
Behavioural specification and simulation of minimum configuration computer systems.

GORTON, Ian.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19708/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19708/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

i ?3>0Hr
Sheffield City Polytechnic Library

REFERENCE ONLY

ProQuest Number: 10697008

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697008

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Behavioural Specification and Simulation of
Minimum Configuration Computer Systems

by

Ian Gorton BSc

A thesis submitted to the Council for National Academic
Awards in partial fulfilment of the requirements for the
degree of Doctor of Philosophy.

Sponsoring Establishment : Department of Computer Studies
Sheffield City Polytechnic

Collaborating Establishment: Motorola (UK) Ltd.

November 1988

■ M ̂
i ooif'fc A

f t O

rO.VD ST FT."

Ian Gorton : Behavioural Specification and Simulation of
Minimum Configuration Computer Systems

Abstract
The ultimate goal of Computer-Aided Design research in the
area of digital circuits is the automatic synthesis of a
complete solution from a behavioural specification. This
thesis describes an attempt to attain this ideal in the
more limited realm of designing single-board control
systems, constructed from general-purpose microprocessor
components. The difficulties currently encountered in
designing and implementing microprocessor control systems
are outlined, and the architecture of an integrated,
knowledge-based design system is proposed as a method of
overcoming these difficulties. The design system
encompasses both behavioural and structural design
functions. However, only the tools and techniques required
to fulfil the behavioural design functions are considered
in detail in this project.
A review of previous work in the field of automated digital
circuit design and software and hardware specification
languages is presented. The major features of a novel
language for specifying and simulating control system
behaviour' are then described, together with an intermediate
design description notation, which facilitates the
generation of microprocessor assembly language code
directly from behavioural specifications. The design and
implementation of a fast, generalised microprocessor
simulation facility constructed from transputers is
discussed, and its performance potential analysed. The
simulation facility enables the complete design for a given
application to be tested, before any actual hardware
construction takes place. Finally, an evaluation of the
behavioural specification, synthesis and simulation
techniques developed in this project is presented, and the
benefits perceived from adopting such techniques are
summarised. Issues concerning the integration of these
techniques with the knowledge-based structural design tools
are also dealt with, and suggestions for further
developments and enhancements are identified.

1

Acknowledgements
I would like to thank my supervisors Dr J.M.Kerridge,
Dr B.Jervis and Dr J.Travis for their help and advice
during the period leading up to this report.
I would also like to thank Sally Sahni, Rebecca Strachan,
Paula Fleetwood, Linda Fessler, Ursula Everson and Toni
Olewicz who contributed to the work as part of their
Masters Degree.

2

Contents
1. Project Overview

1.1 Minimum Configuration Systems
1.2 The Design and Implementation of Minimum

Configuration Systems
1.3 The Difficulties of System Design
1.4 A Solution to the Problems of MCS Design
1.5 Objectives
1.6 Summary

2. Related Work
2.1 Computer-Aided Design of Digital Systems

2.1.1 Introduction
2.1.2 The RT-CAD System
2.1.3 ULYSSES
2.1.4 Synapse
2.1.5 MAPLE
2.1.6 XCON
2.1.7 Others

2.2 Software Specification Techniques
2.2.1 Introduction
2.2.2 Phase of Applicability

2.2.2.1 Requirements Specification
Languages

2.2.2.2 Design Specification Languages
2.2.2.3 Program Design Languages

2.2.3 Area of Application
2.2.4 Language Model

2.2.4.1 State-based Languages
2.2.4.2 Event-based Languages
2.2.4.3 Relational Languages

2.2.5 Desirable Features of Software
Specification Languages
2.2.5.1 Understandability
2.2.5.2 Analysability
2.2.5.3 Maintainability

2.2.6 Examples
2.2.6.1 VDM
2.2.6.2 Espreso

2.3 Hardware Description Languages
2.3.1 Introduction
2.3.2 Structural HDLs
2.3.3 Behavioural HDLs
2.3.4 Hardware Synthesis
2.3.5 Examples

2.3.5.1 Instruction Set Processor
Specification (ISPS)

2.3.5.2 VHDL
2.4 Discussion

3

3. A Behavioural Specification Language For Minimum
Configuration Systems
3.1 Language Requirements

3.1.1 Event-Based Model
3.1.2 Actions
3.1.3 Representation of Time Constraints
3.1.4 Formal Definition
3.1.5 Analysable
3.1.6 Executable
3.1.7 Familiarity

3.2 Language Basis
3.3 Language Features

3.3.1 Specification Structure
3.3.2 Channel Definitions
3.3.3 Service Routine Declarations
3.3.4 Control Section

3.4 An Example
3.5 Executing Behavioural Specifications
3.6 Conclusions

4. Generating Microprocessor Control Software from
Behavioural Specifications
4.1 Introduction
4.2 Processor-Independent Assembly Language

4.2.1 Design Rationale
4.2.2 Language Features

4.2.2.1 Control Structures
4.2.2.2 Data Types
4.2.2.3 Operations

4.3 Compiling the BSL into Macro-Assembly Language
4.3.1 Overview
4.3.2 Pass One
4.3.3 Pass Two
4.3.4 Pass Three

4.4 The Implementation of Macro Instructions
4.4.1 Data Types
4.4.2 Operations
4.4.3 Control Structures

4.5 Processing the Macro-Assembly Language
4.6 Conclusions

5. Microprocessor System Simulation
5.1 System Design
5.2 Component Simulation
5.3 System Bus Simulation

5.3.1 Requirements
5.3.2 Address Bus
5.3.3 Data Bus
5.3.4 Control Bus

5.4 Implementation on a Single Transputer
5.5 Implementation on a Transputer Network

5.5.1 The Problem
5.5.2 Experimental Strategy
5.5.3 Experiments Performed
5.5.4 Discussion

5.7 Conclusions

4

6. Evaluation
6.1 Introduction
6.2 Applicability of the Behavioural Specification

Language
6.2.1 Data Stream Applications
6.2.2 Discrete-state Controllers
6.2.3 Proportional Mode Controllers
6.2.4 A Problem
6.2.5 Evaluation

6.3 Evaluation of the Behavioural Simulation
6.4 Evaluation of the Macro-Assembler Language
6.5 Evaluation of the Microprocessor Simulation

Facility
6.6 Summary

7. Future Work
7.1 Integrating and Interfacing Behavioural and

Structural Design Tools
7.1.1 Introduction
7.1.2 Design System Operation

7.2 Designing Transputer-Based Control Systems
7.3 Summary

8. Conclusions
Appendix A Occam and Transputers
Appendix B Behavioural Specification Language (BSL)

Definition
Appendix C 6800 Implementations of Macro Operations

occam and the transputer are trade marks of the Inmos Group
of Companies.

5

1̂ Project Overview

1.1 Minimum Configuration Systems

Microprocessors have made a significant impact on all
aspects of control systems[1.1]. Direct digital control of
machine processes has created production methods that are
more reliable, economic and generally more efficient. The
low cost, flexibility and processing speed of control
systems constructed from Large Scale Integration (LSI)
components enables them to be applied economically to even
the simplest control tasks[1.2], often replacing the need
for complex hard-wired logic[1.3]. Such possibilities have
led to a move away from centralised mainframe or
minicomputer control systems, towards decentralised control
based upon many embedded microprocessors, each dedicated to
performing a simple part of the whole control task[1.4].

In order to be cost-effective, or when the microprocessor
is tightly coupled with other circuitry, it is often
desirable to design special printed circuit boards (PCBs)
to implement the different system functions. In these
cases, the microprocessor system can be viewed as merely
one set of components amongst others on the board. Such
systems do not normally require a disk system or visual
display unit, and are consequently difficult to develop and
test[1.5].

Many microprocessor-based control systems, whether
sub-components of a large decentralised system, or a
stand-alone dedicated control system, are typified by
containing the minimum number of components required to
perform the control task. Systems in this category usually
comprise a microprocessor and clock, small amounts of
read-only and read-write memory and the capability to
interface with the physical process being controlled. For
this reason, such systems are referred to as minimum
configuration systems (MCSs). Due to their small component
count, MCSs can virtually always be constructed on a single

6

printed circuit board. More formally, an MCS may be defined
as any size system within the basic load limitation of the
microprocessor concerned[1.6].

1.2 The Design and Implementation of Minimum
Configuration Systems

The design and implementation of an MCS is a complex task,
requiring a wide diversity of expertise from the system
designer. The designer must have a thorough knowledge of
all the issues involved, from individual component
characteristics to software design and implementation.

Once a requirements specification for the proposed control
system has been finalised, a solution to the problem must
be designed. The design describes how the processes in the
specification are to be carried out. Such a design involves
both the selection of a set of components and the design of
the software routines needed to implement the solution.
Decisions must be taken as to which functions to implement
in hardware and which in software, and detailed algorithms
and component interfaces must be specified[1.7]. The design
is governed mainly by the performance levels required of
the system in the specification, and the control functions
that must be carried out[1.8].

The physical realisation of the design occurs during
implementation. Software development and hardware
construction may both proceed in parallel. When the
hardware and software have been separately tested, they can
be brought together for system testing. It is almost
certain that some modifications and corrections will be
necessary before the system satisfies its specification.
However, if system testing reveals fundamental design
errors, a considerable amount of redesign and
implementation may be required.

7

1.3 The Difficulties of System Design

There are three main stages during which errors may be
introduced into an MCS design[1.5], These are:-

1. Interpretation
The requirements specification for the desired system may
contain inconsistencies and ambiguities, which may lead the
designer to make incorrect assumptions. Even complete
specifications may be misinterpreted. This may result in
logical errors being introduced into the hardware and
software design.

2. Hardware
The task of designing the hardware for an MCS comprises two
related activities: component selection and component
interconnection. Component selection is complicated by the
fact that many LSI components have the same functional
characteristics but different operational characteristics.
Further, components from one microprocessor family may not
easily interface with components from others. Thus, in the
absence of an integrated set of evaluation tools, the
designer must rely on previous experience to ensure that
the chosen components can fully satisfy the specification.

Component interconnection is a well understood, mechanical
task, which is tedious and prone to errors. It requires the
designer to check through the individual component data
sheets, in order to identify the precise connections
between them. Errors introduced during this process can be
of a very subtle nature, making them difficult to locate
during testing.

3. Software
The software requirements of MCSs vary according to the
complexity of the application to be implemented. In general
though, software should be simple to construct and test,
efficient, maintainable and portable[1.9, 1.10]. Efficiency
can be achieved by writing the control software in the

8

assembler language of the microprocessor in use. This
approach however does not lend itself to satisfying the
goals of maintainability, portability and ease of
construction. These three requirements are best achieved by
the use of a high-level language such as Pascal [1.11] or
ADA[1.12]. These provide abstraction of control and data
representation, and, coupled with modern compiling
techniques, can give a level of efficiency approaching that
of handwritten machine code.

Still, high-level languages do not provide a complete
solution to the software development problem. Due to their
general-purpose nature, they do not include constructs for
accessing low-level processor facilities such as interrupts
and input-output(1-0) interfaces. To achieve these,
assembler subroutines have to be created. These subroutines
are, however, processor-dependent. Any change or upgrading
of processor or system configuration will require all the
assembler routines to be rewritten in the assembly language
of the new target processor.

Further problems arise during software testing. The initial
tests take place on a software development machine, not
upon the target hardware configuration. This means that a
software test harness needs to be built, which simulates
the behaviour of the environment in which the control
software is to operate. The important aspect of test
harnesses is that they are application specific, and do not
form part of the final product. When the software seems to
function correctly and is ready to be tested on the target
hardware, the test harness becomes effectively obsolete.

Consequently, much effort is expended in designing,
building and testing a prototype solution. Many of the
errors located during testing may be simple implementation
mistakes, which are relatively straightforward to correct.
However, errors introduced during the design phase are
often of a much more serious nature, and may only be
detected when the prototype hardware and software are put

9

together[1.5] . For this reason, design errors can be costly
and time-consuming to correct.

1.4 A Solution to the Problems of MCS Design

Clearly then, due to the lack of suitable techniques, the
process of developing MCSs is complex and potentially
expensive. Therefore it seems there is a requirement for a
set of integrated software tools, which can design and
simulate both the hardware and software for MCSs from a
high-level system specification. This approach would ensure
that all serious design faults have been removed before
implementation proceeds[1.5],

Given a specification of the hardware and software
requirements of a system, and knowledge of an appropriate
set of components, the design system could construct a
simulation of a possible solution. The simulation could
then be evaluated and, if necessary, modified by the
designer. When the simulation satisfies its specification,
the design system could automatically generate the printed
circuit board (PCB) layout for the solution, so that the
implementation can begin. Figure 1.1 shows the proposed
architecture of the design system.

The five major components of Figure 1.1 are:-

1. Problem Specification

The specification mechanism employed must allow the
designer to specify completely the structural (hardware)
requirements of the system, together with the behaviour
that the system is to exhibit (the software).

2. Software Generation

The behavioural specification must be analysed and
transformed into an equivalent representation, expressed in

10

S oftvare
Transform ation' ̂

Rules

Facts

Knovledge
Base

Component
list

Problem
Specification

Softvare to
control the
application

Simulation of
Proposed
Solution

Specification

Printed
Circuit Board
Layout

Behavioural
Specification

Engine
Inference

Figure 1.1
Expert System Architecture

11

the assembly language of the microprocessor chosen to
implement the system.

3. Knowledge Base and Inference Engine

The knowledge base will contain factual data on LSI
components, a collection of rules which govern their
application, and a generalised functional simulation of
each component. The inference engine will attempt to find a
solution to a given problem by applying rules in the
knowledge base. The result of this process will be a
configurable MCS.

4. Simulation

Individual component simulations will be stored in the
knowledge base, and be combined when required to form
simulations of the proposed MCSs. A language suitable for
component description and simulation must be used to
construct simulations, together with hardware which
facilitates efficient simulation execution. If sufficiently
fast ('almost* real-time) simulations can be generated, it
may be possible to interface the simulation with the
physical system to be controlled.

5. PCB layout

The PCB layout for the final solution can be produced from
the detailed data stored in the knowledge base.

The nature and operation of each of the above system
components is diverse: each requires a fundamentally
different set of techniques for its design and
implementation. For example, the hardware selection element
of the system should greatly benefit from the use of expert
system techniques[1.13]. The explicit definition in the
knowledge base of the heuristics used to design MCSs should
make the design system much simpler to implement, maintain
and enhance. However, the component and system simulations

12

would be best constructed in a language which contains
features appropriate for describing hardware.

The adoption of an integrated, rule-based approach to the
design process has several potential advantages. Firstly,
the high-level behavioural specification could be totally
processor-independent, making it possible to automatically
generate machine code for any given processor in the
knowledge base. Second, the expert system could select
appropriate components from its knowledge base, and perform
the task of component interconnection. Given an extensive
and regularly updated knowledge base, the expert system
should perform the selection task at least as well as a
human designer. Moreover, it should not be error-prone when
configuring the system components. Third, a potential
solution could be evaluated early in the development cycle
by comparing the behaviour of its simulation against the
requirements specification. This allows the designer to be
confident of the correctness of the design before any
implementation activity takes place.

1.5 Objectives

The work reported in this thesis describes asdtoj tools and
techniques which can perform the synthesis and simulation
of low-level machine code for an MCS from a design-level
behavioural specification. No attempt is made to design or
construct the knowledge base or inference engine of the
expert system, as this work forms the focus of another
research project. Only the interface and information
interchange between the inference engine and the
behavioural specification system is considered in some
detail.

Chapter 2 surveys some of the most important work in the
field of CAD and expert systems for designing computer
systems, together with the languages used to specify and
describe software and hardware requirements. Chapter 3
discusses the requirements of a behavioural specification

13

language for MCSs, and presents the features of a language
designed to meet these requirements. Chapter 4 explains how
behavioural specifications can be automatically transformed
into machine code implementations for particular
microprocessors. The structure and features of a
processor-independent assembly language which facilitates
this transformation is also described. In Chapter 5, the
design and construction of a generalised simulation
facility for MCSs is presented, and the performance of some
example simulations is discussed. Through the use of
several examples, Chapter 6 attempts to evaluate the
specification and simulation techniques described in the
earlier sections. In this manner, a classification of
applications where such techniques are primarily suitable
is devised. Finally, Chapter 7 presents areas which may be
considered for further work, and provides a detailed
outline design specification for the operation of the
complete expert system.

1.6 Summary

Microprocessor systems are used widely to implement process
control functions. The complexity of such control systems
varies greatly. However, current hardware and software
development tools do not facilitate fast prototyping and
evaluation of possible solutions. Consequently any basic
design errors carried through to prototype implementations
are costly and time-consuming to correct. In an attempt to
solve these problems, the essential elements of an
integrated design environment for minimum configuration
systems have been presented. The design environment would
allow applications to be described at a high-level,
relieving the designer of much detail. Simulations of
possible solutions would be generated from system
specifications. Thus potential solutions could be evaluated
before any actual implementation takes place. This should
greatly lower the occurrence of serious and expensive
design faults in MCS implementations.

14

References
1.1 House,C.H.:'Perspectives on Dedicated Control'.

IEEE Computer, Dec 1980, vol 7, no 12, pp 35-48
1.2 Arnold,J.T. :'Simplified Digital Automation with

Microprocessors',ch.1, pp 2-10, Academic Press,
New York 1979

1.3 Johnson,C.D.:'Microprocessor-based Process
Control', ch.l, pp 1-32, Prentice-Hall, INC.,
New Jersey 1984

1.4 Simons,G.L. : 'Uses of Microprocessors',ch.4,
N.C.C. Publications, 1980

1.5 Hudson,C. : 'Techniques for developing and testing
microprocessor systems', Software and Microsystems,
August 1985, Vol 18, No. 4, pp 81-92

1.6 Streitmatter,G.A. and Fiore,V. :'Microprocessors -
Theory and Application1,ch.12, pp 219-253,
Reston Publishing Company, Virginia, 1979

1.7 'System Specification, Design and Implementation
Tools', Dept, of Computation, University of
Manchester Institute of Science and Technology

1.8 Zaks,R. : 'Microprocessors',ch.9, pp 363-387,
SYBEX Inc, USA, 1977

1.9 Saxena,S. and Field,J.A.:'Portable Real-Time
Software for 8-bit Microprocessors', Software -
Practice and Experience, 15, (3), 277-303 (1985)

1.10 Welsh,P.H.:'Managing Hard Real-Time Demands on
Transputers',Procs 7th Occam User Group
Conference, Grenoble, 14-16 Sept 19 87

1.11 Jensen,K. and Wirth,N.:'Pascal User Manual and
Report', Springer-Verlag, New York-Berlin, 1975

1.12 Buhr,R:'System Design with ADA', Prentice-Hall,
1984

1.13 Black,W.J.:'Intelligent Knowledge Based Systems -
An Introduction', Van Nostrand Reinhold(UK), 1986

15

2 Related Work

2.1 Computer-Aided Design of Digital Systems

2.1.1 Introduction

Many integrated Computer-Aided Design (CAD) systems have
been developed to assist with the design of digital
systems. Existing CAD applications range from the
development of mask descriptions for Very-Large Scale
Integration (VLSI) components, to the configuration of the
components necessary to fully implement a minicomputer
system[2.1]. However, irrespective of the precise nature of
the application, all such design systems share a similar
goal: the synthesis of a low-level, manufacturable solution
from a high-level statement of a problem. The synthesis
process usually involves the analysis and manipulation of
an abstract behavioural or structural specification through
several progressively more detailed levels of design
description, until the necessary level of complexity is
attained [2.2]. This process, by definition, implies a large
search space: the key problem for a design system is to
choose amongst the many possible designs, selecting the one
which best satisfies the specification. For this reason,
most recent CAD systems have incorporated knowledge-based
techniques into their operation, in an attempt to reduce
the complexity of the design process to a manageable
scale[2.3]. It is claimed that the use of modern CAD
systems may increase the rate of development of future
digital systems by as much as twenty times[2.4],

The following sections review the aims and operation of a
number of CAD systems, which aid in the design of digital
systems at a wide range of levels of application.

2.1.2 The RT-CAD System

The RT-CAD system developed at Carnegie-Mellon University
(CMU) represents an attempt to accelerate the design

16

process of integrated circuits (ICs) [2.5], The major aim of
the system is to minimise the effect of advancing
implementation technologies for ICs by constructing a
system which provides a technology-relative design process.
It builds upon earlier design automation systems which
concentrated on the synthesis of various levels of design
description into purely gate-level implementations[2.6]. By
providing libraries of different implementation modules,
the system can generate alternative solutions for a given
problem description. Thus, the inclusion of alternative
module sets allows the system to perform designs
independent of any particular implementation technology.
Moreover, this approach should encourage the incorporation
of new technology into the design process.

The system operates by accepting a behavioural description
of the IC to be designed expressed in the ISP [2.7] hardware
description language(HDL). This is then compiled and the
object code produced is loaded into the system data base,
where it can be manipulated by other design tools in the
system. The structure of the system is shown in Figure 2.1.

The most important of these tools is EXPL[2.5]. It takes as
input the object code from the ISP compiler, together with
a set of user supplied cost and performance constraints.
From the compiler output, EXPL generates a graph which
represents the behaviour of the required system. It then
attempts to manipulate the original graph to establish
alternative design possibilities. Essentially EXPL tries to
determine which operations can be performed concurrently,
and which must remain in a definite sequence. Each
alternative design is passed on to the module set
evaluators. These complete and evaluate the design for each
alternative in terms of its hardware module set. The
evaluation of each design is passed back to EXPL, which
decides, by applying a set of heuristics, which solutions

17

ISP DESCRIPTION

Algorithm variations
- Series-Parallel
Trans £ o rma t i ons

Constraints
Cost/speed trade-off

Allocation
variations
- Registers,

Design
Module
Evaluators

EXPL

Compiler
Generated
Data base Simulator

Data Operators

Figure 2.1 The design process in
the RT-CAD system

cost $
1000 n

500 “

(0,0)

• = a Design alternative

T------------ T speed (ns)
50000 100000

Figure 2.2 An Example Design Space

18

to discard as impractical, and which to keep in order to
generate further solutions by yet another application of
graph transformations. In this manner, the process is
continued until EXPL finds the optimal implementation
within the given constraints.

Thus, EXPL searches through the set of possible designs for
a circuit. With the assistance of the technology-dependent
module evaluators, it attempts to find the best solution
which satisfies the problem specification. The set of
possible designs of a circuit is known as its design space.
The design space, explored automatically by EXPL, can be
depicted by a two dimensional graph, as in Figure 2.2. Each
alternative design is represented on the graph by its cost
and time co-ordinates. These are computed by the
technology-dependent module evaluators.

The exploration of the design space by EXPL is driven by
the goals (cost and speed) set by the designer. Ideally the
goal is to find an alternative design whose position in the
design space is as close as possible to the origin (0 cost,
0 time). Realistically though, the least expensive
solutions are not the fastest, and vice versa. Therefore
the aim of EXPL is to find a solution which has an
acceptable level of performance for minimum cost.

The RT-CAD system also includes design tools which perform
the verification and simulation of ISP descriptions. It is
possible to develop syntactically correct ISP descriptions
which make no sense semantically. The system guards against
this happening by checking the correctness of the semantics
of each design specification. Simulation of ISP designs is
performed by stepping through the flowchart which is
produced by the ISP compiler. An interactive command
language allows the user to set and display the contents of
registers and define arbitrary breakpoints.

19

2.1.3 ULYSSES

ULYSSES is a sophisticated VLSI CAD environment developed
at CMU[2.8]. It aims to automate the design process, and
consequently lower the design cost, of complex VLSI
components. Other CAD systems[2.9] require the designer to
manually execute individual design tools, and to manage the
various files used as input to CAD tools, or created as
output by tools. In ULYSSES, all the required CAD tools are
fully integrated and controlled by the system itself. Thus
the designer interacts with the system at a higher level.
ULYSSES completes a design by automatically invoking the
required tools, and managing the various intermediate files
produced by the individual tools. This allows the designer
to concentrate on the high-level design, without needing to
become an expert user of a complex CAD system.

In order to effectively address the problems of CAD tool
integration, ULYSSES employs Artificial Intelligence(AI)
techniques. It functions as an interactive expert system,
interpreting design descriptions and initiating design tool
executions. Specifically, ULYSSES has the ability to:-

1. manipulate a variety of hardware description
languages

2. describe and automatically execute a diverse set of
design tasks

3. allow the designer to arbitrarily interrupt,
restart, or redirect a sequence of design tasks

4. represent important design decisions
5. explain its sequence of design activities and

provide reasons for specific design decisions
6. maintain the design history for each significant

design point
7. evaluate competing design points during design

elaboration
8. easily facilitate the integration of new CAD tools

20

ULYSSES incorporates a sophisticated, knowledge-based
scheduler to control the execution of the individual CAD
tools. The knowledge associated with the scheduler enables
ULYSSES to achieve much of the flexibility that it requires
to successfully complete a design. The scheduler can be
controlled by the designer, who may wish to interrupt a
sequence of design tasks which are performing erroneously.
In such cases the designer may choose which tools to
execute to continue with a particular design.

The need to control the vast volume of data generated as a
circuit design is synthesised presents a significant
problem in ULYSSES. Each stage in the design process
produces an intermediate description in some appropriate
notation. Further, alternative implementations may be
produced at each design stage. These arise when different
trade-offs of design parameters, such as cost, speed and
power consumption, are considered. Thus these alternatives
represent competing design points in the design space of a
circuit.

In ULYSSES, a frame-based[2.10] tree structure is employed
to characterise the design space[2.11]. Each node in the
tree represents a particular state in the evolution of a
design. As CAD tools are used to add details to a design,
child nodes are created which correspond to the new
situation. As several alternatives may be produced at each
stage of the synthesis process, a node may have several
children emanating from it, each of which corresponds to a
different design decision. Relations link design points to
their parents, so that a child node can inherit design
information from its parent. This means that only new or
altered data needs to be stored at a child design point.
The use of a tree structure has the advantage that it is
possible to backtrack to a parent design point when further
progress from the current design cannot be made. Also, a
terminal node in this design space will represent a
complete solution to a VLSI design problem.

21

ULYSSES adopts the blackboard model of the Hearsay 2
system[2.12] as a model for its architecture. In ULYSSES,
each CAD tool is viewed as a knowledge source. All
knowledge sources are considered to be self-activating,
asynchronous parallel processes. Knowledge sources
communicate via a blackboard, which is effectively a global
data base. The blackboard supports the many levels of
representation necessary in a circuit design, and in
particular, it holds the whole design space. Each knowledge
source has a set of pre-conditions associated with it,
which must be satisfied by data in the design space before
it can execute. Consequently, the knowledge sources
periodically monitor the evolution of the design space.
When the pre-conditions of a knowledge source are met, that
knowledge source is activated. A special knowledge source,
the Rating Policy Module, is activated by the scheduler
whenever the design space is altered. It provides a uniform
basis for comparing alternative designs and for pruning
unpromising designs from the design space.

Another important aspect of ULYSSES is the ability to
describe a wide variety of design tasks and methodologies.
This mechanism is provided by the Scripts language, which,
while retaining all the facilities normally associated with
a production system[2.21], also allows some tasks to be
specified procedurally[2.13]. Essentially a script is a set
of instructions which realise a given design task. Thus a
script can be said to provide a method of composing a very
large production rule out of a sequence of individual
knowledge source executions.

2.1.4 Synapse

Synapse[2.14] is an experimental expert system intended to
support VLSI design. The goal of the system is to enable a
very high level specification of a problem, including
performance constraints, to be mapped into custom VLSI
circuits. In Synapse, design descriptions at all levels of
abstraction are represented as algebraic expressions. The

22

design of a VLSI circuit in Synapse involves the repeated
transformation of algebraic expressions until an expression
is reached that represents a viable solution. This approach
to VLSI design is novel, representing a significant
departure from most existing paradigms.

The input to Synapse is a behavioural specification of the
desired circuit: this forms the initial expression. Any
number of transformations may be applied to this
expression, and all result in either legitimate designs or
intermediate design states. In general, transformations
either change the dimension or the level of abstraction of
an expression (usually increasing the amount of detail), or
they improve the system's performance attributes. All
transformations are formally proved to leave the functional
behaviour of the system unaltered. When an expression has
the desired performance characteristics, and is in the
proper dimension such as a mask description, it may be
viewed as a possible solution.

For any given specification, several possible
implementations may be generated if all the applicable
transformations are applied. These represent different
design points in the design space for the circuit. Synapse
therefore utilises strategies to focus the search of the
design space into the most promising areas. Synapse also
allows the designer to perform transformations on
expressions. In this case, the designer is primarily
responsible for proving that the transformations are
correct, and for ensuring consistency between
representations.

Synapse uses KEE[2.15], an expert system development tool,
to implement the inference engine. KEE provides facilities
to maintain consistency between alternative design
representations, and both forward and backward chaining
mechanisms. These are used to apply the transformation
rules to the specification, and to implement machine
learning capabilities.

23

Synapse is part of a long-term research project to explore
expert system issues in CAD. Its novel approach to the
domain of VLSI design has shown that AI techniques can be
used successfully to automate the design process. Further
work on Synapse is concentrating on enriching the system*s
knowledge base and increasing its learning capabilities.

2.1.5 MAPLE

MAPLE[2.16] is an expert system developed at the University
of Reading. Its purpose is to automate the design of
hardware for dedicated microprocessor applications. It
attempts to satisfy the hardware requirements of a system
by choosing the most appropriate combination of
pre-designed boards from its knowledge base. MAPLE does not
attempt to design new boards for applications. However,
MAPLE*s designers intend to extend its capabilities to
enable the design of boards from individual components, and
to provide limited assistance with software design.

MAPLE is implemented as an interactive system, and each
* consultation' has three distinct stages: INTERVIEW, DESIGN
and REPORT. The INTERVIEW stage enables MAPLE to acquire
the design goals and constraints of the application. The
user is requested to specify the hardware requirements and
constraints such as power consumption and cost. During the
DESIGN stage, MAPLE uses its knowledge to design a system
to meet the applications requirements. Finally, during the
REPORT stage, MAPLE issues a complete set of documentation
for the design, and a list of any assumptions that were
taken.

MAPLE is implemented in a procedural language (PASCAL).
This means that the rules MAPLE applies during the design
phase are embedded in the code of the search algorithm.
Therefore, in order to add or modify rules, the algorithm
itself must be altered. This is a considerably more
difficult task than that encountered in other systems such
as XCON(see below), where adding new heuristics merely

24

involves providing more data. Altering the design algorithm
requires in depth knowledge of the program, and could
involve extensive testing to ensure that any changes have
not introduced errors.

Although MAPLE's capabilities warrant classification as an
expert system, its internal architecture does depart from
the expert system paradigm of a separate knowledge base and
inference engine. So, in many respects, MAPLE is similar in
construction to many of the algorithmic-based CAD systems
which exist[2.17]. In justification of their implementation
strategy, MAPLE's creators claim that the problem of
microprocessor hardware design can be solved by a
well-defined, compact strategy, which is unlikely to change
dramatically[2.18]. While this may be correct[2.19], a
procedural implementation will almost certainly complicate
the task of extending MAPLE's abilities. The added
complexity of designing software as well as hardware for
applications, and the creation of new boards from
individual components will require the adoption of a much
more flexible approach. It is doubtful that a well-defined
algorithm could be confidently developed to perform such a
collection of integrated design tasks. Consequently, it is
likely that the full utilisation of knowledge-based
techniques would allow a better solution to be reached.

2.1.6 XCON

XCON (originally known as Rl) was developed by a research
team at Carnegie-Mellon University(CMU) [2.20]. Its domain
of expertise is the configuration of VAX 11-780
minicomputer systems, and it has been used successfully by
Digital Equipment Corporation (DEC) since 1982. VAX systems
are not offered to customers in standard configurations.
Rather a customer may order a specific configuration of
input, output, storage, processor and software. XCON's task
is to determine a correct configuration for an order. This
involves recognising any interdependences between
components, and adding extra components when necessary. The

25

output produced may be used directly by technicians to
assemble the system.

XCON takes a set of components as input and produces
diagrams showing the required physical relationships
between the components. Although XCON cannot perform the
task of selecting components to satisfy a functional
specification, it is capable of determining which
components require others in order to be configured. If the
component set given to XCON is incomplete, it adds
whichever subsidiary components are required (e.g. cables,
cabinets).

XCON is implemented in OPS5[2.21], a general-purpose
rule-based language developed at CMU. 0PS5 provides a rule
memory, a global working memory and an interpreter that
tests the rules to determine which are satisfied by the
data held in working memory. Rules in 0PS5 are expressed as
IF-THEN statements. These consist of a set of conditions
which can be matched against the descriptions in working
memory, and a set of actions which modify the data in
working memory. On each cycle, the interpreter selects a
rule which is satisfied and applies its actions to the data
in working memory. Actions always add to or modify working
memory. Thus in XCON, the rules have conditions that
recognise situations in which an extension is required to
an incomplete configuration; the actions then effect that
extension.

In XCON, 0PS5's two memories are augmented by a third, This
memory, the data base, contains descriptions of each of the
components supported for VAX systems. Each data base entry
comprises the name of a component and a number of
attribute/value pairs which describe the important
properties of the component for the configuration task. As
XCON configures an order, it retrieves the relevant
component descriptions from the data base and places them
in working memory.

26

Production, or rule memory contains all of XCON's knowledge
of how to perform the configuration task. These rules can
be viewed as state transition operators. The conditional
part of each rule describes the properties that a state
must possess in order for the rule to be applied. The
action part of a rule specifies which features of the
current state must be modified or augmented in order to
reach a new state on the solution path. Each rule is a more
or less autonomous piece of knowledge that waits for a
state it recognises to be generated. When this happens, it
effects a state transition. The new state generated should
subsequently be recognised by one or more other rules,
which in turn effect a state transition. This process
continues until the system is configured.

XCON differs from other domain-specific systems primarily
in its use of Match[2.22] as opposed to Generate-and-test
as its central problem-solving strategy [2.20]. Rather than
exploring several hypotheses until an acceptable one is
found, it exploits its knowledge of its domain to generate
a single acceptable solution. With Match, the conditions
associated with each state are sufficient to guarantee that
if a state transition is permissible, then the new state
will be on the solution path. Thus with Match, false paths
are never followed, and so backtracking is never required.
In the configuration task, the knowledge available at each
step is normally sufficient to distinguish between
acceptable and unacceptable paths. There is only one
subtask in XCON for which several alternatives must be
generated before the optimum solution is found.

The significance of XCON is mainly due to the fact that it
was the first knowledge-based CAD system to be used in the
commercial world. It proved that expert systems could be
used to automate design tasks, and provided a development
methodology that should be applicable to other
systems[2.23]. XCON also demonstrates that OPS5 is an
appropriate tool for the development of domain-specific
systems, and that the use of production rules can simplify

27

the task of refining and extending the knowledge
base [2.20].

2.1.7 Others

The vast range of expert system developments in CAD makes
it impractical to cover each system in detail. However
there are several important examples which are worthy of
note. EL and SYN are two expert systems developed at the
Massachusetts Institute of Technology. They are intended to
help a designer analyse analogue circuits [2.24]. Palladio
is a prototype expert system under development at Stanford
University. The major goal of Palladio is to enable
designers to construct VLSI circuits, and at the same time
explicitly express the design heuristics that were used.
Designers may create personal knowledge bases which can be
incorporated into circuit designs[2.25]. This capability
should encourage experimentation with VLSI design
methodologies.

2.2 Software Specification Techniques

2.2.1 Introduction

The need for languages which provide precise specifications
at all stages of the system development life-cycle is
widely recognised[2.26]. A considerable amount of research
has been carried out in this area, but there are still no
generally accepted tools or methodologies. A possible
reason for this lies in the fact that each stage of system
development requires a specification at an appropriate
level of detail, expressed in a suitable notation. Further,
different types of applications have unique
characteristics, which are best described by specialised
language features[2.27]. Thus, most current software
specification languages are dedicated to one particular
aspect of system development.

28

It is possible to identify three categories, which provide
a meaningful framework for the investigation of the many
existing languages[2.28]. These are:-

a) phase of applicability
b) area of application
c) language model

The following sections elaborate on these categories.

2.2.2 Phase of Applicability

Specification languages can be used to describe target
software systems from the first phase of requirements
definition up to the physical specification of program
design. An initial requirements specification may be
abstract and vague. But as successively more information is
added, the level of detail increases, and this continues
until the development of the actual computer programs is
complete. Within this development spectrum, three broad
areas of specification languages can be defined[2.28].

2.2.2.1 Requirements Specification Languages

Requirements specification languages(RSLs) are used to
describe the initial user requirements for a computerised
system. RSLs describe the basic functions of the system,
together with constraints such as structure and
performance. Thus RSLs provide a problem-oriented
description of systems, stating what needs to be done, not
how. An early and well-known example of an RSL is PSL -
Problem Statement Language[2.29]. More recent examples
include formal specification languages such as Z[2.30] and
OBJ[2.31].

2.2.2.2 Design Specification Languages

At the next level of refinement, the requirements
definition is taken and the overall design of the system is

29

carried out. The major functions of the system and their
relationships are identified. Thus design specification
languages(DSL) can be said to specify how a system can
achieve its aims. It is a solution-oriented description of
a software system. A typical representative of DSLs is
DDN[2.32].

2.2.2.3 Program Design Languages

Once the overall design of the system has been finalised,
algorithms and data structures have to be developed and
precise interfaces between modules established. Program
design languages (PDL) therefore provide facilities which
are specifically related to data structure specification
and module interaction, and are implementation-oriented.
GYPSY[2.33] is an example of a PDL.

2.2.3 Area of Application

Software systems can be classified as being sequential,
concurrent or real-time[2.34]. Sequential software systems
can be specified as sequences of actions, always performed
in the same order, with no two actions performed together.
Concurrent systems consist of several activities occurring
in parallel and communicating in some controlled manner. In
real-time systems, activities may occur sequentially or
concurrently. However real-time software must be capable of
responding to external stimuli within a specified time
period, and further, the order in which stimuli arrive may
not be predictable.

Real-time and concurrent systems tend to be considerably
more complex than comparable sequential systems.
Consequently a specification language intended for
sequential data processing systems would be totally
inappropriate for specifying a complex real-time
multi-variable control system. So the type of system at
which a specification language is aimed heavily influences
the characteristics and features included in the language.

30

Thus, the description of the relationships between external
stimuli and responses is vital in real-time and concurrent
systems, whereas file formats, data integrity and
validation criteria may be the most important aspects of a
sequential data processing system specification.

2.2.4 Language Model

Three separate concepts can be identified which form the
basis of existing specification languages [2.27]. These are
described below:-

2.2.4.1 State-based Languages

State-based languages are based upon the model of finite
state machines[2.35]. They provide a method of specifying
the set of possible states of a system, and the state
transition functions which enable the system to move from
one state to another. The major advantage of state-based
languages is their use of abstraction. It is possible to
abstract the state space so that it reveals details only of
particular interest. This can be done at each stage of the
development process, allowing specifications to be
hierarchically structured. Examples of state-based
languages are GYPSY[2.33] and DREAM[2.36],

2.2.4.2 Event-based Languages

In event-based languages, specifications are stated in
terms of actions which must be performed when a certain
event occurs. Events may be specified to occur in a certain
sequence, or may occur non-deterministically. This approach
was first used in specifying requirements in the telephone
industry[2.37], and from subsequent developments languages
such as RLP[2.3 8] emerged. Advantages claimed for RLP and
the event model are facilitation of test plan generation
and enhanced readability through isolation of system
features[2.38].

31

2.2.4.3 Relational Languages

Relational languages allow systems to be described in terms
of the required relationships between important properties
of the desired system. These properties usually include the
inputs to be processed, the outputs to be produced, the
functions to be performed and the events that may occur.
Relationships may then be created between inputs, functions
and outputs. Two specification tools which have been built
around the relational model are RSL[2.39] and PSL[2.29].

In general terms, it appears that state-based languages
find their most natural application in design and
implementation specifications, whereas relational languages
are best suited to requirements specification. However, it
seems that event-based languages are not so easy to
classify, and may be useful at several levels of the
development process[2.27].

2.2.5 Desirable Features of Software Specification
Languages

Irrespective of their intended application, it is possible
to define a set of common goals which a specification
language should meet[2.40].

a) Understandability
b) Analysability
c) Maintainability

These criteria have many implications on the facilities
which a specification language should provide. A number of
the more desirable features are summarised below:-

2.2.5.1 Understandability

1) Dimension of language — Specification languages may be
characterised as one-dimensional (character string
languages), two-dimensional(graphical languages) or

32

hybrid(written/graphical languages) [2.41]. Although
graphical languages seem to be superior in terms of overall
clarity, problems exist because of their limited
'processability'. However recent advances such as
compilable graphics have to some extent alleviated these
problems[2.42].

2) Level of detail — It is important that a specification
only contains information that is relevant to the current
phase of development. A language should facilitate the
suppression of irrelevant details, enabling the overall
structure of the specification to be easily visible. In
this way, specifications can be developed incrementally
from a vague statement of requirements to a complete
physical design. Good examples of languages which employ
this approach are PDL[2.43] and SPECLE[2.44].

A commonly used abstraction mechanism which allows the
hiding of unimportant data is modularisation.
Specifications can be decomposed into small meaningful
units which are defined at a lower level of detail. A
specific modularisation technique known as data hiding has
been included in many implementations[2.45]

3) Formality — Formal specifications of systems eliminate
all sources of imprecision by using precise syntactic and
semantic definitions. Unfortunately specifications written
in formal notations are difficult to comprehend. In
contrast, informal specifications incorporate abstraction
techniques to focus on important issues and increase
understandability. This fact makes informal notation
difficult to analyse and verify. Obviously then, a proper
balance must be sought between formal and informal
notations in order to maximise the benefits of each
approach[2.46, 2.47].

33

2. 2. 5 . 2 Analysability

1) Static validity — It should be possible to analyse a
specification and check for such properties as conflict,
ambiguity and redundancy. This is analogous to syntax
checking in conventional languages.

2) Traceability — This refers to the capability of
verifying a specification against its successor or
predecessor. As already stated more than one level of
specification will generally be needed during the
development of a system. It is therefore important that
each level of specification is functionally equivalent, and
that no errors or inconsistencies are introduced.

3) Dynamic validity — This objective is concerned with the
evaluation of the behaviour of specifications before
implementation proceeds. Specifications should be
executable, forming a simulation of the required system. In
this manner, a specification may be modified until its
behaviour is deemed satisfactory. This facility is of
particular importance in the realm of real-time systems,
where performance and efficiency are of particular
interest, and is demonstrated by the SREM project[2.39].

2.2.5.3 Maintainability

1) Modification — Languages should allow specifications
to be easily extended or adapted. Useful facilities which
simplify updates to software include data hiding and
modularisation[2.45]

2) Document generation — Automatic documentation
generation is a very useful feature of specification
languages. When a system is modified, the documentation
must be altered accordingly to reflect the changes. This is
a time-consuming and tedious manual process. However if the
documentation for a system has been generated automatically
from the specification, it should also be possible to

34

produce updated documentation when the specification is
altered.

2.2.6 Examples

2.2.6 .1 Vienna Development Method (VDM)

VDM is a formal specification language[2.48]. A VDM
specification defines a system in an
implementation-independent manner. This is achieved by
using mathematical models to describe objects and
structures, as well as the meaningful operations which may
be performed upon them. In VDM, the mathematical models of
structures are abstract data types, described using the
ideas of sets, functions and relations. Operations allowed
upon structures are also specified using such mathematical
notations. A VDM specification has three distinct
components: a state definition, the definition of
invariants, and the definition of operations.

The state definition describes the structures required in
terms of basic types (real, integer, Boolean), which can be
combined using special constructors to give the
mathematical notions of sets, sequences and functions.
Composite types can also be formed from these basic types.
The individual elements of a composite type do not need to
be of the same basic type; composite types may in fact be
defined recursively.

Invariants are constraints which must be preserved by
operations. Invariants thus represent properties of the
system which must always hold true. In VDM, invariants
should be proved for each operation.

Operations, similar to functions, are defined by
predicates. There are two predicates defining each
function, a pre-condition and a post-condition. The
pre-conditions define the circumstances in which the

35

operation produces valid results. The post-conditions
defines the effect of performing the operation.

VDM specifications are unambiguous and free of design and
implementation directives. They are also not directly
executable. The execution of formal specifications is a
desirable feature of a specification language.
Specification execution provides a prototype implementation
of the desired system. This can be used to remove syntactic
errors, and increase confidence in the correctness of the
specification. In order to execute VDM specifications, the
structure definitions must be reified and decomposed into
code for a programming language. Reification consists of
moving from abstract data types to the sorts of data
structures available in a target programming language. For
example, a VDM sequence may be represented as a linked list
or an array in most common programming languages. Further,
the operations specified for the original abstract data
types must be respecified to operate on the reified, more
realistic data types, and the abstract operations must be
decomposed into statements in the target language. Still,
this is not sufficient to guarantee that the implementation
inherits all the desired properties of the specification.
Consequently, proof obligations must be provided, to show
that the implementation is indeed correct with respect to
its specification.

Clearly, the process of reification, decomposition and
proof of correctness is extremely complex, and may not be
generally feasible or applicable[2.49]. Certainly a
comprehensive set of development tools such as
syntax-checkers and theorem-provers are required to support
such a transformation. This however, does not detract from
the advantages which can currently be derived from using
VDM, namely the unambiguous, concise, abstract description
of a system.

36

2.2.6.2 Espreso

Espreso is a language for specifying the requirements of
complex, real-time process-control systems[2.50]. A
fundamental assumption of the language design is that
system requirements have an inherent hierarchical
structure, which should be detected and encoded in a
specification. Espreso thus allows specifications to be
built hierarchically by providing extensive module
packaging and data hiding facilities.

Logical and arithmetical expressions are not permitted in
Espreso specifications. Rather, the language constructs are
limited so that only the high-level aspects of the problem
may be addressed. This has the effect of reducing the
number of concepts in the language, and of preventing the
user from dealing with low-level details and algorithms too
early. The language does however facilitate the expression
of parallel operations at an abstract level, and includes
well-understood mechanisms for controlling message passing
and access to shared resources. It also allows informal,
text descriptions to be entered. Although these cannot be
analysed, they do provide a convenient method for the user
to express ideas which are not fully formulated.

The Espreso language is formally defined by an extended
attribute grammar, which describes the complete language
syntax[2.51]. The provision of a formal language definition
helps guard against unforeseen inconsistencies and
ambiguities in the language, and makes specifications more
amenable to checking and verification. Each Espreso
construct is expressed in a Pascal-type manner. This has
the consequence that Espreso specifications resemble
skeleton Pascal programs. By refining the specification,
manually or partially automatically, a prototype
implementation of the specification can be produced.

The Espreso system is fairly typical of many RSLs and DSLs.
It is rigorously defined, and contains constructs and

37

features which are appropriate to its intended level of
detail and application area. Although Espreso
specifications are not executable, many aspects of static
validity can be checked for, and the specification forms a
reliable high-level source for further refinement of
detail.

2.3 Hardware Description Languages

2.3.1 Introduction

A hardware description language(HDL) is a notation which
may be used to depict particular aspects of digital
systems[2.52]. The complexity of digital systems design has
led to the development of many HDLs. The aim of HDLs is to
conquer complexity by the systematic use of abstraction at
each level of the design process [2.52]. There are many
levels in the process of hardware design, ranging from
circuit and logic design to behaviour and system
specification. Each level has its own purpose, and each
level needs to be described. Therefore different HDLs
reflect different levels of abstraction of computer
hardware[2.53]. In general terms though, HDLs may be
classified as providing either physical information on the
structure and interconnection of components, or
behavioural information on the function of circuits[2.54].
Many languages attempt to provide both structural and
behavioural descriptions. However these two aspects of
hardware are best described by different notations.
Consequently, languages which incorporate facilities for
both types of descriptions usually include two distinct
types of notation[2.55].

2.3.2 Structural HDLs

Many situations arise during hardware design where there is
a need to describe the structure of a circuit without
giving any behavioural information[2.54]. Structural
descriptions of circuits may be input into CAD systems,

38

producing a geometrical layout of the circuit[2.4]. Current
structural HDLs allow systems to be described at many
levels. At each level the description of the circuit must
show the basic components and their interconnections [2.52].

As is common with most HDLs, purely structural HDLs have
borrowed many features from high level programming
languages. Components may be described as functions, with
the function's arguments representing the inputs to the
component, and the function's result representing the
components output. When a particular component is required
in a description, it may simply be 'called' in the
appropriate place. Conventional loops are used to precisely
describe regular structures, and some languages allow types
to be declared to aid in the verification of
circuits[2.54]. Examples of HDLs which exhibit these
features (and many others) are MODEL[2.56] and ELLA[2.57].

2.3.3 Behavioural HDLs

The behaviour of digital circuits may be described at many
different levels, from individual gates to whole components
or systems. Behavioural HDLs currently serve two main
purposes[2.54]. They allow the desired function of a
circuit to be stated by the designer at the inception of
the project, and they provide a means of verifying a
component's performance after it has been fabricated.
Checking that the manufactured component does implement its
intended behaviour is a significant problem. Existing tools
perform this task by comparing the results of a simulation
with the results produced by the actual component. This is
generally a complex and error-prone task, resulting in
components which are only as reliable as the data used to
test them[2.58]. In attempts to alleviate the problem of
establishing design correctness, formal notations are being
proposed as languages to model behaviour. Verification
could then be carried out by rigorous mathematical
proofs[2.54].

39

Existing behavioural description languages contain many
common features. Most provide some method of representing
global time and propagation delays[2.55], and this is often
a crucial factor of a design. Digital systems also exhibit
highly parallel behaviour, and facilities to describe
parallel operations are included in many languages[2.59].
Another important characteristic of digital systems is the
requirement to examine the state of an input or register,
and perform an action corresponding to that state. A
suitable construct for describing this situation is the
generalised CASE statement, as found in many programming
languages. CASE statements are found in ELLA and VHDL, and
ISPS contains an OPERATE statement which is semantically
identical.

2.3.4 Hardware Synthesis

Synthesis may be defined as the translation of a higher
level of description of a design object into a lower
one[2.60]. A complete synthesis system should generate
layout masks from a high level behavioural description of a
system[2.2], with all intermediate levels of structural and
behavioural descriptions constructed automatically.
Physical synthesis from a structural description is a
reasonably well-understood process, with many design tools
available for gate-arrays[2.56] and standard cell
arrays[2.61]. However structural synthesis from a
behavioural description is a much more complex task, due to
the difficulty of maintaining the correct functionality of
the hardware structure[2.62].

Silicon compilers have been proposed to carry out the
entire synthesis process. Still, due to the complexity of
the task, interaction with designers is required at many of
the intermediate stages[2.2]* Most silicon compilers
therefore accept a relatively low level behavioural
description and translate it into a fixed target
architecture[2.62].

40

More ambitious attempts at silicon compilation from a high
level description are now the subject of much research
activity. One trend is to try to translate true behavioural
descriptions of digital systems using high level
programming languages such as ADA[2.63], occam[2.64],
Modula2 [2.65] and Concurrent Prolog [2.58]. The rationale
behind this approach lies in the fact that sophisticated
programming environments have been developed for many
general purpose languages. Therefore, where applicable,
existing languages should be used as a basis for
development[2.65]. Languages that contain constructs to
express parallelism and communication between parallel
components are suitable for the task of high level
behavioural descriptions[2.66]. An added advantage of using
a programming language for this purpose is that the
description of a device can be compiled into an efficient
simulation.

2.3.5 Examples

2.3.5.1 Instruction Set Processor Specification (ISPS)

ISPS, an improved version of the earlier ISP language, is
essentially a behavioural HDL[2.59]. It is intended that
ISPS descriptions should be amenable to a wide range of
design applications, rather than supporting a wide range of
design levels. The language itself is designed to be both
flexible and simple, and it incorporates many constructs
that are usually found in high-level programming languages.

An ISPS description of a hardware component comprises both
an interface and a behavioural description. The interface
gives the external structure of the component in terms of
the number and type of registers which are used to transmit
and receive data. The component's behaviour is described by
procedures which specify the sequence of the control and
data operations. Although ISPS is mainly intended as a
behavioural HDL, it does allow some structural information
to be included. This manifests itself in the need for

41

specifying the width of registers and data paths, and the
connections between registers and functional units.

ISPS procedures may contain, together with control and data
operations, declarations of local hardware units of
arbitrary complexity. This allows machine descriptions to
be constructed in a hierarchical fashion. Specialised
control constructs are included in the language to enable
the clear expression of the decoding of machine
instructions, and to allow operations to take place
concurrently. Procedures may be parameterised to allow
multiple invocations of the same component within a circuit
description.

Complete ISPS descriptions are analysed and transformed
into a formally defined intermediate representation known
as the global data base. This intermediate format is
sufficiently generalised to enable it to be used for many
diverse design applications. Such applications include
simulation, fault analysis, architecture evaluation and
design automation. By using this approach, the designers of
ISPS hope to create a unified environment for research and
development in multiple application areas. Thus ISPS
descriptions would serve as a common vehicle for
investigation into many aspects of the analysis and design
of digital systems.

2.3.5.2 VHDL

VHDL has been developed as a standard HDL for the Very High
Speed Integrated Circuit (VHSIC) project sponsored by the
American Department of Defence[2.67]. VHDL supports the
design, documentation and simulation of hardware from the
digital system level to the gate level. VHDL is designed to
be independent of any underlying technology or design
methodology. This feature should enable the very latest
advances in technology to be quickly and easily
incorporated into the development of VLSI systems.

42

The primary abstraction mechanism in VHDL is the design
entity, which is used to represent hardware components.
Design entities are composed of an interface description
and one or more bodies. The interface defines the external
characteristics of a component, such as ports and generic
parameters, and each body represents an alternative design
approach consistent with those characteristics. Design
entity bodies may be either architectural or behavioural in
nature. Architectural bodies contain essentially structural
information, and are intended to convey details about
possible implementations of a component. Behavioural bodies
give a control flow description of the desired behaviour of
a component. They contain data structure definitions and
define sequential algorithms that operate on the data
structures to determine the values of the output signals.
Data structures and algorithms are specified using a
collection of common programming language constructs such
as 'IF* and 'CASE' statements. A behavioural body may not
contain any structural information about the component.

One feature of VHDL which distinguishes it from most other
languages is the provision of two types of time. These are
referred to as macro and micro time respectively. The
macro-time scale represents real time units (e.g.
microseconds), and is used to describe the temporal
interaction among all the components in the circuit. The
micro-time scale is used to specify short delays through
combinational circuitry and is essentially not measurable.
Thus, when the time between two hypothetical events A and B
is described in micro-time, the implication is merely that
'B happens shortly after A*, while macro-time is used to
specify the time between events in a precise manner.
Consequently, any number of micro-time units may exist
between any two consecutive macro-time units.

VHDL provides a very specialised framework for the design
of VLSI circuits. The overall organisation of the language
reflects the hierarchical structure of hardware designs,
and the design entity concept provides a suitable

43

abstraction for describing hardware components. The
language allows all levels of hardware to be described
independently of the the implementation technology or
design methodology, and many circuit concepts, such as
propagation delays and buses, are already built in. This
gives a language which is initially straightforward to use,
but which may lack a certain amount of generality and
flexibility[2.54].

2.4 Discussion

In this chapter the most important and novel aspects of a
number of experimental CAD systems have been presented,
together with a general classification and examples of both
software and hardware specification languages. Much
state-of-the-art research in CAD is aimed at the
behavioural specification and automatic synthesis of VLSI
circuits. Many of the tools and techniques used in such
systems are however applicable in a more general sense to
other application areas in the wider realm of CAD for
digital systems. It seems that this will especially apply
to the adoption of expert system techniques. Expert systems
can be used to reduce the complexity of CAD systems to a
manageable scale, and mostly remove the need for
intervention from human designers.

It further appears that the major difficulty encountered in
both hardware and software specification is similar. This
is namely that different applications are often best
described by radically different specification notations.
Also, if automatic synthesis is to be achieved, each of the
intermediate levels of design description generated
requires its own notation, which is appropriate to the
level of abstraction needed at that particular stage of the
synthesis process. This problem presents a significant
challenge to the designers of CAD systems. Specification
languages need to be defined which enable the major aspects
of a required system to be adequately and concisely
expressed. The underlying language model should closely

44

match the natural structure of the application to be
described, and the language should contain constructs which
are of an appropriate level of abstraction. Intermediate
design notations then need to be developed, together with
consistency-preserving transformation techniques, which can
automatically derive successively more detailed
descriptions of the application, until a complete
implementation is reached.

The remainder of this thesis relates how some of these
concepts and ideas have been applied to the specific area
of a CAD system for single-board microprocessor
controllers. Many of the software and hardware
specification techniques described above are brought
together to form a behavioural specification language for
control systems. A method of transforming behavioural
specifications through an intermediate design description
into software implementations is also presented. This
process involves interaction with a knowledge-based
hardware design system, which is under development in
another project. Finally the parallel programming language
occam is used as a hardware description language to
construct a generalised simulation environment for
microprocessors. Such simulations can be used to validate
designs which are produced by the CAD system.

45

References
2.1 Stefik,M.J. and Kleer,J.D.:'Prospects for Expert

Systems in CAD1, Computer Design, pp 65-76,
vol 22, no 5, 1983

2.2 Newton,A.R. and Sangiovanni-Vincentelli,A.L. :
'Computer-Aided Design for VLSI Circuits',
IEEE Computer, pp 39-59, vol 19, no 4, April 1986

2.3 Carter,H. :'Computer-Aided Design of Integrated
Circuits', IEEE Computer, pp 19-36, vol 19, no 4,
April 1986

2.4 Werner,J. :'The Silicon Compiler : Panacea,
Wishful Thinking, or Old Hat?', VLSI Design,
Sept/Oct, 1982, pp 46-52

2.5 Siewiorek,D.P. and Barbacci,M.R. :'CMU RT-CAD
System: An innovative Approach to CAD', Procs
AFIPS NCC, vol 45, 1976, pp 643-655

2.6 Darringer,J.A. :'The Description, Simulation and
Automatic Implementation of Digital Computer
Processors', PhD Thesis, Department of Electrical
Engineering, Carnegie-Mellon University, May 1969

2.7 Bell,C.G. and Newell,A. :'Computer Structures,
Readings and Examples', McGraw-Hill, New York,
1971

2.8 Bushnell,M.L. and Director,S.W. :'ULYSSES - a
Knowledge-based VLSI Design Environment',
Artificial Intelligence, vol 2, no 1, Jan 1987,
pp 33-41

2.9 Steinberg,L.I. and Mitchell,T.M. :'A Knowledge
Based Approach to VLSI CAD - The Redesign System',
Procs. 21st Design Automation Conf, ACM (SIGDA)
and IEEE (Computer Society), 345 East 47 St.,
New York, NY 10017, pp 412-418, 1984

2.10 Barr,A. and Feigenbaum,E.A. :'Frames and Scripts',
in The Handbook of Artificial Intelligence,
HeurisTech Press and Williams Kaufmann, Inc.,
Stanford, California, volume 2, pp 54-57, 1981

2.11 Bushnell,M.L. and Director,S.W. :'ULYSSES - an
Expert System Based VLSI Design Environment',
Procs 1985 International Symposium on Circuits and
Systems, IEEE Service Centre, Piscakiway, N.J.,
pp 893-896

2.12 Reddy,R, et al :'The Hearsay2 System', in Speech
Understanding Systems, Dept, of Computer Science,
Carnegie-Mellon University, 1976, ch 1, pp 6-7

46

2.13 Schank,R. et al :'SAM - A Story Understander',
Research Report 43, The Yale A.I. Project, Yale
University, August 1975

2.14 Subrahmanyam,P.A. :'Synapse: An Expert System for
VLSI Design1, IEEE Computer, pp 79-89, vol 19,
no 7, July 1986

2.15 Intellicorp :'KEE Software Development System
User's Manual', Jan 19 85

2.16 Bowen,J.A. and Smith,M.F.:'Expert Systems for the
Analysis and Design of Microprocessor
Applications', Journal of Microcomputer
Applications, (1983)6, pp 155-161

2.17 Flake,F.P. et al :'HILO MARK 2 Hardware
Description Language', Procs. of the IFIP 5th
International Conference on CHDLs, Kaiserslautern,
Sept 1981

2.18 Bowen,J.A. :'Automated Configuration of
Backplane-based Microcomputers *, Procs Conf on
CAD, 1984

2.19 Davis et al:'An Overview of Production Systems',
Machine Intelligence, pp 300-332, vol 8, 1977

2.20 McDermott, J. :'Rl: a Rule-based Configurer of
Computer Systems', Carnegie-Mellon University,
Department of Computer Science, 1980

2.21 Forgy.C.L.and McDermott,J.:'OPS, a Domain
Independent Production System Language1,
Proceedings of the fifth International Joint
Conference on Al, MIT, 1977, pp 933-939

2.22 Newell.A, Shaw,J.C. and Simon,H.A. :'Empirical
Explorations with the Logic Theory Machine', in
Computers and Thought, edited by Feigenbaum,E.A.
and Feldman,J., McGraw-Hill, New York, 1963

2.23 McDermott,J. :'Domain Knowledge and the Design
Process', Procs. of ACM IEEE Design Automation
Conference, Nashville, 29 June - 1 July, 1981

2.24 Sussman,G.J. :'Electrical Design, A Problem for
Artificial Intelligence Research', IJCAI no 5,
1977, pp 894-900

2.25 Stefik,M.J. et al :'The Partitioning of Concerns
in Digital System Design', Procs. Conference on
Advanced Research in VLSI, pp 43-52, Jan 1982

2.26 Hekmatpour,S :'The Execution of Formal
Specifications', Computing Discipline, Open
University, Technical Report 85/2, June 1985

47

2.27 Riddle,W.E. and Wileden,J.C.:'Languages for
Representing Software Specifications and Designs',
ACM SIGSOFT Notices, no 3 Oct 1978, pp 7-11

2.28 Stoegerer,J.K. :'A Comprehensive Approach to
Specification Languages 1,Australian Computer
Journal, vol 16, no 1, Feb 19 84, pp 1-13

2.29 Teichroew,D. and Hershey,E.A. :'PLA/PSA - a
Computer-aided Technique for Structured
Documentation and Analysis of Information
Processing Systems1, IEEE Trans. Software
Engineering, SE3 Jan 1977, pp 41-48

2.30 Ince,D. :!Z and System Specification1, Information
and Software Technology, vol 30, no 3, April 1988,
pp 139-145

2.31 Coleman,D. and Gallimore,R.M. :'Software
Engineering Using Executable Specifications',
Department of Computation, UMIST, 1984

2.32 Riddle,W.E. et al :'An Introduction to the DREAM
Software Design System', ACM SIGSOFT Notices,
no 2, July 1977, pp 11-24

2.33 Ambler,A. et al :'GYPSY - A Language for
Specification and Implementation of Verifiable
Programs', Procs. Conf. on Language Design for
Reliable Software, ACM SIGPLAN notices, vol 12,
no 3, March 1977, pp 1-10

2.34 Wirth,N. :'Towards a Discipline of Real-time
Programming', CACM, vol 20, Aug 1977 pp 577-583

2.35 Minsky,M.L.:'Computation. Finite and Infinite
Machines', Prentice-Hall 1967

2.36 Riddle,W.E. :'Behaviour Modelling During Software
Design', IEEE Trans. Software Engineering, SE4,
July 1978, pp 283-292

2.37 Kawashima,H. et al:'Functional Specification of
Call Processing by State Transition Diagrams',
IEEE Trans. Communication Technology, vol 19, no 5
Oct 1971, pp 581-587

2.38 Davis,A.M. and Rataj,W. :'Requirements Language
Processing for Effective Testing of Real-time
Systems', Proc. Software Quality and Assurance
Workshop, Nov 1978 San Diego, pp 61-66

2.39 Alford,M.W. :'A Requirements Engineering
Methodology for Real-time Processing Requirements*
IEEE Trans. Software Engineering, SE-3, Jan 1977
pp 97-108

48

2.40 Balzer,R. and Goldman,N. :'Principles of Good
Software Specification and Their Implications for
Specification Languages',Proc. Specification of
Reliable Software, 1979 pp 58-67, IEEE cat no 79,
Ch 1402-9C

2.41 Jones,C. :'A Survey of Programming Design and
Specification Techniques', Proc IEEE Conf.
Specifications for Reliable Software, pp 91-103Jlcl7cl

2.42 Willis,R.R. :'AIDES - Computer-aided Design of
Software Systems', Software Engineering
Environments, GMD, North Holland, 1981, pp 27-48

2.43 Caine,S.H. and Gordon,E.K.:'PDL - A Tool for
Software Design1, Proc. AFIPS NCC, pp 271-276,
1975

2.44 Biggerstaff,T.J.:'The Unified Design Specification
System(UDS)',Proc. IEEE Conf. Specifications for
Reliable Software, pp 104-118, 1979

2.45 Parnas,D.L.:'The Use of Precise Specifications in
the Development of Software', Information
Processing 77, IFIP, pp 861-867, North Holland
Publishing Company, 1977

2.46 Zemanek,H.:'Formalism: History, Present and
Future',Proc 4th Informatik Symp., Sept 1974,
Springer-Verlag Lecture Notes in Computer Science
no 23, pp 477-501

2.47 Jones,C.:'Software Development - A Rigorous
Approach', Prentice-Hall, 1980

2.48 Duce,D.A. and Fielding,E.V.C.:'Formal
Specification - A Comparison of Two Techniques',
The Computer Journal, vol 30, no 4, April 1987,
pp 316-327

2.49 Gibbins,P.F.:'What are Formal Methods?',
Information and Software Technology, vol 30, no 3,
April 1988, pp 131-137

2.50 Ludewig,J.:'Computer-Aided Specification of
Process Control Systems', IEEE Computer, vol 15,
no 5, May 1982, pp 12-21

2.51 Naur,P. (ed):'Revised Report on the Algorithmic
Language ALGOL 60', Communications ACM, vol 6,
no 1, Jan 1963, pp 420-453

2.52 BarbaccI,M. :'Structure and Behaviour of Digital
Systems' in New Computer Architecture, edited by
J.Tiberghien, 1984

49

2.53 Chu,Y :'Why do we need Computer Hardware Description
Languages', IEEE Computer, vol 7, no 12, Dec 19 74,
pp 18-22

2.54 Davie.B.S.:'Hardware Description Languages: Some
Recent Developments', report no. CSR198-86, Dept, of
Computer Science, University of Edinburgh, April 1986

2.55 Shahdad,M. et al:'VHSIC Hardware Description
Language', IEEE Computer, vol 18, no 2, Feb 1985
pp 95-103

2.5 6 Lattice Logic Ltd:'CHIPSMITH, a Random Logic
Compiler for Gate-arrays, Optimised Arrays and
Standard Cells', Edinburgh 1985

2.57 Praxis Systems Ltd.:'ELLA : Design, Modelling,
Simulation - System Overview', Bath 1985

2.58 Suzuki,N.:'Concurrent Prolog as an Efficient VLSI
Design Language', IEEE Computer, vol 18, no 2,
Feb 1985, pp 33-39

2.59 Barbacci,M.R. :'Instruction Set Processor
Specifications(ISPS): The Notation and its
Applications',IEEE Trans, on Computers, vol c-30,
no 1, Jan 1981, pp 24-39

2.60 Collis,G.V. and Edwards,M.D.:'Automatic Hardware
Synthesis from a Behavioural Description Language:
occam', Microprocessing and Microprogramming,
vol 18, pp 243-250, 1986

2.61 Plessey Semiconductors:'Plessey Megacell', 1985
2.62 Johannsen,D.:'Bristle Blocks : A Silicon Compiler'

Caltech Conference on VLSI, 1979, pp 303-310
2.63 Organick,E.I. et al:'Transforming an ADA Program

Unit to Silicon and Verifying its Behaviour in an
ADA Environment: A First Experiment', IEEE
Software, vol 1, no 1, 1984, pp 31-48

2.64 May,D. and Keane,C.:'Compiling occam into Silicon*,
Communicating Process Architecture, Inmos Ltd, 1986

2.65 German,S.J. and Lieberherr,K.J.:'Zeus: A Language
for Expressing Algorithms in Hardware', IEEE
Computer, vol 18, no 2, Feb 19 85, pp 55-65

2.66 May,D. :'occam (Hardware Description Language)',
Procs. IEE Colloq. on Software Tools for Hardware
Design, London 1985, Digest no 98 P5/1-5

2.67 Waxman,R.:'Hardware Design Languages for Computer
Design and Test', IEEE Computer, vol 19, no 4,
April 1986, pp 90-97

50

3. A Behavioural Specification Language for Minimum
Configuration Systems

3.1 Language Reguirements

The aim of the Behavioural Specification Language(BSL)
described in this section is to provide a notation which
allows a system designer to clearly express the design
decisions taken from a given MCS requirements
specification. These design decisions include the
specification of the precise control algorithm chosen for
each system variable, the strategies to be used to achieve
input and output, and any important time and performance
constraints. All this information however should be
described at a sufficiently abstract level, which does not
constrain the number of possible implementation
alternatives, particularly in terms of hardware/software
trade-offs. Thus the following set of requirements for the
BSL can be defined.

3.1.1 Event-Based Model

The behaviour of an embedded MCS can be described in terms
of actions which must be carried out in response to
external stimuli[3.1]. Such systems continuously monitor
and alter their external environment in order to maintain
some desired stable state. There are two mechanisms which
can be employed by microprocessors to detect the arrival of
external stimuli[3.2]. These are :-

1) interrupts
2) polling

At the design specification level, the designer must have
decided whether the input lines will be interrupt driven or
polled. If there are several interrupt driven lines, some
form of priority may need to be imposed on the exact order
of interrupt processing. In exceptional cases the designer
may wish to mix the polling of inputs with interrupt driven
lines. Interrupts and polling systems are inherently
event-based, and therefore a specification language for

51

such systems must be able to reflect this mode of behaviour
in a simple, natural and abstract fashion.

3.1.2 Actions

The language must provide a mechanism for associating a
sequence of actions with the arrival of an external
stimulus. Each sequence of actions would typically consist
of individual assignment, calculation, repetition,
comparison and output actions.

3.1.3 Representation of Time Constraints

It must be possible to specify a maximum permissible time
period for the execution of a set of actions associated
with a particular input. This may be necessary when an
external device must be serviced in a short time period.
Further, the language must allow the specification of the
sampling of an input at a regular time interval. This is a
common feature of control systems, which can be applied
when the rate of change of a controlled variable is well
understood[3.3] .

3.1.4 Formal Definition

The BSL should be formally defined to ensure that it
contains no unforeseen inconsistencies or redundancies, and
is completely unambiguous[3.4].

3.1.5 Analysable

It must be possible to check BSL descriptions for static
validity. To this end, the language should enforce strong
typing rules for all variables and expressions. Scope rules
similar to those found in most block-structured high-level
languages should also be incorporated. These would allow
the values of variables to be shared amongst several
routines or to remain private to just one particular
routine.

52

3.1.6 Executable

It must be possible to transform a design specification
into a high-level behavioural simulation of the desired
system. This allows the designer to ascertain at a very
early stage that the design meets its requirements. The
simulation at this level is less detailed than the
component level simulations which may subsequently be
generated by the CAD system. However, a general behavioural
simulation provides a useful prototyping tool to validate
designs before the selection of specific components and
algorithms is initiated.

3.1.7 Familiarity

The language should contain constructs and expressions
which are common in existing design specification and
programming languages. This would enable designers to
quickly become familiar with the language and consequently
make its use a more practical proposition.
Specifications should also be expressed in a modular
fashion. This would enhance both the readability and
maintainability of specifications.

3.2 Language Basis

It was decided to base the BSL upon the programming
language occam[3.5]. Other specification languages[3.6,3.4]
have been successfully built around the features of
existing high-level languages such as Pascal. This approach
makes sense from a software engineering viewpoint. Much
research has gone into the design of the many widely-used
high-level languages. Therefore, as consolidation is a
major virtue of a language designer, existing languages
should be used as a basis for development wherever they
meet the desired criteria[3.7, 3.8]. A brief introduction
to occam is given in Appendix A.

53

Occam was chosen for the following reasons:-

1) It provides a simple and clear notation for
expressing input and output operations, and the
semantics of the input operation precisely match the
event model of specification languages.

2) The occam ALT construct provides a convenient
abstraction for describing interrupts, priority and
non-determinancy.

3) Occam is a simple and secure language, built upon a
strong formal basis[3.9, 3.10]. It contains control
constructs which are similar to those found in most
high-level languages.

4) Occam channels provide a natural, abstract mechanism
for representing the input and output lines from an
MCS to the environment under control.

5) Existing software tools can be utilised to verify
and compile specifications to give a high-level
simulation of the system being designed.

However, the occam language is not used in its pure form
for behavioural specifications. Rather, constructs have
been added to the language to enable designers to operate
at a more abstract level, with notations which closely
match the features of the problem at hand. Conversely,
several of the fundamental features of occam have been
omitted from the BSL. The most important of these is the
occam PAR statement. The expression of parallelism is not
necessary in single-board embedded systems, which are
implemented by conventional 8- or 16-bit microprocessor
technology. Parallelism in control systems becomes of
greater importance in larger minicomputer or mainframe
systems, where the control software tasks may be
multiprogrammed under the supervision of a multi-tasking
operating system, such as UNIX[3.11] or VMS[3.12].

54

In order to execute behavioural specifications, the
additional BSL constructs must be transformed into occam.
The resulting syntactically correct occam program is then
compiled (by an existing occam compiler) and executed to
give a behavioural simulation of the system.

3.3 Language Features

3.3.1 Specification Structure

This section describes in depth the most important features
of the BSL. Examples of the constructs are given together
with a syntax description in Backus-Naur Form(BNF)[3.13].
However, so as not to include superfluous detail at this
stage, the syntax description in this section is not
complete. A complete BNF for the language is given in
Appendix B.

A behavioural specification comprises a title section and a
specification section.

<BSL Specification> ::= <title> Specification section>
<title> ::= TITLE <text> :
Specification section> ::= <channel declarations>

Soutine declarations>
Sontrol section> :

The title section is included purely for documentation
purposes. The text which appears between the keyword TITLE
and the terminating colon is treated as a comment, and thus
may contain anything the specification author desires.

The specification section comprises three distinct phases.
These are the channel declarations, the interrupt service
routine declarations, and the control section which states
how each individual input channel is to be handled.

55

3.3.2 Channel Declarations

<channel declarations> ::= CHAN <direction>
<channel id list> :
C <channel declarations> 3

<direction> ::= IN | OUT
<channel id list> ::= <channel id> £ , <channel id> 3
<channel id> <valid variable name>

The BSL uses a slight variation on the occam channel to
represent input and output lines to the system. Channels
are declared, as in occam, in a CHAN statement. In
addition, channels must be explicitly defined as input or
output. This enables stringent checks to be made on channel
use. An example of a channel declaration is given below:-

CHAN IN temperature, pressure:
CHAN OUT valve, heater :

3.3.3 Service Routine Declarations

<Service routine declarations> ::= PROC <routine id> :
<type>
<formal parameter
list>

<time constraint>
<routine body> :

£<Service routine declarations>3
<routine id> ::= <valid variable name>
<type> ::= INTERRUPTABLE [UNINTERRUPTABLE
<formal parameter list> ::= () |

(<typed variable list>) j
(<typed variable list>
£ , <typed variable list>3)

<time constraint> ::= <empty> | <integer value> <units>
<routine body> ::= <local declarations> <processing>
Ctyped variable list> ::= <variable type>

<variable list>

A service routine declaration is based upon the process and
procedure definition in occam. Each service routine may
consist of occam declaration, assignment, calculation,
repetition, comparison, input and output statements. A
RESULT statement, similar to that in occam, is used to
return from the service routine the value that is to be
output to control the environment. A simple example of a
single service routine is given below.

56

PROC Temp.Regulation : INTERRUPTABLE
(BYTE temp)

VAL critical.temp IS 150:
VAL heater.on IS 1:
VAL heater.off IS 0:
SEQ

IF
temp < critical.temp

RESULT(heater.on)
temp >= critical.temp

RESULT(heater.off)

Routines are typed as 'INTERRUPTABLE' or 'UNINTERRUPTABLE'.
This enables the designer to specify whether or not a
particular service routine may be halted in order to
service a more important interrupt request. It is analogous
to the masking and unmasking of interrupts at assembly
language level. The parameters passed to a service routine
are regarded as passed by reference parameters, and thus
their value may be altered within the service routine
itself. An optional time constraint parameter may be
associated with a service routine. This states the maximum
time period that a routine may take to process a particular
input value. The time period may currently be specified in
units of either milliseconds or seconds. These should
provide sufficient and convenient expressive power to cover
all but the most time-critical of applications, in which a
routine must service an input in less than one millisecond.

3.3.4 Control Section

<control section> ::= <global variable declarations>
<execution condition>
<input structure>

<global variable declarations> ::= <array definition>
<variable type>
<variable list> :

<array definition> = <empty> j [Cinteger value>]
<variable type> ::= BOOL j BYTE | INT j REAL

[CHAN <direction>
<variable list> ::= <valid variable name>

£ , <valid variable name> 3
<execution condition> ::= WHILE <Boolean condition>
<input structure> ::= <control statement>

<event statement>
C <event statement> 3
£ <input structure> 3

57

<control statement>::= INTERRUPT | PRI INTERRUPT j POLL
<event statement> ::= <input variable declaration>

<input statement>
<output statement>

<input variable declaration> ::= <empty> |
<variable type>
<valid variable name>:

<input statement> ::= <channel id> ?
<valid variable name>
<sample statements

<sample statement> <empty> [
SAMPLE <interval>

<interval> ::= <empty> | <integer value> <units>
<output statement> ::= <channel id> !

<routine id>
<actual parameter list>

The control section specifies the manner in which values
are to be received on the input channels from the
environment. Global variables, whose value is of importance
to more than one particular service routine, are declared
at this stage. Restrictions are imposed on the occam
variable types, both global and local, that may be used in
the BSL. The full range of variable types offered in occam
is not required because dedicated controllers do not
usually need the precision of 64-bit floating-point numbers
or 32-bit integers. Also these data types cannot be
efficiently implemented on 8-bit, or to a lesser extent,
16-bit microprocessors. For these reasons, the only data
types permitted in the BSL are BOOL, BYTE, INT (16-bit
integer) and REAL (32-bit real). These should provide
sufficient expressive power and accuracy for all intended
applications.

Channel input and output operations are expressed using the
'?* and M* notation of occam. However, while the syntax of
the input statement is not altered, the output statement is
modified to give a more abstract, functional
representation. This is illustrated below.

temperature ? current.temp
heater ! Temp.Regulation (current.temp)

The behaviour of embedded systems is inherently
event-based. These systems continuously monitor and alter

58

their external environment in order to maintain some
desired stable state. Thus, the above pair of input and
output statements show how this situation can be expressed.
They state that the system receives a value on the channel
'temperature', and subsequently outputs a value on the
channel 'heater', which is determined by applying the
service routine 'Temp.Regulation' to the current
temperature value. This notation provides a simple,
abstract mechanism for associating a particular sequence of
actions, a service routine, with the arrival of an external
stimulus. In many applications a system will be dedicated
to controlling more than one physical device, the values
from which may be inter-related. It must therefore be
possible to place constraints upon the order in which
interrupts are serviced, and allow some devices, if
necessary, to have priority over others. To achieve this,
two constructs, INTERRUPT and PRI INTERRUPT have been
included in the BSL. Syntactically they are similar to the
occam ALT and PRI ALT statements, but semantically they are
radically different. In addition, a POLL construct has been
incorporated to allow the polling of input lines to be
expressed.

For example, consider a system which waits for inputs on a
single input channel. If the arrival of values on this
channel is to be signalled by interrupts, the situation can
be described as

CHAN IN input:
CHAN OUT output:
WHILE TRUE

INTERRUPT
BYTE value:
input ? value

output ! process.value (value)

INTERRUPT clearly portrays the purpose of the statement in
a vocabulary that is familiar to microprocessor system
designers. If it is desired to continuously poll a single
input line, the following construct could be used:-

59

CHAN IN input :
CHAN OUT output:
WHILE TRUE

POLL
BYTE value:
input ? value

output ! process.value (value)

The POLL and INTERRUPT constructs therefore convey the
implementation strategy decided upon by the designer. These
constructs can easily be extended to cater for multiple
inputs. For example, using the INTERRUPT construct:-

CHAN IN tempi, temp2, emergency:
CHAN OUT heater1, heater2, alarm:
INTERRUPT

BYTE any:
emergency ? any

alarm ! sound.siren (any)
BYTE value1:
tempi ? value1

heaterl ! process.valuel (valuel)
BYTE value2:
temp2 ? value2

heater2 1 process.value2 (value2)

In the above example, all three interrupt lines are of
equal priority. However, the designer may impose a simple
two-level priority ordering on inputs by defining the
procedures associated with each input as interruptable or
uninterruptable. An uninterruptable procedure is
consequently of a higher priority than one that may be
interrupted.

General interrupt priority can be expressed by utilising
the PRI INTERRUPT construct. Inputs are assigned a priority
according to the textual order in which they appear in the
construct - the first has the highest priority and so on.
When an interrupt occurs, the priority of its input channel
is compared with the priority of any currently active
interrupt service routine. If the executing routine is of a
lower priority, it is suspended and the routine to process
the interrupt is executed. If the converse is true, the

60

active routine continues to execute. Thus PRI INTERRUPT
essentially provides a daisy chain system in that the input
which invokes the construct from an inactive state may not
be the one that is immediately satisfied if another input
of higher priority arrives. An example of the use of a PRI
INTERRUPT is given below:-

CHAN IN tempi, temp2, emergency:
CHAN OUT heaterl, heater2, alarm:
PRI INTERRUPT

BYTE any:
emergency ? any
alarm 1 sound.siren (any)

BYTE valuel:
tempi ? valuel

heaterl ! process.valuel (valuel)
BYTE value2:
temp2 ? value2

heater2 ! process.value2 (value2)

3.4. An Example

Consider a water tank which is used to supply water at a
certain temperature to an industrial process. The water
flows into the tank at a constant rate, is heated to within
a given temperature range, and flows out at a rate
determined by the process which consumes the water. In
normal operation, the output flow will be equal or slightly
greater than the input flow. Importantly though, the output
flow is never less than the input. This means that the tank
cannot overflow, but could become empty if the output flow
remains greater than the input for a significant period. To
guard against this possibility, a level detector is placed
in the tank, which indicates that the water level is
dangerously low. When this happens, the valve which
controls the inflow of water can be opened wide for a short
time, thus refilling the tank to a safe level. A further
level detector is used to indicate that the water level is
satisfactory, enabling the valve to be closed to its normal
setting. A diagram of this system is given in Figure 3.1.

61

valve

temperature.

low le v e l

heater

Figure 3. 1 A Water Tank Controller

62

The behavioural specification of the system required to
control the tank is shown in Figure 3.2. The algorithm
adopted to control the water temperature is deliberately
simplified, in order to illustrate the main features of the
specification. In a complete implementation, a more complex
control algorithm may be better suited[3.3], Examples in
Chapter 6 illustrate how the features of the BSL can be
utilised to describe systems which exhibit greater
complexity of behaviour.

In Figure 3.2, three distinct input channels are shown
which may generate interrupts. The sources of these
interrupts are the two water level measuring devices, and a
temperature sensing device. Note that in the INTERRUPT
statement, the input for the channel ’temperature* is
followed by the SAMPLE option. SAMPLE followed by a time
period in seconds, states how often the interrupt for this
channel is to occur. In this case then, the temperature of
the water in the tank is to be measured every five seconds.
The sampling of physical variables in this manner is a very
common feature of this kind of control application.
Sampling may be implemented in software, using a loop to
cause the required time delay, or in hardware, using a
programmable timer chip to generate interrupts when the
sampling period is complete. Both approaches have
advantages and disadvantages, and the relative merits of
each approach are dictated by the nature and requirements
of the control system under consideration. In certain
applications, when the exact rate of change of the
environment is uncertain, it may be desirable to sample an
input as often as possible. This can be expressed in the
BSL by a SAMPLE statement which is not followed by any
specific time interval. For example

pressure ? value SAMPLE
The SAMPLE statement provides a simple, concise syntax for
expressing this mode of operation. More importantly though,
SAMPLE conveys only design level information. It does not
enforce a particular implementation strategy to be adopted
at a later stage of the development process.

63

CHAN IN temperature.measure, low.level,
high.level:

CHAN OUT heater, valve:
PROC temperature.control: INTERRUPTABLE

(BYTE temp)
VAL high.temp IS 90:
VAL low.temp IS 80:
VAL heater.off IS 0:
VAL heater.full IS 2:
VAL heater.warm IS 1:
SEQ

IF
temp > high.temp

RESULT (heater.off)
temp > low.temp

RESULT (heater.warm)
temp <= low.temp

RESULT (heater.full)

PROC open.valve: UNINTERRUPTABLE
0

VAL open.valve IS 1:
SEQ

RESULT (open.valve)

PROC close.valve: UNINTERRUPTABLE
0

VAL close.valve IS 0:
SEQ

RESULT (close.valve)

WHILE TRUE
INTERRUPT

BYTE temp:
temperature.measure ? temp SAMPLE 5 seconds

heater ! temperature.control (temp)
BYTE low:
low.level ? low
valve 1 open.valve ()

BYTE high:
high.level ? high

valve I close.valve ()

Figure 3.2 Behavioural Specification for the
Water Tank Controller

64

In contrast, no time requirements are placed on the
interrupts generated on the channels 'low.level' and
'high-level'. The control system does not need to
continuously monitor the level in the tank. However, it
must respond immediately when the external hardware informs
it that the level is dangerously low or high. For this
reason, the routines which open and close the valve to
refill the tank are defined as UNINTERRUPTABLE. The arrival
of an interrupt signal on either of the level monitoring
channels must result in the control system instantly
issuing the appropriate command. Failure to do this could
lead either to the tank becoming empty, or overflowing.

Note that in this particular application, a new reading on
any of the input channels is used to calculate a new value
for just one corresponding output channel. The service
routines can thus be regarded as functionally distinct, and
do not share common data. The value read from one input
channel is only of relevance to one particular service
routine and can be regarded as private to that routine.
Such locality of data can be expressed in the BSL by
declaring an input variable immediately prior to its use in
an input statement, as in Figure 3.2.. In applications
where input values must be referenced by more than one
service routine, the input variables must be declared
globally.

The 'WHILE TRUE' statement in the specification is used to
signify that the control system has no special terminating
condition: essentially it operates until the power supply
is removed. A more controlled method of termination can be
specified easily using Boolean variables and termination
signals. For example:-

65

BOOL running:
SEQ

running := TRUE
WHILE running

INTERRUPT
------- input statements
BYTE any:
shut.down ? any

running := FALSE

Thus, receipt of a signal on the channel 'shut.down* would
cause the system to terminate. This is virtually identical
to the technique employed in occam programs to terminate a
set of concurrent processes.

3.5 Executing Behavioural Specifications

The ability to execute behavioural specification at a
generalised, implementation-independent level is seen as an
important phase of the development process[3.14]. The
simulation of the desired MCS, which is created by running
the behavioural specification, forms a further level at
which verification of the design can take place. The
designer may test the simulation by supplying example
values on each of the input channels. In this manner, it
can be determined whether each service routine produces the
correct output values for a given set of inputs, and
whether inputs for different channels are processed in the
required order.

To transform behavioural specifications into an executable
form, it was decided to convert the specifications into
occam. The occam representation of the system could then be
compiled into executable code by an existing occam
compiler. An alternative approach would have been to write
an interpreter for the BSL. This however was deemed less
attractive. Much of the BSL is in fact a precise subset of
occam. It therefore seems more sensible to convert the
additional BSL features into occam. Using this approach,
all the BSL features which are identical in occam can be

66

initially ignored, and left to be dealt with by the occam
compiler when all the other BSL features have been
converted. This method should reduce the effort required to
convert behavioural specifications into an executable form,
as it makes considerable use of existing software tools.

The strategy adopted to transform BSL descriptions into
occam is to regard each service routine as a concurrent
process, whose execution is controlled by a supervisor
process which executes in parallel with the service
routines. The role of the supervisor is to accept test
values for the input channels in the specification, and to
impose the required ordering constraints on the processing
of these inputs. Information defining the exact
characteristics of each service routine in
specification is passed to the supervisor process as
parameters: the code which comprises the supervisor is
sufficiently generalised, so that it can be included
without modification into any system simulation.

As an illustration, consider the specification of the water
tank controller given in Figure 3.2. When this is converted
into occam, the three service routines become occam
processes which execute in parallel with the supervisor.
Each service routine is connected to the supervisor process
by a pair of occam channels, which are used to communicate
data between the service routines and the supervisor. This
information represents values for the service routines to
process, results for the supervisor to display, and control
and status information to enable routines to be interrupted
and restarted. The structure of the transformed occam
representation of this system is shown in Figure 3.3. The
circles represent occam processes, and the lines represent
the channels used to communicate between processes. It is
worth noting that all the parallel behaviour incorporated
in Figure 3.3 is automatically generated during the
transformation process from the BSL to occam. Concurrent
execution of processes is consequently never a complexity
which the system designer needs to consider. Further, a

67

User Interface
Keyboard Screen
input Display

teip
control

Figure 3.3 Occam Process Structure for the
¥ater Tank Controller Specification

68

simple, generalised user interface is generated and managed
by the supervisor process. This provides a user-controlled
test environment which can be used regardless of the
specific application under design. Figure 3.4 shows the
initial screen display given when the specification in
Figure 3.2 is transformed, compiled and executed.

The user interface allows the designer to initiate inputs
on any of the input channels defined, to continue the
execution of the currently active routine, or to end the
simulation. Firstly then, when a simulation is started, an
interrupt must be initiated and an input value entered by
the user. This value is read by the supervisor process, and
subsequently passed to the service routine associated with
that input channel. The processor state* field on the
screen is updated to * active1, and the supervisor waits for
the next instruction from the user. If the user decides to
continue with the active routine, the supervisor sends a
message to the routine, requesting that it completes its
processing and returns the result. The supervisor then
displays the result on the screen (together with the input
value which caused that result to be reached), signifies
that the simulation is once again inactive, and awaits
further instruction.

However, if the user chooses to initiate another input
before the active routine is allowed to complete,
the supervisor must decide whether to reject the input, or
to interrupt the current routine and allow the most recent
input to be processed immediately. This decision is based
upon the relative priorities of the input channels
involved, and the 'type* of the currently active service
routine. If the active routine is defined as
uninterruptable in the specification, the newly initiated
input is always rejected. But should the active routine be
interruptable, it is suspended if the priority of the
requested input is equal to or greater than the active
routine. A suspended routine is immediately resumed when
the processing of the higher priority interrupt is

69

O 3
(5il
P i

C"r &0 tt3 -
•o c*
• P *O »“»o ^3 G
C 2-'
HJ CT

0 5Cf-1 o
»3
pcr

oft05
<P1—*<(5

ft M CT' 3 U ft C C t— c+C“ <p

o ft ; gi oc ** ft0 r* —3
o : 0 H-1

CP CP 1 ^ c
K 2rf 0! O toH 0 ft

< c+p-> CO c co to t—‘0 C” s • • •r- pP- c+ ft Ci l_J
< 0 2 0
ci- £3 zz p-r* r-
S3 I CO p* p-o 1 v: Pr; w C r~
C" Pi c+ 0 ap* 2 0p tT a •—ia Q 2

r- ft p r-
p- X p 0< 0 0
0 0 2 h2 r- C•• t* 1— iftp- cc5 > 00c~p* H-*< £

C 3 i

0 ft
z I

N>
ft c+ C 3 c+P*

Cp
a-
<pV—*<
CP

a

Fignre 3.4 User Interface for—
Rehavionral Simulation

70

completed. Nesting of interrupts to greater depths is
allowed, up to an arbitrarily imposed limit (i.e. the size
of the interrupt stack).

The data which defines the priority level and type of each
service routine is built up as specifications are analysed
and subsequently transformed into occam. This data is then
converted into constants in the form of occam tables, and
written out into the occam representation of the
specification. These tables, together with an integer
constant which represents the number of service routines in
the specification, are then passed as parameters to the
supervisor process. More precisely, the parameters passed
are: -

1. The number of service routines in the simulation.

2. A two-dimensional byte array which holds the name of
each routine in the simulation. It primary purpose
is to enable the identification of each routine to
the user on the screen display.

3. A Boolean table which states whether a routine may
be interrupted. If the entry for a routine is TRUE,
then it may be interrupted by a higher or equal
priority input: if the table entry is FALSE, the
routine cannot be interrupted under any
circumstances.

4. An integer array which defines the priority level
allocated to each routine, in accordance with the
behavioural specification.

The exact priority levels which are allocated to the
service routines are determined according to the following
rules.

If an INTERRUPT construct is recognised during the
transformation process, each routine referred to in that

71

construct is allocated a priority level of 0. This method
of priority allocation defines a system in which, if all
the service routines are interruptable, an input occurring
on any channel will cause any active routine to be
suspended. However, if some routines are defined as
uninterruptable, a simple two-level priority scheme is
created, in which routines that may not be interrupted are
of a higher priority than interruptable routines.

If a PRI INTERRUPT construct is recognised, the first
routine to appear in textual order is allocated a priority
level of 99, the next 98, and so on. (This, of course,
restricts the number of inputs that may be currently
specified in a PRI INTERRUPT construct to a maximum of 99.
This value is considered unlikely to be exceeded.)

If a POLL construct is recognised, all the enclosed
routines are allocated a priority level of -1. This is
because the actual process of polling an input line implies
that the arrival of an interrupt on that line cannot
generate an interrupt. Therefore inputs to polled lines can
only be accepted when the processor is not dealing with any
other routines. Thus by giving polled routines the lowest
possible priority level of -1, they are easily
distinguished from other, interrupt driven routines. It
also ensures that polled routines cannot interrupt any
active routines, as they always have a lower priority
level.

For the example in Figure 3.2, the following occam tables
were generated during the transformation process and passed
to the supervisor process

VAL service.routines IS 3:
VAL Name.table IS ["temp.control ",

"open.valve ",
"close.valve "]:

VAL Interrupt.table IS [TRUE, FALSE, FALSE]:
VAL Priority.table IS [0, 0, 0]:

72

These tables effectively form a record structure for each
routine. The entries in the first element of each table
(subscript 0) refer to the 1 temp.control1 routine, the
second set of entries refer to the * open.valve' routine,
and so on. Together, they provide the supervisor process
with all the information necessary to enforce the ordering
restrictions imposed on the processing of inputs, as stated
by the system designer in the behavioural specification.

One feature of behavioural specifications which is
neglected at this idealised level is the aspect of time.
The simulation assumes that all input values can be
processed within the specified time constraints, and that
the sequence of inputs conforms to any sampling
requirements for the application.

3.6. Conclusions

A behavioural specification language for embedded
microprocessor control systems has been presented.
Specifications written in this notation can be
automatically transformed into a semantically equivalent
form, expressed in the concurrent programming language
occam. The occam representation can subsequently be
compiled and executed, to give an
implementation-independent simulation of the behaviour of
the desired control system. A simple, generalised user
interface is automatically incorporated into the
simulation, through which the user can input test data and
observe the results obtained. This removes the requirement
for system-specific software test harnesses to be
constructed for each system under design.

73

The main advantages perceived from adopting this approach
over existing techniques are:-

1. the explicit, abstract definition of the interrupt,
polling and priority structures required in a
control system. General-purpose high-level languages
do not provide this specific capability.

2. the specification of the sampling and performance
requirements of a system at an abstract,
implementation-independent level. Again, such
facilities are not present in general-purpose
languages.

3. it allows the specification of the precise strategies
which are to be used to control the systems
environment.

4. the automatic production of a software test harness,
that is application specific, but constructed using an
application independent mechanism. The test harness
enables specifications to be thoroughly tested at an
early stage of the system development.

5. the capability to automatically transform behavioural
specifications into actual software implementations of
the required control system. The abstract nature of the
BSL opens up a large design space of possible
implementations, especially in terms of
hardware/software trade-offs, and the selection of which
microprocessor to use to construct the system.

74

References

3.1 Wirth,N. :'Towards a Discipline of Real-time
Programming', CACM, vol 20, no. 8, Aug 1977,
pp 577-583

3.2 Zissos,D. : 'System Design with Microprocessors',
Academic Press Inc, London, 19 78

3.3 Johnson,C.D.:'Microprocessor-based Process
Control",Prentice-Hall, INC., New Jersey, 1984

3.4 Ludewig,J.:'Computer-aided Specification of
Process Control Systems', IEEE Computer, vol 15,
no. 5, May 1982, pp 12-20

3.5 INMOS Ltd. :'occam 2 reference manual',
Prentice-Hall 1988

3.6 Ambler,A. et al:'GYPSY - A Language for the
Specification and Implementation of Verifiable
Programs', Procs. Conf. on Language Design for
Reliable Software, ACM SIGPLAN Notices, vol 12,
no.3, 1977, pp 1-10

3.7 Suzuki,N.:'Concurrent Prolog as an Efficient VLSI
Design Language', IEEE Computer, vol 18, no 2,
Feb 1985, pp 33-39

3.8 German,S.J. and Lieberherr,K.J.:'Zeus: A Language
for Expressing Algorithms in Hardware', IEEE
Computer, vol 18, no 2, Feb 1985, pp 55-65

3.9 Hoare,C.A.R. : 'Communicating Sequential
Processes', Prentice-Hall 1985

3.10 Roscoe,A.W. and Hoare,C.A.R.:'The Laws of occam
Programming', Oxford University Computing
Laboratory, PRG, Technical Monograph PRG53, Feb 19 86

3.11 Ritchie,D.M. and Thompson,K.:'The UNIX
Time-Sharing System', CACM, vol 17, no 7,
July 1974, pp 365-375

3.12 Digital Equipment Corp.:'VAX Software Handbook',
Maynard, Mass., 1982

3.13 Naur,P.(editor) :'Revised Report on the
Algorithmic Language ALGOL 60', CACM, vol 6, no 1,
Jan 1963, pp 1-17

3.14 Duce,D.A. and Fielding,E.V.C. :'Formal
Specification - A Comparison of Two Techniques',
The Computer Journal, vol 30, no 4, April 1987,
pp 316-327

75

4. Generating Microprocessor Control Software from
Behavioural Specifications

4.1. Introduction

This section describes a set of tools and techniques which
enable behavioural specifications of MCSs (expressed in the
notation described in the previous chapter) to be analysed
and transformed into machine code implementations for
target microprocessor systems. A machine-independent
assembler level representation has been devised, into which
behavioural specifications can be compiled. The
generalised, processor-independent code produced by the
compiler can be translated into the instruction set of the
microprocessor which is eventually selected to implement
the system. During the compilation process, information is
extracted from the specification which is of relevance to
the hardware design phase of the system development. Such
information includes the number of input and output
channels, how each input channel is to be driven, including
any sampling details, the relative priority of each input
channel, and any time constraints imposed on the processing
of values from particular inputs. The structure of the
whole scheme is illustrated in Figure 4.1.

4.2 Processor-Independent Assembly Language

4.2.1 Design Rationale

Previous attempts to define a portable,
processor-independent assembly language have used the
concept of an abstract machine[4.1,4.2]. This entails the
definition of an imaginary processor architecture, in terms
of registers, addressing modes and data manipulation
operations. Given a high degree of generality in the
abstract machine design, it is possible to implement the
operations efficiently in the target machine code of an
existing microprocessor. In order to achieve acceptable
efficiency levels, abstract machine operations tend to be

76

COMPILE

PROCESSOR- ^
DEPENDENT
ASSEMBLERS

Processor and
Configuration -
Dependent Machine
Code

Inform ation fo r
Hardvare Design

Portable Processor-
Independent
Assembly Code

Implementation-
Independent
Simulation

F igure 4 .1 Transform ing B ehavioural S p ecifica tion s
into P rocessor-level Im plem entations

77

low-level, resembling the actual operations of their target
microprocessor assembly languages. Consequently, the
compilers used to translate high-level programs into
abstract machine representations tend to be complex, while
the process of generating target machine code is
trivial[4.1].

However, as the internal architectures and operations of
microprocessors vary greatly, it is extremely difficult to
define a sufficiently general abstract machine
architecture. Abstract operations which can be implemented
by one machine instruction on one particular processor may
take many more on another. It was therefore decided to
define a higher-level, macro-assembly language, which does
not rely upon any underlying architecture. This approach
simplifies immensely the translation of the BSL into a
portable assembly level representation, but it complicates
the generation of the target processor machine code. Still,
by the careful coding of the expansions of each macro
operation, and the use of limited optimisation, relatively
efficient object code can be produced for a wide range of
microprocessors.

4.2.2 Language Features

4.2.2.1 Control Structures

The control structures included in the language closely
resemble the control structures of the BSL. They are
therefore simple to derive from the BSL description. Also,
they can all be implemented very efficiently in any target
machine code. The complete set of control structures is
given below:-

1. WHILE(operand, condition, operand)
 loop body-

ENDWHILE
2. SEQ(operand, base, limit)

 loop body—
ENDSEQ

78

3. IF
(operand, condition, operand)

 action-
(operand, condition, operand)

 action—
 etc----

END IF
4. CALL(subroutine-name)

RETURN — returns from subroutine call

In addition, some simple instructions are required to give
full control of interrupts and their arrival, and to enable
time delays to be specified. These instructions are:-

INTON — enable interrupts
INTOFF — disable interrupts
WAIT — wait for an interrupt
POLL — poll an input line(s)
DELAY (n) — fdo nothing1 for n time units

The INTON and INTOFF instructions are used to control the
masking of interrupts. They are needed to implement
procedures which are defined as uninterruptable in the
specification. The WAIT instruction is required in
situations when the system has no useful work to perform,
and must wait for an indeterminate period until some
external event occurs. A WAIT instruction is followed by
input statements for all the possible events that may
occur, and calls to the subroutines which deal with the
events. POLL is identical to the WAIT instruction, except
that it implies the processor is active, checking for
inputs to arrive at all the enclosed input channels. The
DELAY instruction enables the system to idle for a
specified time period, expressed in microseconds,
milliseconds or seconds. This is useful in situations when
the sampling of input channels is to be implemented in
software, or when the processor must wait a certain number
of machine cycles for a valid value to be read from a
channel.

79

4.2.2.2 Data Types

There are three data types provided, which implement the
variable types of the BSL. These are:-

1. BYTE (8 bits)
2. INT (16 bits)
3. REAL (32 bits)

Note that the BOOL type of the BSL is not explicitly
defined at this level. Boolean variables can more simply be
represented as a byte value, which can only have the value
0, FALSE, or 1, TRUE. This method of handling Boolean
variables is performed automatically by the BSL compiler.

A special set of macro operations facilitate the changing
of a value from one variable type to another. These are
required in most applications which apply mathematical
functions to input values in order to derive the output
value required. The operations, referred to as the
Re-typing operations, are defined as:-

BTI opl, op2 byte (op2) to integer (opl)
ITR opl, op2 integer (op2) to real (opl)
ITB opl, op2 integer (op2) to byte (opl)
RTI opl, op2 real (op2) to integer (opl)

4.2.2.3 Operations

Macro operations have either one or two operands, with the
exception of the INDEX operation, which has three. All of
the two-operand instructions require that both operands
must be of the same type. Some operations can manipulate
operands of any of the three defined types, whereas others
are restricted to a subset of these. Distinct opcodes for
each individual operation are formed by prefixing an R, I,
or B to the operation name to indicate the data type which
is expected. For example, the general form of the ADD
operation is :-

ADD operandl, operand2

80

This indicates that the value of operand2 is to be added to
the value of operandl, leaving the result in operandl, and
the value of operand2 unaltered. As the ADD operation can
accept operands of any type, there are three ADD macro
operations defined in the language; R-ADD, I-ADD and B-ADD.
In the description of the operations which follows, only
the general form is shown. The actual data types which each
operation may accept are indicated in brackets following
the general form.

The data manipulation operations can be divided into five
categories;-

1. Assignment
2. Input-Output
3. Arithmetic
4. Logical
5. Index

There are only two operations in the assignment category.
These are :-

ASSIGN operand, constant (R,I,B)
COPY operandl, operand2 (R,I,B)

These define the load and store functions which are found
in microprocessor instruction sets. COPY is a

general-purpose operation which can be used in any
circumstance. ASSIGN is a special case of the COPY
operation, and is only used when operand2 is a constant.
Due to this particular characteristic, it is possible to
implement ASSIGN more efficiently than COPY by using the
immediate addressing mode of most microprocessors. The main
use of ASSIGN is to initialise variables before they are
used in calculations.

Input and output operations are defined simply as:-

INPUT channel, operand (B)
OUTPUT channel, operand (B)

81

The implementation of the 1-0 instructions varies greatly
between microprocessors. Processors such as the Intel 8080
have special instructions to achieve I-O, whereas others,
such as the Motorola 6800, use a memory-mapped 1-0
mechanism. Therefore, logical channel names are used in the
1-0 instructions at this level, leaving their eventual
implementation, as ports or memory addresses, to be decided
when the processor and system configuration are known.

The arithmetic operations encompass all the fundamental
mathematical functions required to implement the BSL. Most
of the operations exist in some form in microprocessor
instructions sets. The arithmetic operations are:-

ADD opl, op2 (R,I,B) — add
SUB opl, op 2 (R,I,B) — subtract
MUL opl, op2 (R,I,B) — multiply
DIV opl, op 2 (R,I,B) — divide
REM opl, op2 (I / B) — remainder
INC opl (I,B) — increment
DEC opl (I/B) — decrement

INC and DEC are special cases of the ADD and SUB
operations. Their inclusion enables a more efficient
implementation of common occurrences such as loop counters
and array indexing.

The logical operations provide bit-manipulation facilities
to implement the logical functions of the BSL. The
equivalent of these operations can be found in any
microprocessor. They can therefore be implemented
efficiently, with the minimum of effort. The operations
are: -

AND opl, op2 (I,B) — logical and
OR opl, op2 (I/B) — logical or
NOT opl (I/B) — Is complement
NEG opl (I/B) — 2s complement
XOR opl, op2 (I/B) — exclusive or
SLL opl (I,B) — shift left
SRL opl (I,B) — shift right

Finally an operation to access one-dimensional arrays has
been defined. Given the base address of the array and the

82

position of the element required, the operation extracts
the value from the array and stores it in a temporary
variable. The format of the operation is:-

INDEX base, position, variable (R,I,B)
So, for example, in the operation

INDEX table, 3, tempi
where table is an integer array, the third element of the
array would be stored in the variable tempi. Note that the
position of the element in the array is expressed in
logical units, not a byte offset. It is the task of the
implementation to calculate the exact position of the data
in the array. Thus, in the above example, although the
third element of the table is specified in the INDEX
operation, the value of this element actually resides in
bytes five and six of the array. This is illustrated in
Figure 4.2.

It is worth noting that in the definition of the macro
operations, no mention is made of the effects of each
operation on the condition codes which are present in
microprocessors. The most important use of condition codes
is when a program performs a test or comparison, and then
inspects the appropriate condition code bit to decide
whether to execute a jump instruction. This is the
technique used to program repetition and selection
constructs in machine code. However, low-level test and
jump operations are not included in the
processor-independent language. Rather, repetition and
selection constructs are specified at a much higher level.
This has the advantage of allowing the details of the
condition code manipulation to be hidden in the
implementation of the abstract control structures.

4.3. Compiling the BSL into Macro-Assembly Language

4.3.1 Overview

Figure 4.3 shows the macro-assembler code which results
from compiling the specification in Figure 3.2. In this

83

(1)

(2)

(3)

(1)

(2)

(3)

36

26

21

Logical Table Representation

Actual Table Representation

Figure 4 .2

84

simple example the two are not radically different. This is
because the specification does not include any calculations
or expression manipulation. It is essentially constructed
from input, output and selection statements, which tend to
compile on a one-to-one basis at this level. The main
aspect to note is the removal of the more sophisticated
features such as parameters and local variables from the
BSL representation. This is because in general existing
assembly languages for microprocessors do not include these
features. All variables in a program are global, and thus
no parameter passing is needed.

The BSL compiler operates in three passes. During the first
pass, the channels and variables used in the specification
are written to the macro-assembler code file. The second
pass produces the main control logic, which states exactly
how each input channel is to be handled. Finally, the third
pass produces the code for each of the service routines in
the system. This structure for the output file can be
clearly seen in Figure 4.3. This format has been adopted
because it adheres closely to the code format required by
most existing microprocessor assembly languages. It
therefore makes the subsequent translation of the
macro-assembler code into actual machine code a much more
straightforward process. There follows a brief description
of the tasks performed by each pass of the compiler. The
description focuses upon the aspects of the compilation
process which are particular to this specific system. A
more comprehensive report, which also states the current
implementation restrictions, can be found in [4.3].

4.3.2 Pass One

The most important task performed by the first pass of the
BSL compiler is to construct the symbol tables required to
perform complete syntax checking of the specification. Much
of the syntax is assumed to be correct, as most violations
of the syntax rules will have been discovered when the
specification is transformed into an executable form. All

85

CHAN temperature.measure
CHAN heater
CHAN low.level
CHAN high.level
CHAN valve
BYTE temp
BYTE low
BYTE high
INTON
WHILE TRUE
WAIT

INPUT temperature.measure, temp
CALL temperature.control

INPUT low.level, low
CALL open.valve

INPUT high-level, high
CALL close.valve

ENDWHILE
END
temperature.control:
INTON
IF

temp, >, 90
OUTPUT heater, 0

temp, >, 80
OUTPUT heater, 1

temp, <=, 80
OUTPUT heater, 2

END IF
RETURN
open.valve:
INTOFF
OUTPUT valve, 1
INTON
RETURN
close.valve:
INTOFF
OUTPUT valve, 0
INTON
RETURN
Figure 4.3 Macro-Assembler Code for the

Water Tank Controller

86

the variables, channels and service routine identifiers are
located during this pass, and stored for later reference in
the appropriate symbol table. Further, all the constants
declared in the specification are placed in a symbol table,
together with the value that they represent. This enables
the actual values of constants to be generated in the
macro-assembler code. For this reason, the macro-assembler
language does not include a method for defining symbolic
constants. Finally, the output produced from the first pass
is simply the macro-assembler definitions for each of the
channels and variables used in the specification.

4.3.3 Pass Two

The second pass of the compiler is concerned with analysing
and producing code for the control section of the
specification. This acts as the main control logic for the
macro-assembler code. Each input statement in the BSL is
replaced by a macro-assembler INPUT statement, and each BSL
output statement is replaced by a CALL statement. If the
specification is interrupt-driven, a macro-assembler WAIT
statement is generated. For polled channels, a POLL
statement is issued. An END instruction is placed at the
end of the control block to signify the extent of its
scope.

4.3.4 Pass Three

The third pass is responsible for compiling the service
routines which appear in a specification. This is the most
complex phase of the compilation process. It involves
analysing the expressions which make up a service routine,
and generating the equivalent macro-assembler code. When a
service routine header is found, it is replaced by a label,
identical to its name in the specification. If a routine is
interruptable, a INTON instruction is generated before the
rest of the routine is analysed: for routines which may not
be interrupted, an INTOFF instruction is generated. All
RESULT statements found in a routine are replaced by an

87

output statement. The end of a routine is marked by a
RETURN instruction. However, for uninterruptable routines,
an INTON instruction is generated before the RETURN.

4.4 The Implementation of Macro Instructions

4.4.1 Data Types

The three variable types, BYTE, INT and REAL, defined in
the macro-assembly language are implemented simply as one,
two and four bytes respectively. All arithmetic operations
are assumed to use values in signed twos-complement format.
Thus the BYTE data type can be implemented directly by most
8-bit microprocessors, such as the 6800 [4.4] and the
6502[4.5]. These processors are specifically designed to
perform twos-complement arithmetic, using the left-hand,
most significant bit to represent the sign of the variable,
(see Figure 4.4). Flags in the condition code register of
the 6800 and 6502 are automatically set when the result of
an operation is negative, or overflow occurs. However,
microprocessors such as the Intel 8080[4.6] have no way of
indicating the sign of the result of an arithmetic or logic
operation. Therefore an 8 080 implementation of the
macro-assembly language requires additional software and
execution time, in order to fremember* the sign of each
variable in use[4.7], The BYTE data type can represent
values in the range +((2E7)-1) to — (2E8).

The INT data type is implemented as a double-precision
16-bit value. Two consecutive 8-bit locations are allocated
to store integers; the address of the variable always gives
the most significant, or high order byte. The low order
byte is stored at the next memory location, given by adding
one to the address of the high order byte (see Figure 4.5).
The manipulation of INTs is consequently less efficient
than that of BYTEs, as it essentially requires operations
to be performed on each of the two bytes which constitute
the value. For example, the addition of two INTs firstly
requires the addition of the two low order bytes, followed

88

Figure 4.4 BYTE Representation
16 bits

s i g n

[m] [m+1]

Figure 4.5 INTEGER Representation

32 bits

s i g
bit

decimal
places

[m] [m+1] r[m+2] | [m+3]
Implied decimal point

Figure 4. 6 REAL Representation

by the addition of the two high order bytes, including any
overflow from the initial addition. Overflow is indicated
by the microprocessor's carry flag. The addition of the
high order bytes is thus carried out using an 'add with
carry' instruction, or by simulating such an instruction if
one does not exist in the instruction set. An example 6800
implementation of the I-ADD macro instruction is given
below:-

I-ADD opl, op2 opl := opl + op2
I-ADD LDA A opl+1 load low byte of opl

ADD A op2+l add low bytes in A reg
STA A opl+1 store result in opl low byte
LDA A opl load high byte of opl
ADC A op2 add high bytes and carry flag
STA A opl store result in opl high byte

Many microprocessors give performance advantages for
storing variables in the first 256 bytes of memory, often
referred to as the zero page. The reason for this is that
the address of a variable residing in this area can be
specified by a single byte in a memory reference
instruction. The variable address can therefore be fetched
in one memory reference, instead of the two references
which are required for all addresses greater than 255.
Consequently, the translation process always tries to
allocate variables to the zero page of memory. Some
microprocessors however, such as the 6502, automatically
allocate the stack area to the zero page. While this makes
subroutine calls more efficient, it limits the segment of
the zero page which may be safely used for variable
storage.

REAL data types are allocated four consecutive bytes of
memory, with the address of the variable giving the most
significant byte. This is illustrated in Figure 4.6. The
three high order bytes are used to store the integer
portion of the real number, with the low order byte
containing the fractional part. This gives an integer range
of +(2 E 23)-l to -(2 E 24), and a maximum precision of six
decimal places. This implementation of REALs was chosen for

90

its simplicity, and efficiency of manipulation. Operations
on REALs can be carried out using the same technique that
is used for integer operations, the only difference being
that the operations function on four bytes as opposed to
two. For most MCS applications the range and accuracy
provided by this representation will be easily adequate.
Should an application need a greater range or more
precision, the REAL operations could be redefined to use
the more common three byte mantissa and one byte exponent
floating point representation[4.8]. This however would be
at the expense of considerably greater software complexity,
size and execution time.

4.4.2 Operations

Most example operations given in this section are in
Motorola 6800 assembly language [4.8]. Other 8-bit language
examples are shown only when they offer considerable
advantages or disadvantages over the 6800 implementation.
However a comparison of the efficiency of the different
implementations is not attempted, as this is dependent upon
the precise clock rate of the processor used, and the
amount of work a processor performs during each clock
cycle. To illustrate this difficulty, consider the 8080
'load high and low direct1 instruction and the 6800 'load
index extended' instruction. Both perform the same
function; they load a register with a 16-bit value from
memory. The 8080 requires sixteen clock cycles against the
five cycles needed for the 6800 to execute the instruction.
However, a 1 MHz 6800 processor executes the instruction in
two-thirds the time required by a 2 MHz 8080 component.
Thus the clock speed is not by itself a valid indication of
performance between different microprocessors[4.7].

The assignment operations can be implemented in 6800
assembler merely by using the accumulator load and store
instructions. The constant value in the B-ASSIGN operation
is always expressed as a two-digit hexadecimal number. The
examples in this section use the hexadecimal digits 'F' and

91

'E' to represent arbitrary values. This is illustrated in
the implementation of the B-ASSIGN operation given below:-

B-ASSIGN opl, FF opl := FF
B-ASSIGN LDA A #$FF load hex constant

STA A opl store in memory

The allocation of a 16-bit value to an integer variable,
the I-ASSIGN operation, can be implemented in much the same
manner as above, except that the 16-bit index register can
be utilised to make the operation more efficient. The
constant value is this time expressed as a four-digit
hexadecimal number.

I-ASSIGN opl, FFFF opl := FFFF
I-ASSIGN LDX #$FFFF load index reg

STX opl store in memory

Assigning values to REAL variables is performed by
duplicating the I-ASSIGN operation, so that the eight-digit
constant value is transferred into the 4-bytes reserved for
the variable. The decimal point in the constant is not
explicitly shown.

R-ASSIGN opl, FFFFEEEE opl := FFFFEEEE
R-ASSIGN LDX #$FFFF load high order bytes

STX opl store in memory
LDX #$EEEE load low order bytes
STX opl+2 store in memory

The implementation of the COPY operation is less efficient
than ASSIGN. This is because the value of the second
operand has to be fetched from memory, whereas in the
ASSIGN operation the value of the second operand is
available in the operation itself. Implementations of COPY
are shown below.

92

COPY opl, op2 opl := op2
B-COPY LDA A op2

STA A opl

I-COPY LDX op2
STX opl

R-COPY LDX op2
STX opl
LDX op2+2
STX opl+2

Table 4.1 shows the number of clock cycles required to
perform each of the assignment operations on a 6800
microprocessor. This information shows the relative
efficiency of the operations. Assuming that a 1 MHz 6800
component is used to execute the software, the number of
clock cycles stated in the table also represents the time in
microseconds for each operation to execute.

macro operands located operands located
operation in zero page outside zero page

(cycles) (cycles)
B-ASSIGN 6 7
I-ASSIGN 8 9
R-ASSIGN 16 18
B-COPY 7 9
I-COPY 9 11
R-COPY 18 22

TABLE 4.1 Comparison of Execution Times For
Assignment Operations on a 6800

Table 4.1 clearly shows the performance benefits accrued
from locating variables in the zero page of memory.
Further, it highlights the cost in terms of efficiency of
using REAL variables as opposed to INTs and BYTEs.

As the 6800 uses a memory-mapped 1-0 scheme, the
implementation of the INPUT and OUTPUT operations is very
similar to COPY. The channel name in the operation
represents a hexadecimal address at which an input or
output port is located. For example,

INPUT channel, operand
can be implemented as

93

INPUT LDA A channel input from port
STA A operand store value

In the same manner,
OUTPUT channel, operand

becomes
OUTPUT LDA A operand load value

STA A channel output to port

However, an implementation of these operations on an Intel
8080 would require the channel name to represent an 8-bit
1-0 port identifier. The actual 1-0 task is then performed
by the 8080*s special purpose IN and OUT instructions (see
below)

INPUT IN channel
STA operand

OUTPUT LDA operand
OUT channel

It should be noted that the 8080 does not possess a single
byte, direct addressing mode such as that included in the
6800 or 6502. The LDA and STA instructions in the above
8080 examples both require 16-bit addresses as operands.
Consequently an 8080 implementation of the macro assembly
language would not benefit from allocating variables to low
addresses in memory.

The implementation of the arithmetic operations is
straightforward, but can vary greatly between processors.
This is clearly illustrated by considering the I-ADD
operation. An implementation of I-ADD in 6800 assembler has
been given earlier in this section. It essentially
comprises two eight-bit add instructions, the second of
which incorporates the carry bit. However, the 8080 has a
16-bit register pair add instruction, which can be utilised
to perform the I-ADD operation. This is illustrated below:-

94

I-ADD opl, op2 opl := opl + op2
I-ADD LHLD op2 HL

XCHG DE
LHDL opl HL
DAD D HL
SHLD opl opl

= op2
= HL
= opl
= HL + DE
= HL

Multiply, divide and remainder operations can be simply
implemented by the successive application of the
appropriate ADD or SUB operation. The other single-byte
operations can all be constructed from simple, native
instructions of the microprocessors in question.
Implementations in 6800 assembler for each operation are
given in Appendix C.

The group of logical operations can also be easily and
efficiently implemented in 8-bit assembly languages. For
example, consider the following 6800 implementation of the
I-AND operation:-

I-AND opl, op2 opl := opl AND op2
I-AND LDA A opl+1 load low order byte

AND A op2+l 'And1 low bytes
STA A opl+1 store result
LDA A opl load high order byte
AND A op2 'And' high bytes
STA A opl store result

The major difficulty in implementing the re-typing
instructions occurs in preserving the sign of a value as it
alters from one type to another. For example, to convert a
value held in a BYTE variable into an integer, the
byte-to-integer instruction, as shown below, must be used.

BTI opl, op2 opl := INT op2
The exact behaviour of this operation is described by the
following algorithm:-

if op2 < 0 then
opl [high byte] := #FF

else
opl [high byte] := #00

endif
opl [low byte] := op2

95

Essentially the operation tests the sign of 'op2'. If it is
negative, it is preserved in the twos-complement value of
'opl' by setting its high order byte to #FF: if 'op2' is
positive (or zero), it sets the high order byte of ’opl1 to
zeros. The implementation of the other re-types operations
can be performed in a similar manner, as shown in Appendix
C. Note however that the real-to-integer and
integer-to-byte operations do not take any precautions for
dealing with potential overflows. The detection and
possible correction of overflow must be explicitly included
in the behavioural specification, as recovery strategies to
deal with overflows will vary according to the application.

The implementation of the INDEX operation is most concisely
expressed in terms of other, previously defined macro
operations. The operation

I-INDEX table, element, tempi
can thus be defined as:-

I-INDEX I-ASSIGN disp, 0002 disp :=2
I-MUL disp, element

disp := disp * element
I-DEC disp

disp := disp - 1
I-ADD * disp, table

disp := disp + table
I-COPY tempi, disp

tempi:=table[element]

This operation functions by calculating the displacement of
the required element in the table, and copying this element
to the variable specified as the third operand. However, a
simple macro expansion of this definition would contain
several redundant load and store instructions for the value
of the variable 'disp1, which could be kept in a register
throughout. Hence the actual implementation, though
remaining semantically equivalent, has been optimised by
the removal of these redundant instructions.

The precise reason for the presence of such inefficiencies
lies in the fact that the implementation of each macro
instruction must be self-contained. That is, no assumptions

96

are made as to the contents of the processor's registers
between instructions. The consequence of this is that each
instruction has to load its operands into registers before
performing any manipulation on them. When the function of
the instruction is complete, the operands must be stored
back into memory, where they can be found by subsequent
instructions. Thus this macro expansion approach offers
many opportunities for simple but effective optimisation
strategies to be performed on the object code.

4.4.3 Control Structures

The major complications encountered in implementing the
macro control constructs lie in the definition of
comparison operations. These are needed to evaluate
conditions that appear in the iteration (WHILE, SEQ) and
selection (IF) constructs. Six comparison operators are
valid in behavioural specifications. Therefore an
implementation for each of these must be provided. Further
the implementations must be able to compare values for each
of the three valid types in the macro-assembly language.
The six comparison operators are:-

To give a simple illustration of the use of one of the
comparison operators, consider the segment of
macro-assembler code below.

INT opl
INT op2
WHILE (opl < op2)

— loop body —

ENDWHILE

In order to implement the WHILE loop in 6 800 assembler, a
macro needs to be defined which compares two 16-bit values,

EQ
NE
LE
GE
LT
GT

equal
not equal
less than or equal
greater than or equal
less than
greater than

97

and branches according to the result of the comparison. If
the condition under test is false (ie opl >= op2), a branch
must occur to the end of the loop. However, if the
condition is satisfied, no branch occurs, and the next
operation in sequence is performed. Such a comparison
operation can be defined as

I-LT opl, op2, addr
This operation behaves according to the following
algorithm:-

if opl < op2 then
SKIP

else
goto addr

endif

and can be implemented in 6 800 assembler as

LDX opl load opl into index register
CPX op2 compare opl and op2
BEQ addr if equal goto addr
BGT addr if opl > op2 goto addr

This macro can now be utilised to perform the required
comparison in the WHILE loop of the above example, eg

WHILE LDX opl
CPX op2
BEQ ENDWHILE
BGT ENDWHILE

— loop body —
BRA WHILE

ENDWHILE NOP

Implementations of all the comparison operators for BYTEs
and INTs can be formed in a similar fashion. The comparison
of REALs though is more complex, due to the lack of a
32-bit compare instruction in 8-bit processors. Using a
6800, a comparison of two real values essentially involves
examining each constituent byte in turn, starting with the
most significant, and remembering the result of each
comparison. Complications arise when leading zeros appear
in both operands. Consequently the macros must check for
these and ignore them. Full details of the 6800

98

implementations for the comparison operations are given in
Appendix C.

4.5 Processing the Macro Assembly Language

To generate processor-specific assembler code from an
intermediate macro representation, a macro expansion
routine is required. Implementations of each of the macro
operations are stored in the macro expansion program. When
an operation is recognised in the input file, it is
replaced by its assembler implementation, with the correct
arguments substituted in, and written to the output file.

In all the above examples of the two-operand macro
operations, the second operand has been assumed to be
stored in a memory location. This though is not always the
case. Where constants are defined and used in the BSL, they
are included in the macro-assembler operations as absolute
hexadecimal values. In this way, the need for constants to
occupy memory locations is obviated. This has the
consequence that the second operand in a macro operation
may in fact be a hexadecimal number. In order to deal with
this eventuality, the macro expansion routine checks the
nature of second operand of an operation, and outputs the
correct assembler code. When the second operand is a
number, more efficient code is generated using ASSIGN,
because the value of the second operand is already present
in the instruction. This dispenses with the requirement to
read the value from memory, enabling a less time-consuming
addressing mode to be utilised. The macro expansion routine
implements this behaviour simply by storing two possible
implementations for each operation, and outputting the
correct one as required.

However, the processor-independent code does not contain
all the details necessary to produce a complete software
solution for the application. The intermediate code is
still only a representation of the desired behaviour of the
application. It therefore needs supplementing by structural

99

information concerning the hardware on which the control
system is to eventually execute. Specifically, this means
disclosing such facts as the model of the target
microprocessor, the address map for the configuration, and
the mapping of logical channels on to the processor’s
interrupt lines. The results of any hardware/software
design trade-offs must be reported, as, for example, the
macro expansion routines must know whether or not it is
required to generate code to handle interrupt priorities or
time delays. Also, details of the initialisation sequences
for each 1-0 port need supplying, as well as any unusual
details about the precise manner of accessing each port.
Figure 4.7 provides a diagrammatical representation of this
scheme.

Returning to the water tank controller example of the
previous chapter, Figure 4.8 shows the 6800 assembler
code that is generated from the processor-independent
code in Figure 4.3. In this example, only additional
information about the address map of the configuration has
been supplied. Consequently the code in Figure 4.8 is not
complete. The initialisation of the 1-0 ports and
determination of which external device caused an interrupt
still need to be included. However, these functions are
relatively simple and require only a small number of
machine instructions to implement. In almost all cases the
interrupt service routines will comprise the bulk of the
machine code for an application. The automatic provision of
the additional structural information is the task of the
knowledge-based system which performs the overall hardware
design. While this is under construction however, the
hardware design is performed manually and supplied
interactively to the current implementation.

The macro expansion technique used to produce the 6800 code
in Figure 4.8 has introduced some inefficiency. This is
most apparent in the 'temperature.control' ('tempco')
routine. The temperature value is read from the input port
(tempem) into register A, stored in memory (at location

100

StructuralInformation Hardware
SelectionSuB-system

V /
Code
Generation
(macroexpansion)

(address map : 1-0 port
conf iguration routines) (Knowledge Base)

level code

level code
Intermediate

Figure 4 .7 Processing the Intermediate
Level Macro Assembler Code

101

* (example) port addresses
TEMPME EQU $4000 temperature.measure
HEATER EQU $4002 heater
LOWLEV EQU $4004 low.level
HIGHLE EQU $4006 high.level
VALVE EQU $4008 valve* variables

ORG $0
TEMP FCB 0 temp
LOW FCB 0 low
HIGH FCB 0

ORG $FC00
high

* main program
BEGIN CL I

LDS #00F0 initialise stack pointer
LABI WAIT

JMP LABI
wait for an interrupt

* temperature.control
TEMPCO CLI interruptable

LDA A TEMPME input temperature level
STA A TEMP

TESTl LDA A TEMP IF
CMP A #90 temp > 9 0
BLE TEST2
LDA A #0 output heater, 0
STA A HEATER
BRA ENDIFl

TEST2 LDA A TEMP
CMP A #80 temp > 80
BLE TEST3
LDA A #1 output heater, 1
STA A HEATER
BRA ENDIFl

TEST3 LDA A TEMP
CMP A #80 temp <=80
BHI ENDIFl
LDA A #2 output heater, 2
STA A HEATER
BRA ENDIFl

ENDIFl NOP END IF
RTI return* open.valve

OPENVA SEI uninterruptable
LDA A #1 output valve, 1
STA A VALVE
CLI enable interrupts
RTI return* close.valve

CLOSEV SEI uninterruptable
LDA A #0 output valve, 1
STA A VALVE
CLI enable interrupts
RTI return
END
MON end of program
Figure 4.8 6800 Assembler Code for the

Water Tank Controller

'temp')* and then immediately loaded back into register A.
In hand-written code, the intermediate store instruction
would not be included. Obviously therefore, there is some
scope for optimisation of the code produced by the macro
expansion technique.

4.6 Conclusions

An intermediate level macro-assembly language has been
described into which behavioural specifications of
microprocessor control systems may be compiled. Although
the macro operations which constitute the language may be
implemented in any assembly language, the efficiency of the
each implementation varies. In the case of 8-bit
components, it seems that the Motorola 6800 and other
similar microprocessors are well-suited and provide an
efficient implementation. This is mainly due to the
presence of a one-byte direct addressing mode and
twos-complement arithmetic. Processors such as the Intel
8080 do not have these features, and thus provide a less
than optimum implementation language. Criteria such as
these may be of importance to the overall design of a
control system, and thus may be regarded as of major
influence in the choice of processor in applications where
efficiency of operation is vital.

103

References

4.1 Saxena,S. and Field,J.A.:'Portable Real-Time
Software for 8-bit Microprocessors', Software -
Practice and Experience, 15, (3), 277-303 (1985)

4.2 Bowles,K.L.:'UCSD Pascal: a (nearly) machine
independent software system (for microcomputers
and minicomputers)',BYTE, 3, (5), 170-173 (1978)

4.3 01ewicz,T. :'A Behavioural Specification Language
(BSL) Compiler', MSc Dissertation, Dept, of
Computer Studies, Sheffield City Polytechnic,
Sept 1988

4.4 Bishop,R.:'Basic Microprocessors and the 6800',
Editions Mengis, 1981

4.5 Tully,A. :'6502 Reference Guide', Melbourne House
Ltd, London 1985

4.6 Larsen,D.G., Titus,J.A. and Titus,C.A. :'8080 8085
Software Design', Howard W. Sams & Co., Inc.,
Indianapolis, 1981

4.7 Artwick,B.A. :'Microcomputer Interfacing',
Prentice-Hall, Inc., 1980

4.8 Findlay,R. :'6800 Software Gourmet Guide and
Cookbook', Hayden Book Company, Inc., New Jersey,
1976

104

J5 The Design and Construction of the Microprocessor
Simulation Facility

5.1 System Design

The simulation of a complete (hardware and software)
microprocessor system design provides the most precise
technique available for design verification[5.1,5.2]. Many
general-purpose digital logic simulators exist [5.3].
However, most simulators operate at register-transfer
level [5.4], and are not capable of effectively simulating a
microprocessor system in terms of interactions between
components. There are simulators which perform simulations
of user programs[5.5], but these do not attempt to
accurately model the timings or signal interface of the
microprocessor concerned.

Still, there are logic simulators which can simulate
arbitrary microprocessor system configurations[5.6,5.7].
Nearly all of these are implemented using a sequential
programming language (e.g. FORTRAN) on a single-processor
machine, with the component-level parallelism present in
microprocessor systems simulated. For these reasons, most
simulators suffer from slow execution speeds. This makes it
impractical in real-time applications to consider
interfacing the system simulation with the physical
environment to be controlled. To thoroughly and efficiently
test a real-time control system with its environment,
in-circuit emulation must be used[5.2,5.8]. Unfortunately,
this technique requires at least a minimum investment in
hardware, and is therefore unsuitable for verifying the
design of a system before any implementation begins.

Consequently, a major design objective of the simulation
facility was to investigate the feasibility of constructing
a fast ('almost' real-time) and accurate environment for
simulating embedded, single-board control systems.
Simulations could then be connected to the actual inputs
and outputs of the physical system. This would enable the

105

design to be tested, and where necessary modified, without
any prior commitment to hardware. In an attempt to achieve
this aim, the parallel programming language occam[5.9] was
chosen as the hardware description and simulation language.
It is known that occam is a suitable tool for hardware
description[5.10,5.11,5.12], and it was in fact used by
INMOS in the design of the transputer[5.13]. Occam contains
constructs to express concurrent behaviour in programs, and
these provide a simple and natural way of simulating the
parallelism present in digital systems. Simulations
constructed using occam may also be divided into
appropriate sections and mapped on to a network of
transputers. In this way, the parallelism in the simulation
could be exploited to give a significant increase in
performance[5.14].

5.2 Component Simulation

An individual component simulation must model exactly the
behaviour of the actual hardware component being described.
An LSI component can be regarded as a black box with
internal state, which communicates in a synchronised manner
with other components via a common system bus. Similarly,
an occam process can be regarded as a black box with
internal state, communicating with other processes via
point to point channels. Hence it appears that occam
processes provide a natural method of representing hardware
components [5.15,5.16]. The channel interface of a component
simulation process can be used to model the physical wires
which connect the component to the system bus. Then, by
constructing a suitable bus simulation, components can
simply be 'plugged in' to form a simulation of any desired
MCS.

It was decided initially only to simulate components from
the Motorola 6800 family[5.17]. 6800-based systems have
been widely used in dedicated control tasks [5.18], and
allow minimum systems to be constructed from a small number
of components[5.2].

106

At the highest level of abstraction, component simulations
consist of two separate occam processes. One of these acts
purely as an interface to the system bus simulation, the
other implements the particular function of the component.
This scheme is illustrated in Figure 5.1, in which it is
applied to an MC6821 Peripheral Interface Adapter (PIA). It
is interesting to note that a similar approach is used in
the ISPS[5.19] and VHDL[5.20] hardware description
languages.

PROC MC6821 (CHAN OF ANY address.bus, data.bus.in,
data.bus.out, control.bus)

... process declarations
CHAN OF ANY to.device, from.device:
PAR

interface(address.bus, data.bus.in,
data.bus.out, control.bus,
to.device, from.device)

PIA.body (to.device, from.device)

In this example, the interface inputs the address and
control information from the bus channels at the start of
each clock cycle and decodes the address. If this
particular PIA is enabled, the interface process initiates
communication with the PIA body process. Together, the two
processes will simulate the actions required of the PIA,
the exact behaviour being determined by the values sent on
the control bus by the microprocessor (e.g. read/write).
Conversely, if this PIA process is not addressed during a
clock cycle, all subsequent bus signals are ignored by the
interface until the start of the next cycle.

The reasons for adopting this strategy are threefold.
Firstly, it enables a standard interface process to be
constructed for all similar devices. For example, all
memory and input-output components will have virtually
identical interfaces. Differences will only occur when a
component requires an extra channel and some processing to,
say, generate interrupts.

107

data .bus.out

Component
simulation

to.device

data.bus.in

address.bus
from.device

control.bus

Figure 5. 1 Structure of a Component:
Simulation

ROM

address.bus. to. devices[0]

BUSCPU RAM
CUT.t© .address .bus address.bus.to. devices[1]

address.bus.to.devices[2]

PIA

Figure 5.2 Occam Process Structure
for the Address Bus

Second, if changes were made to the system bus simulation,
only the component interfaces would require changing. The
bulk of the code which describes a component resides in the
device process, the interface generally being small in
comparison. Therefore changes in the bus structure would
only require fairly simple additions to the interface,
leaving the majority of the code unaltered. This situation
may arise when, for instance, components from the 6800
family need to be interfaced to an Intel 8080
microprocessor[5.21].

Third, this approach enables the design of a component
simulation to be decomposed into a hierarchy, with
parallelism expressed at each level of the hierarchy. LSI
components consist of many sub-components operating in
parallel, each of which may consist of many other
sub-components, and so on. Clearly then, to effectively
model such devices, a language is required which allows
systems to be described as a hierarchy, with possibly many
interacting concurrent processes at each level of the
hierarchy. Occam is such a language, allowing component
simulations to be constructed in a step-wise, hierarchical
manner. This reduces the complexity of the programming task
and increases readability through the use of abstraction.

A further advantage of occam is that it allows multiple
instantiations of the same process definition to
execute simultaneously. The different instantiations are
differentiated by the values of their actual parameters.
This can be illustrated by considering the internal
characteristics of the MC6821 PIA. It consists of two 8-bit
ports, each with two control lines. The function of each
port is identical, with the same internal registers and
control commands. The behaviour of the PIA may therefore be
modelled by two identical processes operating in parallel.
In occam however, there is no need to create and explicitly
name two separate processes. Only one process needs to be
constructed, which models the behaviour of the port. This
single process may then be instantiated the required number

109

of times within a PAR statement. This feature of occam is
shown in the example below :-

PROC PIA.body (CHAN OF ANY from.interface,
to.interface)

... PROC port(CHAN OF ANY in, out)
CHAN OF ANY PortA.in, PortA.out, PortB.in,

PortB.out:
PAR

Port (PortA.in, PortA.out)
Port (PortB.in, PortB.out)

5.3 System Bus Simulation

5.3.1 Requirements

In Motorola 6800 systems, memory and input-output chips are
connected to the central processing unit (CPU) via a series
of wires. Essentially these wires fall into 3 categories:
the address bus, the data bus and a set of control wires.
The address bus comprises sixteen wires and carries the
address of the location in memory which the CPU wishes to
access. When the CPU outputs an address, it is received by
each component connected to the address bus, but only one
of the devices will be activated. Only the CPU may output
to the address bus. It is therefore uni-directional, with
one source and one or more destinations.

The data bus comprises eight wires and is used to
communicate bytes of data (op codes, operands etc) between
the CPU and memory. It may be written to by either the CPU
or any other components to which it is connected, depending
on whether the CPU is reading or writing data. Therefore
the data bus is bi-directional, having either one source
(the CPU) and many destinations or one of many sources (the
currently addressed device) and one destination (the CPU).

The control bus has a less rigidly defined structure than
the data and address buses. The number of wires, their
direction and purpose vary widely between microprocessors.
The individual control lines are used to synchronise the

110

operation of the components in the system. In 6800-based
systems, the most frequently used control lines are
READ/WRITE (R/W), VALID MEMORY ADDRESS (VMA), INTERRUPT
REQUEST (IRQ) and Phase 1 and Phase 2 clock lines (El and
E2). The R/W and VMA lines carry values from the CPU to
each component in the system, whereas IRQ, El and E2 carry
signals to the CPU from particular components. So each wire
in the control bus is uni-directional, but some carry
values to the CPU and others carry values from the CPU.

Now, the properties of occam channels must be considered.
Occam channels provide a uni-directional communications
link between exactly two processes. A channel has only one
source and one destination. Clearly then, they are not a
sufficiently powerful mechanism to simulate the address,
data and control buses. This simulation must be done by
building a generalised bus process, which accepts data
through a channel and passes it on to the desired
destination. Such a process should be able to simulate a
bus of any width, connected to any number of memory and
input-output devices.

5.3.2 Address Bus

The address bus will always input a 16-bit address from the
CPU and output it to each device. Figure 5.2 shows this
situation as a set of occam processes. It represents five
occam processes executing in parallel. The following
segment of code describes the diagram in occam:-

— number of devices connected to the bus
VAL no.devices IS 3:
— channels to connect processes
CHAN OF ANY CPU.to.address.bus:
[no.devices]CHAN OF ANY address.bus.to.devices:
PAR — execute in parallel

CPU (CPU.to.address.bus)
ROM (address.bus.to.devices[0])
RAM (address.bus.to.devices[1])
PIA (address.bus.to,devices[2])
CPU.to.devices.bus(CPU.to.address.bus,

address.bus.to.devices,
no.devices)

111

An address is generated by the CPU and passed to the bus
process by the channel ’CPU.to.address.bus'. The bus
process ’CPU.to.devices.bus' then relays the address to
each device in the system via the individual elements of
the channel vector 'address.bus.to.devices'. Each device
process is allocated one channel from the vector, down
which it will expect to receive an address from the process
'CPU.to.devices.bus'.

The 'CPU.to.devices.bus’ process then completely satisfies
the requirements of the address bus simulation. It also
satisfies one of the requirements of the data bus, when the
CPU is writing data to memory. The process
'CPU.to.devices.bus' is shown below:-

PROC CPU.to.devices.bus([]CHAN OF ANY data.in,
data.out,

VAL INT no.devices)
— data.in is the channel from the CPU.
— data.out is the array of channels used to send
— data to the components on the bus.

INT numb :
WHILE TRUE

SEQ
data.in ? numb — wait for data from CPU
— send data to each component on the bus
SEQ i = 0 FOR no.devices

data.out[i] ! numb :

5.3.3 Data Bus

Now consider the second requirement of the data bus
process. It must be able to input from one particular
device and pass the message on to the CPU process. This
occurs during a CPU read cycle, in which the CPU is
expecting to receive data from the addressed device. The
occam code below shows the interconnections required
between processes.

112

VAL no.devices IS 3:
CHAN OF ANY data.bus.to.CPU:
[no.devices]CHAN OF ANY devices.to.data.bus:
PAR

CPU (data.bus.to.CPU)
ROM (devices.to.data.bus [0])
RAM (devices.to.data.bus[1])
PIA (devices.to.data.bus [2])
devices.to.CPU.bus(data.bus.to.CPU

devices.to.data.bus,
no.devices)

The major difference here from the previous example is due
to the fact that the bus process 'devices.to.CPU.bus1 does
not know which device wishes to send data to the CPU. It
must therefore wait for an input on any one of the device
channels, not just one pre-determined input channel as in
the previous example. This situation is easily modelled in
occam by using the ALT construct. ALT allows a process to
wait for an input on any one of several channels
simultaneously. If inputs are received at exactly the same
moment, one of them is chosen at random and executed. The
process 'devices.to.CPU.bus' is given below:-

PROC devices.to.CPU.bus ([]CHAN OF ANY data.out,
data.in,

VAL INT no.devices)
— data.out is used to send data to the CPU.
— data.in is the array of channels used to
— receive data from the components on the bus.
INT data.item:
WHILE TRUE

ALT i = 0 FOR no.devices
data.in[i] ? data.item — wait for input

data.out I data.item :— send data to CPU

The two bus processes defined above individually satisfy
the two requirements of the data bus. Still they are not
sufficient in this form to completely model a
bi-directional bus. To do this they must be brought
together and instanced within an occam PAR statement.

Finally all it is necessary to do is instance the data and
address bus processes in parallel with the device
simulations. The system is 'wired up' by allocating
channels to the bus and device processes in the manner

113

already explained. Each device process will have one
channel for each bus process it communicates with. The
program code below shows an example system comprising a CPU
and three components, communicating via an address and data
bus.

VAL no.devices IS 3:
CHAN OF ANY CPU.to.address.bus, data.bus.to.CPU

CPU.to.data.bus:
[no.devices]CHAN OF ANY address.bus.to.devices,

devices.to.data.bus,
data.bus.to.devices :

PAR
— address bus simulation
CPU.to.devices.bus(CPU.to.address.bus,

address.bus.to.devices,
no.devices)

PAR — data bus simulation
CPU.to.devices.bus(CPU.to.data.bus,

data.bus.to.devices,
no.devices)

devices.to.CPU.bus(data.bus.to.CPU,
devices.to.data.bus,
no.devices)

CPU(CPU.to.address.bus, CPU.to.data.bus,
data.bus.to.CPU)

ROM(address.bus.to.devices[0],
data.bus.to.devices[0],
devices.to.data.bus[0])

RAM(address.bus.to.devices[1],
data.bus.to.devices[1],
devices.to.data.bus[1])

PIA(address.bus.to.devices[2],
data.bus.to.devices[2],
devices.to.data.bus[2])

5.3.4 Control Bus

Due to the irregular nature of the control bus in most
microprocessor systems, no attempt was made to define a
strict simulation structure. Instead, each device is merely
allocated a channel for each control line which it uses.
Control signals are then simply fed out to memory from the
CPU or multiplexed to the CPU from memory by a simple

114

'control.bus1 process. This process operates in a manner
identical to the bus simulation processes described above.

5.4 Implementation on a Single Transputer

Initially, simulations of a number of the basic components
in the 6800 family were constructed. These include the 6800
and 6802 microprocessors, various memory devices, parallel
and serial input-output controllers and an analogue-digital
converter. Individual component simulations were then
brought together to form simulations of example MCSs, with
components communicating via a bus system identical to the
one described above. The CPU register values were displayed
on a monitor, enabling the simulations to be fully debugged
and tested. No attempts were made at this stage to optimise
the performance of the simulations. In fact, the use of the
monitor to display the state of the components caused a
severe reduction in performance. A monitor screen is a slow
output device, and causes the processor to wait while a
character is written to the screen.

When all the simulations had been thoroughly tested, it was
decided to carry out several experiments, in order to
measure the performance of simulations on a single
transputer. This would provide a useful reference point for
comparison with the performance of equivalent simulations
on networks of transputers. In order to achieve this, a
sample MCS simulation was constructed comprising a 6800
microprocessor and clock, ROM, RAM and a PIA. All monitor
output was removed from the component models (except start
and finish messages), so that the observed execution
times would not contain delays due to the screen. Varying
assembler programs were then simulated using this
configuration, and the execution times recorded. The
transputer utilised to perform these experiments was an IMS
T414 running at 20 MHz, which resided on the B004 board.
Overall an average of approximately four hundred (6800)
cycles per second were simulated.

115

As extra memory and 1-0 components were added, the
performance of the simulation deteriorated. This occurred
due to the additional demand placed on the processor by the
inclusion of more concurrent processes. On a single
transputer, the processor must be shared between the
processes in the simulation. Consequently, as more
processes are added, the overall performance of the
transputer decreases. However, this problem should not
occur when a network of transputers is used as the target
architecture for the simulation. In this situation, as more
components are added, more transputers can be incorporated
into the network. This increases the computational power
available for simulation, and compensates for the
additional workload.

5.5 Implementation on a Transputer Network

5.5.1 The Problem

Consider an example simulation of a MCS comprising a CPU,
two 128-byte RAMs, one lK-byte EPROM and one PIA. If this
simulation is executed on a single processor (transputer or
otherwise), there is no need to make any changes to the
system bus simulation. The channels which enable
communication between devices are implemented as memory
locations. Consequently no severe restrictions are placed
on their number. However problems are encountered if the
simulation is mapped on to a network of transputers and
each transputer simulates one component. Transputers have
only four external communications links, each of which
implements a pair of occam channels. Therefore one
transputer can be linked to a maximum of four other
transputers. This restriction makes the above scheme
impossible to implement, as a situation such as the one
shown in Figure 5.3 will arise, in which one component
cannot be interfaced.

Possibly the simplest solution to the problem is achieved
by configuring the transputers in a ring-type network as in

116

PIARAH

RAHCPU

ROH

BUS

Figure 5.3 Configuration
Problems

screen
handler

CPU

PIA

RAH

RAH

ROH

Figure 5. 4 Ring Network for
Simulations

117

Figure 5.4. A modified version of the system bus simulation
is placed on each transputer. The function of the bus is to
input messages from specified links, interpret the messages
and pass them on to the next processor in the ring. Each
bus process also needs to send and receive messages to and
from the component simulation residing on the same
transputer, and must be able to pass messages back to the
CPU process.

The revised system bus simulation was implemented initially
on a single transputer. Using this approach, it was
possible to verify the modified simulation, without any
concern for the eventual configuration of the processes.
The ability to write and test programs intended for
transputer networks on a single-processor host development
system is one of the most significant features of the
occam/transputer pairing. Programs may be written with only
the logical behaviour in mind. As soon as they function
correctly, the constituent processes can be distributed on
to a network simply by adding configuration information.
There is no need to alter the program logic.

5.5.2 Experimental Strategy

The behaviour of multi-transputer networks is extremely
complex, and often counter-intuitive. The addition of more
transputers does not always yield a proportional
improvement in system performance. In fact it can lead to
performance degradation[5.22]. It is possible to reach a
situation where transputers in the network may not have
enough work to perform. This can lead to the system
becoming communication-bound. The speed of communication
between processors is considerably slower than internal
communications. It is sometimes possible therefore for one
transputer to execute two communicating concurrent
processes faster than an equivalent two transputer system,
with one process residing on each processor.

118

This trade-off between processor work-load and external
communications is one of the main areas of difficulty
regarding the performance of simulations. To achieve
maximum execution speed the external communications must be
brought down to a minimum. In MCS simulations, the majority
of memory accesses made by the CPU simulation are to
read-only memory, in which the controlling code resides. It
therefore makes sense to locate the ROM simulations next to
the CPU in the ring network. This ensures the CPU
simulation receives the data as early as possible. Another
strategy would be to place the ROM simulation on the same
transputer as the CPU simulation. The ROM simulation is a
relatively simple process, and may execute in less time
than it takes to perform external communications. By the
same token, it is sensible to place the simulation of the
least accessed component at the end of ring network. It
will take longer for data to be read or written from the
last component in the ring, as the data must be passed
through the simulations in between.

5.5.3 Experiments Performed

Five T212 20 MHz 16-bit transputers, each with 56K external
memory[5.23] were available for executing simulations. For
the initial experiments, the component simulation processes
were configured as in Figure 5.5. This configuration was
chosen merely as a convenient starting point for the
experiments, given the,number of transputers available.
Several example 6800 assembler programs were simulated on
this network, and - timings were taken using the
transputer's real-time clock facilities. A summary of
results is given below in Table 5.1.

119

F ignre 5 . 5 An ExamplB Conf ignra.'tio.n

120

TABLE 5.1 Summary of example simulation performances.
6800

cycles transputer transputers
one five

SIMULATION 1 2030 2.9secs 0.641secs
SIMULATION 2 683 1.lsecs 0.183secs

Simulation 1 involved mainly accesses to ROM and RAM.
Simulation 2 involved accesses to ROM, RAM and PIA.

The initial results proved that the performance of
simulations could be significantly improved by placing the
component simulations on a suitably organised transputer
network. The application of five transputers gave roughly a
five-fold speed increase. Further experiments included
separating the 6800 CPU simulation into two processes (the
'control unit1 and the 'ALU'), and placing one of these
processes (the 'control unit'Jon the same transputer as the
ROM simulation. This brought some improvement in
performance, but the results were not as impressive as
expected. The combination of these two enhancements gave
approximately a twenty percent improvement in execution
speeds over the figures given for five transputers in Table
5.1. This gave a peak performance level of just under six
thousand (6800) cycles per second.

5.5.4 Discussion

From the results obtained so far, it would appear that
there is little chance of obtaining near real-time
simulations. Although there is certainly room for
improvement in performance, it is unlikely that a
sufficiently large increase could be made. Still, in many
cases it could be feasible to use the simulation to control
the desired physical resource. This would give further
insights into the problem, and sometimes, in less
time-critical situations, it may even fulfil the system
requirements.

121

An examination of the behaviour of simulations has
highlighted the reason for this unexpectedly low level of
performance. Microprocessor systems do undoubtedly operate
in a highly parallel fashion, which can be exploited by an
appropriate parallel processor architecture. However the
parallelism at component level may be separated in to two
distinct areas, which do not overlap. For example, when the
CPU simulation wishes to fetch data from memory, it
generates an address, outputs this address on the address
bus, and then waits until data is available on the data
bus. During this time, before data is available, the CPU
can usually do no useful processing. During this same
period, the component simulations attached to the address
bus are all busy receiving the address and control
information from the CPU. Each component, in parallel,
decodes the address, and if selected, performs a read
operation from the addressed word of memory. This data is
then placed on the data bus. The memory and 1-0 simulations
have now completed their task for this clock cycle, and
wait in an idle state for the next cycle to begin. (1-0
devices may generate interrupts at any time during a clock
cycle, and therefore do not totally conform to this
description of their behaviour.) As the memory components
fall idle the CPU simulation is awakened by the arrival of
data from the data bus. It can now process this data,
possibly performing the required tasks in parallel. No
useful work is done by the memory components (except
perhaps generating interrupts) while the CPU processes
data.

The conclusion that can be drawn from this description of
the simulation's behaviour is that much of the potential
processing power of the transputer network is lost as
processes wait for data. It seems that the only strategy
that may help in this case is to attempt to overlap some of
the CPU simulation processing with reading and writing data
to memory. This means generating addresses on the address
bus simulation as early as possible during a clock cycle.
The CPU simulation could then carry out any outstanding

122

processing while it awaits the arrival of data from memory.
This situation is especially relevant when instruction
operands are fetched from memory. Immediately the
instruction code is received, the address of the first
operand may be output on the address bus simulation. The
memory component simulations can then deal with this
address, and simultaneously the CPU simulation can decode
the instruction operation code.

Further performance improvements may be achieved by
optimising the inter-process communication. Information
passed between component simulations is currently in the
format of a sequence of messages, comprising either one
byte or one integer. Such message sequences could be
packaged into arrays and passed in a single communication
between processes. For external communications, this method
would lead to more efficient use of the transputer's link
interfaces. The link interfaces operate independently of
the transputer processor, only interrupting the processor
each time a message has been received. Longer messages mean
that the processor need only be interrupted once, when a
whole message is received, instead of several times, when
each constituent part of a message is received[5.24].

Finally different transputer architectures were considered
as a basis for running simulations. The ring network was
originally used mainly for its simplicity and ease of
implementation. A ring is a very flexible architecture, and
allows processors to be added without any change to its
basic message passing protocol. The positioning of
processors in the ring is unimportant, and no processor
needs to know explicitly the position of any other. There
is also no need to know how many component simulations are
on each transputer. An alternative to the ring, which is
often used as the basis for transputer networks, is a tree.
A slight variation on the tree structure could be used as
shown in Figure 5.6. The advantage of the Figure 5.6 is
that the access time to each component from the CPU is more
even than a ring network. However the average access time

123

M P U

BUS

P IA

A/DRAM ROM

Figure 5.6 A Tree Network

MPU

A/D

ROM

RAM PIA

F i g u r e 5.7 An Improved Tree
Network

may be worse than for a ring. In Figure 5.6, reading or
writing data involves mostly two and occasionally three
external communications. In a suitably configured ring,
access to the ROM simulation only ever involves one
external communication. As the majority of CPU read cycles
will be from ROM, a ring network may prove to be more
efficient. Figure 5.6 is also less flexible than a ring in
terms of process configuration, as the bus processor has no
spare links to allow for expansion.

Figure 5.7, in which the bus process is placed on the same
transputer as the CPU simulation, provides a better
solution. It gives the same access time to ROM as the ring
network, and a constant access time to the other three
component simulations. It is still however less flexible
than a ring. The ROM process would have to know exactly how
many processors it is connected to, and the message passing
mechanism would have to know how many component simulations
reside on each processor. The expansion of the network to
accommodate more processors would also cause complications
to the message passing strategy.

Figure 5.8 is effectively the same as Figure 5.7, but it
offers a constant access time of one external communication
to each component simulation. Once again though, the
addition of more component simulations and more processors
would greatly complicate the software which controls the
routing of messages.

So it appears that although each of the these networks has
different advantages and disadvantages, no single network
has any significant advantage over a simple ring. Figure
5.8 is certainly worth considering as an alternative. Still
it is far less adaptable than a ring, and would require a
considerably more complex bus simulation process.

125

ROM

MPU

A/D

PIARAM

Figure 5.8 A General Network

126

5.6 Conclusions

The feasibility of constructing a fast simulation facility
for real-time microprocessor control systems has been
discussed. Occam has been used to describe the behaviour of
a set of LSI components, and to model the behaviour of a
system bus. The individual component simulations are
generalised, providing a standard interface to the bus
system. This enables any valid microprocessor system
configuration to be easily simulated.

The use of occam has provided two major advantages over
previous approaches. Firstly, occam has proved to be an
appropriate language for simulating microprocessor systems.
The model of concurrency in occam corresponds closely to
the actual operation of hardware devices, thus allowing the
behaviour of components to be expressed naturally. Second,
the close relationship between occam and the transputer
enables simulations to be implemented on transputer
networks. This approach may yield a high level of
performance, possibly making it feasible to test the
simulation in a realistic physical environment. The initial
results have not proved as encouraging as expected, but
they have shown that the parallelism inherent in
microprocessor systems can be exploited by appropriate
tools to increase the performance of simulations. However
more work needs to be carried out in order to discover the
maximum attainable performance level of simulations.

127

References
5.1 Gorton,I.,Kerridge,J. and Jervis,B.:'Simulating

Microprocessor Systems using Occam and a Network
of Transputers’, to be published, IEE Proceedings-E
Computers and Digital Techniques, January 1989

5.2 Zaks,R. : 'Microprocessors', ch.4, pp 163-204,
SYBEX Inc, USA, 1977

5.3 Piloty,R. :'The Conlan Project: Concepts,
Implementations and Applications',IEEE Computer,
Feb 1985, vol 18, no 4, pp 81-92

5.4 Dietmeyer,D. :'Logic Design of Digital Systems',
Allyn and Bacon, 1971

5.5 Muehlemann,K. :'Software Model of the M6800
Microprocessor', Euromicro Newsletter, France,
vol 3, no 2, April 1977, pp 76-79

5.6 Armstrong,J.R. and Woodruff,G. r'Simulation
Techniques for Microprocessors', Procs 14th
Design Automation Conf, June 1977

5.7 Flake,F.P.,Moorby,P.R. and Musgrave,G.: 'HILO
MARK 2 Hardware Description Language', Procs IFIP
5th International Conf. on CHDLs, Kaiserslautern,
West Germany, Sept 1981

5.8 Hudson,C. :'Techniques for Developing and Testing
Microprocessor Systems', Software and
Microsystems, vol 4, no 4, August 19 85, pp 85-94

5.9 INMOS Ltd.: 'occam 2 Reference Manual',
Prentice-Hall, 19 88

5.10 May,D. :'Occam (Hardware Description Language',
Procs IEE Colloq on Software Tools for Hardware
Design, London 1983, Digest 98, pp 5/1-5

5.11 May,D. and Keane,C. :'Compiling occam into
Silicon', in Communicating Process Architecture,
INMOS Ltd., 1986

C 1 <1 1 1 J _ n TT _ _ .3 T> T . _ _ _ TT_ __
• -L ^ j . u s , v j . v . e m u . A a p p u D , izi • u • i u ^ ^ a i u a o a . u a i u w a x c

Description Language', Software Engineering
Journal, vol 2, no 6, November 1987, pp 213-219

5.13 INMOS Ltd., transputer Reference Manual',
Prentice-Hall International, 1988

5.14 Gorton,I. :'A Distributed Architecture for
Simulating Microprocessor Systems', Procs. Conf.
7th Occam User Group, Grenoble, September 1987

128

5.15 Collis,G.V. and Edwards,M.D. : ’Automatic Hardware
Synthesis from a Behavioural Description Language:
occam', Microprocessing and Microprogramming,
1986, vol 18(1-5), pp 243-250

5.16 Dowsing,R.D. : 'Simulating hardware structures in
occam', Software and Microsystems, August 1985,
vol 4, no 4, pp 77-84

5.17 Motorola INC. : '8-bit Microprocessors Data Manual
1985', 1985

5.18 Streitmatter,G.A. and Fiore,V.:'Microprocessors -
Theory and Application', ch.12, pp 219-253,
Reston Publishing Company, Virginia, 1979

5.19 Barbacci,M.R. :'Instruction Set Processor
Specifications(ISPS): The Notation and its
Applications',IEEE Trans, on Computers, vol c-30,
no 1, Jan 1981, pp 24-39

5.20 Waxman,R. :'Hardware Description Languages for
Computer Design and Test', IEEE Computer, April
1986, vol 19, no 2, pp 90-97

5.21 INTEL Corporation : ' INTEL 8080 Microcomputer
Systems', Santa Clara, California, 1975

5.22 Gorton,I. :'Configuring Occam Programs for
Transputer Networks', Computing, March 24th, 1988
pp 33-35

5.23 Gorton,I. :'Developing Transputer Networks using
the IMS B006 Evaluation Board', Computing,
March 17th, 1988, pp 24-25

5.24 Newport,J.R. : 'An Introduction to occam and the
Development of Parallel Software', Software
Engineering Journal, July 19 86

129

6. Evaluation

6.1 Introduction

In the control examples considered so far, the arrival of a
single input on a channel has been sufficient to generate a
value on a single corresponding output channel. However,
many control applications do not operate in such a regular,
simplistic manner[6.1]. By considering several examples, it
will be shown how the behavioural specification language
(BSL) can be used to describe control systems with various
characteristics and features. The high-level behavioural
simulation and the macro-assembly language are also
assessed as methods of representing behavioural
specifications at different intermediate levels of design
description. Finally, the advantages of using occam as a
hardware description language for constructing component
and system simulations are considered.

6.2 Applicability of the Behavioural Specification
Language

6.2.1 Data Stream Applications

Many control applications require that a number of readings
are taken from the environment before a value can be
produced on an output channel. Multiple inputs are referred
to as data streams[6.2]. A simple example of a data stream
application is a system which takes a number of readings
from an input channel and outputs their average. The number
of values in each data stream vanes it is always
indicated by the first value in the data stream. The BSL
for this application is given in Figure 6.1.

When the arrival of a value is detected on the input
channel, it is passed to the service routine as a
parameter, along with the name of the channel on which the
input occurred. The service routine can now input the
remainder of the data stream itself, as the correct input

130

CHAN IN stream:
CHAN OUT average:
PROC calc.mean : UNINTERRUPTABLE

(BYTE len, CHAN IN stream)
BYTE value:
INT mean, sum:
SEQ

sum := 0
SEQ i = 0 FOR len

SEQ
stream ? value
sum := sum + INT (value)

mean := sum / INT (len)
RESULT(BYTE(mean))

POLL
BYTE len:
stream ? len

average ! calc.mean(len, stream)

Figure 6.1 Averaging a Single Data Stream

CHAN IN streaml, stream2, stream3:
CHAN OUT averagel, average2, average3:
... PROC calc.mean
POLL

BYTE len:
streaml ? len

averagel 1 calc.mean (len, streaml)
BYTE len:
stream2 ? len

average2 ! calc.mean (len, stream2)
BYTE len:
stream3 ? len

average3 ! calc.mean (len, stream3)

Figure 6.2 Averaging Multiple Data Streams

131

channel is accessible to it. When the average of the data
stream has been calculated, it is returned from the service
routine and subsequently output by a RESULT statement.

The extension of this application to perform the same
averaging function on several different pairs of input and
output channels is straightforward . The service routine
itself does not require any modifications. Only the channel
declarations and control section need to be altered, as
shown in Figure 6.2.

Thus, by making the input channel a parameter to the
service routine 'calc.mean*, the routine has become
generalised, enabling it to handle data streams from
different input channels. Note that in this example, the
routine is defined as UNINTERRUPTABLE. This ensures that as
soon as the number of values in a new data stream is
received on a particular channel, the remainder of that
stream is input and processed immediately.

6.2.2 Discrete-State Controllers

A discrete-state system is one for which at every instant
of time the state of the system is defined by the values of
a set of variables, each of which can only be defined to be
in one of two conditions, namely on or off[6.1]. An example
specification of a discrete-state control system is given
below:-

An engine control system has two-state input variables of
rpm, temperature and load. The two-state outputs are
fuel-feed, air-feed and spark advance, the outputs are
required to be high under the following conditions:-
Fuel feed: when the rpm is low and the load is high
Air feed: when the temperature is low and the rpm is

high
Spark advance: when the temperature and load are high
Each input should be sampled at one second intervals.

Figure 6.3 gives the behavioural specification for this
example. As each of the system variables can only ever have

132

CHAN IN rpm, temp, load:
CHAN OUT fuel.feed, air.feed, spark:
PROC fuel.control: INTERRUPTABLE

(BOOL rpm, load)
SEQ

IF
(NOT(rpm) AND (load))
RESULT(TRUE)

TRUE
RESULT(FALSE)

PROC air.control: INTERRUPTABLE
(BOOL temp, rpm)

SEQ
IF

(NOT(temp) AND (rpm))
RESULT(TRUE)

TRUE
RESULT(FALSE)

PROC spark.control: INTERRUPTABLE
(BOOL load, temp)

SEQ
IF

((temp) AND (load))
RESULT(TRUE)

TRUE
RESULT(FALSE)

BOOL temp.val, rpm.val, load.val:
WHILE TRUE

INTERRUPT
temp ? temp.val SAMPLE 1 second

air-feed I air.control(temp.val,
rpm.val)

rpm ? rpm.val SAMPLE 1 second
fuel-feed I fuel.control (rpm.val,

load.val)
load ? load.val SAMPLE 1 second

spark ! spark.control (load.val,
temp.val)

Figure 6.3 BSL Description for the Engine
Controller

133

one of two values, they are most naturally defined by
Boolean variables, with 'TRUE' representing 'on' and
'FALSE' representing 'off'. The three input variables are
declared globally, because the value of each is required in
more than one service routine. Thus, for example, the most
recent temperature reading is used to calculate the output
state on both the air-feed and spark output channels. The
values of all the global variables which are needed to
produce an output signal by a particular routine are passed
as parameters. In many applications, there will be a
mixture of shared and private input values. Although such a
mixture can be catered for by declaring all the input
variables globally, it would be better to use a mixture of
global and local data, as this would more accurately
portray the structure of the application.

6.2.3 Proportional Mode Controllers

A proportional mode algorithm gives a high degree of
accuracy of control, based on the difference between the
current state of the environment and its desired
state[6.1]. The value of the desired or ideal state of the
environment is known as the set point, and the variation
from the set ̂ point of the current value is known as the
error. In this mode, the output of the controller is simply
proportional to the error itself. Thus if the error is
considerable (i.e. the current input value deviates greatly
from the set point), the magnitude of the corrective action
taken is proportionally greater.

The equation which describes the proportional control mode
is given below:-

d.out = (kp * error) + zero.output
where
d.out = output value
kp = constant defining the proportional gain
error = current.value - set.point
zero.output = output when error is zero

134

The following is a requirements specification for an
application which is to use the proportional mode
algorithm. It is adapted from an example in [6.1].

A microprocessor system is to be used to control the
temperature in a system. Input from the A/D converter is in
the range #00 to #7F. The controlled output is a continuous
heater. The heater is turned off when a value of #00 is
output, and is full on when #7F is output. When the
temperature value exceeds #72, the heater is to be turned
off, and an alarm signal generated by sending #FF to the
alarm output port. The set point is #37, and the
proportional gain is #03. The zero error heater setting has
been found to be #52. The output value should be updated
every second.

The above application is an example of a reverse acting
proportional mode system. This is because a temperature
reading above the set point must result in the heater
setting being reduced. The reverse action is catered for in
the behavioural specification in Figure 6.4. by effectively
reversing the sign of the error value. This specification
demonstrates that the description of such control
algorithms in the BSL presents no particular difficulties.
The BSL retains all the expressive capabilities for
algorithm description normally associated with a high-level
language, while augmenting these with constructs which
allow both abstract and explicit specification of the
system*s behaviour.

Figure 6.4 also illustrates how the BSL can describe more
than one output resulting from a single input value. In the
service routine, if the temperature reading is greater than
the emergency value, two output signals are generated, one
to turn off the heater (the RESULT statement), and another
to set off the alarm. The latter is actually a simple occam
output statement. Thus, by passing output channels as
parameters, an output statement can be utilised to enable a
service routine to send values to output channels other
than the one associated with its RESULT statement.
Conversely, the BSL can describe applications in which the
results of processing values from multiple input channels

135

CHAN IN temperature:
CHAN OUT heater, alarm:
PROC temp.control : INTERRUPTABLE

(BYTE value, CHAN OUT alarm)
VAL set.point IS #3 7 (BYTE) :
VAL emergency IS #72 (INT) :
VAL zero.error IS #52 (BYTE) :
VAL prop.gain IS #3 (INT) :
VAL heater.off IS #00 (BYTE) :
VAL ring.bell IS #FF (BYTE) :
INT error, output:
SEQ

error := INT (value - set.point)
IF

error > emergency
SEQ

alarm ! ring.bell
RESULT(heater.off)

error = 0
RESULT(z ero.error)

error < 0 — temperature too low
SEQ — increase heater setting

error := - (error)
error := error * prop.gain
output:= error + INT (zero.error)
RESULT(BYTE(output))

error > 0 — temperature too high
SEQ — decrease heater setting

error := error * prop.gain
output:= INT (zero.error) - error
RESULT(BYTE(output))

WHILE TRUE
INTERRUPT

BYTE value:
temperature ? value SAMPLE 1 second

heater 1 temp.control(value, alarm)

Figure 6 .4 An Example Proportional Mode
Control Algorithm

136

can be sent to a single output channel. An example of this
arrangement is shown below

CHAN IN ini, in2:
CHAN OUT outl:
WHILE TRUE

POLL
BYTE v :
ini ? v

outl I transform (v)
BYTE v :
in2 ? v

outl ! alter (v)

6.2.4 A Problem

Consider a very simple terminal driver. The driver accepts
characters from the keyboard, and stores them in a buffer.
Only when a carriage return character is received are the
characters in the buffer sent to the screen. When the
buffer contents have been output, the driver merely waits
for the start of the next line of characters from the
keyboard. Figure 6.5 gives a behavioural specification for
this problem.

Although the specification in Figure 6.5 is complete and
does correctly describe the required behaviour of the
terminal driver, this example exposes a slight semantic
inadequacy in the language. The language definition states
that a service routine must return a single, simple typed
value via a RESULT statement. The value contained in the
RESULT statement is sent to the output channel associated
with that service routine. In the case of the terminal
driver, the result of executing the service routine is a
line of text, which is composed of a number of individual
values (characters).A line of text is not a single, simple
typed value, and consequently cannot be returned in a
RESULT statement.

Figure 6.5 overcomes this problem by passing the output
channel as a parameter to the service routine. The
characters in the line are then output directly to the

137

CHAN IN keyboard:
CHAN OUT screen:
PROC terminal.driver: UNINTERRUPTABLE

(BYTE ch, CHAN IN key,
CHAN OUT scr)

VAL C.R IS 9 (BYTE):
[80]BYTE buffer:
INT line.len:
SEQ

buffer[0] := ch
line.len := 1
— input rest of line
WHILE (ch <> C.R)

SEQ
key ? ch
buffer[line.len] := ch
line.len := line.len + 1

— output characters
SEQ i = 0 FOR (line.len - 1)

scr ! buffer[i]
— output carriage return
RESULT(C.R)

POLL
BYTE first.char:
keyboard ? first.char

screen ! terminal.driver(first.char)

Figure 6.5 A Terminal Driver Specification

138

screen channel using an output statement. The requirement
for a RESULT statement in the service routine is satisfied
by including such a statement to return the carriage return
character, which is always the last one in the line.

A much clearer, concise and semantically consistent
solution to this problem is to allow a RESULT statement to
return variable length arrays as well as values of simple
variable types. The complete line of text could then
logically be regarded as the result of executing the
service routine. The amended statement would thus become:-

RESULT(line.len, buffer)
From this statement, the BSL compiler would generate the
necessary SEQ loop, in macro-assembler, to output the line
of characters. Modifying the language in this manner would
expand the expressive power of the language, and make it
semantically more secure.

6.2.5 Evaluation

The above examples have demonstrated the flexibility and
generality of the BSL features and constructs by describing
a number of behavioural characteristics, which are common
in control systems. Specifically, these are:-

1. The capability of service routines to access both
private and shared input data.

2. The capability of service routines to initiate
outputs to multiple output channels.

3. The capability of service routines to process
values from multiple input channels.

4. The capability to generalise service routines
through the use of channel parameters.

5. The ability of service routines to process data
streams.

6. The ability to naturally describe the features of
discrete-state control systems.

7. the ability to express mathematically-based control
strategies of arbitrary complexity.

139

Therefore it seems that the BSL is well-suited to describe
the behaviour of a range of applications within the broad
spectrum of control systems. However, as the mathematical
complexity of the control algorithms increases, the BSL
would suffer from omissions such as extended arithmetic
data types and mathematical function libraries. Such
libraries though are available in the occam language,
making their inclusion in the BSL a simple task. Still, in
its current form, the BSL should be capable of describing
the behaviour of all but the most intricate of control
applications, and should easily be sufficient for systems
of moderate complexity, such as single-board embedded
controllers.

6.3 Evaluation of the Behavioural Simulation

The behavioural simulation which is generated directly from
a behavioural specification provides a prototype
implementation of the desired control system. Its main
purpose is to facilitate the precise testing of the control
algorithms in the specification. It also presents the
designer with the opportunity to explore the implications
of the interrupt, polling and priority strategies which
have been selected for the application.

An automatically generated, interactive user interface
allows the designer to initiate inputs to service routines,
and to attempt to interrupt the currently active service
routine. By presenting a range of typical input values to
the service routines, the control algorithms can be
verified, and if necessary, modified, with the minimum of
cost and effort. The designer may also simulate a variety
of different input sequences, in order to observe the
system's behaviour in a number of likely (or possibly
unlikely) scenarios.

Thus this implementation-independent level of simulation
constitutes an important opportunity for the verification
of a behavioural specification at a very early stage of the

140

system design. However, it should be noted that no attempt
is made to simulate the behaviour of the physical
environment. This is performed by the designer, who must
choose the sequence of input values for the simulation to
act upon. Consequently, this level of simulation can only
be used to check that the designer has correctly encoded
the chosen control strategy into the specification. It
cannot be used to ensure that the actual algorithms that
have been selected are correct with respect to the control
of the environment. This depends upon certain other factors
such as the rate of change of the controlled variable and
the selected sampling interval. The realm of control
engineering provides theories and methodologies which
enable the selection of control strategies[6 .3]; these
however are beyond the scope of this work. Therefore it is
important to remember that the simulation can only be used
to check the correctness of particular implementation of a
control strategy. It provides no guarantee that this
strategy is actually appropriate to control the physical
environment under consideration.

6.4 Evaluation of the Macro-Assembly Language

The purpose of the macro-assembly language is to provide an
intermediate design representation into which behavioural
specifications can be transformed. This intermediate design
representation should then serve as a basis for the
generation of assembly language for a given microprocessor
configuration. The macro-assembly language satisfies these
criteria due to the following attributes:-

1. Abstraction
The data types and control structures of the BSL compile on
a one-to-one basis into the macro-assembler. They are thus
retained at a sufficiently abstract level, which does not
rely on the features of any particular microprocessor to
implement. In fact, only complex BSL calculation and
expression evaluation statements need to be decomposed and
represented by multiple macro-assembler operations.

141

Consequently, the translation process essentially involves
the simplification of the more sophisticated features of
the BSL, such as parameter passing and local data access.
It also reorders the specification into a format which is
more convenient for generating microprocessor assembly
code. Therefore the macro-assembler code for any particular
example bears many similarities to the BSL from which it
has been produced. This is illustrated by Figure 6.6, which
shows the macro-assembler which results from compiling the
proportional mode control example in Figure 6.4. The two
examples are similar in size, and the control and data
structures of the specification are still readily apparent
in the macro-assembler. The target assembler code which can
be generated from the control structures is generally
efficient, though it is heavily processor-dependent, as it
relies upon the collection of compare and branch
instructions available.

2. Operations
While the data and control structures remain abstractly
defined in the macro-assembly language, the data
manipulation operations are represented in a fashion more
resembling actual microprocessor instructions. Features
which are common to most commercial processors have an
equivalent macro operation, which may be implemented by one
or more microprocessor assembler instructions. Thus
substituting the sequence of instructions which represents
an operation is a relatively straightforward task. As
mentioned in Chapter 4, because no assumptions regarding
register usage are made, a degree of inefficiency is
introduced into the code which implements the operations.
This though could be eliminated by processor-specific
optimisation tools.

The macro-assembly language can be viewed as essentially
defining the functionality of an abstract microprocessor,
without specifying the architecture which is to implement
that functionality. The ability of existing microprocessor
architectures to implement this required functionality

142

CHAN temperature
CHAN heater
CHAN alarm
INT error
INT output
BYTE value
INT itemp
BYTE btemp
WHILE(1=1)

INTON
WAIT
INPUT temperature, value
CALL temp.control

ENDWHILE
END
temp.control:

INTON
B-COPY btemp, value
B-SUB btemp, 37
BTI error, btemp
IF

error,>,0072
OUTPUT alarm, FF
OUTPUT heater, 00

error,=,0
OUTPUT heater, 52

error,<,0
I-COM error
I-COPY itemp, error
I-ADD itemp, 0052
I-COPY output, itemp
ITB btemp, output
OUTPUT heater, btemp

error,>,0
I-MUL error, 0003
BTI itemp, 52
I-SUB itemp, error
I-COPY output, itemp
ITB btemp, output
OUTPUT heater, btemp

END IF
RETURN

Figure 6.6 Macro-Assembler Code to Represent the
BSL for the Proportional Mode
Control Example

143

varies greatly. This project has concentrated on defining
the macro operations using 8-bit architectures. However,
due to the requirements for 16- and 32-bit macro
operations, 8-bit processors produce some complex and
cumbersome implementations. Consequently, it is probable
that the functionality of the macro-assembly language would
be best implemented by 16- and 32-bit processors such as
the Motorola 68000 or 68020 [6.4,6 .5] . These processors have
instructions which can manipulate 8-, 16- or 32-bit words,
which would make the implementation of the macro operations
considerably easier.

The macro-assembly language therefore seems to possess
sufficient generality to make it an appropriate and
convenient intermediate design representation for
microprocessor system behaviour. It inherits the data and
control abstraction from the BSL which enable it to be
processor-independent, while containing a set of data
manipulation operations which closely mimic those usually
found in microprocessor instruction sets. This combination
facilitates ease of translation at all levels, and gives a
representation from which alternative design proposals can
be generated and evaluated.

6 .5 Evaluation of the Microprocessor Simulation
Facility

The purpose of the component level simulation facility is
to provide a means of testing the integration of the
software with the selected hardware configuration for a
desired system. In order to achieve this, the hardware
simulations should model exactly the behaviour of the
hardware components themselves. Further, it should be
possible to simulate any given configuration of components
which is valid. This requires that the individual component
simulations are totally generalised and usable in different
configurations, precisely the same as the hardware
components they model.

144

The use of occam as a hardware simulation language proved
to be important in satisfying the above requirements. By
simulating a component as a parameterised, concurrent occam
process, it is possible to model a component as a black
box, the behaviour of which is completely defined by the
value of the signals it receives on its input channels.
Occam channels then form the basis of a simulation of a
microprocessor system bus, which models the communication
paths between components. Finally, the individual component
models which comprise a simulation can be executed
concurrently, with the underlying execution model of occam
automatically providing the required scheduling and
synchronisation of components. This would not be so if a
conventional sequential language had been used: in that
case, the programmer would have.to write a scheduler to
control the order of execution of components[6 .6].

The exploitation of Occam's parallel execution facilities
also afforded the opportunity to increase the speed of
simulation by distributing the component simulations on to
a multi-transputer network. Experiments showed that a near
linear speed-up in the execution rate of simulations could
be achieved by the addition of up to five transputers,
giving a peak execution rate of just below six thousand
Motorola 6800 instructions per second. It is worthwhile
comparing this value with the performance of a
microprocessor simulator constructed in Prolog[6.7]. This
simulated a simple, hypothetical 32-bit processor which
could execute 28 instructions. When the simulation was
executed (on a single 5 MIPS processor), average simulation
rates of approximately eleven instructions per second were
observed. Although this comparison is subject to certain
discrepancies, such as the relative complexities of the
simulations, the vast difference between the simulation
speeds does serve to illustrate the high rate of
performance that can be accomplished when the inherent
parallelism of hardware systems is exploited.

145

It is hoped that, in order to test proposed designs,
simulations could be connected, via a standardised
interface board, to the actual physical environment to be
controlled. This could certainly be achieved in
applications which are not of a strictly time-critical
nature. In the meantime however, a more general testing
mechanism has been defined, which allows the designer to
supply files of test data to be incorporated into
simulations[6 .8]. Test values can also be input into the
simulation via a user interface. The user interface
displays the state of the simulation's registers together
with input and output ports of the various components on a
monitor. It further allows the designer to single-step (one
simulated machine instruction at a time) through the
execution of a simulation, in order to examine the
operations in detail.

The hardware simulation facility therefore forms the final
stage of verification for a given design. Through extensive
testing of the component level simulation it should be
possible to ensure that the hardware and software designs
are indeed compatible, and that the control algorithm is
suitable to the needs of the application. When the designer
is eventually satisfied that all the major design faults
have been eradicated, the implementation of the system may
proceed.

6.6 Summary

This chapter has assessed the extent to which the tools and
techniques developed in this project are applicable to the
problem of specifying and simulating the behaviour of
microprocessor control systems. A summary of the
conclusions of this assessment is presented below:-

1. The BSL possesses the descriptive power necessary to
adequately and naturally capture the crucial
behavioural aspects of a wide range of microprocessor
control applications.

146

2. The automatic production of a test environment,
which facilitates the validation of behavioural
specifications is a vital stage of the development
process. It enables the designer to ensure that the
behavioural specification has been correctly
encoded, before any implementation issues are
considered.

3. The macro-assembly language is an appropriate
notation for representing behavioural specifications
at a lower level of abstraction, and from which
microprocessor assembly language code may be easily
generated.

4. The component level simulation provides a fast and
accurate environment for testing the compatibility
of the hardware and software designs. It also offers
the potential for judging the correctness of the
control strategies employed. This is all achieved
without any application-specific hardware
construction.

147

References
6.1 Johnson,C.D.:'Microprocessor-based Process

Control', ch.l, pp 1-32, Prentice-Hall, INC.,
New Jersey 1984

6.2 Welsh,P.H.:'Managing Hard Real-Time Demands on
Transputers',Procs 7th Occam User Group
Conference, Grenoble, 14-16 Sept 1987

6.3 Marshall,S.A.:'Introduction to Control Theory',
Macmillan, 1978

6.4 Kane,G., Hawkins,D., and Leventhal,L. :'68000
Assembly Language Programming', Osborne/
McGraw-Hill, USA, 1981

6.5 Motorola INC. :'MC68020 32-Bit Microprocessor
User's Manual', Second Edition, Prentice-Hall,
Inc., New Jersey, 1985

6.6 Armstrong,J.R. and Woodruff,G. :'Simulation
Techniques for Microprocessors', Procs 14th
Design Automation Conf, June 1977

6.7 Pashtan,A. :'A Prolog Implementation of an
Instruction-Level Processor Simulator',
Software-Practice and Experience, vol 17, no 5,
May 1987, pp 309-318

6.8 Everson,U. :'A Test Harness for a Designer's
Workbench', MSc Dissertation, Dept, of Computer
Studies, Sheffield City Polytechnic, Sept 1985

148

7. Future Work

7.1 Integrating and Interfacing Behavioural and
Structural Design Tools

7.1.1 Introduction

The work described in this thesis constitutes the
behavioural specification and simulation phase of a
sophisticated design aid for minimum configuration computer
control systems. However, while the complementary
structural design phase of the system is under
construction, the tools currently implemented may be used
in isolation, effectively forming a software specification
system for control systems. In such circumstances, the
structural aspects of the design must be performed by the
system designer and supplied interactively to the software
specification system. Eventually though, these tools will
need to be integrated with the knowledge-based structural
design subsystem. Therefore this section presents a
description of the required interaction between the
individual design tools. It also suggests a number of
design evaluation and exploration strategies which can be
applied at the macro-assembly level of design
representation.

7.1.2 Design System Operation

Figure 7.1 illustrates the architecture of the system. The
transformation of a behavioural specification of an
application into occam constitutes the starting point of
the design system*s operation. The behavioural simulation
is executed, and possibly modified, until the designer is
satisfied that it responds as intended to the test data
supplied. At this stage, the automated design process
begins with the compilation of the behavioural
specification. As well as producing a macro-assembler level
representation of the specification, the compiler extracts
certain structural information regarding each of the input

149

Ccmoile

1r
Processor-dependent
Control Software

1r ^

SystemDesigner

3enavioural
Specification

1f

Macro-
Expansion

Simulation
3uilder

r
Ccmponent-level
Simulation

Comconent List

Transform

Structural
)------► Information

f
✓''Analysis'S^

Macro-Assembler Tools
Language

r
Configuration
Information

Component Model
Data Base

Ber.avioura
Simulation

Structural
Information

Data Base

Key : = design information or representation

= design tool or process

Figure 7.1 System Architecture

150

and output channels in a specification. More . specifically
this information comprises:-

channel name
channel direction
channel type
access method
priority level

sampling period

constraints

character string
IN or OUT
usually BOOL or BYTE
POLL, INTERRUPT or, for
output channels undefined,
integer value, or zero if
no priority specified or
channel is output,
time period and units as in
specification. Zero if
undefined or output channel,
name of associated service
routine and maximum allowable
time period for processing
inputs. Undefined for output
channels.

Thus a record structure for each channel in the
specification can be passed to the knowledge-based
structural design tools. The arrival of this information
constitutes the starting point of the structural design
process. Using this information as a basis, the structural
design tools can decide precisely what further details are
required concerning each channel before a design may be
sensibly attempted. These extra details, which cannot be
extracted from the behavioural specification, must be
obtained interactively from the system designer. For
example, the following characteristics about an input
channel may be supplied to the structural design process by
the BSL compiler:-

CHAN NAME
CHAN DIR
CHAN TYPE
ACCESS
PRIORITY
SAMPLING
SERVICE
ROUTINE

ini
IN
BYTE
INTERRUPT
0
UNDEFINED
pi UNDEFINED

The above channel characteristics are not sufficient to
enable the selection of a suitable input-output interface
to implement this channel. Although this information
conveys the fact that the channel accepts eight-bit values,

151

the source of the value could be a serial, parallel or
analogue interface. (In this example however the latter is
unlikely, as the channel is interrupt driven and no
sampling period is specified. As analogue signals vary
continuously, they cannot generally be used to generate
interrupts in the same manner as digital signals. Still, a
situation could arise in which the channel is to receive
values from an analogue interface, and the designer has
erred in neglecting to give a sampling period. Such
circumstances should be detected and catered for by the
structural design tools.) Therefore the precise
characteristics of each channel in the specification must
be obtained through some kind of goal-driven 'question and
answer1 session with the designer[7.1]. Further constraints
such as cost, power consumption and size can also be
acquired interactively at this stage.

When sufficient structural details have been gathered about
the application, the structural design may commence. This
essentially consists of selecting a compatible set of
components from the data base, which can implement the
required functionality. This task will be performed using
some kind of heuristic search strategy, most likely based
upon production systems[7.2].

An important sub-task of the hardware design process is the
selection of read-only (ROM) and read-write (RAM) memory
components. In other purely structural design systems[7.1],
the designer is asked to estimate the amount of ROM and RAM
required by a particular application. This however is not
necessary when the behavioural and structural design tools
are integrated as in Figure 7.1. In this case, the memory
sizing information may be automatically extracted from the
macro-assembly language representation of the application.
Analysis tools could examine the macro-assembler code and
estimate the amount of ROM and RAM required. One method of
estimating the ROM size is to produce a table giving the
average code size needed to implement each macro operation.
This could then be used to calculate an estimate of the

152

total amount of ROM an application needs. The creation of
individual tables for each microprocessor in the system's
data base would make this process more precise and hence
more reliable. Estimating the amount of RAM required by an
application is much simpler. This can be done by
calculating the number of bytes which the variables in the
macro-assembly code will occupy. It should be remembered
though that the RAM is also needed to implement the
microprocessor's interrupt and subroutine stack. The
structural design tools must always allow for this when
deciding on the amount of RAM to include.

There does exist the potential for further analysis tools
at the macro-assembler level of the design process. By far
the most important of these would be a performance
estimation tool, which could estimate execution times for
individual service routines. This could be performed in a
similar manner to estimating ROM size, with the creation of
a table of average execution times for each macro
operation. An estimation of the total execution time for a
particular service routine could then be arrived at through
totalling up the average execution times for each of the
operations in that routine. Again, the estimate could be
made more accurate through the utilisation of
processor-specific execution time tables. These would
enable the structural design process to request estimates
of the execution times of service routines for each of the
microprocessors it is considering. The performance
estimation tool would then calculate the required estimates
and pass back the results, leaving their interpretation to
the structural design tools. The performance estimation
tool would be a complex utility, as it would have to
incorporate strategies for dealing with iterative and
conditional constructs. However, ensuring that a processor
is capable of satisfying the performance constraints of an
application is one of the most important, and potentially
one of the most difficult tasks that the design system has
to perform. The performance estimation tool suggests one
method of solving the problem, and further highlights the

153

benefits accrued from adopting a fully integrated approach
to microprocessor system design.

The structural design process is complete when a compatible
set of components has been selected, and the address map
and input-output port configurations have been finalised.
This information can then be fed into the macro expansion
routine, which generates the software required to control
the application. It is envisaged that any software
optimisation would also take place at this stage. The
resulting software, together with the component list, can
finally be made available to the simulation builder. This
extracts the required component models from the component
model data base, and generates the occam code to
instantiate the processes in parallel. This can be compiled
and executed to give a component level simulation of the.
complete system design.

In order to evaluate different solutions which are reached,
it is expected that a full implementation of the design
system would allow a high degree of interaction between
individual design tools. This would allow potential
solutions to be designed, simulated and evaluated both by
the designer and the system itself. The system should also
be able to offer explanations of its own design decisions,
and allow the designer to intervene in the design process
should modifications be necessary. One way of achieving the
full integration and cooperation of the individual design
tools that would be necessary to achieve such complex
behaviour is to implement a supervisory function. This
would control the order of the execution of design tools
and be responsible for the handling of messages between
design processes. The control of the execution of design
tools is in itself a significant problem: many of the
issues involved and potential solutions to these problems
are approached in [7.3].

154

7.2 Designing Transputer-based Control Systems

The Inmos transputer was originally conceived and designed
as a processor for use predominantly in embedded control
systems[7.4]. Although the processing power of the
transputer has in reality led to many different practical
uses, it remains an excellent processor for constructing
real-time control systems[7.5]. One of the major advantages
that the transputer possesses in this respect is that it
incorporates a microprocessor, serial input-output links
and RAM on to the same area of silicon. This greatly
simplifies the hardware design necessary to implement an
application's behaviour. It is possible for the transputer
to be utilised across the whole spectrum of control
applications. However currently the high cost of the
transputer prohibits its use in applications which do not
necessarily require its full processing capabilities.

One of the problems encountered in developing control
software for transputers is the use of parallelism. In
order to implement multiple interrupts and priorities of
service routines, communicating concurrent processes must
be defined[7.5]. This is a level of software complexity
with which most system designers are unfamiliar, and
therefore it presents an obstacle in the adoption of
transputers. Further the use of parallelism can lead to
subtle synchronisation errors which may be difficult to
detect in system testing.

However the behavioural specification language defined in
this thesis may provide a solution to these problems. The
BSL is sufficiently abstract to enable a very wide choice
of implementation strategies to be adopted, including the
concurrent approach of the transputer. In fact, the
behavioural simulation which is directly generated from the
BSL can be regarded as a concurrent occam implementation of
the required system. Thus the BSL description can be
transformed automatically into an occam representation of
an application, which incorporates all the necessary

155

parallelism to implement the application's behaviour. This
approach alleviates the need for the designer to be
concerned with the difficulties associated with parallel
activity, and should ensure that the parallelism introduced
cannot deadlock.

The use of transputers to implement control systems would
also have an influence on the architecture of the design
system defined in section 7.1. The macro-assembly language
would no longer be needed, as an existing occam compiler
could translate the occam code into transputer assembly
language. The compiler could would also produce exact
information concerning the size of the code and workspace
areas required. The structural design tools would also be
simplified. The selection of input-output components would
be the same as for any other processor. However, once
selected, their connection to the transputer via standard
Inmos link adapter chips[7.6] is trivial. Further, many of
the hardware/software trade-offs associated with other
processors do not have to be performed when using
transputers, because the transputer has timing and priority
facilities on-chip.

Therefore the BSL may be an appropriate notation to
describe the behaviour of transputer-based control systems.
If the behavioural specification techniques were integrated
with a suitable set of structural design tools, the process
of designing transputer-based control systems could be
largely automated. Due to the presence of many on-board
hardware facilities, it is expected that the construction
of such a set of structural design tools would be
considerably simpler for transputers than for other
competitive microprocessors.

7.3 Summary

The overall operation of an automated design environment
has been explained. Specific emphasis has been placed on
the interaction between the behavioural and structural

156

design tools. A number of design analysis and evaluation
tools have been proposed which can aid in the structural
design process by analysing an intermediate behavioural
representation. These highlight the benefits that can be
gained by integrating the different design functions into a
single design system.

Finally the possibility of automatically designing
transputer control systems from behavioural specifications
is considered. Areas where the use of transputers would
simplify both the behavioural and structural design
processes are explained. This aspect of the project is
still in the early stages of investigation. However,
because of the potentially major design simplifications
offered by the use of transputer technology, it could
indeed prove to be a most profitable line of research and
development.

157

References
7.1 Bowen,J.A. and Smith,M.F.:'Expert Systems for the

Analysis and Design of Microprocessor
Applications', Journal of Microcomputer
Applications, (1983)6, pp 155-161

7.2 Hayes-Roth,F. :'Rule-based Systems', CACM, vol 28,
no 9, September 1985, pp 921-932

7.3 Bushnell,M.L. and Director,S.W. :'ULYSSES - a
Knowledge-based VLSI Design Environment',
Artificial Intelligence, vol 2, no 1, Jan 1987,
pp 33-41

7.4 May,D. :'Occam :Hardware Description Language',
Procs IEE Colloq on Software Tools for Hardware
Design, London 1983, Digest 98, pp 5/1-5

7.5 Welsh,P.H.:'Managing Hard Real-Time Demands on
Transputers',Procs 7th Occam User Group
Conference, Grenoble, 14-16 Sept 1987

7.6 Inmos Ltd., :'Transputer Reference Manual',
Prentice-Hall Int. UK Ltd., 1988

158

8. Conclusions

The work described in this thesis represents an attempt to
rectify the major difficulties which exist in the
development of microprocessor-based control systems. The
architecture of an integrated Computer-Aided Design (CAD)
system for minimum configuration control systems has been
presented. The problems associated with constructing the
necessary behavioural specification, synthesis and
simulation facilities for the CAD system have been
considered, and a collection of design representations and
synthesis techniques have been proposed as solutions.

The notation developed for describing the behaviour of
control systems enables the systems designer to completely
and naturally capture the behavioural aspects of an
application. These behavioural aspects are expressed
explicitly in an abstract, implementation-independent
manner. This creates a large number of possible design and
implementation alternatives, ranging at the extremes from a
wholly software controlled microprocessor system, to the
fabrication of an application-specific integrated circuit.
This notation can therefore be regarded as providing an
abstract behavioural specification of the required
application.

The use of an existing high-level language as a basis for
the behavioural specification language has two major
advantages. Firstly, it creates a notation which contains
many constructs and facilities which are already familiar
to microprocessor system designers. Second, and more
importantly, it facilitates the utilisation of the
available software tools for the base language. With the
assistance of a pre-processor to convert the additional
specification language constructs into the base language,
the specification can be compiled and executed to
automatically give a behavioural simulation and test
environment for an application.

159

The synthesis technique developed involves the compilation
of behavioural specifications into an intermediate level of
design representation. The intermediate design
representation is of a sufficiently abstract level so as
not to be committed to any specific microprocessor
implementation. However, it is also at a suitably low level
of abstraction to facilitate the automatic generation of
assembler code for existing microprocessors, by means of a
relatively simple macro-expansion process. Further, the
intermediate design representation should prove useful in
the automatic provision of certain structural information
that is required by the structural design tools.

The generalised component simulation facility provides an
effective method of testing the complete design for a given
application, before any hardware construction takes place.
The use of occam as a hardware description language for
simulating microprocessor systems has provided two major
advantages over other approaches. Firstly, the model of
concurrency in occam corresponds closely to the actual
operation of hardware devices, thus allowing the behaviour
of components to be easily modelled. Second, the close
relationship between occam and the transputer enables
simulations to be implemented on transputer networks. This
approach yields a relatively high level of performance,
which offers the potential to test simulations in a
realistic physical environment.

Thus the integration of the behavioural specification,
synthesis and simulation techniques forms a powerful design
environment for generating microprocessor control software
automatically from an abstract behavioural specification.
In combination with a suitable structural design system,
prototype designs for control applications could be quickly
generated and evaluated, until a design that satisfies the
application's requirements is encountered. However, even in
the absence of such a structural design system, the
behavioural design tools still afford significant

160

advantages over other existing development languages and
techniques for control applications.

161

Appendix A

Occam and Transputers

An occam program consists of a collection of concurrent
processes communicating via point to point communication
channels. Each process performs a number of actions. An
action may be a set of sequential processes performed one
after the other, or a set of parallel processes performed
at the same time as one another. Since processes themselves
are constructed using other processes, some of which may be
executed in parallel, a process may contain any amount of
internal concurrency.

All occam processes are built from three primitive
processes

1. assignment variable := expression
2 . output c ! e

output expression e to channel c
3. input c ? v

input variable v from channel c

Output is denoted by the symbol ! and input by the
symbol ?

These primitive processes are combined to form constructs.

1. SEQ represents a sequential construct,
e.g. SEQ

a := b + c
d := e + f
comms I a
comms ! b

Al

2. PAR represents a parallel construct,
e.g. PAR

a := b + c
d := e + f

3. IF represents a conditional construct,
e.g. IF

count = timeout
controller I device.failed

count < timeout
device ! read

4. ALT represents an alternative construct,
e.g. ALT

ini ? x
x:= x + 1

in2 ? y
y:= y + 1

The alternative construct is used when a process needs to
input from any one of several other concurrent processes.
An input is performed from the channel which is first used
for output by another process. The inputting process waits
until another process is ready to communicate with it.

Constructs themselves are processes, and may be used as
components of another construct
e.g. SEQ

PAR
a := a + b
d := e + f

comms ! a
comms ! b

Conventional sequential programs can be written using
variables and assignments, combined in sequential and
conditional constructs. All variables, channels and
expressions are typed, and strong matching rules are

A2

enforced. A WHILE loop can be used to express iterative
programs. Concurrent programs must use channels, together
with input and output operations to enable communication
between processes. These are combined using parallel and
alternative constructs. Each occam channel provides a
uni-directional communications path between two concurrent
processes. Communication only takes place when both the
.inputting and outputting processes are ready. The value to
be output is copied from the outputting process to the
inputting process, and both processes then proceed. Thus
communication is synchronised and unbuffered, similar to
the handshake method of communication used in digital
systems.

The transputer is a single-chip microcomputer comprising a
10 MIPS processor, local memory, an external memory
interface and four communication links. These links provide
fast point-to-point connections between transputers,
enabling one transputer to communicate directly with a
maximum of four others. The communications links and the
processor may all operate concurrently, allowing processing
to continue while data is being transferred on all of the
links.

There are three main variations of the transputer currently
available. These are the (IMS) T212, the T414 and the T800.
The T212 is the 16-bit member of the transputer family, and
the T414 and T800 are 32-bit processors. The T800, the most
recent addition to the range, is essentially a T414 with
extra memory and an on-chip floating point unit.

The transputer was designed to efficiently implement occam
processes. The occam concepts of concurrency and
communication are implemented by the transputer. This means
occam programs may execute on a single transputer, with
processor time shared between concurrent processes, or on a
network of transputers, in which each transputer executes

A3

one or more processes. Communication channels between
processes on a single transputer are implemented by memory
locations. Communication between processes on different
transputers is implemented directly by transputer links.
Therefore the same occam program may be implemented on a
variety of different transputer configurations. An example
of this is given in figure Al.

A4

PI

P3P2

PI

P3P2

Figure Al Distributing Processes
on to Transputers

A5

Appendix B

Behavioural Specification Language Definition
<BSL Specification> ::= <title> <specification section>
<title> ::= TITLE <text> :
<specification section> <channel declarations>

<routine declarations>
<control section> :

<channel declarations> ::= CHAN <direction>
<channel id list> :
£ <channel declarations> }

<direction> ::= IN | OUT
<channel id list> ::= <channel id> £ , <channel id> 3

<channel id> <valid variable name>
<Service routine declarations> : := PROC <routine id> :

<type> <formal parameter
list>

<time constraint>
<routine body> :
(<Service routine

declarations>3
<routine id> ::= <valid variable name>
<type> ::= INTERRUPTABLE | UNINTERRUPTABLE
<formal parameter list> ::= () [

(<typed variable list>) |
(<typed variable list>
C r <typed variable list>3)

<time constraint> ::= <empty> j <integer value> <units>
<units> ::= SECS | MSECS
<routine body> ::= <local declarations> <block>
<local declarations> ::= <empty> j <constant definitions> j

<variable declarations>
<constant definitions> ::= VAL <constant name> IS

<constant value>
<constant type> :

£ <constant definitions> 3

<constant name> ::= <valid variable name>

Bl

<constant value> ::= <integer value> | <byte value> |
<real value> | <Boolean value>

<constant type> ::= BOOL [BYTE j INT [REAL
<variable declarations> <array definition>

<variable type>
<variable list> :
£ <variable declarations> 3

<typed variable list> ::= <variable type> <variable list>
<control section> ::= <global variable declarations>

<execution condition>
<input structure>

<global variable declarations> <array definition>
<variable type>
<variable list> :
£ <global variable

declarations> 3

<array definition> ::= <empty> [[<integer value>]
<variable type> ::= BOOL j BYTE [INT | REAL

| CHAN <direction>
<variable list> = <valid variable name>

£ , <valid variable name> 3

<execution condition> ::= WHILE <Boolean condition>
<input structure> ::= <control statement>

<event statement>
£ <event statement> 3
£ <input structure> 3

<control statement>: := INTERRUPT [PRI INTERRUPT j POLL
<event statement> : := <input variable declaration>

<input statement>
<output action>

Cinput variable declaration> ::= <empty> |
• • — — — ~ -jrv'<valid variable name>:

<input statement> ::= <channel id> ?
<valid variable name>
<sample statement>

<sample statement> ::= <empty> | SAMPLE <interval>
<interval> ::= <empty> [<integer value> <units>

B2

Coutput action> ::= <assignment> j <output statement>
<output statement> ::= <channel id> I

<routine id>
<actual parameter list>

<actual parameter list> ::= (<variable list>)
<block> ::= <contructor> <statement>
<statement> ::= <constructor> j <expression>
<contructor> ::= <sequence> j <iteration> |

<selection>
<sequence> ::= SEQ | SEQ <replicator> <body>
<replicator> ::= <name> = <base> FOR <count>
<name> ::= <valid variable name>
<base> ::= <integer value>
<count> ::= <integer value>
<body> ::= <expression> | <block>
<iteration> ::= WHILE <condition> <body>
<condition> ::= <conditional expression> j

(<conditional expression>
£ <logical operator>

<conditional expression> 3)
<conditional expression> ::= (<valid variable name>

<comparison operator>
<comparison value>)

<comparison operator> ::= <> | = | < j > | <= j >=
<comparison value> ::= <valid variable name> j

<constant value>
<logical operator> ::= AND j OR
<selection> ::= IF <condition> <body>

f f i n n S ^ K r \ r N r S 1

<expression> :: = <input expression> j <output expression> J
<assignment> (<result statement>

<input expression> <channel name> ?
<valid variable name>

<output expression> ::= <channel name> I <output value>
<output value> <valid variable name>] <constant value>

B3

<assignment> ::= <target variable> := <assignment
expression>

<target variable> ::= <valid variable name>
<assignment expression> ::= <simple assignment> |

<complex assignment>
<simple assignment> ::= cinline type>

<valid variable name>
j <constant value>

<inline type> ::= <empty> j INT
<complex assignment>

BYTE ! REAL
:= <simple assignment>

<assignment operator>
£ <complex assignment> 3
<simple assignment>

<Assignment operator> ::= + j - | * | / | REM [/\ j \/» I « ! -
<result statement RESULT (<valid variable name j

<byte value>
byte value >

integer value
)

<integer value> ::= <digit> £ <digit> 3 |
#<hex digit> £ <hex digit> 3

<real value> ::= <integer value>
<digit> £ <digit> 3

/ , o |

<Boolean value> ::= TRUE [FALSE

<digit> ::= 0

<hex digit> ::= <digit> | A j B (c j D j E (F

<valid variable name> ::= <identifier> <identifier>
<subscript>

<identifier> ::= <letter> £ <remainder> 3

<subscript> ::= [<integer value>]
<remainder> ::= <letter> j . | <digit>

A a B b C c D d E e F
f G g H h I i J j K k
L 1 M m N n 0 o P P Q
q R r s s T t u u V V
w w x X Y Z z

B4

Appendix C
6800 Implementations of Macro Operations
Introduction
This appendix gives a complete definition in Motorola 6800
assembler, of each of the operations and control structures
which form the macro-assembly language defined in this
project.
In order to keep the definitions concise, macro operations
which have already been given are used in certain of the
more complex operation definitions. This applies mainly in
the definition of INT and REAL operations, which are often
described by the two separate applications of the
equivalent BYTE and INT operation respectively. Also, for
clarities sake, labels of more than six characters are used
in definitions. This does not strictly adhere to the rules
of 6800 assembler, which does not allow labels of more than
six characters.
Note this appendix does not contain definitions for the
arithmetic and logic operations which may have a constant
value as their second operand, e.g.

I-ADD opl, op2 or
I-ADD opl, 10

The only difference between the two operation definitions
is the use of the immediate addressing mode as opposed to
the direct or extended addressing modes which are used
below.
Assignment Operations
1. B-ASSIGN opl, FF opl := FF

B-ASSIGN LDA A #$FF load hex constant
STA A opl store in memory

2. I-ASSIGN opl, FFFF
I-ASSIGN LDX #$FFFF load index reg

STX opl store in memory

3. R-ASSIGN opl, FFFFEEEE
R-ASSIGN LDX #$FFFF

STX opl
LDX #$EEEE
STX opl+2

load high order bytes
store in memory
load low order bytes
store in memory

Cl

4. B-COPY opl, op2 opl := op2
B-COPY LDA A op2

STA A opl
5. I-COPY opl, op2

I-COPY LDX op2
STX opl

6 . R-COPY opl, op2
R-COPY LDX op2

STX opl
LDX op2+2
STX opl+2

Input-Output Operations
1. INPUT channel, operand

INPUT LDA A channel input from port
STA A operand store value

2. OUTPUT channel, operand
OUTPUT LDA A operand load value

STA A channel output to port
Arithmetic Operations
1. B-ADD opl, op2 opl := opl + op2

B-ADD LDA A opl
ADD A op2
STA A opl

2. I-ADD opl, op2
I-ADD LDA A opl+1

ADD A op2+l
STA A opl+1
LDA A opl
ADC A op2
STA A opl

(Could also he defined as follows?—
I-ADD B-ADD opl+1, op2+l

LDA A opl
ADC A op2
STA A opl

This briefer notation will be used where possible from
this point onwards for INT and REAL operations)

C2

3. R-ADD opl, op2
R-ADD I-ADD

LDA A
ADC A
STA A
LDA A
ADC A
STA A

opl+2,
opl+1
op2+l
opl+1
opl
op2
opl

op2+2

4. B-SUB opl, op2 opl := opl - op2
B-SUB LDA A

SUB A
STA A

opl
op2
opl

5. I-SUB opl, op2
I-SUB B-SUB

LDA A
SBC A
STA A

opl+1,
opl
op 2
opl

op2+l

6 . R-SUB opl, op 2
R-SUB I-SUB

LDA A
SBC A
STA A
LDA A
SBC A
STA A

opl+2,
opl+1
op2+l
opl+1
opl
op2
opl

op2+2

7. B-MUL opl, op 2 opl := opl * op2
B-MUL

MLOOP

END OP

LDA A opl
LDA B op2
DEC B
BEQ ENDOP
ADD A opl
DEC B
BNZ MLOOP
STA A opl

IF opl * 1 , do nothing

8. I-MUL opl, op 2
I-MUL

MLOOP

ENDOP

LDX X op2
DEX
BEQ ENDOP
I-ADD opl, opl
DEX
BNZ MLOOP
NOP

C3

9. R-MUL opl, op2
R-MUL R-COPY rtemp, op2

LDA A #$00
STA A rtemp+3

1
00,

MLOOP R-ADD opl, opl
R-SUB rtemp, 1
R-EQ rtemp, 00, MLOOP

ENDOP NOP

R-SUB rtemp,
R-NE rtemp,

set decimal places to zero
ENDOP if rtemp = 0

goto endop

(Notes — For simplicities sake, this implementation
only multiplies opl by the integer portion of
op2. Consequently some precision is lost.)

10. B-DIV opl, op2
B-DIV

DLOOP

RESULT

LDA A opl
LDA B op2
CMP B #$00
BEQ END
LDA B #$00
SUB A op2
BLE RESULT
INC B
BRA DLOOP
STA B opl

opl := opl / op2

divide by zero, terminate program
set count to zero

11. I-DIV opl, op2
I-DIV LDX op2

CPX #$0000
BEQ END
LDX #$0000

DLOOP I-SUB opl, op2
I-LE opl, op2, RESULT
INX
BRA DLOOP

RESULT STX opl
(Notes — see later for defintion of I-LE)

12. R-DIV opl, op2
R-DIV
DLOOP

RESULT

R-EQ op2, 0000, END
LDX #$0000
R-SUB opl, op2
R-LE opl, op2, RESULT
INX
BRA DLOOP
STX itemp
ITR opl, itemp

C4

(Notes — see later for definitions of R-EQ, R-LE, ITR
— The above implementations of division

operators assume that both operands are
postive. However it is a simple, if
labourious task to cater for negative
operands and results. It merely entails
checking the sign of the operands, deciding
on the sign of the result, and then convert
any negative operands to their equivalent
positive value. The division may then be
performed as above.)

13. B-REM opl, op2 opl := opl REM op2
B-REM LDA A opl

CMP A op2
BLT RESULT

RLOOP SUB A op2
CMP A op2
BLT RESULT
BRA RLOOP

RESULT STA A opl
14. I-REM opl, op2

I-REM LDX opl
CPX op2
BLT RESULT

RLOOP I-SUB opl, op2
I-LT opl, op2, RESULT
BRA RLOOP

RESULT NOP result already in opl
15. B-INC opl opl := opl + 1

B-INC INC opl
16. I-INC opl

I-INC LDX opl
INX
STX opl

17. B-DEC opl opl := opl - 1
B-DEC DEC opl

18. I—DEC opl
I-DEC LDX opl

DEX
STX opl

C5

Logical Operations
1. B-AND opl, op2 opl := opl /\ op2

B-AND LDA A opl
AND A op2
STA A opl

2. I-AND opl, op2
I-AND LDA A opl+1

AND A op2+l
STA A opl+1
LDA A opl
AND A op2
STA A opl

3. B-OR opl, op2 opl := opl \/ op2
B-OR LDA A opl

ORA A op2
STA A opl

4. I-OR opl, op2
I-OR LDA A opl+1

ORA A op2+l
STA A opl+1
LDA A opl
ORA A op2
STA A opl

5. B-NOT opl opl := NOT opl (1 * £
B-NOT COM opl

6 . I-NOT opl
I-NOT COM opl+1

COM opl
7. B-NEG opl opl := (NOT opl) +

B-NEG NEG opl
8 . I-NEG opl

I-NEG I-NOT opl
I-INC opl

9. B-XOR opl, op2 opl := opl >< op2
B-XOR LDA A opl

EOR A op2
STA A opl

C6

complement)

1

10 I-XOR opl, op2
I-XOR LDA A opl+1

EOR A op2+l
STA A opl+1
LDA A opl
EOR A op2
STA A opl

11 B-SLL opl opl := opl << 1
B-SLL CLC

ROL opl
12 I-SLL opl

I-SLL CLC
ROL opl+1
ROL opl

13 B-SRL opl opl := opl >> 1
B-SRL CLC

ROR opl
14 I-SRL opl

I-SRL CLC
ROR opl
ROR opl+1

Index Operation
1. B-INDEX table, element, tempi

B-INDEX I-DEC element
I-ADD element, table
B-COPY tempi, element

2. I—INDEX table, element, tempi
I-INDEX I-ASSIGN disp, 0002

I-MUL disp, element
I-DEC disp
I-ADD disp, table
I-COPY tempi, disp

3. R-INDEX table, element, tempi
R-INDEX I-ASSIGN disp, 0004

I-MUL disp, element
I-DEC disp
I-ADD disp, table
R-COPY tempi, disp

C7

Re-typing Operations
BTI opl, op2 opl := INT op2

BTI LDA A op2
CMP A #$00
BLT NEG
STA A opl+1 op2 is positive
LDA A #$00
STA A opl
BRA ENDOP

NEG STA A opl+1 op2 is neagtive
LDA A #$FF
STA A opl

ENDOP NOP
ITR opl, op2 opl := REAL op2

ITR LDA B #$00
STA B opl+3 set decimal part to zero
LDA A op2
CMP A #$00 op2 < 0 ?
BLT NEG
STA B opl op2 is positive
LDA A op2+l copy value
STA A opl+2
LDA A op2
STA A opl+1
BRA ENDOP

NEG LDA A #$FF op2 is negative
STA A opl
LDA A op2+l copy value
STA A opl+2
LDA A op2
STA A opl+1

ENDOP NOP
RTI opl, op2 opl := INT op2

RTI LDA A op2+2 copy value
STA A opl+1
LDA A op2+l
LDA B op2
CMP B #$00 if op2 < 0
BLT NEG
BRA ENDOP

NEG ORA A #$80 then make opl negative
ENDOP STA A opl

C8

4. ITB opl, op2 opl := BYTE op2
ITB LDA A op2+l

LDA B op2
CMP B #$00 if op2 < 0
BLT NEG
BRA ENDOP

NEG ORA A #$80 then make opl negative
ENDOP STA A opl

Comparison Operations
The basic algorithm for each of the comparison operations
is as follows:-

if opl (operator) op2 then
SKIP

else
goto addr

endif
1. B-EQ opl, op2, addr

B-EQ LDA A opl
CMP A op2
BNE addr

2. I-EQ opl, op2, addr
I-EQ LDX opl

CPX op2
BNE addr

3. R-EQ opl, op2, addr
R-EQ I-EQ opl, op2, addr

I-EQ opl+2, op2+2, addr
4. B-NE opl, op2, addr

B-NE LDA A opl
CMP A op2
BEQ addr

5. I-NE opl, op2, addr
I-NE LDX opl

CPX op2
BEQ addr

6 . R-NE opl, op2, addr
R-NE I-NE opl, op2, addr

I-NE opl+2, op2+2, addr

C9

7. B-GT opl, op2, addr
B-GT LDA A opl

CMP A op2
BLT addr
BEQ addr

8 . I-GT opl, op2, addr
I-GT LDX opl

CPX op2
BLT addr
BEQ addr

9. R-GT opl, op2, addr
R-GT I-GT opl, op2, addr

I-GT opl+2, op2+2, addr
10 B-LT opl, op2, addr

B-LT LDA A opl
CMP A op2
BGT addr
BEQ addr

11 I-LT opl, op2, addr
I-LT LDX opl

CPX op2
BGT addr
BEQ addr

12 R-LT opl, op2, addr
R-LT I-LT opl, op2, addr

I-LT opl+2, op2+2, addr
13 B-GE opl, op2, addr

B-GE LDA A opl
CMP A op2
BLT addr

14 I-GE opl, op2, addr
I-GE LDX opl

CPX op2
BLT addr

15 R-GE opl, op2, addr
R-GE I-GE opl, op2, addr

I-GE opl+2, op2+2, addr

CIO

16 B-LE opl, op2, addr
B-LE LDA A opl

CMP A op2
BGT addr

17 I-LE opl, op2, addr
I-LE LDX opl

CPX op2
BGT addr

18 R-LE opl, op2, addr
R-LE I-LE opl, op2, addr

I-LE opl+2, op2+2, addr
Control Structures
WHILE
General Format

WHILE condition, opl, op2, ENDWHILE
— loop body —

BRA WHILE
ENDWHILE NOP

SEQ
General Format

SEQ I-LT, opl, limit, ENDSEQ
— loop body —

BRA SEQ
ENDSEQ NOP

IF
General Format

IF conditionl opl, op2, PI
— first action —
BRA ENDIF

Pi condition2 opl, op2, Pn
— second action —
BRA ENDIF

Pn conditionN opl, op2, ENDIF
— nth action —

ENDIF NOP

Cll

Subroutine Call
CALL Rl

JSR Rl
RETURN

RTS
INTON

CLI — clear interrupt
INTOFF

SEI — set interrupt
WAIT

WAI — wait for interrupt
POLL

This construct is device dependent, but can be
given the general form of:-
POLL address, mask
The mask (byte) is ANDed with the result of reading
a value from the address (status register), until a
result greater than zero is found. This information
needs to be supplied by the designer, and eventually by
the structural design system.

DELAY
This operation needs to be defined for each processor
which has a different clock rate. The definition below
assumes a 1 MHz 6800 processor, and generates a 1
millisecond delay:-
Dlmsec LDA A #$64
DELAY NOP

NOP
DEC A
BNE DELAY

Other time delays can be produced by calling the above
routine the required number of times.

C12

