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Design of Optimal Control Systems and Industrial Applications

I E Fotakis

Abstract

This thesis describes work on the selection of the optimal control
criterion weighting matrices, based on multivariable root loci and
frequency domain properties. The case with a crossproduct weighting term
in the cost function is examined and a design algorithm is proposed. The
frequency domain solution to the finite time optimal control problem for
discrete time systems is described and controller expressions in closed
loop form are obtained for the regulation and tracking problems. The
design of a strip shape control system for a Sendzimir cold rolling steel
mill is described and problems of implementation are discussed. Finally,
a detailed comparison between an optimal and a multivariable frequency
domain design for a dynamic ship positioning system is presented. The:
effects of using Kalman filters for state estimate feedback in non-optimal
systems is discussed.
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CHAPTER 1

"An Introduction to Optimal Control Problems and Methods

1.1 Introduction

There have been continuous advances in theoretical control
engineering over the last twenty years, particularly in the field of
Linear Systems. The work of Kalman is ndtable in this respect. During
the last decade, frequency domain techniques for multivariable systems
have been developed by Rosenbrock, Mayne and MacFarlane and their co-
workers [18,19,20]. The implementation of new control techniques has
led to systems with tighter specifications and bétter performance. As
control engineers take into account the overall needs of the process
to be controlled, changes in the priorities of the objectives to Dbe

fulfilled lead to the development of appropriate control schemes.

A trend in the design of industrial systems is to consider energy
losses in the process and the trade off between system performance and
minimization of energy losses. To quantify this improvement, a cost
criterion has to be defined. The controller which minimizes this cost
function may be found using Optimal Control theory. The use of optimal
control theory comes very naturally in the area of aero-sPaée vehicle
trajectory control and the design of aircraft control systems. In the
following, optimal control will alsb be shown to provide a framework

for the design of certain industrial systems.

As with the main body of control engineering results, the main

work on optimal control theory is involved with Linear Systems and in



particular considering quadratic terms in the cost function. The main
advantages of Linear Quadratic Optimal Control feedback systems stem
from (i)the ease of obtaining the solution to  a particular problem
once the weighting.matrices of the performance criterion are defined;
(ii) the guaranfeed asymptotic stability of the closed loop sysfem and
(iii)its direct and easy applicability fo systems with many inputs and
outputs. The main disadvantage of optimal control when applied to
industrial problems where criteria like step response, overshoot, rise
time, etc. , are of prime importance, is that there are few results
relating those specifications to the weighting matrices of the
performance criterion. In recent years a number of authors have
presented papers trying to overcome this difficulty and have described

methods of designing such optimal systems.

In the present thesis some contribution is made towards the
problem of weighting matrices selection as described in chapter two.
The solution to +the finite discrete time optimal contfol problem is
described in chapter three. The follqwing chapter deals with the’
design of the shape controllscheme for a Sendzimir cold rolling mill.
Chapter five gives a detailed comparison between an optimal controller
(obtained using the design methods of chapter two) and one designed

with multivariable frequency domain techniques. An overview of the

research effort follows in the concluding chapter.



1.2 Complex Frequency Domain Approach to Systems Analysis and Design

The s—doméin approach to control systems analysis and design was
developed by Wiener during the Second World War years. His famous
dissertation on these methods was often refered to as the 'yellow
peril'. This stemmed from the yellow cover of the then classified
report [1]. In this fundamental treatise on the subject he introduced
several ideas which have beén incorporated in latef work. These may be
classified as follows:

(i) Formulation of the filtering and control problemg using optimal
cést functions and solutions of these problems using s-domain or
Parseval theorem gpproaches.

(ii) Use of the spectral factorisation in the optimal control
solution.

(iii) The requirement that the optimal control or filtering solution
has to be realised by causal components and the means to achieve this

condition.

Wiener's work was classified during the war years but soon after
was further developed by other researcher's such as Newton et al [2].
Although the s-domain approach created some interest it was never
applied in multichannel filtering or multivariable control problems
and the number of real applications were very few. The later work by
Kalman [3,4] in the time domain (since 1960) found immediate
application in the aerospace industry and in many other fields. 1In
some ways the problem formulation and solution were very similar, the
only differences lying in the form that the solution was achieved. The
state feedback solution to the control problem was found to Dbe

particularly appropriate. Similarly the recursive solution to the



estimation problem enabled filtering algorithms to be implemented
easily on digital computers. The calculation of either the optimal
control feedback gain matrix or the Kalman filter gain matrix re&uced
to tﬁe solution of a matrix ﬁiccati equation. This difference between
the Wiener and Kalman approaches is crucial. The solution of most of
the linear quadratic optimal control and estimation problems was
reduced to the solution of only one sort of matrix equation which
enable@ computer solutions to be obtained for general system
descriptions. The Wiener approach however cannot be systematised in
this way. Each problem and system description must be treated
individually and the solution procedure cannot be implemented via a

standard algorithm.

The s~domain approach taken herg does not overcome this léter
probleg,however the class of problems considered is wider than that
considered up to now in the literature. Although not treated in this
thesis there is a method recently developed which may offer a solution
to the problem of achieving standard algorithms. Peterka [6] and
Kucera [5] have developed a polynomiél equation approach to systems
theory which.goes some way towards pro%iding standard solutions.
Kucera has proposed algorithms for most of the calculations involved
in the polynomial matrix solutions. However there are no applications

in this area and computer packages are not yet available nor likely to

be, within the next two or three years.

Other authors have made contributions in the area of s-domain
analysis and design. Yula et a1[7] in a relatively recent paper on
Wiener~-Hopf methods introduced one new iﬁportant component into the

problem solution. They recognised that the solution to optimal control



problems do not necessarily lead to stable closed loop configurations.
They were considering the output feedback situation where a cascade
controller is used. For example if a plant is non-minimum phase and a
straight-forward minimum variance controller is designed [8] the
closed loop system can be unstable. To avoid thig situation the
problem can be reformulated and in this case the minimum variance
controller by Peterka [6] is obtéined which leads to a stable closed
loog system. In the former case tpe optimal controller tries to cancel
the right half plane zeros of the plant and thus creates unstable and
uncontrollable poles. Hidden unstable modes always reéult in closed
loop unstable systems and must therefore be avoide&.

To circumvent the above difficulties Yula et al proposed that the
control problem specification should be altered to include stability
as well as optimality. This extra restriction is manifested in the
control solution by additional constraint equations which must be
satisfied. These authbrs were considering infinite +time optimal
control problems and they did not develop algorithms which could be

implemented on computers.

Few authors have considered the solution of finite time optimal
control problems. There are two main reasons, first that finite time
optimal controllers and filters are more compiicated than their
infinite +time counterparts and second that most filtering and
estimation problems fall more naturally into the infinite time problem
structure. However Grimble [9] and Fotakis and Grimble [10] have
develoﬁed a frequency domain. approach to the solution of these
problems. In chapter three the z-domain solution of the deterministic
finite time optimal control problem is described. This procedure has

the disadvantages mentioned above; that is, it is difficult to derive

-5 -



a'general algorithm for the multivariable case and finite time
problems are not so often found in industrial situations. However, one
important role for +this approach has ©been found where these
limitations are not so important. This is in the design of optimal
controllers for self tuning applibations, whe;e the disturbances are
of a deterministic rather than a stochastic nature. For example these
disturbances may be represented by sudden steps into the plant
(instead of whife noise). The applications of +these controllers in
self +tuning systems is not considered in the present thesis but the
theoretical ground work is presented which will enable such
controllers to be designed. It is of interest to note that self tuning
controllers based upon optimal control criteria using k-step shead
cost functions are directly related to the deterministic controllers
proposed here (for the infinite time situation). The solution of the
finite time optimal control problem has not been obtained previously

in the z-domain by other authors.



1.3 Frequency Domain Multivariable Design

Many authors have considered the design of systems in the
frequency domain, notably Bode, Nyquist and Evans for single input.
single output systems and Rosenbrock and MacFarlane for multivariable
systems. The design of optimal systems in the frequency domain has
attracted 1little attention. Grimble [11] and Fotakis [12] have
recently developed a method of specifying the Q, R and G weighting
matrices of the performance criterion using frequency domain criteria.
The hope is that gain and phase margin type of information may be
specified and from this the performance criterion can be developed.
One of the difficulties of this approach is that the criteria so
specified do not coﬁpletely define the Q and R matrices. The positive
aspect of this is +that this freedom in the selection of the ﬁatrix
elements may be employed fruiq%lly by the designer. In the same fime
this causes difficulties in +the attempt to program the method as a
standard algorithm for the design of systems. However it is hoped that
an interactive computer aided design facility (CAD) may be used to
overcome this problem. The designer would use the constraints imposed
by the frequency domain requirements to partly specify the weighting
matrices and then, as at present, use his engineering judgement to fix

the remaining elements of the matrices.

Although other authors (eg MacFarlane [13]) have considered the
frequency domain properties of optimal systems, few have considered
the design of such systems in the frequency domain. The work described
here must be extended to incorporate other design criteria, but the
simple examples given, show that the performance indices used have

produced systems with reasonable response characteristics.,



1.4 Review of the basic Optimal Control results

A brief review of the optimal control problem approaches both in
s-domain and in state space formulation follows. Considering the

linear time invariant plant described by the equations:

x(t)=Ax(t)+Bu(t) (1.1)
g(t)=cx(t) | (1.2)

and the criterion: T
J(u)=<y(1), P1g(T)g;ﬁ?y(t), (8)yr<u(t), Ru()Jas (1.3)

the problem of determining the control fi(t) for 0<t<T which minimises

the criterion J(u) is known as the deterministic linear optimal

control regulator problem [15]. Because of the equation 1.2 the

criterion J(u) may be rewrittqp as:
3(w)=<x(1), c%p,ex(2)+/(<x(), ctacx(e)yr<uls), Ru(+)y)at

[+
As has been proven [14,15] the solution to this problem can be obtained

from the matrix Riccati equation:

a(t)=-r~ B p(t)x(t) | (1.4)
—B(+)=ctqc-p(+)BR™ 1B P(£)+P(£)a+A%R(%) (1.5)
with terminal condition P(T)=c’P,C ' (1.6)

1

This solution is given in a block diagram representation in figure 1.
A second way of obtaining the control {i(t) is through augmentation of
- the state space equations, by considering the cosystem (or adjoint) of

system (A,B,C). The optimal trajectories are given by the equations

[16]:

()] [a =B [x(t)

t g*(ﬂ (1.7)
(1.8)

£(t) [ctec  -a
x (1)=c*P,cx(1)

this solution is depicted in figure 1b and is equivalent to the
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matrices CtQC and R should be Dboth positive definite. It is
interesting that the nature of the problem leads to a state feedback
closed loop system and this is asymptoticaly stable if and only if the

pair (A,B) is stabilizable [37].

Next consider the criterion

3
J(u)=<e(T), P1§(T)g:/2<g(t), Qe(t)*<ul(t), Ru(t))dt (1.9)
with g(t)=g(t)j£(t) | (1.10)

where r(t) is the desired output and e(t) is the error between actual

and desired output. This problem is known as the deterministic linear

optimal control servomechanism. The solution may be obtained either

using the Riccati equation or by considering the cosystem equations:
2(+)=Ax(t)+BR™'B%x (t)
£ (t)=cacx()-a%x (£)+c¥az(+) (1)

This solution is shown in figure 2a. The Riccati equation solution is
a(t)=—r" '8 ()x(£)+r " B%(¢)
-B(t)=ctec-p(t)BR™'P(t)a+A%R(t) - (1.12)
2(6)=(a"p(t)mR~'B%) g(+) +cPar( )

with P(1)=c’P.c  and g(m)=-c*P, r(1)

and this is depicted in figure 2b. It is clear that both problenms

“have the same solution structure and the same closed loop properties.

The frequency domain solution is reviewed ﬁext: first the system
operator W relating input and output is defined through the well known
convolution integral of the impulse response matrix w(t) with the
systeﬁ input: L
F(£)=(Wa) (£)=/w(t-2)u(<)d= (1.13)

°

the criterion J(u) (of equation 1. 9) can be expressed as follows by



L had -

J(u)=<e, Qe> +<u, Ru> = <(r-Wu), Q(r-wWu)> + <u, Rw (1.14)
== Hey =7 "= He = - S .

From this relationship a gradient function g(u) may be defined and
the necessary condition for optimality is that g(&)=0 [17].
Transforming +this into the s~domain and using spectral factorisation
[73] the solution is found as [17]:

. ~1 ot -1t '
a(s)=[x(a) 17 {[¥"(-8) "W (-s)Qz(s) },

=¥(s)x(s) (1-15)
and ¥¥(=8)¥(s)=W(-5)QW(s)*R
and a feedback closed loop controller can be obtaiﬁed as:
(1.16)

K(s)=F(s)[I-W(s)F(s) ]

and this form of solution is shown in figure 2c.
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CHAPTER 2

Optimal Control Systems with Cross-Product Weighting;
Weighting Matrices Selection



2.

1

Introduction

In dealing with the design of optimal controllers for industrial
applications there has been two main criticisms. The first concerns
the selection of the performance criterion weighting matrices and the
second is the apparent need for phase advance (él,ZZ}This is only a
problem whgn an observer is required for the implementation of the
state feedback controllers. The phase advance in LQP systems follows
because the determinant of the return difference matrix is greater than
unity for all frequencies.[§3,24] Thisvimplies that for a single |
input system the phase margin [25] is greater than 60°. To be able.to
have a smaller phase margin the locus of detF(s) must pass within the
unit circle, and this can be achieved for an optimal system if a cross
product weighting term, between the state and the control, is intro-
duced. In this chapter such a problem is defined, its properties are

studied and a design procedure is outlined.

To help with the selection of the weighting matrices, use is made

of recent results [33,34] on the asymptotic root loci properties of

optimal systems. The use of root locus to design optimal systems

originated by Chang [30] and was extended by Tyler and Tuteur [31].
The relationship betwéen the Q and R matrices and conventional design
characteristics has been investigated but there are not any results
for the multivariable case [32]. Chen and Shen [33], Solheim [34]
produced algorithnw for this purpose but their methods have the
weakness of considering only tﬁe eigenvalues of the system. Harvey
and Stein [35 ] considered the state regulator problem when the system
is controllable observable and minimum phase. In this work the output
regulator is considered and the plant is assumed to be stabilisable

and detectable only.

- 12 -



The initial development of the design technique presented in this
Chapter was described in Grimble [22:] , [36]; The author contributed
to the theoretical analysis and was responsible for the computer

implementation and the applications of the technique to the industrial

problems.

- 13 -



2.2 Optimal Control Problem

We consider the following linear constant plant, controllable
and observable represented by the state space equations:

Ax(t) + Bu(t) ‘ (2.1)

x(t)

y(t)

Cx(t) : ' (2.2)
with A,B,C the plant matrices and define as performance criterion

IW = ] <e®), @E>y + w®), Ry
0 T m

+ 2<y(t), Gu(t)>p + 2<y(t), Mg(t)>E (2.3)

T d :
where the weighting matrices Q and R are positive definite and the
error e(t) is defined as the difference between the plant output
from the desired output r(t):

e(t) = x(t) - y(t) (2.4)

To obtain a unique solution for the above optimal servomechanism
problem the two cross product weighting matrices G, M have to be
constrained. These constraints are obtéined by .rearranging equation
2.3 tb remove the cross product terms:

<u, R_u->E + 2<y, GH>E =

m T
- <+ w16y, R s By, - wicTe, 6T,
m m
- 2<y, GR'IGT£>B + <R’1GT£, GTE?E (2.5)
T m

by choosing M = GR'lGT both the cross product matrices depend upon G

and if we set:

Q = Q- GRIGT | (2.6)
uy (t) = u(t) + R71GTy(t) | 2.7
the performance criterion may be rewritten as:
J(u) = %jm<gﬁt), Qe(t)>; + <up(t), Ry (t)>p dt (2.8)
0 T m

- 14 -



where the last term in the identity 2.5 is omitted from the criterion
since it is constant for any defined r(t) and does not affect the

minimisation of J(u). The original plant is equivalent to the

following:
X(t) = Ajx(t) + Buj(t) (2.9)
y(t) = Cx(t) | (2.10)
where  Ap = A - BRTIG'C (2.11)

It is clear that a constraint for G comes from equation 2.8
where Q; 2 0, that is

Q- 6rlcT 30 ' (2.12)

The optimal control U,(t) for the criterion 2.8 and plant 2.9
leads to the desired control ﬁ(t), for the original problem, through
equation 2.7. Both, the original system (A,B,C) and the system (A4B,C)
have the same state trajectories, for the same initial conditionms.

All the above results apply to the state regulator problem (by setting
the matrix C equal to the unity matrix) and to the output regulator
by setting the reference r = 0. It is well known that the state
feedback solution for the optimal control problem is obtained by the
Riccati differential equation and for the infinite-time problem, from

the algebraic Riccati equation.

- 15 -



2.3 Return difference, Optimality condition

The frequency domain solution to the above problem is obtained
as follows. Define the optimal state feedback matrix Kj: ’
K, = R-1BTP, (2.13)
which leads to the control law (see also section 1.4):

up(t) = -K;x(t) + R°1BTg | (2.14)

or for the original plant

u(t) = -(K + RIGTO)x(t) + R-1BTg
= _K_g_(t) + R‘IBT_g : (2.15)
where '
k 4k + r6TC (2.16)

Now for the infinite time case the matrix P; is the positive semi-

.

definite constant matrix obtained from the algebraic Riccati equation:

T

-PjA; - AiP; + P;BR-1BTP; = cToiC o (2.17)

We consider the matrix return difference of the examined system:

F(s) 2 1+ k¢(s)B (2.18)
_where

o(s) & (s1-m)-1 (2.19)
' and the plant transfér function is W(s) = C.¢(s)B ‘(2.20)

The optimal return difference equation follows after substituting
into equation 2.17, equation 2.11 and 2.13:

_PJA - AP, + K;TGTC + CTGK; + K; 'RK; = C1Q,C (2.21)
so we have

Pro(s)-l + ¢1(s)~1P; = CTQ,C - 1;°G°C - CTGK; - kg RK;
premultiplying by BT¢T(-S) and post multiplying by ¢(s)B and using

2.16 leads to
WT(-5)QuW(s) + R + W.(-5)G + GIW(s) + Wl (-s)GR™1GTW(s)

= FY(-s)RE(s) | (2.22)

=16 -



This equation can be rewritten by use of equation 2.6 as

Wl(-s)QW(s) + R + W (-s)G + G (s) = FL(-$)RF(s) | (2.23)

or
WI(s)QuN(s) + (T + W (-s)GR™DR(T + R-16Tw(s)) =

= Fl(-s)RE(s) (2.24)

Equation 2.23 becomes identical to the one discussed by -
MacFarlane [23,2§in the case where the crossproduct term G vanishes.
The abo?e ;quation applies direct to the original optimal control
problem; the equivalent transformed one is useful only for supplying
the constraihts on matrix G (equation 2.12).

MacFarlane [23] has shown for the case with no crossproduct term the

necessary condition for optimality is
|det F(juw)|z 1 Y we R , (2.25)

This implies that the Nyquist locus plot of det F(jw) .lies outside
the unit circle with centre (0,0) and for a single input plant this
means that the phase margin will be greater than 600[?3], This is out
of the range of the usual design criteria and is a.drawback if state
feedback can't be applied because it requires a significant amount of
phase advance to be introduced by a dynamic compensator which can
cause noise problems.

By the use of the crossproduct term (matrix G) we can prove that
thé above equation (2.25) need not be satisfied.

Let v(s) be an eigenvector of F(s) corresponding to the eigenvalue
p(s):

F(s) v(s) = p(s).¥(s)
premultiplying equation (22) by XT(-S) and postmultiplying by v(s) we

obtain:

- 17 -



XT(-S)WT(-S)QW(S)XIS)-FZT(-S)[Rn+WT(-S)G-+GTW[S)]!Is) =

= P(-S)pCS)z?(-S)RK(S)
because the term in Q is positive semidefinite on the jw axis of the
s-plane the above equation leads to the following necessary
condition for optimality:

VT30 [R + W (-ju)G + GW(jw)]V(ju)
vT (-jw) Ry (ju)

[p(Gw) |2 2 (2.26)
in this equation WT(-jm)G + GTW(jw) is Hermitian but not positive
definite and thus only when G = 0 the above gives [p(jw)|? > 1 for

all w. By use of the relation:

n
det F(jw) = T p;(ju)
i=1

we see that the condition 2.25 does not necessarily apply when a cross-
product term exists. Similarly the criteria developed by Porter PQ]
do not hold in this case. From the above we can conclude that the

necessary condition for optimality becomes
ldet F(Gu)| 2 7 . (2.27)
where T is the radius of a circle which can Ee less than unity.

If Q and R are predetermined it may not be possible to choose G
so that the det F(jw) locus can enter the unit circle because G must
also satisfy the condition of equation 2.12 Q; = Q - er7'e’ 2 o.

So we will assume that Q, R, G can be chosen ffeely to satisfy
equation 2.12 and equation 2.27 for a desired value of T < 1 so we
are not going to evaluate Te using equation 2.26 which would be a

quite difficult task.

From equation 2.23:
|det F(jw)|2.det R =

= det[W (~50)QV(5w) + R + W (-50)G + GW(jw)] (2.28)

- 18 -



Figure 1 depicts a plot of det F(jw) for a system with cross-
product weighting. The point of origin is the critical point for
stability so for an open loop stable plant the feedback system will

be stable if the origin is not enclosed. Hsu and Chen have shown [27]:

—
.

det Flsj = 2 (2.29)

~ ~
(7] (7}
1 \
> <
|-

Nt

LUE=1R=N N = =
[

[
-

where Yj are the closed-loop system gigenvalues and‘)\i are the open
loop system eigenvalues (eigenvalues of the‘plant matrix A).
| The minimuﬁ distance from the origin to the plot of det F(jw) is
a measure of the degree of stability of the system. And in this method
of design this distance is specified in the beginning together with the
frequency w, at which det F(jw) touches the circle of radius T. It is
found that this point is often very close to the phase margin point
which is the point the det F(jw) plot is cut by a unit circle with
centre (1,0). This result is useful as it defines the frequency range
up to which the optimal feedback system gives an improvement in
sensitivity over the open loop system [25,23]

'Rosenbrock and McMorran [Qilhave also shown that as the frequency
tends to infinity det F(jw) teﬁds to the (1,0) since the system is

proper and it approaches that point with an angle of -90°.
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I, (det F(jw))

A

det F(jw) plane

critical point unit circle

for stability A
//;:iiif;;;ii:hhh\‘\\ 0.6 radius circle
»

Re(det F (jw))

det F(jw)

Figure 1 Frequency response plot of det F (jw)
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2.4

The Design Method

With optimal control for a given plant the design reduces to the
selection of the weighting matrices Q, R, G. In all the design methods
the usual procedure is an iterative process of trial and error until
a satisfactory performance of the closed loop system is obtained. The
same holds here for this method. In the literature some ways are
described of how to choose Q and R to achieve certain conventional
system performance characteristics like steady-state error, ﬁeak
ovérshoot etc. Those ideas can be applied properly modified to cal-
culate the G matrix.

The design procedure has the following steps:

1) Choose the radius rf and frequency Wy which is the minimum of
det F(jw), w can be chosen very near to the desired system

bandwidth or phase margin frequency of the fastest loop in a

multiloop system.

T

2) Expand Q-GR™1G" > 0 to obtain a set of inequalities which must be

satisfied by the elements of Q, R and G.

3) Evaluate —(|det F(ju)|2) = 0 and set v = u_ (2. 30)
Obtain also the equality
. . . Ty s
det[WT(-Jm)QW(Jw) + R + WT(-Jw)G + G W(jw)] = 2 (2.31)
det R f ’

This is the necessary condition that |det F(jw)| has minimum

I'f at wm.

4) Collect all equalities and inequalities the elements of Q, R, G

- must satisfy from steps 2, 3.

5) Choose Q, R, G such that the above relationships and any other

conventional criteria are satisfied.
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' Example 1
We consider the following single input three output plant

originally considered by Fallside and Seraji(}i] for the case with

G = 0.
1 0 i1
x= |1 -2 x+| O fu (2.32)
|0 -1 0
y = Ix

w -
The performance criterion is j(u) = J <x, Qx> + <u, Ru> + 2<x, Gu>dt
0

A . A T
where Q = diag(qiq293) R=1 G 2 (gi18283)

The open loop transfer function matrix is

[S2 + s + 2
. .
W(s) = 5 -(i + 1) (2.33)

P, (s) B (s41)(s2+5+2) = s3+252+35+2

In general restricting Q to be diagonal matrix can result in no
feasible solution but in this case with diagonal Q there exists a solution;

we choose g; = g3 = 0.

A(S) = WI(-s)QW(s) + R + W (-s)G + GIW(s) =
1 —
= ——————[q; (s2-5+2),q5(s-1) ,-q3] [s+s+2
pO(s)pO(-s) -(S"'l)
=1 |
1
+ 1+ Po(s) gZ(s 1) o(s) ('g2(5+1))
6 . -
or A(w) = 2 - au* - sz where o 2 2 - q1 - 282 (2.34)
w° - 2wt + ws +4 8 é 39, - qp + 2gp - 1
A
Y =4qp +qx +q3 +4 - dg
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for the local minimum g%-= 0

AT 6 -d-28-" 4
’(a 2w ot (2+28)mm + (12-4-28 3y)mm _
+ (4y-8d)w 2 -~ (y+4B) = 0
2 - 2
and At ) [% = r¢
the restriction on G: Q; =Q - GR'IGT 20 q; =

(2.35)

For wo = 8 rad/sec T, = 0.7
we have:

%%-: 0 .. 16777216(a-2) + 524288(1+B) + 4096(12-a-28-3y) + 256 (y-20)
- (y+4B) = 0

== 16772608a + 5160928 - 12033y = 32980992

|A]2 = £ .2 : 40960 + 648 - y = 13764

f
since there is no other requirement any solution of 2.34 which
satisfies the inequality 2.35 is accéptable. By letting A(o) = 10% so

the d.c. gain F(o) = 102 gives:

y = 410%
o = 56.56
B = -843.8

and from 2.34:

qp = 1 go = -27.28
qo = 790.24
qs = 39091

The optimal gain matrix becomes:
K= [6.634 -55.92 -128.81]
and the initial condition responses are shown in the figure 2 these

are similar to the responses that Fallside and Seraji obtained but also
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the system has a more realistic phase margin.

For the same system but for W, = 5.5 rad/sec Te = 0.7 we get the

solution
q = 2 g2 = -10
qz = 102
q3 = 2

which gives K = [.6637 -9.884 .7214]

and the responses for this case are shown in figure 3.

An attempt was made to computerise the above design algorithm but
the effort was abandoned as the estimated programming time was far more
than was available and there was inadequate library routines to obtain

solution for the non linear system of equalities and inequalities.
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0.4 t -
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0.2
XZ\
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0{6 6 0.8 1.0 T2t 1.6 1.8 2.0 2.2« 2.4
. TIME (SECS)
0.2 |
Figure .2 " Initial Condition Responses = - Q = diag {1 790.24 39091-}._
S » . G=Jo =-27.78 0fT
~~—— T -
TIME (SECS)

Figure 3 Initial Condition Responses Q = diag {27102 2}
: G =|o-100|7
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2.5 Selection of the Performance-Criterion Weighting Matrices

Let us consider the same plant (A,B,C) as defined in equation
2.1, 2.2, with the further éssumption'that the system is square. This
assumption can be justified [37] siﬁce the outputs defined through
equation 2.2 need not to coincide with the actual plant outputs; for
example, additional outputs may be defined to square up the system.
Also CB is assumed full rank; the more general case when CB is not full
rank is disgussed later. The performance criterion to be minimized has

the following form:

J) = I <y(),Q(t)>; + uP<u(t),Ru(t)>;
‘0 m m

+ u<y (t) ,Gg(t)sE dt , (2.36)
m

where Q, R are constant symmetric positive definite matrices and G

is constant and Q bg- GRIGT is positive definite as shown
previously. Let us denote by S the mxm full rank square root of
Q:Q = ST.S and the pair (A,S) is assumed to be detectable. The
control weighting depends on the real positive scalar u. The solution
of the above problem is the same as before (equations 2.14 to 2.23)

except for the inclusion of u:

u(t) = -Kx(t) (2.37)
K = (R-1/u2)(BTP; + uG'C) = R-1BTP;/u2 + R-1GTC/u
= x; + R7GC (2.38)

-PJA - ATPy + 1K, TGIC + wCTGK; + u2K;TRK; = C'QC . (2.39)
this final sfeady state matrix Riccati equation gives rise to the
equivalent frequency domain equation:

V2T (=5)RE(s) = W (-S)QW(s) + u2R + wH' (-5)G

+ uGW(s) C(2.40)
The expressions for calculating the weighting matrices Q and R are'

obtained from the following theorem. The crossproduct matrix G is not
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determined by these results but as already described it can be chosen
to shape the system time response and has to satisfy the conditions

set above; furthermore GTCB has to be symmetric or G is null .

Theorem 2.1 Selection of Q and R

For the LQP problem defined above assume that m pairs (A{n ng)
are specified. The optimal control weighting matrices can be selected

to provide the given asymptotic behaviour, for u-0:

Q = [(cBN) 711 (cBN)-L (2.41)

and

R

(NT)-1p™N-2 (2.42)
where N = {v;",vo , ... Xm“} and A" = diag{(1/717)2,(1/227)2,... (/2 )2}
As p~>0 there are m infinite closed loop eigenvalues of the form

A= M/ . (2.43)

[«
where lki | < » with m corresponding closed loop eigenvectors:

X; = By, (2.44)

Proof of Theorem 2.1

The proof relies on results from optimal root loci theory and the
closed loop eigenvector relationships summarised in Appendix 1. It
is shown that the return difference matrix F(s) determines the vectors
v; through the relation |

F(Ai)zi =0 - ' (2.45)
for each lié o(A)._ Thus the frequenciés'{ki} are a set of closed-loop

eigenvalues and the vectorsA{xi} relate to the closed loop eigenvectors.

The asymptotic behaviour of the closed loop system poles, is as

follows:

As shown in Appendix 2.1 (n-m) closed loop eigenvalues remain finite as

u>0. The rest of the m closed loop eigenvalues {Aiw/u} approach
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infinify in m first order Butterworth patterns [38]. These

‘eigenvalues must necessarily be a subset of the controllable modes, since

the uncontrollable modes are invariant uﬁder feedback, that is, the
asymptotically infinite modes Aim/uic(A). The eigenvectors corresponding

to the (n-m) finite modes are discussed later in section 2.7, now the
eigenvéctors corresponding to the m infinite modes are determined as following.

Let ¢(s) be expanded as a Laurent series [3@] then W(s) may be written °
W(s) = C(s™'I_+ s72A + s73A% + ...)B ' (2.46)
From the above equation 2.40 gives:

W2FT(-5)RF(s) = W3R - —55[(CB)'QCB + 0(1/9)]
- ﬁ%{(CB)TG - GlcB + 0(1/s)]} (2.47)

Assuming that G satisfies the condition (CB) G-G'CB = 0 and
denoting s; = us equation 2.47 becomes
FT(-s)RF(s) = R - —[(CB)TQCB + 0(1/s)] - =0(1/s) (2.48)
S$1% S )
thus for a given finite frequency s;, as u»0 then |s|+= and
T 1 T
F'(-$)RF(s)> R - 57(CB) QCB (2.49)

From equations 2.45 and 2.49 for each finite frequency Aim corres-

ponding vector !im and infinite eigenvalue Ai = Aim/u:

FT (- )RF(A,)y,” = 0 , (2.50)
[R - —=— (CB) QCB]y;” = 0 (2.51)
(A )2 :
T

As Q is symmetric positive definite it may be written Q = E E with
E full rank, this substituted in the last relation:
[((EcB)")~1R(ECB)~1]ECBY,” = --é-zscsxi” (2.52)
(A7)
i

The above is an eigenvector equation, the matrix within the square
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brackets is positive definite and symmetric, therefore has positive
real eigenvalues (1/lim)2 and orthogonal eigenvectors ECBXiw. Assume

~ the magnitude of these eigenvectors to bé unity and define

o]

N={v;", vo, ... v} (2.53)
then
(EcBN) T (ECBN) = I_ | (2.54)

If N is supposed to be specified then Q follows from equation 2.54:

Q= [(cBN) "1 (cBN) ! (2.55)
The matrix E may be chosen as E = (CBN)~! which is full rank (m) but
is not symmetric. Then equation 2.52:
(2;)?
from which if A" is defined as A" = diag{l/(AD2, 1/(2)2, ... 1/(A)2}:

R = (N)~1A"N"1
Thus the infinite modes are given by Ai = A:/u as p>0 and the
associated eigenvectors are X; = BXi as shown in Appendix 1.
In the case where N is chosen as the identity then R = A" is
diagonal, Q - [(cB)T1-! (CB)~! and as ‘s> EW(s)~L /s, further more, if

CB is diagonal then Q will be diagonal. also.
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2.6

Calculation of the weighting matrices, Example

As it was shown the weighting matrices Q and R depend on the
choice of the frequencies k: and the vectors y;, but even when the
matrix G is null (absent from the performance criterion) the process
is not complete; The finite value of p must be selected and this
may lead to a modification of Q and R so that all the specification
requirements are fulfilled. The full design process is discussed in

later sections.

The m closed-loop asymptotically infinite eigenvalues determined.
by the m frequencies A: may be selected to achieve given bandwidth
requirements én the inputs. As an example, for a two-input system with
the actuator corresponding to input 1, ten times as fast as that for
input 2, then AT = 101;. The fréquency AT may also be normalized, so
AT‘= -1 and A? = -o0.1. The vectors z; may be chosen so that the-
associated inputs are decoupled at high frequency. That is, the matrix
N may be defined to be a diagonal matrix. An alternative method of
selecting the m-pairs (A:,!;) is to consider theidesired output
bandwidth and interaction. Define the agymptotic output directions
as:

y: = Cx, = CBfi" (2.56)

=1 -1

where i = {1,2,...,m}. Since CB was assumed full-rank
o] - - 1 [+ 5

and thus the vectors X: may be chosen so that there is low interaction

in the outputs between the fast and slow mode terms. That is, if
A

o

M [Z?, ZZ,...,X;] then M may be defined to be a diagonal matrix.
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Example 2  Output Regulator Problem

Consider the open-loop system discussed by Moore [40]. The system
matrices are defined as:

-1.25 0.75 -0.75

A=1|1 -1.5 -0.75
1 -1 ~1.25
1 0
: 1 0 0
B= |0 1 C-=
0 0 1
0 1

Let the weighting matrix G = GT and note that CB = I,. This plant is
stabilizable but not controllable. For a finite-gain non-optimal system

Moore chooses the following desired output directions:

- . [-0.97
_y_i = c_’ﬁl =
0.32
1
X’ = C_EZ =
0.
corresponding to desired modes A, = -5 and A3 = -6, respectively. These

are taken below as the required asymptotically-infinite output directions

and modes, and the Q and R matrices are determined.

(-]

For this problem CB = I, and XZ =Y thence

20.9 1
N =
0.32 0.1}
and from (2.56)

T T 0.6687  1.1184
Q=(N) N = (W) = (2.58)
, 1.1184 10.767

- 31 -



T o 0.0193 0.0238
R= (N)IANT =
0.0238 0.3718
Note that

0.6687 0 1.1184

o

clqc = 0 0

1.1184 0 10.767 |
and thus in the equivalent state regulator problem state 2 is not weighted.

The time responses for this system are shown in figures 4 to 4eand these

responses are discussed in the next section.
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2.7 Asymptotically Finite Modes

The expressions for the matrices Q and R were obtained by con-
sidering the behaviour of the m asymptotically infinite modes. The
equations which determine these modes and the associated closed-loop
eigenvectors Qere also obtéined before. In the following the signi-
ficance of the remaining (n-m) asymptotically finite eigenvalues and
eigenvectors is discussed and the defining equations are obtained.
This set of eigenvalues contains any uncontrollable modes. The
relationship between thevasymptotically finite closed loop poles (also
referred to as optimal finite zeros) and the system zeros has been |

discussed by Kouvaritakis [36] and is summarised below.

Theorem 2.2 Asymptotically Finige Modes

The asymptotically finite closed-loop poles of a square minimum
phase system S(A,B,C) are equal to the zeros of S(A,B,C). The
as?mptdtically finite closed-loop poles of a square non-minimum phase
system S(A,B,C) are given by the union of the set of left-half plane
zeros of S(A,B,C) together with the set of the mirror images of the
right-half plane zeros of S(A,B,C) about the imaginary axis.

Proof: The proof given by Kouvaritakis [}8] depends upon the augmented
system S(A*,B*,C*) defined in appendix 1. The system zeros are
defined in appendix 3.

Note that the cross-product weighting matrf; does not affect the
above results (Appendix 1) even when the assumption made in section 2.5
does not hold.

It will now be shown that if the plant is assumed to be minimum
phase the asumptotically finite eigenvectors lie within the kernel of
C. Thus uncontrollable modes for example, will not be present in the
output responses which is a highly desirable practical objective. The

following theorem, developed by Kwakernaak [}11, is now required on
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the maximum achievable accuracy of regulators.

Theorem 2.3 Maximum Achievable Accuracy

Consider the stabilizable and detectable linear system 2.1, 2.2
(B and C full rank) with criterion 236 (Q, R > 0 and G = 0) then
lim J(u) = 0, if and only if, the transmission zeros of S(A,B,C) lie

u>o
in the open left-half complex plane[@l, 42]

Corollary 1 Asymptotically Finite Eigenvector Directions

The asymptotically-finite eigenvector directions'{gg} for the

i

minimum phase plant W(s) lie within the kernel of’C, that is ng 0,
for j ¢ {1,2,...,n-m}.
Proof: The output may be ex@ressed [40] in terms of the eigenvalugs
Aj (the asymptotically finite eigenvalues are assumed distinct) and
eigenvectors Ej as follows:

y(®) =z cx; (5 xp) 9 (2.59)

j=1

Wmm[&gzn.%ﬂ=[ﬁ§%“.%rh Mwmnwtht%k#Omd

since X, is arbitrary, assume that the output contains a non-zero term
in elkt. Each output component is therefore composed of n linearly-
independeht terms on C(0,») and atileast one component must include a
term in e‘lkt. The cost-function weighting matrix Q > O and thus
lim J(u) # 0 =W(s) is not minimuﬁ phase. It follows from the
z:gtradition that C§k = 0.
Corollary 2 First Order Multivariable Structure

The closed-loop transfer function matrix T(s) fbr the square
system S(A—BKw, B, C) is of first-order type [}3, 44].
Proof: The closed-loop eigenvalues are assumed distiﬁct and thus the

matrix A-BK has a simple diagonal structure and T(s) may be expressed

in the dyadic form:
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T
n qﬁiEiB m o. T

J .
T(s) = I ——— = L ———Y.B. (2.60)
i=1 (S+}\i) J'.__l (S+>\j) J

where.the set of dual eigenvectors is denoted by {z,;} and the
asymptotically finite eigenvectors (belonging to the kernal of C) have
been omitted in the second summation. A square multivariable system
that has the dyadic structure in 2.60 was defined by Owens [ 43] to be

of first-order type.

Theorem 2.4 Asymptotically Finite Eigenvector Directions
Consider the optimal control problem'described in theorem 2.3 and

assume that the plant S(A,B,C) is minimum phase, and the assumptions

given in section 2.5 hold.The (n-m) asymptotically finite eigenvalues
and eigenvectors are related to the system zeros and zero directions
as follows: |

(a) The (n-m) asymptotically finite eigenvalues {A?} are equal to the
(n-m) zeros of the system S(A,B,C).

(b) The asymptotically finite eigenvector 5;, corresponding to the
eigenvalue A?, is identical (except possibly for magnitude) to the
state zero direction gg, corresponding to the zero k?.

(c) The asymptotically finite input vector !g 2 -Kf§§ is identical
(except possibly for magnitude) to the input zero direction gg;
corresponding to the zero A?.

Proof: Part (a) follows immediately from theorem 2.1. From.

- corollary 1 of previous section the asymptotically finite eigenvalue

A? and eigenvector gg satisfy

(A‘J?I - A+ BKw)gg? =0 IA‘J?I < w (2.61)
cg; =0, for j € {1,2,...,n-m} (2.62)

The definitions of zeros and zero directions are given in appendix 3.

Note that the above equations are satisfied for a given limiting gain
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matrix K (as u»0). It follows from theorem A3.2 in appendix 3 that
A? is a zero of the system S(A,B,C) and zg is the corresponding state
zero direction. Conversely, if'(xg,ég) denotes a zero end state zero
direction of the system S(A,B,C) and if this zero is assumed to have
unit algebraic and geoﬁetric multiplicity [45], then the vector Qg is
unique (except for»magnitude). Thus, identify 9; = gg and part (b) of
the theorem follows. Finally, part (c) of the theorem follows from a
similar argu&ent, given the above assumption.

The following theorem holds for a more restiictive set of

conditions.

Theo:em 2.5 (Harvey and Stein [35],1978)

Consider the LQP optimal control problem described in section 2
with the additional assumptions that the plant is controllable and
observable and minimum-phase. Also assume that the transmission
zeros of W(s) do not belong to the spectrum of A and are distinct.
As y~>0 the (n-m) finite closed-loop eigenvalues'{lg} and associated

‘ input vectors Xg are defined by: .
0, 0 0 v
WA)v., =0 Al €= 2.63
(Y5 1251 , (2.63)
and the corresponding closed-loop eigenvectors 53 are given by:

o o ~1p.0
. = (A;I_ - A) "Bv. 2.64

for j € {1j2,...,n-m}.
Proof: From equations (2.40) and (2.45) the (n-m) finite eigenvalues

satisfy (as u-»0)
wT(-x‘J?)chx;’)Xg’ =0,  forj e {1,2,...,n-m} (2.65)

The stable closed-loop eigenvalues must therefore satisfy (2.64).
The closed-loop eigenvector (2.65) follows directly from corollary

A2.1 and theorem A2.2 in appendix 2.
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The results of this section for minimum phase plants may be
summarised as follows. As >0 (n-m) closed-loop eigenvalues
remain finite and approach either the transmission zeros of W(s) or
invariant zeros of S(A,B,C). The system has the desirable charac-
teristic that all uncontrollable modes (assumed less than n-m)
become ﬁnobservable. The closed-loop transfer function matrix for
the system, as p»0, has a simple dyadic structure and the system is
of first-order type. The asymptotically finite eigenvector
directions define (A,B) invariant subspaces [%6,4{} in the kernel

of C.

The situation described above is not the same as that discussed in
section.2.5; regarding the asymptotically-infinite modes. These modes
and the corresponding eigenvectors are determined by the weighting
matrices which are specified by the designer (via the (Ai,xi) pairs).
However, the asymptotically finite modes are determined by the plant
structure. The zeros and zero directions may only be varied by
changing the combinations of inputs and outputs from the plant which
may not be possible. The above results are nevertheless useful in-
design since they allow the (n-m) asymptotically closed-loop
eigeﬁvalues ana eigenvectors to be calculated before the weighting

matrices are chosen.
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Example 3 Calculation of the Asymptotically Finite Modes

The finite zeros and zero directions, for the output regulator
problem may be determined using the results of Kouvaritakis and MacFarlane [Zé]
The invariant zeros are found by determining matrices N and M such that |
NB=0,CM=0 and NM = In-m’ and then computing the eigenvalues of the
matrix NAM. Thence, NAM = -0.5 and the system has the invariant zero
s; = -0.5. [}é]; Notice that this zero corresponds with the position of the

uncontrollable mode. The transfer-function matrix has the form:

1 (s + 0.5)(s + 2.25) . 0 :
W) = 55y |
o (s + 0.5) (s + 0.5)(s + 1.25)

where po(s) = (s + 0.5)(s + 1.25)(s + 2.25). Clearly the assumption that
the zero does not belong to the spectrum of A does not hold in this example.
The state and control zero directions can be found from the ﬁore general

theorem 2.4, These directions may be calculated as follows:
s;I - A Bl |x1
=0
C 0] {92

=[O 4 0

thence

o1 =[3 -4]

The above invariant zero is also an input decoupling zero for the plant
(the number of input decoupling zeros = rank defect of the controllability

matrix = 1).

The time responses for various values of u, are shown in figures 44
to 4e, The initial state is assumed to be X, = (0 o 1)T. As u tends
to zero the two outputs tends to zero almost everywhere. However, the

7

uncontrollable mode has a dominant influence on state 2. This clearly

indicates that the eigenvector corresponding to the uncontrollable
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mode belongs to the kernel of C. It is also evident that this eigenvector
direction does not change significantly for finite non-zero p, since the
uncontrollable mode does not dominate the outputs for such values of py. The

system responses compare favourably with those obtained by Moore [:40:]

- 39 -



sopnjjutivu nding puv e v

5'8? tine
4.8
X1,42 (outpuc 1)
-'§'|F
() poe
1.8,
L ]
:
g (oucpuc 2)
3
é 28 . ==~“‘-p cice
~ 20 1.9 2.9 3.8 4.
5
-.54 2
®1 (Oucpue 1)
-1.84
~(bY g2 ed0
1.8

3 (ougrue 2)

sepnjjulvm IndIne pus ajuw

| 2.
o , © g i

Fig. 4: State and Output Responses
- 40 -




1.8

%3 (outpuc 2)

sspnijudsw Indano puv 83w

X1 {output 1)

._l.a_* (d’) Y.?.': 0.1
1.9,
. .
g
? 5]
‘3 X3 (oytput 2)
H
A
g
¢ .00 . . . . 5.9,
C 1.8
Xt (ontput 1)
-.5]

"“’l o @  p=004-

Fig. 4: State and Output Responses

._41_

time



2.8 Locus of the Closed Loop Poles as p Varies

An initial finite-value for u may be selected by choosing the
distance of the faraway closed-loop poles to the origin and by using
the relationship established in Appendix 4. If for example this

radius or distance is chosen as Tes then Me becomes:

-1 (¢2 det Q/det R)%m (2.66)
e

where o is the coefficient of s" in the zero polynomial W(s); that is,

Ue

o = det CB. In example "2 det Q = 5.95, det R = 0.00661, T = 5.5,

il

m= 2 and o« = 1, thence Be = 0.996 (Figure 5).

The values of Q, R and e so defined, are good starting points
for a design, however, it is very likely that the value of e will
need modification. A suitable value for M may be selected from optimal
root-loci plots for the system[}@, 55]. The root-loci start at the
points for which u-»», which correspond to low feedback gains. In this
case the closed-loop poles approach either the open-loop stable poles
for the plant, or the mirror images of the open-loop unstable poles.
These results are summhrized in Appendix 2.5. The root-loci tend
towards either the plant zeros or the infinite zeros, as p»0. This

case was discussed in previous sections and corresponds to the use

of high state-feedback gains |50].

It is clearly desirable to have an efficient root locus plotting
progrém. Such a program may be developed using the primal-dual system
discussed in Appendix 1 and a multivariable root locu; plotting
package (as discussed by Kouvaritakis and Shaked [51]). However, in
the present design method the alternative approach of calculating
the eigenvalues of the closed loop system matrix AC = A - BK is more

desirable, since eigenvectors may also be easily calculated. Efficient

algorithms are readily available for eigenvalue/eigenvector calculatioms.
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The gain calculation poses more of a problem since the gain must be
calculated for each value of u. An approkimate expression for the

gain matrix is obtained in Appendix 6 and this enables the solution of the
steady-state Riccati equation, for each w,, to be avoided. The results

in this Appendix are particularly useful for hand calculations when u

is small.

For machine comp;tation a more efficient method of calculating the
optimal gain matrix K(p) is required than repeatedly solving the steady
state Riccati equation. Such a technique based upon a parameter
imbedding solution of the Riccati equation, due to Jamshidi et al 56- 54
is summarised in Appendix 7. This approach enables the gain matrix
to be calculated for all values of u'within some interval [uo,uT] and

involves only the solution of one steady-state Riccati equation and one

ordinary differential equation.
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2.9 The Case When CB 'is Not Full Rank

The situation when the first Merkov parameter (CB) is not.full rank
is inzgeneral much more complicated than that described previously. The
equations which determine the Q and R weighting matrices may still be
derived but the Q matrix must be calculated using an iterative algorithm.
'However, there is an important class of special céses where some of the
Markov parameters are not full rank and yet the weighting matrix
calculations are again relatively st;aightforﬁard. For simplicity in
the following assume that the weighting matrix G = O.

Consider the situation wﬁere the first t%o Markov parameters are

- zero (as in the following example), that. is MB = CB =0 and M; = CAB = 0.
At legsﬁ m closed loop poles approach infinity as M tends to zero[?iﬁ*and

these are determined by the higher order terms in equation 2.47:

1

—75% ((CA?B) QCA?B + 0(1/5)) 2.67) -

p2ET (-s)RF(s) = w(R -

Assume s; = s’ remains finite as § + O, then

((ca2B)Tqca2s)) (2.68)

md =

FL (-s)RF(s) + (R -

3
1f CA%B is of full rank then the analysis in section 2.5

may be repeated to obtain:

Q = (A’ (cazmm™? (2.69)

R = () st (2.70)
whére

A5, A aiag {1/QD° /0, ...y 1/00)F) (2.71).

In the more general case where the first k Markov parameters are zero

and Mk = CAkB is full rank, the above expressions become:

qQ = (cafmnT ™ cakmn™? (2.72)

R = ahT, N (2.73)
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where

2 (k+1) © 2(k+1)}

My A CDFatag LanD ™, L, any

Systems of the above type have more than k cascaded dynamical elements

' . . k+1
between the inputs and the outputs (recall that Mk = lim s "W(s)).
. §-»0

Example 4 Dynamic Ship Poéitioning Control System

This example is based upon the dynamic ship positioning control problem.
described in detail in Chapter 5. From the state space equations we note
- = 2 . . . ‘
that C2 0 = o, CgAsz 0 but Cy AZ By is full rank reflecting the fact tha;

there are three dynamic cascaded elements between inputs and outputs. Thus,

S ~
C,Q,A’:?,BQ, =

0.84243 0.4216
5.0654 -2.5327

2 = -
J , dgt (CQARBQ) = -4,2692
and the weighting matrices may be calculated using the previous results.
Consider the case when the control signal for the first input must be 1.5
times faster that that for the second input. For non-interaction between
the two sets of third order modes choose N = I, and let XT = 1.5, A? =1,

From 2,69 to 2.7

A = diag {(1/>\°f)"5, (1/A2) 8} = diag {0.08779, 1.0}
R = A3 = diag {0.08779, 1.0}

1.75974 -0.175545 |
" -0.175545  0.04869 ]

and det Q = 0.05487 > 0. The dominant time constant for the closed-1loop
systemshould be approximately 10 seconds. A suitable value of 2 is 1.
o
2

. o
For inputs responding with the same speed choose A; = A

™

= 1. Then Q
remains as above but R = diag {1.0, 1.0}. (For time response plots see

Chapter 5.)

= 45 -



.10 Conclusions

A design method has been described for optimal output regulating
systems which enables the performance criterion weighting matrices to
be specified. The designer chooses a desired set of input directions,
~ corresponding to the fast modes, and a desired set of eigenvalues
'{k:/u}. There are various ways of selecting these quantities. For
example, the eigenvélues may be chosen to achieve relative bandwidth
requirements and the corresponding input vectors may be chosen to decouple
the modes. -
After Q and R are specified there remains freédom in the choice of
the cross—product weighting matrix G.and in the selection of ﬁ. The G
matrix may of course be set to zero if desired and M may be calculated.
using (2.66), However, it is better to select tﬁis latter quantity using
an optimal root loci diagram for the system. The most desirabie set cof
ciosed-loop eigenvalues may then be determined.
A feature of the above design method is its simplicity, however,
additional design ijectives may be met with some increase in complexity.
"For example, by modifying the performance criterion appropriately
a desired degree of stability may be achieved for all values of M. .
Alternatively, after selecting Q, R and U the closed loop eigenvalues
may be shifted to more desirable locations using the technique developed
by Solheim
The design method results in a system which has very desirable
characteristics under the limiting condition ﬁ + 0. The hope must be
that the system maintains these characteristics as U increases and examples
have indicated that this is the case. This is a point which clearly
deserves more investigation. An important asymptotic property of the
optimal system is that uncontrollable modes become unobservable’, The

remaining closed loop eigenvalues lie on the negative real axis and can
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be made fast as desired by letting ﬁ -+ 0., The closed loop transfer
function matrix for the system has a simple dyadic structure and is of
_first order type in this limiting case.

There are several area$ for future research. For example, if the
plant is non-minimum phase the results given in section 5 regarding the
asymptotically finite eigenvector directions and input directions do
not apply. Current research is concerned with the situation discussed in
section 7 where some of the Markov parameters a:é rank deficient. The
additional freedom offered~by the G matrix will be illustrated in a
.future applications paper on ship positioning.

A further useful property of the system desc:ibed.gbove is
‘that the system would havé a known degree of robustness to parameter.
variations[EOi]. As described recently by Postlethwaite et al [}é]
and Sofonov et al [io@] the robustness of a closed loop system can
be quantified by the use of the return difference singular values
(principal gains). A modification to the design algorithm steps would
be to use the above ideas instead of the time response simulation.

Thus, to deéide’upon the weighting matrices selection through an
iterative procedure which provides the closed loop system with the

desired frequency response characteristics and also good disturbance

rejection properties.

- 47 -



CHAPTER 3

Finite Time Optimal Control for Discrete Time Systems

3.1 1Introduction

A new method of solving finite-time optimal control and filtering
problems in the complex frequency domain has been introduced recently by
Grimble[§1-6€].1he approach has enabled new optimal finite-time filters
and smoothing filters to be defined having properties somewhere between
those of the Kalman and the Wiener filters [64-66]. The solution of the
finite-time optimal control problem in the s-domain (for continuous time
plants) provided useful s-domain forms for the controllers.

In the following the discrete-time optimal control problem is consider-
ed for a finite optimisation interval. This work was prompted by current
interest in self-tuning regulators énd the discussions in the literature
concerning various control strategies [67-6éL The object is to provide a
derivation of the z-domain optimal controller and to give an example of
the calculation procedure.

It is kno@n that a closed form solution to the infinite-time optimal
control problem can be obtained by working in the z-domain [69]. An equi-
valent result is obtained here’fbr the solution to the finite-time optimal
control problem. This is the first general solution, to the finite-time
free end point problem, obtained in the z-domain. The results are very
similar for the two cases and the solution to the finite-time problem in-
cludes the solution to the infinite-time problem. The technique described
allows for the presence of an end-state weighting term in the cost function.
-The method of solution can also be modified to deal with the finite-time
problem where either some or all of the states at the final time are
specified [63].

The derivation of the ekpression for the optimal control is obtained

as follows. The time-domain gradient of the cost function is calculated
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and this is equated to zero to obtain the optimum. This equation is
transformed into the Z-domain using the Z-transformation and is solved for
the optimal open loop control. If the optimal closed-loop system is re-
quired the time varying feedback gain matrix can be obtained from this

Z-domain result, using the initial value theorem.

3,2 The Plant Description

The constant linear system to be controlled may be represented in
either discrete state equation form or in convolution summation form. It
is important to note that a state space description of the plant is not
necessary and that a transfer function model is all that is required. H;w—
ever, it will be convenient to introduce the problem using a state equation
model. The rélationship between the z-domain solution for the optimal
control signal and the usual state feedback solution, via the Riccéti

equation, may then be established.

To ensure the controllers are stable, in the limiting case where
T - o, it is assumed that the plant is stabilizable and detectable [1@ and

may be represented by the system S(A,B,C):

X(i+1) = Ax(i) + Bu(i-k ), x(0) = x, (3.1)
Y() = Cx(i) | (2.2)
(i) = C_x(i), for i = {0,1,2,...} (3.3)

The time delay koA(ko < N) is an integer time increment and the vectors
x(i) € R?, u(i) € R" and y(i) € R*. The matrix C, A C in the output
regulator problem and C0 é=In in -the state regulator problem.

The state trajectory may be calculated, for all i > 0, using the

convolution summation:
i-1
@(1)A§o + jzo @(1-J)BB(J—kO) (3.4)

x(1)
where

(i) A AVt~ | | (3.5)

wheve Ulk) s the Lt % Sjcep fumction ie zevo foc all K<o und Lfoc k70
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and ¢(1) = In, ®(i) = 0 for i < 0. Equation (3.4) defines x(i) for all
i > 0. For other values of time, outside the optimisation interval,

x(i) A 0. The state response is given in operator form as follows:

x() = d_ (1) + (D W) (i) (3.6)
where

d (i) A%(i + D (3.7)

W) A ;::01 2(i-5)Bu(3) (3.8)

(D,w) (i) A u(i-k,) ' (3.9

Similarly the system response. to be controlled, is given by:

z(i) = d(i) + (D Ww) (1) ’ | (3.10)
where d(i) é=coéo(i)’ (WH)(i):Q'(COWOE)(i) and the weighting sequence,

w(i) Coé(i)B

A
__A__ 0 for.all i < 0

<

An adjoint equivalent of the system operator is calculated in Appendix

9 and has the form:

Wre) (i) = 37w (k-i)e(k) - ©(3.11)
k=1i+1

The impulse response of the adjoint system is wT(-i) = 0 for all i > 0, and
the adjoint system is non-causal. The adjoint of the delay operator is

defined in Appendix 10 as:

(D3w) (1) = ulivk) (3.12)
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3.3 The Performance Criterion and Control Problem

The performance criterion to be minimised is quadratic and is measured

over a finite time interval [70]. The criterion includes tracking error

and control terms:
T N-1 7 T
JO,N) = e (MFe(M) + I (e (i+1)Qe(i+l) + u (i)Ru(i)) (3.13)
i=0
where the constant, symmetric weighting matrices F,Q > 0 and R > 0. The

criterion may be re-written in a more convenient form by ensuring e(0) = 0.

Then (3.13) becomes:

JO,N) = N (eT()Qe(i) + ul (i)Ru(i)) (3.14)
i=0
where
Q; A Q + F§(i-N) (3.15)

and §(i) is the Kronecker delta function S(i):é 0 for i # 0 and S(O) =1.
Since the optimal control u(N) = 0 the criteria (3.13) and (3.14) are
equivalent despite the unit time shift. Let the specified response of the
systeﬁ, within the interval i € [1,N] be denoted by zdl(i), and let the
error signal e(i) A zg () - 2(@) for i e [L,N]. |

The calculation of the optimal control law has a much simpler form if
the optimisation interval is [0,»] instead of [0,N]. Therefore the‘finite—
time problem is embedded in an avtificial infinite-time problem. If the
desired response zd(i) is chosen appropriately both problems have the same
solution for the optimal control in the finite interval [0,N-1]. Choose

zd(i) as follows:

Ed(i) = gdl(i)(U(i-l) - U(i-N-1)) + Coé(i-N)U(i-N-1)5n+l - (3.16)
The last term in (3.16) represents the free response of the system
Co®(i-N)5n+l'for i > N. The error signal

e(i) 4 z4(1) - z(1)

is clearly zero for all i > N, when u(i) = 0 for all i > N. Clearly the

—51_



optimal control signal u(i) = 0 for all i > N. Also note that the terminal

condition x is unknown but Xi41 = A§n’ and X, may be calculated. The

—n+l

fact that the optimal control signal is zero for i > N ensures that the

+

control which minimizes J(0,«):

J(0,%) A lim J(0,n)

=<0

within the time interval [O,N-1], is the same as that which minimizes

J(O,N).
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3.4 Necessary and Sufficient Condition for Optimality

The cost function is expressed below using Hilbert space notation.
The gradient of the cost function is then calculated using the usual

variational argument [69]. Thus, from equation (3.14):

J(0,») = <e, Q13>Hr + <u, R3>Hm (3.17)

where the inner product is defined as:

g = L <e(d), y@)>

<§_, X> .
r i=0

Er’ (for e, X.? Hr) (3.18)

For practical purposes the space'Hr consists of those functions which are
~i-transformab1e.

The error function may be ekpressed in terms of the reference signal
r(i) A zy(i) - d(i) as:

e(i) = r(i) = (D W) (i) | (3. 19)
The cost function may now be written as:

J(0,=)

<(r - D Ww), Q,(x - D Wu) >Hr + <u, R3>Hm

<u, W*Q1WE?H - 2<u, W*D3Q1£?

- m Hm
+ <r, Q:L_r_>HI + <u, R5>Hm (3.20)

Note that the following property of the delay operator (Appendixl10)
<Doz, QDoz>Hr = <z, D;QDoz>Hr = <z, Qz>Hr was used.in simplifying (3.20).
The Gradient of the cost function, with respect to u, follows as:

8J = 2<g, &g}H (3.21)
m
giving
g = (WQuW + R)u - WD*Qix | (3.22)
= (WSQW + R)u - WADXQr - W*DAFS(i-N)e : (3.23)

The final term in the gradient may be simplified as follows:



(W*DXFS (i-N)e) (3)

5wl (k-j)ES (k+k_-N)e (k+k )
R o —_ (o]
k=j+1

wT(N-ko- j)Fe(NJU(N-k _-j-1)

W Nk _-j)e (3.24)

where the vector ¢ A Fe(N) can be calculated once X, = x(N) has been

determined. The gradient follows from (3.23) and (3.24) as:
g(i) = ((W*QW. + R)u) (i) - (W*DO*Q_r_) @ - wT(N—ko-i)g_ ) (3.25)

It may be shown that a necessary and sufficient condition for optimality is

that the gradient must be zero over the optimisation interval [71], that is

g() = 0 for all i > 0. (3.26)
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The solution for the optimal control signal is obtained below by
transforming the expression for the gradient (3.26) into the z-domain. The

transforms of each term are obtained in Appendices 10to 12,

g(z) = (' (z"HQi(z) + Ru(z) - WT(Z“)zk°Q£(Z)

K
-w(zhz © - N, (3.27)

The condition for optimality (3.26) is that the gradient should be zero for

all positive time. Thus, the ‘transform of the gradient over the positive
time interval {g(z)}, = 0, where

g(z) = {g()}, + {g(2)}_ . | (3.28)
and

Hg(z)}, = 22(g(A)UE)) = 0 (3.29)
The control signal u(z) can also be ekpressed as the sum of realisable and

non-realisable transforms:

u(z) = {u(2)}, + {uz)}_ (3.30)

and since the optimal control signal is required to be realisable {u(z)}_ =
The matriiﬂzgfié;ijQW(z) + R) may be factorised using standardmwwv
techniques [72,73,74]:
Y (z-)Y(2) = W (2" H)Qi(z) + R (3.31)
The matrix Y(z) is chosen to have a stable inverse and to have the same

pole polynomial as W(z). This type of spectral factor was defined by Shaked

and is called a generalised spectral factor [75]. Define the matrix M(z)

as:
M(z) = W(z)Y(z)"! - (3.32)

and note from equation (3.27):
k -N ‘
Y (2" 1) 1g(2) = Y(2)u(z) - M (z71)z °(Qz(2) + 2z &) (3.33)
Let the final term in this equation be denoted by:

N(z) = MT(Z'I)zk°(Q_1;(Z) * z-NE) (3.34)
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Tz g}, = 0 | (3..35)

¥ (2u(2)}, = v(2)u() (3. 36)

The solution for the'optimal control signal'gﬁz) may be obtained by
equating the transforms of positive time terms in equation (3.27) and by

substituting from (3.35) and (3.36):
8(z) = Y(2)"1{N(2)}, (3.37)

Assume that the reference signal r(z) is separated into terms containing

2N and those not containing z'N,

1) = 1@ + @z (3.38)

Now define the following vectors:

ma(z) = {MT(Z")szQ_l:O(Z)}+ (3.39)

n12(z) = {MT(Z‘I)zk°-NQ£n(z)}+ (3.40)

nz(z) = {MTCZ'I)sz_Ng}+ (3.41)
and note that from (3.37):

fi(z) = Y(z)"'(n1,(z) + n32(2) + n2(2)) (3.42)

This is the desired ekpression for the open-loop optimal control
signal. The first term is identical to that normally found for the solu-
tion of the infinite-time optimal control problem [76~79]. The remaining
terms are introduced by the finite nature of the problem. If the end state
weighting matrix is zero then ¢ = 0 and thence n;(z) = 0. The term n;2(z)
has two functions. The first is to ensure the :control signal is zero out-
side the interval [0,N-1]. This results from the problem specification
which required that the solution of the finite-time problem be obtained
from an equivalent infinite time problem. This equivalent problem was
constructed so that the control would be zero outside the interval so that
both problems would have the same solution. The second function of the
n;2(z) terms is to modify the control within the interval to achieve an
improved finite time performance.
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3.6 Calculation of the Vector ¢, Optimal System Response

The optimal control signal is completely determined by equation (3.42)
given the vector c. This vector depends upon the plant state at time

t = NA and an ekpression is obtained below from which this may be calcula-

ted. From the transform of equation (3.6):
' -k
x(z) = d (2) + z M (2) (m1(2) + n12(2) + n2(2)) (3.43)
where M_(z) A W (2) Y(z)-!. From Appendix 3.4

n2(i) = m' (N-k_-i)e, for ie [0,N-k -1] (3.44)

Inverse transforming (3.43) and letting n;(i) = ni (1) + n;2 (i) gives:

. . i-k - . . .
x(@) = d @) + jgz o™t m_(i-k -5)n1 (3)
i-k, -1 . . T I §
+ j§0 0 mo(l-ko—J) mo(N-ko—J)cong_(N) (3.45)

for ie[O;ﬁ]. Now define the following summations:

Ik ) = 2% 1 n d-k -5)n () (3.46)

) . 0 o 7=
j=0
. _ Gi-k -1 . T - -

Iz(l-ko) = jzo o mo(l-ko-J)mo(N—ko-J) (3.47)
and '

S(N - k) = Ip(N - ko) (3.48)

The state b of the system at time t = NA may be calculated using equation

(3.45), since
[1, + SON - k)CTRC Ix = [d (W) + I;(N-k ) + S(N-k )CLFz,(N)] (3.49)

Note that this equation may be simplified further by separating I1(N-k0)

into terms containing X, and those not containing this vector.

It is interesting to look at the modes in the system response to see
how they are determined and how they differ in the finite time and infinite
time problems. Let Po(z) be the characteristic polynomial of the plant W(z)

and let the polynomial Pc(z) be defined by the equation:

P, (2P (2) = Po(-2)P ()W (z"1)QW(z) + R|/|R] (3.50)
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From (3.31):
¥(2)] = /TRT P, (2)/P,(2)

and from equation (3.32):

M(z) = W(z) . aﬁ’éﬁ)l - Hitele) 2dj [Y(2) | (3.51)
c /TRT
The poles of the system M(z) are the zeros of the polynomial Pc(z).
From equation (3.45) the end point weighting term in c¢ will introduce both
unstable and stab}e modes into the system response since it involves the

system with impulse response M(i) (and characteristic polynomial Pc(z‘l)).

However, for the present consider the finite time problem where the system

has zero initial state, the iiahimié‘gtéble and théménd>point is not
weighted (so that ¢ = x(o) = 0). From equation (3.45) the response is then

given by:

ars i-k - . . i-k -j . . .S
2@ = Rl M - k- mn () ¢ 2T MG- k- 912 () (3.52)
j=1 j=1 ~

In the previous section it was noted that the‘term ny; () is the same as
that obtained in the usual infinite time optimal contf61 problem, the first
term in (3.52) must therefore contribute stable modes and the second term
must be the source of the unstable modes that are presenf in finite time
problems. Since the system M(z) is necessarily stable it is clear that
n;1(j) must contain only stable modes and the signal n;2(j) must contain the

unstable modes. Equations (3.39) and (3.40) confirms this result:

]

. k
n1:() = zi' M (27 HQr, (2)z O3, ] B (3.53)

. k .
m2(5) = 2 M (27 HQr, (2)z O-ND] (3.54)

As described in the procedure for evaluating these terms in Appendix 12
n;;(z) contains stable terms'corresponding to the poles of go(z) and n;2(2)
contains unstable terms due to the adjoint system MT(Z'I). The difference
between the two cases is caused by the presence of the shift operator z~
in equation (3.54) which moves the adjoint system response into the
optimisation interval [0,N], so that it contributes to mn;2(j).
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3.7 Algorithm for the Solution of the Finite Time Problem

The steps to be taken in the calculation of the optimal open loop

control and the optimal trajectory are summarised as:

1. Find Y(z) from Y (z-1)Y(z) = Wi (z-1)QW(z) + R
2. Find M(z) M(2) = W(2)[Y(2)]"! and M(F) = Z1}[M(2)]

3. Obtain n;;(z) from the partial eipansion of MT(z'l)ng(z)zk0

by
selecting only those terms due to poles of zo(zj

‘4., Find ny1(i) from ny2(i) = 2i'[n1;(2)]

- k
5. Obtain n;,(z) from the partial expansion of MT(z‘l)QzN(z)z ° by
selecting only those terms due to poles of ML (z~1)

6. Calculate nj(i) = n11(i) + mi2(i) and n;(2) = ma(2) + my2(2).

7. Calculate I;(i-k) A £ Fo™t

M(i-k_-3)m; (3)
j=1

‘8. Calculate I,(i-k_) A £2K63 Mi-k_-5)MT(N-k_-j) and S(N-k ) = I»(N-k)
0" = j"—‘l [o] [ [o] (o]

9. Solve for X, from (3.49):
T ) T,
[T, + SA-kCIFCIX, = &, () + Ti(N-ky) + SOk ICFZy(N)
10. Caleulate C = F(X;(N) - X, np(i) = m' (N-1)C, nz(2) = Z[n ()]

[Y(2)1"'[m1(2) + np(2)] and 8(1) = 27" [u(2)]

o) + Tali-k)) + La(i-k))C

11. Calculate l(z)

12. Calculate X(i)

The one sided and not the two sided Z transform is needed to obtain
the solution for the oﬁtimal control. This results from the fact that the
optimal control cénsists of the transforms of positive time éignals and for
this class of functions the single sided and two sided transforms coincide.
Several steps of the above algorithm can often be omitted, for example if

the end condition is not weighted then F, ¢ and n,(z) are all zero.
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3.8 A Tracking Problem

Consider the following linear time invariant system in discrete state
equation form:

x(i+1) = ax(i) + u(i) la] <1

y(i) = c1x(1)

The optimal control performance criterion to be minimised is defined as:

N-1
J(O,N) = e(N)Fe(N) + Z eT(i+1)Qe(i+1) + u(i)Ru(i)
' i=0

where Q = q, R=1 and F = f and the input time delay kovis less than N
(for a non-trivial case). The reference input (desired output) is assumed

to be a step of height H:

.. _ (Hig[1 N]
r(i) = {o all other i

The open loop control law is calculated first.

1
z-a

8(i) = a- UG - 1) and ©(z) =

Wo(z) = Co(z)B = c/(z_— a)
(1 + 2¢c} + a?®) - az - az-!

T
Y (z-1 - a)(z - a)

(z"1)¥(z) = W_(z")QW (z) + R =
The numerator may be factorised into the form:

~az"t(z? - (1 + qc? + a?)z/a + 1) = —az"l(z - Q) (z - 1/0)
The spectral factor Y(z) follows as:

@) = & LU

thus

M (2) = W (2)Y(2)"! = B S

From equation ( 3.33) first calculate N(z)+ = n331(z) + n12(z) + n2(z) by

substituting for ro(z), rn(z) as:

r(z) = ro(z) + rn(z)z"N ='HE—%—T{1 - z'N

)

_ 1 _ -1
ro(z) Tz -1 rn(z) Tz -1
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thence

- T, -1,k 0k o k 1
n(z) = M (2" Nzvar (D)}, = (@ dH v 2z —71,
= Ok -1/a 1
@ e 715 70
IR Y AP | k-N - k-N c1 -1
niz(z) = M (272" Tqr (2}, {( 2% T =5 7 1}+.
B U z‘N*k AR V7R S
Wi 0 - 1 - oz T - I/ z - 1
In the case where the end point weighting is zero ¢ = 0 and np(z) = 0.
Thus
G(z) = Y"1(2)[n11(2) + m12(2) + n2(2)]
_ O3z - -1/o 1 AR l/a
= (-é.-) z - [(_) Clq.H _ l/OL z - 1 ( ) qu(l/ ~ )
Z-N+k _ zaN-k+1 -1/a zk N]
1- o0z M e l/a z -1
The above expression for the open loop control may be written as
{i(z) = Nl(z)ro(z) + N2 (z).H ( .55)

for which a closed loop epression can be derived, fig.3.1.

B—— N, (2) | B——F (2) ]
——1 N, (2) r%—' W(z) by T F (2) %* W(z) N

T
=0
{

<

Open loop system Closed loop system
FIGURE 1
(z) = F2(2)H + F1(2) (r (2) - y(2) = F2(2)H + F1(z) (r () - W(2)U(z)

or

(I + F1(2)W(2))7'Fi(a)H + (I + F1(2)Q(2))""Fa(z)T (2)  (3.56)

4(z)

by comparison to (3.55) we have

(I + Fy(2)W(2))"'F2(2)

(I + Fi(z)W(2))"'F(2) Na(z)

N: (2)

or

Ni(2) (I - W(z)N1(2))™!  Fp(a) = (I + Fy(2)W(2))N2(2) (3.57)

Fi(2)
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This shows that a closed loop, output feedback solution is possible for

the discrete tracking problem.

The above closed loop solution to the finite time optimal contfol
problem is the first to use output feedback. The advantages of such a scheme
in comparison with the more usual state feedback solutions are obvious [82].
Recall that the usual solution to the finite time servomechanism proﬁlem
involves an optimal state feedback regulator with a time varying.gain matrix,
fed from a time varying block which represents the adjoint system equations.
This latter block has an input from the reference signal. This realisation
of the optimal controller is considerably more complicated than that
proposed here.

The controllers Fi1, F, are time invariant and are therefore simple to
implement, whereas the time-domain solution involves time varying feedback
gain matrices. The question therefore arises why the solution presented
here differs from the usual solution and if there are any disadvantages.

The difference in the results is associated with the assumptions made
regarding the initial state of the plant. In the above example this was
assumed to be zero but it could have been included in the solution and
would have resulted in an additional term in the control signal depending
upop pI The closed loop solution would have changed this term but would
have still resulted in a signal to be added to the output of the controller

F; depending upon the initial state.

In the event that the outpﬁt matrix éﬁuals the identity matrix the
expression for the control signal is the same as that obtained via the
time-domain approach. However, the time invariant controller is obtained
at the ekpense of adding the iﬁitial condition term. Now in tracking or
servomechanism problems the response of the system to ektérnal reference

inputs is of importance and the initial condition response may be neglected.
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This assumption is based upon the observation that if the system has a fast
closed loop response initial conditions will alsoAbe regulated efficiently
.(assuming a controllable plant). In these circumstances the z-domain
controller has considerable advantages since it is simple, time invariant

and is valid for output feedback systems.
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3.9 A State Regulator Problem

In this section the state regulator problemiis considered and an
expression is obtained for the optimal control signal. For the state
regulator C, = In’ z(i) = x(i) and Edl(i) = 0, for ief1,N]. Thus, from
equation (3.16):

xg(i) = 0(i - UG - N - DA | (3.58)

The state reference can be defined as in section 3.4 -

T() = xy(1) - d () (for i > 0) |
= 8(i - NUA - N - 1Ax_ - ¢(1)U(E - 1)Ago (3.59)
Now 8(i) = A*" U - 1) and Z1(2(1)) = ®(z), and Z;(8(i - MU - N - 1)
= z'Né(z). Thence -
x(2) = 2 0(2)Ax - P(2)AX, | (3.60)
zo(z) = -@(z)AEO - (3.61)
r_(z) = 8(2)Ax, ' (3.62)

From (3.34) and (3.35):

n(2) = £1(2)x, (3.63)

n2(2) = £2(2,Mx (3.64)
where

£,(2)-A -{M] (1) Qe () Az 0}, (2.65)

(2.66)

= +

£1(z,N) A'{Mzcz-l)Q@(z)Azk°'N}

The following summations may now be defined by substituting into equation

(3.41) ¢
LN - k) = kol p v -k, - IEG) (3.67)
=0
a8 - k) = VR0t m (N - k- ) E2(5,N) (3.68)
j=0 |

The optimal control signal depends upon the state X, which may be

calculated as follows. From equation (3.44):
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(I, + SOV - kDF)x = (@ () + I (N - k)x + Tia(N - kx)
or if
YNk A (I - Tz (N - k) + SN - K)IF)TH(@(m + 1) + I (N - k)

then (3.69)

X
=

x(N) = ‘{’(N,ko)in (3.70)
The matrix ‘i’(N,ko) is a transition matr.ik‘for the optimally controlled
system. For eﬁcample, assume the delay ko = 0 and let ¢(i,0) denote the
state transition matrix for a closed-loop optimal system, employing the
usual state feedback Kalman gain matriz-c, then ¢(i,0) = ¥(i,0). Note that
¥(0,0) = In' Also since the optimal system is asymptotically stable, under

the assumption in .sections 3.2.and 3.3 then lim ¥(N,0) = 0.
N0 '

It remains only to calculate the term n»(z) in the expression ( 342) '

for the optimal control. From (3.24) and (3.46):

c = Fe(N) = -an (3.71)
| ko-N. -

n,(z) = -{Mg(z"l)Fz ° N}+§n (3.72)

= -2 (ML OV - k- DFUE) - UG - N+ k)X (3.73)

This equation may be written in the form:

ne(2) = £5(2,N - k)x (3.74)
The optimal control signal follows from equation (3.37):

8(z) = Y(2)" [£1(2) + (£2(2,N - k) + £3(z,N - k) )DY(Nk )Ix,  (3.75)
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3.10 A State Feedback Solution to the Regulator Problem

An expression is obtained below from which the optimal control gain
state feedback gain matrix may be calculated. First define a matrix

K;(z,N - ko) from equation (3.75):

Ki(z,N - k) = Y(2)"'[£1(2) + (£2(z,N - k) + £3(z,N - k )I¥(N,k )]
then (3.76)

4@) = k(@,N - ko)ﬁo (3.77)
To obtain an eipression for the time-varying gain matrix the control action
through the optimisation interval must be considered. The control which

minimises J(O0,N) has an initial value of

4(0) = k1 (0,N - k )x(0) | - (3.78)

The system and performance criterion weighting matrices are time-invariant

and thus for some other initial time, say time i, the control to minimise
J(i,N) is

w () = ky(O,N - kg - $)x() (3.79)
This may easily be shown to be the same as the optimal control within the
optimisation interval [61] so that

(i)

where

K(i)x(i) | (3. 80)

K(i) A k;(O,N - k0 - i) (3.81)
Alternatively, using the z-transform initial value theorem:

K(i) A 1im K, (z,N - ko - i) (3.82)

750
This expreséion provides an.alternative to the Riccati difference equation
by which the state feedback gain matrix may be calculated.

An output feedback solution to the'optimal tracking problem may be
derived by using the open-loop solution (3.42) (with X, = 0) and the usual
relationship between open and closed loop controllers. This type of

solution is required in self-tuning control problems.
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Example 2 State Regulator Control Problem

Consider the following linear time-invariant system in discrete state

equation form:

X.

sep = 2X; U, : la] <1 (3.83)

where a = 0.5 and the plant is thus stable and controllable. The optimal
control performance criterion to be minimised is defined as:
N-1 .

J(O,N) = anxn + 'Zo x(i + 1) + u(i)Ru(i) (3.84)
i=

where Q = q, R=1 and F = £f. Let the input time delay be of magnitude ko .

seconds (let A

1 second). For a non-trivial problem kg is assumed less
than N. The open loop and one step control laws are required and the

state feedback gain is to be calculated from the former.

o(i) = ai U@ - 1) and 9(z) = ——
Wo(z) = ®(z)B = 1/(z - a) |
YT(zfl)Y(z) = Wz(z'l)QWO(z) + R
- (1 +q+ az) - ai’- az-? (3.85)

(z-1 - a)(z - a)
The numerator polynomial above may be factorised into the form

2
-z-ta(z? - Qli;ﬂgi_i_l z+1=-az"!(z - a)(z - 1/a) and if q = 65/28 then
o = 1/7. This choice for q ensures the closed loop time response for the
infinite time problem includes terms in o, Thence, letting Y(z) be

defined as a generalised spectral factor:

Yy = 2 & -9k | | (3.86)
and

) = & =Y | (3.87)
thus

My(2) = WY@ = & o

]
e - S

- 67 -



From equation (3.65):

£1(z) = ‘{(“a)%qzko —}
! T Y@t -z - a) +
kO
_ k. A a z-1
=- @)y Gtk
N5 k : A
-y e 0.5

where I =0 if ko =0and vy =1 if k° >0and m=1 - YF Also define y; as
"Y1 = a oy + m. Thence, from equation (3.63):
Ko+1

ny1(z) = -g1(y1 + %E—:—Ejﬂﬁo (3.89)

where g, é{(aa)%q/(l - 0a) = (a/a)%(a - a).- From equation 3.64:
ko-
deayq 2 0N
(z-1 - a)(z - a) +

fo (Z ’N)

L zko-N a -1
(02) q_{(l - aa) ((z - a)'+ (z=% - u))}+

[]

ko-N ko-N

= 1) | (3.90)

(ua)%q' az -
1 -o0z)+

- GC-a

The final term may be simplified as follows:

ko-N k
- N-k, N-k
{(; - az)}+ =z2° N1 vz +a222+ ... +a Oz 9
-N+Kq N-kg+1
_z - z0,
B (1 - az)

Thence, from equation (3.64):

kg-N-1 | ~Nko-1 N-k,
a~'z _ o
niz(z) = gl(?; -2z h) T - z2 Yo + a -'2'1/0{,))51‘1 (3.91)
From equation (3.74):
£3(z,N - k) = -2, (@ - k- DEUE) - UGE - N + k)))
-N+ko N-ko
- z __a
= (a) f( (z—l - u) (z—f - a) (3.92)
and from equation (3.74):
N"ko-l 1 "N+k°
_ o a-'z -
ny(z) = 'gz((l -z 10) (@ - z_rya))fn (3.93)

where g2 A (a/a)%f. The time functions corresponding to the above terms

may now be defined as:
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. . ko+i
n(d) = -g1(v16(1) + a2~ UGE - 1))xg
. ko*i-N  N-kgo-i N-k-i
M) = @@ -a A -N+k)ea © UENDx
) N-ko-1-1 :
nz (i) = -gaa (UE) - U@ - N+ k))x
and
m () = %G - 1
The summation terms in (3.67) may be evaluated using the above
results:
N-k -1 N-ko-j-1 ko)
LN -k) =-2° &% (116() +a ° UG - 1)
j=0
" N-ko-1.
oy N-ko-l a, ko (1 - (a/) ° )
= -(5) g1¢ (YI + (E)a (1 _ a/C(.) )
and if k= 0 this result simplifies to ‘
N N
- N
I1)(N) = -(%);’m %—:—%—l= oN - &N (3.94)
Similarly, from (3.68):
N-ko-l o3 (N-ko=3)
Tao-k) = 2° @poata?t O
j=0
: (N-ko)
S ¢ R A
= (a) g1a (1 _ az) (3.95)
and from (3.46):
' N-k -1 N-ko-j-1)
S -k )= 10 (a2l e
(o] . a
j=0
| (N-ko)
_ o, (1 - o )
= (E) T = o9 (3.96)
Thence, from equation (3.69):
N
- (@ + I,;(N- ko))
k) = AT N - k) + SN - K)D)
and
_ N a-aoNy o a-a2N
Y(N,0) =a /(1 - (a - oa)a——-—(l %) M uearr (3.97)
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Open Loop Control Signal

The optimal control signal follows directly from equation (3.75) and

the above results. To simplify the solution consider the case when the

delay is zero, then

G(z) = Y(2) ' [£1(2) + (£2(z,N) + £3(z,N))¥(N,0)]x,

-N -N
~ - - az (z - a)z /o
i = G e - ol - e 7w

+

N
(z - a)za Y
-0 - 7ol &0

o f(z - a) N-1 =N+1 _1, |
Ta(z-a)(z-1/a) (za " -2 om) (N0%

The control sequence, for all i > 0, is given by:

81) = (-o'(a - o) + (@ - [aal V- PN m 2

(1 - @2) -1+Nyyey oyu@i - N - 1)

T d-a®)

s oNa@ - o) %_a—i)- ol %%%% o1y n,0)ua)
R TR ) U MROITCD

- of (-oci;N G o N Lo o hywoua - M)

It is a tedious but simple matter to show that (i) = 0 for all i > N, as
required. Clearly terms involving z'N in the expression for the control
signal do not contribute to the control within the optimisation interval and

may be neglected. Thence, {i(z) simplifies to the following:

N
A _ z(a - a) (a - a)(z - a)za
=g " eroE- /o (W0
N-1

o f(z - a)za
S Cay Y ey oy W(N’O))Eb (3.98)

The control sequence, for i € [0,N-1], becomes:

81) = (-o*(a - o) + o EIY (1 - ca)e - (02 - aa)atI¥(N,0)
N+1 . .
£ o Egz“_ag) o B hvan oz, (3.99)
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The control and state trajectories for this example are illustrated in
Figure 2. The above solution and the usual state feedback Riccati equation

solution give identical trajectories, as required.

One Step Control Law

Consider the special case when N = 1, then the control at time zero

becomes:

800) = (-2 - ) + B=Yo [(1 - ca)o - (@ - 2)a]¥(1,0)

- L2 E? - Zl) + a%i - zgg)W(l,O))Eo (3.100)

This one step control law may be simplified and written in the form:

8) = (B85 (1 +au ¢ (s 2)e? - (22 + Do’ + o)

- fo)x(i)/A ' (3.101)

AA1 - an +a? +af/a
This control law is time invariant and minimises, over each sampling

interval the criterion:

x?(1 + 1)(f + q) + u®(d)

J;(0,1)

State Feedback Control Law

The state feedback control law may now be determined. From (3.76) and

(3.98) with kO = 0, identify K(z,N) and note

lim K;(z,N) = -(a - o) + ((a - o) - gaaNT(N,O)
Nooo

Thus, from equation ('3.82) the feedback gain matrik becomes:

K(t) = -(a - o) + ((a - @) - g;aN-ich _ 1,0 (3.102)

Note that the one step control law in (3.100) and (3.101) is equivalent to
repeated use of K(0), as may be verified easily. Note that K(N - 1) given

by the above results is the same as that from the Riccati equation:

K(N-1)=<(q+ fla/(1 + q * f) (3.103)
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If the controller is to be used in a self-tuning control scheme there
exists the possibility of maintaining the closed loop pole, a, fixed or of
maintaining the weighting elements fixed. For example, assume that the
parameter a is varying then o is chosen so that (1 + q + a%?)/a = a '+ 1/a.
Thus, either q may be assumed to vary as o remains fixed, or q may be fixed
and o will be a variable. Thus, it is possible to achieve either'an optimal
control law (fiked q,Tr), or a suboptimal control law (fixed &) which main-
tains a fixed closed loop response. This latter controller will be termed
an optimal pole assignment regulator. Note that this regulator is not the
same as those proposed by Wellstead [79]. At the end of each N second
intervalian identification algorithm must provide.the new parameter
estimate a, however, it is not appropriate to consider this problem here.

Note that the above computation of the control law is rather compli-
cated, however, an algorithm has been developed which can be implemented
using well-established numerical routines. This has been described for the

dual filtering problem by Grimble [81].
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3.11 Conclusions T :

A solution to the discrete finite time optimal control problem was
obtained and a z-domain representation for the controller was given. An
output feedback transfer function solution was proposed which may be of use
in self-tuning control systems. Note that the controller is e#pressed in
terms of the plant parameters and it may therefore be combined with an
éxplicit identification algorithm to obtain a form of self-tuning
controller. It may also be possible ta use the discrete-time filter
previously proposed [65], together with this control law, to obtain a
solution to the stochastic optimal control problem. Consider, for example,
the situation whereby output measurements are taken every N seconds but the
control can be updated every second. The‘time invariant filter can provide
the state estimate é{NIO) and the time invariant controller can use this as
the initial state for.the next time period. The advantage of such a
controller is that it is time-invariant and is in transfer function form.

An expression was obtained for the optimal state feedback gain matrix
in terms of the z-domain results. This provides a link between the z-domain
controller and the usual tim?-domain state feedback solution. An example
was given to illustrate the solution procedure. This illustrated the
flexibility of the technique and provided the open loop control signal in
both weighting sequence and transfer function forms. The single step and
state feedback control laws were also easily calculated. Note that the
expression for the controller was obtained in terms of the plant parameters.
There is, therefore the possibility of combining the control calculation
with an identification algorithm to obtain a form of self-tuning controller.

This is an area for future research.
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CHAPTER 4

The Design of Strip Shape Control Systems for a
Sendzimir Mill



CHAPTER 4

The Design of Strip Shape Control Systems for Sendzimir Mills

4.1 Introduction

It is only recently that the producers of flat rolled steel
products have considered the use of closed loop control systems to
control the flatness of the product. Shape cohtrol refers to control
of the internal stress distribution in rolled steel strip so that
sections of strip will lie flat on a flat surface. A typical shape
defect is for the strip to have "long edge" which will manifest itself
in a wavy edge to the rolled strip. Shape control became possible as
a result of the appearance of several commercially available instruments
for on line "shape" measurement [85]- Shape is the second largest
single cause for the rejection of cold-rolled steel strip (gauge being
the primary cause). Bad shape may sometimes be corrected by further
processing but this is expensive [84]. The customers for rolled products
are now in a "buyers market" and they may therefore specify closer shape
tolerances. Thus, there are considerable economic pressures for the

rapid development of automatic shape control schemes.

The internal stress distribution caused by a transverse variation
in the gauge reduction is termed the "shape" of the strip and strip
with a wniform stress distribution is said to have perfect shape [85].
The differential elongation causing bad shape is caused by local
mismatch between strip and work roll profiles under load. Shapemeters‘
are normally placed from one to two metres from the roll gap and these
measure the tension distribution across the lateral stress distribution.
The first index of shape measurement was introduced in 1964 by Pearson

Bé]. He noted that from the users point of view errors in flatness
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are generally of more concern than residual stress and he defined
shape as being given by (A%/(2w)) 10" mons/unit width where AL is the
length difference between longitudinal elements of mean length &

spaced w across the strip.

Much of the early work on shape control was conducted by Sabatini,
Woodcock and Yeomans [87-89] and Wistreich [90] at the British Iron
and Steel Research Association. More receﬁtly Spooner and Bryant [85,91
* have shown how correct scheduling and set up procedures improve fhe
quality of strip shape and they have developed off-line models for'
shape control and scheduling. The proceedings of the Metals Society
1976 conference on shape control [Bi]can be taken as a useful guide to
the state of the art although many systems have been implemented since

that time.



4.2 The Sendzimir Mill

The cluster mill considered in the following study is shown in
figure 1. It is 1.6 metres wide and is used for rolling stainless
steel. The motor dfives the outer second intermediate rolls, I, K,

L, N in figure 2. The transmission of the drive to the work rolls is
applied through the inter-—roll friction. All the inner-rolls (I to T)
have thrust bearings and are free to float sideways. The outer-rolls
(A to H) are supported by eight sa&dles per shaft, fixed to the mill
housing. The séddles contain eccentric rings which can rotate in the
circular saddle bores. These assemblies are used in the screw down
and shape control mechanisms. The screwdown racks act upon assemblies
B,C and F,G. The top assembly B,C has both screwdown and shape actuator
eccentric rings. These actuators are referred to as As-U-Rolls by the
manufacturers.' A rack position change causes the screw down ring to
rotéte and thus the roll assembly moves towards or away from the mill
housing. The screw down system enables the average load to be varied

during rolling, without substantially bending the rolls.

The As-U-Roll eccentric rings on shafts B,C enable roll bending
to be achieved, for shape control, during rolling. Each of the eight
saddles on those two rolls has an extra eccentric ring which can be
moved independently from the screw down eccentric ring. When the screw
’down system is operated the bearing shafts and screw down eccentrics
rotate at all the saddles simultaneously but the As-U-Roll eccentrics
do not rotate. Thus the bending profile set up by the As-U-Roll is

maintained.

There is also provision for an indirect control of shape with the
first intermediate rolls (OPQR). The top rolls, O,P, are tapered at

the front of the mill and the bottom rolls QR are tapered at the back
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of the mill. Moving these rolls axially in and out of the cluster

controls the pressure at the strip edges within certain limits.
As mentioned previously the screw down and As-U-Roll eccentrics
(even though they have the same common shaft) are non-interactive.

The shape control system proposed involves the continuous use of

As-U-Rolls but only intermittent use of the first intermediate rolls.

This approach simplifies the design stage.
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4.3 The Shape Measurement Sub system

Comparing the various types of shape measuring devices [84] the
Lowey Robertson Vidimon shapemeter [92] and the ASEA Stressometer
shapemeter [93] seem to be the most reliable and successful. The
latter is considered here since it is employed on the mills of interest.
The stressometer measuring roll, figure 1, is divided into a number of‘
measuring zones across the roll. The stress in each zone is measured
independently of that in adjacent zones with magneto-elastic force
transducers which are placed in four slots equally spaced in the roll
periphery. The periodic sigﬁals from each zone are filtered and the
stress o(x) in each zone is calculated. The average stress o0 is
calculated and the difference Ao(x) = o(x) - og is displayed on a
separate indicator for each zone. These signals are also available

for feedback purposes.

The shapemeter filter is changed with the line speed and the
dominant time-constant may have one of fivé different values in the
range 4.35 to 0.11 seconds. The smoothed signals appear to contain a
white noise component. The number of measuring zones which are operat-

ing depends upon the width of the stfip.
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4.4 Static Model of the Mill

To enable us to design a shape control scheme an analysis of the
_ rolling stand is needed. This model has already been developed by
Gupawardene, Grimble, Thomson [95]. The static model includes all the
mechanical force—deformation relationships. These are both non-linear

and schedule dependent.

Considering a small perturbation in an actuator setting the
stress profile across the strip is calculated and thus mill gains can
be obtained for the given operating point. These gains are used iﬁ
the dynamic model of the mill, and are valid for small variations around
the operating point. If the strip shape deviates significantly from
the original point, used to obtain the gains, the non-linear nature of

the actual plant would have to be considered.

A set of linearized gains are given below between the 8 actuators
and 8 equally spaced points across the strip width. It relates the

shape output at the roll gap and the actuator change.

3.79 3.46 -0.75 ~-1.44 -1.38 ~-1.18 -1.56 =-0.96
1.30 2.30  1.03 -0.41 =-0.62 ~-1.43 ~-1.60 =0.87
-0.44 0.8  1.88  0.67  0.23 -1.04 ~-1.33 =-0.80
-1.02 -0.75 1.29 1.61 1.35 -0.10 ~-1.34 =-0.96
-0.96 =-1.34 0.10 1.35 1.61 1.29 -0.75 -1.02 @b
~0.80 -1.33 -1.04 0.23 0.67 1.88  0.86 =-0.44

-0.87 =-1.60 -1.43 -0.62 ~0.41 1.03 2.30 1.30

-0.96 -1.56 -1.18 -1.38 -1.44 -0.75 3.46 3.79

If the strip is centred across the mill then G has the
form:

Gn = [g1 82 83 84 ' 84 83 B2 &1l = [g5]

- 82 -



(2R3

' ~
where g; are column vectors and g; has the same elements as g; but

in reverse order.

By the definition of the shape, as the deviation in the tension
stress from the mean, the average value across the strip must be zero
ie the colummn sum must be zero:

8

z8..
i=1 13

=0 v jef1,2, ..., 8} (4.2)

Also the row elements sum to zero since if each shape actuator is changed
by the same amount there will be no effect on the strip shape but only

change in the strip thickness.

L, 85 =0V iell,2,3,4,...,8) (4.3)

e @

The elements of the matrix Gy vary with the type of the coil
being rolled and with the particular pass of the coil as mentioned

above. For a different pass Gy becomes:

309 108 -005 —103 -103 "'007 -006 _0-3
1.3 3.9 0.7 -0.1 -1.2 -1.3 -l.1 -0.8
-003 002 107 1-5 -004 "1.0 “1.0 -0-7

-009 -008 009 1.6 1.0 -0-5 - -100 —007 . (4.4)

-0.5 -0.8 -0.7 -1.0 ~-1.4 -0.4 1.5 2.8

These gain matrices‘obtained from the static model program
contain numerical discrepancies, however, using the symmetry properties
@g 4.2, A.Eg these errors can be reduced. That has been done in the
case of matrix G in 4.1. The control design should be able to cope

with this kind of innacuracy in Gy
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4.5 State space description

The basic components.of the Sendzimir mill shape control system

are depicted in figure 1 and in block diagram form in figure 3 . The

description of each subsystem follows.

Thg back up roll actuators are non interacting and each is
represented'by a second order system, assumed to be an integrator
accompanied by a cascaded ;ime constant. Because there are position
feedback loops around each of the actuators their transfer function

can be chosen as:

T,s)=__ 1~ I & .5)
(1 + 0.25)2
The state space equations become:
xa(t) = Ag 55(6) + Bauy (1) | 4 .6)
Xa(t) = C3 xa(t) (&.7)

with Za(t), uy(t) € R® and the matrices A,, By, C; are in block

diagonal form. Each block has the form:

4..8)

The next subsystem is the mill cluster. Here it is assumed that the
dynamics are so fast as to be neglected relative to the rest time
constants in the system. Thus any change in the As-U-Roll actuators
has an instantaneous effect on the stress distribution at the roll gap.
For this linea: model the gain matrix Gp, relating the actuators move-
ment to the strip stress, is used. The evolution of Gy was discussed

in section 4.4. The mill equation then is:

Ym(t) = Gm y,(t) 4.9)
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F(E) = Yp(e) + V(o) % .10)

The vector v (t) represents shape disturbances due to changes
of the input shape profile or changes of the strip gauge profile,
material hardness or thermal camber. For the present study the
number of the outputs yp(t) are taken equal to the number of the
actuators (eight,8). This number can be different in the control
design because the shape profile is usually parametrized'and then a
matrix Cop which is a function of the parameters can be used. A
further discussion on this matter follows in the parametrisation

section which follows.

There is not considerable interaction from the gauge control
system of the mill since the screw down system on a Sendzimir mill

doesn't involve roll bending, in contrast with four high mills.

The dynamics of the strip exiting from the roll gap to the shape
meter is under debate. Previous workers suggest a representation either
as a pure delay or as a simple lag [96]. Experience from the plant
suggests that both effects are present to a certain degree. In our

model the state equations become:

%5(t) = As x5(t) + Bszr'n(t) (%.11)
¥5(t) = Cg xs(t) : (4.12)
yet) =y5(t = 1) (4.13)

The matrices Ag,Bg,Cg depend upon the strip dimension and the mill
speed, ie they are schedule dependent. A convenient representation

to model the above dynamics is by a seconﬁ order transfer function for
each zone of the strip. By choosing this TF to be a simple lag and a
Pade approximation for the time delay both effects are taken into
account [96]. Through simple response tests on the millrthe above

transfer function may be identified. Thus
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TS(S) = (1 - st/2) Ig
(1 + sT/2) (1 + sT1)

(4.14)

with T = D/v and 1; = D;/v, v is the strip speed in metres/second,
D = 2.91 m the distance from the roll bite to the shapemeter and

D; = 5.32 m the distance between the coiler and roll gap.

Finally the last block, the shapemeter, forms the output subsystem
and a number of independent second order transfer functions are used
as candidate representations. The shape measurement noise consists
of a sinusoidal part proportional to the speed of the measuring roll
and a wide band component. This noise signal vector vo(t) is assumed
to be white noise plus a coloured noise with spectrum ¢o/(s2 + w%).

The state equations are:

Ro(t) = Ak (£) + BoyL(t) - %.15)
Zo(t) = Cox_(£) | (% .16)
Zo(t) = yo(t) +V (£) ' 4 .17)

The matrices AO: Bo, Cp are speed dependent and are switched by the
shapemeter electronics.

In transfer function form:

To(s) = 1 Ig % .18)
(1 +st)(1 + 001s)

and the time constant tg is 1.43s for speed up to 2 m/s, Tg = 0.74s
for up to 5 m/s and Ty = 0.3s for 15 m/s. These time constants of
the filter are switched so that the maximum ripple on the shape measure-

ment signal doesn't exceed 167.
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The combination of the state equations provides the total state

space description of the system:

X(t) = A3X(t) + ApX(t = 1) + Bu(t) + D Vp (t) (4.19)
Zo(t) = CX(£) +V (v) % .20)
r -
A 0 0 0 0 0
a
Al = BsGmCa AS 0 A2 0 0 0]
0 0 Ay 0 BoCq 0
r ] r
B, . 0 za(t)
B = 0 C = [o 0 ci‘ D=|Bg| ~X(t) =]|ZXs(t)
0 0 Xq (t)

To use the above differential-difference equation in a model for
the mill, will complicate the control design procedure. At the
same time it is considered that this approach does not gain greafer
insight in the system behaviour. It is better to use an ordinary
differential equation by use of the already mentioned Pade approxim-
ation to the time delay. Thus the equations to be used for control

design become:

x(t) = Ax(t) + Bu(t) + Dvp(t) (4.21)
Zo(t) = Cx(t) + yy(t) (422)
|—Aa 0 0 ]
A = [ BgGyCy As 0
0 ByCg Ag

-

The A matrix being lower triangular allows some computational

simplifications. The system Markov parameters are given by
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My =CB =0

M} = CAB = 0

&
n

CA?B = CoBoC BgCuCaB,
The matrix My is full rank if the matrix Gy is full rank.

This state space description of the mill forms the basis of the
dynamic model simulation. For control design the transfer function
form of the plant is more convenient. Also the plant structure is
indicated far more clearly than in the time domain equations. As was
already noted all the dynamic elements are non-interactive. The As- |
U-Roll actuators are modelled by eight non-interactive second order
transfer functions. As the strip is represented by eight zomes the
resultant system has eight effective outputs; this has the advantage
that the system is square. Combining equations 4.5, 4.9, 4 .14 and
4,18 the total plant transfer function matrix is obtained:

W(s) =.To(s) Tg(s) Gp Ta(s) = n(s) Gy (4.23)
d(s)

where n(s) and d(s).are the zero and pole polynomials respectively.
The plant is open loop stable, non-minimum phase and speed dependent.

The polynomials n(s) and d(s) take the form:

ng(s) = (1 - 0.727s)

d () = [(1 +0.25)2(1 +0.7278) (1 + 2.66 ) (1 + 43s)(1 + 0.01s) ]
Np(s) = (1 - 0.291 s)

dp(s) = [(1 +0.28)2(1 +0.2915) (1 + 0.6455) (1L + 0.74s) (1L + 0.015)]
np(s) = (1 = 0.097 s)

dp(s) = [(1L +0.2 s) 2(1 + 0.097 s)(1 + 0.355s) (1 + 0.15s)(1 + 0.01s)]

for ‘the low, medium and high speed ranges respectively denoted by the
subscripts £, m, h. In all cases n(0) = d(0) = 1.
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4 .6 Parameterisation

The use of parameterisation of the shape profile presents several
advantages and so is often used. As the shape profile is a smooth
curve it can be parameterised by means of a low order polynomial.
This gives rise to a system with a small finite number of variables
to control. Thg number of shape measurements varies with the strip
width which also makes parameterisation desirable. This résults in a
system with the same number of effective outputs. For the following
discussion it will be assumed that there are eight shape outputs,
as in the described dynamic model. Using orthogonal polynomials
simplifies the calculations and the effect of increasing the number
of parameters (ie increasing the order of the polynomials) is very

easy to deduce.

’

Let {P{(w)} to be a set of orthonormal polynomials and
w e [-1,1] represent the distance across the strip width measured

from the mill centre line. The shape profile may be written:

o

S(w,t) =2 ) P; (W) ¥4 (t) (4.24)
l:

where k is the number of polynomials used and y;(t) the ith parametér
used to describe the shape at time t. From ﬁhysical consideration up
to fourth order behaviour méy be expected thus k =_4. Also from the
definition of shape, as tﬁe deviation from the mean, there is no need
to include a coénstant term or zero order pélynomial. Let zj(t) b; the
éctual shape measurement at the jth zone of the strip at time t. The
relation between the vectors z(t) and y(t) can be expressed as:

z(t) = X y(t) + e(t) (4.25)'

or
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r -
-~ o

z1(t) Pi(wi)  PaGn)  P3Gw)  Py(w)] y1(t) |
z,(t) = | Pi(wo) Py (w2) P3(wz2) | Py(w2) ¥, (t)
& g (t) Pl.(Wg) " P2(ws) P3(ws) Py (ws) yu (t)

so the i j elements of matrix X is Xij = Pj(Wi) ie the jth order
polynomial evaluated at the ith width zone: wy = -1 wp = =5/7
wy = =-3/7 ..... wg = 1. If the polynomials pj(w) are orthornormal,

X?X = I,and the least squares estimates for the parameter. y(t) are:

1) = X0 E z () = Xz (0) (4.26)

The reference r can be defined in relation to the above such that to

determine any desired shape profile:
4
Sr(w,t) = 3 Pi(w) r; (t) ' 4 .27)
=1
An input transformation is now required which will relate the &

controller signals u(t) to the 8 actuator inputs uaz(t). This will

+ e(t)

produce a new square 4 x 4 system. As all the interaction in the plant

comes from the mill matrix Gp, see equation (4.23) the input-output

transformation acts on this matrix Gy to produce an effective Gy

4 x 4 matrix. The input transformation may be selected freely so a

matrix M which yields a diagonal G, = XTGmM is very attractive. In

the case of the mill such a selection is not advisable because of the

limited possible range of settings on the As-U-Roll shape actuators

ie the difference in the settings of adjacent actuators should not be

greater than certain limits. However by choosing the same types of

input profile via the actuators as is used for parameterising the shape

outputs this property can be achieyed (figure 4): uz(t) = Xu(t) and

the transfer function matrix(4.23)becomes:

We(s) = X° W(s) X .
or Wy(s) = n(s) xTggX = n(s) G @ .28)
d(s) d(s)
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4.7 Shape Control Systeﬁs Design

To proceed to the control system design the characteristics,
requirements and properties of such a system have to be traced and
. specified. Physical considerations, and the experience of mill

operators dictate the following.
An acceptable control scheme will demonstrate:

(i) Transient response with small overshoot and rise time
in the region of 5 seconds
(ii) Relative insensitivity to errors of calculation and
variations of Gy
(iii) Relative insensitivity to line speed changes
(iv) High open loop gain at zero frequency for good reference
following.
Moreover it may be that certain shape pfofiles must never be reached,
even in transients, for the safe qperation of the mill. TFor the pfesent
these aspects are‘still under‘discussion with the mill engineers, so

it will be neglected in this study.

As described in 4.5 the miil is a multivariable plant with
eight inputs and effective outputs. Straight forward application
of either of the two modern multivariable design methods'ielthe
Characteristic Locus [20] or the Inverse Nyquist Array [18] will
produce compensators highly dependent on Gmfl as all the interaction
in the plant stems from Gp. The matrix Gy computed from thé static
model (4.4), is often full rank but from the aforementioned properties
in equations 4.2,4.3 this shﬁuld not be the case. This is caused by
numerical errors. Consequently a control scheme cannot be based gn
Gal as outlined in requirement (ii) above. This disadvantage is not

present if output feedback optimal control is used for the controller
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design [97]; however these controllers are much more complex to

calculate. This is discussed further in section 4.9.

Consider now the use of an input-output transformation of the plant
.to obtain a system with smaller dimension of input-outputs as described in
the previous section 5.6. This yiélds'a four by four multivariable system
with significant reduction‘of sensitivity to the plant matrix Gm; as
demonstrated by the results in Appendix 13. The transformed matrix Gx

has some useful properties. Assume that the matrix X is partitioned.

X = [X; Xp]
where X; represents the low order polynomial terms and X; represents
the high order terms; for the case under consideration X; may contain
the first and second order terms and X, contains the third and the

fourth order terms. The transformed matrix Gy is written as:

T T
X1GnXy X GpX2

G. = XIG X =

. . (4.29)

XgGle' ch;mxz _‘

During the calculation of the Gy matrix for different Gp matrices it

was observed that the two di;gonal blocks XgGmXi became almost diagonal,
the lower off diagonal term‘ﬁdi:§s diminished in size relative to fhe
rest while the upper off diagonal term remained big compared to the
diagonal terms. This shows that a high order demand on the mill wiil
produce a significant "low order component, in contrast to the case of low
order demands which produce negligible high order terms. In addition it
was noted that Gy exhibited a different kind of "symmetry". That is,
the interaction components were mainly even order if the demand was even
_and they were odd order for odd order demands. All these properties

indicate that the multiroll construction.of the mill show up as a

smoothing filter in spatial terms.
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It was noted that xgcmxl <+ 0 but Xl:lmeX2 cannot be neglected
thence G, can be considered to be essentially block triangular. The
interdction between odd and even terms was found to be very small and
so the diagonal blocks are almost diagonal. Thus Gy is upper triangular
and invertible. A suitable _precompensator P for diagonalising the

plant can be written as:

-

At SR 7 ke

P = Gy = ' (4.30)

-1
0 A, i

vhere A = XjGgXl , My = K;GpX, M = X3GpX;.
The effects of using such a precompensator in the system must
be determined because of the uncertainty in the knowledge of G, and

the innacuracies during its computation. Now the effect of an additive

perturbation 8G is examined. Define:

T
Ay = Xj8cpx, Ay = XEGGsz
= =1 ; —1 = A-l T A-l
L= M ) X7 8GLX
12 11 Gm 2

then the perturbed plant matrix with the above precompensator
T T -1 _ T -1
X (Gp + 86X . P = X (Gp + 8Gp)XG, = I + X 8GX Gy
ATt A
s 1M -6Az + D6z

T -1
x'gsc;Mxl '1'1 ~X2.86pK3Z + 8Ap Ay

Under the assumption that the numerical errors in G, are due solely
to modelling inaccuracies and that the structural propertiés of the
matrix Gy + 6Gy are correct, since the basic form of the shape changes
~due to the actuators are well known. It then follows that 8\y, &\,

are diagonal matrices and ngGmxl -+ 0, thus from equation 4.3l
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i -1
T -1 dAl Al -MIZ +A16£
X (Gp + 66X Gg =1 + (4.32)

=1
0 sy, A,
This final relation indicates little effect of the perturbations in
the diagonal elements in a high gain system. The off diagonal block
in equation 4.32 is not & null matrix and the interaction reappears
in the transient response but can be easily overcome in the steady

state if sufficiently high gain or integral action is employed.

" The selection of the dynamié diagonal compensator is based on

- good transient response characteristics. This compensator Co(s) must
be such that the interaction introduced by the modelling errors is
reduced and limited. It was noted that this interaction is from high-
order into low-order loops mainly. From the perturbated transfer
function of relation 4.32 the forward path transfer function matrix

becomes:

n(s) XT

- _ -1
Wx(s).P.Co(s) = m

(Gy + 86m) X Gg" Cols) =

S

W1 Wa C1 0 . ' ‘
= (4.33)
0 W, 0 Co
The closed loop transfer function matrix becomes:
@+ wep? Wi.Cy (I + W1C1)™" WaCa (T + WaCp) ™2
T(s) = : ’ (4.34)

- 1 -
0 (1 + W?_CZ) WoCo

In thé last expression the diagonal blocks contain diagonal matrices
and the interaction is due to the off-diagonal block. To reduce the
magnitude of this interaction the gains of the first two loops are
chosen to be larger than the gains in the third and.fourth loop (block

C, in (4.33). Consequently the first and second loops should be faster
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than the other two and all loops should be fast relative to the
disturbances. This implies that failure of the low order loop has
more harmful effects on the plant behaviour than failure in the

higher order loops.

A final remark: the use of the above partitioning, as in 4.29,
provides a very convenient way to add extra higher order polynomial
tefms in the transformed system and to study the effect of these on
the system. Because of the upper'triéngular form of the transformed
matrix Gg, any higher order terms do not change the compensators.for
the low order subsystem. All the numerical calculations of the

transformation X are described in Appendix 13.
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4.8 Performance and Robustness ‘

The characteristic loci [20] for the transfer function Wx(s)
of the transformed but uncompensated system is shown in figure 5.
It is noted that all the loci have the same shape because the dynamics
are the same in each signal path. It follows that the loci may be
balanced in gain and the interaction c;n be reduced with the use of a
constant precompensator P. The misalignment angles {Mj} of the plant
characteristic directions from the standard basis vector are independ-
ent of frequency (figure-5b) and less thaﬁ 20°. These angles give a
measure of the interaction and may be reduced by choosing P to
approximately diagonalise the transfer function Wx(s). As was noted
in section 4J the transformed mill matrix Gy = XTGpX has approximately
upper triangular form and then the condition G#P = I, is very easily

solved to give P

(0.1 . o 0.05 0

b2 | O 0.1 0 0.25
0 0 0.3 0
0 0 0 1

The characteristic loci and misalignment.angles of the compensated
system are shown in figure 6a,6b. A very similar precompensator is
obtained by applying the ALIGN algorithm f[20]. It has to be noted
that exact diagonalization is not important because of the uncertainty

in the Gp values.

To improve the transient and tracking characteristics of the
system and to allow the closing of the loop the following dynamic

compensator may be introduced:

0.4(s +0.7)
—_ 1,
s

Co(s) =
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This yields a high low frequency loop gain for good trucking
characteristics. The characteristic loci for the dynamically
compensated plant Wy(s).P.Cg(s) are shown in figure 7. ’These
show that the closed loop system has an adequate degree of stability,

no overshoot in time responses, and interaction will also be limited.

The responses of the system, using the above controller, were
obtained from the dynamic simulation program [98]. The shabe profile
disturbance is added at the output of the roll gap and has the form
shown in Fig 8. The outgoing strip shape is shown in Fig 9 and the
control signal to the shape actuators ié shown in FiglO. Thg closed
loop controller was not introduced until after 1 second and this
enables the open and closed loop responses to be compared. The
variation of the demanded change to the shape actuator does not
exceed the maximum of 2 volts (one division) recom@ended by the
manufacturer. The shape actuator racks can move roﬁghly up to £ 80 mm

corresponding to the full scale demand signal of % 10 volts.

The above controller was designed for the medium speed range and
is calculated to give good transient performance for that line speed.
The effect df 1ine speed changes may now be investigated. Assume that
the same precompensators P,Cp(s) are used while the plant operates in
either the high or the low speed. The responses for a step into the
first reference input are shown in figure 11 for the high, low and
medium speed ranges. These responses show that it may be necessary to
switch the controller parameters with line speed. However, it is
encouraging that the system remains stable over the whole speed range

with the same controller.

.

Because of the structure ofo==X%%Xthe major interaction is

. ¢ .
caused by interaction between high and low order loops, as was already
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discussed in section 4.7. The precompensétor P reduces this inter-
action when the mill matrix Gy is at its modelled value. The effect

of mismatch between the calculated and actual mill gain matrices

was investigated using-a range of simulation tests. As is noted from
the calculations for Gy in Appendix 4.1, although the diagonal terms

of Gx decrease with increasing loop order the interaction terms tend

to become larger. Thus the worst cases of inter#ction result from
reference changes in the highest order (number 4) loop and the same

was demonstrated in the simulation results, figures 12,13,14. The

mill gain matrices used in these simulations are Gm andvém the néminal
and pertufbed respectiveiy given in(4.1) and ¢.4). The situation represented
here is similar to that when the controller is used for the wrong coil
pass for which it was designed. In the three cases shown in figures 12
to 14 the following controllers are used:

. _0.4(s + 0.7)
(1) Cols) = =55 gor v

.. 0.4(s + 0.7 .
(i1) Co(s) =_m) diag {1. , 1., 0.25 , 0.25}

(iii) Co(s) = diag {0.4(s + 0.7), 0.4(s + 0.7), 0.1(s + 2), 0.1(s + 2)}/
(s + 0.01)

For the first case the same dynamic compensator is employed in all loops
and mismatch produces overshoot and ineraction but the system settles
down relatively quickly. In the second case the ideas described in
section 4 .7 are followed and thus the gain in the high order loops is
reducedto a quarter of that for the low order loops. This results in
sléwer, but acceptable responses and the interaction is considerably
reduced. In the final case, the high order loops are made slower

than the low order loops, but the low frequency gain is reduced by a

factor of 0.71. There is an obvious trade-off between speed of response

and amount of interaction. Thus the actual desired specifications by
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Figure 13: System Outputs when Mismatch is present (case ii)
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the plant engineers dictate the controller to be implemented. For

the present, the results preferred are those with case (ii).

Due to modelling errors and second order effects the mill matrix
Gm may not be singular. Then a possible design would be to use as
precompensator the inverse of Gm together with some dynamic compensation.
The effect of mismatch was to produce unacceptable interaction and in
some cases unstable responses, although the same perturbed Gm as before
was used. The explanation lies in the fact that the inverses of the
two matrices are quite different; G;l has glements in the range [@.1,

11 ] but é;l within [10, 4ZQJ, and this makes such a design impractical.

The transformed 4-loop system performed much better than the
original 8~loop square system. Some of the reasons for this may be
considered. The eigenvalue spectra for GX has a much smaller range
than that for Gm and the perturbed éx has a very similar spectrum to
that for G, given in Appendix 13. (both in the range 1 to 8) . The
characteristic direction set is also the same as the eigenvector set
for the constant precompensated mill matrix. The low order eigenvectors
are already aligned before the use of the compensator P, thus predicting
low interaction.in low order demands and high order outputs. All this
phenomena provide further confirmation Eor the use of the parameterization

approach.

A further useful property of the transformation is that fhe eigen—
values of G_ (or éx) are similar to the dominant four eigenvalues of
G (or ém)' That is, the transformation maintains the larger modes
in Gm and also limits the range of the spectrum. 'These larger m9des
remain relatively the same for a range of different mill gain matrices
ie in the range [@.7, 9.@]. The improvement in fobustness properties
may be attributed to this transformation which rejects the lower and

sensitive modes. Similar remarks apply to the singular values of Gx
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and Gm (singular values of a real matrix F are the non-negative square
roots of the eigenvalﬁes of FTF). Following the work of Postlethwaite
et al [?Q], and Safonov et al EO@, robustness may be analysed using
principal gains (singular values) and in figure 16a plot of the
principal gains for the return difference matrix of the system F(s) =

[T +M(s)]™!. The forward path transfer function is

S’

m9=w4@.PcMwﬁcx§§.PcM9=x%JK@)

o’

and considering an additive perturbation 6G_ in G_ ie é =G_+ G
m m m m m
then ;
M(s) = X'(G_ + 66 )RK(s) = X'€ XK(s) + X 66 _¥K(s) = M(s) + 8M(s)
The largest principal gain of [i + M(s):]"1 is 1.6 (figure 15) and thus
from the small gain theorem [95] the system will remain stable under
all perturbations 8A(s) which are stable and have maximum principal
gain 1/1.2 = 0.625. Unfortunately this result does not translate
easily into percentage allowable variations in Gy as the relations
between the elements, the eigenvalues and singular values of a matrix

(in this case 6M) is very complicated.

The optimal output controller expressions which are obtained
in the next section can also be used with the transformed system.
Their performance is as good or better than that obtained with the
simple controllers considered above; that is with faster and more
damped response. Also results on the robustness of optimal pontrollers
exist (Atﬁans EOi[). This of course had to be expected as these
controllers are much more complex and this reason puts them in reserve
for the practical implementation. For the simplé controller the

quality of responses is considered acceptable for the present.
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4,9 Output Feedback Optimal Control Solution

An output feedback optimal controller Cg(s) is obtained first
for the determininistic case and then the stochastic controller is
considered. The state feedback solution for the problem would be
quite impractical in view of the number of states of the plant and
the fact that all remain unaccessible except the actuator states
which are directly available and for which already local feedback is
used to obtain the desired actuator dynamics. The step response for
the system is important and hence the reference is chosen as r(s) =
k/s with k a constant vector. Initial conditions for the plant are °
assumed to be zero : X9 = 0. This is a reasonable assumption since
the closed loop system will be made fast so that initial condition

response may be neglected.

The performance criterion to be minimized is defined as:
J(u) = r |:<<Lg> (£, Qy(Le) (£)>y _+ <u(e), R15<t>>am]d?

’ @ .35)
where Q;, R} are the weighting matrices and L is a linear dynamic
operator. The optimal controller Cyp(s) is calculated from thé
following theorem:

Theorem Q:};_

For the asymptotically open loop stable plant W(s) the closed
loop controller to minimize the criterion J(u) is given by:

Co(s) = Fols) (I_ - W(s)Fq(s))™ ! (4.36)
where Fp(s) is defined from the equation

1(s)™! 1¥(-)"T W (=)L  (-)QiL(s)x(s)}, = Fo(e)x(s)  (4.37)

and Y(s) is the generalised spectral factor [75] obtained:
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¥ (=s) T(s) = W (-s)LT(=s)QiL()W(s) + Ry (4.38)

The proof of this theorem is given in Chapterl of this thesis.

The above defined controller may be simplified by substituting
L(s) é:Im and for the plant matrix W(s) from equation 6.25). First
the spectral factors are written in terms of the polynomial matrix

N(s) (ie Y(s) = N(s)/d(s)):

T T
n(-s)G Q3G n(s) N™(-s)N(s)
' (=) ¥(s) = W (-s)QiW(s) + R; = BB 4Ry m———
d(-s) d(s) d(-s) d(s)
(4.3?)

Then equation (5.39)becomes:

Fo(s)2 = ¥()™HN(=s) Tain(-9)Qr2}, = ¥()7! N(o)E. Qs

(4.40)
The closed-loop feedback controller follows from (4.38):
- -1 ~~T T - -1
Co(s) [Ql G_" N(0)"N(s) n(s)Gm] d(s) (4.41)
and if G~ exists (or )
m X
= [e=1g,0° T T - -1g-1
Co(s) [Gm Q1Gm Ng (o) "N(s) n(s)Im] ‘Gm d(s) (4.42)

It has to be noted that the polynomial matrix inside the square brackets
in the last equation is not diagonal except when the frequency is zero
and when the control weighting matrix R; is zero, which is physically
unrealistic. Thus in general this controller does not attempt to make
the system diagonal. Another chﬁice for the error weighting matrix

Q; which leads to a diagonalized closed loop system is as follows.

Let -T .
Q1 =G~ QoG

, 1
and choose Qp and R; diagonal then N(o) = (Qq + Ry)? and from (4.41)

Co(s) = [B5 @0 + R N(s) - n()¢,] ozlacs) (4 .43)

where the matrix in the square brackets is diagonal. This choice

for Q) corresponds to the case where a transformed shape error
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profile is weighted. This transformed shape error represents the
error profile which the outputs of the shape actuators must correct
and thus it is important to limit these errors because of the mechanical

construction of the mill.

An alternative way to obtain a diagonalised closed loop system
is the control weighting matrix chosen so that the spectral factors
are diagonalised. Let Ry = Gi ROGm and for‘Q1, Rgp chosen diagonal
equation (&440) becomes:

T : T
n(-s)G_Qi1G n(s) + d(-s)G_RyG d(s)
YT(-s)Y(s) - m*1 m m 0 m

d(-s)d(s)

GmNrf(—s)Nl(s)Gm

d(-s) d(s) (4.44)

where Ni(-s)N;(s) A Q; n(-s)n(s) + Rpd(-s)d(s) then
Fo(s) = GZIN; (s)7INy (o) Ty

and the controller:

Co(s) = &2y ()™ () Ty (1 - F) Wy (o) Iy (o) Top) 1 -

d(s)

dcs)c;IEzilN1<o>TN1<s> - n(s)Im]'l' : (4.45)

This expression for the closed loop controller is comparable with

the one in equation (4.43) as both produce non-interactive loops.

Integral action is a feature usually desirable [?8:]. This can
be achieved with the optimal controller when the dynamic operator in
the coét function L(s) = Im/s. With the same assumptions as for the
previous Theorem 4.1, the following iheorem . 4.2 provides an

expression for the controller:
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Theorem .4.2

For the system of Theorem 4,1 and L(s) = Im/s the closed loop

optimal controller is given by:

Co(s) =N(s)71(y; + sMZ)[?m - n(s)N(s)"1(; + sti]-IGEId(s)

(4.46)
vhere
N'(-s)N(s) = €.Q1C_n(-s)n(s) - s2Ryd(~s)d(s) D
m = ol | | (4:48)
v, = Lin - §(s) = n(e)y

s+0 s (4.49)

Proof of this theorem is given in Appendix 14,

As with the previous discussed case, here the controller exhibits
integral action and a suitable choice of the Q;, R} matrices provide
a non-interactive closed loop system. That is if Q) = G;?QOG;I and
Qq and Rj are diagonal. The calculation of the above controllers is
relatively easy, (Appendix 15), as the matrix to be spectrally
factored is diagonal and thus the problem reduces to polynomial
factorization. For the selection of Qp, R; has also to be noticed
that there are certain shape defects which are more important than
others. TFor example, loose edge causes difficulties and this situation
has to be avoided by proper selection of Qp elements weighting the

edges shape error.

As the closed lodb with the above controller takes the form
of m single loop systems, the controller expression for the medium
speed (5 m/s) using the plant transfer function (4.23) for each loop is:

(0.25+1)%(0.74s+1) (0.01s+1) (0.291s+1) (1.0645+1)
(0.01+1.335+0.495240.127s3+0.173s%*+0.979 10~3s5+0.302 1075s6)

Co(s) =

This was designed for a steady state error of less than 17 with 9 =

100 and T, = 1 the Bode diagram of the loop gain and the time response
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for a step input is depicted in figure 16. The controller poles are
s} == 306 sp 3 =-l.473 + j 4.315 sy 5= -7.68 £ 3.22 sg = -0.0075.
The first pole may be cancelled with the zero (0.0ls + 1),as both are

very higher than the rest,to reduce the order of the controller.
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4.10 Discussion of Results - Conclusions

The mechanical construction of a Sendzimir mill is such that
there is significant interaction between various actuator inputs and
shape changes measured at the roll gap. This interaction is non-
dynamic which leads to an interesting special case of the general
multivariable problem. The mill gain matrix may be calculated from
a static model but the complexity of the model ensures that there is
significant uncertainty attached to the value of the gaiﬁ matrix
elements. It is impracticable to reduce this uncertainty by plant
tests for more than a few (two or three) rolling schedules. Thué the
major oﬁjective for the control system design must be to produce a
closed loop system which is robust in the presence of modelling errors
and uncertainties. This was achieved using an input—output dimension
reducing transformation based upon physically desirable control

objectives.

The control system design was shown to be relatively insensitive
to the changes in line speed for the mill. This allows a minimum
number of controller gains and time constants to be used and stored.
The approximately upper triangular form of the transformed mill matrix
leads to a simple constant precompensator and simple dynamic compénsation.
The steps in the calculation of the controller were:-

(a) Calculate the;traqsformed mill matrix Gx’

(b) Calculate an approximate diagonalising diagonalising precompensator
P,

(c) Calculate a diagonal dynamic compensator Cp(s) using single loop
techniques. |

The use of the Characteristic Locus CAD package provided more

flexibility during the above design steps. The physical reasoning

behind the derivation of the controller and the simplicity of the
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resulting controller provide confidence in the practicality of the
design technique. Further work will be concerned with an extension
of the robustness analysis and the development of a control system

for the first intermediate rolls (a second shape control mechanism).

Optimal output controllers were considered and it was shown that
the system can be reduced to a set of single-input single output loops
through a specific choice of the error weighting matrix Q; : Q) =
G;T QOG;l. In this case the diagonal matrix Qp penalises errors
referred to the mill inputs. This result has some value since adjacent
As-U-Roll actuators can only be changed by a limited amount. By.
choosing Qg and Ry, the relative importance of shape error and control
action at any particular As-U-Roll is considered. The optimal control
solution produced a high order controller and indicated cancellation
of the plant poles would be helpful. The plant has a number of bréak—
points in the same frequency range, and using classical design methods
these must also be cancelled to achieve faster, damped responses and

relative stability.
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CHAPTER 5

A Comparison of Characteristic Locus and Optimal Control
Designs in a Dynamic Ship Positioning Application



CHAPTER 5,

A Comparison of Characteristic Locus and Optimal Designs in a Dynamic
Ship Positioning Application

5.1 Introduction

The increasing need to exploit the mineral and oil resources
of the seabed.  has led from exploration in shallow waters close to
the shore to deeper less accessible and less hospitable locations.
At first platforms and support vessels were held stationary over
the required position with the use 5f anchors and moorings. Deep
water exploration and the time needed for setting up an anchoring
system for positioning has led to the introduction of Dynamic Ship

Positioning systems.

In general, a dynamicélly positionéd véssel must be capable
of maintaining a given position and heading by using thrust devices,
without the aid of anchors or moorings. The position control system
is not gxpected to hold the vessel absolutely stationary but to
maintain its station within acceptable limits, under a range of
weather conditions 502]. A maximum allowable radial position error

is usually specified eg 4 to 5 percent of water depth

The motions of a vessel stem from wind, current and wave
drift forces which are low frequency forces and also from high
frequency forces due to the oscillatory components of the sea
wéves. Only the low frequency forces (less than 0.25 rad/s) are
to be counteracted by the use of the thruster. The control
system must avoid high frequency variations (eg greater than
0.3 rad/s) in the thrust demand which is referred as thruster
modulation. Any attempts to counteracf the high frequency motions

causes unnecessary wear and energy loss in the thrusters. The
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position measurements must be filtered to obtain a fgood' estimate of
the low frequency motions of the vessel, control of these low frequency
motions may then be applied. The control systems for the first dyna-
mically positioned (DP) vesselsﬁﬁe,lélincluded notch filters and PID
controllers. The notch filters were used to remove the sea wave com-
ponents on the position measurements. .The major difficulty with the
conventional PID/Notch filter schemes is that improved filtering action
may only be achieved with a deterioration in the control system per-

formance EQEJ

Difficulties with thruster modulation and with the selection of -
the "best" notch filters led to the use of optimal control schemes
involving Kalman filters 104. The Kalman filter introduced a smaller
phase lag on the position measurements and also offered the possibility
of adaptive filtering action via the extended Kalman filter 105,106 .
This combination of Kalman filter and optimal control state estimate

feedback is now the accepted solution to sthe DP problem.

Having shown the Kalman filter to be the most appropriate for DP
systems there remains the question of the design for the controller.
Previous authors have employed optimal‘control théory via the separation
principle. It is now appropriate to consider whether any of the recent
multivariable(frequency domain design methods might be used for the
controller design. Rosenbrock's Inverse Nyquist Array design technigue

has been used ‘?07] but not in conjunction with a Kalman filter.

The characteristic locus design method[2§}has not previously been
applied to the design of DP systems. A recent design philosophy inte-
grates this frequency response method wifh the root locus approach and
'results in an inner/outer loop structureEKﬁﬂ. This is particularly
appropriate for non-square systems fofﬁed from a plant and Kalﬁan filter

in cascade. Thus, in the following the integrated characteristic locus/
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root locus method will be employed for DP system design and the

results will be compared with the corresponding optimal control

designs.
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5.2 The Ship Positioning Problem

The major components in a dynamic ship.positioning system are
the position ﬁeasurement syétem, the thrusters and the control
computer. Various forms of thruster configuration are employed

.and the two most common forms are shown in figure 1. The first
involves the use of the vessels main propulsion units together with
an array of tunnel thrusters. Otherwise steerable thrusters, hung
below the vessel and rotated to the desired direction, may be
used. -The vessel shown in figure 1 is used for offshore drilling
operations but DP vessels are also used for survey, fire fighting

and oil rig support duties.

Once a desired drilling location has been established (usually
by radio navigation) a local position reference is required .
A short 5aseline beacon configuration is often used to provide the
position reference. This consists of a single sonar beacon mounted
on the sea bed. By measuring the difference in the time of arrival
of the acoustic energy at the hydrophones the distance to the beacon,

can be acéurately measured (figure 1). Other position measurement

systems may be used in conjunction with the acoustic system and
each has different dynamics and noise characteristics. Problems
concerned with the pooling and filtering of signals affect the
filter design but do not affect the controller design and are not

considered here.

The envirommental forces acting on a vessel induce motions
in six degrees of freedom (surge, sway, yéw, heave, pitch and roll).
In the DP mode of operation, only vessel motions in the horizontal
piane (surge, sway and yaw) are controlled. The other motions and

their interactions are considered negligible. It is usual to design
¢
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the control for sway and yaw together and then include the surge
as a separate design. This is possible because the linearised

vessel dynamics for surge are decoupled from those for sway

and yaw motions. Thus in the following, the control of sway and
yaw motions only will be considered.’ The major disturbance acting
on a vessel is due to wind forces. Wind gusts and drift forces
have frequencies in the range 0 - 0.04 ¢/s whereas the wave

induced ship motions are in the range 0.05 - 0.25 c¢/s. The current
speed and direction can be considered constant over long periods

of time compared with the wind and wave force changes.

The requirements for a DP system may be summarised as:
1 To maintain positional accuracy or heading under Specified'
adverse weather conditions (see Table 5.1)
2 Avoidance of high frequency variations in the thrust demand
(> 0.056)
The positional accuracy can be calculated [119]‘using:
radial error =e;d + w/, + e,
where
e1 1is the per unit error of the position measurement system
d 1is the water depth
w is the peak to peak wave motidn in surge or yaw

e, is the error due to the control loop

The wind forces are often the most important disturbance acting
on a vessel and they vary much more rapidly than the current or
wave drift forces. A wave filter is designed to render the control
system insensitive to high frequency first order wave force motions.
Wind feed forward control is often used to counteract the effect

of steady winds and gusting and it is convenient to assume that

the position holding will be affected by a white noise component
of wind only. Integral action is normally employed to counter
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the wave drift and current forces. The integral action may be
introduced in optimal stochéstic controllers by modifying the
usual performance criterion [309] However, in practice the
integral action is often included as part of a sea current model
and not part of the optiﬁalvsolution. Thus, for simplicity both
the feed forward control and the integral action will not be
considered here.

Table 5.1

Position Accuracy Requirements

Duty Environmental Conditions Accuracy

Wind Significant Wave | Current
(knots) Height (m) (knots)
Drilling | 25 3.9 3 3% water depth

(minimum of 7 m)

Diving 30 4.5 1 +3 m heading +2°
Support

Equip- 20 2.0 1 heading +1°

ment excursion 1.5 m
Supply (maximum)

Fire Up to severe gale or storm +15 metres

Fight-

ing
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53

State Egquation Model for a Vessel

The mathematical model for the vessel dynamics is highly
non-lineaz'[llo, 11i]and may be derived from theory and substanti-
ated by model tests. It is usually'aésumed that the vessel motions
are the sum of the outputs from low and high frequency sub-systems.

The low frequency sub-system is controllable and has an input from

the thruster control signal u. The high frequency sub-system

has no connection to the thruster control input. Thus, the total

motions of the vessel is the super position of the horizontal man-
oeuvering motions in a calm sea and the motions induced by the

high frequency wave exciting forces. The low frequency equations
relating surge, sway and yaw velocities u, v and r may be expressed
by the following per unit form, for the oil rig drill vessel

Wimpey Sealab [10Y4],

1.04k 4 = X, +0.092 v? - 0.138 uU + 1.8k rv (5.1)
X= u (5.2)

1.84 ¥ = Y, - 2.58 vU - 1.84 v¥/U + 0.068 r|r| - ru (5.3)
y o= v (2.1)
0.102 # = N, - 0.T64 uv + 0.258 vU - 0.162 r|r| (5.5)
z = r (5.6)

U is used to denote the vector sum of surge and sway velocities

u and v, X,,Y, are the applied surge and sway 'direction forces

due to the thrusters and the environment. N, is the applied

turning moment on the vessel, and x,y,z are the surge sway and
yaw positions. In DP systems it is reasonable to assume that
changes in velocity and position are small so that a linearised
set of equations may be obtained for sway and yaw motions as the

linearisation process removes the interaction with surge: 112:

(1) = Az (8) + B (t) + Dy u(t) (5.7)
Iz(t) = Cpx)(t) (5.8)

- 125 -



where x, (t) eR®, u, (t) eR?, @Q(t) eR?. The signal w(t) is

assumed to be zero mean, white, noise. The systém matrices for

Wimpey Sealab are:

-0.0546 0 0.0016 O 0.5435 0.272

1 o o0 o o0 o0
0.0573 0 =-0.0695 O 3.2680 -1.63k0
A, =
0 0 1 0 0
0 o 0 0 -1.55 .0
0 0 0 0 0 1.55
i J
T 0 0 0 0 1.55 0
B = 0 o o 0 0 1.55
0 10 o o0 o |
C,Q, =
| 0 0 0 1 0 0
0.5435. 0 0 0 0 0
D =
» 0 0O 9.785 0 0 0

The high frequency model is obtained by fitting the spectrum of
the output of a dynamical system (driven by white noise) to a
standard sea spectrum[ilﬂ. This shaping filter output represents
the worst case high frequency motions since in practice the vessel
dynamics tend to attenuate these motions. The high frequency

model has the form:

£,(t) = A x () + D, @ (t) (59)
Y = Ch Kh (t) - 6. 10)
where 14 0 Di 0

gl R b= 1o Y
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and the sub matrices for the sway, and yaw directions are;

for a typical sea state (Beaufort scale 8):

0 3.10k 0 0 0 [ 0
0 0 3.104 0 0 0
AS =AY = o -0 0 3.104] s 0 ¥y 0
h Ah Dh:: Dh::
0.15 -1.88L4 -2.44 -8.555 0.088J 0.0403
O 0 1 O 0 O 0 o
Cy =

The state equations for the low and high frequency models of

the ship can be combined and be written in the form

- . - [_ | .

= [Ce ChJ 5 + v . (5.12)

Where v is a zero mean, white signal representing the measurement
noise. The assumption that the above linear models may be employed
will be validated by simulation results based on the non-linear

model of the vessel.
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5.4

Optimal Filtering and Control

The linearised equations of the vessel as expressed above are
now in the form normally used for specifying the Kalmén filtering
problem. The Kalman filter prévides unbiased state estimates for
state féedback control. In the present case the position control
system must respond only to the low frequency error signal and the
sfate estimates of the low low freguency sub—system are required
for state feedback control. The Kalman filter includes a model
of the system, therefore provides separafe estimates for the low
and high frequency sub-system states. It is .shown in figure‘z and

defined by the equations:

az(t) |
—— = A 2(t) + KT [g(t) - $(+)] + B u(t) (5.13)
F(t) = c&(t) (5.1k)

where the Kalman gain matrix K can be partitioned into low and

high frequency geain matrices:

Kf

kf = L
N (5.15)
The metrix Kf is computed using the matrix Riccati equation. Al-
ternatively the steady state value of K may be obtained using
s—-domain methods [lliL The linearised low frequency equations for
the vessel are independent of the sea state and known. The high
frequency model depenas upon the sea state but mey be assumed
constant for given weather conditions. The covariance of the
white noise signal wy feeding the high frequency block is fixed by
the assumed sea.spectrum. Thus, the only'unknOWn quantities required
to compute the Kalman gain K are the low frequency process noise

b4

covariance Q2§(t) and the measurement noise covariance RO(t).
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An estimate of the power spectral density of Wy can be based upon

the Davenport wind gust spectrum‘ELlﬂ. The measurement noise

covariance can often be obtained from the manufacturer of the

particular position measurement system.

The steady-state solution for the gain matrix K may be em-~
ployed since the gains are changing over a relatively short initial
period. In the following discussions it will be assumed to be
fixed for a given Qeathér condition. Such a solution is easily

implemented as a set of gain matrices for different weather conditions

and these would be pre-calculated and stored in the vessel's control

computer.

The behaviour of the Kalman filter and its suitability for
the DP problem has been examined in detail elsewheré[th,lOS,lms,llé].
It is noted here and it will be demonstrated in a later section
that the transfer function between u and.ga is the same as that
between u and X,, assuming the filter model matches the plant
equations. That is the Kalman filter in comparison with a notch
filter (the solution ﬁsed up to now) does not introduce phase lag
between the thruster control input and the position eiror estimates.
Thus, even though the filtering performance of the notch and the
Kalmon filter might be similar there is an essential difference
in their transfer characteristics. This difference is due to the

fact that the control input is fed to the Kalman filter which is

not done in the case of the notch filter. .

The optimal control solution to the DP problem may be obtained

by the usual method of minimising the performance criterion:

, T
I(w =1lim 1 gy [ (<x(t), Qx(t)>_ + <a(t), R u(t)> ) at (5.16)
Tooo T En 1 Em

-T
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The separation:principle of stochastic optimal control theory
gives that the optimal control signal becomes:

uo(t) = - KCX(t) - (5.17)

where X(t) is the estimate of the states x(t) obtained from the
Kalman filter. It may be shown Luxﬂthat there is no feedback from

the uncontrollable high frequency sub-system:

(t)

15>

Eb(t) = - K§1 0]

ih (€) (5-18)

The gain matrix K{, may be calculated using the solution of the

steady state Riccati equation (Chapter 1)

_ _ AT -l
Qg = = Pghp = AgPy + PpBoR, ByPy (5.19)
¢ _ ooqnT .
Kip = RI1Bp% A (5-20)

It may be noted that the above equation is based upon the fixed
low frequency state equation matrices only, so the feedback control
gains do not vary with the sea state. This is not the same for
the filter whose gains do depend upon’the sea spectrum, confirming
the view that the ship positioning problem is basically an adaptive

filtering rather than an adaptive control problem.

Several authors have described optimal control solutions to the
DP problem [103,112] but only recently have methods for selecting
the performance criterion weighting matricesﬁﬁ,agbeen developed.
These methods are related to the work of Harvey & Stein and

the work described in chapter 2.

The optimal control responses which are shown in later sections,

‘were based upon weighting matrices obtained as described in chapter Z.
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5;5 An Integrated Approach to Multivariable Analysis and Design

The two most important concepts in the classical control theory
are Gain and Frequency. The inter-relation between these two concepts
forms the basis of the two most-powerful approaches to the design of
feedback systems, that is the freéuency response approach and the root
locus approach.The key roles played by gain and frequency may be

demonstrated by the following arguments.

It may be stated‘ as a general principle in feedback, that the
requirement for an openéloép gain operator of large‘modulus is a pre-
requisite for good accuracy of tracking, insensitivity to parameter
variations and rejection of disturbances. Unfortunately, the
application of gain in 'a feedback situation alters the system
characteristic frequencies and often leads to the violatién of the
requirement for stability. Thus the inter-felation between gain and
frequency causes the conflict between the requirements for accuracy
and stability. It is the designer's task to devise feedback
configurations that reach the best possible compromise between the two

conflicting requirements.

The generalisation of the concepts of gain and frequency to
multivariable systems then emerges as the natugal way to extend
classical control theory. Appropriate use 6f the theory of algebraic
functions -of a complex variable 1leads to the definition of the
characteristic géin and characteristic frequency, and gives rise to
the characteristic locus (CL) and multivariable root locus (MRL)
methods [20,55,117]. These two methods provide the means for the

generalisation but also unify the work of Nyquist,Bode and Evans. They
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lead to an integrated design philosophy that draws from both the
frequency response approach and the root locus approach, combining the

two in a complementary manner [108],.and is summarized below.

5.5.1 The Characteristic Locus method

Consider the algebraic function g(s) given by
[1-G(s)| =]gT-C(sI-8)""D[= 0 (5.21)
and defined 6n an appropriate Riemann surface. Then, . almost
everywhere on this surface , the m branches of g(s) form a set of
locally distinet analytic functions, gi(s), called the 'characteristic
transfer functions', to each gi(s) there corresponds an eigenvector
function of s, gi(s), called the 'characteristic direction' of G(s).
The paths traced by the eigenvalues of G(s) as s describes the Nyquist
contour once in a clockwise direction, are called the 'characteristic
loei' (CL). The gi(s) and the gi(ju) provide the generalisation of the

- gain and frequency response to multivariable systems.

The importance of gi(s) and gi(s) stems from the fact that unity
feedback leaves the eigenvalues unaltered and leads to eigenfunctions
which obey the usual scalar open to closed-loop transfer function
relationship. Expressing both the open and closed-loop transfer

function matrices, G(s) and R(s) in dyadic form we have:

n
G(s) = §= g;(s) yi(s)zg(s) | (5.22a)
m
R( ) - Z g.(S) .t
S o1 :i-g—(;y_ (S)Xi(s) (5.22b)

The r‘j_(s) emerge as the scalar transfer functions which coordinate the

input signals as seen through the eigenvector frame.‘
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Consideration of equations 5.22 é&b indicates that .the CL
contains the necessary information about closed-loop stability.
Furthermore, the CL together with the misalignment angles (MA), which

"measure the eigenvector spectral arrangement with respect to the
sténdard basis vectors, chéraeterise most aspects of closed-~loop
behaviour. A brief summary of the main results Qf the CL method is
given below.

(a) A necessary and sufficient condition for closed-loop stability is
that the  net sum of counter-clockwise encirclements of the critical
point by the CL is equal to the number of open-loop poles.

(b) Low interaction, namely the condition where the system outputs vy
respond primafily to signals applied at the ith input, requires that
at any frequency, the moduli of the CL be large and/or the gi(s) be
well aligned with the standard basis vectors.

(¢) The classical concepts of relative stability margins (gain/phase
‘margins, M-circles ete.), bandwidth, etc. may be applied to the CL in
order to assess the closed-loop performance of multivariable systems.

(d) Good accuracy of tracking in the closed-loop requires large CL
except in the case of badly skewed eigenvectors when it is necessary

to consider the CL of- the Hermitian form of G(s) [20].

5.5.2 The Multivariable Root Locus method

To generalise the root locus approach, the MRL considers the dual
characteristic equation to 5.21:
|s1-5(g)| =| sI-B(gI-D) " 'c-a|= 0 (5.23)
and thus associating the eigenvalues of the nxn frequency matrix,.
S(g), to the algebraic function s(g) called the characteristic

frequency function. (Note that as with g(s), s(g) is not defined over
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simple copies of the complex plane, but over an n-sheeted Riemann

surface).

The systematic stu&y of the variatidn of s(g) for g=1/k and k
varying, reveals that the scalar root locus method is a special case
of the multivariable problem. Multivariable root loci do not intersect
each other on the Riemann surface, they depart from the open loop pole
locations for k=0 and as k-scosome loci terminate at finite locations
called Finite Zeros (FZ). The remainder, attracted by the set of
Infinite Zeros (IZ), go to the point at infinity along asymptotes that
arrange themselves into groups of Butterworth patterns. To each group
there corresponds an integer number which defines the order of
divergence, the number of asymptotes in the group and their special
arrangement. The orientation of the patterns and the speed of
divergence depend on the non-zero eigenvalues.of a set of parameters
which are obtained by suitable projections of the Markov parameters

[108].

The FZ are the frequencies whose transmission through the system
is blocked. They emerge as the characteristic frequencies of the part
of the system internal mechanism which is blocked from the inputs and
outputs. This blocking action is due to the null spaces N,M of the
input and output maps, B and C respectively. The FZ for a proper
system with CB full rank are given by the eigenvalues of NAM, where N
and M are matrix representations of N and M. When CB is singular the
FZ of a proper system are given by the solutions of det(sNM-NAM)=0
whereas the FZ of a non-proper‘system with a full rank direct pass
operator D, are given by the eigenvalues of the frequency matrix S(g)

at g=0, ie by S(0)=A-BD”'C.
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Other aspects of the MRL method concern the angles of departure
from the open loop poles, the angles of approach to the FZ, the points
of intersection with the imaginary axis, ete. All these quantities may
be calculated in terms of the elementary state space matrices 4,B,C,D

[551.

5.5.3 The Design Procedure

Phase lag is often the source of difficulties in control and it
arises out of the non-squareness of the input and output maps B and C.
Thus, it would be advantageous to make use of all available inputs and
measurements. The classical feedback configuration prescribes the
comparison between reference inputs and commanded cutputs only. This
is restrictive since it does not allow for the utilisation of all
available measurements. To emphasise this point we state that the
presence of righ£ half plane =zeros (finite and infinite) in the
classical feedback configurations would prohibit the use of high gain
but would not necessarily prohibit the injection of high gain in loops
that make use of all the available measured information.

To make efficient use of all available measurements the integrated
design philosophy, prescribes two design stages, an inner-loop and an
outer-loop stage. In the first, multivariable root locus techniques
are employed for the adjustment of the system, closed locp
characteristic frequeccies. Thus, the measurements are combined by a
feedback operator F (figure 3) in such a manner as to produce a set of
outputs, equal to the number of inputs. Non-square systems,
generically do not have FZ and yet square systems do, so that F may be
thought of as generating FZ. Any FZ that are génerated in this manner

are placed in the left half of the complex plane. Furthermore F may be
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chosen judiciously so as to keep the order oansymptotic divergence to
a .minimum. Subsequently a square full rank compensator K of constant
gains may be introduced to manipulate the asymptotic directions and
thus secure good stability margins. The inner loop‘is then closed and
a scalar feedback gain k is injected to conduct the characteristic

freduencies to preferred sectors of the complex plane.

A transfer function matrix representation G(s) for the system
from commanding inputs to commanded outputs with the inner 1loop
closed; is derived and the design enters the second stage, that is the
outer 1§op stage. The purpose of this is té secure good system
accuracy by attaining large characteristié gain, a task made possible
by the improved stability margins. The overall outer loop controller
K(s) is composed in the following manner. The minimisation algorithm
ALIGN [20] is first applied to obtain the controller Kh which
suppresses interaction at high frequencies. To improve the gain/phase
characteristics of CL classical lead/lag controllers ki(s) are
designed and introduced into the feedback configuration through an
Approximately Commutative Controller (ACC) Km(s). Finally, an ACC is
used to introduce integral plus proportional action to suppress low
frequency interaction, improve steady state accuracy and balance the

low frequency gains (see figure 3).
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5.5.4 The Use of Filters in the Integrated Characteristic Locus

Multivariable Root Locus Design Method

The two stage 'design provides an effective way for reaching a
compromise between the requirements for stability and accuracy. It
does this by pre—conditioniné the system during the inner loop stage,
improving its stability margins and subsequently injecting gain into
the CL of the outer loop system. Thus, given a system S1 with state
space matrices (A,B,C), depending on the stability margins it may or
may not be necessary to include an inner loop. The corresponding
configurations are depicted in figures 3 and 4 where Ugy Yqo and Xy

denote the input, output and state vectors of S1, respectively.

Note that figure 3 refers to the situation where the entire state
vector is available for the purpoées of feedback.In general, however,
only a limited number of measurements may be available and this will
restrict the design freedom available during the inner loop stage. The
question then arises as to‘whether observers may be used to obtain
estimates of the required number of states for the purposes of the
inner 1loop design; The answer to this is affirmative and recent work
[118] has shown that from the MRL design point of view it is possible
to invoke a form of the separation principle to separate ﬁhe design of
the operator F from the design of the observer.

A more challenging situation arises when apart from the
unavailability of excess measurements the outputs themselves may not
be measured directly due to the presence of various disturbances and .
noise. A solution to this pr&blem which 1is often prefered by

practising engineers is to use notch filters to remove the effects of
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disturbénces at known frequencies. An alternative approach would be to
introduce into the feedback loop a Kalman filter which would make
available estimates of the system states as well as the system outputs
and thus would enable the formation of both the inner and outer lqops.
The feedback configuration resulting from the use of Kalman filter and

notch filters are depicted in figures 6 and ¥ respectively

In the absence of noise and disturbance the Kalman filter would
be designed as a simple observer and by the separation principle one
may use exactly the same controllers for the configurations of both
figures 3 and 5 [ie: K'(s)=K(s), k'=k and F'=F]. It is of interest to
know whether the same applies in the presence of noise and

disturbances.

Consider the Kalman filtering configuration of figure 2 and
assume that the measurement vector z is the sum of the actual output
1,C1), and an output Y5 of a
dynamical system 82=(A2,B2,CZ) which describes the effect of

¥4 of the given plant model S1=(A1B
disturbances and a vector v of white measurement noise. Assume also
that an uncorrelated white noise input vector w, enters the system S1.
The situation certainly corresponds to the Dynamic Ship Positioning
application but is also widely encountered in other industrial

applications. Then the state space equation for the Kalman filter may

be written as:

%,=A,%,+K (z-§)+B u, (5.24)
iz?AzﬁquzﬁE“Y) (5.25)

where to obtain the matrices K1 and K2 one needs to specify the noise

covariance matrices. The estimate of the state vector of S1 is

Y
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provided by the component 21 of the filter state vector and the

estimate for the output vector is given by the vector C1g1.

The deseription of the transferance from the system input u1 to
the output of the Kalman filter 31 is obtained by manipulation of the
state space equations of the system S1 and is given by the augmented

state space model:

2 | A 0 0 £ By
g l=|0 Aj - K6 KG E1{t | O | 14
4l o “KoCy Az - KoC2| |24 [ O (5.27)
T L | I R S A
P . -1
§, = [cy ¢ d
€
=1
p:y (5.28)

where gi

are uncontrollable from u, and as such do not affect the transferance

to 21 which is given by:

is the estimation error §1-£1. Clearly then the filter modes

from u,

A - -1
§, = C,(sI-A)" By, (5.29)

Thus, the transferance from u, to y, and u, to §1 are identical.

The same result can be obtained for the transferance of the inner
loop of figqre 5 if the matrix C1 in 5.24 is replaced by F. We may
state therefore that the introduction of the Kalman filter in figure 3
does not affect the MRL properties of the inner loop and ‘the CL
properties of the outer lobp system. As a consequence, a form of the
separation principle may be invoked and we may introduce the same
inner and outer loop controllers that we would use, had there been an

excess of measurements and no noise and disturbances (see also section

5.5.3).
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In contrast to the situation above'the same does not apply to the
configuration with the notech filter (figure 6). Notch filters do
affect the system loop\transferance and will normally result in a
certain deterioration of the system stability margins and speed of

response.
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5.6 The Characteristic Locus and Multivariable Root Locus design

studies

The design specification for the CL/MRL method are formulated
with the servo-mechanism problem (rather than the regdlator problem)
in mind, and include éspects such as closed loop stability, accuracy,
dynamic performance and interaction. At first glance the CL/MRL method
is best Asuited. to deterministic problems. However, under noisy
conditiéns the introduction of filtérs provide estimates for the
corrupted deterministic signals. The success of the CL/MRL scheme will :
therefore depend upon the accuracy of estimation. The effects of

disturbances and noise will be discussed in a later section.

For the sake of comparison, three different design studies are
undertaken. The object of the first two’ is to investigate the
suitability of the Kalman and nopch filters in a simple outer 1loop
configuration. The third ;tudy examines the effectiveness of Kalman
filters in feedback configurations inclgding both inner and outer

loops.

5.6.1 The Kalman Filter in an Outer Loop Configuration

We consider the feedback configuration of figure 5 with the inner
loop broken (F'=0, k'=1). Alternatively as a result of the discussion
in the previous section the controller K(s) may be designed
considering the configuration of figure .3 with F=0 and k=1. The

description of the system S, is entered into the computer package

1

using the matrices previously defined to represent the low frequency
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ship dynamies (section 5.3).

The analysis begins by assessing the stability properties of the
uncompensated plant under unity feedback. For this purpose the

frequency response G1(s)=c1(sI-A1)—1B is evaluated at a number of

1
points in the range 0.01-10 rad/sec and the eigenvalueé of G1 are
computed to give the CL shown in figurg 7. Clearly the generalised
stability criterion, which requires no net encirclements of the
critical point (as the open loop system is stable), is not satisfied

for any value of the gain kI and the need for compensation is

apparent.

Further evidence of the need for compensation is provided by
figure 8 which displays the variation of the MA with 'frequency w. The

MA 02 remains small for all values of w and thus predicts 1low

interaction in the second loop. However, for all w>0.2 rad/sec the
conditions for suppression of interaction in the first 1loop are not

satisfied.

Following the outlined CL procedure we apply the ALIGN algorithm

at wh=0.2 rad/sec to obtain the controller of constant gains:

0.0356 0.00651

0.0729 . -0.0134
Subsequently the dynamic controller Km(s)zk(s)12 is introduced where

k(s) is a lead network,say

10s +1{
S+14

Because of the even gain/phase distribution among the CL achieved by

k(s)=

Kh it is not necessary to introduce individual compensation to each CL

and thus Km(s) need not be designed to be a commutative controller.
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The resulting CL plots together with the constant magnification circle
(the M-circle) are shown in figure 9. Thus, the overall compensator
k(s)Kh , apart from improving the system interactive properties at
high frequencies, also yields a set of CL thch under unity feedback
satisfies the Nyquist criterion. The resulting CL also have large dc
gains, ensuring good steady state accuracy and display, ample
gain/phase margins, ensuring a non-oscillatory fast response with a
predicted maximum overshoot of about 19%. The MA of the compensated

plant are shown in figure 10.

The abdve prediqtions for the closed loop behaviour is verified
by the digital simulation results shown in figures 11a&b. These
display the output response when a unit step signal is applied to the
firét and second reference input, in turn. Because of the flexibility
of the method the designer is now in a position to finely tune the
parameters of the dynamic controller, in order to reach an acceptable

compromise between engineering constants and design specifications.
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Figure 11 Step response of the closed loop compensated system
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5.6.2 Notch Filters in an Quter Loop Configuration

An alternative way to obtain estimates of the output of the 1low
frequency ship dynamies is to use a notch filter which removes fhe
effects of the high frequency wave motion. It is the practise for this
application to use a cascade of three notch filters each with‘ a

transfer function of the form [102]:

2
h.(s) = s2+ 0.20:5 +w:°
i 1 - for i =1,2,3

2
s+ 20.s + w2
i 3

where W, @, B are chosen as: 1.0912, 1.71864 and 2.728. The cascade

3
of the three notch filters h(s)=h1(s)h2(s)h3(s) is introduced into
each of the two system loops with the effect of scalling the open loop
transferance, G1(s) to give the new loop transferance -Q(s):h(s).G1(s)
Thus the introduction of the notch filters will leave the system
multivariable structure unaltered and will simply scale the CL by
h(s). As a consequence, the design steps of the previous section
(5.6.1) may be applied to produce similar results. However, on account
of the excessive gain attenuation and phase lagging properties of the
notch filters, clearly demonstrated by the Nyquist plot of h(jw) shown
in figure 12, the resulting CL will display poorer gain/phase margins
and will have lower bandwidths. Naturally this will reflect itself on

slower and more oscillatory responses. Applying ALIGN at 0.2 rad/sec

and using the dynamic controller k(s)IZ with

20s+1
2s +1

yields the CL plotted in figure 13 and the time response results

k(s)=

shown in figures 14 a&b. (It is of importance not to apply excessive
lead action in higher frequencies as this will counteract the
filtering action of the notch filters introduced in order to reject

the noise corrupting the outputs [102]).
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5.6.3 The Kalman Filter in an Inner and Outer Loop Configuration

The use of an inner as well as an outer loop affords the designer
greater flexibility because it‘enables the utilisation of all the
available measurements. The introduction of a Kalman filter into a
configurétion like this (figure 5) enhances the effectiveness of the
integrated design‘because it provides estimates for all system states
and this enables the arbitrary placement of all inner 1loop 2zeros
(finite and infinite). This facility is of crucial importance for the
design of systems which, due to poor stability margins, prohibit the

injection of gain in a simple outer loop configuration.

This 1is the case with the DP problem. An inspection of the
2

products C1B1, CTA1B1 and C1A1B1 shows that the first two Markov
parameters are zero whereas the third is non-zero and non-singular
with one positive and one negative eigenvalue. Thus the low frequency
ship model has third order infinite =zeros only and these will be
' associated with MRL asymptotic directions distributed in space as the
cubic roots of +1 and -1. Compensation on the system S1 may improve
the distribution of these asymptotes but cannot alter the order of the

IZ. Thus each Butterworth pattern will conduct at least one pole into

the unstable half of the complex plane.

In contrasf to the outer loop situation where the output map Cuis
fixed, in the inner 1loop design one is free to choose F. Thus the
first Markov parameter of the inner 1loop system may be made non-
singular yiélding the maximum number of FZ and IZ of first order.
Subsequently, placement of both the FZ and IZ in the stable half of

the complex plane would produce an inner loop system with infinite
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gain margins.

.The inner loop deéign begins by deriving controllers which affect
the placement of the zeros at desirable locations. Unlike the case of
pole placement where it is often difficult to choose a desirable polé
pattern, in placing zeros one obtains guidance from the shape of the
MRL.

To derive suitable solutions for the . matrix F we adopt the
following procedure. Partition the state vector x:[x1,x2,...,x6]t of
S1 into two vectors .P1=[x1,x2,x3,xu]t and Pz:[xS,xG]t. Then by
conformal partition of the matrices A, B and F and the application of
the NAM algorithm [48] it can be shown that the inner loop zeros are
given by the eigenvalues of the matrix 4A11-A12F;1F1. Rewriting this

matrix in the form:

. ~ -1 ~ ~ ~ o~ . N
A11-k(A12)(F2 F1/k)-A-kBC (5.30)
we see that the inner loop zeros are also the closed loop poles of
the system S(A,B,C) where A=A11, B=A12 and C:F; F1/R under the scalar

feedback gain K. Hence , to influence the locations of the inner loop

~ o~ o~

zeros we must place the poles of E(A;B,C). To calculate these we
exploit the structure of the system matrices in the DP péoblem. Thus,

for convenience, interchange the second and third states of S to

A AN

obtain the equivalent state space description §(A,B,C). A partition of
A er A& A~ At . ’ A A b
the vector g-[x1,x2,x3,xu] into the vectors ‘91_[x1,x2] and

p2=[§é,£4]t and application of the NAM algorithm will show that the

~ -]
zeros of S (or S) are given by the eigenvalues of -61102. The matrices

A A
C1 and C2 depend entirely upon the parameters of the controller F and

so may be chosen freely. One is able to place the zeros of Sat z by

A Al
1° Furthermore the choice C1=B11 ensures that all the IZ

~
of S are first order and stable. By a judicious choice of the location

(4

A P
setting CZ=-zC
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of z of the zeros g and suitable choice of the gain k one is able to
attract the closed loop poles of S and hence the zeros of +the inner
loop system to desired locations. The corresponding solution for the
matrix F may be constructed by considering the relation of the.
components of F, F1 and F2 to the matrices 61 ahd 62.

The objective of the inner loop is to conduct the characteristiec
frequencies further to the left in the complex plane and thus pave the
way for the characteristic gain adjustments of . the outer loop. At
first it seems desirable that the zeros of the inner loop (and hence
the zeros of S) should be placed on the real axis and should be made
as negative as bossible. However, a comparison of the resulting MRL
for two different z (figure 15 a&b) shows that the more negative z is
chosen the more the root loci are deflected away from the real axis at
‘intermediate gains. For high values of gain of course the root loci
Wwill tend to the zeros (finite and infinite) and thus arbitrarily fast
and stable responses may be achieved. A limit ¢to this process does
exist and is dictated by the amount of gain that is practical to
inject into the feedback system. Gain constraints therefore imply
constraints on how far to the left the zeros of,g and the zeros 6f the

inner loop should be placed.

With the engineering constraints of phe DP problem in mind the
following two solutions were studied. The first, places the two FZ of
s at 2z=-0.5 (figure 15a) and the subsequent choice of k=2 places the
inner loop FZ at about -1.3, —1,25, -0.8 and =~0.75. The resulting
controller F is calculated to be
1.839 0.919 0.306 0.153 1 O (5.51)

3.678 1.839 -0.612 -0.306 0 1 |
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then a scalar inner loop gain of k=5, has the effect of shifting the

poles of S, from their original 1locations at (-1.55, =1.55,

1
-0.07&2,-010499, 0, 0) to (-7.3, =-7.3, -1.02, :j0.1R5, -0.927).

In the second case the FZ of S are placed further to the right at
z=z=0.2 (figure 15b) and the gain E is set equal to 1.0 in order to
place the inner loop zeros at about.-0.8, -0.85, -0.25 and -0.28. The
resulting controller has, as expected, reduced gains :

0.919 0.1839 0.153 0.0306 1 O
F= (5.32)

The effect of this F is to shift the poles of S, to (-3.6, -3.6,

1
-0.53, -0.44, -0.35, ~0.3). Both schemes therefore result in a marked
improvement of the relative stability margins of the low frequency

model of the ship.

The outer loop stage may now be entered. This is done by the

loops around the estimates of the states of S, provided by the Kalman

1
filter and forming the transfer function matrix from the ship inputs
to the estimates ‘of the system outputs (hamely the estimateé of the
second and forth states of S1). Note that in ofder to avoid feedback
around the estimates of X, and Xy twice (once in the inner loop and
once in the outer loop) which would be inefficient, it is necessary to
move that part of the feedback compenéator F that operates on these
two signals around the loop to the forward path. Under unity feedback,

in the outer loop, such a rearrangement would not affect the stability

improvement achieved by the inner loop design.
The CL of the outer 1loop system, with the inner loop closed,
using the controllers F of equations 5.31 and 5.32 are shown in

figures 16 a and b respectively. A comparison of these with the loci
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attained in section 5.6.1 (figure 9) highlights the advantages gained
by the use of an inner loop. The inner loop, even though it does not
make use of any dynamic compensation, produces compehsating action
which is comparable to that of a lead network. The gain/phase
characteristics of the CL obtained even for the lower gain inner loop
compensation of equation 5.32 are substantially better than those
obtained by the direct application of phase advance in the design of
section 5.6.1 . The new CL have also better bandwidth and M-circle of
less dynamic magnification. The resulting time responses therefore are
expected to be faster with less overshoot of the CL which will largely

suppress interaction in the closed loop.

Figures 17 a&b and 18 a&b show the responses of the inner/outer
loop cohfiguration to unit step signals applied at +the first and
second reference inputs respectively , for the compensators  of
equations 5.31 and 5.32 . The performance of both schemes satisfies
all the design requirements described in section 5.2, namely that 6f
stability, accuracy, speed , damping and low interaction. The
assessment above qf the scheme designed via the CL method was based on
the linearised model of the vessel. Given the non-linear nature of the
problem it is dimportant +to confirm such an approach by simulations
based on the non-linear model of the ship. Figuée 19 shows a
representative step response for both the linear and non—linear models
with feedback +through a Kalman filter configuration as developed iﬁ
this section The good agreement between the two responses Jjustifies
our earlier assumption that the design can be based upon a linearised

model.
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5.7

Comparison between the Optimal Control and Frequency Domain Designs

Both optimal control and the integrated design technique have
been applied to the dynamic ship positioning problem. Thé inte-
grated CL/MRL leads to a design procedure which requires detailed
engineering design effort but also allows the designer to inter-—
vene at each stage of the design process. It is also easy to see
which changes to make to achieve a given responsevobjecpive. There
is the possibility of producing a formalised design procedure which
will reduce the amount of engineering design involved, however, this

latter point also applies to the optimal design method. Because of

the stochastic nature of the problem and the presence of the Kalman
filter, simulation results are probably necessary to confirm design
objectives have been aéhieved. However, the number of design/
Simulation stages required to reach a given objective are very likely

to be less than for the optimal design.

In contrast to the integrated approach, for specified weighting
matrices (Q,, R;) the optimal control feedback gains are easily ob-
fained. If the optimal control solution is not satisfactory new
Ql, R, must be chosen following a trial and error approach and
repeated simulations. However, for this application a systematic
procedure for the selection of the weighting matrices has been pro-
posed. This involves some delay, due to the time to run simulation
programs, but entails little effort on the part of “the designer.

The structure of the optimal system known beforehand which tends

to reduce design engineering time but the useful properties of
optimal systems are not guaranteed when ad hoc changes to the struc-
ture of fhe controlier are made. For example, integral action can
be inserted into the optimal stochastic system by appropriately mod- -

ifying the performance criterion @ixﬂ. However, integral control
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is often added with no thought to optimality and this can reduce

stability margins and degrade performance. A fixed structure can
be specified for the integrated design techniqué for a particular
class of probleﬁ and in addition the outer loop controller may be

made dynamic.

In its general application optimal control seems more suited
%o the regulating problem and the integrated approach has advantages
regarding the servomechanism problem. In particﬁlar certain per-
formance requirements such as low interaction can be met more directly
by the latter. In comparing the simulation results note that the
plant and noise processes and thence the Kalman filters were the

same for both methods.

It is interesting that the structure of the system designed
using the integrated CL/MRL approach is the same as that obtained
via optimal control theory and this was a natural consequence of
the design process. The control gain matrices:

Optimal Control Gain Matrix

1.7113 0.894 = 1.05 1.09 1.56 . 0.32

c
© s . | (5.33).
3.37 1.732 -1.48 ~1.41 -0.79 1.36 °

Integrated Control Design Gain Matrix
1.65- . 0.801.. 0.275 0.133 1.8 » 0 \
K¢ = (5.3k)

3.31 1.60 . -0.550 ~0.267 0 1.8
are similar although no attempt was made to artificially achieve
this condition The system responses are very similar for the above
two cases and thus most of the responses for the integrated design

procedures are presented but only selected responses from the

optimal design are given.

The total response of the vessel in sway and yaw is shown in
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figure 20. However, recall that the low frequency position of
the vessel is to be controlled. The low frequency sway and yaw
position signals are shown in figure 21. The low frequency sway
and yaw velocities are illustrated in figure 22. The high fre-
uency motions of the vessel are due to the sea wave variations
and are shown in figure 23. The control signals are illustrated
in figure 24. The high frequency variations in the control sig~

nal are to be minimised.

The optimal control position and control signals are shown
in figures 25 and 26 réspectively. The optimal system is fasfer
but the control signal variations are larger. The two designs
were not treated competitively since clearly the same responses
could be achieved by either method. However, the integrated
design approach provided a more direct route to achieving a given

requirement.
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Conclusions

The integrated characteristic locus/multivariable root locus tech-
nique has not previously been applied to the design of essentially
stochastic control systems. The use of a Kalman filter together with
this desigq method is also new. In fact, it would be more natural to
use a frequenby domain based filter, since the integrated design philo-
~sophy is itself based in the frequency domain. However the Kalman
filter was shown to have several advantages in this system. The filter
does nof introduce phase lag in the way that the notch filter degrades
the control system. The Kalman filter also provides greater flexibility
in the number of variables available for feedback which is exploited

in the integrated design philosophy.

The study has shown that the integrated CL/MRL design technigue
may be used for the design of dynamic ship positioning systems. The
question arises as to its relative advantages in comparison with
optimal control design technigues. This has been discussed at length
in the previous section where two facts emerged. Firstly the inte-
grated technique is more versatile and allows a whole range of different
performance requirements to meet during the interactive design pro-
cedure. TFor this application the optimal control design can be more
straightforward since weighting matrices may be selected according
to given rules. However, the actual design.process may take longer
since simulation results are necessary to ensure desired transient
responses are achieved. It is interesting that the étructure of the
system designed using the integrated CL/MRL approach is the same as
that obtained via optimal control theory and this was a natural con-
sequence of the design process; the control gain matrices are aiso
similar although no attempt was made to artificially achieve this

condition.
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CHAPTER 6

Concluding Remarks

In the present thesis two main subjects were treated: new
theoretical results in the optimal control field and industrial
applications. Tﬂe theory of optimal qontrol have been extended in both
the infinite and finite +time situations. New results have been
presented on the solution of finite time deterministic optimal control
problems and on the selection of the performance criterion matrices.
However it may be an indication of the gap between modern control
theory and applicatiohs that the most successful designs of industrial
control systems which have been discussed are based on previous and
more 'orthodox' results. The design methods for both the ship
positioning problem and the steel mill problem are original and employ
results from modern multivariable control theory. Their acceptance by
our industrial partners was very dependent upon the intuitive
engineering insight that was gained from the methods employed. To
convince the engineers in industry that the designs were reasonable
required an understanding of the physical situation and a straight
forward interpretation of the functioné that the rather complicated

controllers fulfill.

The multivariable design for the shape.control problem is likely
to be applied by British Steel Corporation on their Shepcote Lane
(Sheffield) Sendzimir mills . An important feature of the design is
its .implementational  simplicity. Optimal controllers were also

considered for this application to this problem, as described in
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chapter 4, but the simpler non-optimal design was considered more
appropriate by the plant engineers (for the present at least). The
advantage of the optimal control approach in the above problem, is
that constraints on actuator movements, imposed by the mechanical
structure of the system, can be msre easily incorporated. The
disadvantage is the more complicated form of the controller and the
'fact that the BSC and GEC engineers are more familiar with the
frequency domain design methods than with optimal design methods. The
steel mills of.interest roll materials of different gauges and widths
and thus a number of controllers have to be precalculated and stored
in the control computer. The non-optimal controllers have the great

advantage of simplicity in this situation.

In the design study of the dynamic positioning system both
optimal and multivariable frequency domain approaches were compared.
For this case it is not so evident that either method is superior or
simpler, as both produce controllers of the same complexity. However
the actual systems which are being applied, are based mostly upon the
optimal design. The Kalman filter had not previously been used in
conjuncéion with the MacFarlane-Kouvaritakis Characteristic Locus-Root
Locus desigd procedures. The design study has shown that not only is
possible to use the Kalman filter in this situation but the Kalman
filter has obvious advantages, providing the designer with more
flexible feedback configurations. to achieve the required
specifications. Future research could further investigate the various
possibilities of using. frequency domain controllers together with
optimal 1linear estimators. An interesting feature of thié study was
the use of multivariable root locus'design concepts to square down the

system before the application of the characteristic locus procedure.

¢
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The finite time optimal control results are not only interesting
_theoretically but should have interesting applications in self tuning
systems. It is usual in self tuning systems to estimate ' the plant
parameters at each sample instaﬁt and to apply a control based upon
these estimates. During the estimation procedure the parameters vary
and so 1is not appropriate to use infinite time performance criteria.
However the existing self tuning . strategies involve this type of
optimal controller, for example the minimum variance controllers. The
finite time optimal controllers presented here seem particularly
appropriate in this situation. To imp;ove the estimation or to saéisfy
identifiability criteria a square wave signal is often inserted into
the plant in the same way as that of a reference signal (for example
in a chemical plant the square wave may be of small magnitude such as
that product quality is not affected); the deterministic optimal
controller may easily be derived for such a signal and a calculation
procedure for single input single output systems 1is relatively
straight forward . There is therefore the possibility that the finite
time optimal controller developed hefe might be wused within an

explicit self tuning scheme.
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Appendix 1  ‘Optimal Root Loc¢i for Systems with Cross-Product Weighting

A brief review is giveﬁ below of optimal root~locus theory based upon
the work of Kwakernaak ‘[37])Wonham]:12(§]K°uvaritakiS[3§_l and Shakedl44] but for

G # 0 and CB full rank. From ( 2.40):
FL(=s)RF(s) = W (=s)QW(s)/u® + (W ()G + G'W(s))/u + R
For small ﬁ (as in deriving equation (19)) and as ]s] > ®
Fearrs) ~ ®@HTa, - @ HT e ocmr szt
The faraway régulator poles are the left~half plane roots of
s? = Yi/p2 = 0 for i =‘{i,2,...,m}

where Y; are the positive eigenvalues of the positive~definite (rank

%

CB = m) symmetric matrix:
(R—%)T(CB)TQCBR-&

For each.i a first-order stable Butterworth pattern is obtained, consisting

of a single pole —Yi/u on'the'negative real axis. 'There are exactly m
faraway closed-loop poles.
Notice that the closed-loop system poles are the left half-plane

zeros of:
1+ ®HTE Qe + ue ()6 + 6TW(s))R Hk

where k = 1/u°. Thus, the root-loci of the optimal regulator can be
obtained by considering the root-loci of a system S(A*,B*,C*) with
output feedback control law:.

u = ~ky
The transfer—function matrix of the open-loop system S(A*,B*,C*) is
we(s) = @ HTW (=)Qu(s) + n (=56 + 6T ()R

It may easily be verified that the following theorem holds:
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Theorem Al.1l 'Tﬁe‘Primal—Dual'SYStem

One realization cf the triplet (A*,B*,C*) is given by:

0

A* =

—CTQC -aT

B

B% = T R™2

~uC" G

ﬂl
cx = (R 2)T[uc;Tc BT]

. -1 . }
The proof follows by calculatlng.C*(sI - A*) "B*, Notice that B* and C*

depend upon U unless G = O.

The (n-m) asymptotically finite closed-loop poles, or optimal finite
zeros38, will now be determined. Recall that the zeros of S(A%*,B*,C*)

are defined to be the values of s for which the system matrix:

sI ~ A%  B%
P*(s) =
C* 0

loses rank. After multiplying by non—singular transformations:

{
sI ~ A 0 B
P(s) = cfac st + AT -ucte
uete BT 0

The (n-m) asymptotically finite closed-loop poles‘{ll} are given by the
left half-plane zéros of the system S(A*,B*;C*) as U > 0. These are
equal to the left-half plane zeros of the polynomial z(s) A det (;(s))
for ﬁ = 0. Note that the creoss—-product matrix term goes to zero as

U = 0 and thus does not influence the asymptotically finite closed~loop

poles.
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Appendix 2 Closed-Loop Eigenvector Relaticonships

Moore[“@has shown that in state~feedback systems the freédom one
has, beyond specifying the closed-~loop eigenvalues, is to choose one set
from the class of allowabl.e closed-loop eigenvectofs. The' gain K is
uniquely defined, if it exists, by the selection of a set of distinct
eigenvalues together with a corresponding set of eigenvectors. While the
ovefall speed of respomnse of the closed-loop s‘yst'em is determined by its
eigenvalues, the shape of the transient response depends to a large extent
on the closed-loop eigenvectors. The following theor_em was established

by Moore [40] s

Theorem A2.1 (Moor_e -)

Let>.{>\i} be a self-—conjugate set of distinct complex numbers. There
exists a matrix K of real numbers, such that (A + BK)?E.i = Ai-}ii if and
only if the following three conditions are satisfied for i € {1,2,...,n}.
ga) Vectors {_:51} are linearj.y independent in c™.

(b) Vector X X

G

whenever A. = A%.
1 J

(¢) The vectors x

e

€ span (N, ), where S, A [ATI~-A B and
\ :

T?\ = [:N’i Mi ]T has columns which constitute a basis for Ker (SA)’

(m—-dimensional). The matrix N)\ = n x m and M)\ =m X m.
p .

Corollary A2.1 Eigenvector and Input Directions

The vectors {_:_;_i} and associated distinet complex numbers {}\i} are. closed

.
loop eigenvalues and eigenvectors of the square system x = Ax + Bu,

u = -Kx, if and only if, there exist v, € Rm, such that
(I -4)x - Bw, = O
¥, = -K}_:i , fori=1{1,2,...n}
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Proof: Sufficiency follows from direct substitution. Necessity follows

from theorem A2.1.

The following theorem is concerned with the closed~loop eigenvalues
which do not belong to the spectrum vaA. These eigenvalues are necessarily

controllable. TFirst note the following definitioms.

Definition A2.1 ‘Algebraic Multiplicity

. The zero polynomial for the square system S(A,B,C) is defined as

z(s) = det P(s) where P(s) is the Rosenbrock system matrix. Let p denote

the number of the distinct zeros of the system S, then writing

P a3
z0s) = Z (s =-2z,)°%
i=1 *

the constant q; is defined as the algebraic multiplicity of the zero 2,

for all i e {1,2,...,p}.

Definition A2.2 * Geometric Multiplicity (MacFarlane and Karcanias[gg_)'

The geometric multiplicity of a zero 255 for the system S(A,B,C), is

defined as the rank-deficiency of P(zi).

Theorem A2.2 Input Direction Vectors

Let Ai represent a controllable distinct closed—=loop eigenvalue
Xi ¢ 0(A). The vectorslﬁgi} are identical (except possibly for magnitude)
to the vectors Zi,'determined by the return-difference eguation:

F(Ai)zi = 0

Proof: From the previous equations

FO\Dw, = w, +KO(A,)Bw,
= w, +Kx. = 0
-1 =1 .

The set of Ai values may be interpreted as transmission zeros of F(s).

The solution of F(Ai)zi = 0 are then unique (except possibly for magnitude)
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providing these zeros have unit algebraic and geometric muitiplicity[}é]-
The above results do not apply to the closed-loop eigenvalues
Belonging ta the spectrum of A. Assuming that these eigenvalues are
distinct det F(Ai) = pciki)/po(li) # 0. Thus F(ki) is non-singular
and F()\i)lr_i = 0=}y_]._ = 0.
The asymptotically-infinite eigenvectors {gz} are determined by the

following theorem:

Theorem A2.3 Asymptotically Infinite Eigenvectors.

The eigenvectors {§i} corresponding to the asymptotically infinite

eigenvalues are given by:
[o]
Xx. = Bv,
-1

Proof: The asymptotically infinite eigenvalues'{k?/u} are controllable
y A

and do not belong to the spectrum of A. Thus, from corollary A2.1 and

theorem A2.2, as ﬁ + 0 .
) -1 ®, -] co
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Appendix 3 Zeros and Zero Directions

The following theorems and results are used in section[zﬂto calculate

the asymptotically finite modes and directionms.

Definition A3.1 ‘(,MacFarlane and Karcanias [‘@ )

The vector [-(20)'1‘ (c_Jo)T]T is a zero-direction S(A,B,C), corresponding

to the zero )‘o’ if and only if,

‘ AI-4A B ]fu
PO, = | =0
. c 0 {lo
w, € R® and g, € R® are called the state and input zero directionms,
respectively. For square systems the zero polynomial is simply z(s)

= det P(s). 1In the case of a multiple zero, the zero directioms that

correspond to this zero are by definitiom to be independent.

Definition A3.2 Unobservable Systém '‘Modes

A mode of the system S(A,B,C) will be unobservable if there exists

a vector W and a complex number A such that

(AL - A)E' = 0 and Cw = O

Theorem A3.1 (Shaked and Karcanias [451)

The state zero directions of a non-degenerate system are linearly

independent.

Thoerem A3.2 (Shaked and Karcanias @5] )

Given a pair (}\O,_u_)o) a necessary and sufficient condition for a matrix
K to exist such that ()\OI - A+ BK)_(EO = 0 and C_:Eo = 0, is that A° is a

o . . . . .
zero of the system and W~ is its corresponding state zero direction.
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This theorem implies that the only candidate pairs for the‘closed—looé
unobservable modes and vectors (definition A3.2) are the pairs of zeros

and their corresponding zero directioms.
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Appendix 4 Distance of the Faraway Closed-Loop Poles to-the Origin

The following results are used in the selection of the scalar U as

described previously.

Theorem A4.1: Zeros of W(s)

If W(s) is square and ME is full rank the zero polynomial wo(s) has
degree (n-m). If Mk is full rank and all lower order Markov parameters are
zero then ¥ (s) has degree p where p = n - (k+1l)m.

) -

Proof: Note that lim sd(s) = In and tﬁe zero polynomial wo(s) is defined

s |+
as:
V(8> = p(s) det W(s)
but
tim sE*Bu(6y/0 (s) = lim det (Cs¥*'o(s)B) = det caFB
|'s |- °° s |

and thus wo(s) has degree p = n - (k+l)m. Also note that

P .
V() = ol (s~ B)

i=1

where ¢ = det CAFB.

Theorem A4.2 " ‘Faraway Closed Loop Poles

The distance of the faraway closed-loop@ilpoles from the origin is
approximately:

(a2 det Q/(uzm ciet R))I/(Z(_n—p))

where p is defined in theorem A4.2.

Proof: From equation 2.40:
. , , -1
- . -1, T, .Q R T, T
P (=8)p () = p (=s)p (s) det (R "W (-s);5W(s) + I + (W (=s)C + GTW(s)))
for all small {4 and G,

po (=520 () = ¥_(-5)¥_(s) det Q/(u’™ det B)
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The closed-loop polynomial therefore has the form:

2
0 (-5)p.(s) = ((=s2)® + ...+ 2888 Q o2yP
N | 1™ det R

An approximation of the faraway roots, for small u, foilows from:

1% + 02 det Q(-s)P / @ detR) = 0

and the stable solutions satisfy:
s = (1P 2 der q / (1™ der R))/ F@7P))

The above approximation shows that these poles are distributed in a
Butterworth configuration@ﬂ of the order (n-p).
An improved estimate of the distance_of each of the faraway poles

from the origin is obtained from equation (2.47)
det csz<k*1)ﬁ21m - D% cakp)Tocaker ) = o

Let the non-zero (positive)'eigenvaiues of the positive definite symmetric
matrix R.-%(CAkB)TQCA.kBR-’l be given by Y; for i = {1,2,...,m}. The
faraway regulator poles are the left half-plane roots of,

g2 (&+1) ¥ /2 for i = {1,2,...,m}

For each i a (k+l)th order Butterworth pattern is obtained including

1/(2(k+1))

a single pole;s = -Cyi/ﬁz) on the negative real axis. Note

that the geometric mean of these distances becomes:

m .. ..
( H (Yi/UZ)I/(Z(k"'l)))l/m = det (R-%MEQ}ikR—i/}.lzm)1l(2m(k+1))
i=1
or
_‘(az det Q)I/(Zm(k-l-l))
Ts 2m '
U det R

This latter result agrees with the expression given in theorem A4.2 above.
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Appendix 5 ‘Limiting Closed=Loop Pole Positions as U4 + «

The limiting values of the n closed-loop pole positions, as U =+ =,

are determined belowﬂ?ﬂ From the return—-difference relationship[?ﬂ
det (F(s)) = p_(s)/p (s)

and from equation 2.40:

(-s)p_(s) det R = p_(=s) ()dt(R+wT—)9—wc)+wT-5+93w<)>
pc s)pc s) det R = po [ po s) de ¢ snuz s‘ ( s)u T s

In the limit as § + «
P.CsIp () =+ p (=s)p (s).

Thus, if the set of zeros of po(s) are denoted by'{sz} then the closed-

loop eigenvalues approach the numbers sg, for i = {1,2,...,n}, where

if Re (sf.L’) £0

~S.

7]
He O
I
—t—
(/2]
He O M« O

if Re (sz) >0

The cheapest stabilizing control-law is therefore one that relocates the

- unstable plant poles to their mirror images in the left-half plane.
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Appendix. 6  Calculation of the Gain Matrix

An approximate expression for the state feedback gain matrix, K for
small ﬁ, and of the limiting value Ké, may be obtained as follows.
Assume that G = 0 and let P = P;u then from equation (2.39):

T.

P,BR 'BTP; = CYQiC + p(PiA + ATP;)

where P; is symmetric and P; = O. TFor small

P,BR 'BP; = € Q:C |

-l
Substituting from equations (2.55,2.56) : and defining A = (Aw) ¢ gives:

PIBNA.ANTBTPIf = c'elgc

or

NTBTR, = (caN) ¢

The optimal control gain matrix is given by

K = R'BP/M? = R BPi/p
.thence.
K = NA®N'B'Pi/u = NA(CBN) ‘C/p

and the closed-loop system matrix Ac becomes:

A, = A- BNA (CBN) 2 /p

Example A6.1

The above expressions for the gain matrix and the system matrix are

evaluated below for the system discussed in sections 2.6 and 2.7

K = NA(CEN) ‘c/u

5.78 0 2.195 ] .
= - /n
0.078 0 5.219

and for p? = 0.001
182.8 0 69.4
K:
2.5 0 165
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The closed—loop system matrix Ac becomes:

-1.25 - 5.78/u 0.75 =-0.75 - 2.195/u

A, = 1 - 0.078/u -1.5  =0.75 - 5.22/u
1 - 0.078/u ~1.0  ~1.25 - 5.22/u
s +5.78/u -0.75 2.195/u
(sT_ - A) = 0.078/u s + 1.5 5.22/u
0.078/u 1.0 S + 5.22/u

The characteristic frequencies are obtained using det (sIn - Ac) = 0 for
small ﬂ. The finite frequency is obtained as s; = -0.5 and the
asymptotically infinite fréquencies are given by sz = -S/ﬁ and s3 = -6/U.
The eigenvector corresponding to the finife mode is given by
x1=[0 1 07" vhich belongs to the kernel of C.

The above results may be compared with the following computed values

of gdin matrix, eigenvalues and eigenvectors, for the case p? = 0.001.
182 0.62 79
K =
. 2.9 -0.97 163

l{A13 >\2: 13}.

' {~-0.5, -158, -~189}
0.00079  0.9125 0.995

{x15 x2; x3l} 0.991 -0.289  0.072
-0.00017 ~0.289  0.072

The input direction v;, corresponding to the mode A;, is given by

~0.75
vi = -Kx1 =
1.0 )

This agrees with O in example 3 - Notice,vhowever, that the above
approximate values for the gain K and x; fail to give this result, due

to small errors in the gain matrix.
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Appendix 7  ‘Parameter-Imbedding Solution for the Riccati Equation

Results are derived below which enable the state~feedback gain matrix
to be calculated for all values of J within a chosen finite interval.
From the Riccati equation (2.39):

n2clqsC + A + ATP) =- (PBR'B'P + wPBRGIC + uc GR BP)
where the solution P is a function of H. Differentiating with respect
to H gives:

%%-(uzA - uBR *¢Tc - mR7'BTR)

T -1 T, dP
PBR “B’) m

+ AT - pcfer™B

+ 2ucTQ;C + P(2ua ~ BRG0)

+ uaT - cTerIBhr = o

If G = O this equation simplifies to
dP 2, _ -1_T. zT_ "ngg
e (uA BR "B"P) + (U“A” =~ PBR "B") T

+ 2PBR B/ = 0O

for u € [uo,}i‘r ] This equation may be solved numericallf[f‘s]using a
combination of standard linear algebraic and integration routines. The
initial condition P(uo) may be calculated from the above steady-state
Riccati equation. The gain ma%rix may be calculated for all values of ﬁ

within the interval using equation 2.38.
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Appendix 8  Input‘Direction Vectors

The physical significance of the input direction vectors is important

and is investigated bBelow.

Theorem-A8.1

The optimal control signal may be expressed as a linear combination
of the exponentially weighted input vectors v,

Proof: Using the notation in equation - 2.59 the state trajectory is given

by:
n- At
x(t). = I a.x.e
j=1 373
where a. A.p? X . By definition v. = -Kx, and thus
J =3 -0 -1 -1
. o n oy
TR e Azt
u(t) = -Kx(£y"= -IZ a.,v.e]

Cleariy the m fast modes may be decouﬁled by choosing z: appropriately.
If fé? example 3? = & (a standard basié vector), for i = {1,2,...,m},
then N = Im and the speed of each input may be controlled independently.
In the special case when aj =0 form< j‘s n then u(t) = NE = E where

EA diag'{alexlt, cens amekmt}.
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Appendix 9 The Adjoint Operator in %, Spaces

The response of a linear system with zero initial conditions may be

"obtained from the convolution relationship:

y(K) = X wim) uk - m) (for, 0 < k < ; k € 2)
. m=1
or
k-1 o
y&) = " 7wk - j) u@d@ (for, 0 <k < »; k € Z)
j=0

where the weighting sequence is denoted by w(k). For a causal system
w(k) A 0 for k € 0. The inner product between the vectors

yA {Xo’ Yi, Y2, ...} and e A {go, e, €2, '...} may be defined as:
<y, E?Hr = X{k)?gﬁk), for y, e € z§[o,w]
k=0

Thus, the adjoint operator W* can be found from the defining relationship:

<Wu, e>H_ = <u, W*e>H
= =T — = 'm

= 20wk - PHuG) e Qetm=j + 1)
k=0 j=0

= 2 ui)T 57wk - e
j=0 k=0

-
fl

<u, W*e>H
— —m
where

We) (1) A I wi(k - e = I° w (k- i)e(k)
k=0 k=i+1

The output from the adjoint system is only dependent upon the system
inputs for k > i and the adjoint system is therefore non-causal. For

example, for an input e(k) = 6(k), then the adjoint system output becomes:

i

(W ) (i) = W' (-1) (for i < 0)

=0 (for i > 0)

The z-transform of the adjoint operator relationship may be obtained
as follows. Let

-

c() A (W) (1), for all i € (-, ®)
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then

Zo(e(i)) = c(z) A I c(i)z
j=-

e Tk G e T .-

= wik-1ieK®z "= L (Z w (k - 1)z e(k)
i:..co k:-co ) k:-OO k:-w

= 2 (2 Wmyz & Mye (where n = k - i)
k=~ n=-

- (W mMemz ¥
k=-o n=1

Wl (z-)e(2)
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Appendix 10 Adjoint of the Delay Operator

The adjoint of the delay operator may be found as followS:

(D, (3) A u( - k)

£ y(&) u(k - k )UK - k) (let m =k - k)

R

00 T _
= L y(m+ ko) u(m) = <D;y_, 2>Hr
m=0
and

(D) (1) = y(E + k), for all i >0

The z-transform of the delay operator is well known to be Zz((DOE) (1))

= E(z)z-ko. The z-transform of the adjoint operato; becomes:
22 (O @) = ifi» yG + k)2, (let m = i + k)
= _}:(m)z_m"'ko
m=-o
= y(2)z"
Appendix 11 Z 'I‘rzm.sformation for wT(N - i - ko)

The above two-sided z-transform is required in the transformation of

the gradient function:
oo (N - - k)) = 27 W N - -k )z
‘ ‘ i=- .

Letm=N—i-ko, then .

oG N - i -k)) = o7 Wl (m) 2™ N*+ko
m=1
= wT(z’ 1)z"N‘Lk°
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Appendix 12 Calculation of the Positive time transform N(z)

As has been defined in equations (3.37 ) and (3.42 ):
N(z), = n1:1(z) + m2(z) + n2(z)

The first term n;;(z) can be evaluated easily because T, does not contain

N terms and MT(z‘l) is the transform of a non-causal system. Thus,

any z~
the transform of the positive time terms in the partial fraction expansion
of n;1(z) result only from the poles of zo(z). The time function n,; (i)
follows direétly from a table of single sided z transforms.

The reference terms in the nj;,(z) represent an input EN(i - n)H(i - N)
into an adjoint system of transfer function matrix MT(z‘l)Q. This input is
zero for i < N and since only the transform of terms within the interval
[0, N - 1] is required, these will be determined by the adjoint system. To
calculate nj,(z) from the partial fraction ekpansion of MT(z‘l)QEN(z)zko-N
the terms due to the poles ofAthe adjoint system hﬁfz”ll are selected. In
transforming n;» (i) any terms which include z-N can be neglected since they
only affect the control for i > N.

The final term nz(z) inclﬁdes the transform of an impulse occurring

at time N with magnitude c¢c. Using the observation that MT(z'l) represents

an adjoint system:
ol -14 ko-N
nz(z) = {M (z7)z }e

Now if m(i) is the impulse response of the adjoint system, then

np(i) = ¥ ml(k - )eSk - N + k), for ie [0,N]
k=1i+1
=N -k - i) | for 0¢i¢N-k -1
=0 for N-k <i<0
where m(i) = Z11(M(2)).
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Appendix 13 Numerical: Results

The transformation X may be based on the Chebyshev orthogonal polynomials

(similar results are obtained using discrete orthogonal polynomials):

1.0 1.0 1.0 1.0
0.714  0.02  -0.685 -0.999
0.428 =-0.632 -0.97  -0.199
0.143 -0.959 =0.417  0.84
" -0.143 =0,959  0.417  0.84
-0.428 -0.632  0.97  -0.199
-0.714  0.02 0.685 —0.999
~1.0 1.0 -1.0 1.0

Using Gm defined

8.37 0.0 =1.97 0.0

0.0 6.03 0.0 =1.5

?x i 0.2 0.0 3.04 0.0
| 0.0 -0.32 0.0 0.9

- The eigenvaluesof Gx are'f0.807, 3.117, 6.119, 8.295} and the corresponding

in 4.4 the transformed matrix Gx = (X?X)-1X$Gmx becomes:

eigenvectors are respectively:

) T 0.35 | © 0 0.99
0.276 0 0.99 0
3.‘.1_ ’§2= _.3= Eu
0 0.93 0 0.04
| 0.96 o -0.06 _ Lo

Using ﬁ; defined in “4.4the transformed matrix éx becomes:

[ 6.61 0.38 ~-1.54 0.3
. 0.36 5.0 0.27 ~-1.34
x T -0.79  0.42  3.44  0.02
-0.09 ~0.21  0.07  2.15

- 201 -



The eigenvalues of ﬁx are {2.038, 3.02, 5.16, 6.98} and the eigenvectors

are respectively:

[~0.17 ] [ 0.40 ] o0 ] 0,977

0.43 -0.15 1 ' 0.17

52 o2 U om0 U7 fouze |7 E T |02
| 0.85 - |L0.06 | | 0.06 _ ~0.03 |

The eigenvalue spectra may be compared with the spectré for the full 8 x 8
system.. The eigenvalﬁes corresponding to Gm (equation 4.1) and Cm
(equation 4.4) become:

' {-0.039, -0.028.% j0.102, 0.205, 0.943, 3.31, 6.46, 8.34}
and . |

'f0.00125, 0.119, 0.6, 1.7, 2.2, 3.19, 5.78, 7.18}
The singular values of G_ and §x are respectively:

{0.792, 3.00, 6.23, 8.61}
and

{1.963, 3.03, 5.30, 7.04}

The singular values of Gm and §m lie within the ranges E0.0l, 9] and

[0.001, 8]. 1
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Appendix 14

Multivariable Deterministic Systems/Integral Controller Calculation

The expression for the closed~loop controller with integral. action,

given in Theorem 4.2, is derived below. From4 .4 &4

T - - &2Rg (-

G QG v(-s)v(s) - s°Ro( s)cr(s)= NT (=s)N(s)
-s%0(~s)o(s) -s“a(-s)a(s)

1
where Y(s) = N(s)/(so(s)) and N(o) = QiGm. Assuming G;l exists

¥T(~s)Y(s) =

(=) Ty (-9)CLQy b, = (/52 + Mp/s)GT)

Now _ B

N(-8) Ty (=5)6.0r07 = N(0) G012z + MGTl T+ V(s)

My = chm , (A.2.1)

N - 1

My = LTN(=8) Ty (-6)GL16, - @} 6)/s
but T T

N (-s)N(s) = G Q16 y(-s)Y(s) - s®Ro(-s)a(s)
thence

=T T _ 2 -T

N(-s) "y(=s)G Q1G = (N(s) + s®N(-s) "Ro(-s)o(s))/y(s)

and

Mp = LIBN(s) - Q26 v(s)) /s

_ lim
s+0

1
1 - 2 '
(N'(s) - QIG y'(s))
where the dash denotes differentiation with respect to s. Thence
from (A.2.1)

Fo(s)k/s = Y(s)™} (ESI- + MZ)G;I_IE/S
or
Fo(s) = ¥(s) 1AL + Mp)G L= N() 10y + sMp)G 1o (s)

The closed loop optimal controller follows from 5.36.

Co(s) = N(s)71(y + sMp) (I_ - v(s)N(s)TL ¥y + sMp))"le la(s)

In the limit as s+o Co(s) + G;ln where n+o,signifying the presence of

integral action.
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Appendix 15

Non-Interactive Deterministic Systems/Controller Calculation

Let the plant transfer function w(s) = gy(s)/o(s), y(o) =
o(o) =1, and r(s) = 1/s then for the non-integral control case
(L(s) = 1):

Y (-s)¥(s) = (g2qyy + roo)/(so) = nn/ (o)

thence

Y(s) = n(s)/o(s)

Fg(s) = oga/(n(s)n(o))
thus

_ qo(s)g™?
Co(s) = Za(a)nlo) = av(s))

If g = 1 then n(s)n(-s) = qy(s)y(-s) + ro(s)o(-s) and

- qo(s)
Col®) = T D - o (N

where n(o) (q+r)% and Cy(o) = q/r.

If the cost function includes the term L(s) = 1/s then integral

control results and the closed~llop controller is obtained as follows:

YT(-s)Y(s) - (g2q§y - s2rg0) /(-s2g6) = nn/(-s200)

thence
Y(s) = n(s)/(so(s))
Fo(s) = §§§§ (m + smp)
1 ! 1im 1
where n(o) = q?, m; = gq° and mp = S_}o(n(s) - q®y(s))g/s. Thence,

o(s)(my + sm;;t)'g"'1
(g7'n(s) = y(s)m; + smy))

Co(s)

If g = 1 then n(s)n(-s) = QY(S)Y(-S)-rSZG(S)G(TS) and

g(s)(my + smy)
(n(s) = y(s) (my + smyp))

Co(s) =

where Co(o) > o,
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