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Abstract

High performance liquid chromatography (HPLC) has for some time been the industry 
standard in pharmaceutical analysis. A diverse choice of column packing materials 
enables a wide range of analytical separations to be performed, including both normal 
and reversed phase as well as chiral chromatography. A variety of compatible 
detectors further increases the popularity of this instrument, allowing straightforward 
absorption/emission detection by ultraviolet light or fluorescence, in addition to the 
increased sensitivity of hyphenated technologies, with HPLC in conjunction with mass 
spectrometric detection and nuclear magnetic resonance spectroscopy.

Capillary zone electrophoresis (CZE) offers an alternative analytical technique to a 
similarly broad range of analytes and mechanisms of detection. The advantages of 
CZE are the reduced run times, higher efficiency separations and savings on solvent 
usage and disposal. The pharmaceutical industry has increasingly employed CZE for 
dissolution analysis and impurity assessments as well as main-component assays.

This thesis reports the potential of CZE as an analytical tool versus the more 
established technique of HPLC and their application to in vitro metabolism. In vitro 
metabolism looks at the metabolic fate of a drug, in this case by incubation with a 
suspension of the microsomal rat liver fraction. This method was chosen as it can 
generate a series of samples taken from a bulk incubation to provide a time profile over 
which the amount of parent compound present can be measured. In this way a series 
of compounds can be screened quickly and simply for their rate/extent of metabolism 
without the necessity for the more time consuming and expensive in vivo 
experimentation.

Analytical methods were developed or modified from published work for both a series 
of basic analogues including propranolol and an acidic compound, chlorogenic acid. A 
novel approach to the CZE method development for the acid was a statistical analysis 
technique called Factorial Experimental Design (FED), which allowed the time-saving, 
simultaneous evaluation of the major influential parameters involved. Once these 
assays were established, they were investigated for reliability, accuracy, reproducibility 
and linearity. A comparison was made between two different CZE instruments, a 
Beckman P/ACE and a Hewlett Packard HP3D, and also between CZE and HPLC. The 
final investigation was to apply these two analytical techniques in the field of in vitro 
drug metabolism, using propranolol as a model compound.
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2
The theoretical basis for high performance liquid chromatography (HPLC) was laid down in the 

1940s and although the major phase of its development as an analytical tool was not until the 

1960s, it soon became an established and widely used technique in separation science in the 1970s. 

HPLC combined with ultraviolet (UV) spectral data, soon overtook gas chromatography (GC) and 

thin layer chromatography (TLC) to become the instrument of choice for the analysis of 

pharmaceuticals and the benchmark technique against which all others are compared. Reversed- 

phase-HPLC provided a quantum leap in various analytical fields and is still the industry standard 

for the separation and quantitation of drugs and drug metabolites extracted from urine, bile, plasma 

and faeces.

The last century has also documented the development of a variety of electrophoretic methods 

which have been applied to chemical and analytical fields; and more recently the last 40 years have 

seen their expansion into biochemical, biological and pharmaceutical sciences.

Electrophoresis is the movement of electrically charged species in a conductive medium under the 

influence of an electric field. Capillary electrophoresis (CE) is typically performed by filling a 

hollow silica capillary and two vials at either end (source vial and destination vial) with an 

electrolyte, or run buffer. The capillary inlet is placed into the sample vial, the sample introduced 

by voltage or pressure injection and the capillaiy inlet returned to the source vial. A potential 

difference is then applied across the capillary. The analytes migrate through the capillary and are 

measured at a detection window within the far end of the capillary to produce an electropherogram 

in which the analytes are separated according to their migration times.

Aims and Objectives

The aims and objectives of this thesis are report on the potential of CZE as a suitable analytical 

tool to be used by the drug metabolist alongside the established technique of HPLC and to 

compare their application for in vitro metabolism.

There are a number of different procedures for CE. These include capillary zone electrophoresis, 

the most simple form of CE, performed in an open tube filled with a run buffer where ionised 

solutes are separated according to their charge-to-size ratios. Other options have been developed 

to overcome various analytical problems: micellar capillary electrochromatography for the 

separation of neutral species via their hydrophobicities; capillary gel electrophoresis for the analysis
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of proteins and DNA using size exclusion; capillary electrochromatography with solid phase 

packed capillaries which have the advantage of chromatographic as well as electrophoretic 

separation; and isotachophoresis and isoelectric focusing CE as a means of concentrating solutes 

for increased sensitivity. Each of these methodologies has its specific area of application, and in 

this case CZE was chosen for this piece of work as it is commonly used for small compounds 

which are easily capable of being ionised. This work in the thesis would compare the results for 

both acidic and basic compounds analysed by HPLC and CZE methods. Analytical methods would 

be developed or methods modified from published work for both a series of basic analogues to 

include propranolol and an acidic compound, chlorogenic acid. A comparison will be made 

between two different CZE instruments, a Beckman P/ACE and a Hewlett Packard HP3D. This 

data would also allow discussion of the associated advantages and disadvantages of CZE and 

HPLC prior to its operation in in vitro testing.

In analytical method development for both biological testing during pre-clinical studies and quality 

control of the finished product, the speed of the development phase can affect the time to market. 

Method development is regularly based on a step-wise approach of varying one operating 

parameter at a time which can lead to very extended method development times. An alternative is 

to use a structured procedure which can quickly reach the global optima of choice of operating 

variables in a minimum number of experiments. One such approach is the statistical technique 

called Factorial Experimental Design (FED), which in addition to allowing time-saving through 

reduction in experiments, also allows for a simultaneous evaluation of the main influential 

parameters involved in the method development. In this programme, the method development on 

chlorogenic acid would be carried out using this method, and the investigation would be used to 

assess its value and its ease of use.

Once method development had been completed the method would be validated to include 

reliability, accuracy, reproducibility and linearity. This would be carried out as a comparison on 

two instruments, a Beckman P/ACE and a Hewlett Packard HP3D.

A review of the published applications of CZE suggests that it has been reasonably widely used by 

the pharmaceutical industry for bulk drug, synthetic precursors and related substance assays, as 

well as the finished product, but their is limited documented methods on its application for the 

detection and measurement of drugs and their metabolites in biological samples. In vitro
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metabolism looks at the metabolic fate of a drug, in this case by incubation with a suspension of the 

microsomal rat liver fraction. This method was chosen as it can generate a series of samples taken 

from a bulk incubation to provide a time profile over which the amount of parent compound 

present can be measured. In this way a series of compounds can be screened quickly and simply 

for their rate/extent of metabolism without the necessity for the more time consuming and 

expensive in vivo experimentation.

The lack of literature reports for CZE methods for in vitro metabolism is possibly due to a number 

of reasons. These are likely to include the difficulties of assays in the presence of the biological 

background and in particular the problems of detection of metabolites, which are often at the trace 

level.

The final objective of this project is to apply CZE and HPLC in the field of in vitro metabolism to 

obtain a consensus of information on aspects of their ease of use and applicability in biochemical 

analysis. For this work it is proposed to use propranolol as a model compound.

Therefore, in summary, the aims of this research programme are to>

1) compare CZE and HPLC as a regular monitoring techniques for acidic and basic drugs in bulk 

and finished products, by using propranolol and its analogues and the acidic compound 

chlorogenic acid

2) assess the usefulness of factorial experimental design in the rapid method development for acidic 

and basic drugs

3) to compare CE instruments from different manufacturers in the work above

4) to apply the knowledge gained in the earlier part of the programme to in vitro metabolism 

studies.

1.1 A Brief History of Electrophoresis.

Various reviews1'7,14 have chronicled the developments in electrophoresis over the last hundred and 

fifty years. It was Faraday who first instigated an interest in this field when he presented his laws 

of electrolysis in 1791. However, it was not until the mid-nineteenth century that Wiedermann 

formulated the initial theories of electrophoresis. It was noted that on applying an electric field
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across the ends of a horizontal tube containing an aqueous ionic salt solution the inner surface of 

the tube acquired a negative charge. The solvated ions also took on an opposite charge which 

resulted in movement of the liquid in contact with the tube wall towards one of the electrodes. This 

phenomenon was termed electroosmosis by Helmholtz & Wiedermann in 1877. Further work by 

Kohlrausch in 1897 led to the development of displacement electrophoresis, which later became 

known as isotachophoresis. He also produced equations describing the order of electrophoretic 

migration of ions and the formation of moving boundaries with sharp fronts; the latter of which 

became very important for large ions and proteins.

Nobel prizes in this field have been awarded to Arrhenius for his dissolution theory of ions in water 

(1903); Svedberg (1926) for his work on proteins and ultracentrifugation and Tiselius (1948) for 

the development of the moving boundary method and chromatographic adsorption analysis during 

which he successfully identified four moving bands in serum corresponding to albumin and alpha, 

beta and gamma globulin. Other significant advances were made when Hardy discovered that the 

mobilities of proteins depend largely on the pH of the electrolyte solution in which they are 

present. By performing experiments at various pH values and measuring electrophoretic migration 

Michaelis found that enzymes could be characterised by their isoelectric points (pi).

Paper electrophoresis became very popular from 1950, especially as it was more simple to 

construct, cheaper and required much less bench space than Tiselius’ boundary electrophoresis, the 

only other commercially available electrophoresis system, performed in a large open U-shaped 

tube. The amount of sample required for analysis was also reduced from many milligrams to less 

than a milligram for paper electrophoresis.

The use of gelatin and agar gels as supporting media in gel electrophoresis has been known for 

over a hundred years, but did not become commonplace until the introduction of polyacrylamide 

gels (PAG), which gave more reproducible results than the previously used starch gels. The 

incorporation of sodium dodecylsulphate (SDS) into the PAG enabled the determination of size to 

weight ratios of proteins and polypeptides depending on the number of SDS molecules adsorbed 

onto their surface (SDS-PAGE analysis).

In 1967 Hjerten8 developed a method for free solution electrophoresis (FSE) in a revolving tube 

which could be used to separate not just proteins, amino acids and nucleic acids, but also viruses,
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bacteria and both organic and inorganic ions. Further advances were made with the incorporation 

of ultra violet (UV) light absorption detectors in 1970 and conductivity detectors in 1972.

The first examples of the use of an electric field to generate an electroosmotic flow in LC were 

reported by Strain (1939) and Lecoq (1944), whilst Moulde and Synge (1952) applied this 

technique to thin layer chromatography. However, it was Pretorius (1974)9 who performed the 

first separation by column chromatography using 75-125 pm i.d. particles in a 1 mm glass tube.

Capillary technology progressed from Tiselius’ 1 mm U-shaped tube used in the late 1930s, to 

Mikker’s10 smaller diameter (200 pm i.d.) Teflon capillaries which significantly reduced the effects 

of diffusion and zone spreading from convection. Jorgenson and Lukacs’11 Pyrex capillaries with 

an internal diameter of 75 pm further reduced Joule heating and enabled the use of higher voltages 

(30 kV). Efficiencies in excess o f400,000 theoretical plates are now achievable with capillaries 

constructed of fused silica which is transparent at lower wavelengths. These replaced the old glass 

and Pyrex versions which could only be used down to a wavelength of 280 nm.

The introduction of micellar electrokinetic capillary chromatography (MECC) by Terabe12 in the 

mid 1980s, enabled the separation of neutral species by incorporating micelles which differentially 

separate compounds according to their hydrophobicity.

The next significant step came with the development of capillary electrochromatography (CEC), a 

cross between CE and high performance liquid chromatography (HPLC), which used capillaries 

filled with solid phase packing material. This technique had been reported by Jorgenson and 

Lukacs13 in 1981 using 170 pm i.d. glass capillaries filled with 10pm packing material, but was not 

widely used until later in the 1980s. By increasing the voltages applied for separation and using 

narrow bore capillaries (<0.2 mm) the technique of high performance capillary electrophoresis 

(HPCE) was bom, and with it came the ability to determine concentrations of various ionic 

substances e.g. water quality assays and monitoring for drugs and their metabolites. These 

methods offered advantages over gas-liquid chromatography techniques in which such substances 

generally required derivatisation to enable analysis.
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A CE instrument (Figure 1) comprises of a high voltage power supply; source and destination 

(inlet and outlet) vials; capillary; detector and a data capture device. There is a variety of 

commercially available CE systems with various different capabilities including methods of 

injection, capillary cooling, fraction collection, detectors and software.

Bench Operating Procedure

A new capillary should be conditioned prior to use in order to stabilise the capillary surface 

chemistry. The most common approach involves flushing a solution of 0.1 M sodium hydroxide 

under a pressure of 50 mbar through the capillary for approximately 10 minutes or 20-30 capillary 

volumes. A similar pressurised wash procedure is also incorporated between each sample, which 

comprises of a wash with 0.1 M sodium hydroxide for 1 minute, then water for 1 minute and run 

buffer for 4 minutes. Most instruments also have the option of buffer replenishment to ensure that 

there are no changes in the run buffer with time which could result in non-reproducibility of 

mobility of the analytes. It is suggested that the inlet and outlet vials and the capillary are rinsed 

and refilled with fresh run buffer to prevent any gradual changes in osmolarity due to a build-up of 

buffer and/or sample ions in the destination vial which would cause fluctuations in conductivity 

between the two vials and across the capillary. Recommendations for the care and maintenance of 

CE capillaries along with appropriate buffer/electrolyte preparation and solvent choice have been 

documented by Altria et al. 15‘18.
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capillary

electroosmotic flow

buffer buffer

source vial sample vial destination vial

voltage power supply
: : : : : : : : : : : : : : : : : :

Figure 1 : A Schematic Diagram o f a Capillary Electrophoresis Instrument

1.3 Electroosmotic Flow

When a buffer with a pH above 3 is placed in a silica capillary the inner surface o f  the capillary 

acquires a charge. This is due either to ionisation o f the capillary surface or adsorption o f  ions 

from the buffer onto the capillary wall. In the case o f fused silica capillaries, the surface silanol 

groups (Si-OH) are ionised to  negatively charged silanoate groups (Si-O') at a pH above 3. This 

effect can be enhanced by first conditioning the capillary by flushing it through with a 1 M  sodium 

hydroxide solution under a pressure o f 50 mbar. The Si-O' groups attract positive ions from the 

buffer to form an inner fixed layer o f cations on the capillary wall. However, the net charge is still 

negative and a secondary outer, mobile layer o f cations is attached. These tw o layers form a 

diffuse double layer o f  cations, and when an electric field is applied, the mobile outer layer o f 

cations is pulled towards the cathode. Since the cations are solvated they also pull the buffer 

solution with them, thereby causing an electroosmotic flow (EOF). In this way the run buffer 

moves through the capillary under the influence o f the electrical field (the electroosmotic flow) 

from anode to cathode - positive to negative (Figure 2).
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w w w w
Si Si Si Si capillary wall

plane of shear

double
layermobile

layer

Figure 2 : Electroosmotic Flow 

(as observed in CZE with a run buffer pH >3)

The potential difference across the two layers is termed the zeta potential, The EOF is 

proportional to the zeta potential which in turn is proportional to  the thickness o f the double layer. 

The thickness o f the diffuse double layer is inversely proportional to the concentration o f the 

buffer, with a 10 mM concentration giving a layer o f approximately 1 nm.

£ = 47i5e/s where 5 is the thickness o f the double layer

e is the charge per unit surface area 

s is the dielectric constant o f the buffer

There are major benefits in utilising electroosmotic flow. It carries solvated ions, whether positive, 

negative or neutral, through the capillary to the detector with the ability to analyse anions and 

cations in a single run without having to  reverse the polarity o f the system. Ions with quite large

differences in their size-to-charge ratios can also be analysed together with reasonable run times.

However, some highly charged anions can have an electrophoretic mobility greater than, and 

opposing the direction of, the EOF. These solutes will therefore not travel through to  the detector, 

but remain in the capillary or migrate back into the source vial. For such analytes it will be 

necessary to reverse the polarity o f  the applied electric field and also to reverse the EOF by 

addition o f a flow modifier (see below). The final advantage o f  EOF is its flat flow profile which
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elutes components as narrow bands giving sharper peaks than the pumped or laminar flow profile 

seen with HPLC (Figure 3) or the turbulent flow of GC.

In HPLC the pumped flow produces broader peaks with lower efficiencies as the solutes in the 

center of the column move significantly faster than those at the walls. In CE the frictional drag 

experienced near the walls of the capillary is small and detracts little from the overall flat profile 

giving higher efficiencies with less zone spreading. It is important, however, to maintain a constant 

EOF to avoid variable migration times and errors in peak identification and quantitation.

A faster EOF results in shorter migration times, giving sharper, narrower peaks with higher 

efficiencies. However, a shorter separation time may cause incomplete resolution of the solutes of 

interest. A compromise must therefore be reached between the EOF and separation time.

1.3.1 Reversing the EOF

When analysing solely for anions, especially if highly charged, they can be eluted quicker and run 

times reduced by reversing both the direction of the EOF and the polarity of the applied electric 

field. The simplest way to reverse the actual direction of the EOF is by addition of a flow modifier, 

e.g. a quaternary amine such as an alkyl ammonium salt, to the run buffer.

CE : electroosmotic flow

HPLC : laminar flow

Figure 3 : Electroosmotic Flow of CE vs Laminar Flow of HPLC
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e.g. cetyltrimethylammonium bromide (CTAB) 

diethylenetriamine (DETA)

hexamethonium bromide (diquaternary ammonium salt)

The quaternary amines bind in a similar double layer fashion, first forming ionic interactions with 

the silanoate groups on the capillary wall, then hydrophobic interactions with other quaternary 

amines o f the opposite orientation such that the interior charge on the wall is positive, as shown 

below (Figure 4). Anionic solutes are attracted to  these protruding positively charged amines and 

are pulled towards the positive electrode, resulting in a reversal in the direction o f  the EOF.

anions from buffer

\ iz
Si

TT7
Si capillars7 wall

quartemary amines

EOF

Figure 4 : Reversed Electroosmotic Flow 

(Reversed EOF as a result o f binding quaternary amines onto the capillary surface)

Amphoteric proteins such as alpha-lactalbumin can also be bonded to the capillary wall which 

allows both the magnitude and direction o f the EOF to be modified by altering the pH o f the run 

buffer. The isoelectric point (pi) for alpha-lactalbumin is pH 4.3 at which it is neutral. Raise the 

pH above 4.1 and it becomes cationic with a “normal” EOF, anode to cathode; lower the pH 

however, and it displays anionic characteristics with a reversed EOF from cathode to anode.
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The velocity of the EOF ( v e o f  ) is described by the equation below:

v e o f  = s£E/47cr| where E is the applied electric field in volts.cm'1

r| is the buffer viscosity.

The electroosmotic mobility, Me o f  is described as:

Me o f  =  s C /4 7 ir j

From these equations it can be seen that the electroosmotic mobility is dependent on the buffer 

characteristics, the dielectric constant and the viscosity of the buffer, which affect the zeta 

potential, but independent of the applied electric field strength.

1.3.3 Effect of Applied Voltage.

The easiest and most efficient way to modify the EOF is to change the voltage which directly 

affects the electric field. From the two equations above

Ve o f  =  M-e o f  x  E

An increase in the applied voltage increases the EOF and decreases migration times giving higher 

efficiencies. However, this may also cause an increase in Joule heating which leads to peak 

broadening, non-reproducible migration times and possible sample decomposition. It is therefore 

desirable to choose the maximum voltage for efficiency whilst ensuring heat dissipation, if 

necessary by choosing a smaller internal diameter capillary or using a thermostated capillary 

compartment.

Using Ohm’s law : E = IR where E = electric field

I = current 

R =  resistance
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andE = V/l where E = electric field

V = voltage 

1 = capillary length

If the capillary length is kept constant, then voltage (V, in volts, cm'1) may be substituted for E. A 

graph of I against V can then be plotted which should be linear with a zero intercept and a slope of 

1/R (Figure 5). The maximum voltage can be read from the graph.

I

maximum voltage

Figure 5 : Ohm’s Law Plot Indicating Maximum Voltage 

1.3.4 Effect of Capillary Length.

The capillary length is usually fixed by the instrument. However, if the capillary length can be 

varied by coiling it in a cassette the following mles apply. A longer capillary has a higher electrical 

resistance which reduces Joule heating and also has a greater surface area for heat dissipation. 

Since the applied electric field, E, is measured in volts.cm'1 (E = V/l), if the capillary length is 

halved then E is doubled, R is lowered and therefore I increases with a further increase in heat 

production. However, this can be lowered by decreasing the capillary diameter which reduces the 

current produced and Joule heating effects. If the capillary length is doubled, R increases and I 

decreases allowing a higher maximum voltage to be used. It is common to see separation 

conditions given as a voltage term, for example a 30 kV separation, whereas it would be more 

precise to quote the applied electric field in volts.cm'1 so that the parameters may be modified for 

instruments with different fixed length capillaries or restricted electrical settings.



1.3.5 Effect of pH.
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A change in pH has a significant effect on the EOF as it affects the zeta potential. An increase in 

pH causes an increase in EOF, up to a pH of about 9, due to increased dissociation of the silanol 

groups on the inner capillary surface which becomes more highly charged. Almost no EOF exists 

below a pH of 2 as nearly all of the silanols are undissociated. A change in buffer pH also affects 

the ionisation of the solutes and their electrophoretic mobilities. As a rule of thumb an appropriate 

buffer pH is a minimum of 2 units above or below the solute pKa for the solute to be ionised.

1.3.6 Effect of Buffer Concentration.

Increasing the buffer concentration lowers the zeta potential and therefore decreases the EOF. 

Although a low buffer concentration gives shorter analysis times, if too low it can lead to broad, 

asymmetrical peak shape as a result of conductivity differences between the solute and the 

surrounding buffer causing a distortion in the electric field and an increase in current and Joule 

heating. Buffer concentrations should be at least 100 times that of the sample and are typically 

10 mM to 100 mM to avoid problems of peak broadening due to disturbances in the EOF as 

described above. The use of organic buffers with a lower ion number, such as a tris buffer 

([tris(hydroxymethyl)aminomethane] and tris hydrochloride), enables a higher molar concentration 

buffer to be used with a lesser degree of Joule heating than that associated with the equivalent 

concentration of an inorganic buffer.

1.3.7 Effect of Temperature.

A rise in temperature causes an increase in EOF because it reduces the viscosity of the run buffer, 

for example an increase of 1°C from 20 to 21°C reduces the viscosity of water by 2.4%. This 

reduction in viscosity is greater than the concurrent decrease in the dielectric constant (0.5% per 

°C for water).
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1.3.8 Effect of Organic Solvent Additives.

These effects are more difficult to predict as they affect many variables including viscosity, 

dielectric constant and the zeta potential. An increase of 0-50% v/v methanol in the run buffer 

increases the viscosity of the solution, but a further increase from 50-100% v/v methanol reduces 

viscosity. In contrast, addition of acetonitrile from 0 up to 100% causes a decrease in viscosity.

1.3.9 Chemical Modification of the Capillary Wall.

The EOF may be greatly reduced or even eliminated by blocking the charges on the capillary wall 

which in turn reduces the zeta potential. This is achieved by dissolving chemical surfactants in the 

run buffer to give a dynamic coating of the capillary wall; or by the covalent bonding of polymers 

to the capillary wall.

Surfactants may be cationic, non-ionic or zwiterionic, for example cetyltrimethylammonium 

bromide (CTAB), polyoxyethylenesorbitan (TWEEN) and tris(hydroxymethyl)aminomethane 

(TRIS) respectively. Typically used polymers include polyacrylamide, poly(vinylalcohol) and 

poly(vinylpyrrolidone).

1.4 Electrophoretic Mobility

Electroosmotic flow, as described earlier, is a phenomenon which occurs when a potential 

difference is applied across the capillary. The EOF carries solutes through the capillary towards 

the detector. However, the basis of separation in capillary zone electrophoresis (CZE) is due to 

the electrophoretic mobility of the analytes. In the presence of an electric field, charged particles 

migrate, according to their electrophoretic mobility, towards the electrode of the opposite charge. 

Under these circumstances negative ions (anions) would migrate towards the positive electrode 

(anode) and back into the source vial without passing through the detection window in the 

capillary. However, the EOF is usually greater than the electrophoretic mobilities of the negatively 

charged solutes and they are carried with the buffer through the capillary and pass the detector at a 

net rate slower than that of the EOF. Cations, being positively charged, will migrate with the EOF 

towards the cathode as a result of their electrophoretic mobilities at a combined rate greater than
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that o f the electroosmotic flow alone. The rate at which the ions migrate depends upon their 

charge-to-size ratio. A smaller ion will migrate faster than a larger one o f the same charge. An ion 

with a higher charge will also migrate quicker than a lower charged ion o f the same size. In this 

way many negative ions will have a net movement, under the stronger influence o f the 

electroosmotic flow, towards the cathode; neutral molecules travel together, unseparated, at the 

same rate as the EOF and cations migrate quickest o f all. The overall order in which the analytes 

pass through the detector is therefore cations, neutrals, anions as shown in Figure 6.

anode cathode

 ►
electrosmotic flow

neutrals

cations anions

small highly 
charged

small highly 
charged

time

Figure 6 : Migration Order in Capillary Electrophoresis

Electrophoretic mobility is analogous to the electroosmotic mobility, jj.Eof, and has the same units, 

cm2.volts.s. Just as an increase in buffer viscosity causes a reduction in EOF it also causes a 

reduction in electrophoretic mobility. Separation occurs because solutes migrate through the 

capillary at different velocities (vEP) according to the equation below.

v Ep = E(q/67rr|r) q = charge o f  the ionised solute

r\ = buffer viscosity

r = solute radius
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The greater the charge-to-size ratio (q/r) the higher the electrophoretic mobility; and if the buffer 

strength and applied electric field remain constant, the higher the electrophoretic velocity also.

Small highly charged molecules move through the capillary fastest; large molecules with a lower 

charge move slower, while neutral molecules have no charge (q) and therefore an electrophoretic 

mobility of zero.

An electrically charged solute will also migrate through a buffer under the influence of an electric 

field with an electrophoretic velocity in centimeters per second (cm. s'1) - giving a total velocity of a 

combination of the solute’s electrophoretic mobility and the applied electric field.

Uep = HepE Uep = electrophoretic velocity

P e p  = electrophoretic mobility ( = q/67t£r)

E = applied electric field

It can therefore be seen that electrophoretic velocity is dependent on both mobility and electric 

field, whereas electrophoretic mobility is dependent on the size and charge of the solute and the 

buffer properties and is independent of an applied electric field.

It is in this way that mixtures of charged solutes can be separated, according to their charge-to-size 

ratios, by CZE. A solute’s observed velocity is influenced by its electrophoretic mobility and the 

EOF:-

UOBS =  U e p  +  D e o F

Electrophoretic velocity and electrophoretic mobility can be measured from experimental 

parameters:

Uep = l/tra - 1/tnm 1 = effective capillary length

(from inlet to detector) 

tm = migration time of solute 

tnm migration time of neutral marker 

e.g. mesityl oxide
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Hep =  (1/tm - l/tnm)(L/V) L  = total capillary length

V = voltage

1.4.1 Factors which affect Electrophoretic Mobility

Factors that affect the size and/or charge of the solute or the buffer viscosity will affect 

electrophoretic mobility. They may also affect the EOF. Addition of a solvent modifier to the run 

buffer or a change in temperature will also lead to a change in electrophoretic mobility and EOF 

due to their effects on buffer viscosity. Buffer pH is very important in determining the degree of 

ionisation of the analytes. The mobility of anionic solutes increases with an increase in pH due to 

the resulting increase in negative charge around their pKa value. As pH decreases more of the 

negative charge is neutralised and mobility decreases. For cations, mobility is increased as the pH 

is lowered around their pKa value. The EOF is also increased at higher pH values, therefore 

changes are more easily observed using a coated capillary to eliminate EOF so migration times are 

only due to solute mobility.

1.5 Buffer Choice

The functionality and separation power of CE depend to some extent on the nature of the buffer 

chosen (Table 1) and upon the addition of any modifiers (Table 2). A buffer is most effective when 

within two units above or below the pKa of the solute under investigation. Zwitterionic buffers are 

particularly useful for the separation of proteins due to their low conductivity at their pi which 

reduces current draw and Joule heating.
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Table 1 : Buffers for CE - pH

Buffer Useful pH range

Phosphate 1.14-3.14

Citrate 3.06-4.76

Acetate 3.76-5.76

Phosphate 6.20 - 8.20

Borate 8.14-10.14

Zwitterionic Buffers

MES 5.15-7.15

PIPES 5.80-7.80

HEPES 6.55-8.55

Tricine 7.15-9.15

Tris 7.30 - 9.30

MES = 2[N-morpholino]-ethanesulphonic acid 

PIPES = Piperazine-N,N’-bis-[ethanesulphonic acid]

HEPES = N-[2-Hydroxyethyl]piperazine-N’-[2-ethanesulphonic acid]

The nature or properties of a buffer can be modified by the addition of various substances to 

improve selectivity and/or separation. Some examples are given in the Table 2 below.

Table 2 : Buffers additives for CE and their function.

Additive Function

Inorganic salts Protein conformational changes

Organic solvents Solubiliser, EOF modifier

Urea Solubilises proteins, denatures nucleotides

Sulphonic acids Ion pairing agent, hydrophobic interaction

Cationic surfactants Charge reversal of capillary wall

Cellulose derivatives Reduces EOF, sieving medium

Amines Covers free silanol groups.
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Strictly speaking sample introduction would be more technically correct phraseology for CE, 

however, the term “injection” has been adopted for common usage. Whereas a sample for HPLC 

or GC is injected into a moving stream of liquid or gas via a loop, valve or syringe; in CE the 

sample is introduced into the capillary while there is no buffer flow. Injection volumes are 

generally much smaller in CE (CZE, MECC: 1 to 50 nl) than in HPLC (10 to 250 jil); the 

exceptions being capillary isoelectric focusing (CIEF) where the whole capillary is filled with 

sample and capillary isotachophoresis (ITP) which can cope with volumes of up to 50% of the 

capillary. One reason why injection volumes are so small in CZE and MECC is that the capillary 

volumes are small; typically about 1 pi for a 50 cm by 50 pm internal diameter capillary, hence 1 to 

50 nl sample sizes are common in CE. The length of the injected sample plug is kept to a minimum 

in CE to minimise zone spreading and the associated losses in efficiency and resolution. Samples 

may be introduced into the capillary by either hydrodynamic or electrokinetic injection.

1.6.1 Hydrodynamic Injection : This is achieved using either pressure or gravity.

Pressure - The capillary inlet is placed into the sample vial and pressure is then applied to the 

sample vial to force a small amount into the capillary before it is returned to the source vial. 

Alternatively a vacuum may be applied to the destination vial to draw the sample into the capillary. 

It should be noted however, that it is important to ensure that the buffer levels in the source and 

destination vials are kept constant to prevent siphoning effects. The volume of sample injected, Vi, 

is described by the Poiseulle equation:

Vi = APr47it/8r|L where AP = pressure across the capillary

r = capillary inner radius 

t = time the pressure is applied 

rj = sample viscosity 

L = total capillary length

Gravity - Gravity or siphoning injection is accomplished by placing the capillary inlet into the 

sample vial and raising the sample vial so that it is higher than the destination vial. The injection 

volume by gravity can be calculated using:
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Vi = 2.84xlO'8Htd4/L where H = height the sample is raised

t = time sample is raised 

d = capillary inner diameter 

L = total capillary length

Hydrodynamic injection is reproducible provided that the variables are kept constant. This 

injection method is not suitable for capillary electrochromatography or capillary gel electrophoresis 

as the solid phase packing material or PAG produce too much resistance for gravity injection and 

may be extruded from the capillary on the application of pressure.

1.6.2 Electrokinetic Injection : In electrokinetic injection both the capillary inlet and the anode 

are placed into the sample vial and a voltage is applied to the sample vial for a given period of time; 

the anode and capillary are then returned to the source vial. Sample ions migrate into the capillary 

due to electroosmosis and electrophoretic mobility as they do during the separation. The quantity 

injected, Qjnj, is given by:

Qinj = V7ictr2(tiEp + Peof)/L where V = voltage

c = sample concentration

t = time voltage is applied

r = capillary radius

Pep = solute electrophoretic mobility

P e o f  = electroosmotic mobility

This method can be prone to sampling bias in favour of higher charged, smaller cations which may 

become depleted on repeat injections from the same sample vial. Sample bias can be minimised by 

diluting the samples in a large volume of run buffer or by adding a small amount of a concentrated, 

non-detected ion to give all samples similar conductivities.

Gravity provides the simplest method of injection conceptually and is independent of sample 

matrix, giving good reproducibility in the event of differences in sample composition or pH, but
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requires quite complex instrumentation. Pressure injection has all the advantages of gravity 

injection but requires more complex equipment with tight seals to provide a constant 

pressure/vacuum. Electrokinetic injection is the simplest method instrumentally with the only 

physical restriction being the ability to get both the anode and the capillary into the sample vial. 

Reproducibility is good provided that the sample matrix remains the same, but sample bias may be 

experienced.

1.6.3 Sample Stacking

The advantage of CE is its high efficiency separations for a wide variety of samples, but its main 

limitation is the lack of detection sensitivity, between one tenth and one hundredth that of HPLC 

when UV detection is used, due mainly to the restriction in sample volume. Sample stacking is one 

way of increasing sensitivity in CE as this concentrates the solute prior to electrophoresis. It is 

achieved by dissolving the sample in a buffer with a lower ion content than that of the run buffer 

and injecting hydrodynamically. The sample therefore has a lower conductivity so the solute ions 

migrate more rapidly through the injection plug until they reach the “barrieri’ with the run buffer, 

forming a “stacked” zone. Under normal CE running conditions cations will concentrate to the 

front of the plug, while anions are stacked at the rear - neutrals cannot be stacked. However, too 

low a concentration of buffer ions, or water, produces a laminar flow phenomenon due to the 

change in electroosmotic flow velocity resulting in peak broadening. A compromise must therefore 

be reached, for example, preparation of the sample in buffer one hundred-fold less concentrated 

than the run buffer

1.6.4 Field Amplification Sample Injection

This occurs when a sample in dilute buffer is injected electrokinetically into a capillary so that there 

is a higher electric field strength in the sample than in the run buffer. On application of a voltage 

the solute ions migrate more rapidly through the higher electric field of the sample plug until they 

reach the boundary with the lower electric field of the run buffer where they slow down forming a 

concentrated zone. The injection time can be reduced when using field amplification as more ions 

enter the capillary by electrokinetic injection in a more dilute buffer compared to one of a higher
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concentration. This has the advantage of reducing problems associated with large injection 

volumes of low concentrations of buffer which causes changes in the electroosmotic velocity and 

the production of localised laminar flow as seen in sample stacking. Peak heights may also be 

increased by introducing a plug of water in front of the sample on the capillary to ensure an 

amplified field.

1.6.5 Sample Concentration by Isotachophoresis (ITP)

Large volumes of dilute samples can also be concentrated, or stacked, by sandwiching the sample 

of interest between electrolytes of high mobility (leading) and low mobility (terminating). Anions 

and cations must be separated in different runs using ITP. Generally the electroosmotic flow is 

eliminated so that the buffer and solute ions migrate, on application of an electric field, according 

to their electrophoretic mobilities alone, which may also be measured by the inclusion of “spacers” 

with known mobilities. The solute and buffer ions distribute themselves in the capillary until an 

equilibrium is reached where each component forms a discrete zone for its mobility and electric 

field. This process can be done on-column, termed transient ITP, where the buffer system can be 

changed after the bands have formed so that separation then occurs by CZE; or using dual 

capillaries - the first column on which the bands are concentrated, followed by electrophoretic 

separation on the second. On applying a constant current to the capillary, the zones move at a 

constant velocity with sharp boundaries through the detector, hence ITP is sometimes termed 

moving boundary or displacement capillary electrophoresis.

1.7 Capillary Choice

The first capillaries used were constructed from glass, Teflon or Pyrex. However, Pyrex is not 

transparent to ultraviolet light of short wavelengths so cannot be used below 280 nm and Teflon 

capillaries are less efficient at dissipating heat. Fused silica capillaries are far more popular now as 

they exhibit neither of these problems and are also easier to handle, being more flexible and easier 

to cut. Typically capillaries have an internal diameter (i.d.) of 50 to 100 pm: a compromise 

between a wider optical path diameter for greater detection sensitivity by UV/vis detection and a 

narrower i.d. which keeps Joule heating to a minimum. The capillary length affects separation time



24
and peak spacing - the longer the capillary the longer the separation time and the wider the peak 

spacing, but with the advantage of greater electrical resistance so Joule heating is reduced and a 

larger surface area improves heat dissipation enabling a higher voltage to be used. However, a 

longer capillary also suffers from greater axial diffusion which reduces efficiency. A shorter 

capillary creates more Joule heating for the same applied voltage and is less efficient at dissipating 

this heat so a compromise must be reached. It is therefore desirable to use the shortest capillary 

which still gives good separation of the analytes.

1.8 Diffusion and Joule Heating

Theoretically, a compound in solution introduced at one end of the capillary will form a “zone” and 

move unchanged through the capillary - hence capillaiy zone electrophoresis (CZE). In reality the 

solution will diffuse slightly into the surrounding run buffer by both longitudinal diffusion (parallel 

to the direction of migration) and radial diffusion (perpendicular to the direction of migration).

This diffusion coefficient, D, has an effect on the spreading of the zone of the solute. However, 

this is minimal compared to the zone spreading caused by thermal, or convective, diffusion 

produced by passing an electric current through a conductive medium resulting in Joule heating. 

Joule heating warms the solution and causes convective diffusion. In free solution ion mobility 

increases by 2% per degree centigrade in the warmer centre of the capillary, resulting in poor 

separation due to zone spreading. Convective diffusion can be minimised by reducing the amount 

of heat generated and also by dissipating any heat that is generated. This is achieved by reducing 

the capillary diameter, rotating the capillary, adding a stabilising medium to the buffer, for example 

a gel or using a thermostated capillary compartment.

1.9 Methods of Detection.

In CE as in HPLC the solutes to be detected are in a liquid flow, therefore the detectors used are 

chosen using the same criteria i.e. sensitivity, linear dynamic range, selectivity and the ability to 

produce quantitative data. Commonly used detectors in CE include UV/vis absorbance - direct 

and indirect; fluorescence - direct and indirect; laser induced fluorescence; mass spectrometry; 

conductivity and refractive index detection. Indirect methods of UV or fluorescence detection are
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used when the analyte has little or no natural chromophore/fluorophore. A background ion is 

incorporated into the run buffer which has a high UV absorbance/fluorescence, then, when the 

component of interest passes through the detection window its lack of absorbance/fluorescence 

results in a dip in the baseline which appears as a negative peak on the electropherogram. The 

major problem associated with on-column UV/vis detection is its poor sensitivity due to the very 

small amount of the solute present in the short, narrow detection window. Sensitivity can be 

enhanced by using a bubble cell or a “Z” cell to increase the path length and the volume passing 

through the detector, or using sample pre-concentration or sample stacking techniques, as 

described earlier.

1.10 Efficiency and Resolution

Separation in electrophoresis is driven primarily by efficiency, rather than selectivity (which is 

generally the case in chromatography), due to the very short, sharp solute zones achievable with 

electrically driven flow. Resolution, (Rs), in CZE is the result of differences between the mobilities 

of the analytes and can be described by the expression :

2(/2 -/,)
Rs = 7--------- r where i = migration time

(wi+w2j

w= baseline peak width.

The difference necessary to resolve two zones is dependent on the length of the zones, which in 

turn is determined by dispersion forces acting on those zones. Dispersion therefore controls both 

zone length and the mobility difference required for separation to be achieved. Dispersion is the 

result of differing solute velocities within a zone, defined by the baseline peak width, wb. This can 

be measure for a Gaussian peak by:

wb= 4 <j  where u -  standard deviation of the peak (in time, length or 

volume).

The efficiency, or number of theoretical plates, N, can be calculated by:
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/V where/=  capillary lengthN=

to give available plates per metre, or calculated directly from an electropherogram by:

(  Vt 2

where / = migration timeN=  5.54

w j = peak width (at half height).

Efficiency in CZE is independent of capillary length, provided that Joule heat can be dissipated - a

However, unlike efficiency, which increases in a linear fashion with applied voltage, a similar, 

proportional increase in resolution is not observed. This is because of the square root term, which 

means a doubling in resolution requires a quadruple increase in voltage. Benefits in resolution 

from increasing the voltage are also countered by an increase in Joule heating. The key to 

improved resolution is to increase Ajuep, the difference in mobilities between the two species, best 

achieved by selection of the correct mode of CE and appropriate buffer choice to give optimum 

selectivity. The operational parameters should be selected such that there is a balance between 

resolution and analysis time.

shorter capillary has a smaller surface area to disperse heat. Therefore, the shortest capillary can 

be used which gives adequate separation, with no loss in efficiency and a shorter analysis time. 

This is the reverse of HPLC, where efficiency is proportional to column length.

The resolution of two components can also be described with respect to efficiency by:

where Ajuep = jj,epl -  juepl (difference in mobility)

f^ e p l t^ep\
(average mobility)M.p
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1.11 Modes of Capillary Electrophoresis

1.11.1 Capillary Zone Electrophoresis (CZE)

The simplest form of capillary electrophoresis is free solution electrophoresis (FSCE) or capillary 

zone electrophoresis (CZE) performed using a fused silica capillary filled with buffer. Separation 

of the analytes is based on differences in their charge-to-size ratio. The net charge of most organic 

analytes is pH dependent and determines their electrophoretic mobilities. Inorganic anions/cations 

may be fully dissociated across the pH range in which case their net charge will remain constant 

and separation is defined predominantly by size.

1.11.2 Isoelectric Focusing (IEFI

Isoelectric focusing relies on the fact that a molecule will migrate as long as it is charged. IEF 

operates in a pH gradient using zwitterionic chemicals called carrier ampholytes with a low pH at 

the anode and a high pH at the cathode. When a voltage is applied the ampholytes will migrate to 

the oppositely charged end of the capillary until they reach the point at which their net charge is 

zero (their isoelectric point, pi), where they then stop. This “focusing” of the sample reduces band 

broadening by diffusion resulting in sharper peaks. Samples are loaded, focused, then mobilised 

for detection by applying a low pressure with the voltage still on. To be effective the EOF must be 

suppressed in IEF. This is achieved by coating the capillary walls with methylcellulose or 

polyacrylamide. Applications include determination of pi values of proteins and separation of 

immunoglobulins, haemoglobin variants and recombinant proteins. Urea is often incorporated into 

the buffer to maintain solubility of the proteins to prevent precipitation at their pi values.

1.11.3 Isotachophoresis (ITP)

ITP can separate anions and cations, but not in the same run. A zero EOF is also essential in 

isotachophoresis along with a heterogeneous buffer system. Sample ions separate, according to 

their electrophoretic mobilities in the presence of an electric field, between a leading electrolyte 

(higher mobility) and a terminating electrolyte (lower mobility), as described in section 1.6 .5.
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1.11.4 Micellar Electrokinetic Capillary Chromatography (MECC)

In contrast to ITP, MECC requires a robust and controllable EOF and utilizes micelle-forming 

surfactants. These are long-chain organic molecules with a hydrophobic tail and a hydrophilic 

head. Conditions can be chosen such that the direction of anionic micelle migration opposes that 

of the EOF, but that the velocity of the EOF is still sufficient to sweep the micelles through the 

capillary and past the detector. MECC is a combination of electrophoretic and chromatographic 

separation. Above the critical micelle concentration (CMC) these molecules come together to 

form aggregates, with their tails inward and heads on the outside (Figure 7). MECC allows the 

separation of neutral species by their hydrophobicity as they freely diffuse in and out of the 

micelles. Surfactants may be natural (bile salts e.g. sodium taurocholate) or synthetic e.g. SDS or 

CTAB (cetyltrimethylammonium bromide); and fall into four classes: anionic, cationic, zwitterionic 

and nonionic.

Separation is based on the partitioning of the neutral molecules between the buffer and the 

micelles. When a hydrophobic compound is added to an aqueous solution containing micelles it 

will partition into the hydrophobic portions of the micelles, effectively becoming solubilised, and

carried through the capillary to elute first at the same rate as the EOF. Molecules of intermediary

0 h A A A /

Figure 7 : Micelle Formation

(conformation of anionic micelle aggregation)

will elute last from the capillary with the micelles. A highly water soluble compound will not 

partition into the micelles as it is not soluble in them; it therefore remains in the run buffer and is

hydrophobicity will partition in and out of the micelles and will elute from the capillary at a
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migration time which is directly proportional to their hydrophobicities and the time they spend in 

the micelles.

1.11.5 Gel Electrophoresis (CGE)

Gel electrophoresis, either slab gel or capillary gel electrophoresis (CGE), uses polyacrylamide or 

agarose gels as anticonvective mediums for the analysis of proteins and deoxyribonucleic acids 

(DNA). Suppression of the EOF is very important for these separations. The proteins are 

denatured with 0 .1% sodium dodecyl sulphate (SDS), which causes them to assume the same 

globular shape with a constant charge-to-size ratio. In this way DNA, proteins and 

oligonucleotides may be separated by size alone, as a result of the inherent molecular sieving 

properties of the gel and also by electromigration, and not charge-to-size ratios. Materials used 

may be physical gels for example hydroxypropylmethylcellulose (HPMC) which forms a porous 

structure by an entanglement of polymers; or chemical gels such as cross-linked PAG with urea or 

tris-borate-EDTA which forms covalent attachments to obtain a porous structure.

1.11.6 Capillary Electrochromatographv (CEC)

CEC is a hybrid of CE and HPLC. An electric field is applied across a narrow bore capillary filled 

with a solid phase packing material so separation occurs as a result of both electrophoretic and 

chromatographic mechanisms. CEC is the most recent development in electrophoretic technology. 

More recent advances in CE techniques and equipment have improved CEC methods giving 

increased sensitivity and reproducibility with repeated injections of low nl injection volumes.

1.12 Applications

CE is applicable to the separation and/or analysis of a wide variety of compounds ranging from 

simple inorganic ions to complex biomolecules such as oligosaccharides, nucleic acids and proteins.
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In theory any compounds which differ in their charge-to-size ratios can be separated by CZE. If 

molecules have the same charge-to-size ratios but are of different sizes, they may be separated by 

CGE. Compounds with no charge or which cannot be ionised but differ in their partitioning 

between a buffer and micelles can be separated by MECC. Also, compounds may be separated 

according to their isoelectric points by CIEF.

The applications of CEC combine those of both CE and HPLC: impurity analysis, chiral 

separations and main component assays as well as trace level detection. CEC can even be 

rationalised to be of universal importance as it takes advantage of the benefits of CE 

miniaturisation with highly efficient separations and the selectivity of HPLC. However, it is not 

without technical challenges - CE still offers the greatest promise in chiral separations whereas 

HPLC will continue to be the preferred option for preparative purposes.

It can therefore be appreciated that the various modes of CE can be applied in a wide variety of 

analytical fields to separate simple chemicals or complex mixtures whatever their physicochemical 

properties. Table 3 lists various substances and the possible CE techniques which could be used 

for their analysis in order of preference.

Anions: e.g. small inorganic anions such as chloride, nitrate, sulphate, phosphate etc. 

Traditionally these ions are separated by ion chromatography with suppressed conductivity 

detection. However, because these ions vary in their charge-to-size ratios they can also be 

separated by CZE with either indirect UV/fluorescence detection or conductivity detection. The 

above method is also applicable to small organic anions such as formate or acetate and has been 

used to detect organic acid drug counter-ions such as succinate and maleate19, although it may be 

necessary to add flow modifiers to reverse the direction of the EOF.

Cations: e.g. alkaline earth and transition metals. These have traditionally been separated by 

cation exchange chromatography, but can also be analysed by CZE due to differences in their 

charge-to-size ratios. Cations are simpler to analyse than anions as they migrate in the same 

direction as the EOF therefore there is no need to add flow modifiers. Assi et al.20 have 

successfully developed an assay for the simultaneous determination of basic drugs and their acidic 

counter-ions by CZE.

Proteins21. Nucleic acids22 and DNA23 have traditionally been analysed using slab gel 

electrophoresis (PAGE) as their electrophoretic behaviour is fairly well understood. CE is
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particularly well suited for these separations, using different modes of electrophoresis depending 

on the properties of the substance under investigation. CZE, CGE and MECC with chiral selectors 

have been used for peptide isolation; characterisation of peptide-binding reactions; purity 

determinations and mapping of protein digests. Serum proteins, glycoproteins, lipoproteins, 

antibodies, haemoglobins, food proteins and rec-proteins have all been successfully separated by 

CE. The development of hyphenated techniques such as CE-MS has provided high resolution 

separations with increased sensitivity for direct analysis from biofluids and the capability for 

enzymology and immunological studies using affinity CE to study protein structure. The rapid, 

high efficiency separations of CE have also made high throughput DNA sequencing cost-effective. 

Multiplexed CE has been used in sequencing the human genome to eliminate the bottleneck 

process of separating Sanger fragments and reading fluorescent dye labels.

Table 3 : CE Mode Selection (appropriate choices for various applications)

Analyte <- Order of choice

Small Ions CZE ITP

Small Molecules MECC CZE ITP

Peptides CZE MECC IEF CGE ITP

Proteins CZE CGE IEF ITP

Oligonucleotides CGE MECC

DNA CGE

Pharmaceuticals CZE MECC CEC

1.12.1 Pharmaceutical Analysis24

The use of capillary electrophoresis in the pharmaceutical industry has greatly increased in recent 

years and such methods of analysis are now routinely accepted by regulatory authorities. CE offers
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rapid, simple method development with reduced operating costs as well as additional and different 

separation mechanisms compared to HPLC. CE has been utilised for dissolution analysis to 

monitor the rates of dissolution of drugs from their formulations/tablets24'27; excipient analysis to 

measure the formulation ingredients such as sugars and lactose cyclodextrins28, or the inorganic ion 

content in other raw materials e.g. buffers, sweeteners and electrolytes and provides excellent 

cross-correlation purity data with HPLC, with accurate impurity determinations down to 

0.05% m/m29,30; as well as its most frequent application in main-component assays. The majority 

of acidic drugs, such as warfarin31 and related substances, can be separated using a borate buffer 

with an approximate pH of 9, whilst a low pH phosphate buffer is suitable for most basic drugs, for 

example propranolol32. Another option for the analysis of basic drugs is short-end injection, where 

the sample is introduced into the end of the capillary nearest to the detector and a reversed polarity 

is applied33. This method reduces analysis times, increases sensitivity due to increased stacking 

effects, allows the use of greater electrolyte strengths and higher voltages which improve 

resolution and reduces peak tailing and can overcome problems with analysis of samples with high 

salt contents.

A vast number of CZE and MECC assays exist for the analysis of a variety of pharmaceutical 

products including amphetamines, anesthetics, antibiotics, anti-inflammatories, barbiturates, 

steroids, heart drugs, neurological agents and vitamins, comprehensive lists of which have been 

documented in recent reviews5,34,35. Many pharmaceutical assays also take advantage of the 

increased selectivity offered by chiral CE35 for enantiomeric separations. Chiral CE method 

development has been facilitated by existing knowledge in chiral HPLC and is highly efficient, 

simple, fast and convenient. There are now a wide variety of chiral selectors37'41available for both 

aqueous and non-aqueous CE, including cyclodextrins, crown ethers, antibiotics, polysaccharides, 

proteins and chiral surfactants. The microsize nature of CE allows the investigation of more 

numerous, exotic and expensive reagents, often aided by a factorial experimental design to 

optimise operating parameters. Another factor in the increasing interest in CE is the introduction 

of hyphenated techniques to enhance detection and provide structural information using CE-MS42 

and CE-NMR43, although the nanolitre injection volumes of CE can be a limiting factor. A further 

advancement lies in the arena of CEC, a technique which couples the miniaturisation and 

electrically driven plug flow profile of CE with the added separation of a solid phase packing 

material. Euerby et a/.44describe the separations of both acidic and basic drugs, including 

diastereoisomeric steroids, barbiturates and non-steroidal anti-inflammatories, using standard, full



33
length capillary and short-end injection techniques and incorporating isocratic and step-gradient 

elution.

Whilst the use of CE in pharmaceutical analysis is now becoming an established technique, its 

further application in drug metabolism studies is still relatively novel. Lanz and Thormann45 

describe a chiral CE method, using a pH 3 phosphate buffer with hydroxypropyl-P-cyclodextrin, 

for the characterisation of the stereoselective in vivo metabolism of methadone and its primary 

metabolite in human urine. Similarly, Thormann et al.46 have reported a successful assay for the 

stereoselective in vivo metabolism of thiopental and its metabolite pentobarbital via analysis of 

their enantiomers in human plasma using chiral recycling isotachophoresis with a pH 8.5 phosphate 

buffer and hydroxypropyl-y-cyclodextrin. In both cases chiral CE proved to be a simpler and less 

expensive method than HPLC with an enantioselective column, or GC with stable isotope labelling 

or sample derivatisation; although solid phase/liquid-liquid extraction was recommended for 

sample clean-up prior to analysis.

In vivo metabolism studies are time consuming and costly. These factors can be reduced by 

employing in vitro metabolism techniques using, most commonly, liver and kidney homogenates to 

evaluate the in vitro clearance and metabolic stability of potential drug candidates. HPLC has been 

the traditional analytical technique for such studies, although some CE methods have been 

reported. A comprehensive review of the application of CE and related techniques in both in vivo 

and in vitro metabolism studies has been published by Naylor et ah41. This paper describes the 

importance and difficulties of analysing biological samples in order to characterise and identify 

metabolically transformed products; including a CZE- MS analysis method for the in vitro 

metabolism of HAL, (4-(4-chlorophenyl)-l-[4-(4-fluorophenyl)-4-oxobutyl]-4-piperidinol), in 

guinea pig microsomes. Blaschke et a l compared both chiral and achiral HPLC methods against 

chiral CZE analysis for the stereoselective in vitro metabolism of the racemic 

antiasthmatic/antiallergic drug flezelastine in human, rat, bovine and porcine liver microsomes. 

Once again, the greater efficiencies of CZE were found to provide a more suitable assay for the 

enantiomers, with improved separation over HPLC.

With the advantages of simple, rapid method development, short analysis times and the high 

efficiencies giving improved separations, along with further advances in non-aqueous CE and CEC 

it is proposed that we will see capillary electrophoretic techniques increasingly becoming methods 

of choice in this field.
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Method development from first principles can be a daunting task, especially in CZE with the 

numerous parameters which can be altered to affect migration. This process can be made easier 

and quicker using one of several statistical experimental design techniques. These include simple 

screening designs to establish the key factors, central composite studies and overlapping resolution 

mapping which give response surfaces to predict areas of optimal performance and factorial 

experimental design (FED) which provides the most detailed information for both inter and intra- 

parameter interactions. In FED the maximum amount of information can be gleaned from the 

minimum number of experimental runs, either using a full factorial design if only a few parameters 

and levels are to be evaluated, or using a fractional factorial design to reduce the number of runs 

when many levels and or parameters are examined. It is important to remember in a frill FED to 

include every possible combination of factors to obtain a complete, unbiased result.

The simplest form of FED is to investigate 2 factors (x and y) at 2 levels (xi, x2, yi and y2). In this 

case only one function can be fitted to the data - a straight line. The effect of changing each 

variable may be additive (Figure 8) or interactive (Figure 9).

Figure 8 : FED - Additive Relationship 

(2 factors examined at 2 levels showing an additive effect)
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The main effect for each factor can be estimated by calculating the average difference between the 

results.

(xi,yi - xi,y2) + (x2,yi - x2,y2)

__________________________  = Main Effect

2

Figure 9 : FED - Interactive Relationship

The interactive effect for each factor can be estimated by calculating half the difference between 

the results.

(xi,y2- xi,yi) - (x2,yi - x2,y2)

___________________________  = Interactive Effect

2

It can be seen, therefore, that it is important to establish whether the factors have a main or 

interactive effect. Factorial design is a good method for obtaining this information.

f* •The minimal 2 factor, or 2 ,  design is very popular; requires few experimental runs; is easy to 

interpret and can give an indication o f major trends. It also forms the basis o f FED which can be 

augmented to give a greater quantity and quality o f data. A 3* design provides more information
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on the effects and interactions of the factors in which main (linear) and quadratic (curved) effects 

can be separated. By including more experimental points the fit of the line may be improved.

While a linear fit is the only functional available for 2 data points, the inclusion of a third data point 

gives the option of curvature as described by a quadratic.

The two important decisions in FED are which factors to choose and what data points to describe 

them. All permutations of the factors must be examined over a range which is neither too wide nor 

too narrow to accurately describe the curvature of a quadratic effect.

The display of levels to be investigated for each factor is called a design matrix (Table 4 = 2f design 

and Table 5 = 3f design) which may also be presented graphically in the form of a box diagram 

(Figures 10 (2f) and 11 (3f)). Traditionally used signs are - and +, or 0 and 1. -10  indicating 

without (qualitatively) or low values (quantitatively) and + / 1 indicating with (qualitatively) or 

high values (quantitatively). By filling in the results obtained at the comers of a square (2f) or a 

cube (3f) the general trends become evident for the effects of combining each and every variable.

Table 4 : FED - 2f Design Matrix.

(this table details the 4 experimental runs required to fulfill a 2f Design Matrix)

Run number Time (min) Temperature (°C) Response (mg product)

1 30(-) 20 (-) 60

2 30 (-) 37 (+) 76

3 60(+) 20 (-) 73

4 60(+) 37 (+) 93
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Figure 10 : FED - 2l Box Diagram 

(results from Table 4 represented graphically)

Table 5 : FED - 3* Design Matrix

(this table details the 8 experimental runs required to fulfill a 31 Design Matrix)

Run Time (min) Temperature (°C) Buffer A (-) or 

Buffer B (+)

Response 

(mg product)

1 - - - 63

2 + - - 43

3 - + - 75

4 + + - 58

5 - - + 65

6 + - + 52

7 - + + 62

8 + + + 80
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Figure 11 : FED - 3f Box Diagram 

(results from Table 5 represented graphically)

For optimisation o f  conditions the variables should be plotted in pairs on 2 dimensional linear axes, 

joining high and low values - optimal results will be obtained where the lines cross in Figure 12 

below.

Figure 12 : FED - Optimal Parameters as Indicated by an Interactive Relationship
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In a 31 design each effect can be examined individually by calculating the mean differences for each 

opposing side o f the cube (Figure 13).
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Figure 13 : FED - A 3D Box Diagram Depicting M ean Results

The major advantage o f  factorial design is the vast reduction in both experimental samples and 

experimental runs and correspondingly in time and effort. This may also mean that all o f  the 

variables may be examined on the same day under the same conditions, e.g. equipment, test 

solutions, buffers, ambient temperature etc., which also reduces variability introduced by separate 

experiments performed on different days. Results obtained in this way are more accurate and 

reliable than the alternative o f duplicate sampling, for the same degree o f  precision, which also may 

not indicate the possibility o f an interaction between the factors under investigation. A further 

advantage o f FED is that if the conditions chosen initially were not optimal, then analysis o f the 

values obtained at the corners o f the square/cube will point towards conditions for the best results.

The disadvantages o f FED become evident if all possible combinations o f the variables are not 

represented which can lead to poor or biased estimates o f effects. Also, if many levels for each o f
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the factors are being co-considered then the numbers of samples increases dramatically, for 

example an experiment with 3 factors at 3 levels (33) would require 27 runs if all permutations 

were to be covered.

FED can be applied advantageously in CE method development, especially with the advent of 

programmable instruments whereby a series of experiments can be set up to examine different 

operating temperatures, buffer concentrations, pH values and applied voltages in a single run left 

overnight with no additional input required from the analyst. In this way the predominant factor(s) 

affecting migration / separation / resolution can be identified easily and at reduced cost in both time 

and materials. The incorporation of FED in general CE method development has been reviewed by 

Altria et al.50, whilst specific applications in pharmaceutical analysis have been documented by 

Clark et al51, Pokoma et a l52 and Vargas et a/53.



3.1 Method Development.

43

It is good practice to collate as much information as possible on the component(s) to be analysed in 

order that the most appropriate mode of CE may be chosen and the parameters therein. It may be 

that a method has already been reported, as was the case with propranolol, which can be modified 

to suit your needs, or it may be necessary to start from first principles, as with chlorogenic acid. 

Once a suitable method has been developed it can be optimised to give a better separation. 

Traditionally this has meant a long and tedious set of experiments, adjusting each of the many 

variables (temperature, buffer type, pH and concentration etc.) one at a time to be sure that any 

effect on migration, selectivity and separation could be attributed to the correct parameter. Now, 

however, it is possible to reduce the number of experiments necessary and the time and effort 

involved to perform them by using a structured method design procedure such as factorial 

experimental design (FED) explained earlier. Not only was it expected that FED would indicate 

the variable responsible for improved resolution and selectivity, but also the effects of combinations 

of the various parameters and the direction of change which could be beneficial to the separation. 

Once a method has been optimised it should be tested by repeated injections for accuracy and 

precision to ensure that it will be reliable, robust and reproducible. If the method was to be 

quantitative, then the limit of detection and linearity should be calculated by running a series of 

calibration standards. The limit of detection is generally taken to be the lowest concentration 

which can be measured reproducibly and is at least twice the height/area of the baseline noise of 

the system. Further analytical parameters which may also be investigated include the specificity 

and selectivity of the method to ensure there are no endogenous components which interfere with 

or influence the peaks of interest.

Points to Consider

When beginning CE method development from first principles there are several aspects which 

should be bom in mind to increase the chances of success. The component of interest should be 

evaluated for solubility, stability and the most appropriate method of detection, whilst also 

considering the optimum buffer choice (pH, ionic strength, any additives) and also the operating 

temperature.
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A number of questions should be addressed in each of the following areas (i-iv) :-

i) Compound solubility:

Is the compound of interest soluble at 1 mg/ml in water?

Is this true across a range of pH values?

If not a small quantity, up to 25%, of organic modifier such as methanol or acetonitrile may be 

added. For small, insoluble, hydrophobic molecules the addition of sodium dodecylsulphate (SDS) 

forms micelles which effectively “solubilise” the compound in their hydrophobic portions. Proteins 

can be solubilised by including urea in the run buffer or a dispersing agent such as ethylene glycol.

ii) Compound stability:

Is the analyte unstable at any particular pH or pH range?

Is it thermally labile?

Problems such as these could restrict the operating parameters and require further method 

optimisation to avoid confusing results from the inherent physicochemical properties of the 

compound leading to its degradation during analysis.

iii) Detection:

What is the UV wavelength which gives maximum absorption?

What concentrations are you expecting to be working at?

Will sensitivity be a problem?

Is mass spectrometry an alternative method of detection?

If a mixture of components is to be analysed, know how many in order to ensure resolution of all 

the components.

iv) Buffer choice:

As a general rule, a buffer is most effective within one or two pH units of its pKa. It is best to 

work at a low buffer concentration to avoid non-specific ionic strength effects and to reduce Joule 

heating - 50 mM is a good, recommended starting point. If possible, prepare buffers at the 

temperature at which they will be used and re-check pH measurements after the addition of any 

modifiers as they may alter the pH. All buffers should be filtered prior to use (0.45 pm - 0.2 pm 

filter) and refrigerated to prevent microbial contamination.
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The following starting conditions are suggested:-

50 cm, 75 pm i.d. fused silica capillary 

temperature of 25 °C 

20 kV applied voltage 

UV at 214 nm

50 mM buffer of an appropriate pH 

5 second, 50 mbar pressure injection of 1 mg/ml solution.

To obtain increased efficiency the ionic strength of the run buffer may be increased and to improve 

separation the pH is adjusted.

3.2 Materials

The following section contains details of the materials used,

a) Compounds:

i) Propranolol (RMM = 259.34) was obtained from Sigma (Poole, UK.)

OCH2CH(OH)CH2NHCH(CH3)2

Figure 14 : Structure - Propranolol

ii) Chlorogenic acid (RMM = 354.3) was obtained from Sigma (Poole, UK.)

OH

OHO O C C H = C H

HOOC
OH

HO

OH

Figure 15 : Structure - Chlorogenic Acid
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b) Reagents:

i) HPLC grade methanol was obtained from Fisher Scientific (Loughborough, UK.)

ii) Trifluoroacetic acid (TFA) was obtained from Fluka (Buckinghamshire, UK.)

iii) Ammonium acetate was obtained from Fisher Scientific (Loughborough, UK.)

iv) Lithium hydroxide was obtained from BDH (Poole, UK.)

v) Phosphoric acid was obtained from BDH (Poole, UK.)

vi) Sodium hydroxide (analytical reagent RMM = 40) was obtained from Fisons (Loughborough, 

UK) and prepared as a 0.1 M solution (4g in 1L deionised water).

vii) Sodium tetraborate (Na2B4O7.10H2O) was obtained from Sigma (Poole, UK.)

viii) p- Nicotinamide adenine dinucleotide phosphate (p-NADPH) reduced form was obtained from 

Sigma (Poole, UK.)

ix) Boric acid (H3BO3) was obtained from Sigma (Poole, UK.)

c) HPLC mobile phase:

i) Propranolol: 60:40:0.1:0.77 v/v/v/w methanokdeionised water:TFA:ammonium acetate

ii) Chlorogenic acid - a suitable system could not be developed.

d) CE buffers:

i) Propranolol: 50 mM lithium phosphate buffer

ii) lithium phosphate molecular weight = 41.96, i.e. 50 mM = 210 mg in 100 ml purified water, pH 

to 2.5 with phosphoric acid.



47

iii) Chlorogenic acid : 50 mM borate buffer

iv) sodium tetraborate (Na2B4O7.10H2O) molecular weight = 381.4 which includes 180 water, 

ie. 50 mM = 252 mg in 100 ml purified water, measured pH = 9.2

All buffers were filtered using a 0.45 pm filter from Gelman Sciences (Northampton, UK) prior to 

use and stored at 4°C.

3.3 Instrumentation

The following apparatus were used in these experiments:

A Perkin Elmer HPLC system (Beaconsfield,UK) with a PeakPro data capture program (BBN 

Software Production Corporation, Cambridge, UK)

A Beckman P/ACE 2050 (High Wycombe, UK).

A Hewlett Packard HP3D CE (Stevenage, UK).

The details of each instrument are outlined below:

HPLC

Perkin Elmer ISS 200 series autosampler

Perkin Elmer ISS 200 series gradient pump, isocratic flow at 1 ml/min 

Shimadzu SPD-10 UV detector (Milton Keynes, UK)

Hichrom 5 p C l8 HiRPB column 25 cm x 4.6 mm (Reading, UK)
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System 2050 with integral autosampler

UV filters for detection at 200 ran, 214 nm, 254 nm, 280 nm, 260 nm and 300 nm 

(monitored at 200 nm - optimised against interference)

Fused silica capillary, eCAP, 375 pm o.d. x 75 pm i.d. x 67 cm length (50 cm effective length) 

obtained from Beckman, High Wycombe, U.K.

Hewlett Packard HP3D 

Integral autosampler

UV/vis Diode array detector (190 nm - 600 nm)

(monitored at 214 nm - optimised against interference)

Fused silica capillary, eCAP, 375 pm o.d. x 75 pm i.d. x 67 cm length (50 cm effective length) 

obtained from Beckman, High Wycombe, U.K.

3.4 Experiments

The methods used can be divided into two sections; those for HPLC and those for CE analysis, the 

experimental details are outlined below. The results were used to compare the reliability, 

reproducibility, accuracy, precision and general ease of use of the two analytical techniques. The 

use of both the Beckman P/ACE and the HP3D gave a comparison of the two CE instruments.

Two compounds were chosen for investigation, a base and an acid; these were propranolol and 

chlorogenic acid respectively.

For propranolol analysis, existing assays for both HPLC and CE were modified to suit the 

equipment and conditions used. Various attempts were also made to further modify and optimise 

the propranolol CE method for use with a series of analogous compounds. However, they did not 

appear to run under these conditions and a separate method was developed for the analysis of this 

group of chemicals.



49
A CE method was developed from first principles for chlorogenic acid, using standard starting 

conditions. Attempts to develop a suitable HPLC method for chlorogenic acid were unsuccessful.

The method development and modifications performed are outlined in the experiments described 

below. These methods were then used to evaluate the various analytical techniques and assess 

their application to pharmaceutical science in the field of in vitro metabolism.

3.4.1 Experiments to reproduce the existing propranolol assays.

CE : An existing method32 was adapted for the analysis of propranolol by CE. A hollow silica 

capillary with an internal diameter of 75 pm and 50 cm in length to the detection window was used 

with a low pH buffer system (50 mM lithium phosphate pH 2.5) to ionise the base. Propranolol 

was monitored at a wavelength of 214 nm. This method was run initially on the Beckman P/ACE, 

but also, at a later date on the HP30 to give a direct comparison of the two CE instruments 

(Experiment 3.4.4).

HPLC : An existing reversed phase chromatography method323 was adapted for the HPLC 

analysis of propranolol using a methanol/water/ammonium acetate/trifluoroacetic acid mobile 

phase. A higher UV wavelength of 254 nm was chosen to avoid background absorbance from the 

methanol in the mobile phase.

The CE and HPLC conditions chosen are summarised below:-

P/ACE. HP3D CE

Fused silica capillary

57 cm (50 cm to detection window)

75 pm internal diameter (i.d.)

Temperature of 30 °C

Perkin Elmer HPLC

Hichrom 5 p C l8 HiRPB column,

150 x 4.6 mm

Mobile phase = 60:40:0.1:0.77 

methanol:water:TFA: ammonium

acetate (v/v/v/w)

50 mM pH 2.5 lithium phosphate buffer 

30 kV applied voltage 

UV detection at 214 nm. UV detection at 254 nm.

Flow rate = 1 ml/min

5 second, 50 mbar pressure injection. Injection volume 10 pi
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Equipment set-up : The respective instruments were set up as outlined above. The HPLC column 

was washed through with 100% methanol to wet the silica then allowed to equilibrate with mobile 

phase for twenty minutes prior to use. Each new CE capillary was conditioned with 0.1 M sodium 

hydroxide for 10 minutes, then flushed through with water for 1 minute, then washed with the run 

buffer for 4 minutes prior to use. This conditioning routine was performed before each set of 

experimental work and also as a rinsing step, but with a 1 minute initial flush with the 0.1 M 

sodium hydroxide, between each sample injection. Silica is soluble in a basic solution, so the 

process of flushing the capillary with sodium hydroxide dissolves some of the outer silica leaving a 

“new” surface. The alkaline wash also removes any buffer ions or proteins which may have 

adsorbed onto the capillary wall. Organic impurities may be removed by incorporating an organic 

rinse with a solvent such as methanol. The following rinses with water and run buffer remove 

water-soluble salts and re-equilibrate the capillary to give reproducible migration times. An 

alternative conditioning procedure may use an acidic solution such as 0.1 M hydrochloric acid, 

however this would be more applicable to a method using an acidic run buffer to reduce 

equilibration times and improve reproducibility of migration times.

The conditions stated above for alkaline capillary conditioning and washing were found to be 

suitable for the investigations carried out for both propranolol and chlorogenic acid and were 

included as an integral part of each experiment - this information will not be repeated in subsequent 

sections.

Sample preparation : Propranolol was dissolved in methanol at 10 mg/ml. Subsequent dilutions 

were made with purified water to give analytical standards between 0.005 mg/ml and 2 mg/ml.

The 2 mg/ml propranolol standard was chosen to give an adequately measurable UV absorbance by 

both HPLC and on the Beckman P/ACE.

Sample analysis : Six replicate analyses of the 2 mg/ml propranolol solution were made by HPLC 

and CE according to the protocols above to confirm suitability of the methods and the production 

of an adequate, measurable and reproducible response.
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3.4.2 Method modification for CE analysis of the propranolol analogues

A group of 13 analogues similar in structure to propranolol were also chosen for analysis to assess 

the selectivity of CE using the HP3D. The close resemblance of this set of compounds to 

propranolol gave the expectation that they would run under very similar conditions on both HPLC 

and CE. This proved to be the case for HPLC but not so for analysis by CE.

Propranolol analogues : See Table 6

Sample preparation : Each compound was dissolved in methanol to give a 0.1 mg/ml solution.

Sample analysis 1 : A single injection was performed for each compound on the HPLC and 

Beckman P/ACE instrument as described in 3.4.1 above.

Sample analysis 2 : Further method modification was required to run the propranolol analogues by 

CE as they were not detected with the 50 mM pH 2.5 lithium phosphate conditions; this result was 

confirmed by reanalysis following reconditioning of the capillary. A complete switch was then 

made to a basic 50 mM borate run buffer with a measured pH of 9.2 using the parameters detailed 

below:-

hp3Dce

fused silica capillary

57 cm (50 cm to detection window)

75 pm internal diameter (i.d.) 

temperature of 30°C 

5 second, 50 mbar pressure injection 

UV detection at 214 nm.

20/30 kV applied voltage 

20/50 mM pH 9.2 sodium tetraborate buffer

Initially a 20 mM run buffer was prepared and used with an applied voltage of 30 kV; this was 

subsequently modified to a 50 mM run buffer with 30 kV and 20 kV applied voltages to optimise 

the run time and response.
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3.4.3 A comparison of the propranolol analogues run on CE versus HPLC.

The same group of 13 propranolol analogues was investigated further to assess selectivity by 

HPLC. All compounds, including propranolol, were run under a single generic HPLC method, 

based on the propranolol assay conditions, to compare selectivity of HPLC versus CE. The 

methodologies for each are outlined overleaf:-

P/ACE. HP3D CE

Fused silica capillary

57 cm (50 cm to detection window)

75 pm internal diameter (i.d.)

Temperature of 30°C

50 mM pH 9.2 borate buffer 

20 kV applied voltage 

UV detection at 214 nm.

5 second, 50 mbar pressure injection.

Perkin Elmer HPLC

Hichrom 5 p C l8 HiRPB column,

250 x 4.6 mm

Mobile phase = 60:40:0.1:0.77 

methanol:water:TFA: ammonium 

acetate (v/v/v/w)

Flow rate = 1 ml/min 

UV detection at 254 nm.

Injection volume 10 pi

Sample preparation : Each compound was dissolved in methanol to give a 0.1 mg/ml solution. 

The solutions used were those prepared in experiment 3.4.2 above.

Sample analysis : A single injection was performed for each compound as described above. Once 

a suitable migration/retention time had been established for each compound the method was 

assessed for reproducibility, linearity and precision in Experiment 3.4.7.
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Table 6 : Propranolol Analogues (NB. Hydrogen atoms are not shown)

Structure
CHEMISTRY

Structure 
Mol.Wt CHEMISTRY 

295
Mol.Wt

274

M045520 M081509

273 364

M045655 M087086

273 330

M047070 Ml09055

289 378

M109056M049666

307 314

M115715

289 362

(XX,
M052092 M115716

289

M052487

243
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3.4.4 A comparison of the Beckman P/ACE and the Hewlett Packard HP3D CE instruments.

The 2 mg/ml methanolic analytical standard for propranolol prepared in experiment 3.4.1 was also 

run, using the same conditions as described previously, on the Hewlett Packard HP3D to provide a 

direct comparison of the two sets of CE equipment.

A single set of calibration results was also obtained on the Beckman P/ACE as part of the in vitro 

experiment, details of which are given in 3.4.8.

These results were combined with the HPLC and Beckman P/ACE data for an overall comparison 

of the two CE instruments and the analytical power of CE versus HPLC. This information will be 

discussed jointly, with later results, in sections 4.4, 4.7 and 4.8.

3.4.5 The development of a CE assay for chlorogenic acid

A method for the analysis of propranolol by CE had already been established. The aim of this 

experiment was to develop and optimise an analytical CE method from first principles.

Chlorogenic acid was chosen for this purpose (in contrast to propanolol, a base), in order to 

investigate the suitability of CE for acidic compounds. The method development for chlorogenic 

acid was performed on the HP3D CE instrument, using a UV wavelength of 214 nm to monitor UV 

absorbance. To ensure that the solute, an acid, was ionised for CE analysis a 50 mM borate buffer 

system was chosen which had a measured pH of 9.2. Other parameters chosen were standard 

starting points for a CE assay4, the complete protocol for which is given overleaf. As this method 

would be used for chlorogenic acid in a further experiment to examine reproducibility, accuracy 

and linearity of response, a reliable, robust method was required.
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h p 3Dc e

fused silica capillary

57 cm (50 cm to detection window)

75 pm internal diameter (i.d.) 

temperature of 30°C 

50 mM pH 9.2 borate buffer 

5 second, 50 mbar pressure injection 

30 kV applied voltage 

UV detection at 214 nm.

Sample preparation : The compound, a white solid, was prepared as a 10 mg/ml solution in 

methanol and serial dilutions made in the run buffer to give analytical standards in the range of 

0.005 mg/ml to 1 mg/ml. All solutions were filtered prior to use and stored at 4°C.

Concentrations of Chlorogenic acid : 0.005 mg/ml, 0.01 mg/ml, 0.025 mg/ml, 0.05 mg/ml, 0.1 

mg/ml, 0.25 mg/ml, 0.5 mg/ml and 1 mg/ml.

Sample analysis : A single injection of the 0.1 mg/ml solution was performed to check for 

migration. These conditions proved successful and were used for experiment 3.4.6 and underwent 

subtle modifications in experiment 3.4.7.

3.4.6 Statistical analysis for method development of chlorogenic acid.

The method optimisation for propranolol and its analogue compounds was investigated on an 

individual basis, examining the effect of altering each variable one at a time. This was costly both 

in time and effort. An alternative approach is to use a factorial experimental design (FED)49 as 

described in chapter 2.

The development and optimisation of the CE method for chlorogenic acid was assessed using a 

statistical program based on factorial experimental design. A standard set of CE conditions was
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chosen (as described above in 3.4.5) which gave a suitable migration time for the compound, then 

subtle changes were made to the various parameters to investigate their effects on migration time. 

In the instance of developing a CE method for chlorogenic acid the variables, or factors involved 

included buffer pH, buffer concentration, applied voltage and capillary temperature (capillary type, 

length and internal diameter were predetermined by availability - a hollow silica 50 cm by 

75 jim capillary; a borate buffer system was also chosen as a constant.) In order to reduce the 

variables to only 3 factors at a time, to be evaluated at 2 levels, it was decided to exclude 

temperature into a separate run (as an increase in temperature generally results in a reduction in 

migration time). The main and interactive effects of buffer concentration, pH and electric field 

strength (kV) were therefore examined in two separate experiments performed at 2 different 

temperatures (25 and 30°C) as laid out below:-

Factor Level 1 Level 2

PH 9.2 8 (pH reduced to 8 by addition of boric acid)

Cone. 20 mM 50 mM

kV 20 kV 30 kV

Each permutation of these factors is represented in Table 7 overleaf:-

Table 7 : Factorial design for chlorogenic acid.

Cone. Applied Voltage Temperature

Run number pH mM kV °C °C

1 9.2 50 30 25 30

2 9.2 50 20 25 30

3 9.2 20 30 25 30

4 9.2 20 20 25 30

5 8 50 30 25 30

6 8 50 20 25 30

7 8 20 30 25 30

8 8 20 20 25 30
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Sample preparation : The 0.1 mg/ml methanolic solution of chlorogenic acid prepared in 

experiment 3.4.5 was used for this investigation.

Sample analysis : A single injection was made under each set of conditions as tabulated in Table 7. 

(Single injections only were performed as the methods developed had been tested and were 

considered to be robust and reliable.)

3.4.7 A comparison of HPLC versus CE for precision, linearity and reproducibility

Data were obtained for chlorogenic acid in order to investigate the robustness of the CE assay 

developed and to provide comparative results for an acidic compound against those obtained 

previously for propranolol, a base. Further results were also generated by HPLC for propranolol, 

again to demonstrate assay stability, but also to compare CE versus HPLC techniques for 

precision, linearity and reproducibility.

Sample preparation : A series of solutions was produced to cover a range of concentrations from 

1 mg/ml to 0.005 mg/ml by serial dilutions of a 10 mg/ml methanolic solution of each compound 

into the appropriate, filtered run buffers for propranolol and chlorogenic acid (prepared in 3.4.5) 

respectively.

Concentrations: 0.005 mg/ml, 0.01 mg/ml, 0.025 mg/ml, 0.05 mg/ml, 0.1 mg/ml, 0.25 mg/ml, 0.5 

mg/ml and 1 mg/ml.

Sample analysis : Six replicate injections were made at each concentration for propranolol and 

chlorogenic acid, using the methods outlined previously, to investigate accuracy and reproducibility 

of both injection volume and response. The combined results were also analysed by linear 

regression to produce a calibration line and correlation coefficient to assess linearity. These data 

were generated on the HP3D and HPLC for propranolol and for chlorogenic acid using the HP3D CE 

system only.

In addition to these samples, a single calibration was also produced as part of the in vitro 

incubation in experiment 3.4.8 run on the Beckman P/ACE and HPLC.
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3.4.8 The application of capillary electrophoresis to in vitro metabolism.

Aim : Propranolol was incubated with rat hepatic microsomes to produce phase I metabolites in 

order to assess the application of HPLC and CE for “real” pharmaceutical samples in a biological 

matrix. These samples were analysed using the previously stated HPLC and CE methods to 

generate metabolic profiles using each instrument. The two analytical techniques were compared 

for suitability and ease of analysis.

Experimental Design : Propranolol was incubated at a final concentration of 25 pM (7.4 pg/ml) 

as a shaking suspension with rat hepatic microsomes (1 mg/ml protein) at 37°C for 2 hours. 

Aliquots of 1ml were removed into an equal volume of methanol to terminate the incubation at the 

following timepoints: 0 minutes, 15 minutes, 30 minutes, 60 minutes and 120 minutes 

(flask 1).

Three control flasks were also included to validate the experiment: a buffer control to demonstrate 

the stability of propranolol at 37°C, and ensure there is no inherent breakdown of the compound 

under the incubation conditions (flask 2); a control without NADPH to prove that metabolism 

occurs only when an energy source is supplied and there is no protein degradation of propranolol 

(flask 3) and finally a positive control using 7-ethoxycoumarin (7-Ec) which is known to undergo 

oxidative phase I metabolism to 7-hydroxycoumarin (7-Hc) to show that the microsomes were 

metabolically viable (flask 4).

Similar 1 ml samples were taken into methanol (1 ml) from flasks 2 and 3 at 0 and 120 min 

timepoints only, and from flask 4 at 0 min, 30 min, 60 min and 120 min timepoints.

Materials:

0.1 M Phosphate buffer pH 7.4.

Rat liver microsomes were prepared at 17.11 mg protein/ml on 20.2.96 using a differential sucrose 

gradient, diluted to 1.117 mg protein/ml in 0.1 M phosphate buffer, pH 7.4.

NADPH : Sigma N-1630 Lot 36H7125, prepared at 75 mg/ml in 0.1 M phosphate buffer pH 7.4 

Propranolol: prepared as 100 times spiking solution i.e. 5 mM (1.475 mg/ml in methanol) for a 

final incubation concentration of 25 pM, in order to reduce the volume required to be added to 

each incubation and maintain enzyme viability.
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NADPH : 126 mg + 1.68 ml buffer = 75 mg/ml (keep on ice).

Propranolol solutions: 2.376 mg + 1.61 ml methanol

Microsomal dilution for protein mix : 3 x 0.9 ml x 17.11 mg = 46.2 mg protein

+ 38.66 ml buffer to give 1.117 mg protein/ml

Microsomal mixes : Each flask contains, per ml - 0.895 ml 1.117 mg protein/ml

100 pi NADPH solution/buffer 

5 pi compound solution/methanol

Flask 1 - sufficient for 6 tubes: 5.37 ml protein mix

600 pi NADPH

30 pi propranolol spiking solution

Flask 2 - sufficient for 3 tubes: 2.685 ml buffer

300 pi NADPH

15 pi propranolol spiking solution

2.685 ml protein mix 

300 pi buffer

15 pi propranolol spiking solution

5.37 ml protein mix 

600 pi NADPH 

15 pi 7-Ec spiking solution

Calibration details: A standard calibration curve for propranolol was also spiked, using the 

solutions prepared previously, to allow quantitation of the results. Eight tubes, containing 

0.895 ml protein mix, 0.1 ml buffer and 1 ml methanol, were spiked with 0.005 ml of the 

propranolol stock solutions to contain a final concentration of 0.005 mg/ml, 0.01 mg/ml,

Flask 3 - sufficient for 3 tubes:

Flask 4 - sufficient for 6 tubes:
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0.025 mg/ml, 0.05 mg/ml, 0.1 mg/ml, 0.25 mg/ml, 0.5 mg/ml and 1 mg/ml. The calibration 

samples were extracted in the same way as the incubation samples as described below.

Incubation : All flasks were spiked with the appropriate compound solution into either the protein 

mix or buffer as described above and transferred into the heated water bath to pre-incubate for 5 

minutes. The incubation was initiated by the addition of NADPH/buffer into the various flasks 

according to the protocol. Aliquots of 1 ml were removed from the flasks into test tubes 

containing 1ml methanol to terminate the incubation at the timepoints stated above. All 

samples were stored at -20°C prior to analysis using the aforementioned methods. The HPLC 

conditions for 7-Ec are shown below.

Sample Treatment: All samples were vortex mixed then centrifuged at 2,000 rpm for 10 minutes 

to spin down the protein and buffer salts. The supernatants were decanted into fresh glass test 

tubes and reduced to dryness at 37°C under nitrogen.

Sample Resuspension : All samples were redissolved in 50 pi methanol, vortex mixed, then 50 pi 

of purified water was added and the samples vortex mixed again. Each sample was removed into 

the appropriate HPLC/CE vial for analysis on the various pieces of equipment under the assay 

conditions stated in previous experiments.

High performance liquid chromatography details for 7-Ec analysis.

Column type : Zorbax Rx-C8 250 x 4.6 mm, serial number : AU 16905

Eluent: A = acetonitrile, B = water 0.1% TFA, gradient system as outlined below:-

Time % A % B % C % D Gradient

10 10 90 step

22 43 57 linear

10 55 45 linear

8 55 45 /

Flow rate : 0.75 ml/min

Detection system : LDC Analytical Fluorescence detector, excitation wavelength 325 nm, emission 

wavelength 460 nm 

Injection volume : 20 pi
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4.1 Experiments to Reproduce the Existing Propranolol Assays

The aim of this piece of work was to reproduce, and modify if necessary, previous methods for the 

analysis of propranolol by HPLC and CE. Both methods were successful using the apparatus and 

conditions stated earlier (3.4.1). These conditions were found to be satisfactory, giving results 

typified by the chromatogram and electropherogram shown below in Figures 16 and 17 

respectively.

Propranolol had a mean retention time of 4.2 minutes by HPLC (Figure 16) and a mean migration 

time of 6.3 minutes on the Beckman P/ACE (Figure 17) and 4.50 minutes on the HP3D (see 

Experiment 4.4).

The individual retention/migration times and peak areas are presented and discussed in detail in 

section 4.4.

These methods were used for all future investigations.

999999KKB PROP. 2MG/M!

o  - o -  n  -
. j

o  -
¥

o
o<D 1
O') "1 V,

E ! u  t i o r .  t. im e
4 5 9

rr.i n  * s

Figure 16 : HPLC Chromatogram of Propranolol 

(for conditions used see section 3.4.1)
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FiRure 17 : CE Electropherogram of Propranolol 

(for conditions used see section 3.4.1)
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4.2 Method Modification for CE Analysis of the Propranolol Analogues.

The CE method employed in section 4.1 above was also used as a starting point for a generic assay 

to analyse a group of 13 compounds of similar structure to propranolol (see Table 8, section 4.3). 

None of the analogues were successfully run under these conditions; there was no evidence of any 

migration with no UV absorbing peaks in the electropherograms.

The equipment and buffer were demonstrated to be performing correctly by a repeat injection of 

propranolol which gave the expected migration time.

To address this problem, the first approach was to increase the ionic strength of the run buffer 

from 50 mM to 100 mM, 150 mM and 200 mM in order to decrease the EOF, but this had no 

affect. Increasing the applied voltage in order to increase the EOF was also unsuccessful. The 

estimated pKa values for the analogues are between 7 and 10.6 so all the compounds would be 

expected to be predominantly ionised at a pH of 2.5. However, an optimal run buffer pH is 

generally 2 units above/below the pKa of the component of interest which is some way outside the 

present operating conditions. At a pH of 2.5 almost all of the silanol groups on the inner surface of 

the capillary wall will be protonated which will strongly suppress the EOF. It was hypothesised 

that this could be the reason that the EOF could not be effectively modified by subtle changes in 

the applied voltage or ionic strength of the run buffer.

A complete switch was made to a 20 mM borate buffer with a measured pH of 9.2 and an applied 

voltage of 30 kV. Under these conditions every one of the analogues ran with migration times of 

between 1.49 minutes and 1.8 minutes (results “a” in Table 8). Further modification to a 50 mM 

run buffer and a 20 kV applied voltage increased migration times to between 2.9 and 3.94 minutes 

(results “b” in Table 8).

Propranolol failed to migrate under these modified conditions. The explanation for this is difficult 

to identify. The propranolol analogues could not be run on the propranolol system and vice versa, 

yet their physicochemical properties and structural chemistry are very similar. They all contain a 

naphthalene ring and an amino-alcohol moiety, share broadly similar pKa values (6 of the 13 the 

same as propranolol) and their relative molecular masses values span that of propranolol.

At pH 2.5, even if the EOF had been completely suppressed, the analogues should all have been 

ionised and would migrate according to their electrophoretic mobilities alone and therefore should
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have produced a UV absorbing peak as they passed the detection window in the capillary, but none 

were apparent. Also, at a pH of 9.2, with propranolol in its unionised form, it should still have 

been evident in the electropherogram migrating with the EOF.

It was concluded that either the migration time of the ionised components or the elution time of the 

EOF was in excess of the period of data capture, even when this was extended to 20 minutes; or 

that there was complete adsorption of the analyte onto the capillary surface. Either way this was 

an unacceptably long run time for a CE assay and so the methodology was altered accordingly.

The revised CE method gave acceptable migration times once modified to give slightly improved 

selectivity. These results are presented (Table 8) and discussed further along with the next set of 

experimental data looking at the same group of analogues analysed by HPLC.

4.3 A Comparison of the Propranolol Analogues Run on CE versus HPLC.

The previous experiment described the problems encountered when attempting to analyse a set of 

compounds structurally very similar to propranolol using the same CE conditions. The 

methodology had to be completely revisited in order to successfully run the analogues.

However, each of the analogues as well as propranolol was successfully chromatographed using 

the propranolol HPLC method as a generic assay. The HPLC retention times for the analogues are 

given in Table 8 alongside their corresponding migration times by CE. Other information and 

physicochemical properties listed in this table include structures, relative molecular mass (RMM), 

pKa values, log P values (octanol:water partition coefficient) and log D values (octanokpH 7.4 

buffer partition coefficient) of the various compounds.

The HPLC method showed good selectivity between the analogues, with retention times in the 

range of 4.5 minutes to 12.2 minutes. The order of elution from the column was consistent with 

increasing RMM and lipophilicity of the compounds. The major factor influencing the retention 

times of these molecules by HPLC appeared to be the non-polar, reversed phase interactions of the 

lipophilic naphthalene rings with the Cl 8 carbon chains of the packing material. Weaker, 

secondary, polar/cation exchange interactions between the hydroxyl moieties and the exposed, 

unmodified silanol groups on the silica surface can also be expected. This mechanism is especially 

important in the retention of basic compounds such as these. A higher pKa value indicates a
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stronger base which will tend to experience increased retention via silanol interactions. However, 

the solid phase packing material in the column was base-deactivated so the majority of the silanol 

groups were masked, thereby reducing ionic interactions. Under these conditions the solutes will 

distribute between the two phases and elute according to their degree of interaction with the non­

polar bonded stationary phase.

The compounds investigated fall into two broad categories, aminoalcohols with or without an 

amide group (Table 8a = aminoalcohols, Table 8b = aminoalcohols plus amide function). The 

aminoalcohol moiety increases polarity and will generally reduce retention times. In fact,

M065318, the only compound to lack the alcohol, is less polar and has a higher log P and log D 

value with a corresponding increase in retention and a later elution time. Some structures also 

contain an O-methyl substituent on the aromatic end of the molecule which further increases 

polarity. The more polar groups present, the earlier their elution order from the column, as seen 

with M051932. Although this compound has a higher molecular weight than some of the others in 

the series, it also has the greatest number of polar groupings which reduce non-polar interactions 

with the stationary phase, thus causing it to distribute preferentially into the mobile phase and elute 

first from the column. This trend was further demonstrated by M052487, M052092 and M049666 

which all contain a single O-methyl function in various orientations on the naphthalene rings and 

are less retained than M047070, M045655 and M065318 which lack this grouping. Propranolol, 

(M045520), contains the aminoalcohol moiety but no further polar substituents so eluted between 

these last two sets of compounds.

The amides, while still containing the functional aminoalcohol moiety, lack the additional 

O-methyl groups on the aromatic moeity, having instead an amide function in the aliphatic end of 

the molecule. The majority of the members of this subgroup are also larger molecules with higher 

molecular masses than those discussed above, due to longer side-chains, some of which also 

contain additional lipophilic benzene rings. These substituents increase retention via non-polar 

interactions with the bonded phase, resulting in much later elution times e.g. Ml 15716, M087086 

and Ml 09056 which eluted in order of their increasing RMM. The exception in this group was 

M081509 which has one of the lowest molecular mass and is the most polar molecule, as indicated 

by its low log P and Log D values, which greatly reduces its stationary phase interactions 

preferring to remain in the mobile phase and elute much earlier from the column than other 

members of this sub-series.
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The CE method demonstrated less selectivity for the propranolol analogues with migration times of 

between 1.49 minutes and 1.80 minutes using a 20 mM pH 9 borate run buffer (CE results column 

“a”, Table 8a and Table 8b) and a 30 kV applied voltage (CE results column “b”, Table 8a and 

Table 8b). These conditions were altered to a 50 mM buffer concentration and a 20 kV applied 

voltage to decrease migration times in an attempt to improve resolution. This was partially 

successful with modified migration times of between 2.93 minutes and 3.94 minutes. Given more 

time these conditions could have been further optimised by looking at slightly different pH run 

buffers to pull the analogues further apart and demonstrate the high quality of selectivity promised 

by CE with very sharp peak shape, high efficiencies and shorter analysis times compared to HPLC. 

The relative efficiencies of HPLC and CE for propranolol are calculated in the following 

experimental results section, 4.4, and further compared for precision, reproducibility and linearity 

in section 4.7.

The major determining factors for the migration times of these analytes by CE was thought to be 

the degree of ionisation of the solutes and the size of the molecule in relation to the number or 

proportion of ionisable groups present, the charge-to-size ratio. As described previously in the 

introduction, a small analyte will migrate quicker than a larger analyte of the same charge as it has 

a higher electrophoretic mobility and a more highly charged molecule will migrate faster than a less 

ionised molecule of the same size which will have a lower electrophoretic mobility. The degree of 

ionisation of the analyte and its electrophoretic velocity can be controlled by varying the operating 

pH of the run buffer. This will also affect the speed of the EOF - in a low pH environment the 

silanol groups on the silica surface of the capillary wall remain protonated, but raise the pH and 

more of the silanol groups become negatively charged silanoate groups which interact with the 

buffer ions and increase the EOF towards the cathode. The pH of the run buffer will also 

determine the degree of ionisation of the analytes according to their respective pKa values. The 

two subsets of analogues also fell into one of two bands in terms of their pKa values and migration 

times: the aminoalcohols with pKa values of between 9.5 and 10.6, and the amides with pKa values 

in the range of 7 to 8. Those compounds with a pKa closer to the operating pH of 9.2 (the 

aminoalcohols) should be predominantly in their ionised form and migrate quickly through the 

capillary; whereas those with a pKa below 9.2 (the amides) should be present mostly as an 

unionised species and have longer, slower migration times. This trend was reflected well by the 

data obtained for this series of compounds, with each of the aminoalcohols displaying higher 

electrophoretic velocities and migrating faster than the less ionised amides. M065318, an
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aminoalcohol with the smallest molecular weight was the quickest to elute from the capillary, 

closely followed by the remaining aminoalcohols. The amides have smaller charge to size ratios 

with correspondingly slower electrophoretic velocities. M081509 and M087086 were among the 

latest amides to migrate through the capillary, possibly due the their lower pKa values and hence a 

lesser degree of ionisation.
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Table 8a: Propranolol Analogues (aminoalcohols) - Physicochemical Properties. HPLC and CE Results (3.4.4)

Calc HPLC CE MT CE MT 
Mol.Wt pKa Log D Log P RT (mins) "a" (mins)"bM (mins)

259 9.45 3.13 2.75

Structure
CHEMISTRY

NR6.7 NRM045520

M045520

273 9.45 3.31 1.583 3.3283.5 9.3M045655

M045655

273 9.45 1.22 2.7 1.521 3.0838.2M047070

M047070

289 9.45 2.84 7.6 1.574 3.269M049666

M049666

307 9.45 2.44 2.26 4.5 1.609 3.313M051932

M051932

289 9.45 3.28 2.8 6.9 1.583 3.284M052092

M052092

289 9.45 3.37M052487 2.8 1.582 3.0586.1

M052487

243 10.6 3.52 3.61M065318 1.492 2.938.6

M065318

NR = No Result
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Table 8b: Propranolol Analogues (aminoalcohols+amides) - Physicochemical Properties. 
HPLC and CE Results (3.4.4).

Structure

M081509

M087086

M109055

M109056

M115715

M115716

CHEMISTRY

M081509

M087086

M109055

M109056

M115715

M115716

Calc HPLC 
Mol.Wt pKa Log D Log P RT (mins) "

274 7.0 1.22 0.82 5.9

364 7.5 4.07 3.11 10.4

330 7.9 4.04 2.25 8.1

378 7.9 3.93 NC 12.2

314 7.9 2.34 2.24 6.7

362 7.9 3.16 3.12 10.2

CE MT CE MT 
a" (mins) "b" (mins) 

1.798 3.935

1.791 3.93

1.793 3.922

1.796 3.937

1.791 3.918

1.793 3.918
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4.4 A comparison of HPLC versus the Beckman and the I IP3D CE Instruments.

The 2 mg/ml propranolol solutions prepared previously in experiment 3.4.1 were also run, using 

the same conditions, on the Hewlett Packard HP3D to provide a direct comparison of the two 

types of CE instrumentation.

The individual results, mean values and associated standard errors for the retention/migration 

times and peak areas of propranolol run by HPLC, Beckman P/ACE and HP3D CE are given in 

Table 10 overleaf.

Both the HPLC and the two CE methods gave good, symmetrical, Gaussian peak shapes. The 

retention/migration times by HPLC and the HP3D CE were comparable, with mean values of 4.2 

minutes and 4.5 minutes respectively, however, the propranolol peak run by CE was much 

narrower and sharper than its HPLC equivalent which gave a much broader baseline peak width. 

This is characteristic of the greater efficiencies achievable when using CE analysis; even the later 

running propranolol peak on the Beckman P/ACE, with an average migration time of 6.3 minutes, 

had a narrower baseline time than the corresponding value for HPLC. The relative efficiencies of 

the three methods can be compared directly (Table 9), by calculating the number of theoretical 

plates (N) available for separation using the equation:

N = 16(t/w)2 t = retention/migration time (minutes)

w = peak width at base (minutes)

Table 9 : Theoretical Plate Numbers for HPLC column and CE capillaries used.

2mg/ml Propranolol HPLC Beckman P/ACE h p 3Dc e

t (minutes) 4.2 6.3 4.5

w (minutes) 0.5 0.2 0.09

N (actual plate count) 18,000 254,000 640,000
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Table 10 : Propranolol Analysis Results bv HPLC and CE. (results from section 3.4.4)

HPLC Beckman P/ACE h p 3Dc e

Retention 

Time (min)

Peak Area 

(AU)

Migration 

Time (min)

Peak Area 

(AU)

Migration 

Time (min)

Peak Area 

(AU)

4.26 366 6.39 6.96 4.49 10.9

4.19 368 6.32 7.38 4.49 10.8

4.19 366 6.32 6.76 4.49 10.8

4.19 367 6.31 7.21 4.50 10.6

4.19 366 6.32 7.04 4.49 10.7

4.19 364 6.33 7.24 4.50 10.5

Mean RT 4.20 Mean MT 6.33 MeanMT 4.49

S.E. 0.547 S.E. 0.012 S.E. 0.002

Mean Area 366 Mean Area 7.10 Mean Area 10.7

S.E. 0.543 S.E. 0.092 S.E. 0.060

S.E. = Standard Error (standard deviation divided by the square route of [n = 6])

The migration times recorded for propranolol on the Beckman P/ACE were reproducible within 

runs, but between day variability was high with peaks observed at approximately 4, 6 or 9 

minutes. The same length of the same specification of capillary was used, with the same run 

buffer and the same run parameters as the HP30. Problems were encountered with the turning 

cycle of the autosampler on the P/ACE which caused several capillary breakages. The variability 

in migration times could be due to inaccurate temperature control of the capillary or insufficient 

conditioning/equilibration of the new capillaries, although every effort was made to ensure
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consistency both within and across instruments. Reference standards were run prior to each piece 

of work to assure monitoring of the correct component.

All three instruments were also assessed for precision, reproducibility and linearity to assess the 

robustness of each method, the results of which will be presented and discussed in section 4.7.

4.5 The Development of a CE Assay for Chlorogenic Acid 

The development of a suitable CE assay for chlorogenic acid proved to be relatively 

straightforward. A set of standard, literature recommended conditions4 based on those outlined in 

the method development section produced satisfactory results first time (for operation conditions 

refer to section 3.4.5).

This assay gave a migration time for chlorogenic acid of 4.3 minutes (Figure 18). These 

conditions were modified in a later experiment to investigate the optimum conditions, but were 

used as stated in section 3.4.5 for all other work.

The relative ease and speed with which the CE method development for chlorogenic acid was 

accomplished may have been fortuitous, but in this instance the assay responded well to small 

changes in the operating conditions as can be seen from the results in the following section in 

which the method development will be discussed in more detail.
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Figure 18 : Chlorogenic Acid Electropherogram bv HP3D CE 

(for operating conditions refer to section 3.4.5)

4.6 Statistical Analysis for the Method Development of Chlorogenic Acid.

A 0.1 mg/ml mcthanolic chlorogenic acid solution was prepared and a single injection made for 

each run with different sets of conditions. A full 24 factorial experimental design (Table 11) was 

used to examine the effects of buffer pH, the ionic strength of the buffer and the applied voltage 

(which dictates the electric field strength) whilst operating at a constant temperature of 25°C. 

The additional effect of temperature was investigated by performing a duplicate set of 

experiments at 30°C. The migration times for chlorogenic acid recorded under these various 

conditions are presented in the Table 11 below.
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Table 11 : Migration Times for Chlorogenic Acid.

Buffer pH Buffer Cone. Applied voltage. Migration Time (min)

(mM) (kV) T = 25°C T = 30°C

9.2 50 30 4.6 4.3

9.2 50 20 9.1 8.4

9.2 20 30 3.0 2.8

9.2 20 20 4.6 4.2

8 50 30 4.3 3.9

8 50 20 7.2 NR

8 20 30 5.7 6.6

8 20 20 4.5 9.5

NR = No Result due to instrument malfunction.

These data were analysed using SAS version 6.1154, a statistical computer program capable, 

amongst other things, of performing ANalysis Of VAriance (ANOVA)55. Loosely, the analysis of 

variance attempts to partition the total variability of a number of samples into individual 

components. If the samples are drawn from normally distributed populations with equal means 

and variances, the within variance is the same as the between variance. If a statistical test shows 

that this is not the case, then the samples have been drawn from populations with different means 

and/or variances. If it is assumed that the variances are equal (and this is an underlying 

assumption in ANOVA) then it is concluded that the discrepancy is due to differences between 

means. Thus

Ho= samples are drawn from normally distributed populations with equal means and variances.

Hi= populations7 variances assumed to be equal and therefore samples are drawn from 

populations with different means.

When partitioning the total variability, it is simpler to work with sums of squares because adding 

and subtracting variances is complicated (usually) by varying degrees of freedom. However, in 

the final stages of the analysis the sums of squares are converted to variances by dividing by the 

degrees of freedom in order to apply the F-test to compare them56.
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Variance describes the spread of the data by its deviation from the mean calculated from the sum 

of squares of each data point according to the equation: -

variance = ^
(x-m ean)2 

n - \
or

total sum o f squares
n -1

where n = number of data points.

The ANOVA data tables were generated within SAS and can be found appended at the end of this 

section (Tables 12,13 and 14).

The first analysis (procedure 1, Tablel2) included all available combinations of factors. Note that 

a four-way interaction term cannot be obtained because of the NR result. The total sum of 

squares value calculated for this data set was 64.8 with 14 degrees of freedom. As stated 

previously, ANOVA partitions this total sum of squares into components due to main effects 

(e.g. pH, temperature, electric field strength and buffer ionic strength) and their 2 and 3-way 

interactions. The contribution of each of the sum of squares values for these factors, or 

combinations thereof, towards the total (64.8) is directly proportional to the effect on migration 

time, the higher the value the greater the difference in migration time seen by varying the 

parameter(s) in question. The sum of squares values for the four 3-way interactions contributed 

very little to the total sum of squares and therefore these 3-way interactions were pooled to 

construct an error term. In this re-analysis (procedure 2, Table 13), the model sum of squares 

value was 60.3 (10 degrees of freedom) and the error term was 4.512 (4 degrees of freedom) 

giving an unbiased estimate of within variability of 1.128. The significance, or importance, of the 

remaining individual and 2-way interactions on the overall effect on migration time can be 

evaluated statistically using F-tests. The F value is the ratio of the mean square value (estimate of 

variability for a particular factor(s)) to the unbiased estimate of variability. If this ratio is close to 

1 then the factor being assessed is not statistically important and has little or no effect on 

migration time. Whereas if the ratio is very much greater than 1 the term in question is 

statistically important and causes a significant change in migration time.

The parameter which showed the highest variability was electric field strength alone (by altering 

the applied voltage) with a mean square value in excess of 20 and an F value greater than 18. The 

probability57 of seeing such an extreme change occurring by chance (Pr>F) is given as 0.0126,

(1.26%), or about one in a hundred. The assumption tested is that there is no change in migration
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time, with a 95% confidence limit, so of the remaining factors, any with a probability value less 

than 0.05 (5%) disproves the theory. The only other parameter to fall into this categoiy was the 

combination of altering pH and buffer ionic strength, with a probability of 4.28% - although these 

two factors alone also each had a fairly low Pr value (7.5-8%). The combination of electric field 

strength and buffer ionic strength also had a low probability of 6.2%.

In procedure 3, Table 14, all terms involving temperature were dropped from the model. This had 

little effect on the partition of the total sum of squares among the other terms in the model. 

Temperature, being the least important of the four factors in this analysis (contributed only 1.09 

to the model sum of squares) can therefore be removed and 3D cubes can be used to describe the 

effect of moving from the low level to the high level of the other three factors. The remaining 

three factors, pH, electric field strength and buffer ionic strength, have their high and low values 

placed at the comers of a cube along with their corresponding migration times as shown below 

(Figure 19) for each temperature setting.

From the data within the mean temperature cube it is possible to calculate the effect each 

parameter has on migration time. This calculation can be simplified by first replacing the 

individual migration values at each comer by their mean, then examining the change in migration 

time from one comer of the cube to the other. For example, the effect of increasing the electric 

field strength from 20 kV to 30 kV is:

7.0-6.15 = -1.15 (a reduction in migration time of 1.15 minutes)

4.4 - 2.9 = -1.5 (a reduction in migration time of 1.50 minutes)

7.2 - 4.1 =-3.1 (a reduction in migration time of 3.10 minutes)

8.75 - 4.45 = -4.3 (a reduction in migration time of 4.30 minutes)

giving a combined effect of>

i) Increasing the applied voltage from 20 kV to 30 kV, produced an overall decrease in migration 

time.

1/4 [-1.15 + -3 .1 + -4 .3 + -1 .5 ] = -2.51
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In the same way:

ii) Increasing buffer ionic strength from 20 mM to 50 mM produced an overall increase in 

migration time.

1/4 [-2.05 + -  0.3 + 4 .35  + 1.55] = 0.888

iii) Changing the buffer pH from 8 to 9.2 produced an overall decrease in migration time.

1/4 [- 3.1 + -  3.25 + 1.55 + 0.35] = -1.11

t©mp©ratur© iv«qm f30C) temperature low (250*

CMCT> 9.18 .4

7.2—

CO
co

20 30

Applied voltage (kV)

Mean temperature

8 .7.5. 4.45

9. > 2.9

r 50

Buffer Cone (mM)
7 .2.

8 20

20 30
Applied voltage (kV)

Figure 19 : Chlorogenic Acid Method Development - FED Cubes for Migration Times.

(results from section 3.4.6)
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These values show the overall effects on migration on time from varying the individual settings for 

each parameter.

The extent o f the effect o f these parameters (electric field strength, buffer ionic strength and pH) 

can be demonstrated by plotting their interactions graphically as shown below in Figure 20.

pH. 8

pH 9.2

Buffer Cone (mM)

c
£ 6-1 
Cl)
E -*—»
o °

■4—•
CO 
O)

20 kV

50kV

20 Jo
Buffer Cone (mM)

Figure 20a Figure 20b

Figures 20a and b : Chlorogenic Acid Method Development - FED Interactions.

This confirms the ANOVA results: that the most effective and straightforward way to  vary 

migration time is to alter the electric field strength by changing the voltage applied to  the 

capillary, especially when working with a more concentrated run buffer, as the lines on figure 20b 

can be seen to be diverging. This can be achieved even with a small increase in voltage which also 

keeps any increase in Joule heating to a minimum. These graphs also indicate which parameter(s)
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is/are fairly stable with respect to their effect on migration time to avoid non-reproducible results 

between samples or between runs. In this case, if a poor buffer preparation lead to a variation in 

buffer concentration, whilst operating at the higher applied voltage this would not result in a 

detrimental variation in migration time (a relatively flat lower line in figure 20b). However, the 

steeper sloped and crossing lines in figure 20a dictate that great care should be taken to ensure 

that the run buffer is made to the correct pH value or migration times could be observed to vary in 

either an increasing or decreasing manner, especially if also combined with a slight error in buffer 

concentration.

The factorial experimental design approach to method development was successful in highlighting 

the most influential parameter in capillary zone electrophoresis. Although the more obvious 

factor may appear to be temperature, on closer inspection of the tabulated data, an increase in 

temperature produced a much less marked effect than increasing the electric field strength. This 

style of method development also has several advantages. Each variable can be assessed in one 

run on the same day using the same equipment, run buffer and compound solutions, thereby 

reducing variability introduced by performing separate experiments on different days using 

different solutions and/or buffers. This therefore reduces the number of experimental runs, with 

resulting savings in time and solvent/buffer usage and disposal. Further, if the initial conditions 

chosen did not prove to give the desired results, graphical representation of the collective data 

may indicate which parameter(s) to alter in order to optimise migration time.
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Table 12 : General Linear Models Procedure (11

Dependent Variable: SEP TIME

Source DF Sum of Squares

Model 14

Error 0

Corrected Total 14

64.8

64.8

Mean Square F Value Pr > F 

4.63

R-Square

1.000000

C.V.

0

Root MSE SEP_TIME Mean

0 5.51

Source DF

PH 1

IONIC_ST 1

PH*IONIC_ST 1

ELECT 1

PH*ELECT 1

IONIC_ST*ELECT 1

PH*IONIC_ST*ELECT 1

TEMP 1

PH*TEMP 1

IONIC_ST*TEMP 1

PH*IONIC_ST*TEMP 1

ELECT*TEMP 1

PH*ELECT*TEMP 1

IONIC_ST*ELECT*TEMP 1

Type II SS Mean Square F Value

5.92 5.92

7.73 7.73

6.75 6.75

18.7 18.7

0.701 0.701

7.84 7.84

0.180 0.180

1.09 1.09

3.41 3.41

0.241 0.241

0.180 0.180

1.021 1.021

2.31 2.31

0.005 0.005

P r > F
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Table 13 : General Linear Models Procedure (2)

Dependent Variable: SEP_TIME

Source DF Sum of Squares Mean Square F Value Pr >

Model 10 60.3 6.023 5.34 0.(

Error 4 4.51 1.128

Corrected Total 14 64.8

R-Square C.V. Root MSE SEP TIME Mean

0.930368 19.3 1.06 5.51

Source DF Type II SS Mean Square F Value Pr > F

PH 1 6.21 6.21 5.51 0.079

IONICJST 1 6.45 6.45 5.72 0.075

PH*IONIC_ST 1 9.69 9.69 8.59 0.043

ELECT 1 20.9 20.9 18.5 0.013

PH*ELECT 1 0.176 0.176 0.16 0.713

IONIC_ST*ELECT 1 7.45 7.45 6.60 0.062

TEMP 1 1.14 1.14 1.01 0.372

PH*TEMP 1 4.18 4.18 3.71 0.127

IONIC_ST*TEMP 1 1.22 1.22 1.08 0.357

ELECT*TEMP 1 1.73 1.73 1.53 0.284
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Table 14 : General Linear Models Procedure (3)

Dependent Variable: SEP TIME

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 51.4 7.35 3.84 0.048

Error 7 13.4 1.91

Corrected Total 14 64.8

R-Square C.V. Root MSE SEP_TIME Mean

0.794 25.1 1.38 5.51

Source DF Type II SS Mean Square F Value Pr > F

PH 1 5.44 5.441 2.85 0.135

IONIC_ST 1 4.33 4.33 2.26 0.176

PH*IONIC_ST 1 13.3 13.3 6.96 0.034

ELECT 1 20.7 20.7 10.9 0.013

PH*ELECT 1 0.720 0.720 0.38 0.559

IONIC_ST*ELECT 1 5.88 5.88 3.08 0.123

PH*IONIC_ST*ELECT 1 0.067 0.067 0.04 0.857



Table 14 : General Linear Models Procedure (3 continued)

T for HO: Pr > |T|

Parameter Estimate Parameter=0

INTERCEPT 4.45 4.55 0.003

PH 8 -0.35 -0.25 0.807

9.2 0.000

IONICST 20 -1.55 -1.12 0.299

50 0.

PH*IONIC_ST 8*20 3.60 1.84 0.108

8*50 0.000

9.2*20 0.000

9.2*50 0.00

ELECT 20 4.30 3.11 0.017

30 0.000

PH*ELECT 8*20 -1.20 -0.55 0.600

8*30 0.000

9.2*20 0.000

9.2*30 0.000

IONIC_ST*ELECT 20*20 -2.80 -1.43 0.195

20*30 0.000

50820 0.000

50*30 0.000

PH*IONIC_ST*ELECT 8*20*20 0.550

8*20*30 0.000

8*50*20 0.000

8*50*30 0.000

9.2*20*20 0.000

9.2*20830 0.000

Std Error of

Estimate

0.977

1.38

1.38 

1.95

1.38

2.19

1.95

2.93
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4.7 A Comparison of HPLC versus CE for Precision. Linearity and Reproducibility.

Six replicate injections were performed for each of a range of concentrations, (0.005 mg/ml to 

1 mg/ml) noted in the Tables 15 and 16 below, for both propranolol and chlorogenic acid using 

the HPLC and CE conditions stated in the previous sections. These results were used to produce 

calibration plots from which the precision, linearity and reproducibility of the systems could be 

calculated. The relative ease of use, robustness and accuracy of the two techniques were also 

assessed.

The individual data for each of these experiments are presented in the appended excel 

spreadsheets (Tables 17 and 18), whilst the summarised version for propranolol with mean and 

standard error (SE) values are given in the following table (Table 15). For ease of handling and 

to allow a clear comparison of the three calibration curves on one graph with a single scale the 

results have been normalised towards the Beckman P/ACE data which is unmodified. The HPLC 

values have been divided by one hundred and the HP3D results have been multiplied by a factor of 

ten.

Having become familiar with each instrument over the previous experiments and as they were all 

fully programmable the setting up and operation of this investigation was equally straightforward 

for HPLC and both CE instruments. Similarly, each analytical technique proved to be robust and 

reliable, completing the run without any problems.

The precision and reproducibility of CE versus HPLC can be measured by looking at the repeated 

injections at each concentration, their mean values and associated standard errors. Perhaps the 

most obvious point which becomes immediately apparent in the mean results is the difference in 

response of the various instruments, hence the normalisation. The most sensitive technique by far 

was HPLC, which was more than ten times more sensitive than the HP3D and two orders of 

magnitude more sensitive than the Beckman P/ACE. The response capability of the Beckman 

seemed to become saturated in this experiment above a concentration of about 0.1 mg/ml 

propranolol, however, this was later rectified in the in vitro incubation experiment by raising the 

attenuation on the UV detector to give a linear response across the entire concentration range. 

Apart from these skewed results from the Beckman at the top end of the curve, the reproducibility 

of the three techniques was very good. This can be more effectively compared by observing the



86
standard errors stated as a percentage of their mean values, given in brackets in the Table 15 

below, to enable a proportional comparison to be made and to give a measure of precision.

Table 15 : Propranolol Calibration Data (results from section 3.4.7)

Concentration Peak Area Response (AU) : Mean Value ± SE (SE % Mean)

(mg/ml) HPLC (*100) CE-HP3D(x10) CE-Beckman P/ACE

0.005 0.188 + 0.005 (2.72) 0.40 ± 0.002 (0.05) 1.58 ± 0.015(0.95)

0.01 0.885 ± 0.011 (1.20) 0.73 ± 0.010(1.39) 3.62 ± 0.079(2.18)

0.025 2.55 + 0.049(1.91) 1.78 ± 0.016 (0.89) 5.68 ± 0.012 (0.21)

0.05 6.22 + 0.013 (0.21) 3.29 + 0.016 (0.49) 14.1 ± 0.087(0.62)

0.1 14.8 + 0.113 (0.76) 6.51 ± NC # (NC) 29.7 ± 0.123 (0.41)

0.25 38.6 ± 0.090 (0.23) 16.8 ± 0.130 (0.78) 36.2 ± 1.25 (3.45)

0.5 80.9 + 0.039 (0.05) 32.8 + 0.090 (0.27) 38.8 ± 0.749(1.93)

1 155 ± 0.142(0.09) 65.9 + 0.260 (0.39) 46.8 ± 1.70(3.64)

r 0.9997 0.9999 0.827

r = correlation coefficient 

NC # = Not Calculated, n = 2

A general trend, as would be expected, is for the standard error to be higher at the lower 

concentrations where accuracy and precision can be affected by very slight changes in injection 

volume and response. This is true for each of the instruments. When expressed as a percentage 

of the mean, the standard error values indicate that precision is greatest for the HP3D CE, followed 

by the Beckman CE, then HPLC. It was perhaps less surprising that the precision of the latest, 

state of the art Hewlett Packard CE equipment was greater than the older, less technically
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advanced Beckman CE instrument; but quite interesting to discover that both CE systems (P/ACE 

up to 0.1 mg/ml only) gave greater precision than HPLC. This may be because the electrokinetic 

introduction o f the sample slug onto the capillary in CE is more reliable than the on-line loop and 

valve injection used in HPLC. Even though the H P '0 CE was close to its limit o f detection at the 

lower end o f the calibration, its precision remained impressive giving a tight data set. The HPLC, 

however, although less precise, could have been operated at lower levels o f quantification than 

CE due to its greater sensitivity.

To further investigate the precision o f  these instruments, the total data set was analysed by linear 

regression to give a correlation coefficient, r, for the calibration curves run by CE and HPLC.

The mean values at each concentration have been plotted in the graph below to  depict the 

calibration lines (Figure 21), whilst the correlation coefficients have been quoted in Table 15 

above.

Propranolol Calibration Curves
160 

140 -

120 -

«  100 -<D

0 0.2  0.4  0.6  0.8  1

Cone (mg/ml)

+  H P L C /1 0 0  s  C E -H P 3 D x lO  

#  C E -B eck m an

Figure 21 : A Graph o f the Propranolol Calibration Curves.

(data plotted are the mean results from section 3 .4.7, detailed in Table 15, 

individual values are quoted in section 4.7, Table 17, pages 89, 90)
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The linearities of these data sets were extremely impressive. There was little to choose from 

between the HP3D CE and the HPLC with r values of 0.9999 and 0.9997 respectively. The 

Beckman was only linear over the concentration range 0.005 mg/ml - 0.1 mg/ml in this 

experiment, which had a correlation coefficient of 0.9967, due to the UV detector off-scaling. An 

r value of 0.992 was achieved over the complete concentration range from the attenuated data 

collected from the in vitro calibration results presented in the following section.

Table 16 : Chlorogenic Acid Calibration Data (results from section 3.4.7)

Concentration Peak Area Response (AU) - CE-HP3D

(mg/ml) Mean SE SE % Mean

0.005 1.66 0.087 5.24

0.01 4.09 0.053 1.30

0.025 10.9 0.210 1.93

0.05 22.9 0.561 2.46

0.1 43.5 0.438 1.01

0.25 104 0.253 0.240

0.5 186 6.00 3.23

1 376 3.381 0.900

r 0.9996

In addition to propranolol, this experiment was also performed for chlorogenic acid, on the HP3D 

CE instrument only, to assess the suitability of CE for the analysis of acidic molecules as well as 

bases. The method performed robustly and reliably, giving reproducible results at each
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concentration. A closer inspection of the standard errors revealed a reversal in the trend for 

precision, with higher concentrations having more variable results, although these were less 

obvious when normalised as a percentage of the mean (Table 16). In spite of this, the precision of 

CE for an acidic component was still high with a correlation coefficient of 0.9996 (Figure 22), 

thus demonstrating that CE can be equally applicable to the analysis of both acidic and basic 

compounds.

Chlorogenic Acid Calibration Curve

Cone (mg/ml)

Figure 22 : A Graph of the Chlorogenic Acid Calibration Curve.

(graphical presentation of results from section 3.4.7, detailed in Table 16, 

individual values are quoted in section 4.7, Table 18, page 91)

To conclude, the reproducibility and precision of the three analytical techniques were more than 

adequate for the purposes of this experiment. Once familiar with the equipment, each analytical 

technique performed robustly and reliably, for both the acid and the base, with controllable, 

programmable capabilities.

The final challenge was to apply this knowledge, having fully tested the methods involved, to 

investigate the use of these analytical techniques in the field of pharmaceutical science with some 

actual, matrix derived samples rather than pure standard solutions.
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Table 17: Experiment 4.7 Propranolol Results (data from section 3.4.7)

Reproducibility/Linearity/Calibration n = 6

CE - HP3D HPLC

Cone. Area Area Area Cone. Area Area Area
(mg/ml) (AU) mean SE (mg/ml) (AU) mean SE
0.005 0.04019 0.005 17.872
0.005 0.03985 0.005 17.727
0.005 0.04001 0.005 18.052
0.005 0.0402 0.005 18.934
0.005 0.04058 0.005 19.391
0.005 0.03914 0.039995 0.000198 0.01 21.03 18.83433 0.513
0.01 0.0768 0.01 84.78
0.01 0.0748 0.01 89.28
0.01 0.0751 0.01 85.766
0.01 0.07264 0.01 89.884
0.01 0.0709 0.01 91.334
0.01 0.07054 0.073463 0.00102 0.01 89.994 88.50633 1.066

0.025 0.1824 0.025 243.531
0.025 0.1817 0.025 244.348
0.025 0.1766 0.025 247.739
0.025 0.1783 0.025 254.31
0.025 0.1774 0.025 268.779
0.025 0.1717 0.178017 0.00158 0.025 269.858 254.7608 4.86
0.05 0.3347 0.05 623.54
0.05 0.3247 0.05 617.989
0.05 0.3322 0.05 620.186
0.05 0.3273 0.05 626.877
0.05 0.3264 0.05 619.293
0.05 0.3265 0.328633 0.0016 0.05 622.28 621.6942 1.321
0.1 0.6495 0.1 1497
0.1 0.6524 0.1 1514
0.1 NR 0.1 1496
0.1 NR 0.1 1476
0.1 NR 0.1 1462
0.1 NR 0.6506 NC 0.1 1438 1480.5 11.323

0.25 1.711 0.25 3892
0.25 1.681 0.25 3871
0.25 1.699 0.25 3860
0.25 1.675 0.25 3852
0.25 1.657 0.25 3840
0.25 1.625 1.674667 0.013 0.25 3830 3857.5 8.954
0.5 3.301 0.5 8084
0.5 3.298 0.5 8098
0.5 3.283 0.5 8102
0.5 3.264 0.5 8100
0.5 3.248 0.5 8093
0.5 3.256 3.275000 0.009 0.5 8079 8092.667 3.865
1.0 6.599 1 15512
1.0 6.634 1 15538
1.0 6.649 1 15521
1.0 6.567 1 15521
1.0 6.594 1 15548
1.0 6.471 6.585667 0.026 1 15606 15541 14.191

r = 0.9999 (excluding 0,0) r = 0.9997 (excluding 0,0)
r = 0.9999 (including 0,0) r = 0.9997 (including 0,0)
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Table 17 (continued): Experiment 4.7 Propranolol Results (data from section 3.4.7) 

Reproducibility/Linearity/Calibration n = 5

CE - Beckman

Cone. Area Area Area
(mg/ml) (AU) mean SE
0.005 1.601
0.005 1.56
0.005 1.545
0.005 1.627
0.005 1.566 1.5798 0.015
0.01 NR
0.01 3.405
0.01 3.499
0.01 3.606
0.01 3.75
0.01 3.834 3.6188 0.079

0.025 5.71
0.025 5.703
0.025 5.686
0.025 5.656
0.025 5.648 5.6806 0.012
0.05 13.982
0.05 14.401
0.05 13.987
0.05 14.186
0.05 13.937 14.0986 0.087
0.1 29.276
0.1 29.817
0.1 29.592
0.1 30.017
0.1 29.644 29.6692 0.123

0.25 31.373
0.25 38.407
0.25 37.766
0.25 36.448
0.25 36.794 36.1576 1.246
0.5 37.413
0.5 36.66
0.5 39.208
0.5 40.347
0.5 40.269 38.7794 0.749
1.0 43.041
1.0 43.138
1.0 46.377
1.0 49.865
1.0 51.37 46.7582 1.703

r = 0.8257 (excluding 0,0) 
r = 0.8266 (including 0,0)
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Table 18 : Experiment 4.7 Chlorogenic Acid Results (data from section 3.4.7) 

Reproducibility/Linearity/Calibration n = 6

HPLC

Cone. Area Area Area
(mg/ml) (AU) mean SE
0.005 1.49
0.005 1.77
0.005 1.73
0.005 NR
0.005 NR
0.005 NR 1.66 0.087
0.01 NR
0.01 4.19
0.01 4.21
0.01 3.98
0.01 4.11
0.01 3.95 4.088 0.053

0.025 11.29
0.025 11.17
0.025 10.83
0.025 11.49
0.025 10.34
0.025 10.29 10.902 0.21
0.05 NR
0.05 21.05
0.05 22.53
0.05 22.73
0.05 23.51
0.05 24.43 22.85 0.561
0.1 42.48
0.1 44.46
0.1 43.05
0.1 45.11
0.1 43.19
0.1 42.55 43.473 0.438

0.25 103.7
0.25 104.4
0.25 104.1
0.25 104.2
0.25 103.5
0.25 102.7 103.767 0.253
0.5 185
0.5 185.7
0.5 162.3
0.5 179.6
0.5 204.4
0.5 197.8 185.8 6
1.0 372
1.0 380.9
1.0 380.6
1.0 363
1.0 372.4
1.0 386 375.82 3.381

r = 0.99957 (excluding 0,0) 
r = 0.99957 (including 0,0)



4.8 The Application of CE to In vitro Metabolism - HPLC versus CE.

Propranolol is known to undergo oxidative phase I metabolism to a 4-hydroxy propranolol 

metabolite. A metabolism profile was produced over 2 hours by incubating propranolol at a final 

concentration of 25 pM (7.4 pg/ml) with rat liver microsomes as a shaking suspension at 37°C.

Control incubations demonstrated that there was no inherent breakdown of nronranolol under the



The 7-Ec samples, analysed using an established HPLC method, showed a 75% turnover to the 

hydroxy metabolite, which demonstrated the metabolic viability o f the microsomes. The 7-Hc 

response is disproportionately larger than that o f the 7-Ec as it has a greater fluorescence.

Having demonstrated that the incubation was successful, the propranolol samples were then 

analysed using the methods set up earlier for HPLC and both the Beckman P/ACE and HP3D CE 

instruments.

The HPLC results were slightly disappointing. The chromatograms had a vastly elongated 

solvent front which extended out beyond the retention time for propranolol masking some o f the 

parent peak and making a precise measurement o f  the metabolite almost impossible. However, 

itwas evident that there was a time related decrease in the parent propranolol peak, with an 

associated appearance o f a metabolite. The explanation for the poor chromatography became 

apparent on analysis o f the control samples. The large solvent front was seen in all 

chromatograms derived from the flasks which contained NADPH; those without NADPH were 

clean. This was further confirmed by running a UV check on the NADPH solution which showed 

significant absorption at 254 nm, the wavelength used to monitor propranolol. Whilst this meant 

that the HPLC data were compromised, the chromatograms were still integrated to  obtain an 

approximate quantitative result, which depicted qualitative evidence o f  metabolism.

Propranolol Standard Curves
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Figure 23 : Graph o f Propranolol In  v itro  Calibration Curves. 

(graphical presentation o f data from section 3.8, detailed in Table 20 below)



Table 20 : In vitro Calibration Data for Propranolol, (results from section 3.8)

Concentration Peak Area (AU)

(Hg/ml) HPLC Beckman P/ACE HP3DCE

5 1.66 0.348 0.041

10 3.66 1.054 0.097

25 9.38 1.515 0.192

50 19.8 2.338 0.368

100 41.9 3.833 0.704

250 110 15.667* 1.78

500 217 23.761* 3.43

1000 400 41.921 6.33

r 0.999 0.992 (0.999)* 0.999

r = correlation coefficient

* = these points were omitted from the calibration curve to enable more accurate quantitation

The linearity of the calibration curves was very good in each case, (r = 0.999), and was essentially 

unaffected by extraction from the rat microsomal protein. Two points were omitted from the 

standard curve on the Beckman as they biased the line below zero.



Table 21 : Propranolol Incubation Results, (data from section 3.8)

Time

Peak Area (AU)

HPLC Beckman P/ACE h p 3Dc e

(min) P h-P % Q P h-P % Q p h-P % Q

0 13.3 / 100 27.5 0.76 / 100 7.68 0.064 / 100 8.90

15 6.88 NR 52 11.7 0.35 0.03 46 2.52 0.037 0.002 58 4.66

30 6.36 NR 48 10.4 0.31 0.16 41 1.55 0.031 0.017 48 3.71

60 5.72 NR 43 8.82 0.27 0.26 36 0.59 0.024 0.020 38 2.61

120 4.69 NR 35 6.28 0.24 0.67 32 ND 0.019 0.029 30 1.83

N(0) 18.1 / 100 / 0.74 / 100 / 0.113 / 100 /

N(120) 17.8 / 98 / 0.79 / 107 / 0.109 / 96 /

P = propranolol

h-P = hydroxypropranolol

% = percentage of parent at time zero

Q = quantified results by calibration (fig/ml propranolol)

NR = no result

ND = non detectable i.e. negative value given from the calibration line 

N = no NADPH control

The integrated results demonstrated that each technique coped very well with the matrix-derived 

samples from the rat microsomal incubation. Unfortunately the precise measurement of the 

HPLC peaks was compromised by the background absorbance from the NADPH which gave 

falsely high concentrations, but a similar trend in percentage degradation of parent compound 

was seen on each instrument. The data produced by CE were veiy accurate, giving initial



measured concentrations of propranolol between 7.7 pg/ml and 8.9 pg/ml against the nominal 

spiking concentration of 7.4 pg/ml. Approximately 70% of the propranolol was metabolised by 

the rat liver microsomes over the 2 hour incubation, with a time-related increase in production of 

the 4-hydroxy metabolite. This profile was common to each analysis technique.

The UV interference problem could be avoided in future by altering the wavelength used to 

monitor propranolol by HPLC or switching to an acetonitrile based mobile phase. There was no 

issue with NADPH co-absorbance by CE as the wavelength used was lower (214 nm) in the 

absence of a solvent-based mobile phase.

In conclusion, both techniques, HPLC and CE, proved suitable for the analysis of in vitro 

metabolism samples, although a few points should be bom in mind in each case. The 

disadvantage with the HPLC method was that a wavelength o f254 nm was chosen to avoid 

background absorbance from the methanol in the mobile phase, but this wavelength suffered from 

interference by NADPH. However, HPLC was ten-fold more sensitive than the HP3D CE 

method. The advantage of the CE methods was that a much lower wavelength could be chosen 

to monitor propranolol which had no co-absorption from the NADPH or methanol as they used 

an aqueous-based run buffer. A potential problem with CE for the analysis of the in vitro 

incubates could be the presence of remaining buffer salts from the samples which can cause 

disruption to the EOF and affect migration times, selectivity and peak shape. Care should be 

taken to ensure that the run buffer is approximately 100 times more concentrated than the 

injected solutes or the symmetry of the peak could be adversely affected. Also, if the solute ions 

have a faster/slower mobility than the buffer ions this can result in peak fronting/tailing.



CE is a relatively recent and still evolving technique compared to HPLC which has a more sound 

and long-standing niche in pharmaceutical analysis. The familiarity of HPLC along with a solid 

foundation of knowledge makes method development and trouble shooting less of a challenge 

than in the comparatively novel arena of CE.

This thesis concentrated on the development and performance of CZE methods for both acidic 

and basic compounds, the suitability of this technique for use in in vitro drug metabolism and its 

performance compared to HPLC. A better understanding of instrument operation and the 

mechanisms involved in column chromatography was a definite advantage over a comparable 

naivete towards electrophoresis. The HPLC equipment used was from Perkin Elmer with BBN, 

PeakPro data capture. Two different CZE instruments were used for the various experiments: a 

Beckman P/ACE 2050 and a Hewlett Packard HP3D. The HP equipment was the most recent and 

top of the range available with multifunctional, programmable features run on a windows 

computer package; whereas the Beckman, with a DOS-based program, was older with fewer 

capabilities and generally less reliable. However, despite the lack of familiarity with 

electrophoretic separation, method development using the HP CE instrument proved relatively 

straightforward, given the precise, electronically controlled parameter settings, and leant itself 

well to FED; although a certain amount of serendipity cannot be denied. A wider range of 

compounds would need to be investigated to provide a true challenge to the technology.

In a direct comparison, the HP3D CE readily out-performed the Beckman P/ACE in terms of 

reliability, robustness and reproducibility, although this result will be greatly affected by the age 

bias of the instruments. When using pure standard solutions both CE and HPLC gave equivalent 

results, with robust, reliable methods and reproducible peaks both in height/area and 

migration/retention times. It should be noted that HPLC analysis was more sensitive, giving 

greater UV responses, due to the longer pathlength possible when using an off-column detector 

versus the narrower, in situ detection window of a capillary in CZE. However, this reduction in 

sensitivity did not appear to have an adverse effect on the accuracy, reproducibility or linearity of 

the CZE results, even at lower concentrations. This phenomenon could be due to more accurate 

and reproducible hydrodynamic pressure injections by CZE compared to the on-line loop and 

valve injections used with HPLC. Statistical analysis of repeated injections across a 200-fold 

concentration range actually indicated that CZE performed slightly better than HPLC, having 

slightly lower standard errors (on the HP CE and the Beckman P/ACE) and a marginally 

improved linearity on the HP CE than by HPLC, although this was not statistically significant.



CZE also gave higher efficiencies, with sharper, narrower peaks than those obtained by HPLC; 

although selectivity and resolution of the propranolol analogues were better by reversed-phase 

chromatography than by electrophoresis.

Several problems were encountered when applying these techniques to the analysis of in vitro 

metabolism samples, although it was possible to see evidence of metabolism using all three 

instruments. The electropherograms produced by CZE contained a number of spikes; these were 

assumed to be either electrical spikes or a noisy baseline. HPLC chromatograms suffered from 

background absorbance from the presence of NADPH, causing an enlarged solvent front which 

did not reach baseline before the elution of the hydroxy-propranolol peak. Despite these 

disturbances it was possible to detect a decrease in parent peak height as well as the appearance 

of the metabolite, which could be measured qualitatively, against a retention standard, if not 

quantitatively in all cases. HPLC is also able to cope better with “dirty” samples as it is affected 

less by endogenous matrix components which may be filtered out by the inclusion of a guard 

column which protects the packing material of the main column from becoming clogged. The 

open capillary of CZE means that everything injected into the capillary passes through to the 

detector which can cause interference in peak detection as well as complications associated with 

additional, endogenous salts which may disrupt the electrical current and the EOF and therefore 

impair the reproducibility of migration times.

The advantages of using CZE include the flat, plug-flow profile of the EOF which elutes peaks in 

sharp bands with high efficiences and short run times. The use of narrow capillaries and low 

volume buffer vials also reduces solvent/buffer usage and disposal costs. However, the 

disadvantage of such a low capacity system is that it also restricts the volume of analyte which 

can be introduced into the capillary, hence limiting sensitivity unless very small (1 to 50 nl) 

volumes of highly concentrated solute are used. HPLC is better suited to larger injection 

volumes (up to hundreds of microlitres), although this technique can also be sensitivity-limited by 

weak sample concentrations of sub nanogram levels. Reversed-phase column chromatography 

experiences lower efficiencies and longer run times than CZE with greater organic solvent usage, 

but benefits currently from a greater depth and breadth of experience and understanding.

HPLC would still be the method of choice for bulk analysis, a field in which CZE with its small 

injection volumes cannot compete. However, the many different modes of CE enable a wide



variety of applications for numerous analytes and can certainly offer a viable alternative to HPLC 

in many areas, including in vitro metabolism in the pharmaceutical industry. Future developments 

in the area of capillary electrochromatography (CEC), an amalgamation of the two techniques, 

may well provide the analyst with the combined advantages of both technologies.
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