

The comparative ecology of highrate plastic, conventional mineral and mixed plastic mineral media in the treatment of domestic sewage in percolating filters.

GRAY, Nicholas F.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19713/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19713/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions.

POND STREET SHEFFIELD S1 1WB

6803

Sheffield City Polytechnic Eric Mensforth Library

REFERENCE ONLY

This book must not be taken from the Library

PL/26

R5193

18 JUN 1990

ProQuest Number: 10697014

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10697014

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346 THE COMPARATIVE ECOLOGY OF HIGHRATE PLASTIC,

CONVENTIONAL MINERAL AND MIXED PLASTIC/MINERAL

MEDIA IN THE TREATMENT OF DOMESTIC SEWAGE IN

PERCOLATING FILTERS

by
Nicholas Frederick Gray
M.Sc.,M.I.Biol.

Department of Civil Engineering Sheffield City Polytechnic

Presented in fulfilment of the requirements for the degree of Doctor of Philosophy awarded by the Council for National Academic Awards

Submitted July, 1980

-01

ABSTRACT

The highest rate of oxidation occurs in the top section of percolating filters, where the limiting factor is usually the amount of oxygen provided by natural ventilation. An investigation was carried out to ascertain whether the loading to a conventional single pass filter could be increased by replacing the surface layer of mineral medium with a 750mm layer of random plastic medium, which has greater surface area and voidage. This would allow greater film accumulation and subsequent removal of organic matter, at the same time avoiding ponding and anaerobic conditions normally associated with excessively loaded single pass mineral filters.

A pilot plant was designed and three identical filters constructed, one containing 2 m³ of blast furnace slag and another 2 m³ of random plastic medium and the third 0.8 m³ of plastic medium upon 1.2 m³ of slag. The comparative treatment efficiencies of the various packings were studied at three different loadings, for three months during maturation at 5.72 m³m⁻³d⁻¹ (0.85 kg BOD m⁻³d⁻¹) and then for 12 months at 1.68 m³m⁻³d⁻¹ (0.28 kg BOD m⁻³d⁻¹) and a further 12 months at 3.37 m³m⁻³d⁻¹ (0.63 kg BOD m⁻³d⁻¹). The ecology was studied both qualitatively and quantitatively throughout the depth of the filters, during the two longer loading periods. The film accumulation, temperature and retention time were all recorded and directly compared with the biological and chemical results.

Medium replacement was shown to be a viable system for uprating

filters, providing the operator with a more versatile filter, less susceptible to ponding, with less variable retention times and capable of treating greater organic loadings than conventional filters in excess of 0.2 kg BOD m $^{-3}$ d $^{-1}$. The cost of the system is dependent upon specific requirements and availability of medium.

In the mixed filter the slag portion regulated the loss of animals from the plastic layer, retaining greater numbers of micro- and macro-grazers in the lower mineral portion, resulting in an increase in film control, and lower film accumulation at both the interface and slag portion of the mixed filter.

ACKNOWLEDGEMENTS

The field work and analysis was carried out while I was a research assistant in the Department of Civil Engineering at Sheffield City Polytechnic, and I am indebted to Sheffield City Council for financing the project. I would like to thank Dr. D. Jeffrey, Director of the Environmental Sciences Unit, Trinity College, Dublin, for allowing me considerable time to complete the writing of the thesis after my appointment to the staff of the Unit.

My thanks are also due to all the technical staff of the Department of Civil Engineering and the Department of Building at Sheffield City Polytechnic, in particular Mr P Flanagan and Mr K Waddington, for their help in preparing standard solutions for chemical analysis, and Mr P Longsbourgh, whose skill and advice on all things electrical played a significant part in the continuous operation of the pilot plant.

The project would not have been possible without the help of Mr A Thompson, Chief Technician in the Department of Civil Engineering, whose practical help and advice in the operation of the pilot plant was invaluable. I am extremely grateful for his help in maintaining the plant, out of working hours, to allow me to have short breaks from the daily maintenance visits and to have occasional free weekends.

I am also grateful to Yorkshire Water Authority for allowing me to construct and operate the pilot plant and also to use

the site laboratory at Treeton Sewage Works. For this I am indebted to Mr H. Tench (Divisional Manager) and especially Mr B. Hepworth (Works Manager). My thanks are also due to Imperial Chemical Industries Ltd., Pollution Control Systems, for providing the Flocor RC medium and loaning me the neutron probe used in the study. Special thanks are due to Dr. A. Wheatley (I.C.I.) who has advised and encouraged me continuously throughout the project. I am grateful to Mr. D. Harrington of the Water Research Centre for loaning me the tipping trough flowmeters and for providing information on the surface area of filter medium. For assistance in specialist areas, I would like to thank Mrs. I. Williams (identification of fungi), Mr. R. W. Bayley (filter construction cost data) and Mr. M. R. N. Shephard (invertebrate biomass data).

I should like to thank Dr. I. Grant who instigated the project and helped me during the construction of the pilot filters.

Finally I wish to acknowledge with gratitude the help and valuable guidance given to me by Dr. M. A. Learner, Department of Applied Biology, UWIST, my supervisor during the study. I have gained much valuable experience from his example, for which I am grateful.

CONTENTS

	VOL	UME I				Pag	ge
				•	,		
Chapter	1:	INTR	ODUCTIO	N			1
Chapter	2:	THE I	MEDIUM			·	9
		2.1	Introd	uction	,	. 1	10
		2.2	Choice	of Mediu	n	1	10
		2.3		al and Cho Medium	emical Characteristic	cs 1	17
			2.3.1	Physical	Nature of the Medium	n 1	7
				2.3.1.1	General characterist	tics 1	7
				2.3.1.2	Particle size and grading	_ 1	8
		•	•	2.3.1.3	Surface area	2	2
	•			2.3.1.4	Voidage	3	30
				2.3.1.5	Bulk density	3	80
				2.3.1.6	Strength	3	86
				2.3.1.7	Resistance to temper ture	ra∸ 4	0
			2.3.2	Chemical	Nature of the Medium	n 4	Ю
				2.3.2.1	Stability	4	0
				2.3.2.2	Leaching	4	1
		2.4	0bserva	ations of	the Medium in Use	4	3
			2.4.1	Settleme	nt and Compaction	. 4	3
			2.4.2	Surface /	Area Utilisation	4	3
			2.4.3	Film		,	7

•				Page
	2.5	Effect 27 Mont	of Use: State of Media after hs	48
Chapter 3:	PILO	T PLANT		49
	3.1	Introdu	ction	50
•	3.2	Situati	on of Pilot Plant	51
		3.2.1	Plant and catchment	51
		3.2.2	Characteristics of sewage	51
	3.3	Pilot P	lant	62
		3.3.1	Design	62
		3.3.2	Construction of towers	64
		3.3.3	Sampling facilities	68
		3.3.4	Monitoring equipment	71
•		3.3.5	Supply and distribution	73
		3.3.6	Maintenance	74
•		3.3.7	Problems with plant	<i>7</i> 5
		3.3.8	Improvement in system	77
Chapter 4:	MET	HODS		80
	4.1	Biolog	ical Sampling Programme	81
		4.1.1	Sampling procedure	81
		4.1.2	Assessment of film and solids accumulation	87
		4.1.3	Microfauna analysis	88
		4.1.4	Macrofauna analysis	90
		4.1.5	Effluent analysis	93
		4.1.6	Fly counts	93

		•			Page
	4.2	Chemic	al Sampli	ng Programme	95
		4.2.1	Chemical	analysis	101
			4.2.1.1	Oxygen demand	101
				Biochemical oxygen demand	101
v				Permanganate value	108
				Chemical oxygen demand	108
			4.2.1.2	Ammonia and oxidised nitrogen	109
			4.2.1.3	Chloride	112
			4.2.1.4	рН	113
		•	4.2.1.5	Suspended solids	113
			4.2.1.6	Settleable solids	114
			4.2.1.7	Turbidity	115
			4.2.1.8	Conductivity	115
		4.2.2	Neutron :	scattering	116
÷.		4.2.3	Temperat	ure	122
		4.2.4	Retention	n time analysis	123
	4.3	Mathem	atical and	d Statistical Analyses	131
Chapter 5:	ECOL	OGICAL	STUDIES		133
	5.1	Introd	uction		134
		5.1.1	Horizonta	al distribution	140
	5.2	Bacter	ia		142
		5.2.1	Zoogloea	l bacteria	142

			Page
	5.2.2	Filamentous bacteria	154
	5.2.3	Faecal indicator bacteria	158
	5.2.4	Nitrifying bacteria	159
5.3	Fungi		161
*	5.3.1	Subbaromyces splendens	161
	5.3.2	Conidia of <u>Subbaromyces</u> <u>splendens</u>	166
	5.3.3	Sepedonium sp. and Fusarium aquaeductuum	169
5.4	Algae		172
5.5	Protoz	oa	174
	5.5.1	Sarcomastigophora and Ciliophora	174
	5.5.2	Component ciliate species	184
		5.5.2.1 Paramecium aurelia	196
		5.5.2.2 Uronema nigricans	201
		5.5.2.3 Opercularia microdiscum	205
		5.5.2.4 Colpidium colpoda	210
		5.5.2.5 Glaucoma scintillans	212
	5.5.3	Community structure	214
5.6	Rotife	ra	219
5.7	Nemato	da	221
5.8	Anneli	da	226
	5.8.1	Enchytraeidae	226
	5.8.2	Lumbricidae	233

					Page
	5.9	Insect	a		235
		5.9.1	Collembo	la	235
•		5.9.2	Coleopte	ra	236
		5.9.3	Diptera		238
		•	5.9.3.1	Psychodidae	238
			5.9.3.2	Anisopodidae	253
			5.9.3.3	Chironomidae	255
			5.9.3.4	Other dipteran species	257
			5.9.3.5	Seasonal variation in fly populations	258
	5.10	Arachn	ida		260
	5.11	Crusta	cea - Cyc	lopoidea	267
	5 12	Period	ic Invert	ebrate Visitors	270
	J. 12				270
•		5.12.2	•		270
		0.12.2	uu 3 01 0 p	ouu	270
Chapter 6:	PERF	ORMANCE	• •		272
	6.1	Introdu	ction		273
* .	6.2	Chemica	1 Perform	ance	275
		6.2.1	Biochemic	al oxygen demand	275
		6.2.2	Suspended	solids	289
		6.2.3	Nitrifica	tion	297
		6.2.4	Sludge pr	oduction	306

				Page
		6.2.5	Performance analysis	310
•	6.3	Film		319
		6.3.1	Seasonal film accumulation	319
		6.3.2	Correction factors for Macro- invertebrates	331
		6.3.3	Film estimation by the neutron scattering technique	339
	6.4	Temper	rature	344
	6.5	Retent	ion time	357
		6.5.1	Estimation of flow pattern •	366
Chapter 7:	DISC	CUSSION		37 1
·	7.1	Introd	luction	372
	7.2	Ecolog	y	373
	7.3	Perfor	mance	378
	7.4	Cost		385
	7.5	Conclu	sion	393
Chapter 8:	CONC	CLUSIONS		396
	8.1	Ecolog	y	397
	8.2	Perfor	mance	400

			Page
8.3	Sugges	tions for Further Work	404
	8.3.1	Physical nature of medium	404
	8.3.2	Ecology	404
	8.3.3	Performance	405
REFE	RENCES		407

VOLUME II : APPENDICES

Appendix	I	Physical parameters of the slag medium	1
	II	Biological results	3
	III	Chemical results	119
	IV	Film accumulation (gravimetric) results	243
	У	Film accumulation (neutron scattering) results	267
	VI	Correlation analysis: biological data	282
	VII	Correlation analysis: chemical data	314

1.1 INTRODUCTION

The volume of water used in the United Kingdom is currently rising at the rate of just over two percent per annum (Department of the Environment, 1976). At present, some 23 million cubic metres of water are used daily, this being equivalent to about 400 litres per person per day. Two-thirds of this supply is obtained either from water impounded in the upper reaches of rivers or from underground sources; the remainder is abstracted from lowland rivers (Open University, 1975). Sewage effluent is already a significant proportion of many lowland rivers used for public supply, and the difficulty of meeting future demands from upland or underground sources makes the increased use of this source of water inevitable. Therefore sewage treatment processes must produce final effluents of a sufficiently high quality, not only to provide the raw water for public supply, but also to satisfy increasing amenity and recreational demands.

Present methods of sewage treatment depend largely on the aerobic activity of micro-organisms. The bio-degradable substances in the sewage are extracted and used metabolically by micro-organisms growing in contact with the sewage, leaving the treated effluent suitable for discharge to a natural watercourse. This process involves a constant wastage of the micro-organisms involved, the surplus being removed by physical settlement, prior to discharge. The necessary contact between organisms, sewage and air is achieved by either the

activated sludge process or the biofiltration method. In the activated sludge process, the micro-organisms and sewage are mixed in a tank and the mixture aerated by compressed air or by vigorous agitation, while in the biofiltration method the sewage is passed over an inert medium on which the micro-organisms become established. The aeration is achieved by natural ventilation through the interstices of the medium.

The design and function of biological (percolating) filters has been described by numerous workers (Bruce, 1969; Warren, 1971; Pike, 1978). In its simplest form the filter consists of a bed of graded hard material, 'filter medium', about 2m deep. The interstices or voids also allow air and applied sewage to reach all parts of the bed. The filter has a ventilating system to ensure free access of air to the bed and a distributor to regulate the volume and frequency of application of the sewage (influent) over the surface.

The medium provides the necessary base for attachment of non-mobile micro-organisms, principally bacteria and fungi, which form a film. Mobile organisms both micro- and macro-scopic live in the shelter of the interstices, feeding on and controlling the accumulated film. The action of this grazing fauna prevents heavy film growths blocking the interstices (Hawkes, 1963), which would cause ponding and anaerobic conditions within the filter bed. The accumulation of the film follows a seasonal pattern, becoming thicker during the winter months. The action of the grazing fauna loosens and breaks down the film, resulting in a large removal of film each spring which is known as sloughing. The nutrients in the sewage

promote the growth of the micro-organisms comprising the film, and therefore as the sewage percolates downwards over the film-covered medium, biological oxidation and conversion takes place.

Although biofiltration was historically the first process used, it still has certain advantages over the activated sludge process. Filters require virtually no skilled maintenance or close control. In energy terms, percolating filters are more economical than the activated sludge process, and are more versatile in responding to changes in the flow and character of the sewage (Hawkes, 1963). Filters are more tolerant, compared with the activated sludge process, of continual or shock discharges of certain organic pollutants (Cook and Herning, 1978), including toxic industrial wastes containing heavy metal ions, phenols, cyanids, sulphides and formaldehyde. Filters are widely used for both total and partial treatment of a wide variety of industrial liquid wastes (Bruce, 1969; Callely et al., 1977; Pike, 1978). Their major disadvantage is capital cost, and they are normally uneconomic in serving populations in excess of 50,000. This is due to a) high construction costs and b) the larger area of land they occupy, which is often at a premium in urban areas (Jeger, 1970). For this reason the activated sludge process predominates at very large sewage treatment works, and although the proportions of the population of England and Wales served by these two bio-oxidation processes are about the same, many more of the 5,000 or so sewage treatment works use percolating filters than use the activated sludge process (Institute of Water Pollution Control, 1972). Bruce (1969) concluded that there was no indication that the

use of percolating filters was likely to be outmoded, and this remains true even with the introduction of new processes such as the biodisc and deep-shaft processes (Anon, 1979).

In the United Kingdom, experience has shown that in order to produce a Royal Commission standard effluent with a biological oxygen demand (BOD) of 20 mgl⁻¹ and a suspended solids concentration of 30 mgl⁻¹ (a '20:30' or 'Royal Commission' effluent), after settlement with a high degree of nitrification, filters treating domestic sewage should receive an organic loading of between 0.07 - 0.10 kg BOD m⁻³ d⁻¹ and a hydraulic loading between 0.12 - 0.60 m³m⁻³d⁻¹. Generally increases in organic loading, in excess of 0.10 kg BOD m⁻³d⁻¹, will result in heavier film growths which may result in ponding.

In an attempt to produce more efficient percolating filters which would operate at much higher loadings a number of modifications of the basic process have been adopted. By using larger mineral filter medium, greater loads can be applied to filters without the risk of ponding. Such high rate filtration will produce a 20;30 effluent with an increased hydraulic loading of up to 1.8 m 3 m $^{-3}$ d $^{-1}$, but with little or no nitrification (Institution of Public Health Engineers, 1978). If a less stabilised effluent is required, e.g. roughing treatment for strong industrial wastes, then loadings of up to 12 m 3 m $^{-3}$ d $^{-1}$ with organic loads up to 1.8 kg BOD m $^{-3}$ d $^{-1}$ will give 60 - 70% BOD removals. Treatment at such rates is facilitated by using modular or random plastic medium (90% voids) in tall towers, in place of the usual stone medium (40% voids), thus reducing the risk of ponding. In both low rate and high rate filtration

the influent passes through a single filter once only.

In double filtration (DF), two sets of similar filters are used in series, with sedimentation after each stage. Different media are used in the two sets of filters, a roughing filter with large medium followed by a conventional filter with smaller Royal Commission standard effluents are achieved, except the extent of nitrification has been reported as being poor (Bruce, Merkens and Haynes, 1975). Alternating double filtration (ADF) also uses two sets of filters and settling tanks in series. The principle is that a ponded filter can be brought back into use by applying the partially stabilized effluent from another filter. The film in ADF alternatively grows and disintegrates, the total amount in the two filters being less than in a single filter, so that higher rates of loading can be safely employed. Two identical filters are operated in series, and when the first filter shows signs of ponding the direction of flow through the filters is reversed, and the accumulated film is rapidly depleted (Callely et al., 1977). A 20:30 effluent can be produced at loadings up to $1.5 \text{ m}^3\text{m}^{-3}\text{d}^{-1}$ and $0.24 \text{ kg BOD m}^{-3}\text{d}^{-1}$.

Another method for increasing filter capacity is recirculation. This is based on the principle of treating settled waste in admixture with settled filter effluent in ratios of 1:0.5-10 depending on the strength of the waste. The concentration of organic matter in the feed to the filter is thus reduced at the expense of larger hydraulic loadings, increasing the possible load to 0.15 - 0.20 kg BOD $\rm m^{-3}d^{-1}$ but still producing a Royal Commission effluent (Pike, 1978). Nitrifying filters

are often used to provide further stabilization and nitrification for an activated sludge plant effluent. These operate as high rate filters at loadings of 9 $\text{m}^3\text{m}^{-3}\text{d}^{-1}$ and between 0.05 - 0.47 kg BOD $\text{m}^{-3}\text{d}^{-1}$ to produce a nitrified 20-30 effluent (Escritt, 1978).

The aim of the present investigation was to ascertain whether the loading to a conventional single-pass mineral filter could be increased by replacing the surface layer of mineral medium with a 750 mm deep layer of random plastic filter medium. Random plastic medium is normally used in high rate filters, and has a greater capacity than a mineral medium of the same grade to remove high weights of BOD per unit volume. It is well known that the highest rate of oxidation occurs in this top section of filters, where the limiting factor is usually the amount of oxygen which can be provided by natural ventilation. The increase in surface area and voidage provided by the plastic medium in the top section of the filter should theoretically allow greater film accumulation and removal of organic matter, at the same time avoiding ponding and anaerobic conditions usually associated with single-pass low rate filters when excessively loaded. A pilot plant was constructed and a filter containing the mixed media was compared with identical filters, one containing blast furnace slag and another containing random plastic medium. The comparative treatment efficiencies of the various packings were studied at three different loadings, 1.68 $m^3m^{-3}d^{-1}$ (0.28 kg BOD $m^{-3}d^{-1}$) for 12 months, $3.37 \text{ m}^3\text{m}^{-3}\text{d}^{-1}$ (0.63 kg BOD $\text{m}^{-3}\text{d}^{-1}$) for 12 months and 5.72 $\text{m}^3\text{m}^{-3}\text{d}^{-1}$ (0.85 kg BOD $\text{m}^{-3}\text{d}^{-1}$) for 3 months. comparative ecology of the three filters was only studied

during the major loading periods of $1.68 \text{ m}^3\text{m}^{-3}\text{d}^{-1}$ for 12 months and $3.37 \text{ m}^3\text{m}^{-3}\text{d}^{-1}$ for 11 months.

This gave an opportunity not only for the mixed filter to be studied comparatively with the other filters, but for the random plastic and slag filters to be studied during both low and high rate operating conditions, which had not previously been undertaken. A comparative assessment of the possible financial benefits of the mixed media system was also made.

Under the operating conditions normally used in the United Kingdom, the fauna do play an essential role in the purification process (Hawkes, 1963). Therefore it was hoped that the investigation would provide a better understanding of the processes, especially the biological ones, involved in sewage treatment, in order that present treatment works may be operated more effectively than at present. If such increases in efficiency can be achieved by simple modifications and better operational management, then the capacity of sewage treatment works need not be expanded so much, in order to treat effectively the ever-increasing loads, with a consequent saving in expenditure.

2.1 INTRODUCTION

The function of the medium in a percolating filter is to provide an extensive surface to support the biological film and the associated animals necessary for the purification of settled sewage and trade wastes. At the same time it must allow sufficient ventilation for the process and ensure maximum contact between the active film and the waste liquid.

In order to choose the best filter medium, an extensive examination of the literature was undertaken. Once the media had been selected it was critically examined both physically and chemically before and after use in the pilot filters.

2.2 CHOICE OF MEDIA

One mineral and one random plastic medium were selected for use in the pilot filters. The basic criteria for selection were that the medium had to conform to British Standard 1438: 1971, and be widely used in order that the information gathered would have a broad applicability.

The important features of mineral medium were summarised in the original British Standard in 1948. It stated that a mineral filter medium should be selected for high surface area consistent with adequate voidage, and for satisfactory grading (within specified size limits), durability, roughness of texture, satisfactory shape characteristics and low cost.

Thompson (1925) had shown that the material had to be mechanically and chemically stable, while Levine et al., (1936), comparing a number of different filter media, found that the performance was directly related to the surface area of the medium. After the publication of the 1948 British Standard, it was the practice for engineers to choose a filter medium which was predominantly cubic in shape; this view was based on the supposition that filter medium containing a high proportion of flattish pieces would have an undesirably low voidage, and in many text books this still remains the view (Escritt, 1978). The more irregular a material is for a given nominal size, the greater the surface area. For example, although more costly, blast furnace slag or clinker is to be preferred to gravel or pebbles. For material of a given shape and uniform grade, the voidage is independent of size. However, the important factor is the actual dimensions of the void spaces (the interstices), since these will determine whether or not a given medium will clog during operation or will allow adequate ventilation. Excessive accumulation of film also reduces the effective surface area. The rejection of flaky media (i.e. particles with one excessively thin dimension) by BS 1438:1948 was proved to be unjustified by Schroepfer (1951), who, by examining the effect of particle shape on voidage and surface area, found that the more cubical material possessed a lower voidage than the flaky material and concluded that an increase in angularity of particles, of which flaky particles are an extreme example, resulted in an increase in voidage and surface area. Reduction of between 5 to 7% in the voidage due to the compaction of the medium was reported by Moncrieff (1953). In

a review of the relationship of particle shape and voidage, Bruce (1968) supported the earlier findings of Schroepfer that flaky media possess a higher voidage and surface area than regular media of the same sieve size, but that the average volume of flaky particles was however smaller and this resulted in a reduction in the size of the voids, although the use of flaky material of a large grading would compensate for this. These findings led to a relaxation of the 'index of flakiness' and the withdrawal of the 'index of elongation' in the revised British Standard on Percolating Filter Medium in 1971.

Numerous comparative investigations into the ideal characteristics of filter media followed the publication of the British Standard in 1948, and in particular those carried out at Minworth (Hawkes and Jenkins, 1955, 1958) and at Stevenage (Wilkinson, 1958; Truesdale et al., 1962). These investigations showed that the smaller media consistently produced better quality effluents, and that medium with a rough surface gave marginally better performance than the smooth surface materials such as grayel. Truesdale et al. (1962) found that although small grade rough textured medium was extremely efficient in treating large organic loads of settled sewage during the summer (0.18 kg BOD $\bar{m}^3\bar{d}^1$), it suffered from excessive film accumulation during the colder winter months. This resulted in ponding and eventually clogged the filter. Experience has shown that in order to achieve maximum efficiency throughout the year, a 50mm mineral medium with a rough surface provides the best compromise between large surface area and the provision of large voidage, and that this will produce a high quality effluent in a conventionally operated British plant.

Plastic filter medium was introduced as early as 1958, originally produced in polystyrene and later in polyvinyl chloride. Initially the plastic media were only manufactured in assemblages of formed plastic sheets or tubes known as modular medium. The advantages of modular media were the high voidage (94 to 98%), unrestricted flow of sewage and good ventilation. Excessive build-up of film was discouraged by the smooth texture and vertical placement of the media, the film regularly sloughing due to its own weight (Pearson, 1965; Eden et al., 1966). It was quickly realised that modular plastic media were of limited value in the complete treatment of domestic effluents, partly because the introduction of the ADF and DF systems using large mineral media was much cheaper. They were, however, extremely effective as roughing filters removing large weights of BOD per unit volume of media at relatively low levels of efficiency in terms of BOD concentration, ie. between 50 to 80% (Ministry of Technology, 1968).

The short contact time between the influent sewage and the film, and the free fall of the sewage (i.e. when the influent passed directly through the medium without coming into contact with the film) prevented the modular media from producing well purified final effluents, and restricted their use as roughing filters treating sewages of extremely high organic strengths. In order to increase the contact time but retain the high surface area per unit volume of

the modular medium, various new random plastic media were designed. These were shaped in such a way that the free fall of the sewage experienced in the modular designs was prevented. Its random nature increased contact time with the film while maintaining the high voidage and so reducing the problem of film accumulation and lack of ventilation experienced with mineral media (Ramsden, 1972). Plastic media have not, however, replaced mineral media in percolating filters, neither are they seen as a replacement for the activated sludge or advanced wastewater treatment processes. They are used essentially for the primary biological treatment of sewage and industrial wastes prior to their treatment by established methods (Anon, 1979; Hemming, 1979). various types of plastic media available are reviewed by Porter and Smith (1979) who also compare the performance of various modular and random plastic media.

Learner (1975), in a survey of percolating filters, found that granite, clinker and blast furnace slag were the commonest media in use (Table 2.1a). Hawkes (1963) considered that the pitted structure of slag and clinker to be ecologically superior to other kinds of medium. But the choice of filter medium does not only depend upon its suitability but also on availability and especially cost. As Learner points out, the majority of clinker beds were constructed prior to 1956, and since then clinker has become more expensive and increasingly difficult to obtain. Another interesting aspect of the survey was that the majority of the filters sampled in Scotland used granite as a filter medium; although this may not be the most suitable medium it was the

TABLE 2.1: Kinds of medium (a) and grades of medium (b) used in the percolating filters sampled by Learner (1975), and their percentage occurrence.

Kind of Medium	%	Kind of Medium	%
Granite	26	Limestone	4
Clinker	24	Coke	4 .
Blast-furnace slag	23	Clinker and gravel	3
Rounded gravel	6	Slag and coke	1
Limestone and clinker	6	Saggar chippings	1

(a)

Grades of medium (mm)	0-13	13-25	25-38	38-51	51 - 64	64-76	> 76
% .	2	21	39	29	6	3	0

(b)

most readily available in the area. From the information available it was decided that blast furnace slag would be the most appropriate mineral medium for use in the present investigation.

The capacity of the pilot filters was 2.1m³ each and so the use of a large medium would be unrepresentative. Learner (1975) lists the commonest range of medium in use as being 13 to 51mm (Table 2.1b) which is based on particle size analysis. Bruce (1969) states in his review of percolating filters that the commonest grades of medium in use in the United Kingdom are the nominal sizes of 38 to 51mm. As previously stated, 50mm mineral media provided a good compromise between surface area and voidage and have been shown to produce good quality effluents under low rate conditions (Hawkes and Jenkins, 1955; 1958). It was decided therefore to use blast furnace slag of 50mm nominal grading in the pilot filters.

Although there are a number of random plastic filter media commercially available, one in particular, Flocor RC*, is widely used. This has the additional advantage that an extensive literature concerning its use is available. Flocor RC has been shown to be effective in treating both industrial and domestic effluents at high and low organic loadings (Wheatley and Williams, 1976; Hemmings and Wheatley, 1979). Flocor RC has the advantage of being the same nominal size as the blast furnace slag chosen for the investigation.

^{*}Manufactured by ICI Limited, Hyde, Cheshire, England.

2.3 PHYSICAL AND CHEMICAL CHARACTERISTICS OF MEDIUM

The slag medium was graded by the supplier and certified as having a nominal size of 50mm. However, during transit much of the blast furnace slag was broken up and this produced a lot of fine material and dust. The slag was subsequently washed thoroughly to remove as much dust as possible, and when dry, regraded by hand discarding any pieces not within the 28 to 63mm range. The plastic medium arrived on site in $1m^3$ containers direct from the manufacturer and therefore did not require washing or regrading; any damaged or crushed modules were discarded.

Both media were packed into the pilot filters by hand and without any deliberate compaction in an attempt to reproduce the standard type of fill normally used in full scale filters.

Samples of the medium were taken randomly from the pilot filters as they were being packed. Approximately 100 kg of the slag and 500 modules of the plastic medium were taken for subsequent laboratory analysis.

2.3.1 PHYSICAL NATURE OF THE MEDIUM

2.3.1.1 General Characteristics and Shape

Flocor RC is a random plastic medium fabricated from Polyvinylchloride which is inert and has a high resistance to biological, chemical and photochemical degradation. The

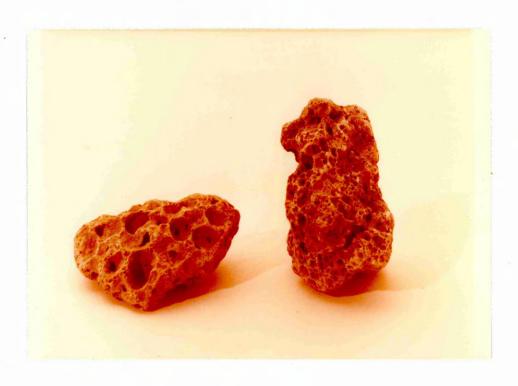
modules have a smooth surface and are tubular in shape with corrugations running around the circumference, Plate 2.1.

The slag medium, Plate 2.2, is irregular and angular in shape and honeycombed with pores of various sizes. It is mechanically stable and relatively inert.

2.3.1.2 Particle Size and Grading

500 modules of unused plastic medium were examined. The length of each module was measured to the nearest 0.1mm using vernier calipers and then weighed to the nearest milligramme using an analytical balance. The diameter and thickness of the plastic remained constant for all 500 pieces. The results are summarised in Table 2.2.

Table 2.2: Physical parameters of a module of Flocor RC medium


	length (mm)	weight (mm)	diameter (mm)
Mean	38.75	4.89	3.40
Standard deviation	1.28	0.59	0.00
Confidence limits*	0.12	0.06	0.00
Range	15.10	2.66	0.00
Minimum	33.70	3.80	3.40
Maximum	48.80	6.46	3.40
Number of modules examined	500	500	100

^{*(95} per cent)

PLATE 2.1: Modules of Flocor RC

PLATE 2.2: 50mm Blast Furnace Slag

Due to the difficulty in measurement, only 80 pieces of slag medium were examined. Each piece was weighed to the nearest 0.01g, the volume of each was subsequently determined by displacement of water using a special vessel and expressed in cubic centimetres. The results are summarised below in Table 2.3. Full results are given in Appendix I.

<u>Table 2.3</u>: Physical parameters of a piece of slag medium

	Volume (cm ³)	Weight (g)	Surface Area (m ²)
Mean	56.93	103.97	0.018
Standard Deviation	17.64	33.17	0.005
Confidence limits*	4.49	10.27	0.002
Range	33.00	141.09	0.024
Minimum	73.00	53.60	0.007
Maximum	106.00	194.69	0.031
Number of modules examined	80	80	40

^{* (95} per cent)

The plastic medium was all of one nominal grade. The slag medium was graded to a nominal size of 50mm. This was checked by carrying out sieve analysis on a 40 kg sample of the medium using the method laid down in BS.410. Using a balance accurate to 0.lg, the medium was graded by determining the percentage by weight passing each sieve and the nominal size of the

medium was calculated by comparing the results to the tables in BS.1438:1971 (Table 2.4). The results of the sieve analysis are given in Table 2.5. The analysis confirmed that the nominal size of the medium was 50mm; the particle size range was 28 to 63mm with 70% in the 37.5 to 50mm range.

Table 2.4: Grading limits for media

BS 410 square hole perforated plate test sieves	Nominal sizes mm						
	63	50	40	28	20	14	
	% by weight passing						
mm 75	100	-	-	-	-	-	
63	85-100	100	-		· -	-	
50	0-35	85-100	100	-	-	-	
37.5	0-5	0-30	85-100	100	-	-	
28 .	-	0-5	0-40	85-100	100	-	
20	-	-	0-5	0-40	85-100	100	
14	-	-	-	0-7	0-40	85-100	
10	-	-	-	-	0-7	0-40	
6.3	-	-	-	_	-	0-7	

From BS.1438: 1971

<u>Table 2.5</u>: Sieve analysis of the slag medium

Sieve Size (mm)	Weight Retained (kg)	Retained (%)	Passing (%)
75.0	0.00		
63.0	0.00	· ·	
50.0	12.23	29.53	70.47
37.5	22.95	55.40	15.07
28.0	6.24	15.07	0.00
20.0	0.00		
Total	41.42	100.0	

2.3.1.3 <u>Surface Area</u>

The surface area of the plastic medium was determined directly by measurement. As the modules were fabricated, the diameter remained constant resulting in a clear length to surface area relationship.

A number of methods were tried in order to obtain an accurate determination of the surface area of the slag medium. Finally, it was decided to use the 'paint dipping technique' originally developed by Schroepfer (1951), but using the method and paint recommended by Truesdale et al., (1962). With bulk volumes of medium, problems were encountered in obtaining an even distribution of paint over all the medium, even after

several dippings. A number of alternative paints and varnishes were tried including coloured boat varnishes, metal primers and various emulsions. The problem of uneven coating and also of paint collecting and thickening at the base of the medium remained unsolved. Using red lead paint BS.2523 (Type B) which is thick enough to give good coverage and heavy to ensure a good increase in weight after application, the medium was coated individually using a 10mm thick paint This method ensured an even coat and that all the pores were covered, and by painting the pieces of medium individually, it was possible to examine any existing relationships between weight, volume and surface area. In order to determine the weight increase per unit surface area, twelve test blocks were constructed using crushed slag, each with a surface area of $0.00375m^2$ and these were painted in the same way. The surface area was then calculated by comparing the increase in weight of the media with the mean increase in weight obtained with the test blocks of directly measurable surface area. Truesdale et al. (1962) noted that filter media had different absorptive capacities. It was seen in this experiment that the absorption of the paint by the same type of medium varied from piece to piece. Table 2.6 illustrates how the weight of paint retained by the test blocks varied considerably on the first painting and how this variability became less with each subsequent coat of paint. It was decided to paint the medium three times, allowing each coat to dry before weighing and applying the next coat, before finally calculating the surface area (Table 2.7). Full results are given in Appendix I.

Table 2.6: Weight of paint retained by test blocks

BLOCK	Weight of first coat g	Weight of second coat g	Weight of third coat g
1.	0.70	0.62	0.60
2	0.73	0.54	0.47
3	0.54	0.42	0.43
4	0.55	0.45	0.45
5	0.73	0.56	0.47
6	0.69	0.50	0.46
7	0.87	0.56	0.48
8	0.51	0.39	0.45
9	0.82	0.59	0.52
10	0.85	0.60	0.59
. 11	0.85	0.63	0.59
. 12	0.99	0.72	0.60
Mean	0.736	0.548	0.509
S.D.	0.149	0.095	0.067

25mm² cubes

Total surface area = 0.00375m²

Table 2.7: Bulk parameters of the experimental medium

MEDIUM	Surface area m2 m3	Voidage	Number of units per m ³
Flocor RC	330.9	91.3	2 x 10 ⁴
50mm Blast Furnace Slag	Estimated:143.0* Calculated:150.8	51.5	8.5 x 10 ³

^{*}From Table 2.8

There are a number of different ways in which the surface area of a filter medium may be calculated from easily measureable parameters (Pearson, 1977). In order to test the results obtained from painting the slag medium the surface area was determined directly from tables prepared by the Water Research Centre, Table 2.8, using the results of the particle size analysis. These tables have been prepared for the three most common mineral media using an improved paint dipping procedure (Pike, 1978). The calculated specific surface area is also given in Table 2.7.

Physical data for the media (Appendix I) were analysed by computer to determine if any relationships existed between the various measured physical parameters.

As already stated, a relationship was established between the length of the Flocor modules and specific surface area. A very highly significant correlation also existed between the length and weight of the plastic modules. Figure 2.1 shows that the sample of medium tested contained two separate populations of modules. Frequency histograms were plotted for the two variables, and Figure 2.2 shows that although the length of the modules has a normal distribution, the weight of the modules has two distinct distributions, Figure 2.3. No differences could be detected in either the thickness of the plastic used or in the overall diameter of the modules. Therefore difference between the two populations was most probably caused by either two different weights of plastic being used during manufacture, or minute differences in fabrication caused by the two separate production machines

Values for specific surface areas of three different types of filter media in relation to nominal size and grading. Table 2.8:

Range for graded material represents maximum oversize or undersize material permitted by B.S. 1438 specification.

			Spe	ecific surfac	Specific surface area $(m^2/m^3)*$	*(
				Type of medium	nedium		
Nomina	,	Granite	ite	Blast fur	Blast furnace slag	Crushed gravel	gravel
maximum size of medium	n F	Single-	Range for graded	Single-	Range for graded	Single-	Range for graded
(mm)	(in)	2716	material	2716	material	2716	material
25	-	194	185-237	208	200-246	176	169-208
37.5		135	129-149	146	140-163	125	120-140
50	2	97	94-111	104	101-118	68	101-98
63	21/2	75.5	73-85	81	79-90	69	67-77

From Pike', 1978.

Figure 2.1: Computed relationship between weight and length of modules of Flocor RC.

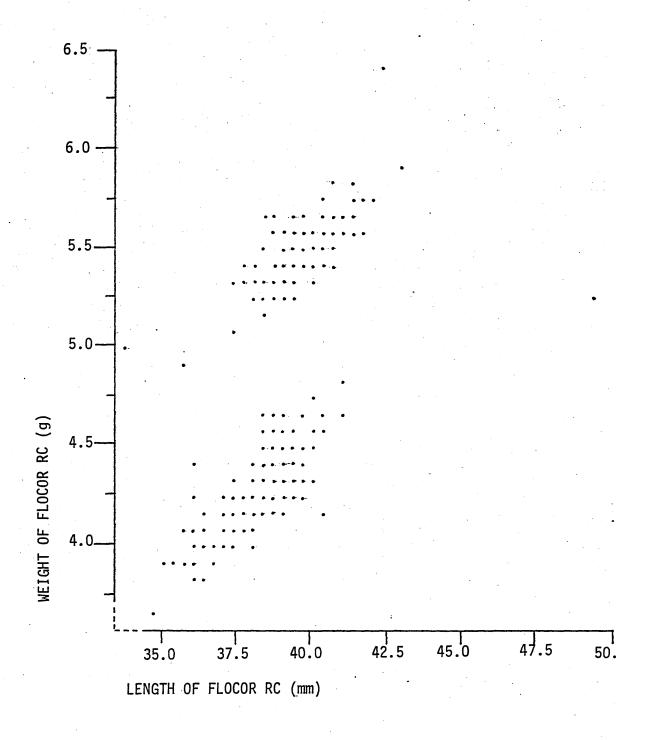


Figure 2.2: Frequency histogram showing the length distribution of modules of Flocor RC (sample = 500 modules)

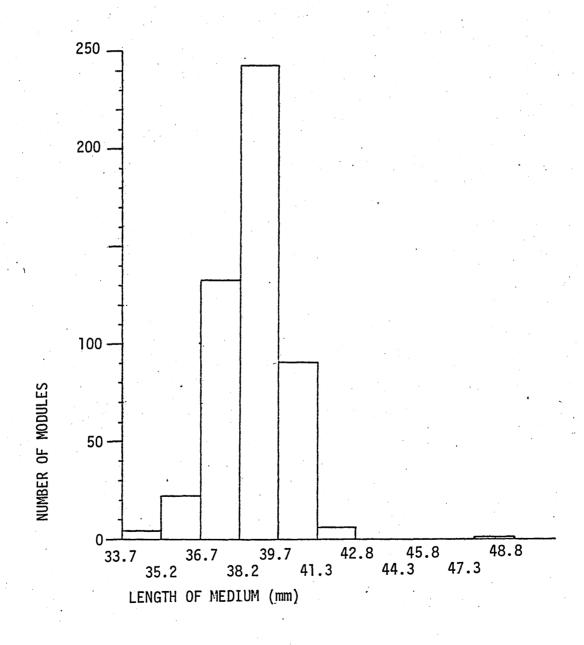



Figure 2.3: Frequency histogram showing the weight distribution of modules of Flocor RC (sample = 500 modules)

and moulds which were used in the manufacturing process of the medium.

Although fewer pieces of the slag medium were examined, several interesting facts emerged from the computer analysis. There was a strong correlation between volume and weight of the medium, (Figure 2.4), but no relationship existed between surface area and either weight (Figure 2.5) or volume (Figure 2.6) of the slag medium. The frequency histograms in Figure 2.7 show that both the weight and the surface area of slag have a normal distribution, while the skew distribution seen for the volume is due to the original selection procedure of the medium, when all the pieces of blast furnace slag below a certain size were rejected prior to packing the pilot filters.

2.3.1.4 <u>Voidage</u>

The voidage for both kinds of medium was determined directly using a cylindrical metal vessel with spouted outlets at two levels having a volume of 25 litres between the two outlets, Plate 2.3. Using the same method as Bruce (1968), the voidage was calculated by measuring the volume of water in the voids of 25 litres of medium. The results are given in Table 2.7.

2.3.1.5 Bulk Density

The bulk density of the medium (i.e. the weight of medium per unit volume) when wet and covered with film is the factor which controls the construction and maximum depth of percolating filters because of the load exerted on the foundations

Figure 2.4: Computed relationship between volume and weight of slag medium.

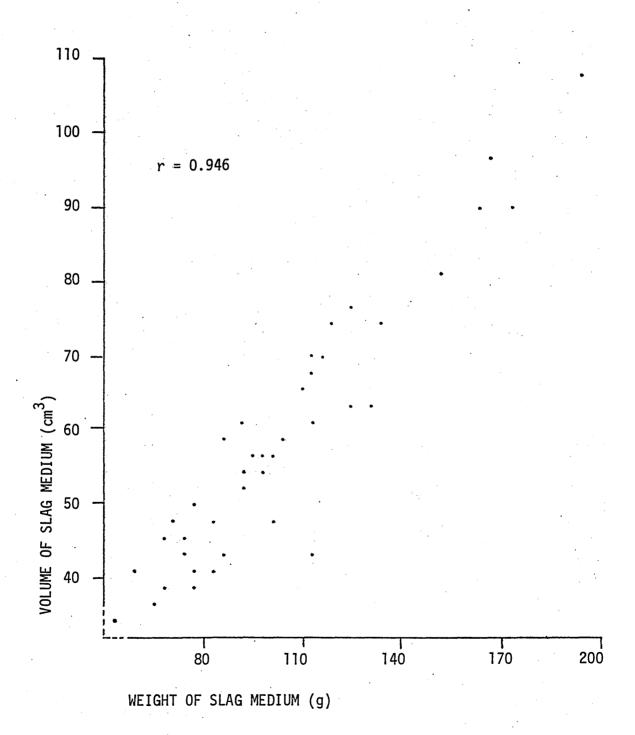


Figure 2.5: Computed relationship between surface area and weight of slag medium.

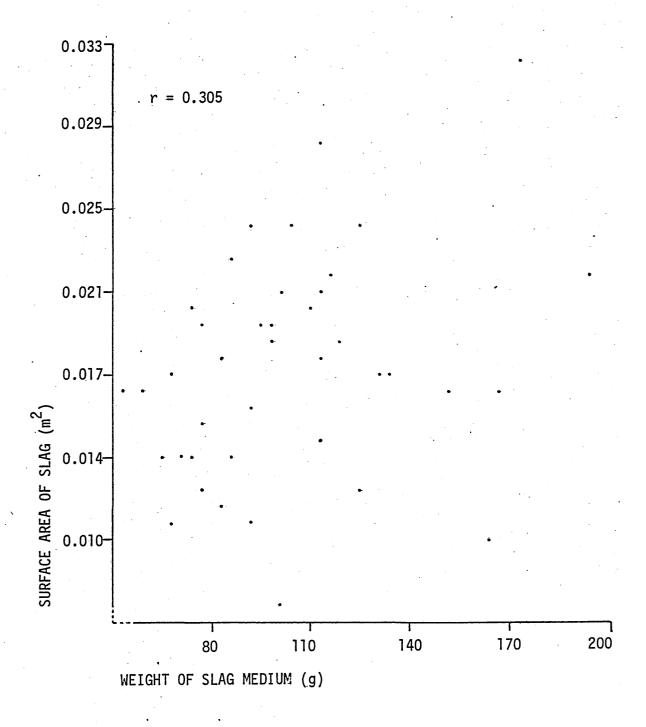


Figure 2.6: Computed relationship between surface area and volume of slag medium.

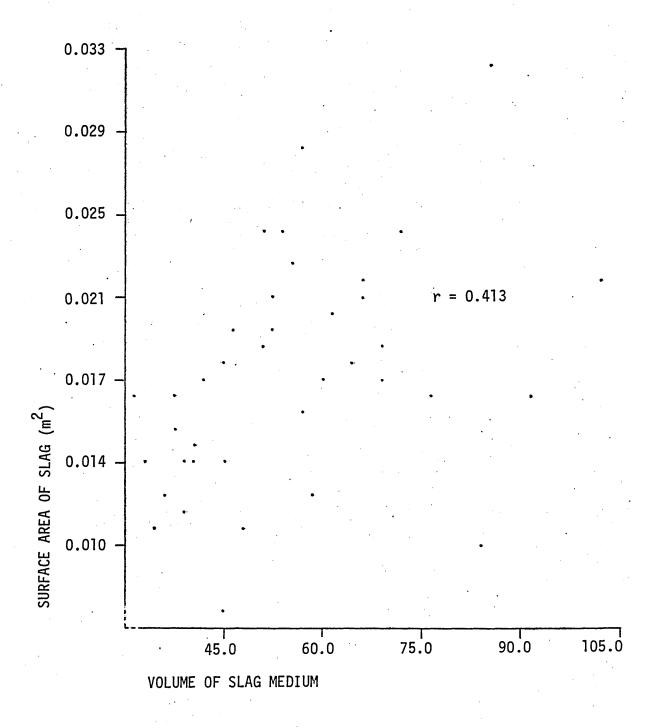


Figure 2.7: Frequency distribution of weight, volume and surface area of the experimental slag medium

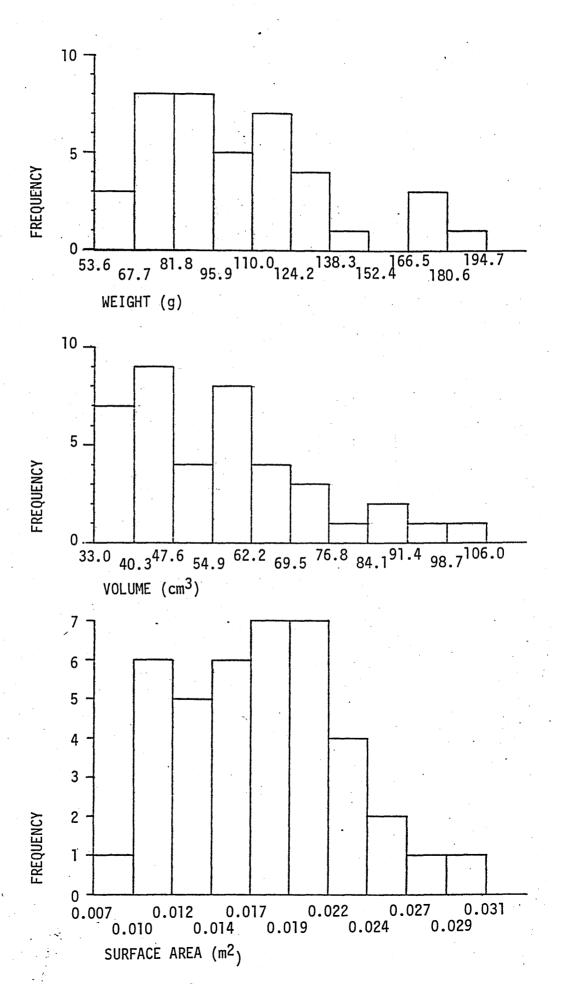
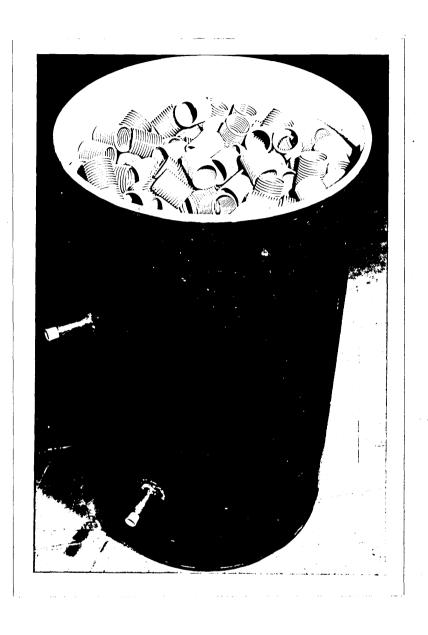



PLATE 2.3: 25 litre vessel used to calculate voidage of medium.

and walls of the filter. The maximum bulk density, usually considered to be the weight of the medium completely saturated with water (Pike, 1978), can be accurately determined by measuring the total weight of the wet film (Appendix II) at the time of maximum film accumulation, usually in February or March. The bulk density of the medium (a) when dry (b) at minimum and maximum film accumulation, and (c) when saturated with water, i.e. the maximum bulk density possible, is given in Table 2.9. The accumulation of film within the pilot filters is discussed in Chapter 6, and the total weight of the film accumulated each month is given in Table 6.18.

Table 2.9: Bulk density of experimental medium

	Dry weight		ensity due to lation kgm ³	Weight when totally saturated	
	kgm ³	Minimum Film	Maximum Film	with water kgm ³	
Flocor RC	97.84	133.73 * 140.68 **	290.59 * 354.77 **	1004.84	
Slag	886.31	1014.55 *	1277.32 * 1180.33 **	1401.31	

^{*} Low rate period

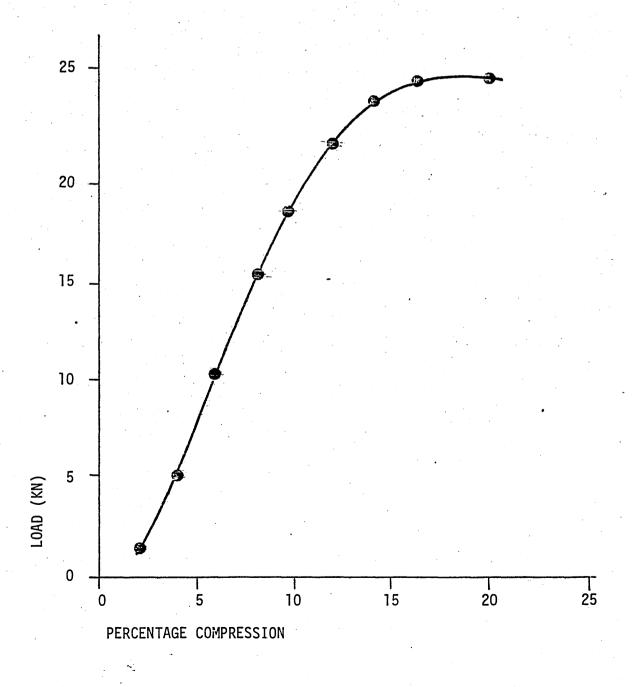
2.3.1.6 Strength

Details of the physical strength of the Flocor medium have

^{**} High rate period

been reported by several workers. Rogers (1974) found that the medium was only compressed 1.6% when loaded at 400 kgm $^{-2}$, which is equivalent to a typical load for a 2m deep filter, and that the medium was tested up to 7000 kgm $^{-2}$ without damage. More recent work showed that the modules of medium could withstand a compressive load in excess of 1.5 x 10^5 kgm $^{-2}$ (Wheatley, 1976) and that a 1% compression of the medium occurred with every 500 kgm $^{-2}$ loaded.

The Flocor RC medium used in the pilot filters was tested in two ways. Individual modules were tested to destruction using the triaxial compression test (British Standards Institution, 1975), and load cells with volumes of 0.0125m³ and 0.025m³ were used to test bulk volumes of the medium.


Using the triaxial compression test, it was found that a mean compressive force of 150 KNm^{-2} was needed before the modules began to deform (Table 2.10), i.e. no longer obeyed Hook's Law. This compressive force is equivalent to a mean load of $1.53 \times 10^4 \text{ kgm}^{-2}$ which is a factor of ten less than reported earlier by Wheatley (1976). The wide range of compressive strengths recorded in Table 2.10 may be due to the differences in the weight of the modules. It was mentioned earlier that two separate populations of medium were found in the original sample in approximately equal proportions (Figures 2.1 and 2.3).

The results clearly show that the medium obeys Hook's Law up to 10 - 14% compression when the medium begins to lose strength and becomes permanently deformed and damaged (Figure 2.8).

Table 2.10: Comparative strengths of Flocor RC and Blast furnace slag

	T	ı		
	Flocor RC	Slag		
	Compressive force KN m ⁻²	Point load force KN m ⁻²		
	198.00 166.50	7584.50 2758.00		
	94.50	3102.75		
	186.75	2240.88		
	153.00	2620.10		
	101.25	1379.00		
		3102.75		
		2689.05		
Mean	150.00	3184.63		
S.D.	43.34	1862.00		
Range	103.50	6205.00		
Minimum	94.50	1379.00		
Maximum	198.00	7584.50		
		e e e e		

Figure 2.8: Percentage compression due to the load exerted on a module of Flocor RC medium.

The experiments using bulk volumes to measure the overall strength of the medium within the large load cells, showed that when a load was initially applied, compaction of the medium followed. When the load cells were loaded at 91.6 KNm^{-2} ($9.34 \times 10^3 \text{ kgm}^{-2}$) the level of the medium dropped approximately 16%, rising to within 8% of its original level when the load was removed. Therefore, it appears that of the 16% recorded, 8% was due to true compaction of the medium (permanent) and 8% was due to compression (temporary).

Examination of the slag medium was confined to p int loading on a number of different pieces of medium. The slag was found to be much stronger than the plastic medium, fracturing at the point of loading, at a mean load of $3.25 \times 10^5 \text{ kgm}^2$. Both types of medium were found to be extremely strong and well able to cope with the compressive forces exerted by the bulk volumes recorded in the filters.

2.3.1.7 Resistance to Temperature

Samples of both the slag and the Flocor media were kept for periods of up to six weeks at -15°C and at 75 $^{\circ}\text{C}$ to see if prolonged exposure to temperature would affect their structure or strength. Both types of media were unaffected by prolonged exposure to these temperatures.

2.3.2 CHEMICAL NATURE OF THE MEDIUM

2.3.2.1 Stability

Polyvinylchloride was chosen by ICI Limited for its Flocor

medium because it was thought to offer the best compromise between cost and stability (Chipperfield, 1967). To test this stability, 100 modules of Flocor RC were immersed in sulphuric acid (pH 2) and in sodium hydroxide solution (pH 10) for twenty days. The modules were checked at 24 hourly periods for any damage such as cracks or pitting. After 20 days the modules were washed, dried and then re-weighed. As there was no significant change in the mean weight of the sample and no apparent damage to the modules, it was concluded that the medium was extremely stable to extreme pH levels.

To test the stability of the slag medium, 40 pieces underwent the 'Sodium Sulphate Soundness Test' as laid down in the British Standard Specification 1438: 1971. Prior to the test the medium was washed to remove dust and loose particles, dried at 105°C and then weighed. The sample was immersed in a concentrated solution of sodium sulphate for four hours, before being removed and checked for soundness and cracks. This was repeated twenty times. When the samples were finally washed and tested, they were again dried and reweighed. During the test no cracks or signs of unsoundness had been recorded, and the medium had only lost 0.5% of its original weight which is well within the criteria of soundness.

2.3.2.2 Leaching

Organo-metallic compounds are used both in preparation and in the stabilization of polyvinylchlorides. Many workers

have investigated the amounts of metals leached out by water flowing over plastic media (Nicklas and Mayor, 1961; Peckham, 1971; Wheatley, 1976), and in every case the concentration of leached metals was extremely low, being well below concentrations normally found in settled sewage. Leaching declined sharply after the first few days of operation.

2.4 OBSERVATIONS OF THE MEDIUM IN USE

Observations and measurements relating to the media were regularly made during the operational period of the three pilot filters.

2.4.1 SETTLEMENT AND COMPACTION

Over the experimental period of two and a half years, it was noted that the depths of the pilot filter medium changed. The slag medium gradually compacted down a total of 100mm (5.6%). The depth of the plastic medium fluctuated, although compaction did not appear to take place under normal operating conditions. During low rate conditions the medium rose 40-60mm when the film accumulation was at its greatest and gradually returned to its original depth during the summer when the film accumulation was low. At higher loadings, however, some compression of the medium did take place, the depth reducing by 30mm when the weight of film was greatest. It is interesting to note, however, that no movement of the depth of the medium occurred in the mixed filter during the entire experiment.

2.4.2 SURFACE AREA UTILISATION

Rogers (1974) examined Flocor RC under similar experimental conditions to those experienced throughout the present investigation and estimated that 90% of the available surface

area $(330 \text{ m}^2/\text{m}^3)$ was used. Wheatley in 1976 had thought that 90% of the medium was potentially usable with effective distribution.

Examination of medium from the first 250mm of the plastic filter showed that only 80% of the surface area was utilized at the time of maximum film accumulation (Table 2.11). Observations made during the monthly biological sampling when cores of the medium were removed, indicated that the amount of the available surface area being utilized was far less than 80% in the deeper regions of pilot filter. During the summer months at the lower loading of $1.68 \text{m}^{3-3} \text{d}^{1}$, areas of medium were found to be completely dry and devoid of any film. Excessive film growths on the plastic modules led to anaerobic conditions causing black staining due to metallic sulphides which are adsorbed onto the surface (Wheatley, 1976). The extent of this staining on the medium was less with depth within the filters and was rarely found inside the modules below depths of 1.0m, indicating that less of the surface area of the medium was being used, Plate 2.4.

Table 2.11: Area of Flocor modules covered in film during maximum film accumulation

Percentage of total area covered with film	%
40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100	0 12.7 23.7 13.6 30.9

(sample size = 110 modules)

PLATE 2.4: Staining of the surface of Flocor RC medium. The unused module on the left of the photograph shows the extent of staining to the surface of the medium completely covered with film for two years on the right. The central module indicates exact area of partial film attachment.



PLATE 2.5: Staining of the surface of the slag medium after two years of use in the pilot filters, compared with the unused piece of medium in the centre of the photograph.

The extensive growth of film on the surface of the majority of the modules examined had completely covered and filled the circular corrugations. These corrugations not only give the medium its high surface area, but also help in the redistribution of the effluent within the filter, because each corrugation retains a fixed volume of effluent and thus prevents large channels of flow (Hemming and Wheatley, 1979). The in-filling of the corrugations in effect reduced the available surface area by 50% in some cases. Nearly all the plastic modules had a dry area inside where no film or animals were found except for adult insects, the most common being Psychoda alternata, Psychoda severini and Sylvicola fenestralis. The slag medium appeared to have a much greater utilisation of its available surface area than the plastic, with areas only being free from active film where an accumulation of solids and debris occurred. Only a few dry areas were found in the slag and these were usually very small in size, and not considered to affect the total available surface area significantly.

Although the nozzles produced a near-perfect distribution of settled sewage onto the surface of the medium, during the low loading period large areas within the plastic filter were apparently dry, although at higher loadings the medium was completely saturated, except for the small dry areas inside the modules described earlier. This suggests that there is a minimum rate of application of settled sewage between the two main loading rates of 1.68 and 3.37 $\,\mathrm{m}^3\bar{\mathrm{m}}^3\mathrm{d}^{-1}$ used during the investigation, which would ensure all the plastic medium was kept moist, and therefore be most efficient.

This did not apply to the slag medium which was always completely saturated.

2.4.3 FILM

During the summer the film accumulation in the plastic filter was at a minimum and it was during these periods when the large voidage allowed the medium to become 'over-ventilated', causing sudden temperature changes to occur within the filter. At times of heavier film accumulation the ventilation rate was reduced and the temperature of the plastic filter was less prone to sudden changes. When the film was heavy, there were no problems in the plastic with either surface ponding or clogging inside the filter except at certain months when thick surface mats of fungi, usually Subbaromyces splendens, caused localised ponding on the surface and led to huge accumulations of film inside all the filters, reviewed in Section 6.3. From observations, it was apparent that there was far better redistribution of settled sewage within the plastic filter at these times, and that the sewage tended to take short-cuts through the slag filter due to excessive accumulations of film below the surface. This is clearly illustrated by the retention test data which are discussed fully in Section 6.5. Although the film found on the surface of the slag filter was less dominated by fungal mats than the surface film of the plastic and mixed filters, the bacterial film became so thick that surface water collected and disappeared down small breaks in the film which acted as drains.

After the completion of the operational period, small samples of media were removed from all three pilot filters and the various tests for strength and durability were repeated. Although all the physical and chemical characteristics of both media types were checked, no change in the strength or any signs of unsoundness could be found. The only visible sign that the media had been used was staining on both the plastic and slag media, caused by anaerobic conditions on the surface of the media while covered with film (Plates 2.4 and 2.5).

Full scale experimentation involving percolating filters is usually impracticable or at least extremely difficult, not only because of the overall cost of modifying a full scale filter, but also due to the possible reduction of the purification capacity of the sewage works during the experimental period. There are many other problems such as the level of maintenance, alteration of the loadings and the enormity of closely monitoring a full scale unit.

The use of pilot scale percolating filters has been widespread and generally extremely successful. The use of these small units has in the past been restricted to three types of investigation, a) the examination of the treatability of sewages and the evaluation of proposed schemes prior to plant design and installation (Brown and Caldwell, 1973), b) for the development of existing schemes where it is proposed to introduce a filter for roughing/polishing, to test a new system such as recirculation or A.D.F. or to evaluate a new medium (Goldthorpe, 1938; Tomlinson and Hall, 1950; Hambleton and Kirby, 1974; Stracke and Baumann, 1975; Neale, 1978), and c) for research, by industry (Anon, 1974; Hemming and Wheatley, 1979), by the educational and research establishments (Isaac and James, 1964; Bruce and Merkens, 1970, 1973; Tayiq, 1975; Wheatley and Williams, 1976; Cook and Herning, 1978) and by the Water Authorities (Banks and Hitchcock, 1976; Pullen, 1977).

3.2.1 PLANT AND CATCHMENT

The pilot plant was located at Long Lane Sewage Treatment Works, Treeton, which is situated 7 miles east of Sheffield and some 3 miles south of Rotherham just off the B6067 in South Yorkshire. Bounded by the MI Motorway to the north and the River Rother, into which it discharges, in the west, this small treatment plant serves the South Rotherham districts of Whiston and Catcliffe. The works became operational in February 1974, and is a conventional filter plant with recirculation. Figure 3.1 is a layout plan of the works showing the position of the pilot plant. The maximum treatment capacity is $4,318.7 \text{ m}^{-3} \text{d}^{-1}$, although the present works loading is slightly less than this (Table 3.1). Treeton S.T.W. has a large catchment area with a population in excess of 18,000 (Yorkshire Water Authority, 1976). The sewage is mainly domestic at present, but industrial development is taking place in the North-West of the There is a little infiltration water from nearby coalmines, and some road runoff from the motorway.

3.2.2 CHARACTERISTICS OF THE SEWAGE

The flow to full treatment at Treeton Sewage Works varied from $1,777 \text{ m}^3\text{d}^{-1}$ up to the maximum of $4,319 \text{ m}^3\text{d}^{-1}$, with the excess flow being stored in the storm water tanks (Table 3.1). Apart

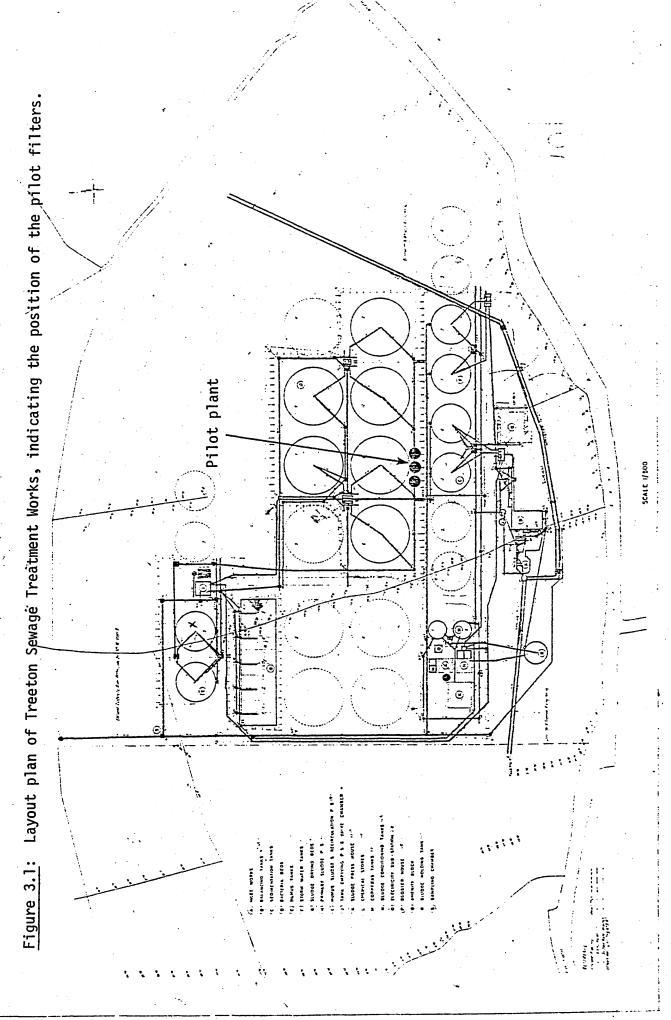
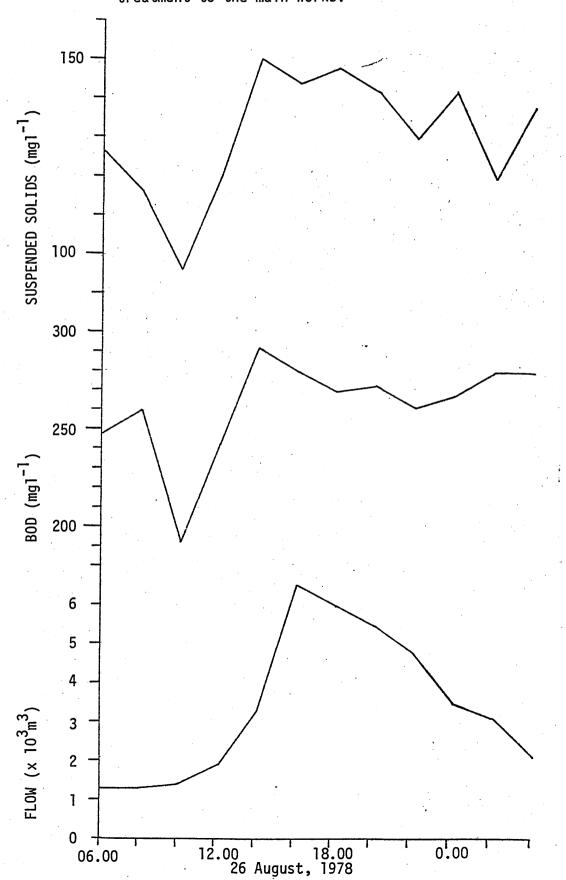


Table 3.1: Flow to full treatment at Treeton S.T.W. 1974-1979.

Mean daily flow to full treatment \times 1000 m^3

	1074	1974 1975		1977 1978	1979	Monthly		
	13/4	1975	1976	1977	1370	. 1979	Mean	S.D.
Jan		3.14	3.33	4.10	3.46	2.87	3.38	0.46
Feb		3.70	2.65	8.11	3.36	5.24	4.61	2.17
Mar	,	3.71	2.71	4.50	3.04	4.27	3.65	0.77
Apr	·	2.90	2.74	4.59	3.15	4.81	3.64	0.98
May		2.96	2.89	4.30	2.61	4.41	3.43	0.85
Jun		2.53	2.39	3.30	2.56	4.17	2.99	0.75
Jul	2.23	2.79	2.21	2.75	2.46		2.49	0.28
Aug	3.28	2.49	1.77	2.91	2.67		2.62	0.56
Sep	3.00	2.68	2.37	2.76	2.13		2.59	0.34
0ct	2.96	2.90	4.23	2.97	2.30		3.07	0.71
Nov	3.60	2.64	3.64	3.48	2.13		3.10	0.68
Dec	3.01	2.80	3.45	2.72	3.80		3.16	0.46
Total	18.08	35.24	34.38	46.49	33.67	25.77	38.73	
Mean	3.01	2.95	2.87	3.87	2.81	4.30	3.23	-


from rainfall, the greatest influences on the flow were the various works operations such as cleaning screens, returning liquors and storm water. Minimum flow occurs during the early hours of the morning between 06.00 - 10.00 hours (Figures 3.2 and 3.3), reaching maximum flow between 15.00 - 18.00 hours. The diurnal pattern recorded in the present investigation supports the results of Painter (1958) who measured the variation in flow along a sewer:

The sewage is domestic in nature. The chemical quality of the settled sewage used as the influent to the pilot filters had a mean BOD of 172.5 mgl⁻¹ and a mean suspended solids concentration of 122.0 mgl⁻¹ over the 27 month experimental period (Table 3.2). The diurnal variations of BOD and suspended solids (Figures 3.2 and 3.3) and also the turbidity followed a similar pattern to the flow, the peak concentrations of the chemical parameters being recorded during the maximum flow between 15.00 - 18.00 hours, with minimum concentrations recorded from the early hours of the morning until about noon.

Full details of the influent quality are given in Appendix III, and the monthly means are shown in Figure 3.4. Maximum BOD concentration occurred during the months when the flow and rainfall were generally lowest and the dilution was least (Table 3.3). There was a direct relationship between rainfall and flow, and an indirect relationship between flow and BOD concentration.

The settled sewage contained above normal concentrations of iron and lead during periods of rainfall (Table 3.4), the

Figure 3.2: Diurnal variation in suspended solids, BOD of influent sewage to the pilot filters, compared with the variation in full flow to treatment to the main works.

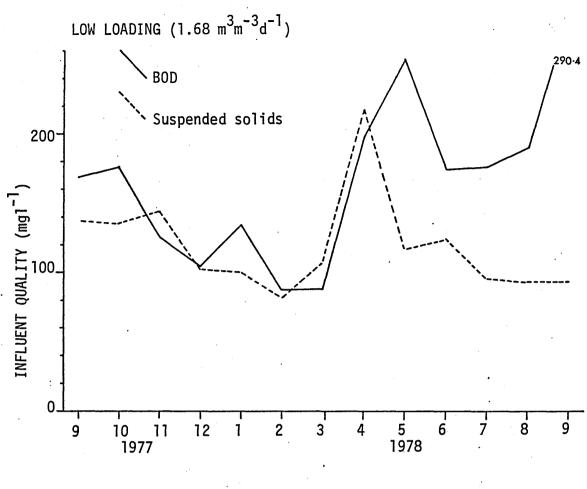
Diurnal variation in suspended solids, BOD of influent sewage to the pilot filters, compared with the variation in full flow to treatment to the Figure 3.3: main Works. 160 -140 120 SUSPENDED SOLIDS (mgl⁻¹) 100 -80 : 60 . 40 250 200 150 BOD (mg1⁻¹) 100 6 5 4 $FLOW (x 10^3 m^3)$ 3 2

1

0

06.00

12.00 18th March, 1979


18.00

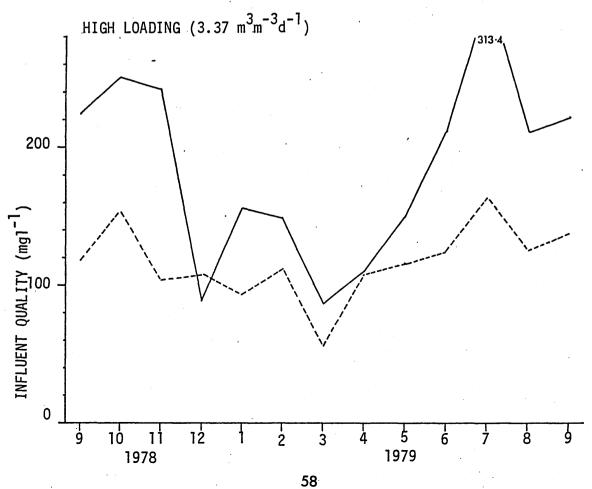

d.00 | 06.00 19 March 1979

Table 3.2: Means and variation in the main chemical parameters of the influent settled sewage during the 27-month experimental period.

	BOD mg1 ⁻¹	Suspended solids mgl ^{-l}	Ammonia mgl ⁻¹	Total oxidised nitrogen mgl-l	Permanganate value mgl ⁻¹
Mean	172.5	122.1	26.7	1,77	36.44
Minimum	87.3	57.0	11.8	0.0	7.2
Maximum	313.4	222.9	41.7	9.1	69.9
Range	226.1	165.9	29.9	9.1	62.7
Standard deviation (SD)	62.6	37.7	8.72	2.54	14.67
Standard error (SE)	12.51	7.54	1.74	0.51	2.93
Number of samples (n)	106	111	50	50	51

Figure 3.4: Seasonal variation in quality of influent settled sewage during the low and high loading periods.

<u>Table 3.3:</u> Monthly variation in ambient temperature, mean rainfall and mean influent BOD

	daily	Temperature: daily mean		Influent BOD
	Maximum (OC)	Minimum (°C)	(mm)	(mg1 ⁻¹)
Aug 1977	20.0	11.3	46.8	152.8
Sep 1977	17.6	9.3	13.2	161.0
Oct 1977	14.6	7.6	24.3	175.7
Nov 1977	9.0	4.1	44.0	125.3
Dec 1977	7.9	3.3	48.2	104.0
Jan 1978	5.3	0.6	56.1	158.0
Feb 1978	7.4	1.8	69 [.] .0	87.7
Mar 1978	11.0	2.6	36.5	89.0
Apr 1978	9.7	2.8	34.2	198.8
May 1978	16.3	6.4	24.8	254.5
Jun 1978	18.3	9.2	58.5	173.6
Jul 1978	19.0	10.2	82.5	176.6
Aug 1978	18.9	11.1	50.4	190.5
Sep 1978	18.0	10.2	36.7	246.2
Oct 1978	15.5	8.4	8.2	249.8
Nov 1978	11.3	5.2	21.0	242.2
Dec 1978	5.3	1.1	171.0	87.4
Jan 1979	2.3	-2.9	49.2	156.0
Feb 1979	3.2	-1.3	59.9	149.4
Mar 1979	7.6	1.6	70.0	87.3
Apr 1979	11.6	4.1	46.3	109.0
May 1979	14.5	5.0	94.3	151.8
Jun 1979	19.4	9.0	10.0	212.5
Jul 1979	21.5	11.1	20.7	313.4
Aug 1979	20.1	10.2	79.7	210.6
!	L		<u> </u>	

Table 3.4: Means and variation of metals in the settled sewage from Treeton Sewage Works, during the 27 month experimental period. (Results are expressed in mgl-1)

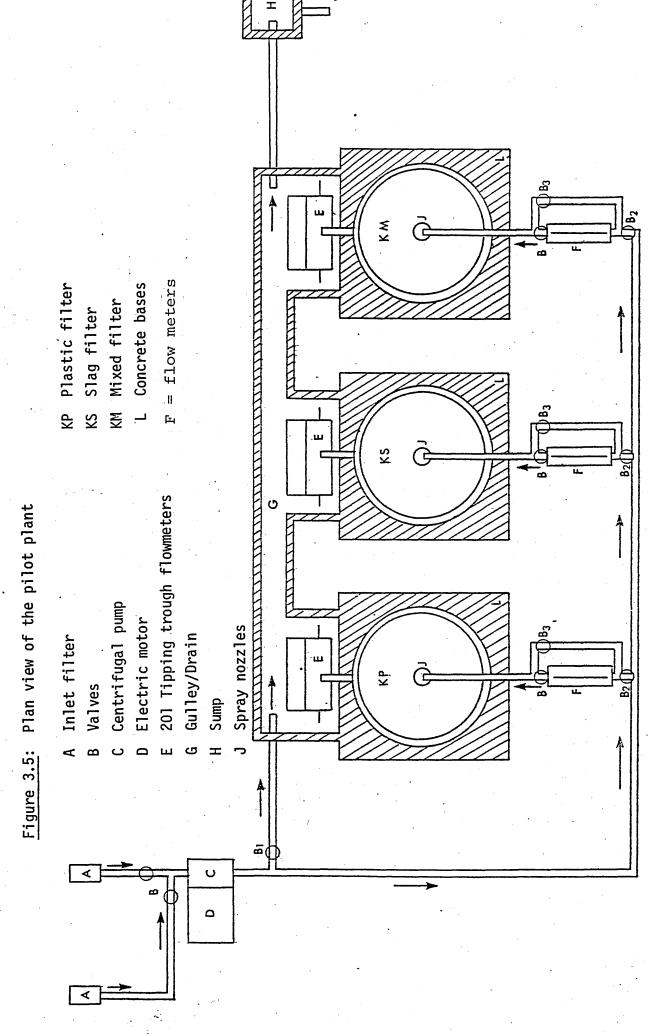
·	Iron	Chromium	Copper	Nickel	Zinc	Cadmium	Lead
Mean	0.74	0.01	0.05	0.24	0.16	0.01	0.85
Minimum	0.15	0.00	0.00	0.00	0.05	0.00	0.01
Maximum	1.30	0.01	0.16	0.33	0.84	0.10	1.78
Range	1.15	0.01	0.16	0.33	0.79	0.10	1.77
Standard deviation	0.40	0.00	0.02	0.06	0.06	0.00	0.45
Number of samples	8	8	8	8	8	8	12

former being due to infiltration from minewater and the latter due to the road runoff from the motorway. Increases in chloride were also recorded during the winter when the motorway was being salted.

There was considerable diurnal variation in final effluent quality from the pilot filters. Maximum percentage removals and best final effluents of BOD were generally achieved during 10.00 - 14.00 hours and of suspended solids during 08.00 - 10.00 hours at the lowest loading; while maximum percentage removals of suspended solids and BOD both occurred during 15.00 - 18.00 hours at the higher loading. The filters were generally most efficient during periods of maximum filter temperature.

The pilot filters were usually sampled at 08.00 hours, and as the filters were generally most efficient later on in the day, the results obtained do not reflect the maximum daily efficiency of the filters.

3.3 THE PILOT PLANT


3.3.1 DESIGN

Three pilot scale percolating filters, each having a volume of $2.1~\text{m}^3$, were constructed between the primary sedimentation tanks and the existing percolating filters at Treeton Sewage Works (Figure 3.1). Each pilot filter was filled with approximately $2~\text{m}^3$ of medium. One contained Flocor RC, another 50 mm blast furnace slag and the third, blast furnace slag with a layer of Flocor RC on top, approximately $0.8~\text{m}^3$ of plastic upon $1.2~\text{m}^3$ of the mineral medium. The general layout of the pilot plant is illustrated in Figure 3.5.

The main design criteria for the pilot plant were:

- i) A simple design requiring little maintenance
- ii) Cheap and simple materials which are easily available
- iii) The system should be reliable and capable of doing the job required
 - iv) The filters must be adaptable as well as durable
 - v) Must be easy and quick to construct, especially for those of limited engineering ability.

Although a number of alternative designs and materials were considered, it was decided that prefabricated concrete units met with most of the criteria listed above.

Each pilot filter (Plates 3.1 and 3.2) was constructed from three reinforced concrete manhole sections 0.6 m long with an internal diameter of 1.6 m. The 90 mm thick walls allowed the sections to be stacked on top of each other, making each filter 1.8 m deep. By using prefabricated manhole sections, the height of the towers could easily be increased by adding extra sections either in 0.3 or 0.6 m units. Eden (1964) stressed the importance of making the depth of pilot filters, and the size of the medium, the same as that found in full scale treatment plants. Therefore the depth of the pilot filters was made the same as that of the large scale filters at Treeton Sewage Works. The basic design of the pilot filters is shown in Figure 3.6, which is a cross-sectional view of the mixed media filter. The manhole sections were sealed together using a waterproof mastic inside and grouting with cement and sand on the outside. Each filter was supported by twelve concrete blocks embedded into a reinforced concrete base which was 'dished' to allow the final effluent to drain away quickly. Support for the medium was provided by a fabricated circular steel grid at the base of each filter which rested on the inside of the concrete blocks supporting the concrete rings, with an extra supporting block at the centre of each grid. The grid was made in a standard diamond pattern out of 25 x 3 mm steel strips in two semi-circular sections, which when bolted together gave an overall diameter of 0.12 m (Plate 3.3). The gaps between the blocks allowed the medium to be well ventilated and also made access to the base of the filter possible (Plate 3.2).

PLATE 3.1: Pilot Plant at Treeton Sewage Treatment Works.

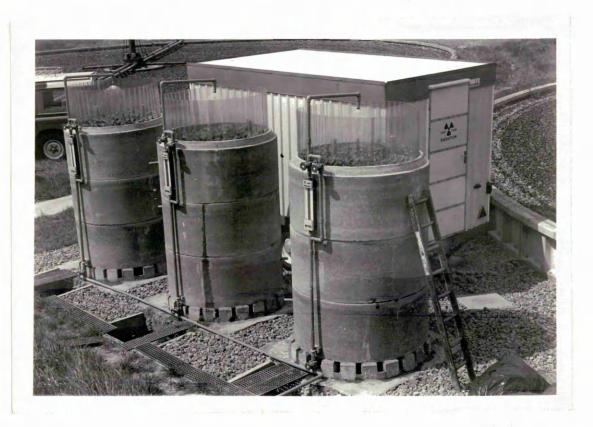


PLATE 3.2: Side view of mixed pilot filter. Total capacity of each filter was 2m³.

Figure 3.6a: Schematic section through the mixed media pilot filter

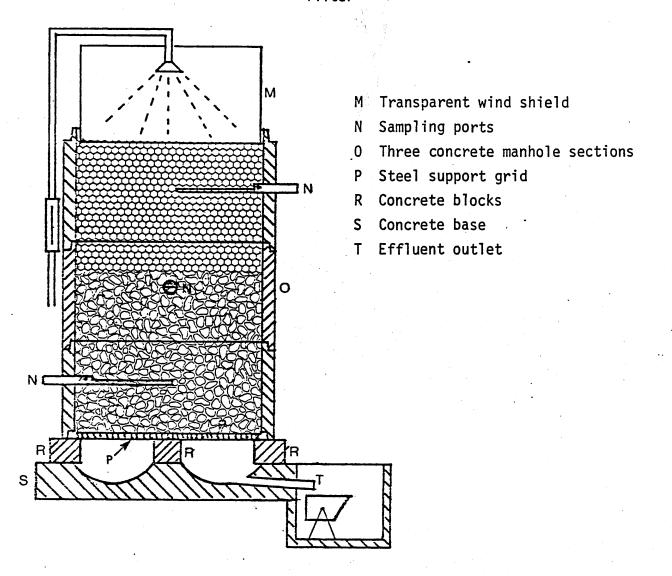
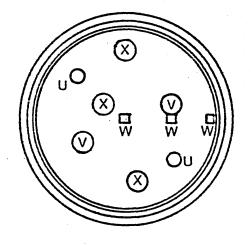



Figure 3.6b: Plan view of pilot filter indicating relative position of sampling facilities.

- U Aluminium access tube for neutron probe
- V Sampling baskets/column
- W Thermocouple cores
- X Extra sampling baskets for surface horizontal monitoring only

PLATE 3.3: 1.8m diameter supporting steel grid of one of the pilot filters during construction. The relative position of the perforated plastic sampling columns, the three wooden thermocouple cores and the two neutron probe access tubes can be seen.

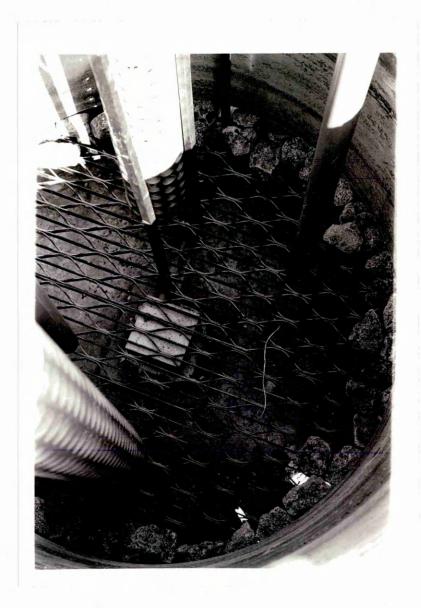
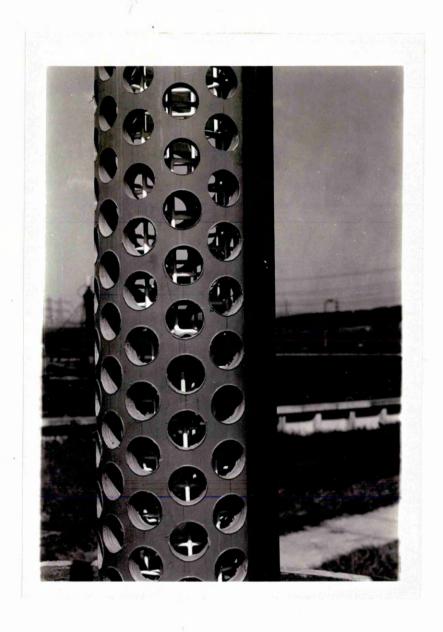



PLATE 3.4: 150mm diameter perforated sampling column containing the 'empty' sampling baskets, and the relative position of the central thermocouple core.

was decided to use larger holes, to imitate the conditions found within the medium itself, i.e. larger voids and smaller areas of contact. The particular diameter of the perforations in the sampling column ensured that none of the graded medium used in the pilot filters would be pushed through the holes during settlement, thus preventing the sampling baskets from being removed. The larger holes also allowed greater redistribution of the sewage and movement of loose solids and debris between the filter and the sampling column than the smaller holes in columns used in earlier experiments by Shephard (1967). It was also evident from the migration of certain species from the colder regions to the warmer central region of the pilot filters, that the larger holes allowed greater mobility of the filter fauna than the other systems. Each sampling column contained six closely fitting plastic coated wire mesh baskets, each 300 mm long and 146 mm in diameter, containing the appropriate medium for the filter. The third basket from the mixed filter contained the two different layers of media with the interface occurring centrally in the basket. This allowed the medium to be sampled above the interface, at the interface itself and directly below this region in the slag medium, referred to as samples M3T, M3M and M3L respectively in the Appendices. The baskets were removed by means of two plastic coated wires welded onto each sampling basket, which were just thin enough to run down between the baskets and the sampling tube. The supporting wires and the pieces of medium which protruded slightly through the holes, allowed film to accumulate and therefore prevented free passage of the influent through the small gap between the baskets and the perforated pipe. This arrangement

allowed the medium to be sampled continuously down the entire depth of the filter. The position of the two sampling columns is shown in Figure 3.6b. The horizontal distribution of the fauna could only be measured within the top 305 mm of the filter, by placing sampling baskets at three other suitable places away from the other sampling and monitoring equipment.

3.3.4 MONITORING EQUIPMENT

Film accumulation was assessed both gravimetrically and by the neutron scattering technique (Sections 4.1.2 and 4.2.2). In order to facilitate the latter, two vertical 50 mm diameter aluminium access tubes, sealed at one end, for the neutron probe were fitted into each pilot filter. As was the case with the sampling columns, great care was taken to ensure that the access tubes were absolutely perpendicular. Each tube had to be kept dry and so the open end at the surface of the filter was sealed with a rubber bung when not in use.

It was felt that the temperature profile within each filter was of great importance in relation to both its ecology and performance. The temperature was monitored by 18 thermocouples placed at 305 mm intervals throughout the depth of each pilot filter. Vertical wooden rods contained the thermocouples in deep grooves which were sealed and then coated with a marine hypoxy-resin, and the junctions exposed by carefully filing the excess resin away. Three rods containing thermocouples (called thermocouple cores) were placed

in each filter, one in the centre, another against the inside of the wall and the third between these two 0.3 m from the centre. The temperatures were recorded automatically at intervals of six hours using a thermocouple scanner, timer and chart recorder. The air, influent and effluent temperatures were also monitored continuously by using thermocouples.

The accurate positioning of the monitoring and sampling equipment within the filters was very important, and the relative position of the equipment is shown in Figure 3.6b (Plate 3.3). It was important that each of the devices should operate without interference from other nearby equipment. This was particularly important with the neutron probe access tube, as the instrument required a clear area of 200 mm radius around the tube. The neutron probe access tubes and the sampling columns with their baskets, were all placed equidistant between the outer wall and the centre of the filter, each replicate being on the opposite side of the particular filter in the same position. It was hoped that the results obtained would be comparable on a month to month basis, while any changes in horizontal distribution of the fauna would be recorded by the extra sampling baskets placed in the surface layer of the filters. In each filter, one of the sampling columns was placed adjacent to a thermocouple core, and it was hoped it would provide precise information relating temperature to the vertical distribution of the filter organisms found in that particular sampling pipe and its baskets.

3.3.5 SUPPLY AND DISTRIBUTION

A centrifugal pump situated at the base of the pilot filters provided the sewage feed to the pilot plant, withdrawn from two primary sedimentation tanks. The inlet pipes to the pilot plant were filled with large box screens (Figure 3.5-A) which were suspended 100 mm below the surface of the sewage in the sedimentation tank. This eliminated the possibility of any scum or floating debris being taken in, while at the same time ensuring that maximum settlement had taken place before the sewage was withdrawn. Each inlet pipe could be closed by a valve, ensuring a constant supply of sewage if one of the tanks happened to break down and had to be emptied. The base of the pilot filters where the pump was situated was some 2 m below the surface of the sewage in the sedimentation tank, thus ensuring that the pump had a minimum hydraulic head. The pressure in the 25 mm ABS delivery pipes was controlled by a by-pass valve on the pump (Figure 3.5-B1). As the pump was below the surface of the liquid in the sedimentation tank, a syphon ensured that there was always a flow of sewage passing through the pump. It was possible, therefore, by fitting an automatic restart, to have the pump restart immediately after power cuts without having to be reprimed by hand or having to visit the works to manually reconnect the power supply to the isolated pump.

The hydraulic loading was measured by rotameters which were fitted to the walls of each filter. In order to reduce the chance of the rotameter tubes becoming blocked, by-passes were fitted. With the rotameter by-pass valve closed

(Figure 3.5-B3), it was possible to correct the flow through the rotameter by first using the base valve (Figure 3.5-B2), and then diverting the main flow around the rotameter up to the distributor by opening the rotameter by-pass valve (Figure 3.5-B3) (Plate 3.2). The pressure required to produce the necessary distribution via the nozzles was controlled by restricting the flow through the pump's by-pass and the valve at the base of each filter. Each filter was loaded identically and the total flow through each filter monitored electronically by the final effluent draining into 20 litre tipping trough flowmeters.

By carefully altering the height of the distributor arm and the nozzles, perfect distribution could be achieved using Delavan Watson* solid cone spray nozzles (type BN). An even distribution to the surface was maintained so long as the nozzles did not become partially blocked, usually with small seeds, hair or other fibrous material.

3.3.6 MAINTENANCE

The pilot plant required a high level of maintenance and was visited daily to adjust and record the flows. The smallest nozzles, 6.35 mm, used during the low loading, required unblocking almost daily, while the larger nozzles, 9.53 mm, used at the high rate loading required clearing once every three

^{*}Delavan-Watson Ltd., Widness, Cheshire, England

or four days. During the maturation period the largest nozzles used, 19.05 mm, never required cleaning during three months of operation. Cleaning the inlet strainers and flushing out the settled solids from the pipework was done regularly once a week to prevent blockage of the pipework. At the same time the rotameters were dismantled and cleaned. The transparent windshield which prevented the high winds from blowing the fine spray of sewage and the modules of plastic medium away, also allowed the light to the surface of the filter. This became coated with film and so was cleaned monthly, along with the tipping troughs which became thickly covered with the filamentous algae Cladophora sp.

Solids quickly accumulated in the sampling ports, and therefore they had to be scraped out and allowed to run for a short time before sampling. By keeping a comprehensive collection of spare pipework, distributor arms, nozzles, packing for the pump and other spare items, it was possible to keep the pilot plant running continuously from July, 1977 to September 1979 without any breakdowns.

3.3.7 PROBLEMS WITH PILOT PLANT

During the two years of operation a number of alterations have been made to the pilot plant.

The inlet strainers were made from expanded aluminium with a maximum aperture of 5 mm. The original strainers used were

long and flat, 600 x 152 x 76 mm, and built on a wire base with a surface area of only 0.29 m^2 . When the apertures of these strainers became partially blocked with debris, the pump would cause the strainer to collapse. These strainers were replaced with larger ones, $910 \times 229 \times 229 \text{ mm}$, which just fitted into the sedimentation tank between the scum containment baffle and the overflow weir. The larger strainer was built over a galvanised steel dexion frame to prevent collapse, and with the increased surface area of 0.89 m^2 each, solved the gapply of problem of providing a continuous settled sewage to the pilot plant, and also reduced cleaning to once a fortnight.

Cracks which appeared in the concrete manhole sections after a few months of operation were most likely caused by thermal stresses set up within the concrete. To ensure the towers did not become unsafe, two large steel bands were clamped onto each section, i.e. six per filter. Although further cracks did develop, no leakage occurred, thus it was presumed that it was surface cracking only (Plate 3.4).

The mechanical counters on the tipping troughs proved totally unsatisfactory as they quickly rusted and eventually ceased operating. These counters were replaced with proximity switches which although highly reliable had a limited life of only 6 months owing to the fluctuating power supply experienced at the works.

Unlike Wheatley (1976) who insulated his pilot filters against the cold, it was felt that the 90 mm concrete walls were in themselves good enough insulators and that any further insulation of either the walls of the filters or of the pipework would produce false operating conditions which would be difficult to relate to the results collected at other times of the year. The rotameter tubes, however, were lagged with expanded polystyrene strips which were packed around each glass tube, to prevent them from freezing and inevitably cracking.

3.3.8 IMPROVEMENT IN THE SYSTEM

The design of any experimental equipment can benefit from modifications in the light of experience. Apart from the obvious improvements such as replicate filters, or filters with larger plan surface areas so that more sampling pipes could be added to give more details of the horizontal distribution at various depths, which in both instances would have increased the workload far in excess of one researcher, several smaller improvements could have been highly advantageous, if further financial support had been available during the investigation.

Access to the top of the filters, some 2.2 m above ground, was by ladder. Scaffolding would not only have been safer, but the provision of a platform near or at the surface of the filters would have meant quicker and easier sampling, and more overall observation of the surface. Experiments using infra-red photography had shown that the composition of the surface film could be monitored and recorded relatively easily, by taking a photograph. By using transparencies, it was

possible to enlarge the yiew of the film by projection and thus trace the development of the major component species at the surface. The scaffolding could also have been utilised during the winter, by covering the sides with thick polythene, to protect the towers from drifting snow and heavy ice accumulations as well as making the routine maintenance more efficient and pleasant. Humus tanks would have been invaluable; although much information on the settling characteristics and volume of sludge produced were recorded, other tests such as capillary suction time and flocculation tests could not be carried out without the provision of proper humus tanks.

Fluctuations of the pressure in the pipework were caused by fluctuations in the power supply. Better flow control onto the filters would have been achieved if the pump by-pass had a pressure control outlet fitted, to maintain constant pressure in the pipework to the filters.

The temperature data were collected using a chart recorder.

The provision of a data-logger would have meant easy transfer of the data to file on the computer and subsequent ease of analysis or recall. The present system has led to immense problems of transcribing the data from the charts onto punching forms, then the transfer of the data either by batch or terminal onto the computer.

There is in excess of 150,000 units of data recorded on chart. More scanning capacity, limited to 50 temperature measurements in the investigation, would have allowed more comprehensive information to be gathered as a number of thermocouples were

not monitored continuously, but such extra information would have been less useful without data-logging facilities.

4.1 BIOLOGICAL SAMPLING PROGRAMME

The special biological sampling facilities built into each pilot filter have been previously discussed in Chapter 3. The two sampling columns in each filter allowed the vertical distribution of the film and fauna to be measured both quantitatively and qualitatively. Meanwhile the horizontal distribution of the biota was investigated by locating three extra baskets in the surface of each filter, thus providing details of distribution within the top 300mm.

Samples were obtained monthly, on or about the 15th of every month, over a total of twenty-three months of operation at two different loadings. Only one vertical sampling column per filter was examined each month; in this way each column was left undisturbed for two months. Either all the right-hand or all the left-hand columns were sampled in any one month. On alternative months, the surface baskets were also sampled, while on the other months the influent and final effluents were sampled and examined microscopically.

4.1.1 SAMPLING PROCEDURE

Each filter distribution system was turned off prior to sampling. The baskets were carefully removed, one at a time, from the sampling column by using colour-coded wires. Excess liquid was allowed to drain from the baskets and after five minutes each one was weighed. A 250cm³ sample of medium and its attached film was taken from each basket; four pieces of medium were removed at random from approximately every 75mm throughout each basket. The sample was

put into a labelled plastic bag which was sealed to prevent evaporation and loss of material. The remaining/medium was carefully replaced in the baskets in the same order in which they had originally been removed, with the marked medium from the previous month's sampling taking the place of the sampled pieces. The sampling procedure for each filter was carried out within twenty minutes in order to minimise the damage to the rest of the biota. All the pieces of medium were carefully replaced, matching up the disturbed surface film so that only a small quantity of film was dislodged and washed away when the distribution system was switched on again. The samples were taken back to the laboratory where each bag was immediately checked for leaks, weighed, double-sealed and then stored at 40°C. This approach was adopted because the addition of preservatives such as formaldehyde or alcohol made identification of the micro-fauna, especially the Protozoa, extremely difficult.

The film was removed from all the medium samples within a few days of collection; the procedure used is summarised in Figure 4.1. The sample bag was opened carefully and the pieces of medium removed individually taking care not to allow any of the animals to escape (Plate 4.1). The loose film and associated animals were removed from the medium by gently brushing the surface with a soft brush in a shallow dish of water (Plate 4.2). Any large animals present were removed at this stage, identified and counted. This was to prevent them from being damaged during the more vigorous

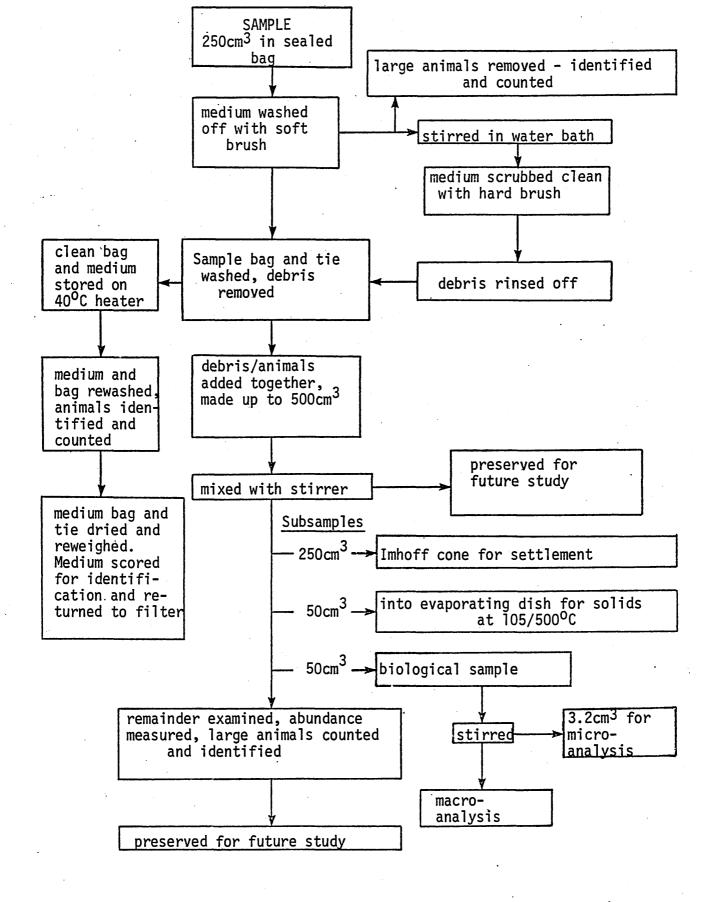


Figure 4.1: Flow chart to illustrate the processing of each sample of medium.

PLATE 4.1: Layout of equipment for removing the film from a sample of medium, seen to the left of the tray in the sealed sample bag.

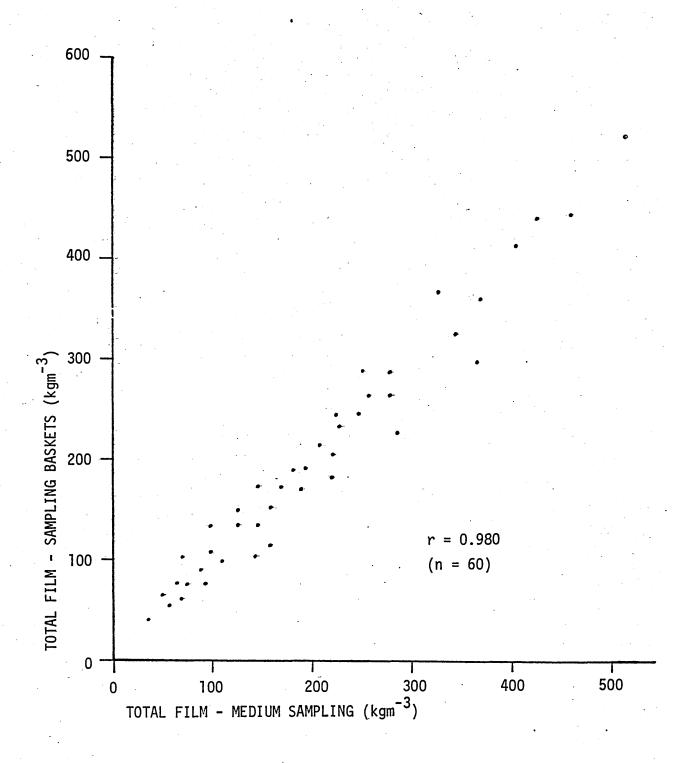


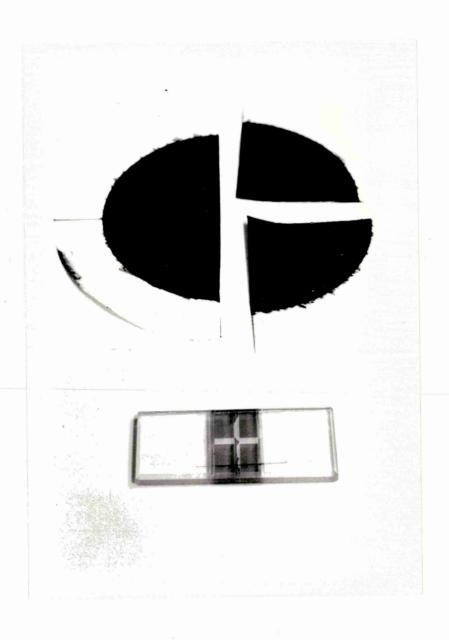
PLATE 4.2: Film being removed from a module of plastic medium initially using a soft brush

washing procedure later on. The piece of medium was then placed into a beaker and stirred vigorously using a magnetic stirrer while the next piece of medium was removed from the bag and brushed clean. The first piece of medium was then removed from the beaker and put into a second dish of water and scrubbed with a short-haired brush, which removed any tenacious film still adhering to the surface. The medium and the sample bag were finally rinsed with clean water to remove any remaining debris and the medium was then resealed in the bag. It was found that by standing the bags of freshly cleaned medium on a 40°C heater for about an hour, many animals, mainly Lumbricillus rivalis and dipteran larvae, not removed from deep within the pores of the slag medium, were driven to the surface by the heat. Both the bag and the medium were subsequently rewashed and the extra animals collected were identified and counted. The bags of clean medium were finally left to dry completely and were then reweighed. The weight of the film was calculated by subtracting the dry weight of the bag and its contents from the wet weight which had been measured immediately after the samples had been returned to the laboratory. Over a period of six months these results were compared with the biomass weights obtained by directly weighing the baskets using a spring balance. Because of the high significance of the correlation, Figure 4.2, the latter method was discontinued. All the debris, solids and animals removed from the four pieces of medium collected from each basket were added together and the total volume made up to 500cm³ with de-ionised water. The liquid sample

Figure 4.2: Computed correlation between total film determination by directly weighing the sampling baskets and by sampling the medium removed

was then mixed thoroughly using a magnetic stirrer and subsamples taken for the various analyses summarised in Figure 4.1. The subsamples taken for biological analysis were stored in sterile bottles at 4°C. The remaining 150cm³, left after all the various subsamples had been removed, were poured onto a white examination tray and an assessment of the relative abundance of the various organisms made. All the animals were identified and the larger ones were counted. Afterwards as much of the sample as possible was retained and preserved with formaldehyde for future study.

4.1.2 ASSESSMENT OF FILM AND SOLIDS ACCUMULATION


The accumulation of film at the various depths sampled in each filter was measured both by weight and volume. Total solids were measured by evaporating the 50cm³ sample (Section 4.1.1) in a weighed evaporating dish to dryness at 105°C for 24 hours (Department of the Environment, 1972). The dish was reweighed after cooling to room temperature. The quantity of volatile solids was determined by removing all the organic matter from the above sample by burning in a muffle furnace at 500°C for one hour (Allen, 1974), and then reweighing the dish after cooling to room temperature. Shephard (1967) when assessing film accumulation in percolating filters applied a correction factor for the macrofauna present. This was intended to take account of the large numbers of invertebrates found at certain times of the year which masked the true film accumulation. use of such correction factors is discussed fully in Chapter 6. An assessment of the volume of solids present was made using the Imhoff cone method (Department of the Environment, 1972). The 250cm³ subsample (Section 4.1.1) was allowed to settle for 45 minutes in the Imhoff cone, which was then gently twisted to remove any debris adhering to the glass sides. The quantity of solids settled after one hour was recorded. Although most of the larger invertebrates were removed prior to settlement the samples contained large numbers of organisms, and these were included in this assessment of film accumulation.

4.1.3 MICROFAUNA ANALYSIS

The 50cm^3 subsample taken for biological analysis (Section 4.1.1) was shaken to produce complete mixing within the container then, using a sterile pasteur pipette, a small volume was transferred to a counting chamber of the Mod-Fuchs Rosenthal type (Plate 4.3). A total area of 36mm^2 split up into 0.25mm^2 squares was examined for each sample under a Wild M20 microscope. Three magnifications were generally used, X100 for counting large micro-organisms such as Paramecium candatum, nematodes and also large bacterial or fungal colonies and X200 for counting the other micro-organisms which were normally identified at X400. The depth of the sample under the coverslip of the counting chamber was measured by the microscope as being 0.1mm, therefore the total volume of sample examined per chamber was $3.6 \times 10^{-5}1$.

The microfauna could only be identified accurately when alive, and this did pose problems with the ciliate protozoans in particular, because of their greater mobility. This was

PLATE 4.3: Counting chamber for micro-analysis and Whatman 115 filter paper with macroinvertebrates removed by filtering, ready for analysis.

partly overcome by the addition of one percent nickel sulphate to the sample which had a narcotic effect on the protozoans. General use of this method was avoided where possible as the peritrichs and the suctorians were more easily identified when active. Problems also arose in the identification of the Fungi and filamentous bacteria, and in deciding how many cells or what length of filament constituted the presence of a countable and reproducible unit. Minimum limits were set. For a fungal hypha these were ten cells or six cells plus either growing tip or a conidium, and for the Bacteria, only filaments in excess of 0.2mm in length were counted.

The term microfauna was restricted to the Bacteria, Fungi, Algae, Protozoa, Nematoda and Rotifera. The numbers counted are all expressed as total number per 3.6 x 10⁻⁶1 in Appendix I and as total number per m³ in the vertical distribution graphs in Chapter 5. The main identification keys used are listed in Table 4.1, while other keys used for specific species are given when relevant in the text of Chapter 5. Photographs were used as an aid to identification and proved invaluable for monitoring the changes in the surface film. By using colour transparencies, the photographs of the biological film could be enlarged and so throughout the experimental period the extent of film accumulation, dominant species, action of grazers and effects of surface ponding could be carefully examined and recorded.

4.1.4 MACROFAUNA ANALYSIS

The remainder of the subsample used above (Section 4.1.3)

was shaken as before and poured into a Hartley pattern Buchner funnel, and the sample container rinsed out. The sample was gently filtered at low pressure through Whatman 113 , 150mm filter paper (Plate 4.3). The filter paper was cut into quarters and examined in a low form plastic dish under a Wild M3 stereo-microscope. The larger invertebrates such as dipteran larvae and enchytraeid worms could be identified, counted and removed at X6.4 magnification, while the other invertebrates had to be located before identification and counted by a systematic search using fine needles at X16 magnification. Mites were identified and counted by using a 1cm^2 illuminated background plate which fitted under the plastic dish containing the filter paper; this allowed only a specific area to be illuminated and this was carefully searched at X40 magnification. A total area of 6cm² was searched in this way, the 1cm² areas being chosen at random on the four sections of the filter paper. Numerous species were identified and counted, and many individuals kept either for positive identification or for further investigation. All the chironomid larvae found were kept and their head capsules mounted for positive identification under the high power microscope. The adult psychodid flies were identified to species, but their larvae and pupae were not. Samples of the larvae and pupae were preserved so that identification to species could be done at a subsequent time if necessary. The identification keys used for the macrofauna are listed in Table 4.1. The number counted is expressed as total number per litre in Appendix II, and as total number per cubic metre in the vertical distribution graphs in Chapter 5.

TABLE 4.1 - REFERENCES USED FOR IDENTIFICATION OF THE MICRO AND MACROFAUNA FOUND IN THE EXPERIMENTAL FILTERS

MICROFAUNA GROUP	KEY REFERENCES
BACTERIA Zoogloel forms Filamentous forms	Unz, 1971 Farquhar and Boyle, 1971a, 1971b, Eikelboom, 1975
FUNGI	Cooke, 1963. Tomlinson and Williams, 1975
ALGAE	Belcher and Swale, 1976. George, 1976
PROTOZOA Sarcomastigophora Ciliophora	Kudo, 1932. Martin, 1968. Calaway and Lackey, 1962. Page, 1976 Curds, 1969
NEMATODA	Tarjan et al., 1977
ROTIFERA	Donner, 1966. Ruttner-Kolisko, 1972
General reference wo	rk: Edmondson, 1959
MACROFAUNA GROUP	KEY REFERENCES
ANNELIDA Enchytraeidae Lumbricidae	Brinkhurst, 1971 Nielson and Christensen, 1959, 1961 Gerard, 1964
INSECTA Collembola Diptera	Lawrence, 1970 Satchell, 1947, 1949. Coe <u>et al</u> ,1950. Bryce, 1960. Brindle, 1962. Mason, 1968. Bryce and Hobart, 1972.
ARACHNIDA	Evans <u>et al.</u> , 1961
ARACHNIDA CRUSTACEA	Evans <u>et al.</u> , 1961 Harding and Smith, 1974

General reference work : Tomlinson, 1946

4.1.5 EFFLUENT ANALYSIS

Curds and Cockburn (1970) found that a greater variety of protozoan species were to be found in the effluent from the filters than in the film collected from the surface of the filter. Therefore, in order to obtain a comprehensive list of species present in the experimental filters and to discover which micro- and macro-organisms were being washed out of the filters, regular analysis of the effluent was carried out using the same methods as for the medium samples. The influent and final effluents were collected in two ways, normally by spot 1 litre samples and by using a plankton net.

4.1.6 FLY COUNTS

Conventional emergence traps (Solbe, Williams and Roberts, 1967) could not be used on the pilot filters due to the continuous dosing system using nozzles. Large sticky paper sheets, positioned between the filters were used initially to trap the flies, but these proved only partially successful. Identification was often difficult, especially of the smaller species, because as the flies struggled they often became covered in the adhesive used on the paper. Also many of the larger flies escaped from the paper, leaving the occasional leg or wing as evidence, and several species, although quite common, were never found on the sticky traps. Eventually an assessment of fly abundance in the immediate area around the pilot plant was made by catching as many flies as possible within a 60 second period, using a large entomological aspirator. These were then identified and

counted. Other observations such as which species were in flight forming swarms or mating were also recorded, and these results are discussed in Chapter 5.

4.2 CHEMICAL SAMPLING PROGRAMME

Wheatley (1976) using 24 hour automatic samplers which collected hourly composite samples, found that significant variation in sample chemistry occurred, due not only to the changes in the composition of the hourly samples, but also to changes occurring during the long storage period. order to obtain comparative results, single one litre spot samples were taken by hand at the same time either on Wednesday or Friday morning. Examination of the daily variation in the chemistry of the sewage over a fortnight showed that on Wednesdays and Fridays the sewage entering the works was of a similar chemical quality while on the other weekdays the composition of the sewage varied due to either works practice or to the composition of the incoming sewage, e.g. high concentrations of detergents due to household washing on Mondays and Tuesdays. By restricting the majority of the effluent sampling to one particular day, Wednesday, it was possible to eliminate the daily variation which although slight could have distorted the mean monthly effluent values. The different types of sampling methods employed in waste water analysis have been reviewed by Little (1973).

The sampling ports in the pilot filters (Chapter 3) allowed the sewage to be sampled as it passed through the filter in order that the relative removal efficiencies at the different depths could be studied. Thirteen samples were taken, the influent, port samples from each filter at 0.3, 0.9, 1.5 m depths and the final effluent at 1.8m.

Analysis commenced as soon as the filters became operational. Initially chemical sampling was done twice a week, but the frequency was gradually reduced as the filters matured and the performance became less erratic. After the first few months, the filters were behaving consistently enough for the sampling frequency to be reduced to three or four times a month. Two sampling schemes were finally employed. A full analysis was carried out once or twice each month when all the parameters listed in Section 4.2.1 were measured in all the available samples. A more restricted analysis was carried out two or three times each month on the influent and three final effluents only, measuring the biochemical oxygen demand (BOD), suspended solids, ammonia and total oxidised nitrogen. The frequency of the analysis carried out each month is summarised in Table 4.2.

The pH, BOD, and suspended solids determinations were all carried out on site in the field laboratory, while the rest of the samples were returned to the main laboratory at the Polytechnic so that a full analysis could be carried out. All the samples were analysed the same day and therefore no storage problems were encountered.

Analysis was carried out either on 'shaken' samples, that is, mixed samples with the settleable solids in temporary suspension or on 'settled' samples with the settleable solids removed. The minimum time for settlement, in order to remove the settleable solids was determined (a) by measuring the volume of settled solids over a timed period in an Imhoff cone and (b) by measuring the suspended

Table 4.2: Monthly frequency of Chemical Analysis

	FRE	QUENC	FREQUENCY PER MONTH	HTNC											
SAMPLES FROM ALL FILTERS	8/8	80D 5	B0D (ATU)	ΡV	000	NH3	TON	-L:	품	Sludge	Turb	_puoɔ	Temp	/	
SHAKEN INFLUENT	4	þ		2	2	4	4	2	4	4	4	2	4	S/S	Suspended solids mgl-1
Port samples 0.3m		*	*		·					7				800 5	5-Day Biochemical Oxygen Demand mgl-1
0.9m		*	*				•			2			-	B0D (ATII)	BOD5-Nitrification sup-
1.5m	_	*	*							2				/	Downsprans to value mal-1
FINAL	_	*	*		, <u>, , , , , , , , , , , , , , , , , , </u>									000	Chemical oxygen demand
														Z	1-1-m
SETTLED INFLUENT	_	*	*											70N	Total oxidised nitrogen mql-l
Port samples	C	(•	(-	(,				(1.		Chloride mgl ⁻¹
0.3m	.7 0	7 0	,	N (* ÷	~ ~	2 0	2 0	~ 0		2 0	2 (ЬН 1	PH -3
0.9m	7	2		7	*	7	2	7	7		2	2		Sludge	Sludge cm 3
1.5m	2	7	_	2	*	7	2	2	7		7	2		Turb	Turbidity F.T.U.
FINAL	5		-	c	c		<	•				0		_puo	Conductivity mmScm-1
FI FOUNT	-	+	-	7	7	-	-	7	-	+	-	7	-	Temp	Temperature ^O C
					•									*	Occasionally

solids of the effluent as the solids settled. The results are summarised in Table 4.3. Figure 4.3 indicates that maximum settlement in the shortest time for all three filters was 40 minutes.

The results of the chemical analysis were used to calculate monthly means and standard deviations to complement the monthly biological data. Diurnal variations in the sewage and in the performance of the filters were determined by carrying out 24 hour sampling programmes. One such programme was carried out at each loading. To measure the diurnal variation in effluent quality at the low loading, a restricted two-hourly programme of analyses was carried out measuring BOD, suspended solids, sludge production and temperature. In the second programme carried out during the high loading period, samples were taken every three hours. The extra time allowed more parameters to be measured; these were BOD, suspended solids, permanganate value, turbidity, pH, conductivity, flow to treatment, temperature, sludge production and some ammonia and total oxidised nitrogen determinations. The results are discussed in Chapter 6.

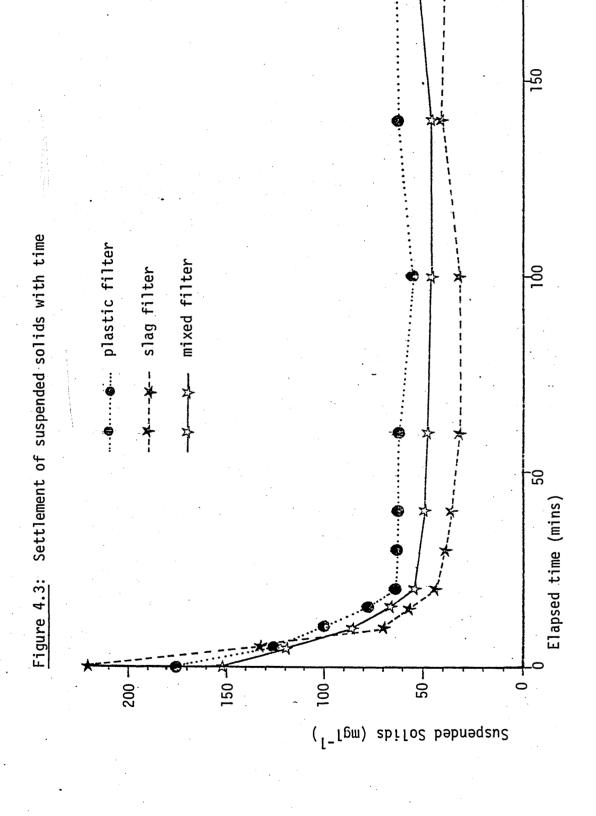

The temperature profile within each filter was monitored by the thermocouple scanner every six hours at midnight, 6.00, 12.00 and 18.00 hrs daily. Hourly profile scans were made over a few days, usually at times of extreme air temperatures, to determine the effects and rapidity of temperature changes within the three pilot filters. The air temperature, although occasionally monitored continuously along with the influent and final effluent temperatures using

Table 4.3: Settleability of solids with time
SUSPENDED SOLIDS (Filtration Method)

Time (minutes)	Influent (mgl ⁻¹)	Effluents from filters		
		Slag Medium (mgl ⁻¹)	Mixed Media (mgl ⁻¹)	Plastic Medium (mgl ⁻¹)
0	152	222	152	176
5	146	134	120	126
10	138	70	86	100
15	132	56	66	78
20	124	44	, 56	62
30	120	38		63 [.]
40	118	36	50	62
60	110	32	48	56
100	110	32	46	62
140	100	42	46	64
180	104	40 .	54	

SETTLEABLE SOLIDS BY VOLUME (Imhoff Cone Method)

Time (minutes)	Influent (mgl ^{-l})	Effluents from filters		
		Slag Medium (cm ³ 1 ⁻¹)	Mixed Media (cm ³ 1 ⁻¹)	Plastic Medium (cm ³ 1 ⁻¹)
0	0.00	0.0	0.0	0.0
20	\ 0.00	4.4	1.3	2.6
40	0.01	4.7	1.5	2.7
60	₩0.05	4.8	1.5	2.7
100	0.15	5.0	1.5	2,7
140	0.35	5.1	1.6	2.7
180	0.42	5.4	1.6	2.7

thermocouples, was normally measured and recorded on each daily visit using a maximum and minimum thermometer.

Retention tests were carried out every four months, while the neutron probe analysis was carried out monthly during the low loading period and less frequently, every four months, during the high loading period.

4.2.1 CHEMICAL ANALYSIS

4.2.1.1 Oxygen Demand

Three oxygen demand tests were routinely carried out.

These were the biochemical oxygen demand (BOD), the permanganate value (PV) and the chemical oxygen demand (COD). All these tests assess the amount of oxygen required to degrade the organic matter found in wastewaters by either biological or chemical oxidation. The results from the various tests are closely correlated due to the varying degree of oxidation in each case. Such correlations are quite reproducible when purely domestic sewage is being tested, but differ considerably for industrial effluents (Water Research Centre, 1978).

Biochemical Oxygen Demand

This is the best known and most widely used measure of sewage strength, and still remains the most important.

Originally intended to estimate the likely effect of a particular waste when discharged to a water course, the BOD has now become used to indicate polluting strength of a wastewater before and after treatment. The test is a

measure of the amount of dissolved oxygen consumed by aerobic microbial oxidation of a sample over a specified period, usually five days at 20°C. The biochemical nature of the test makes reproducible results difficult to achieve; standard deviations of 5 - 15% of the mean are common (Water Research Centre, 1978). The oxygen demand recorded depends on the kind of bacteria present, the time for the bacteria to acclimatize, as well as the biodegradability of the waste and whether or not any toxic or inhibitory substances are present. Nevertheless the results for the BOD test proved as reproducible as the other tests employed, having standard deviations within the range of 2 to 8% of the mean.

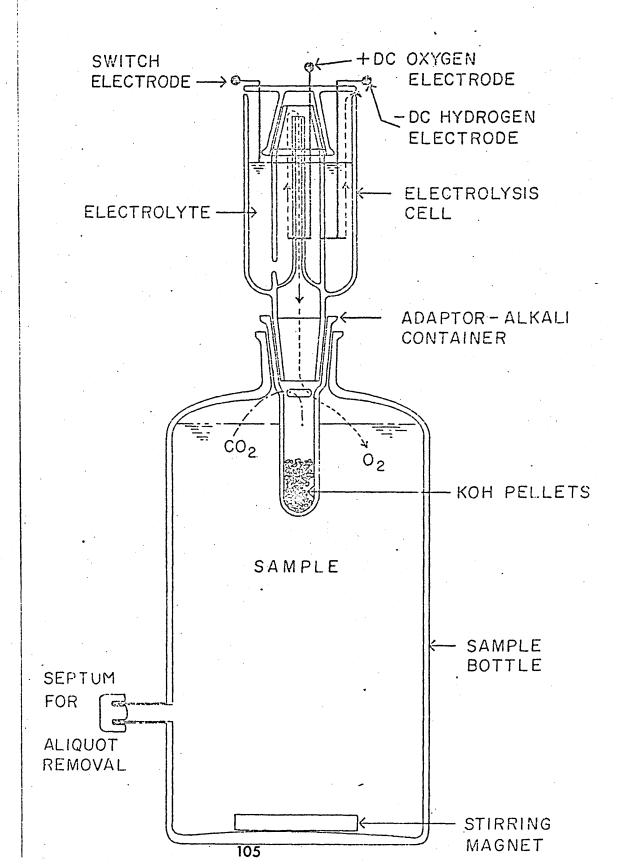
The standard dilution method for determining the BOD was used (Department of the Environment, 1972). The dissolved oxygen content of the samples was determined before and after incubation; the difference gives the BOD of the samples after allowance has been made for the dilution used. All the effluent samples from the pilot filters were diluted, usually by a factor of 60 for the influent and by a factor of 30 for the others, to ensure that between 30 - 40% of the original dissolved oxygen content was left after incubation. The dilution water was freshly prepared using ammonia-free dejonised water containing the recommended reagents (Department of the Environment, 1972). If the dilution water used in the control tests had absorbed more than 500 ugl of oxygen after incubation then all the results obtained using that particular dilution water were discarded. The normal range for blank titrations was 210 - 420 ugl⁻¹, and only exceeded the 500 ugl⁻¹ maximum once. The samples

were diluted and mixed in a 600 cm³ automatic BOD mixing chamber because the reaction bottles used were not exactly 250 cm³ in volume. One set of reaction bottles was then incubated in the dark for five days at 20°C; the dissolved oxygen concentrations of each of the replicate bottles were measured immediately.

The dissolved oxygen content was determined using the Alsterberg modification of the Winkler method. Sodium thiosulphate was standardised against iodate monthly. One percent starch glycollate was used as the indicator (Vogel, 1978). Many workers have modified the Winkler's method for use in the BOD test (Bryan, Ripley and Williams, 1976; Rees and Hilton, 1977; Reddy et al., 1978), but the titrometric method employed during the present investigation proved the simplest and most reliable of all the available test methods examined. Towards the end of the investigation, a dissolved oxygen electrode* specifically designed with a stirrer to fit into a BOD reaction bottle, was compared with the established Winkler method. Although the electrode method required only one reaction bottle and the advantages of a direct oxygen reading as well as the general cleanliness of the technique and ease with which it could be used proved to be attractive attributes, overall it was not found suitable for the occasional analysis carried out in this investigation. The greatest disadvantage was that it took considerably longer then the chemical method when only a small number of samples were processed. Also because some of the reaction vessels

^{*}Manufactured by Elecgronic Instruments Ltd, Surrey, England

were used only once a month, each vessel had to be laboriously cleaned after use which was not the case when Winkler reagents were used because of the cleansing action of the strong acidified iodine solutions used. The other problems encountered of recalibration, changes in response times and the development of non-linear calibration characteristics with age are now well known (Water Research Centre, 1978b). The dissolved oxygen electrode for BOD reaction vessels is potentially an extremely useful instrument, but at present is still in the development stage.


The respirometric determination of BOD has been reviewed by Montgomery (1967). During the present investigation, a BOD respirometer block was regularly used as a comparison with the standard bottle method. It was also hoped to characterise the various samples by running the respirometers over longer incubation periods than the normal five days.

The E/BOD respirometer* continuously replaces oxygen used in the sample by a manometrically triggered electrolysis reaction. A schematic representation of the cell showing the basic operation of the system is shown in Figure 4.4. When electrolyte in the cell is in contact with the switch electrode, oxygen is not produced at the oxygen electrode. As the oxygen is chemically or biologically removed from the sample, and as any carbon dioxide, which may be released as a metabolic end product is removed from the air space by the potassium hydroxide pellets, a slight vacuum in the air

^{*}Manufactured by Analysis Automation Ltd., Oxford, England

Figure 4.4: Schematic diagram showing the basic operation of the electrolysis system for measuring BOD

space is produced. This causes the electrolyte level to rise in the inner tube of the cell; at the same time the electrolyte level falls below the switch electrode. When contact with the switch electrode is broken, oxygen gas is generated to fill the partial vacuum until the electrolyte again makes contact with the switch electrode. When the electrolysis cell is generating oxygen to the sample, the current is monitored electronically, converted to milligrammes of oxygen supplied. This latter value is recorded on a counter.

Although it is simpler and quicker to obtain results using respirometric methods, the results are rarely comparable to those obtained using the bottle method (Tuffey et al., 1974). For example, in undiluted samples the BOD may be suppressed as any toxicity effects may be greater than in diluted samples (Montgomery, 1967). Also, Tebbutt and Berkun (1976) have recorded that biological activity during respirometric BOD tests may be affected by carbon dioxide deficiency. While Morrissette and Mavinic (1978) have shown that the rate of mixing during the test can have profound effects on the BOD value. The respirometric BOD results obtained during the present study are discussed in Chapter 6.

The oxidisable matter contained in sewage effluents chiefly consists of carbonaceous and nitrogenous compounds (Painter et al., 1961). During the BOD test the carbonaceous matter is degraded first and the nitrification of any ammonia present occurs subsequently. The amount of dissolved oxygen absorbed in five days gives only an arbitrary measure of the

total carbonaceous BOD of the effluent and takes no account of the nitrogenous oxygen demand. Nitrification can affect the BOD test when partly nitrified effluents are being tested (Department of the Environment, 1971; Stones, 1972, 1976; Gudernatsch, 1977). In the present investigation, high rate filtration has been examined and in general the degree of nitrification has been low, therefore after dilution the effluent samples being tested would normally contain insufficient nitrifying bacteria to have any significant effect within the incubation period. Replicate BOD determinations with the nitrification suppressed by the addition of allylthiourea (Department of the Environment, 1972) to the dilution water were carried out monthly. The oxygen demand exerted by the nitrogenous matter during the BOD determinations carried out in this investigation was only between 1 - 5% of the total oxygen demand. When compared with the standard deviations achieved when testing the reproducibility of the BOD test, the demand for oxygen by the nitrogenous matter is insignificant.

Various workers have reviewed the problems inherent with the BOD test (Hawkes, 1963; Owens and Edwards, 1966; Mongomery, 1967; Stones, 1979). Although Flegal and Schroeder (1976) have tried to reduce the time for the test by increasing the incubation temperature, the 5 day BOD test at 20°C remains a most valid and useful comparative measure of the organic strengths of sewage and treated effluents.

This is a measure of the oxygen consumed from acidified N/80 permanganate in 4 hours at 27°C. The test was carried out according to the standard method (Department of the Environment, 1972). As only partial oxidation of the organic and inorganic constituents takes place during the test, precise control is important in order to make the results comparable. Although the test is of limited value (Water Research Centre, 1978), it is extremely useful, not only because it is simple and completed within four hours, but because it also acts as a check for the BOD test and therefore monitors to some extent the total oxygen demand of the effluents under examination.

Chemical Oxygen Demand

An appreciable amount of carbonaceous matter is inert to both the BOD and PV tests and therefore is not revealed. The COD test, however, measures the chemical consumption of oxygen by refluxing the sample for 2 hours at 150°C in acid dichromate solution.

The procedure laid down in 'The Methods for Examination of Waters and Associated Materials' (HMSO, 1977) was used. The problem of chlorides causing positive interferences in the test was occasionally encountered during the winter months, but this was overcome by the addition of mercuric sulphate as catalyst. Due to a lack of time and refluxing equipment, COD determinations were limited in number.

However during the final months of the investigation, greater numbers of COD values were determined using the sealed tube method and a newly acquired Digestion Block*. The sealed tube method (Best and Casseres, 1978) allows large numbers of COD determinations to be carried out under identical conditions, and the results are extremely reproducible with standard deviations within 0.5 to 1.5% of the mean.

The COD test is faster and more reproducible than the BOD or PV tests and is a better measure of the total organic load (Stones, 1974). In the absence of interferences, it gives the value to which the BOD would tend if incubation continued until all the organic matter had been degraded. The COD test is gradually replacing the traditional use of the BOD test, especially in the assessment of levels of industrial pollutants and the cost of treatment charged to industry. (Dart, 1977).

The relationship between BOD, PV and COD is examined in Chapter 6.

4.2.1.2 Ammonia and Oxidised Nitrogen

Biological oxidation of ammonia, derived from the degradation of urea and proteins, to nitrite and nitrate with the subsequent reduction of these oxidation products to gaseous nitrogen, takes place within percolating filters. The degree

^{*}Manufactured by Grant Instruments (Cambridge) Ltd., Barrington, Cambridge, England.

of nitrification is to some extent a measure of the filter's ability to cope with the organic loading applied to it.

The distillation and titration method for determining the ammonia and total oxidised nitrogen concentrations was used as described by Jenkins (1950a, 1950b). Ammonia is distilled in a Kjeldahl apparatus from the diluted sample made alkaline by the buffer light magnesium oxide and is trapped in boric acid solution. The residue from the determination of ammonia still contains the oxidised nitrogen, present both as nitrate and nitrite, which is reduced to ammonia by the addition of Devarda's alloy and redistillation. The ammonia is collected as before in indicating boric acid solution and determined by titration with standard sulphuric acid.

Much has been written concerning the effect of various buffers during the ammonia distillation. In the U.K. the recommended buffer is light magnesium oxide (Department of the Environment, 1972) while in America the standard buffer is borate (American Public Health Association et al., 1977). Jenkins (1977), reviewing the analysis of nitrogen in fresh and waste waters compared all the available buffers and found that only phosphate and borate buffers exerted satisfactory control, while light magnesium oxide produced high pH values at the end of the distillation which theoretically could decompose the organic nitrogen into ammonia. Careful comparative tests using a sample of known ammonia and total oxidised nitrogen concentrations were carried out in the laboratory to compare the borate and magnesium oxide buffers.

The results obtained showed that the light magnesium oxide was a suitable buffer for this test, and so it was used during the present investigation.

The results obtained for concentrations of ammonia in excess of 1 mgl⁻¹ have been very reproducible although concentrations of less than this were more erratic. The ammonia concentration in water samples will change when stored for any length of time. Verstrate and Alexander (1973) reported changes in the ammonia concentration due to heterotrophic nitrification. The effects of storage on the concentration of ammonia in sewage samples was recently reviewed by Riemann and Schierup (1978) who compared the effects of preserving ammonia in solution using mercuric chloride and sulphuric acid. In the present investigation, if samples had to be kept for ammonia analysis on the day after collection, the samples were stored at 4°C. Samples stored in this way retained their original ammonia concentration. If storage for periods longer than overnight was necessary, samples were fixed using concentrated sulphuric acid (Unesco, 1978).

In the recent harmonised monitoring scheme run by the Department of the Environment, the distillation method for the analysis of ammonia and total oxidised nitrogen was shown to produce accurate and reproducible results (Water Research Centre, 1977, 1977b).

Originally it was hoped to monitor ammonia and nitrate concentrations in the samples by using ion-selective electrodes. The ammonia probe used was (Model 8002-2)

developed by Electronic Instruments Ltd.* to measure the ammonia concentrations in solution while the nitrate probe (Model 92-07) was a liquid membrane electrode developed by Orion Research Inc.**. Neither of the probes proved satisfactory, requiring constant recalibration, a problem also encountered by Ip and Pilkington (1978). The samples were often at different temperatures and drift was encountered at these different temperatures, a characteristic which is discussed fully by O'Herron (1977). There was poor correlation between the results from the electrode and the distillation method, and therefore the instrumental system was abandoned in favour of the chemical method.

4.2.1.3 Chloride

The sewage works at Treeton received road runoff from the nearby motorway and therefore during the winter salting operations the chloride concentration in the samples increased considerably.

Two methods were employed to measure the chloride ion content of the samples, an ion-selective electrode and determination by titration with mercuric nitrate. The Orion (407A) specific ion meter with a chloride ion electrode were used for routine samples and for the determination of chloride during the initial retention tests carried out on the pilot filters (Section 4.2.4). The electrode method did not produce reproducible results; during periods of use in excess of one hour, large drifts were recorded and the

^{*}Electronic Instruments Ltd., Surrey, England **Orion Research Inc., Cambridge, Massachusetts, U.S.A.

instrument required recalibration. Its use was discontinued early in the investigation.

In the titration method which was used regularly on all the samples and in the retention test, the mercuric ions react with the chloride ions to form a highly stable and soluble complex. The end point is detected by the use of diphenyl/carbazone as an indicator which forms a blue-violet complex with an excess of mercuric ions (Vogel, 1978).

4.2.1.4 <u>pH</u>

Wescott (1978) evaluating the relative merits of pH meters found that the best instrument was a digital rather than an analog instrument. A digital pH meter* with a manual temperature control was used in conjunction with a combination pH electrode with an internal silver-silver chloride reference cell. To prevent dissolution of the silver chloride film, the normal potassium chloride filling solution used for the electrodes was saturated with silver chloride.

4.2.1.5 <u>Suspended Solids</u>

Suspended solids are discrete particles in suspension ranging from those which are easily settleable to the colloidal. Traditionally one of the most important wastewater parameters, suspended solids is largely removed by efficient sewage treatment.

The filtration method was used to determine the suspended

^{*}Model 102D, manufactured by Ecologic Instruments Inc., Bohemia, New York, U.S.A.

solids of both the influent and effluent samples (Department of the Environment, 1972). Melbourne (1964) showed that better reproducibility was possible if the papers were washed prior to use to remove any loose fibres, and if they were used smooth side uppermost. Whatman GF/C filter papers were used because of their high retentiveness, retaining particles larger than 1.2um, and also greater stability during washing. The papers were dried for two hours at 105°C and allowed to cool in air for five minutes before weighing. Normally 50 cm³ of the sewage samples were used.

The paper quality and the method were checked at frequent intervals by using macerated glass fibre filter papers in suspension as a standard for the test (Croft, 1978). It was found from these standardisation experiments that although the filter papers have a high wet strength, it was best to use low vacuum pressure to avoid damaging the paper, and thereby altering its weight while filtering the samples.

The results are expressed in milligrammes of total suspended solids per litre of sample.

4.2.1.6 Settleable Solids

A measure of the settleable solids by volume in the influent and final effluents were regularly made using one litre Imhoff cones (Department of the Environment, 1972). The settling rate was also recorded by plotting settlement against time.

Monthly determinations of the weight of solids that settled from all the samples were made by measuring the total suspended solids, by the filtration method (Section 4.2.1.5), in samples before and after settlement.

4.2.1.7 Turbidity

The turbidity of the settled samples was made routinely using an Ecologic Instruments 104 Turbidimeter*.

Fresh standards for calibrations of the turbidimeter were prepared for each sampling period using stock solutions of hexamethylenetetramine and hydrazine sulphate (Department of the Environment, 1972). Turbidity is measured in formazin turbidity units (F.T.U.).

4.2.1.7 Conductivity

The electrical conductivity of a liquid is related to the concentration of dissolved mineral salts.

The conductivity meter** used had a range of 1 uScm⁻¹ - 300 mScm⁻¹. The glass cell used with the meter had a scale correction resistor so that the true conductivity was read directly from the instrument. The meter was calibrated using standard solutions of potassium chloride at 25°C (Allen, 1974). Conductivity is measured in micro-siemen uScm⁻¹.

^{*}Ecologic Instruments Inc., Bohemia, New York, U.S.A.

^{**}Model P335, manufactured by Portland Electronics, Surrey, England.

Conductivity measurements were regularly used to estimate the chloride concentration in the effluents from the pilot filters during the retention tests (Section 4.2.4). The relationship between conductivity and chloride was established by plotting a calibration curve, using standard solutions of chloride. The calibration curve, Figure 4.5, was used to convert all the conductivity results into chloride values.

4.2.2 NEUTRON SCATTERING

The accumulation of film within a filter sets a limit to the loading which can be imposed upon it. Therefore, regular observation of the film is extremely important if maximum operational control of the filters is to be maintained.

The amount of biological film retained in the filters was determined both gravimetrically (discussed in Section 4.1.2) and by the neutron scattering technique (Harvey, Eden and Mitchell, 1963).

Two aluminium access tubes were fitted into each pilot filter during construction and these allowed the neutron probe to be lowered to any depth within the filters.

Once the access tubes had been fitted there was no further disturbance to the medium in that region of the filter, and so it was possible to monitor the changes in film accumulation over the experimental period without disturbing or damaging the film itself.

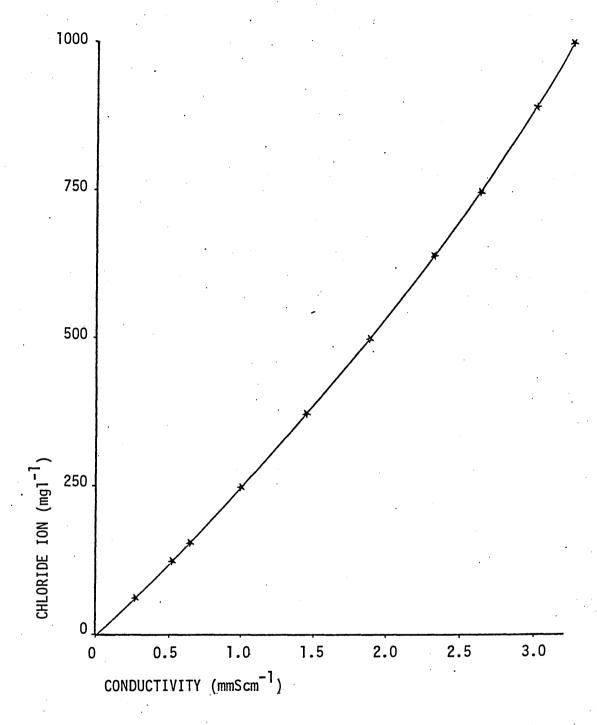
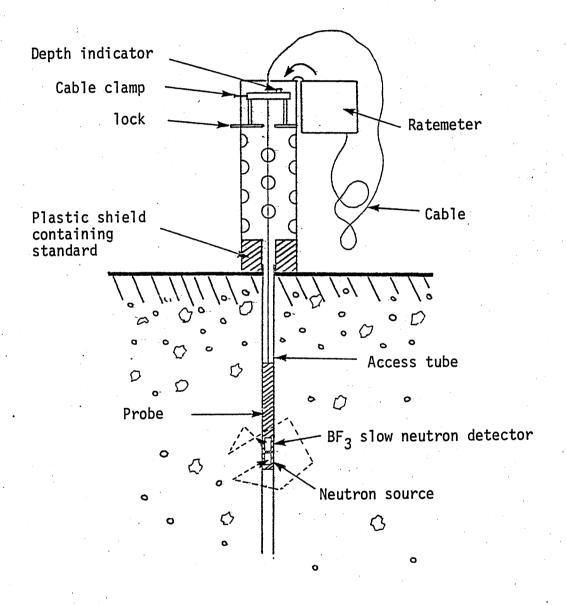
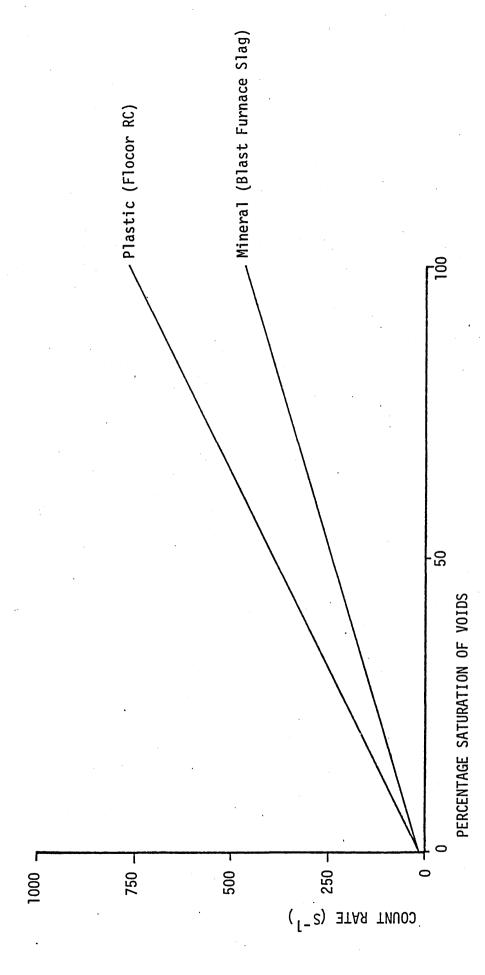



Figure 4.5: Conductivity-chloride calibration curve


The neutron probe, which is in fact a Wallingford soil moisture probe of the type described by Burn (1961), measures the abundance of hydrogen ions. The probe incorporates a sealed radio-active isotope, Figure 4.6, which is a source of fast neutrons. A 'cloud' of slow neutrons is formed when fast neutrons collide with hydrogen atoms, and a detector within the probe detects slow neutrons reflected by the hydrogen atoms in any water present (Bell, 1973). As the filter medium itself is devoid of any hydrogen, it is possible, once all the excess water is drained out of each filter by shutting down the distribution system, to regard the hydrogen content as being equivalent to the amount of film present (film is approximately 96% water).

The probe was calibrated by filling drums with a capacity of 210 litres, with the two different types of medium used in the pilot filters. The large size of the drums prevented any interference from the sides of the drums if the access tubes were centrally placed. The emitted neutrons can only travel about 150mm from the source in saturated conditions and 300mm at 10% saturation, so that the overall diameter of the drums had to be at least 750mm. The instrument was calibrated by measuring the scattering at 0% and 100% saturation, and the plotted calibration curves are shown in Figure 4.7. The calibration results illustrate a marked difference between the calibrations obtained for the two different types of medium. Therefore, the appropriate calibration curve had to be used when converting the probe readings into percentage saturation of the voids. Particular care had to be taken in the mixed media filter to locate the

Figure 4.6: Diagram of neutron probe in use.

(NOT TO SCALE)

Calibration curves for the neutron probe using the plastic and mineral medium. Figure 4.7:

interface accurately before conversion of the data.

The principle and method of this technique is discussed by Bell (1973), and its use to estimate the film accumulation in percolating filters examined by Harvey, Eden and Mitchell (1963).

Five readings were taken every 200mm in both the access tubes of each filter. Each reading shown on the digital counter of the probe was a mean count per second integrated over a 16 second sample period. The replicate access tubes allowed the film accumulation to be studied from either side of the filters, although a mean of the two average readings at each depth was taken to represent the mean percentage saturation of the voids. A background count was made when the probe was being used and this value was deducted from the data obtained from the filters before the percentage saturation of the voids was calculated from the calibration curves.

Problems were encountered with surface interference and it was generally found that the first 200mm reading was subject to error. Experiments carried out using the calibration drum found that interference from the surface was negligible at depths below 300mm.

The probe was used every month during the low rate loading of the pilot filters, usually the day before the biosampling and the gravimetric determinations of the film weight were made. In this way it was possible to compare directly the

neutron scattering results with both the total film weight and the total and volatile solids values. Retention tests were also carried out at this time. All these results are discussed in Chapter 6. During the high rate phase of the investigation when the filters were loaded at $3.37~\text{m}^3\text{m}^3\text{d}^{-1}$, the use of the neutron probe was reduced to once every four months. This was to enable more time to be spent analysing the biological data but at the same time still obtaining information concerning the seasonal variation in the film accumulation as measured by the neutron scattering technique. This technique produced reproducible results and was quick and relatively easy to use. It has been widely used to estimate the film accumulation in filter beds and is now widely accepted (Bruce et al., 1967).

4.2.3 TEMPERATURE

The temperature within the filters is extremely important because it controls the rate of microbial oxidation and therefore is related to the performance of the filters. The temperatures of the influent and final effluents were measured using a mercury in glass thermometer with a range of -10 to $+30^{\circ}$ C, whenever samples were collected for analysis. Thermocouples, copper-constantan (Cu/con) type, were fixed to the distributors and to the effluent drains so that any relationship between the influent and the final effluent temperatures for each pilot filter could be monitored with the use of a thermocouple scanner.

A maximum and minimum thermometer was positioned on the central filter and the temperature range was recorded daily. As described in Chapter 3, each pilot filter contained three cores of thermocouples, one core down the centre of the filter, another against the outer wall and the third positioned between the two. The latter was against one of the columns which encased the sampling baskets. Each core contained six thermocouple junctions which were positioned to coincide with the centre of each sampling basket. By positioning the thermocouples in this way, a temperature profile of each filter could be obtained enabling the temperature to be directly related to the fauna within the pilot filter.

4.2.4 RETENTION TIME ANALYSIS

The longer there is intimate contact between the sewage and the active film then the better the final effluent quality. Therefore, the duration of liquid retention within the filter is an extremely important and useful parameter.

Traditionally, retention time is determined by a tracer technique, although tracers can only measure their own retention and not necessarily the retention characteristics of waste liquids (Eden et al., 1964). Originally dyes, salt solutions or ammonium salts were used (Tomlinson and Hall, 1950), but these often suffered from prolonged retention due to adsorption onto the film. In the late 1950's however, experiments with radioactive tracers, showed them to be ideal

for retention analysis. This was because (a) only small quantities of such tracers are required, (b) of the ease and sensitivity of detection, and (c) the negligible tendency of some of the radioactive substances to be adsorbed onto the film (Eden and Melbourne, 1960; Eden et al., 1964).

Since that time most of the research on retention time has involved the use of radioactive tracers (Sheikh, 1970; Kshirsagar et al., 1972) although Tariq (1975) published a method to calculate the mean time of retention by measuring the influent and drainage rates. The main problem with Tariq's method was that the filter had to be shut down in order to measure drainage characteristics. In the present investigation, the problems of obtaining permission to use radioactive tracers, arranging for tracers, detection and handling equipment and organising technical assistance trained in handling radioactive material on a suitable day for the test to be run, and also the cost of such an operation, proved insurmountable. After careful examination of the available non-radioactive tracers, it was decided that sodium chloride should be used, as the adsorption rate of chloride by the film appeared to be relatively constant, especially over a short period. A saturated solution of 300 gl⁻¹ of sodium chloride was used.

The concentration of chloride in the influent was monitored regularly throughout the experiment, and before the tracer was added to each filter the final effluent was sampled and the chloride level determined over a ten minute period. The

difference between the two values was used as a correction factor for all the chloride levels recorded in the influent samples during the experiment. 450 cm³ of the tracer was added to each filter by filling the pipework. Perfect distribution onto the surface was obtained by increasing the pressure within the pipework before opening the top valve. The time taken to drain and refill the pipework with the tracer took only between one and two minutes and therefore the filters were only non-operational for a very short time. As soon as the influent and tracer began to flow onto the bed, a stop-watch was started and sampling began. $125~\mathrm{cm}^3$ samples were taken every minute for the first ten minutes, in case some of the sewage was short circuiting through the filter, and then every five minutes for the next eighty minutes. After this time, effluent samples were taken at thirty minute intervals until the chloride concentration had returned to normal. The corrected concentration of chloride in the influent was subtracted from all the effluent results so that only the chloride originating from the tracer was recorded.

During the first retention test experiments, three methods of analysing the chloride present were compared; these were by titration with mercuric nitrate, by ion-selective electrode and also by conductivity (Sections 4.2.1.3 and 4.2.1.8). Figures 4.8 and 4.9 clearly show that a good correlation existed between the chloride concentrations determined by titration and the conductivity. But a poor correlation existed between the titration and ion-selective methods, Figure 4.10. The problems using the chloride

Figure 4.8: Computed correlation between chloride concentrations in the final effluents recorded by titration and derived from conductivity measurements.

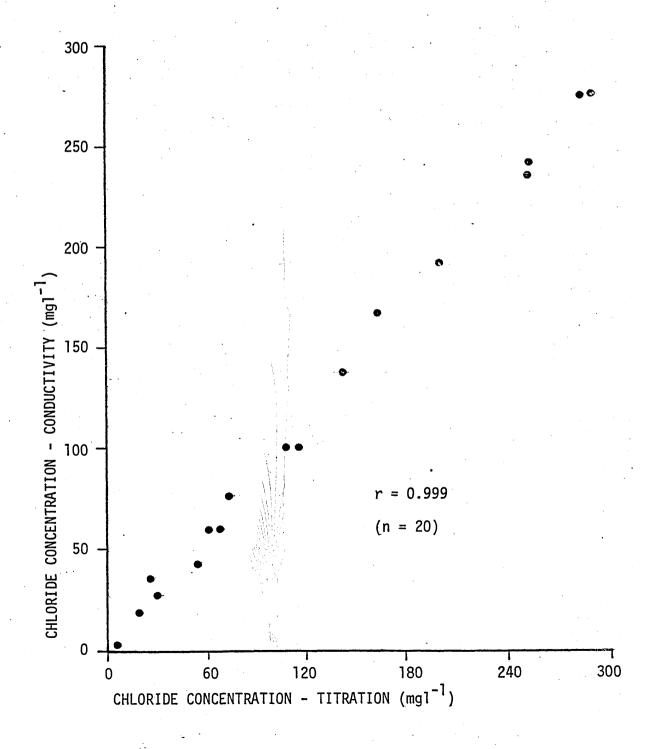


Figure 4.9: Computed correlation between chloride concentration in final effluents recorded by two different methods, conductivity and titration

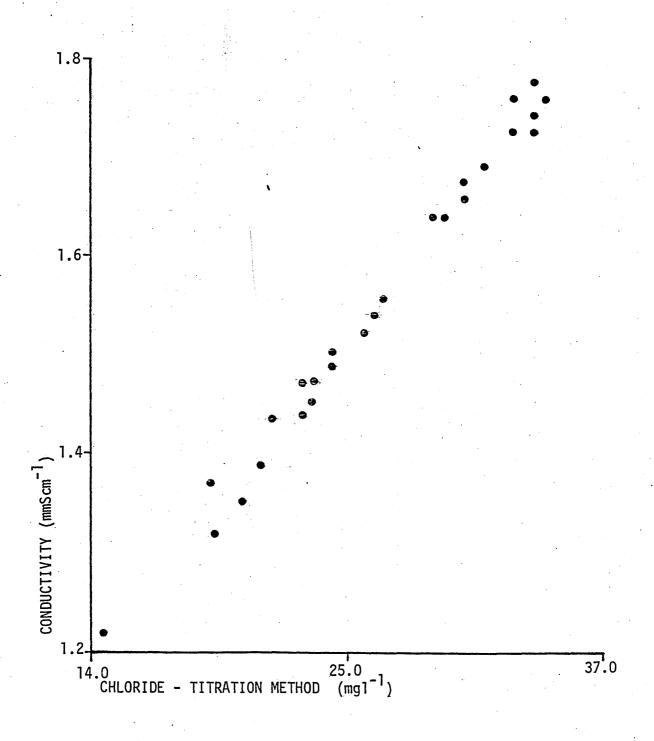
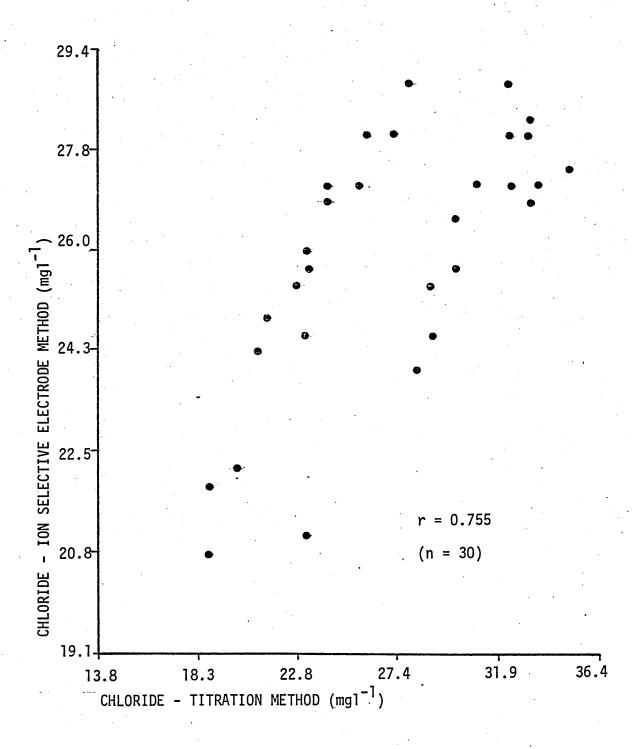



Figure 4.10: Computed correlation between chloride concentration in the effluents recorded by two different methods, titration and ion-selective electrode.

ion electrode and meter have already been discussed in Section 4.2.1.3, these being drift and possibly interference caused by other ions present.

The method finally adopted to measure the chloride concentrations during these tests was the conductivity cell and meter, because it was possible for all the retention tests on the pilot plant to be carried out by one person in a single day. It was also a simple method of negligible cost, extremely quick, produced reproducible results and without risk of contamination by radiation to either the operator or the environment. In order to monitor the results derived from the chloride-conductivity calibration curve (Figure 4.7) occasional titrations were carried out during the tests to check the chloride concentrations and in all cases, good correlations between the two were achieved.

Lawton and Eggert (1957) examined the effect of high concentrations of sodium chloride on filter film, and discovered that the film suffers shock effects when wastes with a high concentration of salt are applied to them. However, although very big concentrations of this tracer were used, it was only a pulse load of $450 \, \mathrm{cm}^3$ and the salt was rapidly diluted within the filter. Twice during retention tests, all the final effluent samples were retained and examined back at the laboratory to see if the high sodium chloride levels had affected the filter organisms. There was no increase in the number of organisms washed out from the filters and the Protozoa and other microfauna appeared to be as active as though under normal operating conditions.

Because of the ease and the simplicity of the test and its negligible effect on the filter bed ecosystem, retention tests were carried out whenever it was thought they would provide useful information, for example at times of bad performance, when the film accumulation was greatest and immediately after sloughing.

The analysis of the results is described and discussed in Chapter 6.

4.3 MATHEMATICAL AND STATISTICAL ANALYSES.

The aim of these analyses was the understanding of the interrelationships between the individual species, faunal groups and the various environmental parameters measured in the three pilot filters.

The correlation coefficient was used as an index of the degree of association between variables and it was assumed that all the pairs of data tested in this way approximately conformed to a bivariate normal distribution. All the pairs of data tested were plotted on scatter diagrams, and the dispersion of the data examined for other possible non-linear relationships.

Linear regression analysis was carried out on the chemical data, and the value of one variable was measured in terms of the associated variable in the form of y = a + bx. Regression lines were plotted and these exhibited the linear regression of y on x, the slope of the line being the regression coefficient of y on x which is the average amount y increases for a unit increase of x (Parker, 1973; Bailey, 1979).

The significance of observed differences during specific loading periods were assessed by using the 'one tailed' t-test. When the level of significance was less than 10% (p < 0.10), then the null hypothesis was rejected and a significant difference recorded (Elliott, 1977).

All the raw chemical data were recorded directly onto computer Means, standard deviations, standard error of means, maxima, minima and ranges were calculated for all variables, using all the recorded data from each filter during each particular loading. The regression analysis was also calculated using all the available data. Monthly means were determined and used in the correlation analysis with the other environmental and biological data. All the biological and solids measurements from the various depths sampled in each filter were used to calculate the mean number of individuals per litre of medium for each month. For each loading period the means, standard deviations, standard errors of means, maxima, minima and ranges were calculated for all variables, using these monthly means. Correlation analysis and the t-test were calculated using the monthly means, and matrices of the correlation coefficients constructed. All the daily temperature records were used to determine the monthly and annual means, maxima, minima and ranges of ambient filter, influent and final effluent temperatures.

5.1 INTRODUCTION

The ecology of the percolating filter has been widely discussed and reviewed by previous workers (Holtje, 1943; Hawkes, 1963; Shephard; 1967; Hussey, 1975; Wheatley, 1976), and the role of the individual groups involved in the process has been fully examined in a recent review by Curds and Hawkes (1975).

The function of this chapter is to examine and discuss the results of the present investigation in relation to previous research, and to assess the effect on the filter ecosystem of replacing the surface medium of a slag filter with a 750mm layer of plastic medium.

For convenience, the animals were split into two groups for examination (Section 4.1), the microfauna and the macrofauna. The microfauna consist of the Bacteria, Fungi, Algae, Protozoa, Rotifera and the Nematoda. Population densities relating to the microfauna are expressed in the text as the total number of individuals per 3.6 x 10⁻⁶ litre. However, when not used in the text (e.g. when plotted on the vertical distribution graphs) the microfauna and the macrofauna are expressed as the total number of individuals per cubic metre of medium. The macrofauna consist of the Annelida, Insecta, Arachnida and Crustacea. A few other invertebrates which were recorded occasionally in the pilot filters are also included in this group. All the macrofauna are expressed as the total number of individuals per litre of medium. The biological results are given in full in Appendix II.

A considerable amount of attention is paid to the Protozoa in this chapter (Section 5.5) because (a) it was the group with most species and (b) the group was better than the others in reflecting the environmental and subsequent biological changes.

The results span two consecutive experimental periods; the first was of twelve months when all the filters received the lower loading of 1.68 $m^3m^{-3}d^{-1}$ which was equivalent to an organic loading of 0.28 kg BOD $m^{-3}d^{-1}$. The second period spanned a further eleven months, and the loading to the filters was doubled to 3.37 $m^3m^{-3}d^{-1}$, equivalent to an organic loading of 0.63 kg BOD $m^{-3}d^{-1}$, which is referred to in the text as the higher rate of loading. It has also been convenient to classify the film accumulation into three categories, light ($< 5 \text{ kgm}^{-3}$), moderate (5 - 8 kgm⁻³) and heavy weights $(>8 \text{ kgm}^{-3})$. A summary of the correlation analysis for each major species is normally given in the text and where necessary, the level of significance of the correlation is given in brackets. The angle of the slope is indicated by +(positive) or -(negative), and the level of significance is given numerically as 1. (P < 0.05 = significant), 2. (P < 0.01 = highly significant) and 3. (P < 0.001 =very highly significant).

In the present investigation, a total of 69 different species (including unidentified species) were recorded; a full list of all the species appears in Table 5.1. The mean species diversity for each filter at both loading rates is compared in Table 5.2 below. At both loading rates the greatest

TABLE 5.1: List of species recorded from the pilot filters

BACTERIA

Zoogloeal forms, mainly Zoogloeal ramigera

Sphaerotilus sp. Leptothrix sp. Beggiatoa sp.

FUNGI

Subbaromyces splendens Hesseltine

Sepedonium sp.

Fusarium aquaeductuum (Radimacher and Rabenhorst) Saccardo

Geotrichum Candidum Link

ALGAE -

Chlorella sp. Scenedesmus sp. Stigeoclonium sp.

PROTOZOA: SARCOMASTIGOPHORA

Bodo sp.

Amoeba sp. mainly Amoeba radiosa Ehrenberg

Euglena sp.

PROTOZOA: CILIOPHORA (Holotrichia)

Trachelophyllum pusillum Perty-Claparede and

Lachmann

Hemiophrys fusidens Kahl Hemiophrys pleurosigma Stokes Chilodonella cucullulus (Müller) Chilodonella uncinata Ehrenberg

Colpoda cucullus Müller

Uronema nigricans (Müller) Florentin

Glaucoma scintillans Ehrenberg Colpidium colpoda Stein Colpidium campylum (Stokes) Paramecium aurelia Ehrenberg

Paramecium caudatum Ehrenberg

(Peritrichia)

Vorticella microstoma Ehrenberg Vorticella convallaria Linnaeus

Vorticella vernalis Stokes Opercularia minima Kahl

Opercularia microdiscum Faure-Fremiet

Opercularia coarctata Claparède and Lachmann

Epistylis rotans Svec

(Spirotrichia)

Stentor roeseli Ehrenberg

Aspidisca costata (Dujardin) = cicada Tachysoma pellionella (Müller-Stein)

Oxytricha ludibunda Stokes

```
Table 5.1 (contd)
           (Suctoria)
          Acineta cuspidata Stokes
Acineta foetida Maupas
          Podophrya maupasi Bütschli
          Podophrya carchesii Claparède and Lachmann Podophrya mollis Bütschli
          Sphaerophrya magna Maupas
NEMATODA
ROTIFERA
           (Bdelloidea)
          Philodina roseola Ehrb.
           (Monogononta)
          Lecane sp.
          Dicranophorus sp.
ANNELIDA
           (Oligochaeta)
          Enchytraeidae
             Enchytraeus buchholzi Vejdovsky
             Lumbricillus rivalis Levinsen
          Lumbricidae
             Dendrobaena rubida (Sav.) f. Subrubicunda (Eisen)
            Eiseniella tetraedra (Savigny)
INSECTA
           (Collembola)
           Isotomidae
             Isotoma olivacea-violacea gp.
           (Coleoptera)
          Hydrophilidae
             Cercyon ustulatus (Prey.)
           Staphylinidae
             Unidentified sp.
           (Diptera)
          Anisopodidae
             Sylvicola fenestralis (Scop.)
           Psychodidae
             Psychoda alternata Say.
             Psychoda severini Tonn.
```

```
Table 5.1 (contd)
          Chironomidae
            Hydrobaenus minimus
            Hydrobaenus perennis Mg.
           Metriocnemus hygropetricus
                                        Kieff.
          Ephydridae
            Scatella silacea Lw
          Sphaeroceridae
            Leptocera sp.
          Cordyluridae
            Spathiophora hydromyzina Fall.
          (Chilopoda)
            Lithobius forficatus Linn.
CRUSTACEA
          (Cyclopoida)
          Cvclopidae
            Paracyclops fimbriatus-chiltoni
                                             (Thomson)
ARACHNIDA
          (Acari)
          Acaridae
            Histiostoma carpio (Kramer)
            Rhizoglyphus echinopus (Fumouze and Robin)
          Anoelidae
            Histiostoma feroniarum (Dufour)
          Ascidae
            Platyseius italicus (Bertese)
         (Araneida)
          Linyphiidae
            Unidentified sp.
MOLLUSCA
          (Gastropoda)
          Limacidae
            Agriolimax reticulatus (Müll.)
```

Table 5.2: Mean monthly species richness at different loadings. (Figure is mean number of identified species)

		· · · · · · · · · · · · · · · · · · ·	
	SLAG	FILTÉR	
	LOW RATE	HIGH RATE	
Microfauna	13.50	16.82	
Macrofauna	9.67	8.63	
Total species diversity	23.17	25.45	
Range	17 (14-31)	15 (20-35)	
No. of months sampled	12	11	
	MIXED	FILTER	
	LOW RATE	HIGH RATE	
Microfauna	17.00	16.91	
Macrofauna	10.58	10.46	
Total species diversity	27.58	27.37	
Range	12 (23-35)	20 (18-38)	
No. of months sampled	12	11	
	PLASTI	C FILTER	
	LOW RATE	HIGH RATE	
Microfauna	14.83	15.00	
Macrofauna	12.00	11.09	
Total species diversity	26.83	26.09	
Range	17 (20-37)	18 (18-36)	
No. of months sampled	12	11	

diversity was recorded in the mixed filter. At the lower rate, this filter had a greater number of species of microfauna than either the slag or plastic filters. Although the increased loading resulted in an increase in the species richness of the slag filter, it remained relatively constant in both the mixed and plastic filters, Table 5.2.

5.1.1 HORIZONTAL DISTRIBUTION

The horizontal distribution in the top 300mm of the pilot filters was monitored every two months by the provision of three extra sampling baskets sunk into the surface of each filter (Section 3.3.3). A complete biological and solids analysis was carried out on the four surface baskets in each filter. The baskets were coded R, C, L, and 1, the latter being the top basket of the sampling column, with the prefix S, M or P for the slag, mixed and plastic filters respectively.

The results of the horizontal distribution is given in full in Appendix II. All the available data from each filter wevecollated and the bimonthly abundance in the surface baskets determined. The data for all the baskets in each filter were compared at either loading by using the t-test; and the significance of the differences calculated. The computed t-values were generally very small with only eight significant differences being recorded from all the filters at either loading and all the biological groups measured. Only four of these significant differences recorded were at

the 5% significant level or less (Table 5.3). No significant differences were recorded between the horizontal distribution and any of the biological organisms in the plastic filter. The differences that were recorded were in three

Table 5.3: Significant differences in horizontal distribution in the top 300mm of the biological groups and species measured. The level of significance is expressed as the value of P between the four surface baskets in each filter.

	LOW LOADING (1.68m ³ m ³ d ¹)	Value of P	HIGH LOADING (3.37m ³ m ³ d ¹)	Value of P
Subbaromyces splendens	MC v M1 ML v M1	0.05 0.05	ML v M1 SC v SL	0.10 0.10
Zoogloeal bacteria			SR v SL SL v S1	0.05 0.10
Enchytraeidae	SR v S1 SC v S1	0.10 0.01	·	

Subbaromyces splendens and the Enchytraeidae. No significant differences in horizontal distribution were recorded in the majority of biological groups examined, including the Psychodid larvae and astigmatid mites. The number of significant differences recorded were very small and isolated, therefore it was concluded that the results obtained in the sampling columns were also representative of the whole filter, at least in the top 300mm of the filter.

5.2 BACTERIA

The basic trophic level found in percolating filters is composed of aerobic bacteria which constitute the major proportion of the active biomass. These bacteria are predominantly saprophytic; however, a number of autotrophs are also found, e.g. <u>Nitrosomonas</u> and <u>Nitrobacter</u> which oxidise ammonia and nitrite respectively. The rapid exchange of nutrients and catabolites between the aerobic bacteria and the influent sewage, in which they are suspended, is due to their high surface area to volume ratio. This, coupled with their potentially fast doubling rates (Maynard-Smith, 1969), indicates how effective the aerobic bacteria are at oxidising the organic matter which has been adsorbed onto the structure of the film.

The bacterial flora in percolating filters is similar to that found in activated sludge, the dominant aerobic genera being the gram negative rods, <u>Zoogloea</u>, <u>Pseudomonas</u>, <u>Achromobacter</u>, <u>Alcaligens</u> and <u>Flavobacterium</u> (James, 1964; Harkness, 1966; Pike and Carrington, 1972).

5.2.1 ZOOGLOEAL BACTERIA

The zoogloeal forms of bacteria were the most commonly recorded microorganism, being found every month in each filter (Plate 5.1). Zoogloeal bacteria are widely associated with sewage treatment, in particular with percolating filters

PLATE 5.1: Zoogloeal bacteria. (X500)

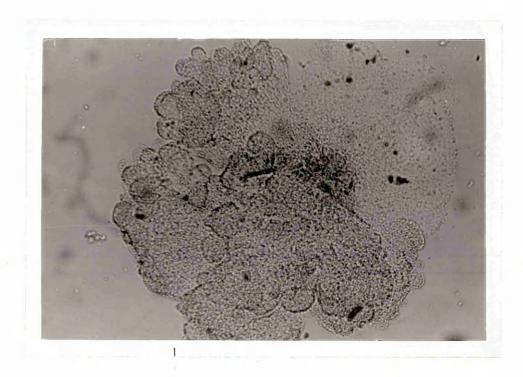


PLATE 5.2: Surface growth of the fungus <u>Subbaromyces</u> <u>splendens</u> on the plastic filter medium.

(X0.5)

(James, 1964; Bruce et al., 1970; Hussey, 1975; Wheatley, 1976) and also rotating discs (Pretorius, 1971; Torpey et al., 1971). The identity of this kind of bacterium however still remains obscure (Harkness, 1966), although much research on its growth characteristics, nutrient requirements and classification has been carried out (Crabtree and McCoy, 1967; Friedmann and Dugan, 1968; Unz and Dondero, 1967, 1967b; Unz and Farrah, 1976).

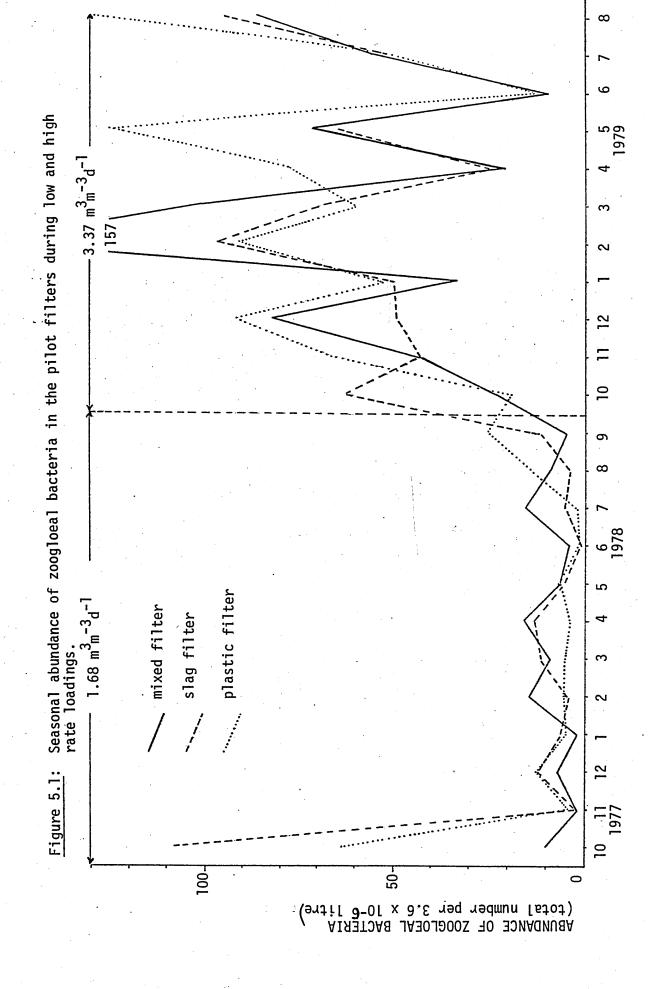

The abundance of zoogloeal bacteria is summarised in Table 5.4a. In each filter there was an enormous increase in the abundance of zoogloeal bacteria with the increase in the loading rate. The values for the mean population density were similar at each loading; although the mean zoogloeal population density recorded for the low loading period were probably over-exaggerated in the slag and plastic filters by * the extraordinary high abundances recorded at the commencement of sampling. Seasonal variation in the monthly population density of zoogloeal bacteria is shown in Figure 5.1. At both loadings the same seasonal pattern was observed, with maximum abundance occurring during the winter months and minimum abundance occurring during the summer months. The seasonal variation in population density is correlated with the film accumulation in both the mixed and plastic filters (Table 5.4b), and a clear association is discernible between the abundance of zoogloeal bacteria and the film up to moderate accumulations. Howell and Atkinson (1976) recorded how the rate of adsorption of organic matter from the influent sewage decreased as the film approached maximum accumulation. Therefore at times of maximum

Table 5.4a: Mean monthly abundance of zoogloeal bacteria (expressed as total number per 3.6 x 10-6 litre)

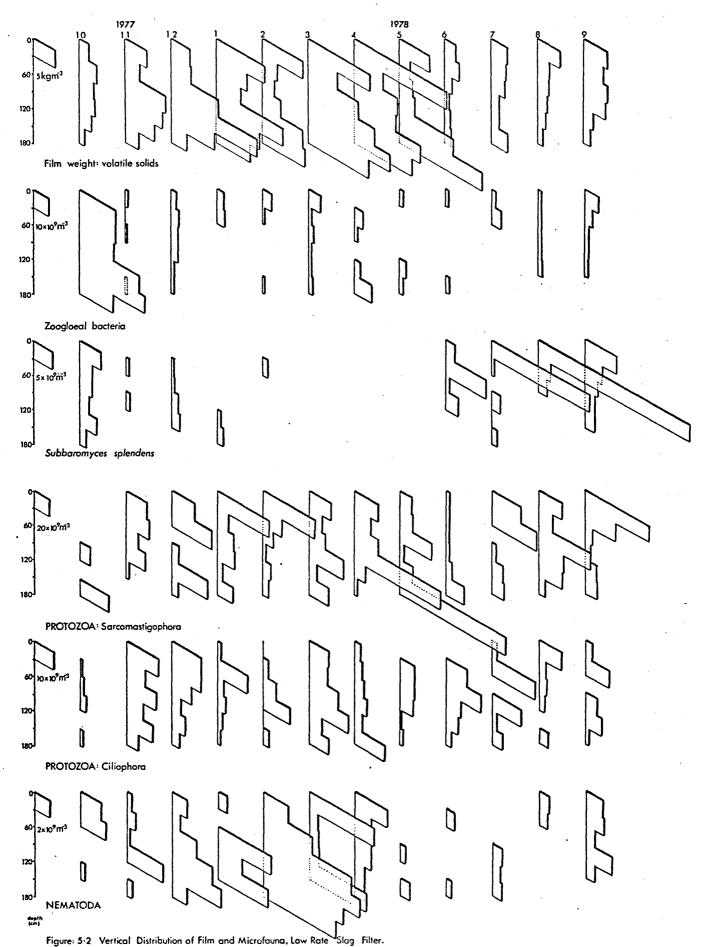
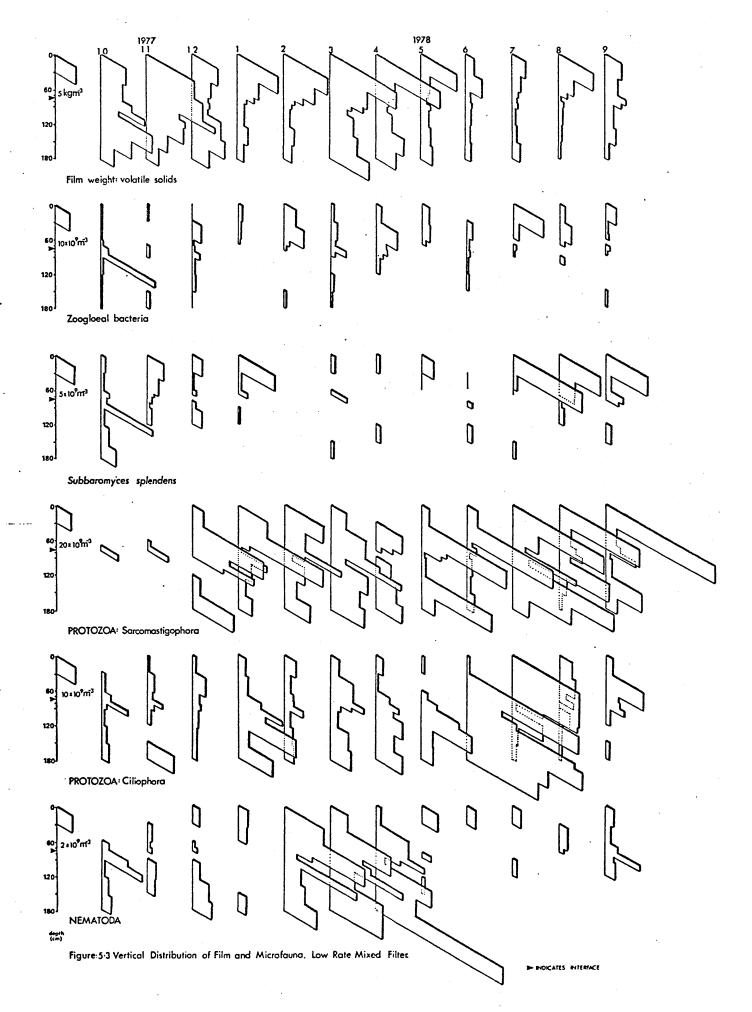

	Slag Filter	Mixed Filter	Plastic Filter	No. of months sampled
Low Loading (1.68m ³ m-3d-1)	15.25	8.25	12.17	12
High Loading (3.37m ³ m ⁻³ d ⁻¹)	60.09	62.36	70.73	11

Table 5.4b: Correlations between zoogloeal bacteria and various biological groups and environmental parameters


	SLAG FILTER	MIXED FILTER	PLASTIC FIL- ȚER
Low Loading (12 months)		Nematoda (1+)	Subbaromyces (3+)
High Loading (11 months)	Sarcomasti- gophora (3+) Colpidium colpoda (T-)	Film weight (3+)	
Both Loadings (23 months)	Sarcomasti- gophora (2+) Organic load (1+) Opercularia microdiscum (1+) Paracyclops (1-) Acari (1-)	Film weight (3+)	Film weight (2+) Sphaerotilus natans(3+) Subbaromyces (1+) Paracyclops (1-) Opercularia microdiscum (1+)

accumulations of film, less organic matter was being removed in the top 300mm of the pilot filters, this being the normal area of maximum organic matter adsorption (Section 6.2.2). This allowed more organic matter to penetrate further into the filter, extending the depth at which the zoogloeal bacteria was recorded. The vertical distribution graphs clearly show that the zoogloeal bacteria were restricted to the top 300mm of the filter for most of the year, but that during periods of maximum film accumulation it was recorded at lower depths within the filter, Figures 5.2 - 5.4. The removal of BOD and suspended solids was associated with the occurrence of zoogloeal bacteria, and the depth at which maximum abundance of the bacteria occurred coincided with the depth of maximum removal (Section 6.2.1). At the higher loading rate the zoogloeal bacteria were extended throughout the depth of the filters (Figures 5.5 - 5.7), due to the greater organic load and the greater surface area of medium covered with heterotrophic bacteria removing the organic matter present. This increased the mean occurrence of the zoogloeal bacteria at the higher loading, which is reflected in Table 5.4a. Significant correlations were recorded between the zoogloeal bacteria and the fungus Subbaromyces splendens and also the filamentous bacterium Sphaerotilus natans (Table 5.4b). When present, both species were observed to increase the rate of film accumulation by adsorption and trapping solids, which led to the subsequent increase of zoogloeal bacteria.

igote. 5 2 Yerker Distribution of This distribution, 2011 Note 1003 Time

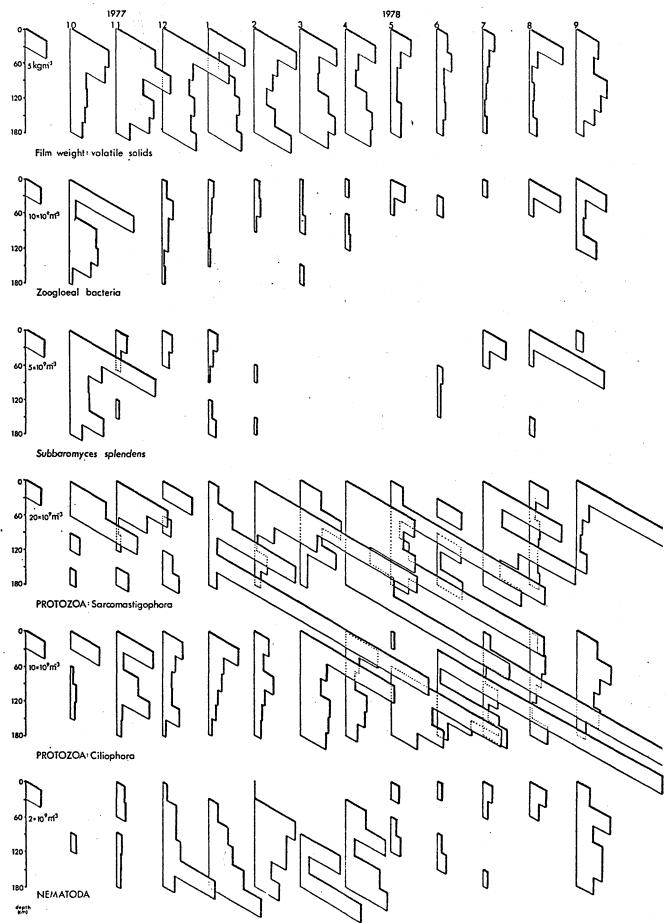


Figure: 5:4 Vertical Distribution of Film and Microfauna, Low Rate Plastic Filter.

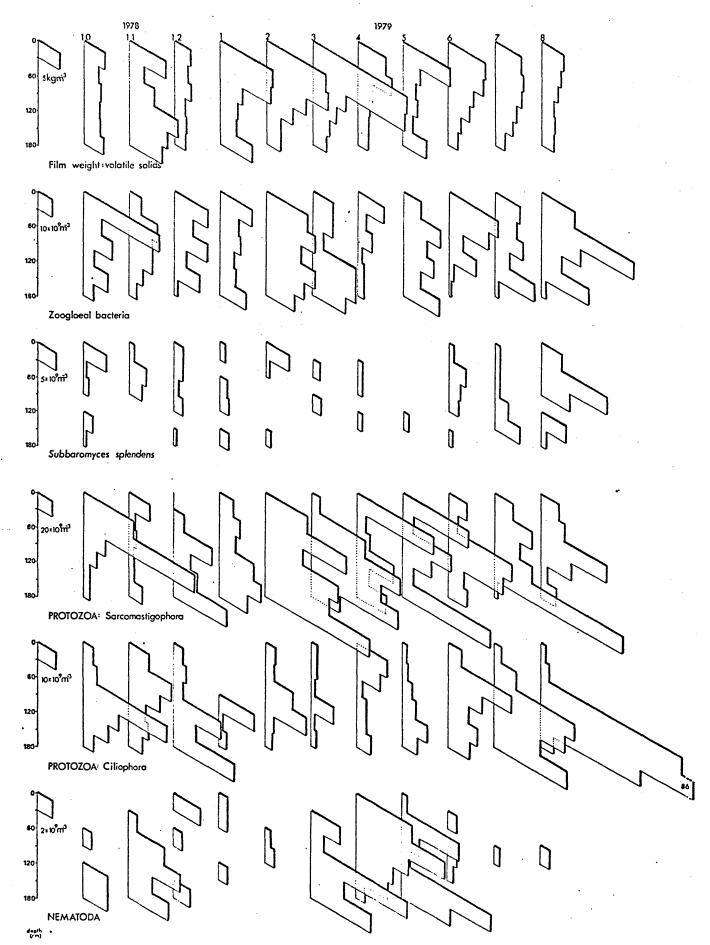
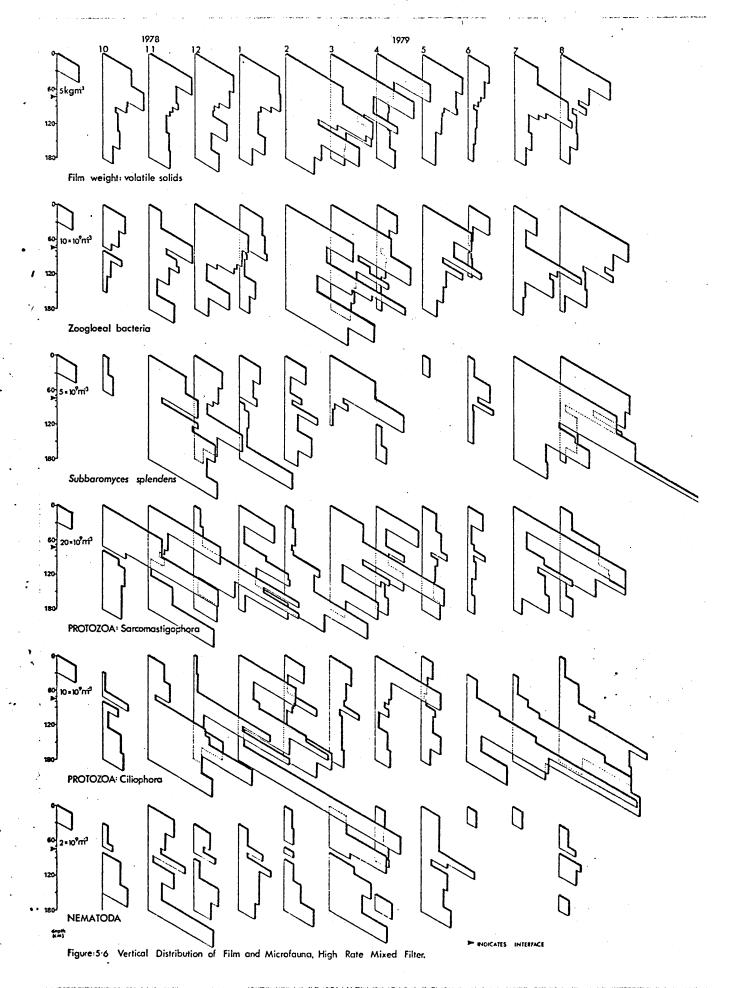



Figure: 5-5 Vertical Distribution of Film and Microfauna, High Rate Slag Filter.

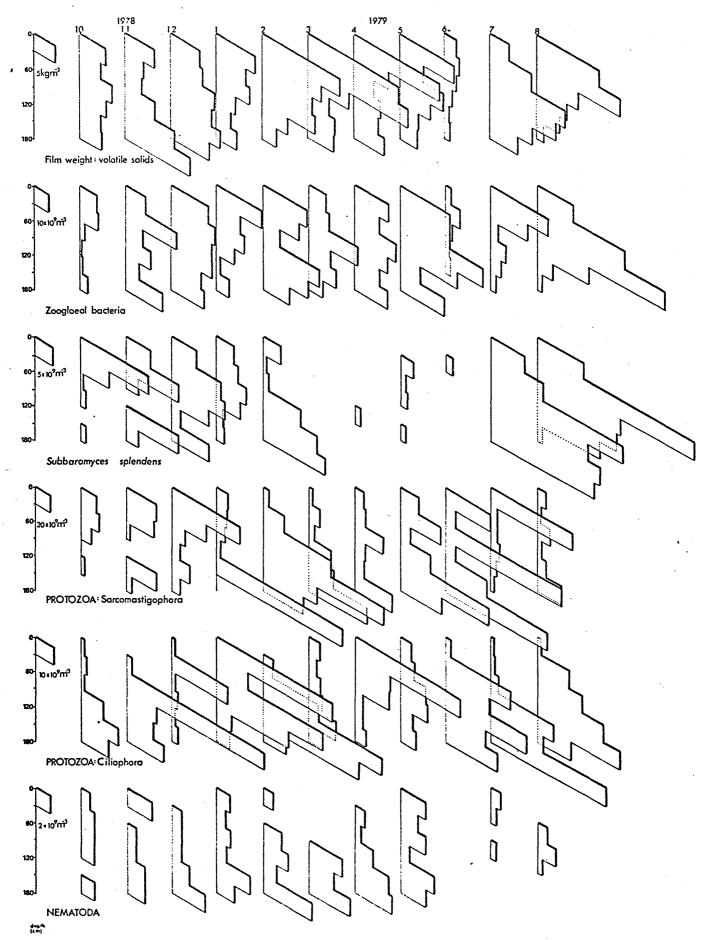


Figure: 5:7 Vertical Distribution of Film and Microfauna, High Rate Plastic Filter.

5.2.2 FILAMENTOUS BACTERIA

Three filamentous bacteria were also recorded in the filters, Sphaerotilus natans, Beggiatoa sp. and Leptothrix sp. Both the latter species were found in low numbers compared with Sphaerotilus natans. Beggiatoa sp. was found only during high rate conditions when it occurred during the spring and autumn (Tables 5.5 - 5.7). Leptothrix sp. was restricted to the colder months but occurred during both low and high rate loadings.

Sphaerotilus natans has been frequently associated with the active film in percolating filters (Cooke, 1959; Bruce et al., 1970; Wheatley, 1976) and was extremely common in the present investigation, only being absent immediately after sloughing when the film accumulation was at its lowest. Table 5.8 shows that the abundance of this particular filamentous bacterium increased substantially when the loading was increased. The mean population diversities under high rate

Table 5.8: Mean monthly abundance of Sphaerotilus natans (expressed as the total number per 3.6 x 10-6 litre)

	Slag Filter	Mixed Filter	Plastic Filter	No. of months sampled
Low Loading (1.68m ³ m ⁻³ d-1)	8.50	13.17	5.08	12 `
High Loading (3.37m ³ m ⁻³ d ⁻¹)	22.82	34.91	42.00	11

Table 5.5: Species diversity of the microfauna in the slag filter

	• • • • • • • • • • • • • • • • • • •			1.6	3 m ³ i	m ⁻³ d	-1						3.	37	m ³ m-	3 _d -	I		
	Species	77.01 11.77	12.77	1.78	3.78	4.78	5.78	6.78	8.78	9.78	10.78	11.78	12.78	67.6	3.79	4.79	5.79	6.7	8.79
BACTERIA	Zoogloeal forms Sphaerotilus sp. Leptothrix sp. Beggiatoa sp.																		
FUNGI	Subbaromyces splendens Conidia of Subbaromyces Sepedonium sp. Fusarium aquaeductuum				•					٠			-			,	_		
ALGAE	Chlorella Scenedesmus Stigeoclonium		•				_												
PROTOZOA (SARCO-)	Flagellates Amoebae Euglena				,			-	-		·		-	-					
PROTOZOA (CILIO-)	Trachelophyllum pusillum Hemiophrys fusidens H. pleurosigma Chilodonella cucullulus C. uncinata Colpoda cucullus Uronema nigricans Glaucoma scintillans Colpidium colpoda C. campylum Paramecium aurelia P. caudatum							_											
PERITRICHIA	Vorticella microstoma V. convallaria V. vernalis Vorticellid telotrochs Opercularia minima O. microdiscum O. coarctata Opercularian zooids Epistylis rotans						-	_				_	-		-			-	
SPIRO- TRICHIA	Stentor roeseli Aspidisca costata Tachysoma pellionella Oxytrichia ludibunda		-	•		-				_			_		•			_	-
SUCTORIA	Acineta cuspidata A. foetida Podophrya maupasi P. carchesii P. mollis			-															
NEMATODA																			
	Philodina rosela Lecanidae sp. Dicranophorus sp.			-												•			

Table 5.6: Species diversity of microfauna in the mixed filter

			<u>,</u>
·		1.68 m ³ m ⁻³ d ⁻¹	3.37 m ³ m ⁻³ d ⁻¹
	Species	10.77 11.77 12.77 1.78 2.78 3.78 4.78 5.78 6.78 6.78 9.78	10.78 11.78 12.78 2.79 3.79 4.79 5.79 6.79 6.79
BACTERIA	Zoogloeal forms Sphaerotilus sp. Leptothrix sp. Beggiatoa sp.		
FUNGI	Subbaromyces splendens Conidia of Subbaromyces Sepedonium sp. Fusarium aquaeductuum		
ALGAE	Chlorella Scenedesmus Stigeoclonium		
(SARCO-)	Flagellates Amoebae Euglena		
(CILIO-)	Trachelophyllum pusillum Hemiophrys fusidens H. pleurosigma Chilodonella cucullulus C. uncinata Colpoda cucullus Uronema nigricans Glaucoma scintillans Colpidium colpoda C. campylum Paramecium aurelia P. caudatum		
PERITRICHIA	Vorticella microstoma V. convallaria V. vernalis Vorticellid telotrochs Opercularia minima O. microdiscum O. coarctata Opercularian zooids Epistylis rotans		
	Stentor roeseli Aspidisca costata Tachysoma pellionella Oxytrichia ludibunda		
SUCTORIA	Acineta cuspidata A. foetida Podophrya maupasi P. carchesii P. mollis		
NEMATODA			
ROTIFERA	Philodina rosela Lecanidae sp. Dicranophorus sp.		

<u>Table 5.7</u>: Species diversity of microfauna in the plastic filter

		1.68 m ³ m ⁻³ d ⁻¹	3.37 m ³ m ⁻³ d ⁻¹
	Species	10.77 11.77 12.77 1.78 2.78 3.78 4.78 5.78 6.78 7.78	10.78 11.78 12.78 1.79 2.79 3.79 4.79 5.79 6.79 7.79
BACTERIA	Zoogloeal forms Sphaerotilus sp. Leptothrix sp. Beggiatoa sp.		
FUNGI	Subbaromyces splendens Conidia of Subbaromyces Sepedonium sp. Fusarium aquaeductuum		
ALGAE	Chlorella Scenedesmus Stigeoclonium		
PROTOZOA (SARCO-)	Flagellates Amoebae Euglena		
PROTOZOA (CILIO-)	Trachelophyllum pusillum Hemiophrys fusidens H. pleurosigma Chilodonella cucullulus C. uncinata Colpoda cucullus Uronema nigricans Glaucoma scintillans Colpidium colpoda C. campylum Paramecium aurelia P. caudatum		
PERITRICHIA	Vorticella microstoma V. convallaria V. vernalis Vorticellid telotrochs Opercularia minima O. microdiscum O. coarctata Opercularian zooids Epistylis rotans		
SPIRO- TRICHIA	Stentor roeseli Aspidisca costata Tachysoma pellionella Oxytrichia ludibunda		
SUCTORIA	Acineta cuspidata A. foetida Podophrya maupasi P. carchesii P. mollis	_	
NEMATODA	•		
ROTIFERA	Philodina rosela Lecanidae sp. Dicranophorus sp.		

conditions being related to the available surface area in each filter. The correlation analysis, summarised in Table 5.9, shows that increased <u>Sphaerotilus natans</u> abundance is strongly correlated with increased organic loading and the resulting accumulation of film and zoogloeal bacteria.

Table 5.9: Correlations between Sphaerotilus natans and various biological groups and environmental parameters.

	SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Low Rate	Film weight (2+)		Paramecium aurelia(2+)
High Rate	Paramecium aurelia(1+)	Sarcomasti- gophora(1+) Paracyclops sp. (3+)	Psychodid larvae(1-)
Both Loads	Ciliophora (1+) Paracyclops (1-) Acari- Astigmata (1-) Colpidium colpoda (2+)		Film weight (2+) Zoogloeal bacteria (3+) Subbaromyces splendens (1+) Organic load (1+) Opercularia microdiscum (1+)

5.2.3 FAECAL INDICATOR BACTERIA

Coliaerogens, <u>Escherichia coli</u>, faecal streptococci and <u>Clostridium perfringens</u>, are universally present in filters although they are not indigenous members of the filter

community (Pike, 1975). Routine analysis was carried out every six months to check for the presence of these indicator bacteria which were always present in the influent to the pilot plant.

From colony counts at both 22°C and 37°C and three different growth media, nutrient agar, casein-peptone-starch medium and casitone-glycerol yeast-extract agar (Jones, 1970; Pike et al., 1972; Staples and Fry, 1973), it was clear that large numbers of heterotrophic bacteria were present. Heterotrophic bacteria were very abundant, being found in greatest numbers in the top 900mm and then, as observed by James (1964) in his experimental filters, the numbers decreased steadily with depth. A relationship between the BOD removal and the abundance of faecal bacteria at 22°C and 37°C was recorded, but insufficient data were obtained for an assessment to be made of removal efficiencies of either faecal or other heterotrophic bacteria for the individual pilot filters, although estimates from the BOD data, which are discussed in Chapter 6, can be made.

5.2.4 NITRIFYING BACTERIA

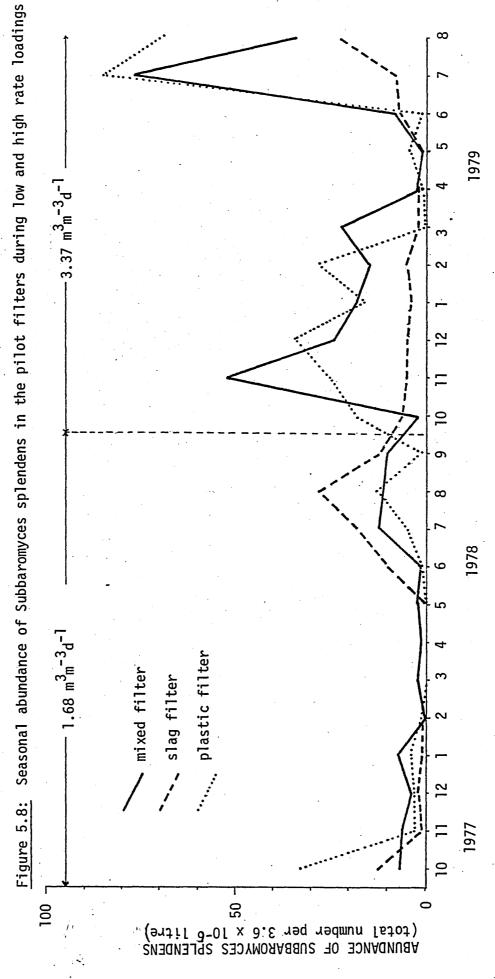
<u>Nitrosomonas</u> and <u>Nitrobacter</u> are strict autotrophs oxidising ammonia and nitrite respectively. Their distribution and abundance in the film were assessed by monitoring the concentration of ammonia and oxidised nitrogen in the sewage as it passed through the pilot filters. As was found by Harkness (1966), most of the nitrification was restricted to

the lower levels of the filters, between 900 to 1800mm depth in the pilot filters. Nitrifying bacteria are unable to compete with high abundances of heterotrophic bacteria (Hawkes, 1963). At the higher loadings the heterotrophs extended throughout the depth of the filter at greater population densities, restricting the nitrifying bacteria even lower in the filters, between 1500-1800mm, and often eliminating them altogether. The occurrence of nitrifying bacteria was always greater at the lower loading rates, being most abundant and therefore producing a more nitrified final effluent in the slag filter, while at the higher loading the mixed filter achieved far more nitrification of its final effluent than either of the other pilot filters. At the very high loading of 5.72 m $^{3-3}d^{-3}$, nitrification was virtually eliminated, with less than 10% of the ammonia being removed from the final effluent. The effect of flowrate and retention times in relation to nitrification are discussed fully in Chapter 6.

5.3 FUNGI

The fungal ecology of percolating filters has been reviewed by Cooke (1954, 1963), Becker and Shaw (1955), and Tomlinson and Williams (1975). But although many fungi are found in percolating filters, only a few manage to take advantage of the habitat and flourish (Cooke, 1959).

The Fungi are generally considered undesirable as dominant members of the film, causing solids accumulation and eventually ponding (Hawkes, 1963). Many authors have associated heavy fungal films in filters with very large populations of fly larvae, resulting in fly problems later on. The saprophytic fungi have the same removal efficiencies as the bacteria, although the former produce a greater biomass per quantity of nutrients utilised, resulting in faster film accumulation and eventually a greater sludge production (Water Pollution Research, 1955).


Of the four species of fungi recorded from the pilot filters, Subbaromyces splendens, Sepedonium sp. and Fusarium aquae-ductum were identified directly from the film samples. The fourth species, Geotrichium candidum, was identified in pure culture by Mrs. I. Williams.

5.3.1 SUBBAROMYCES SPLENDENS

By far the most frequently observed and most abundant fungus at both loadings was Subbaromyces splendens. This species was originally reported by Hesseltine in 1952, and has only been recorded from percolating filters. All the fungi recorded in the percolating filters have been associated with sewages containing a high proportion of industrial waste (Hesseltine, 1953; Watson et al., 1955; Hawkes, 1957, 1965; Sladka and Ottova, 1968). Various workers at Langley Mill Sewage Treatment Works, however, found Subbaromyces sp. to be the dominant filter organism although the sewage, like that used in the present investigation, was purely domestic (Hawkes, 1965b; Hawkes and Shephard, 1972; Wheatley, 1976). Seasonal changes in abundance were similar in all the pilot filters, being highest at times of light to moderate film accumulation, and lowest abundances were recorded at times of maximum film accumulation just prior to sloughing, Figure 5.8.

The fungus was far more abundant in the mixed and plastic filters at the higher loading, and Figures 5.5 - 5.7 show that the vertical distribution of <u>Subbaromyces</u> sp. was more extensive in the plastic medium at this loading. Fungal films are structurally stronger than bacterial ones and are less likely to slough off easily (Tomlinson and Williams, 1975), and it is this quality which may help the Fungi, and in particular <u>Subbaromyces splendens</u>, to dominate in filters containing the smoother surfaced plastic medium.

Hesseltine (1953) recorded considerable growths of <u>Subbaro-myces</u> <u>splendens</u> at all depths of percolating filters and in the present investigation the habit of extensive vegetative growth throughout the depth of the filters was also observed.

Maximum abundance was generally recorded in the top 300mm of the filters at the lower loading rate with the abundance declining with depth. In the mixed filter, however, there was a secondary build-up of the fungus in the interface region, but this did not restrict the passage of the sewage. Subbaromyces splendens was far more abundant in the mixed and plastic filters at the higher loading rate, being more widely distributed throughout the filters, with maximum abundance in the mixed filter being observed mainly in the plastic medium. Surface accumulations of the fungus were often extremely thick on the plastic medium of both the mixed and plastic filters (Plates 5.2 - 5.3) although the filters were never in any danger of ponding.

The continuous distribution system using nozzles, has been shown to favour the growth of <u>Subbaromyces</u> <u>splendens</u>
(Shephard, 1967; Wheatley, 1976) although Hawkes and Shephard (1972) showed that the fungus could be controlled by using periodic dosing.

The abundance of <u>Subbaromyces splendens</u> is associated, as the zoogloeal bacteria, with the accumulation of film up to moderate weights, with the fungus being limited and often eliminated at the heavier accumulations. This is reflected both in the monthly abundance (Figure 5.8), and its vertical distribution (Figures 5.2 - 5.7). Hawkes (1957, 1961, 1965) has shown that the grazing fauna is important in film control, being responsible for seasonal fluctuations in the population of fungi; although it is clear that the macrograzers do not directly restrict the growth of fungus. Only in the plastic

PLATE 5.3: Detail of the fungus <u>Subbaromyces splendens</u> growing over the bacterial and algal growth already on the medium, and restricting the interstices.

filter, at the higher loading especially, does the film accumulation and the abundance of <u>Subbaromyces splendens</u> appear closely related, with subsequent positive correlations being recorded at both loadings (Table 5.10). This is due to the high surface area available which allows the fungus to take full advantage of the increase in organic loading.

Table 5.10 Correlations between <u>Subbaromyces</u> splendens and various biological groups and environmental parameters

	SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Low Rate	Film weight(1-) Paracyclops(2+) Temperature(2+) Paramecium aurelia (1-)	Nematoda (1-) Paracyclops(1+) Temperature(1+)	Zoogloeal bac- teria (3+)
High Rate	Ciliophora (3+) Psychodid lar- vae (2+) Opercularia microdiscum (3+)	Ciliophora (1+) Opercularia microdiscum (3+)	Acari-Astigmata (1-) Organic Load (1+)
Both Loadings	Film weight(2-) Nematoda (1-) Paracyclops(2+) Temperature(2+) Opercularia microdiscum (1+)	Ciliophora (1+) Organic Load (3+) Opercularia microdiscum (3+)	Film weight(1+) Zoogloeal bacteria (1+) Sphaerolitus natans (1+) Acari-astigmata (1-) Organic Load (2+)

5.3.2 CONIDIA OF SUBBAROMYCES SPLENDENS

The conidia were extremely common and could easily be counted.

Williams (1971) showed that the conidia failed to germinate at temperatures below 5°C and were still adversely affected at 15°C. This is supported by the direct relationship between the conidia abundance and the temperature recorded in the pilot filters, Table 5.12. It is not surprising that the maximum abundance of the fungus was recorded during the warmest months, when germination and growth rate were both at their maximum (Figure 5.8). The seasonal abundance of conidia (Figure 5.9) shows that maximum numbers coincided with maximum abundance of the fungus (Figure 5.8), which is also shown in the positive and significant correlation between the fungus and conidia (Table 5.12).

The mean monthly number of conidia recorded in each filter (Table 5.11) showed that the conidia were present in similar numbers in the mixed and plastic filters, at both loadings, whereas the number of conidia dropped by 86% in the slag filter with the increase in loading. This reflects the increased competition from the component species of the film for the comparatively small amount of surface area available in the slag filter at the higher loading.

Table 5.11: Mean monthly total of conidia of Subbaromyces spendens recorded in the pilot filters at both loadings (expressed in total number per 3.6 x 10⁻⁶ litre)

	Slag Filter	Mixed Filter	Plastic Filter	No. of months sampled
Low Loading (1.68m ³ m ⁻³ d ⁻¹)	18.5	16.3	14.0	12
High Loading (3.37m ³ m ⁻³ d ⁻¹)	2.6	15.9	14.0	11

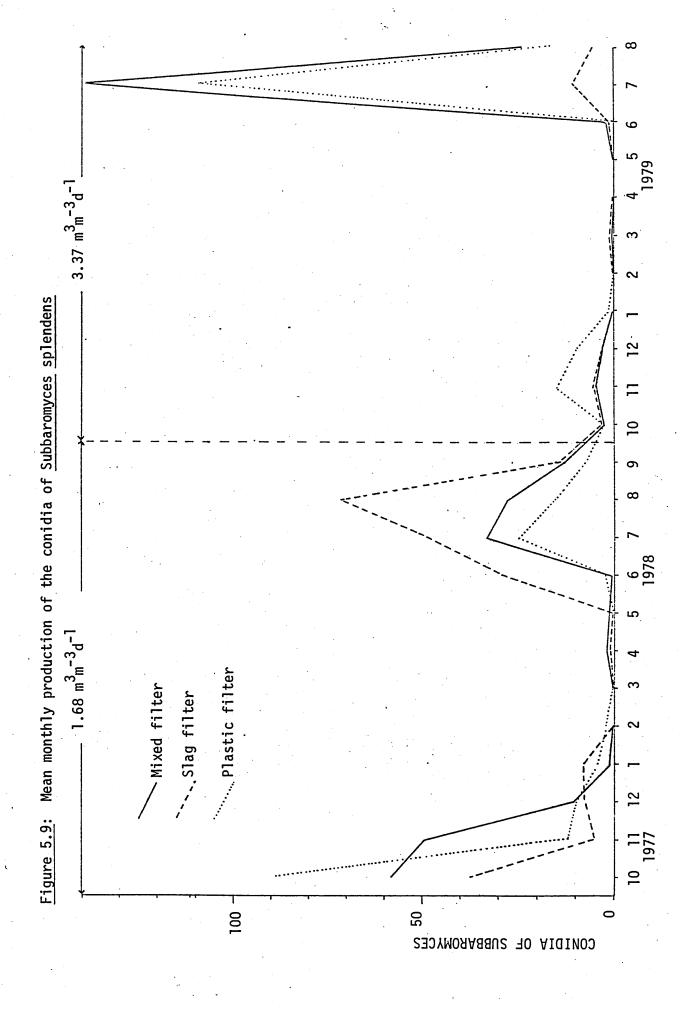


Table 5.12: Correlations between the Conidia of <u>Subbaromyces splendens</u> and various biological and environmental parameters.

	SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Low Rate	Film weight(2-) Subbaromyces(3+) Paracyclops(2+) Temperature(2+)	Subbaromyces(1+) Sphaerotilus natans (1+) Enchytraeidae(1-)	Zoogloeal bac- teria (3+) Subbaromyces (3+)
High Rate	Temperature(1+) Organic Load (2+) Effluent BOD (1+)	Subbaromyces(2+) Organic Load(1+) Effluent BOD(1+)	Subbaromyces (2+) Organic Load (1+)
Both Loadings	Film weight(1-) Subbaromyces (3+) Paracyclops(3+) Temperature(1+)	Subbaromyces(2+) Temperature(1+)	Subbaromyces (3+) Nematoda (1-)

5.3.3 <u>SEPEDONIUM</u> SP. AND <u>FUSARIUM</u> <u>AQUAEDUCTUUM</u>

Sepedonium sp. and Fusarium aquaeductuum are commonly associated with percolating filters, were recorded in all the pilot filters. Sepedonium sp. was generally found during low rate conditions while Fusarium aquaeductuum was usually restricted to the filters during the higher loading. Both Sepedonium sp. and Fusarium aquaeductuum were found in maximum abundance in the top 300 mm with their abundance decreasing with depth and never being found below 1200 and 1500mm respectively.

Fungi have been shown to prefer strong sewages (Tomlinson, 1946b; Hawkes, 1965b), and in particular the occurrence of the fungi recorded in the present investigation has been shown to be limited by sewages containing a low BOD (Tomlinson and Williams, 1975). This preference was evident in the pilot filters with a strong and positive correlation being recorded between <u>Subbaromyces splendens</u> and the organic loading (Table 5.10). This explains why at the lower loading the abundance of the Fungi and the influent BOD both decreased with increased depth in the filters. The concentration of the sewage restricted the depth at which <u>Sepedonium</u> sp. and <u>Fusarium aquaeductuum</u> in particular were found, which is most likely due to a lack of nutrients (Mills, 1945).

Seasonal variations of the more common percolating filter fungi were originally investigated by Haenseler et al., (1923) and examined in detail by Holtje (1943). Similar seasonal variations in abundance were observed during the present investigation with Sepedonium sp. being most abundant during the spring and occasionally in late autumn, and Fusarium aquaeductuum being found throughout the year, being inversely related to the temperature.

Both <u>Sepedonium</u> sp. and <u>Subbaromyces splendens</u> were occasionally observed growing together in the pilot filters.

Under normal operating conditions (i.e. non-continuous dosing), <u>Sepedonium</u> sp. is usually dominant because <u>Subbaromyces splendens</u> is slower growing. In the present investigation no observations were made of these two fungi competing with the latter clearly the dominant fungus. The seasonal

incidence of the fungi present in the pilot filters support the laboratory observations made by Tomlinson and Williams (1975), that the fungi are separated by different temperatures with Sepedonium sp. having a lower temperature optimum than Subbaromyces splendens.

5.4 ALGAE

The algae play a relatively minor role in the purification process of the percolating filter. Their presence often results in surface ponding due to leathery filamentous growths which can adversely affect the distribution of the effluent, resulting in reduced efficiency (Hawkes, 1963).

Three species of algae, <u>Chorella</u> sp, <u>Scenedesmus</u> sp. and <u>Stigeoclonium</u> sp. were recorded from the pilot filters. The first two species are unicellular and the latter is filamentous. Benson-Evans and Williams (1975) included several common species of <u>Chlorella</u> spp. and <u>Stigeoclonium</u> spp. in a list of algae found in percolating filters, but did not mention <u>Scenedesmus</u> sp., although they are well known from oxidation ponds.

Chlorella sp. and Scenedesmus sp. were generally found during the warmer months at the lower loading (Tables 5.5 - 5.7). However, at the higher loading the two algae were found throughout the year. Both species are associated with high concentrations of nitrates (Hynes, 1970) and have been shown to be capable of utilising nitrates, ammonia or elemental nitrogen (Syrett, 1962). In the pilot filters Chlorella sp. was found in greatest abundance in the top 300mm of the filters, although small numbers were also recorded at other depths during maximum abundance of the species in May. At the higher loading Chlorella sp. was found in far greater numbers, with its vertical distribution being extended throughout the filter but with maximum abundance still in

the top 300mm. The ability of this particular species to increase its population density, which was observed during April and May in the slag filter, is explained by the rapid doubling times which have been recorded as short as 15 hrs under favourable conditions (Prescott, 1969). Scenedesmus sp. was also most abundant in May, being located in the surface layers of all three pilot filters, although in much smaller numbers than Chlorella sp.

Stigeoclonium sp. is usually found in flowing waters (Prescott, 1969) and so is well suited to the filter habitat.

The species found in the pilot filters was provisionally identified as Stigeoclonium tenue which has been reported by McLean (Benson-Evans and Williams, 1975) to utilise nitrite, nitrate or ammonium as sources of nitrogen. McLean also found that this particular species exhibited a tolerance to those concentrations of heavy metals present in sewage.

Stigeoclonium sp. was found at all depths in each filter, usually in small numbers, although higher population densities were generally recorded in the plastic filter (Appendix II). Relatively large numbers were found in the lower depths of the filters where the oxidised nitrogen concentrations were highest.

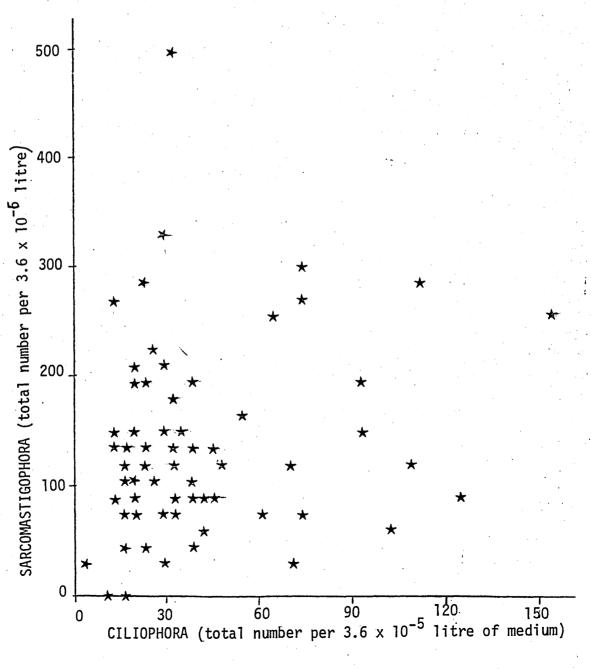
5.5.1 SARCOMASTIGOPHORA AND CILIOPHORA

In a detailed review of the ecology of the Protozoa in wastewater treatment, Curds (1975) found that the 218 species identified in percolating filters were distributed between the various classes in the following way: 35 species of Phytomastigophora, 30 species of Zoomastigophora, 31 species of Rhizopodea, 7 species in the Actinopodea and 116 ciliate species; clearly showing that the largest proportion of protozoan species identified belonged to the Sub-Phylum Ciliophora. Because of the large diversity of ciliate species found in percolating filters it was decided that only the ciliates in the pilot filters would be identified and counted at species level. It was hoped that the variety of species of this Sub-Phylum would reflect most clearly any biotic or abiotic changes in the pilot filters. All the other species of the Sub-Phylum Sarcomastigophora (the flagellates) were grouped together and only the total numbers present recorded.

It is generally thought that in percolating filters the ciliates are numerically dominant over the flagellates (Frye and Becker, 1929; Brink, 1967; Curds and Cockburn, 1970; Curds, 1975). Although Barker (1942, 1946) occasionally found the flagellates were numerically dominant, he also generally found the ciliates to be most abundant. In the pilot filters the reverse was found to be true, the flagellates

dominated the ciliates numerically for most of the year except during periods of moderate film accumulation (Table 5.13). At the lower loading the abundance of the Sarcomastigophora and Ciliophora were both related to the available surface area of the filters. Doubling the loading rate did not have the effect of doubling the numbers of ciliates present although it did result in an overall increase in the total number of ciliates present in all three filters. The percentage increase of ciliates at the higher loading for the mixed and plastic filters were of the same order. But in the slag filter the percentage increase was higher although the mean number of cilates present was lower than in either the other filters at both loading rates.

The Sarcomastigophora population did not, however, behave in a similar way when the loading was increased. In the slag filter there was a 97% increase of the flagellate population while in the mixed filter the increase was only 13%. In the plastic filter the population of flagellates dropped overall by some 29% (Table 5.13). The reason for this is not understood. The scatter diagrams of the Sarcomastigophora population density against the 23 months of operation for each filter produced different types of plot for each filter. In the slag filter there was an overall increase in the population density with time; in the plastic filter an overall decrease was observed, while in the mixed filter there was a 'normal distribution' with the population density reaching a maximum during the middle of the experimental period.


Table 5.13: Mean monthly total of Sarcomastigophora and Ciliophora recorded in the pilot filters (expressed as total number of individuals per 3.6 x 10⁻⁶ litre)

FILTER	SLAG FILTER		MIXED FILTER		PLASTIC FILTER	
LOADING	LOW	HIGH	LOW	HIGH	LOW	HIGH
Sarcomastigophora	88.3	174.1	119.8	135.8	175.0	125.0
Ciliophora	23.7	40.3	35.9	56.8	40.2	63.0
Ratio: Sarcomastigophora Ciliophora	3.73	4.33	3.34	2.39	4.35	1.99
Sarcomastigophora: % increase with load	97.0		13.4		-28.6	
Ciliophora: % in- crease with load	70.0		58.2		56.6	

No significant relationship was found between the Sarcomastigophora and the Ciliophora (Figure 5.10). The seasonal changes in abundance of all the major biological groups studied and the seasonal changes in the various environmental parameters measured were all plotted and compared directly to the seasonal occurrence of both the flagellates and ciliates. In the slag and mixed filters, however, similar seasonal patterns were identified between the zoogloeal bacteria and the flagellates, especially during the lower loading. Another interesting relationship emerged, being that the Sarcomastigophora in the slag and mixed filters reached maximum population density the month preceding the maximum Enchytraeidae population during the

Figure 5.10: Computed correlation between the Sarcomastigo-phora and Ciliophora recorded during the entire experimental period of 23 months in all the pilot filters.

Correlation coefficient r = +0.175Degrees of freedom (n-1) = 68

period of maximum film accumulation. No such relationships were recorded for the Ciliophora, although it is not surprising that few seasonal relationships exist as the populations of Sarcomastigophora and Ciliophora are made up of numerous species each exhibiting different environmental preferences.

The correlation analysis comparing these two protozoan groups with the other faunal groups and the basic environmental parameters is summarised in Table 5.14. The main significant relationship with the Sarcomastigophora is with the Astigmata and zoogloeal bacteria. Correlations with the Ciliophora were mainly with the dominant ciliate species themselves.

The vertical distribution of both the Sarcomastigophora and the Ciliophora is shown in Figures 5.2 to 5.7. The vertical distribution of the flagellates does not appear related to any particular parameter, while the vertical distribution of the ciliates can only be related directly to the component ciliate species.

Although the flagellates were not identified before counting, the identity of the commoner species was noted. These were Bodo caudatus, Peranema trichophorum and Amoeba radiosa. Euglenoids were occasionally found. All the species of Sarcomastigophora found in the pilot filters are commonly found in percolating filters (Curds, 1975).

Curds (1975) lists nine of the Orders of the Ciliatea as

Table 5.14: Summary of significant correlations with the Protozoa

Sarcomas- tigophora	SLAG	MIXED	PLASTIC				
LOW LOADING	Acari-Astigmata (1+)	Film weight (1-) Chilodonella uncinata(1+)	Acari-Astigmata (2+)				
HIGH LOADING	Zoogloeal Bac- teria (3+) Colpidium colpoda (1-)	Sphaerotilus natans (1+) Enchytraei- dae (1-)					
BOTH LOADINGS	Zoogloeal Bac- teria (2+) Opercularia microdiscum(2+) Organic Loading (1+)		Acari-Astigmata (2+)				
Ciliophora		: .					
LOW LOADING	Paramecium aurelia (2+) Chilodonella uncinata (1+)						
HIGH LOADING	Opercularia microdiscum(3+) Subbaromyces splendens (3+) Paracyclops(2+) Temperature(1+)						
BOTH LOADINGS	Opercularia microdiscum(3+) Sphaerotilus natans (1+) Psychoda larvae (2+) Organic Loading (1+)						
ALL DATA FROM ALL FILTERS AT BOTH LOADINGS Colpoda (2+), Uronema nigricans (3+), Chilodonella uncinata (2+), Organic Loading (2+), Paracyclops (1+), Psychoda larvae (2+), Subbaromyces splendens (1+).							

being represented in the percolating filter fauna. The percentage distribution of species between these Orders recorded by Curds and those found during the present investigation are shown in Table 5.15. The species recorded are

Table 5.15: Frequency occurrence of species in the various Orders of the Protozoa

ORDER OF	SLAG MI)		XED PLASTIC		NAT'NAL SURVEY*				
PROTOZOA	No	%	No	%	No	%	No	%	
Gymnostomatida	5	22	5	18	5	20	26	24)
Trichostomatida	0	0	1	4	1	4	7	6	\Holotrichia
Hymenostomatida	6	26	6	21	6	24	20	18	}
Peritrichia	5	22	7	25	6	24	21	19	Peritrichia
Heterotrichida	0	0	1	4	1	4	8	7)
Oligotrichia	0	0	0	0	0	0	1	1))Spirotrichia
Odontostomatida	0	0	0	0	O	0	1	1)
Hypotrichia	3	13	2	7	3	12.	20	18)
Suctorida	4	17	6	21	3	12	5	5	Suctoria
TOTAL DIVERSITY	23		28	·	25		109		

^{*} after Curds (1975)

distributed in a similar way between the various Orders except that the Order Suctorida has a larger percentage of the total species recorded while fewer species were recorded from the Order Hypotrichia. No species from the Orders Oligotrichia and Odontostomatida were found in the present investigation, species from these two Orders being rarely found in filters.

The number of protozoan species within the three pilot filters was similar ranging from 23 in the slag to 28 in the mixed filter, with a mean value for all three of 25.3 (Table 5.15). The greater number of species in the mixed filter is primarily due to the greater variety of Suctorian species which inhabited this filter. The same twelve holotrich species were found in all three filters, with the exception that Colpoda cucullus was not found in the slag filter. The mixed filter alone had a more diverse peritrich and suctorian fauna. Of the 29 different ciliate species identified all but Oxytricha ludibunda were found in the mixed filter. Epistylis rotans, Podophyra carchesii and Sphaerophrya magna were all restricted to the mixed filter. Podophrya mollis was not found in the plastic filter and three species, Opercularia minima, Stentor roeseli and Colpoda cucullus were not recorded from the slag filter.

As only one species was not recorded in the mixed filter, the mixed medium had an overall greater diversity of ciliate species. However, just how important species found in low numbers are to the overall energy of the system is unknown, and indeed most of the extra species found in the mixed filter were only present in small numbers and were generally sessile or small in size. The presence of a greater variety of species however can only be advantageous because any change in the characteristics of the influent sewage may alter the balance of the ciliate community and therefore alter the dominance and relative importance of the species present. Table 5.16 shows that an increase in loading reduced the mean diversity of ciliates. This reduction was 19% in the

Table 5.16: Mean monthly diversity of ciliate species

	SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Low Loading mean standard deviation	6.9 3.52	10.1 1.83	7.8 2.53
High Loading mean standard deviation	6.7 2.45	8.2 3.25	6.3 2.97

plastic and mixed filters but only 3% in the slag filter.

Therefore although fewer species occurred in the slag filter, the increased loading had less effect on the species present.

This may be due to the higher voidage of the plastic medium allowing a greater loss of ciliates with the increase in hydraulic load. The slag filter was overloaded throughout the 23 month experimental period and so the reduced protozoan fauna was unaltered by futher increases in organic load.

A number of workers have reported that the number of ciliate species increased with depth in filters (Johnson, 1914; Barker, 1949; Baines et al., 1953; Curds et al., 1970; Wheatley, 1976). Hussey (1975) found that the ciliate diversity was negatively associated with the film weight. Many of the above workers suggested that the ciliates are unable to compete effectively with the other organisms normally associated with the film in the low dissolved oxygen

conditions prevalent at the filter surface. Therefore the greatest diversity and largest abundance of ciliates occur in the lower depths of filters where there is an increasingly smaller concentration of organic matter in the partly treated sewage. From the present investigation it appears that at the lower loading the ciliates were widely distributed throughout the depth of the pilot filters, and although certain species were limited to specific regions, that generally there was no increase either in diversity of species or abundance with depth. At the higher loading maximum species diversity and abundance of Protozoa occurred in the lower half of the filters. The increased abundance of certain species in the lower depths of the filters at this loading such as Opercularia microdiscum (Figures 5.16 to 5.18) was not due to the lower organic content of the influent sewage at that depth as suggested previously, as this species is tolerant of both organic load and film accumulation. It is more probable that in the pilot filters the increased occurrence of protozoans at the lower depth was a consequence of the increased hydraulic loading. In conventional filters there would be a greater tendency for the protozoan fauna to be forced deeper into the filters by using the normal instantaneous and heavy system of sewage application.

It can be clearly seen (Tables 5.5 to 5.7) that some species were restricted to either low or high loading rate conditions.

<u>Vorticella convallaria</u>, <u>Vorticella vernalis</u> (not reported previously in percolating filters), <u>Opercularia minima</u>,

Opercularia coarctata and <u>Stentor roeseli</u> were only recorded

at the lower loading along with <u>Sphaerophrya magna</u>, although there was only one record of this particular species. <u>Tachysoma pellionella</u>, was far more successful during the lower loading, being rarely found in the high rate filters. Only <u>Podophrya mollis</u> and <u>Oxytrichia ludibunda</u> were completely restricted to high rate conditions although three holotrichs, <u>Colpidium colpoda</u>, <u>Colpidium campylum</u> and <u>Paramecium caudatum</u>, were all far more abundant at this loading.

5.5.2 COMPONENT CILIATE SPECIES

Several workers have divided the protozoan species present in activated sludge systems into two groups, those indigenous species which are well adapted to living in the system all the year round and those species only found occasionally (Brown, 1965; Schoefield, 1971). Opercularia microdiscum was the only ciliate to be present in all three filters at both loadings. But frequently occurring species also included Chilodonella uncinata, Paramecium aurelia and Vorticella microstoma, while Colpidium colpoda was frequently recorded during the higher loading period.

Of the 29 ciliate species recorded, 15 species (not including vorticellid telotrichs) were found to be present in such numbers as to represent at least 10% of the total ciliate population at some time during the experimental period (Table 5.17). These species were divided into three separate groups, according to their role within the filter.

GROUP I : "Dominant species", comprising of 10% of the total ciliate population in all three filters at least once at both loadings, and which were numerically dominant in at least one of the pilot filters.

GROUP II : "Sub-dominant species", comprising of 10% of
the total ciliate population in any filter at
either loading at least once and were numerically sub-dominant species. (Often species in
this group were restricted to a particular
loading or medium type.)

GROUP III : "Non-dominant species", comprising of 10% of
the total ciliate population in any filter at
either loading at least once, but were never
numerically dominant or sub-dominant.

The relative abundance of a particular organism in a habitat is used to indicate its importance in the ecological structure of that habitat. In assessing the important species during the present investigation, both the frequency and abundance data were studied. In order to understand how the ecology of the filter changed from month to month the five Group I dominant ciliates (Table 5.17) were studied in detail. Each of these species was present in large enough numbers to play an important role in the energy flow in the pilot filters. There were four holotrichs, Paramecium aurelia, Uronema nigricans, Glaucoma scintillans and Colpidium colpoda, and one peritrich, Opercularia microdiscum. They all feed on

bacteria (Barker, 1946; McKinney and Gram, 1956; Curds and Vandyke, 1966; Curds, Cockburn and Vandyke, 1968) and are commonly found in percolating filters (Learner, 1975). All the Group I holotrichs belong to the Order Hymenostomatida.

The total number of months, at each loading, in which these species occurred as the dominant species is summarised in Table 5.18. Opercularia microdiscum was the most frequently occurring dominant species overall. At the low loading Opercularia microdiscum, Uronema nigricans and Paramecium aurelia were most frequently recorded, while at the higher loading rate only Opercularia microdiscum was commonly recorded (Figures 5.11 and 5.12).

Table 5.17: Component Ciliate species found in the pilot filters divided into relative dominance groups

GROUP I	GROUP II	GROUP III
(dominant sp.)	(sub-dominant)	(other component sp)
Paramecium aurelia Opercularia micro- discum Uronema nigricans Glaucoma scintil- lans Colpidium colpoda	Chilodonella un- cinata Vorticella mic- rostoma Aspidisca costata Tachysoma pellio- nella Trachelophyllum pusillum Colpidium campy- lum Podophrya maupasi Verticella verna- lis (Vorticellid te- lotriochs)	Chilodonella cucul- lus Epistylis rotans

Dominant ciliate protozoan species in pilot filters at various film accumulations 1979 HIGH LOADING Plastic Filter Mixed Filter Slag Filter 10W LOADING Opercularia microdiscum ♦ Glaucoma scintillans A Paramecium aurelia ◆ Uronema nigricans O Colpidium colpoda Figure 5.11: 11 ò Film Weight (volatile solids) $kg\bar{m}^3$

Occurrence of dominant ciliate protozoa at various film accumulations throughout the entire experimental period of 23 months, in all the pilot filters. Boxed areas enclose the mean film accumulations at which each species was recorded in each filter; the total range at which each species was recorded is also indicated. Paramecium aurelia Figure 5.12:

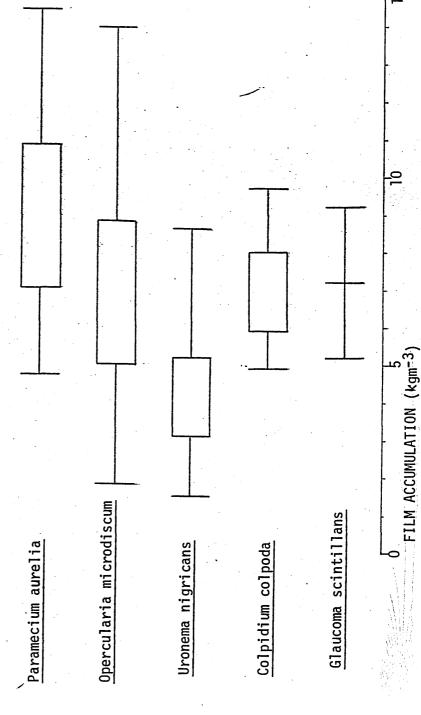


Table 5.18: Monthly frequency occurrence of dominant species

TOTAL DOMI-	NANCE	91	12	32	7	2	
AL	HIGH LOADING	4	2	20	9	,	
TOTAL	LOW LOADING	12	10	12	_	-	
ING	PLASTIC	2	-	ည	က		
HIGH LOADING	MIXED	_		7	2	—	
F	SLAG	,	_	∞			
9	PLASTIC	2	4	2			
LOW LOADING	MIXED	ည	_	2		-	
	SLAG	2	വ				
LOADING	FILTER	Uronema nigricans	Paramecium aurelia	Opercularia micro- discum	Colpidium colpoda	Glaucoma scintillans	

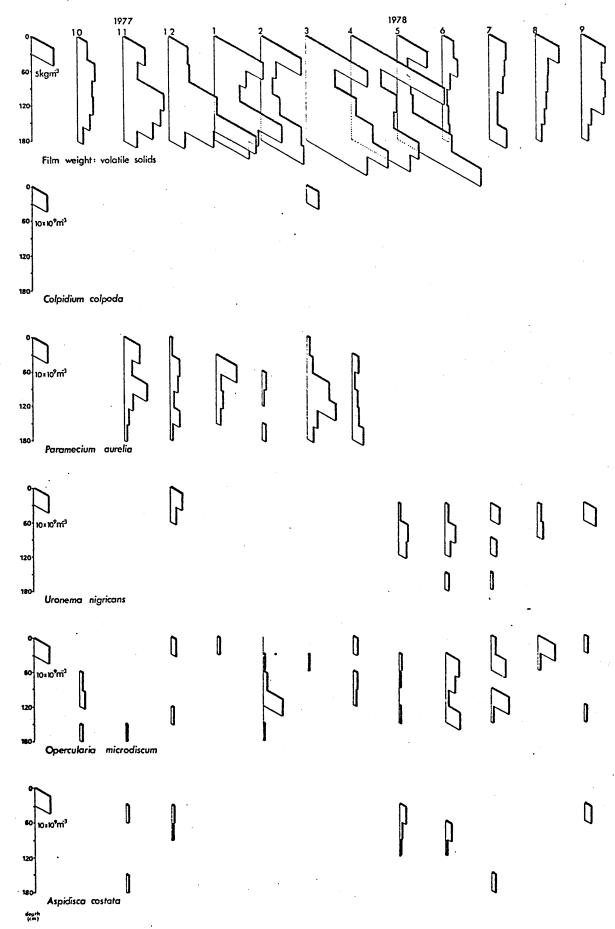


Figure: 5-13 Vertical Distribution of Film and Ciliated Protozoa. Low Rate Slag Filter.

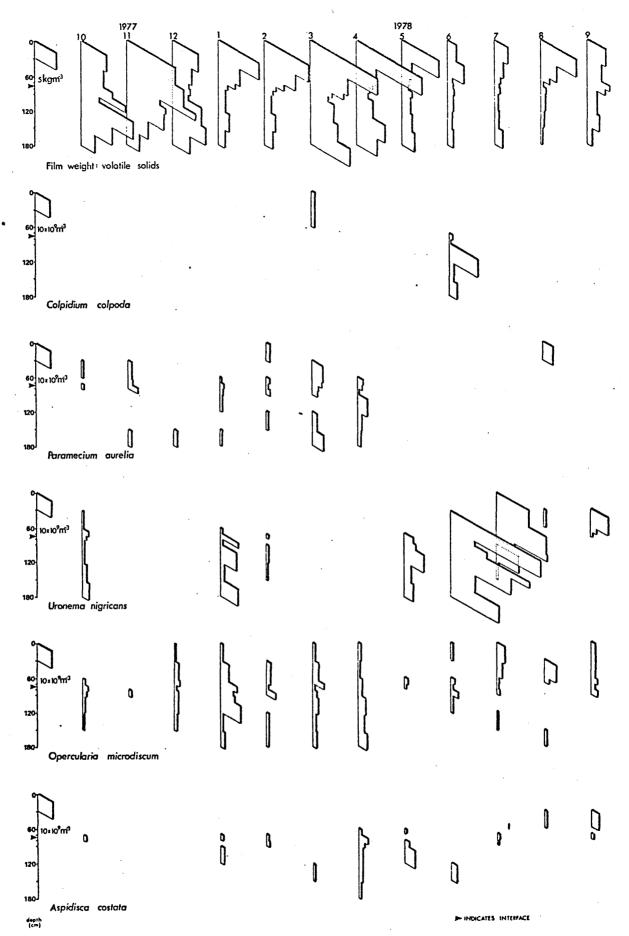


Figure: 5-14 Vertical Distribution of Film and Ciliated Protozoa, Low Rate Mixed Filter.

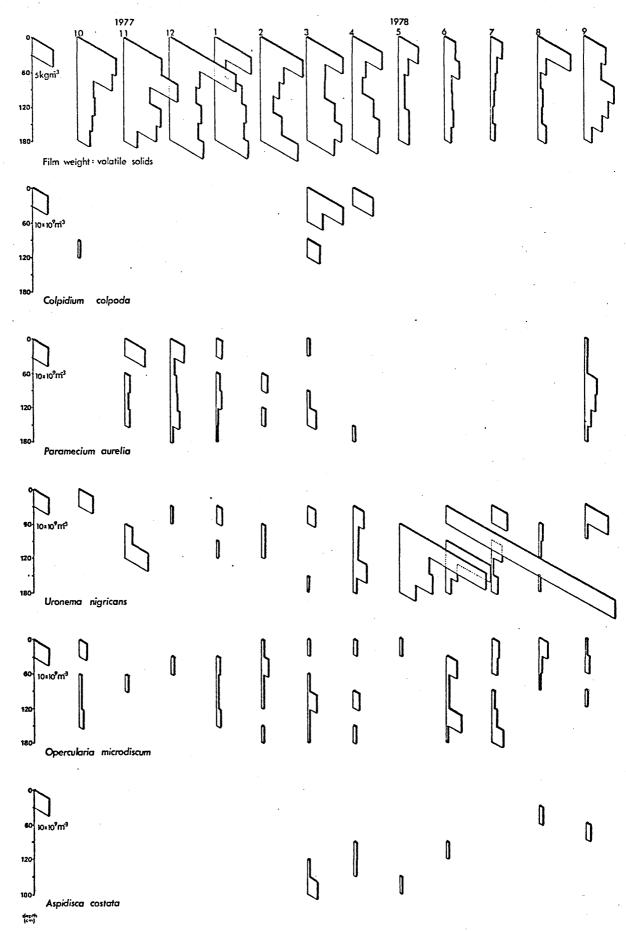


Figure: 5:15 Vertical Distribution of Film and Ciliated Protozoa: Low Rate Plastic Filter.

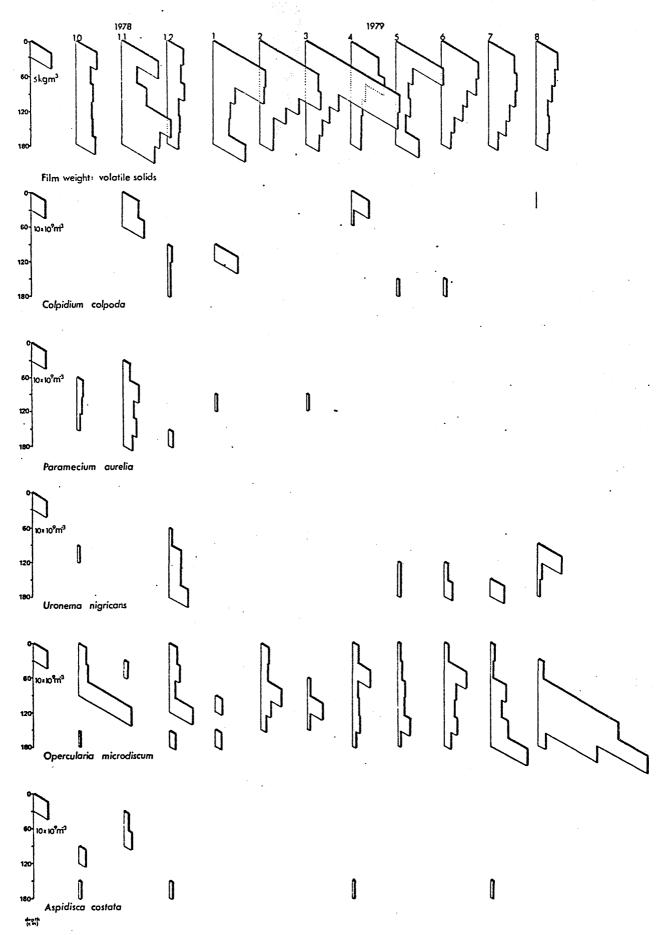


Figure: 5-16 Vertical Distribution of Film and Ciliated Protozoa, High Rate Slag Filter.

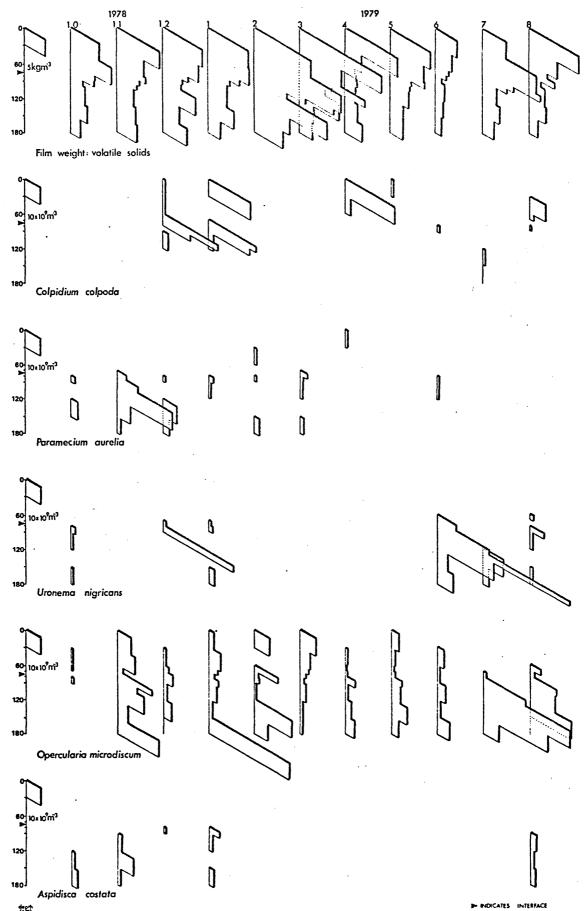


Figure: 5-17 Vertical Distribution of Film and Ciliated Protozoa, High Rate Mixed Filter.

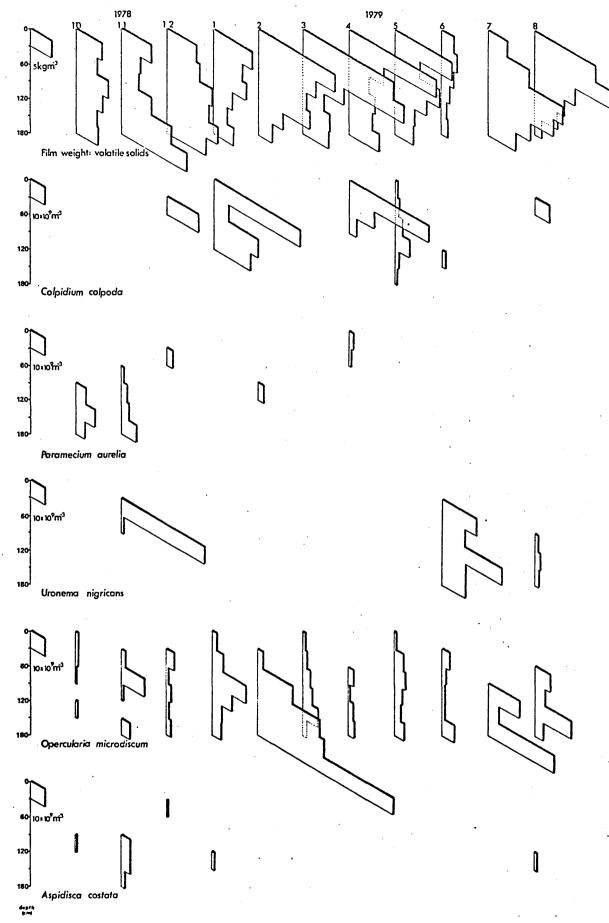


Figure: 5-18 Vertical Distribution of Film and Ciliated Protozoa, High Rate Plastic Filter.

5.5.2.1 Paramecium aurelia

Paramecium aurelia is a large holotrich between 120 - 150 um in length which is some 50 - 100 µm smaller than Paramecium caudatum, which was associated with it in the pilot filters. Seasonal abundance of Paramecium aurelia (Figure 5.19) shows that there was a similar distribution in all three filters and that up to December 1978, some three months after the increase in loading, the peaks of Paramecium aurelia abundance corresponded with the maximum accumulation of film, being positively correlated at the 1% significance level (Figure 5.20). This species was more abundant in the winter months being rarely found from May to August. Seasonal fluctuations in abundance are reflected by the vertical distribution graphs (Figures 5.13 to 5.18) which show the species was found throughout the depth of the slag and plastic filters at the lower loading, but was restricted to the lower half of the filters at the commencement of the higher loading, the species being eventually washed out. Subsequent populations were restricted to the surface in small numbers, resulting in an overall reduction in the mean population density with the increase in loading, Table 5.19. Occasionally, Paramecium aurelia comprised of between 70 to 80% of the total ciliate population, when dominant, in both the slag and plastic filters, Table 5.20. It was found that the population density was also regulated by temperature (Figure 5.21), maximum abundance being recorded between 7 - 8°C.

<u>Paramecium aurelia</u> was only recorded at low population densities during the latter nine months of the higher loading

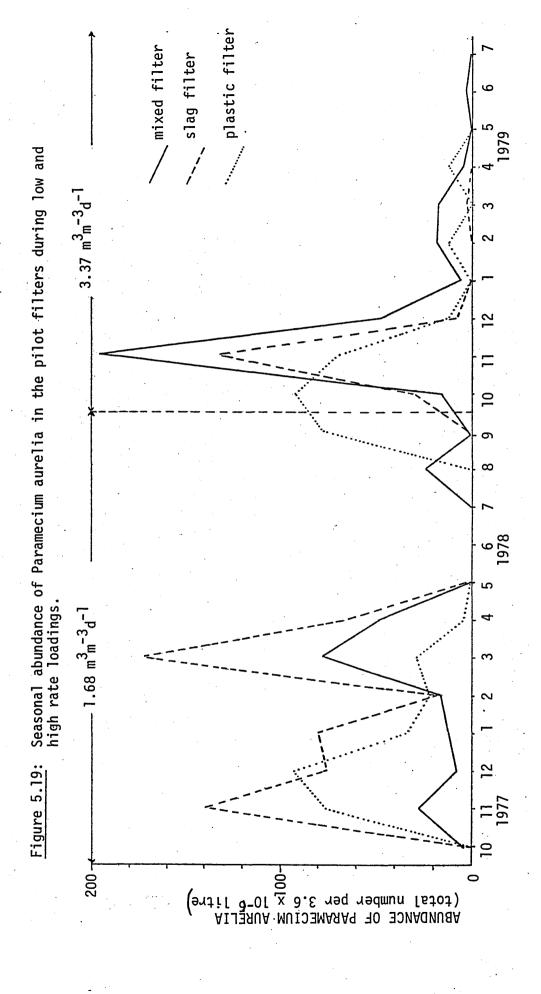


Figure 5.20: Computed distribution of <u>Paramecium aurelia</u> with film accumulation, recorded during the entire experimental period of 23 months in all the pilot filters.

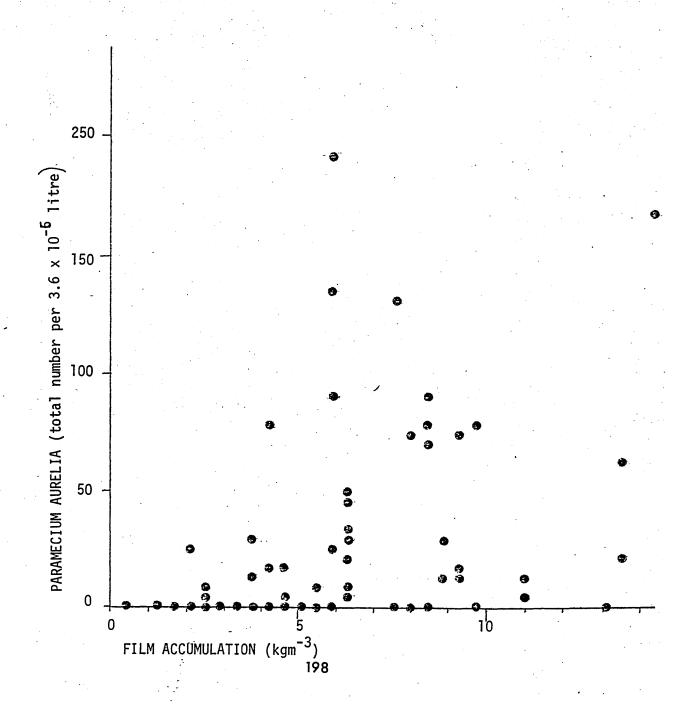


Figure 5.21: Computed distribution of <u>Paramecium aurelia</u> with temperature recorded during the entire experimental period of 23 months in all the pilot filters.

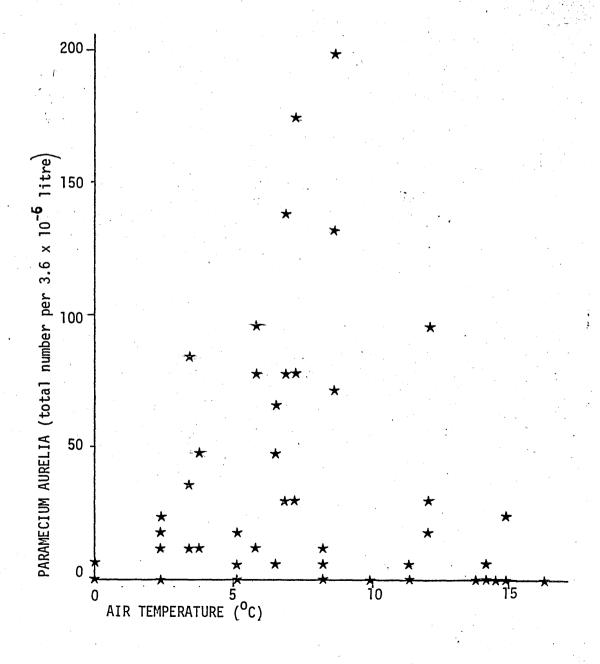


Table 5.19: Mean monthly abundance and range of component species of the pilot filters at different loadings

	 SLAG FI	1 TFD	MIXED F	TI TED	PLASTIC FILTER		
	SLAG FI	LILK	HIXED I TETEK				
	MEAN	RANGE	MEAN	RANGE	MEAN	RANGE	
LOW LOADING						:	
<u>Paramecium</u> <u>aurelia</u>	45.8	172	18.1	78	27.9	93	
Opercularia microdiscum	30.4	64	34.2	112	27.5	66	
Colpidium colpoda	2.3	28	9.3	97	16.7	152	
<u>Uronema</u> <u>nigricans</u>	18.3	52	104.8	656	113.8	564	
Chilodonella uncinata	7.1	36	6.8	37 ·	13.1	40	
Glaucoma scintillans	7.9	36	6.4	40	8.3	42	
HIGH LOADING	·						
Paramecium aurelia	15.6	132	27.9	196	18.0	92	
Opercularia microdiscum	140.0	628	168.6	533	167.5	754	
Colpidium colpoda	19.5	88	41.7	189	87.7	460	
<u>Uronema</u> <u>nigricans</u>	22.2	104	47.7	359	57.8	400	
Chilodonella uncinata	9.3	32	11.9	73	5.5	24	
Glaucoma scintillans	9.5	50	11.2	92	3.5	38	

period. Its lack of success was due, partly, to an inability to cope with the increased loading and also to competition from either <u>Opercularia microdiscum</u> or <u>Colpidium colpoda</u>, both of which appear to be highly successful at the higher loading.

5.5.2.2. Uronema nigricans

Another holotrich, which, like <u>Paramecium aurelia</u>, was more successful during the period of lower loading was <u>Uronema nigricans</u>. This is also a very active species, but is smaller than <u>Paramecium aurelia</u>, being only 20 - 35 µm in length.

Negatively correlated to <u>Paramecium aurelia</u>, <u>Uronema sp.</u> was found in greatest numbers during the summer when <u>Paramecium aurelia</u> was absent from the pilot filters, and also in smaller numbers during the early winter (Figure 5.22).

The abundance of <u>Uronema nigricans</u> was reduced during periods of heavy film accumulation being closely associated with light film conditions, being negatively correlated with the film at the 1% significance level (P < 0.01).

The preference of <u>Uronema nigricans</u> for light weights of film (< 5 kg m⁻³) affected its vertical distribution within the filters (Figures 5.13 - 5.18) and it can be seen how <u>Paramecium aurelia</u> and <u>Uronema nigricans</u> are rarely found together. <u>Uronema nigricans</u> was usually restricted to the lower half of the filters at the higher loading, and in the mixed filter maximum abundance was recorded at the top of the slag portion near the interface region. The species was found in greatest abundance in both the plastic and

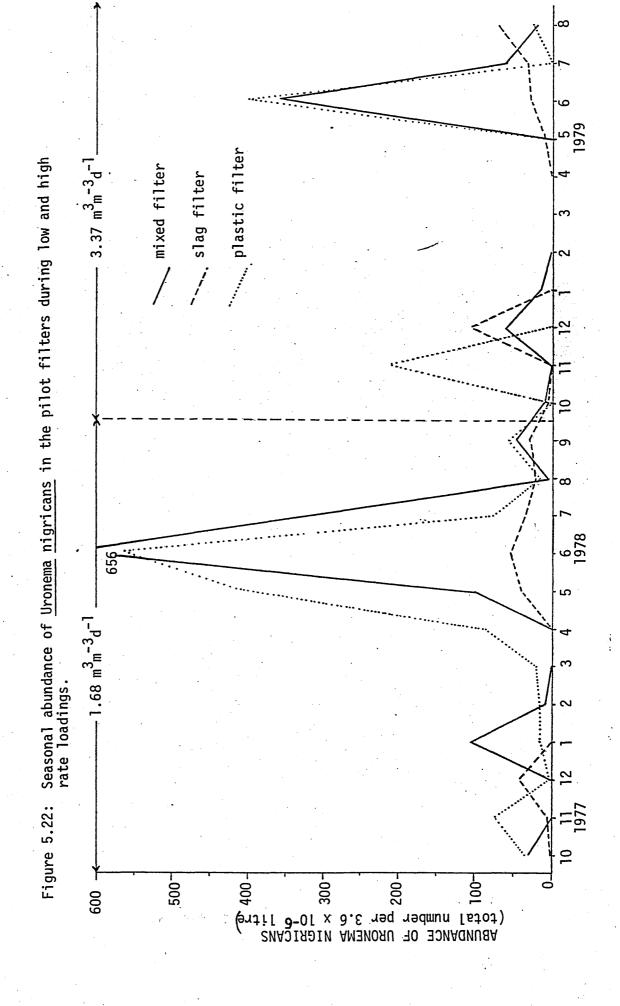


Table 5.20: Maximum percentage of the total ciliate population comprised by individual component species in each filter during both loadings.

PERCENTAGE OF TOTAL POPULATION	SLAG FILTER	MIXED FILTER	PLASTIC FILTER
>90	Opercularia microdiscum	Opercularia microdiscum	Opercularia microdiscum
80-89		<u>Uronema</u> nigricans	<u>Uronema</u> nigricans
70-79	Paramecium aurelia		<u>Paramecium</u> <u>aurelia</u>
60-69			<u>Colpidium</u> <u>colpoda</u>
50-59	Uronema nigricans Colpidium colpoda	Colpidium colpoda	
40-49		Paramecium aurelia Glaucoma scintillans	
30-39			
20-29	Glaucoma scintillans		Glaucoma scintillans Chilodonella uncinata
10-19			
0-9			
	·		

mixed filters, although it was far less common in the slag filter (Table 5.19). This may well be due to the lower voidage and the relatively high accumulation of film within the voids normally found in the slag medium. The higher loading reduced overall population density as was shown previously in Figure 5.22, and suppressed the normal summer peaks in population density.

Uronema nigricans was positively correlated with temperature, maximum population densities being recorded between 10-14°C. Other significant correlations were recorded at the 0.1% significance level with the ciliates and psychodid larvae, with effluent BOD with a significance of 1% and negatively correlated with Sphaerotilus natans at the 10% significance level. These relationships can all be explained by this species being abundant during low film conditions in the summer, which is when Sphaerotilus natans is at its lowest abundance and when psychodid larvae are at maximum population density. As such large numbers of individuals are involved compared with the numbers of Paramecium aurelia recorded, it was to be expected that a strong correlation would exist between the total ciliate population and the numbers of Uronema nigricans recorded. Whether Uronema sp. plays a vital role in the improvement of effluent quality either by flocculation or predation, or whether this is due to other factors is not clear; and so the significance of the positive correlation with effluent BOD quality is not completely understood. Although Curds et al., (1968) showed that the major role of the Protozoa in the activated sludge process was to clarify the effluent by flocculation of suspended matter and predation of bacteria

5.5.2.3 Opercularia microdiscum.

Unlike all the other dominant ciliate protozoans found, Opercularia microdiscum is a sessile organism attached to the substrate by a non-contractile stalk and feeding passively (Plate 5.4). It is unable to search for food and unlike the holotrichs it is unable to move away from any adverse environmental changes, predators or the activities of the invertebrate grazing fauna except in its telotroch phase. The population density of the opercularian remained relatively small during the lower loading period, but when the loading was increased then the mean population density increased five fold (Table 5.19), occasionally making up between 90 - 100% of the total ciliate population in all three filters (Table 5.20). The distribution graph, Figure 5.23, shows that at neither loading was Opercularia microdiscum able to compete successfully with Uronema nigricans during periods of light film accumulation. Opercularia microdiscum was however found in greatest abundance during January and February and again during July and August when the film accumulation was heavy. Correlation analysis showed positive and significant associations existed between the peritrich and the zoogloeal bacteria and Subbaromyces splendens at the 0.1% significance level, with the psychodid larvae (which is closely associated with film accumulation) at the 1% significance level and at the 10% level with Sphaerotilus natans. Interestingly all the sedentary ciliates attached themselves to a variety of substrates, including zoogloeal bacteria, fungal hyphae, insect debris and the larger filaments of bacteria. When the interactions between

PLATE 5.4: Dominant ciliate protozoan <u>Opercularia microdiscum</u> (X500)

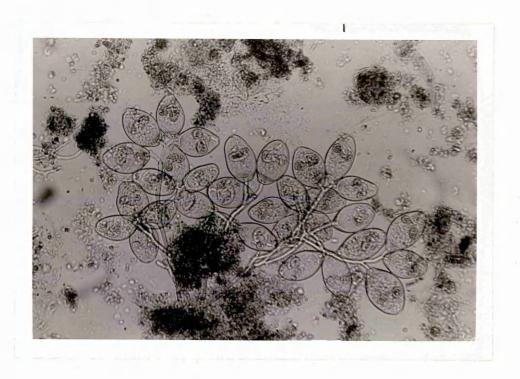
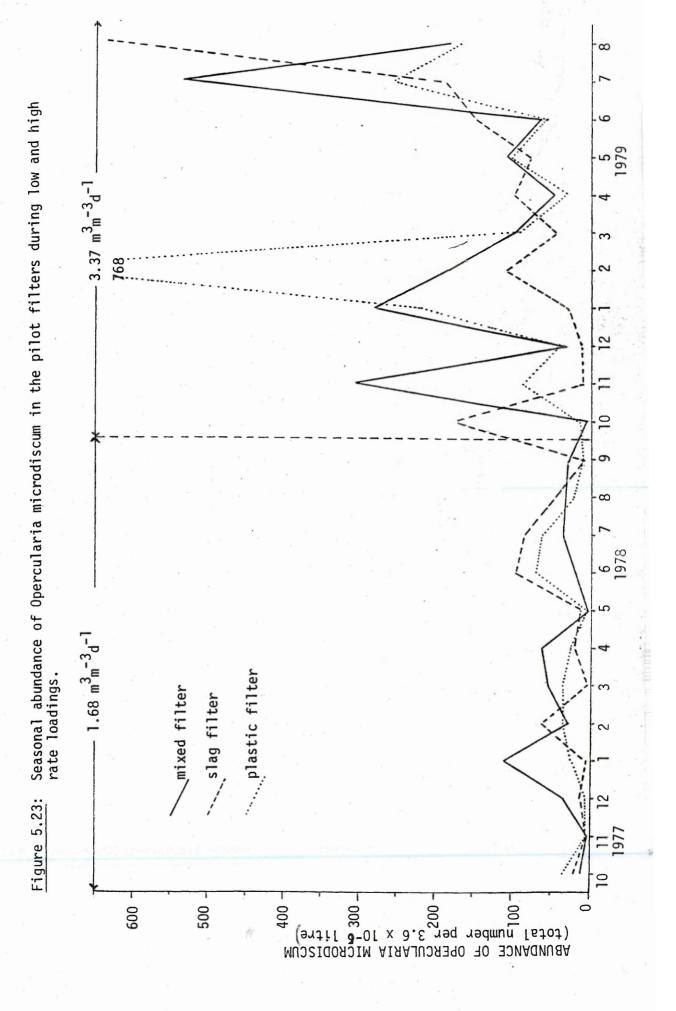
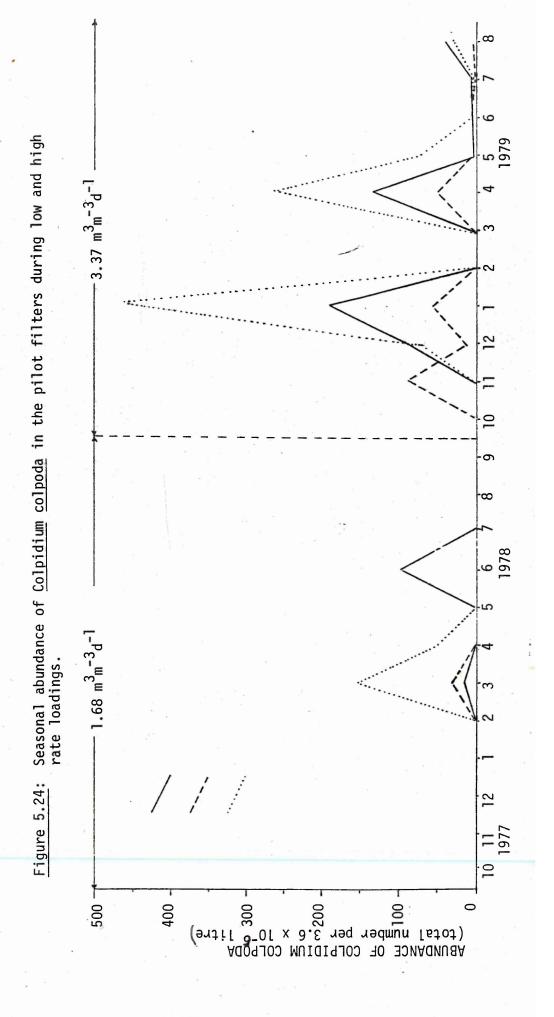



PLATE 5.5: Colonies of Opercularia microdiscum attached to the hyphae of the fungus Subbaromyces splendens (X500)

the various species were studied further, it became apparent that Opercularia microdiscum was restricted by competition for food and space at the lower loading and limited only by lack of suitable surfaces for attachment at the higher rate of loading. For example in March during the higher loading period, the film became unstable and sloughed, reducing the population density of the peritrich and removing most of the suitable substrate required for attachment. At this stage the free-swimming holotrich Colpidium colpoda became the most abundant ciliate temporarily, due to the decreased competition from Opercularia microdiscum. Temperature appears to be unimportant to this species so long as there is enough suitable material for attachment. It appeared that with reduced competition from Paramecium aurelia at heavy film accumulations it is able to extend its dominance from the areas of moderate film build-up during the lower loading, to heavy film accumulations at the higher loading rates.

In all the filters <u>Opercularia microdiscum</u> was found throughout the depth of the filters during the low loading except at depths of heavy film accumulation or high abundance of <u>Paramecium aurelia</u>. With the increase in the loading rate however, the population increased mainly in the lower half of the pilot filters although still avoiding those areas of heaviest film accumulation (Figures 5.13 - 5.18). In all the filters, especially in the plastic filter, there was a clear association between the depth at which <u>Subbaromyces splendens</u> was found and the population density of <u>Opercularia microdiscum</u>, especially during the winter and spring, the species using the tough mycelium of the fungus for attachment.

This species has previously been associated with low concentrations (Plate 5.5) of organic matter (Barritt, 1940; Barker, 1946; Tomlinson and Snaddon, 1966). More recent work has suggested that Opercularia microdiscum has a more general distribution (Curds, 1969; Curds and Cockburn, 1970; Hussey, 1975). Learner (1975) also noted the importance of this species in waste water treatment and found it to be the dominant organism in the majority of the filters examined. The results of the present investigation are in agreement with those of Learner, who recorded a positive correlation of the organic and hydraulic loading with Opercularia microdiscum, noting that greatest abundance was recorded in filters receiving loads in excess of 0.25 kg BOD $m^{-3}d^{-1}$. Some years earlier, Bruce and Merkens (1970) had found large numbers of Opercularia microdiscum, but no other ciliate species, in experimental filters receiving an organic load of 2.0 kg BOD $m^{-3}d^{-1}$, and a hydraulic loading of 6 $m^3m^{-3}d^{-1}$.

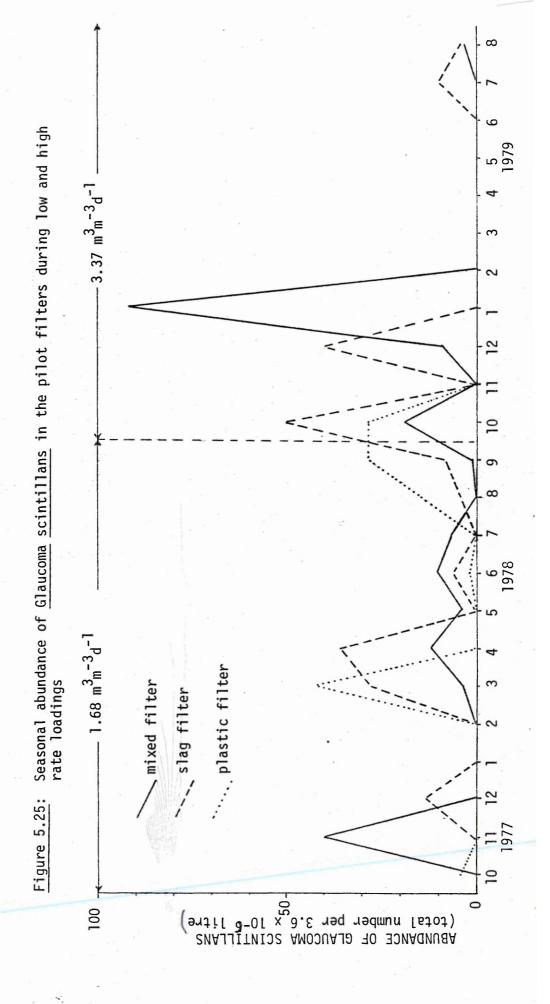

A clear association with organic loading has also been observed in another opercularian, Opercularia coarctata, which proved to be the commonest ciliate present in two experimental high rate filters using Flocor RC filter medium, loaded at 0.24 kg BOD m $^{-3}$ d $^{-1}$ (1.2 m 3 m $^{-3}$ d $^{-1}$) and 0.55 kg BOD m $^{-3}$ d $^{-1}$ (2.4 m 3 m $^{-3}$ d $^{-1}$)(Wheatley, 1976). From the survey conducted by Learner (1975) it would appear that such increases in population at the higher organic loading, as reported by Wheatley, would normally be associated with Opercularia microdiscum rather than Opercularia coarctata.

Curds (1973, 1975) divided the waste water protozoan fauna

into three groups according to their habitat. Those which swim freely in the liquid phase and so are prone to be washed out, those which crawl over the surface of the film and are occasionally washed out, while thirdly, those which are attached directly to the film or some other material and which are only removed during sloughing. Obviously the habitat preference of those species found in percolating filters is important in survival terms and so dictate which species are to be successful. Bungay and Bungay (1968) found that a peritrich such as Opercularia microdiscum is always present even after sloughing in quite large numbers, and therefore potentially able to build up the population rapidly. Though in any given situation, in the competition between species for food, the organism which is fastest to grow and reproduce under the prevailing conditions will become dominant (Moser, 1958).

5.5.2.4 Colpidium colpoda

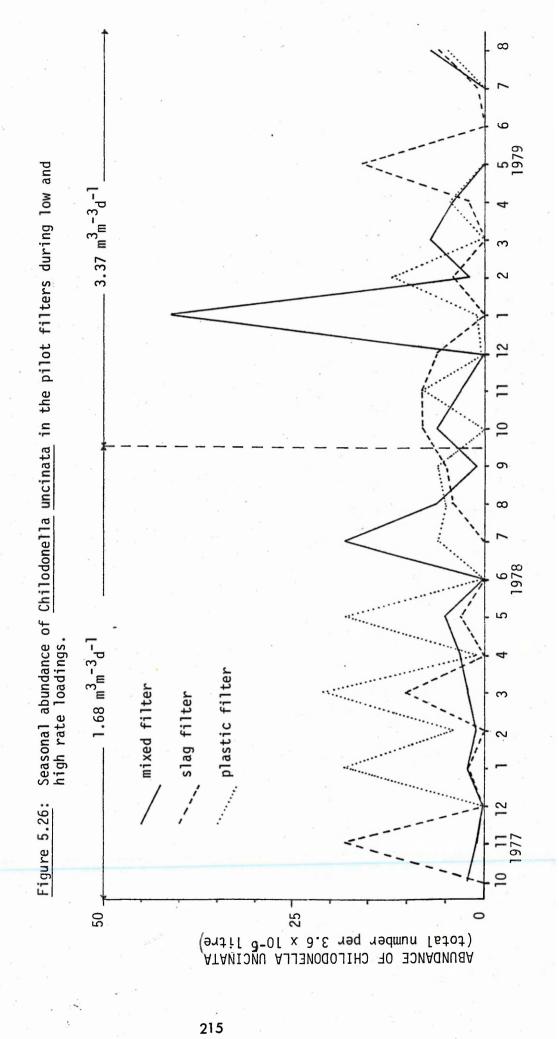
The abundance of <u>Colpidium colpoda</u> declined when the population density of <u>Paramecium aurelia</u> increased. Similar in shape and behaviour, this holotrich is only slightly smaller than <u>Paramecium aurelia</u>, ranging from 100 to 130 µm. Equally as active, <u>Colpidium colpoda</u> was normally found during the same periods as <u>Paramecium aurelia</u>. Abundance was greatest at the higher loading possibly due to reduced competition from <u>Paramecium aurelia</u>, reaching maximum densities during January and April. In February and March, when the film accumulation was at its maximum the holotrich was replaced by a large population of <u>Opercularia microdiscum</u> (Figure 5.24). <u>Colpidium colpoda</u> was most successful during the moderate film accumulations,


reaching maximum abundance between 4 to 9 kg m⁻³ of film, which is well illustrated by the vertical distribution graphs (Figures 5.16 to 5.18). The action of the invertebrate grazers was clearly observed to reduce the weight of the accumulated film, allowing <u>Colpidium colpoda</u> to temporarily increase in abundance before disappearing as the film accumulation was reduced even further.

At the higher loading the sequence of species from heavy to light film accumulation can be seen quite clearly, from Opercularia microdiscum to Colpidium colpoda and then to Uronema nigricans at the lightest film weights, each peak in the population density clearly separated from the next.

Colpidium colpoda and Opercularia microdiscum are both high rate species and compete directly, so that when one species is found in large numbers the other is found in small numbers. It does seem, however, that Opercularia microdiscum is more successful than Colpidium colpoda when there are enough suitable surfaces for attachment.

5.5.2.5 Glaucoma scintillans


This species is a free-swimming holotrich between 35 and $50\mu m$ in length. It is generally found in low numbers (Table 5.19), being more abundant in the slag and mixed filter at the higher loading (Figure 5.25). There is a clear interaction between Glaucoma sp. and Uronema sp., the former being more successful at the moderate film weights (5 to 9 kg m³) while Uronema sp. was most abundant during periods of low film accumulation (<5 kg m³). Glaucoma sp. was effectively absent from the plastic filter throughout the higher loading, never being

recorded at times of heavy film accumulation in any of the filters. The interactions between these two similar holotrichs appears to be solely dependent on the film accumulation as there was no obvious relationship between Glaucoma sp. and temperature or any other measured environmental parameter. Glaucoma scintillans is correlated significantly and positively with one other species only, this being Chilodonella uncinata (P < 0.01). Although no computed relationship could be found between Colpidium colpoda and Glaucoma sp., the two species were often recorded together. The extremely low abundance of Glaucoma scintillans in the plastic filter during the higher loading could, for example, be due to the extremely high population densities of Colpidium colpoda over the same period. The results show Glaucoma sp. is competing directly against the other holotrichs and in particular Colpidium colpoda and also Uronema nigricans. The seasonal abundance of Chilodonella uncinata is shown in Figure 5.26.

5.5.3 COMMUNITY STRUCTURE

Numerous authors have reported on the vertical distribution of various ciliate species within percolating filters (Johnson, 1914; Lackey, 1924, 1925; Frye and Becker, 1929; Cutler et al., 1932; Holtje, 1943; Barker, 1946; and more recently Ingram and Edwards, 1960). Generally they found that particular species tended to predominate at certain depths, stratification being dependent on any one parameter or a mixture of environmental and biological interactions. Liebmann (1951) suggested that it was mainly due to nutrition while Liebmann (1949) put forward the saprobity theory. Liebmann (1949) suggested that

Vorticella microstoma, Glaucoma scintillans and Colpidium colpoda were restricted to the surface (polysaprobic) while Paramecium caudatum, Chilodonella uncinata, Uronema nigricans, Opercularia coartata and Podphyra fixa were all typical of middle regions of the filter (α -mesosaprobic). Aspidisca costata was recorded in the lower regions of the filter and was associated with the lowest levels of organic matter (β -mesosaprobic).

In the present study Opercularia microdiscum, Paramecium aurelia were found at all depths at the lower loading, while Colpidium colpoda was found in the upper regions where the organic load was strongest. Aspidisca costata was limited to the lower half of the pilot filters, and was continuously washed out of the filters in large numbers. At the higher loading rate however, the dominant species were more definitely restricted to particular depths. The results were in general agreement with those of Liebmann (1949) with Colpidium colpoda found in the top and middle regions of the pilot filters, Opercularia microdiscum in the middle and lower regions, while Aspidisca costata and Uronema nigricans were restricted to the lower portion of the filters. It was interesting to find that the Suctoria, which are mainly predators on other protozoan species, were found in the middle and lower areas of the filters where they would have maximum opportunity to come into contact with suitable prey. From the present investigation it is apparent that no individual reason can account for the stratification of the various protozoan species, but that it is the result of a number of environmental (e.g. organic load, temperature, hydraulic flow, food availability,

available surface area) and biological parameters (e.g. competition, predation, type of film) which change continuously altering the distribution of the protozoans within the film.

Changes in community structure during the year were examined by Barker (1942) who recorded the changes in the fauna of filters over twelve months. Generally he found the protozoan population to be more constant and abundant in spring and summer, and more erratic and with a lower population density during the colder autumn and winter months. Although he found certain species throughout the year, several species were only observed seasonally. For example Chilodonella sp. was found in the winter while Uronema sp. was most prominent in the summer. Podophyra spp were found in maximum numbers in the spring and autumn. The results from the pilot filters showed that all the dominant species exhibited seasonal variations, although perhaps this is due to other experimental factors such as film accumulation, and interspecific competition rather than just temperature. The apparent seasonal incidence of certain species made by Barker (1942) was also found in the pilot filters, with Uronema sp. restricted to the summer months while the Suctoria and Podophyra spp. in particular were found in the late winter, spring and autumn.

In conclusion the different characteristics of the media in the mixed filter does provide a wider variety of habitats, increasing the diversity of ciliate species compared to the single medium filters. The community structure within the mixed filter was more stable with less variability in the population densities of individual ciliate species. It was

also noticeable that this particular filter retained individual ciliate species for longer periods than either the slag or plastic filters.

5.6 ROTIFERA

The role of the Rotifera in wastewater treatment processes has been reviewed by Doohan (1975). Unfortunately most of the research carried out on this group has been in connection with the activated sludge process (Curds and Vandyke, 1966; McKinney, 1967; Calaway, 1968; Sydenham, 1971) and so relatively little is known concerning the rotifers found in the percolating filter environment.

In the present study three species were found, Philodina
Philodi

Lecane sp. was never recorded in the plastic filter, but was present in the other filters during the higher loading period only. Dicroanophorous sp. was also found during the higher loading period and was restricted to the mixed filter. All three species were limited to the lower half of the filters, with the largest populations being recorded from the slag filter during the summer months.

From field experiments, Doohan (1975) supposed that it was food availability which exerted the greatest influences on

the reproduction rate of the Rotifera, rather than other environmental parameters such as temperature. In the present investigation the reduced abundance of bacteria and suspended material in the lower sections of the filters during the warmer months was reflected by a decrease in protozoan abundance in the same region of the filters. The resultant increase in the Rotifera, and the extension of their distribution area upwards was most likely due to a) their greater mobility, for example Lecane sp which has a specialised foot for crawling over the medium; and b) their stronger ciliary currents which concentrated the diminished number of suspended bacteria and particles found in the lower half of the filters, more efficiently than the protozoan species. This was especially evident when the Rotifera were far more successful in the same region of the filters than the sessile peritrich Opercularia microdiscum which had replaced the larger more active protozoan holotrichs at the higher loading.

NEMATODA

Little is known regarding the role of the Nematoda in wastewater purification processes, but being present in such large numbers in percolating filters they are important members of the filter ecosystem. The Nematoda is a widely distributed group being found in a variety of aquatic and terrestrial habitats, and the filter environment appears to be an ideal habitat for such a diverse group. Indeed large populations of nematodes have been recorded in percolating filters (Peters, 1930; Lloyd, 1945; Calaway, 1963). In the present investigation the nematodes were not identified to species level, but were expressed as total numbers of Nematoda present. The nematode fauna of the percolating filter is very similar to the other polysaprobic freshwater habitats, being dominated by bacterial feeders and the less abundant predators feeding on other nematodes and rotifers (Schiemer, 1975).

The summary of the mean monthly number of nematodes per litre of medium (Table 5.21), shows that the nematodes were most abundant in the slag filter and to a lesser extent in the mixed filter, than in the plastic filter. Weninger (1964), recorded maximum population densities of 180 individuals per millilitre while Scherb (1968) found the maximum level of 240 individuals per millilitre in a bench scale activated sludge plant. Schiemer (1975) suggested that experiments carried out by Pillai and Taylor (1968) showed the maximum population in conventional low rate filters could be in the order of 1000 individuals per millilitre, which corresponds

closely with the present results where a maximum population of 940 individuals per millilitre was recorded in the slag filter at the low loading period during February (Table 5.21).

The seasonal variation in abundance coincided with the film accumulation with maximum population densities of nematodes being recorded during the early spring and minimum population densities immediately after sloughing was completed. Weninger (1971) and Murad and Bazer (1970) recorded that the population density was inversely related to temperature, resulting in maximum populations between 7 and 10°C, although Chaudhain et al., (1965) recorded maximum population densities between 17 - 18°C. From the correlation analysis (Table 5.22) the nematode population was strongly and negatively correlated with temperature with maximum numbers being recorded at 8°C. Unlike Weninger (1964), who recorded that the number of nematodes decreased with depth up to the centre of his experimental filter, the Nematoda in the pilot filters were found at all depths, reaching maximum numbers in the lowest 900 mm of the filters. During the high loading period the distribution of nematodes was restricted even lower, although in the mixed filter the maximum number of nematodes occurred at the lower half of both the slag and plastic media sections.

From the vertical distribution graphs (Figures 5.2-5.7) an association between the film accumulation and the nematode population can be identified, the minimum accumulation of film coinciding with the minimum nematode population density, although no significant correlation with the film weight was found. Hawkes and Shephard (1972) regarded the Nematoda as

Mean monthly number of Nematoda recorded in the pilot filters (Expressed as total number x 106 individuals per litre) Table 5.21:

ER	MAXIMUM TOTAL MONTH	Feb	Мау		
PLASTIC FILTER	MAX] TOTAL	3.3	3.0		
PLAST	MEAN	1.67 3.3	1.60	1.64	330
	MAXIMUM TOTAL MONTH	Apr	Mar		
MIXED FILTER	MAXI TOTAL	9.9	4.9		,
MIXE	MEAN	1.94 6.6	1.87	1.91	099
	MUM MONTH	Feb	Apr		
SLAG FILTER	MAXIMUM TOTAL MONTH	9.4	6.1		
SLA	MEAN	2.21	2.22	2.22	940
DURATION (months)		12 .	11	23	23
LOADING		LOW LOADING	HIGH LOADING	BOTH LOADINGS	Maximum number per millilitre

Table 5.22: Correlations with the Nematoda and various biological groups and environmental parameters

	SLAG	MIXED	PLASTIC
LOW RATE	Temperature(2-) Organic Load (1-)	Zoogloeal Bac- teria (1+) Subbaromyces splendens(1-) Paramecium aurelia (2+)	Enchytraeidae (2+) Temperature (1-)
HIGH RATE	Enchytraeidae (2+) Psychodid lar- vae (2-)		Psychodid lar- vae (2-) Acari-Astigmata (2+) Temperature (1-) Organic Load (1-) Effluent BOD (1-)
ALL LOADINGS	Subbaromyces splendens(1-) Enchytraeidae (1+) Psychodid lar- vae (1-) Temperature (1-) Effluent BOD (1-)	Temperature (1-) Effluent BOD (1-) Paramecium aurelia (1+)	Enchytraeidae (2+) Psychodid lar- vae (1-) Temperature (3-) Effluent BOD (1-) Uronema nigri- cans (1-)

important micrograzers, associated with the increase in film accumulation. A very significant and positive correlation was recorded in both the slag and plastic filters between nematode and Enchytraeidae abundance. The latter group is one of the dominant macrograzers which like the Nematoda is found in greatest abundance at temperatures of 7° C (Solbé, Ripley and Tomlinson, 1974), and is also related to the film accumulation. The high reproductive potential of the nematodes (Schiemer, 1975) is similar to that of the astigmatid mites and the enchytraeids, all three groups being able to respond rapidly to increases in the available food.

As mentioned previously the Nematoda are associated with heavy film accumulations and so it is not surprising that a strong negative correlation between the nematode population and the effluent BOD should exist. The negative association with the organic load as well suggests that the nematodes are affected by high flow rates which wash out the individual organisms, and may also account for the lower population levels recorded in the plastic medium (Table 5.21). Weninger (1965, 1971) found the Nematoda to be strongly associated with Sphaerotilus natans, but such an association was not apparent in the present investigation, although the filamentous bacteria were positively related to the film weight.

5.8 ANNELIDA

The Enchytraeidae and the Lumbricidae are two extremely common families both being frequently recorded in percolating filters. Both laboratory and field based studies, have been undertaken on the ecology and biology of these two groups, which has been excellently reviewed by Solbé (1975).

5.8.1 ENCHYTRAEIDAE

Enchytraeids were recorded throughout the experimental period in all the filters, often being recorded in very large numbers. One species, <u>Lumbricillus rivalis</u>, made up 95% - 100% of the total enchytraeids present. One other species was also occasionally recorded in an immature state, and this was provisionally identified as Enchytraeus buchholzi.

Under low rate conditions similar mean population levels were recorded in all three filters (Table 5.23) with the maximum monthly mean being found in the plastic filter, which had the greatest potential surface area.

The increase in the loading rate had interesting effects on the population densities. In the slag and mixed filters the population density doubled, appearing related to the increase in organic loading, while the population in the plastic filter dropped by 40 percent. The maximum population density was recorded in the mixed filter, during the high loading regime, at 10,640 individuals per litre of medium.

Monthly mean population density of Enchytraeidae (expressed as total number per litre of medium) Table 5.23:

DURATION	_	-	1			1				
LOADING		SLA	SLAG FILIEK	~	MIXE	MIXED FILIER	~	PLAS	PLASIIC FILIER	E.K.
IN MONTHS ME.	Æ	MEAN	MAXI	MAXIMUM	MEAN	MAXIMUM	MUM	MEAN	MAX	MAXIMUM
			TOTAL	MONTH		TOTAL	MONTH		TOTAL	MONTH
12 1122	1122	21	2232	Jan	1083	2949	Feb	1114	3869	Feb
11 2006	2006		8985	Apr	2264	10640	Мау	999	2592	Мау
23 1545	1545				1648			006		

The low number of enchytraeids recorded in the plastic filter during the higher loading was probably due to several factors. Primarily due to the washout from the smooth surfaced medium, which, unlike the slag medium has no pores or rough surfaces to aid attachment, and secondly due to the high population of Psychoda sp. found in the filter at the the higher loading rate, competing for the same food and space. Reynoldson (1941) reported that the Enchytraeidae were restricted by higher rates of flow $(2.02 - 2.24 \text{ m}^3\text{m}^{-3}\text{d}^{-1})$ and that large numbers were lost in the effluent especially during sloughing (Reynoldson, 1948). Bruce and Merkens (1970) found that L. rivalis was absent from their highrate plastic and mineral filters treating sewage at 6 $m^3m^{-3}d^{-1}$. Enchytraeidae have been found to dominate the grazing fauna under reduced competition from the fly larvae, created by higher hydraulic loadings (Tomlinson and Hall, 1950; Hawkes, 1955, 1961), and at lower temperatures (i.e. <10°C) (Solbé et al., 1974). Hawkes (1955) in his experiments on dosing frequencies found the L. rivalis could withstand certain hydraulic flows because it possessed strong, curved setae and that as the cocoons were firmly attached to the medium they could withstand even higher flow rates.

Previous workers have found <u>L. rivalis</u> principally in the upper portions of percolating filters near the surface (Reynoldson, 1947; Solbé <u>et al.</u>, 1967; Williams et al., 1969). In the present investigation <u>L. rivalis</u> was recorded throughout the depth of the filters at the lower loading rate, reaching maximum abundance in the central and lower areas of the filters. In the mixed filter this species was found

Table 5.24: Correlations between the Enchytraeidae and various biological groups and environmental parameters

	SLAG	MIXED	PLASTIC
LOW RATE			Nematoda (2+) Temperature(2-)
HIGH RATE	Nematoda (2+)	Sarcomastigo- phora (1-)	
BOTH LOADINGS	Nematoda (2+)		Nematoda (2+)

in greatest abundance in the lower portion, i.e. the slag medium, of the filter. Maximum abundance of <u>L. rivalis</u> was recorded in the lower half of all the filters at the higher loading. Hawkes (1955) and Solbé <u>et al</u>. (1967) both recorded maximum numbers of the Enchytraeidae during February with minimum numbers in August, which corresponds with the results obtained in the present study. Figures 5.27 - 5.32 show that the vertical distribution of the Enchytraeidae was probably restricted by the presence of the psychodid larvae at both loadings, which predominated in the upper regions of the pilot filters under low rate conditions and throughout the filter at the higher loading. The Enchytraeidae were not directly associated with film accumulation (Table 5.24) but reached maximum population density, the month preceding the maximum number of psychodid larvae were recorded; both

reaching maximum abundance in response to the heavy film accumulation. The increased competition from the psychodid larvae caused a dramatic decline in the number of enchytraeids present. Correlation analysis (Table 5.24) showed the Enchytraeidae were only associated with nematode abundance, this being a strong and positive correlation. Both <u>L.rivalis</u> and the Nematoda are capable of increasing their populations rapidly, nematodes because of their short life cycles and the enchytraeids because of (a) the large number of cocoons present in the filter at specific periods, and (b) the high population growth rate (Learner, 1972). This allows the Nematoda and the Enchytraeidae to respond quickly to changes in the film accumulation and also to changes in community structure.

Cocoons of <u>L.rivalis</u> were also identified and counted during the biological analysis carried out each month (Table 5.25). The result reflect the adult population densities at the lower loading, both the number of cocoons and adult abundance being similar in all the pilot filters. At the increased loading the number of adults doubled in the slag and mixed filters resulting in increased numbers of cocoons. The number of cocoons increased by factors of 2.7 in the slag, 1.9 in the mixed and 1.1 in the plastic filters, the difference possibly reflecting the reduction of voidage caused by the accumulation of film and so the potential retention of the cocoons. The cocoons were generally found in maximum numbers in the centre of the slag and plastic filters and in the interface region of the mixed filter.

Monthly mean number of cocoons of Lumbricillus rivalis (expressed as total number per litre of medium) Table 5.25:

OADING	DURATION OF LOADING	SLA	SLAG FILTER	~	MIX	MIXED FILTER	ER	PLAS	PLASTIC FILTER	TER
	NI MONTHS	N	MAX	MAXIMUM	MEAN	MAX	MAXIMUM	MEAN	MAX	MAXIMUM
		III-VIII	TOTAL	MONTH	יוראוי	TOTAL	MONTH	FILMI	TOTAL	MONTH
LOW LOADING	12	668	2213	Feb	1083	3627	Apr	1033	2347	Apr
HIGH LOADING	11	2390	8933	Apr	2002	7520	Apr	1181	2880	Mar
BOTH LOADINGS	23	1612		v	1522	,		1104		

Table 5.26: Correlations with the cocoons of L.rivalis and various biological groups and environmental parameters.

	SLAG	MIXED	PLASTIC
LOW RATE		Nematoda (2+) Acari-astig- mata (1+)	Subbaromyces splendens (1-) Sarcomastigo- phora (1+) Nematoda (1+) Acari-astigmata (2+)
HIGH RATE	Enchytraeidae (3+) Nematoda (2+)	Effluent BOD (1+)	Psychodid lar- vae (1-) Acari-astigmata (1+) Nematoda (2+) Temperature(2-) Organic Load (3-) Effluent BOD (3-)
BOTH LOADINGS	Enchytraeidae (3+) Nematoda (2+)		Nematoda (2+) Acari-astigmata (1+) Temperature(1-) Effluent BOD (1-)

The number of cocoons recorded was controlled by the film accumulation. More were retained as the film increased, either by adhesion to the film or some other suitable substrate, and by being mechanically filtered out of the sewage by the film and humus. At times of low film accumulation there was a corresponding low abundance of cocoons recovered which were mainly adhering to the actual surface of the medium. Like Reynoldson (1941), there was an increase in the number of adult Enchytraeidae and cocoons during the sloughing period. Reynoldson (1947) and Solbé et al. (1967) both found that the

abundance of cocoons followed a seasonal pattern, reaching maximum numbers in the spring and autumn. In the pilot filters the seasonal abundance of cocoons followed a similar pattern to that of the adult enchytraeids (Table 5.26) reaching maximum numbers during February to April and minimum numbers during the summer months after sloughing.

Both the adult enchytraeids and the cocoons are both eaten by a number of predatory dipteran larvae. Lloyd (1945) reported L.rivalis and its cocoons as being eaten by fly larvae including Hydrobaenus minimus, Metriocnemus hygropetricus and Psychoda severini, all of which were recorded in the pilot filters. The protozoan Glaucoma sp. was reported by Reynoldson (1939b) as occasionally attacking the cocoons of L.rivalis. Glaucoma scintillans was frequently recorded in the pilot filters and was associated with thin film conditions (Section 5.5) and may result to this unusual behaviour at times of food shortage.

5.8.2 LUMBRICIDAE

Only two members of the Lumbricidae were found in the pilot filters. These were <u>Dendrobaena subrubicunda</u> and <u>Eiseniella tetraedra</u>, both of which frequently occur in percolating filters (Learner, 1975). Considerable information has been gathered relating to these species (Tomlinson, 1946; Hawkes, 1963; Solbé <u>et al</u>, 1967; Solbé, 1971), and this has been reviewed in detail by Solbé (1975). The species were present in small numbers at both loadings. Both species were found

in greatest abundance between 900 - 1500 mm at the lower loading in all the filters, although they were not recorded during the period of lowest film accumulation during June and July. At the higher loading, Dendrobaena subrubicunda was only recorded in the mixed and slag filters during the first month of operation at the new loading. Eiseniella tetraedra however was recovered from the lower half of all the filters until April when the species disappeared from the filters. At both loadings the lumbricid worms were found throughout the plastic filter. Eiseniella tetraedra is an amphibious species while Dendrobaena subrubicunda is terrestrial in nature being commonly found in compost heaps (Gerard, 1964). Therefore it is not surprising that Eiseniella tetraedra was more successful at the higher hydraulic loading than the other species. Lumbricids were shown to be more numerous in smaller media by Terry (1951), who recorded that in the larger medium the worms were rarely found near the surface due to the high flushing action of the sewage. Solbé (1971), examining the depth distribution of lumbricids, reported that Dendrobaena subrubicunda was found to increase towards the base of the filters while Eiseniella tetraedra was found in the middle regions of the filters. The present investigation indicates that the distribution of the lumbricids is related to the hydraulic flow and the size of the interstices.

5.9 INSECTA

The members of the various Orders of the Insecta are principally associated with percolating filters, rarely being found in other kinds or at other stages of wastewater treatment.

Many species lists have been compiled (Lloyd, 1945; Tomlinson, 1946; Terry, 1951; Hawkes, 1963; Solbé et al, 1967) but it was comparatively recently that the first comprehensive survey into the fauna of percolating filters was undertaken by Learner (1975) and a comprehensive species list prepared, containing 186 species of insects belonging to 38 families.

5.9.1 COLLEMBOLA

Sixteen species of springtails have been recorded from percolating filters, the most important species being Hypogastrura viatica, formally referred to as Achorutes subviaticus (Lawrence, 1970). More recently Learner (1975) recorded seven species of which only Hypogastrura viatica, Anurida tullbergi and Proisotoma sp. were found in numbers greater than 100 individuals per litre of medium.

Only one species was recorded in the pilot filters, <u>Isotoma</u>
<u>olivacea-violacea</u>. Frequently recorded in the plastic filter
at both loadings, it was only recorded once in the other two
pilot filters. The species was found in the plastic filter
from November to May at the lower loading, with maximum
population densities during November and December, seasonal

incidence being reduced to three months at the higher loading rate being recorded from October to December. During periods of maximum abundance, the species extended throughout the depth of the filter becoming more restricted to the lower half during the warmer months and also when the loading was increased. Clearly Isotoma olivacea-violacea preferred the lower loading and moderate accumulations of film, maximum populations being recorded when the mean film weight was between 6 and 7 kg \bar{m}^3 . Although an active grazer, no correlation was found between Isotoma sp. and any of the constituents of the film such as zoogloeal bacteria or Subbaromyces splendens.

Hypogastrura viatica is extremely sensitive to increased rates of filtration (Hawkes and Jenkins, 1955, 1958; Wheatley, 1976); Tomlinson and Hall (1950) recorded maximum abundance of the springtail occurred at 1.5 m³m⁻³d⁻¹ but none was found at loads in excess of 3.0 m³m⁻³d⁻¹. The greater success of Isotoma sp. in the plastic medium used in the present investigation is due to a preference for drier areas such as interjet zones in conventional filters (Hawkes, 1959) and it has been shown previously (Section 2.4.2) that each module of Flocor RC filter medium has a dry area suitable for such organisms as Isotoma sp.

5.9.2 COLEOPTERA

Only members of the Hydrophilidae and the Staphylinidae are commonly found in percolating filters. In the present

investigation only two species were recorded, <u>Cercyon ustu-latus</u> and an unidentified species of the Staphylinidae.

Both species were only recorded occasionally as adults in very small numbers. In his survey, Learner (1975) found adult <u>Cercyon ustulatus</u> in 6% of the filters examined, but never recorded the larvae. Learner only examined medium from the filter surface, and Hawkes (1963) recorded that the Coleoptera were normally found in the lower regions. In the present investigation, <u>Cercyon ustulatus</u> was found in the top 900 mm of the pilot filters at both loadings during the spring and autumn, when the maximum numbers of adults outside the filters were recorded (Table 5.32). It would appear that this species did not reproduce within the filter, but was attracted by the decaying organic matter, as was the staphylinid species recorded.

The Staphylinidae species was restricted to the surface of the pilot filters except in June when the species was recorded lower down towards the centre of the filters. Maximum population densities occurred during May to June being more abundant in the mixed and plastic filters during the lower loading. At the higher loading it was only found in the plastic filter where it was recorded throughout the year with maximum population densities occurring during the summer. Learner (1975b) noted that although adult staphylinids were frequently recorded in percolating filters, the larvae were rarely found, and suggested that the conditions found in filters were probably not suitable for these insects to breed.

5.9.3.1 Psychodidae

Both <u>Psychoda alternata</u> and <u>Psychoda severini</u> were recorded in the pilot filters. Only the adults were identified to species level while the larvae of both species were counted together.

Lloyd (1943) showed that <u>Psychoda</u> <u>severini</u> was parthenogentic and like <u>P.alternata</u>, was able to carry out its life cycle within the filter. <u>Psychoda severini</u> was able to reproduce at temperatures below 10^oC and so is far more abundant than <u>P.alternata</u> during the winter and spring, while the latter species is dominant in the summer and early autumn (Tables 5.27 to 5.29).

The psychodid larvae were the first macroinvertebrates to colonise the filters and were found in all three filters throughout the experimental period of 23 months. Maximum abundance of the larvae occurred during the summer months, normally in June or July each year with minimum populations generally recorded during either early spring or late autumn. The slag and mixed filters supported similar larval population densities at the low loading (Table 5.30), whereas the plastic filter contained twice as many larvae. In the mixed and plastic filters there was a considerable increase in the larvae population following the increased loading rate. This also occurred, but to a lesser extent, in the slag filter. The smaller population recorded in the slag medium may be due to the reduced voidage restricting the natural

Table 5.27: Species diversity of macrofauna in the slag filter

			-			1	.68	m ³	3 _m -3	d-1	, '		Ī			3.	.37	7 m ³	m-3	d-1		
	Species		77.01	12 77	1 78						 8.78	9.78	10.78	11.78	12.78		_				 7.79	0 70
ANNELIDA	Lumbricillus rivalis Cocoons of L.rivalis Dendrobaena subrubicunda Eiseniella tetraedra		-																4			
INSECTA	Isotoma sp. Staphylinidae Cercyon ustulatus		-	-	-				_						•	14,						
Diptera	· · · · · · · · · · · · · · · · · · ·	L) P) A)			•	_	,		_	_							•	_		_		
	Psychoda severini (Psychoda spp. (A) A) L) P)		<u>-</u>					_								_		-			
	(1	L) P) A)	2						-					•								
	(1	L) P) A)		_													-	-			 •	
-,		L) P) A)	_				•								•							1
	· (1	L) P) A)																				
*.4	(1	L) P) A)					,				 				_		•					
	(L) P) A)	-	•		,			•													
ACARI	Histiogaster carpio Histiostoma feroniarum Rhizoglyphus echinopus Platyseius italicus				,					•							•					
ARANEAE	,											_									 	
ARTHROPODA	Lithobius forticatus Paracyclops fimbriatus						_										_				 1	_
MOLLUSCA	Agriolimax reticulatus									111												

Key: (L) larvae

- (P) pupae
- (A) adult

Table 5.28: Species diversity of macrofauna in the mixed filter

		,				1.6	8 m	3 _m -3	3 _d -1						3	. 37	m ³ r	n-3	-1			
	Species		10.77	12.77				1			8.78	9.78	10.78	0/-1-	1.79					6.79	7.79	8 79
ANNELIDA	Lumbricillus rivalis Cocoons of L.rivalis Dendrobaena subrubicunda Eiseniella tetraedra												-			_	-					_
INSECTA	Isotoma sp. Staphylinidae Cercyon ustulatus					-	_	_		•									,			
Diptera	Sylvicola fenestralis	(L) (P) (A)		_										-		-	-	•	_	_		_
	Psychoda alternata Psychoda severini Psychoda spp.	(A) (A) (L) (P)				_	_	_							,		-	•				_
	Hydrobaenus minimus	(L) (P) (A)	_					_		•					٠.			_	•			
	Hydrobaenus perennis	(L) (P) (A)		_	_		-		-	-						_						
	Metriocnemus hygropetricus	(P) (A)	_				,	_	-	_	_		_		:	•					_	
	Scatella silacea	(L) (P) (A)			i		-					_		7	,							
	Leptocera spp.	(L) (P) (A)	-											_		_						_
	Spathiohora sp.	(L) (P) (A)		h			_	-		•	-				-							
ACARI	Histiogaster carpio Histiostoma feroniarum Rhizoglyphus echinopus Platyseius italicus	,	_				,	_		-	-		_									
ARANEAE									1						-							
ARTHROPODA	Lithobius forticatus Paracyclops fimbriatus					-	-							-				_				
MOLLUSCA	Agriolimax reticulatus		-	21 1 381								_	_	_	_							

Key: (L) larvae

- (P) pupae
- (A) adult

Table 5.29: Species diversity of macrofauna in the plastic filter

			-			1.	68	m ³ m	-3 _d -	1						3.	37	m ³ n	n ⁻³ d	-1		
	Species		10.77	12.77	1.78	2.78	3.78	4.78	5.78	7.78	8.78	9.78	10.78	11.78	12.78	1.79	2.79	3.79	4.79	5.79	6.79	7.79
ANNELIDA	Lumbricillus rivalis Cocoons of L.rivalis Dendrobaena subrubicunda Eiseniella tetraedra											•			÷				_			•
INSECTA	Isotoma sp. Staphylinidae Cercyon ustulatus								_	_		_	_		_					,		
Diptera		(L) (P)													_		_					
	Psychoda alternata Psychoda severini Psychoda spp.	(A) (A) (A) (L) (P)		•			•	;			•								_			
		(L) (P) (A)	-	-	•		,		-		_	-					-					
		(L) (P) (A)	-		•		_			-		-	_	-		<u>·</u>				_	_	
-		(L) (P) (A)	_	-	-	,			-					_	,	,		_	,	_	•	-
		(L) (P) (A)												_	_	_						
		(L) (P) (A)				_							•	_				_				
		(L) (P) (A)			v							_				_		_	-			
	Histiogaster carpio Histiostoma feroniarum Rhizoglyphus echinopus Platyseius italicus					•		-		-						_						_
ARANEAE											_										_	
	Lithobius forticatus Paracyclops fimbriatus		_	_		_	-	-	0													
MOLLUSCA	Agriolimax reticulatus		_					-			_											_

Key: (L) larvae

(P) pupae

(A) adult

Monthly mean abundance of Psychoda larvae (expressed as total number per litre of medium) Table 5.30:

(months) MEAN 12 1281	MEA 128	SLA NN	SLAG FILTER NAXIN TOTAL 11 5346	₹ ∑	MEAN 1493	MIXED FILTER MAXIM TOTAL 3 5210	ILTER MAXIMUM AL MONTH 10 Dec	PLA MEAN 2553	PLASTIC FILTER MAXIMUM TOTAL MO 3 9065 J	MONTH Jun
=		3802	10177	Aug	6603	33226	Jun	6497	25097	
	23	2486			3937			4439	-	

life cycle of the insects due to increased film accumulation, which is discussed fully later in this section. The maximum monthly mean number of <u>Psychoda</u> larvae recorded in any filter was 33,226 per litre of medium during June 1979, in the high rate mixed filter, illustrating just how large the population density of this species could rise over a comparatively short period. <u>Psychoda</u> was an important member of the grazing fauna being the second most abundant grazer recorded in the filters, the most common being the astigmatid mites.

The maximum population densities for the larvae coincided with the period of thinnest film accumulation, and vice versa. The abundance of psychodid larvae was found to be positively correlated with temperature (Table 5.31). Learner (1975b) clearly illustrated that the reproductive potential (life cycle) of the commonest psychodid, P.alternata, was controlled by the temperature and that it has the most rapid development rate at temperatures in excess of 10°C of any of the Insecta found in the percolating filter environment. Obviously there is a 'lag phase' between maximum food availability and the resultant increase in the number of grazers. In the case of Psychoda alternata this phase was of one to two months duration depending on the temperature within the filters (Solbé and Tozer, 1971). This could explain why no correlation existed between the quantity of film and the abundance of psychodid larvae. A similar delay before the grazing fauna responded to the increase in film accumulation was also recorded by Wheatley (1976), but he concluded that the macroinvertebrates were not responsible for seasonal fluctuations in the film, although the grazing activities of

the Enchytraeidae and <u>Psychoda</u> larvae were clearly responsible for the control of the film.

Tomlinson and Stride (1945) recorded that the number of psychodid flies emerging from a percolating filter increased with increased organic loading but only up to a maximum of 0.34 kg BOD m⁻³d⁻¹. In the plastic filter there was a positive correlation at both loadings between Psychoda spp. and Uronema nigricans, a holotrich protozoan which was found to be restricted to low film conditions (Section 5.5.2.2), this association also being recorded in the other filters at both loadings. Interestingly the abundance of Psychoda spp. was very strongly and positively correlated with Opercularia microdiscum in the slag filter, this protozoan being generally recorded where moderate to heavy accumulations of film occurred. A number of other significant correlations are summarised in Table 5.31.

Many authors have recorded that both psychodid larvae and the Enchytraeidae prefer a thick film (Lloyd, 1945; Terry, 1951; Hawkes, 1957) and therefore it was expected that the maximum accumulation of larvae would occur where there was greatest film accumulation within the filters. However, this did not appear to be the case (Figures 5.27 to 5.32). At the lower loading the larvae were found mainly in the top 900 mm and when the film was at its minimum accumulation after sloughing, maximum abundance of <u>Psychoda</u> spp was recorded, with the larvae distributed throughout the depth of the filters. In June the light weight of the film reduced the <u>Psychoda</u> population due to lack of food. By the following month the

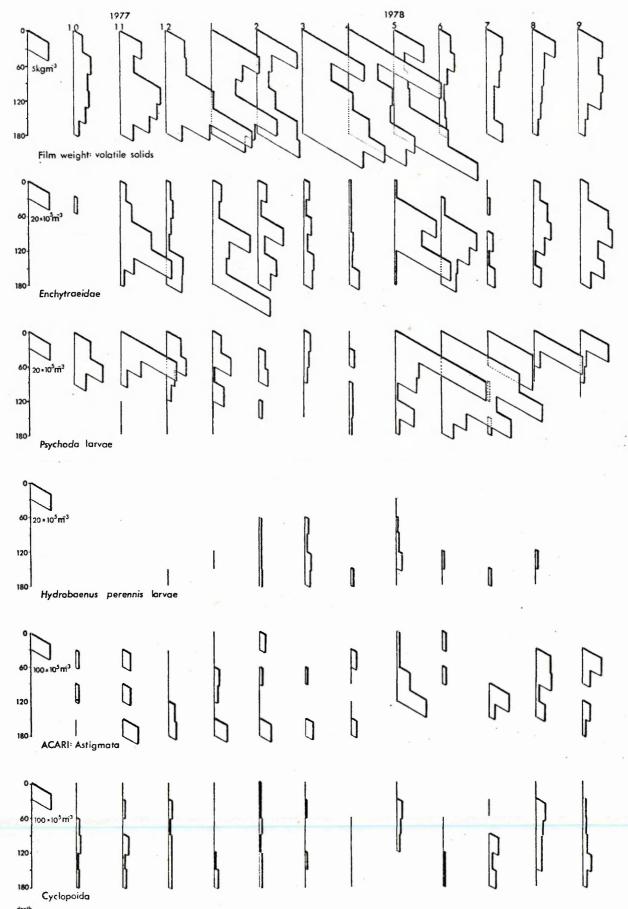


Figure: 5:27 Vertical Distribution of Film and Macrofauna, Low Rate Slag Filter.

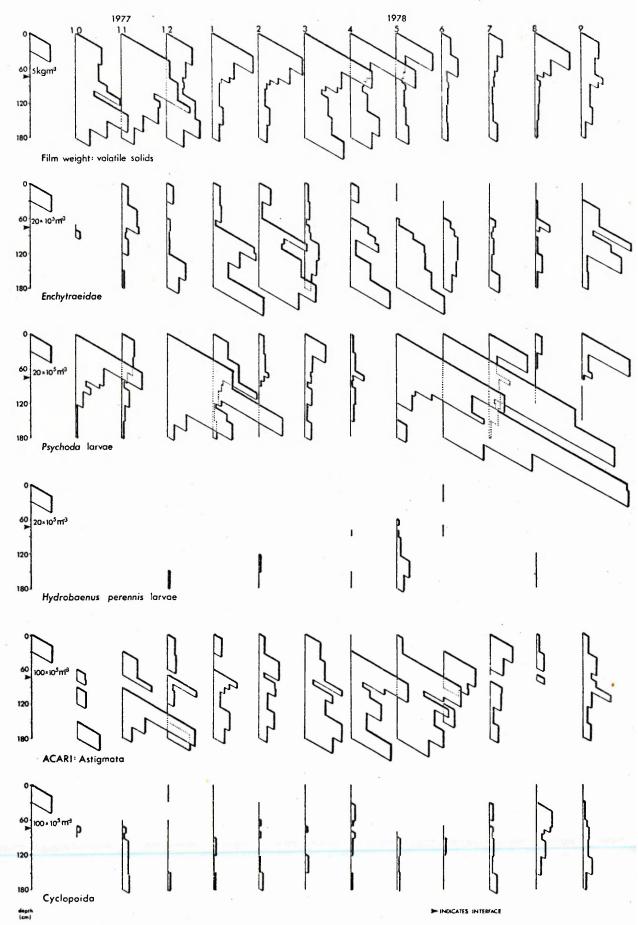


Figure: 5:28 Vertical Distribution of Film and Macrofauna, Low Rate Mixed Filter.

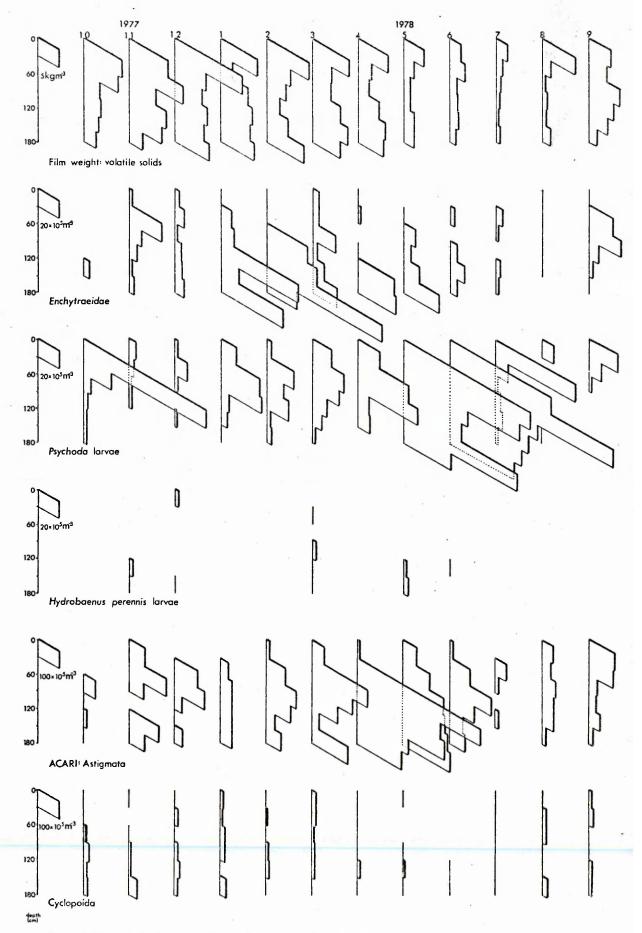


Figure: 5:29 Vertical Distribution of Film and Macrofauna, Low Rate Plastic Filter.

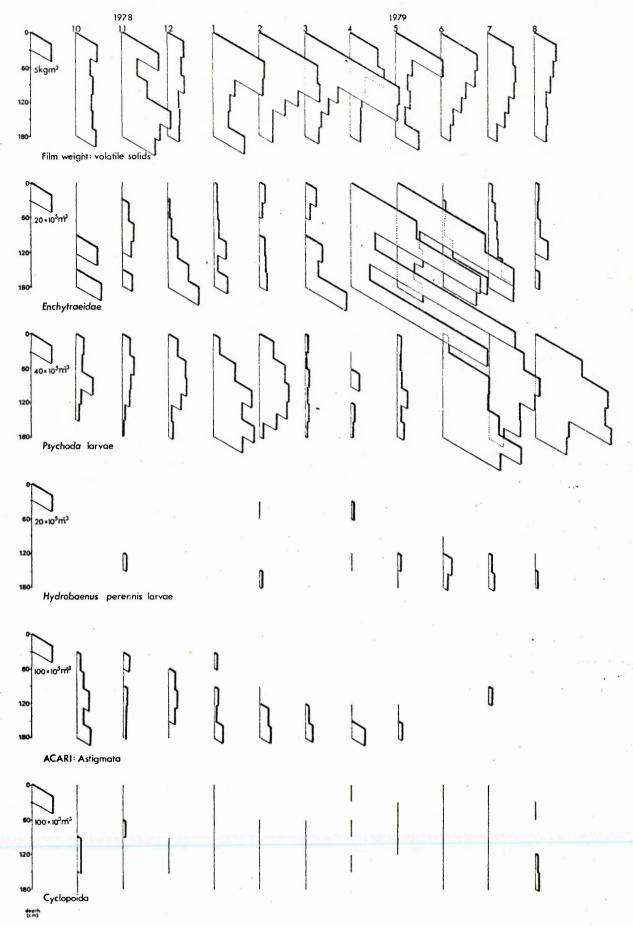


Figure: 5:30 Vertical Distribution of Film and Macrofauna, High Rate Slag Filter.

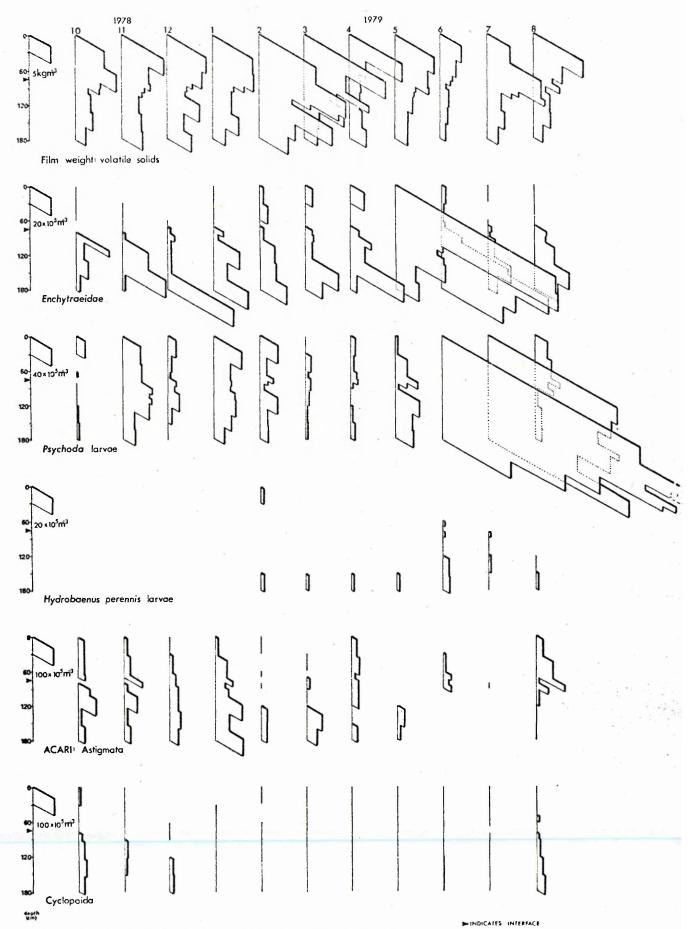


Figure: 5:31 Vertical Distribution of Film and Macrofauna, High Rate Mixed Filter.

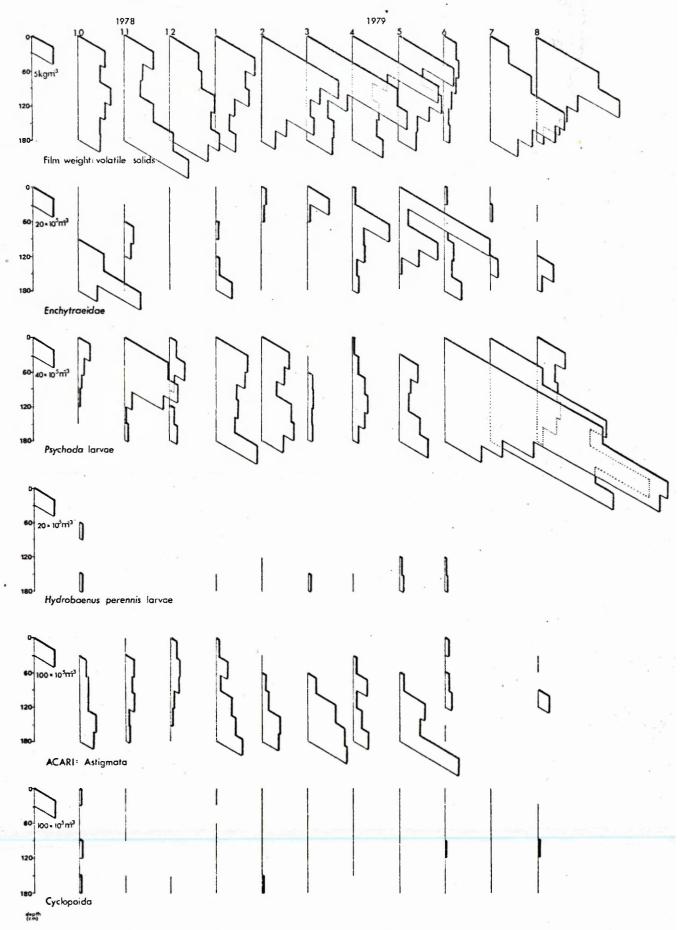


Figure: 5:32 Vertical Distribution of Film and Macrofauna, High Rate Plastic Filter.

Table 5.31: Correlations with the Psychodid larvae and various biological groups and environmental parameters

	SLAG	MIXED	PLASTIC
LOW RATE	Opercularia microdiscum(1+) Uronema niq- ricans (2+)	•	Ciliophora(3+) Paracyclops(1-) Effluent BOD (1+) Uronema nigri- cans (3+)
HIGH RATE	Subbaromyces splendens (2+) Nematoda (2-) Effluent BOD (1+) Opercularia microdiscum(1+)	Effluent BOD (3+) Uronema nigri- cans (3+)	Sphaerotilus natans (1-) Nematoda (2-) Organic Load (1+) Uronema nigri- cans (1+)
ALL LOADINGS	Ciliophora(2+) Nematoda (1-) Organic Load (2+) Effluent BOD (2+) Opercularia microdiscum(3+) Uronema nigri- cans (1+)	Organic Load (2+) Effluent BOD (2+)	Nematoda (1-) Organic Load (2+) Effluent BOD (3+) Uronema nigri- cans (1+)

number of larvae had generally diminished to very low numbers and were limited to the surface. But as mentioned previously, there is a time delay between film accumulation and the resulting increase in the grazing fauna, the length of which is dependent on the temperature. It may well be that the increase in the Psychoda population at various depths is in direct response to the film accumulated several months previously. Large numbers of adults were recorded within the filters with both species able to complete their life cycle within the filters. Therefore the principal restrictions

on population density were the availability of nutrients and space.

The restriction in the surface accumulation of Psychoda spp. was due partly to its sensitivity to the hydraulic flow (Tomlinson and Hall, 1950; Hawkes, 1955; Lumb and Eastwood, 1958). The effect of various distributors was studied by Hawkes (1959), and he found that splash plates produced an even distribution of sewage resulting in a large accumulation of film and a high density of Psychoda in the top 600 mm. By increasing the velocity of application, the Psychoda populations were reduced in the surface layers being forced below 600 mm. This resulted in more film in the top layer. Tomlinson and Hall (1950) found that the abundance of the Psychoda larvae decreased if the hydraulic load exceeded $3.6 \text{ m}^3\text{m}^{-3}\text{d}^{-1}$ even though the film was thick. In their experimental filters, Bruce and Merkens (1970) found that large numbers of Psychoda larvae were present in filters loaded at $6.00 \text{ m}^3\text{m}^{-3}\text{d}^{-1}$. This was probably due to the higher voidage as it has been shown that smaller media restricted the natural life cycle of the insects (Tomlinson and Stride, 1945; Hawkes and Jenkins, 1951, 1955). Although Psychoda spp. can reproduce within filters, they were unable to leave or re-enter the pilot filters as they were continuously loaded. Hawkes and Jenkins (1955, 1958) found that the effect of hydraulic load was enhanced by larger voidage as the flow between the medium was also greater. This however would not be the case in the random plastic medium, Flocor RC, because it effectively redistributes the sewage within the filter (Wheatley and Williams, 1976; Porter and Smith, 1979).

5.9.3.2 Anisopodidae

Hawkes (1965b) suggested that certain genera of flies, the larvae of which are relatively active at lower temperatures may control the film accumulation during these periods. However, in the present study the abundance of larvae of most of the species recorded, including <u>Sylvicola fenestralis</u>, were reduced during the periods of low temperature.

Sylvicola fenestralis was widely distributed in all the pilot filters, both the pupae and larvae being recorded in large numbers. The larvae were generally absent or at least recorded in low numbers from January to April in all the filters at both loadings. The number of larvae increased considerably however with the increase in loading rate, maximum population densities occurring during June and July. Hawkes (1952a) recorded a doubling of the Sylvicola sp. population when the loadings of his filters were increased from 0.2 to 0.32 kg BOD m^{-3} d 1. The pupae were found throughout the experimental period in nearly all the filters being present in minimum numbers during February and March and in maximum numbers from July to August. As with the larvae, there was a large increase in the total number of pupae found at the higher loading. Data from the fly counts (Table 5.32) shows that Sylvicola fenestralis like Psychoda severini was recorded generally during the colder months, and this suggests that the adults may live for periods up to several months

The larvae were generally found in largest numbers within the top 600 mm while the pupae reached maximum density between 300 - 900 mm. Sylvicola sp. appears unaffected by competition

with chironomid and psychodid larvae and was found throughout the filter. Tomlinson and Hall (1950) recorded that maximum densities always occurred in the top 600 mm irrespective of the organic or hydraulic loadings. Hawkes (1963), however, stated that the vertical distribution of the species could be altered by high instantaneous rates of sewage loadings although this is not supported by the present results. Hawkes (1952) found Sylvicola sp. abundance to be closely and directly related with film distribution; however the results from the pilot filters suggest an inverse correlation. It would seem that the amount of film is not an important factor determining the vertical distribution of this species. Sylvicola fenestralis is more successful in the plastic medium with the greatest number of larvae and pupae being recorded in the plastic filter. Each module of plastic medium has some of its surface area free from the film and often quite dry and this may be the reason why the pupae especially are found in comparatively large numbers in this filter. Sylvicola sp. requires a drier environment for successful pupation than that tolerated by the larvae (Hawkes, 1952), and this is thought to be the reason why the larvae are reported to migrate to drier areas in conventional plants (Learner, 1975b).

The adult <u>Sylvicola</u> has extremely large wings in comparison with other filter flies, and although quite powerful, it is unlikely that the flies could leave or enter the surface of filters which are continuously being sprayed with sewage.

Therefore, like <u>Psychoda spp.</u>, <u>Sylvicola fenestralis</u> is able to carry out its complete life cycle within the filter.

5.9.3.3 Chironomidae

Three chironomid species were recorded, <u>Hydrobaenus minimus</u>, <u>Hydrobaenus perennis</u> and <u>Metriocnemus hygropectricus</u>, all of which are widely distributed and commonly recorded from percolating filters.

The most successful of the three species was <u>Hydrobaenus</u> perennis, which is currently named <u>Chaetocladius</u> perennis
(Meigen) (Pinder, 1978), this being present in relatively
large numbers (Appendix II). The species was found in all
three filters mainly from February to August (Tables 5.27 to
5.29). <u>Hydrobaenus</u> perennis was only recorded in small numbers
in the plastic filter, the larvae being restricted to the
lower 600 mm depth. In the mixed and slag filters, however,
the population densities were much larger, although also restricted to the lower half of the filters (Figures 5.27 to
5.32), reaching maximum population densities during May to
June each year. It can be seen from the vertical distribution
graphs that <u>Hydrobaenus</u> perennis was indirectly related to
the psychodid larvae.

Lloyd <u>et al</u>. (1940) recorded that <u>Hydrobaenus perennis</u> larvae, when in pure culture, burrowed deep into the film to pupate. It is most likely that a) the maximum abundance of larvae at the base of the filters, b) the high numbers of larvae washed out in the final effluent in comparison $\omega_i + \omega_i$ other species and c) the scarcity of the pupae, were due to the downward migration of the larvae.

Metriocnemus hygropetricus was recorded at the low loading

but rarely in the high rate filters. At the lower rate, the maximum abundance occurred during October and November in all the filters, the largest population being restricted to the top 300 mm during summer and the lower 600 mm during the autumn. Chironomid larvae are generally only found in large numbers in lightly loaded filters (Tomlinson and Stride, 1945) when the film accumulation is thin (Terry, 1956; Hawkes and Shephard, 1972). The upward migration of Metriocnemus hygropetricus larvae prior to pupation is well-known (Dyson and Lloyd, 1936) which may account for the greatest numbers of larvae being found at the surface.

Hydrobaenus minimus, currently named Limnophyes minimus (Meigen) (Pinder, 1978), was also restricted to the lower loading and was most successful during the thinner film conditions. The larvae were found from May to October and the adults from May through to September in the mixed and plastic filters. Generally this species was found at all depths, although there was a relatively large build-up at the surface during August and September in the plastic filter.

The chironomid larvae were only found in small numbers and so would have only a minor role in the purification process in the pilot filters. The larvae are capable of successfully competing with the other macroinvertebrates of the filter in favourable conditions. Lloyd $\underline{\text{et al.}}$, (1940) reported that chironomid larvae were able to compete with psychodid larvae for the available food, reducing the population densities of Psychoda spp. at the surface of the filter, and causing the

extension of the species distribution deeper into the filter. In heavy film conditions the <u>Psychoda</u> and <u>Sylvicola</u> larvae are more able to cope than the larvae of the chironomid species, by utilising their respiratory siphons while buried in the thick layer of film. Both <u>Hydrobaenus minimus</u> and <u>Metriocnemus hygropetricus</u>, like <u>Psychoda severini</u>, have shorter life cycles than <u>Psychoda alternata</u> at the lower temperatures recorded in the filters. This may account for their relative success in the areas of the filters most affected by exposure to the air and so often relatively cold in comparison to the other areas of the filter.

5.9.3.4 Other dipteran species

Three other insect species were also recorded, Scatella silacea, Spathiophora hydromyzina and an unidentified leptoceran. All were found in low numbers, and so were comparatively unimportant in the overall energy flow within the filters. Scatella silacea was only recorded as pupae although the adults were quite abundant and were frequently recorded on the fly traps. The pupae were recorded in all three pilot filters at the lower loading rate during the summer and autumn, but at the higher loading they were restricted to the plastic filter from November to January (Tables 5.27 to 5.29). Adult Leptocea sp. and Spathiophora hydromyzina were frequently recorded on the fly traps and during fly counts, but only the pupae were recorded inside the filters. The leptoceran pupae were found in maximum numbers during the summer and autumn, being found generally in the top 600 mm of the filters, although they often extended throughout the filters. The pupae of Spathiophora hydromyzina were found in low numbers in the top of the filters during spring and in the bottom section during the summer. The pupae, which are comparatively large in size, may be washed downwards through the filters at high loadings and at times of low film accumulation.

5.9.3.5 Seasonal variation in fly populations

Table 5.32 summarises the periods of maximum abundance of the main filter flies recorded during the period June 1978 to September 1979. The period of maximum abundance coincides with the periods of peak emergence recorded by previous workers (Lloyd, 1945; Terry, 1951, 1952; Solbé et al., 1967). The maximum population of Sylvicola fenestralis occurred during June to July compared with April and May (Learner, 1975b). The distribution and emergence of all these species primarily depends on the temperature within the filter (Lloyd, 1945).

Flight and observed mating were generally restricted to the warmer months, although Sylvicola fenestralis and Hydrobaenus perennis were both recorded in flight during March in temperatures between 1.9 to 3.7°C. Threshold temperatures before flight occurs exist for all the species recorded in the pilot filters, and this and other factors affecting flight and mating have been reviewed by Learner (1975b).

Table 5.32: Summary of the data from the fly collections and fly traps

Species	Period of maximum abundance	Period when absent	Months when mating observed	Months when flight observed
Sylvicola fenestralis	June-July	November- February	June-July	June/July April/May
Scatella <u>silacea</u>	July-August	November-May		ylut
Psychoda alternata	June-July	December-April	July	June/July
Psychoda <u>severin</u> i	Jume September-October	August, December-March	October	June/July
Spathiophora hydromyzina	June	September-May	July	June/July
Hydrobaenus minimus	July-August	October-May	July	June-August
Hydrobaenus perennis	April-May July	August-February	May-July	March-July
Staphylinidae	May-July	September-May		May-August
T			A)

5.10 ARACHNIDA

The Class Arachnida is represented in percolating filters by the mites (Acari) and the spiders (Aranae). The present state of knowledge of this class in relation to waste water treatment has been reviewed by Baker (1975), in which he points out the general lack of information about the role of this group in the various purification processes. He also noted that no work has been carried out on either the seasonal incidence or spati al distribution of members of this class within percolating filters.

In the present investigation four species of Acari were recorded from all the pilot filters, three from the Order Astigmata which are slow moving invertebrates feeding on zoogloeal bacteria and other microorganisms found in the film; and one species from the Order Mesostigmata which is a quick moving mite feeding on the other macrofauna present including the Enchytraeidae and dipteran larvae. All four species Histiogaster carpio, Histiostoma feroniarum, Rhizoglyphus echinopus and the predatory Platyseius italicus have been recorded previously from percolating filters (Baker, 1961; Learner, 1975). The Astigmata were numerically dominant and found most frequently in the plastic filter at both loadings being found in the smallest numbers and least frequently in the slag filter (Table 5.33). The Astigmata were especially abundant in the drier areas of the medium.

The Astigmata were more successful during the lower loading rate, with the mean monthly population density falling by

Mean monthly population densities of the Astigmatid mites (expressed as total number of individuals per litre of medium). Table 5.33:

	DURATION	sla	slag filter	و	mix	mixed filter	er	pla	plastic filter	lter
LOADING	(months)	MEAN	тах	maximum	MFAN	max	maximum	MFAN	тах	maximum
			TOTAL	MONTH		TOTAL	TOTAL MONTH		TOTAL	MONTH
Low Loading	12	1750	3800	Мау	7063	18500 May	Мау	9596	32200	Apr
High Loading	11	968	2800	0ct	2309	7418	Jan	3586	0006	Mar
Both Loadings	23	1342			4789			6565		

between 48 to 67% after the laoding was increased to 3.37 $\,\mathrm{m}^3\mathrm{m}^{-3}\mathrm{d}^{-1}$. The maximum mean population density recorded for any month was 32,200 individuals per litre of medium in the plastic filter during April at the lower loading (Table 5.33).

Histiostoma feroniarum was by far the most abundant species of mite recorded, being found in all the filters throughout most of the 23 month experimental period when the fauna was studied, except during the high loading period when it was not recorded in either the slag or plastic filters from June to August, nor in the mixed filter during July. At the lower loading the species was found throughout the pilot filters (Figure 5.27 to 5.32), with maximum population densities recorded during April and May.

The Astigmata were able to respond quickly to increases in film accumulation in comparison with the other macrograzers.

Maximum population densities were recorded at least one month before the Psychoda larvae reached maximum numbers. Figures 5.27 to 5.32 clearly show that the abundance of the astigmatid mites was reduced by the presence of other macrograzers, in particular Psychoda. The mites were generally recorded in areas of moderate film accumulation and were not found during the periods of maximum abundance of psychodid larvae. The reproductive potential of the Astigmata and in particular Histiostoma feroniarum is far greater than that of the dipteran larvae (Learner, 1975b) or the Enchytraeidae (Learner, 1972). Huges (1961) found that Histiostoma feroniarum completed its life cycle within 2 to 4 days at 20 to 25°C, whereas Rhizoglyphus echinopus takes 9 - 13 days over a

similar temperature range.

Initially the

mites took advantage of the large accumulation of film due to their fast reproductive rate, but the enormous numbers of psychodid larvae forced the mites into other areas of the pilot filters or caused a reduction in the total population densities. Hawkes (1951) recorded interspecific competition between the various species of insect present in the filter and Baker (1975) suggests that such competition could also exist between the dominant grazers.

Minimum populations of astigmatids coincided with very low film accumulations usually during August, when large numbers of the mites were washed out of the filters. The increased loading reduced the total numbers of mites present and restricted them to the lower half of the filters.

Correlation analysis between the Astigmata and the other major biological groups and various environmental parameters is summarised in Table 5.34. The direct relationship between the astigmatids and the Sarcomastigophora is due to <u>Histostoma feroniarum</u> preferring the bacteria-rich layer of sewage which flows over the film and which is rich in flagellates.

Rhizoglyphus echinopus was also recorded in all three pilot filters being least abundant in the slag filter and not recorded in any of the filters during the colder months of January to March. Although <u>Histiogaster carpio</u> was commonly found in the pilot filter it was not recorded in the survey of percolating filters by Baker (1961), but has since been recorded by other workers (Solbé et al., 1967; Learner, 1975).

Table 5.34: Correlations between the Acari-Astigmata and various biological groups and environmental parameters

	SLAG	MIXED	PLASTIC
LOW RATE	Sarcomastigo- phora (1+) Paracyclops (1+)		Sarcomastigo- phora (2+)
HIGH RATE		Colpidium colpoda (2+) Chilodonella uncinata (3+)	Subbaromyces splendens(1-) Nematoda (2+)
BOTH LOADINGS	Zoogloeal bacteria (1-) Sphaerotilus natans (1-) Paracyclops (3+)		Subbaromyces splendens(1-) Sarcomastigo- phora (2+)

It was found throughout the year, reaching maximum population densities during the autumn.

<u>Platyseius</u> <u>italicus</u> has been shown to feed on a wide variety of invertebrates, but mainly on <u>Lumbricillus rivalis</u>, although it does not eat the cocoons (Baker, 1961). It was closely associated with the Enchytraeidae in the present investigation, often being found on the surface together in large numbers, a phenomenon previously reported by Tomlinson (1946).

The success of Histiostoma feroniarum and the other Astigmata in the pilot filters at the lower loading is due to the continuous distribution system which produced a fine spray of low velocity onto the surface of the filters, creating the ideal environment for the mites. Histiostoma feroniarum has been shown to prefer a high humidity but is less frequent in very wet areas receiving strong flows of sewage, being more abundant in those areas receiving a more gentle spray of sewage (Baker, 1975). Reynoldson (1948) has shown that Histiostoma feroniarum can tolerate strong sewages, so the reduction in population numbers recorded in the pilot filters at the higher loading (Table 5.33) is possibly due to either a) the high hydraulic loading or b) the greater interspecific competition from other grazers present.

The Araenae were not an important component of the present filters, being only occasionally recorded in low numbers.

The particular species found were not identified but it was noticed that they were restricted to the drier areas of the filters, and were especially abundant in the base of the

plastic filter and the top of the mixed filter. The spiders were more abundant in the plastic medium because of the dry areas associated with it (Section 2.4.2.). The commonest species was also recorded in the grass around the pilot filters and it is most likely that these spiders gained access to the filter by crawling either through the ventilation slits or by crawling up the side of the filters. The maximum numbers of spiders were recorded from August to December, a period when there would be a plentiful supply of adult flies within the filters.

Only one crustacean was recorded in the pilot filters, this was <u>Paracyclops fimbriatus-chiltoni</u>. Learner (1975) found this species in 18% of the filters he surveyed, occurring in maximum numbers of 619 individuals per litre of medium.

<u>Paracyclops</u> sp. are widely distributed and occur in a variety of habitats (Gurney, 1933).

The species was found throughout the two loading periods in all filters, reaching its greatest population density in the slag filter at the lower loading, and in the mixed filter during the higher loading (Table 5.35). It is shown in Figures 5.27 to 5.32 that Paracyclops sp. was more successful in the slag medium and this is reflected in the mean abundance figures given in Table 5.35. Paracyclops sp. was prone to being washed out in the final effluent throughout the year reaching a maximum during the spring sloughing period.

The vertical distribution graphs (Figures 5.27 to 5.32) indicate that the cyclopoids were most abundant in moderate film conditions, and it appears that the species was restricted by the increase in the numbers of psychodid larvae and mites. Although at the lower loading the species was found through the filters reaching maximum abundance below 900 mm, and also in the slag portion of the mixed filter. Maximum population densities occurred from July to September. This species was restricted to even lower depths in the filters at the higher loading, with minimum abundance occurring during the spring and summer.

Mean monthly population density of Paracyclops fimbriatus-chiltoni (expressed as total number of individuals per litre of medium) Table 5.35:

LOADING	DURATION (months)	SLAG	SLAG FILTER		MIX	MIXED FILTER	ER	PLAS	PLASTIC FILTER	TER
		MFAN	MAXIMUM	MUM	MFAN	MAX	MAXIMUM	MFAN	MAXIMUM	MUM
		i	TOTAL	TOTAL MONTH	i	TOTAL	TOTAL MONTH		TOTAL	TOTAL MONTH
Low Loading	12	880	2187	Aug	830	2987	Aug	609	1147	Jan
High Loading	E	112	400	Oct	622	4267	0ct	56	267	Oct
Both Loadings	23	513	L	X	731			345		

The correlations of <u>Paracyclops</u> sp. with the other animal groups and important environmental parameters is summarised in Table 5.36. The analysis does not directly indicate the species is tolerant of heavy organic loadings, as noted by Learner (1975), although its association with <u>Paramecium aurelia</u> in the plastic filter, and <u>Subbaromyces splendens</u> and <u>Sphaerotilus natans</u> in the slag and mixed filters must indicate a degree of tolerance to large film accumulations associated in turn with heavy organic load. The species is indirectly related to the <u>Psychoda</u> larvae, which reflects the overall disruptive effect the psychodid larvae have on the film.

Table 5.36: Correlations between Paracyclops fimbriatus-chiltoni and various biological groups and environmental parameters

	SLAG	MIXED	PLASTIC
LOW RATE	Film weight(1-) Subbaromyces splendens (2+) Acari-Astigmata (1+) Temperature(1+)	Subbaromyces splendens(l+)	Film weight(2+) Paramecium aurelia (1+) Uronema nigri- cans (2-) Psychodid lar- vae (1-)
HIGH RATE	Ciliophora (2+)	Sphaerotilus natans (3+)	Paramecium aurelia (2+)
BOTH LOADINGS	Zoogloeal bacteria (1-) Subbaromyces splendens (2+) Acari-Astigmata (3+) Sphaerotilus natans (1-)		Zoogloeal bac- teria (1-) <u>Paramecium</u> <u>aurelia</u> (1+) Organic Load (1-)

5.12 PERIODIC INVERTEBRATE VISITORS

Although several of the insect species and also the spiders could be classified as occasional visitors, the centipedes and slugs were regularly recorded making foraging expeditions into the filters, gaining entrance through the base or climbing up the walls.

5.12.1 CHILOPODA

A common visitor to the pilot filters was the centipede Lithobius forficatus (Tables 5.27 to 5.29). It was found in comparatively low numbers, usually less than 8 individuals per litre of medium, in the top 300 mm of all the filters at both loadings from March to May and again during October and November. Previously recorded by Baker (1942), it is an opportunist feeder moving rapidly through the medium.

5.12.2 GASTROPODA

The presence of molluscs in percolating filters has been reviewed by Learner (1975c), in which he notes that slugs, in particular Agriolimax reticulatus, have only occasionally been recorded in percolating filters. Agriolimax reticulatus was regularly recorded in the pilot filters, normally confined to the surface of the mixed and plastic filters although found at various depths up to 1200 mm in the plastic filter. This species was never recorded in the slag filter, and it

is possible that the plastic medium, with the larger voidage, allowed greater access inside the filter. The species is terrestrial in origin, and so the plastic medium provided a slightly drier habitat than the slag medium. The species was absent from the plastic and mixed filters from February to August, being present in the filters for the rest of the year, reaching maximum population densities during October.

It seems apparent that most of the visiting species to the filters, overwintered in the relatively warm environment of the filters which is rich in food, until the spring when they were commonly recorded on the ground in the vicinity of the pilot plant.

6.1 INTRODUCTION

In the simplest terms, the performance of a percolating filter (i.e. its purification efficiency) is determined by the amount of active film, and the contact time between the active film and the influent sewage as it passes through the filter. This equilibrium is affected by changes in the composition and volume of the influent as well as by changes in environmental variables such as temperature and ventilation. Once the microfauna comprising the film has become established on the available surface area of the medium, then the performance will be regulated by the metabolic activity of the film and its capacity to adsorb and absorb the organic material present.

In this Chapter, the main chemical performance data from the three pilot filters are compared over the three different loading periods. Film accumulations, temperature of the filters and their retention times, all of which directly affect the efficiency of the filters, are discussed and their influence on the efficiency of performance examined. The chemical data is given in full in Appendix III, and a detailed correlation analysis is given in Appendix VII.

Initially, the pilot filters were matured for a period of three months at the very high loading rate of $5.72~\text{m}^3\text{m}^{-3}\text{d}^{-1}$ (0.85 kg BOD m⁻³d⁻¹). This was followed by the two main loadings during which biological samples were also taken. The first loading of $1.68~\text{m}^3\text{m}^{-3}\text{d}^{-1}$ (0.28 kg BOD m⁻³d⁻¹) for twelve months, which in fact covered thirteen sampling months, and the second loading of $3.37~\text{m}^3\text{m}^{-3}\text{d}^{-1}$ (0.63 kg BOD m⁻³d⁻¹)

for twelve months, again an experimental period of thirteen months.

6.2.1 BIOCHEMICAL OXYGEN DEMAND

At the lower loading (1.68 m³m⁻³d⁻¹), all three filters produced final effluents of similar quality, with the plastic filter producing the worst final effluent of 22.5 mgl⁻¹, and also the widest range of values (Table 6.1). The mean effluent quality of the filters for the year at the lower loading are shown to be similar in Figure 6.1, with the 95% confidence limits for all three filters overlapping. The smaller confidence limits indicate that the slag filter was producing a more consistent final effluent quality at both loadings, compared with the other filters.

At the higher loading of 0.628 kg BOD m $^{-3}$ d $^{-1}$, the mean percentage removal remained similar in all three filters, although the effect of increasing the load was reflected in the poorer final effluent quality and the larger maximum BOD concentrations. Table 6.2 indicates that the increase in loading did not affect the percentage removal of BOD in either the mixed or plastic filters, although the slag filter suffered a significant reduction in removal efficiency of 5.2%. The difference between the removal efficiencies of the slag and mixed filters was found to be significantly different (P<0.01) at the higher loading. The final effluent quality of all three pilot filters decreased at the higher loading with the slag producing the worst mean final effluent at 33.1 mgl $^{-1}$, an overall decrease in quality of 63.8% compared with the previous year. Although

Table 6.1: Summary of the mean biochemical oxygen demand of the final effluents of the pilot filters loaded at 1.68 $\rm m^3m^{-3}d^{-1}$ (0.28 kg BOD $\rm m^{-3}d^{-1}$) over the thirteen months sampled.

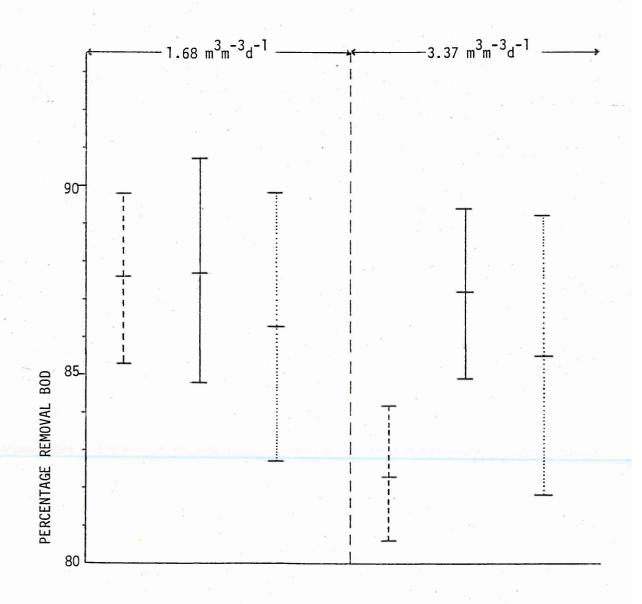

		SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Effluent Quality (mgl)	Mean Minimum Maximum Range 95% C.L.	20.2 9.6 48.4 38.0 6.6 40	20.5 6.0 53.0 47.0 7.9 40	22.5 6.1 61.9 55.8 8.5 40
Percentage Removal (%)	Mean Minimum Maximum Range 95% C.L.	87.6 81.2 93.4 12.2 2.3 40	87.7 77.4 94.1 16.7 3.0 40	86.3° 75.4 93.1 17.7 3.6 40

Table 6.2: Summary of the mean biochemical oxygen demand of the final effluents of the pilot filters loaded at $3.37~\text{m}^3\text{m}^{-3}\text{d}^{-1}(0.63~\text{kg BOD m}^{-3}\text{d}^{-1})$ over the thirteen months sampled.

		SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Effluent Quality (mgl ⁻¹)	Mean Minimum Maximum Range 95% C.L.	33.1 9.8 50.3 40.5 8.2 35	25.0 7.5 50.7 43.2 8.3 35	27.1 8.7 59.8 51.1 9.1 35
Percentage Removal (%)	Mean Minimum Maximum Range 95% C.L.	82.4 76.6 89.1 12.5 1.8 35	87.2 75.0 93.4 18.4 2.3 35	85.5 70.7 94.4 23.7 3.7 35

Figure 6.1: Mean BOD removals, including 95% confidence limits for the pilot filters at 1.68 and $3.37~\mathrm{m}^3\mathrm{m}^{-3}\mathrm{d}^{-1}$.

the ranges of monthly mean BOD concentrations in the final effluents were not very different from those recorded at the lower loading, a significant difference between the mixed and slag filters was recorded, and is reflected by the greater separation of the confidence limits (Figure 6.1).

Although only tentative conclusions can be drawn from the results recorded during the very high loading period at 5.72 $\,\mathrm{m}^3\mathrm{m}^{-3}\mathrm{d}^{-1}$, during the maturation of the filters; the percentage removal of BOD in both the slag and plastic filters were clearly restricted, producing final effluents containing 33.7 and 32.0 $\,\mathrm{mgl}^{-1}$ BOD respectively (Table 6.3). The mixed filter achieved the greatest removal efficiency of 74.5% for the period, a mean final effluent of 26.3 $\,\mathrm{mgl}^{-1}$ which was significantly better (P < 0.1) than that achieved by the slag filter.

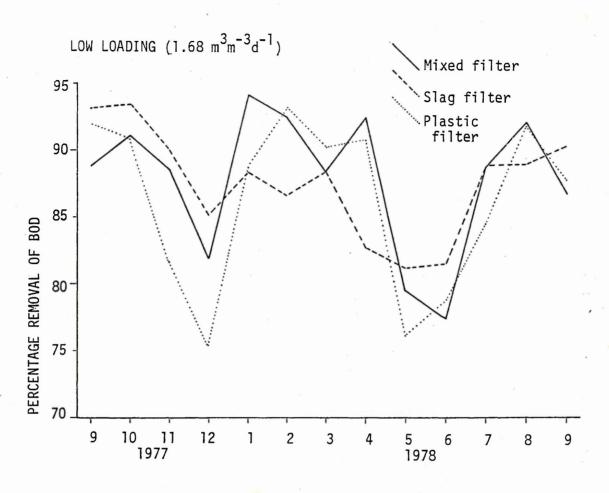
Table 6.4 summarises the rate of removal of BOD from each filter over the three loading periods. A doubling of the hydraulic loading to 3.37 $\rm m^3 m^{-3} d^{-1}$ resulted in a similar increase in the rate of removal of BOD in all three filters, the mixed filter removing on average about 0.03 kg BOD $\rm m^{-3} d^{-1}$ more than the slag filter. At the very high loading period of 5.72 $\rm m^3 m^{-3} d^{-1}$, the rates of removal increased in all the filters, with the mixed filter achieving the greatest removal at 0.64 kg BOD $\rm m^{-3} d^{-1}$. Although the rate of BOD removal increased with organic load, only the more easily removable BOD fraction was being removed. This left the more difficult fraction untreated due to the relatively short retention time and the possible restriction of autotrophic bacteria at

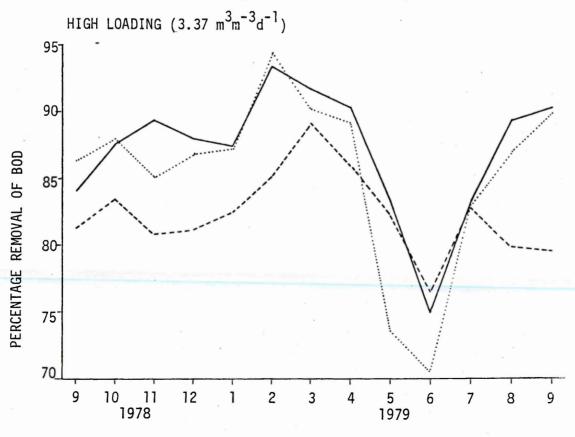
Summary of the mean performance of all three pilot filters at the various loadings Table 6.3:

Hydraulic loading	1.68	1.68 m ³ m ⁻³ d ⁻¹	_	3.37	3.37 m ³ m ⁻³ d ⁻	F	5.72	5.72 m ³ m ⁻³ d ⁻¹	-	
6										\neg
Duration of loading	13	13 months		13	13 months		3	3 months*		
Filter	SLAG	MIXED	PLASTIC	SLAG	MIXED	PLASTIC	SLAG	MIXED	PLASTIC	
Organic Load (kg BOD m ⁻³ d ⁻¹)	0.280			0.628		,	0.854			
Effluent BOD (mgl ⁻¹)	20.20	20.53	22.54	33.09	25.03	27.12	33.70	26.25	32.00	
Percentage Removal BOD	87.58	87.73	86.26	82.36	87.18	85.50	68.00	74.50	68.60	
Suspended solids load	0.201			0.417			0.743			-
$(kg m^{-3}d^{-1})$										
Effluent s/s (mgl ⁻¹)	24.73	24.72	27.53	31.08	26.32	28.79	71.00	39.50	27.00	
Percentage Removal s/s	77.82	77.67	75.66	72.20	77.00	78.30	41.60	60.10	66.40	
Ammonia load (kg m ⁻³ d ⁻])	0.054			0.075			0.114			
Effluent ammonia (mgl ⁻¹)	14.71	17.80	20.73	17.98	15.75	19.09	16.90	16.60	16.70	
Percentage Removal NH3	52.81	44.97	34.86	21.08	32.42	17.75	7.75	8.45	8.2	
Total Oxidised Nitrogen (mgl ⁻¹)	14.32	12.09	9.03	6.19	6.95	4.30	1.05	1.15	0.75	
Effluent temperature (^O C)	8.97	8.78	8.94	10.86	10.64	11.09	ı	1	ı	
										Ī

*These results were collected over a shorter period during maturation of the filters, and so are not directly comparable to the results collected during the other loadings

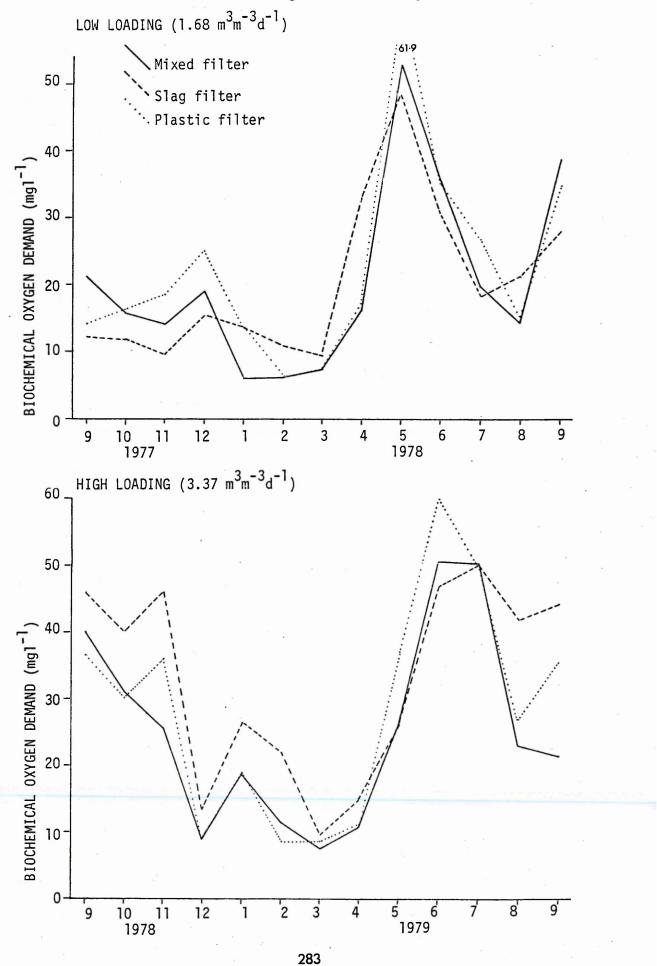
Table 6.4: Rates of removal of biological oxygen demand


Hydraulic loading	Organic loading	Rate	of remov (kg BOD m	al of BOD -3 _d -1 ₎	
$(m^3m^{-3}d^{-1})$	$(\text{kg BOD m}^{-3}\text{d}^{-1})$	SLAG FILTER	MIXED FILTER	PLASTIC FILTER	
1.68	0.28	0.25	0.25	0.24	_
3.37	0.63	0.52	0.55	0.54	
5.72	0.85	0.58	0.64	0.59	


the higher loading rates, which resulted in an overall decline in the final effluent quality.

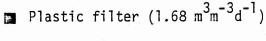
Seasonal variations in BOD removal and in the BOD concentration of the final effluent are shown in Figures 6.2 and 6.3 respectively. The seasonal patterns recorded from all the filters were similar at both the main loadings, with maximum removal occurring during periods of maximum rate of film accumulation. The plastic filter achieved maximum removal efficiencies immediately after the film had sloughed. The other filters, unable to increase film accumulation at the same rate, produced poorer final effluents during this period. There were also fewer grazers in the plastic filter during the higher loading to reduce the overall level of film accumulation. Surprisingly, the plastic filter was the least effective of the pilot filters in dealing with heavy organic loads, especially during the higher loading. The period of disruption, caused by the unloading of the film during the spring sloughing, was as prolonged in the plastic filter as in the other two, although it was thought that one of the advantages of the large voidage was that it encouraged the unloading of the film to proceed quickly (Howell and Atkinson, 1976).

At the lower loading, the slag and plastic filters produced final effluents with a mean BOD concentration of 20 mgl⁻¹ or less for seven months out of a total of thirteen sampled, compared with nine months in the mixed filter. At the higher loading, the slag filter only produced a final effluent conforming to the Royal Commission Standard for three months out of thirteen sampled, compared with five months for the

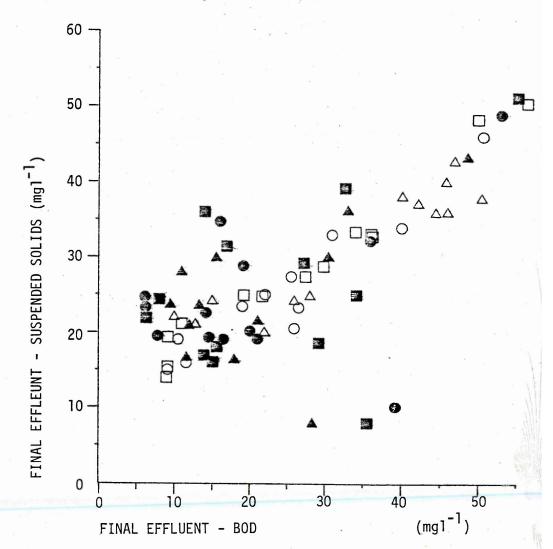

Figure 6.2: Seasonal variation in the mean removal of BOD from the final effluent during the two loadings of 1.68 and 3.37 $\rm m^3m^{-3}d^{-1}$.

282

Figure 6.3: Seasonal variation in the mean BOD of the final effluent during the two loadings of 1.68 and 3.37 m 3 m $^{-3}$ d $^{-1}$.


plastic and mixed filters. If the minimum BOD concentration limit was increased to 40 mgl⁻¹ then the slag filter would have failed to achieve the new limit six months out of the year compared with only two months in the mixed and plastic filters. It must be noted however that when the BOD in the final effluent of the slag filter was in excess of 40 mgl⁻¹, the influent was always in excess of 200 mgl⁻¹.

Comparing the efficiency of the filters from month to month at the higher loading (Figure 6.3), the mixed filter produced the best final effluent for eleven months out of the possible thirteen months studied. The failure of the mixed filter during those two months to produce a better effluent than the slag filter was due to the greater amount of film being unloaded from the mixed filter at this time.


Generally, minimum BOD removal occurred at the same time as maximum accumulation of film and maximum population density of the grazing fauna. The disruption of the film by the grazers and the resultant increase in solids, accounted for the deterioration of final effluent quality. The unstable film conditions limited the rate of adsorption of the suspended material from the influent sewage and its subsequent degradation. The close correlation between final effluent BOD and suspended solids concentrations, seen during both loadings, proves that a reduction in the adsorption of solids resulted in an overall increase in the BOD (Figure 6.4; Appendix VII).

A clear relationship is apparent between the percentage

Figure 6.4: Scatter diagram showing relationship between BOD and suspended solids concentration in the final effluents of all three pilot filters at both main loadings.

- \square Plastic filter (3.37 m³m⁻³d⁻¹)
- Mixed filter (1.68 m 3 m $^{-3}$ d $^{-1}$)
- \bigcirc Mixed filter (3.37 m³m⁻³d⁻¹)
- \triangle Slag filter (1.68 m³m⁻³d⁻¹)
- \triangle Slag filter (3.37 m³m⁻³d⁻¹)

removal of BOD at the various depths (Table 6.5) and the vertical distribution of the film (Figures 6.11 and 6.12). Large removals of BOD were associated with a relatively thin active film. This association continued until the film became so thick that it began to restrict the flow of sewage through the filter. This resulted in a shorter retention time due to channelling, and a subsequent decrease in removal efficiency.

During the low loading, most of the BOD in the influent was removed in the top 300 mm of the filters (Table 6.5a), with the plastic medium achieving slightly better removal efficiencies. In all the pilot filters, the percentage removal of BOD decreased with the depth. About three-quarters of all the available BOD was removed in the top 900 mm of the filters, with the slag removing 74.5% and the mixed and plastic filters both removing 79.5% of the influent BOD. Only at depths below 900 mm was no removal recorded at all.

At the higher loading the filters behaved more individually. The BOD removal efficiency of the top 300 mm of the slag filter decreased by 27.97% compared with the lower loading and maximum removal now occurred lower down the filter (Table 6.5b). In the mixed and plastic filters, maximum removals still took place in the top 300 mm, although the efficiencies were reduced slightly. There was a decrease in the overall removal efficiency of the top 900 mm to 61.73% in the slag, 65.71% in the mixed and 67.13% in the plastic filters. The 900 - 1500 mm section of all the filters was able to remove small weights of BOD, and in the mixed and plastic filters the mean removal efficiency of this section was approximately double what it

Table 6.5a: The percentage removal of the total BOD, in relation to depth, at low loading

Sec. Sec. Se	TS	SLAG FILT	ER		MI	MIXED FILTER	TER		PL	PLASTIC FILTER	ILTER	
Depth in mm	300	300-	900-	1500-	300	300- 900	900- 1500	1500- 1800	300	300- 900	900- 1500	1500- 1800
Low Loading 1.68 m3m-3d-1		at .				-						
Nov. 77 Dec. 77 Jan. 78 Feb. 78 Mar. 78 Apr. 78 Jun. 78 Jul. 78 Aug. 78 Sep. 78	69.6 30.0 20.6 32.7 40.8 - 59.0 38.8 58.6 73.1	16.4 17.1 61.6 21.6 33.8 27.9 37.3 25.7	5.7 27.5 12.2 45.6 13.3 - 0.0 0.0 3.7	5.9 4.3 0.0 6.5 7.2 7.5 1.9	58.9 26.9 40.0 43.7 53.2 62.0 34.4 68.1	32.5 46.1 46.1 19.4 19.3 50.3 6.8	29.7 0.0 0.0 22.5 14.4 0.6 3.0 12.3	0.0.840 0.4.0.0	63.1 30.0 47.5 66.9 58.7 - 56.9 68.3 45.7	26.0 27.1 45.4 31.9 22.5 - 24.6 0.4 27.1 37.9	0.0 3.7 3.7 3.4 6.9 6.9 19.0	8.00.98 8.00.98 1.00.98
Mean S.D.	46.74	27.76	12.59	4.91	49.28	30.22	8.89	2.14	52.48	27.02	7.95	2.65

Table 6.5b: The percentage removal of the total BOD, in relation to depth, at high loading

MIXED FILTER PLASTIC FILTER	0- 0- 300- 900- 1500- 0- 300- 900- 1500- 1500- 0 300 900 1500 1800		43.0 14.6 12.0 8.5 28.6 36.4 0.0 19	0 54.2 13.6 9.6 8.8 35.7 46.9 0.0 12.8	38.4 25.7 18.8 5.8 36.5 32.1 15.5 0	59.9 11.9 7.8 2.1 38.7 2.9 33.8 0	24.2 19.8 46.5 0.0 29.3 31.5 27.3 1	61.1 14.0 17.1 0.0 51.4 25.2 12.2 4	48.0 24.6 6.4 8.7 24.2 33.2 29.1 0	73.9 12.1 6.3 3.0 75.3 0.0 13.2 3	50.0 0.0 40.9 1.2 56.9 11.3 0.0 0	4.5 57.4 9.8 0.0 41.5 10.4 19.3 0	47.0 25.3 12.1 1.5 47.4 41.9 0.0 13	33.4 39.8 15.6 4.2 33.6 42.9 16.7 0	33.3 24.5 35.3 0.0 41.8 17.1 30.4 2	16 43.92 21.79 18.32 3.37 41.61 25.52 15.19 4.50	57 17.83 14.39 13.62 3.49 13.71 15.68 12.49 6.48
	1500- 1800		8.5	8.8	5.8	2.1	0.0	0.0	8.7	3.0	1.2	0.0	-5.	4.2	0.0	•	•
FILTER	900-		12.0	9.6	18.8	7.8	46.5	17.1	6.4	6.3	40.9	8.6	12.1	15.6	35.3	18.32	
MIXED	300- 900				•		•					•	•		•	21.79	
	300		43.0	54.2	38.4	59.9	24.2	61.1	48.0	73.9	50.0	4.5	47.0	33.4	33.3		17
	1500- 1800	1	0.0	0.0	3.6	0.7	0.0	0.0	0.0	0.3	1.7	0.0	1.2	4.2	3.4	1.16	1.57
ILTER	900-		28.6	9.6	29.0	54.2	38.3	10.1	29.7	11.0	16.5	10.5	17.8	9,3	21.6	22.02	13.57
SLAG F	300-		15.9	43.3	11.6	10.6	42.1	39.8	36.4	19.8	44.8		26.2		•	33.76	14.92
	300		36.9	32.0	40.0	2.1	10.4	45.3	19.4	60.4	26.5	20.0	42.8	17.5	10.2	27.97	16.72
	Depth in mm	Loading m ³ m-3 _d -1		Oct. 78			Jan. 79				May. 79		Jul. 79		Sep. 79	Mean	
	1 1																S.D

had been at the lower loading. Therefore at the higher loading rate the depth to which the heterotrophic bacteria were found was extended to 1500 mm (Section 6.2.3). In the lowest 300 mm of the filters (1500 - 1800 mm) there was a very low mean removal efficiency, often falling to zero during the colder months of September to April.

An alternating pattern of film accumulation and maximum removal efficiency was discernible between the top and lower 300 mm of the filters (Figure 6.12). Initially the top half of the filters became heavily loaded with film, and the BOD and suspended solids removal dropped, increasing the organic load to the lower 900 mm. Film growth subsequently increased at the lower depth followed by an increase in removal efficiency. But as the film in the top half was removed by grazers, the area of maximum film growth and removal efficiency reverted back to the top half of the filters.

6.2.2 SUSPENDED SOLIDS

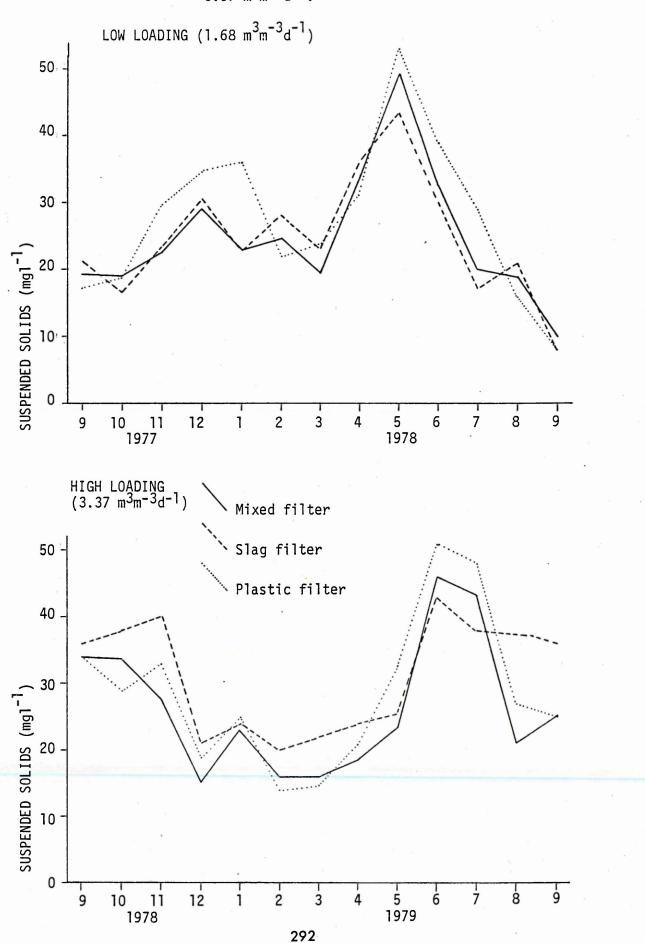
The mean removal efficiency of suspended solids increased in the plastic filter from 75.66 to 78.30% following the increase in loading from 1.68 to $3.37 \, \mathrm{m}^3 \mathrm{m}^{-3} \mathrm{d}^{-1}$. At the lower loading, the mixed and slag filters produced final effluents with similar mean concentrations and percentage removals of suspended solids (Table 6.6). The increase in loading rate caused only a slight reduction in the removal efficiency of the mixed filter, but a significant decrease of 5.6% in the slag filter

Table 6.6: Summary of the mean suspended solids concentration of the final effluents of the pilot filters loaded at 1.68 m 3 m $^{-3}$ d $^{-1}$ (0.28 kg BOD m $^{-3}$ d $^{-1}$) over the thirteen months sampled.

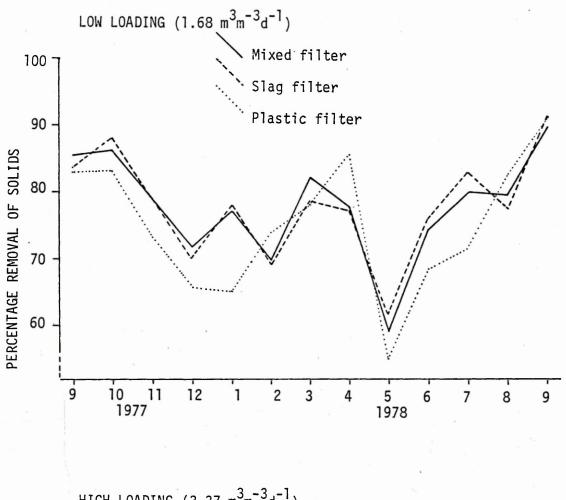
	4	SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Effluent	Mean	24.7	24.7	27.5
Quality	Minimum	8.0	10.0	8.0
(mgl ⁻¹)	Maximum	43.5	49.0	53.0
	Range	35.5	39.0	45.0
	95% C.L.	5.2	5.5	6.7
	n	42	. 42	42
Percentage	Mean	77.8	77.6	. 75.7
Removal	Minimum	61.8	58.8	55.0
(%)	Maximum	91.4	89.4	91.4
	Range	29.6	30.6	36.4
	95% C.L.	4.5	4.5	6.0
	n	42	42	42

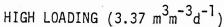
Table 6.7: Summary of the mean suspended solids concentration of the final effluents of the pilot filters loaded at 3.37 m 3 m 3 d $^{-1}$ (0.63 kg BOD m 3 d $^{-1}$) over the thirteen months sampled.

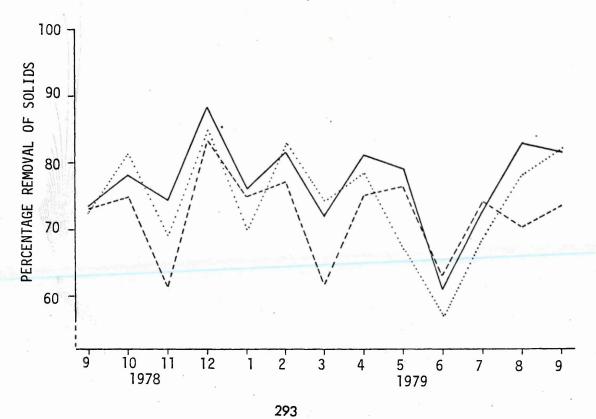
		SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Effluent	Mean	31.1	26.3	28.8
Quality	Minimum	20.0	15.0	14.0
$(mg1^{-1})$	Maximum	42.7	46.0	51.3
	Range	22.7	31.0	37.3
,	95% C.L.	4.8	5.7	6.39
	n	37	37	37
Percentage	Mean	72.2	77.0	78.3
Remova1	Minimum	60.9	60.9	57.0
(%)	Maximum	83.6	88.2	84.7
	Range	22.7	27.3	27.7
	95% C.L.	3.4	3.9	4.5
	n	37	37	37


(Table 6.7). The final effluents of the filters were generally worse than previously recorded at the lower loading with the mixed and plastic filters producing a mean final effluent within the Royal Commission Standard of 30 mgl $^{-1}$ at 26.3 and 28.8 mgl $^{-1}$ respectively, and the slag filter producing a mean final effluent of 31.1 mgl $^{-1}$. The t-test analysis showed that the percentage removal of suspended solids in the mixed and slag filters, was significantly different (P < 0.1) at the higher loading of 3.37 m 3 m $^{-3}$ d $^{-1}$.

During the maturation period when the filters were loaded at $5.72 \text{ m}^3\text{m}^{-3}\text{d}^{-1}$, the slag filter was unable to produce a satisfactory effluent, achieving only 41.6% removal compared with 60.1% in the mixed and 66.4% in the plastic filters, which were producing final effluents of 39.5 and 27.0 mgl⁻¹ of suspended solids respectively.


The seasonal variation in the final effluent quality (Figure 6.5) of the three filters followed similar patterns at both loadings, while removal efficiency of suspended solids was observed to be far more unpredictable (Figure 6.6).


On a month to month basis (Figure 6.5; Table 6.7), the mixed filter produced a final effluent of less than 30 mgl⁻¹ of suspended solids for nine months during each of the main loadings. This compares with seven (low) and eight (high) months, and eight and six months for the plastic and slag filters respectively. At the higher loading the mixed filter produced a better mean monthly final effluent than the slag filter in terms of suspended solids for eleven out of the


Figure 6.5: Seasonal variation in mean suspended solids of the final effluent during the two loadings of 1.68 and $3.37~\text{m}^3\text{m}^{-3}\text{d}^{-1}$.

Seasonal variation in the mean removal of suspended solids from the final effluent during the two loadings of 1.68 and 3.37 $\rm m^3 m^{-3} d^{-1}$. Figure 6.6:

thirteen months sampled compared with only eight months at the lower loading. As discussed in Section 6.2.1, the periods of poor performance in the mixed filter coincided with increased grazing activity and subsequent unloading of the film. The plastic filter as was the case with the BOD removal efficiency, produced the best final effluents during the months immediately after sloughing owing to the greater rate of film development.

At the lower rate of loading, the percentage removal of suspended solids decreased with depth (Table 6.8a). The percentage removal in the top 300 mm was generally very similar to the removal achieved in the next 600 mm resulting in overall removals in the top 900 mm of 61.8% in the slag, 60.7% in the mixed and 62.9% in the plastic filters. Maximum removal occurred where growth was most active, but decreased as the film reached maximum accumulation and then decreased to very low values as the film slowly disintegrated and washed out in the final effluent of the filters. The lowest section of the filters, 1500 - 1800 mm, had the lowest removal efficiencies compared with the other depths, especially during the spring unloading period. With the increase in loading, the removal of suspended solids increased in the top 300 mm causing greater accumulations of film to occur in this region, especially in the plastic filter. Correspondingly fewer suspended solids were removed by the remaining portion of the filters. The greatest removal still took place in the top 900 mm and the percentage removal of suspended solids increased in all the filters when the loading was increased. When the surface of the filters suffered from slight ponding, channelling of the sewage through the surface layers of the medium occurred,

The percentage removal of the total suspended solids in relation to depth, at low loading Table 6.8a:

		SLAG FIL	TER		Σ	MIXED FILTER	TER		PL	PLASTIC F	FILTER	
Depth in mm	300	300 - 900	900-	1500-	300	300-	900- 1500	1500- 1800	300	300- 900	900- 1500	1500- 1800
Low Loading 1.68 m ³ m ⁻³ d ⁻¹					,	-				r r		
Nov. 77 Dec. 77	24.4	33.7	16.3	7.0	27.9	41.9	6.9	0.0	18.6	3 4. 9 34.7	11.6	14.0 12.3
Jan. 78 Feb. 78	13.0	55.5 36.4	13.0	0.0	30.0	53.3 68.2	0.0	0.0	20.2 45.5	50.0 31.8	11.1	0.0 13.6
	52.3	23.1	9.2	0.0	50.8	20.0	15.4	0.0	47.7	12.3	15.4	3.1
	50.0	0.0	12.5	2.5	5.0	20.0	47.5	0.0	20.0	32.5	0.0	7.5
	0.0	60.0	12.0	2.0	22.0	28.0	2.0	20.0	32.0	26.0	12.0	0.0
	58.5	14.7	0.0	19.5	51.2	22.0	14.6	0.0	39.0	39.1	5.7	0.0
- 1	y.15	30.2	۲.9	α . 2	0.00	4.6	α, α,	7.01	6.76	0.4	/.01	0.0
Mean	31.1	30.69	16.92	4.91	30.95	29.80	14.67	3.55	31.93	30.11	8.54	5.90
S.D.	19.16	18.12	16.09	6.35	21.50	19.15	14.04	91.9	15.85	11.17	6.47	5.98
										1		

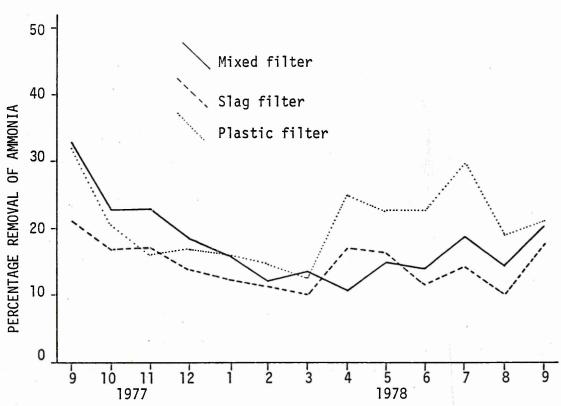
Table 6.8b: The percentage removal of the total suspended solids in relation to depth at high loading

		SLAG FIL	TER.		Σ	MIXED FILTER	TER		Ь	PLASTIC FILTER	FILTER	
Depth in mm	300	300-	900	1500-	300	300-	900- 1500	1500- 1800	300	300- 900	900-	1500- 1800
High Loading 3.37m3m-3d-1												
	28.0	26.7	13.3	•		8.0	6.7	2.7	49.3	9.4	1.3	9.3
	40.5	•	10.7	•		8.4	ж. З	4.7	57.1	22.7	2.3	7.2
Nov. 78	30.0	2.0	31.7	0.0	25.0	16.7	25.0	0.0	36.7	0.0	28.3	0.0
	75.8	•	18.2	•		15.1	3.0	4.6	75.8	12.1	3.0	6.1
	4.7	•	23.5	•		13.9	37.2	2.4	32.6	25.5	21.0	0.0
	65.2	•	9.7	•		4.4	16.3	0.0	64.1	29.4	<u>-</u>	0.0
	41.4	•	17.3	•		13.8	10.3	0.0	34.5	34.5	17.2	0.0
	(69.7	•	5.5	•		11.9	0.0	0.0	72.4	3.9	10.5	0.0
	36.8	•	7.9	•		25.7	36.9	10.5	68.4	5.3	0.0	5.6
	6.09	0.0	0.0	•		39.1	10.9	2.2	26.1	0.0	19.6	4.3
	40.0	30.9	15.5	•		11.8	6.4	6.0	53.6	25.5	0.0	26.4
	22.8	26.3	9.01	•		24.6	14.0	9.01	38.6	24.6	14.0	3.5
.	30.7	•	4.9	• 1		14.5	13.0	0.0	56.5	0.0	50.0	0.0
Mean	42.04	20.16	12.78	2.03	45.05	15.84	14.46	2.97	51.21	14.84	12.95	4.58
S.D.	20.55	13.43	8.50	3.93	26.15	8.99	11.80	3.76	16.36	12.56	14.62	7.29
	The state of the s	With the Party of					-	The second secon				

and the percentage removal at the lower depths increased accordingly. The greater removal efficiency of suspended solids shown by the plastic filter at the higher loading was due to the increased use of the available surface area of the medium and an associated increase in film accumulation (Table 6.8b). In the slag filter, however, the percentage removal decreased when the loading was increased due to an increase in the film and so a reduction in the available surface area, and contact time between the sewage and the film (Section 6.5). The percentage removal efficiency in the top 900 mm fell less than the overall removal efficiency of the filters, due to the larger amounts of nutrients available during the higher loading, thus allowing preferential removal of specific components in the sewage more readily metabolised by the film. The organic residue remaining would be more refractory and not easily removed especially at the higher loading rates, when the retention time would be shorter than during the low loading. This preferential removal at the surface is not only reflected in the suspended solids results, but also in the BOD, PV, COD, Ammonia concentrations and the turbidity results (Appendix III).

6.2.3 NITRIFICATION

It is well known that nitrification is virtually eliminated at hydraulic loadings of domestic sewage in excess of 2.5 $\,\mathrm{m}^3\mathrm{m}^{-3}\mathrm{d}^{-1}$. The autotrophic bacteria responsible for nitrification have a reduced growth rate in competitive situations


and this is possibly why the process is so sensitive to changes in operation (Hawkes, 1963). Research has shown that the process is also inhibited when the oxygen concentration in the influent sewage is limited (Heukelekian, 1947; Hawkes, 1963; Tomlinson and Snaddon, 1966). Although Painter (1970) showed that organic matter did not directly inhibit nitrification, he indicated that the nitrifying organisms needed to be attached to a stable surface, suggesting that inhibition may be due to competition for space. It therefore appears that at the higher rates of filtration, nitrification is restricted because of the enhanced heterotrophic growth, a phenomenon which has been observed during numerous studies of high rate filtration (Bruce et al., 1970: Joslin et al., 1971; Bruce et al., 1975).

In the present investigation nitrification was very erratic at the lower loading (Figure 6.7) with the slag filter achieving the best mean removal efficiency of 52.8%, which was equivalent to a mean final effluent of 14.7 mgl^{-1} of ammonia (Table 6.9). Examining the significance of the differences in performance using the t-test, it was clear that at the lower loading there was a significant difference in the mean removal efficiency between the slag and mixed filters (P < 0.1) and also between the mixed and plastic filters (P < 0.1). The ammonia concentration of the final effluents of the slag and plastic filters were also highly significantly different (P < 0.01).

Nitrification was greatly reduced at the higher loading with the percentage removal of ammonia being effectively halved in

Figure 6.7: Seasonal variation in the mean removal of ammonia from the final effluent during the two loadings of 1.68 and 3.37 $\rm m^3m^{-3}d^{-1}$

LOW LOADING (1.68 $m^3m^{-3}d^{-1}$)

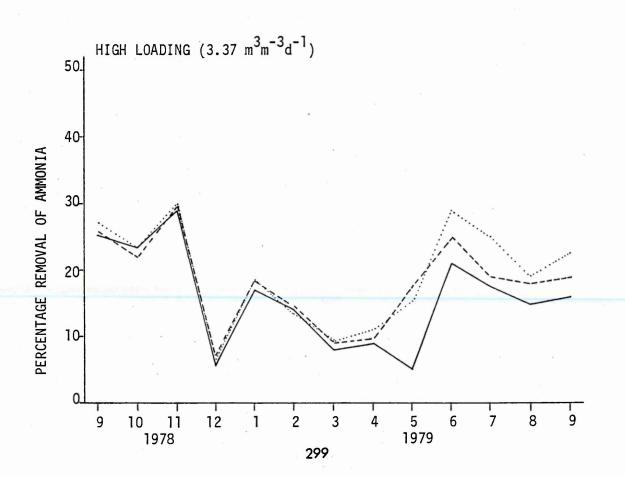


Table 6.9: Summary of the mean ammonical nitrogen concentration of the final effluents of the pilot filters loaded at 1.68 $\rm m^3m^{-3}d^{-1}$ (0.28 kg BOD $\rm m^{-3}d^{-1})$ over the thirteen months sampled.

,		SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Effluent Quality (mgl ⁻¹)	Mean Minimum Maximum Range 95% C.L.	14.7 10.0 20.8 10.8 1.8 24	17.8 10.8 32.7 21.9 3.4 24	20.7 12.4 32.1 19.7 3.3
Percentage Removal (%)	Mean Minimum Maximum Range 95% C.L.	52.8 41.3 66.6 25.3 4.2 24	45.0 14.1 67.5 43.4 6.7 24	34.9 5.0 54.3 49.3 9.4 24

Table 6.10: Summary of the mean ammonical nitrogen concentration of the final effluents of the pilot filters loaded at 3.37 $\rm m^3m^{-3}d^{-1}$ (0.63 kg BOD $\rm m^{-3}d^{-1}$) over the thirteen months sampled.

		SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Effluent Quality (mgl ⁻¹)	Mean Minimum Maximum Range 95% C.L.	18.0 6.7 29.3 22.6 3.8 27	15.8 5.2 28.4 23.2 4.2 27	19.1 6.2 29.1 22.9 4.3 27
Percentage Removal (%)	Mean Minimum Maximum Range 95% C.L.	21.1 0.0 56.4 56.4 8.2 27	32.4 16.0 67.1 51.1 9.1 27	17.8 0.0 58.5 58.5 9.3

both the slag and plastic filters to 21.1 and 17.8% respectively (Table 6.10). The mixed filter achieved the best removal efficiency of ammonia at this higher loading at 32.4%. The percentage removal of ammonia achieved by the mixed filter was significantly better (P < 0.01) than the plastic filter, and the former produced a final effluent during the loading with significantly less ammonia (P < 0.1) than the slag filter. As shown in Table 6.3, nitrification was almost totally absent at the very high loading of 5.72 m 3 m $^{-3}$ d $^{-1}$, with removal efficiencies of less than 10% being recorded in all the pilot filters.

At the lower loading the total oxidised nitrogen results reflected the concentration of ammonia removed by each filter (Table 6.11), whereas at the higher loading the total oxidised nitrogen results were much smaller and did not reflect the overall changes in the ammonia concentration (Table 6.12). From the monthly analysis, it appears that ammonia was being stored in the film and was being released during times of film loss. It was noticed, however, that even at times of low film accumulation when the grazing population was still large, the ammonia concentration in the final effluents of the filters was high. This suggested that the observed increase in the ammonia concentration was due to the excretion products from the grazing fauna. Hemmings and Wheatley (1979) who examined the use of random plastic medium in low rate filtration also recorded discrepancies in the total nitrogen balance of their filters. They found that ammonical nitrogen was being produced within the filter from the deamination of organic nitrogen and causing an increase in the concentration

Table 6.11: Mean concentrations of ammonical and oxidised nitrogen in the final effluents from the pilot filters during the lower loading of 1.68 $\rm m^3m^{-3}d^{-1}$.

		mg1-1	
	Ammonia	Total oxidised nitrogen	Total nitrogen
Slag filter	14.71	14.32	29.03
Mixed filter	17.80	12.09	29.89
Plastic filter	20.73	9.03	29.76

Table 6.12: Mean concentrations of ammonical and oxidised nitrogen in the final effluents from the pilot filters during the higher loading of $3.37~\text{m}^{3}\text{m}^{-3}\text{d}^{-1}$.

,		mg1 ⁻¹	
	Ammonia	Total oxidised nitrogen	Total nitrogen
Slag filter	17.98	6.19	24.17
Mixed filter	15.75	6.95	22.70
Plastic filter	19.09	4.30	23.39

of ammonia in the final effluent. Painter (1970) proposed three potential sources of ammonia from the metabolism of the film micro-organisms, and assumed that the relatively small quantities of ammonia produced in this way were used in cell synthesis. Wheatley and Williams (1976) thought that ammonia in excess of that required for growth may be formed when C:N ratios were low, and so cause an increase of ammonia within the filter. Therefore the discrepancies between the mean total nitrogen results in Table 6.12 could be due to either excess ammonia production as described by Hemmings and Wheatley (1979) or storage and subsequent release. From the results the principal reason for the discrepancies recorded (Tables 6.11, 6.12) appears to be storage and release. It is expected that the equation of total nitrogen in and total nitrogen out of the filters would balance over a sufficiently long period of time.

Nitrification occurred at all depths at the lower loading with maximum removals being achieved between 900 - 1500 mm in all the filters (Table 6.13). With the increase in loading the degree of nitrification decreased and the depth at which maximum nitrification occurred was pushed to the base of the filters between 1500 - 1800 mm in both the mixed and slag filters.

Maximum abundance of nitrifying bacteria always occurred in the lower half of the filters, mainly at times of least film accumulation (Table 6.13, Figure 6.12). Although minimum removals of ammonia coincided with maximum film accumulation and also with the sloughing period, the time level of

Table 6.13a: The percentage removal of ammonical nitrogen in relation to depth, at low loading

	1500- 1800		1.1	1	0.0	6.5	2.53	3.48
FILTER	900- 1500		0.0	ı	33.1	15.6	16.23	16.56
PLASTIC FILTER	300 - 900		0.0	t	0.0	0.0	00.00	0.00
Д.	300		=	í	22.1	25.1	16.10	13.08
	1500- 1800		52.3	ı	0.0	3.6	18.63	29.21
LTER	900- 1500		2.3	ı	53.1	31.6	29.00	25.50
MIXED FILTER	300 - 900		0.0	1	0.7	5.0	1.90	2.07
E	300		8.9	1	0.0	9.1	5.30	4.73
	1500- 1800	, ,	0.0	ı	8.3	0.5	2.93	4.65
LTER	900 - 1500		42.1	1	35.2	23.1	33.47 2.93	9.62
SLAG FILTI	300- 900	÷	0.0	ı	25.5	24.2	4.03 16.58	3.78 14.38
	300	,	4.6	1	0.0	7.5	 4.03	3.78
	שש ר	ing 3 _d -1	78	78	82	78	#100 x 1000	
	Depth in mm	Low Loading 1.68m³m ⁻³ d ⁻ 1	Jun. 78	Jul. 7	Aug. 78	Sep. 7	Mean	S.D.

Table 6.13b: The percentage removal of ammonical nitrogen in relation to depth, at high loading

2.7																٦
FILTER	1500- 1800		0.0	ı	0.0	3.4	11.6	61.5	0.0	0.0	0.0	0.0	0.0	96.9	18.43	
	900- 1500		30.1	,	0.0	0.0	7.0	0.0	2.0	0.0	0.7	0.0	17.1	7.78	11.26	
PLASTIC FILTER	300 - 900		0.0	,	0.0	41.2	0.0	0.0	14.0	5.5	0.0	0.0	0.0	5.49	12.61	
d .	300	,	8.5	ı	0.0	0.0	0.0	0.0	6.3	8.3	17.7	8.5	0.0	4.48	5.88	
	1500- 1800		23.5	,	7.9	17.7	17.4	51.9	5.1	11.3	25.8	18.1	25.0	20.65	12.47	
ILTER	900- 1500	E	0.0	,	4.0	0.8	12.8	23.1	49.3	3.0	1.4	Ξ.	0.0	8.68	15.26	
MIXED FILTER	300-		0.0	1	0.0	16.0	0.0	0.0	12.7	1.5	10.9	0.0	0.0	4.41	91.9	
	300		0.0	ı	0.0	0.0	8.	0.0	0.0	0.0	6.8	5.3	0.0	2.10	3.16	
	1500-		7.9		0.8	0.0	0.0	61.5	0.0	12.0	16.3	0.0	9.11	11.46	17.89	
.TER	900-		11.7	1	4.0	32.8	18.6	0.0	5.1	0.0	0.0	0.0	0.0	7.39	10.41	
SLAG FILTER	300-		3.3	,	0.0	0.0	0.0	0.0	3.8	0.0	16.4	0.0	0.0	2.14	4.94	
	300		8.5	1	15.9	8.4	9.11	0.0	21.5	8.3	2.0	25.5	0.0	9.76	8.36	
	u mm	ding 3d-1	78	78	79	79	79	79	79	79	79	79	79			
	Depth in mm	High Loading 3.37m3m-3d-1	Oct.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Mean	S.D.	

nitrification was masked by the release of ammonia in the solids washed out. The increased loading rate also reduced the contact time between the nitrifying bacteria and the influent sewage (Section 6.5), so reducing the removal efficiency of ammonia. The direct correlation between the ammonical nitrogen concentration in the final effluent and the organic load (Appendix VII) indicates how nitrification was reduced with increasing organic load in all the filters.

Temperature has a marked influence on nitrification (Painter, 1970) and the large fluctuations in temperature recorded in the plastic filter may account for the low degree of nitrification recorded. Although the threshold temperature for the process is below 10° C, a few degrees reduction in the temperature below 10° C is likely to have a disproportionate reduction on nitrification (Bruce et al., 1975). It is not surprising that the plastic filter, which was unable to protect itself against changes in ambient temperature as successfully as the slag filter, achieved the lowest nitrification of all the pilot filters.

6.2.4 SLUDGE PRODUCTION

The pilot plant did not have humus tanks from which samples of the sludge could be obtained. All sludge measurements were therefore made directly from the final effluents of the pilot filters. Sludge production was normally assessed by volume; actual weights were only measured every two to three

months (Section 4.2.16). Because of the difficulty in concentrating the humus sludge sufficiently, its dewaterability was not determined. The mean monthly results presented in Table 6.14 show that although no significant difference in sludge production was recorded between the individual filters at either loading, significantly greater sludge production occurred in all three filters at the higher loading. This indicated that more work was being done by the filters in flocculating the suspended material present. In the mixed and plastic filters the increase was far in excess of that recorded in the slag filter. Sludge production followed a seasonal pattern, low at times of high adsorption of solids when the rate of film accumulation was greatest and high during times of maximum film accumulation when fewer solids were being adsorbed and also when the film was being unloaded. Bruce and Boon (1971), showed that the less organic matter present in a filter sludge, the more stable it was, and they recorded typical organic contents of 60% for low rate filters and 80% for high rate filters. Table 6.15 summarises the organic content of the sludges collected from the pilot filters during August at the two loading rates of 1.68 and $3.37 \text{ m}^3\text{m}^{-3}\text{d}^{-1}$.

The slag filter produced the most stable sludge during the lower loading but the most unstable sludge, containing the largest proportion of organic matter, at the higher loading rate; when the sludge from the mixed filter was most stable.

The settling rates of the sludges were measured throughout the low and high rate loading periods and the time for 90%

Monthly sludge production of pilot filters, expressed in \mbox{cm}^3 of sludge per litre of final effluent Table 6.14:

		Ь	V44L83V000839	.08
3.37 m ³ m-3d-1	cm ³ 1-1	1	2-4-8-6-4-6-4-7-4-7-4-7-4-7-4-7-4-7-4-7-4-7-4	3.57
		Σ	4.6.6.9.9.6.6.8.9.9.9.9.9.9.9.9.9.9.9.9.9	3.40
		S	4.6.6.7.9.6.6.4.9.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	3.95
DING		INF	0.00 0.10 0.10 0.10 0.10 0.10 0.00 0.00	
HIGH LOADING	-	*	Sep.78 Oct.78 Nov.78 Dec.78 Jan.79 Apr.79 May 79 Jun.79 Jul.79 Sep.79	
	cm ³ 1-1	Ь	00000000000 00000000000000000000000000	1.02
m3m-3d-1		М	0.5 0.0 0.0 0.3 0.3 0.3 0.5 0.5 0.5 0.5	1.40
1.68 m ³		S	0.8 1.2 1.2 1.2 1.2 1.2 1.2	2.15
ING		INF	0.00	0.05
LOW LOADING	45779	*	Oct.77 Nov.77 Dec.77 Jan.78 Feb.78 Mar.78 Apr.78 Jun.78 Jun.78 Jun.78	Mean S.D.

* where INF is the influent, S, M and P the final effluents from the slag, mixed and plastic filters respectively.

Table 6.15: Settleability and organic content of the sludges produced by the pilot filters at 1.68 and 3.37 $\,\mathrm{m}^3\mathrm{m}^{-3}\mathrm{d}^{-1}$.

With the control of t	1.68 m	3 _m -3 _d -1	3.37 m ³ m ⁻³ d ⁻¹			
	Organic matter (%)	90% settlement (mins)	Organic matter (%)	90% settlement (mins)		
Slag Filter	57.8	15.7	80.8	27.5		
Mixed Filter	60.2	13.3	71.0	25.5		
Plastic Filter	61.8	15.5	76.4	20.5		

settlement measured. The settling rates for all the pilot filters were similar during the lower loading (Table 6.15). At the higher loading the mean settling time of the sludge from the slag filter was seven minutes longer than that recorded for the sludge from the plastic filter. Solbé, Williams and Roberts (1967) reported that macroinvertebrate debris settled more rapidly than non-animal fragments and that the presence of animals increased the settleability of the sludge. The population densities of the various macroinvertebrates were generally much larger in the plastic than in the slag filter at the higher loading, and this may well account for the overall greater settleability of the sludge recorded.

6.2.5 PERFORMANCE ANALYSIS

It is clear from the data that at the lower loading of 1.68 $\rm m^3m^{-3}d^{-1}$, the slag and mixed filters performed similarly, although the slag filter produced a significantly better nitrified final effluent (P < 0.01). But with an increase in the loading to 3.37 $\rm m^3m^{-3}d^{-1}$ the performance of the slag filter decreased more rapidly than either the plastic or mixed filters. At this higher loading, the performance of the mixed filter was significantly better than that of the slag filter in terms of BOD (P < 0.01) suspended solids (P < 0.1) and ammonia removal (P < 0.01). The mixed filter was also significantly more efficient than the plastic filter in removing ammonia from the influent (P < 0.01). The

shorter experimental period at the very high loading of 5.52 $\text{m}^3\text{m}^{-3}\text{d}^{-1}$ indicated that the mixed filter was well able to cope with the large increase in organic load, performing consistently better than either the plastic or slag filters.

Table 6.4 compares the weight of BOD removed per day by each filter at the various organic loadings, with the mixed filter being the most efficient at the higher loadings. This is shown graphically in Figure 6.8, where the results obtained by Wheatley (1976) using the same random plastic medium, Flocor RC, can be directly compared. At the higher organic loadings, Wheatley's filters, which treated a domestic sewage similar in strength to that applied to the pilot filters, achieved a similar removal efficiency compared with the three pilot filters. Linear regressions of the organic load in relation to final effluent BOD concentration, using the data from the two main loading periods, were calculated for the three pilot filters (Figure 6.9). The slopes of the three lines, for the mixed and plastic filters, are much less steep compared with that for the slag filter (Table 6.16). The two former lines run almost in parallel over the entire experimental range of organic loading. The linear regression plot for the slag filter intersects the regression lines for the other filters, indicating that the mean BOD performance of the slag filter is better than the mixed filter at loadings of less than 0.18 kg BOD $m^{-3}d^{-1}$, and better than the plastic filter at loadings of less than 0.31 kg BOD $m^{-3}d^{-1}$. Figure 6.9 shows the mixed filter consistently produced a better final BOD effluent than the plastic filter at all loadings. The similarity of the plotted lines for the plastic and mixed filters

Mean efficiency of BOD removal by the pilot filters during the complete experimental period of 27 months compared to the plastic filters of Wheatley. *Wheatley, 1976 6.0 Plastic filters Mixed filters >>. Slag filters 0.8 Flocor RC* 0.7 9.0 0.5 0.4 ORGANIC LOAD (kg BOD m-3d-Figure 6.8: 0.1 0.5-0.4-0.3-0.2-0.1 0 9.0 (ka BOD m-3^q-1) BOD REMOVAL

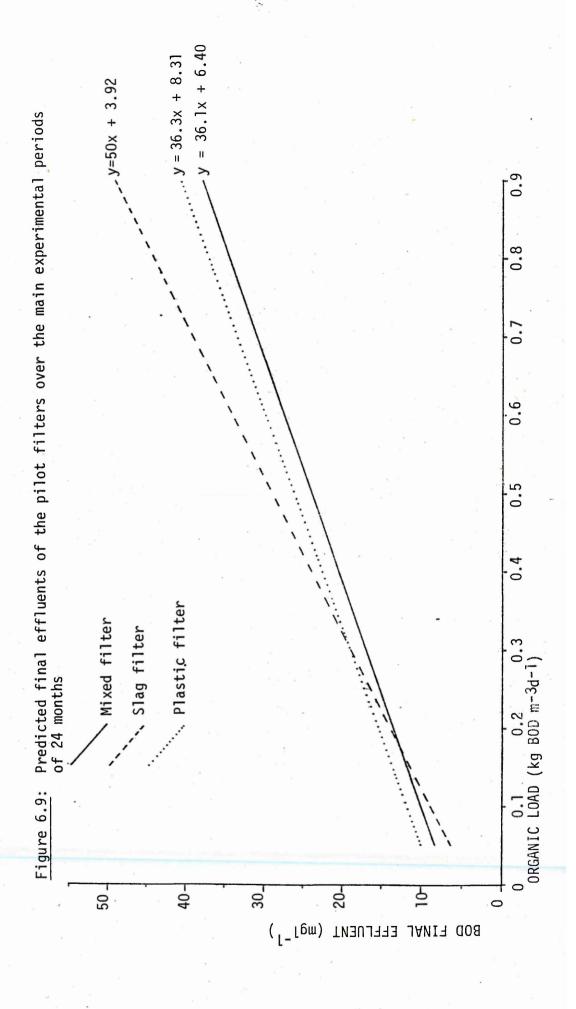
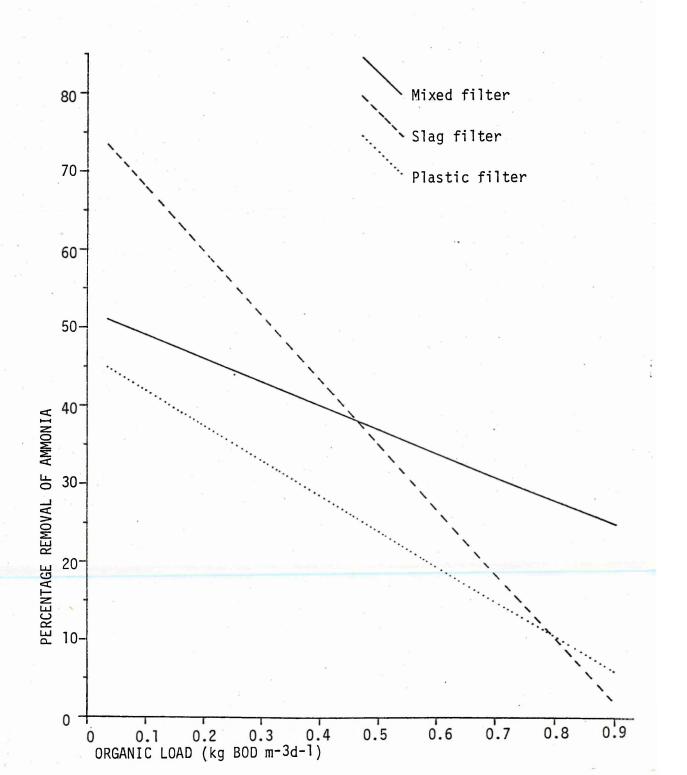


Table 6.16: Linear regression equations of a) final effluent BOD concentration against organic load, and b) the percentage removal of ammonical nitrogen in final effluents against organic load, over the two main loadings and all the measured loadings.

	MAIN LOADINGS ONLY	ALL LOADINGS		
Loadings $(m^3m^{-3}d^{-1})$	1.68 and 3.37	1.68,3.37 and 5.72		
Experimental period	24 months	27 months		
a) BOD Effluent v. Organic Load				
Slag Filter	y = 50.0x + 3.9	y = 46.2x + 5.1		
Mixed Filter	y = 36.1x + 6.4	y = 31.6x + 7.8		
Plastic Filter	y = 36.3x + 8.3	y = 33.2x + 9.3		
b) Percentage Remo- val of Ammonia v. Organic Load				
Slag Filter	y =-53.1x + 61.4	y = -56.7x + 62.3		
Mixed Filter	y = -29.9x + 52.3	y = 37.0x + 54.4		
Plastic Filter	y =-44.52x + 46.54	y = -44.45x + 46.47		

is due to most of the BOD removal taking place in the top
750 mm of the filters (Table 6.5), which is the random plastic
medium, Flocor RC, in both the pilot filters. The removal
of the more resistant BOD fractions did not occur so readily.
Their removal is restricted to the lower halves of conventional
low rate filters (Wheatley, 1976). The resistant BOD fraction
appeared more efficiently removed by the slag portion of the
mixed filter at the higher loading than by either the plastic
or slag filters. Table 6.17 is a summary of the predicted
maximum organic loads producing mean final effluents of
specific BOD quality for each filter. These results have
been extrapolated from the regression analysis of all the
data collected over 27 months.


As stated in Section 6.2.3, nitrification in percolating filters decreases with an increase in the hydraulic and organic loading, and Figure 6.10 illustrates this decline in removal of ammonia with load. Least ammonia removal occurred in the plastic filter at all the various loadings. The linear regression plots for the mixed and slag filters crossed at the organic loading of 0.47 kg BOD $m^{-3}d^{-1}$, showing that the slag achieved better nitrification at loadings below 0.47 kg BOD $m^{-3}d^{-1}$ while the mixed filter removed more ammonia at loadings in excess of this loading (Figure 6.10).

The greater efficiency of the mixed filter at the higher loading compared with both the slag and plastic filters must be attributed primarily to the top layer of plastic medium which removed the bulk of the BOD. The medium itself causes better redistribution within the filter (Wheatley and Williams, 1976; Hemmings and Wheatley, 1979) and this would ensure

Table 6.17: Predicted maximum organic loading of the pilot filters to achieve specified final BOD effluents from all 27 months of operation.

	MEAN	ORGANIC LOA	D (kg B0	D m ⁻³ d ⁻¹)				
Mean final effluent	Slag Filter	Mi	xed Filter	,	Plastic Filter			
(mg1 ⁻¹)	Organic Load	increase over slag	Organic Load	increase over plastic	Organic Load			
15	0.220	9.1	0.170					
20	0.330	19.7 0.395 23.4						
30	0.540	30.6	30.6 0.705 12.1					
40	0.755	33.8	1.010	9.7	0.920			
		· .	·					

Figure 6.10: Predicted percentage removal efficiency of ammonia from the pilot filters over the main experimental period of 24 months

better utilisation of the lower slag portion.

It is unlikely that the top plastic layer would remove enough BOD and suspended solids to allow the rest of the mixed filter (i.e. the slag portion), to act as a normal single pass filter, producing a highly clarified final effluent when loaded at three or four times the normal loading for a single mineral filter. The mixed filter does, however, achieve a greater removal of the more resistant BOD fraction, better solids removal and finally more efficient nitrification than single medium filters at the higher loadings studied.

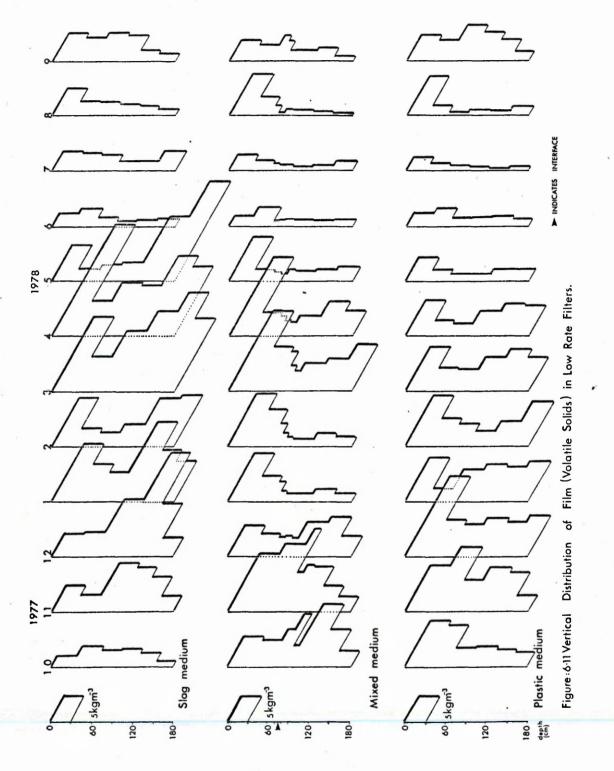
6.3.1 SEASONAL FILM ACCUMULATION

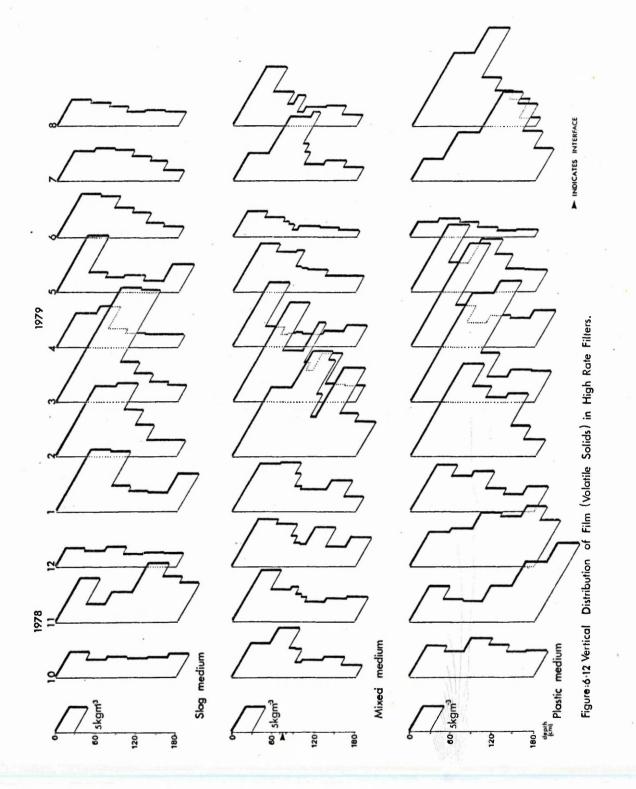
The three filters all displayed similar seasonal fluctuations in film accumulation. Generally the minimum quantity of film occurred during the summer and the maximum quantity in the winter, at both loadings (Figure 6.14; Table 6.18). This phenomenon has been previously recorded both in low rate (Hawkes, 1957) and in high rate filters (Bruce and Merkens, 1973). A double maxima of film accumulation, separated by two to three months, was observed during the winter in all the filters, although less well defined in the mixed filter at the higher loading rate. Examination of the horizontal distribution of film using the extra sampling baskets placed in the surface of the filters (Section 4.1) and subsequent analysis showed that there was no significant difference at the 10% level or less. This clearly showed that the horizontal distribution of the film in the surface baskets (Appendix IV) was similar. Therefore the results of film accumulation in the baskets from the sampling column were representative of the whole filter, as far as the limited horizontal analysis could show.

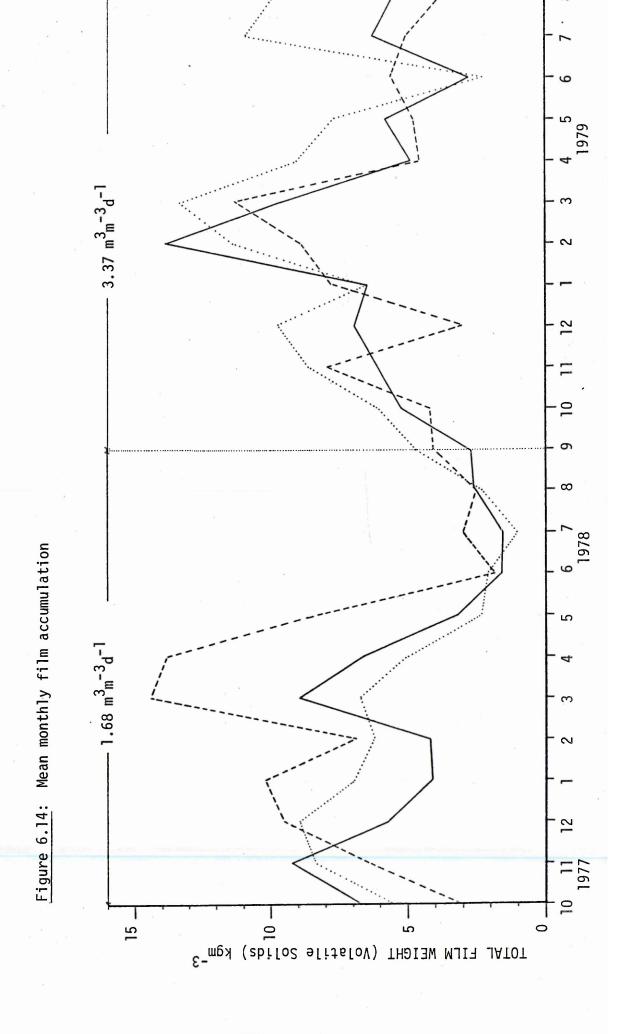
The slag filter contained the greatest mean accumulation of film during the lower loading period, with a range of film weights almost double that found in the other two filters (Table 6.19). At the higher loading, both the mixed and

	LOW	LOADING (1.68	$m^3 m^{-3} d^{-1}$)
Date	Slag Filter	Mixed Filter	Plastic Filter
10.77 11.77 12.77 1.78 2.78 3.78 4.78 5.78 6.78 7.78 8.78 9.78	3.05 6.37 9.53 10.18 6.87 14.39 13.74 8.32 1.78 2.98 2.53 4.03	6.68 9.16 5.66 4.10 4.66 8.81 6.60 3.22 1.63 1.54 2.58 2.72	5.53 8.31 8.89 6.85 6.20 6.70 5.00 2.33 2.02 1.02 2.27 4.71
	HIG	H LOADING (3.37	$m^3m^{-3}d^{-1}$)
Date	Slag Filter	Mixed Filter	Plastic Filter
10.78 11.78 12.78 1.79 2.79 3.79 4.79 5.79 6.79 7.79 8.79	4.20 7.95 3.11 7.81 8.88 11.33 4.57 4.77 5.61 5.07 3.71	5.22 6.09 6.85 6.51 13.89 9.65 4.91 5.79 2.77 6.34 5.51	6.11 8.59 9.65 6.45 11.38 13.33 9.05 7.73 2.23 10.90 9.85

Table. 6.19: Summary of the mean film accumulation (as volatile solids) of the pilot filters loaded at 1.67 $\rm m^3m^{-3}d^{-1}(0.28~kg~BOD~m^{-3}d^{-1})$ over the twelve months sampled.


	Vo1	atile solids (kg	m^{-3})					
:	Slag Filter	Mixed Filter	Plastic Filter					
Mean	6.98	4.78	4.99					
Minimum	1.78	1.54	1.02					
Maximum	14.39	9.16	8.89					
Range	12.61							
95% C.L.	2.45	1.48	1.46					


Table 6.20: Summary of the mean film accumulation (as volatile solids) of the pilot filters loaded at 3.37 m³m⁻³d⁻¹(0.63 kg BOD m⁻³d⁻¹) over the eleven months sampled.


	Vol	atile solids (kg	m^{-3})						
	Slåg Filter	Mixed Filter	Plastic Filter						
Mean	6.09	6.69	8.66						
Minimum	3.11								
Maximum	11.33	13.89	13.33						
Range	8.22								
95% C.L.	1.51	1.71	1.78						

plastic filters contained larger mean weights of film than at the previous loading with increased ranges. All three filters had larger minimum weights at the higher loading although the mean, maximum and range of film accumulation in the slag filter were reduced at this new loading (Table 6.20). Wheatley (1976) recorded a maximum film accumulation of 4.0 kgm^{-3} (equivalent to 5% occupation of the voidage) at the higher loading in his pilot filters containing Flocor RC medium, which were loaded at 1.2 and 2.4 $\text{m}^3\text{m}^{-3}\text{d}^{-1}$. Although this weight of film is similar to the mean film accumulation recorded in the plastic filter during the lower loading at 1.68 $m^3m^{-3}d^{-1}$, it is less than half the mean weight of 8.66 kgm^{-3} recorded at the higher loadings. The maximum film accumulations recorded in the plastic filter were 8.89 kqm^{-3} during low rate and 11.10 kgm^{-3} at the higher loading. These are greatly in excess of the maximum weights recorded by Wheatley. In the present investigation the greater accumulations of film in the plastic filter may account for the longer retention times and better performance recorded compared with Wheatley's filters.

The vertical distribution of the film in the pilot filters (Figures 6.11 - 6.12), reflects the seasonal variation of the mean film accumulations of the three filters (Figure 6.14). The vertical distribution of the fauna is directly compared to the film in Figures 5.2 - 5.7 and 5.27 - 5.32, and the existing relationships are discussed fully in Chapter 5. At the lower loading, most of the film was recorded in the top 300 mm of all the filters and in the lower half of the filters below 900 mm. Examination of the medium showed that

the film found lower down the filters was comprised mainly of humus solids and animal debris and not active film. At the higher loading the maximum accumulation of film occurred in the top half of the slag filter while in the plastic filter maximum accumulation was recorded in the surface from October to December and nearer the base from January to August. Most of the film occurred in the plastic portion of the mixed filter at both loadings, although heavy accumulation also occurred in the top 300 mm of the slag portion during periods of maximum film accumulation. The distribution of the film was associated, as expected, with the depth at which the BOD and suspended solids removal occurred (Sections 6.2.1 and 6.2.2). But during periods of maximum film accumulation and the subsequent unloading period, the BOD removal was reduced and nitrification was restricted to the very base of the filters. As observed by Hawkes (1957), the performance of the pilot filters was found to be associated with the film accumulation and temperature, although Wheatley (1976) observed that the film accumulation was not linked to the performance.

Wheatley and Williams (1976) found that no single factor directly influenced film accumulation within their experimental filters, but suggested that it was controlled by the interaction of a number of factors, namely ambient temperature, organic load, the distribution system, the microbial characteristics of the film and the activity of grazers.

Temperature was shown to be an important factor in film accumulation by Hawkes and Shephard (1971), who demonstrated that below 10°C the rate of film accumulation increased

rapidly. Reynoldson (1939), Lloyd (1945), Tomlinson (1946b) and Hawkes (1957; 1963) all considered the macroinvertebrate grazers to be of primary importance in film control, with the film accumulating during the winter months when both the population density and the activity of the grazers were suppressed. On the other hand, Holtje (1943), Henkelekian (1945) and Cooke and Hirsch (1958) considered the fluctuations in film accumulation to be due to differential microbial activity at different temperatures. Shephard and Hawkes (1976) in a comparative experiment using laboratory filters with and without the macroinvertebrate grazing fauna at 5 and 20°C. examined the effects of grazers and temperature on film accumulation. They proved that at higher temperatures a greater proportion of the BOD removed by adsorption would be oxidised, and therefore fewer solids accumulated. The rate of oxidation decreased as the temperature fell, although the rate of adsorption remained unaltered. Therefore at the lower temperatures, there was a gradual increase in solids accumulation which eventually resulted in the filters becoming clogged.

In the present investigation, all the major micro-organisms of the film, such as zoogloeal bacteria and Sphærotilus natans were positively and significantly correlated to the film weight (Table 6.21), indicating their importance in film accumulation. The Nematoda were also positively correlated with the film weight, a relationship also observed by Shephard and Hawkes (1976), who proposed that the nematodes acted as micro-grazers. Without exception all the filters exhibited significant negative correlations between effluent temperature and film accumulation. This supports the earlier findings of

Table 6.21: Correlations between the film weight and various biological and environmental variables measured.

		,	
	SLAG FILTER	MIXED FILTER	PLASTIC FILTER
Low Rate	Subbaromyces splendens (2+) Sphaerotilus natans (2+) Paracyclops(1-) Temperature(2-)	Sarcomastigo- phora (1-) Temperature(1-)	Paracyclops (2+) Temperature (2-) Organic Load(1-)
High Rate		Zoogloeal bac- teria (3+) Temperature(1-)	Effluent BOD(1-)
Both Loadings	Subbaromyces splendens (2-) Temperature(2-)	Zoogloeal bac- teria (3+) Temperature(2-) Effluent BOD (1-)	Zoogloeal bacteria (2+) Subbaromvces splendens (1+) Sphaerotilus natans (2+) Temperature (1-)

Shephard and Hawkes (1976) who concluded that film accumulation was controlled by the temperature of the film. A positive correlation between the quantity of the fungus <u>Subbaromyces splendens</u> and the amount of film in the plastic filter and a negative correlation between the same parameters in the slag filter reflects the relative abundance of the species.

<u>Subbaromyces splendens</u> was far more successful in the plastic medium where it was associated with the initial and rapid accumulation of solids immediately preceding the decline of the grazing fauna when the film accumulation was at a minimum. As shown in Section 5.3.1, this fungus was restricted to the lower film conditions in the filters.

Bruce and Merkens (1973) showed that the surface area of the medium was a major factor determining the performance of a high rate filter. A negative correlation between the amount of film and the effluent BOD concentration was recorded in the mixed and plastic filters only. The greater surface area of the plastic medium allowed more film to accumulate and therefore greater removal of the available BOD.

The increase in film accumulation in early winter, owing to the low population densities of the grazing fauna during the autumn and reduced microbial activity due to the temperature, reached a peak in November and December. This peak was reduced by a resultant increase of grazing fauna presumably stimulated by the increase in film and because the temperature was still mild. But as the temperature decreased towards the middle of winter, there was a decrease in grazing activity and once more the film began to increase toward a maximum

accumulation in the spring, producing the characteristic second winter maximum in accumulation. With increase in temperature during the spring and a resultant increase in grazers and grazing activity, the film was reduced to its minimum accumulation by June. The increase in grazing fauna during the early winter suppressed the second peak of film accumulation in March, which had the effect of restricting the grazing fauna in the spring due to less successful reproduction during the winter peak in grazing fauna, caused by the decreasing temperature. There would have been a smaller residual grazing population, as well as fewer cocoons and eggs in the filters in the spring, resulting in a delay before the population density of the grazing fauna reached maximum numbers, thus delaying the unloading of the film.

Once the subsequent unloading, greatly accelerated by the macro-grazers, was complete, the grazing fauna began to decline due to a shortage of food. An increase in the amount of film followed immediately, and unlike the other filters, the plastic filter built up its film accumulation more rapidly due to the presence of <u>Subbaromyces splendens</u>, especially during the higher loading when the film accumulation rose from the minimum weight of 2.23 kgm⁻³ to 10.9 kgm⁻³ within one month. This ability to recover rapidly after sloughing (unloading) was also seen to a lesser extent in the plastic section of the mixed filter.

It has been shown in Chapter 5, that various organisms responded to changes in the film within the pilot filters by altering their population densities. Other organisms,

especially the Protozoa, have been recorded as being restricted to certain film weights. The rapid decline of film accumulation from maximum to minimum weights (Figure 6.14) reflects the effectiveness of the grazing fauna at reducing the film. As discussed in Chapter 5, the Enchytraeidae always reached maximum population densities before the psychodid larvae, and this is clearly shown in Table 6.22. It is not coincidental that the lowest performance efficiency was also recorded during this unloading period due to excessive solids and debris being washed out in the final effluent of the filters.

6.3.2 CORRECTION FACTORS FOR MACROINVERTEBRATES

The film is comprised of a mixture of organisms and solids, the latter accumulated from suspended solids, flocculation and adsorption of solids from the influent, or resulting from biological activity within the filter, for example faeces of grazers. The organisms constitute two distinct feeding groups, those which feed on the adsorbed solids and nutrients in the sewage and which are directly involved in the purification process, and those which graze on the film and its associated micro-organisms. Difficulties arise in deciding what exactly constitutes the film and whether certain groups of organisms should be excluded. In the present investigation all the solids and debris including all the animals, except the lumbricids, the larger molluscs and the occasional visitors to the filters, were classed as the film and have been used in the presentation of the results. However Shephard (1967)

Month of maximum population density of the Enchytraeidae and the Psychodid larvae in the pilot filters at both loadings. Table 6.22:

	LOW LOADING	LOW LOADING (1.68 m ³ m ⁻³ d ⁻¹)	HIGH LOADING	HIGH LOADING (3.37 m ³ m ⁻³ d ⁻¹)
FILTER	Enchytraeidae	Enchytraeidae Psychodid larvae	Enchytraeidae	Psychodid larvae
Slag	February/May*	June	April	August
Mixed	January/May*	June	June	yluly
Plastic	Feb./April*	June	Мау	June
			-	

* secondary population maximum

suggested that the grazing fauna played no direct role in the purification process, and so should not be considered as part of the film. He corrected all his measurements of film weight expressed as volatile solids by subtracting the organic weight of all the macrograzers present. Comparison of the correction factors used by Shephard (1979) and of those determined during the present investigation (Table 6.23), clearly show that discrepancies exist between all the estimates. The most significant difference in weight was recorded between the psychodid larvae, the mean weight recorded for the larvae collected from the pilot filters being 62% less than that recorded by Shephard.

In estimating the mean weight of the larvae, equal numbers of all four instars were taken. But if only the third and fourth instars of the psychodid larvae were taken and weighed then the organic contents ranged from 0.202 to 0.222g per 1000 individuals. It is possible that the correction factor for the psychodid larvae, used by Shephard, was obtained by measuring samples containing mainly the larger instars.

Three film weights were directly compared: a) uncorrected film weight as used in the present investigation, b) corrected film weights using the correction factors determined in the present investigation, and c) corrected film weights using the correction factors determined by Shephard (1967). The various values for film weight (Tables 6.24 - 6.26) were correlated with the performance and biological data. Both the corrected sets of film data proved to be significantly more correlated with the performance and biological results

Table 6.23: Comparison of the organic weights of various grazers found in percolating filters for use as correction factors for film accumulation estimates.

Macrograzers		in gramm individu			
(including Pupae)	Shephard (1967)	Pres Investi		'n	
Astigmatid mites	0.10	0.150	(0.02)	750	
Psychodid pupae	-	0.185	(0.02)	1800	
Psychodid larvae	0.20	0.076	(0.01)	50,00	
Chironomid larvae*	0.20	-	-	-	
Sylvicola fenestralis larvae	» -	0.832	(0.07)	1⁄200	
pupae	-	2.086	(0.20)	400	
Enchytraeidae	0.20	0.150	(0.02)	5000	
<u>Eiseniella tetraedra</u>	-	14.280	(1.52)	100	

^{*}Not estimated as chironomid larvae were not found in large numbers.

Standard deviation of weight estimate is given in parenthesis.

than the uncorrected data. Although the significance level of the correlations between the two sets of corrected data and the performance and biological results was the same, the film data using Shephard's correction factors had slightly larger coefficient values.

It has been shown that the active film is clearly responsible for the performance and in order to estimate the true accumulation of active film accurately, then all the macro- and micro-fauna present, including the Protozoa, Rotifera and Nematoda must be compensated for. As it is not possible to compensate for the non-active solids and debris in the same way, then it would seem sensible to take the entire weight of film, solids and animals present (excluding the largest organisms) as the value of accumulated film.

When the film accumulation was near to or greater than the mean accumulation, then the overestimation of the macro-invertebrate biomass obtained when using Shephard's correction factor would also in part compensate for the other fauna and debris present not accounted for. Problems were encountered in compensating for the large number of macroinvertebrates present during the higher loading when minimum film weights occurred during June in the mixed and plastic filters (Tables 6.24 - 6.26). By using Shephard's correction factor, the overcompensation of the macroinvertebrate biomass resulted in large negative weights of film being estimated. This phenomenon did not occur when using the smaller correction factors estimated during the present investigation.

Table 6.24: Film accumulation expressed in corrected and uncorrected forms, including percentage saturation of voids in the slag filter.

SLAG	Film	Film	Film	Film	Neutron
MEDIUM	Weight (V.S.)	Weight (Total)	V.S.(NG) - macro	V.S.(MS) - macro	Probe % Sat.
	kgm ⁻³	kgm ⁻³	kgm ⁻³	kgm ⁻³	%
10/77	3.05	, -	2.98	2.86	17.69
11/77	6.37	· · -	5.99	5.73	19.07
12/77	9.53	274.27	9.37	9.25	22.64
1/78	10.18	335.23	9.80	9.61	28.33
2/78	6.87	240.07	6.68	6.58	29.33
3/78	14.39	391.01	14.30	14.25	31.93
4/78	13.74	388.40	13.69	13.65	32.75
5/78	8.32	255.21	7.81	7.38	24.93
6/78	1.78	128.24	1.13	0.36	12.39
7/78	2.98	156.07	2.82	2.62	14.41
8/78	2.53	147.95	2.33	2.18	14.40
9/78	4.03	177.13	3.70	3.53	-
10/78	4.20	203.49	3.99	3.81	-
11/78	7.95	288.69	7.79	7.63	-
12/78	3.11	173.89	2.81	2.51	-
1/79	7.81	271:87	7.30	6.60	23.64
2/79	8.88	260.55	8.54	8.06	-
3/79	11.33	294.02	11.10	10.99	-
4/79	4.57	186.73	3.20	2.70	-
5/79	4.77	163.70	3.98	3.64	28.52
6/79	5.61	216.24	4.66	3.40	_
7/79	5.07	184.26	4.29	3.36	-
8/79	3.71	171.25	2.84	1.52	COOPERA NO SERVICE

Where V.S. is volatile solids,

M.S. is vola tile solids corrected with macroinvertebrate biomass values as measured by Shephard (1967).

N.G. is volatile solids corrected with macroinvertebrate biomass values as measured by the author.

Table 6.25: Film accumulation expressed in corrected and uncorrected forms, excluding the percentage saturation of voids, in the mixed filter.

MIXED MEDIUM	Film Weight (V.S.)	Film Weight (Total)	Film V.S.(NG) - macro	Film V.S.(MS) - macro
	kgm ⁻³	kgm ⁻³	kgm ⁻³	kgm ⁻³
10/77	6.68	_	6.53	6.29
11	9.16	-	9.03	8.93
12	5.66	153.53	5.15	4.46
1/78	4.10	142.17	3.74	3.52
2	4.66	147.75	4.19	4.00
3	8.81	240.48	8.65	8.52
4	6.60	192.48	6.36	6.25
5	3.22	124.42	2.59	1.97
6	1.63	72.51	1.44	1.26
7	1.54	85.57	1.39	1.22
8	2.58	97.40	2.54	2.51
9	2.72	122.19	2.43	2.24
10/78	5.22	185.79	5.12	5.06
11	6.09	173.70	5.65	5.15
12	6.85	235.83	6.61	6.45
1/79	6.51	204.15	6.05	5.55
2	13.89	329.05	13.59	13.30
3	9.65	227.13	9.46	9.35
4	4.91	143.09	4.61	4.44 .
5	5.79	175.53	4.00	3.16
6	2.77	93.17	0.47	-4.85
7	6.34	175.67	4.46	1.54
8	5.51	167.67	5.16	4.51
	Sales and the sa		St. Marris Day 100	

Table 6.26: Film accumulation expressed in corrected and uncorrected forms including percentage saturation of voids in the mixed filter.

			,		
PLASTIC MEDIUM	Film Weight (V.S.)	Film Weight (Total)	Film V.S.(NG) - macro	Film V.S.(MS) - macro	Neutron Probe % Sat.
	kgm ⁻³	kgm ⁻³	kgm ⁻³	kgm ⁻³	%
10/77	5.53	_	5.31	4.97	3.68
11	8.31	_	8.16	8.09	6.09
12	8.89	192.75	8.78	8.72	4.48
1/78	6.85	145.54	6.29	5.93	4.03
2	6.20	143.66	5.53	5.20	3.84
3	6.70	130.35	6.40	6.13	4.24
4	5.00	124.56	4.63	4.26	2.84
5	2.33	51.66	1.51	0.40	1.72
6	2.02	47.47	1.25	0.08	1.22
7	1.02	35.89	0.87	0.65	1.23
-8	2.27	61.53	2.26	2.23	2.26
9	4.71	108.66	4.50	4.37	, ,
,					
10/78	6.11	150.43	5.81	5.64	-
11	8.59	206.76	8.12	7.52	-
12	9.65	246.03	9.57	9.45	-
1/79	6.45	136.60	6.02	5.37	6.01
2	11.38	201.53	11.01	10.42	-
3	13.33	256.93	13.24	13.17	· -
4	9.05	156.19	8.78	8.56	-
5	7.73	168.29	7.14	6.67	2.11
6	2.23	42.84	0.19	-2.99	-
7	10.90	189.15	9.24	6.59	-
8	9.85	215.09	9.55	9.11	-
	1				

Under normal operating conditions it is very difficult to determine when or whereabouts a filter is becoming choked, or to estimate the degree of utilisation of the medium within the filter. The neutron scattering method does not record the amount of active film present (Section 4.2.2), but simply measures the amount of water present whether this is present as film, animals, humus or even reservoirs of sewage held within the medium. It does, however, provide a useful comparative assessment of the film accumulation without disturbing the medium.

Normal moisture contents in 50 mm slag medium are in the order of 20%, while values in excess of 30% indicate excessive film accumulation and possibly ponding. In the random plastic medium, the voidage was much greater than in the slag and so the film accumulation occupied a smaller proportion of the available space within the medium. Normal moisture contents were less than 10% in the Flocor RC medium, and moisture contents in excess of 15% indicated excessive film.

The neutron scattering results are given in full in Appendix V, and summarised in Tables 6.27-6.29. The slag filter suffered from excessive film accumulation, during the lower loading, not only at the surface but throughout most of its depth from January until April, reaching a critical stage in April prior to sloughing when the film accumulation was extremely heavy. At the higher loading the film accumulation was excessively heavy in the top half of the filter, even in May just after

sloughing had occurred. In the mixed filter (Table 6.28) the accumulation of solids in the plastic portion was always low except for thick surface film growth (top 200 mm) in March prior to sloughing during the lower loading. Film accumulation in the slag portion was greatly reduced, compared to the same depth in the slag filter. The interface region especially appeared to be free from heavy weights of film. At the higher loading more film accumulated in both the slag and plastic portions, although from the results available, not excessively. In the plastic filter, film accumulation was extremely low, with occasional surface accumulations in excess of 15% saturation of the voids during November and March at the lower loading, prior to sloughing. At the higher loading, more film was recorded from the lower depths in the filter, but were well below the 10% level (Table 6.29).

Film accumulation with depth in the slag filter, as measured by the neutron scattering technique. Table 6.27:

(Italics indicate excessive film accumulation)

				-		_								
	L-b	5.79	31.7	38.0	40.2	38.3	30.6	22.8	19.0	19.2	19.2	23.6	29.5	30.2
(s	3.37 m ³ m ⁻³ d ⁻¹	1.79	36.7	32.2	31.0	28.5	24.9	21.7	9.61	18.3	16.9	17.8	18.3	17.9
of void	3.3	9.78	1	ı	1	ı	ı	ı	1	ı	ı	ı	ī	
ration (8.78	15.3	14.4	15.6	15.0	14.1	13.5	13.6	14.1	13.7	14.4	15.0	14.2
Monthly mean moisture content (Percentage saturation of voids)		7.78	24.5	20.1	16.9	13.7	12.2	11.5	11.6	12.0	11.3	12.9	13.3	12.9
ercenta		6.78	9.11	12.5	12.7	12.4	11.7	11.5	11.7	12.5	12.1	12.9	13.6	13.5
tent (P		5.78	2.92	21.5	29.9	22.2	16.3	15.3	18.4	24.7	29.5	32.0	32.6	30.6
ure con	-3 ^q -1	4.78	28.6	22.6	33.0	36.8	32.1	28.9	32.4	35.8	39.0	37.1	35.0	31.7
n moist	1.68 m ³ m-3 _d -1	3.78	35.8	28.4	34.8	35.2	28.6	29.0	32.6	33.9	35.8	33.6	29.5	25.9
hly mea	_	2.78	32.7	27.6	30.8	29.3	24.8	27.0	30.5	31.7	32.8	31.2	28.6	24.9
Mont		1.78	34.0	28.2	27.5	27.9	29.0	31.6	32.3	30.4	27.8	26.5	23.9	20.8
		12.77	24.3	22.2	22.6	24.4	25.2	25.4	25.4	25.1	21.5	20.2	18.5	16.9
		77.11	24.1	21.7	22.8	24.5	20.5	19.0	19.7	19.0	16.5	15.2	13.7	12.1
		10.77	12.9	16.9	19.0	19.0	19.4	18.6	19.8	19.4	18.0	17.8	16.7	14.8
*		Depth	20cm	35cm	50cm	65cm	80cm	95cm	110cm	125cm	140cm	155cm	170cm	180cm

Film accumulation with depth in the mixed filter, as measured by the neutron scattering technique. Table 6.28:

				Month	ly mean	moistu	re cont	ant (Pe	thly mean moisture content (Percentage		saturation of voids)	f voids	(
		,			1.	1.68 m ³ m ⁻³ d ⁻	J _d -1					3.37	m ³ m ⁻³ d ⁻¹	-1
Depth	10.77	11.77 12.77	12.77	1.78	2.78	3.78	4.78	5.78	6.78	7.78	8.78	9.78	1.79	5.79
20cm	5.5	7.9	6.2	6.9	11.4	16.9	9.1	5.0	2.0	2.3	5.3	3.2	12.2	7.9
35cm	7.7	8.9	4.1	4.3	7.5	8.1	3.6	1.4	1.3	1.8	3.5	2.5	6.6	7.3
50cm	8.0	9.0	3.4	3.7	6.4	9.9	3.5	1.4	1.3	1.9	2.5	2.8	9.6	5.9
65cm	7.2	7.7	3.4	3.3	4.9	6.1	3.8	1.5	1.5	8.	2.1	2.7	7.2	3.6 *
80cm	12.7	13.4	7.1	9.9	7.7	10.6	7.1	3.7	3.3	3.5	3.7	5.5	12.1	5.1
95cm	17.9	18.9	12.9	11.5	9.11	15.9	12.5	8.3	7.5	7.6	7.7	10.0	18.5	9.7
110cm	20.6	24.1	16.8	15.5	16.1	19.8	17.5	13.5	11.2	11.0	10.9	13.4	21.7	12.8
125cm	20.1	25.8	18.2	16.8	17.2	1.12	20.1	16.0	12.6	12.5	12.4	14.7	22.7	14.4
140cm	18.2	22.9	17.2	16.1	9.91	9.61	18.8	16.0	12.7	12.6	13.0	15.1	21.2	14.1
155cm	9.91	20.0	16.5	15.5	16.0	19.1	19.0	15.7	12.6	13.0	13.0	14.8	19.7	14.4
170cm	16.3	17.7	16.8	15.5	16.1	18.3	18.2	16.4	13.3	13.1	13.1	14.9	21.0	16.4
180cm	15.2	15.5	15.9	14.6	14.7	17.2	16.8	15.4	12.4	12.1	12.2	13.9	9.61	15.1

*Broken line indicates interface between the plastic and slag medium (Italics indicate excessive film accumulation)

Film accumulation with depth in the plastic filter, as measured by the neutron scattering technique. Table 6.29:

				Month	ly mean	thly mean moisture content (Percentage saturation of voids)	e conte	int (Per	centage	satura	tion of	voids)		
					1.6	1.68 m ³ m ⁻³ d ⁻¹	- ₋ -			9		3.37	3.37 m ³ m ⁻³ d ⁻¹	-
Depth	10.77	11.77	12.77	1.78	2.78	3.78	4.78	5.78	6.78	7.78	8.78	9.78	1.79	5.79
20cm	4.1	11.7	6.5	7.7	10.7	15.6	8.9	4.0	1.6	1.9	6.4	. 1	12.2	4.6
35cm	5.3	17.0	5.2	4.2	4.7	4.2	2.3	1.3	6.0	1.4	4.4	1	9.1	2.7
. 50cm	9.6	8.8	5.1	3.7	3.4	3.2	2.3	1.2	1.1	1.3	3.0	ı	8.0	3.5
65cm	4.3	5.8	4.7	3.6	3.2	3.0	2.3	-:	1.1	-:	1.8	ı	9.9	2.9
80cm	3.9	5.0	5.1	4.6	3.4	3.1	2.2	1.3	<u>ا:</u> ا	1.1	1.4	ı	6.1	2.1
95cm	3.4	4.6	4.6	4.6	3.5	3.4	2.3	1.2	1.2	1.1	1.5	ı	5.1	1.4
110cm	3.3	4.3	4.6	4.0	3.6	3.5	2.4	1.4	1.2	1.1	1.5	ı	4.9	1.3
125cm	3.2	3.7	3.9	3.4	3.1	3.3	2.5	1.5	[:	1.1	1.4	ı	4.3	1.2
140cm	2.9	3.5	3.7	3.2	2.7	3.2	5.6	1.6	1.3	1.	1.4	ı	4.2	1.3
155cm	2.9	3.2	3.6	3.2	2.5	2.9	5.6	1.8	1.3	[:	1.5	ı	4.2	1.4
170cm	2.7	3.0	3.5	3.1	2.7	2.8	2.8	2.1	1.3	1.2	1.6	ı	3.8	1.4
180cm	2.5	2.5	3.3	3.1	5.6	2.7	3.0	2.1	1.4	1.2	1.4	1	3.7	1.5
										-				

(Italics indicate excessive film accumulation)

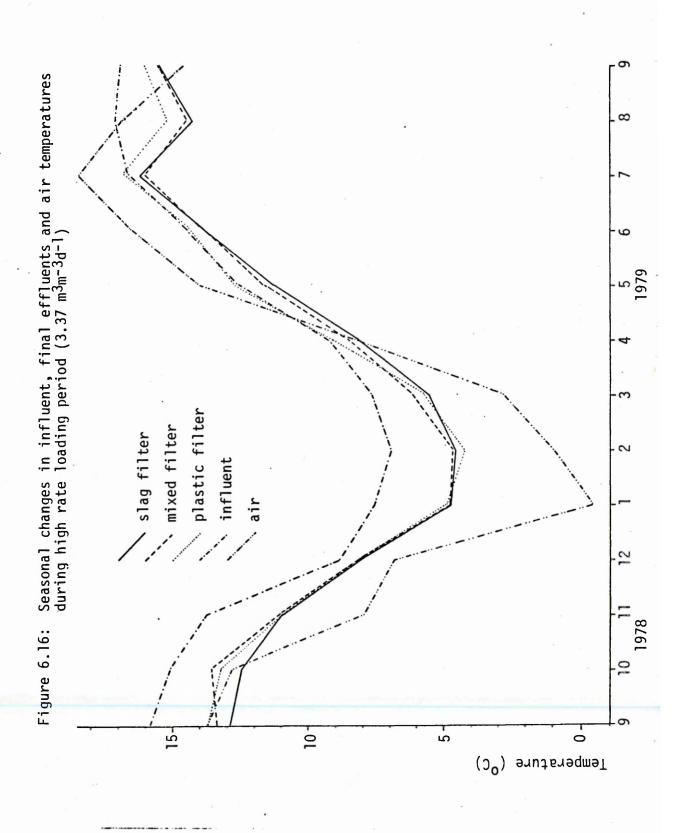
6.4 TEMPERATURE

The performance of filters has been shown to vary seasonally, possibly in response to variations in the ambient (air) temperature (Hawkes, 1957; Bayley and Downing, 1963), the indirect effect of lower temperatures on restricting the life cycles of grazers (Solbé, Ripley and Tomlinson, 1974), and in the accumulation of film (Shephard and Hawkes, 1976).

The recorded changes in the influent temperature during the investigation were between 30 - 50% less than those recorded for the air temperature. The influent temperature varied from 6.5 to 18.0° C, a total range of 11.5° C, while the air temperature varied from -7.2 to 23.2° C, a total range of 30.4° C for the entire 24 month period at the two main loadings (Table 6.30). The seasonal changes in the influent and air temperatures followed similar patterns, both reaching maximum and minimum temperatures during the same periods. The influent temperature remained extremely constant during both main loading periods with mean temperature for each period being 12.4° C. The difference between maximum and minimum air temperature (the range) increased from 20.4 to 30.4° C with the increase in loading, this being due to the extremely low temperatures recorded in January 1979 of -7.2° C.

Reynoldson (1939) noted that the temperature variation within percolating filters was normally less than one third of the change normally occurring in the ambient temperature. This

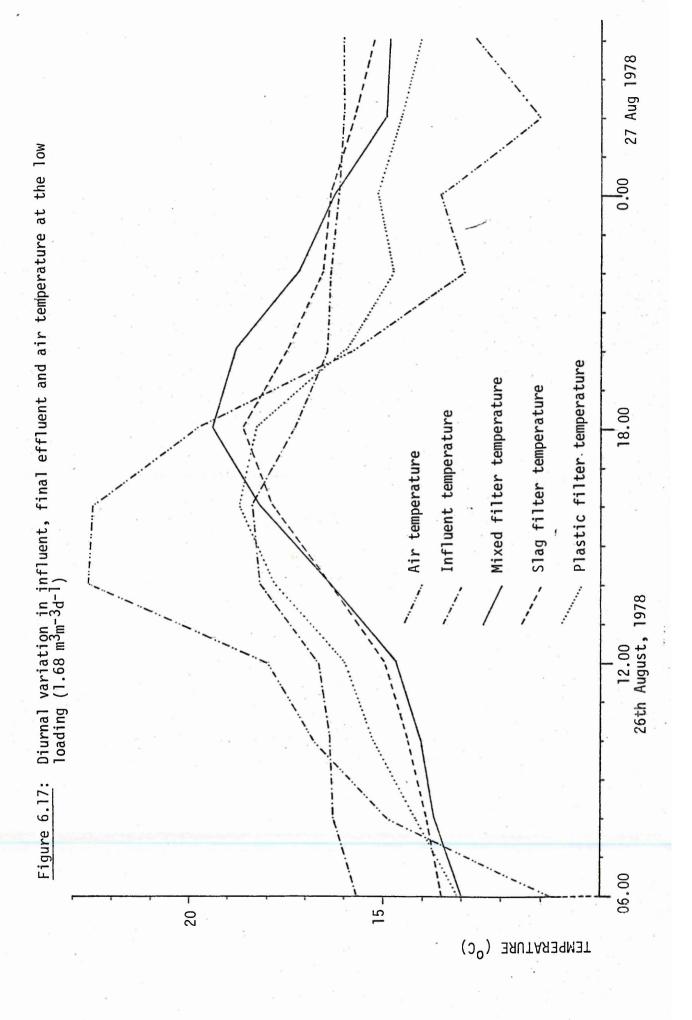

Summary of temperature of the final effluents, influent and air at low and high rate loadings during the twenty-four sampling months. Table 6.30:


		TEMPE	TEMPERATURE		
	Influent (^o C)	Slag filter (°C)	Mixed filter (^O C)	Plastic filter (^O C)	Air (0C)
1.68 m ³ m ⁻³ d ⁻¹					
Mean Minimum	12.4	7.6	9.4	9.5	9.2
Range	10.2	14.9	14.5	15.4	20.4 5.3
95%. 95%. 0.L.	0.05 49 49	1.29	1.27	1.32 49	1.67 49
3.37 m ³ m ³ d ⁻¹			٥		
Mean Minimum	12.4	10.7	10.6	3.7	10.3
Maximum Range	17.5	16.8	17.1	17.9	23.2
S.D. 95% C.L.	3.84 1.33	4.07	4.11	4.43	7.23
u	37	37	37	37	37

was due to smaller seasonal changes in the temperature of the settled sewage and to the heat produced by the metabolic activity of the film, and has been similarly demonstrated by numerous other workers (Lloyd, 1945; Mills, 1945; Tomlinson and Hall, 1950; Hawkes, 1963).

At the low loading rate the minimum, mean and maximum temperatures were similar in all three pilot filters (Table 6.30). On average the warmest effluent (9.7°C) was recorded in the slag filter, with the plastic filter having the widest variation in temperature for the year. At the higher loading the range of final effluent temperatures from all the pilot filters decreased by about 1°C compared to the previous lower loading. The mean final effluent temperatures all increased at the higher loading with the plastic filter having the highest mean temperature at 11.1°C and also the widest range of temperatures at 14.2°C. The final effluent temperature of the three pilot filters followed a similar seasonal pattern (Figure 6.15), with the plastic filter being more affected by extremes of air temperature than either the slag or mixed filters.

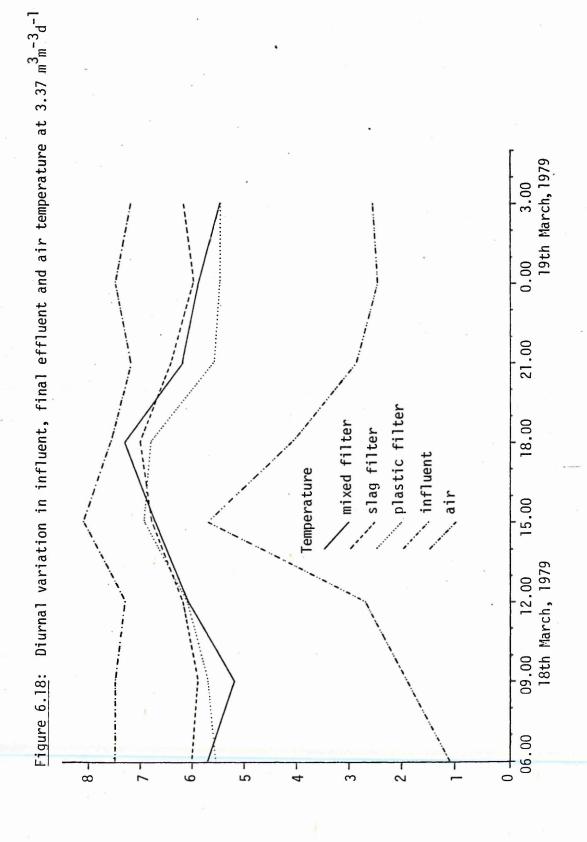
The temperature of all the final effluents at the higher loading (Figure 6.16) followed the seasonal variations in influent temperature. With a greater correlation than recorded at the lower loading, indicating the effect of the increased volume of influent sewage on the overall temperature of the final effluents. The final effluent temperature of the slag filter followed the influent temperature more closely than either the other filters, indicating that the fluctuations in the air temperature had least effect on this filter. The



temperature of the slag and mixed filters appeared related at the higher loading, although the temperature of the mixed filter was also affected by the air temperature. For example the final effluent temperature in the mixed filter was lower than the slag filter during the colder months but in July 1979 when the maximum air temperature was recorded, the final effluent temperature in the mixed filter exceeded that of the slag filter.

The final effluent temperature of the plastic filter was influenced by both the influent and the air temperatures. The final effluent temperature never fell below 3.7°C, but responded to increases in the air temperature during the spring and summer by producing a consistently warmer final effluent than the other pilot filters.

Appreciable diurnal variations in the air temperature were recorded at both loadings. At the low loading (Figure 6.17), both the influent and air temperatures had the same diurnal pattern, indicating that the influent temperature was affected by the air temperature. The final effluent from the plastic filter was subject to relatively large and sudden variations in temperature compared with either of the other filters. A time lag between maximum air and influent temperatures, and the resulting maximum temperatures of the final effluents, was observed. In the plastic filter the time lag was about half that recorded for either the mixed or slag filters.


During the night and early hours of the morning, the influent temperature maintained the temperature of all the filters

against the lower air temperature. The increase in the air temperature during the day resulted in the filters producing final effluents during the early evening which were several degrees warmer than the influent temperature. It appears that the plastic filter (Figure 6.17) is more affected by changes in the air temperature, and is observed to respond quickly. The slag filter appeared 'buffered' against sudden changes in the air temperature, although when it is higher than the filter temperature, some heating of the medium is recorded after a period of several hours. The plastic layer lowered the heat retention and production capacity in the mixed filter compared with the slag filter, resulting in lower heat retention during 0.00 to 12.00 hrs, but greater heat assimilation than the slag filter during the hours 12.00 to 0.00 daily.

The diurnal variation in temperature at the higher rate is shown in Figure 6.18. The temperature scale has been expanded over the smaller range as the variation of temperature is much reduced compared to the previous loading. All the filters responded to the influent and air temperatures as before, with the plastic filter associated with the air temperature, and all three filters reproducing the lag response to the maximum air and influent temperatures. Least variation was observed in the slag filters with greatest variations in diurnal temperatures recorded in the mixed and plastic filters.

The temperature variations recorded in the pilot filters were in excess of those normally associated with biological filtration (Wheatley, 1976). The temperature differences recorded in the pilot filters were therefore most likely exaggerated

with variations in the temperature having a greater effect due to the small scale of the pilot filters. There was also a problem with heat transfer through the walls of the filters. The pilot filters were built above the ground and the concrete walls, although thick enough to offer some insulation, allowed heat transfer between the filter medium and the air outside. Changes in the air temperature, wind velocity affecting heat loss from the walls, and the absorption of heat by solar radiation all caused temperature changes to occur in the medium immediately adjacent to the walls within the filters, which were closely recorded by the thermocouples inside the pilot filters. There was a clear diurnal variation in the temperature in the medium immediately adjacent to the wall, getting warmer during the day and cooler during the night. The temperature of the central core of the filters remained far more constant. In fact the core temperature in the slag medium, as measured by the central thermocouple column, remained extremely constant with small changes in temperature occurring over long periods, i.e. in excess of six hours, whereas the temperature in the plastic medium changed far more rapidly, often by 10°C within thirty minutes.

There was some loss of heat from the influent as it left the distributor and reached the surface of the filters, a distance of 500 mm. During the winter the temperature gradually increased with depth due to heat production from microbial activity, although the medium adjacent to the walls of the filters remained cooler. In the summer the influent retained more of its original heat and the greater microbial activity meant that again the temperature of the influent sewage

increased with depth but to a greater degree than before. The metabolic rate increases exponentially with temperature and so greater temperature productions are to be expected during the warmer months. This was reflected in the performance results, which were generally worse during the colder months except during the sloughing period in the spring.

During the present investigation the temperature of the slag filter was closely related at both loadings to the temperature of the influent. The temperature of the influent sewage was affected by the air temperature (Figures 6.15, 6.16), and during extremely cold conditions the influent was also cooled considerably in the fall from the nozzle to the surface of the medium. Although the temperature of the surface layer of medium was clearly related to the influent temperature, the core temperature of the filter remained more or less constant due to the heat production from biological oxidation. This was shown by the close correlation between the influent temperature and the performance of the slag filter at both loadings which was not seen in either the mixed or plastic filters.

The slag filter comprises of 48.5% solid material which is able to retain the heat compared to 8.7% in the plastic and 31.9% in the mixed filters. Therefore with more heat retaining material, there is less voidage and so lower potential ventilation than in either the plastic or mixed filters, and it can be seen why the slag filter is such an effective buffer against the changes in air temperature, the central core of the filter being kept at constant

temperature by the heat produced from biological oxidation.

The temperature of the plastic filter was influenced far more by the air temperature than that of the influent due to the greater voidage giving rise to excessive ventilation and therefore more heat exchange. The plastic filter was seen to respond quickly to changes in air temperature (Figure 6.17) after showing large variations in diurnal temperature which was not reflected in the seasonal data. Bayley and Downing (1963) suggested that with synthetic media with a high voidage, the air temperature and rate of flow of air influenced the temperature of the voidage, but that the temperature of the influent was still the main factor in maintaining the temperature, and to a lesser extent the rate of reaction within the microbial film. The temperature of the influent always prevented extremes of temperature within the plastic filter, and this was seen much more clearly at the higher loading. This is also shown in the very highly significant correlation (P < 0.001) between the performance of the plastic filter and the air temperature at the lower rate of loading but with both the influent and air temperature during the higher loading rate. At the higher loading the volume of heated influent obviously had a greater effect on the overall temperature of the pilot filters generally than at the previous loading.

The mixed filter had a lower portion of slag medium which had a warmer central core, similar to that found in the slag filter. But there were greater fluctuations in the temperature in this part of the filter than in the slag due to less

microbial activity controlling the temperature by a steady output of heat from biological oxidation. Although the top plastic layer was affected by the influent and air temperature more than the same layer in the slag filter, the final effluent temperature of both the slag and mixed filters were always associated. Correlation analysis showed that better relationships existed between the air temperature and the performance of the mixed filter at the low loading, and between the effluent temperature and performance at the higher loading.

The diurnal variations (Figures 6.17 and 6.18) in the mixed filter were not as large as those recorded for the plastic filter but are greater than those in the slag filter. The mixed filter had a smaller area of heat retaining material than the slag, and so heat retention only occurred to a greater extent in the lower half of the filters. The filter was affected by the greater ventilation and the greater potential heat loss at the surface. But when the air temperature increased, then the mixed filter was able to respond more efficiently by gradually increasing the temperature in the top plastic layer which in turn caused the lower slag portion to gradually heat up. When the air temperature was about equal to or just above that of the sewage, the temperature within the plastic and mixed filters increased continuously with increased distance from the surface by an amount depending on the rate of biological oxidation, and to a lesser extent by the amount of heat transferred through the filter walls.

The importance of retention time, also referred to as residence or contact time, in the assessment of the efficiency of percolating filters has been stressed from the earliest times (Royal Commission on Sewage Disposal, 1908). The theory that increased retention time allows more time for the influent sewage to be in intimate contact with the film, therefore allowing maximum exchange of nutrients, has been studied by many workers (Eden, Brendish and Harvey, 1964; Craft et al., 1972; Craft and Ingols, 1973; Cook and Katzberger, 1977), many of whom found that the retention time was associated with the performance. Tomlinson and Hall (1950) studied filter performance over a wide range of hydraulic loadings from 0.4 to 8.0 $\text{m}^3\text{m}^{-3}\text{d}^{-1}$. They found a direct relationship between the permanganate value of the settled final effluents and the hydraulic load, also a logarithmic relationship between the BOD of the settled final effluent and the hydraulic load. The results showed that at a hydraulic loading of $8.0~{\rm m}^3{\rm m}^{-3}{\rm d}^{-1}$ the filter removed 32% of the BOD load at a rate of 0.73 kg BOD $m^{-3}d^{-1}$, whereas at 0.8 $m^3m^{-3}d^{-1}$, although 86% of the BOD load was removed, the removal rate was only 0.20 kg BOD $m^{-3}d^{-1}$. Using the retention time data from the filters at the different hydraulic loadings to determine the rate constant of BOD removal, Tomlinson and Hall discovered that there were in fact two rate constants. They concluded that because the initial removal was so rapid it was likely to be a purely physical process. A similar conclusion had been drawn by Stoddart (1909) some fifty years previously,

who had found that as the hydraulic flow increased, the mechanism of removal changed from being primarily a biological process to a physical one. Eden et al. (1964) examining the measurement and significance of retention in percolating filters, found that there were three controlling factors, the hydraulic flow, film accumulation and the size and shape of the medium. They concluded that although the performance could not be directly related to the film accumulation, the performance could be calculated from the retention time data.

The results of the retention tests carried out during the investigation are summarised in Table 6.31. The data is expressed as times required for the recovery of 16% (t_{16}) and 50% (t_{50}) of the added tracer, taken from the plot of percentage of tracer recovered against time on logarithmic probability paper (Figures 6.19 - 6.23), on which a log normal distribution gives a straight line. The 16 percentile and the 50 percentile (or median) values are chosen since (t_{50}/t_{16}) = σ , the standard deviation of the log normal distribution (Eden et al., 1964).

At the lower loading the slag filter had the longest median retention time (MRT). With a decrease in the film accumulation however, the MRT decreased in both the slag and the mixed filters, remaining constant only in the plastic filter. It has been shown by other workers, and in the case of the present investigation, that the MRT increases with increases in film accumulation at conventional loadings. It is apparent that the flow of influent sewage in the plastic filter at the lower loading is unimpeded during normal film conditions, and

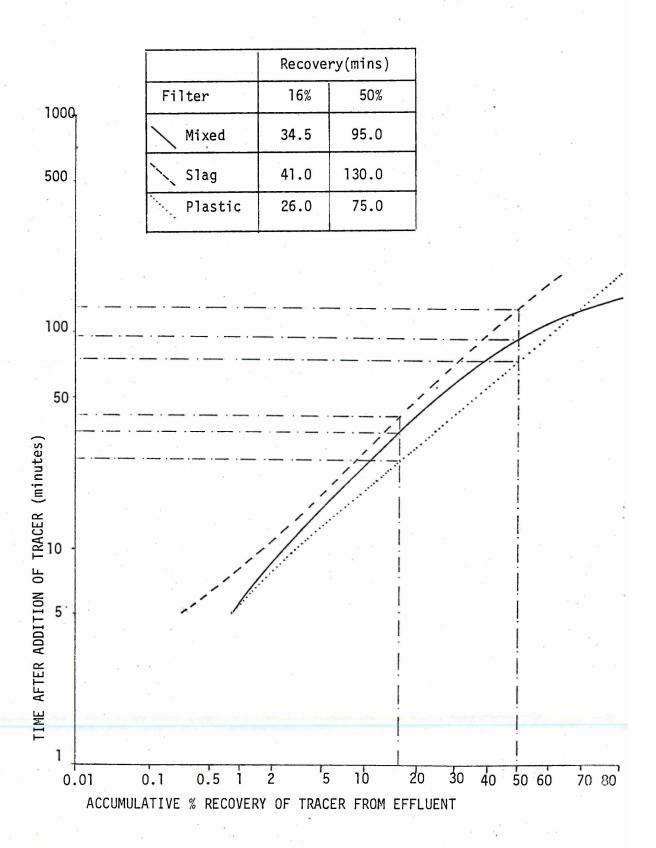


Figure 6.20: Retention test on low rate filters, 17th September, 1978.

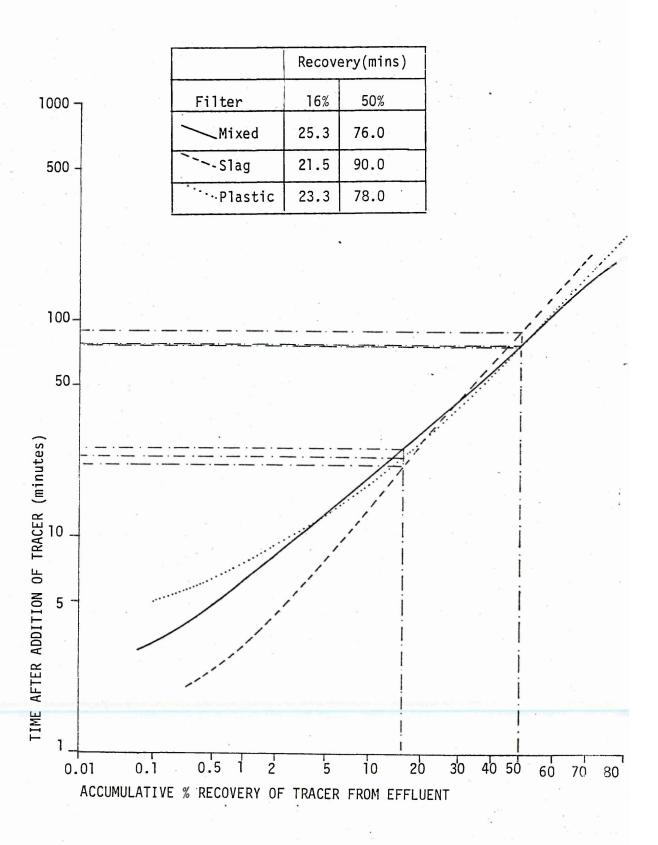


Figure 6.21: Retention test on high rate filters, 11th December 1978

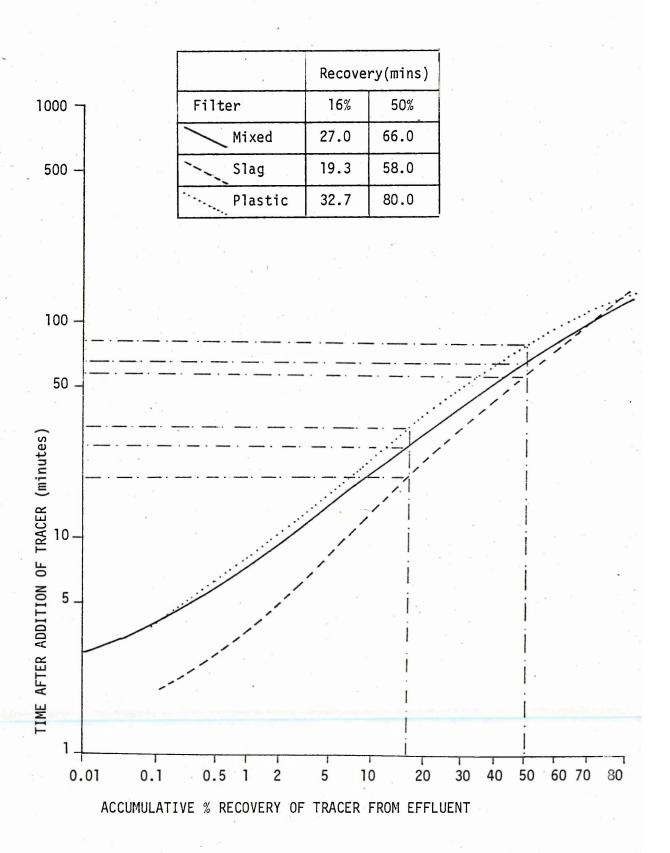


Figure 6.22: Retention test on high rate filters, 27 March 1979

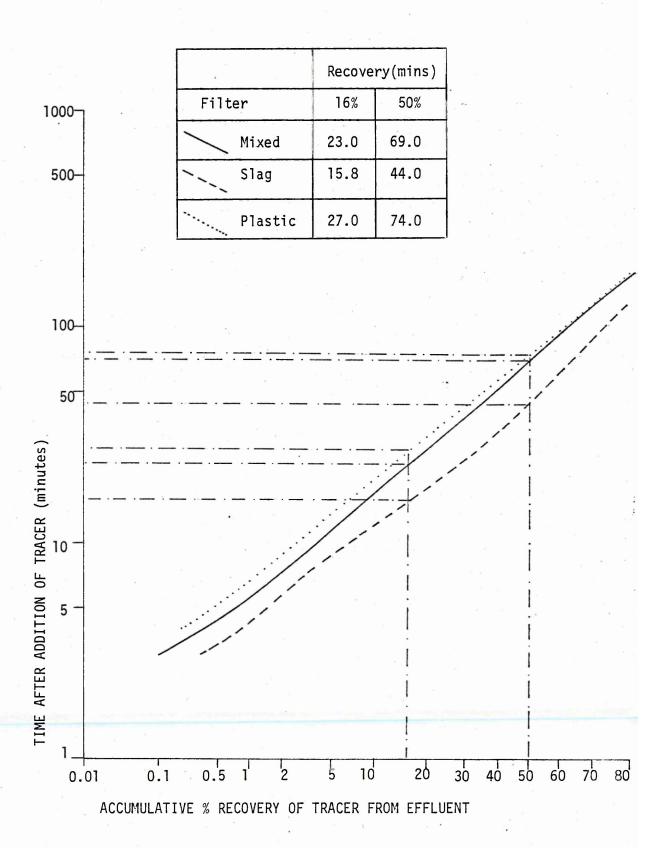
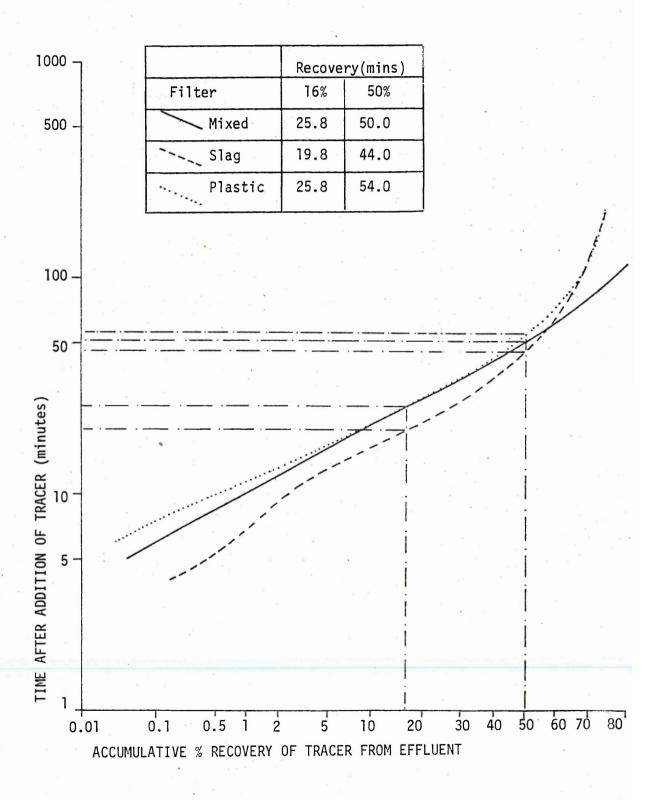



Figure 6.23: Retention test on high rate filters, 26th August 1979

Summary of the retention times measured in the pilot filters, with the removal rates (in parenthesis) and film accumulation. Table 6.31:

	Film	kgm ⁻³		2.33	4.71		9.65	13.33	9.85
PLASTIC FILTER	Ratio	t16/t50		0.35	0.32		0.41	0.37	0.48
	Recovery of tracer	20%		75.0 (1.44)	76.0		80.0	74.0 (1.38)	54.0 (0.83)
		%91		26.0 (1.63)	25.3 (1.58)		32.7 (2.04)	27.0 (1.69)	25.8 (1.61)
MIXED FILTER	Film	kgm ⁻³		3.22	2.72		6.85	9.62	5.51
	Ratio	t16/t50	ē	0.36	0.32		0.41	0.33	0.52
	Recovery of tracer	20%		95.0 (1.78)	78.0 (1.61)		66.0	69.0 (1.35)	50.0
		%91		34.5 (2.16)	23.3 (1.46)		27.1 (1.69)	23.0 (1.44)	25.8 (1.61)
SLAG FILTER	Film	kgm ⁻³		8.32	4.03		3.11	11.33	3.71
	Ratio	t16/t50		0.31	0.24		0.33	0.36	0.45
	Recovery of tracer	20%		130.0 (2.62)	90.0		58.0 (1.14)	44.0 (0.83)	44.0 (0.71)
		16%		41.0 (2.56)	21.5 (1.34)		19.3 (1.21)	15.8 (0.99)	19.8 (1.24)
Flow Rate	Flow Rate and Date		1.68 m ³ m ⁻³ d ⁻¹	5/78	9/78	3.37 m ³ m ⁻³ d ⁻¹	12/78	3/79	8/79

The retention times are expressed in minutes for 16 and 50% recovery of tracer. The rate of recovery (in parenthesis) is expressed as the time in minutes for 1% recovery of tracer over 0-16% and 16-50% ranges. N.B.

hence the MRT remains constant (Table 6.31). When the loading was increased, the MRT was reduced in both the slag and mixed filters, with the best MRT being achieved by the plastic filter due to better redistribution and utilisation of the greater surface area, a phenomenon also recorded in other experimental filters by Porter and Smith (1979).

At the lower loading an increase in film accumulation resulted in an increase in the MRT. This remained true at the higher loading up to an optimum film concentration, above which the interstices of the medium became blocked, channelling occurred and the influent sewage short-cut certain regions of the filter, thus reducing the MRT.

In similar pilot filter experiments, Wheatley (1976) using the same plastic medium, found greater median retention times at a hydraulic loading of 2.4 $\mathrm{m}^{3}\mathrm{m}^{-3}\mathrm{d}^{-1}$ compared with those at a loading of 1.2 $m^3m^{-3}d^{-1}$. The retention time data were not directly related to performance, and he concluded that the increase in retention time was due to greater film accumulations at the higher loading rate. The median retention times recorded from the present investigation are much higher than those obtained by Wheatley. This is because of the greater dispersion of flow over the surface of the filter, effected by using the nozzle distributors, and therefore better distribution within the filter. Eden et al. (1964) demonstrated that improved distribution of sewage and hence wetting of the medium improved filter efficiency. Bruce et al. (1975) showed that the median retention time varied inversely with both the size of the medium and the hydraulic loading. The results

obtained were shown to be due to the physical characteristics of the medium and to the film accumulation which was responsible for increasing the contact time of the sewage. Cook and Katzberger (1977) also observed that the film and humus had a pronounced effect on retention time. They found that large variations in retention time had little effect on organic removal efficiency in their low rate filters, but that small variations in retention time at higher rates of treatment had large effects on the removal efficiency. The results in the present investigation supports the conclusions of Cook and Katzberger (1977) that retention time has a greater effect on the removal efficiency of high rate filters than on that of low rate filters, and that retention time is not directly related to removal efficiency.

6.5.1 ESTIMATION OF FLOW PATTERN

The flow pattern of sewage within filters is tentatively predicted by using the ratio of the 16 percentile to the 50 percentile (t_{16}/t_{50}) of the retention time data, and also by comparing the initial rate of discharge of tracer (0 - 16%) to the median rate of discharge (16 - 50%) it was possible to assess the flow pattern within the filter.

When channels are present in filters owing to excessive film, then some of the tracer will pass through the filter extremely quickly, causing the rate of discharge to decrease after a short period, producing a ratio (t_{16}/t_{50}) of less than 0.32. Under thin film conditions and during periods of normal film

accumulation, this ratio will gradually increase as the MRT and film accumulation increases. It is during this period that MRT is directly associated with the performance. When the ratio becomes excessively large, i.e. in the present investigation in excess of 0.48, this indicates that the influent is being retained in reservoirs formed by excessive film conditions. Although the MRT is longer it is not associated with increased performance. Because the influent is stored in the reservoirs only a very small amount of the liquid is in intimate contact with the film, thus nutrient transfer does not take place so efficiently. An increase in film accumulation either leads to the production of channels or if the excess film is not sloughed or removed by the grazing fauna, the filter becomes completely blocked. These processes are summarised in Figure 6.24.

Eden et al. (1964) observed that the MRT measured in small laboratory filters increased, as the film increased, up to certain heavy accumulation, before the MRT fell sharply back to a lower value (Figure 6.25). The peaks were usually associated with a reduction in the rate of accumulation of film and even with an actual loss in film weight. These results correspond to the phenomenon observed in the pilot filters and support the theory that above a certain weight of film there is a major redistribution of flow occurring within the filter. Work on the periodicity of dosing has shown previously that the retention time could be increased by large intermittent doses of influent (Shephard, 1967) due to storage of liquid in horizontal chambers within the filters. These reservoirs are found in filters at times of high accumulations of film, where the tracer enters quickly but is slowly

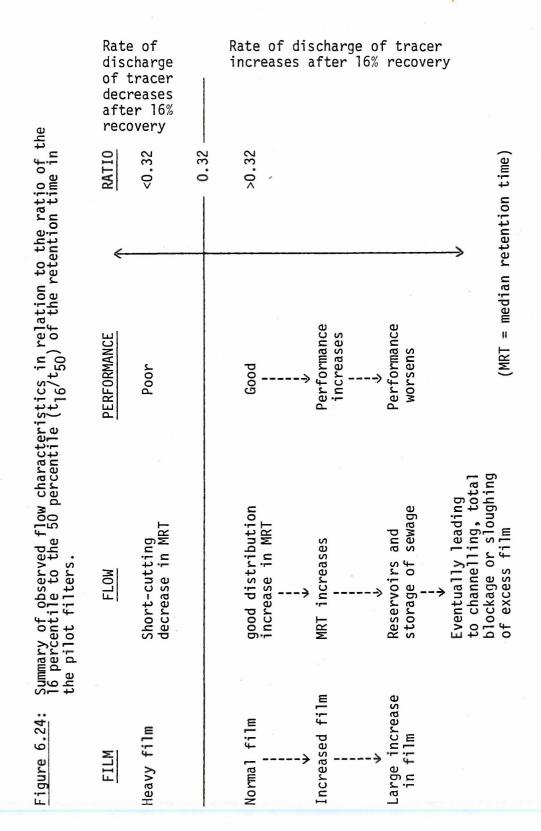
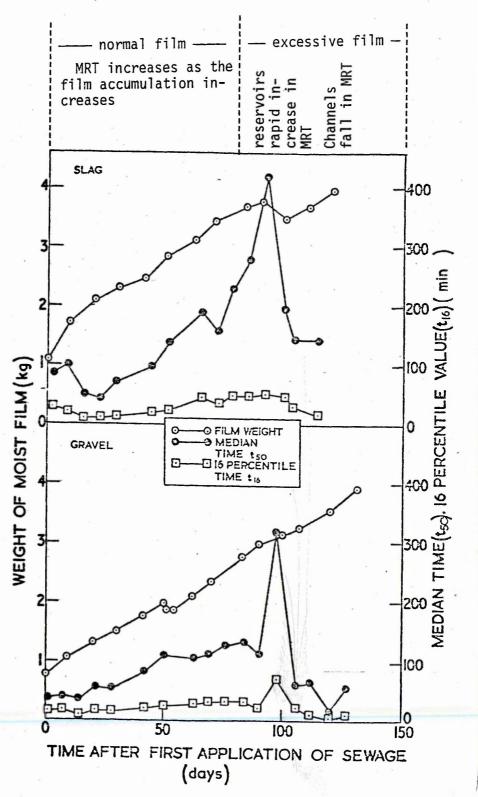



Figure 6.25: Relation between weight of film and retention characteristics of two small percolating filters.

(From: Eden, Brendish and Harvey, 1964).

discharged as more influent sewage replaces and dilutes it.

This explains why the large increase in MRT recorded before the rapid decline in MRT is not directly associated with performance, as the sewage in the reservoirs is not in intimate contact with the film.

7.1 INTRODUCTION

The principal of the investigation was to determine if it was possible to increase the work done by a conventional mineral percolating filter by replacing the top 750mm with a random plastic filter medium, and to assess the changes, if any, in the ecology of the system.

Random plastic filter medium has a high surface area and is able to support more film than a conventional mineral medium of the same grade, and so increase the rate of adsorption of suspended material from the influent sewage. With larger interstices and a greater voidage than the slag, there is less chance of the plastic medium ponding during periods of heavy film accumulation and high loadings. The slag medium has a much lower voidage, and although there is an inverse relationship between the grade of medium and the surface area, the size of the interstices is directly related to medium grade. Therefore there is a greater possibility, when using medium of less than 50mm nominal grade, that the accumulated film will link across the interstices causing ponding, channelling and eventually the complete blockage of the filter. The neutron probe results . indicated that there was always a risk of ponding in the slag filter during periods of maximum film accumulation in the months preceding sloughing. Recent workers have suggested that performance is linked directly with surface area, thus the plastic filter should have theoretically achieved a correspondingly better performance than either the mixed or slag filters at all the loadings studied (Hoyland and Harwood,

1979; Hemmings and Wheatley, 1979).

Most organic matter removal occurs in the top half of a percolating filter, ensuring that the lower portion rarely becomes blocked because of film accumulation. As mineral medium has a relatively high median retention time at the more conventional loadings, and is more able to remove the resistant portions of the organic matter than the plastic medium, it was proposed to use two types of medium in series. By replacing the surface layer of mineral medium with the random plastic medium, it was hoped to remove the maximum weight of organic matter and reduce the risk of ponding in the plastic section, while 'polishing' the sewage in the mineral section of the filter, thus producing a better quality final effluent than could be achieved by using a single medium filter at increased loading rates.

7.2 ECOLOGY

A wide variety of species was recorded from the pilot filters, some 69 species in all, including two unidentified species. Species richness was not significantly different in the pilot filters, although the mixed filter had 19.0 and 7.5% more species than the slag filter at the lower and higher loadings respectively. Species richness was possibly lower in the pilot filters because there was not the variety of niches available and the filter environment was more susceptible to environmental changes compared with full scale units. The

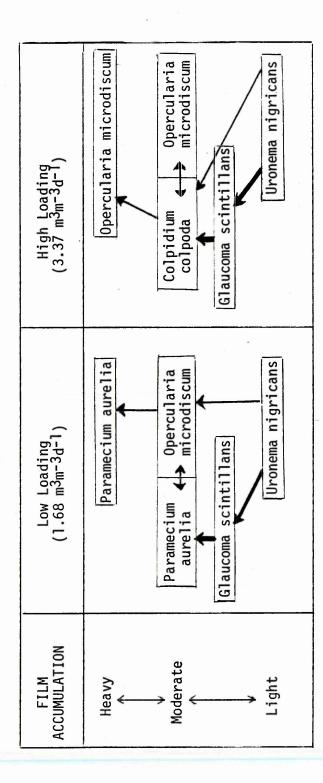
extra sampling baskets showed that the horizontal distribution of both the film and fauna was even (with no significant differences between baskets at the 10% significance level (P < 0.01) being recorded), and that the results obtained from the sampling baskets were representative of the rest of the filter, at least in the top 300 mm.

The basic trophic level in the filters was represented by the autotrophic bacteria. Zoogloeal bacteria were recorded in similar abundances in all three pilot filters, although more of the filamentous bacteria Sphaerotilus natans was recorded in the mixed and plastic filters owing to the greater surface area. As seen in previous studies the nitrifying bacteria were restricted to the lower portion of the filters. In the slag and plastic filters, nitrification was poor and the nitrifying bacteria temporarily restricted in abundance and often eliminated at the higher loading rate of 3.37 m 3 m $^{-3}$ d $^{-1}$. Throughout the higher loading the mixed filter achieved a significantly greater degree of nitrification than either the other filters.

The success of the fungi <u>Subbaromyces splendens</u> in the pilot filters was due to the continuous dosing system used. It was more abundant in the mixed and plastic filters, clearly most successful in the plastic medium, being recorded in thick growths on the surface and throughout the depth of the filters. The algae were recorded in all the filters although they did not play an important role in the purification process.

The greatest species diversity of any faunal group observed

in the filters was recorded for the Protozoa. Although the flagellates were numerically dominant over the ciliates, it was the latter which best reflected the environmental changes in the filters, for example increasing in abundance with the increase in loading. The mixed filter had the greatest species diversity of ciliate Protozoa which is advantageous in allowing the protozoan community to change rapidly in response to changes in the character of the influent settled sewage. It was observed however that whenever one species disappeared from a filter another usually took its place, usually occupying the same niche.


Five dominant protozoan species were recorded, one peritrich,

Opercularia microdiscum, and the rest holotrichs. All these
species were controlled either by the film accumulation or
the temperature, and so the succession of species could be
identified at both low and high rate loadings (Figure 7.1).

The protozoan community structure recorded in the mixed filter
was more stable and the population densities less variable
than in the other filters. The mixed filter also retained
individual ciliate species for longer periods than either
the slag or plastic filters.

The Rotifera were found mainly in the lower sections of the slag and mixed filters. They were scarce in the plastic medium being more abundant in the slag. Perhaps the most important micrograzers were the Nematoda, which reached maximum population densities the same time as the enchytraeids. The nematodes were susceptible to being washed out of the filters, resulting in comparatively high abundances in the

Succession of dominant protozoan species with film accumulation at main loadings of 1.68 and 3.37 $\rm m^3m^-3d^-1.$ Figure 7.1:

slag filter and the slag portion of the mixed filter, due to the smaller voids and rough texture of the medium which reduced the rate of loss in this way.

The Enchytraeidae were found in maximum abundance in the slag portion of the mixed filter at the high loading rate. The greater abundance of adults in the slag medium corresponded to the greater retention of cocoons recorded in the slag and mixed filters. The enchytraeids and nematodes responded quickly to increases in film accumulation, because of the shorter life cycle of the nematodes and the large number of enchytraeid cocoons present in the film. The psychodid larvae always reached maximum abundance a month or two later. Although the Enchytraeidae and psychodid larvae were the most important grazers in terms of overall control of the film, the astigmatid mites were the most abundant grazers numerically.

Maximum population densities of psychodid larvae were recorded in the mixed and plastic filters at the higher loading owing to the greater accumulation of film. The abundance of <u>Psychoda</u> spp. was also directly related to organic load and temperature. The lag phase between maximum film, i.e. maximum food availability, and maximum abundance was longer for <u>Psychoda</u> than for the Enchytraeidae or the astigmatid mites.

The chironomids were an important group but were dominated in the pilot filters by the other grazers, and so took a secondary role in controlling film accumulation. The astigmatid mites were most abundant at the lower loading where they were important grazers, although they played a secondary

role to the Enchytraeidae and the psychodid larvae at the higher loading rate. The mites, and <u>Paracyclops</u> sp., were not abundant in the mixed filter. The Acari, Collembola, spiders and all the adult dipterans, preferred the drier areas found in each module of the plastic medium.

The different characteristics of the media in the mixed filter does provide a wider variety of habitats for the flora and fauna, resulting in an increase in total species richness compared with the single medium filters. The slag portion of the mixed filter prevents rapid changes in population numbers and community structure, and reduces the total number of organisms washed out in the final effluent compared with the plastic filter. Seasonally occurring species remained for longer periods in the mixed filter than in either the slag or plastic filters, emphasising the way in which the two layers of medium provide a greater variety of habitats.

7.3 PERFORMANCE

At the lower loading of $1.68~\text{m}^3\text{m}^{-3}\text{d}^{-1}$, all the pilot filters performed similarly although the slag filter produced a significantly better nitrified final effluent. With the increase in loading to $3.37~\text{m}^3\text{m}^{-3}\text{d}^{-1}$ the performance of the slag filter deteriorated more rapidly than that of the mixed or plastic filters. The performance of the mixed filter was significantly better than that of the slag filter at this loading, in terms of BOD (P < 0.01), suspended solids (P < 0.01)

and ammonia removal (P < 0.01); also it was significantly more efficient than the plastic filter in removing ammonia (P < 0.01). At this loading the mixed filter produced a better quality final effluent than the slag filter for eleven out of thirteen months. The shorter experimental period at the very high loading of $5.72 \, \mathrm{m}^3 \mathrm{m}^{-3} \mathrm{d}^{-1}$ indicated that the mixed filter was also well able to cope with the large increase in organic load, performing significantly better than either the plastic or slag filters.

Regression lines, using the data from the two main loadings and also all the data from the twenty-seven months of operation (Figure 6.9), showed that the mean predicted performance of the slag filter was better than the mixed filter at organic loadings of less than 0.2 kg BOD m⁻³d⁻¹, and better than the plastic filter at loadings of less than 0.35 kg BOD m⁻³d⁻¹. Above these respective loadings, the mixed and plastic filters produced increasingly better final effluents with increasing organic load than did the slag filter. From the regression plots the mixed filter produced a consistently better final BOD effluent than the plastic filter at all loadings. The two regression lines had similar slopes which slightly converged with increased load. The similarity of these lines may well have been due to the surface layer of plastic medium where most organic matter is removed.

Linear regression between organic load and percentage removal of ammonia showed that the slag filter achieved better ammonia removals than the mixed filter at loadings below 0.4 kg BOD $m^{-3}d^{-1}$, while the mixed filter was far more efficient in the

removal of ammonia at loadings in excess of this value.

The results indicated that there was not a direct relationship between the total surface area of the pilot filters and the performance at the loads tested. Clearly the utilisation of the plastic medium depended on the distribution and wetting of the medium within the filter, which was controlled by the hydraulic loadings and the distribution system used. It was shown that most organic matter was removed in the top 300 mm, and that up to 75% removal occurred in the top 900 mm. Therefore the removal efficiency was better related to the surface area of the top 900 mm of the filters than to the surface area of the whole filter.

Removal efficiency of BOD and suspended solids corresponded with the growth rate of the film. Seasonal variation in performance was inversely related to the seasonal pattern of film accumulation with maximum solids removal occurring when the film was thin and growing rapidly and the adsorption rate declining as the film reached maximum thickness prior to unloading, resulting in a reduction of final effluent quality. Temperature controlled the rate of film accumulation although the rate of adsorption was unaffected by temperature. The rate of accumulation depended directly on the rate of oxidation of the adsorbed material which was controlled by the temperature of the film, therefore when cold the film increased as the same amount of organic matter was adsorbed but less was absorbed.

The greater success of the mixed filter over both the slag

and plastic filters can be attributed to its two different layers of medium. Both the mixed and plastic filters achieved higher removal efficiencies than the slag filter at the higher loadings because the top layer of plastic medium was able to remove the bulk of the organic matter present. This was due to the higher surface area of the medium and better redistribution of sewage within the filter with increased load. This produced greater film accumulation which was able to adsorb more of the suspended matter from the influent sewage. In the slag medium at these loadings, heavy film accumulation in the top 300mm led to surface ponding and subsequent channelling, resulting in a decrease in the median retention time and a final effluent containing a greater proportion of partially treated influent sewage.

The success of the fungus <u>Subbaromyces splendens</u> in the plastic medium of the mixed and plastic filters, although it was most abundant during low film conditions, accounted for the rapid recovery of the film and the rapid increase in adsorption rate after sloughing compared to the slag filter. The fungus was able to adsorb and physically trap solids, thus building up the film far more efficiently immediately after sloughing than the very low density of bacteria present.

Although some problems were encountered with excessive growths of <u>Subbaromyces splendens</u>, the high voidage of the plastic medium ensured that the risk of ponding was reduced and that no channelling occurred in either the mixed or plastic filters, ensuring that the maximum median retention times were obtained throughout the year.

The plastic medium caused better redistribution within the filter and this ensured better utilisation of the slag portion. It was probably due to the increased redistribution and also the reduced organic load of the sewage, that no film accumulation or ponding was observed at the interface with the slag medium. It is unlikely that the plastic layer of medium would remove enough organic matter to allow the rest of the filter, the slag portion, to act as a normal single-pass mineral filter at such increased organic loadings. The slag portion of the mixed filter was however achieving a greater removal of the more resistant BOD fraction, better solids removal and finally more efficient nitrification on an influent with most of the organic matter removed prior to this depth, compared with the same depth in the single medium filters.

At the lower loading, the slag filter had sufficient surface area to ensure that a good effluent was produced, even though the high film accumulation recorded within the filter showed that it was obviously working close to maximum capacity. Its success was primarily due to an ability to buffer the active film against sudden temperature changes. As the slag filter contained a greater proportion of solid material which adsorbed and retained heat, the filter was able to carry out biological oxidation at a faster rate than the other two filters. The central core of the filters also produced a constant amount of heat from biological oxidation, which was more efficiently retained within the slag filter.

The accumulation of film in both the mixed and plastic filters increased with the increase in loading but the slag filter

retained the same weight of film, suggesting that no further voidage was available for film accumulation, therefore the rate of removal of organic matter was least efficient in the slag filter at the higher loading.

Higher rates of filtration are known to affect a number of processes, notably there is a change in sludge characteristics, a depression of nitrification and a more even BOD removal down the depth of the filter. These characteristics were all observed in the slag and plastic filters but were less obvious in the mixed filter. The slag portion of the mixed filter was able to retain some heat and so reduce the wide temperature variations recorded in the plastic filter. With less ventilation than the plastic filter, the slag portion buffered the temperature sufficiently well to reduce the film accumulation by greater biological oxidation at the warmer temperature. The slag portion also increased the median retention time, and with more carbonaceous matter removed in the upper plastic section, the concentration of organic matter was greatly reduced in the lower slag portion preventing inhibition of nitrification by hetertrophic competition as seen in the slag filter. The smaller fluctuation in film temperature also increased nitrification, as it has been shown that nitrification is inhibited by fluctuating and low temperatures.

There was more use made of the lower slag portion in the mixed filter than in the equivalent depth of the slag filter owing to better distribution of sewage within the filter, less channelling and less accumulation of humus and debris.

The mixed medium behaved as a high rate filter capable of some nitrification, producing a more stable and easily settled sludge compared with the slag filter. It offered advantages of increased capacity over the conventional filter, and the possibilities of increased performance in the ADF or recirculation processes, and a better final effluent quality over high rate plastic filters using random medium in treating loads in excess of 1.0 kg BOD $m^{-3}d^{-1}$.

The plastic filter failed to achieve the same rates of removal as the mixed filter, and although the top 900 mm of the plastic filter was achieving a good removal efficiency, the lower half did not enhance the overall quality of the effluent, and so offered no real advantages over the modular plastic medium. Surprisingly, the plastic filter was observed to be the least effective in treating sudden increases in organic loading, and the high voidage did not facilitate sloughing to any greater extent; unloading of the film took just as long in the plastic filter as in either of the others. The confidence limits for all the main performance parameters were wider in the plastic filter, suggesting that it was more susceptible to environmental variables such as ambient temperature. In fact, due to the higher constructional costs involved in using random plastic medium as compared with the modular medium, it appeared to have little advantage when used primarily as a roughing filter.

7.4 COST

The possible advantages of percolating filters over the activated sludge and other treatment processes have been the subject of much discussion especially in terms of cost. Most studies have clearly indicated that the activated sludge process is by far the most cost effective way of treating a domestic sewage from populations in excess of 100,000 (Bruce, 1969).

Treatment works using percolating filters are extremely common and are still being constructed. In a comparative study by Hambleton and Kirby (1974) it was found that a considerable saving was achieved if a high rate plastic filter was used in conjunction with low rate filtration instead of just low rate filters, but that it was still considerably more expensive than activated sludge. Up to quite recently the advantages of filtration, such as savings in energy, were offset by the cost of the area of ground required and the excessive construction costs (Clough, 1975). In a re-evaluation of the cost of sewage treatment, Clough (1979) states that the era of cheap energy has almost certainly passed and that current design and selection of plant should take into account the probable energy costs during the life of the plant, which are virtually certain to increase. He felt that this, coupled with the present reduction in anticipated real rate of return on capital, is likely to lead to a swing away from activated sludge towards low rate filtration where space was available, and towards the wider use of high rate plastic media filtration followed by low rate filtration using conventional mineral media. It was originally thought that prefabricated units of similar design to those used to hold the modular type of plastic medium would also be of sufficient strength to house the random plastic medium. The potentially high bulk weights of the random plastic pilot filter recorded during the present investigation indicate that such structures may not be suitable. Recent research by Campbell (1979) has shown that the most economical system for containing such medium as Flocor RC are of sufficient strength to 'house' mineral media. Therefore percolating filters of identical dimensions will show no cost advantage for the civil engineering and construction work for filters using random plastic medium, and therefore savings must be related primarily to improvements in performance achieved per unit volume of medium installed.

The comparative cost of media indicates how expensive plastic medium has become due to increases in oil prices (Table 7.1). The price of an alternative plastic medium of similar dimensions, with a surface area of 124 m 2 m $^{-3}$, Biopac 50E*, is included in Table 7.1 for comparison.

Because the pilot filters were run at much higher loadings than conventional plants, and produced good final effluents, it was not possible to estimate any advantage from the data directly. The conventional loading for a low rate filter producing a 20:30 standard effluent, highly nitrified, is in the order of 0.09 to 0.11 kg BOD $\rm m^{-3}d^{-1}$ (Institution of Public Health Engineers, 1978). The range of loadings in the present

^{*}Manufactured by Hydronyl Ltd., Fenton, Stoke-on-Trent, Staffordshire, England.

Table 7.1: Comparative cost for 50mm filter medium. Price is given for the graded medium delived to the site and placed in the filter.

Medium	Cost(£m ³)			
Blast furnace slag	20.00			
Flocor RC	46.50			
Biopac 50E	57.00			

investigation were from 0.28 to 0.85 kg BOD $m^{-3}d^{-1}$.

From the regression analysis it was possible to predict the maximum organic load for each filter to achieve a 20 mgl⁻¹ BOD final effluent. The mixed filter showed a 20% increase in efficiency over the slag filter in producing a final effluent of this quality. Therefore, using the figure of 20%, a cost benefit analysis of the new system was carried out. It was also assumed that the thickness of the replacement layer was 750mm as used in the pilot filter, although the removal efficiency of the plastic medium showed that removal decreased with depth and that the majority of removal occurred in the top 300mm. Therefore optimum thickness of the replacement medium would most likely be between these two depths.

Two systems for increasing the loading capacity (uprating) of the filters have been examined: i) by digging out the top layer of mineral medium from the filter and replacing it with the new medium, or ii) by raising the height of the distributor arm and inserting a collar, where there is sufficient hydraulic head, and stacking the plastic medium on top of the mineral medium either by constructing a simple prefabricated wall or by having the medium in nylon sacks or galvanised baskets or containers. The advantage of the latter method is that the overall capacity of the filter is extended even further and these filters should theoretically produce even better final effluents with a greater degree of nitrification.

The cost of uprating a large works using single filtration is probably totally prohibitive (Table 7.2), the cost of extending the works by the construction of new filters being three times cheaper. In normal circumstances the design of a sewage works allows for a certain amount of expansion, but if this required the costly acquisition of extra land or if the works was unable to expand by further building then the extra cost of uprating may be justified. As the main cost of uprating is due to the cost of plastic medium, research must be carried out to ascertain precise depths of medium to be replaced. If this optimum depth was 300mm for example, then the total cost of uprating the filters in Table 7.2 would be reduced by 51% to £111,720 which would make the possibility of uprating conventional filters a viable proposition.

Clearly the best advantage of uprating single-pass conventional filters is a) as a temporary measure, when there is a large transient population requiring extra treatment capacity at the local sewage works; b) in an emergency, when there is a failure in other filters or in a pretreatment system where extra capacity is required, or when an increase in performance is required during periods of environmental stress in the

TABLE 7.2: Comparative cost of increasing filter capacity of sewage treatment works by 2000 m³ by a) constructing new filters and

b) uprating existing filters.

a) Total cost of new filter (assuming no land cost-expansion allowed for in the original design)

TOTAL	£79,263
Media delivery and placement of 50mm blast furnace slag	40,000
Distribution system*	4,266
Civils cost*	£34,997

b) Total cost of uprating existing filters (cost of uprating 5 x 2000 m³ filters which is equivalent to a total increase of 2000m³ capacity)

Media removal	£33,600
Flocor R.C. media	195,300
TOTAL	£228,900

Each 1.8m deep filter had the top 750mm of mineral medium replaced with Flocor RC medium to give an equivalent increase in capacity of 2000m³.

^{*} calculated from tables in Water Research Centre (1977c).

receiving water body due to such factors as pollution or low flow; or c) in a small treatment works where the population is small and the construction of a small housing estate or a hotel could result in the overloading of the small treatment works (Table 7.3). In examples a) and b), the only way the capacity of the filters could be increased would be by either improved operational methods or by uprating by the surface bag technique, where the prepacked bags could be fitted in place and the distributor arm raised within hours (Tench, 1979). In example c) the construction of a new or an extension to an existing sewage works would probably not be justified, whereas the cost of uprating the filters would be acceptable (Table 7.4).

The system of uprating filters could be advantageous at higher rates of loading and benefits would be obtained when used with the ADF and recirculation processes. If a conventional single filtration plant was being improved to run on an ADF system, then the filters could possibly be uprated without having to replace all the mineral medium with a coarser grade. The advantages of the mixed medium at the organic loadings associated with ADF is that it can achieve far greater purification and nitrification than the normal mineral medium or plastic medium. At loadings in excess of 1.2 kg BOD m $^{-3}$ d $^{-1}$ the filters are used as roughing filters, and the mixed media will be less effective than the plastic medium in treating such heavy organic loads.

Therefore mixed media has a role to play at those loadings in between low rate and truly high rate, and could well offer

Theoretical increase in volume of filter, total organic load and increase in population served using uprated filters. Table 7.3:

	Extra people served by new filter	38	16	151								
ting filters	Extra people served by new filter (P.H.E.)* (CP302)**	33	99	100	133	166	200	233	566	300	333	
Uprated percolating filters	New load kg BOD m ⁻³ d ⁻¹	12	24	36	48	09	72	84	96	108	120	
	Theoretical volume of filter (m ³)	120	240	360	480	009	720	840	096	1080	1200	
	Population served (CP302)**	193	455	755								
ng filters	Population served (P.H.E.)*	191	333	200	299	833	1000	1167	1333	1500	1991	
Standard rate percolating fil	Total load kg BOD m ⁻³ d ⁻¹	10	20	30	40	20	09	70	80	06	100	
Standard	Volume of filter (m ³)	100	200	300	400	200	009	700	800	006	1000	

Population estimated from the Institution of Public Health Engineers, 1978. P.H.E.

Table 7.4: Total cost of uprating small percolating filters by twenty percent.

<u>-</u>											
Total cost of uprating filter $(\mathfrak{t})^*$	By raising distributor	2170	4240	6310	8380	10450	12520	14590	16660	18730	00000
Total cost of $(\mathfrak{t})^*$	By medium replacement	2180	4360	6540	8720	10900	13080	15260	17440	19620	00016
Cost of replacing medium (\mathfrak{k})	By raising distributor**	310	520	730	940	1150	1360	1570	1780	1990	0000
Cost of re	By medium replacement	320	640	096	1280	1600	1920	2240	2560	2880	2300
Total cost of replacement	medium (£)	1860	3720	5580	7440	9300	11160	13020	14880	16740	10500
Total volume of filter	(m ³)	100	200	300	400	500	009	700	800	006	0001

* Price does not include cost of splash plates which are recommended.

^{**}Price for the raising of the distributor and inclusion of new collar is calculated on a sliding scale from £100 to £200. The price for enclosing medium in either galvanised metal or nylon containers is estimated at £5 per m³.

advantages in uprating small filters and as a temporary and emergency system for increasing the capacity of conventional plants. Surface replacement not only extends capacity but also prevents surface ponding, increases the distribution of sewage within the filter and increases the ventilation to the surface of the filter where maximum oxidation occurs.

7.5 CONCLUSION

Much research has been recently undertaken to improve the performance of percolating filters by better design (Oleszkiewicz, 1976; Sidwick, 1978), flow and load control (Young et al., 1978), better process control and automation (Water Research Centre, 1977d) and also by the addition of buffers to the influent (Neely, 1975; Shriver and Bowers, 1975; Barber, 1977). Even after eighty years of research into improving the system, it has largely remained unaltered (Thompson and Maguet, 1976; Sidwick, 1976).

The problem of uprating existing works has received less attention, and at present increasing capacity is limited to either the addition of roughing filters, modification of the process using ADF or recirculation or the construction of additional filters. Mann (1979) reported that the capacity of small percolating filters can be improved to a limited extent by adding extra layers of medium to the surface, thus

increasing the overall depth of the filter. This is only possible if the existing medium is of suitable size and good quality and where hydraulic conditions permit. The depth of small filters can be profitably increased to about 2.5m by this method.

Experiments were carried out by the Anglian Water Authority to assess the effectiveness of uprating percolating filters by replacing the surface mineral medium with random plastic medium. A pilot filter at Burntwood and a full scale trial at Ruskington tested the mixed media. At Burntwood the filter was loaded at various loadings between 0.33 - 0.86 kg BOD m⁻³ d⁻¹ while at Ruskington the filter was loaded at between 0.11 and 0.39 kg BOD $m^{-3}d^{-1}$. The plastic medium used in these experiments had a surface area 62% less than that recorded for Flocor RC. So the plastic layer offered no surface area advantage over the mineral medium used and was also less effective in redistributing the sewage within the filter, thus making maximum use of all the available medium. Both filters were loaded for very short periods varying from 2 to 10 weeks with one period in the pilot filter of 30 weeks duration at 0.75 kg BOD $m^{-3}d^{-1}$. The results in both cases show that at relatively low loadings, compared with the claimed loading for the plastic medium, there was no advantage to be gained in replacing the conventional medium (Pullen, 1977).

The results obtained in the present study do not support the results and conclusions obtained by Pullen, who was expecting a five-fold increase in performance. Although no information or data are available, it is clear that the poor results

obtained at Ruskington and Burntwood were partly due to the simple 'flow on' distribution system employed which failed to take full advantage of the surface layer of plastic medium, as occurs when either nozzles or splash plates are used, and this resulted in a low retention time within the filters studied.

The advantages of continuous dosing using nozzles observed during the present investigation were: i) controlled fly emergence, ii) utilisation of all the surface layer of the filter, iii) maximum utilisation of available film, iv) maximum distribution, which reduced the risk of ponding and channelling, v) prevention of surface drying of medium in summer, and vi) reduction of heat loss from the filter in the winter. These observations indicate the need for more research into operational methods to optimise the performance of percolating filters.

- a) The different characteristics of the media in the mixed filter provided a wider variety of niches for the flora and fauna, resulting in an increase in total species richness compared with the single medium filters. The variety of such niches were however limited by the small nature of the pilot filters which was more susceptible to environmental changes than the full scale units.
- b) Seasonally occurring species remained for longer periods in the mixed filter than in either the slag or plastic filters emphasising the way in which the two layers of medium provided a greater variety of habitats.
- c) The slag portion of the mixed filter prevented rapid changes in population densities and community structure, and also reduced the total number of organisms washed out in the final effluent compared with the plastic filter.
- d) The greater surface area of the plastic medium resulted in larger population densities of many organisms being recorded, compared with the slag filter, especially during the higher loading $(3.37~\text{m}^3\text{m}^{-3}\text{d}^{-1})$ when maximum utilisation of the medium occurred. The greater voidage also ensured sufficient ventilation to support the increased population densities in the plastic medium. The anaerobic conditions in the slag filter during times of maximum film accumulation reduced the population densities of all the macroinvertebrates studied.

- e) Heavy surface growths of the fungus <u>Subbaromyces</u> <u>splendens</u> occurred in the pilot filters due to the continuous dosing system used. The fungus grew more successfully on the plastic medium than on the slag medium.
- f) Greater species diversity was recorded in the Protozoa, than in any other faunal group examined. The mixed filter had the largest diversity of protozoan species. It was observed that whenever one species disappeared from a filter another usually took its place, usually occupying the same niche.
- g) The protozoan community structure was more stable in the mixed filter, with less variable population densities. The seasonally occurring species were recorded for longer periods in the mixed filter compared with either the other pilot filters.
- h) The abundance of <u>Psychoda</u> spp. as larvae was directly related to organic loading and temperature. The psychodid larvae remained the dominant macrograzer in the filters for longer than either the Enchytraeidae or the astigmatid mites, the other main macrograzers.
- i) The Enchytraeidae and psychodid larvae were never recorded together in large numbers, as the enchytraeids normally reached their maximum abundance before the larvae. As the psychodid larvae reached maximum abundance the population density of the enchytraeids declined rapidly. Although the larvae were the most important macrograzer in terms of film control, the Acari were the most abundant macrograzers numerically.

j) The Rotifera, Nematoda and the Enchytraeidae were most susceptible to being washed out of the filters, especially from the smooth surfaced plastic medium filter. The Acari, Collembola, Aranae, adult dipterans and the pupae of Sylvicola fenestralis were all found in greatest abundance in the drier areas of the plastic medium.

PERFORMANCE

- 8.2
- a) At the lower loading $(1.68 \text{ m}^3\text{m}^{-3}\text{d}^{-1})$ all the pilot filters performed similarly in terms of BOD and suspended solids removal, although the slag filter produced a significantly better nitrified final effluent than either the mixed or plastic filter.
- b) The mixed filter performed significantly (P < 0.01) better than the slag filter at the higher loading (3.37 $\text{m}^3\text{m}^{-3}\text{d}^{-1}$) in terms of BOD, suspended solids and ammonia removal; producing a better final effluent than the slag filter during 11 out of 13 months sampled. The mixed filter also achieved significantly better (P < 0.01) ammonia removal than the plastic filter at this higher loading.
- c) During the three months maturation period, when the filters were loaded at $5.72~\text{m}^3\text{m}^{-3}\text{d}^{-1}$, the mixed media filter achieved a significantly better final effluent than either the single medium filters.
- d) At the higher loading $(3.37 \text{ m}^3\text{m}^{-3}\text{d}^{-1})$ nitrification was poor and the nitrifying bacteria temporarily restricted in abundance and often eliminated in the plastic and slag filters. Throughout this loading the mixed filter achieved significantly better nitrification of the final effluent than either the other pilot filters.
- e) Regression analysis showed the mixed media filter produced final effluents with lower BOD concentrations than the slag

filter at loadings in excess of 0.2 kg BOD $m^{-3}d^{-1}$. Also the mixed filter achieved greater nitrification than the slag filter at organic loads in excess of 0.4 kg BOD $m^{-3}d^{-1}$.

- f) Removal efficiencies of BOD and suspended solids correspond with the growth rate of film (i.e. the rate of adsorption).
- g) The better removal of organic matter in the top layer of the mixed and plastic filters compared with the slag filter, was due to the plastic medium. The higher surface area, better ventilation and better redistribution of the sewage ensured maximum removal of organic matter, prevented ponding and channeling and a reduction in contact time between the film and sewage.
- h) The rapid recovery of the film accumulation and resultant increase in the adsorption rate of organic matter recorded in the plastic medium after sloughing, was due to the extensive growth of the fungus <u>Subbaromyces splendens</u>. The fungus has the ability to adsorb and physically trap solids, thus building up the film far more efficiently than a 'bacteria-rich' film.
- i) No build up of film or solids was recorded at the interface of the two medium layers in the mixed filter, due to the redistribution of sewage within the filter achieved by the plastic medium.
- j) At the lower loading excessive film accumulation was recorded at various depths throughout the slag filter during the winter months and just prior to sloughing. Surface ponding

and channelling were recorded during the colder months. At the higher loading the film accumulation was heavy in the slag filter and channelling occurred for most of the year.

- k) The slag medium retained heat more efficiently than the plastic medium due to its greater bulk density. Therefore the temperature of the film in the plastic filter was affected more by changes in ambient temperature than the other pilot filters.
- 1) The slag portion of the mixed filter increased the mean retention time, thus increasing the contact time between the sewage and film compared with the plastic filter, and so increasing the degree of nitrification achieved by the filter.
- m) The continuous dosing system used produced better utilisation of the surface medium thus increasing the treatment capacity of all the filters.
- n) Better redistribution ensured that the lower half of the mixed filter was utilised more than in the slag filter, thus the lower portion of the mixed filter achieved more organic removal than the same depth in the slag filter.
- o) The plastic filter failed to achieve the same rates of removal as the mixed filter. Similar removal efficiencies were recorded in the top 900mm of both the mixed and plastic filters (same medium), but the lower half of the plastic filter did not enhance the overall quality of the final effluent and so offered no real advantages over the modular

plastic media at these loadings.

p) Due to the excessive cost of plastic medium, the cost of uprating filters in this way is expensive. Although further research is required to establish the optimum depths of plastic and mineral medium, it is likely that the system will only be cost effective as a) a temporary or emergency system b) for use in small treatment works, and c) for uprating filters for the ADF system.

8.3 SUGGESTIONS FOR FURTHER WORK

8.3.1 PHYSICAL NATURE OF MEDIUM

- a) In order for random plastic filter medium to be competitive with mineral medium it has to be cost effective. More research is required into cheaper methods of manufacture of random plastic filter, perhaps on-site processes, and also the development of alternative cheaper filter media processing high surface areas and large voidages.
- b) Little is known about the effect of age on the mechanical strength of filter medium. Both mineral and plastic media should be examined at regular intervals during use, to test both their chemical and physical stability.
- c) The cost of uprating filters using the layer of random plastic medium depends solely on the depth of plastic medium required. Qualitative studies to assess the optimum depth of plastic on mineral medium are required.

8.3.2 ECOLOGY

a) More intensive quantitative studies are required to

- i) examine the role of the microfaula in controlling the film accumulation, and
- ii) to measure energy flows through the filters, so that percolating filters can be run at maximum efficiency.
- b) Longer term studies of filters at normal loadings are required so that the maturation of filters and the succession of dominant organisms can be studied in detail. Further details on seasonal variation in abundance and on intra- and inter-specific competition are needed before the optimum filter conditions can be identified.
- c) Studies on individual organisms, both the microfauna and macrofauna are required in order that their roles within the filter system can be evaluated.
- d) Large weights of organisms are continuously washed out of percolating filters. It has been proposed by other workers that these animals may be utilised as a source of food for intensive fish rearing. For this reason it is important to quantify the biomass production in relation to medium type and loading rate.

8.3.3 PERFORMANCE

a) Long term studies are required to determine the optimum

operating conditions for maximum treatment efficiency not only for the mixed media but for all types of percolating filters.

- b) More detailed analysis is required of the sludge produced by the mixed media filter, as the treatability of sludge is a major cost-factor in the treatment of sewage.
- c) Further studies using mixed medium filters should be carried out to assess their potential use as nitrifying filters and in the ADF system.
- d) More work on the nitrogen balance in filters is required in order to determine the important sources of nitrogen within filter and how these vary seasonally. The effect of temperature fluctuations on nitrification and the poor nitrification ability of plastic filters should be investigated.
- e) More experience is required in relating the neutron scattering data to operating conditions. Close monitoring of the film accumulation linked with retention times studies should provide the basis for useful predictive models.
- f) The continuous dosing method used during the study increased the performance of all the filters. A detailed study into the efficiency of the various distribution systems available should be carried out, and new methods of sewage application investigated.

REFERENCES

- ALLEN, S.E. (1974). Chemical analysis of ecological materials.

 Blackwell Scientific Publications, London.
- ALLEN, T.S. and KINGSBURY, R.P. (1973). The physical design of biological towers. Proc. 28th Ind. Waste Conf. Purdue University, 462-482.
- AMERICAN PUBLIC HEALTH ASSOCIATION, AMERICAN WATER WORKS

 ASSOCIATION, and WATER POLLUTION CONTROL FEDERATION.

 (1977). Standard methods for the examination of water and waste water. 14th Edn. American Public Health Association Inc., New York.
- ANON. (1974). The work and facilities of the Brixham Laboratory of Imperial Chemical Industries Limited. Wat. Pollut. Contr. 73, (3), 336-340.
- ANON. (1979). Advanced wastewater treatment: A low-risk proving-ground for experiment and invention. World Water, 1979, (6), 29-41.
- BAILEY, N.T.J. (1979). Statistical methods in biology.

 Hodder and Stoughton, London, England.

- BAINES, S., HAWKES, H.A., HEWITT, C.H. and JENKINS, S.H. (1953). Protozoa as indicators in activated sludge treatment. Sewage Ind. Wastes <u>25</u>, 1023-33.
- BAKER, R.A. (1961). A preliminary survey of the mite fauna of sewage percolating filters. M.Sc. Thesis, University of London.
- BAKER, R.A. (1975). Arachnida. In "Ecological Aspects of Used-Water Treatment". Ed. Curds, C.R. and Hawkes, H.A., pp. 375-392. Academic Press, London.
- BANKS, P.A. and HITCHCOCK, K.W. (1976). Studies of highrate biological treatment of Ipswich sewage on pilot filters using plastics media. Wat. Pollut. Contr. <u>75</u>, (1), 40-46.
- BARBER, N. (1977). Upgrading biological sewage treatment plants today. Environmental Science and Technology, 11, (2), 124-5.
- BARKER, A.N. (1942). The seasonal incidence, occurrence and distribution of Protozoa in the bacteria bed process of sewage disposal. Ann.appl. Biol. 29, 23-33.
- BARKER, A.N. (1946). The ecology and function of Protozoa in sewage purification. Ann. appl. Biol., 33, 314-325.
- BARKER, A.N. (1949). Some microbiological aspects of sewage purification. J. Proc. Inst. Sew. Purif. 1949, 7-22.

- BARRITT, N.W. (1940). The ecology of activated sludge in relation to its properties and the isolation of a specific soluble substance from the purified effluent. Ann. appl. Biol. 27, 151-156.
- BAYLEY, R.W. and DOWNING, A.L. (1963). Temperature relationships in percolating filters. J. Instn. Publ. Hlth. Engrs. 62, 303-332.
- BECKER, J.G. and SHAW, C.G. (1955). Fungi in domestic sewage treatment plants. Appl. Microbiol. 3, 173-180.
- BELCHER, H. and SWALE, E. (1976). A beginner's guide to freshwater algae. Institute of Terrestrial Ecology, H.M.
 Stationery Office, London.
- BELL, J.P. (1973). Neutron probe practice. Report No. 19,
 Institute of Hydrology, National Environment Research
 Council.
- BENSON-EVANS, K. and WILLIAMS, P.F. (1975). Algae and Bryophites. In "Ecological Aspects of Used-Water Treatment". Ed. Curds, C.R., and Hawkes, H.A., pp. 153-202, Academic Press, London, England
- BEST, D.G. and CASSERES, K.E. De. (1978). Determination of COD using a sealed tube method. Wat. Pollut. Contr. 77, (1), 138-140.

- BICK, H. von (1972). Ciliata. In: Die Binnengewässer,

 26, pp.31-83. Das Zooplankton der Binnengewässer. 1.

 Teil. E. Schweizerbartsche Verlagsbuchandlung, Stuttgart,
 1972.
- BRINDLE, A. (1962). Taxonomic notes on the larvae of British

 Diptera: 2. Trichoceridae and Anisopodidae. Entomologist
 95, 285-288.
- BRINK, N. (1967). Ecological studies in biological filters.

 Int. Revue ges. Hydrobiol. Hydrogr. 52, (1), 51-122.
- BRINKHURST, R.O. (1971). A guide for the identification of British aquatic Oligochaeta. Scient. Publs. Freshwat. Biol. Assoc. 22.
- BRITISH STANDARDS INSTITUTION (1948). Specification for media for biological percolating filters. BS1438.

 London.
- BRITISH STANDARDS INSTITUTION (1971). Specification for media for biological percolating filters. BS1438.

 London.
- BRITISH STANDARDS INSTITUTION (1972). Small Sewage Treatment Works. British Standard Code of Practice. CP302:
 1972. British Standards Institution, London.
- BROWN, T.J. (1965). A study of the Protozoa in diffused air activated sludge plant. J.Proc. Inst. Sew. Purif. 1965, (4), 375-378.

- BROWN and CALDWELL (1973). Report on pilot trickling filter studies at the Main Water Quality Control Plant. Prepared for the City of Stockton, California, March 1973.
- BRUCE, A.M. (1968). The significance of particle shape in relation to percolating filter media. J. Br. Granite Whinstone Fed. 8, (2), 1-15.
- BRUCE, A.M. (1969). Percolating filters. Process Biochem. 4, (4), 19-23.
- BRUCE, A.M. and BOON, A.G. (1971). Aspects of high-rate biological treatment of domestic and industrial waste waters. Wat. Pollut. Contr. 70, 487-513.
- BRUCE, A.M. and MERKENS, J.C. (1970). Recent studies of high rate biological filtration. Wat. Pollut. Contr., 69, 113-148.
- BRUCE, A.M. and MERKENS, J.C. (1973). Further studies of partial treatment of sewage by high rate biological filtration. Wat. Pollut. Contr. 72, 499-527.
- BRUCE, A.M., MERKENS, J.C. and HAYNES, B.A.O. (1975). Pilot-scale studies on the treatment of domestic sewage by two-stage biological filtration with special reference to nitrification. Wat. Pollut. Contr. 74, (1), 80-100.

- BRUCE, A.M., MERKENS, J.C. and MacMILLIAN, S.C. (1970).

 Research development in high-rate biological filtration.

 J. Inst. Publ. Hlth. Engrs. 69, 178-207.
- BRUCE, A.M., TRUESDALE, G.A. and MANN, H.T. (1967). The comparative behaviour of replicate pilot-scale percolating filters. J. Instn. Publ. Hlth. Engrs. <u>66</u>, (3), 151-175.
- BRYAN, E.H. and MOELLER, D.H. (1960). Aerobic biological oxidation using Dowpac. Proc. 3rd. Biol. Waste Treat. Conf. Manhatten (42), 341-346.
- BRYAN, J.R., RIPLEY, J.P. and WILLIAMS, P.J. Le B. (1976).

 A winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. J. exp. mar. Biol. Ecol. 21, 191-197.
- BRYCE, D. (1960). Studies on the larvae of the British

 Chironomidae (Diptera), with keys to the Chironomidae

 and Tanypodinae. Trans. Soc. Br. Ent. 14, (II), 19-61.
- BRYCE, D. and HOBART, A. (1972). The Biology and identification of the larvae of the Chironomidae (Diptera).

 Entomologists Gazette 23, 175-217.
- BUNGAY, H.R. and BUNGAY, M.L. (1968). Microbial interactions in continuous culture. In." Advances in Applied Microbiology." Vol:10. p.269-290. Ed. Umbreit, W.W. and Perlman, D. Academic Press, London.

- BURN, K.N. (1961). Design and calibration of a neutron moisture meter. Symposium on nuclear methods for measuring soil density and moisture. Amer. Soc. Testing Mat. Special Technical Publication 293, 14-26.
- CALAWAY, W.T. (1963). Nematodes in wastewater treatment.

 J. Wat. Pollut. Contr. Fed. 35, 1006-1016.
- CALAWAY, W.T. (1968). The Metazoa of waste treatment processes; Rotifers. J. Wat. Pollut. Contr. Fed. 40, 412-422.
- CALAWAY, W.T. and LACKEY, J.B. (1962). Waste Treatment Protozoa: Flagellata. Florida Engineering Series, No. 3.
- CALLELY, A.G., FORSTER, C.F. and STAFFORD, D.A. (1977).

 Treatment of Industrial effluents. Hodder and Stoughton,

 London, England.
- CAMPBELL, W. (1979). Construction of random media biofilters:
 cost factors. Process and product report No. 86.
 Pollution Control Systems. I.C.I. Ltd., Hyde, Cheshire,
 England.
- CHAUDHURI, N., ENGELBRECHT, R.S. and AUSTIN, J.H. (1965).

 Nematodes in an aerobic waste treatment plant. J. Am.

 Wat. Wks. Ass. 57, 1561.

- CHIPPERFIELD (1967). Performance of plastic filter media in industrial and domestic waste treatment. J. Wat. Pollut. Contr. Fed. 39, 1860-1874.
- CLOUGH, G.F.G. (1975). Implications of the energy on sewage treatment. Wat. Pollut. Contr. 74, (3), 328-345.
- CLOUGH, G.F.G. (1979). The efficient use of energy in sewage disposal. Wat. Pollut. Contr. 78, (2), 156-165.
- COE, R.L., FREEMAN, P. and MATTINGLEY, P.E. (1950). Diptera:

 Nematocera. Identification handbook of British Insects,

 9, (2). British Entomological Society.
- COOK, E.E. and HERNING, L.P. (1978). Shock Load attenuation trickling filter. ASCE, 104, (EE3), 461-469.
- COOK, E.E. and KATZBERGER, S.M. (1977). Effect of residence time on fixed film reactor performance. J. Wat. Pollut. Contr. Fed. 49, (8), 1889-1895.
- COOKE, W.B. (1954). Fungi in polluted water and sewage:

 II. Isolation Technique. Sewage Ind. Wastes <u>26</u>, (5),
 661-674.
- COOKE, W.B. (1959). Trickling filter ecology. Ecology <u>40</u>, 273-291.

- COOKE, W.B. (1963). A laboratory guide to fungi in polluted waters, sewage and sewage treatment systems. U.S. Dept. Hlth. Ed. Welfare. Public Health Services Publication No. 999-WP-1.
- COOKE, W.B. and HIRSCH, A. (1958). Continuous sampling of trickling filter populations. Sewage Ind. Wastes. 30
- CRABTREE, K. and McCOY, E. (1967). Zoogloea ramigera.

 Itzigsohn, identification and destription. Int. J. Syst.

 Bact. 17, 1-10.
- CRAFT, T.F. and INGOLS, R.S. (1973). Flow through time in trickling filters. Wat. Sewage Wks. 120, (1), 78-79.
- CRAFT, T.F., EICHHOLZ, G.G. and MILLSPAUGH, S. (1972).

 Evaluation of treatment plants by tracer methods.

 Report: ORO-4156-1, U.S.A.E.C. Washington D.C.
- CROFT, N. (1978). Glass fibre as a standard for suspended solids in water and waste water analysis. Lab. Pract. 27, (6), 476.
- CURDS, C.R. (1969). An illustrated key to the British freshwater ciliated protozoa commonly found in activated sludge. Water Pollution Research Technical Paper No.12. Water Pollution Research Laboratory. Ministry of Technology. H.M. Stationery Office, London.

- CURDS, C.R. (1973). The role of Protozoa in the activated-sludge process. Amer. Zool. 13, 161-169.
- CURDS, C.R. (1975). Protozoa. In "Ecological Aspects of Used-Water Treatment". Ed. Curds, C.R. and Hawkes, H.A. pp.203-268. Academic Press, London.
- CURDS, C.R. and COCKBURN, A. (1970). Protozoa in biological sewage treatment processes 1. A survey of the protozoan fauna of British percolating filters and activated sludge plants. Wat.Res. 4, 225-236.
- CURDS, C.R., COCKBURN, A. and VANDYKE, J.M. (1968). An experimental study of the role of ciliated protozoa in the activated-sludge process. Wat Pollut. Contr. 67, 312-329.
- CURDS, C.R. and HAWKES, H.A. (1975). Ecological aspects of used-water treatment. Vol:1. The Organisms and their ecology. Academic Press, London.
- CURDS, C.R. and VANDYKE, J.M. (1966). The feeding habits and growth rates of some freshwater ciliates found in activated sludge plants. J.appl. Ecol. 3, 127-137.
- CUTLER, D.W., CRUMP, L.M. and DIXON, A. (1932). Some factors influencing the distribution of certain protozoa in biological filters. J. Anim. Ecol. 1, 141-151.

- DART, M.C. (1977). Industrial effluent control and charges. Wat. Pollut. Contr. 76, (2), 192-204.
- DEPARTMENT OF THE ENVIRONMENT (1971). Nitrification in the BOD test. Notes on Water Pollution No. 52. Water Pollution Research Laboratory, Stevenage.
- DEPARTMENT OF THE ENVIRONMENT (1972). Analysis of Raw,
 Potable and Waste Waters. H. M. Stationery Office,
 London.
- DEPARTMENT OF THE ENVIRONMENT (1976). Pollution Control in Great Britain: How it works. Central Unit on Environmental Pollution, Department of the Environment. H.M. Stationery Office, London.
- DONNER, J. (1966). Rotifers. Frederick Warne, London. (English translation by Wright, H.G.S.).
- DOOHAN, M. (1975). Rotifera. In "Ecological aspects of Used-Water Treatment." Eds. Curds, C.R. and Hawkes, H. A., pp.289-304. Academic Press, London.
- DYSON, J.E.B. and LLOYD, L. (1936). The distribution of the early stages of Metriocnemus longitarus Goet, (Chironomidae), in sewage bacteria beds. Proc. Leeds Phil. Lit. Soc. 3, 174-176.
- EDEN, G.E. (1964). Biological filtration. Fluid Handling 15, (1), 22-28.

- EDEN, G.E., BRENDISH, K. and HARVEY, B.R. (1964). Measurement and significance of retention in percolating filters.

 J. Proc. Inst. Sew. Purif. 1964, (6), 513-525.
- EDEN, G.E. and MELBOURNE, K.V. (1960). Radioactive tracers for measuring the periods of retention in percolating filters. Int. J. appl. Radiation and Isotopes, <u>8</u>, 172-178.
- EDEN, G.E., TRUESDALE, G.A. and MANN, H.T. (1966). Biological filtration using a plastic filter medium. J. Proc. Inst. Sew. Purif. 1966, (6), 562-574.
- EDMONDSON, W.T. (1959). Ed. Freshwater Biology. John Wiley & Sons Ltd., New York.
- EIKELBOOM, D.H. (1975). Filamentous organisms observed in activated sludge. Wat.Res. 9, 365-388.
- ELLIOTT, J.M. (1977). Some methods for the statistical analysis of samples of benthic invertebrates. Scient. Publs. Freshwat. Biol. Ass. 25.
- Volume II. Sewerage and sewage disposal. MacDonald and Evans Ltd., Plymouth, England. 4th Edn. 1978.
- EVANS, G.O., SHEALS, J.G. and MacFARLANE, D. (1961). The terrestrial Acari of the British Isles. Vol.1. British Museum of Natural History, London.

- FARQUHAR, G.J. and BOYLE, W.C. (1971). Identification of filamentous micro-organisms in activated sludge. J. Wat. Pollut. Contr. Fed. 43, (4), 604-622.
- FARQUHAR, G.J. and BOYLE, W.C. (1971b). Occurrence of filamentous micro-organisms in activated sludge. J. Wat. Pollut. Contr. Fed. 43 (5), 779-798.
- FLEGAL, T.M. and SCHROEDER, E.D. (1976). Temperature effects on BOD stoichiometry and oxygen uptake rate. J. Wat. Pollut. Contr. Fed., 48, (12), 2700-2707.
- FRIEDMAN, B.A. and DUGAN, P. R. (1968). Identification of Zoogloea species and the relationship to Zoogloeal matrix and floc formation. J. Bacteriol. 95, 1903-1909.
- FRYE, W.W. and BECKER, E.R. (1929). The fauna of an experimental trickling filter. Sewage Wks. J. 1, 286-308.
- GEORGE, E.A. (1976). A Guide to algal keys (excluding seaweeds). Br. Phycol. J., 11, 49-55.
- GERARD, B.M. (1964). Synopses of British fauna, No.6.

 Lumbricidae (Annelida). The Linnean Society of London.
- GIBSON, N.H.E. (1945). On the mating swarms of certain Chironomidae (Diptera). Trans. R. ent. Soc. Lond. 95, 263-294.

- GOLDTHORPE, H.H. (1938). Experimental Rapid Filtration at Huddersfield. J. Proc. Inst. Sew. Purif. 1938, (1), 127-145.
- GOLDTHORPE, H.H. (1943). A cubic yard of percolating bed material and a few assumptions based on experimental evidence. J. Proc. Inst. Sew. Purif. 1943, 93-102.
- GUDERNATSCH, V. H. (1977). Beeinträchtigung von BSB-Langzeittesten durch die Nitrifikation. Zeitschrift für Wasser und Abwasser Forschung 10 (2), 62-64.
- GURNEY, R. (1933). British Fresh-Water Copepoda. 3. Ray Society, London.
- H.M.S.O. (1977). Chemical Oxygen Demand (Dichromate Value) of polluted and waste waters. Methods for the examination of waters and associated materials. H.M. Stationery Office, London.
- HAENSELER, C.M., MOORE, W.D. and GAINES, J.G. (1923). Fungi and algae of the sprinkling filter bed with special reference to their seasonal distribution. Bull. New Jers. Agric. Exp. Stn. 390, 39-48.
- HAMBLETON, F.E. and KIRBY, T.H. (1974). Pilot-plant investigations into partial pretreatment systems at Macclesfield. Wat. Pollut. Contr. 73, (5), 522-531.

- HARDING, J.P. and SMITH, W.A. (1974). A key to the British Freshwater Cyclopid and Calanoid Copepods. Scient.

 Publs. Freshwat. Biol. Ass. 18.
- HARKNESS, N. (1966). Bacteria in sewage treatment processes.

 J. Proc. Inst. Sew. Purif. 1966, (6), 542-557.
- HARVEY, B.R., EDEN, G.E. and MITCHELL, N.T. (1963). Neutron scattering: A technique for the direct determination of the amount of biological film in a percolating filter.

 J. Proc. Inst. Sew. Purif. 1963, (5), 495-506.
- HAWKES, H.A. (1951). A study of the biology and control of Anisopus fenestralis (Scopoli, 1763), a fly associated with sewage filters. Ann. appl. Biol. 38, 592-605.
- HAWKES, H.A. (1952). The ecology of <u>Anisopus fenestralis</u>
 Scop. (Diptera) in sewage bacteria beds. Ann. appl.
 Biol. 39, 181-192.
- HAWKES, H.A. (1955). The effect of periodicity of dosing on the amount of film and the numbers of insects and worms in alternating double filters at Minworth. J. Proc. Inst. Sew. Purif. 1955, (1), 48-58.
- HAWKES, H.A. (1957). Film accumulation and grazing activity in the sewage filters at Birmingham. J. Proc. Inst. Sew. Purif. 1957, (2), 88-110.

- HAWKES, H.A. (1959). The effects of methods of sewage application on the ecology of bacteria beds. Ann. appl. Biol. 47, 339-349.
- HAWKES, H.A. (1961). An ecological approach to some bacteria bed problems. J. Proc. Inst. Sew. Purif. 1961, (2), 105-133.
- HAWKES, H.A. (1963). The ecology of waste water treatment.

 Pergamon Press, Oxford.
- HAWKES, H.A. (1965). The ecology of sewage bacteria beds.

 In "Ecology and the Industrial Society". Ed. Goodman,
 G.T., Edwards, R.W. and Lambert, J.M., pp.119-148,

 Blackwell, Oxford.
- HAWKES, H.A. (1965b). Factors influencing the seasonal incidence of fungal growths in sewage bacteria beds.

 Int. J. Air Wat. Pollut. 9, 693-714.
- HAWKES, H.A. and JENKINS, S.H. (1951). Biological principles in sewage purification. J. Proc. Inst. Sew. Purif., 1951, 300-318.
- HAWKES, H.A. and JENKINS, S.H. (1955). Comparison of four grades of sewage percolating filter media in relation to purification, film accumulation, and fauna. J. Proc. Inst. Sew. Purif. 1955, (4), 352-357.

- HAWKES, H.A. and JENKINS, S.H. (1958). Comparison of four grades of media in relation to purification, film accumulation, and fauna of sewage percolating filters operating on Alternating Double Filtration. J. Proc. Inst. Sew. Purif. 1958, (2), 221-225.
- HAWKES, H.A. and SHEPHARD, M.R.N. (1971). The seasonal accumulation of solids in percolating filters and attempted control at low frequency dosing. Proc. 5th. Int. Wat.Pollut. Conf. 1970. Ed. Jenkins, S.H. Pergamon Press, Oxford, England.
- HAWKES, H.A. and SHEPHARD, M.R.N. (1972). The effect of dosing frequency on the seasonal fluctuations and vertical distribution of solids and grazing fauna in sewage percolating filters. Wat. Res. 6, 721-730.
- HEMMING, M.L. (1978). Process design of sewage treatment systems:- Biological Filters. Talk presented to the National Water Council, AIO training course. 19

 December, 1978.
- HEMMING, M.L. (1979). General biological aspects of wastewater treatment including the deep-shaft process.

 Wat. Pollut. Contr. 78, (3), 312-325.
- HEMMING, M.L. and WHEATLEY, A.D. (1979). Low rate biofiltration systems using random plastic media. Wat. Pollut. Contr. 78, (1), 54-68.

- HESSELTINE, C.W. (1953). Study of trickling filter fungi.
 Bulletin Torrey bot. club. 80, (6), 507-514.
- HEUKELEKIAN, H. (1945). The relationship between accumulation, biochemical and biological characteristics of film, and purification capacity of a biofilter and a standard filter;

 1. Film accumulation. Sewage Wks. J. 17, 23-38.
- HEUKELEKIAN, H.(1947). Use of direct method of oxygen utilization in waste treatment studies. Sewage Wks. J. 19, (5), 875-882.
- HOLTJE, R.H. (1943). The biology of sewage sprinkling filters. Sewage Wks. J. 15, 14-29.
- HOWELL, J.A. and ATKINSON, B. (1976). Sloughing of microbial film in trickling filters. Wat. Res. 10, 307-315.
- HOYLAND, G. and HARWOOD, N.J. (1979). Design of biological filtration works. Paper presented at a meeting of the North Eastern Branch of the Institute of Water Pollution Control at Bradford on 14 March, 1979.
- HUGHES, A.M. (1961). The mites of stored food products.

 H.M. Stationery Office, London.
- HUSSEY, B.R. (1975). Ecological studies on percolating filters and stream riffles associated with the disposal of domestic and industrial wastes. M.Sc. Thesis, University of Aston in Birmingham, England.

- HYNES, H.B.N. (1970). "The Ecology of Running Water". Liver-pool University Press, Liverpool, England.
- INGRAM, W.T. and EDWARDS, G.P. (1960). The behaviour of filter biota under controlled conditions. Proc. 3rd.

 Conf. on Biological Waste Treatment. Manhatten College, New York.
- INSTITUTE OF WATER POLLUTION CONTROL. (1972). Directory of Municipal wastewater treatment plants. Vols. I-IV. Institute of Water Pollution Control, Maidstone, Kent, England.
- INSTITUTE OF PUBLIC HEALTH ENGINEERS. (1978). The public health engineering data book, 1978-9. Ed. Bartlett, R.E. Sterling Professional Publications Ltd., London, England.
- ISAAC, C.G. and JAMES, A. (1964). The bacterial ecology of trickling filters. Verh. Internat. Verein. Limnd. $\underline{15}$, 620-630.
- IP, S.Y. and PILKINGTON, N.H. (1978). A nomogram for the determination of ammonia in wastewater by a known addition technique. J. Wat. Pollut. Contr. Fed. <u>50</u> (7), 1869-1870.
- JAMES, A. (1964). The bacteriology of trickling filters.

 J. Appl. Bact. <u>27</u>, (2), 197-207.
- JANUS, H. (1965). The Young Specialist looks at Land and Freshwater Molluscs. Burke, London

- JEGER, L.M. (1970). Taken for granted. Report of the working party on sewage disposal. Ministry of Housing and Local Government. H.M. Stationery Office, London.
- JENKINS, D. (1977). The analysis of nitrogen forms in waters and wastewaters. Wat. Tech. 8 (4/5), 31-53.
- JENKINS, S.H. (1950). The determination of Ammoniacal Nitrogen in sewage, sewage effluents and river water.

 J. Proc. Ind. Sew. Purif. 1950, (2), 144-145.
- JENKINS, S.H. (1950b). The determination of nitrite plus
 nitrate in sewage, sewage effluents and river water.
 J. Proc. Ind. Sew. Purif. 1950, (2), 145-147.
- JOHNSON, J.W.H. (1914). A contribution to the biology of sewage disposal. J. econ. Biol. 9, 105-124 and 127-164.
- JONES, J.G. (1970). Studies on freshwater bacteria: Effects of medium composition and method on estimates of bacterial population. J. appl. Bact. 33, 679-686.
- JOSLIN, J.R., SIDWICK, J.M., GREENE, C. and SHEARER, J.R. (1971). High rate biological filtration, a comparative assessment. Wat. Pollut. Contr. 70, (4), 383-399.
- KIRK, R.G. (1971). Reproduction of <u>Lumbricillus rivalis</u>

 Levinsen in Laboratory cultures and in decaying seaweed.

 Ann. appl. Biol. 67, 255-264.

- KSHIRSAGAR, S.R., PHADKE, N.S. and TIPNIS, S.S. (1972).

 Detention time studies in trickling filters. Indian J.

 Environ. Hlth. 14, (1), 95-104.
- KUDO, R.P. (1932). Protozoology. Charles C. Thomas, Spring-field, Illinois, U.S.A.
- LACKEY, J.B. (1924). Studies of the fauna of Imhoff tanks and sprinkling beds. Bull. New Jers. Agric. Exp. Stn. 403, 40-60.
- LACKEY, J.B. (1925). The fauna of Imhoff tanks. Part I:

 Ecology of Imhoff tanks. Bull. New Jers. Agric. Exp. Stn.

 417, 1-39.
- LAWRENCE, P.N. (1970). Collembola (Springtails) of sewage filters. Wat. Waste Treat. 13, 106-109.
- LAWTON, G.W. and EGGERT, C.V. (1957). Effect of high sodium chloride concentration on trickling filter slimes. Sew. Ind. Wastes 29, (11), 1228-1236.
- LEARNER, M.A. (1972). Laboratory studies on the lifehistories of four enchytraeid worms (Oligochaeta) which inhabit sewage percolating filters. Ann. appl. Biol. 70, 251-266.
- LEARNER, M.A. (1975). The ecology and distribution of invertebrates which inhabit the percolating filters of sewage works. Ph.D. thesis, University of London.

- LEARNER, M.A. (1975b). Insecta. In "Ecological Aspects of Used-Water Treatment". Ed. Curds, C.R. and Hawkes, H.A. pp.337-374. Academic Press, London
- LEARNER, M.A. (1975c). Crustacea and Mollusca. In "Ecological Aspects of Used-Water Treatment". Ed. Curds, C.R. and Hawkes, H.A. pp.393-398. Academic Press, London.
 - LEVINE, M., LUEBBERS, R., GALLIGAN, W.E. and VAUGHAN, R. (1936). Observations on ceramic filter media and high rates of filtration. Sewage Wks. J. 8, (5), 701-727.
 - LIEBMANN, H. (1949). The biology of percolating filters. Vom. Wass. 17, 62-82.
 - LIEBMANN, H. (1951). Handbuch der Frischwasser- und Abwasser-biologie. Gustav Fischer, Jena.
 - LITTLE, A.H. (1973). Sampling and samplers. Wat. Pollut. Contr. 72, (5), 606-617.
 - LLOYD, L. (1943). Materials for a study in animal competition. The fauna of the sewage bacteria beds. Part 2.

 Ann. appl. Biol. 30, 47-60.
 - LLOYD, L. (1945). Animal life in sewage purification processes. J. Proc. Inst. Sew. Purif., 1945, (2), 119-139.

- LLOYD, L., GRAHAM, J.F. and REYNOLDSON, T.B. (1940). Materials for a study in animal competition. The fauna of the sewage bacteria beds. Ann. appl. Biol. <u>27</u>, 122-150.
- LUMB, C. and EASTWOOD, P.K. (1958). The recirculation principle in filtration of settled sewage some comments on its application. J. Proc. Inst. Sew. Purif. 1958, (4), 380-398.
- MARTIN, D. (1968). Microfauna of biological filters. Univ.

 Newcastle upon Tyne, Dept. Civil Engineering Bulletin 39.

 Oriel Press.
- MASON, W.T. (1968). An introduction to the identification of chironomid larvae. Div. Pollut. Surveillance. Fed.Wat. Pollut. Cont. Admin., U.S. Dept. Interior.
- MAYNARD SMITH, J. (1969). Limitations on growth rate. In "Microbial Growth", 19th Symp. Soc. Gen. Microbiol. (Eds. P. Meadow and S.J. Pirt), pp. 1-13. Cambridge Univ. Press, Cambridge, England.
- McKINNEY, R.E. (1957). Activity of micro-organisms in organic waste disposal (ii) Aerobic processes. appl. Microbiol., Baltimore, <u>5</u>, 167-187.
- McKINNEY, R.E. and GRAM, A. (1956). Protozoa and activated sludge. Sewage Ind. Wastes 28, 1219-1231.
- MANN, H.T. (1979). Septic Tanks and Small Treatment Plants.

 Technical Report TR107, Water Research Centre, Stevenage,

 England.

- MELBOURNE, K.V. (1964). Determination of suspended solids in sewage and related suspensions. J. Proc. Inst. Sew. Purif. 1964, (4), 392-395.
- MILLS, E.V. (1945). The treatment of settled sewage in percolating filters in series with periodic changes in the order of filters. J. Proc. Inst. Sew. Purif. 1945, (1), 35-49.
- MINISTRY OF TECHNOLOGY. (1966). Water Pollution Research, 1965. H.M. Stationery Office, London.
- MINISTRY OF TECHNOLOGY. (1968). The use of plastic filter media for biological filtration. Notes on Water Pollution No. 40. H.M. Stationery Office, London.
- MONCRIEFF, D.S. (1953). The effect of grading and shape on the bulk density of concrete aggregates. Mag. Concr. Res. 5, (14), 67-70.
- MONTGOMERY, H.A.C. (1967). The determination of biochemical oxygen demand by respirometric methods. Wat.Res. $\underline{1}$, 631-662.
- MORRISETTEE, D.G., MAVINIC, D.S. (1978). BOD Test Variables. ASCE, 104, (EE6), 1213-1222.
- MOSER, H. (1958). The dynamics of bacterial populations maintained in the chemostat. Carnegie Inst. Washington Publ. No. 614, 4. Washington.

- MURAD, J.L. and BAZER, G.T. (1970). Diplogasterid and rhabditid nematodes in a wastewater treatment plant and factors related to their disposal. J. Wat. Pollut. Contr. Fed. 42, (1), 105-114.
- NEALE, D.J. (1978). Design and development of Galashiels sewage-treatment works. Wat. Pollut. Contr. <u>77</u>, (3), 395-401.
- NEELY, A.B. (1975). Chemical-biological treatment with biological filters. Wat. Pollut. Contr. 74, (2), 160-165.
- NICKLAS, H. and MAYOR, W. (1961). The migration of lead from lead stabilised PVC pipes. Kunstoffe Plast. 51, 2-6.
- NICOLL, E.H. (1974). Aspects of small water pollution control works. J. Inst. Publ. Hlth. Engrs. 1974, (12), 185-211.
- NIELSEN, C.O. and CHRISTENSEN, B. (1959). The Enchytraeidae; a critical revision of taxonomy of European species.

 Natura Jutlandica 8-9, 1-160.
- NIELSEN, C.O. and CHRISTENSEN, B. (1961). The Enchytraeidae.

 Critical revision and taxonomy of European species.

 Natura Jutlandica 10, 1-23.
- O'HERRON, R.J. (1977). Investigation of the Orion research
 Ammonia monitor. Environmental Monitoring and Support
 Lab. U.S. Environmental Protection Agency. Concinnati,
 Ohio.

- OLESZKIEWICZ, J. (1976). Rational design of high rate trickling filters, based on experimental data. Environ. Protection Eng. 2, (2), 85-105.
- OPEN UNIVERSITY. (1975). Water: Origin and Demand (Unit 3),
 Conservation and abstration (Unit 4). P.T.272. Environmental control and public health. The Open University
 Press, Milton Keynes, England.
- OWENS, M. and EDWARDS, R.W. (1966). Some chemical aspects of water quality in relation to minimum acceptable flows.

 Ass. River Authorities Year Book, 3-22.
- PACKHAM, R.F. (1971). The leaching of toxic stabilisers from unplasticised PVC water pipes. Part 3, The measurement of extractable lead in PVC pipes. Wat. Treat. Exam. 20, 152-164.
- PAGE, F.C. (1976). An illustrated key to freshwater and soil amoebae. Scient. Publs. Freshwat. Biol. Ass. 34.
- PAINTER, H.A. (1958). Some characteristics of a domestic sewage. Water and Waste Treatment 6, (11), 496-498.
- PAINTER, H.A. (1970). A review of the literature on inorganic nitrogen metabolism. Wat.Res. 4, 393-450.
- PAINTER, H.A., VINEY, M. and BYWATERS, A.J. (1961). Composition of sewage and sewage effluents. J. Proc. Inst. Sew. Purif. 1961, (4), 302-314.

- PARKER, R.E. (1973). Introductory statistics for biology.

 Studies in Biology, No. 43. The Institute of Biology.

 Edward Arnold Ltd., London.
- PEARSON, C.R. (1965). The use of synthetic media in biological treatment of industrial wastes. J. Proc. Inst. Sew. Purif. 1965, (6), 519-524.
- PETERS, B.G. (1930). Some nematodes met with in a biological investigation of sewage. J. Helminth. 8, 165-184.
- PIKE, E.B. (1978). The design of percolating filters and rotary biological contactors, including details of international practice. Technical Report TR93, Water Research Centre, Stevenage, England.
- PIKE, E.B. and CARRINGTON, E.G. (1972). Recent developments in the study of bacteria in the activated-sludge process. Wat. Pollut. Contr. 71, 583-605.
- PIKE, E.B., CARRINGTON, E.G. and ASHBURNER, P.A. (1972). An evaluation of procedures for enumerating bacteria in activated sludge. J. appl. Bact. 35, 309-321.
- PINDER, L.C.V. (1978). A key to the adult males of the British Chironomidae (Diptera); the non-biting midges. Scient. Publs. Freshwat. Biol. Ass. 37.

- PILLAI, J.K. and TAYLOR, D.P. (1968). <u>Butlerius micans N.</u>

 SP. (Nematoda: Diplogasterinae) from Illinois, with observations on its feeding habits and a key to the species of <u>Butlerius</u> Goodey, 1929. Nematologica <u>14</u>, 89-93.
- PORTER, K.E. and SMITH, E. (1979). Plastic-media biological filters. Wat.Pollut. Contr. 78, (3), 371-381.
- PRESCOTT, G.W. (1969). The Algae A Review. Nelson, London.
- PRETORIUS, W.A. (1971). Some operational characteristics of a bacterial disc unit. Wat.Res. 5, 1141-1146.
- PULLEN, K.G. (1977). Trials on the operation of biological filters. Wat. Pollut. Contrl. <u>76</u>, (1), 75-85.
- RAMSDEN, I. (1972). East Keveston RDC Sewage Treatment Programme. Surveyor 140, (4138), 30-31.
- REDDY, G.S., RAJAN, S.C.S. and REDDY, Y.K. (1978). Titrimetric determination of dissolved oxygen in waste water.

 TALANTA 25, (8), 480-482.
- REES, T.D. and HILTON, J. (1977). Improved efficiency in the Winkler method for the BOD test. Lab. Pract. <u>26</u>, (2), 91-93.
- REYNOLDSON, T.B. (1939). The role of macro-organisms in bacteria beds. J. Inst. Sew. Purif. 1939, (1), 158-172.

- REYNOLDSON, T.B. (1939b). Enchytraeid worms and the bacteria bed method of sewage treatment. Ann. appl. Biol. <u>26</u>, 138-164.
- REYNOLDSON, T.B. (1941). The biology of the macrofauna of a high rate double filtration at Huddersfield. J. Proc. Inst. Sew. Purif. 1941, (1), 109-128.
- REYNOLDSON, T.B. (1943). A comparative account of the life cycles of <u>Lumbricillus lineatus</u> and <u>Enchytraeus albidus</u> in relation to temperature. Ann. appl. Biol. 30, 60-66.
- REYNOLDSON, T.B. (1947). An ecological study of the enchytraeid worm population of sewage bacteria beds: Field Investigations. J. Anim. Ecol. 16, 26-37.
- REYNOLDSON, T.B. (1948). An ecological study of the enchytraeid worm population of sewage bacteria beds: synthesis of field and laboratory data. J. Anim. Ecol. 17, 27-38.
- RIEMANN, B. and SCHIERUP, H.H. (1978). Effects of storage and conservation on the determination of ammonia in water samples from four lake types and a sewage plant. Wat. Res. 12, (10), 849-853.
- ROGERS, I. (1974). Random plastic media are key to high-quality effluent. Process Engineering (1974), August. 68-69.

- ROYAL COMMISSION ON SEWAGE DISPOSAL. (1908). 5th Report.

 H.M. Stationery Office, London.
- RUTTNER-KOLISKO, A. von (1972). Rotatoria. In: Die
 Binnengewässer, <u>26</u>, Das Zooplankton der Binnengewässer.

 1, Teil. pp. 99-225. E. Schweizerbart'sche Verlagsbuchhandlung. Stuttgart, 1972.
- SANDON, H. (1932). The food of Protozoa. Egyptian Univ. Cairo Publ. Fac. Sci. No.1.
- SATCHELL, G.H. (1947). The larvae of the British species of Psychoda (Diptera: Psychodidae). Parasitology 38, 51-69.
- SATCHELL, G.H. (1949). The respiratory horns of <u>Psychoda</u> pupae (Diptera: Psychodidae). Parasitology <u>39</u>, 43-52.
- SCHERB, K. (1968). Nematoda. In "Tropfkörper und Belebungsbecken". Ed. Liebmann, H., pp.158-206. R. Oldenbourg, Münich.
- SCHIEMER, F. (1975). Nematoda. In "Ecological aspects of used-water treatment". Ed.Curds, C.R. and Hawkes, H.A., pp. 269-288. Academic Press, London.
- SCHOFIELD, T. (1971). Some biological aspects of activated-sludge plant at Leicester. Wat. Pollut. Contr. 70, (1), 32-47.

- SCHROEPFER, G.J. (1951). Effect of particle shape on porosity and surface area of trickling filter medium. Sewage Ind. Wastes. 23, (11), 1356-1366.
- SHEIKH, M.I. (1970). Organic and liquid retention time in a trickling filter formulation. Proc. 5th Int. Conf. on Wat. Pollut. Res. II, (13), 1-8.
- SHEPHARD, M.R.N. (1967). Factors influencing the seasonal accumulation of solids in bacteria beds. M.Sc. Thesis, University of Aston in Birmingham, England.
- SHEPHARD, M.R.N. (1979). Personal communication.
- SHEPHARD, M.R.N. and HAWKES, H.A. (1976). Laboratory studies on the effects of temperature on the accumulation of solids in biological filters. Wat. Pollut. Contr. <u>75</u>, (1), 58-72.
- SHRIVER, L.E. and BOWERS, D.M. (1975). Operational practices to upgrade trickling filter plant performances. J. Wat. Pollut. Contr. Fed. <u>47</u>, (11), 2640-2651.
- SIDWICK, J.M. (1976). A brief history of sewage treatment: the future. Effl. Wat. Treat. J. 16, (12), 609-616.
- SIDWICK, J.M. (1978). Rationalisation of dimensions and shapes for sewage treatment works construction II:

 Circular biological filters and activated sludge tanks.

 CIRIA. London, England.

- SLADKA, A. and OTTOVA, V. (1968). The most common fungi in biological treatment plants. Hydrobiologia 31, 350-362.
- SOLBÉ, JF. De L.G. (1971). Aspects of the biology of the lumbricids <u>Eiseniella tetraedra</u> (Savigny) and <u>Dendrobaena rubida</u> (Savigny) <u>F. Subrubicunda</u> (Eisen) in a percolating filter. J. appl. Ecol. 8, 845-867.
- SOLBÉ, J.F. De L.G. (1975). Annelida. In "Ecological Aspects of used-water treatment". Ed. Curds, C.R. and Hawkes, H.A., pp. 305-355. Academic Press, London.
- SOLBÉ, J.F. De L.G., RIPLEY, P.G. and TOMLINSON, T.G. (1974).

 The effects of temperature on performance of experimental percolating filters with and without mixed macro-invertebrate populations. Wat. Res. 8, 557-573.
- SOLBÉ, J.F. De L.G. and TOZER, J.S. (1971). Aspects of the biology of <u>Psychoda alternata</u> (Say.) and <u>P. severini</u> parthenogenetica Tonn. (Diptera) in a percolating filter. J. appl. Ecol. <u>8</u>, 835-844.
- SOLBÉ, J.F. de L.G., WILLIAMS, N.V. and ROBERTS, H. (1967).

 The colonization of a percolating filter by invertebrates and their effect on settlement of humus solids. Wat. Pollut. Contr. 66, (5), 423-448.
- STANBRIDGE, H.H. (1954). The development of biological filtration. Wat. Sanit. Engr. 4, 297-300 and 353-358.

- STAPLES, D.G. and FRY, J.C. (1973). A medium for counting aquatic heterotrophic bacteria in polluted and unpolluted waters. J. appl. Bact. 36, 179-181.
- STODDART, F.W. (1909). Nitrification and the absorption theory. Proc. 7th Int. Cong. appl. Chem. (8A) 183-210. London.
- STONES, T. (1972). A study of nitrogen in relation to the biochemical oxidation of carbonaceous matter. Wat. Pollut. Contr. 71, (4), 431-434.
- STONES, T. (1974). An appraisal of the use of silver catalysed dichromate for the determination of the strength of sewage and the assessment of treatment plant performance.

 Wat. Pollut. Contr. 73, (6), 673-684.
- STONES, T. (1976). Factors involved in biochemical oxidation of sewage. Effl. Wat. Treatment. 16, (11), 574-575.
- STONES, T. (1979). A critical examination of the uses of the BOD test. Effl. Wat. Treatment 19, (5) 250-254.
- STRACKE, R.J. and BAUMANN, E.R. (1975). Biological treatment of a toxic industrial waste performance of an activated sludge and trickling filter pilot plant. Proc. 30th Indust. Waste Conf. Purdue University. 1131-1160.

- SYDENHAM, D.H.J. (1971). A re-assessment of the relative importance of Ciliates, Rhizopods and Rotatorians in the ecology of activated sludge. Hydrobiologia 38 (3-4), 553-563.
- SYRETT, P.J. (1962). Nitrogen Assimilation. In "Physiology and Biochemistry of Algae". Ed. Lewin, R.A. pp.171-183.

 Academic Press, New York.
- TARIQ, M.N. (1975). Retention time in trickling filters. Prog. Wat. Techn. 7, (2), 225-234.
- TARJAN, A.C., ESSER, R.P. and CHANG, S.L. (1977). An illustrated key to nematodes found in freshwater.

 J. Wat. Pollut. Contr. Fed. 49, (11), 2318-2337.
- TEBBUTT, T.H.Y., and BERKUN, M. (1976). Respirometric determination of BOD. Wat. Res. 10, (7), 613-617.
- TENCH, H. (1979). Private communication.
- TERRY, R.J. (1951). The behaviour and distribution of the larger worms in trickling filters. J. Proc. Inst. Sew. Purif. 1951, (1), 16-25.
- TERRY, R.J. (1952). Some observations on <u>Scatella silacea</u>
 Loew (Ephydridae) in sewage filter beds. Proc. Leeds
 Phil. Lit. Soc. <u>6</u>, 104-111.

- TERRY, R.J. (1956). The relations between bed medium and sewage filters and the flies breeding in them. J. Anim. Ecol. 25, 6-14.
- THOMPSON, G.E. and MAGUET, G.J. (1976). Recent developments in sewage treatment and equipment. Water and Pollution Control 1976, (7), 28-36.
- THOMPSON, T.J. (1925). Percolating bacteria beds. Proc. Ass. Mgrs. Sewage Disp. Wks. 52-56.
- TOMLINSON, T.G. (1941). The purification of settled sewage in percolating filters in series, with periodic change in the order of the filters: biological investigations 1938-1941. J. Proc. Inst. Sew. Purif. 1941, 39-57.
- TOMLINSON, T.G. (1946). Animal life in percolating filters.

 Identification of flies, worms and some other common organisms. Dept. of Scientific and Industrial Research.

 Water Pollution Research Technical Paper No. 9. H.M.

 Stationery Office, London.
- TOMLINSON, T.G. (1946b). The growth and distribution of film in percolating filters treating sewage by single and alternate double filtration. J. Proc. Inst. Sew. Purif. 1946, (1), 168-183.
- TOMLINSON, T.G. and HALL, H. (1950). Some factors in the treatment of sewage in percolating filters. J. Proc. Inst. Sew. Purif. 1950, (4), 338-360.

- TOMLINSON, T.G. and SNADDON, D.H.M. (1966). Biological oxidation of sewage by films of micro-organisms. Int. J. Air Wat. Pollut. 10, 865-881.
- TOMLINSON, T.G. and STRIDE, G.O. (1945). Investigation into the fly populations of percolating filters. J. Proc. Inst. Sew. Purif. 1945, 140-148.
- TOMLINSON, T.G. and WILLIAMS, I.L. (1975). Fungi. In

 "Ecological Aspects of Used-Water Treatment". Ed. Curds,

 C.R. and Hawkes, H.A., pp.93-152. Academic Press, London.
- TORPEY, W.N. HEUKELEKIAN, H., KAPLOVSKY, A.J. and EPSTEIN, R. (1971). Rotating discs with biological growths prepare wastewater for disposal or reuse. J. Wat. Pollut. Contr. Fed. 43, (11), 2181-2188.
- TRUESDALE, G.A., WILKINSON, R. and JONES, K. (1962). A comparison of the behaviour of various media in percolating filters. J. Proc. Inst. Sew. Purif. 1962, (4), 325-340.
- TUFFEY, T.J., HUNTER, J.V. and HAUTT, J.P. (1974). A critical analysis of Warburg respirometry for BOD determinations of polluted waters. Proc. 29th Ind. Wastes Conf. Purdue Univ. 1-8.
- UNESCO. (1978). Water quality surveys. Studies and reports in hydrology No. 23. Published by Unesco-Who.
- UNZ, R.F. (1971). The predominant bacteria in wastewater zoogloea l colonies. Inst.J.Syst.Bact. 21, 91499.

- UNZ, R.F. and DONDERO, N.C. (1967). The predominant bacteria in natural zoogloeal colonies. I: isolation and identification. Can. J. Microbiol. 13, 1671-1682.
- UNZ, R.F. and DONDERO, N.C. (1967b). The predominant bacteria in natural zoogloeal colonies II: Physiology and nutrition.

 Can. J. Microbiol. 13, 1683-1691.
- UNZ, R.F. and FARRAH, S.R. (1976). Observations on the formation of wastewater zoogloeae. Wat. Res. 10, 665-671.
- VERSTRATE, W. and ALEXANDER, M. (1973). Heterotrophic nitrification in samples of natural ecosystems. Envir. Sci. Techn. 7, 39-42.
- VOGEL, (1978). Textbook of quantitative inorganic analysis.

 4th Edn. Longman Group Ltd., London.
- WARREN, C.F. (1971). Biology and water pollution control.
 W.B. Saunders. Philadelphia, U.S.A.
- WATER POLLUTION RESEARCH. (1955). Report of the Director.

 H.M. Stationery Office, London, 1956.
- WATER RESEARCH CENTRE. (1977). Accuracy of determination of ammoniacal nitrogen in river waters. Technical Report TR58. Committee for analytical quality control (Harmonised monitoring).

- WATER RESEARCH CENTRE. (1977b). Accuracy of determination of total oxidised nitrogen and of nitrite in river waters.

 Technical Report TR63. Committee for Analytical Quality Control (Harmonised Monitoring).
- WATER RESEARCH CENTRE. (1977c). Cost information for water supply and sewage disposal. Technical Report TR61.
- WATER RESEARCH CENTRE. (1977d). Automation in sewage works, sewerage systems, water treatment and supply, and the treatment of trade waste waters: an annotated bibliography covering the period 1960-1977. Occasional Report: OR9.
- WATER RESEARCH CENTRE. (1978). Tests for assessing the oxygen demand of effluents. Notes on Water Research No. 14.
- WATER RESEARCH CENTRE. (1978b). Use of dissolved oxygen electrodes in the BOD test. Open Day Information Sheet No. 156.
- WATSON, W., HUTTON, D.B. and SMITH, W.S. (1955). Some aspects of gas liquor treatment on percolating filter beds.

 J. Proc. Inst. Sew. Purif. 1955, (1), 73-85.
- WENINGER, G. (1964). Jahreszyklus der Biozönose einser modernen Brockentropf Körperanlage. Wasser und Abwasser, Beiträge zur Gerwasserf. IV, 96-167.

- WENINGER, G. (1971). Das auftereten kleiner Metazoen bei Abbauprozessen in vergleichender Siecht. Sitz. -Ber. Öst. Akad. d. Wiss. 179, 129-158.
- WESCOTT, C. (1978). The selection of pH meters. Lab. Pract. <u>27</u>, 195-197.
- WHEATLEY, A.D. (1976). The ecology of percolating filters containing a plastic filter medium in relation to their efficiency in the treatment of domestic sewage. Ph.D. Thesis, University of Aston in Birmingham.
- WHEATLEY, A.D. and WILLIAMS, I.L. (1976). Pilot-scale investigations into the use of random-pack plastics filter media in the complete treatment of sewage. Wat. Pollut. Contr. 75, (4), 468-486.
- WILKINSON, R. (1958). Media for percolating filters. Surv. Munic. Cty. Engr. 117, (3433), 131.
- WILLIAMS, I.L. (1971). A study of the factors affecting the incidence and growth rate of fungi in sewage bacteria beds. M.Sc. Thesis, University of Aston in Birmingham.
- WILLIAMS, N.V., SOLBE, J.F. De L.G. and EDWARDS, R.W. (1969).

 Aspects of the distribution, life history and metabolism of the Enchytraeid worms <u>Lubricillus rivalis</u> (Levinsen) and <u>Enchytraeus coronatus</u> (N. & V.) in a percolating filter. J. appl. Ecol. 6, 171-183.

- WILLIAMS, N.V. and TAYLOR, H.M. (1968). The effect of

 Psychoda alternata (Say.), (Diptera) and Lumbricillus

 rivalis (Levinsen) (Enchytraeidae) on the efficiency of sewage treatment in percolating filters. Wat. Res. 2, (2), 139-150.
- YORKSHIRE WATER AUTHORITY. (1976). Operations Report.

 Southern Division, Yorkshire Water Authority, Sheffield.
- YOUNG, J.C., CLEASBY, J.L. and BAUMANN, E.R. (1978). Flow and load variations in treatment plant design. ASCE, 104, (EE2), 289-303.

POND STREET SHEFFIELD S1 1WB

68043

Sheffield City Polytechnic Eric Mensforth Library

REFERENCE ONLY

This book must not be taken from the Library

PL/26

R5193

18 JUN 1990

THE COMPARATIVE ECOLOGY OF HIGHRATE PLASTIC,

CONVENTIONAL MINERAL AND MIXED PLASTIC/MINERAL

MEDIA IN THE TREATMENT OF DOMESTIC SEWAGE IN

PERCOLATING FILTERS.

VOLUME II : APPENDICES

by

Nicholas Frederick Gray,

M.Sc., M.I.Biol.

Department of Civil Engineering Sheffield City Polytechnic

Presented in fulfilment of the requirements for the degree of Doctor of Philosophy awarded by the Council for National Academic Awards.

Submitted July, 1980

7924516-01

CONTENTS

VOLUME II : APPENDICES

			Page
Appendix	I	Physical parameters of the slag medium	1
	II	Biological results	3
•	III	Chemical results	119
	IV	Film accumulation (gravimetric) results	243
	У	Film accumulation (neutron scattering) results	267
	VI	Correlation analysis: biological data	282
,	VII	Correlation analysis: chemical data	314

17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻²				,		,
Cm3 application application application		_	water	S .		Surface Area
1 100.01		(g)		(2nd	(3rd	/ _m 2 _\
2 77.86 47.5 5.27 2.72 2.00 x 10 ⁻² 3 84.54 41.5 3.87 1.85 1.36 x 10 ⁻² 4 103.63 56.0 6.78 3.25 2.39 x 10 ⁻² 5 114.58 41.5 1.70 1.94 1.43 x 10 ⁻² 6 74.07 44.0 5.25 2.80 2.06 x 10 ⁻² 7 99.57 55.0 5.61 2.63 1.94 x 10 ⁻² 8 95.86 55.0 5.79 2.64 1.94 x 10 ⁻² 9 114.82 68.0 6.38 2.87 2.11 x 10 ⁻² 10 126.22 74.5 7.30 3.30 2.43 x 10 ⁻² 11 116.28 69.0 6.10 3.00 2.21 x 10 ⁻² 12 111.43 64.0 7.02 2.73 2.01 x 10 ⁻² 13 75.68 38.5 4.70 2.10 1.55 x 10 ⁻² 14 114.34 60.0 5.61 3.74 2.76 x 10 ⁻² 15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²			(cm ³)	application)	application)	(111)
2 77.86 47.5 5.27 2.72 2.00 x 10 ⁻² 3 84.54 41.5 3.87 1.85 1.36 x 10 ⁻² 4 103.63 56.0 6.78 3.25 2.39 x 10 ⁻² 5 114.58 41.5 1.70 1.94 1.43 x 10 ⁻² 6 74.07 44.0 5.25 2.80 2.06 x 10 ⁻² 7 99.57 55.0 5.61 2.63 1.94 x 10 ⁻² 8 95.86 55.0 5.79 2.64 1.94 x 10 ⁻² 9 114.82 68.0 6.38 2.87 2.11 x 10 ⁻² 10 126.22 74.5 7.30 3.30 2.43 x 10 ⁻² 11 116.28 69.0 6.10 3.00 2.21 x 10 ⁻² 12 111.43 64.0 7.02 2.73 2.01 x 10 ⁻² 13 75.68 38.5 4.70 2.10 1.55 x 10 ⁻² 14 114.34 60.0 5.61 3.74 2.76 x 10 ⁻² 15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²		100.01	46.5	l .	0.27	7.14×10^{-3}
4 103.63 56.0 6.78 3.25 2.39 x 10^-2 5 114.58 41.5 1.70 1.94 1.43 x 10^-2 6 74.07 44.0 5.25 2.80 2.06 x 10^-2 7 99.57 55.0 5.61 2.63 1.94 x 10^-2 9 914.82 68.0 6.38 2.87 2.11 x 10^-2 10 126.22 74.5 7.30 3.30 2.43 x 10^-2 11 116.28 69.0 6.10 3.00 2.21 x 10^-2 12 111.43 64.0 7.02 2.73 2.01 x 10^-2 13 75.68 38.5 4.70 2.10 1.55 x 10^-2 14 114.34 60.0 5.61 3.74 2.76 x 10^-2 15 65.34 34.0 10.99 1.82 13.44 x 10^-2 16 114.30 67.0 6.77 2.48 1.83 x 10^-2 17 169.20 96.0 9.56 2.27 1.67 x 10^-2 18 77.36 37.5 3.31 1.62 1.19 x 10^-2		i	47.5		2.72	2.00 x 10 ⁻²
4 103.63 56.0 6.78 3.25 2.39 x 10^-2 5 114.58 41.5 1.70 1.94 1.43 x 10^-2 6 74.07 44.0 5.25 2.80 2.06 x 10^-2 7 99.57 55.0 5.61 2.63 1.94 x 10^-2 9 914.82 68.0 6.38 2.87 2.11 x 10^-2 10 126.22 74.5 7.30 3.30 2.43 x 10^-2 11 116.28 69.0 6.10 3.00 2.21 x 10^-2 12 111.43 64.0 7.02 2.73 2.01 x 10^-2 13 75.68 38.5 4.70 2.10 1.55 x 10^-2 14 114.34 60.0 5.61 3.74 2.76 x 10^-2 15 65.34 34.0 10.99 1.82 13.44 x 10^-2 16 114.30 67.0 6.77 2.48 1.83 x 10^-2 17 169.20 96.0 9.56 2.27 1.67 x 10^-2 18 77.36 37.5 3.31 1.62 1.19 x 10^-2	3	84.54	41.5	3.87	1.85	1.36 x 10 ⁻²
5 114.58 41.5 1.70 1.94 1.43 x 10^2 6 74.07 44.0 5.25 2.80 2.06 x 10^2 7 99.57 55.0 5.61 2.63 1.94 x 10^2 8 95.86 55.0 5.79 2.64 1.94 x 10^2 9 114.82 68.0 6.38 2.87 2.11 x 10^2 10 126.22 74.5 7.30 3.30 2.43 x 10^2 11 116.28 69.0 6.10 3.00 2.21 x 10^2 12 111.43 64.0 7.02 2.73 2.01 x 10^2 13 75.68 38.5 4.70 2.10 1.55 x 10^2 14 114.34 60.0 5.61 3.74 2.76 x 10^2 15 65.34 34.0 10.99 1.82 1.34 x 10^2 17 169.20 96.0 9.56 2.27 1.67 x 10^2 18 77.36 37.5 3.31 1.62 1.19 x 10^2 21 132.52 62.0 5.21 2.39 1.75 x 10^2	4	103.63	56.0	6.78 ·	3.25	2.39 x 10 ⁻²
6 74.07 44.0 5.25 2.80 2.06 x 10 ⁻² 7 99.57 55.0 5.61 2.63 1.94 x 10 ⁻² 9 114.82 68.0 6.38 2.87 2.11 x 10 ⁻² 9 114.82 68.0 6.38 2.87 2.11 x 10 ⁻² 10 126.22 74.5 7.30 3.30 2.43 x 10 ⁻² 11 116.28 69.0 6.10 3.00 2.21 x 10 ⁻² 12 111.43 64.0 7.02 2.73 2.01 x 10 ⁻² 13 75.68 38.5 4.70 2.10 1.55 x 10 ⁻² 14 114.34 60.0 5.61 3.74 2.76 x 10 ⁻² 15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.34 89.0 5.77 4.28 3	5	114.58	41.5	1.70	1.94	1 1.43 x 10 ⁻²
7 99.57 55.0 5.61 2.63 1.94 x 10 ⁻² 8 95.86 55.0 5.79 2.64 1.94 x 10 ⁻² 9 114.82 68.0 6.38 2.87 2.11 x 10 ⁻² 10 126.22 74.5 7.30 3.30 2.43 x 10 ⁻² 11 116.28 69.0 6.10 3.00 2.21 x 10 ⁻² 12 111.43 64.0 7.02 2.73 2.01 x 10 ⁻² 13 75.68 38.5 4.70 2.10 1.55 x 10 ⁻² 14 114.34 60.0 5.61 3.74 2.76 x 10 ⁻² 15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 21 132.52 62.0 5.21 2.39	6	74.07	44.0	5.25	2.80	2.06 x 10 ⁻²
8 95.86 55.0 5.79 2.64 1.94 x 10 ⁻² 9 114.82 68.0 6.38 2.87 2.11 x 10 ⁻² 10 126.22 74.5 7.30 3.30 2.43 x 10 ⁻² 11 116.28 69.0 6.10 3.00 2.21 x 10 ⁻² 12 111.43 64.0 7.02 2.73 2.01 x 10 ⁻² 13 75.68 38.5 4.70 2.10 1.55 x 10 ⁻² 14 114.34 60.0 5.61 3.74 2.76 x 10 ⁻² 15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 21 132.52 62.0 5.21 2.39 <t< td=""><td>7</td><td>99.57</td><td>55.0</td><td>5.61</td><td>2.63</td><td>1.94 x 10⁻²</td></t<>	7	99.57	55.0	5.61	2.63	1.94 x 10 ⁻²
9 114.82 68.0 6.38 2.87 2.11 x 10 ⁻² 10 126.22 74.5 7.30 3.30 2.43 x 10 ⁻² 2.11 116.28 69.0 6.10 3.00 2.21 x 10 ⁻² 2.11 116.28 69.0 6.10 3.00 2.21 x 10 ⁻² 2.13 75.68 38.5 4.70 2.10 1.55 x 10 ⁻² 1.55 x 10 ⁻	8	95.86	55.0	5.79	2.64	1.94 x 10 ⁻²
10 126.22 74.5 7.30 3.30 2.43 x 10^2 11 116.28 69.0 6.10 3.00 2.21 x 10^2 12 111.43 64.0 7.02 2.73 2.01 x 10^2 13 75.68 38.5 4.70 2.10 1.55 x 10^2 14 114.34 60.0 5.61 3.74 2.76 x 10^2 15 65.34 34.0 10.99 1.82 1.34 x 10^2 16 114.30 67.0 6.77 2.48 1.83 x 10^2 17 169.20 96.0 9.56 2.27 1.67 x 10^2 18 77.36 37.5 3.31 1.62 1.19 x 10^2 20 69.12 44.0 5.99 2.37 1.75 x 10^2 21 132.52 62.0 5.21 2.39 1.76 x 10^2 22 92.57 50.0 5.00 1.48 1.09 x 10^2 24 92.95 58.5 6.42 2.16 1.59 x 10^2 25 166.79 88.0 7.04 1.34 9.87 x 10^3 <	9	114.82	68.0	6.38	2.87	2.11 x 10 ⁻²
11 116.28 69.0 6.10 3.00 2.21 x 10 ⁻² 12 111.43 64.0 7.02 2.73 2.01 x 10 ⁻² 13 75.68 38.5 4.70 2.10 1.55 x 10 ⁻² 14 114.34 60.0 5.61 3.74 2.76 x 10 ⁻² 15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 18 77.349 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84	10	126.22	74.5	7.30	3.30	2.43 x 10 ⁻²
12 111.43 64.0 7.02 2.73 2.01 x 10^2 13 75.68 38.5 4.70 2.10 1.55 x 10^2 14 114.34 60.0 5.61 3.74 2.76 x 10^2 15 65.34 34.0 10.99 1.82 1.34 x 10^2 16 114.30 67.0 6.77 2.48 1.83 x 10^2 17 169.20 96.0 9.56 2.27 1.67 x 10^2 18 77.36 37.5 3.31 1.62 1.19 x 10^2 19 173.49 89.0 5.77 4.28 3.15 x 10^2 20 69.12 44.0 5.99 2.37 1.75 x 10^2 21 132.52 62.0 5.21 2.39 1.76 x 10^2 22 92.57 50.0 5.00 1.48 1.09 x 10^2 23 73.19 41.0 5.27 1.84 1.36 x 10^2 24 92.95 58.5 6.42 2.16 1.59 x 10^3 24 92.95 58.5 6.42 2.16 1.59 x 10^3 <td>11</td> <td>116.28</td> <td>69.0</td> <td>6.10</td> <td>3.00</td> <td> 2.21 x 10⁻² </td>	11	116.28	69.0	6.10	3.00	2.21 x 10 ⁻²
13 75.68 38.5 4.70 2.10 1.55 x 10 ⁻² 14 114.34 60.0 5.61 3.74 2.76 x 10 ⁻² 15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 <	12	111.43	64.0	7.02	2.73	2.01 x 10 ⁻²
14 114.34 60.0 5.61 3.74 2.76 x 10 ⁻² 15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03	13	75.68	38.5	4.70	2.10	1.55×10^{-2}
15 65.34 34.0 10.99 1.82 1.34 x 10 ⁻² 16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 29 100.35 54.5 8.65 2.90	14	114.34	60.0	5.61	3.74	2.76 x 10 ⁻²
16 114.30 67.0 6.77 2.48 1.83 x 10 ⁻² 17 169.20 96.0 9.56 2.27 1.67 x 10 ⁻² 18 77.36 37.5 3.31 1.62 1.19 x 10 ⁻² 19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 <	15	65.34	34.0	10.99	1.82	1.34 x 10 ⁻²
17 169.20 96.0 9.56 2.27 1.67 x 10-2 1.19 x 10-2 18 77.36 37.5 3.31 1.62 1.19 x 10-2 1.19 x 10-2 19 173.49 89.0 5.77 4.28 3.15 x 10-2 1.75 x 10-2 20 69.12 44.0 5.99 2.37 1.75 x 10-2 1.75 x 10-2 21 132.52 62.0 5.21 2.39 1.76 x 10-2 1.75 x 10-2 22 92.57 50.0 5.00 1.48 1.09 x 10-2 1.76 x 10-2 22 92.57 50.0 5.00 1.48 1.09 x 10-2 1.2 23 73.19 41.0 5.27 1.84 1.36 x 10-2 1.59 x 10-2 24 92.95 58.5 6.42 2.16 1.59 x 10-2 1.59 x 10-2 25 166.79 88.0 7.04 1.34 9.87 x 10-3 1.65 x 10-2 27 59.79 39.0 6.30 2.24 1.65 x 10-2 1.80 x 10-2 28 82.57 46.0 5.49 2.44 1.80 x 10-2 1	16	114.30	67.0	6.77	2.48	1.83 x 10 ⁻²
18 77.36 37.5 3.31 1.62 1.19 x 10 -2 19 173.49 89.0 5.77 4.28 3.15 x 10 -2 20 69.12 44.0 5.99 2.37 1.75 x 10 -2 21 132.52 62.0 5.21 2.39 1.76 x 10 -2 22 92.57 50.0 5.00 1.48 1.09 x 10 -2 23 73.19 41.0 5.27 1.84 1.36 x 10 -2 24 92.95 58.5 6.42 2.16 1.59 x 10 -2 25 166.79 88.0 7.04 1.34 9.87 x 10 -3 26 194.69 106.0 8.69 3.03 2.23 x 10 -2 27 59.79 39.0 6.30 2.24 1.65 x 10 -2 28 82.57 46.0 5.49 2.44 1.80 x 10 -2 29 100.35 54.5 8.65 2.90 2.14 x 10 -2 30 93.08 53.5 8.12 3.33 2.45 x 10 -2 31 124.89 61.5 5.81 1.63 1.20 x 10 -	17	169.20	96.0	9.56	2.27	l 1 67 x 10 ⁻²
19 173.49 89.0 5.77 4.28 3.15 x 10 ⁻² 20 69.12 44.0 5.99 2.37 1.75 x 10 ⁻² 21 132.52 62.0 5.21 2.39 1.76 x 10 ⁻² 22 92.57 50.0 5.00 1.48 1.09 x 10 ⁻² 23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.	18	77.36	37.5	3.31	1.62	l 1.19 x 10 ~ 1
20 69.12 44.0 5.99 2.37 1.75 x 10 2 21 132.52 62.0 5.21 2.39 1.76 x 10 2 22 92.57 50.0 5.00 1.48 1.09 x 10 2 23 73.19 41.0 5.27 1.84 1.36 x 10 2 24 92.95 58.5 6.42 2.16 1.59 x 10 2 25 166.79 88.0 7.04 1.34 9.87 x 10 3 25 166.79 88.0 7.04 1.34 9.87 x 10 2 25 166.79 39.0 6.30 2.24 1.65 x 10 2 27 59.79 39.0 6.30 2.24 1.65 x 10 2 28 82.57 46.0 5.49 2.44 1.80 x 10 2 29 100.35 54.5 8.65 2.90 2.14 x 10 2 30 93.08 53.5 8.12 3.33 2.45 x 10 2 31 124.89 61.5 5.81 1.63 1.20 x 10 2 32 120.59 72.5 7.95 2.59 1.91 x 10 2 <td>19</td> <td>173.49</td> <td>89.0</td> <td>5.77</td> <td>4.28</td> <td>3.15 x 10⁻² </td>	19	173.49	89.0	5.77	4.28	3.15 x 10 ⁻²
21 132.52 62.0 5.21 2.39 1.76 x 10 2 22 92.57 50.0 5.00 1.48 1.09 x 10 2 23 73.19 41.0 5.27 1.84 1.36 x 10 2 24 92.95 58.5 6.42 2.16 1.59 x 10 2 25 166.79 88.0 7.04 1.34 9.87 x 10 3 26 194.69 106.0 8.69 3.03 2.23 x 10 2 27 59.79 39.0 6.30 2.24 1.65 x 10 2 28 82.57 46.0 5.49 2.44 1.80 x 10 2 29 100.35 54.5 8.65 2.90 2.14 x 10 2 29 100.35 54.5 8.65 2.90 2.14 x 10 2 30 93.08 53.5 8.12 3.33 2.45 x 10 2 31 124.89 61.5 5.81 1.63 1.20 x 10 2 32 120.59 72.5 7.95 2.59 1.91 x 10 2 34 134.03 72.0 5.70 2.35 1.73 x 10 2 <	20	69.12	44.0	5.99	2.37	l 1.75 x 10 ° l
22 92.57 50.0 5.00 1.48 1.09 x 10^-2 23 73.19 41.0 5.27 1.84 1.36 x 10^-2 24 92.95 58.5 6.42 2.16 1.59 x 10^-2 25 166.79 88.0 7.04 1.34 9.87 x 10^-3 26 194.69 106.0 8.69 3.03 2.23 x 10^-2 27 59.79 39.0 6.30 2.24 1.65 x 10^-2 28 82.57 46.0 5.49 2.44 1.80 x 10^-2 29 100.35 54.5 8.65 2.90 2.14 x 10^-2 30 93.08 53.5 8.12 3.33 2.45 x 10^-2 31 124.89 61.5 5.81 1.63 1.20 x 10^-2 31 124.89 61.5 5.81 1.63 1.20 x 10^-2 32 120.59 72.5 7.95 2.59 1.91 x 10^-2 33 68.75 36.0 3.74 1.42 1.05 x 10^-2 34 134.03 72.0 5.70 2.35 1.73 x 10^	21	132.52	62.0	5.21	2.39	1.76 x 10 ⁻²
23 73.19 41.0 5.27 1.84 1.36 x 10 ⁻² 24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 <	22	92.57	50.0	5.00	1.48	1.09 x 10 ⁻²
24 92.95 58.5 6.42 2.16 1.59 x 10 ⁻² 25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 <	23	73.19	41.0	5.27	1.84	1.36 x 10 ⁻²
25 166.79 88.0 7.04 1.34 9.87 x 10 ⁻³ 26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25	24	92.95	58.5	6.42	2.16	1.59 x 10 ⁻²
26 194.69 106.0 8.69 3.03 2.23 x 10 ⁻² 27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.58 1.16 x 10 ⁻²	25	166.79	88.0	7.04	1.34	9.87 x 10 ⁻³
27 59.79 39.0 6.30 2.24 1.65 x 10 ⁻² 28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	26	194.69	106.0	8.69	3.03	2.23 x 10 ⁻²
28 82.57 46.0 5.49 2.44 1.80 x 10 ⁻² 29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	27	59.79	39.0	6.30	2.24	1.65×10^{-2}
29 100.35 54.5 8.65 2.90 2.14 x 10 ⁻² 30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	28	82.57	46.0	5.49	2.44	1.80 x 10 ⁻²
30 93.08 53.5 8.12 3.33 2.45 x 10 ⁻² 31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	29	100.35	54.5	8.65	2.90	2.14×10^{-2}
31 124.89 61.5 5.81 1.63 1.20 x 10 ⁻² 32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	30	93.08	53.5	8.12	3.33	2.45 x 10 ⁻²
32 120.59 72.5 7.95 2.59 1.91 x 10 ⁻² 33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	31	124.89	61.5	5.81	1.63	1.20 x 10 ⁻²
33 68.75 36.0 3.74 1.42 1.05 x 10 ⁻² 34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	32	120.59	72.5	7.95	2.59	1.91 x 10 ⁻²
34 134.03 72.0 5.70 2.35 1.73 x 10 ⁻² 35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²		68.75				1.05 x 10 ⁻²
35 92.82 52.5 6.42 2.54 1.87 x 10 ⁻² 36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²			ł i			1.73 x 10 ⁻²
36 87.21 57.5 8.93 3.09 2.28 x 10 ⁻² 37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	35	92.82	52.5	6.42	2.54	1.87×10^{-2}
37 152.26 79.0 7.81 2.25 1.66 x 10 ⁻² 38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²	36			8.93	3.09	2.28 x 10 ⁻²
38 69.87 46.0 5.57 1.87 1.38 x 10 ⁻² 39 82.43 40.0 5.94 1.58 1.16 x 10 ⁻²		l i			i i	1.66 x 10 ⁻²
$39 \mid 82.43 \mid 40.0 \mid 5.94 \mid 1.58 \mid 1.16 \times 10^{-2} \mid$	38	69.87	46.0	5.57	1.87	1.38 x 10 ⁻²
40 53.60 33.0 4.52 2.22 1.64 x 10 ⁻²	39		40.0	5.94		1.16 x 10 ⁻²
	40	53.60	33.0	4.52	2.22	1.64×10^{-2}

APPENDIX II. BIOLOGICAL RESULTS

October 1977 to August 1979

The microfauna, which include all the Bacteria, Fungi, Algae, Protozoa, Nematoda and Rotifera, are expressed as total number per 3.6×10^{-5} litre of medium.

The macrofauna are expressed as total number per litre of medium.

<u> </u>			P6	1548	4		; :	7° 18					4			:		:	:		:	
			P5	12-15	જ	<u></u> ∞		33. 48			1 1	:	<u>.</u>							:	: -	
			P4 F	9-12 1/			1			11	· :	- -	<u>:</u>						:	. !		
		HEDIA	Р3 Р	-6 6-9	<u>د</u>			b 2 9		<u> </u>			3		<u> </u>	-			.	. !	:	
•		PLASTIC MEDIA	P2 P	3-6	89 81	:		32 18				-	/zz	.	<u> </u>	<u>i</u>		<u> </u>	<u>!</u>		<u> </u>	
		F	2	0-3	<u>-</u>		• •	84 3				<u> </u>	29 28				· · · · ·		<u> </u>	•		
	•	ŀ	చ	0-3	111	///	777	77	///	7///	1//	Ż	////		7///	///	7//	/// /	1/	//	///	7//
			PC	0-3	///	////	[]	///			///			///			///.	1/1/				
			쭚	0-3	////	//	41	[] [///	////	XX	X	1//	1///	//X	///	[[]]	///	1/			
			95	15-18	08	9		و و				İ	1									
			25	12-15	ÖÄI			16 144														
			54	9-12	848	۵.		چ چ		34			07	2								
		SLAG MEDIA	23	6-9	84			G 9						<u> </u>		İ						
		SLAG	25	3-6	88	9		<u>@</u> &		9												
			ıs	0-3	88	30	11	30 7	77	384		1	<u> </u>		-	. , , 		, , ,				, , , ,
			ᅜ	3 0-3	4//	///		///		///	//	//	<u> </u>		///		///	<u> </u>		H	///	
-		.	SC	3 0-3		<u> </u>			//	///	<i>(</i>	/ <u>/</u> /		///	///		///	/ / <u>/</u> /	//	///		
	ļ		S.	0-3	(///	II_{j}	KK/	///		///	YX	11	V//	4///		HA	III		MI	777	177	
	1													7 / /		7/3	/ / /	177	/ / :	, . ,		
			M6	15-18	ત	8		1. 46								12/1		··				
			115 M6	12-15 15-18	ب	18 66		9h 69												. !		
					<u>.</u>																	
			115	12-15	<u>.</u>	b£ 011		3 6	1	88		7										
		EDIA	M3K 1131, 114 115	7-8 8-9 9-12 12-15	<u>-</u> ت	bt oij oti		9 5		α α		.	10						t	- B		
		IXED MEDIA	1131, 114 115	6-7 7-8 8-9 9-12 12-15	1 8 961	b£ 011		53 3 6				<u> </u>	Α δ						L L	<u>&</u>		
		HIXED MEDIA	M3K 1131, 114 115	3-6 6-7 7-8 8-9 9-12 12-15	1 3 16 136 2. 1	41 279 253 140 110 79		5 53 3 6 143 86 69	1			<u> </u>	170	1						<u> </u>		
		HIXED MEDIA	M3T M3H H3L H4 H5	0-3 3-6 6-7 7-8 8-9 9-12 12-15	3. 16. 136 2. 1	279 255 140 110 79		8 5 53 3 6 58 148 143 86 69	1	٩		<u> </u>	178							- KI		
		HIXED MEDIA	N2 M3T M3H N3L N4 N5	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	1 3 16 136 2. 1	41 279 253 140 110 79		32 58 148 143 86 69	1	0		<u> </u>		5		·			ti			
		HIXED NEDIA	MC ML M1 M2 M3T M3M H3L H4 H5	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	1 3 16 136 2. 1	41 279 253 140 110 79		33 58 148 143 86 69	1	0		<u> </u>		5	7//				1 1	- d		
		HIXED NEDIA	IAR NC ML MI N2 M3T M3H H3L N4 H5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	1 3 16 136 2. 1	41 279 253 140 110 79		32 58 148 143 86 69	1	0		<u> </u>	 	5	77/			////		- es		
	.1977.	Medium NIXED NEDIA	MC ML M1 M2 M3T M3M H3L H4 H5	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	1 3 16 136 3. 1	41 279 253 140 110 79		3 3 8 5 53 3 6		0		<u> </u>	 /// //				## P##	m177	 // //	// /// ///	[] [] []]	
	OCTOBER,1977.		IAR NC ML MI N2 M3T M3H H3L N4 H5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	1 3 16 136 2	41 279 253 140 110 79	FUNCE	2 2 2 5 52 3 6 5 52 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5				<u> </u>	PRODUZOA: SARCOMASTICOPHORA		Атоерае		PROTOZOA: CILJOPHORA	phyllum pusillum	 // //	Chilodonella cucullulus C. uncinata	///	/// //// //// -;

A

				-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•			•			•		: 1	•					1	•	:				
-												•					•											
0	остовен, 1977.	٠					-								٠.													
	Medium					MIXEL	MIXED MEDIA	V.								SI.AG MEDIA	EDIA							PLASI	PLASTIC MEDIA	DI A		
SPECIES	Basket code	뜻	110	M	MI M2		мзт изм	HI3L	114	W2	911	SR	SC	12	Sı	25	83	54 .	SS	Se	æ	2	PL PI	P2	2	P4	P5	94
	Depth (dm)	0-3 (0-3 (0-3 0	0-3	3-6	8-1 1-9	8 8-9	9-12	12-15	15-18	0-3	3 0-3	0-3	0-3	3-6	6-9	9-12 1	12-15	15-18	0-3	0-3	0-3 0-3	3 3-6	6-9	9-12	12-15	15.18
<u>IEPRITODA</u>				1///////	 \	3	[3	30	_	3	4.				Ö	<u>હ</u>			٦				//////			الا		
ROTIFERA		///		///>			·					<u> </u>	///	///								////	////					
BDELLOIDEA Philodina roseola	1 <u>1</u> a	////	////	////		<u> </u>				:		<u> </u>											7///				•	
ANEIDA OLIOCHAETA: Enchytraeldae	vytraeidaë valis	111.	////	////				833		<u> </u>		[[[]									11/1	////	////				777	
Cocoons of L. rivalis Immature White spp.	ivalis SPP.	1//	XXX	///			3720									091	<u> </u>						7.7.1		160		3	
				111								///		///							///	///	77	:			:	
OLIGOGIAETA: Lamb	Lumbricidae PP:	11/1	11/1	////			. -								1,		· · · · ·				1/1/	1///	111/1	: 		4:		
ARTHROPODA: INSECTA COLLEMBOLA	TA		7//	' ///	1	1	-	-				<u> </u>	<u> </u>		į		$\frac{\perp}{\parallel}$	1	<u> </u>		1//	H	711			,		
	a-violacea .	1	///	7/																	///	///	///	- ! -	1			
COLEOPTERA		1/	///	///					-			1//		////	İ				i		////	////	7///			:	. :	
DIVIERA: Anisopodidae Sylvicola fenestralis Larvae	lidae tralis Larvae	4//	1//	1///							300	<u>Y/A</u>	<u> </u>		!				-		1//		: '////					
	paged fllds	11/	11/1/	7777			4					/X//	<u>////</u>		:	1 1					7/11		////			:		09
					+	-	+	-				4 -		3	-	1	-	1	1	1		4	-	4				

1548 <u>8</u> 99 40 12-15 049 98 5 21-6 40 ΡĄ 380 PLASTIC MEDIA 3330 9730 640 640 3680 330 6-9 2 09 3-6 **P**2 0-3 320 ٦ 0-3 പ് 0-3 ೭ 0-3 8 15-18 800 **S**6 12-15 240 091 S5. 9-12 160 **S4** 6-9 SLAG MEDIA 23 9 . : 3-6 25 - | 0-3 : $\overline{\mathbf{s}}$ 0-3 ᅜ 0-3 SC 0-3 SR 15-18 \$ 1d & 150 £ 12-15 8 0° F S ξē 9-12 629 433 68 40 7 手 84 28 8-9 뎚 MSM 7-8 MIXED MEDIA \$ 8 R 098 346 801 0001 831 094 0001 831 094 M3T 6-7 8 8 3-6 40 얼 0-3 9 Ξ 6-3 뒾 остовы, 1977. 0-3 웃 0-3 뚶 Basket code Depth (dm) Pupae Flies Larvae Larvae Pupae Flies Hydrobaenus minimus Larvae Netriocnemus hygropetricus DIPTERA: Sphaeroceridae Leptocera Spp Larvae Pupae Flies DIPTERA: Psychodidæ Psychoda (all species) Larvæ Flies Pupae F11es Larvae Pupae Flies Pupae Psychoda alternata Flles Flies Spathiophora hydromyzina DIPTERA: Chircnomidae DIPTERA: Corayluridae Psychoda severini DIPTERA: Ephydridae Scatella silacea H. perennis SPECIES

7

		98	1548	0	
		P5	12-15	12%0	
	4	P4	9-12	930	
	PLASTIC MEDIA	23	6-9	008 <i>h</i>	
	LASTI	P2	3-6	33.0	
	-	E	0-3	320	
		곱	0-3		
•		<u>გ</u>	0-3		
		쭖	0-3	V///E/YX////////////////////////////////	
		S6	15-18	d d	
		. S5	12-15	940	
		S4	9-12	1920	
	EDIA	23	6-9	1 30	
	SLAG MEDIA	52	3-6	0000	
		ıs	0-3	091	
		31	0-3		
		SC	0-3		
1		SR	0-3		<i>:</i>
		Н6	15-18	0000	
		145	12-15		
		- 144	9-12	3700	
	52	H3L	8 8-9	091	
	MEDI	т мзм	7 7-8	800	
	MIXED MEDIA	МЗТ	2-9 9		
		W5	3 3-6		
		Ξ	3 0-3		
		포	3 0-3		-
		¥C	3 0-3		
		e Ma	0-3		
остовия, 1977.	E	Basket code	Depth (dm)	and the state of t	
TOBER,	Medium	Baske	Depth		•
90				tigmata sster carpio coma feroniari gphus echinopu soctigmata ius italicus cyclopoida lops fimbriatuu cyclopoida i: CRUSTACEA cyclopoida i: Limacidae reticulatus	
		SPECIES		titigma asster troma sosti ii Cycl Cycl llops ii treeti treeti	
		SPE(ACCHICCODA: ARACIMIDA ACARI: Astigmata Histiosacema feroniarium Rhiscoglyphus echinopus ACARI: Mesostigmata Platyseius italicus ACCHICODA: CHICODA Lithobius forticatus ACCHICODA: CHICODA Lithobius forticatus ACCHICODA: CHICODA Lithobius forticatus ACCHICODA Lithobius forticatus ACCHICODA Lithobius forticatus ACCHICODA Lithobius forticatus ACCHICODA Lithobius forticatus Chi ACCHICODA ACCHICODA Lithobius forticatus Chi ACCHICODA ACCHICODA Lithobius forticatus Chi ACCHICODA ACCHICODA Lithobius forticatus Chi ACCHICODA ACCHICODA Lithobius forticatus Chi ACCHICODA Lithobius forticatus Chi ACCHICODA Lithobius forticatus Chi ACCHICODA Lithobius forticatus Chi ACCHICODA LITHOBIUS	
				ACAR HELD IN HOLL GOODS AND ACTED ACAR HELD IN HOLL GOODS AND ACTE	

		9 ₆	1548			4		9			
		F	-			4		9.5			
		P5	12-15		#	. ا ق	#				
	DIA	P4	9-12		4	134		82		· :	
	월	2	6-9	9;	∞	<u>ب</u>	,	>		± ,	
	PLASTIC NEDIA	P2	3-6	٠.		3,6		152			
		٦	0-3	9	la la	2: ∞		asa			
		చ	0-3	13	~	- 4	#	19	•		
		5	0-3	Ø	rs.	4 %		Ş		ત	
		Z.	0-3	#:		Ωο: 2 ω:		i i			
·		95	15-18	જ		±:	ત્ર	1	• 1		
		SS	12-15	•	M	. 4		13	:	0 8	
	_	ऊ	9-12	•	'n	æ <u>‡</u>		88			
	SLAG MEDIA	S3	6-9	_	-	٠ ئ	ব্য	95	:		
	SLAG	25	3-6	7	Ø	જ :		811		8	
		ıs	0-3	v o	ত্র	. ત્યા	: - ,	900 10a 113			
	İ	SL	0-3	5-	છ	٠.			: .	27	
		သွ	0-3	=		Ø 4 :		961		:=	
. [SR	0-3	4:	+	#	8	30			
		M6	15-18	4.	1	53				+ +	•
		145	12-15	•		36					
		Ā	9-12		± :	# # #	•	:			
		131	8-9	4		رد بر		8		9	
	DIA	ИЗН	7-8	2	9	# 108	ď	. 7			
	MIXED NEDIA	M3T	6-7		89	7.		i			
	H	12	3-6	•	ત	12. 38					
		Ξ	0-3	8	• ;	8 <i>1</i>					
		로	0-3	9	•	91		£5.4	1.75		
		5	0-3	্ৰ	#	17.	4				-
		Æ	0-3	9		70 Œ	#	1		4	
77.			_				1				
ноуытыен, 1977.	9	Basket code	Depth (dm)	;		omices		PHORA	:	lus lus	
OVER	Medium	Basi	Dep	• ;		bbaro		STIGO		DRA pust dens cullu	
zi		SPECIES		BACTERIA Zoogloeal forms.	Sphaerotlius Leptothrix	FUIGE Subbaromyces Conidia of Subbaromyces Sepedonium	AIGNE Chlorella Scenudesmus Stigecclontum	PROTOZOA: SANCOMASTIGORHORA Flayellates	Amoebae	PROTOZOA: CILIOPIDEA HOLOTRICHIA Trachelophyllum pusillum Hemiophrys fusidens H. pleurosigma Chilodonella cucullulus C.uncinata Colfoda cucullus	

	F	و	1548						
		P6	_		∞				
		P5	12-15	0	<u>a</u>	;			!
	Y.	P4	9-12	95	ત્ય ઋ				
	PLASTIC MEDIA	P3	6-9	16	+ ±				
•	LASTI	P2	3-6		2 4 4				
	_	ы	0-3	8+h	4 T R	લ		·	
		చ	0-3	12					
		PC	0-3	, 1.2	oo: Qf				
		PR	0-3		a # # # w				
		98	15-18	. ત	. 181 181	4			·
		55	12-15	# 89	i			•	
		54	9-12	20	G 4				4
	MEDIA	53	6-9	93	40				
	SLAG MEDIA	25	3-6		1010	4			
		ıs	0-3	36	0 te 4 d				
		SL	0-3		W W			,	
1		SC	0-3		# #				İ
		SR	0-3	49					
3. : :		94	15-18	8					
:	٠	M5	12-15					· · · · · · · · · · · · · · · · · · ·	
		쥴	9-12		#	T T		·	 !
:		M3L			4 .				
	EDIA	HSH.	7-8	34	রে , র		ਰ ਰ		
	MIXED NEDIA	H3	6-7	OI.	ne			•	
	Z	22	3-6	Qui	(d 4				- -
		E	0-3		9 9				
		로	ا	46	. 9 8 #	i			
		윷	0-3	3#	. 4 44		1.		
		뜻	0-3	E		9		·	
m.								·	٠
MOVEMBER, 1977.	=	Basket code	Depth (dm)		stom :			• - :	
OVEND	Medium	Bas	De D	ns (llans la	ostom lina coolde	a nnella	e 1		
N		SPECIES		Uronema nigricans Glaucoma scintillans Colpidium colpoda Paramecium aurelia P. caudatum	PERTRICIIA Vorticella microstoma V. convallaria V. vernalis Vorticellid telotrochs Opercularia minima O. microdiscum O. coarctata Operculariar zoolds Epistylis rotans	SPIROTRICHIA Stenror roeseli Aspidisca costata Tachysoma pellionella	SUCTORIA Acineta cuspidata A. foetida Podophrya maupasi P. carchesii		

P6 1518 330 160 160 90 જ: 12-15 09; P5 ؎ ૡ (Oo: 2960 1120 640. 9-12 4 30 ፈ: : 3: PLASTIC MEDIA 6-9 23 S # 3-6 P2 4 œ ٥. 0-3 98 ٦ + ô 0-3 4 <u>م</u> ع : 굽 0-3 2 ત્યું: 0-3 3 8 તા 15-18 213 80 ત્ર, **,** ته ŧ **S**6 12-15 1280 240 ŧ SS 396 7 0 708 9-12 2 4 Şά SLAG MEDIA 6-9 23 þ 113# 1166 3-6 # : ; 25 #1 + 11 091 001 11 084 084 0-3 \mathbf{z} જ # 0-3 ᅜ 160 160 0-3 : 3 SC 80 0-3 SR **†**: 15-18 89 9 ď 12-15 160 20 £ ₹. 9-12 330 7 9 4 324 400 8-9 떮 # 330 484 7-8 MSM MIXED MEDIA **±**: ૡ م 15.43 80 6-7 M3T 9 3-6 330 댗 ત્ય 0-3 **749** 049 Ξ 058 0-3 호 044i 1440 0-3 <u>း</u> # 0-3 م م i 菱 Basket code Sylvicola fenestralis Larvae ноуъжен, 1977. Depth (dm). pupae filies Isotoma olivacea-violacea OLICOCHAFTA: Enchytracidae Medium OLICOGIMETA: Lambricidae Lumbricillus rivalis Coccons of L. rivalis Incuture White spp. DIFIER: Anisopodidae Philodina roseola PRTHROPODA: INSECTA Immature spp. SPECIES COLLEMBOLA COLEOPTERA BDELLOIDEA ANNELIDA ROTIFERS NEMATODA The first was a first than the state of the Harris

NOVEMBER, 1977.

	96	1518	#				₹:	8				
	P5	12-15	9 1991		#1	:	7 60	±				
DIA	P4	9-12	09- 482- 4				!	4				
PLASTIC MEDIA	2	6-9	16;4 340 36		:			4				
PLAST	P2	3-6	881 +8+ 00+					ŀ				·
	ā	0-3	755 964 596 853 1440 720 93 200 168	:			4	4				
	굽	0-3	464 1440 200				!				:	
	8	6-3				! !					4	
	쭖	6-3	1760 160 'Ab									
	Se	15-18	53	:		İ			53 106 4			
	S5	12-15	340			•			#00 80 80			
	S4	9-12	320	' :								م
SLAG MEDIA	S3	6-9	1924 480 1452 320				+					ه ا
SLAG	25	3-6	1764 Shth 1924 1480 1480 1404 1452 320 16 140 133 6	80								
	ıs	0-3	1405) (140	· · ·					±			!
	25	0-3	91 08.4 19.4		;		1 1	_	640			: :
	SC	0-3	196 1979	• :			1					1
	SR	0-3	1520 1440 40	. :								
	M6	15-18	40						009	•		
	345	12-15	213		İ				57.			
	144	9-12	44 08# 049	:					33		#	
	1131	8-9	91 1184 091									
EDIA	МЗМ	7-8							091	ì	1 1	
MIXED MEDIA	18M	2-9	340 940 34						0 4	·		
H	ZW .	3-6	96 <u>0</u> 1612 133					•		-		
	H	0-3	agell Ogel				T			- 1		! .
	보	0-3	0851 9046 0851 9046 11- 8H									-1
	MC	0-3	492 1120 88								[5]	
	₹	0-3	330 800 33							i	36	
					9	Ø.	g a	S S	8 0 m		9 7 7	8 2 2
Medium	Basket code	Depth (dm)	e . Pupae Flies	Files	ae us Larvae Pupae	Flies	Pupae Pupae	Files	Larvae Pupae Files	Files	ldae Larvae Pupae Flies	ae Darvae Pupae Flies
-	SPECIES	3	DIPTERA: Psychodidae . Psychoda (all species) Larvae Psychoda (all species) Pupae Psychoda alternata Flies	Psychoda sevarini Files	DIPIERA: Chircncmidae Hydrobaenus minimus Larvae Pupae		H. perennis	. Ketriocnemus huaropetricus		DIPTERA: Ephydridae Scatella silacea	DIPIERA: Sphaeroceridae Leptocera Spp La P	DIPTERA: Cordyluridae Spathiophora hydromyzina Larve Pupae Files

15-18 C-3 C-
15-18 St. St. St. St. St. St. St. St. St. St.
3500
3600 - 16.0 330 400 330 24.00 800 960 160 160 160 160 160 160 160 160 160 1
36.00 34.00 33.0 34.00 36.0 34.00 36.0 11.0 3.30 11.0 11.0 11.0 11.0 11.0 11
3600
3600 160 330 4400 330 3400 900 960
3400 (40 330 440 330 3400 800 960
SLAG MEDIA SLAG MEDIA SLAG MEDIA SLAG MEDIA SLAG MEDIA SLAG MEDIA SLAG MEDIA SLAG MEDIA SLAG STA SS SS SS SS SS SS SS SS SS SS SS SS SS
3600 340 (60 330 3400
3600 (60 3a0 400 3a0 5
3600 (60 330 400
3600 (60 320)
3600 (40
3600 -3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-
3600 3640 3440
34 000 3 600 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3
36000 19800 36000 19800 3880 3360
9-12 9-12
131 B B B B B B B B B B B B B B B B B B
MIXED NEDIA MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX
13-6 3-6 3-6 3-6 3-6 3-6 3-6 3-6 3-6 3-6
₹ 0 3
34,0
HOD WC
H H 0-3
Medium Basket code Depth (dm) DA DA POPA tus chiltoni
Moviamen, 1977. Medium Basket code Basket code Coniarium Chinopus Ata 11cus 11cus chilton Chilton
1
i Ald i ster control i se control i se control i control
SPECIES SPECIES RATHROCODE: ARACHNII ACARI: Astignata Histiostoma feronia Rhizoglyphus echli Rhizoglyphus echli Rhizoglyphus echli ACARI: Mesostignata Platyseius italica Lithoblus forticat COPEPODA: Cyclopoida Paracyclops fimbri
ACMING ACMING ACMING ACMING ACMING ACMING ACMING COPERCY OCCURRED PAIR PAIR PAIR PAIR PAIR PAIR PAIR PAIR

1			8		. 1		•	1	-									
		P6	1548	7 =			+			_	12							
		P5	12-15	લ .			•				48				:	ત	t	
	A.	P4	51-6	<u> ೧ </u>			#2					·	·		:		İ	
	NEDI	P3	6-9	9: 9			<u>0.10</u>				36				rd		\dagger	
	PLASTIC MEDIA	P2	3-6	36		9									1		\dagger	
	a.	Ξ	0-3	<u> </u>		10	25				741		-		T		\dagger	
•		చ	0-3				1/							////	1		1	
	-	5	0-3															
		٣	0-3	////											*/		7/	
		86	15-18	≠ :			9				24				#			
		SS	12-15	900		#	#				180					.:	T	
		15	9-12	2: 4		9	#				36						×	
	HEDIA	S3	6-9	99 89		ત્ક	<u> </u>								+	<u></u>	8	
1	SLAG NEDIA	25	3-6	82		ત્ય					204				*			
**************************************		_	3	ल =	1		İ				801				9	-	_	
			3				<u> </u>											
		SC	6-3		//											<u>//</u>	4	
· · · · · · · · · · · · · · · · · · ·		8	5				3/								<u> X</u>	1	<u> </u>	
† · · · · · · · · · · · · · · · · · · ·		92	15-18	- .	.		+				. 148		: 1					
•		55	12-15	وک			88			4	33							
:		포	9-12	<i>m</i>		6	∞ <u>i</u>						-		i			
		M3L			! - +				<u> </u>									
4		=	6	. ∞		ત્ત	હ				95		•			1		.
	DIA	MSM	7-8 6-9	18	·	ત	re/			-	308 156						<u> </u>	
	XED MEDIA	МЗМ				. E	<u> </u>				951 808 481							
	MIXED MEDIA	MSM	7-8	4			<u> </u>			-	348 184 308							
	MIXED MEDIA	мэт изм	6-7 7-8	3 4			‡			ا ر	931 808 181 848 847							
	MIXED MEDIA	M2 M3T M3M	0-3 0-3 3-6 6-7 7-8	30 4		3	11			٦ ا	348 184 308							
	MIXED MEDIA	N1 N2 M3T M3M	0-3 0-3 0-3 3-6 6-7 7-8	30 4		3	11			3 1	348 184 308							
	MIXED MEDIA	MR MC ML N1 N2 M3T M3M	0-3 0-3 3-6 6-7 7-8	30 4		9 1 3	11			3 -	348 184 308							
1977.		MR MC ML N1 N2 M3T M3M	0-3 0-3 0-3 0-3 3-6 6-7 7-8	3 30 3 4		9 1 3	13 3 #			3	48 348 184 308							
эмея, 1977.		MR MC ML N1 N2 M3T M3M	0-3 0-3 0-3 0-3 3-6 6-7 7-8	3 30 3 4		9 1 3	13 3 #			- E	48 348 184 308				152 TITUM			
DECEMBER, 1977.	Medium MIXED NEDIA	MC ML N1 N2 M3T M3M	0-3 0-3 0-3 3-6 6-7 7-8	3 30 3 4		9 1 3	13 3 #				48 348 184 308			PHORA	um prisitium Isidens			11us
DECEMBER, 1977.		Basket code MR MC ML NI N2 M3T M3M	0-3 0-3 0-3 0-3 3-6 6-7 7-8	3 30 3 4		9 1 3	of Subbaromyces H	q			COMPSTICUEHORA 48 348 184 308			CILIOPHORA	Oppilium Prisitium rys fusidens		ata	cucullus
DECEMBER, 1977.		MR MC ML N1 N2 M3T M3M	0-3 0-3 0-3 0-3 3-6 6-7 7-8	cotilus		baxomyces	of Subbaromyces H	1016114			SARXOWSTIGGEHORA ates 48 348 184 308			RIGHA	acaetophyllum pusillum miophrys fusidens		uncinata	lipoda cucullus
DEC 1977 •		Basket code MR MC ML NI N2 M3T M3M	0-3 0-3 0-3 0-3 3-6 6-7 7-8	3 30 3 4		9 1 3	13 3 #	ALGNE Chlorella		LUM .	48 348 184 308			PROTOZOA: CILIOPHORA HOLOTRICHIA	Hemiophrys fusidens		C.uncinata	Colpoda cucullus

		9.6	1518	4:					;	:		İ				1		
		P5	12-15	. 08	#											:		1
	4	P4	9-12) <u>C</u>					5	 			+					
	PLASTIC MEDIA	2	6-9	: ₫					#					+-	;			
	LASTI	2 ₂	3-6	رم کو م	4		4	4	00	:				1	-			
	-	=	0-3	32			-	يـ ا	H						į			7
		곱	0-3		X///												/////	
		<u>2</u>	0-3												4			
		쫎	3 0-3		19				1/	//		<u> </u>		<u>//</u>				4
		95	15-18	Ħ								#			1			
		S5	12-15	990		8	1	4	#			İ						
•		54	9-12	8					3						:			
	MEDIA	S3	6-9	જ હ્વ	ત્વ		હ	· ±	ه		İ	જ		Ī	į	İ		
	SLAG	25	3-6	<u>। व</u>	41				00			#		!				
		12	0-3	94 1			1	0	60		2222	10		-			, , , , , ,	
		25	0-3				24		//			24		4	//			
-		S	0-3				44					//		4	4			1
1	-	SR	0-3	(XXXI)						<u> </u>				//] -
;		M6	15-18	8					3						:	• : •		
		35	12-15		#			7	#									
		¥	9-12	1				001	=						3			
•		131	8-9		ત્ય		ત	00	2	ح							•	7
• •	EDIA	изм	7-8		i		=	2						ľ	i			1
	MIXED MEDIA	НЗТ	2-9		·			ব্	6					Ì				
	분	M2	3-6				8	10	8	5								
		Ξ	0-3					70	7	٦٤								
		로	0-3	1/	1///	44	W	M	1/		////	1//		1/		//////		4
		35	0-3	111111	1/2/	1/4	///	W.	1/2	1/1		11/1		X	1/			
		쫎	0-3		1/2	//	14/1		/	1		14		XI	1/		[11111]	4
977.		code	æ				g .					İ						.
DECLARATA, 1977.	Medium	Basket code	Depth (dm)	lans a	toma		alotroch:		श्ची			ella			1		• .	
CERC		SPECIES		Uronema nigricans Glaucoma scintillans Colpidium colpoda Paramecium aurelia P. caudatum	PERITRICILA Vorticella microstoma	V. vernalis	Vorticellid telotrodis Opercularia minima	O. microdiscum	Opercularian zoolds	Enistylis rotans	SPINOTRIGILA Stentor roeseli	Aspidisca costata Tachysoma pellionella	SUCTORIA	Actneta cuspidata	Podophrya maupasi	P. carchesil		
	,	ر مورون مورون						(F) EST	,			are est				es de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Salar Salar Salar	

1		1	1	80	T	· · · · · · · · · · · · · · · · · · ·		1			-	· · · · · · · ·	T	· · · · · · · · · · · · · · · · · · ·
			P6	1548	./5			049		<u> </u>	04	,	197	
			PS	12-15	36	·		640	160	:	26	,	. 4	
1		Y.	P4	9-12	∞.			084	049		88			
		C MED	P3	6-9	9			091	480	٥.	34	1		
1		PLASTIC MEDIA	P2	3-6	9			800	1130	٥	2		o	
1		-	E	6-3	ત્યઃ		İ	330		:				
+			료	6-3	11/1/	////	1/2		////	////				
			5	0-3										1
•			æ	0-3			///							
			98	15-18	1			9551						
			SS	12-15	456			(536	480					
			24	9-12	go			82	084					
-		SLAG MEDIA	S	6-9	B				049	1	 		50	
		SLAG	25	3-6	#			480				1	٥	1
į. ,			ıs	0-3	£			338						1.
1	•		SL	0-3							///	////		1
:	•		SC	0-3										
-			SR	0-3										
1			N6	15-18	6			HOW	0th					1
			£	12-15	⊘ ∞			H911						
			五	9-12	6		\top						330	†
			H3L	8-9	<u> </u>			99	1600 1120				4	†
100		AIG	изн в	7-8	જ		_	220	340				69	
1		MIXED MEDIA	M3T I	2 1-9				60	8	+			90	1
		MIXE	N2 1	3-6				#	640 330					Ì
			N)	0-3	જા			449		-				-
			堀	0-3 (777777	77777	777	7///	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1///		1/1/		
			MC P	0-3 (///							1
-			AR A	0-3	//////////////////////////////////////					1///				
	÷	╟			(1////////			////		1222	////		9 0 0	1
	DECEMBER, 1977.	Nedium	Basket code	Depth (dm)				eldaë	5 7	98	olacea		s Larvae pupae flles	
	81.40.00	-	SPECIES Bas	Det	KEMATODA	NOTIFERA BDELLOIDEA	Philodina roseola	NWELIDA OLICOGUREDA: Enchytraeldæ Lumbricillus rivalis	Cocoons of L. rivalis Immature White spp.	OLICOCHAETA: Lambricidae Immature Spp.	ARTHROPODA: INSECTA COLLEMBOLA Isotoma olivacea-violacea	coleoptera	DIFYER: Anisopodidae Sylvicola fenestralis Larvae pupæ filles	
1		L			즤	<u>سا م</u>		শা ০		1 0	41 O	. 0		T

1548 d 90 **P6** + ٥ : 4: 12-15 091 5 œ ٥ 9-12 P4 99 PLASTIC MEDIA 330 6-9 **P3** 4 3-6 1130 3080 100 P2 9 164 646 56 0-3 3 ٦ 300 0-3 ಷ 0-3 2 0-3 PR 15-18 P 60 7 8 S6 12-15 ± 03 **S**5 9-12 33.0 804 414 \$4 09 1460 849 SLAG MEDIA 6-9 **S3** 1764 3540 213 3-6 25 1396 3108 10t 0-3 $\overline{\mathbf{s}}$ 0-3 S 0-3 SC 0-3 SR 15-18 560 80 44 08 웆 12-15 00B ξ 9-12 भूकम् उसका 74 5764 2424 20 8-9 띮 7-8 4738 2813 132 E MIXED MEDIA 5,380 1694 436 6-7 8. H3T ۵ 3-6 1368 3056 356 36 껉 ŧ 4049 3044 104 0-3 **H9** Ξ <u>--3</u> 호 0-3 웃 0-3 뚲 Basket code песычней, 1977. Files Larvae Pupae Filtes Depth (dm) Larvae DIPTERA: Sphaeroceridae Leptocera Spp Larvae Larvae Pupae Flies Hydrobaenus minimus Larvae Pupae Flies Pupae Flies hygropetricus Pupae F11es (all species) Larvae Pupae Psychoda alternata Flies Files Spathiophora hydromyzina Medium Chirchomidae DIPIERA: Cordyluridae Psychodidae Psychoda severini PTERA: Ephydridae Scatella silacea Metriocnemus H. perennis SPECIES Psychoda DIPTERA DIPTERA: DIPTERA:

17

1				-		مستريب ومتسسو	ن مسسسسست	-	And the second s
			96	1548	3600			0091	
			P5	12-15	م		:	1920	
			P4	9-12	<u> </u>	+		5ji 008	·
1		MED1A	P3	6-9	8	 		320 8	
1		PLASTIC MEDIA	P2 F	3-6	0 <i>09</i> E	 		ilao 33	
-		14	l d	0-3	2			091	
	-		=	6-3	V/////////////////////////////////////	11/1/1/	11/1/1/	/////////	
	•		5	6-3					
	•		æ	0-3	\/////////////////////////////////////	V//////			
			Se	15-18	3600			960	
-			一	12-15	3600			1380	1
1	i		SS	9-12		 - -			
		A I	54		Q.	<u> </u>		986	
***************************************		SLAG MEDIA	2 83	3-6 6-9	Q.			480	
-		SL	1 52	0-3	٥			ō₹, ō₹,	
•			SL S1	0-3	11/1/11/11/11/11/11/11/11/11/11/11/11/1	11111	/////	3) ////////	
	•		s s	0-3					
****			SR	0-3		VIVI			
1				18	01	. /////	777777	7//////	
			H6	15-18	00801			004	
1			32	12-15	٥			9H0	
			14	9-12	21100			091	
			1131	8-9	0081			330	
Towns Comme	,		МЗМ	7-8	ठाउँ । <i>१</i> ०४मा			240	
4		MIXED MEDIA	МЗТ	6-7	.			330	
		¥	M2	3-6	0098 0098			:	
1			Œ	0-3	3600			d	
,			로	0-3			////	//////	
1			ဋ	0-3					
-			뜻	0-3	<u> </u>	//////	<u> </u>	11/1/1/1	
	DECEMBER, 1977.	_	Basket code	(#				A chiltoni	
1	PABER	Medium	Basket	Depth (dm)	DA. Io iorium	<u>ស</u>	Ado:	8 #	
	DAU.			_	ACIENTI Carpi feroni echit	gmata talic	CHILOPODA orticatus	CRUSTACEA opoida fimbriatu	·
	•		IES		tigma tigma aster toma yphus	sosti ius i	S fo	Cyclo 10ps	
			SPECIES		ARTHROPODA: ARACHNIDA ACARI: Astigmata Histiogaster carpio Histiostoma feroniarium Rhizoglyphus echinopus	ACAKI: Mesostigmata Platyseius italicus	AKNIROPODA: CHILOPOD Lithobius forticatus	ARTHROPOLA: CRUSTACEA CDFEFOLA: Cyclopoids Paracyclops fimbriatus ch	
1					ARCTHI ACARU	ACARJ	ARTHI	ARTHII COPEE	
策									

The second secon

		4	1548		4	\n \n.	1	33					
		-	2	 		9 9				<u> </u>			
	-	- H		8		रु इ		1104					
		PIA PIA		ત્ય	•			3,6					
	1	PLASTIC MEDIA		70	1 :	- 4		\ \&				7+-	
		PLAST		9	3 ;	4 4		igo Igo				9	
		1		প্	9	ঞ প		841			9	34	
-		ة		<u> </u>				83			4		
		1		(20)	જ	걸려		352					
	-	a		190	4	001 44		88		1			
		8		<u> </u>	#	4 48		133				. 4	
		5			001	क छ	68	99					
		2				. 9		34					
	1000	SLAG MEDIA			1 1	#	ત્	08		-			
	34.5	N K		∞.	<u>\$</u>			3					
1		2		ģj	ત્રા	ત્ય		364					
		17		9		# 0a		897					
•		5		9	2	;		891			જ		
		9	6-3	8	9	89		89/					
		Me	15-18		1. 1			179			q		
•		£	12-15		1	6		28	#		9		
		44	9-12		8	-		56			5	જ	
•		E	6.6					138			8		
	4107	-			اه			91			#		
	MIXED MEDIA	M3T	6-7	8		200		152					
	Ī	112	3-6	4	9	78		420		.			
	l	Œ	0-3	89		36		Mad		9	.	8	
		Ī	9	#	#	8	4	334			30		
•		S S	0-3	ಡ	33.	10 8		156			±		
		뚲		8	4	01		352			4	8	
	JANUARY, 1978.	Basket code	Depth (dm)	Si		Libbaromyces Conidia of Subbaromyces		SAROMPSTIQOFIORA ates		PHORA um pusillum	sidens	cucul lulus lus	
·		SPECIES		BACTERIA 2003 Qeal forms	Sphaerotilus Leptothrix	Subbaromyces Conidia of Sepedonium	MGME Chlorella Scenedesmus Stigeoclonium	PROTOZOA: SARON Flagellates	Апоерае	PROTOCOA: CILIOPHORA HOLCTRICHIA Trachelophyllum pusillum	Hemiophrys fusidens H.pleurosigma	Chilodonella cucullulus C.uncinata Colpoda cucullus	

701																				·							
		P6	1518		જા				رة!	,		ত ়	:	-	1				:	į							1
		P5	12-15		3	:				20		3			-	j						!					
	-	P4	9-12	±	0;				1	t		20	Ī			+	Ť			Ī	\perp					\neg	-
	NEDI/	P3	6-9		[r-			9		7	<u> </u>	(S)	1		!	-			-	 	Ī					\dashv	
	PLASTIC MEDIA	P2	3-6	ત્				⇉	į	9	i	∞ ·	Ť							Ť	T			<u>. </u>			
	-	ы	0-3		8			9	:		.	4 :					त्र			i	Ī						
		곱	0-3		30			ત્યઃ				ľ															
		5	9-3		#					_		8	_		_	<u>. </u>	ત્ય		_		Ļ						
	_	æ	8 0-3		' 18	<u> </u>		<u> </u>	+	ત્ય		φi					<u> </u>		1	1	<u> </u>					_	
		Se		•				3				8															
		55	12-15	:	8							8															•
i		54	9-12	ļ	±.					-		ন্ত							1				•				
	ÆD1A	53	6-9	:	<u>o</u> :	·				1	: 	00		<u> </u>	1	\dagger	\dagger		\dagger	\dagger	T						
	SLAG MEDIA	25	3-6	1	48			9	Ī			의					İ		ij.	Ì	Ī						
		SI	0-3	:			ત			4		اِه		/						Ĺ							
		SL	-		4		<u> </u>			2	!	의				ĺ											
		SC	0-3						9	જ		90							1	\perp							
,		SR	6-0		181					9		প													•		
		M6	15-18	44	4		7			9		00				.	4										
•		115	12-15	9						4		4					B			İ							<u>-</u>
• •		114	9-12	85.	<i>\</i> o		T		-	84		0			ત્	9	8		İ	1							•
		H3L	8-9	7	9		Ī		-	88		ह			j	1	Ť	<u> </u>		6	4						
	V TO	МЗМ	7-8	#3	9		Ť		- 	30		34				ŧ			T								•
	MIXED MEDIA	н:зт	2-9	ત્ય,	જ		T	Ϊİ		38		20	ત્ક														
	¥	112	3-6	:						∞		23															
		M	0-3				I			4		ŧ															•
		캎	0-3	;	ō				.	0		ŧ						!					•				
	•	MC	0-3							ત		0-			ھ												· .
		ᄴ	0-3	1	3.0				4	10		ત્															
78.		code	(F)	į					2			. 1				.			-								
January , 1978 .	Medium	Basket code	Depth (dm)	ans	eg				Vorticellid telotrods			aplo					ella										
JAIN	_	_	_	ricans intill	olpoda		ria		lid te	minim		Lan 20	otans		eli	stata	ncille		oidata	- Factoria							
		SPECIES		Uronema nigricans Glaucoma scintillans	Colpidium colpoda Paramacium aurelia P. caudatum	AH.	V. convallaria	V. vernalis	orticelli	Opercularia minima O. microdiscum	O. coarctata	Opercularian zoolds	Epistylis rotans	HIA	Stentor roeseli	Aspidisca costata	Tachysoma pellionella		Acineta cuspidata	Podorbrua maunast	P. carchesii						
		SPE		Urone	Colpi Param P. cai	PERLTRICHIA	7.	V. Ve	ğl	Operci O. mic	0.00	od.	Episti	SPIROFRICHIA	Stentc	Aspid	Tachy	SUCTORIA	Acinet	Podor	P. car						
						PEF								SPI	_			ျာ				!					

		P6	1548	36		160 160	: !	4				1
		P5	12-15	т .	: •	091 1091	: !	00				
	A I	P4	9-12	<u>ૡ</u>		7538 1920.		œ			∞	
	C ME	P3	6-9	-		Orli Orli		4			٥	
	PLASTIC MEDIA	P2	3-6	4		0761 008 0411 088					4	
	-	Ξ	0-3	:		091			:			
		굽	0-3	ત		480			4			
		5	0-3	90.		791						
	_	쭖	0-3	72		اله			İ			
		98	15-18			5638 19.80 64.0						
		S5	12-15	4		1348. 640						
		S4	9-12	ন্ত্ৰ		 88मा	1					
	SLAG MEDIA	53	6-9	26		% 87.% 94.0		i			i	\Box
	SLAG	25	3-6			Tel 049						
		เร	0-3	4∹		808						
		St	0-3	30		नुरुष ठप्टरा						
		SC	0-3	:		188	#					
		SR	0-3	9		091						
		Ме	15-18	CU	લ	08H 888H			-		-80	
		145	12-15		由	949 940 940					601	
	1		۸.				,					
		#	9-12	·		2476 730						
		H3L H4	8-9 9-1			4200 2476 880 720 4-				1		1
	EDIA			-								
	XED NEDIA	H3L	8-9	-		891 0#9 F#16 091	-					
	MIXED NEDIA	мзм изг	7-8 8-9			891 049 446 091						
	MIXED NEDIA	изт изи изг	6-7 7-8 8-9			891 049 091 640 049 091						
	MIXED NEDIA	M2 M3T M3M M3L	3-6 6-7 7-8 8-9	4		891 0#9 F#16 091						
	MIXED NEDIA	NI N2 M3T M3M N3L	0-3 3-6 6-7 7-8 8-9	4		P 640 640 040 040 040 040 040 040 040 040						
	MIXED NEDIA	ML NI N2 M3T M3M N3L	0-3 0-3 3-6 6-7 7-8 8-9	4		P 640 640 040 040 040 040 040 040 040 040						
8.	MIXED NEDIA	MR MC ML M1 M2 M3T M3M M3L	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9	4		891 049 040 040 040 040 040 040 040 040 040				vae	986	
и, 1978.		MR MC ML M1 M2 M3T M3M M3L	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9	4		891 049 040 040 040 040 040 040 040 040 040	Jae			is Larvae	edud d	
ландану, 1978.	Medium MIXED NEDIA	MC ML NI N2 M3T M3M N3L	0-3 0-3 0-3 3-6 6-7 7-8 8-9	4		891 049 040 040 040 040 040 040 040 040 040	oricidae			lidae ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	econd .	
JANUARY, 1978.		MR MC ML M1 M2 M3T M3M M3L	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9	4	EDELIDIDEA Philodina roseola	P 640 640 040 040 040 040 040 040 040 040	OLICOCHAETA: Lumbricidae Immature Spp.	ONLEMBOLA: INSECTA COLLEMBOLA Isotoma olivacea-violacea	OOLEOPTERA staphylinidae	DIFTERA: Anisopodidae Sylvicola fenestralis Larvae	educing the second of the seco	

	-		∞ I								· .	1				·—-	 ,	1		, ,	+						4			1
		9.	1548		• :			i	<u> </u>	1		!		:				!					•				:]
		PS	12-15	084	•	4										<u>. </u>		!					•					:		
	4	P4	9-12	049	نه	4	1	!		:	į							:								:]
	PLASTIC MEDIA	P3	6-9			• ;			i	1									Ť		Ť		હ	十			-	- i	· · · · · · · · · · · · · · · · · · ·	1
	ASTIC	P2	3-6	3760 4000	dos	oë.	. ;		1		• !							i	Ì		\dagger		91	i		İ.	:	!		1
	ح ا	ГI	0-3	140	800	4	1			•	-							i	-		1		S	İ						1
		PL	0-3	1444 1440	804	#	İ						•				-			l	İ									
		S.	0-3	640	8			ĺ		Ì	-												110]
1		A.	0-3	Š	3	Ø					İ																			
		S6	15-18	ط	ρ	#																				٠ ,				
		55	12-15	09	160	ૡ			i	1			٥																	
		54	9-12	940	9	9£i					!		•									.				-	٠			
1	SLAG MEDIA	23	6-9	80	1380	5,2					į												i				ø	ļ		
	SLAG	52	3-6	EU		82	-	:		-	;							-												
1		ıs	0-3	813			:	i		- !							ما	.	\perp					-						
1		25	0-3	1130	<u> 4</u>	+ :		:	<u> </u>		!						1	-			1		1	\bot		-	_		·	<u> </u>
		သွ	0-3	708	1 644	• :			<u> </u>	į	_								_		4			1				_		-
4		SR	0-3	1 388	204	<u>နား</u>		i	_	-			-				.	_	1					1:						.
*		₩ 9	15-18	<i>7E</i> 1	160	16	•	!																						
, ; ;		145	12-15	88	160	.76				-																				_
		114	9-12	787	48.8 48.8	œ			İ	-													4							
1		1131	8-9	002																			4							
	EDIA	M3M	7-8			<u> </u>																	4							
	MIXED MEDIA	M3T	2-9	4140	839	69		İ	T														4							
	M	112	3-6	EES 0117 800C 0 11 1175E Q49	041 062 89 29 009 4046	116 600																	હ							
g G	`	E	0-3	9	7 TO	· .																								
		로	-3 -3	3544	896	প্ৰ																				·				1
-		옷	0-3	Q#9	896 008	₹.																	316							1
		똣	0-3	3530	130													İ					4							1
78.		code	E			1		50		98	اَبِو	ş	,ae	92	S	sna	8	اړو	SS	Ŋ.		Je J	g	g.		98	g	Si	. <u>-</u> .	
Jahuany , 1978.	Medium	Basket code	Depth (dm)	DIPTERA: Psychodidae Psychoda (all species)Laryae	Pupae	Psychoda alternata Flies	!	Files		Hydrobaenus minimus Larvae	Pupae	Flies	Larvae	Pupae	Files	Metriocnemus hygropetricus	Larvae	Pupae	Flies	Files		Larvae	Pupae		TEKA: COCOYIUTICAS Spathiophora hydromyzina	Larvae	Pupae	Flies		
ЭЛИПА	==	B	<u>ප</u>	ildae icies)		mata	•		mldae	nimi						hygrop				ldæe		cert		1	iridak Iydron					
1		s		Psychodidae	•	alte		Psychoda severini	Chironomidae	ins mi			sju			suns 1				silac		TEMA: Sphaeroceridae Leptocera Spp La		1	Cordyluridae ophora hydrom		•			
		SPECIES		i: Ps		choda		shoda		obaer			H. perennis			ciocne				V: Er		ocer4		8	hioph		•			
		ಶ		DIPTERA: Psychoda		Psy	٠١.	Psyc	DIPTERA:	Hydr			Н. Б			Meti				DIPTERA: Ephydridæ Scatella silacea	ATTORION .	Z P P		Difference	DIFIERA: Spathi					
1	L			H A	<i>.</i> ;				ä											<u> B</u>	12	3			<u> </u>					

1548 320 2240 **P6** 12-15 3600 54-20 4800 54 00 P5 6-9 9-12 Dell 0801 036 096 P4 PLASTIC MEDIA P3 3-6 P2 0-3 4 ٦ 0-3 0-3 0000 3600 1800 1800 ಷ 160 ಜ 15 8 0-3 3-6 6-9 9-12 12-15 15-18 480 1600 98 ٥ 25 1800 1200 160 320 320 \$4 SLAG MEDIA 53 25 ؎ 900e 88 \mathbf{s} 0-3 330 25 ۵. 0-3 یے SC 0-3 85 ٥ 24.00 15-18 480 웊 7200 12-15 480 3 9-12 540 7200 Stop 2400 74 8-9 표 160 7-8 X X X 30 MIXED MEDIA 6-7 M3T 080 ٥ 3-6 120 일 ٥ 3600 0-3 640 P Ξ 0-3 로 0-3 P 웊 -0 £ Basket code chiltoni Depth (dm) JAMUARY, 1978. Histiogaster carpio Histiostoma feroniarium Rhizoglyphus echinopus Medium Paracyclops fimbriatus CHILLOPODA CRUSTACEA Lithobius forticatus ARTHROPODA: CRUSTACE COPEPODA: Cyclopoida ARTHROPODA: ARACINIDA Platyseius italicus ACARI: Mesostigmata ACARI: Astigmata SPECIES ARTHROPODA:

	Γ	P6	1548				i .	र्घ त्र		<u> </u>	1	T		3.14					ها		<u> </u>				٦
		P5	12-15 1				ļ	7,0		 	<u> </u>	<u>- !-</u> -		e 09	C.	 			1	<u> </u>	-	H	+		\dashv
		_					<u> </u>	-				+	-	9					\perp	-	L	4	4		4
	DIA	P4	9-12					±	_					9	·										
	PLASTIC MEDIA	P3	6-9	٦			ļ.,	ત્રું						9ь					_		<u> </u> ±	=		<u></u>	
	PLAST	P2	3-6		9						_			313					\perp	<u>L</u>					
		Рì	3 0-3	<u>હ</u>	<u></u>		177	#	9		1.	+		918	,,,,,,,		, ,		<u> </u> =						
		P.	3 0-3		4	4		4	//		/	4	1/		///	///		4		1/	//		4	//	4
		DC 1	3 0-3		4	1	<u> </u>	4	//	1//	$\frac{1}{1}$	4	$\frac{1}{2}$			///	//	//	4	1/		14	4	///	4
		PR	8 0-3		//	(/	<u> </u>	<u> </u>	1/	1//	4	1/	2	///	///	<u> </u>	1/		<u>//</u>	1/	1/	1	4	<u> </u>	4
		98	15-18	ત્ક				٦	9	ŀ				46											
		.25	12-15		æ									36	4										
		S4	9-12		38				+			·		ત્					1	T			1		7
	4EDIA	53	6-9			\prod	<u> </u>	_			_			82			-		+	\vdash	-	-	+		\dashv
	SLAG MEDIA	25	3-6	4	æ		\dagger	#	Ì	İ	•		Ť	96					+				\dagger		7
	"	ıs	-3	30	00		1		#					498					\top	T			Ť	 	1
		75	0 - 3				{//	W.		XZ	//	1	\mathcal{L}					777	7	1		//	//	7//	7
		SC	0-3	////	II		VII	1/				X	1						1	V	1		1		
. 1		SR	0-3				17.	1		1//	/	1						///	X	1			1		1
		92	15-18	Å				İ			-			126				,				જ	.		
		145	12-15	ત				İ			+	-	Ī	09			Ì		Ť	İ					7
		114	9-12	,,,			<u>: </u>	+	-	 		1	$\frac{1}{1}$! !		-	-		+	<u> </u>			\dashv		+
					<u> </u>	<u> </u>	<u> </u>	+	<u> </u>	-	1	-	+	98		 			12	<u>' </u> 			\dashv		-
	¥.	314 1131	7-8 8-9			 	-	+-	-		-	<u> </u>	<u> </u>	. 2		-	<u> </u>		+	-	-		\dashv		╬
	MIXED MEDIA	мзт изи	1	6		1 1	-	-	+	-	+	1	1_	96 9	·	 	-		+	<u> </u>	\vdash	_	+		+
	MIXEL		3-6 6-7	9		K	+	+	ત્ક	1	\dashv	+	+	918 9	·	-	<u> </u>		+	<u> </u>		-	+		+
		¥2	0-3 3-	8 48	_		+-	+	_	-			$\frac{1}{1}$	9 8		-	 		+	<u> </u>	\vdash		-		+
		Ξ		8	//	11	1//	+	00	 <i>Y//</i>	_		+	На	////	177	17	//	1	\ \ \			7 7	777	7
		뒫	0-3 0-3		1//	1/1 1/1	X//	X/	<u> </u>	Y/ {/.	/ X / X	$\frac{X}{X}$	<u> </u>		///	X//	//	//	<u> 1</u> 11	1/			H	///	4
-		R NC	0-3 0-		1/2	1//	1/	X/ /V	<u>V/</u>	<u>//</u>	<u>/</u> //	<u> </u>	<u>X/</u>		///	1//	1/	///	X	1/		7 X 7 X	4	///	4
.		e Æ		Z (/ / /	1/2	1.1	4/	<u>//</u>	1	<u>1//</u>	<u> </u>	<u>//</u>	1	(//		<u> </u>	1/		4	<u> </u>	\Box	4	4	<u>///</u>	4
Pebruany, 1978.	Medium	Basket code	Depth (dm)					Secumon						TOOPHORA			-	mit 1 Jun	SI		lulus				
BERA			1	forms	lus	×	·	Obsidia of Subbaromices	E.			snus	an rue	SARCOMASTICOPHORA ates			CILIOPHORA	hul Jun	s fusider.	igma	lla cucul	ā	ucullus		
		SPECIES		BACTERIA Zoogloeal forms	Sphaerctilus	Leptothrix	FUNGI	Subbaromyces Conidia of	Sepedonium	ALGAE	Chlorella	Scenedesmus	Stigeocic	PROTOZOA: SAR Flagellates	Anoebae		PROTOZOA: C		Hemiophrys fusidens	H.pleurosigma	Chilodonella cucullulus	C. uncinata	Colpoda cucullus		

-		4	نعيي		سنديد	ئى <u>د</u>		- 71.71	منت		-		- 22			-		ضنت		-			-			-7:	-	٠,٠٠	نتت				4	
			9.	1518			İ		-					1		4		B		! 	i	1				જ								
			P.5	12-15				200					-					4																
		A	74	9-12	~	3	•		-	+	-	T	 	<u> </u>		4		4			-	į		T		4					,			
		PLASTIC MEDIA	P3	6-9	~	٥,	i	当		+		+		<u>: </u>		4	-	व					\forall	+										
		LASTIC	P2	3-6						1				İ		9		90					ij											
		٩	ā	0-3		i			İ			ব				4		32						\top										
			చ	0-3	//	//	V	//		1	//	Z	1/	\mathbb{Z}			\mathbb{Z}	$/\!\!\!/$	\mathbb{Z}		\mathbb{Z}	\mathbb{Z}	//	1/	\mathbb{Z}	//		\mathbb{Z}	//	//	\mathbb{Z}	//	$/\!\!\!/$	l
			2	0-3		//	<u>/</u> /		<u>//</u>	<u> X</u>	<u>//</u>	<u>{/</u>	$\c \c \c \c \c \c \c \c \c \c \c \c \c \$	//				Δ	//	//	//	//	//	1/	<u>//</u>		Ź	//	//	<u>//</u>	//	//	$/\!\!/$	l
		_	జ	9-3	//	///	1/	1	11	1/2	<u>//</u>	1/-	<u>//</u>	//	//	V_{λ}	//	7	//	///		//	1	1/	//		//		<u>//</u>	<u>/</u> ,	//	<u>//</u>		l
			98	15-18			İ	9	•							જ		ŧ					!											<u> </u>
			SS	12-15		1.	-		-							و		4																•
			S4	9-12			İ	4	Ì	Ť						84		#					T	T	:			İ						ı
		EDIA	53	6-9	-	•	-	æ	1	+		-			-	œ		ष				-	\dagger	\dagger	+	4								
A supplied to the supplied of	•	SLAG NEDIA	25	3-6			-		1	i						=	T	8					十		#	_					•			
And Andrews			SI	0-3		1										Q.		#																·~
4			15	0-3	VZ,	<u>//</u>	//		4	//	//	//	\mathbb{Z}	//					//		\angle	\mathbb{Z}		$\langle\!\!\langle\!\!\langle$ \!\!\rangle	//	\mathbb{Z}	\mathbb{Z}	//	<u>Z</u> /	//	\mathbb{Z}			
			35	0-3	//	1/	V	Δ	4	<u> </u>	//	{ /	<u> </u>					//	4	//	//	4	4	1 /	//	Ζ,	//	//	Ļ	//	4	//	A	
1			S.	-6	1	!/	1/		//	11	//	1/	1		//:	//		//					//	<u>V/</u>	/	/	//		//	<u>//</u>	<u>//</u>	<u>//</u>	//	
1			M6	15-18												크		4					0		જ									
			145	12-15	7	<u>.</u>		ત્ય								-		ત્ત					9					į						
			M	9-12	±	-			1	+	•	 		٦				8			<u>i</u>		ત્ય	1										
			131	8-9	-	· · · · · · · · · · · · · · · · · · ·		8	<u> </u>	+		\vdash				30		8	•		7	4	#	 				_						
	,	DIA	МЗМ	7-8	±	<u></u>		ત્ક	i	+	٠,	s	<u> </u>		•	4		9				ત્		†	٠.		رو							
		MIXED MEDIA	МЗТ	2-9				8	Ì	\dagger		T	Ī			8		30					Ť								•			
		포	F12	3-6							_					ø		48																
			M	0-3				Ø		T	Œ	*		#				53					ŀ											
			財	0-3	//	1		//	//	1		1	//					X					//				/		//	//	//		//	
				0-3	4	//		X	X	X	//	\mathbb{Z}			//			/}					1	1/			//	/	<u>//</u>	//	<u>//</u>	//	//	
			뚶	0-3	1	1		1	1	1/		1	//	/	//			4		//			//	$\underline{\mathbb{Z}}$				<u>/}</u>		//	//	//		
	February, 1978.	_	Basket code	(E)										trs	٠,,																		 .	
	RUARY	Medium	Jasket	Depth (dm)		sus					toma:			lotro				olds	.				118											
	FEB	F			icans	Glaucoma scintillans	Poda	Paramecium aurelia	!		u'nuCHLA Vorticella microstoma	ia		Worticellid telotrochs	Opercularia minima	E I		Opercularian zooids	tans		116	stata	Tachysoma pellionella	1	data		past							
			IES		nigt	e sci	Colpidium colpoda	ium a	- 1	· .	A 11a mi	V. convallaria	alis	foell	aria	odiscı	O. coarctata	ularti	Epistylis rotans	S	Stentor roesell	Aspidisca costata	na pel		Acineta cuspidata	ida	Ja man	P. carchesii						
			SPECIES		опеша	aucom	Ipidi	ramec	P. caudatum		PERLITUCHIA Vorticel	conv	vernalis	Vort	ercul	micr	COAL	Operc	istyl	SPIROTRICHIA	entor	pidis	chyso	A.F.	ineta	A. foetida	dophri	carc						
					Ur	13	8	P.	a }		PERUT	15	2		ď	10	· •	_	EP	SPIRO	St	AS	E	SUCTORIA	AC	¥ 1	Po	ه ا						
a comment								_																				-						

		P.6	1548	ন্ত	i.			3880	3080	· · · · · · · · · · · · · · · · · · ·	:	j	4	:		;		م.			
		-	12-15		-	.				· ·	<u> </u>		#		- i		<u> </u>		!		٠
		35		8	<u>:</u>				008			!	4	!					_		
	DIA	7	9-12	91)08¥	9 8		į		∞		İ	j		00			
	PLASTIC MEDIA	P3	6-9	9	<u> </u>			8007		;				į				٥			
	PLAST	P2	3-6	90	<u> </u>		٠.		oös										_		
		=	3 0-3	٥		7 7 7	7	±.	330	77	, , ,	-	7777		.	_	7 7 7	7 /	7.7		
		ᆸ	3 0-3		///		//		4	////		4		/		//		//	//	4	
	1.	2	3 0-3		///		//		<u>//</u>			//	///					//	44	4	
	_	쫎	8 0-3		////	///	//	////	1//	///	///	1	<u>////</u>	_	///	//	///	<u> </u>	///	1	
		98	15-18	%	· ·	જ		0801	1380												
		SS	12-15	<u> </u>	;			1673	1600_ 160												
		54	9-12	84				849		:			İ					#			
	SLAG MEDIA	53	6-9	4	:			00 17	0.69						·			-	j		
V 1000 A	SLAG	25	3-6	ie i				808	0092		م			.		!		İ	1		
		SI	0-3	ત્યું				08£	049	į						:		İ]	
		St	0-3													//			\mathbb{Z}		
1		SC	0-3									<u> </u>				\angle			//	1	•
•		SR	0-3																X		
		M6	15-18	16	:	#		3164	640							. !				e.	•
		145	12-15	0				9164								-		4		 .	_
Y		14	9-12 1	· 09	:	٠		# EE7E				:	8			; 		8	<u> </u>		
• •		1131	8-9		 	જ	 -	98 36	800							 ;		_	+-	1	-
***	IA.	M3M	7-8 8	36				66 43	<u>e</u>	,						- 1		<u></u>	+-	-	•
	MIXED MEDIA	мзт м	6-7 7	9 41	<u>:</u>			ee 111	31 09						i i		, , , , , , , , , , , , , , , , , , , 		+-	1	
	MIXE	72	3-6 6	04	:			97 091	330 2560 3360 1800 1800										+-	+	
		E	0-3	90 %				096	30	:						<u>'</u>			+-	1	•
		로	0-3 (77777	1///	///	77	/////	1/V	////		7	////		7/1	7	<i> </i>	//	77	}	
		윤	0-3 (////	///	//	/////	///		///	//	////	7	///	//	///	//	$\frac{1}{\lambda}$	4	
		뜻	0-3 (1					1			$\frac{7}{7}$	//	///		///	1	
.8	\vdash			<u> </u>	1////	/ / /	7 1	7777		7.7.7	/ / /	7 7	11.7		<u>A</u>	_/	/ / / ge	9	<u>, , , , , , , , , , , , , , , , , , , </u>	1	
FEBRUARY, 1976.	5	Basket code	Depth (dm)								g		acea				Lary	pedind	rilles		
SBRUAI	Medium	Bas	Dep			q		rtraei	valis		icida		.A -viol			!	dae ralis				
, E						roseola		Enchytraeidaë us rivalis	L. ri		Lumbricidae pp.		INSECTA Ivacea-				opodi enest				
		SPECIES				e c		TA:	s of		-		A. 1	:	Si		Anis Pola f				
		SPE		NEWATODA	ROTIFERA	BDELLOIDEA Philodina		ANNELIDA OLIOXCHETA: Enchytrae: Lumbricillus rivalis	Cocoons of L. rivalis Immature White spo.		CLICOCHAETA: Lu Inmature spo.		AKTHROPOLM: INSECTA COLLEMBOLA Isotoma olivacea-violacea		OCLEOPTERA	. :	DIFIERA: Anisopodidae Sylvicola fenestralis Larvae				ı
	Digital and			WEN .	TO.	1308	•	OLIC	۳.,		OLIC 1		S IN		ST.		DIP			1	

		, ,													-									-			
•		9.6	1548	230	160	ર્જુ			:		!					1	!	;		i	!	!					
		P5	12-15	320	Ь	911		•		:	!	:						! .		į	Ī	!					
-	_	44	9-12			08			<u> </u>	:		<u>: </u>					H										-
	PLASTIC MEDIA	P3	6-9	6		316.				!		<u>: </u>				-	<u> </u>	<u>'</u>	<u> </u>	=	+	! !		<u> </u>			-
	ASTIC	1	3-6	35.00		<u>8</u>				1		<u>. </u>	: 1	:				!	 	2		<u>:</u> !					-
	=	E	0-3	2		*			<u> </u>					-		Ť		1	 	13	T	<u>:</u>					_
		చ	0-3		//	1//	//	7/		1	//	/		7	//	//	//	///	//	1	Z				/	///	オ
	1	\rightarrow	0-3		//	//				//	\mathbb{Z}						//			X			\mathbb{Z}				
			0-3	1//	<u>//</u>			<u>//</u>			//	//	//	/		//				<u>//</u>	//						
		. Se	15-18		160	160 HC		٠				133	4										-				
		85	12-15	330	م	8						191		1		:				1.		!					
			9-12		ے ا	-						89	-	1		#				1	H	<u> </u>					1
	EDIA		6-9	I		<u></u>	- 1					160				1		-		+			_				-
	SLAG MEDIA		3-6	480		<u>ප</u>								i						 					$\overline{}$		1
		ıs	0-3			<u>역</u>			·						•		:			T					1		7
			0-3	///	///	///				$\langle \rangle$	//	\mathbb{Z}		//	\mathbb{Z}					X	\mathbb{Z}		\mathbb{Z}	\mathbb{Z}	//		\mathbb{Z}
			0-3	///	<u> </u>	///			//	Ż	Δ			//	//,		//		ΧŹ	//		<u> </u>		//	//		4
		8	0-3		///	<u> </u>	///	//	<u>//</u>		//			//	<u>//</u>		//			<u> </u>		<u>//</u>		<u> </u>	//	<u> </u>	
		92	15-18	#	80	200						30						:									
		ξ <u>.</u>	12-15		Ī	25						9					<u> </u>			T							1
			9-12	<u>a</u>	#00									+		<u> </u>	:			1 +				<u> </u>	$\frac{1}{1}$		
			8-9	08		<u> </u>		!						<u> </u>		<u> </u>	-		-	╁					\dashv		1
	DIA		7-8		8#8 3	#33					-	i	$\frac{1}{1}$	Ť			i		+				- 	$\overline{}$	寸		†
	MIXED MEDIA		6-7	7 008	809	4 98 H	Τİ						+	$\frac{1}{1}$			十			90					十		†
	Œ		3-6	00 7 008 087	8481 8091 8004	278	$\dagger \dagger$.					1	Ì			i								Ť		7
		Ξ	-6	330	160	8	Ħ	j						Ī		li	Ī			Π			T		1		
			6-3		Ż	X/	XX,	ZŻ,		//		//	/	1	//	//	//		///		//		//	/	\mathbb{Z}	///	7
	"		0 - 3	///	///	1/	1				//		//	//			1		1//			///			//		<u>/</u>
			0 - 3			//	XX.	//		//		//	//	X	//	X	X		X//		//		\mathbb{Z}	//	1		7
1978.	į	Basket code	€	. 9		,		,	vae	98	ea	Vae	99	3	cus	2	88	S S	98	g	81	-	88	g	g		. .
Pedruary ,1978.	Medium	asket	Depth (dm)	Lary	Pupea		FI TA		e s Lar	Pupae	Files	Larvae	Pupae	LITES	petricus Larvae	Pupae	Files	Filles	dae Larvae	Pupae	Flies	e myzin	Larvae	Pupae	Flies		
PEBR	-			xdidae xectes	arnata		print		inimu					٠	hygro			1dae cea	oceri	:		urida					
		ES		DIPIERA: Psychodidae Psychoda (all species)Larvae	Purpose alternata place	! .	2000	Tolong severing	Pirka: Chirchconidae Hydrobaenus minimus Larvae			sim			Metriocnemus hygropetricus Larvæ			phydr	PERA: Sphaeroceridae Leptocera Spp La	1		TERA: Cordyluridae Spathlophora hydromyzina					
	ŀ	SPECIES		RA: 1 oda (e	popod		Podou		KA: (drobae	•		H. perennis			trioci			RA: E	RA: S			RA: C				•	
•		٠.		DIPTERA: Psychoda	Ps).).			ULYLERA: Chirchamidae Hydrobaenus minimus			H.			Me			DIPTERA: Ephydridae Scatella silacea	DIPTERA: Leptoc	!		DIPTERA: Cordyluridae Spathiophora hydrom			•		
100	<u>—</u>		_								_								1								

	-	7							
		8	1548	2200			330		
		P5	12-15	3600	1600		096		
		44	9-12				560		
	PLASTIC MEDIA	P3	6-9	00801 00 PM (20 48 00°E			330 5		
	ASTIC	P2	3-6	**(30 * *			640 3		
	=	=	0-3	8 000			9 091		
		굽	0-3	(///////	11/1//	1111	1///	7/	
		5	0-3	////////	MM	11/1/	1/-//	// ·	
		æ	0-3	(1/1/A/I	/ / / / / /	(//X	X////		
		Se	15-18	5H 00			049		
		SS	12-15	d			99		
		54	9-15	a					
	EDIA	53 5	6-9	000			285 096 08# 08#		
4	SLAG NEDIA	25	3-6		.	<u>: </u>	84		
1. 1		SI	0-3	oo4e			480		
•		ᅜ	0-3			////			
		SC	.0-3	////////					
		S.	0-3	MMA	MM				
		ЭМ	15-18	3,600			0%		
		35	12-15	1200			08#		
		M4	9-12				3#0		
1		13.	6-8	2400 1600 2400 7200 7200 3600			330 8		
	PI0	МЗМ	7-8	7 00%					
	MIXED MEDIA	M3T	2-9	1 00 T			091 008 091		
	Ê	112	3-6	009			9		
		Ξ	0-3	00 H 20					
		로	0-3	////////	1/1///	1///	1///	//	
		ЭĆ	0-3	///////////////////////////////////////					·
		1 8 8	0-3	14/11/8/8/	1//////	V//X	X///	1//	
1978.	-	code	(dm)					chiltoni	
Pebhuany, 1978.	Medium	Basket code	Depth (dm)	A o o o o o o o o o o o o o o o o o o o		P SU	ŒA 3tus	3	
PECBL	Z	<u> </u>	ă	HROPODA: ARACHNIDA LRI: Astigmata Histiogaster carpio Histiostoma feroniarium Rhizodinnius echinomus	NI: Mesostigmata Platyseius italicus	HOPODA: CHILOPODA Lithobius forticatus	HROPODA: CRUSTACEA PENDA: Cyclopoida Paracyclops fimbriatus		
		ES		ARA lgmat: ster s	ostig us it.	s fe	Cyclop tys		
		SPECIES		Ast Ast tioga	Mes	PODA:	PODA: DA: (
				ARTHERODA: ARACINIDA ACARI: Astigmata Histiogaster carpio Histiostoma feronian Rhizodiubius schinon	ACARI: Mesostigmata Platyseius italic	AKUHROPODA: Lithobiu	ARTHROPODA: CRUSTA COPEDODA: Cyclopolda Paracyclops fimbri		
4				~, ~			·		

	_11	_	_		· · · · · · · · · · · · · · · · · · ·						<u> </u>
		22	1548	50]	:		ત્યું.	36	30	٩	
		PS	12-15		4			36		4:	4:
	4	P4	9-12		હ!	4	4	180		4	
	PLASTIC MEDIA	B3	6-9	/A	∞ '			80			र्
	LASTI	P2	3-6	‡	4		4	304			
	-	a	0-3	9	د. :		#			4	47
		٦	0-3	20_			77.	851 252 EEF		4	
		8	0-3	ৰ	#		528	3		#	
		٣	3 0-3	#	4:			重	.	4	
		26	15-18	00	416			96			- a
		82	12-15	4	36		2 9	3%			
		22	9-12	#	#2			891		4	
	SLAG MEDIA	S3	6-9	લ	30			#8			
	SLAG	22	3-6	0/21	òō			0 9			9
		12	0-3	34	4		516 28	132 108		#	
		छ	0-3	os.	শ্ৰ			13.8		#	
		S	0-3	Oal				553			
i		જ	0-3	00:	ব্ৰ			- Office		+	
		92	15-18	ત્લ	ন্ত্	æ		163		and the same of th	#
		15	12-15	4	જ્	ત		138		. ત	8
		Æ	9-12	10	<u>∞</u>		d.	180	.		
		뜐	8-9	200	2	. 4		3			
	EDIA	МЗМ	7-8	36	44		4	348		8	#
	MIXED MEDIA	M3T	1-9	0]	8	91		240 348		9	
	W	N2	3-6	≛	#	#		891			
		E	0-3	8	4 78	#	8	72		4	
		로	0-3	<u>8</u>	00		4	300 480 72		ત્ત	136
		ИC	0-3	9	ત્		360	300			43
		뚔	0-3	œ	4	ત્કું ત	89 041	77		4	
MARCH, 1978.	Hedium	Basket code	Depth (dm)	osi		ubbaromyces		ASTIGOPHORA		HORA n pusillum idens	ucullulus us
		SPECIES		BACTERIA Zoogloeal forms	Sphaerotilus Leptothrix	Subbaromyces Conidia of Subbaromyces Sepedonium	AIGAE Chlorella Scenedesmus Stigeoclonium	PROTOZOA: SARCOMASTIGOPHORA Flagellates	Апоерае	PROTOZOA: CILIOPHORA HOLOTRICHIA Trachelophyllum pusillum Hemiophrys fusidens H.pleurosigna	Chilodonella cucullulus Chuncinata Colpoda cucullus

13 14 15 15 15 15 15 15 15	MIXED MEDIA
12-15 15-18 0-3	MR MC ML M1 M2
The control of the	0-3 0-3 0-3 0-3 3-6
10	
1	9 9 9
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
10 6 6 4 4 4 4 4 8 8 8 8 4 4 8 8 8 8 4 4 16 16 16 16 16 16 16 16 16 16 16 16 16	ત્ક
10 6 6 6 4 4 4 4 3 8 8 8 4 4 6 6 20 8 7 7 8 8 8 8 8 7 4 7 7 8 8 8 8 8 7 7 8 8 8 8	
10 10 10 10 10 10 10 10	8
10 b b # # # 3 8 8 # # # 4 8 8 8 # # # # 4 8 8 8 # # # #	
16 16 14 16 4 18 4 8 18 4 16 20 8 1	L 10 8 H 13 38 H
# # # # # # # # # # # # # # # # # # #	16 बहु बक्र 13 वम वम
# # # # # # # # # # # # # # # # # # #	
# # # # # # # # # # # # # # # # # # #	
4 4 4 4 4 5 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9	
4	
75	The state of the s
6	

			8	1548	30				:	1600 1130 640			4						
			P5	12-15	4	;	:	, 00		940 240				:			091		1
		<u> </u>	P4	9-12	30	:				931 3740 3040 3740 3040	1		#		1		8	i	1
		C AE	23	6-9		;				160 3040 3040					1		ط		
		PLASTIC MEDIA	P2	3-6						480 2740								!	.]
		-	ā	0-3						084 084].				
			П	0-3						800							Ь		
			2	0-3		<u>-</u>	! !			ار (ووه									
			æ	0-3	رج. ا					049 . d									_
			Se	15-18						69a 1180					-				
			SS	12-15	88			4		896. 800						•			
•		· A	\$4	9-12	4			•		26H 1769							م		
		SLAG MEDIA	S	6-9	4					216 564 220,2080 4-	4								_
1		SLAG	25	3-6	4					316			1						_
:			2	0-3	3à					344									_
į			ಸ	0-3						1308 160 144 153 H		ļ	_						
			SC	0-3	Š				·										_
<u>.</u>			SR	0-3	્રા		-			388									
			Ж6	15-18	98	ļ				548 2080					-		ρ		
:			75	12-15	98		ļ			1140				-	-	•	P		
: !			×	9-12	લ			ď	d	3300									
***************************************			ᄄ	8-9	36			7	s	5/2.									
		EDIA	MSM	7-8	70					364	.								
		MIXED MEDIA	FEE	6-7	9:					160 180					1			-	
		Ξ	엁	3-6	30					334 1930	,								
			Ξ	0-3	0 5:	٠, ٠				040 120 220 324 160 364 513 513 514 515									7
			로	0-3	ત					1120 160					-				7
			윤	0-3	, Ø					096 049				4	±				1
			٤	0-3	0				Ī	P]
			code	(F)								1			i	Vae	bedind	files	
	мавси, 1978.	Medium	Basket code	Depth (dm)						aeidaë is 11s	idae	-	dolace			e Lis Lar	a.	₽!	-
-	MAR			$\overline{}$				nepola		Enchytis riva	Lumbric 2.	INSECTA	Vacea-1	98	Cercion ustulatus	podida:			
			SPECIES					A fna		TA: cillu ; of r	TA:		a oli	linid	n ust	Ants.	!		
			SPE		NEMATODA	• •	ROTIFERA	BDELLOIDEA Philodina roseola		OLICOCHETA: Enchytraeidae Lumbricillus rivalis Cocoons of L. rivalis Immeture Wilte spp.	OLIGOCHAETA: Lambricidae Immature spp.	ARTHROPODA: COLLEMBOLA	Isotoma olivacea-violacea	COLECTERA Staphylinidae	Cercijo	DIPTERA: Antsopodidae Sylvicola fenestralis Larvae			
-					<u>ائد</u>		1 141			<u> </u>	1 0	1410		0	:	<u>.,</u>			→

Performance Performance	de MR MC			•																			
13 14 15 15 15 15 15 15 15	0-3 0-3																						
10 10 10 10 10 10 10 10	ide HR NC 0-3 0-3																		•				
10 10 10 10 10 10 10 10) 0-3 0-3		M	XED MED	ΙA							SLA	MEDIA							PLASTI	C MEDI/	A .	
10 10 10 10 10 10 10 10	0-3 0-3		├──			_	£	M6	SR	 -	_	-		24					ī	P2	P3	P4	P5
1920 1942				2-9					0-3					9-12			_					_	12-15
120 120		261 00.	049	84 084				787	1792	896	84 095	330	330	م				75500	1930	3040	7881		69
14 15 16 16 17 18 18 18 18 18 18 18		9	049	4.80 33	33.0	049	_ !	و	8	٥	ς 200 200 200 200 200 200 200 200 200 20	38	160	٥	٥			20	808	049	960	·	330
	44 36		38	ر ة	ĺ	30				\dashv	G	اد	I		+	<u>``</u>	<u>स्</u>	٥	B	چ			38
4 4																							
1		1			+-							- !									!	!	
230 160 480 480 480 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	980	<u> </u> 									<u> </u>	<u> </u>				-	<u> </u>	 	<u> </u>		İ		
Lies Lies	Dae	-			-						1	-				!	<u> </u>	+			T		Ì
tribes μ β (160 β) thest paper β (160 β) β (160 β) β tribes tribes β μ </td <td>lies</td> <td><u> </u></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>╂</td> <td>-</td> <td></td> <td>1</td> <td></td> <td> </td> <td></td>	lies	<u> </u>			-						<u> </u>	_					╂	-		1		 	
Hese it is in the second of th		4									<u> </u>		330	9	_	084	<u> </u>	_		d	<u> </u>	!	d
Hest Figure Fig		b															_		_			<u>-</u> -	
True True		.															<u>' </u>				!	!	
Proper P	ricus																				-	-	
Hes these th	arvae											_				-							
1465 1470	upae	+		+	+	-				1	+	+	\prod		\dagger	$^+$	+	\downarrow		Ì	\dagger		
Line Line				_	+	<u> </u>	1	1		†	+	+	1	T	+	$^+$	+	+	\perp		\dagger	\top	Ī
тура 16 13. 8 4 4 4 1600 14es 16 13. 180 14 14 1600 14es 16 16 16 16 16 16 16 16 16 16 16 16 16	lies										1 ·						+	1					
09) H H 180 H H 180 H H 190 H H 180 H	arvae	<u> </u>	-		<u> </u>	-	1				1	!			+	1	<u> </u>		-			-	
	91	·		3		4				!			:					-	8	t	1 ±	-	09
4																	1						
4	ina										<u> </u>		,										
4	arvae	1			-						1	\dashv			1	-	<u> </u>	_			!	<u>:</u>	1
	eedin	1	i			-	-		4			<u> </u>	\prod		$\frac{1}{1}$		+	- 	\perp	İ		-	Ì
	Lies	+	1	\pm	+	+	1.	1	1	$\frac{+}{\perp}$	$\frac{1}{1}$	<u> </u>	1	1	+	$\dot{\top}$	+	+	\perp	1			
												<u> </u>											

			96	1548	000			091	**************************************	
-			P5	12-15	3400 (8000			800		1
			 			:	· · · · · · · · · · · · · · · · · · ·			
1		EDIA	P4	9 9-12	1300	1		ō+9		
		PLASTIC MEDIA	F3	6-9	00 1430		:	āki osej		
i		PLAS	1 P2	0-3 3-6	91600			78		
,			<u>- a</u>	0-3	2H.QQ 5/H	_	#	0091	·	
			PC PL	0-3 0	00021 208b) 501122075 50412 2075			330 gr		
İ			R.	0-3	<u> </u>			320 3		• .
		广		15-18	3,600		<u> </u>	6		
			8		ল ল			<u> </u>		
			85	2 12-15				084		
****		W W	\$4	9-12				99		
4	••	SLAG HEDIA	S	6-9	1200			091 049		
		SLA	25	3 3-6		-		1 646		
•			ıs	0-3 0-3				09/ 0		
1			35	0-3			1	091		
			SR SC	0-3	111	-		٥		 .
1		-	S		0:	- -	<u> </u>	<u> </u>		
			₩	15-18	14400			320		
			115	12-15	00081			800	•	-
			144	9-12	00%			320		- .
			131	8-9		i -		091		•
-			МЗМ	7-8	3,000					•
		MIXED NEDIA	M3T	6-7	0956 0036 0038 0035 0028 0029 0039 00		İ	1120 1440 489 330 160 160 H80.		
		MI	¥	3-6	9996			160		
			£	0-3	0072			320		•
			로	0-3	73.00		WILL	4 80		•
			옷	0-3	16300		Will	0#11		
			€	0-3	3600		4			
	.	_	Basket code	(gm)			8 	IA Lus chiltoni		
	MARCH, 1978.	Medium	asket	Depth (dm)	A arium	SI	Sur Sur	OEA atus		
	MAR	_		_	ARACINIDA grata ter carpio na feroniai hus echinoi	alic	CHILOPOUA	CRUSTACEA Cyclopolda lops fimbriatus		
1			ES		ARP aster toma t	ius it		Cyclo Cyclo		
			SPECIES		ACARI: Astigmata Histiogaster carpio Histioscoma feroniarium Rhizoglyphus echinopus ACARI: Meccelimata	Platyseius italicus	AKTHEOPODA: CHILOPOO	AKTHROPODA: CRUSTACEA ODPEDODA: Cyclopoida Paracyclops fimbriatus chi		
					ACART HILL HILL RITH RA	Z	ARITHIA	COPETA P.A.		er.
4										•

		_	-	·																			4.5 	
			98	1548	j		i .		:					1620	4		:							
			P5	12-15		. 4		!	:	! !	±		:	öhe		!	•							
		4	P4	9-12	4	্ত		:	4					lao.		<u> </u>					જ	:		
		PLASTIC MEDIA	P3	6-9	4	7	:	:		ļ			:	358							1			1
		LASTI	P2	3-6										288				,						
			ā	0-3	σ:	80		:		3/13	16			34.8					i			:		
			료	1 0-3				//	//			\angle	//	Δ					1/					4
			8	3 0-3					//		\sum_{i}		//	X	444		//	4	//	//		//	///	4
		_	æ	8 0-3	11/	<u> </u>	1//	<u> </u>	//	///	//		//	4	////	///	<u>//</u>	///	1/	//	1/2	<u>//</u>	////	7
			98	15-18	0#	84		#		. 4	80			<u>ه</u>				4						
			S 5	12-15	લ	49								84										
			54	9-12		36						1		133				=				İ		
1		(EDIA	S3	6-9	9	33								130	<u> </u>					i				1
		SLAG MEDIA	25	3-6	30.	36.						i		48						ì		Ī]
1			เร	0-3			!			288	1	#:		130		-	į		H	:]
			25	0-3		<u> </u>	44		//	///		//	///					///	1		\mathbb{Z}	//	////	1
			SC	0-3		///		//	//	///		//	//	4	<i>////</i>	///		4		<i>]]</i>	//	4	444	1
1		<u> </u>	SS	0-3	11/	///	111	X/	//		1/	//	///	//	<u> </u>	///	///	///	1/1	1/	1/1	1	<u> </u>	1 -
•			99 9	15-18		<u>a0</u>								133		-		00				-		
			115	12-15		9		±		;				96										1
:			Ξ	9-12	89	36		3 4						33		· ·	<u> </u>			1.	=	$\overrightarrow{\parallel}$		
	-		턴	8-9	2	4 4														0	p =	-	· · · · · ·	1
		EDIA	H3H	7-8	મજ	હ		±					Ī.	8							H			
***		MIXED MEDIA	13	6-7	गुरु		;							#8].
1		E.	12	3-6	52	#					İ			133										
			E	0-3	13.	8		6		CI	2	-						. 0		į				
			로	0-3	////	////	///	1/	///	////	//	//	///		/////	///	///	///			1/1	//	<u>////</u>	<u>/</u>
			물	0-3	////	////		///	///	////		//	<u> </u>	Δ	<u>////</u>	///	<u>///</u>	<u> </u>	$\frac{1}{2}$	<u> </u>		//	[[[]	4
			뚲	0-3	$M/M_{\rm p}$	I/V	<u>(†//</u>	1/	//	////	1/	<u> </u>	<u>///</u>	//	<u> </u>	<u>///</u>	<u>///</u>	///	1//	///	1/	1/1	(4
	APRIL, 1978.	Medium		Depth (dm)	forms	Jus		Conidia of Subbaromyces	8		St	ntum	PROTOZOA: SARCONASTIGGEHORA				CILIOPHORA	OTRICHIA Trachelophyllum pusillum	Hemiophrys fusidens	H. pleurosigma Chilodonella cucullulus	3	ıcullus	. <u>.</u> .	
			SPECIES		BACTERIA Zoogloeal forms	Sphaerotilus Leptothrix	FUNGI	Conidia of	Sepedonium	ALGAE Chlorella	Scenedasmus	Stigeoclonium	PROTOZOA: SP	Flagellates	Атоерае		PROTOZOA: CI	HOLOTRICHTA Tracheloph	Hemiophrys	H. pleurosigma Chilodonella	C.uncinata	Colpoda cucullus		

																			•		-		1.0
		P6	1548	ooi j	#	i	:	:	i .	4	0 0 i				4	-			:				-
		P5	12-15	38			!	:			ŽÕ			4		-		*,					
		P4	5-15	લ			i	. ;		8	∞.			4		· ·	\dagger	. !				\neg	
	PLASTIC MEDIA	РЗ	6-9	প্র			#			-	4						+	1		· -			
	ASTIC	P2	3-6	H ₆			8	1 1	!	1	1 4			- : -		:	;	1					
	로	E	0-3		89	<u> </u>		α	,	00	ત			- 			:						
		4	0-3		///	///	//		///	ZZ	//	//			///	///	//				///		
·		2	0-3			XZ,						<u> </u>					//					\mathbb{Z}	
		쭖	3 0-3			<u> </u>	///		X	//		//	//			///	//	1/			///		
		જ્	15-18	જ જ	કુક						4			•						•			
		25	12-15		#						ત			i t	į.		i						
		S4	9-12		ત્હ		-			9	68						+			<u> </u>			
	MEDIA	S3	6-9	#	4 1 .			•		201	ন্ত		· · · · ·	<u> </u>									
	SLAG MEDIA	25	3-6		<u>ું હા</u>						4:			- 1	į		İ						
		SI	0-3							8	601		:	İ	-								
		SL	0-3		///	///		///		ΖΖ,	///	4		$/\!\!/\!\!/$	//	//	//	//		////	///	\mathcal{A}	
		SC	3 0-3	/ (//	////	44	//	///	///	///	///	4		<u> </u>	//		4	<u>//</u>	Δ	////	///	A	
		æ	0-3	141	<u> </u>	11/	[Y]	XX		<u>//</u>	XX	//			//	///	<u>W</u>	1/		<u> </u>	/s//		
		M6	15-18	8	8			4		20	20			П				-					
		£	12-15	4	8					ત	#6			8				!					
		114	9-12		# *		$\overline{}$		1	-9	H.8			00	1		+	1					•
		131	8-9		क	<u> </u>	-		i	9	त्व			<u>6</u>	!		╁	<u>!</u> [: •
	PIA		7-8		0	\dagger		1		80	08			30			4	<u> </u>			 		•
	MIXED MEDIA	1	6-7		#	 		11		8	8			- +	1	•	Ť	.					<u>.</u> .
	불		3-6							æ	00						İ						**
		Ξ	0-3				1			#	ત				İ								• ,
			0 - 3	1111	1///	11/	7//	1/1/	1//	//	//	//	//	ZV.	18	///	1/	//		////	///		ਾ
•			0-3	////	1///	$/\!//$	///	1/1/	$\langle // \rangle$	ΤΥ	1//	//		///	///	///	X	//	//	////			
			0-3	1/1/1	1///	///	/	1//		//	///	\angle		111			1/	1/	//	<u>///</u>	<u>///</u>		
e B		Basket code	(gg)			İ	į	<u> </u>		İ					!								•
APIUL, 1978.	Hedium	asket	Depth (dm)	sus			Оша	otro			dds				114		i						
APRI			\dashv	icans ncilli	Ipous		icrost	id tel	ulnima	E	ZOC	tans		tata	lione		data	pasi					
		IES		Uronema nigricans Glaucoma scintillans	Colpidium colpoda Paramecium aurelia P. caudatum		Vorticella microstoma	vernalis Vorticellid telotrodis	Opercularia minima	O. microdiscum	Opercularian zooids	Epistylis rotans	ď	Stentor roeseli Aspidisca costata	Tachysoma pellionella	•	Acinera cuspidata A. foetida	Podophrya maupasi	esti				
		SPECIES		conema	Colpidium Co Paramecium d P. caudatum	PERITRICHIA	conve	V. vernalis	ercul	O. microdisci	Opera	istyl.	SPIROTRICHIA	entor	chysor	AT.	Acineta cusp A. foetida	Jophry	P. carchesii				
0				5 15	ष्ठाद्यादी	PERIT	813	121	do	ه اه	i - '	Ep	SPIRO	St	Ta	SUCTORIA	2 4	Po	P.				
Action to the second		-										_				Y							

		9d	1548	30			3840 3840 1440		∞ :		্ৰ	
		P5	12-15	91		J	3880 340 340		:			
	¥.	72	9-12	7			0914	4.	d			
	PLASTIC MEDIA	E .	6-9	9			7 079				م	:
1	LASTI	P2	3-6	01							i	
-		ā	0-3	•			9 160 081 049		1			
		급	0-3	///////	///	////	////////	/////	1///	////	////	77
1		8	0-3		[][(////	////	1/1/	(///)	
		8	0-3	//////	<u>///</u>	////	(//////////////////////////////////////	(///V)	/////	1///	(////)	
		98	15-18	#	-		<u>वक</u> १३६७ हा					
Transport des est de la fact		SS	12-15	# 1			है वहां हार					
4 4 4 7		S2	9-12	% ;			276- 640					
	SLAG MEDIA	23	6-9	90 i			7.8 530					
	SLAG	22	3-6	% :			40 040					
# # #		ıs	0-3	91			8 640 8					
•		SL	0-3	///////	///	/////	///////////////////////////////////////		////	1///		
		SC	0-3	[[]]]]]	<u>///</u>	/////	///////////////////////////////////////		////	1///		
		SR	0-3	MAKA	///	<u> </u>	///////////////////////////////////////	/////	111	1///	////	
•		Э₩	15-18	419			098 3836 3836				4	
		115	12-15	20			1884 0318 168				8	
: :		144	9-12	3.8			5130					
1		H3L	8-9	4	•		69 00			•		
	EDIA	МЗМ	7-8	ત્			091 0008 8188					
	MIXED MEDIA	M3T	2-9	34			184 3520 484					
	물	12	3-6	91			P (1920				091	
		Ξ	9-3	ď			084 049					
		보	<u>6</u>	////////	77	////		1////	/////	////	1////	
		윤	0-3	111/11/	77	////	/////////	[[]]	/////	1///	1////	77/
		뜻	3	1 1 V/	1//	//X/	1111111111	1/////	11/1	////	1///	7//
		code	Ê								Larvae	filles
APRIL, 1978.	Medium	Basket code	Depth (dm)				al dae	. gg	olace.		ls Lau	
APRII	ş.	Ba	ä	-		ola	nytracivali	orici	Tr.		lidae	
		S				TLOIDEA Philodina roseola	OLICOCHEES Enchytraeldas Lumbricillus rivalis Coccons of L. rivalis Lumature White Spp.	OLICOCHAETA: Lumbricidae Imnature spp.	IIRFOCA: INSECTA LEMBOLA ISOCOMA Olivacea-violacea		TER: Antsopodidae Sylvicola fenestralis Larvae papae	
•		SPECIES		41	a!I	DEA odina	AETA: ricil. ns of	GOGIAETA: Lu Impature spo.	OCA:	EFRA	icola	
		S		NEWATODA	ROTIFERA	BDELLOIDEA Philodi	NAVELIDA OLIGOCIAS Lumbri Coccon Limatu	LOOCH	ARTHROPOCA: COLLENBOLA Isotoma	COLEOPTERA	DIPERA: Sylvic	
				別	8	Ωa	N 10	l g	된 8	8	<u> </u>	. مرزيد يالسب

34 6-9 9-12 12-15 15-18 0-3 0-3 0-3 0-3 0-6 9-12 12-15 1518 34	SR SC SL S1
343 320 330 160 460 460 5120 460 468 320 320 160 460 616 616 616 616 616 616 616 616 616 6	15-18 0-3 0-3 0-3 0-3
48 320 230 P	// /// ///
48 8 49 49 49 49 49 49 49 49 49 49 49 49 49	///
	1
	/
8	//
	<u> </u>
8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(/ _/
	/// ///
8	1/
8 ti ti ti ti ti ti ti ti ti ti ti ti ti	/
8	//
68	//
8 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	//
8 77 77 77 77 77 77 77 77 77 77 77 77 77	
	// /
	//
	[] [], [],
	<u>/</u> /
	//

		P6	1548		31600					:		3). 0.		-]
		P5	12-15		0091E 00ESC 00ESH 00EH 00EH 00EH 00EH					i	i	5	ž							
	W W	P4	9-12		odes		:			-) }							1
	PLASTIC NEDIA	P3	6-9		7 0801		:				:		5: 5:							-
	LASTI	P2	3-6		7008/9					<u>:</u> -	i		2:		·					
		а	0-3		1200	;						9		:] .
		굽	3 0-3		///	<u> </u>	///		//	<u> </u>	//	//,	//,			·				
		S PC	0-3 0-3		///	///			H	4	//	H	<i>\\\\</i>							1
	-	8		///	<u>/ A / /</u> . 8	<u>//</u> /	<u>:///</u> :	///	//_	//	<u>/:/</u> :	///	1//						· ·	-
		S	5 15-18		3400		<u> </u>						2				•			<u> </u>
		SS	12-15		م	į	<u> </u>					\$,						
		\$4	9-12								1	9								
	SLAG MEDIA	S	6-9		م						.]
	SLAG	25	3-6		2,100	-	: ']
		15	3 0-3	7111	1 1.77	17	! 777	77	7.7	//	<u> </u> /:/	77	77		·					
•		25	0-3 0-3			H	!///	///	//	//	//	<u> </u>	H			-			 	\\ \ _
	-	SR. SC	0-3 0			///	4/7		//	//	//	///	///	:						-
1	\vdash			////	1////	<u>/ </u>	1///	1//	//	<u>/ </u>	//	///	<u>///</u>	<u> </u>			· · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		옷	15-18		19800	-						9,	2							
		忢	12-15		7200							5	2					•		
		#	9-12		<u> </u>	;			,	Ì		3	กรู้							
		M3L	6-8		004410000 0087 009510428	<u> </u>		 				<u>`</u>	3							Ť.
	EDIA	МЗМ	7-8		0087	Ť		Ī	·	1										
	MIXED MEDIA	1EM	2-9		2600						Ι.		100]
	E	N2	3-6		onne								2							1
		포	0-3		م	<u> </u>			, ,			7 7 7	4	<u> </u>						
		로	3 0-3	////		//	<u> </u>	//	//	Д,	4	///	M/2							-
		MC	3 0-3			//	///		//	//	1/	///	///	1	<u></u>	 -				-
		e MR	0-3	////	////	///	<u> </u>	1//	//	<u> </u>	4/	///	<u>// /</u>						. <u></u>	+
978.	g	Basket code	Depth (dm)			6							chiltoni			•	,			
APhil, 1978.	Medium	Bask	Dept	IDA	pio	ntoui	Sus		CITTOPODA	atus		Crassivaces opoida								
4				ARACHNIDA	nata er car e fero	is ech	itali		D H	fortic		Catter Catter Catter								
		SPECIES		ä	RI: Astigmata Histiogaster carpio Histiostoma feroniarium	Rhizoglyphus echinopus	RRI: Mesostigmata Platyseius italicus		äl	Lithobius forticatus			3			•				
		SP		ARTHROPODA	ACARI: Astigmata Histiogaster co Histiostoma fea	Rhizo	ACARI: Mesostigmata Platyseius Italica	!	ARTHROPODA:	Litho		COPERODA: Cyclopoida						-		
	<u></u>			ARI	<u> </u>	·	ğ		N			된 명		<u> </u>						1

MAY, 1976.

		-		to de la companya de la companya de la companya de la companya de la companya de la companya de la companya de					Market and the control of the contro	The second of th	and the second second
		96	1548	40	!	ત્ત્	: •	જ	4		
.		PS	12-15	80	:			8			
	A	P4	9-12	73		7	. !				
ļ	PLASTIC MEDIA	P3	6-9	316	 						
	LASTI(P2	3-6		:						
	۵.	ы	0-3		: ;		4				
		7	0-3	·				9			
		8	0-3								
ļ		K.	0-3				2	91			
		98	15-18	1 1				ष			
		S5	12-15	1 1 1			ત	٥-			
		\$4	9-12	9]					ر ا		
	SLAG MEDIA	23	6-9	083		1	ત	±	4		
	SLAG	22	3-6	ત		!	4	ત	જ જ		
		ıs	0-3						-		
		N.	0-3					8			
		သ	0-3					4			
Ì		SR	0-3				4	8			
		M6	15-18	000							
		145	12-15	9:				4	- 2		
		144	9-12	75 849		ત			23.		
ļ		1131	8-9	88	33	લ			00: 4	લ	
	EDIA	H3M	7-8	30		લ	60	ત	. ,ત	હા	
	MIXED MEDIA	M3T	6-7	;		ત	9	О	ત		
	Ē	22	3-6								
		Ξ	0-3								
		로	0-3					9			
		ဋ	0-3	. !				<u> </u>			
		<u>ية</u>	0-3		:			8			
		code	(mg			v v					
MAI , 19/6.	Medium	Basket code	Depth (dm)	ns 11ans oda 11a	lum	ostoma telotroch	ima	zooids	ra onella	71	
		SPECIES		Uronema nigricans Glaucoma scintillans Colpidium colopoda Paramecium aurella	P. cardatum Colpidium campylum PERITRICHIA	Voricella microstoma V. convallaria V. vernalis Vorticallid teletrochs	Opercularia minima O. microdiscum O. coarctata	Opercularian zoolds Epistylis rotans	SPIROTRICHIA Stentor roesell Asplüisca costata Tachysoma pellionella SUCTORIA	Acineta cuspidata A. foetida Podophrya maupasi P. carchusii	

							i		;		•		:	:		;	•	1							1				
HAY,	MAY, 1978.															•												•	
	Medium		•			Ħ	MIXED MEDIA	EDIA								5	SLAG MEDIA	DIA			-				PLAST	PLASTIC MEDIA	A I O		
SPECIES	Basket code	雅	HC	TM.	M	Z14	M3T	мзм	H3L	¥	£.	Ж6	SR	SC	SL S	S IS	S2 S3	3 S4	SS	98	a.	DC ~	곱	E .	P2	Р3	P4	P5	P6
	Depth (dm)	0-3	0-3	0-3	0-3	3-6	2-9	7-8	6-9	9-12	12-15	15-18	0-3	0-3 (0-3	0-3	3-6	-6 6-9	9-12 12	12-15 15	15-18 0-3	.3 0-3	3 0-3	3 0-3	3-6	6-9	9-12	12-15	1548
NEW TOODS	·	9	8	ष्ट	8			•	4		જ		9	91	ત્ક	<u> </u>		લ		4	₹.	93	# #	4:		જ	4		:
KOTIFERA BDELLOIDEA/Philodina rosegia MONOGONONTA/Lecanidae sp.	roseola le sp. horus Sp.																							: !			:	:	
ANNELIDA OLIGOGIAETA: Enchytraeidae Lumbricillus rivalis Cocoons of L. rivalis Immature Mite spo.	raeldaë: 11s alis P.		091	049 086	9	799	008 091	09) 8540 960	8558 8458 1760 160	3008 2080 2080	1 80E1 1 80E1	27.88 28.80 17.60	•	. 23	88	136 4	075 076 071 070 071	091 (055 0765 0765 8885 8887	0 3020 00 3020 00 3020	3.80	91	0	091		031	960	460	091 0914 0821	3200 4480 160
OLICOCHAETA: Lumbricidae Immature Spp.	cidae					1.											 				<u> </u> 	<u> </u>							
AKTHINDFODA: INSECTA COLLEMENCIA Isotoma olivacea-violacea	violacea																1				<u> </u>	<u> </u>				, 1			∞
OLEOPTERA Staphylinidae	idae	4													3	69	<u> </u>			<u> </u>	<u> </u>	, 4							
DIPERA: Anisopodidae Sylvicola fenstralis larvae Pupæ	alis Larvae pupæ files	80	0#	٠ مـ	.							4	04	091	4						4							#	
				_		<u> </u>] .					1	-	+	-	-	-	-	-	-	-	_					_

				9	1548	و	. 0	:	:			ii		0					· · · · · · · · · · · · · · · · · · ·						***		1				and the Co
				P6	_	4640		:			<u> </u>			330					1		i 	ļ	4	<u> </u>			<u> </u>				, i
				25	12-15	11300	2100	9			·			160							<u> </u>		4	1			4				
)IA	ρq	9-12	2604	990	46					؎							:	:		4				4				
			PLASTIC MEDIA	ЬЗ	6-9	6340	960	330								+		:					!					: :			
			PLAST	P2	3-6	11360	320 3560 9	3 <u>60</u>			d							:	1	<u> </u>	1	<u> </u>	;					: 1			
,				ā	2	13480	R	æ		ļ								320	٥			<u> </u>	!				1				
1				ם	0-3	4330 3560	3	,	_	33	<u> </u>								\perp	1		<u> </u>	<u> </u> 4				<u> </u>		-		
				5	3 0-3	633	8	00	4	132	<u> </u>	-								<u> </u>	-		3			·	_				
			_	8	8 0-3	. 4800			<u> </u>	8	<u> </u>								<u> </u>	-			<u> </u>				<u> </u>	<u> </u>			
				Se	15-18	336					!		٠.	۵					1							•				H	
		-		55	12-15	8081	1628	9						084		#															
-				S. 4	9-12	136	480	533		•				160		#			İ												
****			SLAG MEDIA	S3	6-9	1484	3368	80			89		ल	ક્ષ																	
of the state of th			SLAG	25	3-6	22%4	HA HA					,		ρ				j		1	- 1										
				ıs	3	<u>6</u>	প্ত	36.			٥							00			'						1				
1				SL	3	925	37.00	46	_	36	<u> </u>				·			1		Ļ			<u> </u>	i .			<u> </u>				y.
3				SS	3	CKOH	3300	19		22	<u> </u>		Į.					_	\perp	L		<u> </u>					<u> </u>				-
3		1		S.	0-3	7768	5124	₩.		1.			: :																		-
a distriction of a				₩	15-18	800	119	±		48	d			849	÷	æ		#					1	-							
1				145	12-15	<u>ਕ</u>	1	-		3	٥		91	1138		æ			م				#								-
***************************************				74	9-12	#X#			$\overline{}$		7		8		_			i	T		Ì	-	T						j		e e
in the second of				1131	8-9	13.8%			寸					88				Ì	Ť												
Hank Live			EDIA	M3N	7-8	TC)	963	8		10			•	ત	±																
1			MIXED MEDIA	M3T	6-7	0770	900	अभि	\neg	ļ	٥			160				į	1									_	_		
Same			H	112	3-6	0891	1120 2080 1920 963	980					٠										9	-			_	_	_		
				M	0-3	950	130	104 980												ľ			17								,
				쩐	0-3	20m	480 1120 a080 1920 963	8	Ī		<u> </u>																1	<u></u>	_		
-	-			얈	0-3					88								·									_	<u> </u>			
				NR.	0-3	U866 0367	1440 3080	88		914																	1	<u> </u>	<u> </u>		-
				code	(mp		T	i		ເຫ	98	g	50	786	93	83	Sus	98	9 S		, si	/ae	g	g,		- C	g g	8			
		978.	Medium	Basket code	Depth (dm)	Larva	Pupae	Files		Files	Lan	Pupae	Flies	Larvae	Pupae	Files	petri	Larvae	Pupae	•	Flies	dae Larvae	Pupae	Files	10	myzin	Pupae	Flies	-		
		MAY,1978.	뿔	B.	ő	Hdae Mcfes)		Psychoda alternata Flies	-		TERA: Chirchcondidae findrobaenus minimus Larvae						Metriocnemus hygropetricus				1dae cea	ocert			Cordyluridae	Spathiophora hydromyzina					1
1		•		'n		Psychodidae		alter		Psychoda severini	of trong			sir			emus }				YERA: Ephydridae Scatella silacea	phaen			ordylı	hora ;					
				SPECIES		1: PE		shoda		thoda	A: Q	!		H. perennis			riocn				A: E	A: Si				thiop				•	
1				σ,		DIPTERA: Psychodidae . Psuchoda (all species)Larvae		Psyc		Psyc	DIPTERA:			н. 1			Met.				DIPTERA: Scatel	DIPTERA: Sphaeroceridae Leptocera Spp Iz	1		DIPTERA:	Spa	٠				
				_		IO]B										Ä	ם ו			2				5.192	V-28	1

NALIVOL. Pating Nation	
1773. State from R. M. M. 182 Half 1834	
State code 18 10 10 10 10 10 10 10 10 10 10 10 10 10	
After A the first part of the	
Alternative Alternative	
Alternative Alternative	
Alica Alic	
Alica Alic	
Alton Alto	
State Stat	
Stet code (R) MC NL MI MS MS MS MS MS MS MS	
Adium sket code 186 187	
dium MIXED NEDIA Sket code Ne Nr Nr Nr Nr Nr Nr N	
thum sket code HR HG HL HI HI HI HI HI HI HI HI HI HI HI HI HI	
Attended (4m) Attended (4m)	
Atlan HIXED HEDIA HELIA HIS HELIA HIS HELIA SKet Code HR HC HZ HI HIZ HIS HIS HIS HELIA SKet Code HR HC HZ HI HIZ HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	
Adum Hixed Healt A Hixed Healt A Hixed Healt His He SR Healt (Am) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 6-9 9-12 12-15 15-18 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3	
Sket code MR HC ML MI NED MEDIA Sket code MR HC ML MI NED MEDIA	
Afturn sket code HR HC H1 H2 H31 H3H H3L H4 H5 bth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 bth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 bth (dm) 0-3 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 bth (dm) 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3	•
Atlan Sket code HR HC HL H1 H2 H3T H3H H3L H4 pth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 Pth (dm) 1900(3340) P 3400 3400 3400 3400 3400 3400 3400 34	·
Afo. Sket code WR MC ML M1 N2 H31 H34 H34 H44 http://doi.org/10.3007/33402	
afum sket code HR MC ML M1 N2 M31 M3M pth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 ms chiltond [2000 3340 P 3400 3400 3400 3400 3400 3400	
at um sket code MR MC ML sket code MR MC ML mL mclum 13000234.00 P mclum 13000234.00 P mclus 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 160 160 160 160 160 160 160 160	
at um sket code MR MC ML sket code MR MC ML mL mclum 13000234.00 P mclum 13000234.00 P mclus 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 160 160 160 160 160 160 160 160	
at um sket code MR MC ML sket code MR MC ML mL mclum 13000234.00 P mclum 13000234.00 P mclus 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 480 mclus chiltoni 160 160 160 160 160 160 160 160 160 160	
di um sket code MR MC ML sket code MR MC ML out out out out out out out out out out	
dium sket code MR MC sket code MR MC opth (dm) 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3	
41 um 12000 12	
dium dium sket code pth (dm) us chiltoni	
	·
MAY, 197 Nedi	
MAY, 1978. SPECIES Basket Depth ACHI: Astigmata Histiogaster carpio Histiostoma feroniarium Rhizoglyphus echinopus ACANI: Mesostigmata Platyseius italicus Platyseius italicus ACHI: Mesostigmata Platyseius forticatus ACHI: Mesostigmata Platyseius finitorius ACHI: Mesostigmata Platyseius forticatus ACHI: Mesostigmata Platyseius forticatus ACHINOPODA: CRUSTACCA COPERODA: CRUSTACCA CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTACCA COPERODA: CRUSTAC	

tion of the contract of the second of the se

1		9.6	1548					lao				
		PE .	12-15		ત .		ત્વ	<u>∞</u>	:	: .		
		P4	9-12		ત			120		•		
	PLASTIC MEDIA	Р3	6-9	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	44		 	<u> </u>		1	<u> </u>	
	ASTIC	P2	3.6	<u>ন্</u>				OCT OCT		· · · · · · · · · · · · · · · · · · ·		
	=	Ξ	3	.	001	:	895				į	
		Pt.	9									
		2	8									
,		8.	3 0-3	7///X/	////	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>////</u>
		98	15-18	4	9			1 8				
		SS	12-15	i				न्य				
		54	9-12	٥	ख त			91				
	ÆDI A	53	6-9		ત્ર છ			Z.				
	SLAG MEDIA	25	3-6		40		#	Çel				
वित्युप्त कर कर कर कर		Sı	0-3	# :	8			व्हा	-			
		15	3			<u> </u>	//////		<u>/////</u>	[[[]]]		
1 1 1 2		SC	3 0-3		/////	<i>[\}//</i>	/	/////		<u> </u>		<u>////</u>
*		æ		<u> </u>	/////	/ <i>M</i> //:	N/Y/Y/	1/4/1///	484M	4//////	NI	<u>///</u>
\$ \$ \$		£	15-18					30				
		5	12-15		4	1		ત્ય				
	1	- [= 1	±	. 1 🗝		1 ; '		f i		1 1 1 1	
		14	9-12 1	ಡ				##				
		M4			4							
	EDIA	изи изг и4	7-8 8-9 9-12	ત				효				
	XED MEDIA	изи изг и4	6-7 7-8 8-9 9-12	rs +		1	d	सह हा <u>३६</u> मह		#:		
	MIXED MEDIA	изи изг и4	3-6 6-7 7-8 8-9 9-12	c + + +	4 4	1	o l	मर १३६ । ३६ मस		4:		
	MIXED MEDIA	M3T M3M M3L M4	0-3 3-6 6-7 7-8 8-9 9-12	c + + + + + + + + + + + + + + + + + + +	#			सह हा <u>३६</u> मह		4:		
	MIXED MEDIA	NL MI N2 M3T M3M M3L M4	0-3 0-3 3-6 6-7 7-8 8-9 9-12	c + + + + + + + + + + + + + + + + + + +	4 4		o l	मर १३६ । ३६ मस		±:		
	MIXED MEDIA	NC NL M1 N2 M3T M3M M3L M4	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12	c + + + + + + + + + + + + + + + + + + +	4 4		o l	मर १३६ । ३६ मस		#:		
	HIXED MEDIA	MR NC NL M1 N2 M3T M3M M3L M4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12	c + + + + + + + + + + + + + + + + + + +	4 4		o l	मर १३६ । ३६ मस		#:		
9.		MR NC NL M1 N2 M3T M3M M3L M4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12	c + + + + + + + + + + + + + + + + + + +	± ±		o l	HE TO SH 480 SH				
1B, 1978.	Medium HIXED MEDIA	NC NL M1 N2 M3T M3M M3L M4	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12	c + + + + + + + + + + + + + + + + + + +	± ±		o l	HE TO SH 480 SH		illium 3		
JUNB, 1978.		MR NC NL M1 N2 M3T M3M M3L M4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12	# # # # # # # # # # # # # # # # # # #	Subbaromyces #		72 P P P P P P P P P P P P P P P P P P P	жизггожнова		illium 3	i cucultulus	
June, 1978,		Basket code MR NC NL MI N2 M3T M3M M3L M4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12	coeal forms rotilus thriat	Subbaromyces #		18	SARCOMASTICOPHORA ates		illium 3	i cucultulus	
June, 1978,		MR NC NL M1 N2 M3T M3M M3L M4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12	A H. H. H. H. A arottlus othrix	is Subbaronyces		o l	HE TO SH 480 SH	Атосьзя	HOLOFRICHIA Trachelophyllum pusillum Heniophrys fusidens H. pleurosigma	oculiulus lus	

		_	-		
		P6	1548	01 %	İ
		P5	12-15	25 25 ± 50 00 00 00 00 00 00 00 00 00 00 00 00	
		P4	9-12	를 C 구 20 1	
	PLASTIC MEDIA	P3	6-9		
	ASTIC	24	3-6	21 ± 80 75 75 75 75 75 75 75 75 75 75 75 75 75	
	=	E	0-3	8	
		곱	0-3		
		5	6-3		
	-	æ	8 0-3		
		88	15-18	88	
		55	12-15	9 78 77 78	
		54	9-12	29 80 66 20	
	EDIA	53	6-9	त्तुं त्व त्वाळ	
	SLAG MEDIA	25	3-6	On: [4]	
	"	ıs	€-0		
		St	0-3		
		SC	0-3		* -
		SR	0-3		-
	Γ	M6	15-18	110 10 10 10 10 10 10 10 10 10 10 10 10	•
			12-15		* .
<u>;</u>		75		8 C O	
; 1		74	9-12	# + 60 d d t d	
	4	H3L	8 8-9	4 9 6	
	MIXED MEDIA	T M3M	7 7-8	88 9	
	MIXED	ЖЗТ	6 6-7	0 0 20 20 20 20 20 20 20 20 20 20 20 20	: . ·
		F2	0-3 3-6	930	• •
	í	Ξ	0-3		-
		었	0-3		
			0-3		
	H	٠			
378.	Medium	Basket code	Depth (dm)		•
JUNE, 1978.	Med	Bas	Dep	ans da da da da da da da da da da da da da	
· 5			\cdot	Uronema nigticans Glaucoma scintillans Galaucoma scintillans Galaucoma scintillans Galaucoma scintillans Paramecium aurelia P. caudatum V. caudatum V. caudatum V. caudatum V. caudatum V. vernalis Vorticella microstcana V. vernalis Vorticellid telotrocis Opercularia minima O. carctata Opercularia minima O. carctata Opercularia minima O. carctata Tacinjsoma pellionella Fristylis rotans Fristylis rotans Fristylis rotans Fristylis rotans Fristylis rotans Fristylis rotans Fristylis acostata Tacinjsoma pellionella Aspidisca costata Tacinjsoma pellionella Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi Fristylis maupasi	
		SPECIES		Uronema nigrica Glaucoma scinti Colpidium colpo Paramecium aure P. caudatum V. candatum V. vernalis Vorticellid Vorticellid Opercularia min O. coarctata Opercularia min O. coarctata Tacinysoma pellii Stentor roesel Aspidisca costa Tacinysoma pellii Aspidisca cuspidai Aspidisca cuspidai Aspidisca cuspidai Aspidisca cuspidai Podophrya maupa P. carchesii	
		S		Uronema r Glaucoma Golpidium Parameciu P. caudat V. conval V. vernal Vortice Opercular Opercular Opercular SPINOTRICHIA SPINOTRICHIA STENDORA Acineta on A. foetid Podophrya P. carchee	
				Ha	

·						<u> </u>	the second control of the second control of	a processor of the second			
		ä					480 0.4F.e				
		ď	12-15	#			800		#	Ø	
		¥ Pa	9-12	ત			091 091 0847	,		4	
•		PLASTIC MEDIA	6-9				٥			‡ ±	
!		LASTI					930 P			36 14)
:		[ત						230	
•		ة		/////							
		٥			////						
	-	8		1////	////		<u> </u>	<u>/////////</u>	<u> </u>	[[[XX]]]	
1		9		ત્ય			1388			. /	
		5					11+9& 330			4	
**************************************		2					2728 160			59	
:		SLAG MEDIA				:	<u>09</u> 008 888	i		4 9 8	
t :		SLAG		#	<u> </u>		330 8			348 53.8 1.8	
-	ļ	5		-	: 	7777				8364	
		5		/////		////			[[[]]		
		٤		/////	[:///						
		5	9-3		////		///XX///X	///X///	<u> </u>	////////	
		운	15-18		: .	1	91E				
		55	12-15				160				
		M4	9-12	:			<u>०हा।</u> -भुहरा				
		153	8-9				 091 488				ŀ
*	1		7-8	:		ŀ	091 091 948	,	4	# 04	
	4	NIXED MEDIA	6-7		1		79 I			±	·
		M 25	3-6				٩			3,6	
		Ξ	0-3	#						36.	
İ		2	-0 E-0	//////	/////	//////	//////////////////////////////////////	/////////	//////		
		5	0-3	///////	/////	//.////	//////////////////////////////////////	(////////	[/////		
		æ	0-3	(1)/11.	!////	1/1///	MIMMON	1/1/1/////	(XA//X)	<u>///////</u>	
		code	(m)		1	:			9	Larvae pupae flies	
	JUNE, 1978.	Medium Basket code	Depth (dm)			:	Enchytraeldas us rivalis L. rivalis nite spp.	e Eg	folace	a Silai	
	June,	Ba 3e	_ 		1	sola	hytre rival: rival	Lambrica ipp. INSECTA	y-rea-v	odida	
		٠.			:	rose		spp.	Staph	ntsop a ren	
		SPECIES		al al	್ರ ಕಾ	BRELIOIDEA Philodina roseola	OLICOCIAETA: Enchytraeld Lumbricillus rivalis Cocoons of L. rivalis Immature White Spp.	OLICOCHAETA: Lambricidae Immature spp. ARTHROPOA: INSECTA COLLEMBOLA	Isotoma olivacea-violacea COLEOPTERA Staphylinidae	DIPTERN: Anisopodidae Sylvicola fenestralis Larvae pupæ	
		ý.		NEWATODA	E		E SO THE		05 J	Syl	1
				WEN .	ROTIFERA	BOST	AMELIDA CLICOCIAE Coccon Immeru	OLIC	8	ali	

	T	9	1548	ه ا				. 4	نيفت حد					<u></u>	<u> </u>		· ,		·						******
		\vdash		9 hES			<u> </u>		· ·		!	:	1					<u> </u>		م ا	<u>:</u>			- i	
		PS	12-15	7040			# #			i	80		İ			:				∞			===	:	
	JIA	P4	9-12	089£	13.80 354		નુકૃત		-			: : :							. i	8			•		
	PLASTIC MEDIA	P3	6-9	0478 (000) 14866	363		310	!		•					i		İ			įĮa			<u>:</u>		
	PI AST	P2	3-6	0009	960 2400 100 512		幸			<u> </u>	:		;			-				2					
		ā	3 0-3	188	900		00	,		1			4	99		<u> </u>				∞	<u> </u>	, ,		,	
		14	3 0-3					//	//	//	//		4	//	//	//		//	4	4		4	//	4	///
•		3	3 0-3				///	<u> </u>	//	//	//		//	//	//	4	//	*		//	//	4	//		
	-	æ	18 0-3	///	//./		<u>///</u>	<u>///</u>	<u>X</u> /	1//		<u>/ </u>	<u>//</u>	<u>/·/</u>	//	//	<u>//</u>	<u>//</u>	//	1/	<u> </u>		1/	//	///
	İ	88	15-18	1128			50	1	#	ત	9		#	4				Ш				•			
		85	12-15	9145	% 28 84 28		38				091														
		24	9-12	6752			9#					1				Τ			1	\top	İ		<u> </u>		
	EDIA	S3	6-9	9189		: !	%	\dagger	\dagger				÷		+	$\dot{\top}$		$\dagger \dagger$	$-\dot{1}$	+	!		+-		
	SLAG MEDIA	52	3-6	57500	HONE 1280		±€		Ť				Ť		+	i	-	091	+	+			+		
•	"	53	0-3	7548 10036	4196		18		1			Ì	T		Ť	T		ii	1						
		25	0-3			//	///		//		//	//	ZZ		//	//		//			1	//	7	\mathbb{Z}	///
		SC	6-3		///			//	1/			//				V.		\mathbb{Z}		//			\mathbb{Z}	Z_{ℓ}	
		SR	9-3	$\langle A \rangle$					N_{l}									1	<u> </u>	X			<u>X</u>		
· · · · · · · · · · · · · · · · · · ·		M6	15-18	4 0214	۵ =		53		#	б						1							4		
		#2 #2	12-15	409.8	3 E		93							8						40					,
	-	114	9-12	49E8	S E		73							4	Ī			-							
		131	8-9		2133 II &		\top		Ť		#	Ì	1		Ť				.	#					
	EDIA	МЗН	7-8	14081 9605	1130) (ee		1	·	80	Ť	T			\prod		T							
	MIXED MEDIA	МЗТ	6-7	Slan S			Te#		Ť			Ť			j										
	Ħ	112	3-6	HE15 H9691 8968	4800 330 681 385		575				84									ŧ		• '			
		도	0-3	8368	480 243		6				8			961					ı					•	
		코	0-3		1//			//				\mathbb{Z}	N		1					X	\mathbb{Z}	//		Z	
		皇	0-3						//			1			Z	1/		X	//	//	//	<u>//</u>		1	[[
		뚶	0-3	11/				1//	1//		//	1/2	1		4			1/	//	//	1/	//	1	4	///
JUNE, 1978.	Medium	Basket code	Depth (dm)	Psychodidae (all species)Larvae	Pupae Psychoda alternata Flies		Psychoda severini Files	Lronomidae	nydrobaenus minimus Larvae	Flies		rupae F1 fee	Metriocnemus huaroratricus	Larvae	Pupae	1	nydridae silacea Flies	cerid	Spp Larvae	Flies	Cordyluridae	Spathlophora hydromyzina Larvae	Рирае	Flies	• ·
		SPECIES		DIPTERA: PSy Psychoda (all	Psychoda		Psychoda	DIPTERA: Chircnomidae	Hydrobaen		H. perennis		Metriocnen			-	DIPTERA: Ephydridae Scatella silacea	DIPTERA: Sph	Leptocera Spp		DIPTERA: Cor	Spathioph			

1																	
			P6	1548		-	0009	000	:		:			Q	-		
		•	P5	12-15			0084	00 E	: ·			:		330); S!		
		4	P4	9-12			200410086100360051	i	1				i		!	**************************************	
		PLASTIC MEDIA	P3	6-9			0086			•	; ;		:				1
		PLASTI	P2	3-6			9600		· {	3			:		İ		
ا ا د			٦	0-3	,,,		8		, , ,			<u> </u>		,	!		
			7	3 0-3		//	4		///	///	//	<u> </u>	<u>/}</u>		//	/· 	
	·		2	.3 0-3		<u>//</u>		//		///		/	<u>/{ .</u> -1	///	H	1	-
-	•	-	E E	18 0-3	111	<u> </u>	<u>ZZ</u>	<u> </u>	<u>///</u>	//	///	//	<u>/</u>	<u> </u>	1//	<u>/</u>	
1			SS	15-18			•	!					_	747			
1			SS	12-15							•		•	087			
			54	9-12				į		:			į	160			
		SLAG MEDIA	S3	6-9			200		:	:	i		Ì	330			
1	•	SLAG	25	3-6					:		i .]
*			12	0-3			200	77	:		· , .	<u> </u>	1				
•			S	3 0-3		//	1		<u> </u>	//	4	//	//	///	//		
			SC	3 0-3	1/1	1/	///	//	4	//	//	//	/	<u>///</u>	//		-
:		<u> </u>	s,	0-3			17	//	1//		///		/	<u> </u>			<u></u>
			92	15-18							!			م	-	** ***********************************	
			145	12-15		1300	3600			!			-	م			-
			¥	9-12					i			!		330			
			턘	8-9		2	4800	1900		Ì		1		08			
		EDIA	МЗМ	7-8			1200 4800					İ		330			;
in and a second		MIXED MEDIA	МЗТ	6-7			3300 laboo	Ì									
4		₹	갩	3-6		2.0	3000		İ					:			
-			Ξ	0-3										•			
			로	0-3		//	//	N					X				
			Σ	0-3		//	1/	///	<u> </u>				1		//	1	
		_	뚱	0-3	11	Ι,	1/	<u>//</u>	11/	<u> [] </u>	///	<u>///</u>	Z	////	//	1	-
			code	(mg)					; •						Iton		
	JUNE,1978.	Medium	Basket code	Depth (dm)	45	,	arium	sndo	<u>.</u>	,	a do	us		OEA ,	ਹ	• .	1
-	E S	-		_	CHINID	eg .	eroni	echin	mata		CHILOPODA	forticatus		CRUSTACEA opoida fimbriatus			
			ES		ARA	ignat	oma f	snydi	sostig us it			is for		Cyclo for the		 	
			SPECIES		FODA:	Ast	Histiostoma feroniarium	Rhizoglyphus echinopus	MRI: Mesostignata		PODA	Lithobius		MIROPODA: CRUSTACEA PEPODA: Cyclopofda Paracyclops fimbriatus	:		
The second					AKTHROPODA: ARACINIDA	ACARI: Astigmata	His	Rhi	ACARI: Mesostigmata Platuseius italic	! !	ARIHROPODA:	T.	İ	ARTHROPODA: CRUSTA COPEPODA: Cyclopoida Paracyclops fimbri	1		
																	

		P6	5 1548		·		4 :			!	ÖŖ.								8			
		PS	12-15				1 :	. 1		į	₩ ₩	В	i!	:		i	:	:	:			
	₹	P4	9-12				001				89	_	H				:					
	PLASTIC MEDIA	23	6-9							1	954		i	!			†		+	:		
	LASTI	22	3-6		,	7	ා දි				96		:				1	:		İ		
		a	0-3	٥		3.0	91	•		1	1 <u>0</u> 08 384.	_	!	1			!			:		
		교	9-3	#:		7	35	36	લ	i				i		:				Ī		
		2	3	:		16	曹	ব্ৰ			672					1				!		
		쭖	0-3	:		72	89	٥			336					.						
		86	15-18				₩ ∞				84					ᠴ				İ		
,	٠	25	12-15	:		م	8				84	٤				4						
		54	9-12			æ	8				म्ह	3			٠				-4		```	
	SLAG MEDIA	53	6-9				:	1 1			ļ						Ī			i		
	SLAG	22	3-6	Öö		C	si &i	畫			186								33			
		2	0-3	8		76	300	388		ļ	五		1			İ						
•		ᅜ	0-3	ġ.		1 3		ह			441 490E 498		1									
		SC	0-3	मंत	-	5	4 2	384			¥19.8		<u> </u>						Ц	_		·
į		æ	0-3	æ		64	朝 畫	8929			1008											
		₩6	15-18	:			8 9				73	· · · · · · · · · · · · · · · · · · ·										
		115	12-15	·	: 1		9				288		1			İ						
		114	9-12			:	ৰ ০			I	¥05			·					4			
		1131	8-9	ત			± 16			İ	₩8	,					1			-		
	EBIA	МЗМ	7-8	Ħ			ष			j	318		!				İ		4	-		
.	MIXED MEDIA	МЗТ	6-7			10	4				09											
	Ħ	W2	3-6	8	1	1	H თ				324 364 456 130								٥			
	Ì	Ħ	0-3	3/5	3	80.00	951				456						:	4	38	-		
		로	0-3	ત્યું		71		91			मगुष्ट						-	;	: :			
		ž	0-3	4		9	5 왕	72			324	•		_								
Ì		폱	0-3	4		0	1 55 1 53	ا م			849								Ī	:		
JULY, 1978.	Medium	Basket code	Depth (dm)	Si			Conidia of Subbaromyces		E		i			CILIOPHORA		lum pusillum Sidens	-	cucul lulus		Jus		
		SPECIES		BACTEKIA . ZOOGIOGAL FORMS	Sphaerotilus Leptothrix	FUNGI Fusarium	Conidia of Sepedonium	MGAE Chlorella	Scenedesmus Stigeoclonium		PROTOZOA: SARCOMASTIGOPHORA Flagellates	Атограв		PROTOZOA; CILIO	HOLOTRICHIA	Trachelophyllum pusillum Hemiophrys fusidens	H. pleurosigma	Chilodonella cucullulus	C.uncinata	Colpoda cucullus		

Section Sect		<u> </u>		,,	•						· · · · · · · · · · · · · · · · · · ·	
Marketon Marketon				96	1518	<u>وا</u>	д. Н					
Padd of the control				P5	12-15	.	80	#	:			
Pack to the control of the control			Į.	P4	9-12	- Н г	1	4				
Pack to the control of the control			C MED	F3	6-9			4	:			
Pack to the control of the control	1		LASTI	P2	1	36	હ					
Park 1970 Park				ā	I		重	91				
New York New York	-			ם		#S	 		1 1			
State Colored Colore				_	-		, , , , , , , ,					
Notice N			-	쭙	1		00	36	. ! !			•
Mark 1970. Mar				86	1	4			10 ±			
Newform Newf	4			SS			#	Ì				
Nuix,1970. Nedium	-	•	A	S4		প্র	0#					
Nuix,1970. Nedium	1		KEDI	S	<u> </u>							
Madium Mixto Medi			SLAG	25		O _i						
Hedrin High	1			2				9				
Medium					-		বে					
Peddum	•											. ,
Null Null				SR			9	લ				••••
Nedlum				9Н		4			#			
Nedium				£ .	12-15		હ	હ				
Null 1978. Null						8 8		G	م			:
Nedium	1	٠.					1 1		ત			
S Basket code MR MC ML MI M2 Beath (dm) 0-3 0-3 0-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3	1		KEDIA			事	· ±	# #	. 4			·.
S Basket code MR MC ML MI M2 Beath (dm) 0-3 0-3 0-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3	-		IXED	M3T		महा	#	∞				
Nedium N			E	껉			G	±				÷:.
S Basket code MR HC Depth (dm) 0-3 0-3 digricans scintillans a microstoma laria — 18 H a microstoma laria — 18 H is minima — 18 H is mi	diam'r.			포		08						
JULY, 1978. Medium Seaset code MR Depth (dm) 0-3 liggicans scintillans a microstoma laria a microstoma laria ia minima is scintillans scintillans scintillans a microstoma laria ia minima is scintillans scintillans laria costata pellionella pellionella spidata iii	1			로		ं । । । ख						•
JULY, 1978. Nedium Seaset code Depth (dn) Depth (dn) Depth (dn) Depth (dn) Depte (dn)	1			윤								
Juli jugicams scintilli de a micros a micros a micros a micros a micros costata acta acta acta sepidata sepidata maupasi ii ii ii ii ii ii ii ii ii ii ii ii i				_	-			<u> </u>				
Juli jugicams scintilli de a micros a micros a micros a micros a micros costata acta acta acta sepidata sepidata maupasi ii ii ii ii ii ii ii ii ii ii ii ii i	1			code	<u>a</u>		tha :					•
SPECIES Uronema nigricam Glaucoma scintili Colpidium colpod Paramecium aureli P. caudatum V. vernalis V. vernalis Vorticella micros V. convallaria - V. vernalis Vorticellid te Opercularia minin O. nicrodiscum O. nicrodiscum Opercularia zo Epistylis rotans Stentor roeseli Aspidisca costata Tachysona pellion COTORIA Acineta cuspidata A. foetida Podophrya maupasi P. carchesti		.X,1976	Medium	Basket	Depth	2	elotroc na	oids	ella	! ! !		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The state of the s			.: <u>.</u> .		PER	V. vernalis Vorticellid t Opercularia mini	0. coarctata Opercularian z Epistylis rotans	SPIROTRICHIA Stentor roeseli Aspidisca costata Tachyscna pellion	SUCTORIA - Acineta cuspidata A. foetida Podophrya maupasi P. carchesil		

1				œ [^ -		
			_	1548	જ ં		091		
			P5	12-15		•	330		
		٧.	P4	9-12			049		
		C MED	2	6-9			084 08		
		PLASTIC MEDIA	2	3-6	ત્તા		ō 08 084		4
			٦	0-3	4				60 1
*	ļ		_	- 3	#	·	77		•
				<u>-</u>	50				4
				0-3			091	-	4 4 4
				15-18	*		940 040		
			_	12-15	4		5a 1440		
			8	9-12	#		777 160		a
		SLAG MEDIA	B	6-9					
		SLAG		3-6	:		महत्रह	1 1	og l
1				3		:	4 3a0		8.88
!			_		જ		वहर ह		4
•				3	æ		160		4 4
1 1 1 1 1			%	6-3	Ø		791 1191		<u> e </u>
			9E	15-18	:		873		
			£	12-15		:	28H-		
•		- 1		9-12	જ				
1		. [8-9		:	234. 1920		<u> </u>
		MIXED MEDIA	M I	7-8			334. 640 1930.		<u></u>
4		XED.		2-9			480 984		
			일 ;	3-6			9 0#9		
		-	₹ (-	4		ا ا اه		4 4 96
				-6	લ				त्र
			1		80				
						-	ط <u>ک</u> ھ		
		-	Dasket code	9	-	• .		gi	Larvae Pupae flles
	JULY, 1978.	reat um	Sket	Depth (dm)			s s 1s	dae olace	의 조 대
	יתוגלי	ž .		ă		ola	hytre ivali rival	OCCUPETA: Lumbricidae Immature spo. HRORODA: INSECTA ISOCOMA OLIVACES-VIOLACES. ESCHERA Staphylinidae	TERA: Antsopodidae Sylvicola fenestralis Larvae pupae filies
			ņ			HERA LLOIDEA Philodina_roseola	Enc lus r f L. 1	Lunbrí. Spp. INSECTA Il vacea- Staphylin	disopo fene
			SPECIES		র।	P. DEA	META: ricil ons o	COCIAETA: Lu Immature spp. HROEODA: INS LEVEOLA ISOCOMA OLIVA EOPTERA Staph	i. An icola
		•	ń		NEWATODA	ROTIFERA BIGILOIDEA Philodii	OLIOXCHAETA: Enchytraeidae Lumbricillus rivalis Cocoons of L. rivalis Immature White spp.	OLIOOGIAETA: Lumbricidae Immature spp. ARTHEROOA: INSECTA COLLEMBOLA Isotoma olivacea-violae OOLEOPTERA Staphylinidae	DIPIER: Anisopodidae Sylvicola fenestrali
							된 당	৪ ই ৪	<u> </u>

	-	-	Annual and	A STATE STATE OF			1					-	1	-	-								-		1
											•		• •												
JULY,1978.																									
Medium			MIXED	MIXED MEDIA								្ត	SLAG HEDIA	A I						-	ASTIC	PLASTIC MEDIA			
Basket code MR NC	ML M	- N2	- H3T	МЗМ	1131	M4	145	M6	SR) SC	S 1S	S IS	S2 S3	3 S4	SS	98	æ	8	곱	E	P2	P3	P4	P5	9.d
Depth (dm) 0-3 0-3	0-3	0-3 3-6	2-9 9	7-8	8-9	9-12	12-15	15-18	0-3	0-3	0-3	0-3	3-6 6	6-9 9-12	2 12-15	5 15-18	8 0-3	0-3	0-3	0-3	3-6	6 -9	9-12	12-15	1548
	240 380	049 01	300	938	980			184	наок	८७६म भहरा वका	35 tige	- 5 # 888		193	4	320	6400	O 494	3360	7840	134	9			091
Psychoda alternata Flies 1836 148 16 333 148	08 91 08 08E	333 148		80 H9 80 H9	88 %	2 23	18年	13	3	58H 98 H9H H091	194	36.4	1620	48# 13		9 g	88 80 144 1600 2730 1608 28 2	₹ 83	80 80	25.78	87	مات	95	3 8	330
	!!!													- 1									$\dashv \neg$	i	
rsychoda Bavetini Files	193	3 208	<u> </u>	<u>}</u>	*	=	9	~			<u>. </u>	-	=	30						77	36	13 2	- & &	<u>∞</u> .	58
DIPTERA: Chirchcmidae	<u> </u>	<u> </u>	!				!		•		<u> </u>		· 			!		·			<u> </u>			1	į
Pupae	-	<u> </u>	-							T	\dagger	\vdash	<u> </u>	-	_	<u> </u>					 	!		<u> </u>	
·Flies			<u> </u>	<u> </u>	4						 		<u> </u>					<u> </u>			<u>. </u>	<u>:</u> !	<u>!</u> ! ·		i
H. perennis Larvae	<u> </u>	<u> </u> 	<u> </u> 	 	<u>:</u>					İ		 	<u> </u>		_	244				 	İ	<u> </u>	<u>. </u>	:	:
Рирае																							!	:	
Files			\dashv																·						
Metriocnemus hygropatricus		-																				<u> </u>		<u> </u>	
Larvae 160	1	\dashv	4	_		#	İ	8		İ	-	+	+	780	_	#			4		1			-	
Page Page	+	+	+	4		-	=			\uparrow		+	+	_	<u> </u> :	_	1.			T	\dagger	$\frac{1}{1}$	-	· !	
	<u> </u> 	<u> </u>	+	_	a	Н	t			1	T	+	+	+	q	_	!			1	-	$\frac{\perp}{\parallel}$	+		
DIPTERA: Ephydridae Scatella silacea Files Pupae			$\left - \right $										120											<u> </u>	1 :
DIPTERA: Sphaeroceridae Leptocera Spp Larvae		091	0			ŀ							<u> </u>	±			.		:	:		:	<u> </u>		
	=		#					#													164	26 4			160
Flies		\dashv		_								1	<u> </u>												
DIPTERA: Cordyluridae								٠																	
Spathiophora hydromyzina							•									•.									
Pupae	·	+	+-	<u> </u>					7			$\dot{1}$		\perp		#			4			#		99	±:
Files								.				\dashv	_	\dashv	_		_		İ			-	1		
																									
-			-	-																					
		-:				i :.																			

			P6	1518			:			:			:				9			
			P5	12-15				1200		:	,	Š	;			i	Q	•		
		¥1	P4	9-12						1	24m 24m 1.300	<u> </u>					d.			
		PLASTIC MEDIA	23	6-9				200	:	i	J.F.	3	:				330			
		LASTI	P2	3-6				4.800 L200			240	1		٠,	. :		Q.		·	
		•	E	0-3				į					<u> </u> -		:		330			
			교	0-3				3400					į							
			5	6-3				300 24ca 2400			•								-	
			쭖	0-3				200	į	!		İ			i	<u> </u>				
			98	15-18											-		3880			
			SS	12-15			į	3400		;				į			1280			
			54	9-12		,	<u> </u>	9 600 2400	:	ſ		<u> </u>		•			0844			
1		EDIA	S3	6-9				9		<u> </u>			 		:		- 31			
		SLAG MEDIA	25	3-6				<u>-</u> -	:	i		·• !	1		:		320			
1		S	ıs	0-3					<u> </u>	Ī		!	İ		:					
<u>;</u>			75	0-3					:	Ī					;					
: i	1		śc	0-3				į	:						1		lao.			
			SR	0-3			. 1		:							· ·	160 120			
			웊	15-18			į	3600		i							ZXXD			
			35	12-15				200				:					1130		\	
			¥	9-12				4800 4300		Ì			-				380 1380			
			톂	8-9			-	4800		Ī			Ī				1380			
		EDIA	МЗМ	7-8				•		Ī							D#40		. :	•
		MIXED MEDIA	M3T	6-7			i	ما	i	İ							960 160 lbug			
		Æ	112	3-6					i			-					960			٠.
			Æ	0-3			.	0800 6000		Ī		ĺ								
			로	0-3			Ì			Ī	·									
			웆	-3 -3				300	1300	Ī						•				
			뜻	0-3			-	0009												
			code	(F)													į	chiltoni		
	.978.	Medium	Basket code	Depth (dm)		٠;		rium	snd				8	Į.		ន	tus	d		
	JULY, 1978.	홄	Ba	ä	MIDA		arpio	ronia	chino	ata	licus		CHILOPODA	icatu		CRUSTACEA opoida	mbria			
			SPECIES	.	ARTHROPODA: ARACINIDA	ACARI: Astigmata	Histiogaster carpio	Histiostoma fe	Rhizoglyphus echinopus	ACARI: Mesostigmata	Platyseius italicus		AKISIROPODA: CHI	Lithoblus forticatus		ARTHROPODA: CRUSTA COPEDODA: Cyclopoida	Paracyclops fimbriatus	•		
				_	Z!	₹				Z			ZI			রা ৪			· ·	

1				- 1	8								!	*****												T	٦-		1		
1					1548				:	±:	≛		<u> </u>			. !	84		9:				<u> </u>			B					i
				25	12-15		#	1			8	į		· ·	!	:	36						1								
			√	7	9-12	:					+	1				:	36														
	•		PLASTIC NEDIA	2	6-9				· · · ·		±.	1			i		2		Ť				i			+					
.			ASTI(2	3.6	60	i			4							र्नं		1	-:		3				4					
ا د		.		=	- . 3	96	ત્ય			73	G			رو دو د	s		84	,	į.				!							ı	
					0-3		\mathbb{Z}		\mathbb{Z}		//	//			1/	\mathbb{Z}	///		//		\mathbb{Z}	7//	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}		Z		\mathbb{Z}		
-					- -	////	//	[]	//		$/\!\!/$			//	1/			///	//			//	$/\!\!\!\!/$		//	\angle	//	<u> </u>	A		
1					0-3	///	//	1/		///	//	//	//	///	<u>V</u>	<u>//</u>		////	<u>//</u>	////		///	<u> </u>			//		///	//		
- in the second					15-18				•		8						48														
7 1				25	12-15	œ			•		#9			8			8														
-				24	9-12	4			•		#			13			180									00					
-			SLAG MEDIA	S.	6-9	4	!		:	ø	-8₽						252														
de la constante de la constant			SLAG	-	3-6	4			•	ď							99														
1					3	±	(x	k		2	हार	,	,,	1			801	· · · · ·		, , ,		· · ·	ļ.,		, ,			, , ,	_		
			-	_	0-3	///	<u> </u>			4	//		//	//	<u>{/</u>			<i>[][]</i>		///		4	1		4		4	<i>[[]</i>			
į			-	_	6-3	<u> </u>	<u>Z</u>				X	4/	//	4	7			44	4	///	4	//	4/		4		/	4	4		•
*				8	6-3		//				1/	<u> </u>		1/2	1/				X			//	1/				4	<u> </u>			-
• 1				92	15-18						ત્ર						: 2			-								· .			
				3	12-15					1	-91						8													-	-
			ľ	ž	9-12	90	i k		İ	4	رو			1.			2110		9			0	0			9					
				<u> </u>	8-9		t } •	T		8	e			36.			84														
			EDIA	EE	7-8						90						801									4					
			MIXED NEDIA	E I	2-9	2	<u> </u>	H	.		લ			कें	9		8#						6			ما					
			₹ [2	3-6	28	k I				36			ط	4	+	₩8						<u> </u>			ŧ	_				
4				Ξ	0-3	. 6	2	8		40	96			909	3 3	5	384						_								
1					0-3	///	//	1/	//	//		\mathbb{Z}		1/				///	/ <u>/</u> /			//	<u> </u>	1		4	4	//			
					0-3	///				///	<u> </u>	1/		//	<u>X</u> /				1	////		<u>//</u>	<u> </u>	V		4	4	<u> </u>	4		
					0-3	///	<u> </u>	//	1/1	<u>//x</u>	<u> </u>	1/2		<u> X</u>	1/	X		[[]]	1	///	//		1/2	1/	4	/	4	//	//		
		AUGUSP, 1978.		SPECIES Basket code	Depth (dm)	BACTERIA Zocalceal forms	Sphaerotilus	Leptothrix ,	TANCT	Subbaromyces	Conidia of Subbaromyces	Sepsdontum	ALGAE	Chlorella	Schedesmus		PROTOZOA: SAROXASTIGORNORA Flagellates		Атоерае	·	PROTOZOÁ: CILIOPHORA	HOLOTRICHLA	Hemiophrys fusidens	H. pleurosigma	Chilodonella cucullulus	C.uncinata	Colpoda cucullus		-		

-	-						-,												·				-														
				P6	1548	٦	ا ا	£ .					0		-	:	i		i	:	:			i				Ī	i	!							
1				25	12-15	Γ							•		i		i		±							T		<u>-</u> -	<u> </u>	_	Ī		<u> </u>			\dashv	
1				P4	9-12	 	<u> </u>	1	!	<u></u>	<u> </u>		-	+		<u>: </u>	$\frac{1}{1}$! -	<u>: </u>	<u> </u>	<u>i</u>		1		<u> </u>		╀	1	<u> </u>			<u> </u>			\dashv	
			EDIA	_			1	-	<u> </u>	<u> </u>			!	\downarrow	<u> </u>	<u> </u>	<u> </u>		<u> </u>	!	1	_				<u> </u>			1	_			!				
1.			PLASTIC MEDIA	P3	3-6 6-9	00	<u> </u>	<u> </u>	<u> </u>		1		#	-	વ	<u> </u>	7		લ	!	<u>:</u>	<u> </u>				<u> </u>		<u> </u>	c	1_			<u> </u>				-
			PLAS	1 P2	0-3	-	1	1	<u> </u>	:	: · -	:	<u>.s:</u>	1	<u> </u> -	<u> </u>	=	7	#		<u> </u>	_		σ.				<u> </u>	<u> </u>	!			<u> </u>			_	
>				I	0-3	 //	17	//	 77	77	77,	777	//	77	77	77	2	//	±	77	i 77	77	77	7 /		<u> </u>	77	1	1	! 77		7 7	<u> </u>		<u></u>	_	
1				PC PL	0-3	//	//	//	//	//	//	///	//	//			<u> </u>	//	//	H		//	4	//	//	4	//	$\frac{M}{M}$	/	\mathcal{L}	4	//	_			-	
				PR P	0-3	//	//	7	///	//		//	///		//	///	7	//	//			//	//	//	\mathcal{A}	/\/ //	4	// //	//	/	<u> </u>	//	<u>1 .</u>			\dashv	
1			-		15-18 0	//	<u>'//</u>	<u>///</u>	<u>// /</u>	/ <i>/)</i>	///	<u>//</u>	<u>/!/</u> 	<u>//</u>	<u>//</u>	1//	<u>/ </u>	<u>/ /</u>	//	<u>///</u>	1/	//		<i>/ </i>	<u>//</u>	1	//	7/	<u>17</u>	<u>/·/</u>	1/	//	<u> </u>				
				8		_	4	H	_						_	<u> </u>	<u> </u>	Ц							e	<u> </u>											
				SS	12-15						:																										
				S4	9-12								-				Ī				П				T					İ		-	-			\dashv	
			(EDIA	53	6-9	la	<u>'</u>		 				i		\vdash		<u> </u>		8						+	+		╁	<u> </u> -	-			<u> </u>			ᅱ	
			SLAG MEDIA	25	3-6	8	•	i	1				i	<u> </u>	<u> </u>		4		88						\dagger	+		\vdash	<u> </u>	<u> </u>			<u></u>			\dashv	
				Sı	0-3			-		ĺ				 		·	104		99						+	\dagger							_			ㅓ	
1				SL	0-3		\mathbb{Z}	//	\mathbb{Z}			77,	//	//	1/	//	1	//	7	77		7/	//	//	77,	//	7/	7	7	//		7				ᅱ	
1	•			သ	0-3		//					//	\mathbb{Z}	//		//	//			//	//	77,	//	//		1	17,	//	7	//		//				\exists	
;			,	8	0 - 3	[]		V		1	\mathbb{Z}		Z				1/.					$/\!/$		Ζχ,	//				//		//						
40				۵	15-18	/		<u></u>	 		7 /		1			//			<u>. ۲</u>					77	1		<i></i>	<i>()</i>	/		// 	//:	_		•	7	
				₹				<u> </u>		.			1				7		જ	-				_	4	_										\dashv	
***				€	12-15	1			:	, !	1				#				4													İ					
				至	9-12					1			2		ત				ح							Π											
į				臣	6-9					_	İ		Q				م	1	i	i			1	1	1							1				寸	
March desire				1	7-8						Ť		<u> </u>		8		م	Ì	1	j	İ	٠.		Ť	Ť						4	İ				寸	• •••
1					2-0						•		Ī				9	1	8	Ì	1			İ						_		1				\exists	
			포	2	3-6	±							٥				38		9		T			#	T									-		\exists	
-				Ξ	9-3				34.				Ī					-	8		Ì		Ì	T	1	Γ					Ī	1				\exists	:
-				로	3	7	7/	7	7)	7	1	//	1	//		///	//	Ż	7	//	Ż	//	7	1	1	//	/	Z_{i}	//		7	Z				\exists	
				울	3	1			1		17	//			Z_{λ}	///		1	X		//	//	1	1	1	/					1				٠.	٦	
				Ę	-3	/	//	//		11	//	//	V			17		X	7	1	1	1/	X.	1	V,	//			7		1	1					
				code	(F)						i				Ø																						•
		AUCUST, 1978.	Kedium	Basket code	Depth (dm)		S					F			trodh	:			ş	.					a												
		AUGUS	<u>-</u>	<u> </u>	å	ans	111an	oda	elia			rosto			telo	nima			7002	2				ita	one		ţ.		įs		1	,					
				s.		dgric	scint	dloo	m aur	in.		a míc	laria	is	ellid	ia mi	iscun	ata	arian	rota			sesel.	COST	Dell		spida		manba	7	The state of						
			•	SPECIES		Uronema nigricans	Glaucoma scintillans	Colpidium colpoda	Paramecium aurelia	P. caudatum		ulkudula Vorticella microstoma	V. convallaria	V. vernalis	Vorticellid telotrochs	Opercularia minima	O. microdiscum	O. coarctata	Opercularian zooids	Epistylis rotans		IGIIA	Stentor roesell	Asmidisca costata	Jaciusoms perilonella	م.	Acineta cuspidata	A. fostida	Podophrya maupasi	P. carchesil	meters						
				v		Uron	Glan	600	Para			PERUTRICALLA Vorticel	?	7.	5	Oper	0. E	0	밁	Epis		SPIROTRICHIA	Sten	ASPIC	170	SUCTORIA	Acine	A. fc	Podor	P. Ca	Splacerething magin						
1												<u> </u>									上	<u>a</u>				ž		_ '			<u>'</u>						

1	Ī	2	1548		T		. 0			1		1.		
		8					360	- -		1 !	1 1		_	ı
		5d					ä₩9 ∂						支	İ
		P4	9-12				on d				·			
	41000	P3	6-9			-	٩	;		i i	و	#	#	ı
		P2	3-6	+			P 890	4						
		a		89:			ØŁ)	4						
>		ਕ				4						$\mathbb{Z}_{\mathbb{Z}}$		 -
		2				4			44				4/4	i
		æ		//////	<u> </u>	4	<u> </u>		///	////	<u> </u>	<u>//</u>	XA	Í
	.	98					9) 859							! :
		SS	12-15				320	60				8	4	ı
		54	~				949	4				84	+	
	4		6-9			4	9 9			1 1		233	+	ı
	CHAC NEDIA	52	+	4		\dashv	988 (1966) 988 (1969)			1 1	<u> </u>	æ	8	1
		, IS	15	2			644 ISO II				4	911		
1		ıs	<u></u>	///////	1//////	7		//////	777	///	///	7/	77	•
		SC	0-3			$\sqrt{}$						//		-
1		SR	0-3									$/\!\!/$		
	-	1	15-18	///:///		4	640		<u>/./_/</u>			<u> </u>		
		₩				_						_		e i
		35	12-15			١	548 480							
: 		즆	9-12			٦	9.3							•
		IBL	8-9			7	049		i			Ì	1	
	V V	ļ	7-8	ત્ર		7							\top	•
	MIXED MEDIA	M3T	6-7	4			1880 873. 1600 640.					\top		
	Ê	12	3-6	#			23 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3					8		. · · .
1		Ξ	0-3				P 3340			4				
		로	0-3	11/////	////////	7	///////////////////////////////////////	///////	///		1///	\mathbb{Z}		
		55	0-3			\sqrt{k}						Z		
		뚌	0-3		X////X//	\mathbb{Z}	///////////////////////////////////////		M			1		
	9.	code	dm)						21		trvae	pribae	<u>ا</u> ۔ ا	
	AUGUST, 1978.	Basket code	Depth (dm)			١	Endrytraeidaë us rivalis L. rivalis lite spp.	cuida cuida	olace	Staphylinidae	is La	조 대	1	
	AUGUS	ě	ă		sola		rival:	Inribriçidae subrubicum tetraedra NSECIA	rea-V	phy1.	didae			
		Ş			a roseol		~ [년]	רי ואופי	Isotoma olivacea-violacea	St	TERA: Anisopodidae Sylvicola fenestralis Larvae		ļ	
		SPECIES		শ্ৰ	CIEERA MIOIDEA Philodina		DA INETTA DOUS (Indee enfel	toma (IERA	A: A			
				NEWATODA	ROLIERA BRELLOIDEA Philodi		OLIGOGIAETA: Lumbricill COCOONS O Immature	OLIOCCIALTA: Dendrobaen Elsenfelli ARTHROPOTA: COLLENGOA	Iso	COLECTION	DIPTERA: Sylvic			
	62.8 miles	ide pe la	سون الم			_	점 등				<u> </u>			

STECIES Particle and Ref. Ref	AUGUSE, 1970.						•		•																					
Section Parts code 18 18 14 18 18 19 19 19 19 19 19						MIXE	D MED	¥.								"	SLAG P	EDIA							굽	ASTIC	MEDIA			
Duply (etc) Color	SPECIES	뜻					1			_	<u>10</u>	₩6	SR	SC	SL	ıs	52	-	54	55	Se	PR	2	<u>я</u>		-		P4	P5	8
Page 19 19 19 19 19 19 19 1		0-3						8				15-18	0-3		0-3	0-3	3-6	_	_	12-15	15-18		0-3	0-3	0-3				12-15	1548
Payabad alsomes Payabad al	DIPTERA: Psychodidae Psychoda (all species) Larvae			Œ ////	11 08	9				,					////	4804		مبه						1///						13.
Projected several filting		7/7		<u>≅</u> ₩	20/20	3 6												<u></u>		4				777		1			1	172. 164.
Interpret Control Co	Psuchoda severini Files	1/1/		////	++-			4	1		++				///		9							////			, .			•
In parents attitum larvow 160 9 14 14 14 15 150 15 150 15 150 15 15	DIPTERA: Chirchconddae			1//	<u> </u>		<u> </u>	<u> </u>	<u> </u>						1//									///	<u> </u>			 ! :		•
Figure F	Hydrobaenus minimus Larvae		///	77	g	10	1.	#	+	1	- -					9,60	·i							77	09	 -	-	\dashv		:
1	Flies			//	+	7	+	+	$\frac{\parallel}{\parallel}$	<u> </u>					//									//	:				:	•
Piles Pile				///					1			13			//					160	4			//			<u> </u>	i :		
Pactionnum bystopericus Pactionnum bysto		1//		///	-	+-	+-	1		+	†_				N	Ť	Ť	十						///	1				:	, 9
Pupper P	Netriocnemus hygrope	///	///	77						<u>:</u>					///			 						///	<u>:</u> :	:	:	!		<u>.</u>
DIFFERN: Ephydridae Seatella silacea Piles Seatella silacea Piles DIFFERN: Spherocetidae Leptocea Spp Larvae Piles DIFFERN: Occopiumidae Spathiophora hydromyrina Spathiophora hydromyrina Piles Pi	Larvae	1//	M	///	-	1	+	\perp	+	1		#		\mathbb{Z}	///		<u></u>				-4	///		///	1	<u> </u>	-	1.	;	4
DITTERN: Ephydridae Files	Files	///		///		+	-								//											.]				• ·
DIFFERM: Sphaenceridae Laptocara Spp Larvae Physical Ph	Ephydridæ 11a silacea	1//		1///						=	9	-			7//		1 1	193						///			<u> </u>	1 1		•
Pupes Files DIPTERN: Cordyluridae Spathlophora hydromyzina Pupas Pup	DIPTERA: Sphaerocerid			///	-	-	+	-	1				1//	///	///	Ì						//		7//	 	 	1	:		•
Spathlophora hydromyzina Spathlophora hydromyzina Laxvæe Pupae Pipae Piles Files		1/1/	1	///		十		! 		<u>! </u>	\Box	- -			///			H	İΤ			///	///	77		} 	! 		+	
Spathlophora hydromyzina Laxvae Pupae Pupae Pulaes Pilaes	DIPTERA: Cordyluridae	1//		77		<u> · </u>	<u> </u>	<u> </u>	1	1				\mathbb{Z}	///					-		//	//	//	:	1	<u> </u>	!	:	
Pupae Files	Spathiophora hydromy	///	///	77,									///	[[]	77				<u>.</u>		•	//,	//	77						
Lites Lite	Pupae			17					.						//				#			//	//	7	1	-	<u> </u>			
		1	1	77	+	+		+	+		•							1		Ì			//	1				<u> </u>		
		///		777		·							<u> </u>		////				•				77	//						
	4			1	1	1	1	1	1	1	1	-	1	4			1	1		1			3	7	1	1	1	-		
								•			-								,	•										

The same and the s			`																								
		P6	1518				ळह		2	3:1						130		i									
		P.5	12-15			ما	4800		•		00		!			٥						Ī					
	- A	P4	9-12			٩	4800		9	-					! !	ρ				-							1
	C MEDI	F3	6-9			300	2008	Ť	ī	3						0 11		 		4		Ì					1
	PLASTIC MEDIA	P2	3-6				3600	İ								1280 1440				4							1
1-14	-	a	0-3				<u>008</u> ₩						!			9		i									
		4	0-3		//		//	\mathbb{Z}		\mathbb{Z}	<u> </u>	//	//	\mathbb{Z}	//	\angle	///	$/\!\!\!/$	//	//		1					
		<u>۾</u>	0-3	///	<u>//</u>	//		<u> </u>				//	/	4		\angle	///		//	[]	///	1		•			4
	_	٣	9-3		<u>//</u>	//	<u>//</u>	<u>///</u>	///	<u> </u>		//		//	//		<u>///</u>	//	//	//	///	1					_
		. 95	15-18													160							•				
		S 5	12-15			2400	1300	i								4480 3040 3560 240D											
		24	9-12			1	gar	i		il			j			260		1									7
and the second s	EDIA	83	6-9			-		जिल	!							7070	-	┿-				 				·	1
-	SLAG MEDIA	25	3-6		·		33ळ (-		11			j			74803		 				-					1
	"	SI	0-3			!		1								780		Ī				Ī				ş 28 * .,	7
		SL	0-3		//				///			//		\mathbb{Z}	///		///		//		///	1					
		သွ	0-3					1											//	\angle		1					
]	S.	0-3		//		//			1		//	1		//						<u>//</u>	1] -
		М6	5-18													330.	, ·										
			12-15 1				-	-		11			- 			3080		+		<u> </u>		-					-
		115					_	-		11			1					1		•		<u> </u> _			-		_
1		114	9-12							<u> </u>						200 H 000		<u> </u>	.,:-			_					4
a some and a some a some and a some a	_		8-9			_	<u>. </u>	_		1			_			0 136		<u> </u>				_					4
	MIXED NEDIA	L M3M	7-8			_	3600	\perp		1						0872	<u>:</u>	<u> </u>				-					4
	MIXED	МЗТ	2-9 9			4		+		-			\dashv			809	·	+				-					-
Bedrac statement	_	M2	3 3-6			4	12.00 214.00	\dotplus		-			+	_		150 T840 6080 2136	·	1				-					\dashv
		Ξ	-3 0-3	777	77	77	결	1	///		_	77	77	7	///	3	777	17	77		///	-					4
		로	0-3 0-3		//	A	//	///	///	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	4	4	\mathcal{X}		///	//	/// /		//	//	H	4-					_
		¥C	0-3 0		//	/ X / X	/ <u>/</u> /	$\frac{M}{M}$				//	/ <i>X</i>	4	<u> </u>		////	//	//	+	// /	1-					-
		용 또	_	///	//	<u> </u>	1	<u>//</u>	1/	1/	<u>//</u>	//	<u> </u>		///	<u>/ /</u>	ੋਂ <u>/ / / /</u>	1		<u>/ / /</u> l		-					1
1978.	5	Basket code	Depth (dm)				5						.		. •		chiltoni			atus						٠	
AUGUSE, 1978.	Medium	Bask	Dept	AGI	•	ojd.	miari	ntoon	, to		dae	CHILOPODA	atus		CRUSTACEA	riatu			idae	ticul							
NA.				AKTHROPODA: ARACHNIDA	lata	Histiogaster carpio	Histiostoma feroniarium	Rhizoglyphus echinopus	ACARI: Mesostignata	ADANE &C. fountilde	r udk	CHI	Lithobius forticatus		Cyclopofda	Paracyclops fimbriatus	•		GASTROPODA: Limacidae	Agriolimax reticulatus							
		SPECIES		e ii	stign	gaste	stoma	1 Jyphr	lesost eius	-	5	äl	ius t		ر درکر	clops		-	. You	riolia							
		SPE	٠	IROPOL	ACARI: Astigmata	listic	Histic	Shi zog	RI: N	NC AC.	MCAE	ARTHINOPODA:	Lithot		ARTHROPODA:	aracy		MOLLESCA	STROPC	Agı							
				ARCH	ğ		- 447 1	141	ACA.	V Q V	Ę	H	7		AN S	، يد		. ₹	8								\perp

		_	·		,	,						
		96	1548		#			7	00			
		P5	12-15	91	4		3	B				
	A	P4	9-12	0H 44	99		ø	8			\Box	
	PLASTIC MEDIA	2	6-9		91	#	₹				$\overrightarrow{\Box}$	
	LASTI	P2	3-6		+	9.6	09	1.	,		001	
•		a	0-3	<u> </u>	9 8	1372 13.	त्रभ	78	si !		1	1
		굽	0-3	91	क्षु म	नेह	180					
٠		5	0-3	 -91	य द	豊の	में ल					i
		器	0-3	40	ळव	96	180	#				
		S6	15-18		9	ह्य	84				#	
		SS	12-15	#	00		811		0		४	
		24	9-12	# #	80 9		स्र	4	4		1	
	SLAG MEDIA	S3	6-9	크 di	<u>ख</u> %		36					
	SLAG	22	3-6	16 4	99 68	240	77		4			
		2	0-3	क्ष ळा	30.	5760 Tao 3816 240	318	48				
		ᅜ	0-3	मृह	0.04 0.04	730	96	72	9		$\downarrow \downarrow$	
	1	S	0-3	द्धा का	में ह	2766	H8 ·				$\perp \downarrow$	
1		S.	0-3	24	द्ध म	89E	912					<u> </u>
		92	15-18	લ			45				78	
		911	12-15	. ±	# 4		891					
Ì		¥4	9-12		00		36		1 4			
		1131	8-9	4	#		30	~	<u> </u>		٠	
		МЗМ	7-8	0a 0a	ري م		#				8	
	MIXED MEDIA	M3T	2-9	2 a	9 00	रहा ठ्या	72	ರ್		<u> </u>		
	E	M2	3-6	ત્ય	म		8#	4			0	
		æ	0-3	2h	9 명		528					
		M	0-3	26	4 +		36					
		MC	0-3	20	8 8	09	204 264		0			
		7 8	0-3	2H.	क्ष		204					
SEPTEMBER, 1978.	5	Basket code	Depth (dm)		yces	· :	HORA] Ium		sa	
SEPTEMB	Medium	Bask	Dept	va l	ubbarom		SARONASTIODENORA		HORA m pusil	idens	ncnj ini	S. n
		SPECIES		EACTERIA Zogloeal forms Sphaerotilus Leptothrix	Subbromyces Conidia of Subbaromyces Sepedonium	Chloreila Scenedesmus Stigeoclonium	PROTOZOA: SAROCM Flayellates	Amoebas Euglena	PROTOZOA: CILIOPIDRA HOLOTRICHIA Trachelophyllum pusillum	Hemiophrys fusidens H. pleurosigma	C. uncinata	Col poda cucul lus

			-	-					-	سند سنناسم						نسن		-	محت	-				4			•					
			P6	1548				#							:		:	İ		- 1	0	!		1	!							
			PS	12-15		9	+	#			-		<u> </u>			<u>.</u>	<u>:</u>	<u> </u>		<u>-</u> -		:		! -								
					-	+	÷	+	-		$\frac{1}{1}$	+	<u> </u>	$\frac{1}{1}$		<u> </u>	<u> </u>	1	-	+	-	<u> </u>			_		<u> </u>					1
		EDIA	P4	9 9-12		ત્		+-	<u> </u>	-		8	<u> </u>	8	- -	3			_	_	_	<u> </u>										-
		PLASTIC MEDIA	P3	6-9 9	4	\downarrow	1 5	8				9	 	11	 -	∞	-	<u> </u>		∞i		-		L	!		!					
		PLAS	P2	3 3-6	(%	_		+		<u> </u>			<u> </u>	08		#		!	-	:		<u>!</u>					-					
			Ы	3 0-3		20	<u> </u> -	<u>+</u>		า	4	જ	.i	જ		ه ا	-		_	-		ļ. <u>.</u>		1			i				•	1
			PL	3 0-3	1	4	4	 				+				∞i	_		_	_	_	1		!		1	_					-
			PC	3 0-3	1	+	\bot	╀-	<u> </u>		\sqcup	+	<u> </u>	4		40		<u> </u>	\dashv	$\frac{\cdot }{ }$	_	1		<u> </u>			4					┨.
			PR	8 0-3	1	_	1						<u> </u>	38		#				1	4			<u> </u>			_			·		4
			95	15-18			_																				-					
			55	12-15	ļ.	4	-			4	1			4		4									8							
			54	9-12		T	1									4	Ì			Ì	e	Ì			٠		1				•	
		SLAG MEDIA	23	6-9	1.	i									1	#			•	7	\dagger						Ť					1
		SLAG	25	3-6	80	1		1					İ		Ī	#	1	1		ব্ৰ	1											
			SI	0-3	·	#	1	1	:					9	T	10	T			T							1]
			75	0-3										4		4															•	
	,		SC	0-3										#		200																
	ĺ		SR	0-3										હ		38																
	Ì		M6	15-18		i	Ī	Ī	Ì	٥					Ī		T				8							•				
						-	+	<u> -</u>	1	-		!	<u>i </u>		+	$\frac{1}{1}$	$\frac{\perp}{1}$	1		<u> </u>	+	<u> </u>				<u></u>	$\frac{\perp}{1}$					}
			35	12-15		<u> </u>		<u> </u>					ļ		_	4	_		<u>. </u>		1						1					+
			144	9-12				<u> </u>		G	4				_	20		_			_						1					
			1131	8-9		ત્ય				•	4			=		ત્ય											1					-
		EDIA	МЗМ	7-8	4									8		00				4	\perp						\perp					
	.	MIXED MEDIA	МЗТ	6-7	8									ন্ত	_	의			ľ								\perp					
		X	112	3-6	40			1.						8		9				9								-				
			Ę	0-3				1	Ī		-	G	6	00		4					/											
			킾	0-3	8	j	Ť	T.	İ			<u> </u>	#			ત્લ					1							·				
			MC .	0-3			T	Ť	Ī					00	T	8				ત્ક	M					İ						
			₩.	0-3		i	十	Ť	İ			Πİ	i	土		78						li,]
	378.					i	Ť		T				.								해 (). 참 ()					-					•	
	SEPTEMBEN, 1978.	量	Basket code	Depth (dm)	ŀ																res .				.					•		
	Pred	Medium	Bas	Dep	138	llans	2	817			100			2	:	2001				ž.	me11		. 49	*	7				•			
-	SE				ıçica	Inti	odlo	aure		1	iria	vernalis	-	Cum	A .	Opercularian zooids	otan		seli	ostal	ellic.		pidat		aupas	-					*	
			SPECIES		n nis	ma 30	if um	datun		41	valla	nali		rodis	rcta	cula	lis	HIA	r ro	SCa (Оша		a cus	tida	rya n	chesı						
			SPE		Uronema nigricans	Glaucoma scintillans	Colpidium colpoda	Paramecium aureila P. caudatum		PERITRICHIA	V. convallaria	V. vernalis	ğl	Opercularia minima O. microdiscum	O. coarctata	g.	Epistylis rotans	SPIROTRICHIA	Stentor roeseli	Aspidisca costata	Tachysoma pellionella	SUCTORIA	Acineta cuspidata	A. foetida	rodophrya maupasi	P. carchesii						
						ري	٠,٠	7 1 W		PER	د	1		<u> </u>				SPIF	v, 1	~ 1	G1	Sg	~	, ==; 1	ا ۱۰	14.1	_					1
	•								_																							

	<u> </u>	7	1 00						T		<u></u>												_	=		
1		P6	ᅩ	∞				4.		_	9	_				1										
		P5	12-15	4				<u>.</u>		330	1440		,					_ 						H		
	Ā	P4	9-12	12				İ		800	1440													4		٦
	PI ASTIC MEDIA	13	6-9	03	i			1.	1					 	1	1			. 			 	4		\dagger	7
	I AST I	2	3-6	9	:		. :			2340 3040	800	#			i	Ī								Ī	+	7
		٦	0-3	9	!					0	Ø				1	 ! i						Ī		49		
		Я	0-3	00:	1			!			ō₹¥												#			
		3	 	03	· [1		ď	330		· · · · · · · · ·	<u> </u>	<u>· </u>					4	1	!		Ш		
	_	. E	-6 -3	ø.	. [<u> </u>	٥	=		:											م	#	
		86	15-18							940	_		<u>.</u>		4									8	٠	
		SS	12-15	#	;					2160	049	760												16		
		24	9-12	ধ	i					1316	200				4						İ			4	T	7
	SLAG MEDIA	53	6-9	4				Ī		3800	800	330			Ť	Ī							-#	٩	\dagger	7
1	SLAG	22	3-6	Qqi	:			i		3620		-			Ī							Ī		g	T	7
		12	0-3	8	:			!		800				<u> </u>									8	70		
		2	0-3	89				!	<u> </u>		160			<u> </u>	\perp									8		
•		Sc	0-3	ષ્ટ					<u> </u>	4				1	1	_						<u> </u>	4	4		
	L	8	0-3	9	į				Ŀ	10			· · · <u>-</u>		-	ļ	· · · ·			٠.		_		00		
•		¥6	15-18							416	160		•													
•		5	12-15		•	•				438		#														
2		4	9-12	#	T			i				j			İ	Ť			İ			İ		T	Ì	1
1		H3L	8-9	٣	寸					789	440	İ			\dagger	Ť							<u> </u>	十	十	†
-	V IO	EE .	7-8	91	寸			i -		988	800 3400 640 I	Ť			Ť	1			-			<u> </u>	i	Ť	Ť	1
	MIXED MEDIA	МЗТ	2-9	9	寸					0051	001	330			\dagger	T							i	3	T	1
	Ê	211	3-6	૪						0111	800	330			T								Ī	98	T	7
3	İ	E	0-3	4	\exists		 -			٥	09				T										T]
		보	0-3	10	寸		-			330	091 0881 088 049	Ť			1	T						· -	\top	十	T	1
		윤	0-3	9						960	330														T	7
		똪	0-3	4						049	049	087						·]
	1978.	code	du)												1.						-		rvae	ednd	rilles	
	Nedium	Basket code	Depth (dm)						eldaë	8	18			dae	niga mida			olace		lae	ulatu	! !	is La	3 .15	킈	-
	SEPTEMBER, 1978.	B	డి				ola		hytra	·lvali	rival	dds		Lumbricidae	ruore	Ē	Ş	ea-vi		Hinic	n ust	didae	scral			
		s		٠.			TIOIDEA		E.	Lumbricillus rivalis	Cocoons of L. rivalis	Imature White app.		Lum	Renaronaena subrubicuna	TNSPCTA	1	Isotoma olivacea-violacea		Staphy	Cercyon ustulatus	Anisopodidae	Sylvicola fenescralis Larvae			
		SPECIES		gi .		≰ា	DEA		AETA:	ricii	ons o	ture		AETA:	tella	900	19	Oma 0		ERA .	0	. A	icola			
		۷Ī		NEWATODA		ROTIFERA	BDELLOIDEA Philodi		AVNELIDA OLICOGRETA: Enchytraeldae	Lump	3			OLIGOCHAETA:	Risentella tetraedra	ARTHEODODA	COLLENBOLA	Isot		COLECTERA Staphylinidae		DIPTERA:	Sylv			
	L			刨		욊	協		됩됨					정		1 4	18		1	8		검				⊥.

	<u> </u>	10	8		1		. :										·		<u></u>		1
		96	1548	911	+ + +		:		•			_	;	<u>!</u>			<u> </u>		1	!	1
		P5	12-15	±.∞		•	: :	±:					1					-			
	ĕ	P4	9-12	9 08		:		1	:						: :	:					
	PLASTIC MEDIA	РЗ	6-9	88 191	: :			١.					-			:	: .				
	LASTI	P2	3-6										;		:	38				i i	
		ā	0-3	88 84° 944 9611 49° 1991 49° 1	: :			:	!		940	330	:	<u> </u>		1547	:	İ			
		ձ	0-3	2080 981 1196	· : .			i	99					1	: i	=	<u> </u>	12	2	!	
		8	0-3	1604							991		<u> </u>	1		113	<u> </u>	_ _	-		-
•		8	9-3	09 148 0448			9				-		<u> </u> .	<u> </u>			<u> </u>		\perp	!	
		95	15-18								·						!				
		SS	12-15											-							
		24	9-12	# 4		:					•].
	WEDIA	53	6-9	<u></u>		: :		İ					Ť	 				017			
	SLAG MEDIA	25	3-6	3256 1936 1380 2353 489 330 448 1453 964 3300 1608 160 48 180 16 156 38									T			İ	İ		Ī		
		ıs	0-3	275a 3360 16							4							7	H		
		15	0-3	1380		:								1							
		SC	0-3	1936 1453 180		:							1	4			!	7	7	,	
1		SR	0 - 3	3 <u>0</u> 56 4488 488		! !												1	ŀ		ļ
		M6	15-18	4	ì	:	+	8			•		_		-	4				. .	
		15	12-15	œ o o		4	Τ.	4						-							
		74 T4	9-12	8 # 8		-	+						İ								
		1131	8-9	±																	
	EDIA	МЗМ	7-8	03 0 E																	
	MIXED NEDIA	НЗТ	6-7	84 920 936									Ī						_		1
	M	112	3-6	480 330 173														4	_		1
		E	0-3	4480 1600 13																	
		렆	0-3	23300 3300 64												G		<u>- </u>			1
	·	웃	0-3	1480 1480												740		<u> </u>	_		1
		뚔	0-3	330 1+4					<u>3</u>		·		1			184		_			$\frac{1}{2}$
SEPTEMBER, 1978.	Medium	Basket code	Depth (dm)	htarvae Pupae Flies		92	Pupae	Flies	Larvae	Flies	opetricus Larvae	Pupae	riies	Files	idae Larvae	Pupae	æ myzina	Larvae	Flies	· ·	
SEPT	2	SPECIES B4	0	Protection (all species) Larvae Prychoda (all species) Larvae Pupae Prychoda alternata Files	Psychoda severini Flies	DIPTERA: Chironomidae	ectna Bectua		H. perennis		Metriocnemus hygropetricus Larvæ			DIPTERA: Ephydridæ Scatella silacea	DIPTERA: Sphaeroceridae . Leptocera Spp La	• .	DIPTERA: Cordyluridae Spathiophora hydromyzina				

1				P6	1548				1300			8		:				500	000				:				$ egin{array}{c} \end{array} $
				P5	12-15			1300	3600			700		1.			i		2		±		į				
			_	P4	9-12				1,1	00 H C	1	00 40		-					3				:				\dashv
-			PLASTIC MEDIA	P3	6-9	<u> </u>	•	200				3		:		<u>!</u> !	1		-	 			:				\dashv
			ASTIC	P2	3-6			0000	8400 2400	200		3400				1.	-	970	<u> </u>				!				ㅓ
	•		٦	ī	6-3			٥	3000					T		l	Ī		PER				: : !			 	\dashv
4				교	6-3				0004/00801			i		1			1	270									
				8	0-3			1300		2012				<u> </u>		<u> </u>				·							
-			_	쭙	8 0-3				3600		<u> </u>	-		<u> </u>		<u> </u>	1	5					<u> </u>			· 	_
dist.				Se	15-18				1300									7721	3						•		
A STATE OF				SS	12-15				3600				-	ż		•		0.40	70 10 20								7
				54	9-12			•		Ť		Ì		1		i	Ť	600	 								\exists
A Comment			EDIA	83	6-9			1300	3400	Ť		i		i			\dagger									 	ᅦ
in Alman			SLAG MEDIA	25	3-6				8,00]	İ	970 1700	 							 	一
4				ıs	0-3									-			I	140].
i 5				15	0-3				3400			\parallel		i		-		. (2									
				SS	0-3				00 1 17	\perp						!		٥	_							 	\perp
			L	ž	0-3					!				L			į	٥	<u> </u>					_		 	_
				94	15-18				3600.									. 8	2			•					
				乭	12-15				1800								-	V872									
1				144	9-12				3,000																		
1				121	8-9					Ť				Ť			Ī	יייוכנ	X X X X X X X X X X X X X X X X X X X								
- The State of			EDIA	Æ	7-8				9600 1200 7200 2400 6000 3600 6000 13300	1		Ti		1				800									
4			MIXED NEDIA	МЗТ	6-7				3600	Ť		II		T			1.	80									
4			물	갦	3-6				2009		-	4						084									_].
				æ	0-3				3400									٩									
				로	0-3				3300	T							.	350							·		
				윤	0-3				300									1920 3400 2500									
		•		8	0-3				0096	ōo≱×.								1930								 	\Box
		SEPTEMBER, 1978.		Basket code	(E										:				chilton!		٠.						-
	•	BY BERR	Medium	sket	Depth (dm)		N.		rtum	5na			•	ğ	<u>8</u>		a	tus	तुः	2	atus	•					-
-		SEPT	₹	<u></u>	ä	ARTHROPODA: ARACINIDA	_	Histiogaster carpio	Histiostoma feroniarium	Rhizoglyphus echinopus	RI: Nesostigmata		ARANEAE: Linyphildae	CHILOPODA	Lithobius forticatus		CRUSTACEA	EEFODA: Cyclopofda Paracyclops fimbriatus		<u>MOLLUSCA</u> GASTROPODA: Limacidae	Agriolimax reticulatus						
1	•			Ši		ARAC	gmata	ter c	ma fe	Snuc e	stign		inyph	Ö	fort		ğ	Cyclopoida ops fimbria		: 174	ax re			•			
				SPECIES		ğ	ASEL	iogas	iosto	igligo:	Mesc		<u>۔</u>	ä	en i qo	,	ig i	A: (SCA OPODA	iloli			•			
				S		THROP	ACARI: Astigmata	Hist	Hist	Rhiz	ACARI: Nesostignata		RANEA	ARTHROPODA:	Lith		ARTHROPODA:	OOPERODA: Paracycl		MOLLUSCA Gastropoi	Agr						
						B	Ä				Æ		<u>«</u> .	[#]			F	8								 ,, <u>.</u>	

	Γ	P6	1548	9	હ	.	4				: ,		•			İ						.	•	
·		P5	12-15	H.	36			#				i	প্র						}	4				
		P4	9-12 1	8	144.				<u>: :</u>		:	1	م			જ		<u>~</u>	1	<u> </u>				-
	PLASTIC MEDIA	P3	6-9		233			#					87					<u>!</u>	<u>-</u>	<u>:</u>	-		<u>·</u> _	-
	LASTIC	P2	3-6	44	₩ 78		ထု					ŀ	478							i				
	٦	ы	0-3	40	4		89			# <i>C</i>	±:		72											
		Pt.	0-3							///	//	//		44				//	4	4	1		//,	4
		PC	3 0-3		//		4		$\frac{1}{2}$	///				///		//					4		///	4
	-	P.	8 0-3	///	<u>/ </u>	//	(//	///		///	1//	<u>//</u>	///	////	<u>V/</u>	1/	///	//	4	<u>//</u>	<u>//</u>		<u>//</u> /	4
		26	15-18	7	의		ત						24		#	#		9		1.	\perp			_
		\$5	12-15	79			000	4					410		<u> </u>			20			1			
•		54	9-12	2H.	ļ			#			જ		99					4	00					
	SLAG MEDIA	83	6-9	30			#	8					80					#			2	4		
	SLAG	25	3-6	4.1		-	જ						56#		<u> </u>		<u> </u>			_	_			_
		ıs	0-3	5.777	30		7.7		ત	77	24	1	33.3	777	1	17	77			7/2			77	
		15	3 0-3	///			4			//		//		///	$\frac{\chi_{f}}{\chi_{f}}$	//	//			X	1/		//	4
		S	3 0-3		//	4	<u> </u>	//	1/	//		\mathcal{A}		////	X/	4/		4		4	\mathscr{X}		///	A
	Ŀ	S.	0-3			X		VX,	X		XX.	1/		////	<u> </u>	//	//			1	1/	1		4
		M6	15-18	į									3H		ها.	ત્ર		ا. رو		00				1
			1 1		i			, ·			<u> </u>		1 7				1				<u> </u>			
		£ .	12-15	အ	30H.			H.					8H		#	#		4			-	t		
		M4 N5		8				# #					48 +		#	#					11 6			
		M4	12-15	8	253						ia		H8 96		#	++		4	رة -		╫	\$		
·	EDIA	II3L M4	9-12 15-15	;	252			#			ia		48 +		#	4		4	رة -		C	\$		
	XED MEDIA	II3L M4	8-9 9-12 12-15	81 44	144 253			#			13		HB 96 EL		#	7		4	رة -		C	s s		
	MIXED MEDIA	II3L M4	7-8 8-9 9-12 12-15	8	348 144 353		*	#					H8 96 EE 801 9E		++	7		4	رة -		C	s s		
	MIXED MEDIA	M3T M3M N3L M4	0-3 3-6 6-7 7-8 8-9 9-12 12-15	30 HH 18	42 248 144 252		8	H H					HB 96 EL		#	1		4	رة -		C	s s		
	MIXED MEDIA	NZ M3T M3M 113L N4	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	36 30.	42 248 144 252								H8 96 EE 801 9E			1		4	رة -		C	s s		
	MIXED MEDIA	M1 N2 M3T M3M H3L M4	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	36 30.	42 248 144 252								H8 96 EE 801 9E			1		4	رة -		C	s s		
	MIXED MEDIA	MR MC ML M1 M2 M3T M3M H3L M4	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	36 30.	42 248 144 252								H8 96 EE 801 9E					4	رة -		C	s s		
		code MR MC ML M1 N2 M3T M3M N3L H4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	36 30.	42 248 144 252			-H					HS 988 234 108 72 96 SH		1	 		±	رة -		6 6	s s		
		code MR MC ML M1 N2 M3T M3M N3L H4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	36 30.	42 248 144 252			-H					HS 988 234 108 72 96 SH		1			±	\$.		6 6	s s		
	OCTOBER, 1978. Medium MIXED MEDIA	code MR MC ML M1 N2 M3T M3M N3L H4	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	53 36. 30. 44 18	4. 42 248 - 144 253		- /// /// !	Subbaronyces H. H. H. H.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		HS 988 234 108 72 96 SH		1		CPIDIA	±	\$.	Eu.	6 6			
		· Basket code MR NC ML M1 N2 M3T M3M H3L M4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	53 36. 30. 44 18	4. 42 248 - 144 253	91	- /// /// !	f Subbaronyces H. H. H. H.	11 mm		57	clonium	SARCOGESTICOCHORA ates 388 576 108 72 96 8H		7//		CULICRIDIBA	chyllum pusillum.	\$.	rosigma	6 6			
		code MR MC ML M1 N2 M3T M3M N3L H4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	eal forms 36 36 30 Htt 18	4. 42 248 - 144 253	91	the rominees	f Subbaronyces H. H. H. H.	percontum sartum	orella Sou	57	tigasclonium	SARCOGESTICOCHORA ates 388 576 108 72 96 8H		7//		(=	chyllum pusillum.	\$.	pleurosigma	6 6			
		· Basket code MR NC ML M1 N2 M3T M3M H3L M4	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	36 30.	4. 42 248 - 144 253			f Subbaronyces H. H. H. H.	Sopedonium		57	Stigesclonium	HS 988 234 108 72 96 SH		7//	Euglena	PICTICZOA: CILICPIDIA	chyllum pusillum.	sidens	H. pleurosigma	C	ullus		

	PLASTIC MEDIA	S5 S6 PR PC PL P1 P2 P3 P4	12 12-15 15-18 0-3 0-3 0-3 3-6 6-9 9-12 12-15		~			8		8		6 1		7 1 1		±			4									
	SLAG MEDIA	SC SL S1 S2 S3	0-3 0-3 0-3 0-3 3-6 6-9 9-12	+ 	28	_	0- #			± 1////////////////////////////////////			i -		8	# # 98 91			91									
	MIXED MEDIA	MR NC ML N1 N2 M3T N3M H3L 114 H5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	ત્ય	#		11 9						088	\dashv	8 8	//			1 19									
OCTOBER, 1978.		SPECIES Basket code	Depth (dm)	Uronema nigricans	Glaucoma scintillans	Colpidium colpoda	Paramecium aurelia	P. caudatum	PERTRICHIA	Vorticella microstoma	V. convallaria	V. vernalis	Vorticellid telotrodis	Opercularia minima	0. coarctata	Opercularian zooids	Epistylis rotans	SPINDINICALIA Stentor roesell	Aspidisca costata	Tachusema pellionella Oxytricha ludibunda	SUCTORLA	Acineta cuspidata	A. foetida	Podophrya maupasi	P. carchesii	•	•	- 1

		P6	1518	9		1		.09]. 180 180		33	68	
		25	12-15		<u>:</u>	•		2760 160 4 330	#			
	-	P4	1 21-6	9	:		-	091 0751 0751	<u> </u>			
	PLASTIC MEDIA	F3	6-9	9	<u>:</u> 			960 19	53			
	ASTIC	P2	3-6	9	1		\dagger	ا <u>ية</u> و	9		±	•
	=	٦	0-3	±:				2010-			∞	
		Ы	0-3				//					
		5	3 0-3			///	<i>[</i>]					
	_	쭖	8 0-3		<u> </u>	///	///				<u> </u>	2/2
		SS	15-18	ए।	-			2120 160 330	891		7 8	
		SS	12-15	ß				48 1130 H	91		4 +	
		54	9-12					091 096 1081	89		044 198	
	MEDIA	53	6-9	#	-			4.4 4.80			164	
	SLAG	25	3-6		į			72.	क्		#	
		เร	0-3					<u>ख</u>				
		ᅜ	0-3				//					
		SC	3 0-3				//					-
		SR	0-3			//	<u>//</u>					
		윤	15-18	ما	,		9	791 795	. 00			
·		윤	12-15	ଟ			4	0H9 966	8			-
		Ξ	9-12	8				800 800 4	8 #		0 #	
		톂	8-9	99			Ī	317a 96 08				
	EDIA	£.	7-8				T					
	MIXED NEDIA	ИЗТ	6-7	±				096	4			
	Ξ	¥2	3-6	d				9 800	#			
		Ξ	0-3					160	#			
		로	0-3									
	·	윤	6.3									
		뚠	0-3	<u> </u>	///	24	4		////			44
1978,	E	Basket code	(E)	·		01a	Sp.	. :gg		88	Larvae	filles
OGTOBER, 1978.	(Nedium	Baske	Depth (dm)			1050	e sp.	raeld	cldae Icund	viola	alis	
DOG			\dashv			BDELLOIDEA/Philodina roseola	MONOGONONTA/Lecanidae sp. Dicranophorus Sp.	ELIDA GOCIAETA: Enchytraeldaë Lumbricillus rivalis Cocoons of L. rivalis Irmature Mnita spo.	ICONFETA: Lumbricidae Dendrobaena subrubicunda Eiseniella tetraedra	HEROLA LEBOLA Isotoma olivacea-violacea	EOPTERA TERA: Anisopodidae Sylvicola fenestralis Larvae pypæ	
		SPECIES				VPhi	A/Lec	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	PA: I	1 0110	Anisc Ma re	
		SPE(TODA	FERA	LOIDE	LNONOS	OLIGOCHAETA: Lumbriciii Cocoons of Immeture i	CLICOCHETA: Dendrobaen Eisenfella	COLLENBOLA ISOCOMA	OOLDOPTERA; DIPTERA; Sylvico	
				NEWATODA	ROTTFERA	BOEL	NONOK	OLIGICALIDA Lumbri Coccon Irmatu	CLIG Pe Edi	ANGEL SOLL I	OOLEOPTE DIPTERA: Sylvi	

52 S3 S4 S5 S6 PR PC PL P1 P2 P3 P4 P5	9 9-12 12-15 15-18 0-3 0-3 0-3 0-3 3-6 6-9 9-12 1	3313 1120 480 160 P 320 160 P 3216 160 P 3216 160 P 3216 160 P 3216 160 P 3216 160 P 3216 160 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P	38 8 8 8				091				. :	##	13 अम म			
S4 S5 S6 PR PC PL P1 P2 P3	9 9-12 12-15 15-18 0-3 0-3 0-3 3-6 6-9	1120 480 168 808 320 320 460 480	88 38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				091	7///	7777	:		-H-	9.H			
S4 S5 S6 PR PC PL P1	9 9-12 12-15 15-18 0-3 0-3 0-3 0-3 3-6	1120 480 168 808 320 320 460	38 38 38 38 38 38 38 38 38 38 38 38 38 3				09		7777		:	H-				
S4 S5 S6 PR PC PL P1	9 9-12 12-15 15-18 0-3 0-3 0-3 0-3	1120 480 320 808 808	38. HH 36.					////	7777			#	C.			
S4 S5 S6 PR PC PL	9 9-12 12-15 15-18 0-3 0-3 0-3	1120 480 320							7777			İ				-1
S4 S5 S6 PR PC	9-12 12-15 15-18 0-3 0-3	1120 480	80.8	<u> </u>					////		, , , ,		1 1	1	; !	1
S4 S5 S6 PR	9 9-12 12-15 15-18 0-3	1120 480	80.8	<u> </u>	[]]]] []]]]			7/7/	4//	///		///			///	
S4 S5 S6	9-12 12-15 15-18	1120 480	80.8	<u> </u>	<u> </u>		///	////				<i>[[]]</i>		/////		
54 S5	9-12 12-15	1120 480	80.8			<u> </u>		<u> </u>	<u>///</u>	///		<u> </u>	<u> </u>	<u> </u>	1//	XIII
54	21-6	1120		+++ -								<u> </u>				<u></u> .
- 1	+=											<u> </u>				
S3	6	€ ₹	88													
2 I _ :		न स	8		#			-			-			İ		
22 25		13811 11861 1213 OLTS	348							li				ļ		
SI		27.20	1													
ड	-				<u>////</u>	///		[][]			////	<i>\\\\\</i>	<u> </u>	<u> </u>		<i>\\\\</i>
S			<u> </u>	<u> </u>		////		///	////	XX	////	<u> </u>	<u> </u>	<u> </u>	<i>\\\\</i>	
S.	6.3	YHHX	Willi	<i>YYY</i>		////	X	<u> [M</u>	<u> </u>	XX	////	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
W6	15-18	137 11	প্র	4.							-			-		
£	12-15	160	6		160						.		#			
Æ	9-12	# 0	200		#			1								
131	8-9	P 640	প্ত			П		T								
-			TT	ÌΠ			-		-	.]						
MEM TEM		99 9	828	111			T	İ		11		25	8			
112	3-6	330	8										Ġ			
E	0 - 3	330							#	\prod		,	100		4	
뽀	3	11/1/	XIII	1		1//		1//	///	XX	1//	XIII	W			
	<u> </u>		XXX			W					7///					
일	6.3	VIIX	1/1/	111/	1/1/	1//	XX	///	///	XX	XXX	X///		<i>\\\\\</i>	XX	
NR NC	(F)	8 9	8	ξ)	Vae	6-5	Se de	es	Væ	es	858	Vae	8 8	9	8 8	
code MR	epth	Pupa	212	He e	Is Lar Pup			FIL	AI.	레리	ㄹ	E G		myzin		
£	Ψ.	Psychodidae	choda alternata	sychoda severini A: Chironomide	drobaenus minimu		perennts	triocnemus huaro			: Ephydridae			1: Cordyluridae hiophora hydro		
1	£	Basket code MR Depth (dm) 0-3	3 de 78	be 19 0-13	1) O-3	Basket code MR chodidae species) Larvae Pupae Pupae ternata Files ronomidae ronomidae s minimus Larvae Pupae Pupae	ode 13	P	P	P	P	₩ (0 0)	₩ (₩ G G G G G G G G G G G G G G G G G G G	8 C C C C C C C C C C C C C C C C C C C	₩ G G G G G G G G G G G G G G G G G G G

					_							خييجيم	-	~			ستهميت		ندحب			OSBA
Administra				8	1548			866	4.800		8	=	±		;		320			-		7
1				P5	12-15		. (3,00			0 H20		1	1	•		091	Ì				1
			_		9-12			2016		 	2			+			049	1		\dagger		\dashv
1			PLASTIC MEDIA		6-9			3600 2	<u> </u>		\exists			-			<u>9</u>	-		-		\dashv
			ASTIC		3-6			12063		1	3	.		+	•		<u> </u>	 		+		-
					03		-	d	1 1	 	\dagger		\vdash	i	:		084	+		+		\dashv
*			ŀ		0-3	///	///	//	//	///	X	//	//	Ż	//	77		//	77	//	1	\dashv
			Ī	2	6-3			1				//	1		//	///			///	7		1
				E	<u>-</u>			1	//		1	1/		//		//				7		7
				Se	15-18			1-800	1900					1	<u> </u>		028		- • •			7
			ļ		12-15			3400		T	$\dagger \dagger$		<u> </u>	i	-		8	+-		 		-
4			Ī		9-15			18		+	$^{+}$			\perp			3 0811	-	·····	1		1
,					6-9			3400 H	-	 	+		<u> </u>	-	-		= -	+-		-		\dashv
4	-		<u> </u>		3-6			Bod		1 3	3		 	\dagger			03		•	 -		1
			Γ	25	3					0	T			1			-	1		T		1
				ъ	0-3				//		1		\mathbb{Z}			//	///	//	77	//		1
- :				အ ်	3						1			X							1]
***************************************				<u>ج</u> چ			//			///	1							\mathbb{Z}		1	-	
1				92	15-18			2400		-							2/#00.		<u></u>			
1			-		12-15			18	۵	 	 		<u></u>	<u> </u>	i		3000	<u>. </u>	·			1
•	•		-		9-12 1			3200	- !	-	+		<u> </u> 	_	+		<u>경</u> 	$\frac{\perp}{1}$				-
•					9 -9			4800 3		-	#			+	$\frac{1}{1}$		तहा तह	<u> </u>		<u> </u>		1
-					7-8 8-			135	구	-	$\frac{11}{11}$			+	+		<u>~</u>	<u> </u>		H		ſ
-		1	- 1		/-0			†ª	\dashv	-	H			+	+		3	-				1
1		2	M		9-6	-	5	38	+	 	$\frac{1}{1}$			+	\dagger			\top		H		†
,			-		-0			3400 13003400	+		$\dagger \dagger$			\dagger	\dagger	6			4			1
عأخ			-		3	///	///	17	///	1//	7	//	///	1	//	7	7//		///	7	·	1
					3	///	///				Z		//		1	//			///	Z		7
	·		1	₹ (3	///		1			R		//	1/	X	//	///]
	:	ا ف		e code	Ê										Ţ.,		toni					
		UCIUBER, 1978.		Dasket code	Depth (dm)	_	_	rim	snd				đ	<u>ي</u>	ផ	Ş	Tq5		dae		. · . ·	-
			Ē .		<u> </u>	ARACINIDA	ARI: Astigmata Histiogaster carpio	Histiostoma feroniarium	Rhizoglyphus echinopus	ARI: Mesostigmata		Linyphiidae	CITTOPODA	Lithoblus forticatus	CRUSTACEA	polda	chiltoni		GASTROPODA: Limacidae Agriolimax reticulatus			
			į	<u>.</u>			igmat.	oma f	snyd	ACARI: Mesostigmata		in	,	tor	ł	Cyclopoida			DA:			
				SPECIES		PODA	Ast	tiost	zogly	Mes		AE:	Pop	nopri	POD	DA:		MOLLUSCA	TROPO			
1		ı	,	"		\sim	00 · Pa															
The same of			,	"	-	ARTHROPODA:	ACARI: Astigmata Histiogaster co	lis	W.	ACARL		ARANE AE:	ARTHROPODA	31	ARTHROPODA:	CCPERODA:		호	89 €	_		

The second of the second of the second of the second of the second of the second of the second of the second of

NOVEMBER, 1978.	я, 1978.																				•				•					
Medium						Ê	MIXED MEDIA	DIA								12	SLAG MEDIA	A I			-				PLAS	PLASTIC MEDIA	DIA			
SPECIES Baske	Basket code	Œ	Š	코	Ξ	2	МЗТ	МЗМ	1131	114	N 211	N6	SR S	SC SL	1 21	1 \$2	2 83	3 54	SS	85	8	2	급	=	P2	E	Z	P5	94	
Dept	Depth (dm)	0-3	0-3	0-3	0-3	3-6	2-9	7-8	6-8	9-12 12	12-15 15	15-18	0-3 0	0-3	0-3	0-3	3-6	-6 6-9	9-12 12-	12-15 15-	15-18 0-3	.3 0-3	-3 0-3	3 0-3	3 3-6	6-9	9-12	12-15	5 1548	89
BACTERIA 2003loeal forms	.	भ्र	क्ष	20.	88	104	40 6	89	25 4	46. 18		09	34	18	40. 28	89	8 56	26	33	91 7	अम	1 40	36.	34	80	40	9	33	8	
Sphaerotilus			36	İ		3	80	38.5	'ধু	<u></u>	<u> </u>	53	16 3							1	:						3.H		7.6	
Leptothrix		†	T	Ť	Ť	$\dot{\parallel}$	\dagger	Ť	+	1	: +		+	-	1	<u> </u>	<u> </u>	+	~	<u> </u>			1	!	;	:	:	· 	<u>:</u>	
FINGE				İ					i	1	i	1	+		1			1	<u> </u>	:	-						:	: 1	:	
Subbaromyces Conidia of Subbaromyces		% % %	38	# #	36	<u>چ</u> «	<u>ල</u>	9 9 1	44 8	99	28 01	$\dot{ o}$	हा <u>+</u>	-	# 5	91 6	ব্	8		60	00 8	3 +	<u>ଞ୍ଚ</u>	₹. 3	છું. ∞	ৰ ∞		(g =	হ ∞	
Sepedonium		-	7	-		1	\vdash		 	1	! !	i	\vdash		-	ri .	1	1	1		<u> </u>		-	. j			<u>(</u>	Ë	,	
Fusarium		တ	#	Π				B	30	0	.		34	12 12	8	!	1	_	=	<u> </u> .	<u> .</u>	<u>; </u>	:	!	<u>:</u>	9	!	4	<u> </u>	
ALGAE														1						<u> </u>	<u> </u>	:			1	<u>i</u>				
Scenedesmus		1 1 2	454 138H		#	T	4	Ť	$\frac{1}{1}$	 	1	<u> </u>	8 008-	810 254	7	<u> </u>	+	٩	+	+	30		8 8 8	_	: 	:	:	1		
Stigeoclonium						Π		İ	Ť	1	<u> </u>	1	 	#	i	!	!	<u>-</u>	-	-		8		34	:	•				
											!			<u> </u>	<u> </u> 	!	1	-	-	<u> </u>		1	<u>!</u>	!	<u> </u>	<u> </u>	<u>:</u>	:		=
PROTOZOA: SARCOMASTIGOPHORA	HORA							·	-					_	 	<u> </u>	<u> </u> 	<u> </u>	<u> </u>		<u> -</u>	;	;	:	<u>:</u>	: 	!			
Flagellates		130	348 108		360	84	æ	84	72	8	108 3	3ah 1	# ==	144.	96 108	8 24 24	36	2	3	+ 9	å	52	3	##	133	<u> </u>		‡ 	-	
																				.								· !	· 	
Апоерае				Ì																-										
Buglena				#			1						3 4	# 8	લ	-di						<u>& (</u>	土					. ; ! !	<u> </u>	
PROTOZOA: CILIOPHORA		1					1	Ī	 	!	<u> </u>	.	-	-	<u> </u> -	!_	1	+	-	1	<u> </u>	-	-		- -	!		!	!	
HOLOTRICHIA ·									-,																					
Trachelophyllum pusillum	Jum,										+			1	_	-		4	-	٩	<u> </u>	4	_	_	_		ĺ	#	j	=
Hemiophrys fusidens											_	+		_	_			_	8	7						4			4	
H. pleurosigma																														
Chilodonella cucullulus	เมร										-			<u></u>							<u> </u>						: !			_
C. uncinata									#	9			-				8	∞						<u> </u>	!		2	7		-
Colvoda cucullus	-						Ī	1					$ \cdot $					1												
	· -																													
~											<u>.·</u>					<u></u>									•					
											+		1	1	1	1	-	-	-	-	4	1	4	1	1					7

· · · · · ·	- T								<u> </u>	·	 -					-	 .	-			-					-							·
	ä					36	4	_		-	<u> </u>	<u> </u>		တ္မ	_	_	<u> </u>	!		- 0	9				<u> </u>			<u> </u>					
	ä	12-15	-			91:	+			1						4	İ			4	2 4												
	¥ [8	9-12	4			<u>±</u>	Ì							4		99		İ		6	% ⊘						:				•		
	PLASI I C MEDIA	. 6-9	308		1	#	#			i	Ī			56	i	34		-								İ							
	1 P	!								:	İ			တ	j	91																	
					1	!									1	3a	!			İ													
	ة			<u> </u>		ĺ				_	<u> </u>			#	1	+	_	<u> </u>			1					<u> </u>		1					
	١				_	\dashv	1			_	_			8	_	의	_	1		+	 -	H			_			-					-
-	- la		1	_	-	1	<u> </u>	1		-	<u> </u>			ھ	_	_	_	_		_	_				<u> </u>			1					-
	8	15-18		1	•	23																						ŀ					
	8	12-15		-	-	33										Ø						.									•		
	5	2			<u> </u>	34	رها	1		T	Ì					B	:	T		T	Ī							Ī					
		16		-	-	38	i	+		+				i	1	#	\top	\dagger		71								+					
	SLAG MEDIA	-			<u>ري</u>	-				+	 			8	1		$\dot{\top}$	+		0	÷	Ħ						Ť				-	1
	" E	0-3			36.		i	₹								8					T												
	[0-3		:			Ì									4																	
	5	- F		į	_					\perp	L			00		e		\perp		1	_						j	1					-
	8	6-3					-								_	4											. !						-
	98	15-18				9	8			#				100		44				1	<u>.</u>			:									
	Ä	12	-		· [<u> </u>	-	\dashv		+	<u> </u>			H		22	-	\dagger		77	i							Ī					
	\vdash				-+	-	3	1		* 	<u> </u>			4 34	_		<u> </u>	$\frac{1}{1}$		╫	-				<u> </u>		_	+					1
	214	<u> </u>			-	134	-	_		$\frac{1}{1}$	\perp			8 64	4	33	\dashv	\perp		0	1							<u> </u>			-		ļ. F
٩	Man					23	-	-		+	==	જ		84 48		8 36	$\frac{1}{1}$	+		+	<u> </u> 						-	 					
MIYED MEDIA	Mat M					ક્ષ	-	_		00				8		84 09	$\frac{1}{1}$: 		+							+	+					ł
	M CH	٠				4	<u>, 1</u> 	1	`	<u>-</u>	\vdash			9		13	- 	+		\dagger	<u> </u>						7	T		-			
	12	- 6	-			<u>.</u>	+	-		+	-			33	_	8	+	\dagger		+					H		\dashv	+					
	2		-	! ! 		\dashv	<u>- </u>	-		+	+			4		4	\dashv	\dagger		╁							\dashv	\dagger	•				ĺ
	7	- -	+		1	1	1	+		+	+			હ		8	+	Ť		†							T	T	•				Ì
	93		╁╌				7	1		\dagger				8		હ	Ì	\dagger		Ť		İ					7	T]
8							i	i		+	Ī	j						T															.
FR, 197	Rector code	Depth (dm)								g		stpou	<i>:</i>			2			٠.		a										•		-
NOVEMBER, 1978.	, a	Deb	lns	llans	oda	alia		Jum /		LOS CON		telot	ıíma			Zook	25		_	_ <u> </u>	onell			2		ısı		-					
ž			Uronema nigricans	Glaucoma scintillans	Colpidium colpoda	Paramecium aurelia	H	Colpidium campylum		Vorticella microscoma V. convallaria	s	Vorticellid telotrodis	Opercularia minima	O. microdiscum	ita E	Opercularian zoolds	Epistylis rotans			Aspidisca costata	Tachysoma pellionella			Acineta cuspidata		Podophrya maupasi	111						
	COEFIEC		In eme	SOMA S	ldlum	necim	P. caudatum	Idium	AH :	Vorcicella mic	V. vernalis	ortic	culari	icrod.	oarct	ercul	tylis		IOHIA	tiscs	Soma		ė,	sta a	A. foetida	phrya	P. carchesii						
	9	5	Urone	Glauc	Colp	Parai	P. C.	Colp	PERITRICHIA	Vori	V. V.	·≯	Oper	0. H	0	g	Epis		SPIROFRICHIA	Aspi	Tachi		SUCTORIA	Acin	A. f.	Podo	P. C.						

18. 16 16 18 18 15 15 15 18 18 18				MIX	MIXED MEDIA	₹1							SLAG	SLAG MEDIA							PLASTI	PLASTIC MEDIA		
15-18 0-3 0-3 0-3 3-6 6-9 5-12 12-15 15-18 0-3 0-3 3-6 6-9 5-12 12-15 25-	MR MC ML N1 M2 M3T M3M H3L M4	N1 N2 M3T M3M N3L	M3T M3M H3L	M3M H3L	1131			岳	M6	-			22	S3				-	-		P2	P3		P5
33. 4 8 10 4 18 26 13 20 8 4 10 13 4 4 8 8 14 0 1 14 4 15 11 116 4 16 16 16 16 16 16 16 16 16 16 16 16 16	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12	0-3 3-6 6-7 7-8 8-9	6-8 8-2 2-9	6-8 8-2	8-9			12-15			-	_			_							6-9		\rightarrow
116	ह। 8 ह। 8 मा	. K 81 9 8	K 81 9	. K	ત			9	33			0	#	<u>8</u>		i						·····		
1																								
116 4 16 24 373 160 864 330 1938																				·				
640 330 600 48D 48D 1938 1938 600 330 188D 183D	88 a4 d	88 a4 d	88 a4 d	88 at	88	3,00		4260		4	3			960			128				ه ح			
8 E 8 4 4 4 7 7 8 4 9 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	330 640 330	P 330 640 330	330 640 330	330	330	096		800						9		9	856				9			
8 t t t t t t 8 t t t 8 t t t 8 t t t 8 t t t 8 t t t t 8 t t t t 8 t t t t 8 t t t t 8 t t t t 8 t t t t 8 t t t t 8 t																								
4																			1					
4 5 6 6 7 8 8 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <	#	#	#	#	4	4			4			-			30	٥	4							
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 14									,		-													
8 E 1 8 4 4 4 7 8 4 7 8 13 8 13 8 14 8 4 7 15 15 15 15 15 15 15 15 15 15 15 15 15							- 1				-	\dashv					İ		_	_				
8 4 4 04 18 4<					-		i				<u>: </u>						:			-				ŀ
8 E 8 40 184 34 40 40 40 40 40 40 40 40 40 40 40 40 40	4		·							09					·					-#				
	8 8				8		• 1	4	40		4	+	+	19	$\neg \vdash$	一			-	- +		-	ন্ত	
						<u> </u>			<u> </u>									 	<u> </u>	<u> </u>				

·			P6	1518	1976 1986	್ಷ			:	:					***						480	-				1			
			P5	12-15	164	<u>. ख</u>		•	:	;	:								4		20	:					;		
		4	P4	9-12	160	36			:						T	:				4	48						:		
		PLASTIC MEDIA	P3	6-9	368 800	88	1		:	:	:	:			091				i	091	#								
		LASTI	P2	3-6	4176 # 660 8804 12648 7684 3364 1280 1600 800	356						:		!		1.				4	م	-		·	!		<u> </u>		
		-	ы	0-3	98 <u>04</u>	, 00 i			4	!	:	:	<u> </u>	· ·	İ.		1		İ	-					i	_	<u> </u>		
			14	0-3	3364	: 00:			_	i	<u> </u>	<u> </u>		<u>.</u>	_ _	-	1			1	_	-			<u> </u>	<u> </u>	<u> </u>		
		ľ	5	9 0-3	6 4136 4 1600	<u> </u>			+		1	<u> </u>			1	\dotplus	\downarrow	-	1	_	_	_			+	_	_		
	-	_	8.	в 0-3	35.7k				\perp	_	_	<u> </u>		<u> </u>	<u> </u>	<u> </u>	_	,		99		_			\perp	<u> </u>			
			98	15-18	641	#			\perp			<u> </u>		1	15	7	1				•				<u> </u> -	-	_		
	•		S 2	12-15	330	œ					5	3																	
		_	84	9-12	1128 960	16								-							7				<u> </u>				
		SLAG MEDIA	23	6-9	हांह ^स	333			1			<u> </u>				1										_			
		SLAG	22	3-6	१५८। वृक्त्मा १९४) ४४टा	104				_	<u> </u>	_				1	1				_				\perp				
			เร	0-3	(FRE)	18	11		\perp	_		<u> </u>				1	-				_	_		<u>. </u>	14	Ŀ			
			St	0-3	2 17 <i>60</i>	-	1!		4	+	-	\perp		<u> </u>	_	$\frac{1}{1}$	-		4	-	_	_			+	-	_		
			SC	3 0-3	4 972 8 664		 		_	+		_			+	1	+		-			\dashv			+	-	-		
	-		SR	0-3	168 1489				<u> </u>		1.	<u> </u>				_	-		 		_				$\frac{\perp}{\perp}$)
			M6	15-18	1928	. !						-					-	-							\$	-			
			145	12-15	991 160	13																							
			144	9-12	4972 1930	la la																			4				
			1131	8-9	350£	नुत																							
.•		EDIA	M3M	7-8		33																							
	-	MIXED MEDIA	МЗТ	1-9	5780 1920	140										\perp					52	_			_				<u> </u>
		M	M2	3-6	3680 5780 5143 1760 1920 3845	р															44				_				
			M	0-3	87EE 46EE	20					į									=	#				\perp				
			뒫	0-3	<u>o</u> rei 9256											\downarrow	1		\perp						<u>· </u>				
			<u>Α</u>	0-3	वस्य १३८० वस्य १३८० वस्य							L				1	1								_	L			-
			1/R	0-3	4984 3304				\perp	1	1_	ot			_	\perp	\perp		<u> </u>	99					_	igspace			
	NOVEMBER, 1978.	Medium	Basket code	Depth (dm)		mata Flies	dad Flies	midae	inimus Larvae	Pupae	Files	Pupae	Flies	hygropetricus	Larvae	appling a	tres	i	Pupae	oceridae Larvae	Pupae	Flies	uridae	hydromyzina	Pupae	Files	-	• •	
	4		SPECIES		DIFTERA: Psychodidae Psychoda (all species)Larvae Pupae	Psychoda alternata Flies	Psychoda severini	DIPTERA: Chironomidae	Hydrobaenus minimus Larvae		norman ii			Metriocnemus hygropetricus				DIPTERA: Ephydridae Scatella silacea		DIPTERA: Sphaeroceridae Leptocera Spp La			DIFTERA: Cordyluridae	Spathlophora hydromyzina				- 0 - 1 × 1	

	:																													<u> </u>
×	NOVEMBER, 1978.												ı								•						٠			
	Medium			.		-	4 XED	MIXED NEDIA					۱.			Si	SLAG MEDIA	EDIA			 -				PLAS	PLASTIC MEDIA	DIA			
SPECIES	Basket code	용	물	로	Ξ	꾶	МЗТ	T M3N	1 M3L	14	145	Ж6	SR	SC	75	15	25	53 5	S4 S	S5 S6	T	8	٦ ٦	L P1	P2	2	P4	P5	P6	
,	Depth (dm)	0-3	3 0-3	3 0-3	3 0-3	3 3-6	6 6-7	7 7-8	8-9	9-12	12-15	15-18	0-3	0-3	0-3	0-3	3-6	6 6-9	9-12	12-15 16	15-18	0-3	0-3	0-3	0-3 3-6	6-9 9	9-12	12-15	5 1548	100
ARTHROPODA: ARACINIDA	IDA.						·					·												-					_	
ACARI: Astigmata	5										-							-												
Histiogaster carpio	rpio		_								٥								0											
Histiostoma feroniarium	oniarium		\prod	\sqcup	26	१३०० ।३०० मिश्र	缩	٥	900		1300	2H 00				-		d	000	13	1300	\dagger		0		0000	130013000 3600	200	1.	7
Rhizoglyphus echinopus	hinopus	+	-	+	\bot	130	12003600	اع	_								300			1400			\vdash		T 1	3400 1300	٥		1300	
ACARI: Mesostigmata	r.	+	\perp	1	+	\perp	+	1	_						T		+		+	+	 	+	+	+	+				_ _	
Platyseius italicus	icus	\dashv		_	-	. م	_	_							٩		- 29	000						<u>~</u>	1200 1200	0000		•	٥	
ARANEAE: Linyphiidae	dae	<u> </u>	-		4											1	1	<u> </u>				 					İ			
ARTHROPODA: CHI	CHILOPODA	-	_	-	-	-	1									Ť	+	1	<u> </u>	1	<u> </u>	十	+	-		<u>:</u>			!	
Lithobius forticatus	catus				#																									
						_						-			İ					<u> .</u> 		十	<u> </u>	<u> </u>	<u>].</u>	<u> </u>			<u> </u>	
AKTHROPODA: CRUSTA COPEPODA: Cyclopoida	CRUSTACEA :lopoida						1								 			<u> </u>	<u> </u>	1				-					<u> </u>	
Paracyclops fimbriatus	briatus	9	09 0		٩	٩	9	ما	330	640	940	٥	99		091	٩	160 480		091	9	330	+	٥	99	م	٥	İ	99	٥	
•	chi I toni	Tu.																				;		•						
MOLLUSCA GASTROPODA: Limacidae	:idae :							<u> </u>	<u> </u>							 	 		1	-		1	┼	<u> </u>	<u> </u>	-				
Agriolimax reticulatus	culatus	-		_#	-#	4	_											#	+				\dashv	-						
	÷		·	· · ·		· · · · · · · · · · · · · · · · · · ·												·												
	`			<u> </u>									·							•	•									-
																														-
																														
	-	_	4	_	4	-	\dashv	4	_						-	\dashv	-	-			-	\dashv		_	_				_	==
					· ·			•	•	4	.			_			•			•										<u> </u>

76 1548 36 4.0 4.0 4.0 36 38 38	
25 24 2 25 24 2 25 24 2 25 2 25 2 25 2	
11A P4	
PLASTIC MEDIA P2 P3 3-6 6-9 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8	
108 3-6 108 3-6 108 108 108 108 108 108 108 108 108 108	
2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1	#
= = = = = = = = = = = = = = = = = = = =	
25/////////////////////////////////////	
E 5 ///////////////////////////////////	
26 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# # #
SS SS 12-15 16-08 108 108 108 108 108 108 108 108 108 1	œ
27 - 15 83 8-15 84 84 85 8-15 84 85 85 8-15 85 85 85 85 85 85 85 85 85 85 85 85 85	
MEDIA S3 6-9 6-9 88 88 88 192	
S1 S1 S2 S1 S2 O-3 3-6 C0	
T E //////////	
9 5 ///////////////////////////////////	
# E ///////////////////////////////////	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
33 33 15-18 16 16 16 16 16 18 16 16 16 16 16 16 16 16 16 16 16 16 16	
81-17 88 29 CE CE	
(ED NEDIA M3H 1131 M3	
MIXED MEDIA MIXED MEDIA MIST MISH MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MIST MISH MISH MIST MISH MIST MISH MIST MISH MIST MISH MISH MISH MIST MISH MIST MISH MIST MISH MISH MISH MISH MISH MISH MISH MISH	4 4
193 194 194 194 194 195 196 197 197 197 197 197 197 197 197 197 197	
13.4 Hill 108 1.1 108	
DECEMBER, 1978. Hadium Basket code Depth (dm) S S SATIONHORA	Ins
Basket Depth (De	ORA pusti
SPECIES Basket of Depth (de Mana SPECIES Basket of Depth (de Depth (de Mana SPECIES Basket of Depth (de Mana Speciel 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ruglena TOZOA: CILIOPHORA OTRICHIA Trachelophilum pusillum Hemiophrys fusidens H. pleurosigna Chilodonella cucullulus C. uncinata Colpoda cucullus
	na
SPECIES SPECIES Soglocal forms Sphaerotilus Septecthrix Conidia of Subbaromycas Conidia of Subbaromycas Conidia of Subbaromycas Conidia of Subbaromycas Conidia of Subbaromycas Septecthrix Conidia of Subbaromycas Septecthrix Subbaromycas Conidia of Subbaromycas Subbaromycas Subbaromycas Subbaromycas Subbaromycas Subbaromycas Subbaromycas Subbaromycas Subbaromycas Filagellates	Amoebae Buglena FROTOZOA: CILIO GOLOTRICHIA Trachelophill Heniophrys fu H. pleurosigua Chilodonella C. uncinata Colpoda cucul
PACTER Sold Sold Sold Sold Sold Sold Sold Sold	CRIG

		_		_										-				-			<u> </u>					;			_		 	$\overline{}$
			8	1548								-	L			00		33	i	[!	i	:			<u> </u>		•			 	
	•		P5	12-15							_	1		-		4		જ	!				:									
			P4	9-12								:				00		9	:			1	-			<u>.</u>			:			
		PLASTIC MEDIA	P3	6-9							·	!		-		7		8		 	1	-	i	 				•	1		 	\exists
		ASTIC	P2	3-6			76	æ		-	,	ا لا	T			∞		#6					+	-				. 1	:		 	
		٦	E	0-3								i		4				16	-	Ī				T					į	-,	 	
•			급	0-3	\mathbb{Z}		7			/	//	1/	7	/	/	/		1	11.	X	//	1	/	\overline{Z}	/,	7,	7	//	<u> </u>			
			5	0-3	/	/	1				//	1/	1/			1/	1	1	14	X	//	/		1/	<u>/·/</u>	1	1				 	
			쭖	0-3	/						//	V	V	V	//	1/	1	1	1/1	1/	1	1	1	1/	//	/	\mathcal{U}	.1	1		 	
	`	ŀ	Se Se	15-18	44	36	4	8								æ		9				4	4						-			
			55	12-15	38	4	4											36												,		
			54	9-12	38		œ					T	Γ	Γ		95		19			İ							j	İ			
		EDIA	53	6-9	4			-				T	-			ত্র		333	$\overline{}$	İ		\dashv		Ì				i	İ			
		SLAG MEDIA	25	3-6								Ì				77	_	88		T			1						1		•	
		-	เร	0-3												5	i	2	1									j		·		
			SL	0-3		1		/	/)	//	//	X	Z	1	//	1/		1		1/		1	1	1/		/	۷	4	4		 	_
•			SC	0-3	1			4			<u> </u>	1	1	1	/_	\mathbb{Z}	Δ	4	1	1	//	4	4	1	//	Ľ,		4	4		 	
	1		æ	0-3	1		1		1		//	1/	1/	1	//	1	1	1	4.	<u> </u>		4	4)	<u>X</u>	<u>/· </u>	Γ.	1	4	1		 	_
			МĠ	15-18			İ	11								b		8					الم									
			115	12-15		00		33				İ	İ			91		8	Ì	Ī												
			M4	9-12 1			ष		. :			+		_		9		30	$\frac{-}{ }$	<u> </u>		<u> </u>	Ť	İ				İ			 	
			1131	8-9	136			4	<u> </u>			+	-			٥	 	36		\vdash		4	#	 					Ť			-
)IA	изм 1	7-8	4	-	99	7			. 0	+-	<u> </u>		·	90	_	26	\dashv	 		Ť	\dagger	İ				1	İ			
		MIXED MEDIA	H3T I	6-7	d		_	-				$\frac{1}{1}$	<u> </u> 			e		ø	\dashv	†		İ	Ť	İ					T			
		MIX	112	3-6	-		7					+	Γ			4		9	Ī													
٠			Ξ	0-3			4				•	Ť.				T		7					T									
			호	0-3	/					7	77	\overline{Z}	V	/	//	1/		7	//	Z	7	//	7	1/	7	1		1	1	•		
			SE SE	0-3	/		/			1	//	Z	1	/	//	1	/		77	1	/	//	7/	1/	Z			Λ	1		 	
			뜻	6-3	7					7	7	1.	1	7	1	1/	/	7	/ /	V.	/	//	1		/	1			1		 	_
	78.													8					İ						-							
	DECEMBER, 1978.	Medium	Basket code	Depth (dm)								ша		troch	:			g					Ja							٠.		
	DECEM	<u>\$</u>	Ba Ba	ä	ans	illan	poda	ella		/Jum	•	TOS EO		telo	n f			2001	SU			ata	ionel		ata		ası					
			s		Uronema nigricans	Glaucoma scintillans	Colpidium colpoda	Paramecium aurelia	en.	Colpidium campylum	•	Vorticella microstoma	1s	Vorticellid telotrochs	Opercularia minima	iscum	O. coarctata	Opercularian zoolds	Epistylls rotans		Stentor roeseli	Aspidisca costata	pell		Acineta cuspidata	la la	Podophrya maupasi	sii		•		
			SPECIES		iema n	соша	pldiu	meciu	P. caudatum	ddina	IGHTA	reacts	V. vernalis	brtic	197	nicrod	oarct	ercul	stylis	SPIROTRICHIA	tor r	disca	nysoma 	5	ota c	A. foetida	phrya	zarche				
			S		Uron	Glau	8	Para	P. C	Colp	PERLTRICHIA	101				0	0.	얾	Epis	TROTE	Ster	Aspi	ract	SUCTORIA	Acin	4	Pode	3				
	•										兹									N.				Ιğ							 	

		8	1548	91			онее 8				+		ī
		P5	12-15	8:			3360		4 4				
		P4	9-12 1	4.	<u>i</u> <u>i</u>		4- 1120 3				<u> </u>		
	PLASTIC MEDIA	Р3	6 6-9			: !	11. <u>0691</u>				t		
	ASTIC	P2 F	3-6	4		:	91 8				5		
-	ᆸ	E.	<u>6-3</u>		İ		9320 II		- 	. 4	ত্ৰ জ		
		곱	<u></u>	7////	////		7777	/////	1///	18//	7///		
·		S.	0-3						M/M		<u> </u>		
		쮼	9-3	<u> </u>	1//	//	/////	/////	////	/ / / /	<u> </u>	<u> </u>	
·		95	15-18	8			084 0 1100 0 150		#				
		25	12-15				1956				4		
		54	9-12		<u> </u>		049 898	-	4		.		
•	EDIA	S3	6-9	4	<u>:</u>		370		į		40		
	SLAG MEDIA	25	3-6		i I		7.8		İ		7		
		Sı	0-3	7			180 160				#		
		75	3	/////	///								٠.
; • •		SC	0-3			-/							٠.
		æ	9	1/4//	111		/ / / X	/ / / /	////	///	<u>/ / / </u>	44=	
April 10 miles		윤	15-18	20			6124 1280 330	·	- ; -				. ·
		15	12-15	ব			8 096 011		4		٥		-
		¥	9-12	ત્	i		23.8 480		4		4		
				:	•	1	F E 13	1	-박				
1	ı	편-	8-9				0441 9£9						. •
	EDIA	M3M N3L	7-8 8-9	: :			0541 008 9E9 9b		ત્		4		. •
	XED MEDIA						0741 008 04ee						•
indenting different versus ver	# 1	M3M	3-6 6-7 7-8	ōl			0441 008 04ee 09b 919 9b d						• •
andekinden denden beland senten eur ende bei er en	MIXED ME	мэт мэм	0-3 3-6 6-7 7-8	<u>6</u>			0441 008 04ee 09b 091 919 9b d						
ska sedeminin kaki kalimada dan dan dan dan sedeminin dan sedeminin dan sedeminin dan sedeminin dan sedeminin	MIXED ME	M2 M3T M3M	0-3 0-3 3-6 6-7 7-8	<u>6</u>			0441 008 04ee 09b 919 9b d			////	4		
derdade des entre des des des des des des des des des de	MIXED ME	HC M. NI M2 M3T M3N	0-3 0-3 0-3 3-6 6-7 7-8	8 4 10			07-F1 008 OHEE 07-F 09-F 09-F			/	4	// //	•
mateuremente dade das casaciones de la factoria de	MIXED ME	MR HC ML NI M2 M3T M3N	0-3 0-3 3-6 6-7 7-8	8 4. 10			0441 008 04ee 09b 091 919 9b d			/	4	77	
1978.	MIXED ME	MR HC ML NI M2 M3T M3N	0-3 0-3 0-3 0-3 3-6 6-7 7-8	8 4 10			0441 008 0466 03P 031		rs		4	77	
BABER, 1978.	MIXED ME	HC M. NI M2 M3T M3N	0-3 0-3 0-3 3-6 6-7 7-8	8 4 10			345 49 40 008 0465 046 091 X		rs	ni dae ustulatus	s Larvae 4 4 4	77	
DEOTHÜER, 1978.	MIXED ME	MR HC ML NI M2 M3T M3N	0-3 0-3 0-3 0-3 3-6 6-7 7-8	8 4 10	·		345 49 40 008 0465 046 091 X		rs	phylinidae cyon ustulatus	s Larvae 4 4 4	77	
DECEMB 1978.	Medium MIXED ME	Basket code MR MC ML MI M2 M3T M3M	0-3 0-3 0-3 0-3 3-6 6-7 7-8	8 4 10	h Ina roseola		Enchytraeidae us rivalis L. rivalis hite spp.	Lumbricidae a subrubicunda	Insecration and a second and a	A Staphylinidae Cercyon ustulatus	s identified to the second of	77	
DESTRIB , 1978 .	Medium MIXED ME	MR HC ML NI M2 M3T M3N	0-3 0-3 0-3 0-3 3-6 6-7 7-8	8 4 10	ROTIFERA BIELIOIDEA Philodina roseola		0441 008 0466 03P 031		rs	COLEOPTERA Staphylinidae Cercyon ustulatus	4	77	

1		-			سسمح						المتعددات	_	-	_	-	_			_		-					-			
٠,				9.6	1310	920		4								!			:	!	!		378	1					
And actions.					c) - 21	484	1	80		-									:				28				1		
1			. AI	72	71-4	980		36													i								
1			G NED	E2	2	358		34		$\overline{\parallel}$;					40						
			PLASTIC MEDIA	P2	9	16.00	2	ŧ.												İ			8						
Ì					5	1120								·					ļ				4					;	
>					3//	1/	1/		//	1			4		4	1	//		4	4/	/	//		4	///	K,	Ζ,	///	
					3//	4/	\mathcal{U}		<u> </u>	Ų	4		4		4		//	1/	/!	<u>4/</u>	<u>//</u>	//	1/	/	///	1/	//	/ / /	
-				1i.	3//	//	1/	/ /	1	И.	//	//	<u>/ </u> ,	/	/	<u> </u>	<u>./.</u>	1/	/	1/	/ /	/	/ /	/	//	<u> </u>	/	///	ŀ
-				l	21-c1	049	+	ଙ	-												77			-		_			
				જ	G1-71	484		033														160					`		
1				\$4	2	3330	9	759							j					İ			-						
4			MEDIA	53	î.	3400		33																					
-			SLAG		9	3333		28								<u> </u>								_					
A continue of	•			-	3	8081				Щ	, ,					Ļ			1			ļ					7		
-					3//	//	V		//	X	/	I	4	A	4	4	//		4		1/	/	$ \mathcal{L} $	//	///	1	/	$\frac{f}{f}$	
		•			3//	<u> </u>	14	/	1/		<u>//</u>	1	A	/	A	7	/		4	1	4	//	1	$\frac{4}{7}$	$\frac{J_{i}J_{i}}{J_{i}J_{i}J_{i}}$	1	7		
A State			 		3/	4/				11	14				<u> </u>		// /	1/	1	1/	/	/.	<u>/ </u>		/ / /	1/	,	11	
A Control of the Cont					91-61	25 25	9																77						
3				忢	C1-31	480		00											,				4			d			
- 4												!									1 1	•							
				#	31-6	14.28 808		, t e			· · · · · ·												133						I
				ם	2	1388 1428. 1397, 808	nr o	368 24															20 172]
The second secon		•	EDIA	ם		139a 1388 800 1397.	2					•																	
The second secon		•	IXED MEDIA	M3T M3N 113L	6-9 9-7 7-9	338 1393 1388		898 388				•									•		ą						
		•	MIXED MEDIA	NZ M3T M3N M3L	6-9 0-7 7-0 0-6	320 338 1393 1388	77 77 77 77 77 77 77 77 77 77 77 77 77	898 388				•									•		ą						
	•	•	MIXED MEDIA	N1 N2 M3T M3N M3L	6-0 0-1 1-0 0-5 5-0	338 1393 1388	77 77 77 77 77 77 77 77 77 77 77 77 77	898 388				•									•		4 20						
		•	MIXED MEDIA	ML N1 N2 N3T M3N N3L	6-9 9-7 7-9 9-6 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6	320 338 1393 1388	77 77 77 77 77 77 77 77 77 77 77 77 77	898 88 94				•	- 	<u>'</u>									4 8 4 20			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	///	
		1	MIXED NEDIA	MC ML N1 M2 M3T M3N H3L	6-9 9-7 7-9 6-7 7-9 6-7	320 338 1393 1388	77 77 77 77 77 77 77 77 77 77 77 77 77	898 88 94				·	·								1		4 8 4 20		///	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ /	///	
		•	MIXED NEDIA	MR NC ML N1 M2 M3T M3N 113L	6-9 9-7 7-9 9-6 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6	320 338 1393 1388	77 77 77 77 77 77 77 77 77 77 77 77 77	898 88 94															4 8 4 20			/ /		/ / / / / / / /	
		, 1978.		MR NC ML N1 M2 M3T M3N 113L	6-0 0-1	946 1444 1334 800 1393		38 48 46 88 368	/ / / /		arvæ.	ecún .	11es	arvae	ezdn	Ties	ricus	i	1	///////////////////////////////////////		arvae	pae 4 48 4 20		ina Anyae	aedin .	lies	<u> </u>	
		i ,		e MR NC ML N1 M2 M3T M3M 113L	10-2 0-2 0-2 0-2 0-2 0-3 0-6 0-7 0-2 0-6 0-7 0-6 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7	946 1444 1334 800 1393		38 48 46 88 368	Pijos	- 1	das inus Larvae	ecdn _d	Flies	Larvae	Puppe	Files	ropetricus	i	1		Pupes Pupes	ridas	pae 4 48 4 20	+	dæe romyzina Larvæe	Pupae	Files	<u> </u>	
		DECEMBEN, 1970.	Medium MIXED NEDIA	MR NC ML N1 M2 M3T M3N 113L	6-0 0-1	960 330 338 1349 1388		898 88 94	/ / / /		DIPTERM: Chircocnidas Hudrobaenus minimus Larvae	• ecity	Files	H. perennis Laryae	- Broth-	Files	Natriocnemus hygropetricus Larvae	i	1			DIPTEMA: Sphaeroceridae	pae 4 48 4 20		DIPTERA: Cordyluridae Spathicuhora hydromyzina Larvae	Pupae	Files	<u> </u>	

1				<i>,</i> •											and the second control of the second control	
- 1			P6	1548		ابه	1300			:	ď			-		
4			P5	12-15		P P	٠,									1
-	•		P4	 		1300	1300	i		!						1
			PLASTIC MEDIA	+		24.00 12.00 13.00	000		1	: :	!]	<u> </u>		1
			P2 2	3-6		2009	1300 LA00									1
١			ā			50 CE	1300			!						
			교		1///	4//	\mathbb{Z}/\mathcal{A}	1/	<u> </u>	//						
			3	+	1///		1//	1/	<u> </u>	//		/ / /	///	1/		-
		-	쮼		V ' / X	1 1 1	$\frac{1}{1}$	<u> /</u>	<u> </u>	<i>V /</i>	//	///	1.///	1/	1	-
			8	5 15-18		<u> </u> 2	1 1							_		1
		l	25	12-15		2H00					160					
			54	9-12		3600	1900				091					
A second		1000	S2 S3	6-9		34.00										
Samuel Services		2	S2	3.6	ļ	1 1										
1			ıs	3 0-3	777	1	1.	!			7 7	, , , , , ,	/ / /			
A STATE OF THE STA			15	0-3						//		///		/		-
ar da y ca			SR SC	0-3		X 1/1 1/1 X	1//	//		//		////		7		
		-	S		1//	1//	1/1	//	<u> </u>	///	/ /	///	/ / / . ,	/		-
-			웊	15-18		2400 1900					1120			٠.		
Application .	•		35	12-15		2400					1440			-	· .	
A Principle			MA.	9-12		3400	i									
arbande ii.			131	8-9	2	8										7
		AIG	蔓	80	1 2	의 경					3					
-1		1 ==	! }	7-8		3400		991			320 160	•				
-		IXED M	МЗТ	6-7		1200 24 00 21	Q.	160			330 330 160	•				
		MIXED MEDIA	M2 M3T	3-6 6-7		जिया उर्फ वर्म व वर्षा (उर्फ (उर्फ वर्म व वर्षा	d d	091				•				
and the second s		MIXED M	MI M2 M3T	0-3 3-6 6-7		1200 उम्ळ उम्ळ उम्	† †	091					4	7		
and the state of t		MIXED M	ML M1 M2 M3T	0-3 0-3 3-6 6-7		og	† †	93					4	7		
the section of the se		MIXED M	MC ML N1 N2 M3T	0-3 0-3 0-3 3-6 6-7		og	† †	93					#			
to a feet of the second			HR MC ML N1 N2 N3T	0-3 0-3 0-3 0-3 3-6 6-7		og	† †	3			320		**************************************			
A STATE OF THE PARTY OF THE PAR			code MR MC ML M1 N2 M3T	0-3 0-3 0-3 0-3 3-6 6-7		9	† †	95			320	carticoni	4			
and the second s			code MR MC ML M1 N2 M3T	0-3 0-3 0-3 3-6 6-7		9	SI		//		atus 330 320	chittoni	/// //// ////			
A COLOR OF THE PROPERTY OF THE		718.	Basket code MR MC ML M1 N2 M3T	0-3 0-3 0-3 0-3 3-6 6-7		9	SI		//		atus 330 320	chittoni	/// //// ////			
			Basket code MR MC ML M1 N2 M3T	0-3 0-3 0-3 0-3 3-6 6-7		9	SI		GILLOPOOR		atus 330 320	Current	/// //// ////			
the state of the s			code MR MC ML M1 N2 M3T	0-3 0-3 0-3 0-3 3-6 6-7	ARTHEOFODA: ARACINIDA ACARI: Astigmata Histiogaster carpio	clum P 130	† †	ARANEAE: Linyphiidae		No constants	udolydda yglopolda pes fimbriatus 330 330	CHITCONI	MOLLUSCA GASTROPODA: Linacidae Agriolimax seticulatus			

	Γ	96	1548	86	3	જા): ત્યું			480		<u> </u>	ء				-				!	-		_	1		7
		P5	12-15	2	4				:	İ		•		1109			-		<u> </u>			<u> </u>		-		 		1
	4	P4	9-12	4.5	96			61	<u> </u>	8	84		84	<u>ದ</u>				+	<u>.</u>	···_	_		-	<u> </u>	الا-	:		-
	PLASTIC MEDIA	E3	6.9	89			ė.	$\dot{-}$		8	96	!		8			-	+-	 		- 	+	<u>;</u>	1	1	<u>.</u>		+
	ASTIC	2	3-6	5,6				7 T		#	9		÷	24			+		i			1	<u> </u>	<u>:</u>	+	<u>-</u>		\dashv
	=	E	0-3	la c			7	1 1	i	T	376	14		847			\dagger	†-	1		<u> </u>	-	:	i	\dagger	Ť		7
		급	6-3	73					-	±	3	i		72	<u> </u>		i	Ť	1		-	Ť	+	1		\dagger		1
		25	0-3	%				3 20			336	T		103			i	T	Ť			Ì	T	Ť	Ť	Ť		7
	Ŀ	æ	0-3	33	क्ष		-	1	0	0	विश्व	•		36					T			Ì	Ī		T	T		7
		98	15-18	949	24	ধ	. 0	3			886			133								Ī	ŀ					7
		SS	12-15	3%	#	30							İ	40g				İ				\dagger	Ť	 	+	\vdash		1
		54	9-12	જ	20		ø	x		İ		İ	İ	881				T	†		1	Ť	+	+	\dagger	İ	-	1
	MEDIA	23	6-9	48	36		9			Τ	96	T	I	73				Ì	T		Ì	Ť	\dagger	+	Ť	T		7
	SLAG	25	3-6	##							318	İ		96				Ì	<u> </u>		Ť	Ť	Ť	T	Ť	\vdash		1
		ıs	0-3	36			4		İ		10033 2H-D			9				i			T	Ī			Ţ	Π		7
		13	0-3	7g	25	9	4							38t			1				0	0		-				1
		SC	0-3	88	44	4	00				8811			96.								T		Ī				
		รถ	0-3	36	33						330	1		91E			ļ				Τ.	#				Ī]_
		N6	15-18	20	09		53							34							Ì		6	07	a H			
		忢	12-15	36	88		9				İ		T	340			İ	<u> </u>			-	4	Ī	Ī	-			1
		£	9-12	091	i		05		1	İ			\dagger	-8#				<u> </u>	-		İ		1	33	si Si			
		臣	8-9	ৰে	4		4	+	T		十	$\dagger \dagger$	十				·				T	T	İ	a	_			†
	DIA	#33H	7-8	Q	00		٥				72	 	†	240 253							Ť	T	†	<u> </u> .				† .
	MIXED MEDIA	멸	6-7	64.	9	 	9				96		\dagger	133							T	H	†	İ		<u> </u>		†
	Ê	2	3-6	09	36	İ	<u>س</u>		1		84		T	8							\dagger				İ			1
1	.	Ξ	<u>6</u>	52	36		30	_			498		1	891							†		T	<u> </u>				1
	ļ	호	3	98	33		9				072	T	T	88							T				П		· .	†
	İ	윤	3	40	89		91		4		433 720	\Box	T	081							Ť	Γ						†
	ľ	돌	3	32	36				1		913			96							14							1
JAMUARY, 1979.		a l	Depth (dm)										SARCOMASTIGOPHORA						RA	pusillum	ens		ullulus			•		
		SPECIES		ACTERIA Zoogloeal forms	Sphaerotilus Leptothrix	Beggiatoa	Subbaronyces	Conidia of Subbaromyces	Fusarium	ALGAE	Chlorella Scenedesmus	Stigeoclonium	PROTOZOA: SARCOMAS			Атоерае	Euglena		PROTOZOA: CILIOPHORA	Trachelophyllum pusillum	Hemiophrys fusidens	H. pleurosigma	Chilodonella cucullulus	C.uncinata	Colpoda cucullus			

PLASTIC MEDIA	PC PL P1	0-3 0-3 3-6 6-9 9-12 12-15 1548		36 110 93				;			- ;	ا چو	32		!							#	_					
PLASTIC MEDIA	PC PL P1 P2 P3 P4	0-3 3-6 6-9 9-12	:	9		:	:	í			- ;	٠.,			,													7
PLASTIC MEDIA	PC PL P1 P2 P3	0-3 3-6 6-9 9-12		9		:	:				i	4	3	i			4				;		:	-			•	
PLASTIC MED	PC PL P1	0-3 3-6			i			:				25 25 25 25 25 25 25 25 25 25 25 25 25 2	98	. :				•	i		: :	:	:					٦
PLASTI	PC PL P1	0-3						İ				201	38		i			:			: .	;	•					7
<u>a</u>	PC PL P1			٠-)		•	•	•		;		1. 7.	40					. !	:				:					7
	22	9-3	!	233	:			1	i			00	33	i				٠			:		:					7
	-			ક્ષ		:				:	1 ;	ر ا	40	İ							:		;					
1	1	0-3	:	49		!		!				প্ল	4				•						İ					
<u> </u>	8	0-3		E .	8	!	<u> </u>	!	.	!		잃	36	Ì								Ì	-	:				
	98	15-18		:	:	;						7	29										-					
	SS	12-15		,				4					16															7
	54	9-12		5,6	، ـه	ત્યું		İ			:	وا	20	1									-	-		:		7
MEDIA	83	6-9	:			!		T		1	i	T	면	Ī	Ť		1	T	 			Ì	i					1
SLAG MEDIA	25	3-6			!	ļ		Ì					9					Ī	T			Ī	Ī					7
	ıs	0-3			1	i	;			ĺ	-		7					1			İ		I					7
	SL	0-3		36	i	:	<u> </u>				3	ام	4		1	·	j					1	i	ŗ]
	SC	0-3		85	4	-							હ									1	·	<u> </u>				
	SR	0-3			4	•	-				. .	-	4									-	1			-	• .	
	M6	15-18	હ (200								000					0				İ	-	-				-	
	55	12-15	•			!				İ	1,	0	9					Ì			T	Ì	İ			·		1
	Ξ	9-12		4. G	ح		 				1	<u>-</u> -	36	$\frac{-}{1}$	\dagger	i	8	$\dot{\parallel}$	<u> </u>		<u>-</u> -	i	İ	-	•			1
	ם	8-9	8	ري اوع		-	<u> </u>	4		4	 ;	2	13	+	+		710	i	\	<u> </u>	1	\dagger	Ť					†
EDIA	H3N	7-8	4	22			i			1	-	4	99	1	\top		.	Ť	İ		1	Ì	Ī					1
MIXED MEDIA	, ,	7-9			Ī.		İ_]	2	2					\cdot										
IW	112	3-6	;		1.						3	20	33								$ \mathbb{I} $	J].
	포	3		401								P	88					T				T].
	로	3		154				6				Ore Ore	20									T						
	5	<u></u>		338			0	0			7	री	84		T			J										\int_{0}^{∞}
	¥.	0-3		336	#			9		4		P	34									I						
1979. m	Basket code	Depth (dm)								dhs	:																~ .	
JANUARY 1979.	Baske	Depth		latils	Į.	4		2000		alotro	2		xolds	.				ella										
Y Y			Uronema nigricans	colpidium colpoda	Paramecium aurelia	Colpidium campylum	0	V. convallaria	vernalis	11d te	Opercularia minima	8	Opercularian zoolds	otans		seli	Aspidisca costata	rachysoma pellionella		Acineta cuspidata	A. foetida Podophrua mannasi	Tepdne		• .				
	SPECIES		na nig	I'um c	Paramecium o	Tum C	HA F	convallaria	nalis	tice	Opercularia min	O. coarctata	cular	Epistylis rotans	HIA	Stentor roesell	SCA C	d FEIO		a cus	rida	P. carchesii						
	SPE		Jrone	olplo	Parame	olpid	PERITRICILA	v. con	V. ver	ğ	percu). Coa	Oper	pisty	SPIROTRICHIA	tento	ibida	acnys	SUCTORIA	cinet	A. foetida	Car						
				01	10	• 1 3	PERI		-> i		010	10	· I	44 1	SPIR	ωl	< i	. 1	SUCT	۰ <u>ا</u> که	<u>بر</u>	Ja	1					1

JAINARY, 1979.	.67					1						-	Transport of the Property of t				•												
Redium	Ė			ŀ		MIXE	MIXED MEDIA	I.A				-				SLA	SLAG MEDIA	A.			-				LASTI	PLASTIC MEDIA	N N		
SPECIES Basket code		Æ.	윤	로	E	24	мзт м	M3M M3L	1 H	± ₹	웊	æ	R SC	15	12	25	S	54	\$5	86	R.	5	립	ы	P2	E 33	P4	P5 .	P6
Depth (dm)		0-3 0	0-3 0	0-3 (0-3 3	3-6 6	6-7 7	7-8 8-9	9 9-12	12-15	15-18		0-3 0-3	-3	3 0-3	3 3-6	6-9 9	9-12	12-15	15-18	18 0-3	3 0-3	0-3	0-3	3-6	6-9	9-12	12-15	1518
NEWMOOA	<u></u> .	7	4		7	4	म हा	71 - 16	01	01	8	<u>ਰ</u>		હ	#.	4			#	3	91,	4	9	9	4	9	4	91	૦૦ જ
ROTIFERA BREILOIDERA Philledina xoseola				•			1			<u> </u>							1 .			1								•	i i
AMELIDA OLIOOCHAETA: Enchytraeldaë Lumbricillus rivalis		0	<u>a</u>	08	٥	C	4	3.8	0.6	6911			8 798	9 88	591 d		\$44	2	348			٩		٩	. 4	%	Ψ	18	0711
	İ	$\overline{}$	9	8	1 = 1	1602	7 OH C	04ec e858	0847 04		9. 960	• •		104	091 00	380	64 H	0482 049	0 4330	0889	049	<u> </u>	oxe oxe		130 130	3320 1600	1920	3080	1120
		<u> </u>	 				<u> </u>	<u> </u>			1			1		!		<u> </u>	1				1	<u> </u>	•	İ			
OLICOCHAETA: Lambricidae Dendrobaena subrubicunda		-						-		1			<u>!</u> 	<u> </u>		l. 	i	- 11		<u> </u>	<u> </u>								
Elseniella tetracdra		$\dagger \dagger$		$\dagger \dagger$	$\frac{1}{1}$	11	 	<u> </u>			<u> </u>		<u> </u>	\dashv	<u> </u>		-					<u> </u>	1 1						
ARTHROPOTA: INSECTA COLLEMBOLA											•		·	**					·										
Isotoma olivacea-violacea	8	+	1				- -	-	i	<u> </u>	<u> </u>	.	i	-	<u> </u>	<u>·I</u>		<u> </u>	<u> </u>	-	!	<u> </u>			į		:		
COLECTERA Staphylinidae		1	1	1					1.			-	+-			<u> </u>			<u> </u>	<u> </u> .	<u> </u>	<u> </u>	<u> </u>	<u> </u>	!				
Corcyon ustulatus									_	<u> </u> 	<u> </u>	<u> </u>		-	<u> -</u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u> 	<u> </u>	<u> </u>	Ĺ				:	
DIPIERA: Antsopodidae Sylvicola fenestralis Larvae	rvae		4	·											જ								4	R	4	80			
로 디디		091	1.1			Ϊİ	4	9	الما			# !			1 1	-	<u> </u>	-	320	0 13	<u>ا ا</u> ا المد		+ +				d	শ্ৰ	
-		\dashv		\neg	\neg		\dashv	\dashv	-	\dashv	\dashv	_	$\dot{\dashv}$	-	\dashv	\dashv	_	_	_	-	\dashv	\dashv	_						
												4	-																

\$0°		T	92	1518	784¢											**		•			<u>.</u>					2444.03	en president to
			P5	12-15	3536 18 1600 18		<u> </u>	44				_	•					<u>:</u> :	<u>+</u>					<u> </u>	<u></u>		\dashv
				9-12 12	35.	3	=	<u>~</u>	•												:						-
		EDIA	P4	1	3684 4160	<u> </u>		· · · · · ·		<u>:</u>					-						4			<u> </u>			4
		PLASTIC MEDIA	2	6-9 9	898 9).		•		!	:			<u>:</u>		<u>:</u>	:	· ·	<u> </u>		i	•		-			_
		PLAS	P2	3-6	1250	<u>.</u>		<u>.</u>		1				:	-	i	:			•	#			: 			4
			=	0-3 0-3	1961	;				-	<u> </u>			1		<u> </u>	!			-	-			-		<u> </u>	_
			<u> </u>	0-3	3130 1764 5940 5616		<u>.</u>			!	:			:	<u>:</u> :		i		i !		<u>:</u>	٠.					- `
			PR PC	0-3	3204 51 1130 33		3. :	<u>.</u>		<u> </u>	:			<u>:</u> :	!	-	!	<u> </u>	$\frac{1}{1}$		+	· i		-		· · ·	\dashv
•		-	-	<u> </u>						:	1			· <u>.</u>	:	<u> </u>	: :				- -	· ;		1			+
			86	15-18	5604		<u>:</u> :			!	!				<u> </u>					- -	#	<u>i </u>					_
•			SS	12-15	8008					:			!		<u> </u>					-	#						
			S4	9-12	552A		5	ļ			1			ے	i				j			!					
		EDIA	53	6-9	3540 5		5:	i							!	T			Ť	i	<u> </u>	:			-		
		SLAG MEDIA	25	3-6	5124 488			i		:	í :					T			 -		Ť	:			i		
		"	51	6-3	993		:	i					!			-						:					
			75	0-3	916	-	i i	İ		1								-		i	i	!			-		
			SC	0-3	08 <i>1</i> 7			i		:						1			-		!	:			i		
			SR	0-3	896	a	oj .	1		1																	
			M6	15-18	1776	13	<u>SI</u> :		-							!											
			\$£.	12-15	3368		8	i		<u>: </u>						i					H						
			114	9-12	4164		<u>.</u>									i		1. 1	-	-	<u>-</u>			 	i		1
			131	8-9			2 1							1			H		İ		i.				T	. •	
		EDIA		7-8	म्बन	516										Ϊ.	ĪĪ		T	-				П	Ī		
•		MIXED NEDIA		6-7	3360	330		Ť			1		l	i		Ť				i	İ				Ť		
		¥	2	3-6	भक्षे सम्मा वहहा वदह	4										T						i		П			
			Ξ	0-3	98 8448			1		Π	Ì					9			T	4					1.		
				0-3	1604		\sqcap	1			i		Ì		٠ (T	Π							Ιİ	Ť		
			욷	0-3	449 4441 0881 0881 088 4091 081 0881 0881		П	1	_		1		i			T	П		T	T					T		7
			뜻	9-3	0861 0861															ı				ļ			
	79.		code	Î	: 1				8	 	8	98	0	6	sn	g		10		9	-		Ω				
	JANUARY, 1979.	Medium	Basket code	Depth (dm)	DIPTERN: Psychodidae Psychoda (all species) Larvae Pupæ	Psychoda alternata Flles	Flies		Hydrobaenus minimus Larvae	Pupae	Files	Larvae	Pupae	Files	Metriocnemus hygropetricus	Pupae	Flies	Files	DIPIERA: Sphaeroceridas	Larvae Pupae	Files		yzına Larvas	Pupae	Files		
	JANUA	뫋	E B	2	lidae clas)	nata .	1	midae	nimus						ygrop		•	1 1	crid			ridae			•		
			S		Psychodidae	ilter	Psychoda severini	DIPTERA: Chirchcmidae	us mi.			is			wns h			DIPIERA: Ephydridae Scatella silacea	Jaero	Spp		TERA: Cordyluridae	.				
			SPECIES		: Ps	s abou	. oda s	5	obaen			H. perennis			<i>focne</i>			Epi	S.	ocera		8					
			Š		DIPTERA: Psychoda	Psych	Psych	TERA	Hydr	7		н. р			Metr			TERA	TERA:	Lepto	٠	DIPTERA:					
					DII Psy			D										dia	DIP			dio					\perp

<u> </u>	_	_	60				C			==																<u> </u>
		96	1548			160	3000	i	İ	1:						<u>-</u>										
		PS	12-15		, ,	4.80	8400	330		3600					ه .	-			!							
	¥.	P4	9-12			٥	0	-	!	330					a			<u>;</u>	i	:						
	C MED	23	6-9			480	900	÷	:				:		. a	-		!	:	:						
The second secon	PLASTIC MEDIA	P2	3-6	`		19.00	3600 aoo	•	1	000		•	-		,• ;	!		:		ļ						
		Б	0-3				land	:	ì	049		:			: 0	Ц.		!	- !	;						
		٦	0-3				٥			li		!	į		i			!								
		2	0-3							1		<u> </u>			5	à		}		j						
		æ	-G						<u> </u>						0	4_		•	80							
		95	15-18				3600								0	_		<u> </u>			•					
•		SS	12-15				1300	!							, q	4		<u>i</u>								
		\$4	9-12	. ,			900						Ì		72	4			İ	1						
	MEDIA	S3	6-9							:			j	-	٥	_		! .						•		
	SLAG MEDIA	25	3-6				300								Q	4		į		į						
	P	S	0-3							- 1					9	1			İ							
·		SL	0-3					- !	'	ما		<u> </u>			٥	_		:	-	_						
		SC	0-3						1						0	4_		!		_			· 			-
: :		SR	0-3										.		٥	1										
		M6	15-18				13200		:				j	•	9.70	280							٠.			
•		И5	12-15				0009						1		971	λα.										
•		14	9-12			1300		-								100										
		131	8-9				0009		, 			1			. 071	3									•	
	PIQ	MSH NE	7-8			320	2009	Ť							320			j								•
	MIXED NEDIA	M3T	6-7				0078			i		1														
	불	일	3-6				1200 430084003600								071	3										
		Œ	0-3				1900																			
		로	<u>6-9</u>				П								, å	Si Si										
		ž	0-3												d	-										
		£	0-3												٥											
.62		code	Ê								·					chiltoni			į	į						
JANUARY, 1979.	Medium	Basket code	Depth (dm)		٠.	_	rium	snd				đ	S)		a	chi			sn		•				•	
ЭАМИЛ	뿔	Ba	ä	INIDA		arpio	ronia	chino	ata	licus	ildae	аптоворя	Icatu		CRUSTACEA		•	Limacidae	culat						•	
, ,		SPECIES		AKTHROPODA: ARACINIDA	ACARI: Astigmata	Histiogaster carpio	Histiostoma fe	Rhizoglyphus echinopus	ACARI: Mesostigmata	Platyseius Italicus	ARANEAE: Linyphiidae	ARTHROPODA: CI	Lithobius forticatus		ODEEODA: CRUSTACEA ODEEODA: Cyclopolda			MOLLUSCA GASTROPODA: Lima	Agriolimax reticulatus	1		•				٠
April Commence				اک - برای																						

						*****					<u> </u>							سنميمت	-			_			
		P6	1548	49	5,6		9	3		:				192		:		:			:		હ		
		P5	12-15	113	82		Q	ξ: *			ì			49 E						:	;	:	<u>র</u>	:	
	Y.	P4	9-12	136	951		3,6	3:			;	. 4		009						:	•		•	•	
	PLASTIC MEDIA	23	6-9	36	119	4		7		1	9 0	. ત		336		1	 	!				: :	:	<u> </u>	
	PLASTI	P2	3-6	88	9	:	વ	S i	4		741	.;	1	96		:	1						ŀ		
•		E	3 0-3	801	क	, , ,	<u>~</u>	2.	<u>ಡ</u> :	; ,,,	ong o	, ±		त्र		:	<u> </u>					: 7-1	-,-,-	; ;	···
•		로	3 0-3	////	<u>///</u>		///	/// /-//	///	///	///	///	///	///	////		$/\!\!//$	<u> </u>	///	///	//	/ <i>[</i>	///	<u> </u>	<i>///</i>
		PR PC	0-3 0-3	/	/ / [:]	/			/ /:/ /	!	///	///	/	///	////	/ /!/ / /	<i> </i>	<i>! </i>	///	// /:/	77	[///	/:// //	///
	-		15-18 0	201	1 K	<u>/ / /</u>	111	7 17	/ / <u>· /</u> :	<i>[]]</i>	<u>///</u>	<i>) () (</i>	/ <i> /</i>	/ <u>/!/</u> •9i	1111	/!//	1//	<u> </u>	<i> </i>	1	<i>! /</i> !	/ /.	/ / - :	<u>///</u>	111
		8		89	+		4	ia.	- !		96	!	+-	5. 516		-	_	<u> </u>		-	!	41	8	-	
		SS	12-15	ъ	#						198		<u> </u>	313											
		84	9-12	lao	tie	∓ :			i !	!	96			360						;		183	·		
. ,	SLAG MEDIA	S3	6-9	84				i		1	96			180								Ī			
•	SLAG	22	3 3-6	911 0	35	4			<u> </u>		<u>o</u> 183		<u> </u>	4 396								-	_	1	
		- \$1	0-3 0-3	0 <u>0</u> 1	75	777	- K	2! 	///	///	0 ⁴ ///	# // /i	////	700	7777	1///	<u> </u> //	 	77	$\frac{1}{II}$	[77	<u> </u> 	<u> </u> 	777
		SC SL	-0 €-ó		/	/	////		///	///	///		///	/	////	///	//	///	//	/// //	//I	///	4	(!// (//	<u> </u>
		SR S	0-3 0	/	///	<u> </u>	///		///	///	////	1//	///	///	////	///	1//	///	///	///	/// ///	///	///	1//	
				////	11/	/ <i>/ / /</i>	<u> </u>	<i>[[</i>] 1]	/// /	177 	/!/	<i>T </i>	/-Y <i>]-}</i>	۱۰۲۰۰ اله	*****	, y.,, ·	<u>1 · /</u>	1//	<i> - </i>	// <i>/</i> / 	1//	/ i/ 	1	<u>) 14</u>	<u> </u>
		H6	5 15-18	951	क्		2	<u> </u>	-	!	41		1	192		-				4			4	<u> </u>	
. •		145	12-15	ÖĞĞ	તુ	1	36				96			408											
		M4	9-12	76.	5,		-	y			336			нн				•							
		텶	8-9	164	136.	=	ដ	§			336			891											
:	MEDIA	МЗМ	7-8	ંત્રાક	IIg		4	1			मा लह		_	36								1			
	MIXED MEDIA	МЗТ	6-7	378 E	52	4	. 9	<u> </u>	#					त		-						-	+		
		22	3 3-6	100.	73.		<u>ا</u> ۔	++			238		<u> </u>	34							•	_	_		
		Ξ	3 0-3	<u>89</u>	놬	////	0 (1)		<u> </u>	77	<u>최</u>		117	26	777	 		77	77		/ 	7/	1	1//	77
•		로	3 0-3	//// <u>}</u>	<u> </u>	<u> </u>	///,	<u> </u>		///	///	Y //	<u> </u>	///	///	<u> </u>		<u> </u>	//	///	//	//	///	///	<i> </i>
		윤	3 0-3	'//// '/////	<u> </u>	<u> </u>	///,	<u> </u>		///	<u>///</u>	V /\/	<i>\///</i>	<u> </u>	///	<u>/ </u>		<u> </u>	///	1//	//	///	///	$/\!/\!/$	///
a	.	а Ж	0-3	////	<u> </u>	<u>/!/ </u>	///	<u>/ / /</u>	4/	///	<u>// /</u>	<u>/ /l,</u>	<u>/ //</u>	<u>/ </u>	1//	1//	7/	///	///	<u>i/ /</u>	<u> / Y</u>	+	<u>/ V - /</u>	1//	///
жевинаву 1979	E	Basket code	Depth (dm)	;				dces			ŀ		HORA.						lean i		-	SI			- ·
FREITAR	Medium	Bask	Dept		1			barom					TIODE					R.	Lisnd	ens		Intin			
5			\dashv	Orms	St			Conidia of Subbaromyces				E I	SARCONASTICOPHORA					CTLIOPHORA	ollochth Trachelophyllum pusillum	Hemiophrys fusidens	rma	C. uncinata	ullus		
		SPECIES		Seal f	rotili	atoa	готусе	idia c	E 5	:	desmus	oclou	1	Hates	9	e		. E	ilophy.	hrys	irosig	nata	ta cuc		,
		SPE		ACTERIA ZOOGIOGAL fORMS	Sphaerotilus	Beggiatoa	Gubbaromyces	8	Fusarium	ബ :	Chlorella Scenedesmus	Stigeoclonium	PROTOZOA:	Flagellates	Amoonk	Euglena		PROTOZOA:	rrache	Vemio	H. pleurosigma	C. uncinata	Colpoda cucullus		
				BAC	-115		FUNGI	, ,	-	ALGAE	- 1 41	1 1	PRO	 1 .		. 1 [4]		PRO		144 1	-4: 10				

	-	P6	1548		:		i i	i	3					344		119				-	i				32	##						į
		PS	12-15		:			-	-	+		:		. 89		9							i		4		i					
	<u> </u>	P4	9-12		:	<u></u>	. ;	S	,	8	1	ত		156	:	84									:							
	PLASTIC MEDIA	23	6-9					±	0	o ;		æ		28		89				1		i	Ť			:	;				1	
	LASTI	22	3-6		!	:		3 :		:	:			ಡ		Ø.					-	-	1		!							
		=	0-3							•				:		<u>ه</u>		i					İ			į	ļ					
	-	립	0-3		//	///	///	//	//	/:/.	<u>//</u>	//	[[//	(/	[]		//	//	<u> </u>	//		<u> ///</u>	///	<u>//</u>	//	<u>/</u>					
		8	3 0-3		$\frac{H}{H}$	//	///	<u>//</u> ,	//	<u>/ / / </u>	//	//	//		//	//	//	/	//	/ /	4	<u>//</u>	<u> </u>	<u>///</u>	1/	//	/				4	
	_	8	8 0-3	[]/,	1./,	11	7/	<u>/ /</u>	<u> </u>	//	1/	//	/ / /	1/	/ 1	//	/ /	/	//	<u> </u>	///	/ /	$\frac{M}{1}$	//	11	/ /	/				_	
		. Se	5 15-18		:			_		!						8		İ	-	1	1	_	_				-					
		SS	12-15			:		ھ						٦		9 3					·		_									
	-	22	9-12		:	:		44		!				70		જ												•	٠			
	SLAG MEDIA	S3	6-9		,		!	j		į				23		53		!			.						-					
	SLAG	25	3-6		:			<u> </u>		1	١.			9		200				1	1	1					į].	
		ıs	0-3			7	1	1	7.7	:	/ /	.	, , ,	∞		8		77	7	1			1	,						·	_	
		SL	3 0-3	[]];	$\frac{1}{i}$	//	///	<u> </u>	<u> </u>	<u> </u>		//	//	//		4		//	<u> </u>	4	//	4	1	<u> </u>	//	//	4				_	
		S	3 0-3	<u> </u>	$\frac{M}{2}$	//	/ /\ ,	<u> </u>	<u>//</u>	<u>// /</u>	$\frac{I}{I}$	//	<u> </u>	//		<u>/ </u>	//	<u> </u>	<u>//</u>	4		4	1/	<u> </u>	<u>//</u>	1/ }	<u> </u>	· · · · ·		:	-	
		SR	0-3	///	W_{i}	(/)	14	1	[[1/2	(/	/ /	//	!/ ;	[/	<u> / </u>	//	<u> </u>	//	//	1	//	<u>//</u>	//	11	1/1	<u>/ </u>				<u>.</u>	
		914	15-18			10			_	o	:			32		<u>e</u>							1		4	4				·		\$ -
		NS	12-15	,				İ		•				93				İ	•								ì					., -
		F.4	9-12		:	:					:			ಶ		- 0											1					-
		떮	8-9	:	<u> </u>	4		İ		ᅬ				0		9																
`	EDIA	M3N	7-8				.	4		Ī			. •	8	_	33									Γ	4						•
	MIXED MEDIA	M3T	6-7	i		4				Ť				28	_	23																
	¥	¥	3-6			4										-91																
		Ξ	0-3	. !						Ī				36		-91	j															
		로	-0 -3	///	17	//	///	1	77	//			7/	//	//	7	//	A	Τ,	//	//	//	7,	//	$/\!/$	//	//	•				
		皇	-G	///	//	1/	///	1	77	1/		//	77.	1/	/,	1	/}	1	//	1	//	//	$\langle V \rangle$	//	\langle / \rangle	\langle / \rangle	//				<u> </u>	
		뜻	0-3	///	1.	1//	1/	//	//	$^{\prime}\prime/$	///	//	//	1	/)	/ /	/	//	17.	//	1	//	1/	///	(//	1/1	4					
PEBRUARY, 1979.	Medium	Basket code	Depth (dm)			a	· "			гоша		lotrodis	:			olds			•			ella										•
PES		SPECIES		Uronema nigricans		Paramecium aurelia	P. caudatum	corpraram campgra	PERLTRICHIA	Vorticella microstoma V. convallaria	V. vernalis	Vorticellid teletrochs	Opercularia minima	O. microdiscum	0. coarctata	Opercularian zoolds	Epistylis rotans		SPIROTRICHIA	Stentor roeseli	Aspidisca costata	Tachysoma pellionella	SUCTORIA	Acineta cuspidata	A. foetida	Podophrya maupasi	P. carchesii					

				10.00		
		P6	1548	अभ		1600
		P5	12-15	9	•	4 4 4 4 4
	W W	P4	9-12	ধ		4 4
	PLASTIC MEDIA	Р3	6-9	8		
	ASTIC	P2	3-6			162 P
	=	٦	0-3	4		33.0
		ъ	0-3	///////////////////////////////////////	1/////	
		PC	0-3	///////////////////////////////////////		
	_	폾	0-3	(//////////	///////	(//////////////////////////////////////
		98	15-18			3 6 th.
		SS	12-15		80	1880 H H H H H H H H H H H H H H H H H H
		54	9-12	4.		434. 2720
1	EDIA	53	6-9	તઃ	!	800 9
	SLAG MEDIA	52	3-6			1350 S
3	"	Sı	0-3	• 1		960
*****		St	6-0	////////	1//////////////////////////////////////	///////////////////////////////////////
		SC	6-0	//////////	///////////////////////////////////////	
	L	SR	0-3	[[]][[][][X////X//	VITANAIINIANIANIANIANIANIA
		M6	15-18	#	જ	8530 8#80 9
		15	12-15	. %		1130
and the second		M4	9-12	#	78	3680 3680
		H3L	8-9			8 ee 6 40
3	FDIA	MSM	7-8	7		P 240
	MIXED NEDIA	НЗТ	6-7			9 8890
	Ħ	¥2	3-6	4		330
		Ξ	0-3	4		160
		로	0-3	////////	7//////////////////////////////////////	///////////////////////////////////////
		25	0-3	////////	V/////////////	///////////////////////////////////////
		돛	0-3	///Y///	X/////////	///////////////////////////////////////
979		Basket code	dm)			ada da da da Larvae Ettes files
РЕ-НШАНУ. 1979	Hedium	sket	Depth (dm)	•		Enchytraeidae us rivalis L. rivalis L. rivalis hite spp. Inmbricidae subrubicunda tetraedra INSECTA ivacea-violace cyon ustulatus scpodidae fenestralis La fil
	=	- B	ď		ola	Enchytraeid us rivalis L. rivalis fulte spp. fulte spp. Inmbricidae a subrubicum tetraedra INSECTA INSECTA INSECTA Inseca-viola sphylinidae fenestralis
		ν.		:	roseola	
		SPECIES		<u>ধ্</u> য	TEERA TLOIDEA Philodina	HAETA HAETA HAETA LICONA (COMA 1 LICONA
		S		NEWATODA	ROTIFERA BDELLOIGEA Philodii	OLIOCGINETA: Enchytraei Lumbricillus rivalis Gocoons of L. rivalis Immature White spp. Jendrobaena subrubleu Elseniella tetraedra ARTHORODA: INSECTA OLICHBOLA Isotoma olivacea-viol Gorcyon ustula DIPTERA: Aniscpodidae Sylvicola fenestralis
	ı			2		

		P6	1548	330	75	<u> </u>		. 0	<u> </u>						4				
		P5	12-15	ō84 9569	36	r:		σ	: ·	:	•	:			140			:	
	AIC	P4	9-12	0091 80%		: :	,				i		;		40	i		:	;
	PLASTIC NEDIA	Р3	6-9	3590 3590	<u>رة</u>	•	. :		:			•	. :	:		;			•
	PLAST	P2	3-6	085 C						:			-	,					:
		а	3 0-3	-3080	771	<u>.</u> 	7.77	177	1 1		1//	7.7	1111	://	1	1.1.1		<u> </u>	<u> </u>
1		ם	0-3 0-3	(/////////////////////////////////////		///	/	///	///	///	/ / <u> </u> / /:/	//	////	///		<u> </u>	<u>//</u>	1/	[][] [][]
		PR PC	0-3	//////////////////////////////////////	/	/// //////	<u> </u>	<u> </u>	<i> </i>	///	/ <u>/ </u>	<u>/ / /</u> V /	/			///	//	1//	<u>/////</u>
	-		15-18 0	536 373	348	<u>///</u>	1	149	<u>/ / /</u>	<i>' / /)</i>	1		1.777	<u>///</u>	<i>/ /· .</i>	1 :	<u> </u>	/ /	<u> </u>
		88	12-15	3344 5 1120 3		#					<u> </u>			<u> </u>					!
		\$5	9-12 12	24 39 11 53 11	5 ,		· .			-	<u> </u>	<u> </u>				<u> </u>			1
	MEDIA	53 \$4	6 6-9	962863ah			1 1				+		1.		<u> </u>	1			1
	SLAG M	25	3-6	4830 S			.	 	-		+					1			<u> </u>
		ıs	0-3	328			1							!		1			
1		15	0-3	////////	///	///	///		//	//	//	//	///	//	[/:/	///	///	[/	/ / / ,
·		S	0-3	////////	///	///	///	//	1	///	//	11		//	//	$/\!\!/$	<u>/ [</u>	17	[[]
1		S.	0-3	/////M	////	1//	///	///	1/1	///	///	//	////	1//	//	1/	//	//	1./.Li
*		9₩	15-18	1134 640	#			101		4	İ			-	4				
•		115	12-15	473	<u> </u>								1	!		į			
	1	Ξ	9-12	3208	ō91	:	!							1 .	4				
		臣	8-9	180 3	-	1		\dagger		Ť					٩	İ			-
	EDIA		7-8		: ;														
	MIXED MEDIA		6-7	ON F		11 .		T								ľ			İ
	=	L	3-6	900 800				1										.	
		Ξ	0-3	1356 1760				140											
1			0-3	///////	///	1///	////	/ / /	//	///	\mathbb{Z}	X_{\perp}			//	X//	<u>//·</u>		///
			0-3	//////	////	<u> </u>	<u>////</u>	///	VΛ	<u> </u>	<u>//</u>	//	///	<u>{//</u>	///	<u>1/,</u>	//	/ /	<u> </u>
	<u> </u>		0-3	<u>//////</u>	<u>/ </u>	<u> </u>	///	<u>/ </u>	<u> </u>	<u>///</u>	4	14	<u> </u>	1//	<u>//</u>	1/	<u>//</u>	1	<u> </u>
	FEBRUARY, 1979.	Basket code	Depth (dm)	Larvae	Fifes		Larvae Pupae	Files	Pupae	icus	Larvae	Files	Files	Lrvae	Pupae		zina Larvae	Pupae F14ee	g
. .	Medium	Baske	Depth	e se se se se se se se se se se se se se	4 5	1 2	mus Li	E 3	E 15	ropeti	त्राह	1届!	1 1	ridae	ਧ ⊑	dae	romyz	죠 [6	;
			\dashv	Psychodicae	rernat	Chircnomidae	minin			s hyga			dridæ Jacea	Sphaercceridae era Spp Larvae	•	Cordyluridae	a hyd.		•
		SPECIES		Psyc	da al	i	aenus	perennis		спеши			Ephy la si	Spha		Cord	ophor		
		SPE		DIPTERN: Psychodidae Psychoda (all spacies)	Psychoda alternata	DIPTERA:	Hydrobaenus minimus Larvae	H. per		Metriocnemus hygropetricus			DIPTERA: Ephydridæe Scatella silacea	DIPTERA: Sphaen Leptocera Spp		DIPTERA:	Spathiophora hydromyzina Larva		
				DIP.	β.	H	~1		,	į			AIO S	Ha		DIP	-1		

		P6	1548	3600 3600 330	
		22	12-15	3330	
	4	P4	9-12	3,400 8	
	PLASTIC MEDIA	2	6-9	P 1800 2	
	ASTIC	P2	3-6	160 Bao	
	=	ā	3	<u> </u>	
		교	<u>-9</u>	//////////////////////////////////////	
		5	0-3	//////////////////////////////////////	
		8	-3	\////\\X\\\\//\\\/\\\\\\\\\\\\\\\\\\\\	
		S6	15-18	330.	
		L	12-15	9	_
			9-12 1		
	AIC	3 S4	6-9		
	SLAG MEDIA	 	3-6		
	SL		0-3		
		SL	0-3	///////////////////////////////////////	
			53		
			5		
			<u>_</u>		
			15-18	7400 7400	
		35	12-15	330	
		14	9-12	Q Q	
		131	8-9	Q Q	
	EDIA	МЗМ	2	<u>-</u>	
	MIXED MEDIA		6-7	9 9	
	Ħ	211	3-6		
		æ	0-3	a a a	
		로	6-3	Y/////X//V//V//////////////////////////	
		JI/	0-3	\////XX/\\//\\//\//\//\//\/\/\	
			0-3	<u> </u>	
1979.	-	Basket code	∄	ohiltoni	
FEDRUARY 1979	Medium	3asket	Depth (dm)	1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전	•
FEIII	_		\dashv	ARTHROPODA: ARACHNIDA ACARI: Astigmata Histiogaster carpio Histiogaster carpio Histiogaster carpio Histiogaster carpio Histiogaster carpio Histiogaster carpio Histiogaster carpio Histiogaster carpio Rhizogluphus echinopus ACARI: Mesostigmata Platyseius italicus ARANEAE: Linyphiidae ARTHROPODA: CAUSPACEA OPEDODA: CAUSPACEA OPEDODA: CAUSPACEA CAUSPACEA GASTROPODA: Limacidae Agricolimax reticulatus Agricolimax reticulatus	
		TES		ARTHEROPODA: ARACI MISTIGGASTER CO MISTIGGASTER CO MISTIGGASTER CO MISTIGGASTER CA MISTIGGASTER CA ACARI: Mesostigma Platyseius ita ARANEAE: Linyphi ARTHEROPODA: CR COPEPODA: CR COPEPODA: CR COPEPODA: CR COPEROPODA: Lima Agricolimax re Agricolimax re	
		SPECIES		ACARI: AST. HISTIOGA HISTIOGIA HISTIOGIA HISTIOGIA ACARI: Mess Platysei AKTHROPODA: COPEPODA: COPEPODA: COPEPODA: CARTINGOON: AGTHOSIA MOLLUSCA GASTROPODA:	
	ı		1		

	_	•								r i tradición				
		P6	1548	32	9	1 ;		#		\$88		**************************************		:
		P5	12-15	89	òë		•	84		000	•	1		
	4	P4	9-12	1%	30	: :		193 	. :	8.	. :	!		
	PLASTIC MEDIA	E3	6-9	98	2			886	. :	र र			.	
	ASTIC	24	3-6	48	5,5			336		% **): , ; ;	1
	حة ا	E	9-3	04	0 7		4	Ŏ	1	R			2	!
		교	6-3	8	8	ii	ব	160	1 1	133				
		5	0-3	84	44	<u>8</u> 1		857	8	125	-			
		8	0-3	ö9	20	ধ		<i>61</i> 3		951		4	i	
		98	15-18	Ö8	13	!		96	r	132				
!		SS	12-15	801	4			190	\$	H33				
		S.	9-12	801	49	. 00		7111	1. 1	348				
	MEDIA	S	6-9	tire	ପ୍ଷ		31	778	Tİ		i			
	SLAG 1	25	3-6	84	હ	9		#	4	75F HFF		×		
	•	ıs	0-3	48	85	H .		96		36		000	*	•
		ᅜ	0-3	118	20		4	3526	4	24		6	પ્ર ત	
		သွ	0-3	89	1 Hg		-	0891 096	X .	360		1		
	•	SR	0-3	44	91	!		99	1	081		4		
		M6	15-18	848	ळ ख					72			#	
		31	12-15	25	4		#	•		sec	4		%	:
		114	9-15	ō9	020	ત્હ		- मुल		87				
		1131	8-9	040	91	1 3		96	11	252				
	DIA	МЗМ	7-8	49	48	9	111	भएन	11	888		4	- 4 -	
	MIXED MEDIA	МЗТ	6-7	89	33	6	111	87	$\dagger \dagger$	15		7		
	MIX	112	3-6	961	136	33	4	84	H	951 778		00		
		H	0-3	14.8 14.8	62	#		29	\Box			1		
		펖	0-3	33.	9	. 4	1 3	336	$\dagger \dagger$	- G-		4		
1		MC	0-3	60 3	84	4	TT		11	396 19a 156		8	WW.	
		꽃	0-3	96	30 4		4	<u>.</u> १४३	$\dagger \dagger$	216		4		
ł					1			_ <u>_</u>	TT					
MARCH, 1979.	Medf um	Basket code	Depth (dm)	-			lbbaromyces	:		SAROCMSTICCHIORA		ORA n pusillum	idens cul lulus us	
W.		SPECIES		BACTERIA Zocgloeal forms	Sphaerotilus Leptothrix Beggiatoa	FUGI	COLULA OI Subbaromices Sepedonium Fusarium	Chlorella	Stigeoclonium	PROTOZOA: SAROOW Flagellates	Amoebae Euglena	PROTOZOA: CILLOPHORA HOLOFRIGHTA Trachelophyllum pusillum	Hemiophrys fusidens H.pleurosigma Chilodonalla cucullulus C.uncinata Colpoda cucullus	

15 16 16 16 17 17 17 17 17	
H 16	
M M M S S S S S S S	
S1A6 WDIA S1A6 WDIA	
H HS HS SC SL SL SL SL SL SL S	
H HS HS SC SL SL SL SL SL SL S	_
SLAG WEDIA HIS ING SR SC SL SI S2 S3 S4 S5 S6 PR PC PL D-12 12-15 15-18 0-3 0-3 0-3 0-3 3-6 6-9 9-12 12-15 15-18 0-3 0-3 0-3 LL 4 4 18 8 4 8 8 16 8 8 16 8 8 4 8 8 16 8 8 8 4 8 8 16 8 8 16 8 8 16 8 8 8 16 8 8 8 16 8 8 8 16 8 8 16 8	
SLAG NEDIA SLAG NEDIA HI 116 116 5R SC SL S1 S2 S3 S4 S5 S6 PR PC P-12 12-15 15-18 0-3 0-3 0-3 0-3 3-6 6-9 9-12 12-15 15-18 16-18 0-3 0-3 LL LL LL LL LL LL LL LL LL LL LL LL LL	-
SLAG WEDIA HIS NG SR SC SL SI S2 S3 S4 S5 S6 9-12 12-15 15-18 0-3 0-3 0-3 3-6 6-9 9-12 12-15 15-18 0-3 LL	
SLAG HEDIA SLAG HEDIA HIS NG SR SC SL S1 S2 S3 S4 S5 9-12 12-15 15-18 0-3 0-3 0-3 0-3 3-6 6-9 9-12 12-15 4 4 4 12 8 4 4 36 4 4 4 4	
SLAG HEDIA SLAG HEDIA HIS NG SR SC SL S1 S2 S3 S4 S5 9-12 12-15 15-18 0-3 0-3 0-3 0-3 3-6 6-9 9-12 12-15 4 4 4 12 8 4 4 36 4 4 4 4	
SLAG WEDIA NH H5 N6 SR SC SL S1 S2 S3 S4 9-12 12-15 15-18 0-3 0-3 0-3 0-3 3-6 6-9 9-12 H H H H H H H H H H H H H H H H H H H	
SLAG WEDIA 19-12 12-15 15-18 0-3 0-3 0-3 3-6 6-9 11	
HA H5 N6 SR SC SL S1 9-12 12-15 15-15 0-3 0-3 0-3 0-3 4 4 12 8 14 4 12 8 16 20 114 16 16 4 8 18 4 4 8	
HM H5 H6 SR SC SL S1	
H4 H5 N6 SR SC 9-12 12-15 15-18 0-3 0-3 0-3 0-4 H H H2	
HA H5 N6 SR 9 9-12 12-15 12-15 15-18 0-3 4 H H H H H H H H H H H H H H H H H H	
HA H5 H6 9-12 12-15 15-18 H H	
HH H5 9-12 12-15 14 H H5 16 30	<u> </u>
五 五 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	
RBIA 7-8 NSW 1-18 1-18 1-18 1-18 1-18 1-18 1-18 1-1	
MIXED NEDIA MIST MIST MIST MIST MIST MIST MIST MIST	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
로 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	
9 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
(보 c) (U c) (U c)	
Medium Basket code Depth (dm) Lions a a a a colds colds	
MAHGH.1979. Medium Basket cod Depth (dm) Depth (dm) Ans Jum	
PRECIES Basket or Padium SPECIES Basket or Uronema niggicans Glaucona scintillans Colpidium colpoda Paramecium aurelia P. caudatum Colpidium campulum P. caudatum Vorticella microstoma V. convallatia V. vernalis Porticella microstoma V. convallatia Oreticella microstoma On microdiscum On microdiscum On microdiscum Onecularia minima Onecularia minima Onecularia poidis Surroria Surroria Acineta cuspidata Acineta cuspidata Acineta cuspidata Acineta cuspidata Acineta cuspidata Acineta cuspidata Podophrya maupasi P. carchesii P. carchesii	

MIXED MEDIA
0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-1
18 4 4 8 28 10 13 20
16 136 P 640 P 9 5311 776 576 320 2320 480 3560 4160 600 3200 1100 2880
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

	70		8										2,2 10 g										
		8	1548	93.4 33.0	28		;	•	, ;	3	:		1					: :					
		P5	12-15	084 049				;					t					. 1			!		
	¥.	PA	9-12	640 1130	36				:	:											:	i	
	PLASTIC MEDIA	P3	6-9	800	84				-	:	-	1						t :				:	
	LASTI	P2	3-6	P 3a0 liao	90				!		İ					İ	.;						
		а	0-3	320					į	1				Ì		ĺ				1			
		로	0-3	039 091	1 1		:	1		<u> </u>		<u> </u>					••					<u> </u>	
		2	6-3	08.5			i	<u> </u>			<u> </u>					1							_
	<u> </u>	æ	0-3	049 084	#	!!	!		1	İ				-			<u> </u>				:		
•		98	15-18	084 091	ħġ											!					1		
		SS	12-15	00EI 0#9	46				_					•]						<u>i.</u>	1	<u> </u>	
		54	9-12	0916 028	92	4	İ													:			
	SLAG MEDIA	83	6-9	oeli ō49																İ	•]
	SLAG	25	3-6	49] 09]						į				Ī						;	:		
		2	0-3	324 320					İ						.	!					:	<u> </u>	
		25	0-3	08 e	<u> </u>					!				\downarrow						!.	1		
		S	6-3 -3	480	4		1		İ	1				1						<u></u>	<u> </u>	<u> </u>	_
		SR	0-3	079						.											<u> </u>		_
		M6	15-18	1 <u>60</u> 4			!		160	701			,										
		145	12-15	160	ন্ত			•	İ			······································											1
		74	9-12			++				.i				Ť					:	i	İ		7
		ı — ı	4 1	9 4 6	2	000	i		!				1 1				: 1						†
		$ldsymbol{L}$		008 09 0 1 9 00	30	<u> </u>	<u> </u>		1					\dagger		<u> </u>	4	$\overline{\top}$		<u> </u>		ĺ	→
	DIA	1131	8-9				!							+			4			-			
	ED NEDIA	M3M N3L	7-8 8-9		95	13	<u> </u>																$\frac{1}{2}$
	MIXED NEDIA	изт изм изг	6-7 7-8 8-9		64 95	16 13	!						-				P 4						-
	MIXED NEDIA	N2 M3T M3M N3L	3-6 6-7 7-8 8-9	960 320 028 000 2400 0284 2816 060	95	7 16 17							-										-
	MIXED MEDIA	MI NIZ M3T M3M NI3L	0-3 3-6 6-7 7-8 8-9	160. 460 320 808 800 360 2400 1284 2286 360	64 95	7 16 17	!																
	MIXED NEDIA	ML 'M1 N2 M3T M3M 113L	0-3 0-3 3-6 6-7 7-8 8-9	320 160 460 330 808 800 360 460 3400 184 3816 760	64 95	7 16 17							- 1										
	MIXED NEDIA	NC ML 'N1 N2 M3T M3M H3L	0-3 0-3 0-3 3-6 6-7 7-8 8-9	4. 320 160. 960 330 808 800 1131 160.	64 95	7 16 17																	
		MR MC ML MI M2 M3T M3M H3L	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9	808 808 320 340 340 320 808 800 800 800 800 800 800 800 800 8	64 95	1 16 13						to Q1				0	<u>a</u>						
.1979.		MR MC ML MI M2 M3T M3M H3L	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9	808 808 320 340 340 320 808 800 800 800 800 800 800 800 800 8	31 64 45	1 16 13			Larvae	Pupae	Files	itrious	Pipae	Files	Files Ruba	le Larvae	<u>a</u>			Pupae Pupae	Flies		
чаки, 1979.		MR MC ML MI N2 M3T M3M M3L	0-3 0-3 0-3 3-6 6-7 7-8 8-9	808 808 320 340 340 320 808 800 800 800 800 800 800 800 800 8	P1168 21 64 95	Files 7 16 17	Laryae		Larvae	Pupae	Files	gropetricus	әейи	Files	lab Files Prose	eridae Larvae	<u>a</u>	Files		Larvae Pupae	Flies		
макзі, 1979.	Medium	Basket code MR NC ML M1 N2 M3T M3M H3L	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9	808 808 320 340 340 320 808 800 800 800 800 800 800 800 800 8	P1168 21 64 95	Files 7 16 17	Laryae				Fites	nus hygropetrious Larvae	Proper	Files	1 1	cerid	<u>a</u>	Files		Latvæe Pupae	Files		
мавли, 1979.	Medium	Basket code MR NC ML M1 N2 M3T M3M H3L	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9	808 808 320 340 340 320 808 800 800 800 800 800 800 800 800 8	P1168 21 64 95	Files 7 16 17	Laryae				Files	ocnemus hygropetricus	Prpae	Files	1 1	Spheerocerid era Spp	<u>a</u>	Cordyluridae	ophora hydromyzina	Pupae Pupae	Flies		
мавзи, 1979.	Medium	MR MC ML MI M2 M3T M3M H3L	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9	Payre 800 4 320 160 960 330 808 800 Payre 600 1111 960 960 2400 1284 2216 960	31 64 45	1 16 13			H. perennis Larvae		Files	Netriocnemus hygropetricus Larvae	Pupae	Files	DIPTERN: Ephydridae Scatella silacea Pinoae	DIPIERA: Spheroceridae Leptocera Spp Larvae	<u>a</u>	Files	ophora hydromyzina	Pupae	Flies		

	-	-	<u> </u>	1		بطالب	-									-					-	يمنين	-	3		ضنده		خاشما	ستنصح	<u> </u>
		P6	1548				19300								:			۰	<u>. </u>		1									
		P5	12-15				8000			.90						:		م												
	A10	P4	9-12				13,200						1					٥							•					
	C MEI	P3	6-9				3600						:		l			٥			!									
	PLASTIC MEDIA	P2	3-6		•				•				:		ļ	į.		م			i				ŧ					7
		٦	0-3															٥												7
		<u>م</u>	0-3										,		İ			091		`					•					
		5	0-3					j	1				İ			i		٥				,]
,		æ	0-3						į							į		م							-					
		Se	15-18				3400						-					160], .
		SS	12-15				1200		:									٥												
		54	9-12						•									160									•			
	SLAG MEDÍA	S3	6-9															ے			ļ.			*						7
	SLAG	25	3-6						:				1		<u> </u>	1							1	<u> </u>						7
		ıs	0-3						1							į							1	-						7
		SL	0-3						i							i					-		!							
		သ	0-3															P] ·
		SR	0-3							-								٥					-	1						
		94	15-18				3600	400										160												
:		忢	12-15				7200								-			٥												1
		¥	9-12				٥	· †	-			•				1	_	م												7
		1131	8-9				300		· ;						<u> </u>	+		٥			 		1		<u> </u>				•	†
	A IC	M3M I	3-8				٥	-	1		#		<u> </u> ·			 		٥			<u>!</u> 		_							1
	MIXED NEDIA	M3T I	2-9					<u>@</u>	1-							-		d	·		<u>!</u>	-	-							7
	MIX	M2	3-6				٥		+		\dagger		-			Ť		ت		•				-						†
		Ξ	0-3					+	+		+		<u> </u>			<u> </u>		٥		-										7
		로	0-3						<u> </u>		-		<u> -</u> 			<u>!</u>		{					_	_						+
	ŀ	Σ. Σ	0-3 0						$\frac{1}{1}$		-		\vdash			 				1										+
			0-3						+					-		<u>!</u>			· 		<u>:</u>									+
		용 준							+-			 -				1		4	ju,				+	į						1
мансн. 1979.	Medium	Basket code	Depth (dm)	EDA.	•	pio	niarium	inopus		cus		ae	GIIIOPODA	atus		PACEA	ą	rlatus	chiltoni			9	ulatus						<u>-</u> -	
MA	·	SPECIES		ARTHROPODA: ARAZINIDA	ACARI: Astigmata	Histiogaster carpio	Histlostoma feroniarium	Rhizoglyphus echinopus	ACARI: Mesostionata	Platyseius italicus		ARANEAE: Linyphiidae	ARTHROPODA: CHIL	Lithobius forticatus		ARTHROPODA: CRUSTACEA	ODEFPODA: Cyclopoida	Paracyclops fimbriatus	• .		MOLLUSCA	- WAS (SILVE)	Agriolimax reticulatus			•				

-	-			سمحني	-	-	<u> </u>								Two Manager														-
		8	1548	80	œ	10	أذ	:			423	<u>}</u>			25). - -				į				. !		ı			
		P5	12-15	9		t	F :	. .		:	260					\$ F		:							:				
	4	PA	9-12	80	∞,					;	CBI	<u>s</u>	:	:	87). -			i	:		7			:				
	PLASTIC MEDIA	23	6-9	1 01	30	<u> </u>			i		3): 		: '	2	 Š						6			4	~			7
	LASTIC	22	3-6	09	<u>હ</u>		 1			Ì	96	H		<u> </u>					i	:			;		4				
	-	=	0-3	18	₩9	0	<u>.</u>			1	726	3 ×):	i	3,6	3		. '	·. :			4	:	:		;			.]
		교	0-3		1/1	1/1	\mathbb{Z}	//	/	1	7	Z	//	//	\mathbb{Z}	\mathbb{Z}	//	\mathbb{Z}	//	//	//	/		\mathbb{Z}	75	7./	7/	7/	7
		2	0-3	111	//	\mathbb{Z}	1/			1	\mathbb{Z}	\mathbb{Z}	//		\sum	//	\mathbb{Z}	\mathbb{Z}		//			\mathbb{Z}	Z	Z	//	//	\mathbb{Z}	
		뚪	0-3		//,	//	1//		/y	1	//	//			//		<u> </u>	//	1//	//	//			/,	//	//	<u> </u>	//	
		Se	15-18	6	i	!					96	×	!		111							į	į		.	1			
		SS	12-15	ල්	!		-	4			69		1		9	i i								Ì	Ť	Ī			
		54	9-12	00:						T	193	1			081			İ						i	1	7	:		7
	MEDI A	S3	6-9	39		-		±		Ť	240		:		- 09			 	 	Ť		<u> </u>	<u> </u>	$\overline{}$	+	i	i i		1
	SLAG M	25	3-6	91	201	i		+		\dagger	673	S N	:	: ;	97	!		<u> </u>	Ì					ì	Ť	-			7
	"	ıs	0-3	49						Ī	18851	1 1	8		381	į			1	1.			į	i	i				7
		25	0-3		//	//			1	X	//	//		Z	//				//	1/	\mathbb{Z}	//	/	7	1/	//	//	\mathbb{Z}	7
		SS	0-3	77	//	77	77	//		1/				//	//	\mathbb{Z}	//	\sum_{i}	//	\sum	//	/	_		Z	//		\mathbb{Z}	
]	æ	0-3	1/2	1	//	\mathcal{I}		Z,	X				//	\mathbb{Z}			//		//	//		X			X	//	<u> </u>	/_
		M6	15-18	on:	34		0	o			4				847						3						-		
		115	12-15	8	ď		-	t							36							İ			1				1
		至	5-12	öë	4				Ī	Ī	96	50			13a			!	İ	.				Ī	-	T			7
		131	8-9	30	i				İ	\dagger	96	<u> </u>		İ	9				İ	<u> </u>		1	i	Ť	Ī	-	<u> </u>		7
	EDIA	ИЗМ	7-8	90		Ti	0		i	T	96	_		j	.84									İ	Ť	 			٦.
	MIXED MEDIA	M3T	2-9	र्मल	7	Ti	-		T	Ť				Ī											T	1]
	Ξ	N2	3-6	28.	ď	T					336				36										7	٥		_].
		Ξ	- -	44	40	Ti		\prod	Ì	T	336 336			1	304							4		1	T	1		-	7
		로	-3	1//	1	X	77,	11	Ż	1	77		7	1		77	//		//	//	77	/	1	7	Ż	1/	1	777	7
		물	3	Z/X	/	//	1//		1	1/	//		1	X	//	17,	//	//			1	1	1	1	K	1	11	77	7
-		뚲	3	1/N	1	1	77,	Z	1	1	//	/	Z	1		1//	1//	/	//	//	Ź,	11	1	1	1	1/		\mathbb{Z}	
	•	code	ê	Ī				150						Τ,	æ														
APRIL, 1979.	Medium	Basket code	Depth (dm)					Subbaromyces			1	:		dolkidol	ICTAINE ICTAINE					ĸ		usillum,	ns	11111110			-		
AP		SPECTES		RACTERIA Zoogloeal forms	S. shaerotilus	Leptochrix Beggiatoa	FUNCT	إرسا	Sepedonium	ALGNE	Chlorella	Scenedesmus	Stigesclonium	AGOINING SAMPORTED SUSCINCED	- 21		Атограв	Buglena		PROTOZOA: CILIOPHORA	HOLOTRICHIA	Trachelophyllum pusillum	demiophrys fusions	Chilodonella cucullulue	C. uncinata	Colpoda cucullus			

		P6	5 1548	₹ 0% &	
		P5	12-15	88 99	
	4.	P4	9-12	व में	
	PLASTIC NEDIA	P3	6-9	3 4 6 2 4	
	LASTI	P2	3-6	9 ± हैं।	
		٦	0-3	98 8	
		교	0-3		
		2	0-3		
		쭖	0-3		
•		SS	15-18	200 000 24 24 25	
		SS	12-15	9 8	
		54	9-12	0 4 2 2	٠.
	MEDIA	S3 S	6-9	<u>a</u> 88	
	SLAG M	25	3-6	39 14	
		ıs	0-3	畫 4 區 8	
		SL	0-3		•
		SC	0-3		
		SR	0-3		
		M6	15-18	30	
		HS	12-15	@ # D #	` .
		144	9-12 13	44 88	
		1131	8-9	17 C8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	A10	M3M F	7-8	4 4 4 6	•
	MIXED MEDIA	нзт в	6-7	8 2 8 14	
•	MIXE	M2 P	3-6	16 88 4 · 82	 .
		¥.	0-3	1 a a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•
		로	0-3 (
		Σ.	0-3 (
		胀	0-3 (•
					•
.616	Ē	Basket code	Depth (dm)		
APRIL, 1979.	Medium	Bas	Dep	11 a	
AF				Uronema nigricans Colpidium colpoda Paramecium aurelia P. caudatum Colpidium compylum Uraldila Urald	
		SPECIES		Uronema nigrica Glaucoma scinti Colpidium colpo Paramecium aure P. cavudatum Colpidium campy, Vorticella micr V. convallaria V. vernalis Vorticellad Opercularia min O. coercularia Opercu	
		SPE		Uronema ni Glaucoma s Colpidium Paramecium P. caudatu Colpidium P. caudatu Vorticella V. convall V. convall V. vernali Vortice Grerculari O. microdi O. coarcte Operculari SPIROTRIGIIA Acineta cu A. foetida Podophrya P. carciles P. carciles P. mollis	

	-	F	T	80	<u> </u>									
			94	5 1548	28:		4:	0 3560				<u> </u>	4	
			22	12-15	91			320			•	1		
		A I	2	9-12	>-			960 3040			:		44	
		PLASTIC MEDIA	РЗ	6-9	R	:		990 090	ام					
		LASTI	P2	3-6	4			9534 1930			:		. 4	
			ī	0-3				084			و و	•	: :	
			చ	0-3						///			///	
			5	0-3		///								4
		_	R.	8 0-3		///	// X/	///XXX//	//////	///	///	///	XX	4
			Se	15-18	4		ৰ	135 <u>१व</u> 6560 160						
			SS	12-15	9	:	=	17 <u>04</u> 11040	:					•
			54	9-12	201	:	#	09188 9EE91		.				
		ÆDI A	S3	6-9	36	;	4	6592,13034,2416,1					791	
		SLAG MEDIA	25	3-6	44		 	2760 1						-
			SI	0-3	88	:		6592		ii				
			SL	0-3		///			/////		///		///	\mathbb{Z}
			SC	0-3	441	///	////							
			SR	£-0	1/1/	///	////							
			H6	15-18	00			9015 5004						
			145	12-15			9	5336					4	
			14	9-12	. !		•	0889 0889			:	:		
			131	8-9	9		78	80008		! !	- :		4	
		EDIA	нзм	7-8	9			693				l		-
		MIXED MEDIA	M3T	6-7	9	l		2 80 69a 1980 6340 10330 8800 8000				1		
		.₩	112	3-6	4			8. 19.20					047	
			æ	0-3	4			04 <u>0</u> 9 480						
			뒫	0-3	////							//	XX	2
			7,5	0-3										
•			뚔	0-3		///	///			XX			1/	4
	;		code	dm)						g.	29	ırvae	pupae flies	
	APRIL, 1979.	Medium	Basket code	Depth (dm)				aeidae is	idae cunda	Olace	lae	हत डा	퇴데	-
	APKI	# # # # # # # # # # # # # # # # # # #	- E	٥			201a	chytro	Lumbricidae Leubrubicund tetraedra INSECTA	799-N	ylinic m ust	odidak estral		
			ន			ļ	iloidea Philodina roseola	GOCHAETA: Enchytraei Lumbricillus rivalis GOCOONS Of L. rivalis Irmature White SPO.		Isotoma olivacea-violacea	Staphylinidae Cercyon ustulatus	IERA: Antsopodidae Sulvicola tenestralis intvae		
			SPECIES		শ্ৰ	<u>s</u> i	IDEA lodin	HAETA brici	Irobae infelli POCA:	toma		A: A		
					NEWATODA	ROTIFERA	BDELLOIDEA Philodi	ANNELIDA OLIOOCIMETA: Enchytraeidaë Lumbricillus rivalis Cucoons of L. rivalis Irmature White Spo.	OLIGOCHAETA: Dendrobaem Bisenfella ARCHROPOCA: COLLEMPOLA	Iso	COLEOPTERA	DiriERA: Anlsopodidae Sylvicola fenestral		1
ain Mari	-07 m - 1		e de la compe		21 	21		<u> स। ०</u>			<u> </u>		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

4 3		-	***				-			-	المجارية المعاومة والمعارض المارية والمعارض
	9.6	1518	640	± <u>ख</u>		. 5				;	±
	P5	12-15	320						. :	4	
4	P4	9-12	1 095	ব্	<u>:</u>						
PLASTIC MEDIA	23	6-9	3956 948C		1 :			1 1			
LAST	P2	3-6	800	# 6	i	: !	İ				
	ā	3 0-3	<u>9</u> d	,,,,		4 7 7 7	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	:	!		
	르	3 0-3									
	2	0-3 0-3									
┝	æ		01	<u> </u>	<u> </u>	<u> </u>	<u>/////</u>	$\frac{VXX}{1 + 1}$	<i>X /</i> : X	1////	<u>/////</u>
	88	5 15-18	330				1 1 .				
	SS	12-15	480			89					
	\$4	9-12	Ь								
SLAG MEDIA	S3	6-9	330	.4	.						
SLAG	22	3-6	80 160			99				1	
	12	3 0-3	7 7 7 7 7 7	7777					7.7.7		
	22	3 0-3	////					1///	1//		
	R SC	0-3 0-3								1/2/2/	
-	SS		<u> </u>	1///	K / K		Y X /)	X-4/1	X / X)	<u> </u>	/ / / / / / / / · · · · · · · · · · · ·
	¥ 94	15-18	9390 330	٥		160	-				
	115	12-15	ا وه م		٩						
ļ.	144	9-12	P 160	891						t	
	1131	8-9	491 hee								
VEDIA	МЗМ	7-8	849 04 008 849 049	09							
MIXED MEDIA	НЗТ	2-9	9 6 0	애						Ь	
×	112	3-6	008 i	4							
	포	3 0-3	049								7787
	로	-3 0-3						1//			
	R MC	0-3 0-3	////	1///		<u> </u>	X X / /				
· 	de MR		<u> </u>	1/21/ 	///				1 1		////
E E	Basket code	Depth (dm)	Laryae	Flies Flies	arvae	Pupae Flies Larvae	Files Flies stricus	Pupae F11es	Sed de	dae Larvae Pupae F11es	yzina Larvae Pupae Flies
Medium	Bask	Dep	dae Les L	E E	ddae imus 1	-1	gropei		9 ,	erida 1	dromy:
			DIPTERA: Psychodidae Psychoda (all species) Larvae	Psychoda alternata Files Psychoda severini Files	YERA: Chirchchidae Hydrobaenus minimus Larvae	s;	Files Files Hatriocnemus hygropetricus	•	YERA: Ephydridae Scatolla silacea	OPPERA: Spherocaridae Leptocara Spp La Pu Pu Pu	Spathlophora hydromyzina Flactory Flactory Flactory Flactory Flactory
	SPECIES		1: PS	thoda thoda	: Chi	H. perennis	tocnen		: Ept	Spiral ocera	hiophe
	32		DIPTERA: Psychoda	Psyc	DIPTERA:	H. P	Natr		DIPTERA: Scate!	PTERA Lept.	Spati
			IG S		ă				ᆸ	5 5	

P6 1548) 164 12-15 3600 091 5 ٠ ــه 9-12 1300 ۵ **P4** PLASTIC MEDIA 6-9 0009 23 : . 0 Q., 1300 3-6 P2 تے 0-3 Б ; 0 ته م ا 0-3 ನ 0-3 ည 0-3 8 15-18 4800 **S**6 12-15 99 ما . S 9-12 \$4 SLAG MEDIA 6-9 1 $^{\rm S3}$ 3-6 **S**2 1 1. 11 0-3 1 له 2 0-3 S 0-3 $S_{\mathcal{C}}$ 0-3 SR 15-18 3400 160 ₩ 12-15 ٦ ñ 9-12 2400 74 9 160 8-9 3400 M3L | | 7-8 320 M3M 3400 MIXED MEDIA 300 M3T 6-7 وا 1300 3400 3-6 9 浧 00HC 0-3 d Ξ ما 0-3 보 0-3 ႘ 0-3 € Basket code chiltoni Depth (dm) PML, 1979 Medium Ayriolimax reticulatus Rhi zoglyphus, echinopus Paracyclops fimbriatus Histiostoma feroniari CHILOPODA ARTHROPODA: CRUSTACEA Lithobius forticatus ARTHROPODA: ARACINIDA Histiogaster carpio Platyseius italicus GASTROPODA: Limacidae COPEPODA: Cyclopoida ACARI: Mesostigmata RAMEAE: Linyphiidae ACARI: Astigmata SPECIES ARTHIROPODA: MOLLUSCA

304 12-15 444 48 5 9 84 ൃ 9-12 192 141 **P**4 36 9 PLASTIC MEDIA 208 6-9 336 16 Р3 48 B 4 w. 3-6 388 140 192 124 + P2 \mathbf{Z} -3 134 10368 5088 ક્ષ 408 ۵ œ 7 0-3 48 130 38 굽 4 0-3 3160 48 34 8 2 73 4 4 1872 0-3 336 36 <u>ત</u> PR 4: 15-18 433 538 88 90 **S**6 4 00 12-15 336 48 40 4 00 9! 25 9-12 8 2 54 4 240 SLAG MEDIA 6-9 <u> </u> 23 95 4 4: 3-6 96 48 48 25 33 9 00 96. 1441 91 9-3 334 40 30 4 4 S 4 0-3 93 09 α ĸ 4 Spila 0-3 अप 193 9] 2 4 4 4 SC Ø 4354 46 0-3 89 Ž <u>رة</u> ä 34 15-18 48 33 919 12-15 130 52 84 35 4 9-12 9 Ξ 26 ત # 8-9 13 13 34 96 38 36 МЗМ 7-8 48 13 MIXED MEDIA 48 4 00 30 72 6-7 11 M3T 53 1 3-6 84 음리 4 30 36 3 7392 480 384 48 0-3 60 30 33 نى Ξ 0-3 919 001 33 ; 된 हाह हा 133 0-3 99 3,4 ž 719 (£) 0-3 त्र५ 34 1 4 뜻 Basket code Depth (dm) Subbaromuces Conidia of Subbaromyces SARCOMASTICOPHORA Trachelophyllum pusillum Hemiophrys fusidens H. pleurosigma Chilodonella cucullulus tledi um MAY, 1979, PROTOZOA: CILIOPHORA Col poda cucullus Zoogloeal forms Stigeoclonium Sphaerozilus Chlorella Scenedesmus Sepedoni un Fusarium Elagellates Leptothrix Begglatoa C. uncinata SPECIES HOLOTRICHLA Amoebae Euglena PROTOZO5: BACTERIA ALGAE FUNGI

1548

P6

80

حز

48

out with the continued the continued to

THE T	. With		1,457	-		
			8	1518	4 CC	į
			25	12-15	9	:
		4	4	9-12	32 34	•
		PLASTIC MEDIA	P3	6-9	16 45 45 47	
		PLAST	P2	3-6	9. 9.	
			E.	3 0-3	4 4 4	
			교	0-3 0-3	इ दि %	!
			PR PC	0-3	∞	
	•	-		15-18 0		
,			8		4 4 4	
			85	12-15	4 88 88	
			SA	9-12	4 9 4	
		SLAG MEDIA	53	6-9	9 8	
		SEA	52	3 3-6	C8 (00) 24	!
			ıs	3 0-3	4 일	
			SL	0-3 0-3	4 12	; i
		ľ	SR SC	0-3		· · · · · · · · · · · · · · · · · · ·
		-	S			ing state of the s
			욧	15-18	2 88	. 2.
		•	£5	12-15	98 99	•
			114	9-12	36 36	
			1131	8-9	ति । । । । । । । । । । । । । । । । । । ।	
		EDIA	МЗМ	7-8	0 9 9	
		MIXED MEDIA	нэт	6-7	4 8	
		Ŧ	N2	3-6		
			¥	0-3	4	
			턽	0-3	2	
			身	0-3		
			뚌	0-3	97	
		_	Basket code	<u>a</u>		
	MAX, 1979.	Medium	Basket	Depth (dm)	111a 11	
	MAX			\dashv	Uronema niggicans Colpidium colpoda Paramecium aurelia P. caudatum Colpidium campylum Colpidium campylum Colpidium campylum U. vernalis Verticella microstoma V. vernalis Verticellid telotrochs Opercularia minima O. coarctata Opercularian zoolds Epistylis rotans Epistylis rotans Stentor roeseli Aspidisca costata Tachysoma pellionella Tachysoma pellionella A. foetida A. foetida P. carchesili P. carchesili P. carchesili P. carchesili P. mollis	
4			TES		ilum oc cuspi linari. Il la	
e e			SPECIES		Uronema nigricans Glaucoma scintilli Colpidium colpoda Paramecium aureli P. caudatum Colpidium campylum Colpidium campylum Colpidium campylum Vorticella micros V. convallaria V. vernalis Vorticellid te Opercularia minim O. coarctata Opercularia minim O. coarctata Opercularia minim Anicrodiscum Ocarctata Opercularia minim O. coarctata Opercularia minim Anicrodiscum Aspidisca costata Tachysoma pellion Tachysoma pellion Fodophrya maupasi P. carchesii P. carchesii P. carchesii P. carchesii P. carchesii	•
					Colpid Co	j.
	b					

***************************************		98	1548	ख	ત્ય	4 1920	4	
		P5	12-15	9	· :	079		
	¥.	2	9-12	4		17.68 33.0	+	#
	PLASTIC MEDIA	2	6-9	<u>ૡ</u>		89 El 1886		9
	PLAST	P2	3-6	∞		80 <u>0</u> 9080	4	091
		ā	0-3	<u>ਫ</u> ਼		akel öve ö96 9516 koos aver		ৰে জ
		립	3 0-3	=		0 % % % % % % % % % % % % % % % % % % %		
		5	3 0-3	<u> </u>		096 0 068 9		47
	-	æ	8 0-3	. ત		360		#
•		86	5 15-18	· · ·	ત	0) 55 C	051	
		SS	12-15	##	. તા તા	0008 8991		
	A	\$	9-12	7	ત્ત	08.45, 35.55 (0.511) HESS (37.55) (0.58 (0.85) (0.85) (0.85) (0.85) (0.85) (0.85) (0.85) (0.85) (0.85) (0.85)	一	
	SLAG MEDIA	S	6-9	80		3356		
	SLAG	25	3-6	28		25720		
		12	3 0-3	ಡ.		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		8
		12	3 0-3			55 55 55 55 57 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 57 55 57 57 55 57 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 57 55 57 57 55 57 5		+
	-	8	0-3 0-3	<u>ජ</u>		008 088 7 008 98911		
	_	æ		4 ;				
	٠.	M6	15-18	3	09	080°		
		115	2 12-15	01	4	115a 640		
		₩	9-12					
		1131	8-9	4:		800		
	MIXED NEDIA	M3M	7-8	<u>.</u>		3459		
	11 XED	M3T	2-9	26		977 10 C		
	_	잁	3 3-6	001				
		Ξ	3 0-3	80		985180		
		로	3 0-3	91		991 C		
) <u>;</u>	3 0-3	80		व्यः वरुहा विश्वा वरुहा विश्वा वरुहा		
	[ē E	0-3	00		706	au au	
MAY, 1979.	Nedium	Basket code	Depth (dm)		ola idae sp. nophorus Sp.	iytraeidaë iyalis alis spp.	A: Lumbricidae lena subrubicunda lla tetraedra; : INSECTA olivacea-violacea Stapbylinidae. Gercyon ustulatus Anisopodidae la fenestralis Larvae	Eurose Filles
		SPECIES		IEMGIODA	EDELLOIDEA EDIJODINA roseola MONOGONOWIA/Pecanidae sp.	ANNELIDA OLIGOCHAETA: Enchytraeldasi Lumbricillus rivalis Eggs of f. rivalis Immature White spp.	OLIOCCHETA: Lumbricidae Dendrobaena subrubicunda Elseniella tetraedra: ARTHRONCA: INSECTA OMIEWBOLA Isotoma olivacea-violacea Isotoma olivacea-violacea Cercyon ustulatus DIVERA: Anisopodidae Sylvicola fenestralis Larvae	•

	P6	1548	5600 480 36			:		136				***************************************				4		******				
	P5	12-15	3684		•			44					1				:			:	:	
ΑIG	P4	9-12	8 967 9071					1	=	t:		;				:			<u>·</u>		<u>'</u>	
PLASTIC MEDIA	2	6-9	91 184 16			:		:			Ō91	1		1 ;		:			:	:	!	-
PLAST	P2	3-6	3360 049 0985			:	1 :	į				i		!!					:	_	-	
	=	0-3	09	1		Ī:	: :	:	:		į	:							:			
	로	0-3	008 091			į		İ	į	:	i						İ		.;		:	1
	2	0-3	09/			<u> </u>				<u>!</u>	ō9 ĭ									:	Ī.	
<u> </u>	æ	6	496			-					<u> </u>					. (1		1	
	98	15-18	80 <u>0</u> 1 <u>60</u> 173		-			8 9			00	00			-		-					$\top \top$
	SS	12-15	484 808 200					191		:		8								:	;	
_	84	9-12	498 arse 0941			i						1.3								:	1	
SLAG MEDIA	S3	6-9	9£8 9£6 849			ŀ		}.	Ī	į	T		\neg	Tİ					<u> </u>		1	十十
SLAG	25	3-6	908 084		ļ	i i			Ī	!			1	T		<u> </u>			:	-	i	7
	ıs	0-3	110E 1480						į	:	ļ			11			1		Ī		1	
	SI	0-3	ð		1.					i				1		İ					i	\Box
	SC	0-3		!							.			07		į		,	i	;		
	SR	0-3			.									. []								i
	9	15-18	4 4 0966					160			4				-	1	İ		İ	į		
	£	12-15	3040 800 4													4					-	
Ī	훈	9-12	4488																			
	티	6-8	480 084											II		!					ŀ	
EDIA	£	7-8	1920 320 18								1								1	Ì		
MIXED NEDIA	H3T	6-7	1920 4160 1920 320 800 320 18.												İ							
\[\]		3-6	1600 1440 320 1320 1920 4100 1920 160 1520 160 1520 160 1520 160 1520 160 160 160 160 160 160 160 160 160 16																			
	도	63	320																			
	로	8	320				Ī							\prod					i			
Ī	윤	3	091 086 1980								-											
_	Ę	0-3	091 0861 091 0441 0091																			
Medium	Basket code	Depth (dn)		In Files	ıldae	nimus Larvae Pupae	Flies	Larvae	Files	gropetricus	Larvae	Files	lae B Files	Pupae	eridae Larvae	Pupae Flies	idae	dromyzina	Pimae	Flies	-	
-	SPECIES		DIPTERA: Psychodicae Psychoda (all species) Larvae Propae Psychoda alternata Files	Psychoda severini	DIPTERA: Chircmonidae	ligarobienus minimus Larvae	•	H. perennis		Metriocnemus hygropetricus			DIPIERA: Ephydridae Scatella silacea		DIPIERA: Sphaeroceridae Leptocera Spp La		DIPIERA: Cordyluridae	Spathiophora hydromyzina				

*****	T	P6	1548			38800				<u></u>		-		2									-	
		PS	12-15			9096			- 4	:														
	Y.	P. P.	9-12			300 jaooo				i			q	<u> </u>				;						
	PLASTIC MEDIA	P3	6-9			oge	:		<u> </u>				Q	<u> </u>			;	i						
	LASTI	P2	3-6					İ	i		. !		٥	•										1
		ы	0-3					į		i	:		q	-				1						
		급	0-3		•			;	:	1			. 0	•			, 1] .
		5	0-3					!					0						·					
-	_	æ	0-3			. !	:	1					0				!	1						
		88	15-18	_		1300	. !						325	<u> </u>								·		
		SS	12-15			330	:										-							
		\$	9-12			: ;	٠.	į		İ			a	-				·			•			
	SLAG MEDIA	S3	6-9				;	i		1	Į		a] [
	SLAG	25	3-6					İ		1			5	3]
		12	9			: :				1	4			!			!	l						<u> </u>
		12	9-3			: :					!			i				į						
		S	-9			! !				!			•	.			-	İ						
]	8	3				•							ļ										<u> </u>
		M6	15-18			Dor						•	1	2						,				
		£5	12-15			3300	:	i					330	3										-
		144	9-12				:				Ī		a									•		
		1131	8-9										091										·· .], .
	EDIA	M3M	7-8										091											
	MIXED MEDIA	НЗТ	2-9		•								b											
	Ħ	112	3-6				ŀ						۵].
		Ξ	0-3			·							٥											1
		로	0-3																					
		ž	0-3]
		쯌	0-3					İ					•											
_•	e	Basket code	(mp)											chiltoni			;ns						· .	
MAY, 1979.	Medium	Baske	Depth (dm)	IDA	. <i>oja</i>	niarim	Inopus	a	Jae	CHILOPODA	atus		CRUSTACEA opoida fimbriatus	ਹਿ	ļ	dae	tlculat		•				•	
"M		SPECIES	• .	ARTHROPODA: ARACINIDA	ACARI: Astigmata	Histiostoma feroniarium	Rhizoglyphus echinopus	ACARI: Mesostignata Platuseius italicus	ARANEAE: Linyphiidae	ARTHROPODA: CHILL	Lithobius forticatus		OPEPODA: Cyclopoida Paracuclors fimbriatus			MOLLUSCA GASTROPODA: Limacidae	Agriolimax reticulatus			-			•	

12				
		96	1548	₩
		P5	12-15	12 au
	4	P. P.	9-12	∞ 2
	Æ	P3	6-9	37 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	PLASTIC MEDIA	24	3-6	336 48 5
>	-	ы	9-3	े हाहित्र अंक अंक
		ы	0-3	///////////////////////////////////////
		5	0-3	
	L	æ	0-3	///////////////////////////////////////
		S6	15-18	4 4 6 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
		SS	12-15	88 事 程
		54	9-12	89 69 4 79 68
	MEDIA	53	6-9	38 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10
	SLAG M	22	3-6	3 40 HB 30 H
		Sı	0-3	823 8 4 4 8 823 8
		SI	0-3	
		သွ	0-3	
		æ	0-3	//x///////////////////////////////////
		M6	15-18	वहां विकास
		ন	12-15	स ख
		₹.	9-12	4 4 8
		131	8-9	+ + 1 0 <u>0</u> 등
	PIQ	МЗМ	7-8	तं ७ तं
	MIXED MEDIA		6-7	66 0 88 98 E8
	¥	112	3-6	20 Cd 4 25 Cq
		Œ	0-3	4.8 1934 194 184 184 184 184 184 184 184 184 184 18
		로	<u>8</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		옷	0-3	
		뚔	0-3	
		code	(F)	
nn 1979	Medium	Basket code	Depth (dm)	Opinios (1111 mm) (111 um
and the same	- S	<u> </u>	ے	MSTICE STATE OF THE PUB IN THE PU
		S		PACTERIA 2003local forms Sphaerotilus Leptothrix Beggiatoa RNGI Subbaromyces Conidia of Subbaromyces Sepedonium Fusarium ALGAE Chlorella Scenedesmus Stigeoclonium Fusarium AMOEDAE Stigeoclonium Fusarium Fusari
		SPECIES		CTERTA Zooglocal for Sphaerotilus Leptothrix Beggiatea NGI Subbaronyces Conidia of Sepedonium Fusarium CAAE Chlorella Scenedesnus Stigeoclonium Fusarium Chlorella Scenedesnus Stigeoclonium Fusarium Chlorella Scenedesnus Stigeoclonium Fusarium Chlorella Chlorella Trachelophylli Heniophrys fuu H. plaurosigma Chilodonella Colroda cuculi
		٠.		PROTOZOA: Sphaerot. Sphaerot. Leptothr. Beggiatoa Subbarom Conidii Sepedonii Fusarium ALGAE Chlorell Scenedess Stigeocil Flayella Fuglena Trachelo Hentophri H. plauror Chlodon C. uncinar Colroda
1	<u>_</u>			

·····	T	8	1548	75:		7°	<u>a</u>		1			
		PS	12-15	26	. 4		<u> </u>		:			
		P4	9-12	8=			· · · · · · · · · · · · · · · · · · ·					
	PLASTIC MEDIA	P3	6 6-9	25	· · ·	: 5	3/4					• :
	ASTIC	P2	3-6	344 5		- 29:	8					;
	=	ā	9		-		φ.		:			!
		궅	0-3	1////	//////	MA,	///,	11/1/	1/1///	17		:
		2	9-3		<u> </u>	///		11/11	11.11	11		
٠	_	8	8 0-3		<u> </u>	1/1/		[[]]//	1111	1/1		. !
		86	15-18	8 4		G	4					
		SS	12-15	∞:		200	90					;
		S	9-12			नह	<u>ه</u>					
	MEDIA	S3	6-9			28	3.6					
	SLAG	25	3-6			5a	1 79		1			•
		12	9-3		1 2 2 6 4	00	₫ :		1 :			
		ड	3 0-3		<u> </u>	VVV			////	<u> </u>		:
		S	3 0-3		<u> </u>	Y X V	<u> </u>	<u> </u>		1/		
	ľ	8	-9		1/1/	1.4.	[1] [(4//	1111	14 / Aug 1		
			-	1 : : :	1 1	1 1 i		1 .			i	
	-	, M6	15-18	.36	<u>d</u>	88		ત્ત				- . '
		M5 ' M6	12-15 15-18	36	ব্ৰ	th 38		ત્				 -
		_		•	d		4	1				<u>.</u>
		113L M4 N5	8-9 9-12 12-15	39	æ		±	ત્વ				-
	MEDIA	H3M H3L M4 M5	7-8 8-9 9-12 12-15	128 324 136 23.	ce	3	4					-
	IIXED MEDIA	113L M4 N5	6-7 7-8 8-9 9-12 12-15	334 136 238 · + 2 2	<u>d</u>	1 9 H H						
	MIXED MEDIA	H3M H3L M4 M5	3-6 6-7 7-8 8-9 9-12 12-15	128 324 136 23.	<u>d</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4:					
	MIXED MEDIA	N1 N2 H3T H3N H3L H4 N5	0-3 3-6 6-7 7-8 8-9 9-12 12-15	128 324 136 23.	.de	1 9 H H	4:					
	MIXED MEDIA	ML N1 N2 M3T N3N N3L M4 M5	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	128 324 136 23.	<u>d</u>	1 9 H H	4:					
	MIXED MEDIA	MC ML N1 N2 M3T N3N 113L M4 M5	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	128 324 136 23.	d	1 9 H H	4:					-
	MIXED MEDIA	MR MC ML NI N2 M3T H3M H3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	128 324 136 23.	d	1 9 H H	4:	±:				
979•		MR MC ML NI N2 M3T H3M H3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	128 324 136 23.		1 9 H H	4 91	±:				
WB. 1979.	Medium MIXED MEDIA	MC ML N1 N2 M3T N3N 113L M4 M5	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	ms	otrodis	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	±:				
JUNES, 1979.		Basket code MR MC ML NI M2 M3T M3M M3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	ms	la microstoma llaria lis lis cellid telotrodis	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rian zooids rotans	costata pellionella				
JUNE, 1979.		Basket code MR MC ML NI M2 M3T M3M M3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	ms	la microstoma llaria lis lis cellid telotrodis	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rian zooids rotans	costata pellionella	a cuspidata tida tya maupasi chesii	sillon .		
JUNE, 1979.		MR MC ML NI N2 M3T H3M H3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	128 324 136 23.	otrodis	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rian zooids rotans	r roeseli sca costata oma pellionella	SUCTORIA Acineta cuspidata A. foetida Podophrya maupasi P. carchesii	P. mollis		

		P6	1548			330			+
		PS	12-15			640 16 40 3 160			
		P4	9-12 13						
	PLASTIC MEDIA	P3	6 -9			091 091 18 088	1		4 2 2 2 2 2 2 2 2 2 2
	ASTIC	P2	3-6	· · · · · · · · · · · · · · · · · · ·		330 11			353 4 96
	٦	=	9-3		•	330		;	37.62 48.88
		П	0-3	[[///////	///	[[]]]]	11/1	//////	////
		5	3 0-3				<u> [[]]</u>		
	_	æ	8 0-3	<u> </u>	//	//////	11.11.	/	
		95	15-18	~	3	3216 320			1 1
		SS	12-15	ત્ત્રી -	k	8044			3408
		54	9-12	4: 4	fn !	049			29:
	MEDIA	53	6-9	4	r i	960			57
	SLAG MEDIA	52	3-6	# 4	-	08. 11			53
		S	0-3	· ·····		8 9	· · · · · · · · · · · · · · · · · · ·	!	<u> </u>
		12	3 0-3						
		R SC	0-3 0-3						
		SR			/ /	*	: / / / /		
		₩	15-18	4	4-	4009			
		ē	12-15			7273			331
·		₹	9-12			80598			4
		털	8-9		: [4559	: ! !	: · ·	
İ	ÆDI A	MSM	7-8			459 HHOE OES			E
	MIXED MEDIA	МЗТ	6-7		4				क्ष
	Σ	일	3 3-6			0)			ए ए ए
		Ξ	3 0-3	+		988			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		로	-3 0-3					/////// //////	
		œ 2	0-3 0-3		1			7777A 7777A	
1		ge ™							8 g g
279.	Nedium	Basket code	Depth (dm)		MONDGONONTA/Lecanidae sp. Dicranophorus Sp.	idae:	nda mda	lacea	Sylvicola fenestralis Larvae pupae files
JUNE, 1979.	Ned	Bas	å		idae s nophor	hytrae ivalis rivali. spp.	brick rubicu aedra TR	dae tulatu	strall
		S		MINDA ILERA LIDIDEA Philodina roseola	Lecan	ANNELIDA OLIOCCINETA: Enchytraeldae Lumbricillus rivalis Cocoons of L. rivalis Inmature White spp.	CLICOCHAETA: Lambricidae Dendrobaena subrubicunda Elseniella tetraedra ARTHEOPORA: INSECTA COLLEMBOLA	Isotoma olivacea-violacea COLEOPTERA Staphyllnidae Cercyon ustulatus	fene
		SPECIES		PA IN IN IN IN IN IN IN IN IN IN IN IN IN	NONTA/	DA HAETA: bricil Dons o ature	CU,IGOCHAETA: Dendrobaen Biseniella AKTHROPORA: COLLEMBOLA	TERA Staph Cercy	vicola
		<i>U</i> 1		NEWTODA FOTFERA BDELLOIDEA Philodia	050110	OLIOXINE Lumbri Cocoon Inmate	CLICOCHAET Dendroba Biseniel AKTHROPORA COLLEMBOLA	Isotoma OOLEOPTERA Stap Stap Corc	Syl

بنز	<u> </u>																							
				9e	1548	7200	į 81	644		,	189	:				-		:						. 1
				P5	12-15	10724 3360		90			56													
			-	P4	9-12	009£1	547	149		 	: :	4.1								<u>:</u> -				
			PLASTIC MEDIA	P3	6-9			534		<u> </u>	<u></u>			: [:			<u> </u>	·					
. !			LASTIC	P2	3-6	4000 2730	280	473				: :		<u> </u>										
×			-	ī	0-3	39812 44.004 3304 4000	9£61	8						1 . [;			:						
				교	0-3			///	///	//	1//	//	//			//		//	/./	//	XX	1	17,	
				8	3 0-3	///			<u>/ </u>	<u> </u>			//	<u> </u>		//	<u> </u>	/ /	<u>/</u> /	//	<u> </u>	<u>//</u>	<u> </u>	
			-	쮼	8 0-3	/ / /		/ /	//	//	1/1	<u>/: /:</u>	//	///	1/	19	/: /	<i>Y Y</i>	//	//	<u> </u>	17	///	
	ļ !			98	15-18	inga Sah	38	e c			328	Z				į	:					- !		-
		. •		25	12-15	15556	4-3a				793	1	•				1		:			1		
				54	9-12	88#b					53			.					:					
			EDIA.	S3	6-9						1 !				1 1	. ;		1				.;		
3			SLAG MEDIA	25	3-6	ዓሜተ ዓመት	ex S	i				;				:					1 1	:		
				SI	0-3	049 049				· 1.	1	-	4	i	<u> </u>	. !						:		
				ร	0-3	11//	//	//	<u>//</u>	<u> (1)</u>	17,		//	///	//	<u> </u>	//	///	//	//	1/	/ /	1/	
		·		SC	3 0-3	7///		<u> </u>	<u> </u>	//	<u> </u>		//	<u> </u>	<u> </u>	//	<u> </u>	/	<u>//</u>	//	1 /	<u> / </u>	//	
			1 1	~				1 1			1 / 1	//	,	y ()									//	
 T			ا ا	SS	0-3		/ / /	611	1 1	121	1/1	/: / <u>.</u>	1.1	1/	11	. 7	<u> [</u>	A	<u> </u>	<u>/</u> _	1 1	/_ <u>,</u>	/ .	. لحت
.7				N6 SI	15-18 0-	, ,	96	33	1 1.	12.0	57a	<u>/: /-</u>		/	77		<u> </u>		<u> </u>	<u>/</u>		/	. 	
.*	١.					13468 713		99 33	1 L		444 57a	/: / <u>.</u>			//			स्र	<u> </u>	<u>/_</u>		/	. [
				N6	12-15 15-18	83 HE1 H30HE	. 133	: : : : :			+ +	/: /_ 	1.7					स्र						•
				M4 115 N6	.15-18	ह्या है। प्रवेशक हार्क	84 133	bb 89	1 1		###		<i>/. /.</i>					প্তা					·	
				H3L M4 H5 N6	9-12 12-15 15-18	ह्या है। प्रवेशक हार्क	84 133	bb 89 785			80 36 444							स्र						
The second secon				M4 115 N6	8-9 9-12 12-15 15-18	ह्या है। प्रवेशक हार्क	84 133	bb 89			36 444							-ह्य					· · · · · · · · · · · · · · · · · · ·	
A Comment of the Comm			MIXED MEDIA :	M3M H3L M4 H5 N6	3-6 6-7 7-8 8-9 9-12 12-15 15-18	ह्या है। प्रवेशक हारिक हार्	84 133	66 89 755 5P1 PET PEI			13 80 36 444							- स्व						
A. A. C. C. C. C. C. C. C. C. C. C. C. C. C.				M3T M3M H3L M4 H5 N6	6-7 7-8 8-9 9-12 12-15 15-18	89 HE1 HOUR BLOCK 1888 1896 1966 1966 1966 1966 1966 1966	84 133	PP 84 552 2P PET			13 80 36 444	/ / /						<u>6</u>						
A contraction of the contraction				N2 M3T M3M H3L M4 H5 M6	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	ह्या है। प्रवेशक हारिक हार्	84 133	66 89 755 5P1 PET PEI			13 80 36 444							[F]		<u> </u>				
A				N1 N2 M3T M3M H3L M4 H5 M6	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	ह्या है। प्रवेशक हारिक हार्	84 133	66 89 755 5P1 PET PEI			13 80 36 444							[FI						
And the second s			MIXED MEDIA	MR MC ML N1 N2 M3T M3M H3L M4 H5 N6	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	ह्या है। प्रवेशक हारिक हार्	84 133	66 89 755 5P1 PET PEI			13 80 36 444				/ / / / / / / / / / / / / / / / / / /			6	\(\frac{1}{1}\)	<u>/</u>				
And the second s		•6	MIXED MEDIA	MR MC ML N1 N2 M3T M3M H3L M4 H5 N6	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	83 HE1 140 HE ESTO 8855H 1773H 1000H 105803 18888	1498 1469 813 135 310 814 133	86 139 739 115 534 68 99	LVAse LVAse	98 98 99 99 99 99 99 99 99 99 99 99 99 9	84 18 80 36 Hull	591	lous	eso!	// // // //	tea — — — — — — — — — — — — — — — — — — —			\(\frac{1}{1}\)	eu.				
the second secon		B, 1979.	MIXED MEDIA	MR MC ML N1 N2 M3T M3M H3L M4 H5 N6	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	83 HE1 140 HE ESTO 8855H 1773H 1000H 105803 18888	1498 1469 813 135 310 814 133	Files 86 139 139 145 534 68 99	as as a same a same as a same as a same a same a same a same a same a same a	Pupae Plies	84 13 80 36 Hub.	r three	opetricus Larvae	Pipas Plies	ĺ	Filtes	idae	Pupae PIIae IIA IIA	## ## ## ## ## ## ## ## ## ## ## ## ##	omyzina Larvæ				
The second secon		JUNB, 1979.	MIXED MEDIA	MC ML N1 N2 M3T M3M H3L M4 H5 N6	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	83 HE1 140 HE ESTO 8855H 1773H 1000H 105803 18888	1498 1469 813 135 310 814 133	Files 86 139 139 145 534 68 99	minimus Larvae	Pupae Plies Files	84 18 80 36 Hull	F116s	hygropetricus Larvae	Pipas Piles	ĺ	Filtes	roceridae p Larvae		Juridae	hydromyzina			/ / / / / / / / / / / / / / / / / / /	
And the second s		,1979,	MIXED MEDIA	Basket code MR MC ML N1 N2 M3T M3M H3L M4 115 N6	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	83 HE1 140 HE ESTO 8855H 1773H 1000H 105803 18888	1498 1469 813 135 310 814 133	Files 86 139 139 145 534 68 99	Ohirchonidae	Pupæ Piles	Larvae 9th 13 80 36 44th.	Files	memus hygropetricus Larvae	Pupas Plites	ĺ	Filtes	Spheroceridae rra Spp Larvae		Cordyluridae	ophora hydromyzina Larvae			/// 	
And the state of t		JUNE, 1979.	MIXED MEDIA	MR MC ML N1 N2 M3T M3M H3L M4 H5 N6	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	83 HE1 140 HE ESTO 8855H 1773H 1000H 105803 18888	ychoda alternata Files	sychoda severini Files 86 139 139 195 536 68 99	ERA: Chirchomidae	Pupae Piles	Larvae 9th 13 80 36 44th.	Files	etriocnemus hygropetricus	Pupas Files	ĺ	Filtes	GRi. Sphaeroceridae aptocera Spp Larvae		GRA: Cordyluridae	pathiophora hydromyzina Larvae			/ / / / / / / / / / / / / / / / / / /	
		JUNB, 1979.	MIXED MEDIA	Basket code MR MC ML N1 N2 M3T M3M H3L M4 115 N6	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18	Larvae 38884 50824400044592443388 30713 341064 134168 Page 6120 2510 70403576 3538 2348 1153 713	84 133	sychoda severini Files 86 139 139 195 536 68 99	Diptera: Chironomidae	Pupae Piles	84 18 80 36 Hull	Files	Hetriocnemus hygropetricus Larvae	Pupas Files	ĺ	- 1	DIPTER: Sphaerocridae Leptocers Spp Larvae		DIPTERA: Cordyluridae	Spathiophora hydromyzina Larvæ			/// 	

Special Control Cont		<u>: </u>				
Address (1966) (P6		80	
All All			P5	12-15	± •	
All All		4	P4	9-12	3а0	
After the case of		C MED	23	6-9	88 d	
After the case of		LASTI	P2		d.	
Attended to the first of the fi			Ы		1300	
Attention of the state code in			ಷ	_		
Stet code 188 NG N4 NI NO NOT NOT NOT NOT NOT NOT NOT NOT NOT			-	-		
State Code 188 Nr.		_	æ		///////////////////////////////////////	
State code 188 NC NL NI NIZ PKDIA State code 188 NC NL NI NIZ PKDIA State code 188 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NL NI NIZ PKDIA State code 189 NC NI NI NIZ PKDIA State code 189 NC NI NI NIZ PKDIA State code 189 NC NI NI NI NI NI NI NI NI NI NI NI NI NI			86		4	
time (a) 0-3 0-3 0-3 0-3 0-6 0-7 7-8 8-9 9-12 12-15 15-18 0-3 0-3 0-3 0-3 0-3 0-4 0-9 0-9 0-9 0-9 0-9 0-9 0-9 0-9 0-9 0-9			SS		م	
Stet code 1979. W. M. H. H. 192 NEDIA Stet code 198 NC 14 H. H. 192 H. 193 H. 194 H. 195 H.	•	_	25	<u> </u>	٥	
Stet code 1979. W. M. H. H. 192 NEDIA Stet code 198 NC 14 H. H. 192 H. 193 H. 194 H. 195 H.		KEDI	S3			
Sket code 18 NC NL NI 112 N31 NH 115 N5 St. 51 Nt (4m) 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3		SLAG	25		40	
Sket code WR NG NLI HI HIZ HIJL HI HIS HIG St SG bth (4m) D-3 G-3 G-3 G-5 G-7 7-8 B-9 9-72 12-15 15-18 D-9 G-3 G-7 G-9			IS			
Stet code 187 HC 182, HS						
Sket code IR NC NL HI N2 H3H H3H H3 H6 SR pth (4m) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 15-18 0- ctime Day Day Day Day Day Day Day Da	٠			-		
Sket code WR NC NL H1 N2 H31 H31 H4 H5 pth (da) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15 gtime			SS	9	//////////////////////////////////////	
Stet code HR NC ML HI N2 H31 H34 H3 H4 H4 h1 h2 h31 H34			M6	15-18	084	
sket code MR MC ML M1 N2 M31 M3M H3L pth (dm) 0-3 0-3 0-3 3-6 6-7 7-8 8-9 pth (dm) 0-3 0-3 0-3 3-6 6-7 7-8 8-9 pth (dm) 0-3 0-3 0-3 3-6 6-7 7-8 8-9 pth (dm) 0-3 0-3 0-3 3-6 6-7 7-8 8-9 pth (dm) 0-3 0-3 0-3 3-6 6-7 7-8 8-9 pth (dm) 0-3 0-3 0-3 3-6 6-7 7-8 8-9 pth (dm) 0-3 0-3 0-3 160 0 pth (dm) 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3			145	12-15	1480	
sket code IR NC NL NI N2 N31 H3N pth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 pth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 pus size in the cod			14	9-12	99	•
d um Ad			131	8-9	330	
d um Ad		EDIA	M3M	7-8	9 d	
sket code MR NC ML MI M2 pth (dm) 0-3 0-3 0-3 3-6 pus sket code MR NC ML MI M2 pus showing the sket code MR NC ML MI M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC ML M2 showing the sket code MR NC M2 s	,	XED N	M3T		997	
sket code 148 NC NL rium pth (dm) 0-3 0-3 pth (dm) 0-3 0-3 sa sa sa sa sa sa sa sa sa s		Ħ	N2		000	:
sket code 1979.			Ξ		99	
sket code 1879.			로			
dium sket code pth (dm) pth (dm) pus set code pus set code chiltoni			욷			
SPECIES Basket code Bepth (dm) Bepth (dm) Bepth (dm) Bepth (dm) Bepth (dm) Bepth (dm) Bepth (dm) Bepth (dm) Bepth (dm) Betheropa: Childen Chilton Chilton Betheropa: Chimacidae Betheropa: Limacidae Beth				0-3		
SPECIES Baskel Medium SPECIES Baskel Depth ACMIL: Astigmata Histiogaster carpio Histioga	٠	_	: code	(F)		
SPECIES SPECIES SPECIES SATISTICATION SATISTICA	3,1979	ledium	Jasket)epth	O ODA SODA SODA SODA SODA SODA SODA SODA	
SPECIES SPECIES AGMIROPODA: AR HOARI: Astigmal Histiogaster Filtoplus FOARI: Mesostis FOARI: Mesos	Sun	_		_	ACRIVII Carpi Car	
SPEC SPEC SPEC SPEC SPEC SPEC SPECIOS			ES		thymat the property of the pro	
ARANE EST RANGE			SPECI		EFORM. EFORM. PROPRIETION EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM. EFORM.	
					지 다 취례된 1 다 취 및 보 지 기 (원분 제) 등 점 이	

		P6	1548	1.a 4	15,3	36	i <u>र</u> ्ख		
		PS	12-15	ক্ষ	106 140	240	34	:	
	a	P4	9-12	36	308 308 8	340	36		
	PLASTIC MEDIA	P3	6-9	91 8	19.8	384	।		
	LASTI	P2	3-6	88 88 19	50 13	951	र्कें		
	-	a	0-3	04 041	રફ હ	1440	396		
		립	0-3	1 <u>6</u> 12	15a 20 4	96	•		
		8	3 0-3	76 20		576 I.a.	09	-	
	_	æ	8 0-3	48	45 45	384			
-		88	15-18	4	#	48	<u>ત્ત્ર</u>		ત
	:	SS	12-15	8	# # # # # # # # # # # # # # # # # # #	رم 001	636		
-		24	9-12	33	13 20 4	360	08.		
	MEDIA	S3	6-9	89	4 9 og	336	081		
	SLAG	25	3-6	64 96 68 68		916	98		
		ıs	0-3		4	1 26728 15552 2016 192 4 12	क्र	: :	
		ᅜ	9-3	88 44 44 44	4 4	15553	801		
		သ	0 - 3	(HQ	# #	26128	84	<u> </u>	
ľ		S.	9-3	56 13		424	340		
		M6	15-18	20	32 4		36		
		115	12-15	#g .ca	33	48	891		
		114	9-12	46 94	94	848	951		
		1131	8-9	82 8	80 63 4	1	ÖČÍ		
	DIA	МЗМ	7-8	100	444		288		
	MIXED MEDIA	кзт	2-9	79	300	240			
	Œ	112	3-6	91.	130	8म ०५८ ०५८ १४९	171 1		
		M	0-3	93 64	8	925	552		
		보	0-3	36	1 1 1 1 1	6538 7.2	. শ্রে	i.	
		달	0-3	132	म स	144 336 6538 73	73.		
	·	뚔	0-3	30 4	34 4	事	130		
JULY, 1979.	Hedium	Basket code	Depth (dm)		baromyces	-	Sarcovasticopiora ates	DRA pusillum ens	utintus
5	•	SPECIES		Sogloeal forms Sphaerotilus Leptothrix Beggiatea	Subbaromyces Condita of Subbaromyces Sepedonium Fusarium	Chlorella Scenedesmus	PICTOZOA: SARCOWNS Flagellates Amoebae	Euglena PROTOZOA: CILIOPHORA HOLOTRICHIA Trachelophyllum pusillum Hemlophrys fusidens	ii. pleurosigma Chilodonella cucullulus C. uncinata Colpoda cucullus

Particular Par	Control of the Contro	Ė		<u></u>								<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		حصن	: <u>-</u>	_بدن				<u></u>	<u> </u>			<u></u>	-				 7		-
Packing Pack			P6	5 1548				_					791		લ		:												 _		:
Particle Particle			P5								· · · · · · · · · · · · · · · · · · ·		34		9£																
Parket code 18 18 18 18 18 18 18 1	1	<u> </u>	2	9-15									74		9 4 6																
Parket code 18 18 18 18 18 18 18 1		C MED	P3									-;	!		rg							:									į
Padius	1.	PLAST	P2	L1								:	:		9								,			,					1
Parket code R R R R R R R R R			E					<u> </u>				!	<u>:</u>		4							í						,			:
Parist Code R R R R R R R R R			┝━		:						. :	1	<u>!</u>		00 :						<u>!</u>								 4		:
Refit Refi										<u>:</u>			1	. :			:				:		:						 4		•
Parket code R K K H K D D D D D D D D D		_	æ.		:					-		!			8		: 					-							 4		
Packet P			88		33	으				4	; ;		84		00			ļ	4	\	:		:						 ╛		1
Market M			SS	12-15		1		1		i			40		53		:				-			1							
Market M			\$4	9-12			; ·	1 :			1	;	30		30								į	Í			:				
Medium M		€D[A	-								•	 	36		10					:									 7		
Medium M		SLAG)	25	3-6			•					1				;	:			;	;	-	;	:					1		1
Mixed Ned In Mixe			15	0-3				; ;		•			90		4					•	:			į]		:
Hedium History Histo			1S.			j	•				i	ľ	5		33		:	į			:		į	i							
Pedium	: . : .		SC	_	:		į			;	.				2			-			· į .		Ì	-					 4		3.
Hedium	1		S.	3			i			!			4		2					<u>;</u>				!		·		-	 4-		
Number 1979. Number Nu			M6	15-18	4	-	-				:		34		8						•										
MIXED NEDIA Haddum Hitch			£	12-15	84		t :						156		3		:				:		-	1				:			
Saket code IR NC MI NC NC NC NC NC NC NC N	- 1		114	9-12		:						İ	213		8					:				:							
Numary 1979. Numary Nu	;		1131	8-9	:	;	1			į		.	8		8	į	•				:	ļ		:							
Medium		EDIA					Ì			;		1	4		84		٠.				-			!						:	•
Medium M		XED N					! .			İ						İ			1		-	•									
JULY, 1979. Medium Basket code HR MC ML Depth (dm) 0-3 0-3 0-3 1921cans scintillans colpoda: m aurelia m aurelia m aurelia laria campylum costata n maureli	j	Ħ	K12												8									1	į				 _	•	
JULY, 1979. Medium Basket code HR MC Depth (dm) 0-3 0-3 Iggicans Scintillans colpoda: m aurelia m aurelia m aurelia m aurelia laria campylum costata			Æ	. ,			j								\cdot									ļ	;						
JULY, 1979. Medium Basket code HR Basket code HR Depth (dm) 0-3 Iggicans scintillans colpoda: m aurelia m aurelia m aurelia laria campylum costata bellionella			보										4		4		:		İ		-		Ī	Ī	:				 _		
JULY, 1979. Medium Basket code Depth (dm) Jogicans scintillans colpoda: m aurelia m aurelia m aurelia m aurelia m aurelia m aurelia m aurelia laria a microstoma laria a microstoma a microstoma laria campulum campulum campulum campulum campulum campulum campulum campulum campulum campulum laria arian zoolda rotans		.	<u> </u>										=		\cdot									_					 1		
JUL JUL JUL JUL JUL JUL JUL JUL JUL JUL				0-3			4			İ	<u> </u>				8	1				1	:	_	_	-					 4		
SPECIES SPECIES Uronema nigrica Colpidium colpo Paramectum aure P. caudatum Colpidium campul RITRICHIA Vorticella micr V. vernalis Vorticella micr V. vernalis Vorticella micr V. vernalis Vorticella micr V. vernalis Vorticella micr V. vernalis Vorticella micr V. vernalis Vorticella micr V. vernalis Vorticella micr V. vernalis Vorticella micr Colpidium campul V. vernalis Vorticella micr Opercularia min Opercularia min Opercularia min Opercularia min Opercularia min Opercularia Opercularia Podophrya maupas P. carchesil P. carchesil	IIX, 1979.	Medium	Basket code	Depth (dm)	ns	llans	lia	an)		ostoma	telotrodis	(ma			zoolds				ţ.	onella		27		Ts.							
a a a b b	O.C.		SPECIES		Uronema nigrical	Glaucoma scinti	Paramecium aurel	P. caudatum Colpidium campyl	PERITRICHIA	Vorticella micro	V. vernalis	Opercularia mini	O. microdiscum	O. coarctata	Opercularian :	Epistylis rotans	SPIROTRICHIA	Stentor roesell	Aspidisca costal	Tachysoma pellic	SUCTORIA	Acineta cuspidat	A. foetida	Podophrya maupas	P. carchesii						

		-											*****		
		-	98	1548				٥.	:				53	133	
			PS	12-15	:	i		ÖH9	:	•			53	543	
		N V	49	9-12	ત્ય:						·		96	ड विषष्ट	
		PLASTIC MEDIA	23	6-9									213 9	ig og	
		LASTIC	22	3-6	e tar ou par de			453				•	160	4:	
		~	ā	5	4:			. م		:		<u> </u>	- 	1	_
			E	6				نه	:			j	29	म्ह	
			8	9	:			. • ;	į				438	œ T	
	•	_	æ	9-3			i	ما					338	રફેંડ ર	
			88	15-18			•	936 <u>0</u> 160	İ				91	59	
			SS	12-15		ÇQ1		08H HEG)					ō9	504·	#
٠			\$5	9-12	ત	:		09b		:	-		2,95	8416	
		SLAG MEDIA	S3	6-9			. !	788					380	ori	
		SLAG	25	3-6	1	#		091 094	İ	i - i -	:	1	308	<u>6</u>	
			2	0-3				45E 0458				1	120 1153		
			75	<u>2</u>	#		., :					;	921	4	
			SC	0-3	20 1			ōlie	<u> </u>	<u> </u>		! : !	#	<u>±:</u>	
			æ	0-3	#	ત્ર		oce neg				<u> </u>	#		
			94	15-18				0.0						अ।अ	
				-				09) 08/	:	1				<i>™</i>	
			왕	12-15	:			१। वंदह १८ है। ह	:					#9	
			-										≫;		
			N3L N4 N5	12-15				88 542 2172 160 320					133 म	30H 108	
		EDIA	M3K N3L N4 N5	9-12 12-15				59 <u>a</u> 217a					हैं में एड़ों हैं।	330 304 108 6H	
		XED MEDIA	N3L N4 N5	6-7 7-8 8-9 9-12 12-15				913 88 54 <u>a</u> 917 <u>a</u>		<u> </u>			हैं में एड़ों हैंभी	330 304 108 6H	
		MIXED MEDIA	M3K N3L N4 N5	3-6 6-7 7-8 8-9 9-12 12-15				98 54 <u>a 9 54a 6 54a</u> 6 54 <u>a</u> 6 54 <u>a</u> 6 54 <u>a</u>					है में एडां हैंगे ०१ए ग्री	30H 108	
		MIXED MEDIA	M3T M3M M3L M4 M5	0-3 3-6 6-7 7-8 8-9 9-12 12-15	#		The state of the s	913 88 54 <u>a</u> 917 <u>a</u>					हैं में एड़ों हैंभी	330 304 108 6H	
		MIXED MEDIA	N2 M3T M3K M3L M4 M5	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	7			98 54 <u>a 9 54a 6 54a</u> 6 54 <u>a</u> 6 54 <u>a</u> 6 54 <u>a</u>					ia asa 176 a60 148 isa H 8	338 436 330 301 108 64	
		MIXED MEDIA	H1 H2 H3T M3K H3L H4 N5	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	#			98 54 <u>a 9 54a 6 54a</u> 6 54 <u>a</u> 6 54 <u>a</u> 6 54 <u>a</u>					138 13 253 176 260 148 153 स अ	338 436 330 301 108 64	
		MIXED MEDIA	HR HC HL HI H2 H3T M3M H3L H4 H5	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	#			9 242 88 544 9 091 091 091 091 091					वित्र विश्व वित्र वित्र वित्र वित्र वित्र वित्र में अ	338 436 320 304 108 64	
			HR HC HL HI H2 H3T M3M H3L H4 H5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	#		Sp	9			20		वित्र विश्व वित्र वित्र वित्र वित्र वित्र वित्र में अ	479 801 108 088 984 888 419	
	,1979.		HR HC HL HI H2 H3T M3M H3L H4 H5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	*		orus Sp.	9			iolacea		s Larvae 192 128 13 253 176 260 148 153 H 8	338 436 320 304 108 64	
	JULY,1979.	Medium MIXED MEDIA	MC ML M1 M2 M3T M3K M3L M4 M5	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	#	eo1a	nidae sp.	9			ECTA cea-violacea		s Larvae 192 128 13 253 176 260 148 153 H 8	479 801 108 088 984 888 419	
	JULY,1979.		Basket code MR MC ML M1 M2 M3T M3M M3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	#	a roseola	A/Lecanddas sp.	9			n NSECTA olivacea-violacea		s Larvae 192 128 13 253 176 260 148 153 H 8	479 801 108 088 984 888 419	
	Julx, 1979.		HR HC HL HI H2 H3T M3M H3L H4 H5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15		INEA Lodina roseola	ONONTA/Lecanidae sp.	9			PODA: INSECTA BOLLA trona olivacea-violacea		s Larvae 192 128 13 253 176 260 148 153 H 8	479 801 108 088 984 888 419	
	JULY,1979.		Basket code MR MC ML M1 M2 M3T M3M M3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	NEWGOODA 4	RUIFERA BIELLOIDEA Philodina roseola	MONOGONONTA/ Lecanidae sp.	9 242 88 544 9 091 091 091 091 091		Lumbricidae na subrubicunda a totraedra	ARTHROPODA: DISECTA COLLEMBOLA Isotoma olivacea-violacea	tus	s Larvae 192 128 13 253 176 260 148 153 H 8	479 801 108 088 984 888 419	

			- 6	7 0														
-11			P6 1548	1 ,0 ,0 ,1	2 :	gi :		<u> </u>			,				:	·		
			P5 12-15		٧.	•												1
1		<u> </u>	P4 9-12	9 h 071 08 0788 08441 0048 14 here 08561 eiser	:		·					:		÷	 			
ė		PLASTIC MEDIA	E 2	031			-							:	<u>!</u>			-
		LASTI	3.6	071 08 08411 0048 08561 Eiseer			:							:	i .			-
			ت <u>د</u>	046 640 340	. !	l. i	i	:	:	30	: :				:			
			교	075.4 075.4 08			. !	:		- ;	11	İ	:	i			 	1!
			<u>ي</u> 2	33.00 160	1)	1 .		•	1	. :	;	
			<u>ج</u> 2	000t				i	! ;	. 40	-	1	:	:	!	;	į	
			S6 15-18	259a 33a 4	. :			328	!				:					
			S5 12-15	5436 1340 580				308		100					!			
			54 9-12	5788 3348 124	.						TI						:	1
		MEDIA	S2 6-9	HEI OES 8 1918 1919 1919			1			Ť	$\frac{\cdot}{1}$:		<u> </u>	-
		SLAG MEDIA	3-6	0E8 8 0E9989bh 111695601			1	7 1			$\dot{\top}$	1	-;.		<u>: -</u> !		i	1
			0-3	6.764 1936 13			: :			큓	11						·	7
	İ	3	P. K	320 1134 320 1134	269						T			; ;		1.		
	. [[3 E	3008									:	! !	1		:] +
			P. S.	5 ta	:				- -		11	<u> </u>	<u> </u>	ĻĪ.	<u></u>			
	ſ		15-18	0° G		i			;]	;	:		:	i i	1			
1		1	- 2	37308 113a				4		. '	:		:				.	
		. 31		 '3	5. #2			h 49		· ·							i.	-
		· -	2 12-15	13540 17540 148				<u> </u>								п п	•.	-
		. 14 141	9-12 12-15	23742 17540 1620 23.00 23.7 16.2	119 54			13 64								4	•	_
			8-9 9-12 12-15	23742 17540 1620 23.00 23.7 16.2				#9								4		-
			7-8 8-9 9-12 12-15	23742 17540 1620 23.00 23.7 16.2				13 64								4		-
	•	EDIA	6-7 7-8 8-9 9-12 12-15	23742 17540 1620 23.00 23.7 16.2				13 64								4		
		IIXED NEDIA	3 3-6 6-7 7-8 8-9 9-12 12-15	23742 17540 1620 23.00 23.7 16.2				13 64								4		
		MIXED NEDIA	3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	23742 17540 1620 23.00 23.7 16.2				13 64								4		
		MIXED NEDIA	3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	23742 17540 1620 23.00 23.7 16.2				13 64										
		MI MI M2 M3T M3M H31 144 145	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	13540 17540 148				80 13 64		160								
		CODE 118 MC M M1 M2 M37 M3M H31 14 M5	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	18092 4656 211168 25100 23712 21300 21416 25620 23779 175110 1760 4648 2240 23779 175110 1760 4648 1640 173 5/36 8648 1648 1640 230 175110 175	114		g »	160 80 13 64										
		CODE 118 MC M M1 M2 M37 M3M H31 14 M5	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	18092 4656 211168 25100 23712 21300 21416 25620 23779 175110 1760 4648 2240 23779 175110 1760 4648 1640 173 5/36 8648 1648 1640 230 175110 175	114		Pupae Files	160 80 13 64	Flies		Flies	Files Papes	ae Larvae	Pupae Flies	yzina		FILES	
		MIXED NEDIA	0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	18092 4656 211168 25100 23712 21300 21416 25620 23779 175110 1760 4648 2240 23779 175110 1760 4648 1640 173 5/36 8648 1648 1640 230 175110 175	Files 114		Pupae Files	160 80 13 64	Files		Files	dae Filies Propa	ceridae Larvae	Pupae Pites	ridae /dromyzina			
		Basket code MR MC M M1 M2 M37 M3M H31 14 M5	Depth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	18092 4656 211168 25100 23712 21300 21416 25620 23779 175110 1760 4648 2240 23779 175110 1760 4648 1640 173 5/36 8648 1648 1640 230 175110 175	Files 114		Pupae Flies	Larvae 160 80 13 6#	Files		Files	silacea Flies Propos	haeroceridae Spp Larvae	Pupae Plies	rdyluridae ora hydromyzina			
		Basket code MR MC M M1 M2 M3T M3M H31 14 M5	Depth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	Psychodidae (all species) Larvae 180944656 20168 25100 23713, 21300 21416 25620 23743 175140 Papae 7604648 2240 173, 5136 8648 468 1620 2300 2300 183 183 183 183 183 183 183 183 183 183	Files 114	Chirchanidae	Pupae Flies	Larvae 160 80 13 6#	Files		Files	i. Ephydridae ella silacea Plies Pupon	: Sphaeroceridae ocera Spp Larvae	Pupae Plies	: Cordyluridae hiophora hydromyzina			
		CODE 118 MC M M1 M2 M37 M3M H31 14 M5	Depth (dm) 0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	Paper 1760 4456 21168 25100 23713 21300 21416 25620 23743 175140 Paper 1760 4448 2240 173 5/36 8648 4648 4648 1620 2300 1760 4648 2240 1760 4648 2310 1760 4648 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 2310 1760 4648 1760 464	114	Larvae	Pupae Files	160 80 13 64	Files		Files	DIPTERA: Ephydridae Scatella silacea Phes Papen	DIPTERN: Sphaeroceridae	Pupae	DIPTERA: Cordyluridae Spathiophora hydromyzina			

-				-	1	*********		A. Section	-		:							1				-								100		ſŢ
ŗ	JULY, 1979.							.						١																		
	Medium						Ŧ	XED	MIXED MEDIA									SLAG	SLAG MEDIA	_						•	PLASTIC MEDIA	C MED	¥.		-	_
SPECIES	Basket code	code	뚔	MC	토	¥	N2	M3T	MSM	1131	M4	35	웊	SR	SC	15	15	25	83	84	55	95	PR	2	ы	ы	P2	F3	P4.	PS	9d	_
	Depth (dm)	(dg)	0-3	0-3	0-3	0-3	3-6	2-9	7-8	8-9	9-12	12-15	15-18	0-3	3 0-3	9-3	0-3	3-6	6-9	9-12	12-15	15-18	0-3	0-3	0-3	0-3	3-6	6-9	9-12	12-15	1548	8
ARTHROCODA: ARACHNIDA ACANI; Astlgmata Histlogaster carpio	NIDA																	,				<u>:</u> :							- 4 ·			
Histiostoma feroniarium Rhizoglyphus echinopus	oniarium				1 T			11	#						• :					1200		.; !	. ;	:					: :		:	
ACARI: Mesostigmata Platyseius italicus	icus															<u> </u>			İ		a designation of						:		1304	:	· ·	
ARAKEAE: Linyphiidae	ldae						1							;		·			, .													
AKTHINOPODA: CHILOPODA Lithobius forticatus	CHILOPODA																			<u> </u>						:		•			·	
man of the profession and the state of the s																					· ·											
ARTHROPODA: CRUSTACEA ODPEDODA: Cyclopoida Paracyclops fimbriatus cl	(a) 4	ohiltoni		٥	160	٥	٥	. a	-	·	р	9	٥	نه	ما	320	م.	سه	ا م	091	160	3	مہ		م.	O -	مـ	؎	٥	ط ا	م.	
MOLLUSCA . GASTROPODA: Limacidae														Al-Liquid Robert & Grander					-				·								· ·	
Agriolimax reticulatus	latus														•	· · · · · · · · · · · · · · · · · · ·																~
	•			<u>,</u>																		•										
												•					·.															
											:																			-		
		•			<u>:</u>										 .																	
	.		_	_	4	_	4	_	_	_		_	_	_	\dashv																\Box	
. •						į			:	į	ŧ	*																				

Γ	8	1548	<u> </u>		1 .			Ţ				801	<u> </u>	:		i	:		
	-		84			* -	-		384		: 	의		:				0	
	PS	ᆜ드	36	# #		9	2	:	ano		<u> </u>	33			·			;	<u>:</u>
4	P 4	9-12	121	a		9 4	±.	:	11	;		ત્							
i i	2	6-9	312			39	ς Υ		ાકુઝ			4-8					:	:	
DI ASTIC MEDIA	P2		ત્રાત્ર	436		(5)			3HO		li	(B)				. !	1		
	٦		418	40°	တ္တ	++	 	-		340		තී					: ·	,	:
	곱		11/	//	///	//	//	77,	//	//	1/	//	///	///	[[]	1	///	//	1777
	2		1//	//		<u>/</u> ,	//	<u>//</u>	//	//	1//	//		<u>//</u> /	///	/1/	4//	1.0	111.
_	8		1/1		//	1/	1/	1/	/ /	//	1//	1/1	///	///	///	4,	1/1	<u> ///</u>	11/1
	98	15-18	Ø 5	ব্য		4	i					Ŕ	Ì	:				;	
	SS	12-15	911	}	1	± 4	+	1	4+1	-		the the		:		-		#	
	S4	9-12	847	±:	4	4	ŧi		192			#				1	:		
MEDIA	S3	6-9	96	ė		æ 0	oi	· ·	71	ı		330		:				4:	i
SI AG	25	3-6	भरह	2		19	ડા		-	•		80	•			i	:	,	į.
	ıs	0-3	Ö8	4		ر ا	# :	İ .	<i>61</i> 3	192		88					:	41	!
	35	0-3		//		/	//	//		1	///	//.	///	///	///	//	1//	1.1	1///
	SC	0-3		Ζ,	//,	//	//	//		X	///	///	///	///	[].[/	///	///	I/I_{I}
	æ	6-3	1//	//	///	4,2	1.		.4,	11	(X)		I/Λ	[][[][[[///	11/
		T .																•	1
	94	15-18	.00			4 0	ક					09				6		8	•
	H5 N6	12	8 ti9	4		:	144		- 46			9 mg				8		<u>ଷ</u>	•
	N4 N5	9-12 12-15		8	:	9	**		48 48			क्							
	N4 N5	9-12 12-15	119 09	<u> </u>		16 16			48			मह 891						ત	
DIA	N3L N4 N5	9-12 12-15	119 09 95			9	- 144 - 144		336 48			मह 891						4·	
KED HEDIA	N3L N4 N5	7-8 8-9 9-12 12-15	मं9 09 95 हुए।	<u> </u>		16 16	- 14 14 14 14 14 14 14 - 14		48			मह 891						4·	
MIXED NEDIA	N3L N4 N5	6-7 7-8 8-9 9-12 12-15	113 138 56 60 61t	- 		33 31 40 44	- 24 38 84. 40. TH		14th 336 48			क्						4·	
MIXED MEDIA	N3T M3H M3L M4 N5	3 3-6 6-7 7-8 8-9 9-12 12-15	+19 09 95 8E1 E11 8E1	40 4	£5.	36 60 4 16 16	ाष्ट्र - जिस जा जा - माम		14th 336 48			मह 891						4·	
MIXED MEDIA	N2 N3T N3H N3L N4 N5	3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	+19 09 95 8E1 E11 8E1	- 	£5.	14 36 60 4 16 16	ाष्ट्र - जिस जा जा - माम		46 144 336 48			193 त्रमण त्रमण उत्रम 168 व्यम						4·	
MIXED MEDIA	M1 M2 M3T M3M M3L M4 M5	3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	+19 09 95 8E1 E11 8E1	40 4	£5.	14 36 60 4 16 16	ाष्ट्र - जिस जा जा - माम		46 144 336 48			193 त्रमण त्रमण उत्रम 168 व्यम						4·	1//
MIXED HEDIA	ML M1 M2 M3T M3M M3L M4 M5	0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	+19 09 95 8E1 E11 8E1	40 4	£5.	14 36 60 4 16 16	ाष्ट्र - जिस जा जा - माम		46 144 336 48			193 त्रमण त्रमण उत्रम 168 व्यम						4·	
	WR NC ML M1 M2 M3T M3H M3L M4 H5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	H9 09 05 881 188 1791	40 4	£5.	4 16 35 50 H 16 16	- 11 - 12 - 12 - 12 - 11 - 11 - 11 - 11		46 144 336 48			193 त्रमण त्रमण उत्रम 168 व्यम				9		4·	
	CODE FIR MC ML MI M2 N3T M3M M3L M4 N5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	H9 09 05 881 188 1791	40 4	£5.	4 16 35 50 H 16 16	- 11 - 12 - 12 - 12 - 11 - 11 - 11 - 11		46 144 336 48			193 त्रमण त्रमण उत्रम 168 व्यम				9		4·	
AUGUST, 1979. Nedium MIXED MEDIA	CODE FIR MC ML MI M2 N3T M3M M3L M4 N5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	19 09 95 88 118 188 199 60 64	1 000 000	es (///	Subharomices 4 14 16 16 16 16 16 16 16 16 16 16 16 16 16	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14		46 144 336 48			193 त्रमण त्रमण उत्रम 168 व्यम				9	cucullulus	# # # # # # # # # # # # # # # # # # #	
	Basket code MR MC ML M1 M2 M3T M3M M3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	19 09 95 88 118 188 199 60 64	1 000 000	es (///	Subharomices 4 14 16 16 16 16 16 16 16 16 16 16 16 16 16	41. 14. 14. 14. 14. 14. 14. 14. 14. 14.		48 46 144 336 48	Samus Ionium		में विक विक विक विक विक विक			TLIOPIORA	9	cucullulus	# # # # # # # # # # # # # # # # # # #	
	CODE FIR MC ML MI M2 N3T M3M M3L M4 N5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	Deal forms	1 000 000	igiatos	Subharomices 4 14 16 16 16 16 16 16 16 16 16 16 16 16 16	41. 14. 14. 14. 14. 14. 14. 14. 14. 14.	S S S S S S S S S S S S S S S S S S S	Oreila 48 48 48 48	enedesmus igeoclonium		में विक विक विक विक विक विक			TLIOPIORA	9	cucullulus	# # # # # # # # # # # # # # # # # # #	
	Basket code MR MC ML M1 M2 M3T M3M M3L M4 M5	0-3 0-3 0-3 0-3 3-6 6-7 7-8 8-9 9-12 12-15	CITS CITS (144 128 113 128 56 60 64	4 00 001	es (///	4 16 35 50 H 16 16	41. 14. 14. 14. 14. 14. 14. 14. 14. 14.		Oreila 48 48 48 48	Scenedesmus	COMPANIONER	193 त्रमण त्रमण उत्रम 168 व्यम	Атоеблю				a cucullulus	4·	

PLASTIC NEDIA PLASTIC NEDIA 10-3 3-6 6-9 9-12 12-15 1518 10-5 6-9 7-15 12-15 1518 10-5 6-9 7-15 12	
PLASTIC MEDIA P1 P2 P3 P4 3 0-3 3-6 6-9 9-12 3 3-6 3-4 4 4 4 3.4 4-8 46	
PLASTIC HEDI PLASTIC HEDI 3 0-3 3-6 6-9 3 3-6 6-9 3 3-6 6-9	
PLASTIC NED PLASTIC NED 3 0-3 3-6 6-9 3 3-7 3 3-7 4 4 30-7 3 3-7 3	
T T T T T T T T T T	1
T T T T T T T T T T	1 .
	-
	-
23/////////////////////////////////////	
E3////////////////////////////////////	
86-71 44 44 44 44 44 44 44 44 44 44 44 44 44	1
\$2 88 HH 04 04 04 04 04 04 04 04 04 04 04 04 04	1
30.83 Est 1 2.12 2.12 2.13 Est 1 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.	-
83 6-9 83 6-9 83 6-9 84 85 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-
25 E 29 E 20	-
S 5 6 8	1
# 3 ///////////////////////////////////	-
# 3 ///////////////////////////////////	4.
	+
HS 12-15 12-16 9.8 23.8	
18 18 18 18 18 18 18 18 18 18 18 18 18 1	
15 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
MIXED MEDIA MIXED MEDIA MIXED MEDIA MIXED MEDIA MIXED MEDIA MIXED MEDIA MIXED MEDIA MIXED MEDIA MIXED]
SE SE SE SE SE SE SE SE SE SE SE SE SE S	
도 승	7
= 3 //X///XX//XXY////////////////////////	7
23////////////////////////////////////	7
E 3 ///////////////////////////////////	7
9 C	7
Medium Basket code Depth (dm) Depth (dm) ans ans allians oda elia elia llum llum rostoma toma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma rostoma	
Medium Medium Basket Depth (De	
나 나는 다 다 다 가는 그는 다 가는 다 가는 다 가는 다 가는 다 가는 다	
IES Inigitic Inigitic Inigitic Inim aun I	
SPECIES Basket or Medium	
AUGUST, Nedii SPECIES Bask Uronema nigricans Glaucoma scintillans Colpidium colpoda Paremecium aurelia V. convallaria V. vernalis V. vernalis V. vernalis Vorticellid telotra Opercularia minima O. coarctata Opercularia minima O. coarctata A. footida Aspidisca costata Tachysoma pallionella Aspidisca costata Tachysoma pallionella A. footida Podophrya maupasi P. carchesiii P. mollis	

					ويعاكرها والمدار بطعيات المدار والمد		Para tambén de la companya de la companya de la companya de la companya de la companya de la companya de la co	
		P6	1548			QR.P		4 60 4
		P5	12-15	જ		01111		# # # # # # # # # # # # # # # # # # #
	V	P4	9-12	60		049 d		20 1311
	PLASTIC MEDIA	Р3	6-9	4:)		73 436
•	ASTIC	P2	9.	 		9 9 160	:	184
	=	E .	<u>-</u>					133 Itin
		급	- -	///////	1111	(/////	///////////////////////////////////////	11/1/1/
		2	0-3	///////	////		///////////////////////////////////////	
		器	0-3	//////	////	[[]][]	///////////////////////////////////////	
		88	15-18		%	340		13 336
		25	12-15		<u>હ</u>	0H9 95		53 416
	ľ	S4	9-12	4	4 :	14H 460		956
	KEDIA.	S3	6-9		∞ :-	316		118 118
	SLAG MEDIA	22	3-6			218 163	, , ,	ন দ্ব
		ıs	0-3	:	. 1	091 855		# #
	ľ	SL	0-3	1////////	/////	/////	/////////////	VIIIAAA
		S	0-3		/////	/////	//////////////	(///////
	ļ	S.	9-3	G118 JA			//////////////////////////////////////	
		¥6	15-18	4	<i>∞</i> .	2260		म १०० मह
		35	12-15		ૡ	32414 160 160		6.5
		ž.	9-12	∞	4 ,	9181 091		95 95
		E	8-9	01	7			23.28
	DIA	M3H	7-8			084 084		44 64a 8
	MIXED MEDIA	M3T	6-7	8		٠		256
,	Ê	772	3-6	4		ما		132
				I :		1 1		
		E	0-3			٩		80 916
		-	0-3 0-3	///////	/////		1//////////////////////////////////////	
		E					X/////////////////////////////////////	
		M M	0-3				X/////////////////////////////////////	
		MR MC ML M1	0-3 0-3 0-3			 //X/X //X/X ////	X/////////////////////////////////////	
	1979. dium	MR MC ML M1	0-3 0-3 0-3		th.		das umda .	Setti segra
	August, 1979.	NC M NJ	0-3 0-3		ola Idae sp. rophorus Sp.		ibricidas orubicunda rasdra SCTA	Setti segra
	August 1979.	Basket code NR NC ML M1	0-3 0-3 0-3		na roseola Vecanidae sp.	Enchytraeidasi us rivalis L. rivalis htte spp.	A: Lumbricidae ena subrubicunda lia tetraedra i: INSECTA colivacea-violacea	ustulatus ustulatus unisopodidae la fenestralis Lauvae filles filles
	August, 1979, Medium	MR MC ML M1	0-3 0-3 0-3		OIDER. 11odina roseola NONTA/Lecanidae sp.	orn: Enchytraeidasi (cillus rivalis s of L. rivalis rue White app.	GUNETA: Lumbricidae drobaena subrubicunda seniella tetraedra OPODA: INSECTA MOGLA otoma olivacea-violacea	ustulatus ustulatus unisopodidae la fenestralis Lauvae filles filles
	August, 1979,	Basket code NR NC ML M1	0-3 0-3 0-3	HOTTERN	PDELIOIDER, Philodina roseola PONOGONOWIA/Lecanidae sp.	 //X/X //X/X ////		9118 serti edati egara

T		P6	1548	8	480			 -	·				٠,	<u> </u>				:			_	-						٦
		P5	12-15	3530	330										-											. :		\dashv
		P4	9-12 12	35 acet					<u>. </u>																	•		\dashv
	PLASTIC MEDIA	P3	6 -9						:				-									·						\dashv
	LASTIC	P2	3-6	887E 040E	009			-										-	:									\dashv
-	Ξ.	14	0-3	8118		25.5			1									:	:			-						1
		7	0-3		<i>;</i>		1	//		//	<u>/</u>	//	<u>/</u>	//	7	//	//		\mathbb{Z}	:/	//	//	//		//	//	///	
		2	3 0-3	///	•	<u> </u>	//	<u>/</u>	<u> </u>	<u>//</u>	<u> </u>		[]	<u>//</u>	//	//	4	<u> </u>	//	//	//	<u>Z.</u>	<u> </u>	<u>//</u>	<u>//</u>	//	1/	4
.		<u>چ</u>	18 0-3	-	7 7 1	<u>//</u>	//.	<u>/ · /</u>	1//		<u>/</u>	//	<u>/ˈ/</u>	<u>//</u>	//	<u>//</u>	<u>/ /</u>	1//	<u>//</u>	//	7,	//	$\frac{Z}{z}$	<u>/</u> ;	//	1/1		4
		88	5 15-18	treon		8			!			89	-				:				. !	:				: ;		$ \bot $
		SS	12-15	8009	3528	<u> </u>		;				4	,					İ				:				: :		
	_	S4	9-12	863111	2440	X OR		•					-			:	!			91	. !	:			:	. 1		
	SLAG MEDIA	53	6-9	८८७ म। विषद्धिक्टामा विरुद्ध	Eches 1	fzd							İ			:		i			. !	:						
	SLAG	22	3 3-6	701 110	258E 0	950		-	<u> </u>			• :				: :	- !		-	40	1	:						4
		. 81	0-3 0-3	7 / ·	og s	<u>s</u> :	· /	: /	 		//	- 1	7.	-	/	7.7	7.7	1		111	7	/	, ,	7	1 1	- /	//	\dashv
1		SC SL	0-3 0-	(<u>//</u>	r] [,]	//	//		1 /	/	<u> </u>	<u> </u>	<u> </u>	<u> </u>	11	<u> </u>	<u> </u>	//	<u>//</u>	/	<u> </u>	//	[] []	1	<u> </u>	'	4
		SR S	0-3 0	//	//	1/	<u>//</u>	/	<u>//</u>	Z	//	//	<u> </u>	<u>//</u> //	7	//	1	<u> </u>	1	7	<u> </u>	/: //		//	7	//	//	/
		. 9W	15-18	494		<u>.</u>					:	56		i		!						ŀ						
		145	12-15	P 4511		3		र्दे					1	-				<u> </u>				-	<u></u>		•	- 1		\dashv
		N4 N	31 21-6	964		<u> </u>		<u> </u>	<u>i.</u>	<u>:</u>	1	4	1	 		1	- !	\perp			;					<u>;</u> ;		\dashv
		113T H	8-9 9-			ર્જો 8		#1	<u> </u>		<u> </u>	!	$\frac{1}{1}$	$\frac{1}{1}$			-	 	-	091	,	<u> </u>				:		\dashv
	ا ≥	M3N II	7-8 8-	133	3044 129a	0	1 1	42	<u> </u>			<u> !</u> i	+	$\frac{\perp}{1}$			<u> </u>	<u> </u>	!		± 1					: :		\dashv
	MIXED NEDIA	изт и	6-7 7	3008	3 5	<u>리</u> 일	1					<u>!</u>	\dashv	$\frac{\perp}{\parallel}$			+			•		- 				:		\dashv
	MIX	112	3-6 (3346 SA 1860 40 40 40	Other Hand	ا ا			<u> </u>				+	Ť			\overrightarrow{T}					Ť						7
		MI	0-3) NO # (2)	500	100		\II									\top		İ			-		-		- 1		
		M	0-3	///	//	1//	1/	V	1		//		X.	À	//	//	X	1//	1/	///	1	1	//	//	//	//	///	\mathbb{Z}
		HC HC	0-3	//	//	//	1//	1	//	//		//	1	1	//	//	1	///		//,	//	1	//,	<u>//</u>	1/	1	<u> </u>	4
		MR	0-3	7 7	73		1 1	<u>讲</u>	1/		/}		4	<u>//</u>	//		<u> </u>	<u> </u>	1	///		4	<u>//</u>	/	<u> </u>	1//		4
AUGUST, 1979.	Medium	Basket code	. Depth (dm)	lae os)Larvae	Pupae	FILES		r Files	Idae	Pupae	Files	Larvae	Pupae	FILES	ropetricus Larvae	Рирае	Files	i	Pupee	ridae Larvae	Pupae	FILES	dae	romyzina Larvae	Pupae	Files		
W		SPECIES		DIPTERA: Psychodidae Psychoda (all species)Larvae	Denoting a photosist	rayonda attetilata		Psychoda severini	DIPTERA: Chirchcantdae			H. perennis		•	Metriocnemus hygropetricus			DIPTERA: Ephydridae	Scatella Silacea	DIPTERA: Sphaeroceridae Leptocera Spp La			DIPTERA: Cordyluridae	Spanisopiora nyaromizina Larve				

Γ	98	1548			4:	į	!	اً و	•	
	Sd	12-15	:		4		i	<u> </u>		
	P4			700KH				320		
PI ASTIC MEDIA	12	 _		<u> </u>		į		<u>م</u>	<u> </u>	
ASTI	2	9.		<u>رم</u>	1	i		م.		
٩	- E	- 6				į	į	•!	4	
	ā	_	11/11/1	Nil	11/11	11/	1/11/	[[]]	[]]]]	
	8		11/1/1	<u> </u>	(////	<u> </u>	<u>///</u>	<u> </u>	<u> </u>	
	ã	-1	11/11/8	'///	<u> </u>	<u>/X/</u>	<u> </u>	////		<u> </u>
	98							1120	!	
	25	12-15	141 1 1					430		
	84	9-12								
MEDIA	2							•:		
SI AG	23			- <mark>1</mark> :			-	091	1	
	15						- 1-	-	1222	
	5					//				<u> </u>
	5						///			
L	9	: S				///	<u> </u>	/////	////	<u> </u>
	9	15-18		۰				2720		
	145	12-15		4				onee		
	144	9-12		1300				9.60		
	133	8-9		4800		İ		049		·
EDIA								Р		
MIXED MEDIA	M3T	6-7		7200 13338 1200				330		
Ŧ	2	3-6						٥		·
	Ξ			00 TR				9		
	5					///	////		<i>\///</i>	
	Ϋ́	_				W	<u> </u>	<u> </u>		
	£			XX	X/X/	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
.1979.	Basket code	Depth (dm)	·,	nu s				S chiltoni	\$m;	
AUGUST, 1979.	Bask	Dept	T I	roniari	licus	ohiidae CHILOPODA	icatus	CRUSTACEA lopolda fimbriatus	cidae	
	SPECIES		AKTHROPODA: ARACHNIDA ACARI: Astigmata Histiogaster carplo	Histiostoma feroniarium Rhizoglyphus echinopus	ACARI: Mesostigmata Platyseius italicus	ARANEAE: Linyphiidae	S Fe	ARRIBODOM: CRUSTACEA OPERODA: Cyclopoida Paracyclops fimbriatus chitcon	MOLLUSCA GASTROPODA: Limacidae Agriolimax reticulatus	

APPENDIX III : CHEMICAL RESULTS

August 1977 to September 1979

 LOADING (m3m-3d-1)	FLOW]	Result: Sheet	s commence date	Result Sheet	s end date
5.72	8.5	1	5.8.77	14	9.9.77
1.68	2.5	15	14.9.77	86	13.9.77
3.37	5.0	87	20.9.78	123	5.9.79

KEY TO PARAMETERS:

	Prefix:	Suffix:
Ref:	INF: influent	1: Port sewage sample at 0.3m depth
	S: slag filter	2: " " " " 0.9m "
	M: mixed filter	3: " " " 1.5m "
	P: plastic filter	4: Final effluent at 1.8m

```
hydraulic loading (1 min<sup>-</sup>)
F1ow
                  biochemical oxygen demand (mg1<sup>-1</sup>)
BOD
                  suspended solids (mgl<sup>-1</sup>)
S/S
                  permanganate value (mgl<sup>-1</sup>)
P۷
                  chemical oxygen demand (mgl<sup>-1</sup>)
COD
                  ammonical nitrogen (mgl<sup>-1</sup>)
Amm
                  total oxidised nitrogen (mgl<sup>-1</sup>)
TON
                  sludge production (cm<sup>-3</sup>)
S1udge
                  Нq
рΗ
```

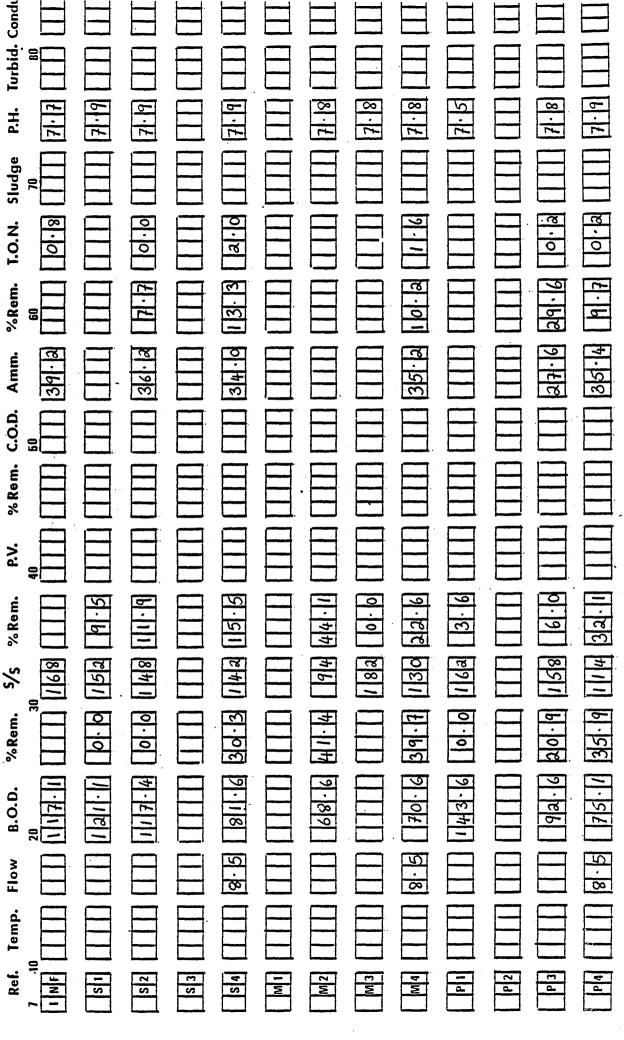
Turbid : turbidity (FTU)

Conduct : conductivity (mm S cm⁻¹)

05087

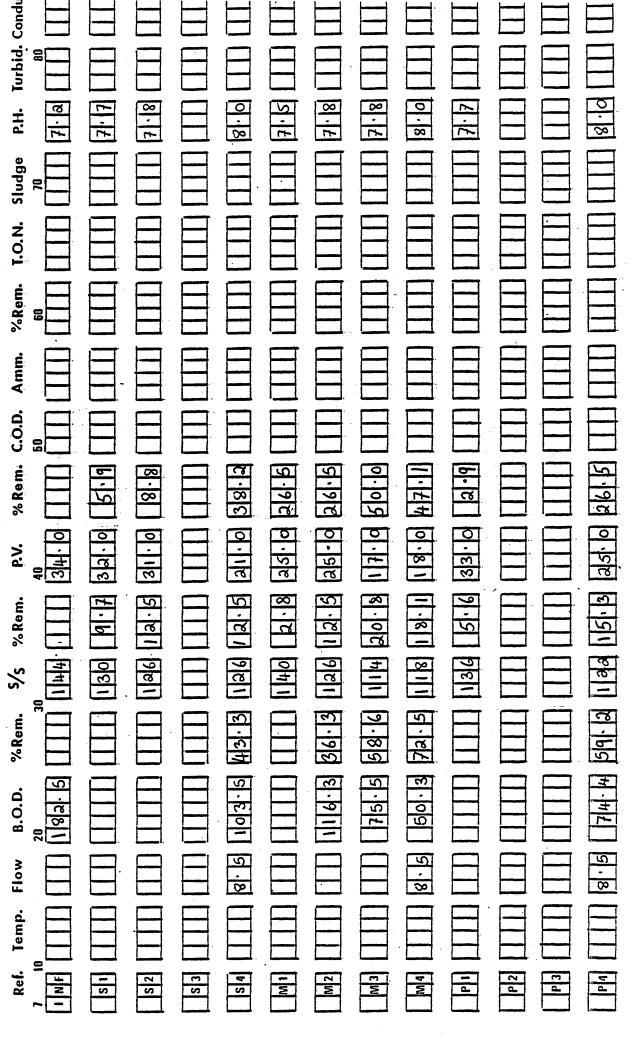
Date

Sheet No. /


ONIY

SHAKEN SAMPLES

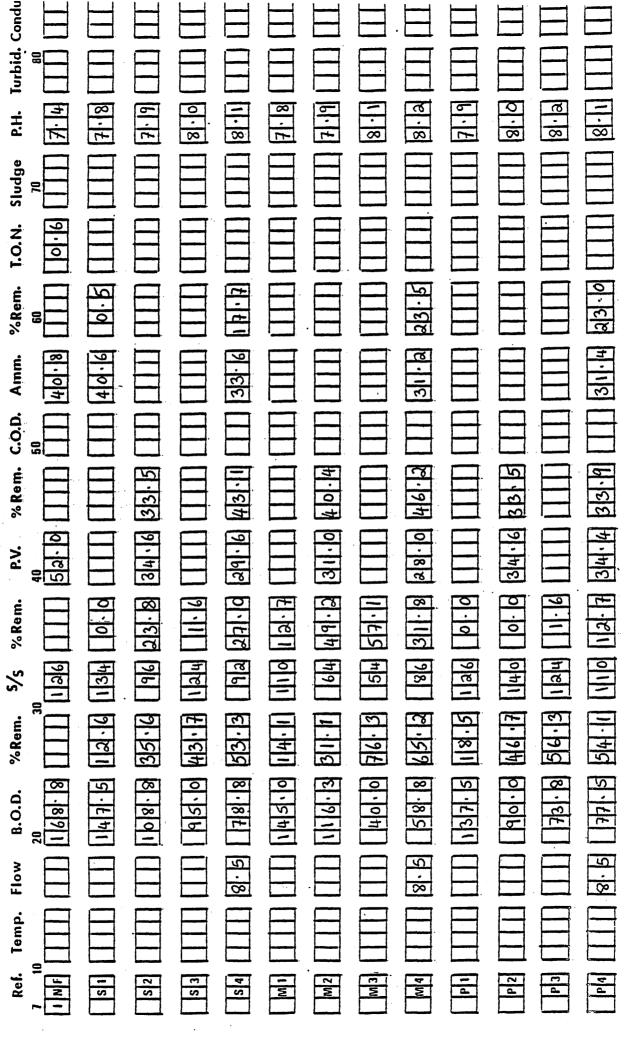
CHEMICAL ANALYSIS


Sheet No. 2 ONLY SAMPLES SHAKEN (Treeton Experimental Filters) CHEMICAL ANALYSIS

1 6 Date [100877]

CHEMICAL ANALYSIS (Treeton Experimental Filters)	PLES ONLY	Sheet No. 3	[3]	1 6 Date [12] 9877
Temp. Flow B.O.D. "Rem.	P.V. %Rem. C.O.	Amm.	1.0.N. S	P.H. Turbid. Condu
	99			71.3
8-8 8-8 1116 33-3				8 ज
Ma 8.5 1 57.4 65.2 106 39.11				8:3
P1 18 5 1 6 6 1 6 1 1 1 1 1				8.2

1 6 Date [150877] Turbid. Condu 8 8.3 ह 8 Sludge 1.0.N. Sheet No. 4 C.O.D. %Rem. ONLY SHAKEN SAMPLES 11 -09 621·8 11-154 130 <u>ව</u> ව 180 328 **5**/s %Rem. (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 8 . 8.5 8.5 Jemp. P 4 - M4 N R P 2 P 3 8 3 S 4 S 2 M 2 <u>E</u> S 1 Ξ



CHEMICAL ANALYSIS (Treeton Experimental Filters)	Date 220877
Ref. Temp. Flow B.O.D. %Rem. 5/s %Rem. P.V. %Rem. C.O.D. Amm. %Rem. T.O.N. Sludge P.V. 1 <th>P.H. Turbid. Condu</th>	P.H. Turbid. Condu
	8 · 14
	शिष्प
	B 13 [] []

HEMICAL	ANALYSIS	
---------	----------	--

KEN SAMPLES ONLY

Sheet No. 8

1 6 Condu Turbid. Date 0 . 8 8.0 7 9 Sludge 1.0.N Sheet No. 9 Amm. C.O.D. %Rem. ONIX SAMPLES Ο· 0 0 . 0 0 %Rem. 0 SHAKEN हिं हिं 88 ह ह & & **5**/s ල ල ල 93.6 %Rem. 83.1 13,5 20 27.5 30.0 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 9.5 8 - 5 8.5 I N F S 4 P 2 **P** S₃ M 2 M 3 ₹ 4 PI P 3 S 1 **S** 2 2

----8

CHEMICAL ANALYSIS (Treeton Experimental filters)

SHAKEN SAMPLES ONLY

Sheet No. 11

310877

Date

ر 8 ر ج 8 8 . 8 <u>0</u> 8 . 3 & \ \ ਲ -ਲ 7.9 0 · 8 **b** · Ł P.H. . ⊗ Sludge 1.0.T C.O.D. प्रद्या न 50.0 20 · F 9.84 5,3 421.11 8 · 8 1 23.7 %Rem. 1,5 5:0 34-1 . ह 26.6 27.4 30.8 53.2 5a · 4 43 · a 45 a 4 a · a 40.6 90.4 40.6 34.8 8 · 9 4 | | | | | 36.8 11.0 12.3 59.7 भि । 10.5 0 0 0 - 0 28.11 0 . 0 0 %Rem. 10a 1 1 m 99 130 83 98 901 100 146 1 4 4 134 **5**/s 67.7 7619 66.9 13 · 2 33.8 50.0 9-01 c · 91 36.8 50.0 1 6 - 9 50-7 10715 4a,5 55 10 147.5 85.0 0.05 142.5 0.011 1112.5 14113 83 8 56.3 85.0 B.O.D. Flow 9 · 8 8.5 8.5 Temp. 量 P 4 1 N F p 2 P 3 \$ 2 S 3 S 4 | M 2 M 4 S Σ

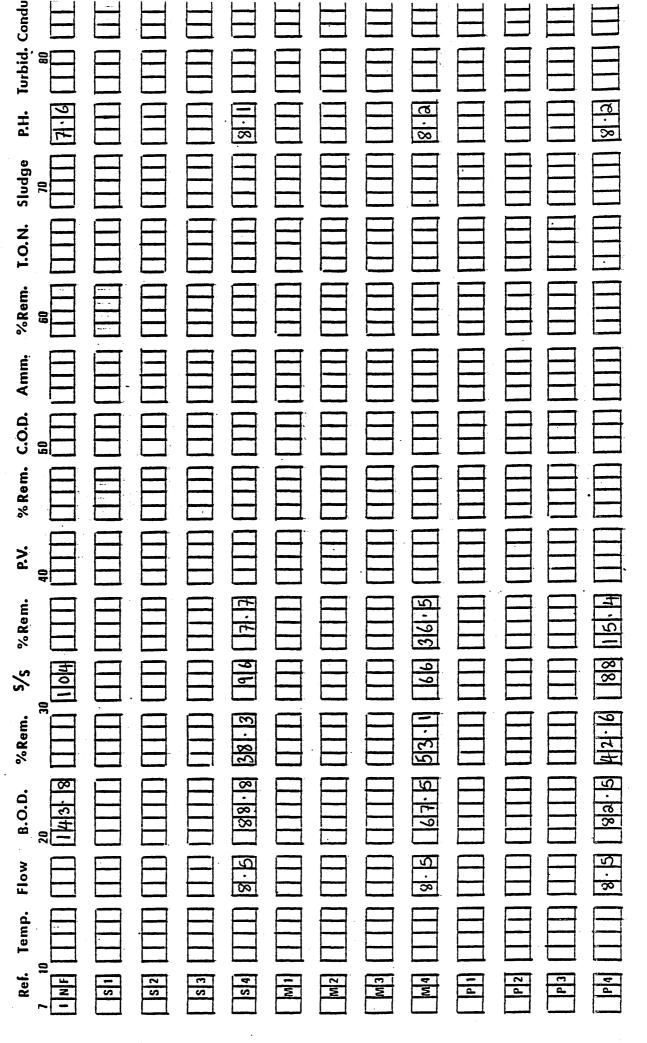
CHEMICAL ANALYSIS (Treeton Experimental Filters)

SHAKEN SAMPLES ONLY

Sheet No. 12

ر 8 1 . 8 Sludge I.O.N. %Rem. 411.13 48 84 1 4 4 s/s 8 1 11 9 511-19 %Rem. 65.0 47.5 20 1 35 · 0 B.O.D. 8 5 3.5 8.5 Temp. I N F S 4 M 3 P P 2 P 3 P 4 \$ 3 M 2 <u>8</u> 5 2 2 S 1

Turbid. Condu P.H. Sludge 1.0.N C.O.D. 30.8 2 · 9 h 33,3 38.5 56 4 6 . 3 20.5 5713 9 - 9 %Rem. ö 0 8.94 丰 28 8 37 · A 30·0 25 । ब 4 6 4 3 -S 25.8 4 . १ . 9 # 53. 32 811.3 & . . 9 - 17 9 0 0 · 0 50.0 50.0 22.9 0 · 0 791.12 9 %Rem. 0 10a 901 401 ∞ 48 34 48 174 30 96 881 **5**/s 8 43.3 79.5 1 | 1 | 8 35,6 52 · 0 911-9 59.8 %Rem. व्य प 491.6 10/1 0 Ö 1650 76.3 9 9 9 8 851 102.5 47.5 39.5 122.5 80.0 8 · 89 90.0 ۶ ۲ 8 8 B.O.D. 5 8 · 5 9 · 8 · 8 Temp. P 2 P 4 I N F S 2 S 3 S 4 M₂ E ₩ <u>8</u> S Σ a


CHEMICAL ANALYSIS
(Treeton Experimental Filters)

SAMPLES ONLY

Sheet No. 14

1 6

Date

CHEMICAL ANALYSIS (Treeton Experimental Filters)

SHAKEN SAMPLES ONLY

Sheet No. 15

1 40977

Date |

Iurbid. Condu 8 · 3 8.3 × 3 ल : छ 8 · 3 िं ₹ 8 -8 7.15 8 . ब P.H. Sludge 5.5 4 0 0 18.5 1.0.N 6 . 2 (मञ्ज 4 38.0 38.5 3 40. C.O.D. 53.0 26.9 H 191-19 8 - 11 9 40.9 7.85 44.3 30.9 41/1 30.9 11.119 ल %Rem. 38 <u>क</u> -----30.0 <u>4</u> । । 25.6 2A . 8 9.84 33 · a 0 -8 K 24.8 31. S ल 40 591 35. 36.8 54· a 26.5 43.4 47.19 66.3 0 . 9 25.3 9 - 10 1 7 - 8 11-11 9-44 %Rem. 118 56 4 8 116 9 8 8 । 5 ब 130 ر ا ا 134 92 991 92 **5**/8 15 191. Id 411-13 75-4 58-7 **খ ∙** 9|৪ ह । भ 70-13 8-1914 59.4 %Rem. 194 19/2 23.8 101.3 83 · 8 411.3 70.0 4 a · 5 36.3 3 - CE11 511.3 711-3 1.3 P161-33 0・01 B.O.D. # 2.5 ع. ج 3 .6 **&** Ref. I N S 2 S 3 S 4 M 2 **E E 8** p 2 P 3 <u>=</u> S 1 Ξ

ONLY SHAKEN SAMPLES CHEMICAL ANALYSIS

Turbid. Condi 1 6 Date [1609]7] დ . ⊗ ਨ 8 . 8 Sludge 1.0.T Sheet No. 16 %Rem. Amm. C.O.D. %Rem. 35.9 45.3 53.0 ल ७ 1 28 9 190 **5**/8 80.0 %Rem. 75.15 83.7 33.8 41.3 20 168-8 a7.5 (Treeton Experimental Filters) B.O.D. ج د ک <u>ي.</u> 5 <u>ع</u> . و Flow Temp. Ref. p 2 P 3 P 1 NIF 1 S 3 5.4 2 S 1 S 2 IM 2 ₹ A 3

CHEMICAL ANALYSIS (Treeton Experimental Filters)	ANALYSIS serimental	IS al Filters)	**I	SHAKEN	N SAMPLES	LES ONLY	<u> </u>		She .	Sheet No. 17			Date	210977	6 177
Ref	Flow	B.O.D.	%Rem.	\$/\$	%Rem.	P.V.	%Rem.	C.O.D.	Amm.	%Rem.	1.0.N.	Sludge	Ŧ.		Cond
1 NF 10		20 156 3		DHIO		40 5a·0			38.0	8	0.15	2	7.3		
		0.08	8 -8 4	ख †	711.3	38.0	26.9						7 19		
		40.0	74.4	1	211.9	3 3 . 6	37.3						7.19		
· S 3		9.4	मारा प्र	9	37-0	। ।	5.84	目					7.9		
84	න · ර	37.5	भ · ८ ८	09	58·9	त्रवा <u>.</u>	1111		27.0	29.0	13.0		7.9		
I w		6119	8.09	34	16.7	33· a	36.2	目	目				9 . 8		日
M 2		25.0	0.48	8	8.08	117	6 6 6						0 .8		
[W] 3		4.5	42·3	† 19	56.3	। भ	b. 99						8		
W 4	ري د	8.98	83.2	08	45- अ	30·0	9 19		34.5	त्र - ज	0 9		7.9		
I d		103.5	34.4	154	0.0	48.4	Ь.9						8 · 0		
P 2		57.5	e · 89	196	0 - 0	म । म म	9 . 41						0 · 8		
P 3		3 8	79.2	1 2	0.89	34.8	5 3 3						8 . 1		
P 4	ع · 5	38.8	न्।	<u>P</u>	35.6	वर्ः व	9119		341.5	वि ।	0.5		8 . 0		

Sheet No. 18

Conde Turbid. 8 · 5 9 . 8 8.5 P.H. Sludge 1.0.T %Rem. Amm. C.O.D. %Rem. 5.3 391-17 214 ।। %Rem. 0 1 1 88 170 **5**/s %Rem. 78 · 10 0 - 8 E 4 83. 26.3 35.0 351.0 8.0.D. 20 ي د ا ر ا ا 2 Flow - NF P 2 P 3 Ρη 5 3 S 4 M 2 <u>E</u> ₹ 4 S 1 S 2 M

CHEMICAL ANALYSIS
(Treeton Experimental Filters)

AKEN SAMPLES ONLY

Sheet No. 19

9

280977

Condu 8,3 **η** . 8 3 - 8 জ • % 3 3 <u>ര</u> ≫ R 8 ÷ 8 · 8 . Sludge 0 8 1 S 1.0.N 36.2 33, 3 59.4 33. o 34.5 • ६ ए C.O.D. 48.3 38.0 H-1917 0.09 43.0 38-17 %Rem. 56. 48 -95 20 . 95 ॥ । १८ सञ् ४ 26.4 o · 9 € 0 40 60 0 35.2 36 · 8 32 0 24.0 ദ 8 21-16 311. 37. 30 0.0 0 0 28·6 14-3 25-4 0.0 2866 0.0 0.0 0 - 0 38:11 %Rem. ò 130 138 081 9 132 1 48 78 1 4 6 9 Ø 4 6 **5**/s 59 13 0 111-149 73.0 40.2 951·4 11-11-1 %Rem. 84-17 711.5 ∞ 3 + 4 761 74 89 7 7 43. 38 38.8 10a.5 25.0 117.5 43.8 20 46.3 48.8 4 0.0 9.86 56.3 26.3 B.O.D. 2 · 5 ज ल Temp. I N F P 3 P 4 S 3 p 2 S 1 \$ 2 S 4 N I M 2 M 4 <u>a</u>

300977

Date

Turbid. Conde 7 3 8 - 19 7.3 7.3 F.H. Sludge 1.0.N %Rem. Amm. C.O.D. %Rem. <u>.</u> 8 - 1 1 %Rem. 36.2 <u>∞</u> 73 138 88 **5**/s 13 %Rem. 9 II · 8 73.5 85.0 20 183·8 15.0 48.8 27.5 B.O.D. ري د س 2.5 Temp. Ref. - N M 4 FI P 2 P 3 Pl4 SII 5 2 S 3 S 4 M 2 E M 1

	-		1 6
CHEMICAL ANALYSIS	SHAKEN SAMPLES ONLY	Sheet No. 21	Date 05110717
(Treeton Experimental Filters)			

ල · % 7 · 8 0 · 8 b . Ł 8 8 7.5 7.5 7.9 0 - 8 7.5 0 8 0. 8 7-19 10-10-1 0 · h l 0.0 1.0.N .01 4414 ∞ 45. 9.15 20.00 31: 4.89 %Rem. 9.04 9. 179 60.3 4 .3 Ы 6 48. .1919 9 - 8 1 17.6 ત્રવ . હ 42.0 43.6 8 · 0 ~ 40 52 - 4 25 a 0 · 9 1 a5- a य० ः कि 00 1911 अ **१** <u>۳</u> ج 35.6 4013 9 - 11 0.0 9 199 33.9 98.1 38 - 1 3 y K 48.4 %Rem. 19. ò 388 100 1 व्यव **5**a 116 96 146 1 9 **8** 08 1 2 1 59 74 **S/s** %Rem. 89.3 0 1 18 96.19 83.2 86.3 88.5 82 म 38-2 B 14 1 F 9.99 g 8|3|-68 27.5 % % 117.5 % । । 101.3 ਨ -ਨ 20 8 - 8 9 1 711-3 3 - KE a5. o 711.3 S B.O.D. 27 113 ج ب ک <u>५</u> इ 2.5 Flow Temp. <u>e</u> - N S 1 \$ 2 P 2 P 3 5 3 S 4 PH

CHEMICAL ANALYSIS (Treeton Experimental Filters)	SHAKEN SAMPLES	ONIX	Sheet No. 22	ट्ट	1 6 Date 07110777
Ref. Temp. Flow B.O.D. %R 1 10	%Rem. 5/s %Rem. P.V. 30 114 8	%Rem. C.O.D.	Amm. %Rem.	T.O.N. Sludge	P.H. Turbid. Cond 8
	11				
3 9 5 5 5 5 6 M	68·2 9 37·8 [1]				
P4					

	Filters)
ANALYSIS	Experimental
CHEMICAL	(Treeton E)

SHAKEN SAMPLES ONLY

Date 121077

Sheet No. 33

Conde 9.19 7.15 ج 1 · ه 7.5 3.6 7 4 7 4 8 . 9 7 0 0 81 9 - 0 1.0.N 13. 4.199 43-8 · e e <u>०</u> - ह्ल 13.0 391. D C.O.D. 18 <u>ه</u> 0 5191 515 23.0 50.5 ₩. |o|9 8.8 8 · 6 h 11-164 27.2 %Rem. Ó 5a.0 () I h 43 - 6 h . ष १ म १८८ 8 - १९ ७ 40 56 6 भ - षट 9.115 ر ا ا ا ا ا ا 8 8 8 13.4 3 8 · 0 0.0 0 · 0 38.3 38.2 5.9 0 0 70 · 10 ह । । क 0 • 23.5 20.6 %Rem. 30 G 801 9410 104 186 880 136 440 1 8 40 80 84 136 **5**/s 46.17 73 · B 38.4 88.0 9 | 1 | £ 26.7 0 | 0 65-13 85 · 2 7012 711.9 29 - 11 %Rem. 109.3 130.0 8-64 47.3 20 2011.3 211.3 1,25.8 52.8 50.13 36·3 9.19 B.O.D. 146 رع د ک a. 5 8.5 Flow Temp. 2 P 2 - NF P 3 S 2 S 4 M 2 E ₩ 4 5 1 S 3 Ξ

1 6 1077 Turbid. Conde Date ल । । P.H. Sludge 1.0.N. C.O.D. %Rem. 34.4 %Rem. 8 4 1 व्यक 80 s/s 9.08 781-19 37.5 34.5 0.8F1 (Treeton Experimental Filters) B.O.D. 2.5 a.5 0 | 4 | 1 Temp. 0 111 1 N F P 3 S 4 \$ P 2 S 2 S 3 M 2 E . S 1 M 1 PI

11 - 8

4413

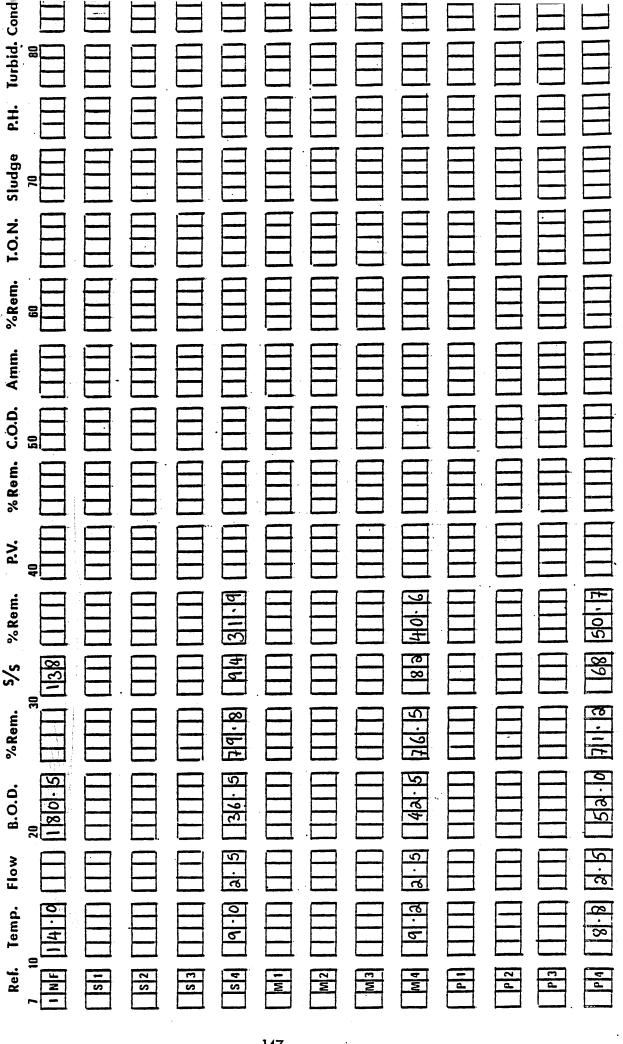
89

9.08

34.5

2 · 5

100


P 4

191011

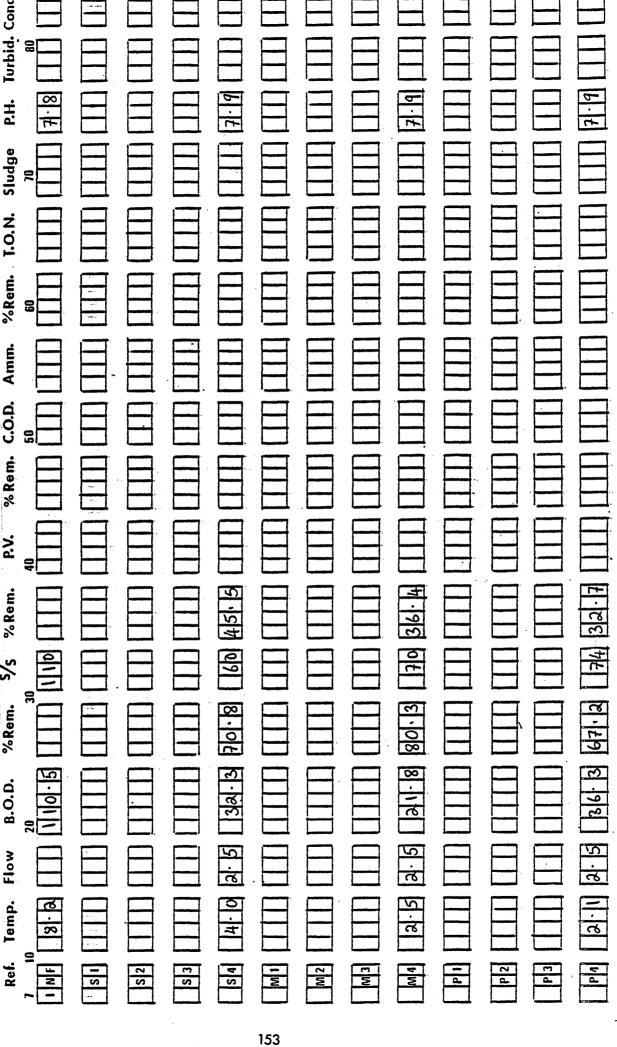
Date

Cond 8.3 8 · 3 8 . 3 9 - 8 8 - 5 ₹ • ਲ . % 9.8 8.4 . ∞ 8 00.0 رد د - 0 8 1.0.N <u>.</u> 13. _ 59.4 9.199 8 4 23. |·p|9 53.a 311.0 9 ∞ -----------٠٠ 1 | C.O.D. 75.5 1661-17 609 71817 9.59 60.2 78.5 %Rem. -63 1.17 -89 ·8 9 ह छिल a5 · 8 36.8 0 + 0 15.0 27.8 27.3 34.5 40 अञ् ।। 11-11 । क्ष P.V. 9 1 19 42, B 5017 0 . 11 1 60.3 42.6 9.97 20.6 9 . 9 11 - 12 9 %Rem. 9 -89 56 58 130 1 8 1 8 4 1 4 6 09 72 8 4 178 78 **2**/s ∞ 85.9 7 85 93.6 88.14 4 08 4 149 9.08 86.2 80 1 749.11 %Rem. 63. 20 1188-5 78.5 36.5 39.5 9-18 20 - 15 - 55 O 0 . 9 8 26.5 37.5 1.5 37 B.O.D. 9 ড ন্ত . જ 8 ત્ત્વ <u>ಹ</u> ಡ -13.0 Temp. 13. - NF \$ 2 S 4 2 M 2 **E N** M 4 P p 2 P 3 E d S 1 S

361077 Condi Turbid. Date ে ১ ≫ **ж** . 8 8 · 5 8 · 15 ₩ . 8 ± .8 7-17 8.5 **8** · **3** 5 . . 8 . . <u>.</u> <u>.</u>∞ Sludge 0 · th ? 0 - 61 დ • 00 .0 1.0.L Sheet No. 27 9619 341.5 %Rem. |-| | | 25.8 ત Amm. ٠ ٣ 34. 13: C.O.D. 0.59 521 56 W 53.3 9.19 199 54.7 0 %Rem. 58 17: 94 0 Ö ONIT 30 · 5 0 · 8 c 19 0 <u>०</u> : : : : वभ । अ 5181-5 96.5 ज्यमः घ 35.5 48.5 19.5 0 · h/8 29. O SAMPLES 4-169 0 । अ. । 40.9 53.0 24.2 33,3 0 .0 11 - 129 11 se 1 43.9 8 %Rem. 25. SHAKEN 8 0 1 133 001 50 0 + 9 1/1 8 116 314 8 6 74 ∞ त **2**/s 9 + 811.7 4 · 8 t 52. 3 1 68 %Rem. 8 . 8 9 h : | 0 | 70 B 81 · 2 13.6 191.8 73.9 11.169 39.5 38.5 159.5 85.0 19:5 20 36.0 53.0 33.5 55.0 64.5 147 · 0 46.5 (Treeton Experimental Filters) B.O.D. ع د ه ئ ئ S . 6 0 . 0 Temp. 14.5 9-01 <u>0</u> I N F M 3 ₹ P 2 P 3 P 4 S 4 臣 1 8 5 2 M 2 S

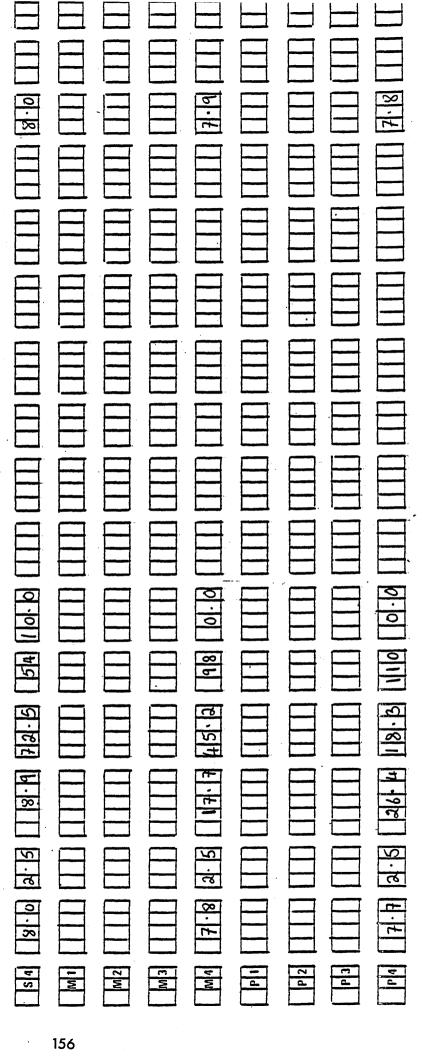
1 6 Cond Date 71.17 P.H. Sludge 1.0.N. Sheet No. 29 %Rem. Amm. C.O.D. %Rem. ONLY SHAKEN SAMPLES %Rem. **5**/s 40.5 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS Temp. 1 a · a Ref. I IN E 5 2 SI

7.8 8.0 7 · 9 55.7 38.6 41 ළ 9 98 134 39.5 त रुम 37 अप र 93.0 35.5 a. 5 3·6 ع ب ر ا ا 10.3 4 · 8 \$ 3 S 4 . P1 P 2 P 3 P M 2 E W m 4 Ξ 148

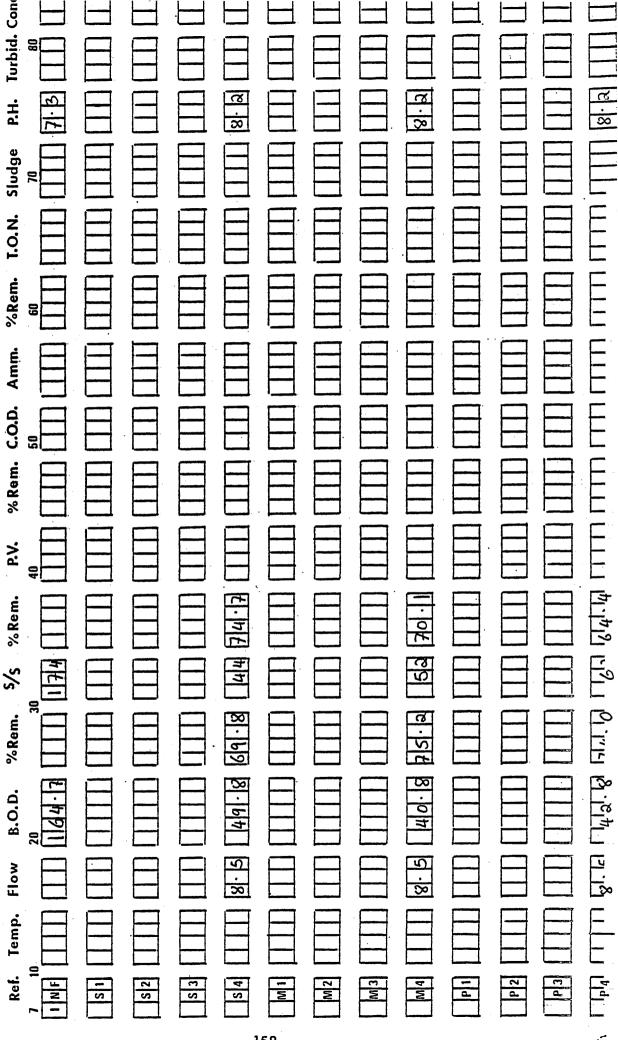

CHEMICAL ANALYSIS (Treeton Experimental Filters)	SHAKEN SAMPLES ONLY	Sheet No. 30	1 6 Date 81 177
Ref. Temp. Flow B.O.D. %	%Rem. 5/5 %Rem. P.V. %Rem. C.O.D.	Amm. %Rem. T.O.N. Sludge	P.H. Turbid. Cond
84 मिग वर्ड डिनेड			8 5
M 2			
E W			
M4 5.9 2.5 34.5 7			9.8
P1	구이· S [구의 내구· 8 [] [] []		<u> </u>


1 61 217 Date Sheet No. 32 ONLY SHAKEN SAMPLES (Treeton Experimental Filters) CHEMICAL ANALYSIS

Cond Turbid. 7.9 7-19 0 · 8 P.H. Sludge 1.0.N. %Rem. Amm. %Rem. 0 0 0 ó . जिस 811 081 9 %Rem. 9 50.0 4 99 52 52.0 20 8. # 5 36-5 8.0.D. <u>५</u> % ر الا ડ . જ Flow 7 - 8 0 - 6 \(\frac{1}{2} \) 8 . 0 1 Temp. I N F P 3 P 4 P 2 \$ 2 S 3 S 4 MZ - W M 4 P I SI <u>=</u>


CHEMICAL ANALYSIS (Treeton Experimental Filters)	SHAKEN SAMPLES ONLY	Sheet No. 33	1 6 Date [130178
	79		
Ref. Temp. Flow B.O.D. %	%Kem. 3/5 %Kem. P.V. %Kem.	C.O.D. Amm. %Rem. 1.O.N.	Jdge P.H. lurbid Cond
1 NF 8 0 1 158 0			
	•		
S4 2 · 6 2 · 5 4 0 · 5 7			
[E W			
M4 [3.1] 2.5 [36.9]			
b 3			
P1 13 D D S 14 G F	11		

180179 **Turbid.** Conde Date Sludge NO.I Sheet No. 34 %Rem. Amm. C.O.D. %Rem. ONIT SHAKEN SAMPLES %Rem. %Rem. (Treeton Experimental Filters) 8.0.D. CHEMICAL ANALYSIS Temp.


CHEMICAL ANALYSIS (Treeton Experimental Filters)	Sheet No. 37	1 6 Date 240278
Temp. Flow B.O.D. %Rem.	Amm. %	P.H. Turb

1 3087 Date Sheet No. 39

(Treeton Experimental Filters)

CHEMICAL ANALYSIS

1 6 | 190877 **Turbid.** Cond 11.13 <u>४</u> । a P.H. ळ Sludge 1.0.T Sheet No. 40 Amm. C.O.D. %Rem. <u>P.</u> 77.3 %Rem. 86. 20 ਲ = 88 **2**/s %Rem. 13-11 85. A 85.0 19.5 ا ع د (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS Temp. P 2 - N S 2 8 3 S 4 M 3 **8** PI S 1 Σ

8.3

19/8

व्यज्ञ- वि

1121.1

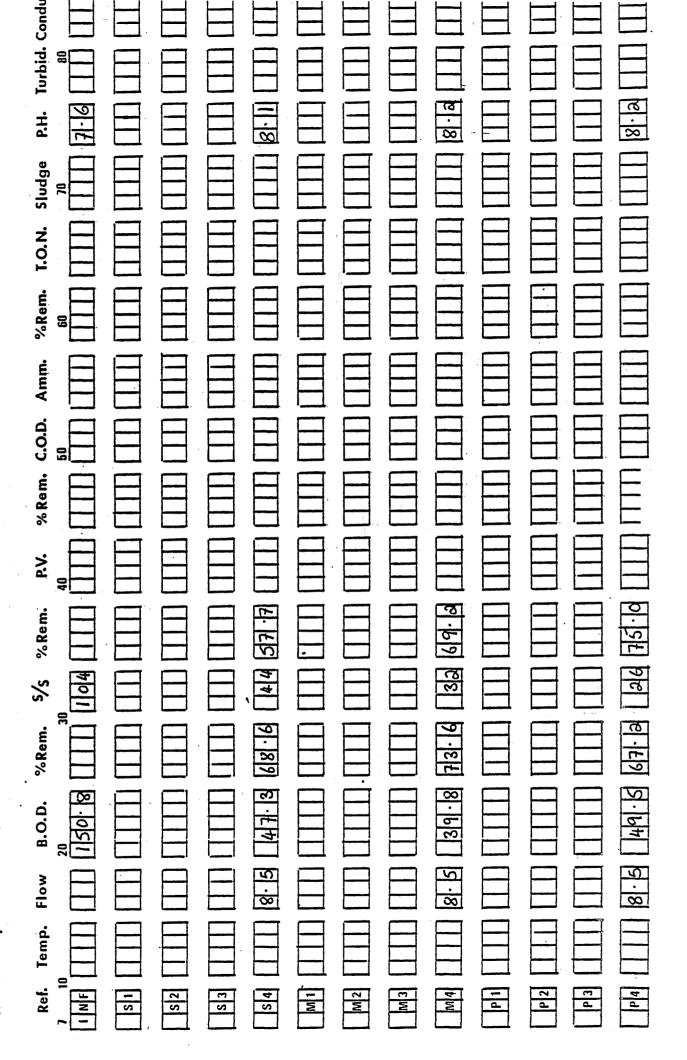
P d

9

1 6 Turbid. Condu Date 8.0 ○ ∞ F.H. Sludge 1.0.N. Sheet No. 41 %Rem. Amm. C.O.D. %Rem. 75.6 58.5 %Rem. 96 20 36 34 8 **5**/s 20 93.3 <u> 1</u> 11 11 11 %Rem. 111.25 20 151.0 9-135 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 8. 5 8 · 5 8.5 Flow Temp. Ref. N F P 3 РЛ 2 2 S₃ S 4 M 3 p 2 S 1 P

9

0209177


Date

Sheet No. 42

Cond Turbid. [S. 1.] . % Sludge T.O.T. %Rem. Amm. C.O.D. %Rem. P. < 11/2/12 79.2 %Rem. 11511 30 **5**/2 %Rem. 82 · 8 131.1.151 23.25 20 1135 · 0 B.O.D. 8. 1. 8 . 5 8 · 6 Flow Temp. 2 | | p 4 S 4 3 M 4 P 2 P 3 5 2 S 3 1 N F M 1 \$ 1

Sheet No. 43

1 6 090977

1 60977 Turbid. Cond Date ਕ • & ત્ય . & **-** 8 ⋅ 8 P.H. Sludge 1.0.N. Sheet No. 44 Amm. C.O.D. %Rem. P.< 90.6 93.8 871.5 %Rem. <u>ळ</u> ट 00 **5**/s 8 1817 14 89 . 6 89.5 %Rem. 17/1/1 117.5 20 168-8 1 7 8 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 21. 1 2 - 5 الم 15 Flow Temp. 2 Ref. I pld 1 N F P 3 S 2 3 M 4 E N S 1 4 S S

1 6 Turbid. Condu Date 8.5 P.H. Sludge 1.0.N. Sheet No. 45 %Rem. Amm. C.O.D. %Rem. 0118 %Rem. 0 22 **5**/s 3 89.6 13.4 %Rem. 20 158·18 10.5 16.5 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS ع ب ন্থ ন্য Flow Temp. Ref. I N F P 2 M M S 1 \$ 2 S 3 S 4 ۵

8.5

1817. 9

11. 11b

1151.10

ام . اد

1 pl4

р 3 9 Cond 3009177 Date 17.12 H-1E P.H. Sludge 1.0.T Sheet No. 46 %Rem. Amm. C.O.D. % Rem. 3161-18 131- M %Rem. EE 34 32 138 נויויי %Rem. 83.7 95.5 30.0 8 · 3 183.8 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 121 ع ب ع ب Flow Temp. P 2 I N F M 2 Р 3 <u>=</u> \$ 1 \$ 2 S 3 \$ 4 M 4

071017 9 Date Sheet No. 47

(Treeton Experimental Filters)

CHEMICAL ANALYSIS

Cond Turbid. Q ₩ 8.8 জ জ P.H. . Sludge 1.0.N. %Rem. Amm. C.O.D. %Rem. P. < 18131. I. 85 87-8 %Rem. 117 ر م **5/**8 19131. Iq %Rem. † 19 Ы 94 لام روراً. الماراه 20 91.75 0 :9 B.O.D. 기. 도 ع ب **2** · 5 Flow Temp. Ref. | |p|4 I IN IF P 2 <u>Б</u> E E M 4 E S 1 \$ 2 8 3 S 4 .166

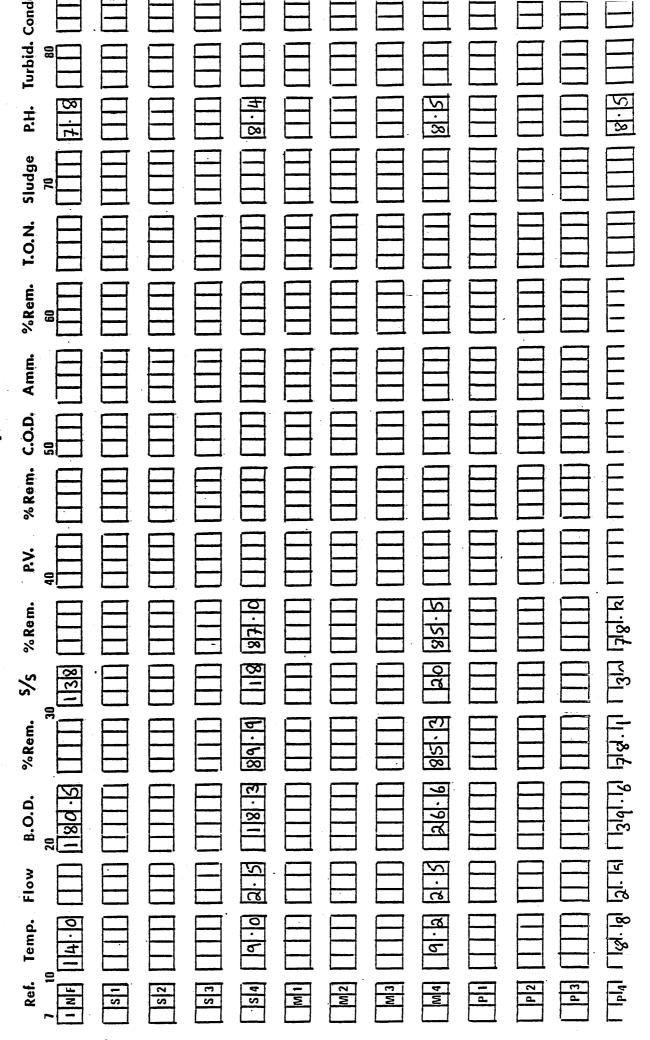
Sheet No. 48

Turbid. Condu 8.1 හ_• න Sludge 1.0.T Amm. C.O.D. %Rem. -1 -8 -8 | 1 | 6 88.8 %Rem. ಡ **S**/\$ 917.5 %Rem. 9 % 15.0 20 ||3|8|-19 1 **ब**े 6 3 B.O.D. 4 **2** - 5 <u>ي</u> 2 ج 5 <u>0</u> -0 - 1 | 1 14.0 Temp. Ref. P 4 P 2 P 3 I N F S 4 M 3 M4 S 2 83 S 1

1 6 [141] Date

9

2111 0777


Date

Sheet No. 49

Cond Turbid. ১ ৪ 8 - 11 8:11 P.H. Sludge 1.0.N %Rem. 11 .88 85-11 %Rem. 85. 9 1 ad 2 O । उप **5**/s 93 - 8 b . 1 b 95.7 %Rem. 110.7 20 71.15 B.O.D. 2.5 ج ج د <u>ي</u> ي Flow 1 5.16 15.4 115.1 10 15 3 Temp. I N F M 3 P 2 P 3 P 4 5 3 S 4 M 2 ₩ \$ 1 \$ 2

Date

Sheet No. 50

1 6 Turbid. Cond Date 131.16 8 P.H. Sludge 1.0.T Sheet No. 51 E C.O.D. %Rem. ניון ניו 9 - 88 11-66 %Rem. E 16 **%** %Rem. 95 ଅ 86. 3 1515 11-95 40.6 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 2.8 <u>~</u> Flow 10.10 9 - 8 10.3 Temp. । ਕ । Ref. P4 1 N F G. S 1 S 2 S 3 S 4 M 2 M4 區 <u>a</u>

Sheet No. 52

17 F

Date

₹ .8 8 . 5 \(\frac{1}{2} \) 9 | 8 <u>₹</u> 8 . 5 P.H. • 200 Sludge 8 -S 1815 0 0 1.0.L • 54.3 h - 115 4) 34. 16.0 3.0 7.0 Amm. C.O.D. 18101.10 70.04 0 = 1 & 58.0 80.0 35.0 59.0 62.0 0.99 62 · 0 % Rem. 58.0 0 74 0 - 0) 20 - 5 15.0 13.0 9.5 0 - 61 0 · ť l 50.0 19.10 याः व 1 0 . 0 321.5 ೦ -ಇ 7617 74 H 9 19.11 8 - 8 11.59 # -118 27.9 5 %Rem. 58.1 <u>∞</u> 53. 17/1 24. 40 N I 62 26 20 ਲ ਲ bt 30 911 615 36 22 98 **5**/8 2 19-148 9 1 | 8 т Н € + 5 ह्य । अ 58.9 83.11 69-6 97.8 %Rem. 11.98 9 11.18 -88 39 - 8 13.0 ق 3 8 - 11 8 - 60 1 ವಿತ 32.8 44.3 1 a · 3 . |-| S 8 . 8 6.3 8.0.D. 9 ह 21-17 ਨ ਨ |c|-|0|1| 10.3 13.6 3 Temp. <u>.</u> 물 p 2 P 3 Z S 4 S M 2 S \$ 2 Ь

1 6 Date [1811] 77 **Turbid.** Cond 8 - 6 8.5 P.H. Sludge 1.0.T Sheet No. 53 Amm. C.O.D. %Rem. 9 - 69 9119 %Rem. **ए** ५ 40 138 **5**/s %Rem. 136-10 <u>.</u> 2 11·0 27.3 150.0 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 9-8 8 . X Flow 5. a 4-11 Temp. INF p 2 S 4 M 4 E d \$ 1 \$ 2 S 3 E W <u>=</u>

8 · 5

1815 In

81/1

19.14

13/21.19

51. 41

[C] [2]

| |p|4|

p 3

172

Sheet No. 54

9

181

Date

Turbid. Conde P.H. Sludge 1.0.T %Rem. Amm. C.O.D. % Rem. P.< 64.6 73.8 %Rem. 73. 2 - 2 ල ල 23 # 8 **2/s** H, 19 %Rem. 8। ध 4.1/11 36.5 36.8 20 11951-9 B.O.D. <u>___</u>8 8 ح 0 ار Flow E Ref. Temp. 1p1 p 2 P 3 I N F S 4 M 2 <u>™</u> M 4 邑 S 3 \$ 1 \$ 2

Sheet No. 55

1 6 021377

Date

Turbid. Condu 181.10 P.H. Sludge 1.0.T Amm. C.O.D. % Ram. 75.0 711-14 %Rem. E 8 8 38 **5**/s 0. 0 ල ප 82.8 %Rem. 20 11 71: 44 4 B.O.D. 1 7 E. <u>ಹ</u> ಸ ع ا Flow 10 B Temp. 6 | 3 9 I N F 6 p 2 S 1 \$ 2 S 3 S 4 Ы Ξ 1

Sheet No. 56

निर्मा योग

Date

Cond 0 . 8 19-19 0 . 8 9 8 0 . 8 7 9 0 . 8 0 · 8 0 ·8 1 8 P.H. Sludge 1.0.T C.O.D. 6व्य न | 6|0|· |d 50 17 43.6 1615151 4-16 % Rem. 69-17 6.84 0.11 58.7 611-19 58.1 M. 1.1 1 | 5 · 6 31 - 9 0 0 1 † | | | 15.3 1111-5 17.5 8 · 0 ≫ ఁ — 8 ल -15.19 E131.11 14.3 30.6 59.2 38.8 63.3 59.2 8 8 %Rem. 9 40. 30. 20. (0) 1/1/8 58 4 0 40 8 4 7/8 89 9 58 98 9 18 36 **5**% 11/61.17 131: IH 421.3 72.0 61-17 30.0 30 0 174·16 78.9 26.9 11.15 • 17 60.6 1361.17 73.5 29.4 33.9 145° 0 27.9 20 |1|05|0 73.5 65.5 মুম : মু 8.94 4.90 B.O.D. <u>م</u> 8 1.9 ल स Flow 1 31. KI 4 4 Temp. 9.3 S 1 pd 1 N F M 4 S 1 ۵ ۵ o. S S S

1 6 Turbid. Cond Date 8 8 8 P.H. Sludge 1.0.N. Sheet No. 57 %Rem. Amm. C.O.D. %Rem. %Rem. **S**/S %Rem. (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS <u>ي</u> ع٠ ন ক Flow Temp. 2 Ref. INF P 2 \$ 2 S 3 S 4 M 3 M 4 FI I \$ 1 <u>1</u>

ल . 8

श्र- प्र

I pld

P 3

Sheet No. 58

1 61217

Date

Turbid. Condu 17.19 8 · £ 7 . 9 P.H. Sludge 1.0.N %Rem. Amm. C.O.D. % Rem. <u>~</u> 181.13 म । ७८ 781-17 %Rem. 126 20 10 4 5 **5**/s 86.3 %Rem. 94.3 95.9 0.1511 20 9 - म 6.3 B.O.D. ಹ . ಸ ٦ . ٦ Flow [--.8 _-<u>ه</u> د & . & 10-8 Temp. Ref. = P4 I N F P 2 P 3 S 3 S 4 M2 3 S 1 \$ 2 M 4 PI

Sheet No. 59

841040

Date

9

Condu P.H. 8 · · Sludge 131.10 1.0.F <u>-</u> <u>÷</u> 4.11.9 8 - 58 %Rem. <u>+</u> 8.01 0 1 ಡ Amm. ÷ 38· C.O.D. 18 · 18 39 .3 9 | 9 9 87.0 3 · 8 · £ %Rem. 0 Ź 511. 58. ò t 9: 10 1,01, 29.3 40.3 <u>6</u> . 3 · 8 । व 8 · 9 | - 1 14.3 1 7 8 ल 19 29. 11-14-11 9 . 1 8 9 - 18 30.0 83.3 70.4 13.0 5 - 18 9 ره 8 11 5 3 %Rem. 83 00 33 g 801 3₩ o त 76 8 ত 4 6 ಇಂ **5/**8 8 E . 47.5 9 6:0 8 3 8 9 - I - B 0.04 89.5 <u>6</u> %Rem. 98 .98 30. ल ह 56.51 71.95 । व्र : ३० 12.30 9 .3 LA: 4 95 9 9 7 70 35 88.5 53.11 <u></u> B.O.D. . 9 8 ى ى ك 3.5 Flow 5.5 Temp. 9.2 4 Ref. (I N F P 2 р = P.4 S 1 Ξ M 2 S တ S

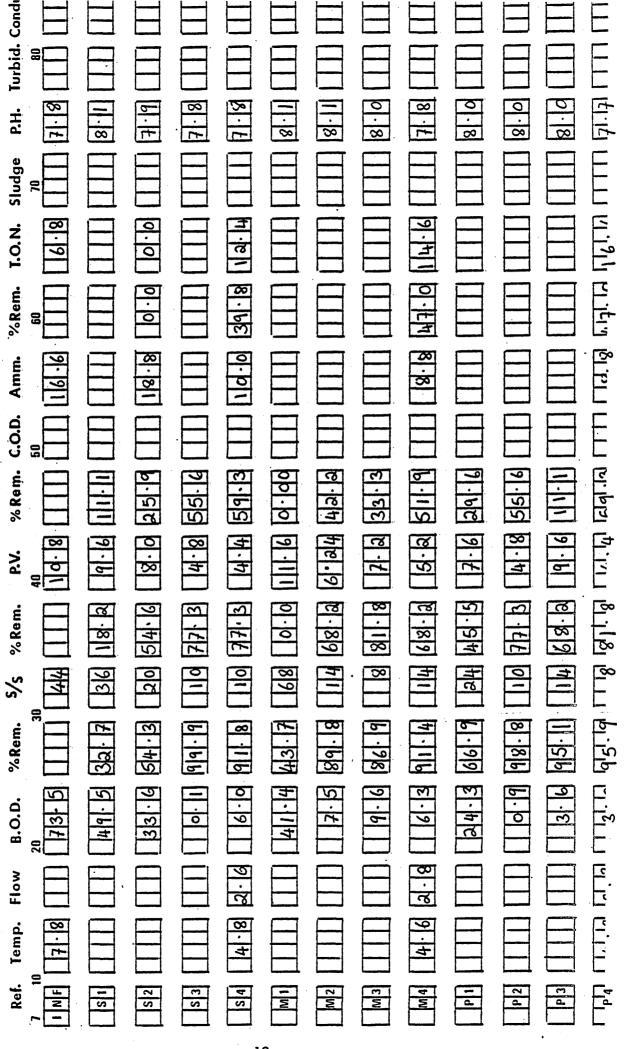
Sheet No. 60

Turbid. Condu P.H. Sludge 1.0.N %Rem. Amm. C.O.D. %Rem. 4.49 88 75-14 %Rem. विध 23 90 **5**/s म्। ।८| %Rem. 98.4 92.9 1/12/10 20 158 · O 1111-13 ع . و ع B.O.D. <u> 21. ld</u> 8 . 2 8 ع ک Flow 1 131. M Temp. 0 . & 9 . K 3. Ref. \$ 1 I pla I N F M 4 P P 2 p 3 S 2 S 3 \$ 4 <u>8</u>

(Treeton Experimental Filters) CHEMICAL ANALYSIS

1 180178

Date


Sheet No. 61

Cond **Turbid.** 171.19 71. 9 6 P.H. - t Sludge 8 - 1 1 工工 1000 9.0 1.0.T 8.141 %Rem. 37 · 🛭 3 -ի_խ 20·6 9-1-1 33.5 Amm. C.O.D. ווויבורו 75.3 808 %Rem. 1 4.3 40 0 4 <u>ہ</u> ج [1. [7]. 631-16 2.7 %Rem. 40 30 **5/**8 21.17 %Rem. . † | . --1 - B 20 1110 211.0 ر ا B.O.D. [] ત જ 11-15 Flow 131.1 0 + a · 5 ন্ত জ Temp. Ref. l P 4 I N F \$ 4 P 2 <u>p</u> 8 3 <u>В</u> **3** \$ 2 Ē S 1

Sheet No. 62

1 01102118

Date

Turbid. Condu 10 dal 718 9 Date ල . හ 8 · 3 Sludge LO.N. Sheet No. 63 Amm. %Rem. 9 . 89 %Rem. · 8 9 32 1 09 3 **5**/8 9a.a 0 %Rem. 93. 20 <u>ह</u> 7. B (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS ى ع 3.7 र र Temp. Š Ref. - N P 2 S 4 S 3 M2 2 M 4 SI S 2 F Ξ

8.3

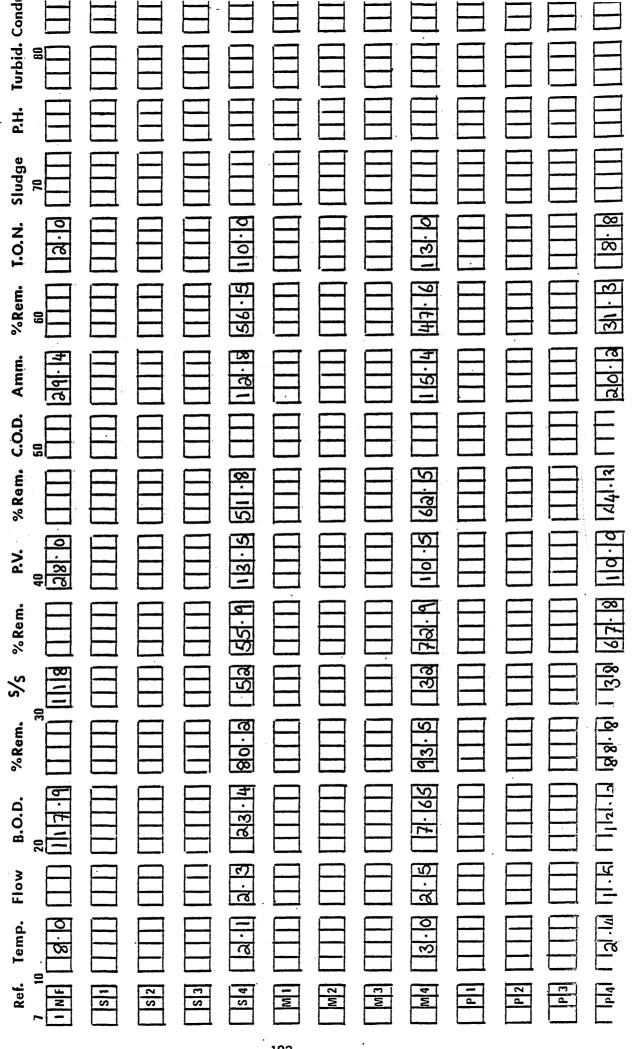
781.14

2

19181.131

[] [] [[E]

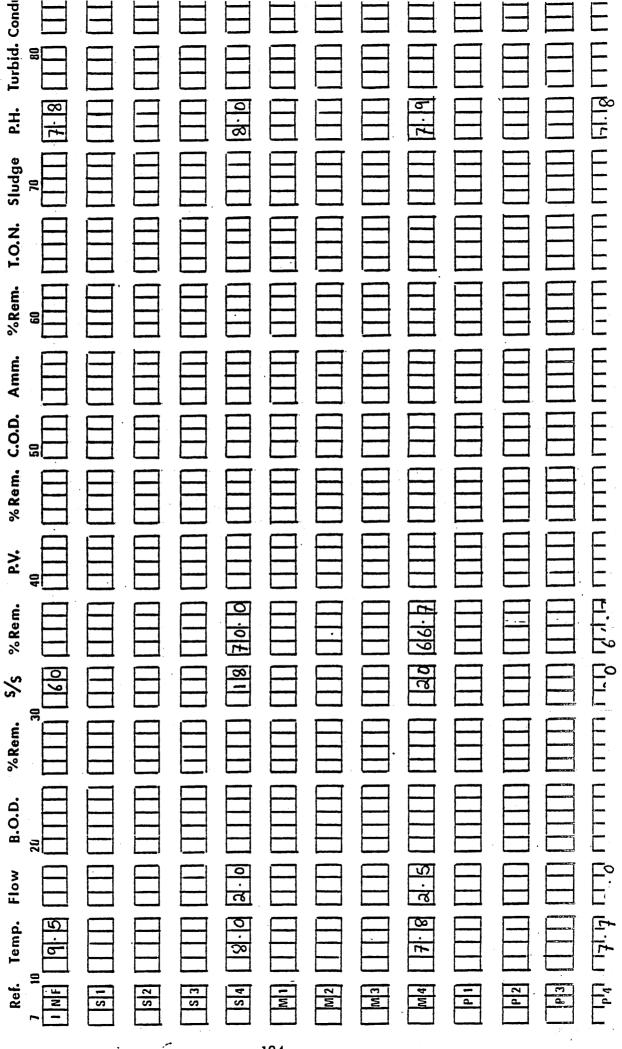
Д. П


131.17

1 1914

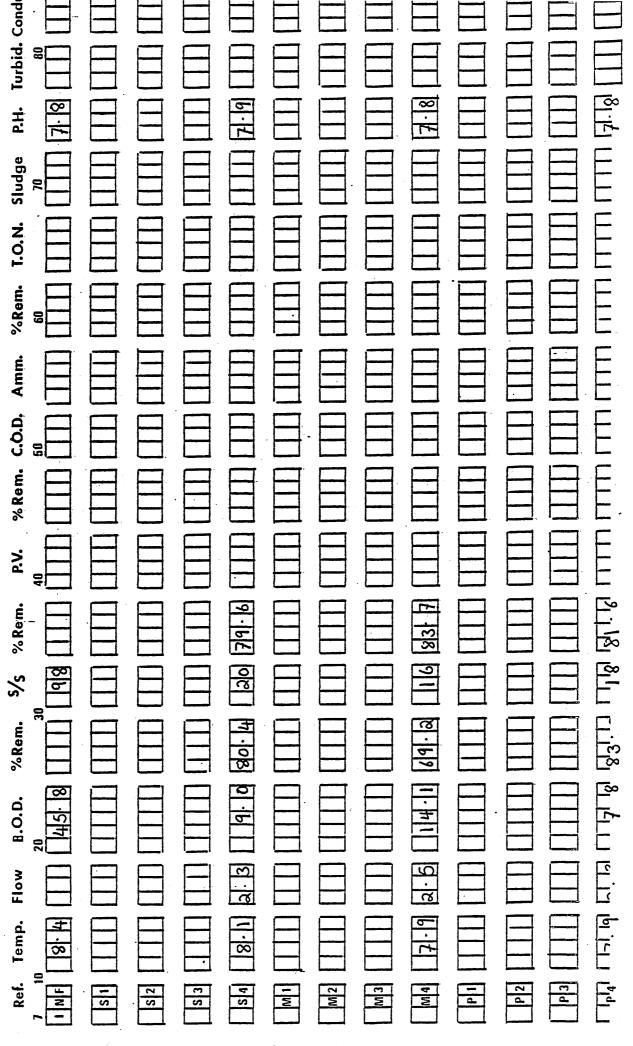
РЗ

Sheet No. 64


1 6 Date [1502]

1 त्र40त्र1्य Date Sheet No. 65

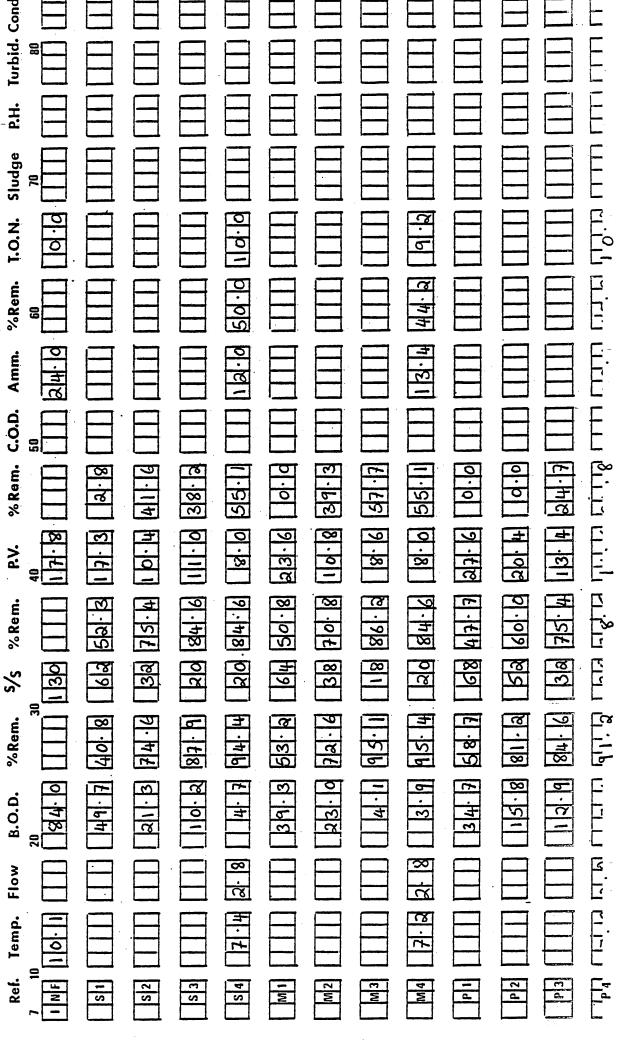
(Treeton Experimental Filters)


CHEMICAL ANALYSIS

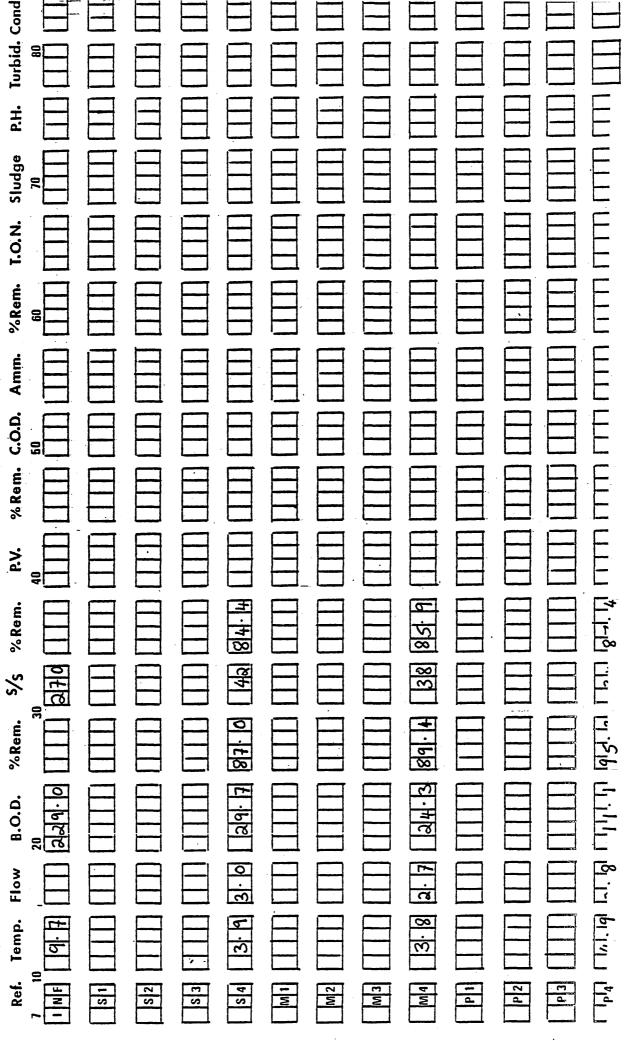
Sheet No. 66

1 6 030378

Date

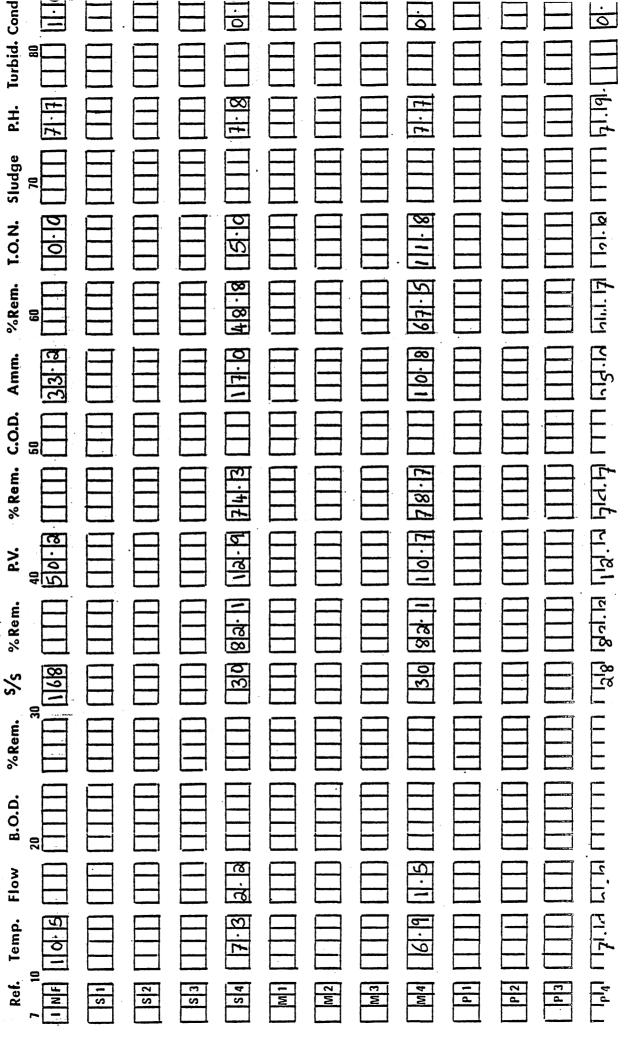

1 100378 1 6 220378 **Turbid.** Condu Date 17.19 7.8 σ F.H. Sludge 1.0.N. Sheet No. 68 %Rem. Amm. C.O.D. %Rem. 13.15 73.5 %Rem. 77 196 26 <u>ಸ</u> <u>8</u> **5/**8 191.1.19 %Rem. 95.8 90.0 1 18.17 98.0 9 - 8 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 14 <u>1</u> 1 2. 6 2. Flow 16.14 9.9 8.19 Temp. 8 Ref. I N F 194 **S** 2 \$ 3 S 4 M 2 P 2 P 3 S 1 2 M 3 PM 4

Sheet No. 69


9

290378

Date


1 6 Date 1140478 Sheet No. 70 (Treeton Experimental Filters) CHEMICAL ANALYSIS

Sheet No. 71

190478

Date

9

1005178

Date

Cond ि 17.19 3 - 8 8 . 0 3 · 8 7.17 0 .8 0 -8 P.H. 8. 1,1 <u>ь</u> 20 1 14 L 9 . 19 ر ا ا 0.0 T.O.N. 1.1.1410 69.5 %Rem. 1 8 7 13.6 © : :8 Amm. 36. C.O.D. 15-19-17 66.3 49:4 77.8 49.8 53.A 35.4 56-4 %Rem. 1119 37· 12 25. 191.18 24.3 ر ا ا ا = \ \ \ \ \ \ \ 9.3 17.6 151.17 1 d · 6 ন জ । 8 । र 5.4 <u>-</u> 18101.1J 2 5 70.0 62. S 25.0 20.0 5a.5 50.0 47.5 60.0 51.0 S %Rem. 72 135 38 32 76 60 <u>ಇ</u> <u>†</u>9 38 4 0 42 30 08 a 4 †ı . 188 11/11/11 %Rem. 86.7 4 - 68 0 - K3 81.3 94.8 95.3 **86** P 9 56. : :-:8 59. 90.6 20 238 · 6 ا ا الم 31.8 44.17 ल • • 0219 311 a a5.2 ल B.O.D. 12. 4 4 43 त्र 3. 1. ر م <u>ه</u> ه 9-19 Temp. 13. P 4 N F P 2 P 3 \$ 2 S 3 S 4 M 2 S 1 Ь

Sheet No. 73

Date 11910517

Turbid. P.H. 9 19 ا ا ا Sludge 5 1.0.N. C.O.D. %Rem. P.\. 9.179 53.5 130 46 <u>0</u> s/s 30 74.0 79.B 20 20 20 3 78.5 57.9 3 B.O.D. 72. 3 اک Flow . رح ල | | <u>6.</u> . Temp. Ref. M 2 Z F \$ 3 S 4 P 2 \$ 2 M 3 S 1 <u>.</u> M 4 E

121.14

1631.11

1413

101.13

183.B

3.1

2

._∞ ._.

F'd L

<u>a</u>

1 240578

Date

Sheet No. 74

Turbid. Cond ب ب Sludge $\frac{\cdot}{=}$ 20 9 . 4 71.6 1.0.N 40.6 3 a · S Amm.) |-| C.O.D. 47 2 **ल** - 17 | 7 % Rem. 211.0 <u>ನಿಶಿ.</u> 40 399 · B 4111 42·9 %Rem. 99 **H9 %** %Rem. 74.19 69 2417 0 74-7 11-129 B.O.D. <u>ल</u> Flow Temp. । **ब्र**े 5 13 Ref. I N F \$ 3 S 4 **8** P 2 \$ 1 S 2 . M

· · ·

|-| &

भ । । ।

4.14.19

PI. Polé

37.5

170

16161. KI

ि। शुर्जा ।

न. म

4.111

plq1

p 3

Turbid. Condu 290578 Date P.H. Sludge 1.0.N. Sheet No. 75 Amm. C.O.D. %Rem. 19 F 1 - 1 = 9 %Rem. 50 153 36 **5**/8 %Rem. (Treeton Experimental Filters) 8.0.D. CHEMICAL ANALYSIS ह ह अ. व Temp. 18: I N E P 3 \$ 3 \$ 4 P 2 M 4 5 2 <u>=</u> M 2 M 3 P

ויויייו

۳,

P4

1 090678 **Turbid.** Conc Date P.H. ا ا ا ا 0 0 0 <u>ь</u> 0 Sludge 1.0.T Sheet No. 76 %Rem. Amm. C.O.D. E %Rem. 13/21 69 .3 177-3 %Rem. 0.7 34 46 150 **5**/8 %Rem. 181 3 - HE लि । ज 55.5 (Treeton Experimental Filters) 20 253·0 B.O.D. CHEMICAL ANALYSIS Ė 3 - 0 2.5 Flow 6·h 101.17 8 . 8 Temp. **=** Ref. I N F P 4 \$ 2 S 3 S 4 M 2 <u>R</u> M 4 P 2 6 S 1

1 160678

Date

Sheet No. 77

Turbid. Cond Ö . 0 ö 0.75 0.55 70 0 - 25 1 : 00 Sludge 1.0.T Amm. C.O.D. %Rem. 8 · 89 73.4 %Rem. 34 40 36 **5**/s %Rem. 74 · 0 611-4 20.7 27 · 6 18.6 B.O.D. J. 6 8 ・ で a · 5 Flow 1111111 ਲ ਲ । 0 ල = 13.5 Ref. | |p|4 P 2 РЗ N N S 4 M 4 E E \$ 2 S 3 S

1 6 Date 전106귀용

	Ref.	Temp.	Flow	B.O.D.	%Rem.	s/s	%Rem.	P. <	%Rem.	c.o.b.	Amm.	%Rem.	1.0.N	Sludge	P.H.	Turbid.	Cond
	- INF	115.3		20 20 20 20 20 20		0001		38.1			3210		0 0				
	\$ 1			न्। मि	9 . 4	128	0 . 0	28·4	25.5						目		
				43.2	8 . 08	. 0#1	0009	24.5	35.7								
	S 3			30.6	86.4	क	72-0	15.5									
•	\$ 4	114:0	सं र	135.8	5.88	78	741.10	16.3			0 91	50.0	0. 911				
197	<u>R</u>			125.7	44.0	18	22:0	30.6									
	M 2			h-63	72.2	550	50:0	20.5									
	M 3			126.11	75.0	8 7	520	6 8 1									
	M 4	13.9	3.0	139.1	85.7	8	72.0	9-911	56.4		<u> ७०</u> ०	37.5	13.0			日	
	P I			14वेव	£ . 98	89	32.0	32.5	114.17								
	P 2			135.0	9.99	4	58.0	25.9	32.0								Н
	<u>G</u>			0.84	78.6	30	70:0	1 9 8	48.0								Ш
	P 4				1.19r1			19,1	<u>इमा</u> प	E	191.17	18.18	11.15		E		L

Sheet No. 79

280678

Date

Cond 0 0 . 0 $\frac{\cdot}{\circ}$ 0 ö Sludge <u>0</u> 0 • 1 7 4 9 - 61 0 त्र ار ارد 0 . 7 1.0.T ö 0 0 0 <u>.</u> 1 0 0 <u>ي</u> 3 0 <u>0</u> 2.3 54.6 8 - 9 0 0 1 9 1 ल --[13.6] 17.3 ₩ • 7-1-1 8 9 9 · 8 ! 0 <u>×</u> . 9 <u>÷</u> 1,161.13 48.8 411.9 46.5 34.9 00.0 ल । । । 391.5 4119 %Ram. 30·2 2 1.177 1 181 14 20 · 8 ३ ३० 11-14 119.2 ।। १। 0 · 0 e 30.4 40 34. 44 34· 0 म - ष्टष्ट · 8 46. 1,151,14 50.8 72. I 80·3 ० - ९ 57.14 9.14 67.2 10·6 7a. II 0 %Rem. 59. ۳.// 8 <u>ය</u> 40 36 34 9 52 34 भिष्ट 9 । अ 713 **5**/s 101-11-12 F - C8 87.8 %Rem. 721.8 34.4 38.8 85.2 1191 83. -89 -87 78 135. FI 95.4 25.2 ठ 24.3 1191 1 45.6 30.9 34.8 39.6 न। । ए 1145.5 0 . 68 B.O.D. ع · و 2.8 <u>ئ</u> [편] [] 13:7 Temp. 13 15/ | p|d| p 3 I N F EM M 4 S \$ 2 4 Ъ S S

Date

	Ref.	Temp.	Flow	B.O.D.	%Rem.	\$/\$	%Rem.	>	%Rem.	C.O.D.	Amm.	%Rem.	T.O.N.	Sludge	P.H.	Turbid.	Cond
	1 INF	15.3		20 1173-5		30	目	36.8	目		27.0	99	ල -	0 1 0 1	7:5	8	
	S 1																
	S 2																
	S 3																
· 1	\$ 4	13.3	2.8	19e	85.0	Q T	177.8	9.0	75.5		15.a	44-11			•		0
199	M										目						
	M 2																
	M 3																
	M 4	13.4	ह ह	27.6	84.1	90	75-9	8.5	76.9		1 9 . 8	24.3					<u>.</u>
	P1																Н
	P 2																
	В В																
	l bld		नि.।	1.4.11	1 2 2. 9		59.3	9.0	75.5		27.0	17.4	o ल		8 . 11		宣

9

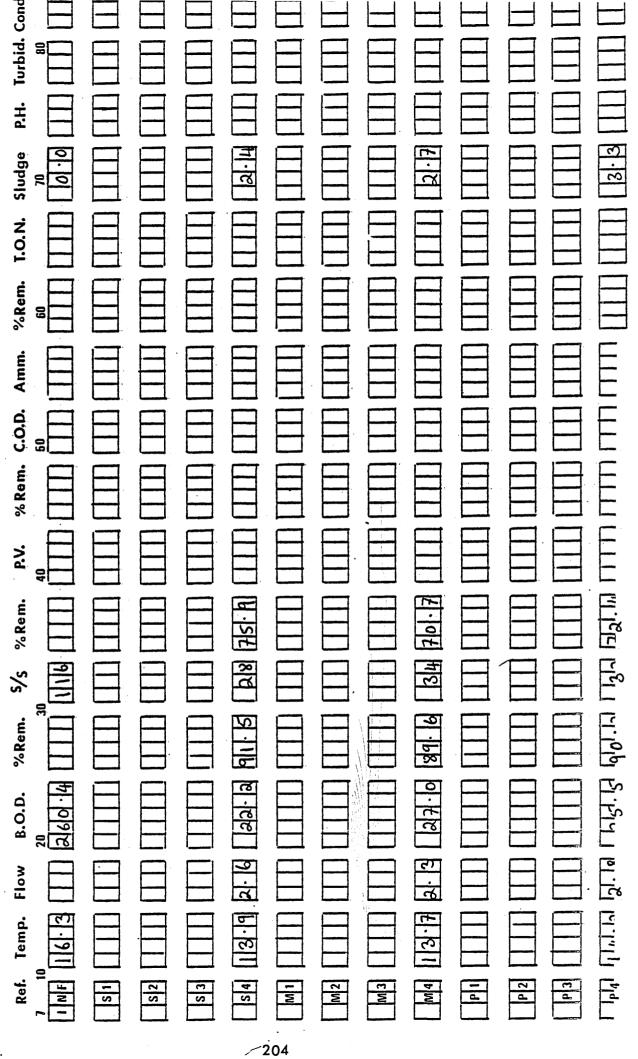
11 1907 18

Date

280718 **Turbid.** Cond Date P.H. <u>이</u> 근 h. 1314 00.00 Sludge 9 ò I.O.I. Sheet No. 82 %Rem. C.O.D. % Rem. 1817.13 8a. 5 ত %Rem. . පුන 1911 114 08 **%** 2 Rald. H %Rem. 0.98 9 · 98 130 8 - 8 - 3 - 8 - 3 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS ع . لا ج ج 8.141 0 141 Temp. 0 18 HI Ref. I N F l pl 5 2 S 3 S 4 M 2 . M3 <u>8</u> P 2 P 3 S 1 Z PI

1 Date 020878

Ref. Temp. Flow B.O.D.	%Rem.	5/s %Rem.	P.V. %Rem.	C.O.D. Amm.	%Rem.	1.0.N.		P.H. Tur	Turbid. Con
1 NF 10 20			33- H	60 	99	H C			
8 . 9 1	8 73·11	34 58-5	11511 53.4	मा । ।	0 .0	ल ८			当日
S 2	2 89 · 0	त्रव मंत्र व	। ब. १ ६० व	<u> </u>	25.5	8-1			日日
S 3	1 888	36 56.11	13.2 59.3	7 111	F 09	e · 8 ·			日日
0.811 2.3 118.0	0.09 0	21516 PIS-16	13-44 19-18	0.6	0 -69				日日
	13 48:11	40 511 a	211-5 33-6	29.6	0.0	88			日日
M2	9-1-18	22 73 3	1 2 1 62 7		0.7				国
M3	ह । । ७ । इ	8-128 01	e · † 9 9 · 111	13.4	53.8	20.3	-		国
M4 15.3 3.0 112.0	0 93.11	20 75·6	13.4 61.7	91911	42.8	1 · H			日日
P 1	19 445.17	50 39.0	117.8 45.11	97.6	<u>।</u> । ।	0 - 1			国日
P2	5 83.6	118 781	9 (59) 8 111	27.8		8 -			
b 3	5 · Eb . H	112 85.4	112-4 61-7	e · 81	37.4	9.01			当日
1.1911 14.15 181.1/1/1 1/91	. In 18191. In	FI 1018 121 13	4.112 4.1.1	البري اللال	। चित्रः दि	8 . 11			国日


1 60878

Date

Sheet No. 84

Turbid. Cond P.H. 11 5 1 1 · 6a 0 0 11-1915 Sludge [마 0.0 20 ವಿ 1 9 1 1.0.T 41.194 11-149 %Rem. 118-17 Amm. 190 C.O.D. 209 1 70 64.13 0|-|19 % Rem. 8 9 4 111.10 8 - 111 1 व . 6 35: 6-148 83.0 791.13 %Rem. [7] 106 23 <u>%</u> **5**/s 19/41.13 %Rem. ٠ ع -88 34.6 2071.0 16.5 B.O.D. ٠ ١ ල ල 3 d 4.181 13.9 13.5 Temp. 1 1914 I N P 2 <u>a</u> \$ 2 S 3 S 4 M2 <u>8</u> M 4 S 1 Σ

9 250878 Date 0 0 **Sludge** 1.0.N. Sheet No. 85 %Rem. Amm. C.O.D. % Rem. %Rem. **5**/8 %Rem. 20 2160 · 4 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS Flow Temp. 16.3 I N F

3.O.D. %Rem. 5/5 %Rem. P.V. %Rem. C.O.D. Amm. %Rem. I.O.N.	%Rem. I.O.N. Sludge P.H. Turb
7 10 10 20 20 30 40 11 10 10 10 10 10 10 10 10 10 10 10 10	
ST	7.5
S 2	311-1
S3	34.8
जिन १५८१ वर्ष वर्ष वर्ष वर्ष वर्ष वर्ष वर्ष वर्ष	2हा अ
है जिंग जिंग जिंग है हिंग डिज विसंत है जिंग जिंग जिंग जिंग जिंग जिंग जिंग जिंग	- B
_	11-41
M3	45.7
M4 15-15 अ. 9 38-7 86-7 110 89-4 17-12 64-12 10 20-12 49-3 5-18	क्षिव - उ
िमा	यड ।।
P12	9 7
[P3 [40.3
16-11 2-8 35-4 87-8 191-5 16-0 66-7 110 211-3 46-17 4-18	46.7

Ref. Temp. Flow B.O.D. %Rem. 5/5 %Rem. P.V. %Rem. C.O.D. Amm.	P.V. %Rem. C.O.D, Amm. %Rem. I.O.N.
1 NF 16-11 20 40 150 150 40 50 50 50 50 50 50 50 50 50 50 50 50 50	
	· 0 32 · 9
ा । । । । । । । । । । । । । । । । । । ।	7 26 R
11	वाउ व ५ 8 भ
मां हिला हिला हिला हिला हिला हिला हिला हिला	11-13 118-16 518-17 13910 IN-18 1311-10 17-13 1
ह लाग । । । । । । । । । । । । । । । । । । ।	30.2 32.9 [] [] [] [] [] [] [] [] [] [] [] [] []
	13 24-2 46-2 11 33-0 10-3 11-8 1
	ाव अ० । इसमा
011 6183 8181 E1919 613 11-1814 81-41 61-41 61-61 61-61	18.5 58.9 110 25.0 32.11 4.4
	311-8 29-3
	🛮 🔛 ११। १८ हा हा हा
	· 0 22 8 49·3
14-4 61 152-5 82-11 46 69-5 1810 60-10 190 27-6	0.09 0.81

1 a90978 Date Sheet No. 83 (Treeton Experimental Filters) CHEMICAL ANALYSIS

Turbid. Conc P.H. 0 - 135 <u>।</u> 0,0 Sludge %Rem. 17151.TA 11-148 %Rem. 79. । |अथ| 8 88 **5**/s 19101. KI 8 - 98 %Rem. 90. 4.1.11 15.3 154·a 20 h B.O.D. 17.12 5.5 5,3 1121.19 13.0 12 · 4 15.4 Temp. I N F S 4 Tp1 5 3 \$ 1 S 2 <u>ε</u> M 4 p 2 P 3

1 041078 Date Sheet No. 89 (Treeton Experimental filters) CHEMICAL ANALYSIS

Conc P.H. ス . ぞ P 0 Sludge 3 | KI. |Z 7 8 8 0 1.0.N. Ŕ 4.11 9.0 291.5 %Rem. त्रान् । ल 0 22.8 23·14 Amm. 33. 14/4 C.O.D. 340 548 न्र विष 1,1515 59.2 8 11-6 8 - 119 34.7 5 a. a 64.5 9.49 58.8 25.0 8 %Rem. 3a-1 1.5.18 29 । ष्ठ 16. a 9 - 8 1 4 - 1 8 -8/ 8 * 117-14 ب ! اح ا (6 ۰ م 3/1.0 451.6 34-2 1819 1 t .09 8 · 6£ 11-18 8-16/2 <u>-</u> ਲ 40 5 11 - 69 82.1 4 %Rem. 51 14 111 34 30 48 30 34 **S**R 99 30 73 100 38 1 68 **5**/8 1819 8 C · 3 35.7 82.6 b । म8 541.2 8-129 77-14 32. o 75.3 8a.6 %Rem. 19E 61.1-11 | 4 d | 3 105.6 74.1 3118 148·a 40.2 541.3 34.8 5 व्यउ० म 517-10 156.6 B.O.D. 4.5 50 Flow 9.18. /। ब · ब Temp. Ref. I N F 1 p1 P 2 P 3 S 2 M 2 M 3 M 4 \$ 1 S S d

1 6 201079 Cond Turbid. Date P.H. Sludge 1.0.N. Sheet No. 90 Amm. C.O.D. %Rem. P.V. 0-08 73.8 80.0 %Rem. ار ارچ 160 4 1 32 **5**/8 8 विक्षाः प्र %Rem. 4 O B 125.17 25.8 (Treeton Experimental Filters) 20 B.O.D. CHEMICAL ANALYSIS Flow Temp. 2 Ref. Ipl4 S 3 S 4 M 2 **8** P 1 P 2 P 3 1 N F \$ 2 <u>E</u> SI

2510178

Date

9

Cond \equiv Turbid. P.H. Sludge % ⊗ 3.8 ය හ 3 ಡ ന്ദ Q B त्व 9 1.0.N <u>.</u> $\dot{\equiv}$ <u>.</u> <u>.</u> · 0 20.3 0 · 0 23.5 0 . 0 %Rem. 23.5 S 0 5 30 Ö · 8 8 24.4 30.8 33.0 <u>カ</u>:こ 28.0 33.8 320 23.4 23.4 Amm. 38· 37. 30. 0 09 C.O.D. 50 550 1/11/11/1 33.8 62.5 631·1d 37-19 49.0 4 · E 9 53.4 3515 59.5 t .09 %Rem. 35 1151.18 17. a 29-6 æ ∞ 0 - K 1 28·S 23 . 4 9 . 8 1 8 . 9 1 30.4 45. <u>۳</u> . ५८ **FI3J.**居 9.19/ 444-11 11-12 65.9 7 a- 11 8 - 85 11 -16 9 52.A 751. p ⊒ - ਲ *⁄* 8 %Rem. 36. ीप्र। <u>3</u> 4 38 94 56 98 49 34 38 72 9 **%** 13(이왕.1시 86.3 84.3 511-8 35.4 64.7 %Rem. 34.5 55.3 ±|0-.98 94. 99 - 6 8 .3 34.5 1201. h ਲ -ਲ -50.7 34.8 । अ । 38 9 151.B 64-17 8 8 8 2511.4 341-6 B.O.D. 년 년 년 <u>o</u> *ल* Flow 5 <u>ह</u> Temp. 9 <u>.</u> Ref. р T'd M 4 p 2 1 N F 3 4 M 2 릅 S S S S

1 6 Cond \equiv $\dot{\overline{\mathbf{x}}}$ $\overline{\cdot}$ Ξ ÷ ÷ Ē Date 8 . 9 7. 2 7.3 9 · 6 7.3 7 · 3 7.4 111 3 11/ <u>*</u> 5.5 0 . 0 8 (5 Sludge 2.4 3+0 9 11-4 9 - 0 9 ٥ Ø ত 80 I.O.I सं <u>:</u> त्रं 0 Sheet No. 92 26.3 ي ع 19.3 0 0 25.7 0 · 0 <u>ਰ</u> ਨ 0.0 2511 11 · 11 c 9.11 7 5 27.6 25.8 34.0 36.0 31.8 34.0 37.6 9 35.0 3|3.0 Amm. 3 :: 36. 798 벌 ठ C.O.D. 338 25 95 68.9 6.11/ 7310 38.9 20.5 73.5 3610 40.3 72.4 47.9 4 37.1 %Rem. . 9 1, 2 27. 8 13.5 27.3 25.9 12.0 1111-17 34.5 22.6 36.5 43.4 : : : ٩. > 1/1/19 631 3 35.0 63.3 25. o £ 199 30.0 35.0 1999 55.0 411.7 3617 %Rem. 1/1/1 40 4 4 176 44 48 54 90 70 78 120 78 0 **5**/2 4 1d/.1.1pl 36.5 511.16 88.7 %Rem. 40·ld 90.8 84 · a 38.4 82.9 9 . 89 64-11 84.1 ਨ ਲ 8 1 191. 18 1 26 - 6 44.7 166.2 20 2611-6 156.9 50.7 41.4 1611-111 29.7 93.9 (Treeton. Experimental Filters) 7 8.0.D. 4 1 CHEMICAL ANALYSIS ر ک 14.17 5 · a 1,131.1,1 3 + 13.5 Temp. 8 N F 1_p1_q1 \$ 2 <u>ج</u> M ۵ ۵. <u>a.</u> S S S

9

81111111

Date

Sheet No. 93

Turbid. Cond 200 BB 34 20 3 P.H. Sludge 1.0.T %Rem. Amm. C.O.D. %Rem. <u>P.</u> 80.8 63.5 63-5 %Rem. 20 38 101 38 **S**/S 86.3 %Rem. 79.2 911 20 26 · 8 53.4 ज। · 6 35 · 1 B.O.D. 5.6 5.6 9 - 4 Flow Temp. 1 a∴ a 12.1 13.1 Ref. - N F S 4 P 2 ЬЗ P 4 S \$ 2 S₃

2911178

Date

Sheet No. 94

9

Cond · 0 . 0 0 0 0 · 0 <u>.</u> <u>.</u> o. 0 0 Turbid. 40 अ स ० 150 8 7 9 091 99 43 95 36 9 ਕ ਲ Sludge σ 0 3 ٠ ر 8 . / 0 <u>о</u> <u>о</u> 1.0.T · 0 <u>ග</u> 6.9 119-19 1 m <u>\$</u> 30.6 36 . જ 88 29a C.O.D. 154 425 [clg]. 1/1 16-3 3119 621.2 5616 18:4 49.6 25.0 4215 82 · 6 55.5 28.1 %Rem. 181.1 3 3 4 26.0 9 - 61 30.8 b . 191 36.9 ∞ 45 · 2 3a. 5 11-11 3 ao · । 38. . ਕ ਫ P.< | Q | | | | | | 78.6 £ 199 40.5 6119 9 - 8/2 42.9 F 1919 45. a Ł 1 %Rem. 35. . 99 35 1911 3 2 50 49 ळ त 46 28 8 8 = 54 78 48 28 s/s 9149 84.0 77.6 o - 8 h 0 -89 %Rem. 28·4 87.9 79.4 4 4a. 74 8 8 8 1361.12 . a5 · a 46.8 9 . 99 208 · 2 S 4 0 120.3 42.9 1 -641 O .80 B.O.D. 198 4 8 5.3 <u>১</u> 7-4 171.15 7.7 p 3 N F 7 4 <u>-</u> S S S S

9 81978 Cond Date Sludge 1.0.N. Sheet No. 95 C.O.D. %Rem. 17-1-17 8्रथः । 76.11 %Rem. 130 33 त्रम 134 **2**/s 19/21. 12 %Rem. 92.5 9.3 (Treeton Experimental Filters) 11/2-2 # 88: B.O.D. CHEMICAL ANALYSIS 51.17 51.7 0 & b. 121 স স 9.5 Temp. I N F 5 2 \$ 3 S 4 P 2 <u>م</u> S 1 ₹ 4

Turbid. Condu 1 31278 Date Sludge 1.0.N. Sheet No. 96 Amm. C.O.D. %Rem. [-[-] 17.18 84.11 %Rem. 17 28 07 11/8 83.6 90.7 %Rem. L. 111 20 107·4 10.0 9-141 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS Flow Temp. 1 p1 I IN F S 2 S 3 5 4 M 2 2 p 2 6 5 1 M 4 F

	Filters)
. ANALYSIS	Experimental
HEMICAL	Treeton E

1 281278

Date

Sheet No. 97

Conc 9 . <u>.</u> . ÷ ö ं 0 0 0 0 0 0 P.H. 11 S 8 · 1 Sludge ∞ ∞ 7 3. 0 -8 0.19 9.4 . 8 8 . 4 T.O.N. 54.3 85.7 9 -88 %Rem. 97: <u>○</u> 8 ري ب ۳ . 0 W 37.5 40.6 0.94 9-12-16 र । । । 3|3|- |5| 411-16 3 7 · 1-10-10 0 111 6.19 5.7 4 . 9 7.6 8.8 7.3 6.9 8.5 15.9 11.5 1 | 9 93.9 0 - 6 98.5 75.8 87.9 90.9 97-10 0 - 6 75.8 78.8 90.9 %Rem. 669 41 911 911 **5**/s 71.8 75-4 151. 4 38.7 66-19 9 - 129 59.9 811-17 411-6 12·4 ا ا 16 t 20 | 42 6 13.8 0 . . 10.5 10.5 7.8 24.9 37.2 8-7 411-17 14-11 11-1611 B.O.D. 26. 5.0 <u>6</u>.9 જ • 8 .3 <u>त</u> छ 8.3 ය හ Temp. - N P 2 РЗ P 4 \$ 1 5 2 S 4 M 2 M 4 ď S

1 0501179 Cond <u>:</u> Turbid. 08 80 80 Date 7 | J 7 0 P.H. Sludge <u>---</u> 3 · 8 5 6 7.4 1.0.T Sheet No. 98 1717 29.5 %Rem. 32 32 <u>ي</u> 8 <u>a</u> · la 13.4 Amm. C.O.D. %Rem. E. 810 78.6 %Rem. E 8 -48 **5**/2 <u>о</u> • • %Rem. 8 + 8 20 1189-0 28.8 (Treeton Experimental Filters) 9 B.O.D. . 8 1 CHEMICAL ANALYSIS ल • इ. ब 3.9 1 · 5 4-11 Temp. I N F P 2 P 3 S 1 S 2 5 3 S 4 M2 M 3 <u>R</u> P I

Sheet No. 99

1 70179

Date

宣 1.12 7 · a R R P.H. 7 7) / 7 7 । ह्रा.स <u>ئ</u> ج E - 0 <u>م</u> .8 Sludge 1.1.18 2 · 8 4- B <u>s</u> <u>o</u> ल ल 1.0.N. . ਨ <u>÷</u> <u>.</u> ત الا الا 0 · 4.8 0.0 0.0 9 0 15. ò 4 4 0 25.18 27.4 श्र स श्र 27.6 25.2 24 · o 25.4 28·0 26·10 9 छ b Amm. 26· ं इत . ಇ 081 C.O.D. 250 350 95 ल 1851.13 58.3 63.5 84.3 9.92 70.2 83.3 %Rem. 8 54. 73. 83. 13.0 र र र 5. a ± 8 5.4 1.1.1 4.9 7.3 9.3 13.4 31.2 8 1-16/ 25.6 191 39-5 76.7 19-11 3a · 6 58.11 79.11 4.7 53.5 7617 %Rem. ["Y 0 ल 8 40 20 64 52 30 28 36 83 86 **5**/8 1901.12 8 .09 5a.5 84.5 44.0 89.3 29.3 88 8-06 त्व %Rem. न्रक्ष-90. 10. 15-0 120·6 <u>र</u> ल = # · 69 15.19 24.6 117-11 ь . . 159.0 14a.8 18.6 14.7 89.1 B.O.D. 5.7 \$ \$ Flow 1 5.10 त्र <u>'</u> 5 Temp. 7 Ref. 1 p4 - NF \$ 2 S 1 Σ S S <u>a</u>. 4

1 310179 Date Sheet No. 100

(Treeton Experimental Filters)

CHEMICAL ANALYSIS

Cond = Turbid. 0 0 -<u>호</u> 181.18 **b** · 9 6.9 P.H. - J. J. ල ල 2.4 Sludge 5.0 8.0 0 + 1.0.N #1.171 0.0 %Rem. 3: 1911 1 7 · 2 16.0 Amm. 1 | 6 137 C.O.D. 338 145 90 12.15.9 8-29 %Rem. 4-1-1 8.3 9 - 8 40 - Red B-129 9 - 69 %Rem. 3 34 36 **5**/s %Rem. 78.3 83.3 1.3 0 000 26.11 20.1 B.O.D. 3 5.0 <u> ২</u>. ৯ Flow 1. کی 5.2 5 3 Temp. 7 3 P 4 P 33 - N F P 2 S 1 **S** 2 S 3 S 4 E M 2 E F

1 6 Cour Ė Turbid. 6 | 105 <u>=</u> Date 11.11 7.0 7-0 9 P.H. 121.10 | | | | ल 0,0 Sludge []. |&| | 9.19 0 . 9 8 . 2 1.0.N. Sheet No. 101 1,131.18 39.3 37 1 2.17 17.8 8.01 ત્ત્વ 1913 538 58 1 9 18191 66 · a 0 . 69 % Rem. 19.19 7.3 6,7 <u>ं</u> ल <u>P.</u> 1811.10 8 - 18 79-16 %Rem. 91 8 8 **5**/8 1913.13 8514 %Rem. 99.3 1 151.17 1 95 - 4 8 - 8 **b** · lo (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 1.1.7 5.2 5.0 Flow ار. ا ಸ <u>:</u> 7.3 5 Temp. Ref. I N F P 2 $\Gamma_{p,q}$ \$ 1 S 2 S 3 S 4 M 2 **M** <u>A</u> P 3

1 60279 Cond Turbid. Date ارِ ا لَمِ ا 7 3 P.H. [][] 1/ · a ا ا ا ا ਨ : Sludge [18.1] <u>الم</u> 5.6 5:0 1.0.N. Sheet No. 102 고 --8 0 1 0-0 117.6 8 + 1 17.0 C.O.D. %Rem. 731.13 70.0 63.3 %Rem. 1911 80 60 ಇಇ **5**/8 %Rem. (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 四.17 5 . 5 5.0 Flow 131.17 3 - 6 Temp. 6.5 3 · 7 1 pld I N F S 4 P 3 **S** 2 S 3 M 4 P 2 \$ 1 M 2

Ref. Temp. Flow B.O.D. %Rem.	%Rem. P.V. %Rem. C.O.D. Amm. %Rem. I.O.N. S	Sludge P.H. Turbid. Cond
1 NF TFI	33·9	3.3 6.8 97
SI	विराय गिया विश्वाम 📗 व्यामि 🖪 । ।	7:0 [69 11:
] [10 11 11 11 11 11 11 11	
R-1219 11 18 11 11 11 11 11 11 11 11 11 11 11]	11 47 14 11
S4 6 2 5 1 2 6 1 8 5 0] 81-41 81-62 61-61 28 2018 61-68 [1-18] [1-18]	a.7 6.9 10 11
119 S1-15 611-	73.9 20.2 40.4 [] 28.2 [0.0 0.8 [11 70 150
M2] 810 0.81 PH.3 106 201 6.81 F.8	1
M3 [13.5 9]	R.E. 8.61 8.61 16.8 16.8 B.	11 7 2 17
M4 5-11 5-3 21-9 87-4	9 1 6 0 82 3 6 2 6 6 6 6	A: A 7-0 8 11.
P1	64·1 15·2 55·2 1 0·6 1 24·4 1 0·0 10·6	1 8 8 1
P2] 8·10 E-114 0 + 11 1 1 10 18 19 19 19 19 19 19 19	11.0 [39]
88.88	94.6 7.0 79.4 115.4 35.3 2.6	1 4 0 1 4 11
ושיצוש להיויוו הויצו פוילוו היו	1 417 4.86 2111/ 1891 12:08 2:19 2:17	13.10 17.10 17.11 (1.

Cond · 0 ó <u></u> 9 140379 0 <u>0</u> 0 . | o 0 ö io ò ò ó 8 99 7 **Turbid.** 10 50 ೦ ಇ 83 33 3 Date 8 9 16 - 17 6 - 9 & • • 9 . 9 7.0 6.9 8 · 9 8 .9 9 9 न्ह ल <u>÷</u> 0.3 3.5 Sludge 5.8 + - | 9 | 8 0 رم ج <u>∞</u> ∵ 9.9 3.0 1:0 ਲ -8 0 1.0.I <u>છ</u> Sheet No. 104 <u>0</u> ⊀ 0 0 9 -8 1 30.2 9 0-0 9 - 81 ∞ ٥ 0 خَ Ö <u>.</u> = 18 0 + -0 + 1 22.0 15.0 1 a. o 5.8 ٥ 1 7.3 7 8 0 र्मि। 30 20. .|9|1 ż 570 C.O.D. 370 9 160 325 59.4 4 6-9 6 a·9 0 0 0 46.9 54.9 30.9 9 6 %Rem. 9 44. 179 62. ö 90. b . E 14.11 9.7 9 - 5 22.62 91.3 । जि.। 3 17.5 9.3 2 3 · 9 6.9 <u>.</u> · 9 <u>۲</u> 79.3 79.3 34.5 0 · b 9 75-19 0 \mathcal{C} 58-6 151-19 55 a 9 %Rem. ं . 69 <u>.</u>9 8 <u>手</u> 三 % % <u>--</u> ત્હ 王二 98 ر ت 58 34 ± 8 **%** 三 72·6 79.0 87.7 86-5 84 · 8 57.4 55-8 %Rem. 85. 48 . 98 9 24 93.0 *:=: 70.5 75.0 13.5 48.3 39 - 6 25.5 3 1 4 1 9 9 (Treeton Experimental Filters) = 13:1 ਨ |-8.0.D. 1 CHEMICAL ANALYSIS 5.7 6 5.7 5 5 - 7 0 . 9 9.9 7 P 4 N F 4 Д. S ٥. ۵. S S S

1 230379 **Turbid.** Conc 豈 80 7 7 7 Date 17.17 7.2 7.3 P.H. | ના કા<mark>વા</mark> 98.0 0 · 0 1- 70 Sludge LO.N. Sheet No. 105 %Rem. Amm. C.O.D. 51-1-12 44.9 %Rem. . 99 19.19 # . 6 7.6 13. 17/1/1d 子の: 44 48.2 %Rem. 9 28 54 .S/S %Rem. <u></u> 93.4 95 93 11.17 3 · 6 9 | 18 5.4 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 151.17 5.3 9 . 0 [|S|. |z| 5.9 ന്ദ Temp. 7.5 5 1914 P 2 9 S 4 Α 4 1 N F \$ 2 8 3 M 3 \$ 1 <u>8</u>

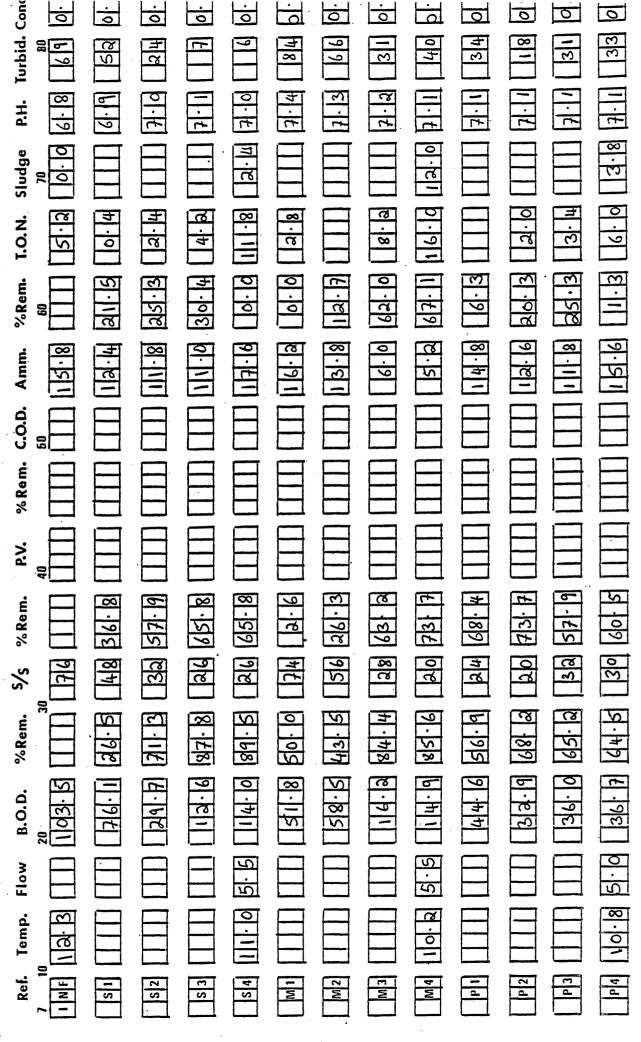
1 280379 Turbid. Conc 0 . ٥ ठ 0 3 20 ES Date 6.9 8 . 9 4 .9 9 .9 11.70 0.0 <u>ب</u> ج Sludge ارِ ارِ ال 9 . 8 13.8 0 | 1 | 1.0.T Sheet No. 106 1,14.16 34.4 S 37. 121.18 4 4 3 4 .19 । 3दा 50 75 55 हादान्ध <u>52 8</u> 50.0 %Rem, 121.2 3.4 3.6 40 | 7 - A 16131.14 0 -1619 58.6 %Rem. 014 <u>ळ</u> 三 58 म ल **5**/s %Rem. (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 141.13 4-7 Flow 6.9 Temp. |p|4 I N F P 2 p 3 \$ 2 \$ 3 S 4 M 2 2 M 4 P S 1

1 040479 Cond 0 0 9 BB 79 Date P.H. Sludge 1 51. h 9 - 6 9:18 4-10 I.O.R. Sheet No. 107 11.18 1 9 1 %Rem. 23. 9.4 0.111 9 . 8 Amm. C.O.D. %Rem. 73.7 5.8 £ 1919 %Rem. 81 ၁ခ 16 99 **5/**S 81.7 %Rem. . 9 B p. 5.1 11111 0.18 15.9 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 9.1-1 8.8 9 . | 4 Flow b. 19 19 Temp. 8.2 £ · 9 I N F 5 3 S 4 P4 <u>۳</u> P 2 2 2 Ξ M 2 **E** \$ 1

Red. Temp. Flow B.O.D. School	Con	Ö	0	Ö	Ö	Ö	0	Ö	0	Ö	ō	ं	0	Ö
Temp. flow B.O.D. % Rem. 3/5 % Rem. P.V. % Rem. CO.D. Anm. % Rem. L.O.N. Studge	Turbid.	88 1	63	۳ 8	8	<u>ල</u>	37	0 1	1	8	149	न्न	6	<u></u>
Semp. Flow	P.H.	7.3	7.3	7.2				7.3	9.1	8 . 9	7.3	7.4	11.14	6.19
Semp. Flow	Sludge	24 G	目			4-14								
Semp. Flow	1.0.N.	7 8	17.0	2,8	17.0	1 अ∙ फ	<u></u> ਨ	0.9	0 . 8	9 · P				17.0
Temp. Flow B.O.D. % Rem. S/5 % Rem. RV. % Rem. E0.D. E0.D. E0.D.	%Rem.	8	0.0	0 . 0	0.0	8.119	0.0	0.0						191119
Semp. Flow B.O.D. % Rem. \$5\$ % Rem. \$40 \$4	Amm.	10.14	0 11	14.4	± 0 1	 	78 - -	9 1111	0 · 8	2.6				0.1"
Serial Company Serial	C.O.D.	300				78		9111		146				. —
Temp. Flow B.O.D. %Rem. 5/5 %Rem. Inches I	%Rem.		52.8	6a.o	78.9	111	18.3	77.15	9.62	81.0	699	751.10	177.18	17/7/18
Temp. Flow B.O.D. %Rem. 5/8 Secondary Temp. Secondary Se	P.V.	28.4	13.4	8 0 1	0 . 9	# . 9	23.2	# . 9	51.8	5.4	9.4	17.11	6.3	181.13
Temp. Flow B.O.D. %Rem. 30 30 30 30 30 30 30 3	%Rem.		1-69	80.3	851.5	82. 9	76.3	ত - ৪ ৪	8 . 98		72.4	-		1.1.1%
Temp. Flow B.O.D. %Rem. 19814 11 199	2 /s		1419	30	2	36	36	8	ر م	ල ල	7	36	8	(Same
S	%Rem.		90-4	८ । ०८	ल । ।		73.9	98	92.3	95.3	75.3	73.1	1 . 1	1891.12
- Temp -	B.O.D.	20 109 a	43.2	911.6	9 - 6	9.3	28.5	15.3	8 - 4	12	0 - t c	7 - 60	0.511	H.111
	Flow					0 . 9				₱ . 9				
		7 ⋅ 8				م .				ठ •				lq1.1,
	Ref.	<u> </u>	8 11	S 2	S 3	8 4	M I	M 2	W 3	W 4		p 2	6	

250479 Turbid. Con <u>i</u> 0 0 0 8 ह्व ह Date F. 4.6 छ अ । 2.5 Sludge 6 3 5.0 9 8 7.0 1151-6 1.0.T Sheet No. 109 11.13 0 - 0 O %Rem. 0 1 7 4 手 | 1 | 1 ര Amm. 15. 15. 8 ا 52 C.O.D. 405 081 %Rem. 84.11 84.1 84.11 %Rem. <u>ಹ</u> 20 1 2 G 20 **5**/8 9 . 9 %Rem. 9.48 89.0 - 130.8 1 14 1 S 20.11 (Treeton Experimental Filters) B.O.D. 主 CHEMICAL ANALYSIS 5.7 . 5. a 4 7.2 Temp. 8.7 9. 10 Ł Ref. N F 5 4 M 4 E d p 2 P 3 P 4 \$ 2 \$ 3 M 2 <u>€</u> \$ 1 Ξ

11057 Turbid. Con 0 1 1 150 21 Date 171.12 9.1 P.H. 1-161-10 4.5 3.5 /II-19 Sludge 1.0.T Sheet No. 110 Amm. C.O.D. % Rem. 11.12 811.3 %Rem. . th 8 26 1 70 32 **5**/8 1.198 83.9 %Rem. 90.5 30.0 0 981 1 LI. I G (Treeton Experimental Filters) 36.3 B.O.D. CHEMICAL ANALYSIS [2]. E 5 · 0 0 . 9 Flow 121.1. 12.0 । अ Temp. **=** Ref. 1 p l I N F S 4 <u>8</u> M 4 P 2 Р S 2 S 3 E M 2 S 1


CHEMICAL ANALYSIS (Treeton Experimental Filters)

Sheet No. 111

9

230579

Date

1 बडाजाम **Turbid.** Conc 52 B 0 1 ਲ <u>=</u> Z F Date 7.0 7 · 2 P.H. 1 Sludge 1.0.N Sheet No. 112 %Rem. Amm. C.O.D. %Rem. J.1.17 76.0 8व्रे व %Rem. 771 alt. 00 **S**/s 1819.18 77.16 79.5 %Rem. 1-156. 1.11 34.0 37. A 20 1165-18 (Treeton Experimental Filters) B.O.D. CHEMICAL ANALYSIS 4 · 8 51.1 1.51.10 13.8 [11] Temp. 9 Ref. Lpd I I N p 3 \$ 2 S 3 S 4 M 3 M 4 P P 2 S 1

(Treeton Experimental Filters)

CHEMICAL ANALYSIS

Turbid. Co 76 70 Н9 6.19 9.19 P.H. 11.14 Sludge = 20 જ ત 1 I I क श्र 7 - 18 ल -I.O.N. 12.1. 1 a · 8 33.1 %Rem. 1.1gl. [2] 1 9.8 3/5/8 Amm. 291 13/6/0 C.O.D. 288 226 60 470 %Rem. <u>~</u> 1481. II.I %Rem. 8 19 1 1.19 99 9 124 **5**/s 16101.17 67. a 68.5 %Rem. الااناه 62 · 7 60.3 20 | | 91| · 4 B.O.D. 15. b 5. 3 5.7 Temp. 13.0 <u>.</u> Ref. РЗ 191 - NF P 2 S 1 S 2 \$ 3 S 4 Ξ M 2 M 3 **M** PI

CHEMICAL ANALYSIS (Treeton Experimental Filters)

ပ္ပ 0 0 0 0 0 0 0 LQ \Box 133 8 4 53 34 30 **%** الم 35 **7**% ر ه 3 a F 3 N.14 H-1+ 0 · t 3 0 9 <u>6</u>.9 F.H. 7 7 7 1. 12. I. 0-75 3.4 <u>ب</u> ج Sludge 3.2 71.0 <u>+</u> <u>ख</u> 7 1.0.N. ö 4 ٠ ٥ જ 3 3 3 101.10 ا ع ر و ه د 0 . 0 3 S 8 · 3 5 8 %Rem. गःहा 0 ∞ 4 ড় 0 19.19 カ · h で 0 ·& C 0.FE 23.4 ₹ भ . ह ट Ø ര 0 Amm. 33. ÷ . الم 23. 26. . 9 c 258 त 10811 C.O.D. 069 88 8 3 170/19 59.2 8 - 8 7 %Rem. 3 1-1-1 391. 311 <u>+</u> 40. Ell 99 46. 41 13.4 311.5 17 · 3 19.5 4-3 19:13 17·8 ळ 9 वभः॥ 8 11 19 P.< 32. . رو رو 191 150. 1 60.09 50.0 56.5 0 . 0 50.0 39.11 7 **6** 09 ര %Rem. ا . اع 53. ·9 ਲ 45. 77/ 50 146 49 56 4 6 4 4 8 9 8 9 36 36 9 p **5**/s 19, 19 4.5 %Rem. H 119 b · 119 4 5 9 B त 0 <u>:</u> 136 51. 788 . ೧ [1] 8 0 6 । 6 वि. व 46· 3 08.6 60·0 40.5 89·4 1/85.7 5 9 S ठ्य 53. B.O.D. · 8 بخ س <u>₹</u> Flow . 9 [-1.1.1] Temp. ल 14. + Ref. 1p4 - N S 2 M 2 S Ь a, S S _

27067 78 Turbid. 99 8 7 Date P.H. Sludge 1.0.T Sheet No. 115 C.O.D. %Rem. 72.5 7818 ह । ११८ %Rem. ## 1160 # 22 3 9 87-6 %Rem. · † 8 --20 48.0 39.3 32 ⋅ 4 (Treeton Experimental Filters) B.O.D. 20 2|6|0|-CHEMICAL ANALYSIS 8 . 4 5.7 6.3 Flow 14·0 15.5 Temp. 9 1151 3. Ref. N F \$ 3 S 4 M4 PI P 2 P 3 S 2 <u>=</u> MZ S 1

CHEMICAL (Treeton E)	<u> </u>	ANALYSIS perimental	IS al Filters)	• • •	•					Sh	Sheet No. 116	9		Date	0407
Ref.	Temp.	Flow	B.O.D.	%Rem.	s/s	%Rem.		%Rem.	C.O.D.	Amm.	«Rem.	1.0.N.	Sludge	H.	Turbid. Co
- INF	11619		त्र त्राच्याः व		138					35.6	3	0.0	0 115		
8															
8 2														目	
\$ 3															
\$ 4	151p	9.9	45.9	79.9	156	57-6				e . £ 1	32.8	3 0	<u>।</u> ਲ] 84
2														目	
M 2															
3															
M 4	9.191	6-3	150-7	8-14	999	57.6				<u>७०</u> ०	21.9	5.4	9.1] 89
a a															
P 2															
<u>C</u>															
p ₁ q	1.6.12	51.5	निगान	51.1616	۲۱/۱	13. K	TO MARKET			व्यक्ताः कि	[क्।.भ	9 . 0	8.0		69

1110717 Date

Sheet No. 117

(Treeton Experimental Filters)

CHEMICAL ANALYSIS

ပ္ပ 0 0 0 0 0 0 لعا 0 \square । डिम्ब 3 8 1 th 145 4 9 130 Turbid. 0 0 1 0 1 ≫ ≫ 5 8 2 175 6 b 1. 18 161-131 1 . 9 7 0 9 . 9 7 9 P.H. <u>:</u> <u>.</u> 81.11 09.0 5.3 Sludge त्रं 101.10 ο Ω ر م 0 0 ∞ Ø 1.0.T <u>.</u> ò 0 <u>.</u> ਲ • ج . ત્ર <u>:</u> 4 21.11.1 8-4 رج ج 9 · 8c 9 . 8 13:4 t . t ! 15.7 <u>≡</u> %Rem. ं ન્હ 2161.17 211·0 8 - h ८ 25.0 ह । । 8 - 8 8 0 - MC 25.8 27.4 ∞ Amm. ત જ 24. 9 29 <u>ج</u> C.O.D. 9, 10,9 34.8 21.3 63.3 65·9 30.7 64.3 %Rem. 44-4 4 3 2 50.1 छं 50 9 [] 'Y 28 · 3 19.3 311.5 20.8 39. a 25.11 ಎಂ. ೩ 0 9 9 56.6 2ا٠ <u>۳</u> 44. 36. हिल 1981.10 58· a 7614 c - 88 0.0t 9.89 79.11 ∞ 70.9 86-4 0 %Rem. 40. 77 8111 9 52 <u>७</u> <u>।</u> अ 26 99 ೨೨೦ 64 30 46 0 2 8913 1, 1-18 %Rem. 8 98 73.9 42.8 47.0 7a · 3 0-1619 85.9 88-11 84 47 20 452-4 239.7 125.4 140.4 63.6 59.7 53. 7 9 . 8 7 7 ಡ 7 B.O.D. 38. 259. -0 t <u>∞</u> F. **b** . 9 ಇ 5. Temp. 0 0 <u>ः</u> ७ <u>.</u> ; I N F P 3 - P-4 M 2 P 1 S 1 \$ 2 Σ Ь S S

0

(Treeton Experimental Filters)

CHEMICAL ANALYSIS

Turbid. Co. 230 ල † | | 9 P.H. Sludge 0 . 0 9 .0 101.16 1.0.N. F - 19 9 . 8 1 1.1.1.6 1 q 30: <u>.</u>9 %Rem. 83.9 1741.12 %Rem. 1.16 136 32 भ ८ **5/**8 1814 F %Rem. 80.3 . 98 1401.17 36 · 3 20 259 · 8 511-3 B.O.D. 5.7 5.9 5. 4 17:41 8 . 9 1 Temp. 1 7 0 7 I N F P 2 P 3 M 3 M 4 S 1 5 2 8 3 S 4 M 2 P1

01/085 Turbid. Co 37 80 04 C 89 Date Sludge -0.0 1.0.T ٠ ر Sheet No. 119 a 6 · 0 9.4 117-4 かったい Amm. C.O.D. % Rem. 41.134 731.17 84.2 %Rem. 130 8 30 13/2/10 %Rem. 83.3 3 33,9 1 301. LA (Treeton Experimental Filters) B.O.D. 20 | 20 4 G CHEMICAL ANALYSIS दि. धा 51.5 5.2 61-131 15 · a Temp. 117-15 15.2 Ref. pl4 I N F P 2 P 3 \$ 4 S 3 \$ 1 \$ 2

1 8080 6 0 0 0 0 0 0 0 0 0 0 0 0 **Turbid.** 13 80 9 98 7 40 86 7 <u></u> 3 4 _ 3 3 Date 6.9 7.0 7.0 7.2 7-12 ر الا - لا 11.1 (1) (E) ल 7-11 7-11 7 P.H. 1 4.5 9.5 Sludge 9 3 20 0 | 0 9 - 0 ر د د 0 · a 0 ò 0 0 ര 1.0.I <u>:</u> ÷ ò <u>.</u> • • ö 0 ന്ദ 0 0 Sheet No. 120 PI:|0| | 5 · 3 0.0 巨 <u>0</u> 0 ಡ 8 · 5 2 ं 19 0 5. 12 lol. 44 ල | | 15.a 0 - 6 1 13.8 Amm. 9-1811 ----+ 1881 14. 25. <u>33.</u> 1 C.O.D. 16/11/12 30.9 8.05 63.5 9.14 E 99 58 H 57.4 11-12 9 %Rem. <u>٠</u> 50. 1781.18 21-15 28.4 46.0 32.8 25.5 24.3 35.0 32-7 9 . 199 53.0 37-12 3B. 1801.17 54 - 4 63. a 77.3 0 -16E 64.9 29.8 **h** - 89 38.6 59.7 ∞ %Rem. 1-164 33. المرارا 8 0 5्य 36 त्रम 70 40 ന്ദ 58 9 5 **5**/s 00 ಡ \$ g . g b 198 17.5 ४२ 3 · <u>o</u> 5 · 9 t 33.4 73.2 %Rem. 8 89 11-181-11 33. 88 d 3 L1, 12, 17 <u>-</u> 115िवा भ 1 a 3 · lo 122.7 43 - 4 40-5 49.5 67.6 3a. 7 20.4 (Treeton Experimental Filters) 8 . 48 1 . رو E.O.D. ANALYSIS [<u>.,</u>]. 5.4 5.4 13- 4 1919 छ <u>+</u> Temp. ल 11/31:1 CHEMICAL |b| - N \$ 2 S 3 S 4 M 2 3 M 4 p 2 P 3 S 1 Σ

CHEMICAL ANALYSIS	Sheet No. [21]	1 Date 219087
Ref. Temp. Flow B.O.D. %Rem. 5/5 %Rem.	C.O.D. Amm. %Rem. I.O.N. SI	P.H.
S4 14: A 5:5 5A:0 74:11 142 24:10 1111 1		
المساطية ويؤي سياطينه سيساطين هين سيا		пп пп пы

01097 **Turbid.** Con 32 208 52 9 8 Date Sludge 1.0.T Sheet No. 133 %Rem. Amm. C.O.D. % Rem. 801.12 8 म - अ 17-16 %Rem. 136 1513 34 hС **5**/s 1वाना । वा 90.9 74.6 %Rem. 50.5 0 - 8 1 1 July 19 (Treeton Experimental Filters) 20 1198·4 B.O.D. CHEMICAL ANALYSIS द्री, वि 5,2 5.4 Temp. · [S]1 1 N F 164 **S** 2 S 3 S 4 M 2 <u>₹</u> M 4 P 2 P 3 **SM** PI

1 Date 0509179 Sheet No. 133

Ref.	Temp.	Flow	B.O.D.	%Rem.	s/s	%Rem.	P.V.	%Rem.	C.O.D.	Amm.	%Rem.	1.0.N.	Sludge	P.H.	Turbid.	Conduct.
7 I NF	16-9		20 247		1000		37.3		50 430	91.18	99	0.0	70 05	1.19	305	
S 1			अ अ अ अ	ह । ।	86	30.7	27.6	0.95	385	न न	0.0	0 · 0		7.0	1 45	
\$ 2			99.9	59.6	09	511.16	22. 4	40.0	259	35,3	0.0	0 · 0		6.9	001	
S 3			5 .94	ट 	54	9199	117.6	52.8	173	27.5	9.0	ਲ • •		7.0	72	
S 4	9191	51.4	38.1	9.48	38	h · 6 9	17-4	h . E 9	155	1-61	9-111	2.8	2 -	9.9	55	
IM I			104.4	8 - 12	28	53. a	19.4	0 · 8 H	309	28.0	0 0	0.0		7:2	88	
- W 2			165.0	33.3	4	£ - 129	18:	109	р 1 8	27.0	0.0	0 · 0		7.2	174	
M 3			11.11	93 - 11	8 *	80.1	1 अ . ५	8 - 1919	1 a5	25.0	0.0	9 . 0		7.5	त	
. M4	15.5	ر. اي	25.5	89. T	26	791.0	13.0	65. a	14/	e · 91	25.0	3 · 6	4-11	6.7	93	
l d			0 44.0	8 - 14	54	9 - 199	19.5	47.17	309	24.4	0.0	0 . 0		7.1	<u> </u>	
P 2			1011	58.9	92	38.7	20.0	4 9 4	221	92.6	0.0	0 . 0		3.11	44	
P 3			भ ११ ट	8913	114	£ · 88	12.6	e . 99	108	0 8 1	11-1611	0 . 0		7.0	20	
P 4	0 9 1	5,3	20 -11	911	20	83.9	14.1	62.6	911	# ·ee	0.0	9 0	9·E	7-0	24	

Medium	Nepth cm	Total film kgm-3	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30		4.12	3.08	8.8
	30-60		5.40	4.04	10.4
	60-90		5.04	3.64	10.4
	90-120		4.28	3.56	12.8
	120-150		3.56	2.84	10.4
	150-180		1.52	1.16	4.8
Mixed	0-30		7.12	6.00	13.6
	30-60		6.28	5.24	12.8
	60-70		9.44	7.60	20.0
,	70-80		14.20	11.08	27.6
	80-90		10.76	4.36	21.6
	90-120		13.76	10.28	31.6
	120-150		10.36	7.60	22.8
	150-180		4.12	3.28	11.2
				ļ. <u></u>	
Plastic	0-30	-	11.64	9.64	21.6
	30-60		11.00	8.40	26.0
	60-90		4.96	3.88	12.0
	90-120		5.40	4.24	13.6
	120-150		4.36	3.56	12.4
	150-180		4.20	3.48	12.0
				<u> </u>	

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30 30-60 60-90 90-120 120-150 150-180	_	6.96 5.12 13.32 12.36 9.92 4.32	5.24 3.68 9.92 9.16 7.12 3.08	8.4 8.4 22.8 20.0 18.0 8.4
Mixed	0-30 30-60 60-70 70-80 80-90 90-120 120-150 150-180		16.60 18.88 22.56 10.64 12.68 12.60 8.08 4.68	12.00 13.92 17.24 8.04 9.44 9.24 5.16 3.08	29.6 42.4 54.0 20.8 28.8 29.6 18.8 11.6
Plastic	0-30 30-60 60-90 90-120 120-150 150-180		12.96 17.16 8.12 11.56 10.16 4.28	9.52 13.36 6.60 9.08 8.04 3.24	22.0 21.6 16.0 22.8 18.8 12.0
Slag Sl SR SC SL	0-30 0-30 0-30 0-30		6.96 8.04 7.08 8.16	5.24 5.52 4.96 5.76	8.4 11.6 11.2 12.0
Mixed M1 MR MC ML	0-30 0-30 0-30 0-30		16.60 15.16 13.00 14.12	12.00 10.68 9.60 10.24	29.6 27.2 22.4 22.8
Plastic Pl PR PC PL	0-30 0-30 0-30 0-30		12.96 14.80 13.84 11.68	9.52 10.60 10.24 8.48	22.0 19.6 20.8 13.6

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm-3	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	139.12	6.04	4.60	9.6
_	30-60	178.44	6.60	4.84	10.8
	60-90	338.80	15.76	11.60	22.4
	90-120	521.60	29.20	21.44	52.0
	120-150	310.64	15.68	10.88	21.6
	150-180	157.04	5.68	3.84	12.0
Mixed	0-30	110.00	7.76	6.26	15.0
Mixed		118.08	7.76	6.36	15.2
	30-60	84.36	5.16	4.44	8.4
	60-70	77.56	4.92	3.72	6.8
	70-80	106.08	5.32	4.12	7.2
	80-90	181.12	5.76	4.16	7.2
	90-120	198.64	9.88	7.20	13.6
	120-150	225.56	11.20	7.88	18.0
	150-180	172.96	6.40	4.08	10.4
Plastic	0-30	314.92	21.28	16.44	37.2
	30-60	161.68	9.32	7.36	15.6
	60-90	152.04	8.28	6.44	13.6
	90-120	168.00	10.56	7.76	18.4
	120-150	173.84	9.60	7.08	17.2
	150-180	186.04	11.36	8.24	18.8

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	366.76	16.84	11.84	26.8
	30-60	293.12	11.28	7.68	14.8
	60-90	245.56	9.44	5.92	13.6
	90-120	433.72	23.52	16.56	30.4
	120-150	364.68	15.88	10.80	23.2
	150-180	307.52	12.48	8.28	21.6
Mixed	0-30	234.00	15.20	11.32	24.0
	30-60	102.36	6.80	5.16	10.4
	60-70	79.56	5.08	4.20	8.0
	70-80	104.92	2.84	2.16	4.0
	80-90	116.84	2.04	1.44	3.6
	90-120	140.28	2.32	1.44	3.2
	120-150	176.92	4.20	2.52	7.6
	150-180	99.00	2.52	1.56	3.2
Plastic	0-30	198.80	12.44	9.00	18.0
	30-60	70.04	3.40	2.56	4.8
	60-90	125.04	9.28	6.68	12.0
	90-120	152.44	10.24	7.48	13.6
	120-150	147.60	9.80	7.16	14.0
	150-180	179.32	11.48	8.20	17.2
Slag Sl	0-30	366.76	16.84	11.84	26.8
SR	0-30	289.80	9.92	6.80	15.2
SC	0-30	277.44	12.80	9.00	20.0
SL	0-30	357.16	12.20	8.76	22.4
Mixed M1	0-36	234.00	15.20	11.32	24.0
MR	0-30	216.12	13.60	9.68	22.0
MC	0-30	163.44	9.92	7.28	16.0
ML	0-30	209.52	14.08	9.16	24.8
Plastic Pl	0-30	198.80	12.44	9.00	18.0
PR	0-30	276.80	14.64	10.40	24.8
PC	0-30	288.08	14.72	10.36	26.8
PL	0-30	296.16	15.40	10.68	24.4

Medium	Depth cm	Total film ₃ kgm ⁻³	Total Solids kgm ⁻³	Volatile Sol <u>i</u> ds kgm	Percentage Settlement
Slag	0-30	318.04	14.00	10.08	22.0
	30-60	164.00	5.12	3.60	8.8
	60-90	131.68	3.72	2.72	6.4
	90-120	174.44	6.32	4.36	9.6
	120-150	335.88	14.44	9.84	22.0
	150-180	316.36	15.40	10.64	22.8
Mixed	0-30	274.76	14.88	11.16	27.2
	3 0 -60	133.88	9.52	7.60	12.8
	60-70	97.52	5.52	4.64	8.8
	70-80	71.92	3.08	2.64	6.4
	80-90	140.44	2.40	1.84	3.2
	90-120	86.72	2.44	1.80	5.6
	120-150	136.60	3.72	2.52	3.2
	150-180	151.24	2.80	1.84	4.0
Plastic	0-30	221.80	14.28	10.44	24.8
	30-60	129.24	7.44	5.52	12.8
	60-90	101.32	5.88	4.52	10.0
	90-120	80.68	4.60	2.72	6.8
	120-150	121.52	7.20	5.16	10.8
	150-180	207.40	12.44	8.84	17.6

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm-3	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	396.92	20.80	15.40	31.6
	30-60	245.36	9.80	7.00	14.4
	60-90	390.80	16.68	12.36	25.6
	90-120	406.64	22.60	16.64	35.2
	120-150	551.84	27.44	20.08	37.6
	150-180	354.48	20.64	14.88	27.2
Mixed	0-30	347.16	22.88	16.52	39.2
	30-60	155.24	11.20	8.88	13.6
	60-70	156.24	10.60	7.92	16.0
	70-80	163.60	6.60	4.88	10.4
	80-90	171.04	5.52	4.32	7.6
	90-120	222.36	7.68	5.64	11.2
	120-150	219.40	9.40	6.56	14.4
	150-180	335.08	14.20	9.56	20.8
Plastic	0-30	166.32	11.60	8.96	12.0
	30-60	71.32	5.24	4.52	6.8
	60-90	76.12	5.20	4.40	6.0
	90-120	136.32	8.72	6.72	12.8
	120-150	173.80	11.60	8.52	17.2
	150-180	158.20	9.92	7.12	16.4
Slag Sl	0-30	396.92	20.80	15.40	31.6
SR	0-30	375.48	18.80	13.80	26.0
SC	0-30	284.56	14.04	10.72	22.4
SL	0-30	258.16	13.40	9.88	20.4
Mixed M1	0-30	347.16	22.88	16.52	39.2
MR	0-30	146.84	9.72	7.28	13.6
MC	0-30	184.36	10.00	7.52	14.8
ML	0-30	242.96	15.80	11.96	22.0
Plastic Pl	0-30	166.32	11.60	8.96	12.0
PR	0-30	271.84	14.64	11.00	19.6
PC	0-30	267.48	15.08	10.84	23.2
PL	0-30	182.52	10.84	8.20	13.2

SOLIDS

APRIL 1978

Medium	Depth cm	Total Film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm-3	Percentage Settlement
Slag	0-30	616.00	31.44	23.08	52.4
	30-60	255.32	10.12	7.12	14.8
	60-90	333.40	15.32	11.28	23.6
	90-120	301.20	14.32	10.32	21.6
	120-150	472.64	22.68	16.40	34.8
	150-180	351.84	19.72	14.24	26.8
	·				
Mixed	0-30	311.60	20.52	15.88	35.6
	30-60	120.44	6.00	4.76	8.8
	60-70	114.00	5.36	4.28	9.2
	70-80	120.08	3.92	3.16	7.2
	80-90	157.40	· 3.32	2.52	5.2
	90-120	172.44	4.92	3.88	8.4
	120-150	223.48	9.72	6.88	13.6
	150-180	196.44	7.12	4.88	10.8
Plastic	0-30	197.88	10.64	7.36	16.4
	30-60	87.72	3.92	3.08	5.6
	60-90	75.64	3.50	2.34	5.2
-	90-120	111.32	6.16	4.80	10.8
•	120-150	153.00	9.48	6.52	14.0
	150-180	121.80	7.96	5.88	12.0

SOLIDS

MAY 1978

Medium	Depth çm	Total Film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	220.96	9.48	7.28	10.4
	30-60	131.84	2.96	2.08	4.4
	60-90	154.92	3.96	2.92	4.4
	.90-120	153.68	5.12	3.56	6.4
	120-150	376.84	19.52	13.60	31.6
	150-180	493.00	29.60	20.48	60.0
Mixed	0-30	202.60	12.68	8.76	17.6
	30-60	45.76	2.88	2.04	4.4
	60-90	36.80	2.16	1.84	3.6
	70-80	63.44	1.80	1.36	2.4
	80-90	110.52	2.72	2.04	4.8
	90-120	135.56	2.60	1.80	3.6
	120-150	141.44	3.52	2.16	4.4
	150-180	150.92	4.36	2.80	4.0
Plastic	0-30	97.04	5.92	4.72	6.8
	30-60	41.36	2.56	2.08	4.8
	60-90	31.92	1.52	1.24	3.2
	90-120	32.76	1.52	1.24	2.8
	120-150	53.92	3.16	2.36	5.2
	150-180	52.96	3.24	2.36	4.4
Slag Sl	0-30	220.96	9.48	7.28	10.4
SR	0-30	216.72	6.72	4.80	8.4
SC	0-30	162.48	4.80	3.36	5.6
SL	0-30	260.76	9.36	6.04	7.2
Mixed MI	0-30	202.60	12.68	8.76	17.6
MR	0-30	86.44	3.80	2.80	5.6
MC	0-30	172.16	8.68	6.36	9.2
ML	0-30	126.48	6.16	4.56	6.8
Plastic Pl	0-30	97.04	5.92	4.72	6.8
PR	0-30	95.32	5.20	3.68	6.4
PC	0-30	86.72	4.72	3.36	6.4
PL	0-30	128.16	6.28	4.60	9.6

Depth cm	Total film kgm-3	Total solids kgm ⁻³	Volatile solids kgm ⁻³	Percentage Settlement
·				
0-30	95.92	2.80	2.36	4.0
30-60	160.08	4.12	3.36	10.8
60-90	146.12	1.88	1.52	4.8
90-120	124.24	1.60	1.12	2.8
120-150	116.16	1.48	1.04	2.4
150-180	126.92	1.72	1.28	3.2
0-30	34.04	2.00	1.88	3.6
30-60	62.24	4.44	3.84	7.2
60-70	28.68	1.12	1.04	2.4
70-80	53.08	1.36	1.16	3.2
80-90	96.80	1.68	1.40	3.6
90-120	97.44	1.72	1.36	2.4
120-150	89.08	1.04	0.76	2.0
150-180	92.76	1.48	0.92	2.4
0-30	51.92	3.24	2.44	3.6
30-60	46.08	4.04	3.44	5.6
60-90	39.12	1.88	1.44	2.8
90-120	50.24	2.16	1.68	4.4
120-150	52.08	2.12	1.72	4.4
150-180	45.40	1.68	1.40	4.0
	0-30 30-60 60-90 90-120 120-150 150-180 0-30 30-60 60-70 70-80 80-90 90-120 120-150 150-180 0-30 30-60 60-90 90-120 120-150	0-30 95.92 30-60 160.08 60-90 146.12 90-120 124.24 120-150 116.16 150-180 126.92 0-30 34.04 30-60 62.24 60-70 28.68 70-80 53.08 80-90 96.80 90-120 97.44 120-150 89.08 150-180 92.76 0-30 51.92 30-60 46.08 60-90 39.12 90-120 50.24 120-150 52.08	Depth cm film kgm-3 solids kgm-3 0-30 95.92 2.80 30-60 160.08 4.12 60-90 146.12 1.88 90-120 124.24 1.60 120-150 116.16 1.48 150-180 126.92 1.72 0-30 34.04 2.00 30-60 62.24 4.44 60-70 28.68 1.12 70-80 53.08 1.36 80-90 96.80 1.68 90-120 97.44 1.72 120-150 89.08 1.04 150-180 92.76 1.48 0-30 51.92 3.24 30-60 46.08 4.04 60-90 39.12 1.88 90-120 50.24 2.16 120-150 52.08 2.12	Depth cm film kgm-3 solids kgm-3 solids kgm-3 0-30 95.92 2.80 2.36 30-60 160.08 4.12 3.36 60-90 146.12 1.88 1.52 90-120 124.24 1.60 1.12 120-150 116.16 1.48 1.04 150-180 126.92 1.72 1.28 0-30 34.04 2.00 1.88 30-60 62.24 4.44 3.84 60-70 28.68 1.12 1.04 70-80 53.08 1.36 1.16 80-90 96.80 1.68 1.40 90-120 97.44 1.72 1.36 120-150 89.08 1.04 0.76 150-180 92.76 1.48 0.92 0-30 51.92 3.24 2.44 30-60 46.08 4.04 3.44 60-90 39.12 1.88 1.44 90-120 5

Medium	Depth cm	Total Film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	180.08	5.16	3.84	8.8
	30-60	183.28	4.24	3.52	5.3
	60-90	172.12	4.02	3.30	5.3
	90-120	106.48	2.44	1.80	2.9
	120-150	119.12	2.24	1.60	3.8
	150-180	175.32	5.56	3.84	8.0
Mixed	0-30 30-60 60-70 70-80 80-90 90-120 120-150 150-180	63.72 48.44 38.96 80.80 80.44 103.36 94.96 136.20	3.64 2.40 1.48 1.16 1.00 0.88 2.24	3.04 2.12 1.24 0.96 1.00 0.76 0.72 1.52	7.0 5.2 2.1 2.0 1.5 1.4 1.2 3.8
Plastic	0-30	58.84	3.04	2.48	4.7
	30-60	35.08	1.44	1.32	3.1
	60-90	33.92	0.96	0.92	1.3
	90-120	28.28	0.60	0.48	0.8
	120-150	28.96	0.44	0.36	0.6
	150-180	30.28	0.72	0.56	1.2
Slag Sl	0-30	180.08	5.16	3.84	8.8
SR	0-30	220.80	6.28	4.80	14.0
SC	0-30	209.72	6.80	5.24	16.8
SL	0-30	265.64	7.56	5.88	15.2
Mixed M1	0-30	63.72	3.64	3.04	7.0
MR	0-30	74.08	3.92	3.24	10.1
MC	0-30	42.28	1.92	1.64	3.2
ML	0-30	64.80	3.80	3.28	7.2
Plastic Pl	0-30	58.84	3.04	2.48	4.7
PR	0-30	60.28	2.72	2.16	6.0
PC	0-30	63.08	3.56	2.80	4.7
PL	0-30	108.16	5.08	3.92	14.0

AUGUST 1978

Medium	Depth cm	Total film kgm ⁻³	Total solids kgm ⁻³	Volatile solids kgm ⁻³	Percentage Settlement
Slag	0-30	167.16	7.32	5.24	11.2
	30-60	95.84	3.44	2.56	4.4
	60-90	189.88	3.84	2.60	6.5
	90-120	176.92	3.24	1.96	5.4
	120-150	139.88	2.84	1.76	4.8
	150-180	118.04	1.76	1.04	3.2
Mixed	0-30	192.16	11.84	8.44	19.6
	30-60	78.28	4.28	3.36	6.8
	60-70	50.04	2.40	1.80	3.8
·	70-80	51.00	0.96	0.68	1.5
	80-90	97.28	1.44	1.04	2.2
	90-120	86.72	1.68	1.08	2.6
	120-150	93.04	1.12	0.80	1.7
	150-180	68.08	1.08	0.64	1.8
Plastic	0-30	176.56	10.88	8.32	20.0
	30-60	46.72	1.84	1.72	4.2
	60-90	32.04	0.56	0.56	0.6;
	90-120	33.36	0.80	0.80	1.7
	120-150	35.12	0.80	0.80	0.9
	150-180	45.36	1.60	1.44	2.9

SEPTEMBER 1978

Medium	Depth cm	Total fil <u>m</u> kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	209.16	7.12	5.84	8.8
	30-60	196.16	6.04	4.60	10.8
	60-90	193.28	7.40	5.64	17.2
	90-120	186.04	6.72	4.88	12.9
	120-150	172.28	2.68	1.92	4.6
	150-180	105.84	1.88	1.32	2.2
Mixed	0-30	86.76	5.56	4.16	11.2
	30-60	82.16	4.64	3.28	4.6
	60-70	108.28	6.80	4.88	10.0
	70-80	131.52	5.76	4.12	7.6
	80-90	114.60	2.72	1.92	3.4
	90-120	145.52	3.08	2.12	3.9
	120-150	194.28	3.40	2.24	5.6
	150-180	106.28	1.44	0.88	1.6
Plastic	0-30	80.88	6.44	5.20	5.8
	30-60	81.36	5.52	4.12	6.8
	60-90	174.20	10.12	7.32	16.4
	90-120	138.24	8.24	5.80	15.3
	120-150	123.08	6.04	4.20	19.2
	150-180	54.20	2.40	1.60	3.1
Slag Sl	0-30	209.16	7.12	5.84	8.8
SR	0-30	230.00	7.16	5.56	8.4
SC	0-30	201.52	7.60	5.92	13.0
SL	0-30	188.88	6.08	4.48	11.8
Mixed M1	0-30	86.76	5.56	4.16	11.2
MR	0-30	110.56	6.24	4.68	8.5
MC	0-30	82.72	4.28	3.24	8.8
ML	0-30	89.16	4.84	3.72	6.3
Plastic Pl	0-30	80.88	6.44	5.20	5.8
PR	0-30	110.20	6.44	4.76	10.8
PC	0-30	85.04	4.28	3.16	7.3
PL	0-30	89.16	3.84	2.76	7.6

OCTOBER 1978

Medium	Depth cm	Total film ₃ kgm	Total sol <u>i</u> gs kgm	Volatile sol <u>i</u> gs kgm	Percentage Settlement
Slag	0-30	196.88	5.88	5.00	10.8
	30-60	204.68	4.12	3.52	7.4
	60-90	234.40	4.76	4.00	10.4
	90-120	173.32	4.56	3.76	9.4
	120-150	188.48	5.28	4.04	12.4
	150-180	223.20	6.60	4.88	14.0
Mixed	0-30	148.52	8.76	6.92	11.0
	30-60	257.56	12.76	9.80	22.8
	60-70	155.48	7.52	5.80	13.6
	70-80	187.16	7.48	5.76	13.6
	80-90	184.36	4.16	3.16	6.1
	90-120	195.56	4.64	3.48	7.8
I	120-150	209.88	5.68	3.92	10.0
	150-180	127.56	3.0	2.28	4.8
•					
Plastic	0-30	147.52	8.32	6.48	17.4
	30-60	126.20	6.44	5.28	11.4
	60-90	205.08	9.92	7.88	16.4
	90-120	160.00	8.16	6.44	13.0
	120-150	136.00	7.20	5.36	11.4
	150-180	127.80	7.04	5.24	12.8

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm ⁻³	Volatile Sol <u>i</u> ds kgm ⁻³	Percentage Settlement
Slag	0-30	328.40	11.52	9.00	21.2
	30-60	163.16	4.68	3.64	9.2
	60-90	266.32	7.40	5.88	13.8
	90-120	366.56	14.88	11.68	30.4
	120-150	323.60	11.84	9.40	28.8
	150-180	284.12	10.12	8.08	18.8
Mixed	0-30 30-60 60-70 70-80 80-90 90-120 120-150 150-180	193.72 140.60 122.32 153.04 159.20 133.00 199.68 230.36	12.96 8.00 8.20 6.84 6.24 5.20 6.92 6.80	10.44 6.64 6.92 5.64 5.12 3.96 4.72 4.88	19.0 13.2 15.6 12.0 8.4 8.4 12.0
Plastic	0-30	162.48	9.24	7.16	12.8
	30-60	112.24	5.72	4.52	10.0
	60-90	101.88	5.48	4.36	10.8
	90-120	174.24	9.68	7.24	22.0
	120-150	310.88	16.36	12.24	32.4
	150-180	378.84	21.36	16.04	56.0
Slag Sl	0-30	328.40	11.52	9.00	21.2
SR	0-30	253.20	8.68	6.84	17.2
SC	0-30	303.52	11.04	8.80	28.4
SL	0-30	319.12	10.80	8.60	21.6
Mixed M1	0-30	193.72	12.96	10.44	19.0
MR	0-30	213.24	11.96	8.56	24.8
MC	0-30	192.76	10.16	7.40	20.6
ML	0-30	235.40	14.00	10.28	30.0
Plastic Pl	0-30	162.48	9.24	7.16	12.8
PR	0-30	224.28	12.32	9.16	31.6
PC	0-30	206.32	11.60	8.88	29.6
PL	0-30	206.64	12.12	9.48	27.6

SOLIDS

DECEMBER 1978

Medium	Depth cm	Total film kgm ⁻ 3	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	199.48	5.68	3.84	12.4
	30-60	195.52	4.20	3.04	10.0
	60 - 90	191.40	5.32	4.04	10.0
	90-120	145.92	3.48	2.48	5.2
	120-150	124.48	3.52	2.64	5.2
·	150-180	186.56	3.88	2.64	6.2
Mixed	0-30	281.96	13.00	9.68	24.8
	30-60	288.88	11.20	8.60	26.8
	60-70	200.00	8.04	6.20	22.4
	70-80	178.56	6.12	4.68	16.4
	80-90	191.20	6.00	4.56	14.8
	90-120	301.12	10.96	8.08	23.6
	120-150	146.40	4.96	3.72	9.6
	150-180	206.72	8.24	5.88	12.4
Plastic	0-30	187.68	9.56	7.12	20.4
	30-60	209.16	10.12	7.64	20.4
	60-90	271.32	14.64	11.36	32.4
	90-120	278.88	13.00	10.12	26.8
	120-150	320.84	15.96	12.40	32.4
	150-180	208.32	11.80	9.28	21.6
<u></u>	<u> </u>				

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	366.28	17.84	13.04	25.6
	30-60	363.28	17.04	12.60	23.6
	60-90	240.96	7.08	5.28	7.8
	90-120	201.92	5.60	4.12	5.8
	120-150	183.88	5.44	4.04	6.5
	150-180	274.88	10.68	7.80	14.0
Mixed	0-30	202.16	12.88	9.92	21.6
	30-60	213.28	12.52	10.00	18.0
	60-70	151.08	9.52	7.80	12.8
	70-80	187.08	6.32	4.96	8.4
	80-90	182.04	5.64	4.36	7.4
	90-120	214.04	5.40	4.20	6.8
	120-150	270.12	8.12	6.28	10.8
	150-180	151.92	3.96	2.92	5.6
Plastic	0-30	189.04	12.72	9.72	14.0
	30-60	154.80	9.36	7.40	15.8
	60-90	164.52	10.44	8.32	15.6
	90-120	109.32	6.44	4.72	10.4
	120-150	90.52	4.88	3.56	6.6
	150-180	111.40	6.92	5.00	8.2
Slag Sl	0-30	366.28	17.84	13.04	25.6
SR	0-30	235.00	10.12	7.28	15.6
SC	0-30	308.36	13.24	9.60	23.6
SL	0-30	292.52	14.00	9.96	24.8
Mixed M1	0-30	202.16	12.88	9.92	21.6
MR	0-30	208.48	11.40	8.56	17.2
MC	0-30	185.08	11.08	8.56	18.8
ML	0-30	210.36	13.24	10.08	22.4
Plastic Pl	0-30	189.04	12.72	9.72	14.0
PR	0-30	214.68	14.00	9.64	22.4
PC	0-30	176.80	11.68	8.08	20.0
PL	0-30	226.36	14.00	10.20	19.6

Medium	Depth cm	Total film kgm ⁻³	Total solids kgm ⁻³	Volatile solids kgm ⁻³	Percentage Settlement
Slag	0-30	407.68	19.84	14.44	30.8
÷	30-60	426.56	22.32	16.32	28.8
	60-90	245.48	12.64	9.64	17.6
	90-120	192.88	8.40	6.40	9.2
	120-150	145.08	4.12	3.32	4.0
	150-180	145.64	4.04	3.16	3.6
	·				
Mixed	0-30	271.20	19.12	14.20	26.8
•	30-60	418.84	29.28	21.64	40.0
	60-70	381.40	26.56	19.96	38.4
	70-80	324.92	17.08	12.76	25.2
	80-90	236.36	10.56	7.92	17.2
	90-120	426.92	24.16	18.20	31.2
	120-150	267.84	11.56	8.92	14.6
	150-180	275.24	9.04	6.84	11.2
Plastic	0-30	329.52	25.80	19.16	32.0
	30-60	250.00	19.16	14.40	22.6
	60-90	207.72	16.00	12.20	17.0
	90-120	207.52	17.52	13.08	18.4
	120-150	127.36	9.92	6.20	12.0
	150-180	87. 08	5.48	3.24	6.2

		· · · · · · · · · · · · · · · · · · ·			
Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	494.24	32.56	23.68	48.0
	30-60	435.36	31.52	23.16	40.0
	60-90	304.80	11.00	8.12	15.2
	90-120	174.64	7.36	5.68	10.6
	120-150	193.16	5.28	4.12	5.2
	150-180	161.92	4.28	3.24	5.4
Mixed	0-30 30-60 60-70 70-80 80-90 90-120 120-150 150-180	347.40 197.68 306.48 193.36 195.44 273.32 165.96 146.64	28.52 13.60 22.24 10.20 8.48 12.56 4.44 4.16	20.60 10.44 16.76 7.92 6.52 9.68 3.52 3.24	40.4 16.0 32.0 13.8 10.4 18.0 6.0
Plastic	0-30	396.28	30.80	22.44	43.2
	30-60	473.96	33.92	25.08	48.0
	60-90	201.44	14.60	9.80	17.6
	90-120	183.20	13.24	9.96	17.6
	120-150	143.56	8.56	6.44	14.2
	150-180	143.12	8.52	6.28	13.0
Slag Sl	0-30	494.24	32.56	23.68	48.0
SR	0-30	323.44	15.52	10.36	19.6
SC	0-30	246.48	8.64	6.48	9.2
SL	0-30	375.16	21.92	16.08	35.2
Mixed MI	0-30	347.40	28.52	20.60	40.4
MR	0-30	256.72	16.88	12.60	22.0
MC	0-30	258.24	17.04	12.68	20.8
ML	0-30	264.60	17.88	12.92	27.6
Plastic Pl	0-30	396.28	30.80	22.44	43.2
PR	0-30	351.48	26.20	19.16	43.2
PC	0-30	246.52	18.16	13.60	28.8
PL	0-30	340.28	25.20	19.24	42.4

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0	218.80	9.04	7.04	6.6
	30	242.16	10.0	8.48	8.6
	60	200.36	4.36	3.80	3.4
	90	165.24	3.36	2.80	2.6°
·	120 .	148.88	3.40	2.64	2.7
	150	144.92	3 .5 6	2.68	3.4
		·			
Mixed	0	228.24	19.0	13.12	17.2
	30	80.28	5.96	4.16	4.6
	60	46.84	2.92	2.36	2.4
	70	98.20	2.96	2.44	2.8
-	80	111.00	3.16	2.76	2.4
•	90	126.76	3.12	2.52	2.7
	120	102.88	3.48	2.88	2.5
·	150	235.04	5.88	4.28	6.4
		,			
Plastic	0	363.76	30.52	21.56	42.0
	30	143.68	11.84	8.60	12.4
	60	86.68	6.40	4.96	6.2
	90	103.00	8.00	6.20	9.2
	120	105.56	7.28	5.60	8.0
	150	134.48	9.84	7.36	10.4

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0-30	267.56	14.00	10.64	11.2
	30-60	158.20	4.88	4.20	4.1
	60-90	106.72	3.24	2.80	2.5
	90-120	163.16	3.88	3.36	3.8
	120-150	83.32	2.56	2.12	2.4
	150-180	203.24	7.12	5.52	12.4
Mixed	0-30	172.52	12.16	9.96	12.0
	30-60	177.84	9.92	8.08	12.8
	60-70	199.20	10.68	8.60	16.4
	70-80	148.04	6.28	4.92	11.4
	80-90	223.84	6.12	4.88	8.5
	90-120	181.24	5.52	4.44	7.0
	120-150	147.80	3.88	2.96	3.4
	150-180	183.40	3.96	3.16	4.0
Plastic	0-30	286.44	18.60	13.80	30.4
	30-60	128.20	7.04	5.76	10.0
	60-90	258.20	13.56	10.80	28.0
	90-120	164.80	9.00	7.36	18.4
	120-150	95.88	5.28	4.40	6.4
	150-180	76.20	4.96	4.24	5.8
Slag Sl	0-30	267.56	14.00	10.64	11.2
SR	0-30	264.04	14.04	10.92	13.4
SC	0-30	203.28	12.36	9.72	18.4
SL	0-30	297.52	14.96	11.52	19.6
Mixed MI	0-30	172.52	12.16	9.96	12.0
MR	0-30	137.12	10.20	7.92	12.8
MC	0- 30	149.36	11.68	9.04	16.8
ML	0-30	164.52	11.40	9.04	14.4
Plastic Pl	0-30	286.44	18.60	13.80	30.4
PR	0-30	124.48	9.56	7.56	10.4
PC	0-30	163.48	13.12	9.96	15.2
PL	0-30	154.08	10.56	8.24	11.6

SOLIDS JUNE 1979

Medium	Depth cm	Total film kgm ⁻³	Total Solids kgm ⁻³	Volatile Solids kgm ⁻³	Percentage Settlement
Slag	0–30	271.12	11.72	8.92	19.2
	30-60	284.48	10.64	8.48	15.6
	60-90	240.76	6.92	5.92	6.4
	90-120	191.08	6.28	5.20	6.8
	120-150	185.72	3.76	3.12	3.3
	150-180	124.28	2.40	2.00	2.8
· · · · · · · · · · · · · · · · · · ·		·			
Mixed	0-30	64.88	5.92	5.12	4.6
	30-60	72.16	5.48	4.60	7.6
	60-70	53.40	3.56	2.96	6.0
	70-80	92.56	3.00	2.40	4.8
	80-90	82.28	1.72	1.44	2.1
	90-120	134.36	2.28	1.80	2.6
	120-150	118.28	2.20	1.72	2.1
	150-180	93.24	1.48	1.08	1.5
·					
Plastic.	0-30	50.72	3.28	2.92	3.1
	30-60	54.88	3.76	3.40	4.0
	60-90	45.32	3.08	2.80	3.2
	90-120	37.24	2.00	1.76	2.2
	120-150	34.90	1.36	1.32	1.4
	150-180	34.00	1.36	1.20	1.7

JULY 1979

Medium	Depth cm	Total film kgm-3	Total solids kgm ⁻³	Volatile solids kgm-3	Percentage Settlement
Slag	0-30 30-60 60-90 90-120 120-150 150-180	172.88 188.48 249.16 151.56 194.28 149.20	7.20 8.04 7.52 5.80 5.00 2.48	6.24 6.80 6.40 4.88 4.16 1.92	8.6 14.0 11.8 7.2 6.6 3.2
Mixed	0-30	103.00	6.56	5.84	11.6
	30-60	278.48	16.00	13.32	59.2
	60-70	256.08	16.48	14.00	63.2
	70-80	152.88	8.48	7.44	24.8
	80-90	175.12	6.48	5.72	18.8
	90-120	153.12	3.68	3.24	6.8
	120-150	208.16	4.60	4.05	9.6
	150-180	116.56	2.88	2.52	4.4
Plastic	0-30	94.64	5.28	4.44	7.4
	30-60	149.68	11.48	9.76	27.2
	60-90	307.80	22.56	18.24	78.4
	90-120	291.00	20.00	16.32	60.8
	120-150	175.52	12.60	10.24	30.0
	150-180	116.28	7.72	6.40	22.4
Slag Sl	0.30	172.88	7.20	6.24	8.6
SR	0-30	223.44	7.20	5.84	8.8
SC	0-30	195.12	8.00	6.44	10.0
SL	0-30	176.24	6.16	4.88	6.4
Mixed M1	0-30	103.00	6.56	5.84	11.6
MR	0-30	108.08	6.52	5.28	14.2
MC	0-30	113.76	8.28	6.84	16.0
ML	0-30	155.04	9.92	8.24	36.8
Plastic Pl	0-30	94.64	5.28	4.44	7.4
PR	0-30	113.04	7.80	6.60	22.0
PC	0-30	103.96	6.40	5.40	23.2
PL	0-30	131.24	8.08	6.80	16.8

SOLIDS

AUGUST 1979

Medium	Depth cm	Total film kgm-3	Total solids kgm-3	Volatile solids kgm ⁻³	Percentage Settlement
Slag	0-30	218.32	7.20	5.28	7.6
	30-60	222.76	5.76	4.40	7.4
	60-90	147.28	4.92	3.76	6.0
	90-120	137.56	3.64	2.76	4.0
	120-150	160.60	4.40	3.40	6.0
	150-180	141.00	3.52	2.64	5.6
Mixed	0-30	246.64	15.72	11.96	26.8
	30-60	153.16	8.40	6.76	7.2
	60-70	96.96	5.32	4.40	8.0
	70-80	153.28	7.80	6.16	12.2
	80-90	130.84	3.52	2.84	4.6
	90-120	156.08	4.92	3.80	6.8
	120-150	225.40	5.32	4.08	9.4
	150-180	97.68	2.52	2.00	4.1
Plastic	0-30	338.64	20.00	14.96	44.8
	30-60	399.48	26.36	20.32	54.0
	60-90	227.44	12.40	9.80	19.8
	90-120	150.20	8.60	6.88	15.6
	120-150	123.16	6.72	5.60	10.8
	150-180	51.64	1.84	1.52	3.2

APPENDIX V. FILM ACCUMULATION: NEUTRON SCATTERING TECHNIQUE

Results are expressed as the percentage saturation of the voids.

October, 1977 - August, 1978. Low loading rate $(1.68 \text{ m}^3\text{m}^{-3}\text{d}^{-1})$

September, 1978 - May, 1979. High loading rate $(3.37 \text{ m}^3\text{m}^{-3}\text{d}^{-1})$

Film Accumulation: Neutron Scattering Technique

<u>October 1977</u>

MOISTURE CONTENT (Percentage saturation of Voids)

Depth	Slag	Filter	Mixed	lFilter	Plast	Plastic Filter	
cm	Left	Right	Left	Right	Left	Right	
20	12.8	13.0	6.9	3.4	4.5	3.6	
35	16.8	16.9	10.6	4.7	6.6	3.9	
50	18.9	19.0	10.4	5.6	6.7	4.5	
65	17.9	20.1	8.2	6.2	4.8	3.7	
80	17.0	21.7	13.3	12.0	4.4	3.4	
95	16.2	21.0	16.8	18.9	3.6	3.2	
110	17.7	21.8	20.7	20.5	3.7	2.8	
125	17.4	21.4	19.3	20.8	3.5	2.8	
140	16.1	19.8	18.1	18.2	3.2	2.6	
155	16.2	19.3	16.5	16.7	3.0	2.7	
170	15.6	17.8	16.3	16.2	2.9	2.5	
180	13.6	16.0	14.9	15.5	2.6	2.4	

November 1977

MOISTURE CONTENT (Percentage saturation of Voids)

Depth	Slag	Filter	Mixed	Mixed Filter		Filter
cm	Left	Right	Left	Right	Left	Right
20	23.9	24.2	5.9*	9.9	12.6	10.8
35	20.3	23.1	8.3	9.5	19.3	14.7
50	25.4	20.1	8.2	9.8	9.0	8.6
65	28.5	20.5	7.3	8.1	5.9	5.6
80	19.9	21.0	12.7	14.0	5.1	4.8
95	16.5	21.4	19.5	18.3	4.7	4.5
110	16.4	23.0	23.3	24.9	4.6	4.0
125	16.0	21.9	24.2	27.4	3.9	3.5
140	13.8	19.1	21.7	24.1	3.7	3.2
155	12.5	17.9	19.4	20.6	3.2	3.2
170	11.5	15.8	15.5	19.9	3.1	2.8
180	10.3	13.8	13.0	17.9	2.8	2.2

Storm damage

December 1977

MOISTURE CONTENT (Percentage saturation of Voids)

Depth	Slag I	Filter	Mixed	Mixed Filter		Plastic Filter	
cm	Left	Right	Left	Right	Left	Right	
20	22.5	26.0	7.1	5.3	6.0	7.0	
35	17.9	26.5	4.9	3.2	4.5	5.8	
50	21.8	23.3	4.1	2.7	5.0	5.1	
65	23.6	25.2	3.8	3.0	4.8	4.5	
80 .	22.1	28.2	7.7	6.5	5.2	4.9 [.]	
95	20.6	30.2	14.1	11.7	4.5	4.7	
110	20.6	30.1	16.2	17.4	4.8	4.3	
125	18.4	31.7	18.4	17.9	4.1	3.7	
140	17.3	25.7	17.1	17.3	3.7	3.7	
155	17.0	23.3	16.2	16.7	3.7	3.4	
170	16.8	20.2	15.8	17.7	3.6	3.3	
180	14.6	19.1	14.9	16.8	3.5	3.0	

January 1978

Depth	Slag	Filter	Mixed	Filter	Plastic Filter	
cm	Left	Right	Left	Right	Left	Right
20	27.8	40.1	6.0	7.7	6.1	9.3
35	28.0	28.4	3.8	4.8	2.6	5.7
50	31.1	23.9	3.4	4.0	2.6	4.7
65	32.0	23.8	3.1	3.5	2.8	4.4
80	33.2	24.8	6.8	6.3	4.3	4.8
95	30.3	32.8	12.0	10.9	4.2	5.0
110	30.4	34.2	15.1	15.9	3.9	4.1
125	26.0	34.7	17.2	16.3	3.2	3.5
140	25.6	29.9	15.9	16.3	2.9	3.4
155	26.2	26.8	15.0	16.0	3.0	3.3
1 <i>7</i> 0	25.4	22.3	14.0	17.0	3.3	2.8
180	19.1	22.5	13.1	16.1	3.3	2.8

February 1978

Depth	Slag Filter		Mixed	Mixed Filter		Plastic Filter	
cm	Left	Right	Left	Right	Left	Right	
20	33.1	32.3	11.5	11.3	10.7	10.6	
35	27.6	27.5	7.1	7.9	4.1	5.2	
50	31.4	30.1	5.4	7.3	2.8	3.9	
65	29.7	28.8	4.5	5.3	2.5	3.8	
80	23.9	25.6	7.4	7.9	2.7	4.0	
95	25.9	28.0	12.2	10.9	2.8	4.2	
110	31.3	29.7	15.1	17.0	3.2	3.9	
125	31.0	32.4	17.2	17.1	2.5	3.6	
140	33.4	32.2	16.3	16.8	2.1	3.3	
155	29.8	32.6	14.3	17.6	2.0	2.9	
170	28.6	28.5	14.2	18.0	2.3	3.0	
180	23.7	26.1	12.5	16.9	2.3	2.8	

March 1978

Depth	Slag Filter		Mixed	Mixed Filter		c Filter
cm	Left	Right	Left	Right	Left	Right
20	36.7	35.0	19.0	14.8	13.8	17.3
35	29.4	27.4	7.3	8.9	2.7	5.8
50	34.1	35.4	6.2	6.9	2.0	4.4
65	33.8	36.6	5.9	6.2	1.9	4.0
80	26.1	31.5	10.1	11.1	1.9	4.3
95	27.3	30.7	15.2	16.6	2.1	4.6
110	33.8	31.4	18 .0 ′	21.6	2.3	4.6
125	33.0	34.8	20.1	22.0	2.3	4.3
140	36.3	35.4	17.8	21.5	2.3	4.2
155	33.9	33.4	17.0	21.7	2.2	3.7
170	30.9	28.0	15.4	21.3	2.4	3.3
180	26.4	25.3	14.6	19.9	2.4	3.0

Film Accumulation: Neutron Scattering Technique

April 1978

Depth	Slag Filter		Mixed	Mixed Filter		Plastic Filter	
cm	Left	Right	Left	Right	Left	Right	
20	32.2	25.3	9.0	9.1	7.8	5.9	
35	22.7	22.6	3.0	4.2	2.0	2.5	
50	30.6	35.5	2.9	4.2	1.9	2.7	
65	31.8	41.8	3.1	4.6	2.1	2.6	
80	25.7	38.4	6.7	7.5	1.9	2.5	
95	23.7	34.1	13.1.	11.9	1.9	2.7	
110	30.2	34.6	18.0	17.1	2.0	2.7	
125	33.7	37.9	21.5	18.6	2.0	3.0	
140	35.3	42.6	18.8	18.8	1.9	3.3	
155	35.5	38.7	17.0	20.9	1.9	3.4	
170	33.6	36.5	15.6	20.9	2.1	3.5	
180	29.1	34.4	14.5	19.1	2.2	3.7	

May 1978

	Slag Filter		Mixed	Mixed Filter		ic Filter
Depth cm	Left	Right	Left	Right	Left	Right
20	25.6	26.7	5.9	4.0	2.9	5.0
35	19.5	23.4	1.5	1.2	1.0	1.6
50	24.8	34.9	1.4	1.3	1.0	1.4
65	21.0	23.3	1.5	1.4	1.0	1.2
80	16.0	16.6	3.9	3.4	1.1	1.4
95	14.4	16.2	9.3	7 . 3	1.1	1.3
110	19.2	17.5	15.0	12.0	1.2	1.5
125	24.6	24.8	19.6	12.4	1.2	1.7
140	30.5	28.5	18.3	13.7	1.3	1.9
155	31.2	32.8	15.7	15.7	1.4	2.2
170	30.4	34.8	15.0	17.7	1.6	2.5
180	27.5	33.7	13.9	16.8	1.7	2.4

Film Accumulation: Neutron Scattering Technique

June 1978

D	Slag	Slag Filter		Filter	Plastic	Filter
Depth cm	Left	Right	Left	Right	Left	Right
20	10.3	12.9	2.0	1.9	1.7	1.5
35	10.4	14.6	1.1	1.4	0.9	0.9
50	11.8	13.5	1.1	1.5	1.0	1.1
65	12.0	12.7	1.5	1.5	1.0	1.1
80	11.8	11.6	3.6	3.0	1.0	1.2
95	11.5	11.4	8.3	6.7	1.0	1.3
110	12.0	11.3	11.4	10.9	1.2	1.2
125	12.0	12.9	13.5	11.6	1.0	1.2
140	12.1	12.0	13.6	11.8	1.2	1.4
155	12.8	13.0	12.8	12.3	, 1.2	1.4
170	13.3	13.9	12.5	14.0	1.2	1.4
180	12.9	14.0	12.0	12.7	1.2	1.6
			-			

Film Accumulation: Neutron Scattering Technique

July 1978

Donath	Slag	Filter	Mixed	Filter	Plastic Filter	
Depth cm	Left	Right	Left	Right	Left	Right
20	14.8	34.1	2.4	2.1	2.0	1.8
35	13.2	26.9	1.9	1.6	1.3	1.4
50	12.6	21.2	2.0	1.8	1.1	1.4
65	11.5	15.9	1.8	1.7	1.0	1.1
80	11.2	13.1	3.6	3.3	1.0	1.1
95	10.8	12.1	8.1	7.1	1.0	1.1
110	11.5	11.6	11.0	11.0	1.0	1.1
125	11.5	12.4	13.5	11.4	1.0	1.2
140	11.3	11.2	13.2	11.9	1.0	1.2
155	12.4	13.3	13.2	12.7	1.0	1.3
170	12.5	14.0	12.2	14.0	1.1	1.3
-180	12.2	13.6	11.8	12.4	1.1	1.3

August 1978

Depth	Slag Filter		Mixed	Mixed Filter		Plastic Filter	
cm	Left	Right	Left	Right	Left	Right	
20	16.6	14.37	5.60	4.97	6.08	6.72	
35	15.84	13.00	3.06	3.91	3.61	5.14	
50	16.74	14.47	2.10	2.85	2.19	3.71	
65	15.05	14.84	1.97	2.30	1.57	2.03	
80	13.79	14.47	3.67	3.75	1.22	1.54	
95	13.05	14.00	7.97	7.34	1.28	.1.64	
110	14.31	12.78	10.16	11.68	1.38	1.54	
125	14.52	13.63	13.07	11.76	1.38	1.44	
140	13.68	13.73	13.70	12.27	1.22	1.47	
155	13.94	14.89	13.20	12.86	1.38	1.60	
170	14.52	15.42	12.44	13.83	1.44	1.67	
180	13,36	15.05	11.43	12.90	1.34	1.54	

September 1978

MOISTURE CONTENT (Percentage saturation of Voids)

Depth	Slag	Filter *	Mixed	Filter	Plastic	Filter *
cm	Left	Right	Left	Right	Left	Right
20			2.88	3.44		
35			2.40	2.63		
50			2.79	2.75		
65			2.53	2.95		
80			5.43	5.48		
95			10.43	9.59		
110			12.70	14.18		
125	·		14.65	14.70		
140			14.86	15.28		
155			14.18	15.44		
170			13.60	16.28		
180			12.70	15.13		

^{*} No results due to failure of neutron probe.

Depth	Slag I	ilter	Mixed F	ilter	Plastic I	Filter
cm	Left	Right	Left	Right	Left	Right
20	32.97	40.39	11.17	13.17	12.52	11.95
35	30.27	34.15	7.96	11.90	10.01	8.19
50	29.43	32.50	7.73	11.54	9.39	6.53
65	27.19	29.85	6.51	7.78	7.39	5.83
80	24.33	25.51	11.64	12.56	6.20	6.04
95	21.12	22.18	18.59	18.42	4.85	5.34
110	20.11	19.10	19.44	23.90	4.54	5.16
125	17.54	19.01	21.25	24.16	3.81	4.72
140	15.77	17.92	20.15	22.22	3.60	4.74
155	16.95	18.72	18.59	20.78	3.47	4.85
170	16.36	20.15	19.01	22.89	3.03	4.51
180	15.64	20.07	17.29	21.92	2.88	4.56

Film Accumulation: Neutron Scattering Technique
May 1979

MOISTURE CONTENT (Percentage saturation of Voids)

Depth	Slag I	ilter	Mixed F	ilter	Plastic	Filter
cm	Left	Right	Left	Right	Left	Right
20	30.44	33.01	10.34	5.44	4.74	4.46
35	34.61	41.36	10.76	3.81	2.83	2.62
50	34.57	45.91	7.88	3.87	3.79	3.29
65	29.22	47.39	4.33	2.85	3.22	2.57
80	22.56	38.66	5.65	4.60	2.10	2.02
95	18.80	26.81	10.50	8.90	1.32	1.50
110	17.62	20.36	12.99	12.65	1.19	1.43
125	17.37	20.95	15.47	13.28	1.09	1.32
140	17.03	21.42	15.30	12.90	1.14	1.37
155	21.92	25.17	15.64	13.07	1.27	1.45
170	28.29	30.73	17.12	15.73	1.37	1.48
180	27.66	32.67	15.64	14.46	1.45	1.61

Parameters correlated

- A. Major Groups
- B. Protozoa
- C. Protozoa

- 1. Film weight
- 1. Film weight
- 1. Paramecium aurelia

- 2. Zoogloeal bacteria
- 2. Zoogloeal bacteria
- 2. Opercularia microdiscum

- 3. Subbaromyces splendens
- 3. Subbaromyces splendens
- 3. Colpidium colpoda
- 4. Sarcomastigophora 4. Sarcomastigophora
- 4. Uronema nigricans

- 5. Ciliophora
- 5. Paramecium aurelia
- 5. Chilodonella uncinata

- 6. Sphaerotilus natans
- 6. Opercularia
- 6. Ciliophora

- 7. Enchytraeidae
- microdiscum
- 7. Sphaerotilus natans

- 8. Psychodid larvae
- 7. Colpidium colpoda
- 8. Enchytraeidae

- 9. Nematoda
- 8. Uronema nigricans
- 9. Psychodid larvae

- 10. Paracyclops sp.
- 9. Chilodonella
- 10. Nematoda

- 11. Acari-Astigmata
- uncinata 10. Paracyclops sp.
- 11. Organic Load 12. Effluent BOD

- 12. Air temperature
- 11. Acari-Astigmata
- 13. Organic Load
- 12. Air temperature
- 14. Effluent BOD

Values of Correlation Coefficient 'r'.

Degrees of freedom			r	
(n - 1)	P < 0.05	·P < 0.02	P < 0.01	P _. < 0.001
10	0.576	0.658	0.708	0.823
11	0.553	0.634	0.684	0.801
68	0.250	0.295	0.324	0.408

14.	Effluent BOD		<u> </u>							,				* (+)	
13.	Organic load				·				·	(-)		•	* (+)		0.766
12.	Air temp- erature	* (-)		* (+)						* (1)	* (+)			0.688	0.431
11.	Acari		·		* +		·				* (+)		0.312	0.514	0.415
10.	Paracyclops sp.	* (-)		(+)								0.650	0.589	0.408	-0.012
9.	Nematoda	:									-0.260	-0.247	-0.742	-0.581	-0.426
8.	Psychodid larvae									-0.459	-0.170	-0.054	0.472	0.228	0.459
7.	Enchytrae- idae								0.298	-0.055	0.035	0.535	-0.102	0.251	0.289
6.	Sphaeroti- lus sp.	* (+)						-0.464	-0.517	0.315	-0.528	-0.490	-0.505	-0.260	-0.086
5.	Ciliophora						0.242	0.003	0.098	-0.022	-0.252	-0.197	-0.170	-0.476	-0.294
4.	Sarcomas- tigophora	·				-0.138	0.305	0.144	-0.402	0.009	0.152	0.590	980.0-	0.361	0.532
3.	Subbaro- myces sp.	(-)			-0.161	-0.295	-0.495	-0.262	0.140	-0.440	0.800	0.245	0.783	0.356	-0.002
2.	Zoogloeal bacteria			0.133	-0.420	-0.511	0.055	-0.483	-0.162	-0.116	-0.068	-0.405	0.106	0.062	-0.232
1.	Film weight		-0.198	-0.750	0.516	0.338	0.794	-0.072	-0.491	0.335	-0.604	-0.204	-0.689	-0.351	-0.035
		l. Film weight	.2. Zoogloeal bac- teria	3. Subbaromyces	4. Sarcomastigo- phora	5. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda	10. Paracyclops sp	11. Acari	12. Air tempera- ture	nic load	14. Effluent BOD

12. Air temberating 13. Sarcomastigo- 14. Sarcomastigo- 15	14.	Effluent BOD	/		1100		/							* (+)	* (+)	
Film weight Film weight	13.	Organic load								-						0.779
Film weight Subparconius Subhaerotilus Subhaerotilus Subhaerotilus Sub- Subhaerotilus Su	12.		*		(+)			·		-		·			0.688	0.589
Film weight Zoogloeal bac- Ciliphora Ciliphora Sphaerotilus Psychodid lar- Co. 052	11.	Acari												-0.213	0.140	0.364
Film weight 200gleeal bac- -0.032	10.		·		(+) *		•		-				-0.210	0.450	0.325	-0.028
Film weight Zoogloeal bacteria Subbarcomstigo- bhora Ciliophora Ciliophora Ciliophora Ciliophora Sychodid lar- Co.525 -0.141 -0.147 0.233 Ciliophora Cili	9.	Nematoda		(+) *	(-) *							-0.192	.0.361	-0.525	-0.350	-0.428
Film weight Zoogloeal bac- Leria Subbaromyces Subbaromyces Subbaromyces Subbaromyces Subbaromyces Subbaromyces Sphaerotilus Ciliophora Cili	8.									/.	-0.334	-0.436	0.210	-0.021	0.040	0.444
Film weight Zoogloeal bacteria Subbaromyces	7.	Enchytrae- idae						•	/.	-0.030	0.368	0.266	0.345	-0.541	0:030	0.098
Film weight Film weight Zoogloeal bac- Loogloeal bac- Coog	6.	Sphaeroti- lus sp.				. •			-0.406	0.135	0.041		-0.185	0.026	-0.039	-0.183
Film weight Zoogloeal bac- Leria Subbaromyces Subbaromyces Subbaromyces Subbaromyces Subbaromyces Subbaromyces Subbaromyces Subbaromyces -0.345 -0.075 Sarcomastigo- phora Ciliophora Cil	5 .	Ciliophora			·			-0.311	-0.105	. =	-0.226	-0.262	-0.079	0.335	0.069	0.288
Film weight Zoogloeal bac- Leria Subbaromyces Sarcomastigo- Ciliophora Ciliophora Ciliophora Ciliophora Ciliophora Constructions Ciliophora Constructions Cons	4.	Sarcomas- tigophora	(-)				0.233	-0.525	0.119	0.162	-0.042	0.113	-0.019	0.268	0.147	0.191
Film weight Zoogloeal bac- teria Subbaromyces Sarcomastigo- phora Ciliophor	3.	Subbaro- myces sp.				0.303	-0.147		-0.496	-0.155	-0.580	0.626	-0.544	0.555	0.349	-0.034
Film weight Zoogloeal bac- co.032 teria Subbaromyces sp. Sarcomastigo- phora Ciliophora Ciliophora Ciliophora Ciliophora Ciliophora Ciliophora Ciliophora Ciliophora Ciliophora Ciliophora Co.525 Sphaerotilus Sphaerotilus Co.376 Sphaerotilus Co.376 Agari Co.376 Agar	2.	Zoogloeal bacteria			-0.075	0.272	-0.141	0.195	0.069	-0.203	0.619	0.034	0.022	-0.012	-0.076	-0.266
Film weight Zoogloeal bateria Subbaromyces Sp. Sarcomastigo phora Ciliophora Sphaerotilus Sp. Enchytraeida Sp. Enchytraeida Psychodid la vae Nematoda Acari Air temperature Curanic loac	1.	Film weight		-0.032		-0.584	-0.525	0.376	-0.121		0.480	1	0.358	-0.582	-0.517	-0.495
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces	• `	5. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda		11. Acari	12. Air tempera- ture	13. Organic load	14. Effluent BOD

Effluent BOD				,	·	·		* (+)					* (+)	
Organic load	* (1)							`.				(+)		0.703
Air temp- erature	* (-)						(-)		* (-)				0.688	0.507
Acari				* (+				-				-0.240	0.153	0.133
Paracyclops sp.	(+)							* (-)			-0.392	-0.419	-0.343	-0.499
Nematoda							(+)			0.328	0.335	-0.683	-0.236	-0.401
Psychodid larvae					** (+)				-0.404	-0.639	0.280	0.300	0.332	0.681
Enchytrae- idae						•		-0.124	0.712	0.150	0.114	-0.768	-0.357	-0.319
Sphaeroti- lus sp.								-0.440	0.466	0.444	-0.171	0.026	0.251	0.074
Ciliophora				. 1.		-0.178	600.0	0.804	-0.219	-0.521	0.330	0.254	0.159	0.507
Sarcomas- tigophora					-0.074	-0.308	-0.135	0.155	0.409	-0.330	0.684	-0.331	0.189	0.070
Subbaro- myces sp.		(+) ***		-0.300	-0.446	-0.205	-0.389	-0.136	-0.478	0.365	-0.463	0.261	0.042	-0.224
Zoogloeal bacteria			0.883	-0.300	-0.365	0.168	-0.319	-0.130	-0.258	0.440	-0.369	0.247	0.239	-0.074
Film weight		0.089	-0.038	-0.131	-0.334	0.378	0.365	-0.531	0.521	0.756	0.008	-0.779	-0.589	-0.483
	1. Film weight		3. Subbarcmyces	4. Sarcomastigo- phora	5. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda	10. Paracyclops sp.	II. Acari	Air tempera- ture	Organic load	14. Effluent BOD
	Organic load Air temp-erature Acari Paracyclops sp. Nematoda Psychodid larvae Enchytrae-idae Sphaeroti-lus sp. Ciliophora Sarcomas-tigophora Subbaro-myces sp. Zoogloeal bacteria	Organic load Air temp-erature Acari Paracyclops * + Nematoda Psychodid larvae Enchytrae-idae Sphaeroti-lus sp. Ciliophora Sarcomas-tigophora Subbaro-myces sp. Zoogloeal bacteria Film weight	Organic load Air temp- *	Organic load Air temp-erature Acari Paracyclops * + + Nematoda Psychodid larvae Enchytrae-idae Sphaeroti-lus sp. Ciliophora Sarcomas-tigophora Subbaro-myces sp. Zoogloeal bacteria Film weight Simparcemases are specified by the serice of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the s	Organic load Air temp-erature Acari Paracyclops * (+) Nematoda Psychodid larvae Enchytrae-idae Sphaeroti-lus sp. Ciliophora Sarcomas-tigophora Subbaro-myces sp. Zoogloeal bacteria Film weight Film weight Sphaerotia Film weight Sphaerotia Film weight Film weight Film weight Film weight Sphaerotia Film weight Subbaro-myces sp. Film weight Film weight Sphaerotia Film weight Film weight Film weight Film weight	Organic load Air temperature Acari Paracyclops * + + + + + + + + + + + + + + + + + +	Songloeal pacteria Sphaeroti-lius	Sobjection Sarcomastigo- Ciliophora Sarcomastigo- Ciliophora	Eilm weight	Film weight	Film weight	Fillm weight	Film weight Zoogloeal bac- 0.039 0.883	Fillm weight

14.	Effluent BOD	•				·			* (+)				* (+)	***	
13.	Organic load				,			·	·				* (+)		0.947
12.	Air temp- erature				·	(+)						·		0.712	0.747
11.	Acari				·								-0.393	-0.068	-0.224
10.	Paracyclops sp.					* *		•.			<i>-</i>	0.421	0.453	0.482	0.429
9.	Nematoda				: ,			(+)	* (-)		-0.175	-0.054	-0.158	-0.487	-0.498
8.	Psychodid larvae	,		* (+)						-0.735	0.019	-0.528	0.470	0.449	0.583
7.	Enchytrae- idae			*(+)					-0.384	0.719	-0.304	-0.141	0.071	-0.326	-0.339
6.	Sphaeroti- lus sp.							-0.489	0.277	-0.135	0.166	-0.278	0.043	0.277	0.428
5.	Ciliophora			(+)			0.346	-0.267	0.534	-0.384	0.732	-0.118	0.583	0.441	0.503
4.	Sarcomas- tigophora	·	(+)			0.267	0.003	-0.182	0.200	-0.121	0.135	-0.197	0.064	-0.082	0.148
3.	Subbaro- myces sp.	i,			0.355	0.934	0.362	-0.386	092.0	-0.553	0.510	-0.309	0.522	0.397	0.481
2.	Zoogloeal bacteria			0.519	0.859	0.434	0.225	-0.543	0.365	-0.429	0.318	-0.090	0.041	0.044	0.058
1.	Film weight		0.191	-0.369	0.309	-0.481	0.384	-0.267	-0.238	0.214	-0.327	-0.027	-0.504	-0.233	-0.279
		Film weight	Zoogloeal bac- teria	- •		. Ciliophora	Sphaerotilus sp.	. Enchytraeidae	. Psychodid lar- vae	. Nematoda	. Paracyclops sp.	. Acari	. Air tempera- ture		14. Effluent BOD
	•	-	2.	ี ຕໍ	4	5.	9	7.	ω	6	10.	Ë	12.	13.	14
	·			<u>.</u>			28	7	•	·					

14.	Effluent BOD	•		·					(+)				* * (+)	(+)	
13.	Organic load	·											(+)		0.832
12.	Air temp- erature	* ()			·	•				·	•			0.712	0.765
11.	Acari									•	·		-0.528	-0.196	-0.353
10.	Paracyclops sp.			·			***				1	0.200	0.269	0.330	0.137
9.	Nematoda										-0.207	091.0	-0.468	-0.437	-0.533
8.	Psychodid larvae									-0.532	-0.214	-0.416	0.547	0.518	0.856
7.	Enchytrae- idae			·	* (1)				0.135	0.140	-0.220	-0.318	0.161	-0.129	0.200
6.	Sphaeroti- lus sp.				* (+)			-0.415	-0.453	0.103	0.840	0.273	-0.093	0.204	-0.150
5.	Ciliophora		•	* (+)	·		-0.320	-0.291	0.458	-0.178	-0.367	0.350	0.003	0.459	0.409
4.	Sarcomas- tigophora					-0.026	0.614	-0.654	-0.362	0.348	0.274	0.080	-0.143	0.143	-0.237
3.	Subbaro- myces sp.				0.475	0.631	-0.171	-0.404	0.290	-0.054	-0.278	-0.161	0.309	0.575	0.352
2.	Zoogloeal bacteria	(+)		0.098	0.375	-0.333	0.073	-0.064	-0.382	0.315	-0.282	-0.262	-0,366	-0.339	-0.496
1.	Film weight		0.890	0.056	0.516	-0.207	0.265	-0.262	-0.414	0.367	-0.230	-0.098	-0.585	-0.333	-0.549
		l. Film weight	.2. Zoogloeal bacteria	3. Subbaromyces	4. Sarcomastigo- phora	5. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda	10. Paracyclops sp	11. Acari	12. Air tempera- ture	13. Organic load	14. Effluent BOD

14.	Effluent BOD	* (1)							* (+)	* (-)			* (+	* (+	:/
13.	Organic load			* (+					* (+)	(-)			* (+)		0.769
12.	Air temp- erature					•		2		* (-)				0.712	0.759
11.	Acari		-	* (-)				·		* (+)			-0.501	-0.561	-0.391
10.	Paracyclops sp.	·										-0.151	0.313	0.405	0.214
·9.	Nematoda								* (-)		-0.215	0.766	-0.707	-0.656	-0.664
8.	Psychodid larvae						* (1			-0.732	-0.050	-0.534	0.532	0.582	0.809
7.	Enchytrae- idae		·						-0.226	0.362	0.379	0.496	0.234	-0.015	0.202
6.	Sphaeroti- lus sp.		•			•		-0.009	-0.600	0.168	0.458	-0.062	-0.086	0.028	-0.392
5.	Ciliophora						0.072	-0.345	0.148	0.186	-0.019	-0.110	-0.462	-0.016	-0.142
4.	Sarcomas- tigophora					0.559	-0.318	0.014	0.430	0.108	-0.118	0.077	-0.221	-0.214	0.185
3.	Subbaro- myces sp.				-0.366	-0.106	0.270	-0.441	0.271	-0.515	-0.123	-0.624	0.438	0.584	0.212
2.	Zoogloeal bacteria			0.239	-0.062	-0.080	0.406	0.109	-0.478	0.453	-0.452	0.165	-0.110	-0.353	-0.373
1.	Film weight		0.485	0.341	-0.310	-0.091	0.261	-0.338	-0.430	0.375	-0.430	0.201	-0.251	-0.280	-0.601
]. Film weight	2. Zoogloeal bac- teria	3. Subbaromyces	4. Sarcomastigo- phora	5. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda	10. Paracyclops sp.	11. Acari	12. Air tempera- ture	13. Organic load	14. Effluent BOD

14.	Effluent BOD								(+)	*			* (+)	***	
13.	Organic load		* (+)		* (+)	* (+)		·	* *				* (+)		0.840
12.	Air temp- erature	* (-)		(+) * *			·		·	*				0.448	0.541
11.	Acari		* (-)			V	* (-)				(+)		0.027	-0.184	-0.047
10.	Paracyclops sp.		(-)	(+)			* (-)				1	0.660	0.384	-0.302	-0.202
9.	Nematoda			(-)				(+)	(-)		-0.162	-0.157	-0.442	-0.350	-0.426
8.	Psychodid larvae	·				(+)				-0.528	-0.321	-0.421	0.372	0.562	0.597
7.	Enchytrae- idae			,					-0.167	0.432	-0.188	-0.050	0.013	-0.023	-0.086
6.	Sphaeroti- lus sp.	·				(+)		-0.316	0.290	0.029	-0.430	-0.449	-0.147	0.405	0.377
5.	Ciliophora						0.430	-0.125	0.547	-0.224	-0.218	-0.257	0.305	0.443	0.370
4.	Sarcomas- tigophora		* * (+)	-		0.377	0.331	0.058	0.348	-0.051	-0.387	-0.199	-0.036	0.447	0.279
3.	Subbaro- myces sp.	(-)			0.042	0.308	-0.051	-0.269	0.353	-0.473	0.579	0.093	0.647	0.193	0.158
2.	Zoogloeal bacteria			0.145	0.606	0.283	0.379	-0.141	0.379	-0.173	-0.451	-0.479	0.005	0.474	0.177
1.	Film weight		-0.151	-0.636	0.162	-0.136	0.385	-0.169	-0.300	0.286	-0.326	980.0-	-0.565	-0.255	-0.161
		1. Film weight	.2. Zoogloeal bac- teria	3. Subbaromyces	4. Sarcomastigo- phora	5. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda	10. Paracyclops sp.	11. Acari	12. Air tempera- ture	13. Organic load	14. Effluent BOD

;

14.	Effluent BOD	* (-)							* (+)	* (-)			***	* (+)	
13.	Organic load			(+)	, ·				* (+			,	* (+)		0.643
12.	Air temp- erature	* (-)								* (-)				0.448	0.665
11.	Acari						·						-0.188	-0.359	990.0
10.	Paracyclops								•.			0.002	0.344	0.169	0.053
9.	Nematoda										-0.179	0.283	-0.473	-0.255	-0.450
8.	Psychodid larvae		·							-0.298	-0.230	-0.262	0.358	0.547	0.646
7.	Enchytrae- idae								0.204	0.149	-0.234	-0.153	-0.011	0.108	0.182
6.	Sphaeroti- lus sp.	·						-0.229	-0.152	0.050	0.291	-0.235	-0.064	0.332	-0.108
5.	Ciliophora			(+)			-0.169	-0.113	0.365	-0.201	-0.330	-0.135	0.132	0.417	0.365
4.	Sarcomas- tigophora					0.159	0.031	-0.296	-0.140	0.073	0.170	-0.069	0.064	0.184	0.023
3.	Subbaro- myces sp.				0.348	0.482	0.086	-0.204	0.389	-0.113	-0.182	-0.370	0.220	0.680	0.268
2.		(+)		0.397	0.273	0.039	0.298	0.148	-0.038	0.146	-0.232	-0.415	-0.251	0.293	-0.184
1.	Film weight		0.670	0.164	-0.041	-0.228	0.403	-0.093	-0.159	0.388	-0.227	-0.014	-0.572	-0.027	-0.446
.*		1. Film weight	. Zoogloeal bac- teria		•	. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda	10. Paracyclops sp	1. Acari	12. Air tempera- ture	13. Organic load	14. Effluent BOD
			.2	က	4	5	Ð	7	ω	O1	10		1,2	<u>~</u>	ř

14.	Effluent BOD								(+)	*			* (+)	* (+)	
13.	Organic load			* *			* (+)	·	(+)		(-) *		* (+)		0.603
12.	Air temp- erature	* (-)						-		(-)				0.448	0.632
11.	Acari			(-) *	* * (+)								-0.215	-0.346	-0.055
10.	Paracyclops sp.		* (-)									0.062	-0.100	-0.521	-0.291
9.	Nematoda							(+)	(-)		0.191	0.377	-0.665	-0.325	-0.497
8.	Psychodid larvae		1							-0.483	-0.374	-0.184	0.399	0.591	0.717
7.	Enchytrae- idae				•		•		-0.213	0.595	0.274	0.251	-0.294	-0.246	-0.119
6.	Sphaeroti- lus sp.	* *	(+)	* (+)		• .	/.	-0.158	-0.191	0.116	-0.399	-0.322	-0.094	0.490	-0.112
5.	Ciliophora		•				0.230	-0.275	0.344	-0.029	-0.415	0.008	-0.201	0.222	0.142
4.	Sarcomas- tigophora					101.0	-0.309	0.334	0.155	0.325	-0.034	0.608	-0.246	-0.171	0.077
3.	Subbaro- myces sp.	(+)	* (+)		-0.323	-0.003	0.461	-0.397	0.330	-0.370	-0.271	-0.458	0.293	0.641	0.140
2.	Zoogloeal bacteria	(+) * *		0.532	-0.258	0.123	0.686	-0.204	-0.052	0.070	-0.478	-0.363	-0.058	0.364	-0.098
1.	Film weight		0.611	0.427	-0.279	0.027	0.540	-0.078	-0.158	0.349	-0.163	-0.193	-0.439	991.0	-0.381
		l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces	4. Sarcomastigo- phora	5. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda	10. Paracyclops sp	11. Acari	12. Air tempera- ture	13. Organic load	14. Effluent BOD

14.	Effluent BOD	* (1)											·		
13.	Organic load	. :	* (+)	(+)			·		·						
12.	Air temp- erature	***		* (-)		•								0.448	0.685
11.	Acari		* (-)	(-)				•					-0.146	-0.266	0.610
10.	Paracyclops sp.		(-)	·		·						0.026	0.245	-0.092	-0.025
9.	Nematoda	* (+)		·		·					-0.108	0.116	-0.476	-0.297	-0.098
8.	Psychodid larvae	·		(+)						-0.351	-0.251	-0.137	0.351	0.528	0.618
7.	Enchytrae- idae		·						0.020	0.335	-0.122	-0.046	-0.055	-0.010	0.010
6.	Sphaeroti- lus sp.	(+)	(+)	* (+)				-0.221	-0.097	0.037	0.015	-0.193	060.0	0.392	-0.018
5 .	Ciliophora	·		(+)			0.121	-0.163	0.390	-0.172	-0.291	0.053	0.041	0.329	0.248
4.	Sarcomas- tigophora			•		0.175	290°0-	-0.007	0.081	0.074	-0.066	0.336	-0.101	0.104	0.126
3.	Subbaro- myces sp.		* (+)		-0.078	0.255	0.268	-0.239	0.369	-0.241	-0.085	-0.276	0.291	0.533	0.163
2.	Zoogloeal bacteria	* * (+)		0.403	0.118	0.125	0.453	-0.034	0.021	-0.001	-0.320	-0.308	-0.106	0.370	-0.046
1.	Film weight		0.381	0.128	-0.063	960.0-	0.412	-0.131	-0.168	0.310	-0.244	-0.096	-0.517	-0.044	-0.304
•		l. Film weight	<pre>¿2. Zoogloeal bac- teria</pre>	3. Subbaromyces	4. Sarcomastigo- phora	5. Ciliophora	6. Sphaerotilus sp.	7. Enchytraeidae	8. Psychodid lar- vae	9. Nematoda	10. Paracyclops sp.	11. Acari	12. Air tempera- ture	13. Organic load	14. Effluent BOD

12.	Air temp.	* (-)		* (+)		* (1)			* (+)		* (+)		
11.	Acari				(+) *		٠.,				* (+)		0.312
10.	Paracy- clops sp.	* ()		* (+)		·						0.650	0.589
9.	C. unci- nata					* (+)					0.054	0.284	-0.106
8.	U. nigri- cans				·	·				-0.293	0.256	0.226	009.0
7.	C. colpoda		·			* (+			-0.290	0.373	-0.309	-0.268	-0.158
6.	0. micro- discum	* ()				* 1		-0.270	0.464	-0.488	0.107	-0.212	0.382
5.	P. aure- lia	* (+)	2	* (=)			-0.554	0.654	-0.480	0.683	-0.446	-0.246	-0.590
4.	Sarcomas- tigophora					0.020	-0.391	0.031	-0.033	-0.044	0.152	0.590	-0.086
3.	Subbaro- myces sp.	* (-)			-0.161	-0.580	0.469	-0.246	0.303	-0.199	0.800	0.245	0.783
2.	Zoogloeal bacteria			0.133	-0.420	-0.199	-0.189	-0.045	-0.311	-0.222	-0.068	-0.405	0.106
1.	Film . weight		-0.198	-0.750	0.516	0.715	-0.581	0.538	-0.458	0.162	-0.604	-0.204	-0.689
		l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces sp.	4. Sarcomastigophora	5. P. aurelia	6. 0. microdiscum	7. C. colpoda	8. U. nigricans	9. C. uncinata	10. Paracyclops sp.	ll. Acari	12. Air temperature

12.	Air temp.	* (-)		* (+)									
11.	Acari			·									-0.213
10.	Paracy- clops sp.			*						•		-0.210	0.450
9.	C. unci-				* (+)						0.292	-0.022	0.454
8.	U. nigri- cans	* ()						(+) ***		0.217	-0.247	-0.165	0.448
7.	C. colpoda	·	·						0.867	-0.225	-0.298	-0.113	0.285
6.	0. micro- discum		·					-0.152	-0.102	0.011	-0.124	-0.140	-0.432
5.	P. aure- lia	* (+)					0.302	-0.124	-0.411	-0.192	0.075	0.369	-0.379
4.	Sarcomas- tigophora	* (-)				-0.110	0.259	-0.097	0.204	0.676	0.113	-0.019	0.268
3.	Subbaro- myces sp.				0.303	-0.335	0.063	-0.355	-0.063	0.548	0.626	0.544	0.555
2.	Zoogloeal bacteria			-0.075	0.272	0.235	0.021	-0.271	-0.155	0.463	0.034	0.022	-0.012
1.	Film weight		-0.032	-0.345	-0.584	0.682	-0.018	-0.309	-0.595	-0.433	-0.174	0.358	-0.582
		l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces sp.	4. Sarcomastigophora	5. P. aurelia	6. 0. microdiscum	7. C. colpoda	8. U. nigricans	9. C. uncinata	10. Paracyclops sp.	11. Acari	12. Air temperature

12.	Air temp.	* (-)							;				
11.	Acari				* (+)	·		·			·		-0.240
10.	Paracy- clops sp.	* (+			-	* (+)		·	* (1)	•		-0.392	-0.419
9.	C. unci- nata										0.121	0.092	-0.157
8.	U. nigri- cans									0.007	-0.695	0.239	0.387
7.	C. colpoda								-0.175	0.464	0.098	0.431	0.215
6.	0. micro- discum					* (-)		0.105	0.338	-0.128	-0.494	-0.178	0.305
5.	P. aure- Tia	* (+					-0.592	-0.066	-0.378	-0.147	0.568	-0.187	-0.326
4.	Sarcomas- tigophora					-0.365	-0.040	0.093	0.018	0.258	-0.330	0.684	-0.331
3.	Subbaro- myces sp.	·	*** (+)		-0.300	-0.286	0.084	-0.229	-0.251	-0.297	0.365	-0.463	0.261
2.	Zoogloeal bacteria			0.883	-0.300	-0.041	-0.094	-0.177	-0.246	-0.274	0.440	-0.369	0.247
1.	Film weight		0.089	-0.038	-0.131	0.733	-0.541	0.205	-0.540	-0.060	0.756	0.008	-0.779
		l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces sp.	4. Sarcomastigophora	5. P. aurelia	6. 0. microdiscum	7. C. colpoda	8. U. nigricans	9. C. uncinata	10. Paracyclops sp.	11. Acari	12. Air temperature

	*,												
12.	Air temp.						* (+)		- 				
11.	Acari												-0.393
10.	Paracy- clops sp.				-							0.421	0.453
9.	C. unci- nata	·				·					0.426	0.122	0.137
8.	U. nigri-	* ()		·						0.055	690.0	0.187	0.182
7.	C. colpoda		* (1		* (-)	*			-0.307	-0.030	-0.119	0.117	-0.330
6.	0. micro- discum			***				-0.382	0.362	0.038	0.527	-0.336	0.613
5.	P. aure- lia						-0.252	0.696	-0.209	0.281	0.353	0.227	0.016
4.	Sarcomas- tigophora		(+)			-0.432	0.499	-0.640	990.0-	-0.012	0.135	-0.197	0.064
3.	Subbaro- myces sp.				0.355	-0.076	0.938	-0.234	0.513	-0.038	0.510	-0.309	0.522
2.	Zoogloeal bacteria			0.519	0.859	-0.263	0.552	-0.594	0.114	0.166	0.318	-0.090	0.041
1.	Film weight		0.191	-0.369	0.309	0.173	-0.401	0.180	-0.609	-0.372	-0.327	-0.027	-0.504
		l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces sp.	4. Sarcomastigophora	5. P. aurelia	6. O. microdiscum	7. C. colpoda	8. U. nigricans	9. C. uncinata	10. Paracyclops sp.	11. Acari	12. Air temperature

													
12.	Air temp.	* (-)											
11.	Acari							(+)		***			-0.528
10.	Paracy- clops sp.				-					•		0.200	0.269
9.	C. unci- nata							* (+)			0.016	0.914	0.500
8.	U. nigri- cans									-0.209	-0.102	-0.275	0.379
7.	C. colpoda								-0.173	0.709	-0.183	0.737	-0.513
6.	0. micro- discum			* (+)				-0.040	-0.135	0.176	-0.376	-0.041	0.183
5.	P. aure- lia	·			•		0.191	-0.186	-0.174	-0.110	-0.068	0.095	-0.136
4.	Sarcomas- tigophora				<i>[</i> .	0.204	0.312	-0.230	-0.566	0.047	0.274	080.0	-0.143
3.	Subbaro- myces sp.		:		0.475	0.371	0.867	-0.203	-0.086	-0.094	-0.278	-0.161	0.309
Ż.	Zoogloeal bacteria	(+)		0.098	0.375	-0.066	0.069	-0.289	-0.397	-0.189	-0.282	-0.262	-0.366
1.	Film weight		0.890	0.056	0.516	0.017	0.124	-0.163	-0.475	0.005	-0.230	-0.098	-0.585
		. Film weight	. Zoogloeal bacteria	. Subbaromyces sp.	. Sarcomastigophora	. P. aurelia	. O. microdiscum	. C. colpoda	U. nigricans	. C. uncinata	. Paracyclops sp.	. Acari	. Air temperature
		_	2.	က	4.	ນ	. 9	7.	ထံ	6	10.	- =	12.

12. Air t	emp.												
ll. Acari				* (-0.501
10. Paracy						* (+)				•		-0.151	0.313
9. <u>C. un</u>	ci-			·			* (+)				0.030	-0.241	-0.246
8. U. ni	gri-									-0.007	-0.130	0.397	0.094
7. <u>C. co</u>	1 poda	a part fresh ha							-0.124	-0.131	-0.339	0.257	-0.520
6. <u>0. mi</u>			·					-0.082	-0.144	0.693	-0.075	-0.076	-0.324
5. P. au	re-						-0.228	-0.259	0.082	0.162	0.753	-0.122	0.092
4. Sarco tigop						-0.424	0.473	-0.072	0.128	0.167	-0.118	0.077	-0.221
3. Subba myces					-0.366	-0.099	0.259	-0.252	-0.199	0.116	-0.123	-0.624	0.438
2. Zoogl bacte	oeal ria			0.239	-0.062	-0.373	0.218	0.010	0.422	0.328	-0.452	0.165	-0.110
l. Film weigh	t		0.485	0.341	-0.310	-0.198	0.365	-0.201	-0.085	0.303	-0.430	0.201	-0.251
		l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces sp.	4. Sarcomastigophora	5. P. aurelia	6. 0. microdiscum	7. C. colpoda	8. U. nigricans	9. C. uncinata	10. Paracyclops sp.	11. Acari	12. Air temperature

12.	Air temp.	* (-)		* *			* (+)						
11.	Acari		* (-)								(+)		0.027
10.	Paracy- clops sp.		* (-)	* * (+)	-							099.0	0.384
9.	C. unci-					*					-0.002	0.156	0.006
8.	U. nigri- cans	* (-)								-0.076	0.058	-0.027	0.313
7.	C. colpoda	·							-0.243	960.0	-0.322	-0.152	-0.275
6.	0. micro- discum		*	* (+)	* (+)			-0.155	0.349	0.003	-0.193	-0.357	0.423
5.	P. aure- lia	* (+)					-0.315	0.334	-0.313	0.479	-0.051	0.032	-0.286
4.	Sarcomas- tigophora	·	(+)			-0.335	0.555	-0.125	900.0	0.057	-0.387	-0.199	-0.036
3.	Subbaro- myces sp.	* (-)			0.042	-0.400	0.489	-0.186	0.361	-0.147	0.579	0.093	0.647
2.	Zoogloeal bacteria	·		0.145	0.606	-0.350	0.469	0.024	-0.007	0.017	-0.451	-0.479	0.005
1.	Film weight		-0.151	-0.636	0.162	0.582	-0.315	0.145	-0.466	-0.025	-0.326	-0.086	-0.565
		l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces sp.	4. Sarcomastigophora	5. P. aurelia	6. 0. microdiscum	7. C. colpoda	8. U. nigricans	9. C. uncinata	10. Paracyclops sp.	11. Acari	12. Air temperature

12.	Air temp.	* (-)											
						9 (1) 18	•						/
11.	Acari												0.188
10.	Paracy- clops sp.				-							0.002	0.344
9.	C. unci- nata							(+)	·		0.072	0.143	-0.210
8.	U. nigri- cans	* (-								-0.028	-0.145	-0.054	0.399
7.	C. colpoda								0.163	0.554	-0.227	-0.017	-0.286
6.	0. micro- discum			(+) ***				0.134	-0.164	0.215	-0.316	-0.311	0.026
5.	P. aure- lia	-			•		0,227	-0.127	-0.236	-0.104	-0.044	0.080	-0.201
4.	Sarcomas- tigophora		,			0.092	0.261	-0.105	-0.037	0.285	0.170	-0.069	0.064
3.	Subbaro- myces sp.		·		0.348	0.325	0.879	-0.013	-0.133	0.048	-0.182	-0.370	0.220
2.	Zoogloeal bacteria	(+)		0.397	0.273	0.045	0.409	0.031	-0.267	0.008	-0.232	-0.415	-0.251
1.	Film weight		0.670	0.164	-0.041	0.226	0.250	-0.063	-0.545	-0.067	-0.227	-0.014	-0.572
		l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces sp.	4. Sarcomastigophora	5. P. aurelia	6. O. microdiscum	7. C. colpoda	8. U. nigricans	9. C. uncinata	10. Paracyclops sp.	11. Acari	12. Air temperature

PLASTIC FILTER: BOTH LOADINGS Degrees of freedom (n-1) = 22

12. Air temp.	* (-)							`				
11. Acari			*	* *								-0.215
10. Paracy- clops sp.		*.		-	(+)	•			•		0.062	-0.100
9. C. unci- nata										0.290	0.161	-0.144
8. <u>U. nigri-</u>									0.058	-0.258	0.307	0.258
7. C. colpoda								-0.159	-0.030	-0.244	0.049	-0.418
6. <u>O. micro</u> -		(+)					0.072	-0.127	0.121	-0.361	-0.216	-0.231
5. P. aure- lia						-0.241	-0.213	-0.172	-0.003	0.462	-0.081	-0.104
4. <u>Sarcomas</u> - <u>tigophora</u>		,			-0.327	0.095	-0.077	0.088	0.290	-0.034	0.608	-0.246
3. <u>Subbaro-</u> <u>myces</u> sp.	* (+)	* (+)		-0.323	-0.186	0.398	-0.072	-0.236	-0.170	-0.271	-0.458	0.293
2. Zoogloeal bacteria	* (+)		0.532	-0.258	-0.270	0.440	0.214	-0.045	-0.201	-0.478	-0.363	-0.058
l. Film ,weight		0.611	0.427	-0.279	0.137	0.422	0.095	-0.374	-0.120	-0.163	-0.193	-0.439
	l. Film weight	2. Zoogloeal bacteria	3. Subbaromyces sp.	4. Sarcomastigophora	5. P. aurelia	6. 0. microdiscum	7. C. colpoda	8. U. nigricans	9. C. uncinata	10. Paracyclops sp.	11: Acari	12. Air temperature

SLAG FILTER: LOW LOADING RATE Degrees of freedom (n-1) = 11

12.	Effluent BOD											* (+)	
11.	Organic Load	* (-)					•				* (-)		0.766
10.	Nematoda				-	·		١	·	•		-0.581	-0.426
9.	Psychoda sp.		* +		* (+		٠	4.			-0.459	0.228	0.459
8.	Enchyt- raidae									0.298	-0.055	0.251	0.289
7.	Sphaero- tilus sp.					·			-0.464	-0.517	0.315	-0.260	980.0-
6.	Ciliophora	* (+)				* (+)		0.242	0.003	860.0	-0.022	-0.476	-0.294
5.	C.unci- nata	* (+)					0.580	0.004	0.319	-0.141	-0.134	-0.169	-0,295
4.	U.nigri- cans					-0.293	0.123	0.496	0.184	0.701	-0.432	0.381	0.530
3.	C.colpoda	* (+)			-0.290	0.373	0.516	0.386	-0.251	-0.229	0.139	-0.387	-0.296
2.	0.micro- discum	(-) *		-0.270	0.464	-0.488	-0.028	-0.355	-0.224	0.568	0.022	-0.032	0.082
1.	P.aurelia		-0.554	0.654	-0.480	0.683	0.739	0.526	0.005	-0.366	0.184	-0.614	-0.490
		P.aurelia	O.microdiscum	C.colpoda	U.nigricans	C.uncinata	Ciliophora	Sphaerotilus sp.	Enchytraeidae	Psychoda sp.	Nematoda	Organic Load	Effluent BOD
		<u>;</u>	2.	ب	4.	5.	6.	7.	œ.	9	10.	Ξ.	12.

MIXED FILTER: LOW LOADING RATE Degrees of freedom (n-1) = 11

		-											
12.	Effluent BOD											(+)	
11.	Organic Load					·							0.779
10.	Nematoda	* (+)			 .							-0.350	-0.428
9.	Psychoda sp.										-0.334	0.040	0.444
8.	Enchyt- raidae						•	·		-0.030	0.368	0.030	0.098
7.	Sphaero- tilus sp.								-0.406	0.135	0.041	-0.039	-0.183
6.	Ciliophora			* (+)	(+)			-0.311	-0.105	-0.113	-0.226	0.069	0.288
5.	C.unci- nata						0.179	-0.161	-0.246	-0.042	-0.194	0.192	0.070
4.	U.nigri- cans			(+)		0.217	0.969	-0.227	-0.169	-0.022	-0.375	0.135	0.382
3.	C.colpoda			/.	0.867	-0.225	0.873	-0.147	-0.161	-0.082	-0.156	-0.022	0.285
2.	0.micro- discum			-0.152	-0.102	0.011	0.084	-0.168	0.225	-0.247	0.260	-0.228	-0.497
1.	P.aurelia		0.302	-0.124	-0.411	-0.192	-0.227	-0.015	-0.064	-0.385	0.763	-0.430	-0.513
	•							•	- 			·	•
		P.aurelia	O.microdiscum	C.colpoda	U.nigricans	C.uncinata	Ciliophora	Sphaerotilus sp.	Enchytraeidae	Psychoda sp.	Nematoda	Organic Load	Effluent BOD
		:	2.	ຕໍ	4.	ည်	9	7.	ထံ	6	10.	Ξ	12.

PLASTIC FILTER: LOW LOADING RATE Degrees of freedom (n-1) = 11

12.	Effluent BOD				* (+)					* (+)		* (+)	
11.	Organic Load												0.703
10.	Nematoda				-				* (+)			-0.236	-0.401
9.	Psychoda sp.				***		*** (+)				-0.404	0.332	0.681
8.	Enchyt- raidae						•			-0.124	0.712	-0.357	-0.319
7.	Sphaero- tilus sp.	* (+)							0.009	-0.440	0.466	0.251	0.074
6.	Ciliophora				***			-0.178	-0.135	0.804	-0.219	0.159	0.507
5.	C.unci- nata						0.284	-0.084	0.318	0.159	0.213	0.012	0.142
4.	U.nigri- cans					700.0	0.844	-0.338	-0.198	0.952	-0.449	0.355	0.707
3.	C.colpoda			/:	-0.175	0.464	0.322	-0.045	0.011	-0.087	0.306	-0.331	-0.351
2.	0.micro- discum	* (1		0.10	0.338	-0.128	0.323	-0.460	-0.100	0.340	-0.256	-0.149	-0.167
1.	P.aurelia		-0.592	-0.066	-0.378	-0.147	-0.215	0.796	0.108	-0.518	0.393	-0.172	-0.067 -0.167
		1. P.aurelia	2. O.microdiscum	3. C. colpoda	4. U.nigricans	5. C.uncinata	6. Ciliophora	7. Sphaerotilus sp.	8. Enchytraeidae	9. Psychoda sp.	10. Nematoda	1. Organic Load	12. Effluent BOD

SLAG FILTER: HIGH LOADING RATE Degrees of freedom (n-1) = 10

12.	Effluent BOD						·			* (+)		*** (+)	
11.	Organic Load										·		0.947
10.	Nematoda				 '		·		* (+)	(-) * * .		-0.487	-0.498
9.	Psychoda sp.		* (+)								-0.735	0.449	0.583
8.	Enchyt- raidae								<i>J</i> .	-0.384	0.719	-0.326	-0.339
7.	Sphaero- tilus sp.	* (+)				·			-0.489	0.277	-0.135	0.277	0.428
	Çiliophora		** (+)					0.346	-0.267	0.534	-0.384	0.441	0.503
5.	C.unci- nata						0.206	0.019	0.119	-0.359	0.257	0.043	0.083
4.	U.nigri- cans					0.055	0.432	-0.105	-0.238	0.378	-0.416	-0.082	0.000
3.	C.colpoda	* (+)	,		-0.307	00.030	-0.139	0.488	0.150	-0.274	0.298	-0.005	0.039
2.	0.micro- discum			-0.382	0.362	0.038	0.904	0.171	-0.151	0.686	-0.382	0.353	0.414
1.	P.aurelia	/	-0.252	969.0	-0.209	0.281	0.123	0.684	-0.231	-0.311	0.165	0.330	0.353
		P.aurelia	O.microdiscum	C.colpoda	U.nigricans	C.uncinata	Ciliophora	Sphaerotilus sp.	Enchytraeidae	Psychoda sp.	Nematoda	Organic Load	Effluent BOD
			2.		4	2	6.	7.	ထံ	9	10.	Ξ.	12.

MIXED FILTER: HIGH LOADING RATE Degrees of freedom (n-1) = 10

12.	Effluent BOD				* (+)		·			***		*** (+)	
11.	Organic Load		* +		·								0.832
10.	Nematoda				T			-	·			-0.437	-0.533
9.	Psychoda sp.				***	j					-0.532	0.518	0.856
8.	Enchyt- raidae									0.135	0.140	-0.129	0.200
7.	Sphaero- tilus sp.		·		·				-0.415	-0.453	0.103	0.204	-0.150
6.	Ciliophora		* * (+)		•			-0.320	-0.291	0.458	-0.178	0.459	0.409
5.	C.unci- nata			* (+)			0.476	0.160	-0.228	-0.226	0.113	-0.112	-0.207
4.	<u>U.nigri-</u> <u>cans</u>					-0.209	0.229	-0.431	0.192	0.863	-0.473	0.200	0.634
3.	C.colpoda			<i>/</i> .	-0.173	0.709	0.312	-0.195	-0.198	-0.265	-0.151	-0.413	-0.396
2.	0.micro- discum			-0.040	-0.135	0.176	0.754	-0.191	-0.226	0.322	-0.104	0.606	0.408
1.	P.aurelia		0,191	-0.186	-0.174	-0.110	0.325	0.064	-0.201	-0.176	0.437	0.162	-0.092
		l. <u>P.aurelia</u>	2. O.microdiscum	3. C.colpoda	4. U.nigricans	5. C.uncinata	6. Ciliophora	7. Sphaerotilus sp.	8. Enchytraeidae	9. Psychoda sp.). Nematoda	. Organic Load	Effluent BOD
			2	(L)	4	5	9	7	œ	6	10.	Ξ.	12.

PLASTIC FILTER: HIGH LOADING RATE Degrees of freedom (n-1) = 10

	·	,		,						·		
12. Effluent BOD				* (+				·	* * *	(-)	* (+)	
11. Organic Load									*(+)	(-) *		0.769
10. Nematoda				-					(-)		-0.656	-0.664
9. <u>Psychoda</u> sp.				* +			·			-0.732	0.582	0.809
8. Enchyt- raidae						-	* (1)		-0.226	0.362	-0.015	0.202
7. Sphaero- tilus sp.								-0.009	009*0-	0.168	0.028	-0.392
6. Ciliophora		* (+)			* (+)		0.072	-0.345	0.148	0.186	-0.016	-0.142
5. C.unci-		* (+)				0.705	0.495	-0.345	-0.196	0.247	0.002	-0.303
4. <u>U.nigri-</u> cans					0.015	0.158	-0.378	-0.128	0.647	-0.533	0.291	0.656
3. <u>C.colpoda</u>		,	/.	-0.261	-0.131	0.280	-0.255	0.006	-0.212	0.317	-0.343	-0.325
2. 0.micro- discum			-0.082	-0.219	69.0	0.781	0.298	-0.347	0.066	0.222	0.020	-0.239
1. P.aurelia		-0.228	-0.259	0.082	0.162	-0.088	0.446	0.201	-0.284	-0.010	0.371	0.054 -0.239
	P.aurelia	O.microdiscum	C. colpoda	U.nigricans	C.uncinata	Ciliophora	Sphaerotilus sp.	Enchytraeidae	Psychoda sp.	Nematoda	Organic Load	Effluent BOD
•		2.	ů.	4.	2	9	7.	ထံ	9.	10.	11.	12.

SLAG FILTER: BOTH LOADINGS Degrees of freedom (n-1) = 22

					1	,								
	12.	Effluent BOD	·	* +		·					* (+)	* (-)	(+)	
	11.	Organic Load		* (+)				* (+)			(+)			0.840
,	10.	Nematoda				.		·		* (+)	(-)		-0.350	-0.426
	9.	Psychoda sp.		* (+ * *		* (+		* (+)				-0.528	0.562	0.597
	8.	Enchyt- raidae									-0.167	0.432	-0.023	-0.086
	7.	Sphaero- tilus sp.		·	* +			* (+)		-0.316	0.290	0.029	0.405	0.377
	6.	Ciliophora		*** (+)					0.430	-0.125	0.547	-0.224	0.443	0.370
	5.	C.unci- nata	(+) *					0.318	0.058	0.167	-0.184	0,035	0.053	-0.057
	4.	<u>U.nigri-</u> cans					-0.076	0.366	-0.148	-0.144	0.427	-0.402	0.062	0.192
	3.	C.colpoda				-0.243	0.095	0.081	0.551	0.196	-0.062	0.203	0.223	0.119
	2.	0.micro- discum			-0.155	0.349	0.003	0.837	0.276	-0.038	0.723	-0.223	0.492	0.423
	1.	<u>P.aurelia</u>		-0.315	0.334	-0.313	0.479	0.172	0.331	-0.176	-0.360	0.166	-0.236	-0.221
<i>,</i> • • • • • • • • • • • • • • • • • • •			P.aurelia	O.microdiscum	C. colpoda	U.nigricans	C.uncinata	Ciliophora	Sphaerotilus sp.	Enchytraeidae	Psychoda sp.	Nematoda	Organic Load	Effluent BOD
			-	2.	ຕໍ	4.	5.	6.	7	ω.	9.	10.	=======================================	12.

MIXED FILTER: BOTH LOADINGS Degrees of freedom (n-1) = 22

12.	Effluent BOD						·			* (+)		* (+)	
11.	Organic Load		***				·			* * *			0.643
10.	Nematoda	* (+)			-	·						-0.255	-0.450
9.	Psychoda- sp.					·					-0.298	0.547	0.646
8.	Enchyt- raidae									0.204	0.149	0.108	0.182
7.	Sphaero- tilus sp.								-0.229	-0.152	0.050	0.332	-0.108
6.	Ciliophora	·	* (+)	* (+)	* (+)			-0.169	-0.113	0.365	-0.201	0.417	0.365
5.	C.unci- nata			* (+)			0.377	0.108	-0.171	-0.136	-0.028	0.068	-0.087
4.	U.nigri- cans					-0.028	0.602	-0.326	-0.013	0.301	-0.386	-0.027	0.412
3.	C.colpoda				0.163	0.554	0.506	-0.031	-0.086	-0.114	-0.124	0.227	-0.124
2.	0.micro- discum			0.134	-0.236 -0.164	0.215	0.577	0.072	-0.014	0.418	0.461 0.016	0.686	0.244
1.	P.aurelia		0.227	-0.127	-0.236	-0.104	0.164	0.078	-0.143	-0.134	0.461	0.126	-0.188 0.244
		1. P.aurelia	2. O.microdiscum	3. C. colpoda	4. U.nigricans	5. C.uncinata	6. Ciliophora	7. Sphaerotilus sp.	8. Enchytraeidae	9. Psychoda sp.	10. Nematoda	11. Organic Load	12. Effluent BOD
			-	-	-	-•	-]	-	

PLASTIC FILTER: BOTH LOADINGS Degrees of freedom (n-1) = 22

12. Effluent BOD				* (+					* (+)	* (+)	* (+)	
11. Organic Load				·					* * *			0.603
10. Nematoda				* (1)				* * (+)	· * (-)		-0.325	0.497
9. <u>Psychoda</u> sp.				* (+)	·					-0.483	0.591	0.717
8. Enchyt- raidae						•			-0.213	0.595	-0.246	-0.119
7. Sphaero- tilus sp.		* (+)						-0.158	-0.191	0.116	0.490	-0.112
6. Ciliophora		(+)					0.230	-0.275	0.344	-0.029	0.222	0.142
5. <u>C.unci-</u> nata						0.277	-0.072	0.207	-0.122	0.218	-0.199	-0.050
4. <u>U.nigri-</u> cans					0.063	0.390	-0.324	-0.127	0.524	-0.462	0.075	0.063
3. <u>C.colpoda</u>				-0.229	-0.030	0.341	0.046	-0.064	-0.085	0.220	-0.033	-0.248
2. 0.micro- discum			0.072	-0.164	0.121	0.692	0.483	-0.276	0.200	0.076	0.305	-0.115
l. <u>P.aurelia</u>		-0.241	-0.213	-0.172	-0.003	-0.179	0.209	0.170 -0.276	-0.340	0.245	0.020	-0.025
	P.aurelia	O.microdiscum	C.colpoda	U.nigricans	C.uncinata	Ciliophora	Sphaerotilus sp.	Enchytraeidae	Psychoda sp.	Nematoda	Organic Load	Effluent BOD
.•	<u>-</u>	2.	m	4.	5.	6.	7.	æ	9.	10.	Ξ.	12.

APPENDIX VII : Correlation Analysis: Chemical Data

- Parameters used: 1. Organic Load (kg BOD $m^{-3}d^{-1}$)
 - 2. Effluent BOD (mg1⁻¹)
 - 3. Percentage removal BOD
 - 4. Suspended solids load $(kg m^{-3}d^{-1})$
 - 5. Effluent suspended solids (S/S) (mgl⁻¹)
 - 6. Percentage removal S/S
 - 7. Ammonia load (kg $m^{-3}d^{-1}$)
 - 8. Effluent ammonia (mgl⁻¹)
 - 9. Percentage removal NH₃
 - 10. Total Oxidised Nitrogen (mgl⁻¹)
 - 11. Effluent temperature (°C)
 - 12. Film weight (kgm^{-3})

(Summary of the above parameters given in Table 6.3).

Values for Correlation Coefficient 'r'.

Degrees of freedom	P <0.05	P < 0.02	P < 0.01	P < 0.001
(n-1) 12	0.532	0.612	0.661	0.780

SLAG FILTER: LOW LOADING RATE Degrees of freedom (n-1) = 12

	•			1	,	,					·		
12.	Film										* (-)	* *	
11.	Effl. temp.	* (. *									-0.740
10.	Total oxid.N											0.201	-0.631
9.	% remo- val NH3										0.411	0.282	-0.186
8.	NH ₃ eff1.							* *		-0.301	-0.287	-0.232	0.058
7.	NH3 Toad			(+)			* (+)		0.770	0.301	0.050	0.117	-0.288
6.	% remo- val S/S			* (+)		***		0.671	0.380	0.316	0.104	0.245	-0.333
5.	S/S effl.		* (+)	(-)			-0.884	-0.500	-0.119	-0.495	-0.273	-0.319	0.449
4.	S/S load	·				0.376	0.067	0.268	0.492	-0.350.	-0.364	-0.286	0.389
3.	% remo- val BOD		* (-)		-0.215	-0.818	0.738	0.598	0.347	0.444	0.326	-0.081	-0.286
2.	BOD effl.	* * (+)		-0.712	0.263	0.536	-0.367	-0.076	0.111	-0.351	-0.392	0.377	-0.035
1.	Org. load		0.749	-0.100	0.152	-0.101	0.263	0.469	0.433	-0.038	-0.255	0.543	0.349
		Pt	lent BOD	30D	solids load	lent S/S	\s\s	pt	Jent NH3	IH ₃	sed N	effluent temp.	٠
•		l. Organic load	Final effluent BOD	% removal BOD	4. Suspended solids load	Final effluent S/S	6. % removal S/S	Ammonia load	Final effluent NH3	% removal NH ₃	10. Total oxidised N	Final	12. Film weight
		<u>-</u> :	2.	က်	4.	5.	9	7.	φ.	9.	10.	Ë	12.

MIXED FILTER: LOW LOADING RATE Degrees of freedom (n-1) = 12

10 541	_												
12. Fil													
ll. Eff tem													-0.522
10. Tot												0.196	-0.373
	emo- NH3								***		0.358	0.367	-0.207
8. NH ₃ eff	1.							* * (+)		-0.862	-0.516	-0.218	0.183
7. NH ₃ loa	d						(+)		0.702	-0.250	-0.486	0.136	060.0
	emo- S/S					(-)		0.590	0.492	-0.282	-0.366	0.125	0.176
5. S/S eff	1.						-0.876	-0.388	-0.404	0.329	0.200	-0.155	-0.085
4. S/S loa				·		0.334	0.084	0.268	0.007	0.223	-0.196	-0.286	0.406
3. % r val	emo- BOD		* (-)		0.088	-0.509	0.429	0.163	-0.020	0.123	0.091	-0.275	0.306
2. BOI ef) 1.	* (+)		-0.767	0.017	0.469	-0.317	0.151	090.0	0.067	-0.263	0.431	-0.495
1. Org 108	J. ad		0.781	-0.247	0.152	0.105	0.100	0.469	0.085	0.257	-0.257	0.528	-0.517
		1. Organic load	2. Final effluent BOD	3. % removal BOD	4. Suspended solids load	5. Final effluent S/S	6. % removal S/S	7. Ammonia load	8. Final effluent NH3	9. % removal NH ₃	10. Total oxidised N	ll. Final effluent temp.	12. Film weight

	•												
12.	Film	* (-)							* (-)	* (+)	* (+)	* (-)	
11.	Effl. temp.	* (+)						,					-0.675
10.	Total oxid.N	* (-)	(-)				-		* (1)	***		-0.252	0.706
9.	% remo- val NH3								* (-)		0.786	-0.076	0.822
8.	NH3 effl.							·		-0.779	-0.661	0.051	-0.754
7.	NH3 load								0.423	0.206	0.056	0.135	0.106
6.	% remo- val S/S			(+)		(-)		0.523	0.187	091.0	0.039	0.097	0.037
5.	S/S effl.		* (+)	(-)			-0.896	-0.416	0.007	-0.323	-0.254	-0135	-0.109
4.	S/S load					0.166	0.265	0.268	0.345	-0.220	-0.235	-0231	0.061
3.	% remo- val BOD		* (-)		0.074	-0.721	0.726	0.093	-0.022	0.171	0.186	-0230	0.029
2.	BOD effl.	* (+)		-0.731	-0.030	0.562	-0.481	0.076	0.333	-0.392	-0.593	0.447	-0.483
1.	Org. load		0.694	-0.110	0.152	-0.051	0.213	0.469	0.526	-0.317	-0.626	0.546	-0.590
		1. Organic load	2. Final effluent BOD	3. % removal BOD	4. Suspended solids load	5. Final effluent S/S	6. % removal S/S	7. Ammonia load	8. Final effluent NH3	9. % removal NH ₃	10. Total oxidised N	ll. Final effluent temp $_{ m c}$	12. Film weight

SLAG FILTER: HIGH LOADING RATE Degrees of freedom (n-1) = 12

	pedices d	1110	Cuom	(11 1									
12.	Film				* (1)							* (-)	
11.	Effl. temp.	* (+)	***	* (-)	* (+)	***			(+)				-0.630
10.	Total oxid.N	* (-)	* (-)			* (-)						-0.484	0.032
9.	% remo- val NH ₃										0.260	-0.277	-0.174
8.	NH ₃ effl.	* (+ * +	** (+)	* (-)		*** (+)	-	(+)		-0.436	-0.501	0.547	-0.083
7.	NH3 1oad	***	(+)			* *			0.925	-0.094	-0.460	0.500	-0.143
6.	% remo- val S/S						/.	-0.309	-0.431	0.389	0.155	-0.112	-0.543
5.	S/S effl.	* (+) **	(+) ***	(-) *	-		-0.451	0.778	0.823	-0.313	-0.595	0.847	-0.321
4.	S/S load	* (+)	* (+)			0.517	0.277	0.286	0.296	-0.158	-0.505	0.720	-0.675
3.	% remo- val BOD		* (-)		-0.481	-0.659	0.025	-0.451	-0.583	0.272	0.361	-0.640	0.546
2.	BOD effl.	(+)		-0.693	0.613	0.931	-0.264	0.813	0.873	-0.393	-0.680	0.837	-0.329
1.	Org. load		0.945	-0.477	0.614	0.863	-0.191	0.787	0.793	-0.296	-0.737	0.772	-0.256
		1. Organic load	2. Final effluent BOD	3. % removal BOD	4. Suspended solids load	5. Final effluent S/S	6. % removal S/S	7. Ammonia load	8. Final effluent NH3	9. % removal NH ₃	10. Total oxidised N	ll. Final effluent temp.	12. Film weight

MIXED FILTER: HIGH LOADING RATE Degrees of freedom (n-1) = 12

		·	·			,							
12.	Film		* 🗓	* (+)		* 🗓						* (-)	
11.	Effl. temp.	***	* (+)		* (+)	* (+)							-0.659
10.	Total oxid.N	* (·		·		-	* (-)	* (+)		-0.315	0.055
9.	% remo- val NH3								(-) * *		-0.685	-0.096	0.017
8.	NH3 effl.	* (+	* ÷			* (+)		*** (+)		-0.700	619.0-	0.403	-0.360
7.	NH3 load	* (+)	* (+			(+)	-		0.952	-0.478	-0.466	0.499	-0.442
6.	% remo- val S/S		* (-)	* (+)		* * (-)	/-	-0.479	-0.483	0.399	-0.133	-0.201	0.354
5.	S/S effl.	(+)	***	***			-0.735	0.700	0,632	-0.318	-0.157	0.688	-0.597
4.	S/S load	(+)				0.402	0.143	0.286	0.253	-0.154	-0.393	0.739	-0.356
3.	% remo- val BOD		* (-)		-0.128	-0.810	-0.673	-0.378	-0.246	-0.107	-0.289	-0.507	069.0
2.	BOD effl.	(+) ***		-0.826	0.402	0.972	-0.668	0.697	0.594	-0.235	-0.155	0.749	-0.599
1.	Org. load		0.805	-0.368	0.614	0.782	-0.354	0.787	0.763	-0.491	-0.572	0.781	-0.370
•		1. Organic load	2. Final effluent BOD	3. % removal BOD	4. Suspended solids load	5. Final effluent S/S	6. % removal S/S	7. Ammonia load	8. Final effluent NH3	9. % removal NH ₃	10. Total oxidised N	ll. Final effluent temp.	12. Film weight

PLASTIC FILTER: HIGH LOADING RATE Degrees of freedom (n-1) = 12

				 -		,	, ,							
12.	Film			* (-)	* (+)		* (-)		*	* (1)		•		
11.	Effl. temp.	* (+	E)	* (+)		* (+)	* (+)			* (+	(-)	(-)		-0.395
10.	Total oxid.N	***		* (-)		* (-)	* (-)		* (-)	* (1	* (+)		-0.813	0.238
9.	% remo- val NH ₃			* (-)			* 🗀	* (+)		*		0.653	-0.548	0.293
8.	NH ₃ effl.	***	E)	*** (+)	. •		* (+)	* (-)	(+) ***		-0.563	-0.749	0.656	-0.618
7.	NH3 load	***	E)	* (+)			* (+)			0.913	-0.224	-0.548	0.484	-0.588
6.	% remo- val S/S			***	(+)		* (-)	<i>J</i> .	-0.363	193.0-	0.551	0.176	-0.268	0.539
5.	S/S effl.	* († *)	E	** *	* (-)			-0.777	0.582	0.768	-0.551	-0.588	0.726	-0.589
4.	S/S load	* (+)	(±)				0.327	0.195	0.286	0.435	-0.425	-0.714	0.722	-0.322
3.	% remo- val BOD			* (-)		-0.017	-0.776	0.819	-0.192	-0.382	0.457	0.140	-0.461	-0.599
2.	BOD effl.	* (+			-0.799	0.318	0.980	-0.790	0.627	0.808	-0.606	-0.591	0.736	0.596
1.	Org. load			0.742	-0.220	0.614	0.723	-0.314	0.787	0.883	-0.529	-0.864	0.762	0.320
		1. Organic load	•	2. Final effluent BOD	3. % removal BOD	4. Suspended solids load	5. Final effluent S/S	6. % removal S/S	7. Ammonia load	8. Final effluent NH3	9. % removal NH ₃	10. Total oxidised N	ll. Final effluent temp.	12. Film weight

ABSTRACT

The highest rate of oxidation occurs in the top section of percolating filters, where the limiting factor is usually the amount of oxygen provided by natural ventilation. An investigation was carried out to ascertain whether the loading to a conventional single pass filter could be increased by replacing the surface layer of mineral medium with a 750mm layer of random plastic medium, which has greater surface area and voidage. This would allow greater film accumulation and subsequent removal of organic matter, at the same time avoiding ponding and anaerobic conditions normally associated with excessively loaded single pass mineral filters.

A pilot plant was designed and three identical filters constructed, one containing 2 m³ of blast furnace slag and another 2 m³ of random plastic medium and the third 0.8 m³ of plastic medium upon 1.2 m³ of slag. The comparative treatment efficiencies of the various packings were studied at three different loadings, for three months during maturation at 5.72 m³m³d¹l (0.85 kg BOD m³d¹l) and then for 12 months at 1.68 m³m³d¹l (0.28 kg BOD m³d¹l) and a further 12 months at 3.37 m³m³d¹l (0.63 kg BOD m³d¹l). The ecology was studied both qualitatively and quantitatively throughout the depth of the filters, during the two longer loading periods. The film accumulation, temperature and retention time were all recorded and directly compared with the biological and chemical results.

Medium replacement was shown to be a viable system for uprating

filters, providing the operator with a more versatile filter, less susceptible to ponding, with less variable retention times and capable of treating greater organic loadings than conventional filters in excess of 0.2 kg BOD $\rm m^{-3}d^{-1}$. The cost of the system is dependent upon specific requirements and availability of medium.

In the mixed filter the slag portion regulated the loss of animals from the plastic layer, retaining greater numbers of micro- and macro-grazers in the lower mineral portion, resulting in an increase in film control, and lower film accumulation at both the interface and slag portion of the mixed filter.