=NVI+1

M V1 (N V I) = 0
ii VI (NVI) = IONBT (M VI (NVI) , NVI)
IF(NV1.L T .NIG)GO TO 2 9
MA S K = 0 '

n
o

n
o

n
C FIND INTERACTIONS BETWEEN FACTORS IN CURRENT SUBSET
C
C * * * *

1=0
33 1=1+1

IF(I.G T .N)GO TO 37
1F (N L (I).EQ.IX(IM,1))MASK=IONBT(MASK,I)
GO TO 33

37 I =N
38 1=1+1

IF(I.GT.NV)GO TO 50
. ITT = MASK.AND.MV (I)
IF(ITT.Eg.0)GO TO 38
11=0
J =0
NVI=NVI+1
MVI (NVI)=0

42 J=J+1
IF(J.GT.N)GO TO 38
IF(ITEST(MASK,J).NE.l)GO TO 47
11=11+1
IF(ITEST(MV(I),J).EQ.1)MVI(NVI)=IONBT(MVI(NVI),11)

47 GO TO 42
50 CALL DEFGEN(NGI,IB,NIG,NVI,MVI)

NOG=IX(IM,1)**NG I
* it -k it

IS SUBSET LINKED TO A PREVIOUS ONE?
* * * *
IF(IX(IM,3).E g .0)G 0 TO 7 0

66 J=IX(IM,4)
J1=IX(J,3)-1
LL=IX(J ,4)
GO TO 80

70 1 = 0
L = 0
L L = 0
J 1 =NG

71 1=1+1
IF(I.GT.LI)GO TO 80
■IF (I . Eg . IM) GO TO 71
IF(IX(I,4).NE.O)GO TO 71
IF(IX(I ,1).NE.NOG)GO TO 71
IX(I,3)=IM
1 X (I M , 3) = N G +1
J G = JG+1
IX(IM,4)=KG+NGI
I X (I , 4) = 1

A2 - 3

c * * * *
c
C CONVERT GENERATORS FROM BINARY TO INTEGER FORM
C
C * * * *

80 1 = 0
81 1=1+1

IF(I.LE.NGI)GO TO 85
IX(IM,1)=100
IF(J1.GT.NG)NG=J1
GO TO 20

85 J1=J1+1
L = 0
J =0

86 J=J+1
IF(J.GT.N)GO TO 81
IF(NL(J).NE.IX(IM,1))G0 TO,86
L = L+ 1
ID(J1,J)=ITEST(IB(I),L)
GO TO 86

C * * * A
C ’
C HOW MANY FACTORS NOT YET IN GENERATORS
C
C * * * *

100 L=0
1 = 0

101 1=1+1
IF(I.G T .LI)GO TO 105
IF(IX(I,1).NE. 100)L=L + IX(I,2)
GO TO 101

105 IF(L .EQ.0)GO TO 200
IF(L .GT .2)GO TO 120
1 = 0

108 1=1+1
IF(I.G T .L I)GO TO 200
IF(IX(I,A).NE.0)G0 TO 108
I1=IX(I,1)
12 = 0
13 = 0

l»2 12=12+1
IF(I2.GT. IX(I , 2)) GO TO 108

11 A 13 = 13 + 1
IF(13.GT .N)GO TO 108
IF(NL(I3).NE.11)GO TO 11 A
N G = N G + 1
ID (N G , I 3) = 1
GO TO 1 13L

o
n

C INITIALISE FOR DEFGEN

* * * *
120 NIG=L

N V 1 = 0
121 NVI=NVI+1

MVI(NVI)=0
MVI(NVI)= IONBT(MVI(NVI),NVI)
IF(NVI.LT.NIG)GO TO 121
MAS K=0
1 = 0

126 1=1+1
1F (I .GT.LI)GO TO 135
IF(IX(I,A).NE.0)GO TO 126
I1=IX(I,1)
12 = 0

130 12=12+1
IF (12.G T .N)GO TO 126
IF(NL(12).NE.11)GO TO 130
MAS1C= I ON BT (MAS K , I 2) . '
GO TO 130

135 I=N
136 1=1+1

IF(I.G T .N V)GO TO 150
ITT=MASK.AND.MV(1)
IF(ITT.EQ.0)GO TO 136
11=0
J = 0
NVI=NVI+1
MVI(NVI)=0

1 AO J = J + 1
IF (J .G T .N)GO TO 136
IF(ITEST(MASK,J).NE.l)GO TO * 1 AO
11=11+1
IF(ITEST(MV(I),J).EQ.1)MVI(NVI)*IONBT(MVI(NVI)
GO TO 1 A 0

150 CALL DEFGEN(NGI,IB,NIG,NVI,MVI)
1=0
12 = 0

156 1=1+1
IF(I.GT.N)GO TO 170
11=0

159 11=11+1
1F (11.GT .LI)GO TO 156
IF(IX(I1,A).NE.OJGO TO 159
IF(NL(I).NE.IX(I1,l))GO TO 159
12=12+1
NLL(I2)=NL(1)
LF(12)=1
GO TO 159 ■

1 1

no

n
o

170 CALL SELG(NIG,NGI,IB,NLL,LI,IX,IDD)
C * * * *
C
C COPY GENERATORS FROM SELG INTO GENERATORS
C FOR ALL FACTORS

* * * *
1 = 0

181 1=1+1
IF(I .GT.NGI)GO TO 200
NG=NG+1
J = 0

18A J=J+1
IF(J.GT.NIG)G0 TO 181
I1=LF(J)
1D(NG,II)=IDD(I,J)
GO TO 18A
* * * *

C FIND FULL DESIGN SIZE
C
C * * * *

200 1=0 •
WRITE(5,500)NAMEX

500 FORMAT{III* * * * * *'///'GENERATORS FOR
1///)
N 0 = 1

201 1 = 1+1
IF(I.GT.NG)GO TO 208
J = 0

2 OA J = J + 1
IF(J.GT.N)GO TO 207
II(J)=JORD(ID(I, J) ,NL.(J))
GO TO 20A

2 07 IL(I)=LCM(II,N)
WRIT E (5,5 0 1) (ID(I,J), J = 1 , N)

5 01 FORMAT(1 OX,1612)
NO=NO*IL(I)
GO TO 201

2 08 N F U L L = 1
1=0

209 1=1+1
IF (I .GT . N)GO TO 2091
NFULL=NFULL*NL(I)
GO TO 209

2091 IF(NO.LE.NFULL)GO TO 210
N 0=NFULL
N G = N
1=0

20921=1+1

' , 1 0 A 2

o
o

o
n

o

1F (I•G T .N)GO TO 210
J =>0
IL(I)=NL(I)

2093 J = J + 1
1F (J .GT.N)GO TO 2092
ID (I,J) = 0
IF(I.EQ.J)ID(I,J) = l
GO TO 2093

210 1=0
WRITE(5,350)NAMEX

350 FORMAT(/ // ' * * * * *'//'DESIGN FOR ',10A2
I III)

211 1=1+1
I F (I .GT.NO)GO TO 1000
CALL LEV(I,NG,tL,ID,IK)
WRITE(5,301)(IK(LL),LL=1,N)
GO TO 211
* * * *

RANDOMISE ORDER OF OBSERVATIONS

* * * *
1000 IXX=l+2*(8191.AND.REST)

WRITE(5,6 01) '
601 FORMAT('RANDOMISED ORDER') '
604 XX=N0

DO 312 1=1 ,NO
312 BITS(I)=.FALSE.

L = 0
JO = N 0
IF(NO.LE.200)GO TO 605
JO = 2 00
J K=0

605 L=L+1
IF(NO.GT.L*200)GO TO 606
JO=NO-(L-1)*200
J K= 1

606 DO 317 J=l,JO
W= 1./XX

318 DO 316 1=1,NO
I F (BITS(I))GO TO 316
CALL RANDU(IXX,IXX,YY)

3 01 FORMAT(1016)
IF(Y Y .G T .W)GO TO 316 1
XX=XX-1
JJ(J)=I
BITS(I)=.TRUE.
GO TO 317

316 CONTINUE
GO TO 318

317 CONTINUE
WR1TE(5,301) (J J (J) ,J = 1,J 0)
IF(JK.NE. 1)GO TO 605 ,
WR1TE(5,602)

602 FORMAT('IS ANOTHER RANDOM NUMBER STREAM WANT E D ,TYP E YES
1 OR NO')
READ(5 , 6 0 3) 1Y

6 03 FORMAT(1A1) i (
IF(IY.EQ. ' Y') GO TO 604 ’ ; , , !
s t o p ■ 1 ' 1 1 ; ; i' : ; /
END' I 1 ■ 1 ‘ i i,1 j i ! ;■ f ' . V ’f.

o
o

n
n

o

SUBROUTINE ENFAC(IA)
DIMENSION IA (16)
COMMON N,NF,KD(128),NI,K(1 28),NAMEX(10),KK(512),N E ,N V ,M V (32)

1 , N L (1 6)
* * * A

ENTER EXPERIMENTAL REQUIREMENTS

A A A A
CALL FREMAT
WRITE(5,2 0)

20 FORMAT(' ENTER TITLE FOR THIS EXPERIMENT')
READ(5,108)NAMEX

108 FORMAT(1OA 2)
602 WRIT E (5 , 1)

1 FORMAT('HOW MANY FACTORS ARE THERE')
READ(5,100)N
IF(N.GT.16)GO TO 600

100 FORMAT(V)
DO 2 NV=1,N
M V (N V) = 0

2 MV(NV)=IONBT(MV(NV),NV)
10 WRITE(5,3)
3 FORMAT('ENTER REQUIRED INTERACTION')
4 READ(5,60)(KK(I),1 = 1 , 16)

60 FORMAT (J.6A1)
J = N V +1
IF(J.GT.3 2)GO TO 700
M V (J) = 0
L = 0
DO 5 1 = 1 ,16
DO 6 11*1,16
1F(KK(I).NE.IA(Il))GO TO 6
M V (J) = I ON BT(M V (J),11)
L = L+1 \ .

6 CONTINUE
5 CONTINUE

IF(L .L E .0)GO TO 7
N V = J
GO TO 10

7 DO 13 1=1,N
WRITE(5,12)I

12 FORMAT('FOR FACTOR ',16,' TYPE THE NUMBER OF LEVELS')
READ(5,1OO)NL(I)

13 CONTINUE
RETURN

600 WRITE(5,601) r .
601 FORMAT ('NO MOREr THAN 16 FACTORS ALLOWED TRY AGAIN')

GO TO 602
700 WR1TE(5,701)

701 FORMAT('NO MORE THAN 31 FACTORS+INTERACTIONS ALLOWED ,TRY AGAIN')
GO TO 602
END

I

I

SUBROUTINE FASET(IX,J G ,L I)
DIMENSION IX(1 6,4)
COMMON N»NF,KD(128),N I ,K (128),NAMEX(10),KK (512),N E ,NV,M V (32),

1NL(16)
C * * * *
c
C DETERMINE FACTOR SUBSETS
C
C * * * *

L = 0
L 1 = 0
1X1=0 ,
JG = 0

2 IXI=IXI+1
J =0 •

4 J = J + 1
IF(J .EQ.IXI)GO TO 7
IF(N L (J).EQ .NL (IXI))GO TO 2 ' , ,
GO TO 4

7 LI=L1+1
I X (L I ,1)=NL(IXI)
IX (L 1 ,2) = 1 .
IX(LI,3)=0
IX(L 1,4) =0
L = L + 1
IF(L.EQ.N)RETURN

9 J=J+1
IF(J .GT . N) GO TO 14
IF(IX(LI, 1).NE.NL(J))G0 TO 9
IX(L I ,2)=IX(LI,2)+1
L=L+1 •
IF(L.NE.N)GO TO 9
RETURN

14 IF(IX(LI,2).GT.2)JG=JG+1
GO TO 2
END

SUBROUTINE DEFGEN(NGI,IB,N I G ,NVI,MVI)
DIMENSION MVI(16)
DIMENSION IB (8),N W (8)
DIMENSION IV(128),N B (i 6),MAJ(16), IN (3 2) , KR (1 28)
COMMON N ,N F ,K D (128),N I ,K (12 8),NAMEX(10),KK(512),N E ,N V ,M V (32

1,N L (16),KEST
DATA NW/2,3,5,9,17,33,65,129/

C * * * *
C
C STEP 0 (INITIALISE)
C
C * * * *

NE=1 .+ALOG(FLOAT(NVI))/ALOG(2.0)
M=N IG-NE
IF (M .GT .9) M= 9
N E = NIG - M
N 1 = 2 * *M
NF=2**NE
DO 1 1=1,NIG
N B (I) = 0

1 MAJ(I)=0
DO 3 1=1,NVI
DO 2 J=1,NIG
IF(IT EST(MVI(I),J).EQ.1)N B (J)= N B (J) +1

2 CONTINUE
3 CONTINUE

DO 4 1=1,NIG
MAX= 0
DO 5 J=1 , NIG
IF(NB(J).LE.MAX)GO TO 5
MAX=NB(J)
JM = J

5 CONTINUE
M A J (I) = ION BT(MAJ(I) ,JM)
NB(JM)=0

4 CONTINUE
C * * * *
c
C STEP 10 (CONSTRUCT FIRST COLUMN OF ALIASING MATRIX AND
C SET MARKERS)
C
C * * * *

210 JAK= 1
K(1)=0
MM = 0
DO 6 1=1,NVI

6 IN(I)=100
DO 7 1=2,NF
IF(N EW(I).NE.1)GO TO 8
L L= 1

n
o
o
n

o
o

o
o

o
o

A 2 - 10

MM=MM+1 t .
K (I)= MAJ(MM)
GO TO 11

8 LL=LL+1
K(I)=K(LL).XOR.MAJ(MM)

11 DO 9 J = 1, N VI
IF(K(I).NE.MVI(J))G0 TO 9
IV(I)=1
KR (I)=0 ,
IN (J) = 0
GO TO 7

9 CONTINUE
K R (I)=100
I V (I)=-1

7 CONTINUE
IF(M.GT.O)GO TO 20
DO 12 1=2,NF

12 K D (I) = K (I)
GO TO 1001
* * * *

STEP 20 (WILL NEXT DEFINING CONTRAST BE A GENERATOR?
IF SO, RESET ROW MARKERS)

* * * A
20 JAK=JAK+1

IF(JAK.GT.NI)GO TO 1000
IF(NEW(JAK).N E .1)GO TO 70

30 LNEW=JAK
L L= 1
DO 13 1=2,NF
IF(KR(I).GE.LNEW)IV(I)=-1

13 CONTINUE
* * * *

STEP 40 (FIND FIRST AVAILABLE REQUIREMENT COUNTING FROM
END OF SET. IF NONE, RETURN TO STEP 20)

C
C * * * *

DO 14 1=1,NVI
J=NVI-I + T
IF(IN(J).GE.LNEW)GO TO 15

14 CONTINUE
N 1=JAK-1
GO TO 1000

15 LE=MVI(J)

I

n
o
n
o
n
n

o
o
n
n
o

Q * * * *
c
C STEP 50 (FIND FIRST AVAILABLE ROW AND CREATE TEST
C DEFINING CONTRAST (KEST))
C
Q * * * *

50 DO 16 1=2,NF *
J = NF-1 + 2
IF(KR(J).GT.LNEW)GO TO 52
GO TO 16

52 LO = J
GO TO 60

16 CONTINUE
IF(LNEW.GT.2)GO TO 17
LO = -'l
GO TO 90

17 LO =0
GO TO 90
* * * *

STEP 70 (USE GENERATOR TO CREATE DEFINING CONTRAST)
* * * *

60 K R (L O)=L NEW
KEST=LE.XOR.K(LO)
GO TO 80

70 LL=LL+1
KEST=KK(LL).XOR.KK(LNEW) •
* * * *

STEP 80 (TEST NEW DEFINING CONTRAST FOR ALIASING AND
SET MARKERS)

* * * *
80 1=1
81 1=1+1

IF(I.GT.NF)GO TO 18
KT=K(I).XOR.KEST
J = 0

83 J=J+1
IF(J .GT.NVI)GO TO 81
IF(MVI(J) .NE.KT)GO TO 83
IF(IV(I) .NE.-DGO TO 120
IV(I)=0
1N(J)=LNEW
K R (I)=L NEW
CO TO 83

18 KK(JAK)=KE ST
GO TO 20

n
n

n
n

C * * * *

STEP 90 (BACKTRACK TO PREVIOUS LNEW)

* * * *

90 IF(LO.EQ.O)GO TO 19
NF=NF*2
NI=Nl/2
GO TO 210

19 J A K= (LNEW-1) / 2*4-1
DO' 2 1 1 = 2 ,NF
IF(KR(I).GE.LN EW)K R (I) = 10 0

21 CONTINUE '
GO TO 30

C * * * *
c
C STEP 120 (SINCE KEST HAS FAILED, RESET REQUIREMENTS
C SET MARKERS)
C * ‘
C * * * *

120 DO 22 J=1 ,NVI
IF(IN(J).GE.LNEW)IN(J)*100

2 2 CONTINUE
GO T050

1000 CALL FRADE(NIG)
1001 N GI = 0

J = 0
140 J=J+1

JG=NW(J)
IF(JG.GT.NF)RETURN
NGI=NG1+1
IB (NGI) = KD(JG)
GO TO 140
END

o
o
n

n
n

n

n
o

o
n

o
o

o
n

n
n

n
n
o
n
o
n

n
n

n
n

n
o

SUBROUTINE FRAD E(NIG)
COMMON N,NF,KD(128),NI,K(128),NAMEX(10),KK(512),NE
k k k k

STEP 0 (COPY FIRST COLUMN OF ALIASING MATRIX
TO DESIGN VECTOR)

* * * *
DO 1 1*1,NF

1 KD(I)=K(I)
10 JJ*KD(NF)
15 NE=NE+1

DO 2 1*1,NIG
. J = ION B T (0,1)

JTEST=J.AND,JJ
IF(JTEST.EQ.0)GO TO 20

2 CONTINUE
* * * *

STEP 20 (FIND 'JIP' : DEFINING CONTRAST WITH
FACTOR TO BE ADDED) ,

* * * *
20 JJ «J .O R .J J £

DO 22 1*2,NI
JIP=KK(I)
JTEST=J.AND,JIP
IF(J.NE.JTEST)GO TO 22
JTEST*JJ.AND.JIP
IF(JIP.EQ.JTEST)GO TO 30

2 2 CONTINUE
* * * *

STEP 30 (COPY 'JIP', REMOVING 'J') '

* * * - *
30 NT = J .XOR.JIP

* * * *

STEP 40 (FIND NUMBER OF BITS IN COMMON BETWEEN
EACH DESIGN ELEMENT AND 'NT')

* * * *
DO 4 1=2,NF
NB=NT.AND.KD(I)
L = 0
DO 3 11=1,NIG
IF(iTEST (NB , II) *.EQ. 1)L = L + 1

3 CONTINUE
k k A *

S T E P 5 0 (A D D F A C T O R T O D E S I G N E L E M E N T I F N U M B E R
O F B I T S (L) I S O D D)

C * * * *
I F (I T E S T (L , 1) . E Q . 1) K D (I) = K D (I) . O R . J

' 4 C O N T I N U E
I F (N E . L T . N I G) G O T O 1 5
R E T U R N 1 ; ; j

S U B R O U T I N E S E L G (N I G , N G I , I B , N L L , L I , I X , I D D)
D I M E N S I O N I B (8) , I X (1 6 , A) , N L L (1 6) , I D D (8 , 1 6) , 1 1 (1 6) , I L (8) , I K K (1 6)

1 , I D T (8 , 1 6) , I K (1 6)
C * * * *
c
C I N I T I A L I S E
C .
C * * * *

N O M I N = 1
N B = 1 - N I G
1=0

2 1 = 1+1
I F (I . G T . N I G) G O T O 6
N O M I N = N O M I N * N L L (I)
NB=NB+NLL(I)
G O T O 2

6 N 0 1 = N 0 M I N - 1
C * * * *
G
C CONVERT PRIME GENERATORS FROM BINARY TO
C INTEGER FORM : FIND ORDERS AND PRODUCTS
C
C * * * *

J = 0
N 0= 1

11 J=J+1
IF(J .GT.NGI)GO TO 21
1 = 0

14 1=1+1
IF(I.GT.NIG)GO TO 19
IDD(J ,I)=ITEST(IB(J) ,I)
1I(I)=J0RD(IDD(J,I) ,NLL(I))
GO TO 14

19 IL(J)=LCM(II,NIG)
N0=N0*IL(J)
GO TO 11

21 1F(N0.LT.NB.OR.NO.GT.NOMIN)GO TO 30
M = 0
N OMIN=N 0
N 01=N 0-1

C * * * *
C
C CYCLE GENERATORS : COMPUTE ORDERS AND
C PRODUCTS : TEST FOR IMPROVEMENT
C
C * * * * r

30 1 = 0
31 1=1+1

IF(I.GT.NO 1)GO TO 70
DO 33 J= 1,N IG

IKK(J)“0
33 I K (J)*0

NO = 1
K J = I
IJ = 0

35 IJ=IJ+l
IF(IJ.G T .NGI)GO TO 47
L=(KJ-1)/IL(IJ)
MM=KJ-IL(IJ)*L
KJ=L+1
JK=0

39 JK=J K+l
IF(JK.GT.NIG)GO TO 46
KKK=IDD(IJ,JK)*MM
L = NLL(J K)
IDT(IJ,JK)=KKK-L*(KKK/L)
IT=IDT(IJ,JK)
II(JK)=JORD(IT,L)
IF(IT.EQ.0)GO TO 39
IK(JK)=IK(JK)+IT '
IF(IHCF(IT,L).EQ.1)IXK(JK)=1 '
GO TO 39

46 ILT = LCM'(11, N IG)
N 0=N 0*I LT
GO TO 35

4 7 J=0 ,
48 J = J + 1

IF(J .GT.NIG)GO TO 52
IF(IK(J).EQ.0)GO TO 31
IF(IKK(J).EQ.O)GO TO 31
GO TO 48

C * * * *
C
C FOR THOSE PAIRS OF FACTORS WITH EQUAL NUMBERS
C OF LEVELS, CHECK THERE IS AT LEAST ONE GENERATOR
C IN WHICH THESE TWO FACTORS HAVE DIFFERENT INTEGER
C VALUES
C
C * * * *

52 IXJ=0
53 IXJ=IXJ+1

IF(IXJ.GT.LI)GO TO 67
IF(IX(IXJ,2).NE.2)G0 TO 53
13 = 0

57 13=13*1
IF(NLL(I3).NE.IX(IXJ,l))GO TO 57
14 = 13

60 14=14+1
I F (NLL(14).N E .IX(IXJ,1))GO TO 60
J3 = 0

63 J 3=J3+1
I F (J 3 ,GT .NGI)GO TO 31
IF(IDT(J3,13).NE.IDT(J3,14))GO TO 53
GO TO 63
* * * *

ALL TESTS PASSED : IS IT AN IMPROVEMENT?

* * * *
67 IF(NO.LT.NB.OR.NO.GT.NOMIN)GO TO 31

M= I
NOMIN=N 0
GO TO 31
* * j * *

IF M=0 USE PRIME GENERATORS

* * * * .
70 IF(M .G T .0)GO TO 75

NO=NOMIN
RETURN
* * * *

USE M TO RECOMPUTE BEST SET OF GENERATORS

* * * *
75 1 = 0
76 1=1+1 ,

IF(I.GT.NGI)RETURN
L=(M-1)/IL(I)
MM=M~IL(I)*L .
M=L + 1
J = 0

80 J=J+1
IF(J .G T .NIG)GO TO 85
KJ=IDD(I,J)*MM
L=NLL(J)
IDD(I,J)=KJ-L*(KJ/L) .
II(J)=JORD(IDD(I,J),L)
GO TO 80

85 IL(I)=LCM(II,NIG)
r GO TO 76

n
o

o
n

n

FUNCTION LCM(I,NN)
DIMENSION 1(16)

C * * * *

FIND LOWEST COMMON MULTIPLE OF SET I(.)
OF NN INTEGERS
* A *
N-NN
J*0 i
LCM-0
K*»0

10 K-K+l
IF(K.GT.N)GO TO 20
IF(I(K).LE.LCM)GO TO 10
LCM-I(K)
MM-K
GO TO 10

20 K-MM
21 J-IONBT(4,K)

M»LCM i
N-N-l
IF(N.EQ.O)RETURN
K“0

25 K-K+l
IF(K.GT.NN)RETURN
IF(ITEST(J,K).EQ.l)GO TO 25

28 IF((LCM/I(K))*I(K).EQ.LCM)GO TO 21
LCM-LCM+M
GO TO 28
END !

FUNCTION MOD(J , K , L)
* * * *

ADD J AND K, MODULQ M
* * * ' *
MOD3* J+K

1 I F(MOD. LT.L-) RETURN
MOD-MOD-L
GO TO 1
END

n
n

n
n

n
o

n
n

o

SUBROUTINE LEV(I ,N G ,IL,ID,IK)
D I M E N S I O N I E (8) , I D (8 , 1 6) , I K (1 6)
C O M M O N N , N F , K D (1 2 8) , N I , K (1 2 8) , N A M E X (1 0) , K K (5 1 2) , N E , N V

1 , M V (3 2) , N L (1 6)
C * * * *

D E T E R M I N E A L L F A C T O R L E V E L S F O R I ' T H O B S E R V A T I O N
* * * *
D O 2 J * 1 , N

2 IK(J)=0
I F (I . E Q . 1) R E T U R N
K 1 “ I - 1
J ■* 0

1 0 1 J = J + 1
I F (J . G T . N G) R E T U R N '
L = (K 1 - 1) / I L (J)
M “ K l - I L (J) * L
K 1 = L + 1
J J = 0

2 0 1 J J = J J + 1
I F (J J . G T . N) G O T O 1 0 1
K K 1 “ I D (J , J J) * M 1
L “ N L (J J)
L L “ K K 1 - L * (K K 1 / L)
I K (J J) “ M O D (I K (J J) , L L , L)
G O T O 2 0 1
E N D

FUNCTION IHCF(J J ,KK) •
J = JJ
* * * . * !

FIND HIGHEST COMMON FACTOR OF JJ AND KK

* * * *
K = KK

2 IF(J .GT.K)GO TO 5
IF(J.EQ.K)GO TO 8
I D = K
K=J
J = I D

5 ID=J-K
IF(ID.EQ.0)GO TO 8 j •
J = K
K= ID
GO TO 2

8 IHCF = K !;
RETURN 1
END 1

FUNCTION NEW(I)
C * * * *
c
C TEST IF- "I" IS OF FORM 2**R + 1
C
0 * * * *

IF (I.EQ.2)GO TO 4
NEW = 0
J = 1
11 = 1-1 ,

3 J = J*2 ,
IF(J .L T .11)GO TO 3
IF(J.EQ.I1)NEW=1 ;
RETURN

4 NEW=1
RETURN I
END

FUNCTION JORD(L,N)
C * * * *
c ■ ■ i, ■ i
C FIND ORDER OF ELEMENT L
C IN CYCLIC GROUP OF ORDER N
C : , ■ ■ , ! '' '
c * * * *

IF(L.EQ.0)JORD=l
IF(L.NE.O)JORD=N/IHCF(L,N),
RETURN.
END

SUBROUTINE RANDU(IX,JY,YFL)
IY=IX*899
IF(IY)5,6,6

5 IY*=I Y+32 7 67 + 1 *
6 YFL=IY

YFL=YFL/32767 . 0
RETURN j
END

The Automatic Design of Experiments

!; l ■: /’ ,

Some Practical Algorithms
1 j ' ;
;t' . * * ! ■ '

APPENDIX THREE j:
ii i; : . !

The programs listed in this appendix represent a full
implementation of the algorithms developed, in chapter
seven except for those subroutines already listed in
appendix two and for which there are no changes. These
subroutines are: ENFAC, j1 FASET, DEFGEN, FRADE, 1 MOD,
SELG, LEV, LCM, IHCF, NEW, JORD, RANDU.

T ' J "
The main program MULFAC fras been modified., as described

i i 1 ' ■ 'in chapter seven, and lipks with the seqond main program
REDDES. ; ■ '! i ■ ; (■ ' iI

! .' !

The programs huve been written in standard Fortran 4
' I : - 'with the same exceptions a[nd extra functions as were

described in appendix one. • * .
I : ■ : . , ; i

Again, users should carejfully check that the dimension
. I ! i ' ; :statements are adequate for their problems.

Contents !
i

* Page. !

MULFAC
j :

A3 - 1
REDDES i A3 - 6

' !i
INVERT |

! j
A3 -11

DROW ! A3 - 11
CONTRA A3 - 1£t
RANDOM 1 J A3 - 14! , !i
SWAP j ! A3 - 14

C MULFAC
DIMENSION IX(16,4),MVI(16),IK(16),LF(16)
1,IDD(8,16),IB(8),II(16),NLL(16)
COMMON N,NF,KD(128),NI,K(128),NAMEX(10),KK(512),NE,NV,MV(32),
1NL(16),KEST,NG,NO,NC,NC1,ID(8,16),IL(8),ICON(20,20)
CALL ENFAC
DO 1 1-1,8
DO 1 J-1,16

1 ID(I,J)-0
NG-0 I
CALL FASET(IX,JG,LI)

C * * * * ;
c
C FIND NEXT SUITABLE FACTOR SUBSET
C ' j,
c * * * *

20 IG-0 ;
MIN-100 |

21 IG-IG+1 j
IF((IX(IG,1).LT.MIN)
1.AND.((IX(IG,2).GT.2).OR.
1(IX(IG,3).NE.O)))GO TO 23 j ,
GO TO 24 !

23 MIN-IX(IG,1) |
IM-IG |

24 IF(IG.EQ.LI)GO TO 25 ,
GO TO 21 '

25 IF(MIN.EQ.100)GO TO 100
IF(IX(IM,2).GT.2)GO TO 27
NGI-0 1

26 NGI-NGI+1 ji
IB(NGI)-2**(NGIrl) ,
IF(NGI.EQ«IX(IM,2))GO TO 66 »
GO TO 26

C * * * * i
c ! i ;
C INITIALISE FOR ENTRY TO DEFGEN
C | ; .
C it it * it

27 NIG«IX(IM,2)+IX(IM,4)
NVI=IX(IM,4)

29 NVI-NVI+1
MVI(NVI)-O
MVI(NVI)-IONBT(MVI(NVI),NVI)
IF(NVI.LT.NIG)GO TO 29
MASK-0 ; ;

C * * * * | ;
C
C FIND INTERACTIONS BETWEEN FACTORS IN CURRENT SUBSET
C j ,
C * A A * , j j

1-0 ! !
33 I-I+l

IF(I.GT.N)GO TO 37
IF(NL(I).EQ.IX(IM,1))MASK-I0NBT(MASK,I)
GO TO 33 j 1

37 I-N ! ! ' ,
38 I-I+l

IF(I.GT.NV)GO TO 50 !
ITT-MASK.AND.MV(I) , ■ -
IF(ITT.EQ.O)GO TO 38 1 : 1 1

c
c
c
c
c

c
c
c
c
c

11-0
J-0
NVI-NVI+1
MVI(NVI)-0

42 J-J+l
IF(J.GT.N)GO TO 38
I F (ITEST(MASK,J)•NE.1)G0 TO 47
Il-Il+l
IF(ITEST(MV(I),J).EQ.1)MVI(NVI)-IONBT(MVI(NVI),11)

47 GO TO 42
50 CALL DEFGEN(NGI,IB,NIG,NVI,MVI)

NOG*IX(IM,1)**NGI
A A A A

IS SUBSET LINKED TO A PREVIOUS ONE?

A A : A A
IF(IX(IM,3).EQ.O)GO TO 70

66 J*IX(IM,4)
J1*IX(J,3)-l
LL=IX(J,4)
GO TO 80

70 1-0 | ,
L-0 '
LL-0
Jl-NG ;

71 1*1+1
IF(I.GT.LI)GO TO 80 , ,
IF(I.EQ.IM)GO TO 71
IF(IX(I,4).NE.O)GO TO 71
IF(IX(I,l).NE.NOG)GO TO 71
IX(I,3)»IM
IX(IM,3)-NG+l
JG-JG+1
IX(IM,4)-NG+NGI
IX(I,4)-1
A A A A

CONVERT GENERATORS FROM BINARY TO INTEGER FORM
i i ;A A A A *

80 1-0
81 1*1+1

IF(I.LE.NGI)GO TO 85
IX(IM,1)-100
IF(J1.GT.NG)NG-Ji
GO TO 20

85 Ji-Jl+li ;
L-0
J-0

86 J-J+l
IF(J.GT.N)GO TO 81
IF(NL(J).NE.IX(IM,1))GO TO 86
L-L+l
ID(Jl,J)-ITEST(IB(I),L)
GO TO 86

u
u
u
o
u

o
o
o
o
o

* * * *

HOW MANY FACTORS NOT YET IN GENERATORS

* * * *
100 L-0

1-0
101 I-I+l

IF(I.GT.LI)GO TO 105
IF(IX(I,1).NE.100)L«L+IX(I,2)
GO TO 101

105 IF(L.EQ.O)GO TO 200
IF(L.GT« 2)GO TO 120
1*0

108 I-I+l
IF(I.GT.LI)GO TO 200
IF(IX(I,4).NE.0)G0; TO 108
I1«IX(I,1)
12-0
13-0

lli I2-I2+1
IF(I2.GT.IX(I,2))GO T0108

114 I3-13+1
IF(I3.GT.N)GO TO 108
IF(NL(I3).NE.I1)G0 TO 114
NG-NG+1
ID(NG,I3)-l
GO TO 112.
* * * *

INITIALISE FOR DEFGEN

•k * k * !i .
120 NIC-L •

NVI-Q
121 NVI-NVI+1

MVI(NVI)-O
MVI(NVI)-IONBT(MVI(NVI), NVI)
IF(NVI.LT.NIG)GO TO 121
MASK-0
1-0 *

126 I-I+l
IF(I.GT.LI)GO TO 135 !
IF(IX(I,4).NE.0)G0 TO 126
11-IX(I,1)
12-0

130 I2-12+1
IF(I2.GT.N)GO TO 126
IF(NL(I2).NE.I1)G0 TO ;130
MASK-IONBT (MASK, 12)
GO TO 130

135 I-N
136 I-I+l

IF(I.GT.NV)GO TO 150
ITT-MASK.AND.MV(I) *
IF(ITT.EQ.O)GO TO. 136
11-0
J-0 | ‘
NVI-NVI+1 I
MVI(NVI)»0 j

o
n

rs
n

o

m u j-jTi
IF(J.GT.N)GO TO 136
IF(ITEST(MASK,J).NE.1)G0 TO 140
11*11+1
IF(ITEST(MV(I),J).EQ.1)MVI(NVI)*I0N11T(MVI(NVI),11)
GO TO 140

150 CALL DEFGEN(NGI,IB,NIG,NVI,MVI)
1*0
12*0

156 1=1+1
IF(I.GT.N)G0 TO 170
11*0

159 11*11+1
IF(11.GT.LI)GO TO 156
IF(IX(Il,4).NE.0)GO TO 159
IF(NL(I).NE.IX(I1,1))G0 TO 159
12=12+1
NLL(I2)*NL(I)
LF(I2)*I !
GO TO 159

170 CALL SELG(NIG, NGI,IB,NLL,LI,IX,IDD)
Q A A A A
c 1: ' F ,
C COPY GENERATORS FROM SELG INTO GENERATORS -
C FOR ALL FACTORS '
C j • ; ,
(] A A A A r

1-0 !
181 I-I+l

IF(I.GT.NGI)GO TO 200
NG-NG+1
J*0 ;1 ,

184 J-J+l
IF(J.GT.NIG)GO TO l8(
I1=LF(J)
ID(NG,II)*IDD(I, J)
GO TO 184 ;
A A A A

FIND FULL pESIGN SIZE

A A A A
200 1*0 . '

WRITE(5,500)NAMEX
500 FORMAT(///' * a a a a' / //'GENERATORS FOR ',10A.:

1///)
NO=l

201 1=1+1 i ;
IF(I.GT.NG)GO TO 208
J=0

204 J-J+l
IF(J.GT.N)GO TO 207
II(J)=JORD(ID(I,J),NL(J))
GO TO 204

207 IL(I)=LCM(II,N)
501 FORMAT(10X;i6I2)

NO-NOAIL(I)
GO TO 201 | 11

ii

208 NFULL-1
1-0

209 I-I+l
I F(I.G T . N) G O TO 2091
N F U L L - N F U L L * N L (I)
GO TO 209

2091 I F (N O . L E . N F U L L) G O TO 2095
N O - N F U L L ! :
NG-N
1-0 . ./ I;

2092 I-I+l
IF(I.GT.N)G0 TO 2095
J-0 r ' :
IL(I)-NL(I) ;

2093 J-J+l ! i 1
IF(J.GT.N)GO TO 2092 ■, !' , •
ID(I,J)-0 | , i
IF(I.EQ.J)ID(i;j)-l j j ! ■
GO TO 2093 ,

2095 DO 20951 I-1,NG '
20951 WRITE(5,501)(ID(I,J),J«1,N)

CALL CONTRA '
WRITE(5,2096)NO,NCI 1 ' '

2096 FORMAT(/ / 'BALANCED DESIGN HAS',15/ POINTS. AT LEAST',14,
1' NEEDED.'/'TYPE Y FOR BALANCED DESIGN ELSE N')
READ(5,2097) IY

2097 FORMAT(1A1) ^
IF(IY.EQ.'Y')GO TO 210 1
CALL LINK('REDDES')

210 1-0 ,

WRITE(5,350)NAMEX
350 FORMAT(///' * * * * ! *'//'DESIGN FOR ',10A2

1///) ' 1
211 I-I+l

IF(I.GT.NO)GO TO 1000
CALL LEV(I,IK) ’
WRITE(5,301)(IK(LL),LL-1,N)

301 FORMAT(1016)
GO TO 211

1000 CALL RANDOM(NO)
STOP i
END • | , , |

C REDDES
C * * * * ;
C
C REDUCE DESIGN
C
c * * * *

BIT BITS(3200)
DIMENSION 11(20),IY(20),IA(20)
1,IC(20),IK(16),Y(20),A(20,20),B(20,20),C(20,20)
I,ETA(20)
COMMON N,NF,KD(128),NI,K1(128),NAMEX(10), KK1(512),NE,NV,MV(32)
1,NL(16),KEST,NG,NQ,NC,NC1,ID(8,16),IL(8),ICON(20,20)
EQUIVALENCE(IY(2),11(1))

C * * * *
C
C INITIALISE f
C i !
C * ’ * * * *

CALL FREMAT i
WRITE(5,1) !

1 FORMAT('ENTER ND:DESIGN SIZE WANTED")
READ(5,2)ND

2 FORMAT(V) j
DO 5 1*1,NO

5 BITS(I)-.FALSE. j ,
IY (1) =* 1
JJJ-1
K-0

81 1*0 |
k-k+i i' :i
IF(K.GT.NO)GO TO 98

82 I-I+l
IF(I.GT.NO)GO TO 81
IF(BITS(I))G0 TO 82 ;
CALL LEV(I,IK)
CALL DROW(IK,II)
IF(IY(JJJ).NE#l)GO TO 82
L-JJJ !

88 L-L+l , '
IF(L.GT.NC1)G0 TO 92
IF(IY(L).NE.O)GO TO 82
GO TO 88

92 L-0
93 L-L+l

IF(L.GT.NCI)GO TO 96
A(JJJ,L)-IY(L)
GO TO 93

96 IA(JJJ)-I i
JJJ-JJJ+1 j
BITS(I)-.TRUE. j j
IF(JJJ.LE.NCl)GO TO 81

98 IC(1)-1000 !
DO 99 1-2,NCI |

99 IC(I)-0

c * * * *
c
C FIND EXTRA ROWS,IF NEEDED,IN ORDER
C OF DIAGONAL VALUES-1
C
C * * * *

IF(JJJ.GE.NC1)GO TO 120
101 1-1 1
102 I-I+l

IF(I.GT.NO)GO TO 101
K-0

105 K-K+i 1
IF(K.GT.NC1)G0 TO 109
IF(I.EQ.IA(K))G0 TO iq5

109 BITS(I)-.FALSE.
CALL LEV(I,IK)
CALL DROW(IK,II) 1
IF(IY(JJJ).NE.l)GO TO 102
K-0

114 K-K+l :
IF(K.GT.NC1)G0 TO 117
A(JJJ,K)-IY(K)
GO TO 114

117 IA(JJJ)-i; 1
BITS(I)-.TRUE.
JJJ-JJJ+1 i
IF(JJJ.LE.NC1)GQ TO 102 ,

120 CALL INVERT(A,B,0ETA,NC1)
C * * * * j
c
C FIND NEXT ROW TO ENTER
C BITS SET IF ROWS HAVE BEEN IN
C ' , j.'
c * * * *•

125 IN-1
126 IN-IN+1 i *

IF(IN.GT.NO)GO TO 180
IF(BITS(IN))GO TO 126
BITS(IN)-.TRUE.
CALL LEV(IN,IK) j
CALL DROW(IK,II)

C * * * *
C
C COMPUTE Y-B'*IY
C
C * * * *

1-0
Y MAX— 1000.
ICMIN-1000 (

133 I-I+l 1 ;
IF(I.GT.NC1)GO TO 146
Y(I)-0.
J-0 , !

136 J-J+l
IF(J.GT.NC1)G0 TO 140
Y(I)=Y(I)+B(J,I)*IY(J)
GO TO 136

140 IF(Y(I).LT.YMAX)GO TO 133
IF(Y(I).LT.l)GO TO 133
IF(I.EQ.l)GO TO 133 !

1/ i

c * * * *
c
C IF THERE ARE SEVERAL EQUAL MAX' HUH VALUES
C OF Y(I),CHOOSE THE FIRST FO: WHICH
C IC(I) IS LEAST.
C
C * * * *

IF(Y(I).GT.YMAX)GO TO 144
IF(IC(I).LT.ICMIN)GO TO 145
GO TO 133

144 ICMIN"IC(:I)
145 YMAX*Y(I)

IOUTaI
GO TO 133

146 IF(YMAX.£Q.-100O.)GO TO 126
J“IA(IOUT)
IA(IOUT)-IN
IC(IOUT)-IC(IOUT)+l

C * * * *
C j
C DETERMINANT OF 1}EW MATRIX
C r C * * i * * j

DETA-YMAX*DETA ; I '
C * * * *
c j . ■
C COMPUTE ETA
c U
c * * i * *

1*0 i t
151 I»I+\

IF(I.GT.IfCl)GO TO 160
ETA(I)— Y(I)/YMAX ‘ •
IF(I.EQ.IOUT)ETA(i)»l.0/YMAX
GO TO 151,

C * * * *
C ; ; : i i
C COMPUTE NEW MATRIX
C j
C * * * *

160 1=0 ’ ' ,
161 1*1+1

IF(I.GT.NC1)GO TO 175
J*=0 i

164 J*J+1 *
IF(J.GT.NCI)GO TO 161
C(I,U)=0.; |
K«0 1 i .

167 K-K+.‘
IF(K.GT.ljCl)GO TO 164
IF(K,NE.IOUT)GO TO 172
C(I,j)-C(I,J)+B(I,K)*ETA(J)
GO TO 167 t

172 IF(K.NE.J)GO TO 167
C(I,J)-C(I,J)+B(I,K):
GO TO 167

175 CALL SWAPCB.C^Cl)
GO TO 125 ! 1

n
n

n
n

n
o

n
o

o

180 WRITE(5,780)
780 FORMAT(//'BASIC DESIGN'//)

NI-0 ;
182 NI-NI+1

IF(NI;GT.NCI)G0 TO 190
J-IA(NI) '
CALL LEV(J,IK)
WRITE(5,781)(IK(L),L«1,N)

781 F O R M A T(16X6) iJ
GO TO 182

190 WRITE(5,732)
782 FORMAT(//'EXTRA ROWS'//)

C * * * . * :j L'= ■ •
r • :

SET A - A ' A
! 1 ' : j '• '

* * * * ' ! !'■
DO 201 I-l.NO ' ;
BITS (I)**. FALSE. | I
DO 199 J-1,NC1
IF(I.EQ.IA(J))GO,TO 200

199 CONTINUE
GO TO 201 1

200 BITS(I)“.TRUE.
201 CONTINUE

DO 202 I-1,NC1 , !
DO 203 J-1,NC1
C(I,J)-0. ;
DO 205 K-1,NC1

205 C(I,J)-C(I,J)+A(K,I)*A(K,J)
203 CONTINUE . ; ;!
202 CONTINUE ,

IF(NI.GT,ND)GO TO 250?
CALL;SWAP(A,C,NCI) |
* * * * , 1 i

SET B-BB' . !
A * * A
DO 208 1-1,NCI
DO 209 J-l.NCl
C(I,J)-0.
DO 2\i K-1,NC1 i

211 C(I,j)«C(I,J)+B(I,K)*B(J,K)
209 CONTINUE ;
208 C O N T I N U E . r

C ALL!SWAP(B,C,NCl)
D E T A « D E T A * D E T A j

c * * * *
c
C LOOK FOR AVAILABLE ROW AND TEST IT.
C
C * * * * i

215 1-1
DTMAX— 1.

216 I-I+l
IF(I.GT.NO)GO TO 233 ;
IF(BIT-S(I))GO TO 216
CALL LEV(I,IK)
CALL DROW(IK,ID j ;
J-0
DTEST-0.

222 J-J+l V
IF(J.GT.NCI)GO TO 231
IF(IY(J).EQ.O)GO TO 222
K-J :
DT EST-DTEST+B(J,J) ■ !

227 K-K+l ! ; j, '
IF(K.GT.NCI)GO TO 222 L'
IF(IY(K).EQ.O)GO TO 227
DTEST-DTEST+2*B(J,K)' !
GO TO 227 t

231 IF(DTEST.LT.DTMAX)GOjTO 216
DTMAX-DTEST i V
IN-1 ;
GO TO 216

233 CALL LEV(IN.IK) ;
BITS(IN)-.TRUE. ,
WRITE(5,7Bl)(IK(L),L-liN)
IF(NI.GE.ND)GO TO 250 .
NI-NI+1
D-1+DTMAX '
DETA-D*DETA |
CALL DROW(IK,II) > jI

C * * * * i
C ' ' i
C COMPUTE NEW INVERSE
C j
c * . * * *

IF(D.LE.0.0001)GO TO 215
DO 239 I-l.NCl M

239 Y(I)-0,
1-0

241 I-I+l j
IF(I.GT.NCl)GO TO 246
IF(IY(I).EQ.O)GO TO 241
DO 244 J-1,NC1

244 Y(J)-Y(J)+B(I,J)
GO TO 241

246 DO 247 jl-1,NC1 |
DO 248 J-l,NCl

248 B(I,J)-B(I,J)-Y(I)*Y(J)/D
24 7 CONTINUE '

GO TO 215
250 CALL RANDOM(ND) ’ j i

STOP I
END

nn

n
o

SUBROUTINE INVERT(A,B,D,M)
DIMENSION A(20,20),B(20,20)
D-l.
TH-l.E-7
CALL SWAP(B,A,M)
DO 20 I-1,M
D-D*B(I,I)
IF(B(IfI).LT.TH)D»0.
IF(D.EQ.0.)RETURN
B(I,I)-1./B(I,I)
DO 10 J-l ,M
IF(J.NE.I)B(I,J)=B(I,J)*B(I,I)

10 CONTINUE !
DO 16 II-l,M '
IF(II.EQ.I)GO TO 16
DO 15 J-1,M ; j,
IF(J.EQ.I)GO TO 15 , ’ '
B(II,J)-B(II,iJ)-B(I,J)*B(li,lj

15 CONTINUE M '
16 CONTINUE

DO 18 J-l.M ,
IF(J.NE.I)B(J»I)=-B(J,I)*B(I,1)

18 CONTINUE ; ,
20 CONTINUE

RETURN
END

SUBROUTINE OROW(LK,II) I i!
DIMENSION IK(16),11(20) '
COMMON N,NF*KD(128),NI,K(128),NAMEX(10),KK(512),NE,NV,MV(32),
1NL(16) ,1CEST,NG,NO,NC ,NC1, ID(8,16), IL (8), ICON(20,20)

a a A * ‘

DESIGN ROW
‘ . »

c * * * a j
1-0 ' : I . ;

2 l-I + l |
IF(I.GT.NORETURN l
II(I)“0
L-0 ; 1 ‘
J-0 ! ■ ;

5 J-J+l | i ,
IF (J. GT. N) GO ;TO 11 , *
IF(ICON(I,J).EQ.O)GO TO 5 i
IF(IK(J).EQ.O)GO TO 5
IF(ICON(I,J).NE.IK(J))GO TO 2
L-L+l ,
GO TO 5 I !

11 II(I)«ITEST(L,1)
GO TO 2 ! i
END ; 1 | 1 \

OOCJOO
oouuoo

o
o
u
u
u
u

S U B R O U T I N E C O N T R A
D I M E N S I O N I D T (8 , 2 0) , I L T (8)
C O M M O N N , N F , K D (1 2 8) tN I ,K 1 (1 2 8) , N A M E X (1 0) , K K 1 (5 1 2) , N E , N V , M V (3 2)

1N L (1 6) , K E S T , N G , N 0 , N C , N C 1 , I D (8 , 1 6) , I L (8) , I C O N (2 0 , 2 0)
* * * *i ■ - j

S E T UP M A I N E F F E C T C O N T R A S T S !
' ' I

* * * *i-o 1 ■ J ' . V ■ ■ ■
L-0 j
IF(I.GT.N)G0 TO 30 , v, ,

13 L-L+l ; • ' M1 . . ■. 1
IF(L.EQ.NL(I))GO TO li !'■
Il-Il+l - ' { , ' ■
J-0 J .'

16 J-J+l j ■: . !
IF(J.GT.N)G0 TO 19 ■ t
IC0N(I1,J)-0
GO TO 16 I , !

19 ICON(II,I)-L ; j
GO TO 13 I '
* * * *

: \ i .
FIND NN-NUMBER OF CONTRASTS RELATED TO

AN INTERACTION MV(I) L

* * * k '

30 IF(I.GT.NV)GOTO 80 ,' ■ , ;j . :
J-0 i
NN-i (

31 J-J+l ' : i
IF(J.GT.N)G0 TO 135 * ' 1hi
IF(ITEST(MV(I),J).EQ.O)GO TO 31
NN-NN*(NL(l)-l) ! !
GO TO 31 p
* * * *

, i .; i
SET UP CONTRAST GENERATORS MlDT"j AND THEIR ORDERS

'ILT' GIVEN MV(l)
! I ■.]:

* * * * ' i !
35 KG-0 :

J-0 ; J
36 J-J+l | i

IF(J.GT.N)GO TO 46 ' i
IF(ITEST(MV(l),J).EQ.O)GO TO 36 !
KG-KG+1 '

i'

o
n

n
ci

n

L-0
AO L-L+l

IF(L*GT.N)GO TO 36
IF(L.NE.J)GO TO |A5

44 IDT(KG,L)«1
ILT(KG)»NL(J)
GO TO 40 \

45 IDT(tCG,L)-0 |
GO TO 40 '
* * * *

i !

USE GENERATORS TO FIND CONTRASTS ' ICON'

* * * *
46 IJ-0 | :
47 u-u+i ;

IF(IJ.GT.NN)GO TO 30 '
11*11+1
J*0 j 1|

50 J*J+1
IF(J.GT.N)G0 TO 55 i ' '
ICON(I1,J)-0
GO TO 50 , | , , i

55 K-IJ , '■ :
j-o , l; ,

56 J-J+l i , i
IF(J.GT.KG)GO TCjj 69 '
L-(K-1)/ILT(J)
M»K.-ILT(J)*L /

60 K-L+l ! .i
JJ-0 : : .‘ ■

62 JJ-JJ+1 ■ (
IF(JJ.GT.N)GO Tq 56
KK*IDT(J,JJ)*M j
L-NL(JJ)
LL-KK-L*(KK/L) j t
IC0N(II,JJ)-M0D^IC0N(I1,JJ),LLU)
GO TO 62 . J

69 J-0 ! |
70 J-J+l

IF(J.GT.N)Gp TO 75
IF(ITEST(MV(I),J).EQ.0)GO TO 70
IF(IC0N(I1,j).NE.O)GO TO 70
11* 11-1
GO TO 47 !

75 I-I+l 1 i
GO TO 30 ; |

80 NC-I1
NC1-NC+1 [
RETURN i
END

o
a

n
n

BIT BITS(3200)
DIMENSION JJ(200)
COMMON N,NF,KD(128),NI,£(128),NAMEX(.0),KK(512),NE,NV,MV(32}
1,NL(16),KEST

C * A * *

RANDOMISE ORDER OF OBSERVATIONS

A A a A
1000 IXX-1+2*(8191,AND.KEST)

WRITE(5,601)
601 FORMAT('RANDOMISED ORDER')
604 XX-NO

DO 312 I«l,NO
312 BITS(I)«.FALSE.

L-0
JO-NO
IF(NO.LE.200)GO TO 605 ‘
JO-200 | , i

' JK-0 (‘
605 L-L+l , 1 1

IF(NO.GT.L*200)GO TO 606 , f *
JO-NO-(L-l)*200 | 1

■ J K - 1 ' ■ (

606 DO 317 J-l.JO :
W-l./XX ’ i

318 DO 316 I-l.NO
IF(BITS (I))GO TO 316 1 '
CALL RANDU(IXX,IXX,YY)

301 FORMAT(1016) 1
IF(YY.GT.W)GO TO 316
XX-XX-1 1
JJ(J)-I ’ : f
BITS(I)».TRUE.
GO TO 317 - i ̂ ,

316 CONTINUE
GO TO 318 f ! ,

317 CONTINUE
WRITE(5,301)(JJ(J),J-1»JO)
IF(JK.NE.l)GO TO 605 • Y
WRITE(5,602)

•>02 FORMAT(' IS ANOTHER RANDOM NUMBER STREAM WANTED,T\.+ YES
10R NO') . !
READ(5,603)IY .

303 FORMAT(1A1) |
IF(IY,EQ.'Y')GO TO 604 U
RETURN j i
END ;

SUBROUTINE SWAP(A,B,N)
C * * * ! * j
c ! . I
c COPIES N SQUARE MATRIX B INTO A
C
C * * * i *

DIMENSION A(20,20),B(20,20)
DO 1 1-1,N j ! '
DO 2 J-l,N ;

2 A(I,J)-B(I,J) i
1 CONTINUE !
RETURN

