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ABSTRACT
The aim of this study has been to investigate the potential of the graphical calculator 
for mediating students’ learning of functions in mathematics at GCE Advanced level. 
In carrying out this investigation, the study has been primarily concerned with three 
inter-related themes:

• How does the way in which individual students behave affect the shared 
construction of meaning in a graphical calculator environment?

• How does the visual imagery provided by the graphical calculator mediate 
students’ understanding of functions?

• What are the implications for the role of the teacher in graphical calculator 
environments?

In order to address these issues, the study has involved the development of materials 
and approaches that were subsequently trialled with Lower Sixth form students in a 
school and a college in the Local Education Authority of Sheffield. An ethnographic 
approach towards data collection and analysis was adopted, which entailed carrying 
out detailed studies o f singularities in three key phases. The first phase consisted of the 
exploratory study and considered the learning experiences of novice graphical 
calculator users. The second phase involved experienced graphical calculator users and 
was concerned with identifying how knowledge construction might differ as a result of 
the longer-standing status of the graphical calculator as a tool for supporting 
mathematics learning. The third and final phase concentrated on the introduction of 
key function concepts to beginning Advanced level mathematics students and focused 
on the personal and social factors involved.

The findings of this study have served to illustrate both the complexity and 
interdependence of the individual, social and affective factors involved in students’ 
acquisition of meaning with the graphical calculator. Evidence from the research 
suggests that the social context has direct bearing on the functioning of the graphical 
calculator as a cognitive reorganiser. The graphical calculator was found to mediate 
the development of the visual capabilities of individual students via more intensive 
interaction between the students themselves and with the teacher. In this respect, the 
pairing of visualisers and non-visualisers amongst the students was found to be 
especially conducive to successful collaborative learning with the technology. In this 
study the graphical calculator acted as both a medium for communication and also as a 
new authority in the classroom, which empowered students to act as autonomous and 
independent learners. The potential of the technology for inspiring confidence, even in 
instances where it is not the main source of answers was also highlighted. An 
important part of successfully introducing new function concepts to students was 
found to lie in the creation of local communities o f practice in the classroom, where 
the graphical calculator was seen as a means of drawing students into these practices. 
In this way, some of the more reluctant participants were encouraged to act as peer 
tutors. The importance of the role of the teacher in scaffolding the students’ learning 
was also continually emphasised throughout, especially in relation to the interpretation 
of unexpected results and instances of dependency on the technology, which were 
linked to individual work. In illuminating all of these factors, the study has 
demonstrated the strength and relevance of a Vygotskian socio-cultural perspective for 
exploring students’ learning with graphical calculators.
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CHAPTER 1 
INTRODUCTION

1.0 Aim and Objectives of the Study
The main aim of this study has been to investigate the potential of 
graphical calculators for mediating students’ learning.

The basis for this research draws on the Vygotskian notion of mediation. 
Vygotsky (1978) proposed that the use of psychological and cultural tools 
‘mediate’ the learning process, providing a link between the external 
social environment and internal mental processes. Accordingly all higher 
mental functions are products of mediated activity and thus technological 
tools, such as graphical calculators, are seen to fundamentally shape and 
define inner mental processes. In essence, the use of tools results in 
different kinds of knowledge than could be developed in their absence. 
This means that use of the graphical calculator in effect transforms the 
learning process, creating new learning opportunities that could not be 
achieved with pencil and paper alone.

The key objectives of the study have been to:

• investigate the process by which students acquire meaning for 
functions within a graphical calculator environment through (i) social 
interaction and (ii) individual working;

• investigate how the visual imagery provided by the graphical 
calculator mediates students’ understanding of functions;

• investigate the role of the teacher in graphical calculator environments.

1.1 Background to the Research
This study has grown out of the researcher’s interest in technology and, in 
particular, how widely available technological tools such as graphical
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calculators can be used effectively to further students’ mathematical 
understanding. Practical experience both as a student and teacher of 
mathematics has highlighted the need for students’ powers of visualisation 
to be supported and has pointed towards the benefits of using technology 
in this respect. As a consequence, this thesis has been conceptualised on 
the basis that graphical calculators potentially could assume a very 
powerful and influential role in stimulating and shaping students’ 
visualisation capabilities and as such may prove to contribute significantly 
to the depth of student understanding.

Initially it was intended that this research would involve both graphical 
calculators and computers. However, as the study progressed, it was felt 
that focusing on a particular form of technology would allow for more in- 
depth analysis and for a richer illumination to emerge in relation to the use 
of a widely available tool. The Texas Instrument TI92 and TI82 were thus 
chosen for this investigation. However, the conclusions drawn from this 
study could be related to any type of graphical calculator.

Research that has been carried out surrounding computer use is seen as 
highly relevant to this study and has served to inform some of the 
interpretations that have been developed in this thesis. Overall, the 
findings of studies involving graphical calculators are very similar to 
those that utilised computer technology, although there are key differences 
between these two types of technologies that should not be overlooked. 
This is especially apparent with respect to the respective status of each 
technology as a cultural artifact and for this reason Berger (1998) 
maintains that there is a need for research that is specifically focused on 
the graphical calculator.

1.2 Focal Points of the Study
One area of particular interest in this research has been the way in which 
students are able to derive meaning, both individually and collectively, 
from the visual representations for functions that they produce using the
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graphical calculators. Most studies that have dealt with the impact of the 
graphical calculator on students’ understanding of functions have focused 
on the way in which students construct meaning individually from their 
own explorations using the technology. The role of the social environment 
and interactions between students in the process of meaning making for 
functions with graphical calculators has largely been neglected. In 
recognising the need for research into this aspect, this study has 
investigated how meaning for the concept of function is mediated through 
the use of the graphical calculator and negotiated in the social context and 
how these meanings are internalised by individual students. This has 
involved examining the type of group discussions that arose in the 
graphical calculator environments that were created in each phase of the 
research and analysing students’ individual work.

The relationship between an individual student’s visualisation abilities, 
his/her understanding of functions and use of the graphical calculator has 
also been a focal point of the study. This interest in the visual aspects of 
students’ reasoning has arisen from the fact that visualisation is now 
increasingly being recognised and accepted as an important aspect of 
mathematical reasoning. Numerous studies have been conducted which 
have found, along with Wheatley and Brown (1994), that activities that 
encourage the construction of images can significantly enhance 
mathematics learning. Consequently, this research has sought, in part, to 
identify and evaluate ways in which the graphical calculator can be 
utilised to further students’ understanding of functions, through the visual 
imagery it provides. In this respect the impact of the graphical calculator 
on affective issues such as student confidence has also been explored.

As the study progressed, a further area of importance came to light in 
relation to the role of the teacher in mediating the use of the graphical 
calculators. The empirical data collected in the study illuminated the 
significance of the teacher’s input into the student’s learning processes 
with the technology, through negotiating and discussing meaning with the
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students. The teacher was seen as an essential element of the mediation 
process and this is reflected in the third objective of the study.

1.3 An Overview of the Thesis
This section provides a short summary of the contents of each of the nine 
chapters that comprise this study. The purpose of this overview is to 
clarify the relationship between the different stages of the research and to 
show how these are related to the main aim and objectives of the study.

1.3.1 Theoretical Perspective
1.3.1.1: Chapter 2 ‘Theoretical Perspectives on Learning
Mathematics and Visualisation’
The first section of Chapter 2 is devoted to a discussion of theoretical 
perspectives that relate to students’ learning of mathematics. In this 
discussion, these theoretical stances are considered in relation to issues 
that are of particular importance to this research. These issues include: the 
role of the social environment in students’ learning and how this affects 
the way in which students derive meaning from interactions; the role of 
the teacher in creating supportive and active learning environments and 
how learning occurs in relation to technology environments. This 
discussion lays the foundation and provides some justification for the 
theoretical framework that has been adopted in this study, which is 
outlined further in the following section.

The final section of chapter 2 focuses on the role of visualisation in 
students’ learning of mathematics. This begins with a review of various 
definitions that have been used to clarify what is meant by the term 
visualisation and what it means to visualise a concept. This is followed by 
a discussion of the perceived benefits to students of thinking visually and 
using visual representations. Particular attention is drawn to the literature 
concerning the effects of combining visual representations with other 
modes of representation. In addition, problems that have been associated
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with the use of visual thinking and visual representations are also 
discussed.

1.3.1.2: Chapter 3 ‘Learning Mathematics, Visualisation and
Graphical Calculators’
Chapter 3 focuses on the theoretical ideas that have been developed in 
relation to learning mathematics with technology, in general, which are 
considered to be directly relevant to the overall theoretical perspective 
adopted in this study and to the objectives of the research. Initially, the 
discussion surrounds theories about learning with computers. These and 
other theories are then discussed in relation to graphical calculators.

The second part of this chapter considers the relationship between 
visualisation, students’ learning of mathematics and the use of technology. 
Initially, literature concerning the role of computers and multi- 
representational software in relation to visualisation is outlined. Attention 
is then focused on the use of graphical calculators in particular and their 
impact on students’ learning of functions. The issues that are discussed 
include the effect of graphical calculators on student understanding of 
functions, student confidence, classroom interaction and the difficulties 
that might be experienced in using technology to mediate students’ 
comprehension of concepts through greater visual awareness.

1.3.2 Methodology
1.3.2.1: Chapter 4 ‘Research Methodology’
Chapter 4 elaborates the methodological approaches that have governed 
the collection, analysis and interpretation of the data in this study. This 
includes an outline of the structure of the study as a whole, the role o f the 
researcher, and the type of data collected from each distinct phase o f the 
research. Figure 1.1 gives a diagrammatic representation of these phases.

5



PHASE 1 THE EXPLORATORY STUDY

PHASE 2 THE

MAIN

PHASE 3

STUDY

CHAPTER 6 
Investigating Meaning Making 

amongst Experienced Graphical 
Calculator Users

CHAPTER 5 
Exploring How Graphical 

Calculators Mediate 
Inexperienced Users’ 

Understanding o f Functions

CHAPTER 7 
Investigating the Personal 
Dimensions o f Graphical 
Calculators in Students’ 

Understanding o f Functions

CHAPTER 8 
Investigating the Social 

Dimensions of Graphical 
Calculators in Students’ 

Understanding o f Functions

Figure 1.1 Structure of the study

1.3.3 The Exploratory Study
1.3.3.1: Chapter 5 ‘Exploring How Graphical Calculators Mediate 
Inexperienced Users’ Understanding of Functions’
Chapter 5 describes the exploratory phase of the research. The main 
objective of this initial study was to explore whether students without 
prior experience of using graphical calculators would be able to use this 
technology to further their understanding of functions and how this might 
occur. It was also intended that the findings of this phase would highlight 
key issues for further exploration in the subsequent phases of the research. 
With respect to the study as a whole, this phase served to illustrate the 
importance of the social environment as an essential constituent o f the 
students’ meaning making with graphical calculators, especially through 
collaboration between peers and teacher intervention.
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1.3.4 The Main Study
1.3.4.1: Chapter 6 ‘Investigating Meaning Making amongst
Experienced Graphical Calculator Users’
Chapter 6 gives an account of the second phase of the research. This phase 
was conducted with the intention of focusing on a small group of regular 
graphical calculator users to try to establish how they constructed meaning 
when solving problems involving functions. Following on from the 
exploratory phase, the effects of the social environment, peer 
collaboration, peer tutoring and interactions with the teacher on the 
students’ learning were of particular interest. A key research question lay 
in whether these particular students would use the graphical calculators 
differently. In particular, would they create knowledge differently to the 
students of the exploratory phase as a result of the accepted and well 
developed cultural status of the graphical calculator in their classroom? 
The data for this phase was obtained from interviews with the individual 
students, whole class discussions, and questionnaire responses.

The third and final phase of the research is recounted in chapters 7 and 8. 
This phase was primarily concerned with formally introducing the 
function concept to new GCE Advanced level Year 12 students using the 
graphical calculator and also with developing effective teaching strategies 
that would complement the use of the technology in furthering students’ 
understanding of functions.

1.3.4.2: Chapter 7 ‘Investigating the Personal Dimensions of 
Graphical Calculators in Students’ Understanding of Functions’
Chapter 7 details the individual aspects of learning about functions using 
the graphical calculator and how these aspects might be related to the 
social dimensions discussed in chapter 8. There is a discussion o f how 
individual students use visualisation in problem solving and how the 
graphical calculator is seen to support this. Another theme that is 
considered is whether the students use the graphical calculator in the same
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way or differently when working alone as opposed to collaboratively. The 
data forming the basis for this chapter is comprised of individual 
interviews with students and questionnaire responses.

1.3.4.3: Chapter 8 ‘Investigating the Social Dimensions of Graphical 
Calculators in Students’ Understanding of Functions’
In chapter 8, emphasis is placed on identifying the social aspects 
associated with the use of graphical calculators that contribute towards 
student sense making. The role of the teacher and interactions amongst 
students are explored in detail, as is the context in which these interactions 
have taken place. The data discussed in this chapter was obtained from 
whole class and small group discussions and questionnaire responses.

1.3.5 Conclusions and Discussion
1.3.5.1: Chapter 9 ‘Conclusions, Discussion and Implications’
The main conclusions and discussion surrounding the analysis and 
interpretation of the data for the study as a whole are presented in chapter 
9. In this chapter the findings of each phase of the study are related to the 
theoretical positions that have been outlined in previous chapters. The 
implications for future research that have arisen from the study are 
subsequently detailed.

1.3.6 Dissemination of Findings
An important part of this research programme has involved active 
engagement with the mathematics education community in the form of 
seminars and articles for purposes of (i) feedback and (ii) dissemination. 
Copies of the papers that have been published in relation to the work in 
this thesis can be found in appendix D.
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CHAPTER 2 
THEORETICAL PERSPECTIVES ON LEARNING 

MATHEMATICS AND VISUALISATION

2.0 Overview
This chapter begins with a review of two of the major theoretical 
perspectives on learning mathematics and how these differ with respect to 
the way in which meaning is seen to be developed, the role of the teacher 
is perceived and the manner by which learning is believed to occur. This 
is followed by an outline of the underlying theoretical perspective that has 
been adopted in this thesis. The chapter is then concluded with a general 
review of the current literature on visualisation in mathematics. To begin 
with, various definitions of visualisation and related concepts are outlined 
in an attempt to answer the question what is visualisation? Following this 
there is a discussion of the status of visualisation and the problems that 
may be associated with its use.

2.1 Socio-Cultural Framework
2.1.1 Social Versus Radical Constructivism
Two of the major theoretical positions concerning the nature of students’ 
learning of mathematics have influenced recent research in mathematics 
education. Of these two alternate theoretical orientations, up until a few 
years ago, radical constructivism had tended to be the dominant position. 
However, growing recognition of the social aspects and nature of learning 
have led to many researchers adopting varying social constructivist 
stances.

Radical constructivism is based on two underlying hypotheses (Lerman, 
1989). The first of these suggests that knowledge is actively constructed 
by the cognising subject and is not passively received from the 
environment. The second proposes that coming to know is an adaptive 
process that organises one’s experiential world and does not discover an 
independent, pre-existing world outside the mind of the knower. Central
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to this Piagetian approach is the individual cognising student and the way 
in which he or she actively constructs his or her own mathematical 
realities. This preoccupation with the individual has led some researchers 
to question whether under radical constructivism two or more persons’ 
constructions of reality can be thought of as the same. In this way the 
radical constructivist position has been criticised for failing to account for 
intersubjectivity. In contrast, social constructivism has shifted the 
emphasis away from the individual to the social environment, having 
emerged out of an attempt to incorporate an explanation for 
intersubjectivity into an overall constructivist positon (Lerman, 1996). 
Yet, different researchers place differing amounts of emphasis on the 
social aspects of learning, thus giving rise to alternative types o f social 
constructivism.

Ernest (1994) identifies two distinct forms of social constructivism, which 
are distinguished by the amount of emphasis that is placed on the social 
aspects of learning. The first type is grounded in a ‘radical constructivist 
(Piagetian) theory of mind’ and can be separated into two key standpoints. 
The first of these positions concentrates on the individual aspects of 
knowledge construction, whilst recognising the subsidiary role o f social 
interaction. The second is referred to as a complimentarist position and 
involves the adoption of “two complementary and interacting but 
disparate theoretical frameworks” (p. 307). In this context the intra
individual and the inter-personal views of learning are explored together. 
The second kind of social constructivism is based on a Vygotskian theory 
of mind and is founded on the belief that all learning is inherently social. 
In support of this type of social constructivism, Ernest (ibid) outlines three 
assumptions as to why the human mind can be seen as social and 
conversational. Firstly he proposes that “individual thinking of any 
complexity originates with and is formed by internalised conversation”. 
Secondly he suggests that “all subsequent individual thinking is structured 
and natured by this origin” and finally he observes that “some mental 
functioning is collective” (p. 310).
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There are many researchers who in recognition of the need to incorporate 
the social dimension into the radical constructivist position are now 
adopting what could be regarded as a social constructivist stance based on 
a Piagetian theory of mind, as described by Ernest. However, there are 
others who question the legitimacy of such a hybrid approach. For 
example, when discussing the role of technology in reconceptualising 
functions and algebra, Confrey (1993) argues for integration of the 
Piagetian and Vygotskian frameworks for intellectual development. She 
maintains that Vygotsky’s “dialectic of thought and language, and his 
recognition of the role of tools both physical and communication- 
orientated needs to be combined with Piaget’s rich and varied examples of 
how children solve tasks to build conceptual operations to create a true 
dialectic” (p. 51). Conceptual development is thus seen as interplay 
between “grounded activity and systematic enquiry” (p. 51). In contrast, 
however, Lerman (1996) argues against integrating social constructivism 
into the radical constructivist view of learning. He suggests that merging 
these two opposing viewpoints leads to incoherence and involves some 
disengagement with their distinct interpretations of the action o f the 
individual.

Lerman argues that the amount of emphasis that is placed on the social 
aspects of learning under Vygotskian and Piagetian frameworks has 
fundamentally different implications for the way in which meaning 
making and learning is thought to occur and for the role of the teacher. 
Lerman (1994) summarises these implications with respect to radical 
constructivism and social constructivism. Firstly, he attributes different 
interpretations of meaning making to the theories of radical and social 
constructivism. In the radical constructivism paradigm meaning is 
described as being ‘construal’. In this context meaning is seen as being 
constituted by individual students. Social interactions are recognised as a 
feature of the learning process, although it is an individual’s “personal 
construal of those interactions and experiences” which becomes the
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“essence of meaning for that individual” (p. 145). In contrast, meaning is 
seen as being acquired through ‘positioning’ in the social constructivism 
perspective. Meaning is regarded as socio-cultural in nature, a product of 
“discourse and discourse positions or regulates” (p. 145). Lerman argues 
that “individuals are acculturated into those meanings” and thus “the 
intersubjective becomes the intrasubjective” (p. 145). The individual 
student’s input into meaning making is manifested “in a dialectic of the 
participants in discourse being changed by and changing that discourse” 
(p. 145). In this way the student derives meaning from his/her 
‘positioning’ in social practices. Lerman is particularly critical o f the 
radical constructivism model in principle for not accounting for the fact 
that different people might have the same knowledge at the same time.

The way in which learning is seen to occur from these two differing 
perspectives is characterised by Lerman (ibid) in the terms, ‘constructing’ 
and ‘appropriating’. In the radical constructivism paradigm, the notion of 
‘constructing’ embodies the relationship between the individual student 
and the sense in which his or her own knowledge is formed. Lerman (ibid) 
argues that from this perspective mathematics involves “internal mental 
operations and meaning is an association of mental operations with 
mathematical symbols” (p. 150). In contrast, the term appropriation from a 
social constructivism standpoint conveys a sense of an individual forming 
his or her “own something”, which “already belongs to other people” (p. 
150). The role of “communication” and the “cultural interpretation of 

consciousness” are acknowledged in this framework, as is the 
“internalisation of cultural life and experience” and the positioning of 
people through their involvement in this culture (p. 150). In addition, there 
is a sense that tools are required as a means by which appropriation 
occurs. Lerman (1996) refers to activity theory and argues that besides the 
cultural and social settings, goals, needs and purposes are also considered 
to be constituent of cognition. He suggests that whenever an action 
becomes significant to a learner, in terms of associated goals, aims, needs 
and purpose, it can be described as a social event.
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Lerman (1994) similarly distinguishes between the radical and social 
constructivist perception of the role of the teacher. From the radical 
constructivist position, the teacher can be thought of as a ‘facilitator’, 
easing the process of the student’s constructions. Lerman (ibid) argues 
that whilst this notion implies that the teacher has a particular function in 
the classroom, this is not an essential or indeed necessary one. 
Alternatively, the teacher can be regarded as a ‘mediator’ from a social 
constructivist perspective. This term is seen by Lerman to recognise the 
position that the teacher holds in ‘apprenticing’ the student into the 
particular discourse which constitutes the context, namely the 
mathematics classroom. He further stresses that as a mediator the teacher 
assumes an active and necessary role in the students’ learning: “it 
emphasises the necessary function of the teacher and/or other mediators; 
the mediation is essential for the process to take place” (Lerman 1994, p. 
149). The learning environment or cultural context is also recognised, as is 
the imbalance of power relations in the teaching task. Hence from a 
Vygotskian perspective, learning is believed to be constituted through 
mediation by materials, tools, peers and teachers and consequently, 
teaching and learning are regarded as inextricably integrated. To discuss 
teaching and learning separately, which is a feature of radical 
constructivism, would not make sense from this viewpoint.

Lerman (1996) clearly expresses and justifies the view that “radical 
constructivism does not offer enough as an explanation of children’s 
learning of mathematics” (p. 133). In line with Lerman, Jones and Mercer 
(1993) also argue that individualistic models of learning fail to adequately 
address the social aspects of most learning, especially in technology 
environments. Jones and Mercer (ibid) contend that human problems are 
often solved by collaboration, stressing that “much learning, not least in 
relation to information technology, consists of sharing knowledge” (p. 
20). From this social perspective, they also view successful classroom 
outcomes as a product of ‘teaching and learning’ as opposed to just
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‘learning’ and as such the function of the teacher is regarded as an integral 
part of any learning situation within the classroom. Vygotskian theory is 
seen by Jones and Mercer to incorporate the role o f the teacher as an 
“active, communicative participant in learning”, as is also argued by 
Lerman (1994). Thus the teacher is seen as more than a mere provider of 
“rich learning environments’ for children’s own discoveries (a la Piaget)” 
or a reinforcer of “appropriate behaviour if and when it occurs (in the 
behaviourist mode)” (Jones and Mercer, 1993, p. 22).

Similarly, in seeking to interpret the role of technology in the classroom, 
Mercer and Scrimshaw (1993) stress the need for a theoretical framework 
that addresses the fact that learning is a socially and culturally grounded 
activity. They also emphasise that this framework needs to take into 
account the ‘three-way’ relationship between the student, the teacher and 
the technology. With this in mind, Mercer and Scrimshaw, like Jones and 
Mercer, propose that ‘Socio-cultural’ or ‘communicative’ theory is the 
most relevant and coherent theoretical framework. This is also the view 
that is taken in this thesis and a Vygotskian socio-cultural approach is 
seen as the most appropriate theoretical framework for discussing 
student’s learning about mathematics with graphical calculators. Mercer 
and Scrimshaw (ibid) see the strengths of this theoretical perspective as 
being articulated in terms of the following three principles. Firstly they 
see ‘knowledge’ not as an abstract commodity, but rather as a state of 
understanding constructed by every ‘knowledgeable’ individual. Secondly 
they regard ‘knowledge’ construction as essentially social and cultural in 
nature and finally they emphasise that ‘knowledge’ construction is always 
mediated and facilitated by cultural practices and artifacts. Mercer and 
Scrimshaw regard language and computers as “two of the most important 
and powerful problem solving resources of our culture” and suggest that 
there is a great deal more to be discovered about the relationship between 
language, computers and education (p. 191). This could also be said of the 
relationship between graphical calculators, language and education and
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this thesis aims to shed light on the inter-related roles of each of these 
aspects in the student learning process.

2.1.2 Developing a Socio-Cultural Framework
The arguments proposed by Lerman (1994, 1996), Jones and Mercer 
(1993), and Mercer and Scrimshaw (1993) which were discussed above 
have served to illustrate the appropriateness and strengths of a socio
cultural perspective for investigating the way in which learning occurs in 
the classroom. Moreover, such a perspective has been argued and shown 
by these researchers to be particularly useful for interpreting the role of 
technology in student’s learning. As such, the overall theoretical 
perspective on learning mathematics adopted in this study is based on a 
socio-cultural approach derived from Vygotskian psychology. This 
section outlines the key features of Vygotskian theory, which have 
informed the interpretation of the data collected in this thesis.

Vygotsky (1981) proposed that all individual mental processes are based 
on social interactions. From this position he developed the ‘general 
genetic law of cultural development’, theorising that learning proceeds 
from the interpsychologicai to the intrapsychological. In this manner the 
interactions experienced within the social context are gradually 
‘internalised’ by the individual. The process of internalisation is seen as 
an important aspect of how “consciousness emerges out of human social 
life” (Wertsch and Stone, 1985, p. 164). Vygotsky further proposed that 
the use of psychological and cultural tools mediate the learning process. 
Indeed Vygotsky argued that these tools fundamentally shape and define 
activity and as such provide an “essential key to understanding human 
social and psychological processes” (Wertsch, 1990, p. 113). He also 
emphasised that tools, such as speech, symbols, writing, mathematics and 
technology are social in origin. They are used firstly as a means of 
communicating with others, to “mediate contact with our social worlds”, 
and eventually “these artifacts come to mediate our interactions with self; 
to help us think, we internalise their use” (Moll, 1990, p. 11-12). In
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particular, Vygotsky (1962) regarded language as the means through 
which thought is developed: “thought is not merely expressed in words; it 
comes to exist through them” (p. 125). He further described the 
relationship between thought and language as a “living process” (p. 153). 
Lerman (1996) argues that from a Vygotskian perspective, “language is 
not seen as giving structure to the already conscious cognising mind; 
rather the mind is constituted in discursive practices” (p. 137).

Wertsch and Stone (1985) comment that “Vygotsky’s account of semiotic 
mechanisms” (especially language) that mediate social and individual 
functioning provides the bridge connecting the external and internal and 
the social and the individual (p. 164). Indeed Diaz et al (1990) contend that 
‘internalisation’, in a Vygotskian sense, does not refer to “mere mental 
image or mental representation of the external relation”, rather this term 
encompasses a “new level of behavioural organisation” which was 
previously possible only with the “help of external signs and mediators” 
(p. 134). In expressing his view of internalisation, Lerman (1996) quotes 
Leont’ev who proposes that: “the process of internalisation is not the 
transferral of an external to a pre-existing, internal ‘plane of 
consciousness’; it is the process in which this plane is formed” (p. 136).

Another important feature of Vygotsky’s analysis is the distinction 
between spontaneous or everyday concepts and scientific concepts. 
Spontaneous concepts are formed from everyday experiences and are thus 
laden with meaning and dependant on the social context. However, these 
concepts are not connected to each other by “general systems of 
interrelated understandings” (Saxe, 1991, quoted in Noss and Hoyles, 
1996, p. 131). Alternatively, scientific concepts develop through analytic 
procedures rather than concrete experiences (Panofsky et al, 1990). These 
abstract scientific concepts are initially empty, and meaning is derived 
from the interaction between the spontaneous and the scientific. Vygotsky 
(1962) stated that whilst these “two concepts differ in their functioning, 
these two variants of the process of concept formation influence each
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other’s evolution” (p. 87). He proposed that “the rudiments of 
systematisation first enter the child’s mind by way of his contact with 
scientific concepts and are then transferred to everyday concepts, 
changing their psychological structure from the top down” (p. 93). Thus 
the development of spontaneous concepts is seen to proceed upward, 
whilst the development of scientific concepts continues downward to a 
more elementary and concrete level (p. 108). Saxe (1991, quoted in Noss 
and Hoyles, 1996, p. 131) emphasises that “in their interaction, 
spontaneous concepts enrich scientific concepts with meaning and 
scientific concepts offer generality to the development of spontaneous 
concepts”.

The idea of the ‘zone of proximal development’ was also particularly 
significant in Vygotsky’s work. This zone represents the distance between 
the actual developmental level as determined by independent problem 
solving and the level of potential development as determined through 
problem solving under adult guidance or in collaboration with more 
capable peers. Lerman (1996) describes how learning occurs in the zone 
of proximal development, as “theoretical/scientific concepts ‘ascend’ from 
the abstract to the concrete in interaction with more knowledgeable 
others” (p. 138). Thus, peer tutoring and peer collaboration both play an 
important part in constituting the zone of proximal development, as do the 
mutual orientation of goals and desires (Lerman, 1998). Pairs o f students 
can create “their own zones of proximal developments if  they are 
motivated, taught how to share ways of working, have an appropriate 
personal relationship, and/or other factors” (ibid, p. 72). When a teacher 
introduces an activity into the classroom, differences in the answers 
formulated by students arise from their previous experiences, their ‘zone 
of actual development’, and these potentially pull other students, and 
possibly the teacher, into their zones of proximal development (ibid). Moll 
(1990) argues that “a major role for schooling is to create social contexts 
(zones of proximal development) for mastery of and conscious awareness 
in the use of cultural tools” (p. 12).
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Vygotsky’s ideas are further developed by Lerman (1998), in his 
argument for a ‘discursive psychology’ of mathematics teaching and 
learning. Such an approach is regarded as a useful framework for 
interpreting the data from this thesis and is concerned with the process of 
acquisition of meanings and sees mathematical concepts as social acts and 

tools, and words and symbols as mediators of thought. Learning is 
considered as being “predicated on one person learning from another, 
more knowledgeable, or desired, person” (p. 77) and is also developed 
through tool use. The mediation of cultural and metacognitive tools in 
mathematical meaning making is central to this approach. Lerman (ibid), 
also, argues that Vygotsky’s zone of proximal development offers a 
‘sociogenetic mechanism’ for interpreting learning (p. 73). Lerman (1996) 
stresses that as concepts are socially determined, they are socially 
acquired. In developing this position further he argues that as concepts 
derive their meaning from being used, the “acquisition of a concept, or 
‘understanding’ can be interpreted as that of an individual coming to share 
in that meaning through negotiation and discussion” (p. 146). In this way, 
through discussion, dispute, cognitive conflict and sharing ideas in the 
classroom, “the intersubjective becomes internalised as the intrasubjective 
and the intrasubjective is offered to others, becoming intersubjective” 
(Lerman, 1992, p. 46). Jones and Mercer (1993) also see learning as 
occurring through social interactions and propose one possible measure of 
successful learning, which echoes the views expressed by Lerman. In their 
view successful learning is said to occur when “two or more people 
manage to share their knowledge and understanding, so that a new cultural 
resource is created which is greater than the knowledge and understanding 
that any of the individuals hitherto possessed” (p. 21).

Jones and Mercer (ibid) also stress that socio-cultural theory focuses on 
the way in which “talk and joint activity are used by teachers and learners 
to share knowledge” (p. 24). Indeed the teacher’s role in promoting 
successful learning is another important part of Vygotskian theory, a fact
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that is emphasised by Moll (1990) who believes that the interdependence 
of teacher and student is central to Vygotskian analysis o f instruction. As 
discussed previously, the teacher and students are seen to play a mutual 
and active part in creating the social environment (ibid). Lerman (1996) 
suggests that the mathematics teacher’s objective could be interpreted as 
“assisting students to appropriate the culture of the community of 
mathematicians as a further social practice” (p. 146).

There is also an important role for the teacher in mediating the student’s 
learning. Bruner (1985) emphasises that the teacher performs a “critical 
function” in ‘scaffolding’ the learning task, enabling the student to 
“internalise external knowledge and convert it into a tool for conscious 
control” (p.25). In this manner the assistance provided by the teacher 
enables the student to operate successfully within his or her zone of 
proximal development by helping them to bridge the gap between their 
actual and potential levels of development. Sutherland (1993) stresses that 
the notion of scaffolding does not signify simplification of the actual task 
by the teacher, rather he or she provides graduated assistance to the 
student in order to remove some of the cognitive demands. Scaffolding 
strategies used by the teacher may take on various different forms, such as 
directing the students’ attention, motivating and encouraging 
perseverance, and/or acting as a memory bank for students to draw on 
(ibid). In time, however, the learner’s participation gradually increases, 
depending on the needs and learning pace of the individual and support 
from the teacher is slowly faded (Noss and Hoyles, 1996). The notion of 
‘scaffolding’ thus embodies the idea of an adjustable and temporary 
support which can be removed if no longer needed (Orhun, 1991).

Hoyles et al (1991) regard scaffolding as ‘hooks’ which are available to 
assist students in “overcoming significant obstacles in the generalisation 
process” (p. 219). In addition to the teacher’s support, they (ibid) also see 
a role for technology and student interaction in scaffolding the learning 
task. They maintain that the problem solving tools which are available
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within certain computer environments and the nature of the interaction 
between students could serve as scaffolding that assists students in finding 
a starting point in problem solving and in progressing from the specific to 
the general. Clearly, Hoyles et al (ibid) regard the computer as a mediator 
of student learning, which will be discussed further in Chapter three.

2.2 Visualisation in Mathematics
2.2.1 Definitions of Visualisation and Related Concepts
Within the current literature there exist many differing notions of the key 
terms associated with the area of visualisation in the learning of 
mathematics, each developed with respect to a specific research 
purpose/focus, and each drawing on and sometimes expanding previous 

ideas.

Lean and Clements (1981) define i m a g e r y  [following Hebb (1972)] as the 
occurrence of mental activity corresponding to the perception of an object, 
when the object is not physically seen. In the same vein they perceive 
v i s u a l  i m a g e r y  as imagery which occurs as a picture in ‘the mind’s eye’.

Other researchers in the field have preferred to incorporate wider 
definitions. For Presmeg’s (1986) purposes, a v i s u a l  i m a g e  was 
considered as a “mental scheme depicting visual or spatial information” 
(p. 297). This definition was seen to incorporate the types o f imagery that 
depict shape, pattern or form, and, also, verbal, numerical or mathematical 
symbols which may be arranged spatially to form the kind of numerical or 
algebraic imagery sometimes referred to as number forms. In this 
definition Presmeg dismisses the ‘fixed image’ notion of v i s u a l  i m a g e r y  

developed by Lean and Clements, outlined above.

In the context of working with teachers of older students, aged sixteen and 
seventeen, Presmeg (ibid) distinguished between v i s u a l  and n o n - v i s u a l  

methods of solution. The v i s u a l  approach necessarily involves visual 
imagery, which may be explicit (in the form of a diagram) or implicit.
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Reasoning and algebraic methods may, also, form part of the solution. In 
contrast, the n o n - v i s u a l  mode excludes visual imagery, in preference of 
other methods. In furthering her analysis, she also made the distinction 
between v i s u a l i s e r s  and n o n - v i s u a l i s e r s :

Visualisers are individuals who prefer to use visual methods when attempting 

mathematical problems that may be solved by both visual and non-visual 

methods.

Non-visualisers are individuals who prefer not to use visual methods when 

attempting such problems (Presmeg, 1986, p. 298).

These classifications have proven useful in the analysis o f the data 
collected for this thesis.

Zimmerman and Cunningham (1991) regard v i s u a l i s a t i o n , in general, as 
“the process of producing or using geometrical or graphical 
representations of mathematical concepts, principles or problems, whether 
hand drawn or computer generated” (p. 1). More specifically, they 
consider m a t h e m a t i c a l  v i s u a l i s a t i o n  to be the process of forming images 
(mentally, or with pencil and paper, or with the aid of technology) and 
using such images effectively for mathematical discovery and 
understanding. In essence, “to visualise a diagram means simply to form a 

mental image of the diagram, but to visualise a problem means to 
understand the problem in terms of a diagram or a visual image” 
(Zimmerman and Cunningham, 1991, p. 3).

Mason (1992) regards v i s u a l i s i n g  as “making the unseen visible”, 
proposes that i m a g e r y  has “the power to imagine the possible and the 
impossible” and suggests that s e e i n g  occurs “figuratively as well as 
literally” (p. 25). Mariottii and Pesci (1994) acknowledge v i s u a l i s a t i o n  

occurring when “thinking is spontaneously accompanied and supported by 
images” (p. 22). Similarly, Presmeg (1995) recognises v i s u a l i s a t i o n  as
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“the process of constructing or using visual images, with or without 
diagrams, figures or graphics” (p. 60).

With particular emphasis on spatial visualisation, Solano and Presmeg
(1995) define an i m a g e  as a “mental construction of an object created by 
the mind through the use of one or more senses, where the mind plays an 
active role” (p. 67). Subsequently, they regard v i s u a l i s a t i o n  as the 
relationship between images -  “in order to visualise, there is a need to 
create many images to construct relationships that will facilitate 
visualisation and reasoning” (p. 67). Following this, i m a g e r y  is seen as a 
collection of one or more images, a dynamic process.

Hitt Espinosa (1997), also, highlights the possibility of using tools to 
obtain a physical representation of students’ visual mathematical 
concepts:

Visualisation o f  mathematical concepts is not a trivial cognitive activity: to 

visualise is not the same as to see. To ‘visualise ’ is the ability to create rich, 

mental images which the individual can manipulate in his mind, rehearse different 

representations o f the concept and, i f  necessary, use paper or a computer screen 

to express the mathematical idea in question. (Hitt Espinosa, 1997, p. 697). __

Zazkis et al (1996), virtually regard all thinking as based on visualisation 
and their definition of visualisation as follows, is considered to be the 
most relevant to this study:

Visualisation is an act in which an individual establishes a strong connection 

between an internal construct and something to which access is gained through 

the senses. Such a connection can be made in either o f two directions. An act o f  

visualisation may consist o f  any mental construction o f objects or processes that 

an individual associates with objects or events perceived by her or him as 

external. Alternatively, an act o f visualisation may consist o f  the construction, on 

some external medium such as paper, chalkboard or computer screen, o f  objects
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or events that the individual identifies with object(s) or process(es) in her or his 

mind. (Zazkis et al, 1996, p. 441).

In this definition visualisation is not restricted to the learner’s mind, or to 
some external medium, rather it is seen as the means for travelling 
between the two. In addition, the individual is the one who perceives these 
objects as internal or external, rather than the researcher (Nemirovsky and 
Noble, 1997).

2.2.2 The Status of Visualisation
Whilst questioning Pestalozzi’s belief that sensory-perceptual observation 

(visualisation) is the ‘absolute basis’ for all cognition, Gutierrez (1996) 
acknowledges that visualisation is one of the essential components. This is 
a view that is increasingly being taken by mathematics researchers. For 
example, Mason (1992) regards mental imagery as fundamentally 
important “because it lies at the heart of meaning making, and is the 
means of preparing in the now, actions to take in the future” (p. 24). Breen

(1997) also stresses the enormous potential in using images as a powerful 
starting point for providing rich learning situations. In a similar vein, 
Cunningham (1994) proposes that “some students can learn more 
effectively from visually based discussions and experiences than from 
symbolic and analytic work” and that adding images to words supplies 
students with a “richer set of ways to communicate their mathematics” (p. 
84). Cunningham, also, acknowledges that “one of the most remarkable 
things about visualisation is the amount of mathematics students will learn 
and the amount of work students will do in order to create images 
describing a mathematical concept, especially when the computer is used 
as part of the process” (p. 83).

Cunningham (1991) describes several other advantages that are associated 
with the use of visualisation. These include “the ability to focus on 
specific components and details of very complex problems, to show the 
dynamics of systems and processes, and to increase the intuition and
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understanding of mathematical problems and processes” (1991, p. 70). In 
addition, he claims that the inclusion of visualisation in mathematics 
education, permits a broader coverage of mathematical topics and most 
importantly, allows students access to new ways to approach their own 
mathematics. Another such advantage resides in the student’s ability to 
retain knowledge. Whilst purely algebraic proofs are fairly easy to 
remember in the short term, they are quickly forgotten in the longer term. 
A visual understanding of a given situation, however, is more likely to 
remain with the student and can be recalled when needed.

Many researchers maintain that visual arguments can prove to be 
extremely useful in helping students to conceptualise particular 
mathematical ideas. Diagrammatic proofs, offered as alternatives or as 
supplements to standard linguistic proofs, often enable students to develop 
a real appreciation of the meaning of a theorem and are more convincing 
than the standard arguments (Barwise and Etchemendy, 1991). Moreover, 
as Cunningham (1991) points out, the vocabulary used for communicating 
ideas is quite often visual, and thus a visual proof would constitute an 
appropriate form of argument. Conventionally, though, images were used 
almost exclusively in an illustrative manner, to enable students to make 
sense of symbolic processes. However, in ‘real visual thinking’, the 
students’ visual understanding becomes the primary vehicle for delivering 
and developing concepts, which depends on interactive student 
experiences (Cunningham, 1994). Tall (1991a) highlights the importance 
of ‘seeing’ why certain theorems are true with the power of the ‘inner eye’ 
and has also stressed that the human brain is well adapted to process 
visual information (Tall, 1986). Yet, Davis (1993) stresses that what the 
eye reports must be interpreted properly and that this interpretation occurs 
as a result of experience and as such is expressed in natural language and 
action. Students’ visualisations need adaptation and accommodation 
through common agreements and usage (ibid).
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Whilst mental images may differ between individuals, there are likely to 
be “commonalities amongst people who share a common culture” 
(Presmeg, 1992, p. 597). Nevertheless, differences will occur in the 
processing of individual students, “even when they learn within the same 
class, with the same teacher, and within the social context o f some 
experiences that may be taken to be shared” (Presmeg, 1992, p. 607). 
Images that underlie mathematical concepts are unique constructions of 
individuals, and are thus inaccessible to others. However, these images are 
based on a number of concrete images that are used mathematically in 
various ways by each individual learner. These concrete images may be 
shared to some extent, through for example gestures, diagrams, the use of 
technology or verbal descriptions, and are based in turn on mathematical 
experiences that may be shared and negotiated by others. Since these 
experiences occur in a particular social context, which may be variously 
interpreted by individual learners, Presmeg proposes that multiple worlds 
are created (ibid). Shared meanings are thus possible because of the 
commonalities in the students’ experiences from which the concrete 
images arise.

Barwise and Etchemendy (1991) argue for the validity and acceptance of 
heterogeneous proofs (proofs which use multiple forms of representation). 
They contend that the main reason for the “low repute of diagrams and 
other forms of visual representation in logic is the awareness of a variety 
of ill-misunderstood mistakes that one can make using them” (p. 11). Yet, 
whilst they recognise that the potential for error in diagrammatic 
reasoning is real (as does Tall, 1991b), they highlight the fact that proofs 
without visual reasoning can, also, be equally flawed, and that often the 
construction of a simple diagram would reveal any such mistakes. They 
outline three ways in which visual reasoning can be considered as valid 
reasoning:

(i) visual information is part o f the given information from which we reason, (ii)

visual information can be integral to the reasoning itself (Hi) visual
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representations can play a role in the conclusion o f  a piece o f  reasoning.

(Barwise and Etchemendy, 1991, p. 16).

Yet, visual aspects of a concept are often rated secondary or peripheral to 
the concept itself, and frequently the visual characteristics of a problem 
are not even considered (Eisenberg and Dreyfus, 1991). However, the 
visual component of mathematical reasoning needs to be included to 
enable students to develop more than merely a mechanical understanding 
of mathematical concepts, ideas and processes (ibid). Mason (1992) 
suggests that “imagery often forms a key for a rich network of 
connections and associations, and so has a crystallising effect” (p. 27). 
Visualisation in mathematics is not seen as an end in itself, but rather a 
means towards an end (Zimmerman and Cunningham, 1991). This end is 
understanding, and visualisation needs to be combined with other forms of 
mathematical representation in order to achieve this goal. Zimmerman and 
Cunningham (1991) insist that mathematical visualisation is not merely 
maths appreciation through pictures - a superficial substitute for 
understanding. Rather they maintain that visualisation supplies depth and 
meaning to understanding, serving as a reliable guide to problem solving, 
and inspiring creative discoveries. In order to achieve this level of 
understanding, however, they propose that visualisation cannot be isolated 
from the rest of mathematics (in line with Tall (1989)), implying that 
symbolical, numerical and visual representations of ideas must be 
formulated and connected. This thesis is conceptualised on the basis that 
visual thinking and graphical representation should be linked to other 
modes of mathematical thinking and other forms of representation. Thus, 
ultimately, this research has been concerned with enabling students to 
achieve a deeper, more meaningful and contextual understanding of 
certain mathematical concepts and ideas.

Knuth (2000) recommends that teachers emphasise the use of graphical 
representations whenever appropriate and give students the opportunity to 
share and discuss their different solution approaches and the relative
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merits of each. Yet, traditionally, a greater emphasis has been placed on 
algebraic or analytic proof (Cunningham, 1991) despite the proposed 
legitimacy of visual theorems (Davis, 1993; Barwise and Etchmendy, 
1991). Tall (1989) recognises this problem and argues like Zimmerman 
and Cunningham that although traditional mathematics has emphasised 
the ‘symbolic and sequential’, algebraic symbolism, at the expense of the 
‘integrative and holistic’, visual symbolism, both are necessary 
requirements in the study of mathematics. Whilst the proof of 
mathematical ideas involves algebraic symbolism, the construction of 
such ideas requires some form of visual symbolism. Thus, Tall (ibid) 
stresses the importance of the many facets of a student's ‘concept image’, 
which he defines as the “total cognitive structure that is associated with 
the concept, which includes all the mental pictures and associated 
properties and processes” (p. 37).

Tall (1991b) further develops his position by discussing the differences 
between intuitive thought processes and the logical thought required in 
formal mathematics. He professes that “intuition involves parallel 
processing quite distinct from the step by step sequential processing 
required by rigorous deduction. An intuition arrives whole in the mind and 
it may be difficult to separate its components into a logical deductive 
order” (p. 107). Visual information is processed simultaneously and, as a 
result, one could argue that an intuitive approach might not be entirely 
suitable in serving the logic of mathematics. Conversely, though, a purely 
logical view is similarly ‘cognitively unsuitable’ for students. Thus, 
according to Tall (ibid), both types of processing should be integrated, 
through “an approach that appeals to the intuition and yet can be given a 
rigorous formulation” (p. 108).

Zazkis et al. (1996) propose that visualisation and analysis are ‘mutually 
dependent’ in mathematical problem solving and reject the notion o f an 
analyser/visualiser dichotomy or continuum. They assert that rather than 
clearly preferring either a visual or analytical strategy, the majority o f the
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students in their study tended to use a combination of these approaches. 
Most visualisations contain some form of analysis (Presmeg, 1986; Zazkis 
et al., ibid) and conversely most analysis involves some form of 
visualisation (Zazkis et al., ibid). It is therefore proposed that both visual 
and analytic thinking need to be present and integrated in order for most 
students to be able to construct rich understanding of mathematical 
concepts (Zazkis et al., ibid). An important part of this thesis has been to 
clarify the students' perceptions of their visual orientations. Hoyles and 
Healy (1996) suggest that forging the links between the symbolic and 
visual is an important part of progressing towards the appropriation of a 
mathematical generalisation, which implies that justifications, like 
symbolic reasoning should be developed alongside the visual.

Presmeg's findings (1986), also, indicate that the ability to apply and 
interchange both visual and non-visual methods in problem solving is 
particularly advantageous for students, especially where one mode appears 
to be more appropriate. Clearly those students who are able to determine 
the most suitable approaches or where necessary use a combination of 
approaches in order to solve the given problem, to provide clarification 
and/or to check the validity of solutions, are likely to develop a deeper, 
more holistic understanding of mathematics. Indeed, Presmeg (1992) 
argues that “as many domains of experience as possible should be 
implicated in the mathematics learning process” (p. 607).

The connections between different modes of representation need to be 
made by students, the significance of particular links must be recognised 
and most importantly an appropriate balance of approaches should be 
introduced (Hughes Hallett, 1991). Kaput (1992) argues that each mode of 
representation reveals certain aspects of the idea more clearly than the 
other modes, whilst hiding some other aspects. In this way “the ability to 
link different representations helps reveal the different facets of a complex 
idea explicitly and dynamically” (ibid, p. 542). Hitt Espinosa (1997) 
stresses the importance of formalising the conjectures that have been
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generated by intuition and visualising a concept or idea, using analytical 
techniques/demonstrations. Indeed, many researchers support the view 
that whilst visualisation stimulates and reinforces conceptual 
understanding, this particular mode of representation is no more important 
than other modes. What is required is a multi-representational approach to 
mathematics, where each mode complements and strengthens the 
understanding the student acquires when operating in an alternative mode. 
Indeed all of the studies discussed thus far highlight the necessity of 
empowering students with multiple interchangeable approaches to 
problem solving. Yet encouraging visualisation and the use o f multi- 
representational approaches within the classroom is unlikely to be without 
its problems.

2.2.3 Problems Associated with Visualisation
Eisenberg and Dreyfus (1991) postulate that “thinking visually makes 
higher cognitive demands than thinking algorithmically”, and 
consequently “it is quite natural for students to gravitate away from visual 
thinking” (p. 25). They contend that often students (and teachers) are 
unable to answer problems based on concepts that have visual 
interpretations because “they have not learned to exploit the visual 
representations associated with these concepts” (p. 25). This means that 
often students do not know how to utilise diagrams they themselves draw 
in order to solve problems (Eisenberg and Dreyfus, 1990). To illustrate 
their point, they compare visual and algebraic processing in terms of 
cognitive efficiency:

It is relatively easy to present an argument that has already been ordered in a 

linear sequential manner. It is much more difficult to present a two-dimensional 

array o f  information with multiple links between various pieces o f  information 

and with implications in many different directions. (Eisenberg and Dreyfus, 1991, 

p. 33).
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Because of this, Eisenberg and Dreyfus (1990) claim that analytical 
arguments are more suitable for presenting mathematical ideas to students 
in school, through didactical transpositions, which also accounts for 
students’ preferences for processing their mathematics symbolically.

Nevertheless, the information contained in a diagram tends to be explicit, 
whereas the same information will be implicit in the analytic 
representation (Eisenberg and Dreyfus, ibid). Thus, the information 
contained in the analytic expressions must firstly be extracted and 
conceptualised before problem solving can commence and as a result the 
diagrammatic representations, exhibiting important pieces of information 
and the conceptual links between them, are often more useful. However, 
“diagrammatic representations are not immediately intelligible to the 
uninitiated. It takes cognitive processing to make sense of diagrammatic 
representations” (Eisenberg and Dreyfus, ibid, p. 33). Diagrams use 
conventions, notations, generalisations and abstractions, and without these 
the diagram is unintelligible. Moreover, not all o f the information 
contained in diagrams will necessarily be needed to solve the problem and 
as a consequence it may be difficult for the student to focus on the 
relevant information (Eisenberg and Dreyfus, 1990). Thus, if  students 
have not been taught appropriately, they are unlikely to make use of 
diagrams in problem solving. Sometimes, the individual simply has 
inadequate experience of certain concepts to provide appropriate intuitions 
(Tall, 1991b).

Presmeg (1986) outlines four particular difficulties surrounding the use of 
imagery. Firstly, there is the possibility that a single image or diagram 
may be viewed inappropriately by students, and therefore lead to 
subsequent misconceptions. Secondly, an “image of a standard figure 
could induce inflexible thinking which prevents the recognition of a 
concept in a non-standard diagram” (p. 307). Similarly, students may 
already possess rigid ‘uncontrollable’ images that inhibit the development 
o f further more significant images, especially if  these persistent images
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are vivid. Alternatively, vague imagery should be combined with 
‘rigorous analytic thought’ to be useful. These difficulties may contribute 
to the reluctance of students to adopt visual methods. Indeed, despite the 
current views of researchers regarding the importance of visualisation, 
some students, whilst possessing the ability to visualise mathematically, 
often opt for non-visual, more ‘conventional’ approaches to problem 
solving, which emanates, in the main, from the tendency for visualisation 
to be undervalued in mathematics classrooms (Presmeg, 1995). However, 
there are plenty of students who are not reluctant to visualise in 
mathematics and, when given the opportunity, do prefer to exercise their 
powers of visualisation (ibid). Hence, in order for all students to fully 
appreciate the “validity of visual thinking and reasoning in mathematics”, 
the visual approach should be continually adopted and reinforced 
(Cunningham, 1994, p. 84). However, Eisenberg and Dreyfus (1991) 
observe that “students have a strong tendency to think algebraically rather 
than visually, even if they are explicitly and forcefully pushed towards 
visual processing” (p. 29). They maintain that students are still reluctant to 
visualise regardless of the way in which concepts are initially presented to 
them, whether this is either in a visual or an analytical way, or by using a 
combination of both (Eisenberg and Dreyfus, 1990). Furthermore, 
Eisenberg and Dreyfus (1986) found that students who tended to classify 
themselves as visual thinkers consistently used analytical approaches.

Knuth (2000) also found there was an overwhelming reliance on algebraic 
solution methods amongst the students in his study. Moreover, this often 
occurred at the expense of, and seemingly without awareness of, a simpler 
graphical solution method. The graphical approach was deemed to be 
unnecessary by the students and was only used as a means to support their 
algebraic solution methods rather than as a solution strategy in its own 
right. In general, students do not tend to make links between their 
visualisations and analytical thought readily (Presmeg, 1986).
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Researchers have also considered the possibility that visual thinking 
eventually becomes unnecessary, uneconomical and/or exhausted and is 
replaced by symbolic thinking. Presmeg’s findings (1985) and those of 
Eisenberg and Dreyfus (1986) support the representational-development 

hypothesis which suggests that less imagery is used with greater 
experience or learning. Presmeg, like Eisenberg and Dreyfus, argues that 
in mathematical thinking practice and habituation allow students to 
dispense with imagery which initially aids understanding and that 
frequently a formula or algorithm provides the quickest and most 
economical method of solving a problem. Thus, in her study facility led 
visualisers away from visual methods (ibid).

Presmeg’s research (1986) in particular supported the view that 
mathematical giftedness is associated with a lack of visual reasoning. She 
suggests that “external features, such as the nature of mathematics” or 
“internal factors, such as cognitive preferences, confidence or 
mathematical abilities” might be responsible for this occurrence (p. 300). 
Moreover, the usage of visual techniques is comparatively time-intensive 
which suggests that tests and examinations will tend to favour the non
visual thinker (Presmeg, 1986). The students in Presmeg’s study (ibid), 
who preferred to use visual approaches thus tended to be those with 
weaker mathematical abilities. Zazkis et al. (1996) suggest that this can be 
explained by the fact that thinking about a problem always begins with 
visualisation and therefore the weaker the student is, the less likely he or 
she is to progress very far. Lean and Clements (1981) also found that 
students who preferred to process mathematics analytically tended to out
perform more visual students in mathematical tests.

In general, visualisation techniques/skills tend to be employed by students 
privately to clarify, interpret and make sense of the given problem 
intuitively as tools for ‘meaning-making’ (Wheatly and Brown, 1994). 
Consequently, such processes are unlikely to be explicit in written 
arguments, as this is not the accepted norm (Presmeg, 1995). As such,
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Cunningham (1991) proposes that as visual processing is difficult to 
assess in standard ways, visually inclined students (and potentially all 
students) will continue to be disadvantaged in examinations, until a means 
to evaluate visual learning is developed and included as a routine part of 
all mathematics examinations.

These findings have important implications for the role of the teacher in 
encouraging and supporting students’ use of visualisation. Indeed, Martin 

et al (1994) recognise that “the images held by the teacher will have a 
significant impact on the images constructed by the pupils and on their 
ability to understand these processes” (p. 249). They further emphasise 
that the teacher has a responsibility for creating an environment in which 
students can construct understanding based on appropriate images. 
However, merely presenting students with images does not guarantee that 
they will automatically relate to these images or perceive them in the same 
way (Mason, 1992). The internal image formulated by the student is 
unlikely to be an exact copy of the external image presented. It is 
questionable that a student can actually be given an image. Indeed there is 
a greater possibility that they will be prompted into forming an image for 
themselves (ibid). Students should be actively involved in creating their 
own mathematical visualisations, true visual understanding cannot be 
expected to be achieved from observation of the teacher’s images alone 
(Cunningham, 1994). As a consequence of this, teachers need to allow 
students adequate time to develop their own images, and should anticipate 
and encourage diversity in visualisation (Bishop, 1989). Teachers also 
need to be aware that an image alone is unlikely to be an adequate 
stimulus to learning, particularly “if it does not challenge or surprise, or 
otherwise activate sense making” (Mason 1995b, p. 131).

Mason (1992) also warns of the danger of students being saturated by 
images. He emphasises that some images are more useful than others, 
provoking further awareness and thought and as such should be especially 
encouraged, whilst other less productive images should be discouraged
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(ibid). Bishop (1989) argues that abstraction is necessary if visual imagery 
is to serve a useful function in mathematical thinking, especially in 
transcending the rigidity and inflexibility associated with the use of 
specific concrete visual images. Presmeg (1992) also adopts this position, 
suggesting that the centrality of imagery in mathematical processing is 
possible only if imagery is used in the service of abstraction in 
mathematics.

Tall (1986) emphasises the importance of allowing students to “explore 
ideas to fill out their own imagery” (p. 8). He recognises that “visual ideas 
often considered intuitive by an experienced mathematician are not 
necessarily intuitive to an inexperienced student” (Tall, 1991b, p. 105). 
Mariotti and Pesci (1994) ask whether it is possible to intentionally 
intervene in the process of visualisation and, thus, are keen to investigate 
the relationship between ‘external images’ provided by the teachers and 
the ‘internal images’ of students. Certainly, as visualisation can be 
regarded as a ‘subjective phenomenon’, direct intervention to promote 
students’ imagery may be “neglected or even discarded” by teachers (ibid, 
p.22). Mason (1992) raises some important questions concerning factors 
which affect the nature and degree of the robustness of images, their 
validity and the ability to communicate such images, which are often 
difficult to translate into words. He (ibid), also, recognises a difference 
between personal, idiosyncratic images, and conventional images as 
cultural tools and the role of the teacher in offering and supporting some 
images and not others.

Cunningham (1991) also highlights the role of the teacher for facilitating 
visual learning in the classroom, and suggests that an instructor using 
visualisation should:

• determine exactly the critical mathematical details to be presented in an image 

and show these either by highlighting them or by removing conflicting 

information,
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• determine the order in which material is to be demonstrated by the images and 

present this material in a logical and connected sequence,

• offer students options in ways that expand their mathematical knowledge 

without confusing or overwhelming them,

• look for opportunities to present dynamic or developing mathematical 

processes and give students appropriate opportunities to explore and control 

them,

• consider carefully how students will learn visually, how to evaluate such 

learning, and how to integrate this learning with other parts o f  their 

mathematical studies. (Cunningham, 1991, p. 74).

In addition, Cunningham (ibid) emphasises the importance of considering 
which material is best introduced visually and which symbolically, and at 
what point, if ever, can the two approaches be combined. He further 
advises (Cunningham, 1994) that if and when a technology based visual 
approach is considered appropriate, symbolic approaches should not be 
introduced until the topic is understood visually and image based 
discussions and ideas are formed. Alternatively, Eisenberg and Dreyfus 
(1986) maintain that every topic should be developed in terms o f its 
analytical as well as its visual aspects, thus enabling each student to 
“grasp the material in the way which is closer to his cognitive orientation” 
(p. 158). This thesis has combined these ideas so that all of the function 
concepts explored by the students have been considered in terms of their 
symbolic and visual aspects, whilst at the same time more visual based 
discussions have been encouraged.

Barwise and Etchemendy (1991) surmise that “much, if not most, 
reasoning makes use of some form of visual representation and that as the 
computer gives us ever richer tools for representing information, we must
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begin to study the logical aspects of reasoning that uses non-linguistic 
forms of representation” (p. 22). It is now seen to be appropriate to discuss 
the relationship between learning mathematics in general, visualisation 
and technology, which provides the basis for chapter three.

36



CHAPTER 3 
LEARNING MATHEMATICS, VISUALISATION 

AND GRAPHICAL CALCULATORS

3.0 Overview
This chapter considers the theoretical perspectives surrounding the use of 
technology in students’ learning of mathematics in general and more 
specifically with respect to visualisation and functions. In the first section, 
the socio-cultural framework that was developed in chapter two is 
extended to include the relevant theories on learning mathematics with 
technology in general and graphical calculators in particular. This is 
followed by further consideration of the current literature on visualisation 
in mathematics and how this relates generally to the use of technology and 
more specifically to graphical calculators. The role of technology in 
mediating students’ use of visualisation and understanding o f functions is 
then explored with particular emphasis on visual images for functions.

3.1 Socio-Cultural Framework: Theoretical Implications 
for the Use of Computers and Graphical Calculators
3.1.1 Technology and Reorganisation of the Classroom
In accepting the Vygotskian notion of learning as communicative, Jones 
and Mercer (1993) argue that there will be “significant implications” for 
the way in which the role of the computer in the learning process and the 
role of the teacher in relation to the use of computers are perceived. From 
this perspective, technology is viewed as a “medium through which a 
teacher and learner can communicate”, rather than as a substitute for the 
teacher (p. 22). Jones and Mercer (ibid) develop this position by referring 
to the work of Cole and Griffin. Cole and Griffin distinguish between the 
computer viewed as a ‘partner in dialogue’ and as a ‘medium’. As a 
‘partner in dialogue’ the “student-computer system” is regarded as “an 
analogue to the student-teacher system with the computer replacing the 
teacher” (1987, cited in Jones and Mercer, 1993, p. 23). Alternatively the 
notion of the computer as a ‘medium’, does not intend to replace the
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teacher, and rather “reorganises” the interaction in the classroom, which 
creates “new learning environments”. This view is also taken by Hoyles 
and Noss (1992), who propose that using the computer creates a shared 
language between teachers and students, in which they can talk about their 
activities and interact with the technology, and a shared medium for the 
teacher to communicate ideas to the students. The computer-based 
language thus supports inter-mental functioning, which from a Vygotskian 
perspective is a precursor of intra-mental functioning (Sutherland, 1995). 
In also adopting a Vygotskian stance, Lerman (1998) proposes that 
“powerful technologies can offer possibilities for novel ideas by children, 
which create zones of proximal development for other participants and 
change the social relations in the classroom” (p. 77). Similarly, Confrey 
(1993) argues that technology is necessarily seen to alter the character of 
knowledge.

Cole and Griffin (1987, cited in Jones and Mercer, 1993) regard teachers 
who successfully introduce technology into their classrooms as 
‘orchestrators’ of student activities. The teacher has an important role to 
play in mediating the technology; the mediation between human-computer 
systems is a two way process. The teacher's input is an 'essential' element 
of any learning process and has a significant influence on the quality of 
learning that arises in a technological environment. This idea fits well 
within the Vygotskian theoretical framework adopted in this thesis, which 
sees mediation by more knowledgeable persons as a fundamental part of 
the way in which knowledge is transmitted through society. Similarly, 
Olive (1992) considers the role of the teacher to be crucial in promoting 
effective learning. Hoyles and Noss (1992) argue that teachers have an 
important part to play in encouraging conscious reflection amongst 
students, which is an integral constituent of higher mental functioning. 
They maintain that global mathematical understandings are developed and 
generated by the teacher, although at the same time the computer mediates 
this process.
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Similar perspectives have also been elaborated with reference to the 
graphical calculator. Guin and Trouche (1999) argue that the 
reorganisation of the activity resulting from the introduction of graphical 
calculators affords new possibilities of action for the user, and that this 
may provide new conditions and new means of organising action. Borba

(1996) proposes that the use of graphical calculators can “enhance 
mathematical discussions” and that, following Tikhomirov, this in turn 
‘reorganises’ the way that knowledge is constructed. In his discussion of 
the effects of graphical calculators on human activity in the classroom 
Borba (ibid) draws on Tikhomirov’s research with computers and 
describes three theories concerning the relationship between computers 
and human activity, which Tikhomirov had outlined and critiqued. The 
first of these theories, the theory of substitution, sees the computer as a 
substitute for human endeavour since the computer has the capacity to 
solve complex problems that were previously only solvable by humans. 
Tikhomirov rejected this theory on the grounds that the heuristic 
mechanisms used by computers and humans in solving problems differ 
significantly.

The second theory to be described by Tikhomirov concerns 
supplementation and sees the computer as a complement to, rather than a 
substitute for, human endeavour. In this way the computer increases the 
capability and speed of human beings to perform given tasks. Tikhomirov 
also rejects this theory, arguing that thinking involves more than the 
simple solution of problems. He stresses the importance of the formulation 
and attainment of goals in the thinking process and that there are other 
important characteristics of solving and formulating problems, such as 
human values. In addition, he suggests that this theory does not take 
account of the meanings that are given to manipulated symbols. Thus 
Tikhomirov argues that the supplementation theory does not adequately 
describe the relationship between computers and human activity and he 
puts forward the theory of re-organisation, which draws on Vygotskian 
ideas.
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This theory sees computers as re-organisers of human activity rather than 
as a tool that is merely added to the human experience. Tikhomirov 
supports this stance and proposes that “as a result of using computers, a 
transformation of human activity occurs, and new forms of activity 
emerge” (1981, cited in Borba, 1996, p. 54). He stresses that emphasis 
should be placed on human-computer systems and to problems that can be 
solved by them. He also proposes that computers take on a role that is 
similar to that of language in Vygotskian theory, and thereby represent an 
alternative means of regulating human intellectual activity. He concludes 
that computers do not substitute or supplement the human experience but 
rather reorganise human activity, in the sense that “there are activities that 
cannot be performed by either humans or computers alone but only by 
human-computer systems” (1981, cited in Borba, 1996, p. 58). In addition, 
he argues that re-organisation occurs through mediation of the teacher- 
students relationships by computers. In this sense human-computers 
systems are seen to produce new forms of teacher-student relationships 
and thus can provide new ways of legitimating and justifying students’ 
findings in the classroom (Borba and Villarreal, 1998).

In each of the theories outlined by Tikhomirov, there are associated 
implications for educational practices (Borba and Villarreal, 1998). If, for 
example, the computer or graphical calculator is viewed merely as a 
supplement, then tasks are likely to be set that are similar to those which 
can be solved without technology, thereby limiting the use of this tool to 
simple verification of results or illustration of a given topic. However, in 
accepting the view that technology re-organises the way in which 
knowledge is constructed, Borba and Villarreal (ibid) propose that a 
technology based experimental approach is a more fitting and productive. 
Using this type of approach Borba (1996) reported evidence that 
supported Tikhomirov’s notion of re-organisation in the classroom with 
respect to the use of graphical calculators. The first feature o f this re
organisation was manifested in the intensification of the discussion that
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occurred as a result of using the graphical calculators. In accounting for 
this occurrence, Borba (ibid) suggests that graphical calculators might 
facilitate more independent experimentation and generation of 
conjectures, thus contributing to a certain sense of ownership by the 
students. In addition, Borba (ibid) proposes that the graphical calculators 
represented a new ‘authority’ in the classroom, which was additional to 
that of the teacher, as the students “found strong support for their positions 
in the graphical results of their experimentation” (p. 59).

The second feature of re-organisation in the classroom was seen as the 
flexibility for students to pursue different paths of enquiry as afforded by 
the graphical calculators. In Borba’s view “the more independent 
experimentation that is possible with such human-computer systems 
facilitates exploration of mathematical subjects that might not be 
ordinarily explored in the classroom” (p. 59). However, as this medium 
did not suppress the use of other media in the classroom, such as orality 
and pencil and paper, there were some instances where students used the 
graphical calculator merely as a means of checking results. This indicated 
that students might occasionally use technology in a way that resembles 
the supplementation theory (Borba and Villarreal, 1998).

Borba (1996) also suggests that the use of the graphical calculator had 
seemed to influence his students’ understanding. Indeed, he argues that 
the graphical calculator has a central role in students’ discussions and in 
the reorganisation of their thinking (Borba and Villarreal, 1998). Borba 
and Villarreal (ibid) suggest that the human-graphical calculator system 
can be thought of as being the actor of students’ argumentation in terms of 
the metaphors that students use in discussing their ideas which are derived 
from their use of the graphical calculator. Moreover, they propose that 
even when the graphical calculators are not being used by all students at 
all times, “the graphical calculator, the tasks and the environment 
generated has led to such a reorganisation of thinking” (Borba and 
Villarreal, 1998, p. 138). In other words, using Tikhomirov’s terminology,
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despite periods of non-calculator activity amongst their students, ‘human- 
graphing-calculator systems’ were still in action. Similarly, Hoyles and 
Noss (1992) also pointed towards the scaffolding provided by the 
computer in enabling the teacher to develop student understandings in 
non-computer settings. In relation to the research being conducted in this 
study, this is seen to be a key idea that has important consequences for the 
interpretation of data involving students’ behaviour following the 
introduction and use of graphical calculators.

In Borba’s (1996) research the graphical calculator was seen as a mediator 
in the Vygotskian sense, of both the teacher-student relationships and the 
interactions between individual students. Other researchers also refer to 
the mediational role of technology. For example, Pea (1987) argues that 
“social environments that establish an interactive social context for 
discussing, reflecting upon, and collaborating in the mathematical 
thinking necessary to solve a problem also motivate mathematical 
thinking” (p. 104). In developing this position, he particularly emphasises 
the fact that technology can play a fundamental mediational role in 
promoting dialogue and collaboration in mathematical problem solving. 
Teasley and Roschelle (1993) also see the role of technology from a 
mediation perspective in which the use of external displays act as tools for 
negotiating meaning and bridge the gap between spontaneous and 
scientific concepts:

Rather than seeking a perfect denotational relationship between external sign 

and internal concept, the mediation perspective accepts that interpretation is 

inherently uncertain, especially to newcomers to a particular community 

(Teasley and Roschelle, 1993, p. 232).

Borba (1996) reported that there was no evidence to suggest that graphical 
calculators differed from computers with respect to facilitating re
organisation of the mathematics classroom. Berger (1998) however 
questions whether an understanding of the interactions within the
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computer environment can automatically be transferred to the graphical 
calculator context. She highlights the fact that graphical calculators and 
computers differ in status as cultural artifacts, indicating that graphical 
calculators generally tend to have a lower socio-cultural status than 
computers. More pertinently, she stresses that as the graphical calculator 
does not have the same interactive capabilities as the computer, “the type 
of relationship that the learner forms with a graphical calculator is 
qualitatively different from most probable or possible relationships with a 
computer” (p. 14). This relationship between the learner and the 
technology will also be affected by the degree to which the user is able to 
modify graphical images. In general the computer provides the student 
with a greater opportunity for graphical manipulation. Berger (ibid) 
concludes that the learning experience afforded by the graphical calculator 
is significantly different to that which is made available through computer 
technology, and argues that as such this warrants separate research and 
interpretation into the effects of graphical calculators.

3.1.2 Amplification and Cognitive Reorganisation Effects of 
Technology
In seeking to interpret the influence of the graphical calculator on 
students’ learning from a Vygotskian perspective, Berger (1998) regards 
the use of the graphical calculator as an “external activity (manipulating 
concepts via graphs or numbers) which is ultimately transformed into an 
internal activity (understanding maths)” (p. 15). She (ibid) provides a 
useful framework for identifying the way in which the graphical calculator 
mediates students’ learning of mathematics, by drawing on the ideas of 
Pea. Pea distinguished between the ‘amplification effects’ and the 
‘cognitive reorganisation effects’ associated with using technology. The 
‘amplification effects’ refer to the speed and ease by which the student is 
able to operate whilst using the technology. This is similar to 
Tikhomirov’s theory of ‘supplementation’. In contrast the ‘cognitive 
reorganisation effects’ are described as qualitative changes which occur as 
a result of using the technology. In this way cognitive reorganisation
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effects could also be regarded as manifestations of Tikhomirov’s theory of 
re-organisation. The benefits of amplification are regarded as short-term 
phenomenon, providing the student with immediate assistance during 
problem solving. Long-term changes in the quality of learning arise 
through cognitive re-organisation.

Berger (ibid) re-interprets these ideas with respect to a Vygotskian 
framework. The graphical calculator is seen to “amplify the zone of 
proximal development” by creating a situation where the student is able to 
complete more “conceptually demanding tasks” effectively and easily (p. 
15). Cognitive reorganisation is defined as “a systematic change in 
consciousness of the learner as a result of interaction with a new and 
alternate semiotic system” (p. 16). It is proposed that if access to the 
graphical calculator enriches or alters the student’s conceptions, then the 
technology can be seen as a “tool with which to think”, and moreover as a 
“tool which helps thinking to develop” (p. 16). Berger (ibid) argues that 
the learner needs to “engage thoughtfully with the technology”, if 
internalisation is to occur (p. 19). It is not sufficient for a student to be 
merely introduced to the technology. She further suggests that in order for 
the learner to “interact in such a mindful way” he or she needs to “use the 
technology actively and consciously in a socially or educationally 
significant way” (p. 19). Merely using the graphical calculator to provide 
support and verification, rather than as a tool in its own right may limit the 
type of relationship that the user can form with the technology. Indeed, 
Berger argues that the perceived and actual status of the graphical 
calculator in any mathematics course profoundly effects the influence that 
this technology has on the students. Berger’s framework has been used in 
the analysis and interpretation of the data from this thesis. This has helped 
in identifying the ways in which technology mediates students’ learning 
and the kinds of reorganisation that occurs in the classroom as a result of 
introducing graphical calculators.
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3.1.3 Local Communities of Practice
Another useful framework that has further informed the interpretation of 
classroom interactions in this thesis is that developed by Winboume and 
Watson (1998), based on the work of Lave. Winboume and Watson’s 
notion of ‘local communities of mathematical practice’ is regarded as a 
useful way of perceiving classroom situations from a social and 
interpretivist perspective. This is especially so in relation to active 
learning approaches involving the use of graphical calculators and in 
examining the roles that individual students occupy in the constmction 
and negotiation of meaning and how these roles develop through access to 
technology. This framework also provides an indication of whether any 
re-organisation of the classroom occurs in terms of establishing and 
maintaining local communities of practice as a result o f introducing 
graphical calculators.

Winboume and Watson (ibid) propose that any classroom can be regarded 
as an intersection of a multiplicity of practices and trajectories, which 
occur locally in terms of time as well as space. Their notion of ‘local’ 
communities of practice has therefore been developed in recognition of 
the fact that particular practices “might ‘appear’ in the classroom only for 
a lesson and much time might elapse before they are reconstituted” (p. 
178). The following key features are identified as necessary for initiating 
local communities of mathematical practice (ibid, p. 183):

1. Pupils see themselves as functioning mathematically within the 
lesson;
2. There is a public recognition of competence;
3. Learners see themselves as working together towards the 
achievement of a common understanding;
4. There are shared ways of behaving, language, habits, values and 
tool-use;
5. The shape of the lesson is dependent upon the active participation 
of the students;

45



6. Learners and teachers see themselves as engaged in the same 
activity.

Winboume and Watson (ibid) argue that participation in the practice of 
asking questions can enable students to generate mathematical questions 
themselves. Similarly, participation in the practice of using graphical 
calculators can allow students to become ‘masters’ in the use of these 
tools. Ultimately, the students can come to operate masterfully, within the 
constraints of the social setting. The individual student’s ‘positioning’ 
within the community of practice will determine their success as a learner.

The process by which the individual achieves his or her position within a 
community of practice is encapsulated by the notion of ‘telos’. This notion 
presupposes a common direction of learning and Winboume and Watson 
(ibid) broadly describe telos as “an unfulfilled potential to move or change 
in many different ways” (p. 182). They contend that “telos could be 
conceptualised as a set of constraints in some sense inherent in situations 
and in the individual’s pre-dispositions to respond to situations as she 
does” (p. 182). In this sense the individual student’s learning is both 
determinant of the common direction of learning and in part determined 
by the complex paths that the students have taken to be where they are. 
The students fulfil their ultimate positions within the community of 
practice through smaller-scale ‘becomings’ in which they join the practice 
and begin to assume their eventual position. From a rich layering of 
practices and becomings, local practices emerge and are defined by and 
require the active participation of those who together constitute the 
practices. Within such practices there is a strong social pull on all, 
including those who are more peripheral, to participate. The student’s 
experiences at school are mediated by the images of themselves that they 
bring as learners.

To increase the likelihood of establishing local practices, within which 
learners regard themselves as “members of a mathematical community”,
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Winbome and Watson (ibid) envisage an important role for the teacher. 
This entails “constraining the foci for attention and recognising and 
working with pre-dispositions, rather than ignoring them” (p. 183). 
Establishment of such communities is conducive to improving the 
mathematical experiences of students and provides an indicator of 
effective teaching.

If  there is to be access to a community of practice, then according to Adler
(1998) resources used in the practice, such as technology, should be 
transparent: both visible and invisible. Learners need to be aware o f the 
technology (the visible aspect) in order to extend the practice and at the 
same time the technology needs to illuminate mathematics (the invisible 
aspect) so that they enable smooth entry into the practice. Transparency is 
a function of how the technology is used and understood in practice, rather 
than being an inherent feature and depending on the relative transparency 
of the technology, the use of this resource can either enable or impede 
access to mathematical knowledge. For access to be enabled a balance 
needs to be established between visibility and invisibility.

Whenever technology is drawn on, it becomes visible, and is the object of 
attention. It takes on specific and situated meanings in the practices and 
the context of the mathematics classroom. However, if  the technology is 
to enhance and enable mathematics learning, then at some point it will 
have to become invisible. In other words, technology will no longer be the 
object of attention itself, but rather the means to mathematics. Hence, 
Adler (ibid) proposes that mathematical meaning is developed from the 
mediated use of resources and through their relative transparency.

Winboume and Watson’s framework provides a means of focusing on the 
individual student’s participation within the whole classroom community 
and this is an area that has generally been neglected in recent research. 
Hershkowitz (1999) sees learning as a changing membership of 
communities of practice and identifies the need for focusing on the
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individual student’s development as he or she participates in the collective 
construction of shared cognition in small groups or in the whole 
classroom community. She claims that socio-cultural studies focus mostly 
on the interaction or the interactional event itself and that the individual 
student is generally an anonymous participant in classroom episodes. 
Furthermore, this is especially so in relation to the use of technology in 
general and as such consideration of the individual student’s development 
within the social setting forms the basis of much of the analysis and 
interpretation of the data from this thesis.

3.2 Visualisation, Functions and Technology
3.2.1 Technology and Mathematical Exploration of Visual and
Symbolic Modes of Representation
Many studies advocate the usage of computer technology and graphics 
calculators in promoting and enhancing students’ abilities to visualise 
(Hoyles and Healy, 1996; Souza and Borba, 1995; Smart, 1995b; Goforth, 
1992). In particular though, the most extensive research has been carried 
out with respect to computers. Cunningham (1994) recognises two 
essential features that contribute to the success of the computer based 
visual approach in teaching mathematics: the motivational aspect and the 
opportunity to pursue an alternative and yet complementary mode of 
thought to the traditional symbolic approach. For learning to be 
successful, dynamic images are considered to be preferable to static ones. 
As such, Olive (1992) regards computing technologies as tools for 
effective learning, especially when used as a means for mathematical 
exploration. Tall (1991b) states that “the exploratory stage of 
mathematical thinking benefits from building up an overall picture of 
relationships and such a picture can benefit from visualisation” (p. 106).

Hoyles and Noss (1992) argue that the computer opens up a whole range 
of possible alternatives, or ‘strategic apertures’, through which students 
can gain access to approaches and solutions that are simply out of reach 
when using pencil and paper. Similarly, Pea (1987) postulates that

48



because the use of computers is dynamic, it allows student interaction 
with mathematics in ways that would not be possible in non-computer 
environments. He maintains that through the use of technology “students 
can test out hypotheses, immediately see their effects, and shape their next 
hypotheses accordingly through many cycles, perhaps through many more 
cycles than they would with non-computer technologies” (p. 111). Thus 
technological forms are recognised as being mediums in which students 
can make and test predictions. The teachers interviewed by Furinghetti 
and Bottino (1996) were clearly aware of the potential of technology in 
this area, as one member of staff commented: “software is useful to enrich 
students’ experience with mathematical concepts, especially students' 
capacity of visualisation” (p. 132). Thus, it was found (ibid) that 
technology was utilised in the majority of cases with the expectation that 
this would assist students in developing their visualisation skills. 
According to another of the teachers interviewed by Furinghetti and 
Bottino (1996), the success of technology in furthering the learning of 
individual students depends on the type of reasoning methods that 
students use (e.g. visualisation, abstract reasoning). In particular, ‘good’ 
students appeared to benefit from the technology and were able to exploit 
the capacity of using computers.

Tall (1989) suggests that “suitably programmed software can provide a 
tool which compensates for the human deficiency in visual 
communication” (p. 42). He also insists that:

generic organisers (environments that enable the learner to manipulate examples 

and non-examples o f a specific mathematical concept or a related system o f  

concepts) may be used to give a more overall holistic grasp o f  concepts, linking 

them together in a global, often visual way, as distinct from the accent on learning 

sequential processes o f mathematics in the traditional curriculum. (Tall, 1989, p. 

41).
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In such environments meaningful learning can be achieved by active 
participation of the learner during the reception of knowledge. However, 

he recognises that without some external organising agent, such as a 
teacher’s guidance or textbook, cognitive obstacles could arise (Tall, 
1986).

Technology makes external the intermediate products of thinking, which 
can then be analysed, reflected upon and discussed (Pea, 1987). In this 
way, technology externalises visual images and concurrently allows them 
to be manipulated, thus facilitating abstraction (Noss et al, 1997). On 
screen representations of visual objects and relationships can be acted on 
directly, enabling the user to observe the resulting changes in the 
represented relationships. Even more importantly, it becomes possible to 
investigate which actions will lead to a given change in the existing 
relationships, so that the situation can be inverted (ibid). Mason (1995b) 
proposes that the most productive and desirable use of electronic screens 
“requires exploiting not replacing the mental screen, which in turn 
involves seeing screens as things to look through rather than at, in order to 
contact potential generality through the particular screen images” (p. 119). 
The purpose of looking through a screen is to begin to see the screen 
image as an instance of a more general phenomenon, rather than merely 
seeing the particular in the image. He also stresses that screen images tend 
to require more work on the part of the student to be able to see through 
the particulars to the general, so that whilst these may enhance learning, 
they may not necessarily make this less time consuming. The very 
richness and complexity of diagrams increase the potential for ambiguity 
and multiplicity of interpretation, which means that it becomes important 
to “work at flexibility and multiple representations, so as not to be trapped 
in a single interpretation” (ibid, p. 129). He contends that with technology, 
the “notions of symbolic and imagistic begin to intertwine” :
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sometimes it is hard to distinguish between the mental experience and the 

physical screen; the latter acts as a window, and the mental screen becomes 

the world experienced through the window (Mason, 1995b, p. 130).

The “dynamic and interactive media provided by computer software make 
gaining an intuitive understanding of the interrelationships among graphic, 
equational and pictorial representations (traditionally the province of the 
professional mathematician) more accessible to the software user” (Pea, 
1987, p. 96). Hoyles and Healy (1996) similarly argue that the fusion of 
action, visualisation and representation made possible in computer 
environments can provoke cognitive reorganisation. In recognition of this 
potential, Guin and Trouche (1999) advise that the teacher should present 
situations that lead to reflection on the various results arising from 
different calculation modes.

Tall (1987) envisages that the distinction between numerical, graphical 
and symbolic forms of representation will become ‘more diffuse5 as multi- 
representational software is developed. Confrey (1994) argues for a 
‘epistemology of multiple representations5, in which the contrast between 
representations is recognised as significant in achieving the convergence 
of ideas necessary in establishing meaning. By identifying multiple 
representations, we can encourage students to find multiple ways to make 
sense of their results and to develop their sense of flexibility and elegance. 
Multiple approaches support the “diversity in students5 preferences and 
provide alternative approaches to use when faced with cognitive 
obstacles55 (p. 218). She, also, advises (Confrey, 1993) that “in a multi- 
representational tool, no representation should dominate others, and, in 
every representation there is both a loss and a gain55 (p. 66).

Kaput (1992) identifies two key purposes of multiple linked notations: 
firstly, “to expose different aspects of a complex idea55 and secondly, “to 
illuminate the meanings of actions in one notation by exhibiting their 
consequences in another notation55 (p. 542). He contends that since “all
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aspects of a complex idea cannot be adequately represented within a 
single notation system”, multiple systems are required for their full 
expression (p. 530). Multi-representational software, however, could 
contribute towards misunderstanding and confusion amongst students. 
According to O'Reilly et al (1997), “multiple representation software runs 
the risk that the difficulties of reading a representation are simply 
multiplied up by the number of modalities represented on the screen 
simultaneously. The student has to make sense of each modality in turn 
and the links between them” (p. 88).

3.2.2 The Use of Technology and Students’ Understanding of 
Functions
The topic chosen for this investigation has been functions in recognition 
of the fact that this is a key area of the secondary mathematics curriculum, 
especially in relation to GCE Advanced level mathematics. Indeed, 
Confrey and Smith (1992) argue that the importance o f the function 
concept in the secondary curriculum is virtually undisputed. They assert 
that calls for reform of mathematics place the function concept at the 
centre of the curriculum as an integrating concept and that its importance 
is located in its capacity for modelling. Wazir (1993) also comments on 
the significance of the function concept, suggesting similarly that 
functions are the centrepiece of mathematics instruction right across the 
curriculum. Wazir stresses the fact that “the function concept is one of the 
most important unifying concepts for arithmetic, algebra, transformational 
geometry, and calculus” (p. 475).

In the same vein Cuoco (1991) argues that the construction and use of 
functions is a central feature of most mathematical investigations. Yet, he 
also acknowledges that the function concept is notoriously difficult for 
students. He claims that thinking about functions requires students to 
reason about methods rather than about the particular objects themselves. 
Another problem arises from the fact that even when using the function 
concept for a specific purpose, people employ many different levels of
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abstraction when they define, describe and use functions. Thus, whilst the 
function concept is seen to be of central importance in students’ learning 
of mathematics, it is also seen as an area that causes students considerable 
difficulties and is therefore an important research issue, especially in 
relation to new technologies. Leinhardt et al. (1990) suggest that the use 
of technology dramatically affects the teaching and learning of functions - 
perhaps more so than any other early mathematics topic.

In investigating the topic of functions, some researchers have chosen to 
adopt fairly broad definitions of functional thinking, whilst others have 
considered a much more limited concept of functions, as is the case in this 
thesis. Indeed, by focusing on fairly narrow definitions of functional 
thinking, as in this thesis, several researchers have found that by utilising 
graphical software that facilitates visualisation in the graphical context, a 
deeper understanding of functions, equations and inequalities can be 
fostered. For example, Confrey (1994) found that when students are given 
the opportunity to approach functions in a visual manner through the use 
of technology, they are more likely to develop an intuitive understanding 
of translations. Similarly, Bloom et al (1986) reported that students who 
were taught to recognise the graphs of functions as compositions of 
certain transformations of standard functions, using computer software, 
developed a greater understanding of functions and their graphs and in 
less time than those taught in the traditional manner.

Meissner and Mueller-Philipp (1993) also reported that students who had 
access to computer technology were able to develop better solution 
strategies for more problems in less time than traditionally taught students. 
This resulted in better overall performances and an improved 
understanding of functions in the computer students, who were seen to 
develop a relational, as opposed to a merely instrumental understanding 
for the concept of function. Fey (1989) suggests that “computer graphic 
tools can be used to revise the balance between conceptual and procedural
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knowledge in mathematics or create entirely new graphical orientated 
presentations of traditional mathematical topics” (p. 250).

Sivasubramaniam (2000) is another researcher who has found that 
students who explored graphs with computers performed significantly 
better than those using pencil and paper, suggesting that this was a 
consequence of the difference in the distribution of cognition over the tool 
and the individual. As the computer took over a large portion of the 
cognitive process for construction, students were freed to focus their 
attention on interpretation and the development of these skills, rather than 
viewing the construction process as an end in itself, as was a characteristic 
of the paper medium. Sivasubramaniam (ibid) points out that when 
students are confronted by a graphical situation, there are four possible 
alternatives with respect to their existing and possible schema:

• the situation may reinforce their existing schema;

• the situation may cause an alteration o f their existing schema to 

accommodate new information;

• the information provided by the situation is rejected and the old schema is 

retained;

• i f  a pupil does not have a schema then they construct a schema (p. 180).

She proposes that the computer medium provides a means by which each 
of these possible actions can be realised, therefore providing the 
appropriate scaffolding for the development of a schema for graph 
interpretation. In contrast, the pencil and paper medium only supports the 
reinforcement of students’ existing strategies, without direct interaction 
with the teacher or peers.

Hershkowitz and Schwarz (1997) similarly found that the cognitive 
development of students who were given access to technology whilst 
learning about function concepts was greatly enhanced. In particular they 
were enabled to (a) use many examples, (b) provide rich justifications of
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their answers, (c) show more flexibility within and among representations, 
(d) consider the acceptability of answers in light of the context and (e) 
better integrate prototypical elements of their function concept image with 
other examples. Furthermore, the process by which this conceptual change 
occurred was seen to be a product of social interaction and practices as 
well as individual activity. Computer transformations were internalised by 
students and argumentation played an important role in this 
internalisation. As Hoyles and Noss (1992) assert, the process by which 
pieces of mathematical knowledge are appropriated depends on the 
students’ individual agendas, how they feel about their participation, the 
type of teacher intervention, and most significantly, on the setting in 
which the activities are undertaken.

Use of technology can also facilitate the process o f generalisation and 
abstraction. Hoyles et al (1991) considered a fairly broad definition of 
functional thinking and found that students are more likely to formalise 
their arguments when working in technology environments, using 
theoretical descriptions, rather than empirical ones, which are much more 
characteristic of pencil and paper environments. Furthermore, in their 
study, the students’ interaction with the computer was used as a means of 
checking relationships after they had been formalised. In contrast, students 
working in the pencil and paper environment tested their generalisation 
with a number of specific cases as a means of convincing themselves 
before any attempt to formalise. Whilst students need to deal with 
particular functions, Goldenberg (1991) proposes that most o f the 

educational value is gained from the generalisations they abstract from the 
particulars.

The use of technology also has significant implications for the teaching 
and learning of calculus. Ubuz (1994) believes that visualisation in the 
graphical context can help students to understand the relationship between 
differentiation and integration. In general, students have “very weak 
visualisation skills in calculus” which subsequently results in “lack of
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meaning in the formalities of mathematical analysis” (Tall, 1991b, p. 
105). Tail’s (1986) findings indicated that students who used the 
programme, ‘Graphic Calculus’, were much more successful in 
visualising the derivative of a graph as a global function.

Technology is also seen by Smart (1995a) as a means of furthering 
students’ understanding of functions and she stresses that as the advent of 
graphical calculators has made technology more widely available in the 
mathematics classroom, more students are now able to explore functions 
using technological tools. The following section will now focus primarily 
on research that has been carried out with graphical calculators.

3.2.2.1 The Use of Graphical Calculators and Students’ 
Understanding of Functions
An important aspect of developing a robust understanding of the notion of 
function means not only knowing which representation is the most 
appropriate to use in different contexts but also to be able to move flexibly 
between different representations (Knuth, 2000). Use of the graphical 
calculator empowers students to explore, estimate, make discoveries 
graphically and approach problem from a multi-representational 
perspective (Hollar and Norwood, 1999). This in turn allows the student to 
progress from an operational to a structural understanding o f function 
concepts (ibid). Technology enables the teacher to demonstrate effectively 
numerous functions and their graph’s in a manner which could not possibly 
be achieved using relatively unsophisticated resources such as the 
blackboard and consequently gives the students a deeper insight into the 
relationship between functions and their graphs (Chola Nyondo, 1993). 
Technology therefore provides students with the opportunity to view 
many graphs alongside their corresponding equations, which allows them 
to begin to examine the relationship between graphical entailments and 
algebraic parameters (Leinhardt et al, 1990).
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The ability of a student to recognise a given graph as belonging to, or 
resembling some member of a family of functions is a fundamental stage 
in the development of a solution (Ruthven, 1990). For, only when a 
student has been able to identify successfully the family o f functions to 
which the graph belongs can the correct symbolisation be constructed 
(referred to as the ‘process of refinement5). Goldenberg (1991) suggests 
that graphical exploration “provides valuable scaffolding for the required 
symbolic manipulations55 (p. 85). Students must be visually aware o f the 
effects of particular transformations and of the corresponding symbolic 
modifications. In this respect, graphical calculators could be utilised in 
enabling students to experiment with and investigate various graphs of 
functions prior to a more formal teaching approach (Cunningham, 1994). 
Students using graphical calculators are able to access and compare the 
graphs of many functions belonging to the same family, quickly and 
relatively easily, allowing them to see relationships between the graphs for 
themselves and to draw their own generalisations (Ruthven, 1990). In this 
way, graphs of a greater complexity could be explored, exposing students 
to more advanced and more challenging mathematics, perhaps beyond 
their current level, thus amplifying the zone of proximal development.

The graphical calculator can thus enable students to learn and understand 
function concepts at a higher level than previously available in the 
traditionally taught classroom (Shoaf, 1996). This occurs as conceptual 
understanding takes the place of rote understanding (ibid). Students who 
are normally passive become “actively involved in the discovery and 
understanding process, no longer viewing mathematics as simply the 
receiving and remembering of algorithms and methods of solution55 
(Shoaf-Grubbs, 1995, p. 227). Moreover, when students are more actively 
involved in the learning process through the use of technology, concepts 
that have been acquired are likely to be retained over a longer period of 
time (Guttenberger, 1992; Shoaf, 1996). A lack of familiarity or 
competence with algebraic techniques does not stop a student from 
exploring complicated graphical representations of functions generated by
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technology (Leinhardt et al, 1990). On the contrary, through the use of 
technology, it is possible to explore ideas of functionality independently 
of manipulative algebra (Ruthven, 1996).

Selinger and Pratt (1997) propose that the use of graphical calculators can 
support and develop students’ mental images by making them more 
robust, suggesting that an experienced user is likely to form some sense of 
the characteristics of functions, through contrasting their images with the 
feedback provided on the screen. They suggest that technology can 
become a “vital medium for validating students’ naive attempts at 
expressing their mathematical ideas” (ibid, p. 39). As the student is the 
one who controls and formulates the input and then makes sense of the 
output, the graphical calculator can be used as a tool for mediating 
mathematical meaning. In addition, “the teacher can enter the world of a 
student’s thinking through the screen as if it were a window on the 
students’ mind, using this insight as a means to help scaffold the students’ 
understanding” (ibid, p. 40). Noss et al (1997) also maintain that 
technology environments provide windows into students’ meaning 
making.

Mesa (1997) found that the graphical calculator supported her students’ 

abilities to solve problems involving functions in two distinctive ways, 
which differed depending on the students’ prior experiences of functions. 
Firstly, the graphical calculator was used as a verification tool whenever 
the problems to be investigated by the students related to their prior 
knowledge of functions. In this way, the technology proved to be crucial 
for enabling students to detect any mismatches in their approaches. On the 
occasions where the problems posed did not relate to the students’ 
previous knowledge of functions, however, the graphical calculator was 
alternatively used as a tool for exploration.

Doerr and Zangor (2000) also found that students used the graphical 
calculator in different ways. They reported the emergence o f five rich
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patterns and modes of graphical calculator use in the classroom, which 
were influenced by the nature of the mathematical tasks and the role, 
knowledge and beliefs of the teacher. The graphical calculator was seen to 
take on the role of (i) a computational tool; (ii) a data collection and 
analysis tool; (iii) a visualising tool (iv) a tool for checking conjectures 
and (v) most significantly as a transformation tool, whereby tedious 
computational tasks were transformed into interpretation tasks. These 
patterns of graphical calculator use were not mutually exclusive and as the 
students’ understanding grew certain modes were replaced by others. For 
example, the graphical calculator shifted from that of a visualising or 
graphing tool to a visual checking tool as the students grasped the ideas of 
transformations. This transformation in the way in which the graphical 
calculator was used supported students’ thinking about the idea of the 
non-uniqueness of the algebraic representations for exponential or 
trigonometric graphs (Doerr and Zangor, 1999). However, Doerr and 
Zangor (2000) stress that it is important to make students aware that the 
graphical calculator cannot provide the authority for a mathematical 
argument by itself. The students in their study thus came to realise that 
there was also a need to check the absolute reliability of results produced 
by the graphical calculator based on their own mathematical 
understanding.

Shumway (1990) insists that the availability of graphical calculators 
trivialise mathematical computations, rather than the mathematical 
problems to be explored. As a consequence emphasis should be placed on 
developing conceptual understanding through technology, focusing on:

• The meaning o f a representational graph;

• The relationship between the function graphed and the actual problem;

• What to do when such methods produce erroneous solutions or no solutions 

at all;

• The proof that the result is correct (Shumway, 1990, p. 3).
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However, Ruthven (1996) points out that computation with the graphical 
calculator is not a completely trivial and automatic process. For example, 
to sketch the graph of some specified expression, the student must first 
translate this into a suitable format for entering into the machine and then 
choose an appropriate range and scale for the axes. Furthermore, using the 
technology does not imply that the students’ own computational skills will 
be adversely affected (Hollar and Norwood, 1999).

In a review of research into the impact of graphical calculators on the 
teaching of functions, Dunham and Dick (1994) report that use o f this 
technology can empower students to become better problem solvers, 
through:

(i) freeing time for instruction by reducing attention to algebraic 

manipulation;

(ii) supplying more tools for problem solving, especially fo r  students with 

weaker algebraic skills, and serving as a monitoring aid during the 

problem solving process;

(iii) enabling students to perceive problem solving differently as they are 

freed from computational burdens, allowing them to concentrate on 

setting up the problem and analysing the solution (p. 442).

They conclude that graphical calculators can facilitate changes in the roles 
of students and teachers in the classroom, resulting in the creation o f more 
interactive and exploratory learning environments, where the technology 
is a catalyst rather than an obstacle to mathematics learning. Mesa (1997) 
recognises a need for teachers to provide students with “problems that can 
be solved either with or without the use of the graphical calculator, but 
such that if the graphical calculator is used the student can pursue 
different approaches, do more exploration and make more generalisations” 
(p. 246). She also emphasises the need for developing classroom 
environments where exploration is important, in which the teacher’s role 
is to provide limits to that exploration. Selinger and Pratt (1997) recognise
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the need for mediation between the student, teacher and screen. They 
propose that there is an important role for the teacher in a graphical 
calculator environment in acting as an arbitrator in deciding whether a 
student’s way of expressing mathematical thinking is valid. This role 
involves intervening where appropriate and pointing out the correct usage 
of acceptable mathematical notation, especially where graphical 
calculators or computers are directly involved. This thesis aims to build on 
the existing body of literature concerning the relationship between 
students’ learning of functions, the teaching they experience and their use 
of graphical calculators.

3.2.3 Problems Associated with the Use of Technology
Carulla and Gomez (1997) appreciate that whilst the use of graphic 
calculators can enhance the learning of functions and graphing concepts, 
there may be associated problems. Their findings indicate that in certain 
circumstances students might misunderstand, misinterpret and, thus, 
misuse information provided by the graphic calculators. Similarly, 
Goldenberg (1987) found that students often misinterpreted what they saw 
in the graphical representations of functions that had been produced using 
technology. Moreover, he noted that when these students were left alone 
to experiment, without the input from a teacher, they could induce rules 
that were incorrect. Different students bring a variety of general strategies 
to their interpretations of graphs (Goldenberg, 1991). Interpretation is 
especially important when emphasis is placed on abstracting and relating 
features of several graphs, rather than on reading specific values off o f the 
graph. However, for graphs to be interpreted correctly, specific 
mathematical knowledge and expectations are required. Students who lack 
this knowledge are likely to misinterpret graphical information and invent 
complex and misleading explanations of the inter-relatedness o f graphs 
(ibid). Goldenberg proposes that mathematically rich problem situations 
that derive from ambiguities in graphical representations of functions can 
be generated and overcome by identifying patterns in students’ 
misinterpretations. Chola Nyondo (1993) also stresses that the teacher
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plays a vital role in developing the background theory that is necessary for 
students’ learning to be successful with technology.

The absence of a clearly labelled scale on the co-ordinate axes of graphs 
produced by the graphical calculator can also cause difficulties for 
students when trying to identify what part of a graph is being displayed 
(Doerr and Zangor, 1999; Ruthven, 1996). Doerr and Zangor (2000) found 
that this limitation increased the difficulties that students had in 
interpreting periodic graphs in particular. Leinhardt et al. (1990), with 
findings similar to Goldenberg (1987), stress that the issue of scale 
becomes much more fundamental when technology is used, especially as a 
graph cannot be interpreted fully without taking into account its scales. 
This makes it even more important for students to develop strategies to 
determine whether or not the portion of a graph visible on screen is 
reliable and representative of the behaviour of the graph as a whole. 
Leinhardt et al. (ibid) warn that if gone unchecked, incorrect images 
produced by technology may be remembered by students, which can cause 
misunderstandings to be perpetuated in future work.

Carulla and Gomez (1997) also reported that the use o f graphical 
calculators could encourage students to concentrate on graphical 
representation systems at the expense of verbal and symbolic 
representations. In contrast, Penglase and Arnold (1996) found that 
graphic calculators could promote the transition between symbolic 
manipulation and graphical investigation and exploration of the different 
modes of representation associated with particular concepts. Ruthven’s 
study (1990), also, supported the view that regular use of graphic 
calculators would probably ‘strengthen’ and ‘rehearse’ relationships 
between certain symbolic and graphic forms (p. 447).

Another potential problem associated with the use of graphical calculators 
or computers is the possibility that students might regard the solutions 
provided by the technology as irrefutable, and thus become too heavily
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reliant on the machines (Smart, 1995b, Guin and Trouche, 1999). Students 
using graphical calculators regularly should ideally be able to recognise 
when, due to scale factors, a particular portion of a given graph is not 
visible on the screen. However, a lack of understanding of the principles 
underlying graphing, facilitated and reinforced by over-reliance and blind 
faith in technology, can lead students into believing that the image on the 
screen represents the whole graph, rather than merely a window 
displaying part of the graph. Smart (ibid) and Leinhardt et al. (1990) refer 
to this as the ‘magic’ element of the technology, and insist that the teacher 
needs to be wary of this effect. Similarly, Doerr and Zangor (2000) claim 
that one of the major constraints and limitations of the graphical calculator 
resides in students’ attempts to use it as a ‘black box’, without having a 
meaningful strategy for its use. Guin and Trouche (1999) found that the 
students’ dependency on the graphical calculator was gradually eroded 
through co-ordinating the use of this technology with other media in the 
classroom, such as pencil and paper. This resulted in a decreasing trust of 
the results produced by the technology. In addressing the issue of 
dependency, Guin and Trouche (ibid) see a crucial role for the teacher, 
suggesting that an unaccompanied acquisition of the use of the graphical 
calculator may be dangerous to the conceptualisation process.

Zimmerman (1991) emphasises that if technology is used appropriately in 
the classroom, so that it is not merely used as a ‘crutch’, students can be 
given the power to master visual thinking skills, such as those associated 
with elementary function sketching. He proposes that students should be 
encouraged to work out the geometrical properties of a function by 
themselves before using the technology, wherever this is possible. In this 
way, the role of the technology is to verify calculations and conjectures 
about functions, to fill in quantitative details, and/or to plot functions of 
higher order complexity. Alternatively, computers or graphical calculators 
could be used to enable students to explore and experiment with the 
properties of graphs. However, Zimmerman (ibid) stresses that guidance, 
feedback and eventually a synthesis of important results must be built into
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the process. Zimmerman (ibid) further emphasises that the use of 
technology does not remove the need for the students to understand the 
properties of functions in order to graph them. Indeed, he sees the ability 
of students to recognise incorrect or misleading graphs produced by the 
technology, and then to make an appropriate interpretation as a component 
of visual thinking.

One should not assume that access to technology will automatically 

improve students’ abilities to comprehend new concepts, to visualise, to 
learn more effectively or to retain knowledge. Simply interacting with 
technology is not sufficient to ensure that students will ‘acquire’ specified 
mathematical ideas (Hoyles and Noss, 1992). Zimmerman and 
Cunningham (1991) assert that without certain fundamental visualisation 
skills (such as the ability to construct, interpret, and use simple figures as 
aids to problem solving) it is doubtful that computer-based visualisation 
can be used efficiently or even meaningfully. Similarly, in the absence of 
a set of guiding principles to relate visualisation to the content and 
learning objectives of the course, any use of computer generated imagery 
is likely to be ineffective (Zimmerman, 1991). It is not sufficient merely 
to have access to technology, for sense-making does not follow 
automatically from direct manipulation, just as articulation does not 
necessarily arise from sense-making (Mason, 1995a). The awareness of an 
expert, a teacher, is required to encourage and support these transitions. 
The presence of teachers who are aware of their own awareness and can 
direct and stimulate students in sense making and articulating that sense is 
crucial (ibid).

Research suggests that students tend to find moving from a graph to an 
equation more difficult than moving from equation to graph, as there are 
different psychological processes involved (Leinhardt et al, 1990). Kaput 
(1992) suggests that it might be productive for the students to establish 
some idea of the links between different representation systems before 
technology is used, allowing them to gain some appreciation of the need
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for such connections to be made. Eisenberg and Dreyfus (1987) argue that 
students’ tend to view graphs as being peripheral to the function itself, as 
an “additional load”; and as a consequence will avoid dealing with them 
wherever possible. They believe that teachers are responsible for:

• Transmitting to the students a more well-rounded concept o f  what a function is, 

namely an abstract mathematical object having any o f  several concrete 

representations; one o f the most useful o f  which is a graph,

• Teaching students to recognise those situations where graphical processing o f 

functional relationships is more efficient than algebraic processing (Eisenberg 

and Dreyfus, 1987, p. 191).

In their study the more able students were unexpectedly reluctant to 
experiment with unfamiliar functions using the technology, whilst the 
weaker students tended to experiment more with new formulae. However, 
the weaker students did not attempt to think them through beforehand 
(ibid).

Laridon’s (1996) study also provides some interesting and yet rather 
unexpected results. His research concerns the effectiveness o f the 
graphing calculator in the teaching and learning of function transformation 
concepts. As part of the teaching-learning process, particular emphasis 
was placed on enabling the learner to make generalisations, in view of the 
students being able to elicit a global view of common behaviour. Post
tests revealed that the group of students working with pencil and paper 
and ordinary scientific calculators, on average, outperformed those who 
used the graphing calculators. Moreover, the retention of the point- 
plotting group was higher. However, a “finer analysis which provided 
scores on specific conceptual elements within the test did not detect any 
qualitative differences across the two groups” (p. 182). This may have 
been a consequence of how the graphical calculator was used in this 
classroom. Many researchers (Berger, 1998; Gomez and Fernandez, 1997;
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Penglase and Arnold, 1996) emphasise that the way in which new 
technology is integrated into the curriculum affects the learning outcomes.

Hewitt (1992) stresses that mathematical exploration in the classroom is 
often reduced to obtaining numerical results, finding patterns and 
generalising, rather than investigating particular situations in depth, which 
leads to more meaningful discovery. He questions whether “the diversity 
and richness of the mathematics curriculum is being reduced to a series of 
spotting number patterns from tables” (ibid, p. 7). Noss et al (1997) also 
recognise this as an undesirable, but common characteristic o f school 
mathematics, especially in the UK, where students happily search for 
relationships by constructing tables of numerical data, without 
appreciating the need to understand the structures underpinning them. 
Cunningham (1991) argues that in order for visualisation to be introduced 
satisfactorily in the curriculum, the number of topics covered must 
necessarily be curtailed. He suggests that since manual symbolic 
manipulation and rote number crunching are “becoming less productive 
and appropriate” they are thus, reasonable choices to be replaced by 
visualisation in the curriculum (p. 72). However, to maintain
mathematical rigour, some symbolic manipulation needs to be approached 
by hand. In other words, in keeping with the traditional view of learning 
mathematics and in preparing students for examinations, as well as 
enabling them to make sense of each representation system through 
exploring the links between them, there is a need for some symbolic 
manipulation to be attempted on paper. If students were completely reliant 
on technology to perform all symbolic operations, there is a possibility 
that these processes would become less understood, especially as there 
would no longer be the need for students to necessarily apply any in-depth 
thought to the algebraic problem solving process. The technology could 
possibly supply students with an answer to a given problem, without 
detailing the way in which this solution was derived. In this manner 
students miss out on seeing, following and reproducing the individual 
steps in the process for themselves. Moreover, these students would be
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denied the opportunity to explore an equally important area of 
mathematics. Hughes Hallett (1991), on the other hand, advocates 
replacing only the particularly “torturous analytical procedures with more 
graphical and numerical work”, thus “emphasising the interpretation of 
results as well as computation”, and instigating student thinking (p. 125).

3.2.4 Technology, Collaboration and Confidence
Several researchers have found that the use of technology can encourage 
collaborative learning (Hudson, 1996; Smart, 1992; Olive, 1992) and 
promote equal opportunities (Smart, 1992). Indeed, “introducing the 
graphic calculator as a tool for collaborative and investigative 

mathematics is the way forward to empowering a l l  pupils” (ibid, p. 14). In 
particular, female students, especially, have welcomed and benefited from 
the opportunity to use graphic calculators, as they feel more comfortable 
using such personal and private forms of technology (ibid). Furthermore, 
Smart’s study (1995b) of thirteen year old girls suggested that graphic 
calculators enabled these girls to “develop strong visual representations of 
functions given in the symbolic form” and in addition “allowed them to 
become unusually confident in talking about mathematics” (p. 195). 
Because of the ease with which the graphical calculator produces visual 
images of functions and the need for students to retain these pictures, 
Smart (1995a) found that these girls were prompted into talking about and 
describing their mathematics using more ‘appropriate’ mathematical 
language. In other words the graphical calculator provided an additional 
stimulus for meaningful talk (ibid).

Ruthven (1990) proposes that regular use of a graphic calculator can 
reduce student uncertainty and anxiety, and hence improve the confidence, 
competence and performance of all students. He argues that the graphical 
calculator provides the student with the facility to experiment with 
different ideas and methods, which leaves the student feeling more 
confident with complex and unfamiliar problems. Significantly, though, 
the relative attainment of the female students in his project group was
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greatly enhanced through the more extensive and accurate exposure to 
symbolised graphical images that the graphic calculator provided. The 
graphical calculator allows learning to occur on a more informal, as well 
as private basis, which can be an important factor in building confidence 
(Ruthven, 1996). Guin and Trouche (1999) also found that using the 
graphical calculator improved the self-confidence of students. Pea (1987) 
recognises the significance of collaboration with peers in helping to build 
individual students’ confidence, suggesting that self-esteem can grow in 
collaborative computer environments where students view one of their 
peers as an expert.

Smart (1995b) began her study with the belief that the “presence of a 
visual image on the calculator screen pushes the learner into further 
investigations, enabling them to talk with confidence about mathematics” 
(p. 196). Her findings indicated that graphic calculators enabled these 
particular students to construct a “more fundamental visual image of 
equations given in the symbolic form” (p. 202). Consequently, these 
students chose to use visual reasoning when generalising and problem 
solving, rather than symbolic manipulations. Thus, her students became 
less reliant on symbolic manipulation as the predominant technique in 
problem solving. Indeed, students who are given the opportunity to 
develop graphical and numerical algorithms for understanding functions 
and are able to use these effectively could legitimately question the need 
for symbolic skills (O’Reilly et al, 1997).

Undoubtedly, the introduction of the graphical calculator into the 
classroom significantly changes the climate of the classroom (Dunham 
and Dick, 1994). This in turn however can, initially at least, lead to 
uncertainty. Gage (1999) argues that there is a disturbance to the normal 
social order in the classroom when students first use graphical calculators 
and that this may initially cause anxiety amongst students, “because 
nobody knows where they are in the ‘pecking order’ anymore” (p. 16). 
Students who are normally seen to be ‘good at maths’ can find themselves
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disadvantaged because they now need to work at their understanding of 
mathematical concepts, whereas this may not have been needed 
previously. Paradoxically, those students who have had to learn to “work 
at new things” can find themselves suddenly elevated to a position of 
much greater competence than they are used to. In Gage’s study some of 
the students who would normally be expected to achieve very highly were 
either intimidated by the task or thought it was a waste of their time. 
However, the anxieties experienced by students were gradually overcome 
as their confidence in and experience of using the technology grew, along 
with the support of the teacher. The graphical calculator can ultimately 
empower students by giving them a private space in which to experiment 
and gain confidence (ibid).

Fey (1989) also acknowledges that there is a notable change in the roles 
and interactions of teachers and students accompanying the use of 
computer generated graphs as the focus of classroom discussion. Many 
students perceive traditional mathematics as a “formal game played 
according to arbitrary rules -  a contest between teacher and student in 
which the challenge is to figure out secrets that the teacher keeps hidden” 
(ibid, p. 250). Within a computer environment, however, the classroom 
becomes a setting for student and teacher collaboration in which they 
attempt to make sense of the mathematics that is displayed before them. 
The teacher’s role necessarily shifts from giving demonstrations of “how 
to” produce graphs, to providing explanations and asking questions of 
“what the graph is saying” about an algebraic expression or a situation it 
represents. In the same vein, the students’ task is transformed from the 
plotting of points and drawing curves to developing explanations of key 
graph points and/or global features (ibid). Sutherland (1991) also 
emphasises that, through interacting with the computer, students are able 
to refine their own constructions, which contrasts with the traditional 
classroom situation in which students have to be told by a teacher that 
their constructions are incorrect. The computer provides an alternative 
source of explanation and validation (Hoyles and Noss, 1992). Moreover,

69



as the students’ sense-making occurs primarily as a result of the 
interaction between the student and the screen, rather than between the 
student and the teacher, the negotiation of meaning between the student 
and teacher becomes more equal (Selinger and Pratt, 1997).

The implementation of new technology also has implications with respect 
to the issue of control, as well as the social structure of classrooms (Kaput, 

1992). Pea (1987) sees a technology as a means by which students can 
gain power and suggests that:

by infusing life into learning tools for mathematics, by integrating supports for  

the personal side o f mathematical thinking with supports for knowledge, we 

can perhaps help each child realise how the powerful abstractions o f  

mathematics confer personal power (Pea, 1987, p. 116).

However, this source of power is not always exploited. Students can be 
reluctant to use the graphical calculator because they feel that doing so 
would sacrifice their intellectual autonomy, and ultimately they would be 
surrendering control of a mathematical argument (Ruthven, 1996). Povey 
and Ransom (2000) found that there was definite resistance, as well as 
enthusiasm, for the use of technology amongst the students in their study. 
In particular, many students were vehemently opposed to the idea of being 
taught to press buttons without sufficient understanding of the 
mathematical processes used by the technology to generate the output. 
There was a sense that these students associated conceptual 
‘understanding’ with the ability to perform pen and paper algorithms and 
consequently, they assigned importance to the learning o f equivalent pen 
and paper methods before technology is introduced. In their desire for 
understanding, the speed and opacity of the technology were seen to 
deprive them of their sense of control. Not knowing how the technology 
produces its results made the students feel out of control of their learning 
and they subsequently saw a need for these results to be checked by hand 
in order to regain control. Fears of dependency on the technology were
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expressed by several students, which they felt could result in lack of 
motivation for understanding and individual laziness. Thus, Povey and 
Ransom (ibid) conclude that for some students a strong sense of self can 
be placed in jeopardy by the use of technology. However, this does not 
mean that technology should not be used, rather they argue that teachers 
should “heed and work with students’ concerns in ways which respect 
their roots in issues of personal worth and identity” (p. 61). Students’ 
reluctance to use technology, however, can have beneficial consequences. 
Guin and Trouche (1999) propose that students who are more unwilling to 
use the graphical calculator can construct a more efficient relationship 
with the technology, whilst retaining a certain objectivity.

Technology is increasingly seen as a tool to support both the learning and 
teaching process and to foster interaction in the classroom (Furinghetti 
and Bottino, 1996). The computer draws the attention of the students and 
becomes a focus for discussion (Hoyles et al, 1991). Carulla and Gomez 
(1996) found that following the introduction of graphic calculators in a 

university course, mathematical knowledge appeared to be constructed 
socially rather than individually. Indeed, as discussed previously, 
technology mediates both teacher-student relationships and interactions 
between students, thus initiating some form of classroom re-organisation, 
the nature of which is dependant on the type of technology in use (Borba, 
1996). Consequently, the computer and graphics calculator are recognised 
as mediums that promote communication (Hudson, 1997; Valero and 
Gomez, 1996). Pozzi et al (1993) maintain that introducing the computer 
into group settings changes particular aspects of the interaction, bringing a 
new dimension to group work, that is qualitatively different from group 
work occurring without technology. Working with the computer reduces 
the cognitive distance between students, creating the opportunity for all of 
the participants to gain a new perspective on the problem, or to co
ordinate different perspectives. In their study, there was found to be a high 
association between students who dominated the resulting interaction and 
those of high mathematical ability. They propose a scenario for optimal

71



learning that arose from their research in which students first engage in 
mutual discussion with peers in the context of construction with the 
computer, then they come across the perspectives of others in whole class 
discussions. This allows students to develop understanding and strategies 
for solving problems in their small group discussions and explorations, so 
that they can make sense of any possible conflicting strategies from their 
peers. It also prevents students from remaining centred on their own way 

of understanding the problem, which might inhibit further learning, 
through discussion in the whole class context. However, whilst 
Furinghetti and Bottino's study (1996) showed that “software favours the 
communication between the students and the teacher” (p. 134), 
surprisingly few teachers assigned importance to the interactions between 
students.

Chronaki and Kynigos (1999) argue that collaboration in computer based 
learning environments can be used to augment ways of acting which 
generate common meanings with respect to activity. Indeed, Hoyles et al 
(1991) found that students were actively involved in negotiating goals and 
processes, brainstorming solution strategies, justifying ideas and actions, 
and developing a shared language for communicating actions, when 

collaborating within a computer environment.

Teasley and Roschelle (1993) also see technology as a resource that 
mediates collaboration, by providing an enriched background for students5 
talk and action. Through the use of computers students are enabled to “use 
the powerful resources of everyday conversation to converge on robust 
shared meanings for technical concepts55 (ibid, p. 255). However, 
individuals must make a conscious, continuous effort to co-ordinate their 
language and activity with respect to shared knowledge. Collaboration 
does not necessarily happen because individuals are co-present (ibid). 
Indeed, Doerr and Zangor (2000) found that personal use of the graphical 
calculator served to break down group communications. In their study, 
whilst the use of the technology as a shared device supported
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mathematical learning in the whole class setting, the use of the graphical 
calculator as a personal device was seen to inhibit communication in a 
small group setting. This was particularly apparent when students that had 

individual difficulties would seek help from the teacher rather than peers.

Doerr and Zangor (2000) following Penglase and Arnold (1996) suggest 
that research into students’ learning with graphical calculator should take 
account of the social context of the learning environment. Kaput (1992) 
argues that computers fundamentally alter the nature of work in the 
classroom, not merely its efficiency, accessibility or scope. Besides work 
being finished more quickly, the actions necessary to accomplish tasks 
change (Pea, 1987). Whilst the introduction of technology encourages 
innovation, the important changes that occur are a result of the 
corresponding changes in teachers’ beliefs about mathematics, teaching, 
learning, students and appropriate use of classroom time (Kaput, 1992). 
Using technology therefore enables some students to challenge their 
existing understanding of the nature of mathematics and of mathematical 

knowledge, as their experience of mathematics changes (Povey, 1995). 
Knowledge and authority are shared (ibid).

Guin and Trouche (1999) stress that the teaching process needs to take 
account of the fact that the transformation of the graphical calculator into 
an efficient mathematical instrument varies from student to student, 

especially amongst their abilities to interpret and co-ordinate the results 
produced by the technology. They maintain that the “instrumentation 
process is slow and complex, because it requires sufficient time to achieve 
a reorganisation of procedures” (p. 223). In their view, the introduction of 
technology leads to renewal of teaching practices through taking over 
technical computations, which potentially promotes more conceptual 
understanding. In this context they see the new role of the teacher as one 
which involves organising and encouraging interaction within the 
computational environment and is essential in shaping the relationship 
between the computational media and mathematical knowledge (ibid).
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Hoyles and Noss (1992) propose that a “combination of both on-computer 
activities and off-computer negotiation and discussion are critical in 
bridging the discursive disjuncture between the two practices -  helping 
students to link intuitions derived from the computational interactions and 
their formal mathematics” (p. 54).

There has, however, been relatively little research carried out to date on 
visualising functions in a collaborative setting using graphical calculators 
and on the complex set of factors that are involved in enabling students to 
derive meaning in such an environment. In particular, as Hershkowitz
(1999) suggests the role of the individual student in the collective 
construction of shared knowledge has been largely neglected. It is in 
seeking to explore these areas that it is hoped this thesis is distinguished 
from previous work.
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CHAPTER 4 
RESEARCH METHODOLOGY

4.0 Overview
This chapter initially describes the methodological approaches that have 
been influential in developing the overall research methodology in this 
study. These approaches are subsequently considered in relation to the 
aims and objectives of the research and the theoretical perspective that has 
been adopted. The corresponding methods of enquiry are then discussed 
and the distinct phases of the research outlined. The chapter is concluded 
with a discussion of data analysis.

4.1 Introduction
This research has consisted of three distinct phases, each of which could 
be characterised as a ‘study of singularities’, following Bassey (1995). 
The process of investigating a singularity involves describing, analysing, 
explaining, interpreting and possibly justifying, something which occurred 
at a particular place and at a particular time. According to Bassey at the 
point where it becomes the subject of study, “a singularity is a set of 
anecdotes about particular events occurring within a stated boundary, 
which are subjected to systematic and critical search for some truth” (p. 
111). Furthermore, “this truth while pertaining to the inside of the 
boundary, may stimulate thinking about similar situations elsewhere” 
(p .l l l) .

Bassey (ibid) proposes that the term study of a singularity embraces 
virtually every kind of empirical study and is preferable to the phrase 
‘case study’ because this is often associated with generalisation. The 
findings of singularity studies are merely r e l a t e d  to populations outside 
the boundary in space and time. As such studies of singularities tend to be 
undertaken on a small scale and are consequently very detailed. This 
approach is seen to be consistent with the objectives and theoretical 
perspective of the study. As such, the three distinct phases of this study
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have involved small scale and detailed enquiries surrounding singularities. 
In each case, the findings of the study that would be of interest to the 
mathematics educator community have been identified and consideration 
has been given to how the findings might be related to situations outside 
the immediate context of the research. Any further generalisations that 

could be drawn from these results lie in the readers’ interpretations of the 
text in relation to their own experiences.

In conducting these studies of singularities, a qualitative interpretivist 
methodology has been adopted, which has governed the collection, 
analysis and interpretation of all data. The interpretivist perspective was 
considered to be the most appropriate philosophical position in relation to 
the goals of this thesis, since it is based on the assumption that "all human 
activity is fundamentally a social and meaning-making experience" 
(Eisenhart, 1988, p. 102). From the interpretivist perspective “meaning 
and action, context and situation are inextricably linked” and consequently 
make no sense when considered separately (p. 103). The main aim of 
interpretivist research is to enable the researcher to ‘make sense’ of the 
participants’ world from their perspectives which resonates with the 
objectives of this research. To allow the interpretivist researcher to 
achieve this aim, ethnographic research methods were developed and have 
been used in this study to the same end.

4.2 Ethnography
The tenets of ethnography are derived from an interpretivist perspective 
(Hammersley and Atkinson, 1983; Eisenhart, 1988; Cohen and Manion, 
1994; Woods, 1996). Goetz and LeCompte (1984) regard educational 
ethnography as an investigative means by which to study human 
behaviour. They argue that “broadly conceptualised” educational 
ethnography “includes studies of enculturation and acculturation from 
anthropology, studies of socialisation and institutionalised education from 
sociology and studies of sociocultural learning and cognition, o f child and 
adult development from psychology” (p. 13). The latter of these types of
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study encompassed by educational ethnography considers aspects of 
students’ learning that reflect the objectives of this thesis. The purpose of 
educational ethnography is described as being “to provide rich, descriptive 
data about the contexts, activities, and beliefs of participants in 
educational settings”, which can be used for evaluative studies, purely 
descriptive studies or for theoretical enquiries such as in this research 
(Goetz and LeCompte, 1984, p. 17). In conducting an ethnographic 
theoretical enquiry, the researcher repeatedly ‘tests’ an emergent theory of 
culture or social organisation by evaluating various questions, methods 
and interpretations. The ultimate goal of this critical analysis is to provide 
a theoretical explanation that encompasses all of the data and provides a 
comprehensive picture of the complex meanings and social activity 
(Eisenhart, 1988). The findings of such ethnographical studies may thus 
shed light on ways to improve practice (ibid).

Educational ethnographers are interested in the processes of teaching and 
learning; the intended and unintended outcomes of observed patterns of 
interaction; the relationship between certain educational actors, such as 
parents, teachers, and learners; and the sociocultural contexts within 
which ‘nurturing’, teaching and learning occur (Goetz and LeCompte, 
1984). These areas of interest certainly resonate with the focal points of 
this research. In essence, the worlds of individual teachers, students and 
administrators are documented for “unique and common patterns of 
experience, outlook, and response” (p.31). Ball (1993) argues that the 
tradition of ethnographic research implies a need for the researcher to 
search consciously for meaning, to suspend any preconceptions and to be 
oriented towards discovery. The researcher has to interpret the situation 
and then vary his or her action accordingly. Ball believes that the process 
of ethnography is thus defined by the self-conscious engagement o f the 
researcher within the world that is being studied. In the following 
diagram, figure 4.1, he offers a heuristic representation o f the 
ethnographic research process:
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Figure 4.1: A Heuristic Representation of the Ethnographic Research 
Process (Ball, 1993, p. 34)

Goetz and LeCompte (1984) suggest that the results of educational 
ethnography contribute to the improvement in educational and school 
practice in several ways. In particular, ethnographical research can enable 
connections to be made between research activity, educational theory and 
pragmatic concerns. This occurs through the ethnographer’s focus on the 
life world and perspective of those involved, which can confirm the reality 
experienced by educators and demonstrate concretely any relationship 
between theory and practice. Indeed, Hammersley and Atkinson (1983) 
suggest that “the value of ethnography is perhaps most obvious in relation 
to the development of theory” (p. 23). The flexibility o f ethnographical 
research means that “the strategy and even directions o f the research can 
be changed relatively easily, in line with changing assessments o f what is 
required by the process of theory construction”, leading to effective and 
economic development of emergent theories (p. 24).

Eisenhart (1988) argues that the ethnographic researcher does not merely 
adopt the views of those being studied. On the contrary, the researcher 
must also “be able to step back from the immediate scenes of activity and 
to reflect on what is occurring from the perspective of someone who is 
aware of other systems and of theoretical perspectives on socio-cultural 
systems” (p. 105). In general, the data obtained represent educational



processes as they happen and the outcomes of these processes are 
reviewed within the “whole phenomenon” (ibid). Events are not isolated 
from one another. The ethnographer is seen as the “essential research 
instrument” (Wolcott, 1975, cited in Goetz and LeCompte, 1984, p.101) 

and his or her role as a data collector must ‘mediate’ all the other roles 
that are undertaken (ibid).

Doerr and Zangor (1999) propose that most of the existing studies on 
graphical calculators are quasi-experimental in design and give little 
insight into how and why students use graphical calculators. They believe, 
as is the view taken in this thesis, that the “psychological and sociological 
aspects of learning are co-ordinated as an active process in which students 
reorganise their thinking through their interactions in the social context” 
(p. 266). This social context includes the tools and representation systems 
that are shared amongst the students and teacher. Both the teacher and the 
students are seen to construct the meaning and the role of the graphing 
calculator as a tool for mathematics learning. This occurs through their 
“interactions, communications and shared use of the tool” (p. 266). 
Consequently in seeking to study the role of the teacher and the patterns 
and modes of graphing calculator use in the classroom, Doerr and Zangor 
advocate the use of qualitative research methods, which would certainly 
seem to fit within a socio-cultural framework. Ethnographic methods in 
particular were chosen in this thesis with the aim of illuminating the 
mediational role of graphical calculators in students’ learning and to 
gradually develop a theoretical interpretation that accounts for all o f the 
data.

Ethnographic methodology has produced some influential studies. 
However, there are potential weaknesses that have to be considered and 
addressed by the researcher when choosing to undertake any particular 
type of research. When compared with the results of scientific enquiries 
the findings of ethnographic studies have been considered by many 
researchers as unreliable, as lacking in validity and generalisability (Goetz
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and LeCompte, 1984). To counteract this criticism, some advocates of 
ethnography claim that such measures are irrelevant, since the goals of 
ethnographical research are essentially descriptive and generative, rather 
than concerned with verification and generalisation (ibid). Yet the fact 
remains that internal and external reliability and hence credibility can 
cause problems for ethnographers. Ethnographers are interested in the 
search for locally and personally relevant meaning and organisation within 
the settings and situations of the study and from its participants. In this 
way, they regard social scenes as being located in a particular time and 
space and their task is thus to communicate the specific characteristics of 
the scene being studied (Eisenhart, 1988). As a consequence, 
ethnographical studies “do not lend themselves easily to replication in 
other settings or by other researchers” (p. 108). However, Eisenhart 
(following Goetz and LeCompte, 1984) insists that “ethnography can and 
should be made replicable” (p. 108). She proposes that this could be 
achieved through researchers providing careful and thorough descriptions 
of:

1. the choice and use of settings and the people in the study;
2. the social conditions under which the study takes place;
3. the role and status of the researcher in the study;
4. the theoretical or analytical constructs used to guide data collection 

and analysis;
5. the data collection and analysis procedures.

In this manner, Eisenhart suggests that problems with external validity 
through comparability across groups can also be overcome by facilitating 
these comparisons to be made by other researchers. However, whilst every 
effort has been made to include such details in this thesis to enable other 
researchers to derive particular insights and transfer ideas from the context 
of this research, it is doubtful as to whether replication could actually be 
achieved and whether in fact this would be desirable.
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On the other hand, internal validity is seen as a strong point of 
ethnographical research, since the researcher is thoroughly engaged in the 
world of the participants. In addition, ethnographers “carefully describe 
and account for factors that may affect the internal validity o f their 
information” (Eisenhart, p. 109). These factors include the historical 
context, the selection of settings and people, the maturation and morality 
of informants, and observer reactive effects, which accounts for any 
personal bias. A particular area of concern is the “possibility of drawing 
erroneous conclusions from spurious relationships in the data” (p. 109). 
The ethnographer addresses this concern, as has been undertaken in this 
thesis, by attempting to trace all possible relationships within the data 
until he or she is satisfied that the conclusions are internally valid.

4.3 Methods for Data Collection
Eisenhart (1988) outlines four main methods of data collection that are 
used in ethnographic studies: participant observation, ethnographic 
interviewing, searching for artifacts and researcher introspection, each of 
which have been adopted in this research. Of these techniques, Eisenhart 
regards participant observation as the most important, as ethnographic 
research depends upon the active and personal involvement o f the 
researcher in the collection and analysis of data. Distinct social groups are 
believed to “construct coherent systems of beliefs and actions from 
intersubjective meanings” (p. 103). This implies that outsiders may not be 
able to access the ways in which beliefs and actions make sense to 
insiders, since intersubjective meanings are implicit. As a consequence, in 
order for a researcher to understand human activity, he or she must firstly 
make a commitment to enter actively into the worlds of interacting 
individuals. In effect, the researcher needs to be involved in the activity as 
an insider and to be able to reflect on the observations as an outsider 
(ibid). The degree of participation and observation is dependent on the 
context of the research and the researcher’s aims. Figure 4.2 shows the 
different roles that the researchers can adopt (Junker, 1960 from 
Hammersley and Atkinson, 1983, p. 93).
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Fieldwork

Comparative involvement: 
subjectivity and sympathy

Participant as II 
Observer

Complete I 
Participant

Comparative detachment: 
objectivity and sympathy

III Observer as 
Participant

IV Complete 
Observer

Figure 4.2: The Theoretical Social Roles for Fieldwork.

The principles of ethnography have governed the whole approach to 
carrying out the classroom-based research, from the choice of methods of 
enquiry, to the way in which each episode has been interpreted within the 
world of the participants. In this research, the role of participant as 
observer (type 2 in figure 4.2) or ‘teacher-researcher’ was assumed. This 
entailed outlining a plan of action for each lesson, teaching the students 
how to use the graphical calculators, helping the students with any 
problems that they experienced whilst using them, dealing with any 
conceptual difficulties, giving feedback to the students and general 
management of the classroom. In addition, time was spent recording field 
notes, administering the questionnaires, discussing the use o f the 
technology informally with both staff and students, interviewing students 
and audio/video taping student interaction.

In addition to the four key means of obtaining primary data in 
ethnographic research, other research methods are often used, such as 
surveys, observation schedules, etc and these techniques provide a basis 
for triangulation. Previous studies indicate that research that combines 
qualitative interpretation with the quantitative experimental approach can 
make effective use of the most valuable features of each. For example, 
Cohen and Manion (1994) argue that by studying a social setting from 
more than one stand point, using both quantitative and qualitative data, the 
complexity and richness of human behaviour can be more fully explained.
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Heid (quoted in Olive, 1992) suggests that such a combination is needed 
to characterise the changes in the delivery of school mathematics in a 
technology rich environment. Similarly, Kynigos and Argyris (1999) 
employed an ethnographic approach, combined with quantitative methods 
to trace the variety of roles and activities undertaken by teachers and 
students when using computers. In their study, the types of roles and 

interventions were allowed to emerge from the data. In other words, their 
data was not used to test a pre-determined hypothesis. With this in mind, 
quantitative methods have been adopted as appropriate and have been 
used to inform and support qualitative interpretations. These have 
consisted of simple quantitative analysis of the students’ questionnaire 
responses and their work.

Denzin (1988) contends that since the social world is socially constructed, 
and its meanings are constantly changing, to both the observer and those 
observed, “no single research method will ever capture all of the changing 
features of the social world under study” (p. 512). Consequently, he 
recognises a need for triangulation and distinguishes between four basic 
types: data triangulation, investigator triangulation, theory triangulation 
and methodological triangulation.

Data triangulation encompasses three sub-categories of triangulation: time 
triangulation consisting of cross-sectional and longitudinal designs, space 
triangulation involving cross-cultural techniques and combined levels of 
triangulation which deal with the individual, the interactive (groups) and 
the collectives (organisational, cultural or societal). Investigator 
triangulation involves multiple, as opposed to single observers. Theory 
triangulation incorporates different theoretical perspectives in the 
interpretation of a set of data. Methodological triangulation consists of a 
combination of multiple observers, theoretical perspectives, sources of 
data and methodologies within a single investigation. This study has made 
use of theoretical triangulation and data triangulation in dealing with 
individual, interactive and cultural aspects. Throughout the whole process
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of data collection, emphasis was placed on achieving the triangulation of 
results through employing different methods of data collection and 
analysis and in gaining the perspectives of both the students and teachers.

Goetz and LeCompte (1984) argue that the choice of techniques used for 
ethnographic data collection involves the consideration of available 
alternatives, with continual re-examination and modification of decisions. 
Ethnographic data can be recorded through the use of tape recorders, film 
or videotapes, photographs, field notes, written records, questionnaires 
and diaries (ibid). Hammersley and Atkinson (1983) stress that the 
methods of enquiry must be selected according to the purposes of the 
research. Furthermore, Eisenhart (1988) proposes that the methods used to 
investigate social and meaning-making experience “must be modelled 
after or approximate it” (p. 102). The ongoing process of data collection 
and analysis may significantly influence the direction of the research and 
the future data collection procedures. The course of ethnography cannot 
be predetermined and the research design should be a reflexive process 
operating throughout every stage of a project (Hammersley and Atkinson, 
1983). The design of ethnographic research is strengthened by the number 
of perspectives that are represented (Eisenhart, 1988).

The ethnographic methods used for data collection in this thesis are 
summarised in figure 4.3.

Data Collection Techniques

Participant as observer 
Researcher introspection 
Audio recordings and transcripts 
Video recordings and transcripts 
Assessment of students’ work 
Interviews 
Questionnaires 
Triangulation

Figure 4.3 Data Collection Techniques
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The use of these research methods, however, varied from one phase of the 
research to the next. The data collection techniques used in phase one 
consisted of:

• participant as observer
• researcher introspection
• audio recordings and transcripts
• assessment of students’ work
• questionnaires
• triangulation

In addition to these techniques that were developed during the first phase, 
phases two and three also made use of:

• video recordings and transcripts
• interviews

The first phase of the research consisted of the exploratory study and the 
initial development of the core classroom materials and approaches, which 
were designed to promote students’ understanding o f functions using 

graphical calculators. These materials were then trialled at Ashby school 
and feedback was obtained from the students via post-trial questionnaires, 
informal discussions, audio recording, and through the assessment o f their 
written work. Members of staff were given the opportunity to offer their 
perspectives by means of post-trial questionnaires and informal 
discussions. This feedback from the students and staff and the 
observations made by myself during the lessons contributed towards 
achieving triangulation. The findings from phase one of the research are 
presented in chapter five.

Following preliminary analysis and interpretation of the data collected 
during the first phase and a period of reflection on the initial findings, the 
second phase began with refinement and further development o f the
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classroom materials. Data was then collected from Anderson College and 
subsequently analysed and interpreted. During the second phase some 
additional techniques for data collection were used. Feedback was 
obtained from the students by means of a pre-trial assessment, pre-trial as 
well as post-trial questionnaires, semi-structured interviews and video 
recording. In addition audio recording focused on whole class rather than 
small group work. Feedback was obtained from staff using the same 
techniques as in the first phase. Chapter 6 details this phase of the study.

The third and most substantial phase of the research involved returning to 
Ashby school and was concerned with introducing the concept of 
functions to a new group of year twelve students, using the graphical 
calculator. This phase of the research led to further development o f the 
theoretical framework adopted in this study and consequently, a greater 
emphasis was given to the theoretical implications of the findings than in 
the previous two phases. This third phase of data collection also involved 
more intensive use of video and audio recording of whole class and small 
group interaction, in addition to the continued use of the other data 
collection techniques developed in phase two. As in the previous trial the 
student interviews were audio taped and these along with all other audio 
and video recordings were consequently fully transcribed. In both o f these 
phases, where appropriate, video and audio transcripts included 
descriptions of what was happening during the discourse in terms of 
accompanying student or teacher actions and their intended meanings. 
Chapters 7 and 8 represent the findings from this phase. Data collection 
and analysis proceeded together throughout these periods of study, as 
outlined by Eisenhart (1988). Table 4.1 summarises the background 
details of each phase.
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Table 4.1 Background to the Three Phases of the Research
Background Phase 1 Phase 2 Phase 3
Data collection period February

1998
June 1998 October- 

November 1998
School/College Ashby

School
Anderson College Ashby

School
Number of students 13 6 17
Mathematics level 
studied

GCE
Advanced

GCE Advanced 
Further

GCE
Advanced

Graphical calculator 
used

TI-92 TI-92 TI-82

Prior experience of 
graphical calculators

Only 1 
student

All 6 students 
regularly used 

graphical calculators

Only 2 students

4.4 Data Analysis
4.4.1 Overall Approach to Data Analysis
Eisenhart (1988) describes various systematic procedures that are 
available for analysing ethnographic data, which are each designed to 
identify the meanings held by the participants and researcher and to 
organise these meanings so that they make sense both internally and 
externally. In essence, ethnographic analysis consists of text-based 
procedures for assuring that the views of the participants and researcher 
remain distinct and that all aspects of material are accounted for. In 
general, these procedures involve defining ‘meaningful’ units o f material 
which are either meaningful to the participants and/or researcher and 
comparing units with other units. Units that are alike are then grouped 
together in categories and these categories are compared with each other 
and the relationships between them espoused. The various categories and 
their interrelationships are then considered and reconsidered in light of old 
material and as new material is collected. As such, at each trial the focus 
of data collection and analysis is shifted slightly to allow different features 
to be addressed and different possible explanations to be considered. 
These themes are then considered in light of existing socio-cultural 
theories. This occurs once all the components of the data have been 
organised into plausible categories, or ‘constitutive rules’, that if  used by 
an outsider would allow him or her to make sense of the participants’ 
world in the same way they do.
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The overall approach to data analysis in this study has followed the 
systematic procedures outlined above and as a consequence various 
categories have emerged from the data which are firmly grounded in the 
research. For example consideration of the data from all three phases of 
the research highlighted the fact that in each case there were some 

students who appeared to be overly reliant on the results produced by the 
technology. Thus, ‘dependency’ on the graphical calculators became a 
major category of analysis, which was further refined as the study 
progressed. The on-going process of defining and re-defining categories 
has subsequently formed an important part of the methodological 
approach to analysing data adopted in this study, which has also been 
influenced by the work of Erickson reported by Eisenhart (1988). 
Erickson describes a procedure for developing assertions about “what’s 
going on”. This is a process that involves searching the data for 
confirming and disproving evidence, thereby producing an ‘evidentiary 
record’ to warrant the acceptance of certain assertions. Assertions that are 
substantiated are then interpreted in relation to existing and emergent 
theories. Following Erickson, this research has involved the systematic 

search for an accumulation of evidence to support assertions that have 
been made and theories that have emerged.

4.4.2 Specific Data Analysis Techniques
4.4.2.1 Analysis of the Individual Aspects of Graphical Calculator Use
Berger (1998) recognises that despite the potential and importance o f the 
graphical calculator, there is insufficient literature devoted to explaining 
and/or understanding how this tool functions in relation to the learner. To 
address this imbalance, she puts forward an interpretative framework for 
analysing the relationship between the learner and the graphical calculator 
based on Vygotskian psychology. The study that she reports has clear 
parallels with the research objectives of this thesis and is primarily 
concerned with interpreting how the graphical calculator and its sign 
systems mediate the learning process of a mathematics student. O f 
particular significance is Berger’s interpretation o f the notions of
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‘amplification’ and ‘cognitive reorganisation’ effects arising from the use 
of technology. Within a Vygotskian framework, the amplification effects 
of the graphical calculator are seen to ‘amplify’ the zone of proximal 
development by removing cumbersome and time-consuming tasks from 
this zone, thereby creating more space for the user to perform 
conceptually demanding tasks with greater effectiveness and ease. 
Cognitive reorganisation effects are interpreted as systematic changes in 
the consciousness of the learner, which occur as a result of interaction 
with a new and alternate semiotic system. These ideas have been used to 
interpret individual aspects of the use of graphical calculators in this study 
and the results of this part of the analysis are presented in sections 5.2.1, 
6.2.1, and 7.2.1 of chapters 5, 6 and 7 respectively. The analysis of data in 
this thesis has thus involved identifying and explaining evidence for 
amplification and cognitive reorganisation effects occurring and 
postulating possible relationships between the two. This has been 

undertaken in each phase in an attempt to ascertain, like Berger, how the 
graphical calculator might function in relation to a specific learner. For 
example, Robert’s learning with the graphical calculator in relation to the 
amplification and cognitive reorganisation effects will be considered in 
depth in section 6.2.1 of chapter 6.

A complementary framework that has provided an additional means of 
focusing on the individual student’s use of graphical calculators within the 
whole classroom community is the notion of local communities of 
practice developed by Winboume and Watson (1998). Winboume and 
Watson identify six necessary features of a local community of 
mathematical practice, which were outlined in chapter 3, section 3.1.3. 
These key features have been used to identify the existence of local 

communities of practice in the data from this thesis, which are regarded as 
environments that are conducive to learning mathematics with graphical 
calculators. According to Winboume and Watson, individual students 
derive meaning from the positions that they occupy within the local 
community of practice and this in turn determines their success as learners
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and contributes towards the creation of shared knowledge. Their 
framework has thus been applied to the transcript data from the second 
and third phases to shed light on the way in which the behaviour of 
individual students may affect the shared construction of meaning and 
how their roles develop through use of technology. This is discussed in 
sections 6.3.2, 8.1.4 and 8.1.5 of chapters 6 and 8.

4.4.2.2 Analysis of the Social Aspects of Graphical Calculator Use
Notions developed by Teasley and Roschelle (1993) were used to analyse 
the interaction between the students and the teacher-researcher in phases 
two and three, the results of which are discussed in sections 6.3 and 8.1 of 
chapters 6 and 8. These ideas were developed in relation to a Vygotskian 

framework and their study was concerned with exemplifying the use of 
the computer as a cognitive tool for learning that occurs socially. They 
maintain that “cognitive representations are built through social 
interaction and activity, in addition to individual cognition” (ibid, p. 230).

Teasley and Roschelle propose that social interactions in the context of 
problem solving activity occur in relation to a Joint Problem Space (JPS). 
They maintain that the JPS is a shared knowledge structure that supports 
problem solving activity by integrating (a) goals, (b) descriptions of the 
current problem state, (c) awareness of available problem solving actions, 
and (d) associations that relate goals, features of the current problem state 
and available actions.

In their model collaborative problem solving consists of two concurrent 
activities, solving the problem together and building a JPS:

Conversation in the context o f problem solving activity is the process by which 

collaborators construct and maintain a JPS. Simultaneously, the JPS is the 

structure that enables meaningful conversation about problem solving to 

occur. Students can use the structure o f conversation to continually build, 

monitor and repair a JPS. (Teasley and Roschelle, 1993, p. 236)
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They do acknowledge, however, that the overlap of meaning in the 
collaborators’ common conception of a problem is not necessarily 
complete or absolutely certain. Yet, this overlap is sufficient to allow 
students to gradually accumulate shared concepts and to permit 
convergence on certainty of meaning (ibid).

The analysis of the transcript data thus involved finding evidence for the 
construction and maintenance of a JPS as well as identifying certain 
‘categories of discourse events’ that Teasley and Roschelle have outlined. 
These include ‘turn taking’, ‘collaborative completions’, ‘repairs’, 
‘narrations’ and the combined use of language and action (see sections 6.3 
and 8.1, chapters 6 and 8). These represent strategies that collaborators 
have for: (i) introducing and accepting knowledge into the JPS, (ii) 
monitoring ongoing activity to recognise any divergence in shared 
meaning, and (iii) rectifying misunderstandings that impede the process of 
collaboration.

Communication between individuals follows a well-specified form of 
‘turn taking’, which is generally comprised of discourse units such as 
questions, acceptances, disagreements, and repairs. The flow, content and 
structure of turns provide an indication of whether the participants in a 
conversation understand each other. Teasley and Roschelle propose that 
during periods of successful activity, students’ conversational turns build 
on each other and that the content of these turns contributes to the joint 
problem solving activity. Looking for evidence of successful collaboration 
between students using graphical calculators in this thesis therefore 
involved close examination of the quality of individual students’ turns in 
the discourse. This in turn involved identifying instances of student 
initiation of the discourse, student acceptance of arguments and cases of 
students performing ‘repairs’.

Teasley and Roschelle describe ‘repairs’ as strategies used by students in
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an attempt to reduce conflict by resolving misunderstandings. This 
conflict arises because the process of collaboration also involves periods 
of individual activity and consequently there are periods of conflict where 
individual ideas are negotiated with respect to shared work. Repairs are 
seen to be the main means of achieving and consolidating understanding 
and managing the mutual intelligibility of the collaborative problem 

solving activity. Without successful repairs, breakdowns in mutual 
intelligibility continue for longer periods.

Evidence was also sought for instances that involved ‘collaborative 
completions’ between students, where one partner’s turn would begin a 
sentence and the other partner would use their turn to complete it. Teasley 
and Roschelle identify one particularly effective form of collaborative 
completion, which they refer to as a ‘socially distributed production’. This 
consists of a compound sentence of the ‘if-then’ form, where the 
antecedent and consequent are produced in separate conversational turns, 
providing the opportunity for participants to accept and repair conditional 
knowledge. By collaborating in this way, multiple opportunities arise for 
partners to contribute towards the construction and verification of a new 
piece of shared knowledge.

A further category of discourse event that was identified by Teasley and 
Roschelle and was similarly used to classify interaction in this thesis is 
‘narration’. Narration serves as a verbal strategy that enables discourse 
partners to monitor each other’s actions and interpretations. In this way 
narration informs one’s partner of intentions which correspond to actions, 
which in turn enhances the partner’s opportunities to recognise differences 
in shared understanding. Continued attention to narration and 
accompanying action can signal acceptances and shared understandings, 
whereas interruptions to narratives create an immediate opportunity to 
rectify misunderstandings.

Whilst there are numerous examples of narratives in collaborative activity,
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students are not wholly dependent on language to maintain shared 
understanding. Teasley and Roschelle propose that there is a major role 
for the computer in providing a context for the production of action and 
gesture, which in turn supports collaborative learning. Action and gestures 
can both serve as presentations and acceptances and their simultaneous 
production by separate partners can produce an effective division of 
labour. Analysis of the video recorded data in this thesis thus paid 
particular attention to the combined production of narrations, actions and 
gestures.

4.5 Summary
The aim of this study has been to identify and examine how the use of 
graphical calculators mediate student’s learning of functions. In order to 
achieve this aim, the research has considered three inter-related aspects of 
this research question. Firstly, to investigate how students acquire 
meaning within a graphical calculator environment. Secondly, to examine 
the ways in which the visual representations provided by the graphical 
calculator acts as a tool in mediating the development of students' 
understanding of functions. Thirdly, to investigate how the teacher can 
effectively mediate the students’ use of graphical calculators. The purpose 
of this chapter has been to outline and justify the methodological 
approaches and research methods that were chosen to carry out this study.

The research conducted in this study has consisted of three distinct phases, 
which have each entailed small scale (in terms of the number of students 
involved and the time frame) and detailed ‘studies of singularities’ 
(Bassey, 1995). The first phase consisted of the exploratory study in 
which inexperienced users’ initial experiences with graphical calculators 
were explored. The aims of this phase were necessarily broad to allow 
areas of particular interest to emerge from the data, which then provided 
focal points for phase two. In addition, in order to extend, build on and 
make contrasts with the findings of phase one the second phase involved 
experienced graphical calculator users and the way in which they derived
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meaning for functions. In the final phase, the concept of functions was 
introduced to a beginning group of year twelve students using the 
graphical calculators and involved a microanalysis of the resulting 
classroom interaction. This was intended to shed light on the personal and 
social factors that contribute towards students’ understanding of functions 
with graphical calculators.
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CHAPTER 5
EXPLORING HOW GRAPHICAL CALCULATORS 

MEDIATE INEXPERIENCED USERS’ 
UNDERSTANDING OF FUNCTIONS

5.0 Introduction
The main purpose of this research study has been to explore how 
graphical calculators mediate students’ understanding of functions. 
However, within this aim, there were other subsidiary concerns. Some of 
these were related to cognitive factors such as the amplification and 
cognitive reorganisation effects of the technology and its impact on 
visualisation; others pertained to affective factors such as confidence and 
collaborative problem solving. There were also further issues concerned 
with the technology itself. The organisation of this chapter reflects these 
concerns.

The purposes of the initial study were to:

• explore whether students with no previous experience of using 
graphical calculators would be able to use this technology to further 
their understanding of functions and how this might occur,

• assess the suitability of early materials and approaches, designed to 
promote students’ understanding of functions,

• elicit preliminary reactions to the use of technology,
• establish a framework for further data collection.

This chapter reports the findings of this exploratory study and is structured 
as follows:

• Background to the research (5.1).
• Cognitive factors in students’ use of graphical calculators to 

understand functions (5.2).
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• Affective factors which contribute towards students’ learning of 
functions (5.3).

• Conclusions (5.4).
• Implications for subsequent phases of the research (5.5).

5.1 Background to the Research
The initial classroom trials were carried out at Ashby school, a Roman 
Catholic mixed comprehensive school in Sheffield educating 
approximately 1000 pupils, in the 11-18 age range. The school is situated 
in a socially advantaged area, but draws its pupils from a much wider 
geographical area. Prior to this research study, the researcher had spent 
two years teaching mathematics in this school. It was apparent that there 
was a growing interest in developing the use of technology, and 
particularly graphical calculators, within mathematics lessons. The 
familiarity with students, staff, departmental policies, syllabuses and 
existing technologies facilitated the integration of the researcher into the 
school and classroom.

5.1.1 Structure of the Exploratory Study
The exploratory study took place over a period of six hours (three two- 
hour sessions) during February 1998 and involved a Year 12 GCE 
Advanced level mathematics group. Table 5.1 outlines the classroom 
activities that took place during this trial and those who were involved.

96



Table 5.1 Structure of the First Research Session
Research Activities Timing Students Staff

1. Teacher-researcher introducing the 
graphical calculator to students. This 
included how to graph and trace 
individual functions and exploration 
of the table menu, viewing window, 
zoom menu and maths menu.

lhr
15mins

(n = 13) 
Carl, Lea, 
May, Jan, 
Kurt, Guy, 
Pat, Don, 
Sally, Sue, 
Diana, 
Emma, 
Betty.

Teacher (Mr Doors) 
present as an 
observer.
Research Colleague 
(James Green) 
audio recording 
five pairs of 
students as they 
attempt the 
introductory 
exercises together.

2. Students attempting the introductory 
exercises in small groups.

45mins

3. Homework: introductory questions 
not completed in class.

N/A

Table 5.2 Structure of the Second Research Session
Research Activities Timing Students Staff

1. Further demonstration by the
teacher-researcher of particular uses 
of the technology, namely graphing 
families of curves, performing series 
of transformations and drawing the 
inverses of functions.

35mins (n =11) 
Carl, Lea, 
May, Jan, 
Kurt, Guy, 
Pat, Sally, 
Diana, 
Emma, 
Betty.

Teacher (Mr Irons) 
present as an 
observer.

2. Small group work on the main trial 
exercises: graphing functions using 
the TI-92.

lhr
25mins

3. Homework: questions from the main 
exercises.

N/A

Table 5.3 Structure of the Third Research Session
Research Activities Timing Students Staff

1. Students continue working on the 
main trial exercises.

lhr
35mins

(n=  13) 
Carl, Lea, 
May, Jan, 
Kurt, Guy, 
Pat, Don, 
Sally, Sue, 
Diana, 
Emma, 
Betty.

Teacher (Mr Irons) 
present as an 
observer.

2. Post-trial questionnaires on the role 
of the technology completed by the 
students and two members of staff.

25mins

5.1.2 Design of Research Materials
The classroom materials used in this phase were designed with the aim of 
promoting the development of students’ understanding of functions using 
graphical calculators in the GCE Advanced level mathematics classroom.
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These materials included an introduction to the graphical calculator and its 
applications and questions intended to familiarise students with the 
various functions of the calculator. These were followed by a sequence of 
main exercises designed to draw out their visual abilities and to develop 
key skills in understanding the concept of function (see appendix A). 
These exercises featured questions that involved:

• graphing functions,

• exploring and identifying the effects of transformations,
• finding inverse functions,
• solving equations - graphically and algebraically,
• investigating trigonometric and logarithmic identities.

The structure of each research session was influenced by the view that 
wherever possible different modes of representation should be combined 
in order to allow a more holistic view of functions to be developed. The 
majority of the questions required the students to use both visual and 
symbolic representations. The post trial questionnaires were devised to 
gauge preliminary reactions of both the students and the staff to the use of 
the graphical calculator and can be found in appendix A.

5.1.3 The Participants
The group of students who participated in this trial consisted of thirteen 
students, five male (Carl, Don, Kurt, Pat and Guy) and eight female 
(Betty, Sally, Diana, Emma, May, Jan, Lea and Sue). All of these students 
except one (Carl) had previous knowledge and experience of dealing with 
functions at A level, although only one of them had used a graphical 
calculator before (Emma).

Each student was given a graphical calculator, a Texas Instrument TI-92, 
although generally, they worked together in pairs (of their own choosing) 
sharing ideas during lesson time. Students were also regularly encouraged
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by the teacher-researcher to share their findings with the class by using the 
overhead projector set-up. After the first two sessions, they were given 
questions for homework and each took a graphical calculator home for 
this purpose.

The two teachers who shared the responsibility for this group of students 
observed each of the sessions in turn and frequently interjected with the 
students, discussing both the mathematics and the use of technology. The 
support of James Green, a research colleague was also gratefully received 
and he assisted in the collection of data by audio taping student 
interactions during the first lesson and in helping students to get to grips 
with using the technology. Teacher intervention occurred whenever the 
students experienced problems with the technology or in understanding 
particular questions.

5.2 Cognitive Factors in Students’ Use of Graphical 
Calculators to Understand Functions
In order to determine the influence of graphical calculators on cognitive 
factors, data was analysed from three sources: (i) post-trial questionnaires 
administered to the students, (ii) individual students’ work, and (iii) post
trial questionnaires completed by the staff.

Utilisation of post-trial student questionnaires provided substantial insight 
into the way in which use of the graphical calculator had influenced the 
students’ thinking about functions. This was further elaborated through in- 
depth analysis of the students’ work. In addition, the set of post-trial staff 
questionnaires shed light on the teachers’ perceptions of how the graphical 
calculator affected students’ thinking.

The findings that pertain to cognitive factors have been subdivided into 
the following themes:

99



• amplification and cognitive reorganisation,
• graphical calculators and dependency,
• graphical calculators and students’ understanding of functions,
• graphical calculators and visualisation,
• the relationship between symbolic and visual modes.

5.2.1 Amplification and Cognitive Reorganisation
Analysis of the students’ questionnaires revealed that ten of the students 
considered the speed, ease and accuracy by which the graphs of functions 
could be drawn as the main advantages of using the graphical calculator. 
Typical responses to the question “how important, in your opinion, is 
technology in the A level mathematics classroom?” were:

Guy: Technology is important because it saves time on menial tasks so more 
time may be spent on other areas.

Lea: Technology is important as it allows you to investigate functions quickly 
and correctly. It saves you wasting time that could be spent on harder tasks.

Similar responses were offered to the question “what do you consider to 
be the main advantages of using the graphical calculator?” as typified by 
Carl’s comments:

C arl: Having immediate graphs and being able to work out intersections, 
along with maximum and minimum values with the press o f a button.

These factors are examples of what are known as the amplification effects 
of the technology (Berger, 1998) which are short-term consequences that 
are directly and immediately experienced by the student whilst using the 
technology. Thus, students who are using the technology for the first time 
are extremely aware of the instant and very visible benefits of 
amplification and consequently, as in this case, these are more likely to be 
seen as major advantages. Guy, Lea and Carl all refer to the amplification 
effects of the technology as factors that have contributed towards the 
development of their understanding in this area.
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The staff questionnaires revealed that Mr Irons and Mr Doors also 
recognised the tangible benefits of the amplification effects of the 
technology. They regarded the main advantage of using the graphical 
calculator as the tremendous variety of functions that could be explored. 
In addition, Mr Doors also recognised the potential of using technology to 
introduce more generality to the topic being considered. When asked if he 
saw any potential for using the graphical calculator in his classroom, he 
responded:

Yes. I  would aim to use it to quickly produce calculation diagrams, graphs and 
key features offunctions, so that we could comment more generally on the 
mathematical structure o f  the topic being looked at.

Berger (1998) interprets cognitive reorganisation effects as long term 
changes in the consciousness of the student, which may result in the 
student using mathematical concepts either more meaningfully or 
differently due to the use of the technology. Only three of the students 
referred to cognitive reorganisation effects in their questionnaire 
responses as main advantages of using the technology. One student, May, 
hinted that using the technology enabled her to look at mathematical 
concepts in a different way. In response to the question “how important, in 
your opinion, is technology in the A level mathematics classroom?” she 
replied:

I  think it is quite important to have access to technology as it gives another 
way o f seeing the ideas behind certain theories and rules in maths, some o f  
which can be quite hard to picture yourself.

However, the majority of these students appeared to be focusing on the 
short-term gains that arise as a result of amplification, which are more 
apparent, as the main benefits of using the technology.

In contrast, Mr Doors saw a connection between the amplification and 
cognitive reorganisation effects. This was clearly illustrated in his
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response to the question “what do you hope to gain by using technology in 
A level mathematics?”:

The freedom for students to see some o f the structure o f  more complex 
mathematics more clearly. I  feel that technology can provide a dynamic way o f  
teaching, which can quickly do a lot more ‘technical ’ areas o f the subject 
without them interfering with the flow o f the lesson, allowing a clearer view o f  
more complex ideas.

The potential of the technology in facilitating the consolidation of various 
concepts (particularly graphical work) and for introducing more complex 
ideas were considered by Mr Doors and Mr Irons to be the main gains of 
implementing technology use at Advanced level. Moreover, the speed by 
which students were able to perform procedural aspects using the 
graphical calculator was seen to provide a unique opportunity for thinking 
about complex mathematical ideas in a different, more meaningful way.

These findings highlight the potential for the speed and quality of learning 
to be increased through use of the technology. The amplification effects of 
the technology increase the speed of learning, as these effects create more 
space within each student’s zone of proximal development to attempt 
conceptually demanding tasks with greater effectiveness and ease. In 
addition to this the cognitive re-organisation effects of the technology can 
contribute to the depth of student understanding. For example, as students 
are able to see the visual graphical effects of transformations more clearly 
using the graphical calculator, they are more likely to develop an intuitive 
understanding of the relationship between different functions of the same 
family (see section 5.2.3).

5.2.2 Graphical Calculators and Dependency
The students’ solutions to each of the questions from the trial exercises 
were compared, evaluated and graded and the results of this analysis are 
displayed in Appendix A.
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Close examination of the students’ work from the introductory exercises 
revealed that a high proportion of them (10 students) assumed that the 
graphical calculator was displaying the whole graph without using the 
zoom facilities to see that this was not always the case. This led to 
misconceptions about the shapes of the graphs of particular functions. 
Evidence that students might be misled by their dependency on the 
graphical calculator’s display is provided in the following examples.

2 3The function x - x (question 9 in tables 1, 2 and 3, appendix A) caused 
particular problems, the nature of which is illustrated in the following two 
graphs (fig 5.1 and fig 5.2) produced by the graphical calculator.

M A I N  R A D  A P P R O X F U N C
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M A I N  R A D  AF- RR DH

A
F U N C

Fig 5.1 y = x2 -  x3 in ZoomStd Fig 5.2 y = x2 -  x3 Zoomln (factor 6)

The students were asked to sketch the function and to determine the nature 
and co-ordinates of any turning points - a task that was well within their 
capabilities in light of their previous calculus experience. The first graph 
(fig 5.1) is drawn using the standard setting for the initial graphing of non- 
trigonometric functions, ZoomStd (where the x and y axes vary from -10 
to 10, in divisions of 1 unit). The second graph (fig 5.2) results from 
zooming in on the first graph to a degree of factor six, centred on the 
origin.

Obviously, the second figure provides a much better picture of the actual 
shape of the graph. Yet, all of the students who attempted this question 
failed to use the zoom facilities and thus drew a sketch of the function, 
which resembled fig 5.1. Consequently, they mistook the point (0,0) as a 
point of inflection (clearly a local minimum in fig 5.2) and were unaware
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that a local maximum existed and as no student checked their results by 
differentiation these errors were undetected. Clearly, these turning points 
were missed because they were not initially visible on screen and the first 
graph was accepted without question. This suggested that the students 
were relying too heavily on the immediate results produced by the 
graphical calculator, without questioning their validity.

Similarly, some students were mistaken about the function y = x3(l -  X) 

(question 6 in tables 1, 2 and 3, appendix A). Figure 5.3 is the graph of the 
function drawn in ZoomStd and figure 5.4 is obtained by zooming in on 
figure 5.3, centred on the origin, by a scale factor of 6. Once again several 
students produced graphs in ZoomStd and did not explore their graphs 
further and thus missed the turning point visible in figure 5.4.
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Fig 5.3 y = x3(l -  x) in ZoomStd Fig 5.4 y = x3(l -  x) Zoomln (factor 6)

In contrast, some students believed that the graph of y = (x+l)/(x+2) had 
a minimum turning point at x = -2 (question 7 in tables 1, 2 and 3, 
appendix A). These students failed to realise that the function is undefined 
at this x value, as they completely misinterpreted the graphs displayed by 
the graphical calculator and neglected to inspect the equation (see fig 5.5 
and fig 5.6 below).
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Fig 5.5 y = (x+l)/(x+2)2 ZoomOut Fig 5.6 y = (x+l)/(x+2)2 in ZoomStd

Figure 5.5 shows that graph of the function y = (x+l)/(x+2)2 produced by 
the graphical calculator by zooming out on the graph drawn in ZoomStd, 
centred on the origin, by a factor of three. Figure 5.6 displays the graph of 
the function in ZoomStd. Since only part of the graph appeared to be 
visible on the screen in ZoomStd mode, some students choose to zoom 
out, thus producing a graph resembling figure 5.5. The graph displayed in 
figure 5.5 looked to some of these students as though it had a minimum 
stationary point, and so these particular students (who this time made use 
of the zoom facilities) were misled.

As in the previous example, these students do not appear to have spent 
enough time thinking about the nature of the function or picturing what 
the function might look like for themselves - they seemed to assume that 
the technology always provided them with the correct answer. Smart's 
(1995b) research, also, emphasises this problem, referred to as the ‘magic’ 
element of the technology. The students appeared to be over-dependant on 
the technology.

These examples illustrate the possibility that under certain circumstances 
students might misunderstand, misinterpret and thus misuse the 
information provided by the graphical calculator. This is caused by their 
over-reliance on the technology. In order to prevent students from 
becoming too dependent on the graphical calculators, these instances 
suggest that students should be encouraged to question whether graphs 
produced by the technology display all the features of the function and to 
make more use of the zooming facilities offered by the technology.
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Furthermore, the teacher needs to provide adequate examples and 
opportunities that enable students to use these facilities more effectively.

5.2.3 Graphical Calculators and Students’ Understanding of 
Functions
In order to determine the impact of graphical calculators on students’ 
understanding of functions, the student and staff questionnaires were 
analysed in conjunction with the students’ work. Closer examination of 
individual student questionnaire responses revealed a number o f potential 
ways in which use of the graphical calculator could support student 
learning of functions.

For example, Carl’s responses suggest that students who have had little 
previous experience in dealing with functions may derive additional 
benefits from the opportunity to explore functions using a visual medium 
such as the graphical calculator. Carl was a mature student and had only 
recently joined this Advanced level mathematics group. As a 
consequence, whilst the other students had already covered the 
introductory Advanced level unit on functions, Carl was still catching up 
on the work that he had missed and was rather unfamiliar with the content 
of the exercises. When asked whether he had benefited from the 
opportunity to use the graphical calculator and if it had enabled him to 
picture functions more clearly, he responded:

Definitely. My understanding o f graphs was quite limited previously. To have 
an immediate picture helped tremendously. I  had no previous experience o f  
functions and I  think I ’ve benefited by coming into contact with them fo r the 
first time whilst graphically seeing the results.

In their responses to three different questions, Sally, Pat and May all 
commented on the way in which using the graphical calculator helped 
them gain a better understanding of transformations:
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“Has using the graphical calculator enabled you to picture functions more 
clearly?”

Sally: It makes translations o f functions quicker to learn and more clear since 
otherwise you either have to plot them yourself or use rules to translate them 
without understanding why.

“Do you believe that using the graphical calculator has strengthened your 
understanding of functions?”

Pat: It helped me to understand them more, especially the transformations.

“Do you feel that you have benefited from the opportunity to use the 
graphical calculator?”

May: Yes, concerning how certain functions produce graphs and [the 
graphical calculator] has helped with transformations o f graphs a lot, as this 
is something I  find difficult to remember. The main advantages are seeing how 
curves o f  different functions compare and how transformations affect the 
curves.

The teachers also recognised that the technology had an affect on the 
students' ability to visualise transformations of functions, as Mr Irons' 
response to the following question demonstrates. “Do you feel that the 
graphical calculator has had any affect on students' abilities to visualise 
the graphs of functions?”:

Certainly -  the idea o f transformations was very clear.

There were, however, examples from the students’ work which suggested 
that the potential of the graphical calculator for enabling students to gain a 
deeper insight into particular problems involving functions was not always 
realised. This was particularly apparent in their attempts at question 9 
from the main trial exercises. This question, which involved logarithmic
and trigonometric identities [use the TI-92 to show that a). In xa = a \ n  x

2 2b). sin x + cos x = 1], caused some students problems, as they were 
uncertain how to proceed, having no prior experience of similar questions. 
For example, when asked to use the graphical calculator to show that In xa
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= aln x, none of them provided sufficient evidence to show that this 
identity was true.

The majority of students firstly investigated the identity when a  =  2 ,  

having presumably dismissed the case of a  = 1 as arbitrary. Thus, the 
following two graphs were produced by the graphical calculator:
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Informal discussions with the students revealed that some of them were 
confused by these pictures as they had initially assumed that the two 
graphs would be identical for all x values. These students failed to realise 
that by definition In x and, thus, a \ n  x is undefined for negative x values 
and so only in the domain of a \ n  x, are the two graphs equal. 
Consequently, only one student reported findings when a  = 3, for which 
the two graphs are identical; others missed out the question entirely and 
another presumed that the identity was actually false for a  = 2. Their 
written work suggested that they did not think carefully about why only 
part of the graphs were identical and either avoided the issue by missing 
out the question completely or questioned the validity of the identity in 
their solutions.

The number of cases examined was extremely low; very few of the 
students considered values of a  other than 2, and even then they only 
looked at a  = 3. Five students did state that if a  = 2, In xa = a \ n  x for 
positive real values of x. However, only one of these students looked at a 
further case when a  = 3. Two students failed to reproduce any o f the
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graphs that they had drawn using the graphical calculator and only 
described what they had seen. They claimed that no matter what value of 
a  is chosen the graphs are the same, which is not strictly true for negative 
x values.

The problems experienced by the students when answering this particular 
question illustrated that they were not yet comfortable with the concepts 
of logarithmic functions, logarithmic identities and their graphs. They 
were able to draw the graphs using the graphical calculators but were 
unable to explain their shapes. Clearly, the class was in need of further 
exploration of the properties of logarithmic functions - an issue that would 
need to be addressed by their teachers. The remaining questions were 
completed satisfactorily overall (see tables 5, 6, and 7, appendix A, which 
display the students’ performances in the main trial exercises).

Carl’s comments provided some insight into how students who are 
inexperienced in dealing with functions in particular may benefit from 
access to technology. Whilst it is unlikely that Carl actually had no 
previous experience of functions, as he stated, he probably believed that 
this was the case because functions were not previously introduced to him 
in a formal manner. As such, he did not recall any prior work as being 
function-related. His lack of familiarity with functions was particularly 
apparent to him, as some time had passed since his previous schooling. 
Carl stressed the significance of the graphical mode of representation in 
contributing towards the development of his understanding of functions. 
Initially, he could not picture the graphs of the functions that were 
considered in class:

Before using the graphical calculator I  had no comprehension o f  what they
looked like. Now 1 have.

In Carl’s case, the introduction of the technology gave him immediate 
access to the graphs of numerous functions that he could not visualise
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himself. This enabled him to begin to appreciate the relationship between 
the symbolic, numerical and graphical representations of functions and to 
recognise the graphs of different families of functions. By experimenting 
with the graphical calculator, he was able to build substantially and 
quickly on his ‘limited’ existing knowledge of graphs.

The evidence presented in this section highlights the need for visual 
representations and examples to accompany the standard rules in learning 
about the effects of transformations. Rules alone may not easily be 
understood or remembered. The use of the graphical approach helps to 
make the actions of translations and the relationship between translated 
functions clearer to students. Indeed, Mr Irons believed that the effects of 
transformations were demonstrated clearly by the technology.

5.2.4 Graphical Calculators and Visualisation
In order to determine whether the graphical calculator was exerting 
influence on the students’ abilities to visualise functions and how this 
might occur, data was again analysed from the student and staff 
questionnaires and the students’ work.

From the perspective of the teachers (as indicated in their responses to the 
questionnaires) the graphical calculator was undoubtedly exerting some 
influence on the students’ powers of visualisation. Furthermore, it was 
noted that prior to the introduction of the graphical calculator, the students 
had been reluctant to provide diagrammatic and graphical support for their 
work. Both teachers agreed that the ability of students to visualise and 
apply their mathematics at this level was extremely important and in this 
respect the graphical calculator was seen as a very powerful resource.

However, the student questionnaire responses indicated that individual 
students assigned different values to the use of visual images. For 
example, in response to the question: “would you consider yourself to be a
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person who forms and makes use of mental images when solving 
mathematical problems?” eight of the students claimed to form mental 
images:

Sue: 1 prefer to.

Lea: It makes solving equations easier.

Jan : Sometimes, depending on how hard the problem is.

Pat: Kind of. It helps, but I  only really use them when I  get stuck, I  don Y use 
them first off.

K urt: Increasingly now as the A level maths course has progressed, you need 
it.

Sally: I  ’m graphically minded.

Diana: Occasionally, only i f  the function is a simple one.

Em m a: Yes, I  use mental images.

These students obviously used mental images to differing degrees, but 
their overall questionnaire responses indicated that they viewed the role of 
technology in very much the same way. Whilst these students were 
already more inclined to use a visual method of solution, they felt that the 
use of the technology enhanced their skills in this area.

In contrast, four of the remaining five students indicated that they tended 
not to form mental images.

May: Not naturally, but I ’m trying to get into the habit.

Carl: Not before using the TI-92.

Guy: 1 don Yform mental images, so the TI-92 is useful.

Betty: No, I  don Y form mental images.

The graphical calculator provided these students who were reluctant to use 
graphical methods with an opportunity to begin to explore a more visual
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approach to functions. Consequently, they were tending to use this kind of 
approach more often than they would have done previously.

However, some students failed to label the important x and y values in 
their sketches, which is probably because this particular form of 
technology does not include numbered axes. Indeed, Pat specifically 
commented on this factor when he was asked whether he felt that using 
the graphical calculator had enabled him to picture functions more clearly:

No, not really as the axes are not labelled clearly enough so sometimes it is
confusing as the pixels are quite large so it doesn ’t provide a fantastic graph.

Because of this aspect Pat stressed that he would prefer to use computers. 
In addition, this caused the students particular confusion over the graph of 
sin x + cos x (question 5b in tables 5, 6, and 7, appendix A), which they 
were asked to graph using the technology, taking a few moments 
beforehand trying to picture what it might look like and sketching their 
ideas. Several students were unsure about where the curve crossed the 
axes and the minimum and maximum values of the function and 
consequently the axes were just left blank. There was little evidence of 
any in-depth thought into the problem, except when they received help.

The study also revealed that few students attempted to visualise the graphs 
of functions or the effects of transformations before turning to the 
graphical calculator, even when they were specifically asked to do so (as 
in question 5, appendix A). Furthermore, those students who did so tended 
to require a certain amount of prompting. It appeared that the students’ 
ability to visualise with technology depends on the nature of the support 
that the technology offers. In the case of the Texas Instrument TI-92, the 
lack of clear labelling on axes contributed directly towards the students’ 
confusion about the graph of y = sin x + cos x.
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5.2.5 The Relationship between Symbolic and Visual Modes
Analysis of the student questionnaires, the students’ work and 
observations from the classroom also provided insight into the question of 
whether and how the use of the graphical calculator would clarify the 
relationship between symbolic and visual modes of representation.

In their questionnaire responses, some students commented on the way in 
which the graphical calculator made the relationship between the symbolic 
and visual modes of representation clearer. The following student 
responses illustrate this viewpoint:

“Has using the graphical calculator enabled you to picture functions more 
clearly?”

May: Yes, using the graphical calculator has definitely enabled me to picture 
functions more clearly, especially the way they interact with other functions.

Don: The graphing ability has made it much easier to see the functions as a 
graph.

“Do you feel that you have benefited from the opportunity to use the 
graphical calculator?”

K urt: It is far less laborious than other methods and helps you get a feel o f  the 
objective o f functions.

Yet, contrary to their beliefs, the majority of these students tended to 
concentrate on graphical representation when both graphical and algebraic 
aspects were involved (see tables 5, 6 and 7, appendix A). Just over half 
the students actually attempted to specify the symbolic form of the graphs 
resulting from a series of successive transformations in question 4, even 
though this was requested in the question and only 12% of their answers 
contained the correct symbolic form. Question 4 asked the students to use 
the TI-92 to perform the following sequence of transformations on the 
graph of f(x) = x3: i). f(x/2), ii). f((x/2) + 2), iii). f((x/2) + 2) -  3, iv).
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2(f((x/2) + 2) -  3). In each case they were asked to sketch the resulting 
graphs and write down the equation of the function in its simplest form.

In addition, only relatively few of the students successfully completed the 
algebraic components of questions 8 and 11. For example, only four 
students attempted to solve the equation in question l ib  algebraically and 
just two students effectively manipulated the equations in question 11c 
and d. Question 8 involved identifying the transformations which, when 
applied to six given graphs, would produce a second set of six graphs and 
the symbolic form of each of the new functions. In question 11 they were 
asked to solve the following equations numerically, graphically and 
algebraically: a), x3 + 8x2 + 4 = (x - 2)2, b). In ((2x+l)/(x-l)) = 2,

c). 22x+1 + 2 = 5(2X) and d). In (x+1) + In (x-1) = 3.

However, for those students who completed both the symbolic and 
graphical components of these questions, the use of the graphical 
calculator exemplified the relationship between the symbolic form of a 
function and its graph. It enabled them to access and compare the graphs 
of a wide variety of functions quickly and with ease, allowing them to 
discover for themselves the relationships between graphs o f the same 
family of functions and to see how the graphical forms of functions relate 
to the symbolic forms. This in turn led to the students gaining a more 
holistic understanding of the concept of function, which was evident in the 
way in which they could talk about functions in class and in their 
questionnaire responses, in the comments that they made about learning 
functions with graphical calculators.

The three examples from the students’ work which were discussed in the 
section 5.2.2 also served to highlight the importance of encouraging 
students to use symbolic reasoning to verify the results of any graphical 
exploration using the graphical calculator. In each of these three 
questions, the majority of students had misinterpreted the graphs produced
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by the graphical calculators. This occurred as a result of their over reliance 
on the technology and because they did not verify their answers through 
the use of a symbolic approach. Combining use of visual and symbolic 
approaches in answering these questions might have enriched their 
understanding of these particular functions, as it did with some of the 
other functions that were explored.

What this study shows is that these particular students tended to 
concentrate on graphical representation when faced with questions 
involving both graphical and algebraic aspects. This suggests that if 
teachers want to discourage students from focusing solely on graphical 
representation as a consequence of using technology, this might be best 
achieved through structuring lessons in such a way that both graphical and 
symbolic aspects are explored together.

5.3 Affective Factors which Contribute Towards Students’ 
Learning of Functions
In order to determine the influence of graphical calculators on affective 
factors, data was again analysed from three sources: (i) post-trial 
questionnaires administered to the students, (ii) transcript data and (iii) 
post-trial questionnaires completed by the staff.

The post-trial student questionnaires provided some insight into their 
perspectives regarding affective factors and the use of the graphical 
calculator. Furthermore, analysis of the transcript data highlighted the 
important role of collaboration in their learning with technology. In 
addition, the post-trial staff questionnaires served to ascertain the 
teachers’ perspectives surrounding affective issues.

The affective issues that were apparent in the findings of this phase of the 
study have been categorised into five main areas:
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• attitudes towards graphical calculators,
• graphical calculators and confidence,
• feelings surrounding dependency and graphical calculators,
• collaborative dimensions of graphical calculators,
• graphical calculators and the role of the teacher.

5.3.1 Attitudes towards Graphical Calculators
The student and teacher questionnaires provided insight into their attitudes 
towards graphical calculators. Although, technology was rarely used in 
Advanced level mathematics lessons in this school, questionnaire 
responses revealed that ten of the students viewed technology as an 
important addition to their mathematics classroom. As had been 
anticipated, there was an extremely positive response to the use of the 
graphical calculators. Indeed, twelve of the students believed that they had 
benefited from the opportunity to use the graphical calculator and that 
using the graphical calculator enabled them to picture functions more 
clearly. Similarly, twelve students felt that their experience with the 
graphical calculator had contributed towards strengthening their 
understanding of functions. In addition, all of the students except Sue 
would welcome further use of the technology. This was especially so in 
M ay’s case, as she commented:

May: Ifeel it would help me develop my understanding o f  graphs, which is 
vital for A level.

Other students were, however, more cautious about the benefits of using 
the graphical calculators:

Em m a: Technology is very important and as it is relevant to maths I  think it is 
good to use it. However, it should be used to aid other work, not as a separate 
thing.

K urt: You ve got to think about what you Ye doing or otherwise the 
information that you gain from it will be minimal.
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Mr Irons and Mr Doors regarded the use of technology at Advanced level 
as increasingly important. Both recognised the need to continue utilising 
technology in the sixth form, following greater use in the lower school. In 
response to the question: “How important, in your opinion, is technology 
in A level mathematics?” Mr Doors responded:

Ifeel that it is sensible to develop the use o f technology in A level maths as its 
use is increased within Key Stage 3 and Key Stage 4. In an age when students 
are expected to be technologically literate, it seems clear that they should 
relate these skills to their A level study. It is important, however, that 
technology should be used to take away the drudgery to allow very able 
students to take concepts much further.

The amplification effects of the technology were thus seen to offer 
valuable scope for enabling students to take concepts further by removing 
‘drudgery5. Yet, technology was very rarely used in Advanced level 
mathematics lessons in this school. However, feedback suggested that 
given the opportunity, appropriate funding and training technology would 
be used more frequently with Advanced level mathematics students as a 
means of supporting learning.

5.3.2 Graphical Calculators and Confidence
The analysis of the student questionnaires also shed light on the role of the 
graphical calculator in terms of its impact on levels of student confidence, 
which constituted an important affective element of the learning process. 
This was apparent even though the students were not asked directly about 
this aspect and was illustrated in the fact that four of them had commented 
on the benefits of using the graphical calculator as a means of verification. 
Typical responses to the question: “What do you consider to be the main 
advantages of using the graphical calculator?55 were:

Pat: The main advantages are the ability to save useful time on graph drawing 
and the ability to self-check work.

Sally: I t ’s quicker than drawing graphs and can be used to quickly check your 
thoughts during a question.
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When asked whether she had benefited from using the graphical calculator 
and how, Betty replied y e s ,  m y  g r a p h i n g  s k i l l s  h a v e  i m p r o v e d .  As Emma 
explained in response to the question: “Do you feel that you have 
benefited from the opportunity to use the graphical calculator?”

I  feel more confident with graphing and I  have a graphical calculator which I  
should now be able to use more effectively.

In addition, May commented that she found using the graphical calculator 
less intimidating than using computers:

May: I  would prefer to use a graphical calculator over a computer as it seems 
less intimidating and easier to use.

The following student responses highlight the significance of the role of 
technology in helping students to then make sense of new ideas or those 
which are not yet conceptualised, and in boosting their confidence, and 
ability, to visualise.

“Has using the graphical calculator enabled you to picture functions more 
clearly?”

Jan : It has helped me to understand the translations o f graphs, which I  had 
problems with before.

Em m a: Yes, using the graphical calculator has definitely enabled me to 
picture functions more clearly, especially less common ones or newer ones like 
ex, In x etc.

“Do you feel that you have benefited from the opportunity to use the 
graphical calculator?”

Sue: It has helped me to picture graphs, as this has always been my weakness.

“What do you consider to be the main advantages of using the graphical 
calculator?”
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K urt: It helps you to visualise functions that would otherwise seem perplexing. 
It makes the situation clearer.

“Do you believe that using the graphical calculator has strengthened your 
understanding of functions?”

May: Yes, using the graphical calculator has strengthened my understanding 
offunctions, especially the functions I  find  conceptually difficult such as In x 
and transformations o f it.

The ability of students to use the graphical calculator in this manner 
allowed them to sense some ownership of their mathematics and 
contributed towards increased confidence in their solutions. In addition, 
each graph that was drawn using the graphical calculator had to be 
sketched on paper by the student. As a consequence, consideration had to 
be given to the scale which was being used, the co-ordinates o f any 
distinctive features (e.g. zeros, stationary points) and the accuracy of the 
student’s version. This meant that whilst the students were obtaining most 
of their graphs from the graphical calculator, they were also practising 
their individual graphing skills.

Betty’s comments suggested that the use of the graphical calculator may 
also result in improvement in the student’s own graphing skills. The 
ability of students to use the graphical calculator to produce accurate 
graphs of a whole range of functions and as a means of checking 
assumptions can lead to greater student confidence in the graphing of 
functions.

This study shows that use of the graphical calculator can provide 
scaffolding for students in areas that may be regarded as weaknesses or in 
areas where difficulty is experienced. In turn, this could result in improved 
confidence in these areas, as has been evident in this study. Introducing 
technology into the classroom can prove to be very motivating for 
students experiencing difficulty.
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5.3.3 Feelings Surrounding Dependency and Graphical Calculators
One of the unexpected findings of this phase of the research was the 
feeling expressed by the students that they might become over-dependent 
on the technology. This was particularly apparent in the students’ 
responses to the following questions taken from the student 
questionnaires: “What disadvantages do you perceive?”

Em m a: It may mean that you don’t think about what sketches o f graphs look 
like and rely on it too much.

Betty: They could be relied on a little too much i f  you put all graph work onto 
them.

K urt: Disadvantages, not thinking about functions and just relying on the 
machine.

Sally: Technology is a useful tool especially for checking work but I  find  it 
harder to work for yourself as you become lazy.

Sue: It makes everything too easy. I  think it is easier to learn something i f  you 
work it out for yourself.

“How important in your opinion is technology in the A level mathematics 
classroom?”

Don: It is important to use technology to support mathematical skills but steps 
must be taken to make sure it does not replace them.

Pat: It is important but shouldn’t detract from the roots o f maths, which could 
happen i f  over used.

Mr Irons and Mr Doors also expressed some concerns surrounding over
reliance on the technology in their questionnaire responses and Mr Doors 
emphasised the need for careful structuring of activities involving the 
technology to prevent any “disengagement of brains”:

M r Doors: It would be essential to carefully structure and apply its use in 
class to prevent it from becoming an opportunity for students to disengage 
their brains.
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Overall, these students appeared to appreciate the opportunity to use the 
graphical calculator and the evidence suggests that they had benefited 
mathematically from the experience. The materials and exercises also 
seemed to have provided an adequate introduction to the graphical 
calculator. However, whilst most of the comments regarding the use of the 
graphical calculators were positive, as indicated in their questionnaires 

responses, eight of the students expressed concerns regarding over
dependency on technology. These concerns related to fears that the use of 
the technology could result in work being too easy and could replace basic 
mathematical skills. Moreover, this could facilitate laziness and in the 
process discourage individuals from thinking for themselves, especially 
about what the particular function may look like. The fact that the students 
in this study were aware of the potential dangers, would tend to imply that 
over-reliance was less likely to occur. However, as illustrated in section 
5.2.2, consideration of the students’ work indicated that this was not 
necessarily the case. The examples from this section provided evidence 
that there were occasions where the students were overly dependent on the 
technology and that this in turn led to misunderstandings and 
misinterpretations of the graphical information presented on screen.

5.3.4 Collaborative Dimensions of Graphical Calculators
As part of their introduction to the graphical calculator, the students were 
asked to use the technology to draw the graphs of the following functions:

1. y = 4x2- 4x + 1 2. y = (x + 3)3 3. y = 2(|x| - 1) / 3 4. y = cos (x/2)

In each case, they were required to sketch the graph on paper and use the 
graphical calculator to find the value(s) of x when y = 0. These value(s) 
were to be checked by substituting y = 0 and solving in each case. In 
addition for questions 1 and 2, the students were asked to use the 
graphical calculator to determine the nature of any stationary points and to
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ascertain their co-ordinates. Again these values were to be confirmed by 
differentiation.

The way in which these questions were attempted was of interest. As 
previously stated, these students were not familiar with graphical 
calculators and following the initial teacher-led demonstration, this was 
the first time that they were able to experiment with the machines in 
groups by themselves. Subsequently, the discussions between certain 
students (see table 5.4) were audio taped whilst they worked on these 

problems. The discussions between May and Sue, and Diana, Jan, Guy 
and Lea, in particular, raise some relevant issues (the transcripts of the 
complete set of recorded discussions can be found in Appendix A).

Table 5.4 Students Audio Recorded

Names Question Number(s)

Betty and Emma 2

May and Sue 2,3

Kurt and Pat 2
Guy and Lea 3
Diana and Jan 3

May and Sue were working on the second question when recording was 

initiated. Sue considered herself to be a person who forms and makes use 
of mental images when solving mathematical problems, whilst May did 
not.

1 Sue: Let’s do question 2.
2 May: Right ok.
3 Sue: Don’t you have to put cubed in the bracket, or will it be all 

right?
4 May: Em, see what it looks like when we’ve done that.
5 Sue: Yes enter.
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6 May: Yes, it’s fine. When y = 3x3, what do you get for the 
intersection of the x-axis for this?

7 Sue: I have 0.58,1 think.
8 May: I didn’t get that, not at all.
9 Sue: What did you get?
10 May: 5. It probably doesn’t work.
11 Sue: Let’s go into graph and draw it.
12 May: Oh it’s one of those ones.
13 Sue: Oh yes.
14 May: Oh cool.

Initially, May and Sue chose to tackle the problem using a symbolic 
approach and worked independently for a couple of minutes trying to find 
the co-ordinates of the intersection point with the x-axis. However, their 
symbolic manipulations gave rise to different answers (lines 7 to 11) and 
so they decided to explore the problem graphically. From the moment that 
they began to use the graphical calculator for this purpose, they showed 
interest in the mathematics discussed and they worked together 
throughout, using the graphical calculator as a tool to help them think 
about the problem:

15 Sue: Hang on a minute what oh? It’s going to have lots o f turning
points as well, isn’t it?

16 May: Graph it. Graph it.
17 Sue: Do you reckon we should em see if ...
18 May: Is there only one [turning point] when y = 0?
19 Sue: How do you know if there’s more than one though?
20 May: I don’t know I suppose you could zoom out. Are we in

standard?
21 Sue: Yes we are, aren’t we?
22 May: Yes.
23 Sue: Em no I’m not I don’t think. Oh no.
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24 May: What have you got?
25 Sue: Do you think we should zoom out to see a bit more?
26 May: Yes but we’ll have to zoom out to get ourselves to get the

same.
27 Sue: What do you mean the same centre as before?
28 May: Yes.
29 Sue: What do you reckon?
30 May: I think it would have shown.

Once both students had produced the graph, they appeared to be thinking 
along the same lines and each wondered if there were more turning points 
than were initially visible on screen in ZoomStd (lines 18 and 19). May 
suggested zooming out from ZoomStd, to enable them to see more of the 
graph, in an attempt to resolve their uncertainty (line 20). Since neither of 
the girl’s graphs showed any more turning points, Sue questioned whether 
they should continue to zoom out (line 25). May agreed that they should, 
accepting Sue’s proposed plan of action, and suggested that they both 
used the same ‘zoom out’ factor and centre to ensure both their graphs 
were the same (line 26). Following the second zoom out application, the 
girls’ graphs still had the same shape and May concluded that if  there 
were any additional turning points they would have shown up (line 30).

This part of the discussion illustrates the individual students’ roles in the 
negotiation of meaning. Their use of the graphical calculator to structure 
their thinking about the problem was particularly evident when they 
started to speculate about the shape of the graph. When Sue asked May: 
“how do you know if there’s more than one [turning point] though?” her 
response “I don’t know I suppose you could zoom out” indicates that, 
whilst unsure, she was thinking about the problem in terms of the facilities 
offered by the graphical calculator. If  they had drawn the graph on paper, 
zooming out would not be an option. Their use of the zooming function
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convinced them that there were no further turning points and they
appeared to be confident in this assertion.

At this point James Green who had been audio recording and observing
the interaction between the two students entered the conversation:

31 JG: You can just go to point on the graph -  move it across and see
what the co-ordinates are there. So you can say move it below the 
x-axis to about there, do you see?

32 Sue: Yes.
33 JG: That’s quite a useful thing to do.
34 Sue: But do you have to go into the maths bit to work it?
35 JG: But if you want to do it, you know, yes go to maths. What are 

we on y = zero?
36 Sue: We’re on y = 0.
37 JG: On the point of inflection?
38 Sue: Yes.
39 JG: So go down to inflection, press enter. Now then there could be 

-  this is a nice simple curve with a single point of inflection.
40 Sue: Yes.
41 JG: You could have a wiggly curve with all sorts of points of

inflections, minimums and maximums, and things.
42 Sue: Yes.
43 JG: So you’ve got to tell it that you’re interested in the point 

between here and here.
44. Sue: Ok.
45 JG: So if you say -5  to - it doesn’t actually matter as long as you 

cover this because there’s only the one. But in general you’d have 
to estimate a point here and a point here, say -5 .

46 Sue: Do you use the cursor?
47 May: The cursor at all?
48 JG: No I think you just enter or go down.
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49 Sue: I used that cursor thing.
5 0 May: Yes. Enter down.

51 JG: You’re making a box round it aren’t you?
52 Sue: Yes.
53 JG: So...
54 Sue: There’s an inflection at -6 .
55 JG: Oh yes you just over type -5.
56 Sue: Ah and then enter.
57 JG: And then enter. Upper bound is 2 say enter.
5 8 May: There’s an inflection at -3 .
59 Sue: That’s right yes. So that’s a stationary point as well isn’t it?
60 May: Yes.
61 Sue: Y = 0. [Working].

In light of the girls’ lack of familiarity with the technology, James 
demonstrated how to use the maths menu to calculate the co-ordinates of 
the point of inflection, acting as a more knowledgeable person in Sue and 
May’s zones of proximal development (lines 39-51). However, Sue 
incorrectly interpreted the information on the calculator screen which led 
her to assert that there was a point of inflection at -6  (line 54). James then 
explained what she needed to do in order to obtain the correct co
ordinates, in an attempt to repair her misunderstanding (lines 55 and 57). 
Following his instructions May was able to determine that (-3,0) were the 
co-ordinates of the point of inflection (line 58). Sue was also able to verify 
and thus accept this answer (line 59). Their written solutions also 
contained a symbolic proof of the result, which they were able to produce 
after their graphical exploration.

James showed the students how to use the technology effectively to solve 
the problem, whilst allowing the girls to make the discoveries by 
themselves. As a result, both students were happy with the solution 
offered by the graphical calculator and were able to re-examine and
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correct their symbolic manipulations in light of their graphical 
exploration. They both worked well together, taking it in turns to direct 
and reflect on their activity in order to develop a shared solution to the 
problem. Their joint work with the graphical calculator was certainly more 
successful than their initial individual attempts at symbolic manipulation. 
This episode would tend to support the assertions made by Jones and 
Mercer (1993), who maintain that a considerable amount of learning, not 
least in relation to information technology, consists of sharing knowledge. 
The technology appeared to promote collaboration and negotiation of 
meaning between May and Sue. They had to develop a joint strategy 
together for solving the problem using the graphical calculator.

May indicated that she had some difficulties when working with graphs in 
her questionnaire responses, which are reproduced below, and that 
although she did not naturally tend to form mental images, she was keen 
to try to do this more often.

“The technology gives another way o f seeing the ideas behind certain theories 
and rules in maths, some o f which can be quite hard to picture yourself ”

“The graphical calculator has helped with transformations o f graphs a lot, as 
this is something that Ifind  difficult to remember. ”

“The use o f technology has strengthened my understanding offunctions, 
especially the functions, which I  find  conceptually difficult such as In x and 
transformations o f it. ”

“I  don’t form mental images naturally but I  am trying to get into the habit. ”

The graphical calculator was, thus, seen by May as a means by which she 
could improve her skills in this area. On the other hand, whilst Sue 
“preferred to form mental images” whenever possible, she also stated that 
picturing graphs had always been a weakness:

I  have benefited from the opportunity to use the graphical calculator because it 
has helped me to picture graphs as this has always been my weakness.
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In this respect, she found using the graphical calculator very beneficial. 
The pairing of these students was particularly successful - each student 
was able to support the other when facing any uncertainties and each 
played a crucial part in the outcome of the episode, taking turns to 
negotiate meaning. For example, Sue was the first to suggest using the 
graphical calculator, May was the one who suggested zooming out, Sue 
carried on the conversation with the additional researcher and May was 
the first to come up with the answer. Each of these actions contributed 
towards the development of a common understanding, where any 
misunderstandings were identified, challenged and eventually overcome.

The use of the graphical calculator would thus appear to benefit both 
visually and non-visually orientated students, particularly in creating a 
forum in which they could exchange ideas, test their assumptions and 
work together in order to obtain a joint solution to the problem under 
consideration. These two girls worked particularly well together. 
However, May who had previously shown enthusiasm for working on the 
problem with Sue (eg “oh cool”) made fewer verbal contributions when 
James Green joined in their discussion and seemed to withdraw from the 
conversation to take on the role as an active listener. This suggested that 
May was probably less confident engaging with the researcher than she 
was with her peers and perhaps this could have been gender related. In her 
questionnaire responses, she commented that she found using the 
graphical calculator less intimidating than using computers. This could 
also have been a gender issue, having to use computers publicly in the 
presence of boys.

Interestingly, Sue was the only member of the group of students who 
would not welcome further use of the graphical calculator in future 
mathematics lessons and she stressed that in her opinion, “it is easier to 
learn something if you work it out for yourself’. Thus, regardless of the
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benefits that she felt that she had experienced as a result of using the 
technology, her existing and more traditional view of learning 
mathematics was prevalent.

5.3.5 Graphical Calculators and the Role of the Teacher
The episode involving May and Sue and James Green, the fellow 
researcher, discussed in the previous section also served to illustrate the 
importance of the role of the teacher in scaffolding the students’ use of the 
technology. In this episode James’ contribution was crucial in steering 
May and Sue towards appropriate use of the graphical calculator and 
ultimately the correct answer. This can be seen in lines (34-45) where 
James talked the girls through how to determine the co-ordinates of the 
point of inflection using the maths menu of graphical calculator. It is also 
evident in lines (54-60) where Sue misinterpreted the display and his 
clarification of her error enabled both girls to obtain the co-ordinates.

The need for careful mediation of the students’ use of the technology by 
the teacher was also illustrated in an episode involving Diana, Jan, Lea, 
Guy, the teacher-researcher (SE) and Mr Doors (SD). Diana and Jan were 
working together on question three and were confused by the answers 
given by their graphical calculators. This prompted two other students, 
Guy and Lea, who had already attempted this question and had 
experienced similar difficulties to be drawn into the conversation. As with 
the previous example, none of these students used the graphical calculator 
to try to differentiate the function directly via the derive programme.

1 Diana: What do you get for your minimum for question 3?
2 Jan: I get something really horrible, -1.56.
3 Diana: I get +2.16 to the -14.
4 Jan: You get what?
5 Diana: 2.16 x 10"14.
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6 Jan: I get that. I get that (showing her screen to Diana). They’re the 
same line though.

7 Diana: Yes that’s really odd. That’s really odd for the same 
function.

8 Diana: Have you done number three? For question 3, we’ve got 
different answers. We’ve both got the same equation. But when we 
got to the middle it’s given us different ones...

9 Guy: Yes.
10 Diana: It’s given the same y value.
11 Guy: But it’s given you what?
12 Lea: Are you trying to do the minimum. You can’t do the minimum 

for number 3.
13 Diana: Why?
14 Lea: You just can’t. No you can’t.
15 Guy: Why not?
16 Lea: I ’ve asked and she said you can’t.
17 Jan: It’s given us all different numbers. Is it something...?
18 Lea: Exactly, because I had about 20 different numbers.
19 Jan: So you’re not supposed to do it. Oh right.
20 SE: The function actually goes to a point so it’s not smooth like the 

others.
21 Jan: Right.
22 SD: You can’t differentiate it because the gradient is not zero, it 

does get to a lowest point, but it’s not a turning point.

Diana and Jan assumed that the function in question three had a minimum 
turning point. This led to much confusion for the girls, as both students’ 
graphical calculators gave different approximations to the non-existent 
minimum turning point when they used the maths menu to calculate the 
co-ordinates of the presumed stationary point. Both girls had been able to 
calculate the turning points of the functions in the previous two questions 
and as they had as yet relatively little experience of calculus, they simply
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assumed that this particular modulus function was no different to these 
other functions. Their results seemed odd, and drew their attention to the 
fact that something was amiss, but they could not understand why. In 
search of clarity Diana turned to Guy for help (line 8). However, it was 
Lea who attempted to shed light onto the situation (line 12). She had been 
listening to the conversation and joined in voluntarily. However, her 
comments failed to really clear the confusion and it appeared that she did 
not follow the explanation given to her previously as to why this function 
did not have a minimum turning point (line 16). Having heard the students 
struggling to make sense of the question, the teacher-researcher and Mr 
Doors, the classroom teacher, offered an explanation as to why this was 
not a turning point.

This episode illustrates how in certain circumstances useful prior 
knowledge in one context may be misapplied to a new context. 
Furthermore, in this instance use of the graphical calculator exaggerated 
the confusion amongst the students, rather than resolving it. As a 
consequence, continued use of the technology without intervention by the 
teacher might perpetuate this kind of misunderstanding. None of the 
students from this example were able to make sense of the calculator’s 
results until the teacher-researcher and classroom teacher intervened. The 
lack of clarity in the feedback provided by the graphical calculator could 
have led the students into making erroneous conclusions about the nature 
of this function. Thus, the teacher needs to be aware of possible 
misunderstandings that may arise as a consequence of using the 
technology and, as Hudson (1997) suggests, should monitor the 
interactions between students who are using the technology carefully.

The counter-intuitive results produced by the graphical calculator in this 
example also appeared to encourage greater interaction between students. 
Guy and Lea would probably not have entered the conversation if  the 
technology had produced an answer that was not in standard index form.
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Diana and Jan were not happy with the results that their graphical 
calculators produced and sought an explanation as to how and why these 
answers had arisen. They turned to their peers for clarification, although in 
this case this was not sufficient. The input of a more knowledgeable 
person, i.e. the teacher was required.

5.4 Conclusions
The chapter has considered the exploratory phase of the research and the 
ways in which students with no previous experience of using graphical 
calculators were able to use this technology to further their understanding 
of functions. This section summarises the findings of this phase of the 
research in relation to the cognitive and affective aspects surrounding the 
use of graphical calculators in the Advanced level mathematics classroom.

5.4.1 Amplification and Cognitive Reorganisation
This phase of the study has shown that the students were very aware of the 
amplification effects of the graphical calculator, i.e. the potential for the 
speed and ease of learning to be increased whilst using the technology. 
The restructuring of students’ thinking which is made possible as a 
consequence of using the technology (the cognitive reorganisation effects) 
was recognised as a factor that influences the depth of student 
understanding. Yet, few students commented specifically on how their 
understanding had altered, or how they viewed functions differently as a 
result of using the technology.

5.4.2 Dependency
Analysis of the students’ written work indicated that the solutions 
provided by the graphical calculators are sometimes regarded as 
irrefutable, as proposed by Smart (1995b), even when the answers are not 
feasible. This raised questions about their reasoning: were they actually 
thinking about the problems, comparing symbolic answers with the 
graphical, or were they just pushing buttons? The students’ over reliance
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on the graphical calculators when solving certain problems meant that 
they misunderstood, misinterpreted and misused some of the information 
provided by the technology. These findings raise important issues for 
teachers who are using graphical calculators in their classrooms, for 
example how can they help students to develop a strategy which enables 
them to decide whether a graph is misleading or not? They also suggest 
that students should be encouraged to question the a b s o l u t e  r e l i a b i l i t y  of 
the images that they produce using technology, to apply their own 
intuition and to make use of complementary problem solving techniques.

5.4.3 Visualisation
The findings of this phase suggested that use of the graphical calculator 
can encourage students to use and develop visual methods. Each student 
was able to use the graphical calculator effectively to reinforce and shape 
his/her visualisations. Moreover, those who did not tend to form mental 
images found the graphical calculator particularly useful in this respect. 
However, findings suggest that a student’s ability to visualise is dependent 
on the nature of support offered by the technology. The absence of a 
numbered scale on the axes and the size of the screen caused some 
difficulties for students. These limitations highlighted the need for the 
teacher to encourage students to become familiar and confident with using 
the window application, which indicates the scale that is being used. In 
addition, another strategy that would allow the students to verify the scale 
for themselves would be to encourage them to calculate points on the 
graph manually. Students also tended to use the graphical calculator too 
readily to produce the graphs of functions, without taking the time to try 
to picture them for themselves beforehand.

5.4.4 The Relationship between Symbolic and Visual Modes
The results of this study show that many of the students were not using 
symbolic approaches to enrich their answers. Indeed, few students 
completed the algebraic components of some questions successfully,
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suggesting that they were concentrating on the graphical form of 
representation and neglecting the symbolic. The students’ tendency to 
neglect the symbolic form of representation, whilst concentrating on the 
graphical emphasised the need for symbolic approaches to be presented 
alongside the visual (not in isolation), and the importance of using 
technology as a means of strengthening the links between the two 
approaches.

5.4.5 Scaffolding by the Technology
The study also highlighted a number of potential ways in which the 
graphical calculator could be used to support student learning of functions. 
In particular, it was found that the graphical calculator could be utilised as 
a means of strengthening the students’ own graphing skills, to facilitate 
the introduction of the concept of functions for the first time and to help 
them to make connections between symbolic and graphical 
representations. In addition, use of the graphical calculator could provide 
a support mechanism for students who are either uncomfortable when 
working within a visual mode of representation, or who are experiencing 
difficulty. Students were also enabled to become more confident in their 
methods and solutions through the visual verification (or rejection) of 
their ideas provided by the technology. This clearly had a positive impact 
on their attitude towards their work. Confidence was thus a key affective 
issue that was tackled through use of the graphical calculator.

5.4.6 The Role of Technology
Overall examination of the students’ work revealed that, whilst there are 
positive benefits in allowing them to experiment freely with technology, 
often there are associated problems. These observations were due possibly 
to the transparency effect described by Adler (1998). As these students 
were unfamiliar with the graphical calculators, they tended to concentrate 
on the technology rather than on the mathematics i.e. the graphical 
calculators were too visible, the object of attention. A longer period of
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study would be needed to discover whether the technology would 
eventually become invisible to students and the means to the mathematics.

The findings of this phase of the research also point towards the 
development of a more structured approach to promote students’ learning 
with technology which takes account of:

(1) the type of technology being used and associated limitations,
(2) the timing of the introduction of the technology into the classroom,
(3) how the use of technology is combined with the use of other media in 
the classroom such as pencil and paper, oral communication,
(4) the role that the teacher has in mediating the use of the technology.

5.4.7 Attitudes
One of the most encouraging outcomes of this study was the positive 
response of the students towards the introduction of the technology and 
the ways in which they believed that the use of the graphical calculator 
had strengthened their understanding of functions. The students’ 
comments suggested that by exploring the graphs of functions with the 
graphical calculators, in addition to using the more traditional symbolic 
approach, they were able to develop a more meaningful appreciation of 
the nature of functions.

5.4.8 Collaboration and Scaffolding by the Teacher
The two examples of student interactions provided insight into how they 
worked together using the technology and served to illustrate the value of 
collaboration amongst peers and the need for scaffolding by the teacher. 
May and Sue were able to overcome their lack of familiarity with the 
graphical calculator and work together towards the shared goal o f finding 
the turning points of the function. Both girls were thoroughly engaged 
with the problem and the technology; they supported and questioned one 
another and made suggestions, which furthered the development of the 
problem solving process. The assistance of the additional researcher
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proved to be invaluable in guiding the students towards a solution, 
especially in light of the unfamiliar technology.

The second example involving Diana, Jan, Guy and Lea also highlighted 
the need for teachers to monitor interactions between students and to 
intervene when appropriate. The students’ inability to transfer useful prior 
knowledge of differentiation to the context of the modulus function 
caused much confusion which was exaggerated in this case by use of the 
technology and as such warranted an explanation from a more 
knowledgeable person i.e. the teacher. In this respect the role of the 
teacher is an important aspect of this study and the results of this phase 
emphasise the need for careful mediation by the teacher over how the 
technology is introduced and of the students’ use of the technology. These 
findings have general implications for the mathematics classroom and 
have influenced the approach to teaching adopted in phase two. It also 
raised the question as to whether the graphical calculator could be used as 
a means of enabling students to overcome their difficulties and to transfer 
knowledge between different contexts rather than creating more confusion 
and this was explored further in the second and third phases.

5.5 Implications for Subsequent Phases of the Research
The first phase of the research served to highlight a number of important 
issues regarding the cognitive and affective aspects of graphical calculator 
use. Consequently, these findings shed initial light on the first objective of 
the thesis as a whole, suggesting that there is a complex set o f factors, 
both individual and collective, that had contributed towards the students’ 
acquisition of meaning within the graphical calculator environment. The 
most striking of these, however, was the way in which the graphical 
calculator was seen to promote and scaffold discussion and collaboration 
amongst the students and also the necessary and supplementary role of the 
teacher in mediating the use of the graphical calculators. As such, these 
findings in particular significantly influenced the main focus of the
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following two phases of the research, in which subsequently a greater 
emphasis was placed on the social aspects of learning. Moreover, the 
results of this phase gave rise to the third objective of the research as a 
whole: to investigate the teachers’ role in a graphical calculator 
environment. This in turn led to the search for a coherent framework to 
analyse the interactions between students and the teacher-researcher more 
carefully.

The data collected in this phase also provided the opportunity for the first 
evaluation of the graphical calculator as a tool for mediating the 
development of students’ understanding of functions, through the visual 
imagery it supplies, which was the second objective of the research. In 
highlighting the factors involved in this process, this phase of the research 
pointed towards categories of analysis for subsequent phases.
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CHAPTER 6 
INVESTIGATING MEANING MAKING 

AMONGST EXPERIENCED GRAPHICAL 
CALCULATOR USERS

6.0 Introduction
This chapter represents the second phase of the research (see figure 1.1, 
page 6) and gives an account of the way in which a small group of 
experienced graphical calculator users derived meaning for functions from 
their interactions with each other, the teacher-researcher and their use of 
the graphical calculators.

More specifically the aims of this phase were to:

• explore how students who regularly use graphical calculators make use 
of this technology as a cultural artifact (Berger, 1998),

• investigate how these students approach problems involving functions, 
with and without the use of technology, together and individually,

• examine how these students use visualisation in problem solving, and 
in what ways the use of graphical calculators could facilitate this,

• promote the validity of visual approaches to students and thus greater 
use of visualisation and to encourage students to combine methods as 
much as possible,

• establish a Tocal community of practice’ within the classroom.

This phase of the research builds on the first phase through consideration 
of experienced, as opposed to totally inexperienced, graphical calculator 
users and how these students might use the technology differently to

138



construct meaning for functions. The same categories of analysis that 
arose from the data in phase one were reapplied to the data collected in 
this phase, although there was a need to develop further sub-categories 
and modify existing ones in light of the new data.

6.1 Background to the Research
The second phase was conducted at Anderson College in Sheffield during 
June 1998. As in the previous trial, the investigation involved the teacher- 
researcher working with a small group of year 12 students, all aged 17, for 
a period of six hours (two three-hour sessions). In this case the group 
consisted of six students during the first session; Diane, Martin, Jason, 
Julie, Rachael and Robert, and three of these students during the second 
session; Martin, Julie and Robert. These students were studying GCE 
Advanced level Further Mathematics and were described by their teachers 
as being very capable mathematicians. Each student had purchased his or 
her own graphical calculator and was thus familiar with using this type of 
technology. The three members of staff, Mr. Pearson, Ms. Slater and Ms. 
Mooney, each taught one of the integral components of the course (pure 
mathematics, statistics and mechanics, respectively) and positively 
encouraged the use of the graphical calculators in lessons. Each individual 
student was given a Texas Instrument TI-92, although they generally 
worked together as a group sharing ideas. The lessons were designed with 
the aim that they would provide a supportive learning environment where 
Tocal communities of practice’ (Winboume and Watson, 1998) could be 
established.

6.1.1 Methods of Data Collection
The second phase began with refinement and further development of the 
classroom materials and techniques for gathering data. The additional 
techniques for collecting data included a pre-trial assessment, pre-trial as 
well as post-trial questionnaires, semi-structured student interviews, audio 
taped class discussions and a video recording of a single student (Robert)
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working with a graphical calculator that was connected to the overhead 
projector. Overall this part of the study consisted of eight distinct stages of 
data collection, which are outlined in the following table.

Table 6.1: Data Collection Activities
Data Collection Activity Timing of Activity Students Involved Staff Involved
(1) Student and staff 
questionnaires

Lesson 1, first 30 
minutes.

Diane, Martin, 
Jason, Julie.

Mr. Pearson, 
Ms. Slater.

concerning visualisation. Rachel, Robert. Ms. Mooney.
(2) Students’ work on the 
pre-trial questions, 
solving functions without 
the use of technology.

Lesson 1, next 45 
minutes.

Diane, Martin, 
Jason, Julie, 
Rachel, Robert.

N/A

(3) Introduction to the 
TI-92 and familiarisation 
questions.

Lesson 1, next 50 
minutes.

Diane, Martin, 
Jason, Julie, 
Rachel, Robert.

N/A

(4) Students’ work on the 
main pre-prepared 
exercises with the use of 
graphical calculators.

Remainder of 
lesson 1 and 2hrs 
15mins lesson 2. 
(3hrs in total)

Martin, Julie, 
Rachel, Robert.

N/A

(5) Student interviews 
concerning functions.

Lesson 2, first 50 
minutes.
Conducted whilst 
the other two 
students worked.

Martin, Julie, 
Robert.

N/A

(6) Audio recording of 
classroom interaction.

Lesson 2, 25mins. Martin, Julie, 
Robert.

N/A

(7) Video taping of 
individual students as 
they work on the main 
exercises.

Lesson 2, lOmins. Robert. N/A

(8) Student
questionnaires on the role 
of technology.

Lesson 2, last 25 
minutes.

Martin, Julie, 
Robert.

N/A

As illustrated in table 6.1, two questionnaires were administered to the 
students, one regarding the role of visualisation in A level mathematics 
and the other concerning their reactions to the technology. The 
questionnaires were devised to illuminate why, when and how they used 
imagery and whether they viewed technology as a resource that provides
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support for visual learning. The three members of staff who each taught 
this group of students were also given a questionnaire on visualisation. 
The staff questionnaire was intended to provide a background to the study, 
clarifying their views on visualisation and the extent to which visual 
methods are encouraged in the classroom. Each of these questionnaires 
can be found in appendix B.

The exercises were divided into two components: a pre-trial inquiry and 
the main exercises. The pre-trial inquiry exercises were designed to 
indicate how the students would attempt to solve standard problems 
involving functions initially without the use of technology (see appendix 
B). Each question was phrased in a manner that would be found in a 
traditional A level textbook. These exercises were followed by a brief 
introduction to the TI-92. The students then worked for the remainder of 
the lessons on the main pre-prepared exercises using the graphical 
calculators. Fewer introductory questions were given to the students than 
in the previous trial, as these particular students were already experienced 
graphical calculator users. The main exercises were also modified to take 
account of this, as well as the feedback received in phase one.

As a further means of data collection, one student, Robert, was filmed as 
he worked through certain questions from the main exercises. He was 
working by himself using a graphical calculator that was connected to the 
overhead projector. In addition, discussions between Robert, Martin, Julie 
and the teacher-researcher were recorded onto audio tape. These 
discussions surrounded possible solutions to one of the questions from the 
main exercises.

The student interviews were devised in order to illuminate how they 
would attempt to solve questions involving functions individually rather 
than collectively. Each question was selected to provide a range of 
different problems for them to consider. In addition, styles of questions
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that would possibly be unfamiliar to the students were chosen, especially 
question 5 (see Appendix B). The intention of this was to see if  these 
students would tend to use more imagery with unfamiliar, non-typical 
problems.

The questions were phrased in a manner that would not necessarily 
promote a symbolic approach. For example, the first question was 
worded: for which values of x is the graph of y = 3x2 + 9x -  12 below the 
x-axis? The same question could have been written: solve 3x2 + 9x -  12 < 
0 or for which x values is the expression 3x2 + 9x -  12 less than zero? 
This type of wording could be considered as a precursor to a symbolic 
approach, and certainly as indicative of such a method.

In what follows, the data from each of these eight stages will be analysed 
in terms of cognitive factors (section 6.2) and affective factors (section 
6.3).

6.2 Graphical Calculators and Cognitive Factors in 
Students’ Knowledge of Functions
In order to determine the influence of graphical calculators on cognitive 
factors, data was analysed from the eight sources outlined in table 6.1.
The findings that pertain to cognitive factors have been subdivided into
the following themes, which build on those highlighted in phase one:

• Amplification, Cognitive Reorganisation and Students’ Understanding 
of Functions

• Graphical Calculators and Dependency
• Graphical Calculators and Visualisation

In each of these three areas, the analysis of data was considered from a 
cognitive perspective and the graphical calculator was subsequently seen 
to have a significant impact on the students’ cognitive development.
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6.2.1 Amplification, Cognitive Reorganisation and Students’ 
Understanding of Functions
The findings from the first phase of the research pointed to the potential 
for the range of students5 learning to be increased as a consequence of the 
amplification effects of the technology. Even more significantly, the 
analysis also indicated that the cognitive reorganisation effects of the 
technology could have an impact on the depth of students5 understanding. 
These findings raised the question of how the amplification and cognitive 
reorganisation effects might be interrelated and how these factors might 
influence the way in which students5 thinking develops. Consequently, in 
this phase, evidence of the students5 awareness of the amplification and 
cognitive reorganisation effects of the technology was sought from their 
questionnaire responses. The classroom interaction then provided a 
window into these effects in action and the nature of the relationship 
between them.

In the students5 questionnaires, they were asked to specify what they 
considered to be the main advantages of using technology to study 
functions:

M artin: Graphical calculators/computers can be helpful and speed up 
calculating answers. The biggest advantage is the ability to quickly see how a 
function will change when certain things happen to it.

Julie: Students are free to spend time manipulating the different graphs o f  
functions to learn how they work.

Robert: Technology will graph very quickly and help students to recognise and 
visualise characteristics o f many functions. It is very useful in speeding up 
calculations.

Martin also commented on the benefits of using the graphical calculator as 
a checking tool and the importance of being able to access a dynamic 
representation of transformations:
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The TI-92 is useful because it can simplify equations, so can help check 
answers. Graphs are easy to understand when seen plotted and it has helped 
me to see how graphs can be manipulated.

The ability of students to verify or, in particular, disprove their solutions 
using the graphical calculator can lead to cognitive reorganisation (as can 
be seen in episodes 1 and 2 discussed below).

Through being able to see the visual effects of transformations, Martin felt 
that his use of the graphical calculator had strengthened his understanding 
of the relationships between functions:

It has definitely helped me to see how functions can be related and manipulated
through translations and stretches.

In the eyes of these students, the main advantage of using graphical 
calculators to teach the concept of functions was the speed with which 
graphs could be drawn and manipulated, which left them free to explore 
functions further. Cumbersome and time-consuming tasks were removed 
by the technology, leaving them able to complete more conceptually 
demanding tasks with greater effectiveness and ease. The amplification 
effects of the technology were thus very visible to these students and 
appeared to be their main focus of attention, as was also the case in phase 
one.

Whilst none of the students except Martin commented specifically on the 
cognitive reorganisation effects of using the graphical calculators, these 
effects were clearly evident in practice, as is illustrated in the following 
episodes. The first of these involves Robert working individually on a 
problem from the main exercises using the graphical calculator. The 
second involves Martin, Julie and Robert discussing the solution to a 
different question from the main exercises, although it is Robert’s 
utterances that are the focus of attention.
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Episode 1 -  Linking Amplification and Cognitive Reorganisation Effects 
Robert’s use of the graphical calculator was video taped whilst he 
attempted to show that In xa = a \ n  x. It was anticipated that the resulting 
discussion between Robert and the teacher-researcher would shed light on 
Robert’s thought processes and how these might have been affected by 
use of the graphical calculator. The initials SE are used to denote the 
teacher-researcher in this episode and in all subsequent episodes.

Initially, Robert used the graphical calculator to draw the graphs of In x 
and 21n x simultaneously. However, at this time he was unaware that this 
approach was unlikely to yield any discoveries, as one of the graphs 
would mask any differences between the two. When it was suggested that 
he draw them separately, Robert obtained the following two graphs 
(figures 6.1 and 6.2) and the dialogue below was initiated:

f̂ 1 f —IzoonTr raoelReGraphlMathTDraulr? 1

M A I N  RA D AUTD f u n c

r^feo^URe&phKa'thTD^ ̂  I 1

M A I N  RA D AUTO F U N C

Figure 6.1 y = 21n x Figure 6.2 y = In x

1. SE: Does the graph of 21n x surprise you?

2. R: Not really, you can’t have logarithms of negative numbers.

3. SE: Exactly. So would you say that the two expressions were the 
same or not?

4. R: I ’m hesitant to say. I would say that algebraically they were the 
same.

Robert recalled being taught during his previous experience of logarithms 
that these two expressions were equivalent (line 4). However, the graphs
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produced by the graphical calculator seemed to contradict this assumption, 
although he had established why the two graphs are not identical for 
negative x values (line 2).

5. SE: What will happen, do you think, for x3: In x3 and 31n x?

6. R: I wouldn’t have thought that there would have been any 
difference.

3
7. SE: Think about the graph of In x . Why would that be different to 

In x2?

3

Robert drew the graph of In x on the TI-92 (figure 6.3):

[ZoomTrace

F U N C

3
Figure 6.3 y = In x

8. SE: Why isn’t there a part of that graph for negative x values?

9. R: For the same reason that there isn’t a negative part for 21n x — 
you can’t have a logarithm of a negative x value.

3
10. SE: So is 31n x going to be the same as In x then?

Robert plotted 3In x and agreed that they were the same (figure 6.4):
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M A I N  R A D  A U T O F U N C

Figure 6.4 y = 31n x
•5

JWhen confronted by the question involving x , Robert’s initial reaction 
was to assume that the same thing would happen (line 6). In an attempt to 
prompt him to think again, the teacher-researcher asked him to think about 
the graph of In x and how this would be different from the graph of In x . 
In response to this question Robert drew the graph of In x3 using the 
graphical calculator. By employing the technology, and being 
immediately able to produce the graphs of the functions he was 
considering, he was able to begin to formulate ideas as to why his original 
analysis was incorrect. In this way use of the technology induced 
cognitive reorganisation. Robert was now developing additional insight 
into the problem and was able to predict what would happen in the case of 
x4:

11. SE: What do you think will happen with x4?

12. R: The same thing as with x , but it would become steeper, as in 
stretched.

At the end of this episode, Robert had established that the two graphs 
would only be identical for odd values of a  and the reason why this is the 
case. This had occurred because Robert was able to make and test 
predictions using the graphical calculator, which allowed him to quickly 
produce the graphs of particular cases adding weight to his arguments. 
Ultimately, the graphical calculator enabled Robert to access graphical 
images of functions quickly and easily, which in turn allowed him to see 
the problem more clearly and to proceed towards the solution with
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confidence. As such, this example illustrates the way in which the 
amplification effects of the technology can contribute towards the 
cognitive reorganisation effects.

Episode 2 -  The Role of Graphical Calculators in Enabling Students’ 
Thinking to Develop

This example features an extract from a class discussion involving Julie, 
Martin and Robert. In this discussion, the students were attempting to 
solve a question from the main exercises together, in which they had to 
identify the correct symbolic forms of six graphed functions from a list 
containing several options (see figure 6.5).

Match up the six graphs with their corresponding functions, chosen from the list 
below:

A. (ZoomTrig) B. (ZoomTrig) C. (ZoomStd)

AAAAAAA VAAAAAAA/ V V V v v V l

M A I N  R A D  A U T O

v V V v v v v

r u n e

V /
M A I N  R A O  A U T O  F U N C

. / y  A A A Av  V  v

M A I N  R A O  A U T O

V  V

F U N C

D. (ZoomStd) E. (ZoomStd) F. (ZoomTrig)

M A I N  R A D  A U T O  F U N C

1 J J J
f ( ( 1

M A I N  R A D  A U T O  F U N C

J

M A I N  R A D  A U T O  F U N C

1. y = sin (x/3) 2. y = cos (x - n/2) 3. y = 3sin x 4. y = cos (x + 7i)

5. y = (x - 4)2 6. y = tan (x/3) 7. y = (4 - x)2 8. y = tan (x/6)

9. y = (x + 4)2 10. y = cos (x + n/2) 11. y = sin 3x 12. y = In (1/x)

13.y = exl + 4 14. y = lnx2 15. y = ê x+1) + 4 16. y = 21nx

2 x+1
17. y = -In x 18. y = -e + 4  19. y = (tan x)/3 20. y = (tan x)/6

Figure 6.5 Class Activity: Identifying the Graphs of Functions

148



The episode that follows consists of extracts from the first part of the 
discussion where these students were trying to identify graph A. The 
entire transcript can be found in appendix B.

1 SE Can anybody tell me which function 
represents the graph drawn in the first one?

2 Martin Is it cos (x + tt/2)?
- J — -SE------ ^\nd-why-de-you^ay-that?-------------------------

4 Robert It’s a sine graph. Robert was confident.
5 SE Contradiction there. Explain your choice. Directed at Martin.
6 Martin Er well it looks -  it’s got to be like sine or 

cos and I think that cos starts at the top and 
each line on the scale is 90° which is 7i/2 
radians, so it’s been moved ...

Martin was motioning 
in the air, tracing the 
path of the graph of 
cos x with his finger.

7 SE It’s been moved across to the ...
8 Martin It’s got to be -7i/2 rads then because it’s gone 

the other way, so it’s number 2 [cos (x-7i/2)].

Initially, Robert quite confidently asserted that this was a sine graph (line 
4). He recognised the distinctive shape of the graph as being of the form y 
= sin x and as such did not initially think of the graph in terms of a 
translation of the cosine function, as Martin had suggested. Martin then 
went on to justify his choice of function and in doing so recognised his 
initial error and consequently identified the correct form of the function 
from those specified: y = cos (x - 7t/2) (lines 5-8). Robert was then asked 
to explain his ideas:

9 SE Why do you say that it might be a sine 
[graph]?

10 Robert Because sine of zero is zero and I’d say that 
that is in fact -  because it seems that B is 
also a sine wave but that’s more concentrated 
-  I’d say that A is 1 [sin x/3].

11 SE You think that it’s sin (x/3)?
12 Robert I wouldn’t swear to it. Robert clearly lacked 

confidence at this 
point.
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Robert was somewhat confused by the fact that y = sin x was not one of 
the listed options. His initial image of this function as a sine graph was 
strong and he began to consider the other sine functions listed, focusing on 
sin (x/3) (line 10). Yet, he was still uncertain that this was the correct 
function (line 12). At this point Julie was drawn into the conversation by 
the teacher-researcher. She agreed with Martin’s argument and offered 
some explanation for her choice [lines 13-20, see appendix B]. However, 
Robert seemed unaffected by the arguments proposed by Martin and Julie 
and in an attempt to repair his understanding he began using the graphical 
calculator:

21 SE Yes. Ok so have you tried to actually graph 
on the TI-92 the first one that you thought it 
was?

Robert had just 
graphed the function 
y = sin (x/3).

22 Robert Yes.
23 SE And what did you get?
24 Martin Isn’t that cheating drawing the graph to see 

which?
25 SE No, no he is just convincing himself.
26 Robert To be honest I can’t remember what I typed 

in.
27 SE Well, let’s think about the first one 

y = sin (x/3). What is the graph of that going 
to look like?

28 Robert Wide, and wider than it is there. Robert pointed to the 
graph to be identified.

29 SE Yes. Ok, I’m going to say that you two are 
actually correct. Now it looks like a sine 
because it is sine of x, that is sin x.

30 Robert Yes.
31 SE But it can also be represented by 

y = cos (x - 7i/2) that’s another...
Attempt to provide 
reassurance.

32 Robert I see where that’s coming from. Robert regained his 
confidence. His tone 
of voice indicated that 
he understood this.

When asked to consider what the graph of sin (x/3) would look like in 
relation to graph A (line 27), Robert was able to recognise that the graph
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of sin (x/3) would be wider than graph A. Use of the technology and the 
teacher-researcher’s question aimed at making him think about the 
relationship between the two graphs had helped Robert to perform a self
repair. He now realised that sin (x/3) was not the correct form of this 
function, and he started to question his initial thoughts and to eliminate the 
other sine functions listed. When it was explained that the graph could be 
represented symbolically by either y = cos (x - 7i/2) or y = sin x, Robert 
remarked “I s e e  where that's coming from” (line 32). This suggested that 
he could visualise the action of the transformation f(x-7t/2 ) on the graph of 
f(x)=cos x and how this would produce the graph of sin x. He appeared to 
have internalised the argument that was presented by the teacher- 
researcher. The use of the technology and the discussion in this example 
appeared to have resulted in some form of cognitive reorganisation for 
Robert. His thinking during the course of the episode had changed and by 
the end of this part of the discussion he was able to transfer his prior 
knowledge of trigonometric functions to this context. The concept of 
transformations became more meaningful to him, adding greater depth to 
his overall understanding of functions.

With regard to collaboration, the use of the graphical calculator also 
provided a means of furthering the discussion and preventing a breakdown 
in communication. When Robert was unable to move forward he turned to 
the graphical calculator in an attempt to clarify his thoughts, rather than 
merely accepting the arguments put forward by Martin and Julie without 
really understanding them. This example illustrates how use of the 
graphical calculator can help students’ thinking to develop. However, in 
this episode the teacher-researcher also played a vital role in contributing 
towards Robert’s understanding, which will be discussed in greater detail 
in section 6.3.3.
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6.2.2 Graphical Calculators and Dependency
The findings from phase one suggested that students who are unfamiliar 
with graphical calculators might initially rely too heavily on this resource 
and regard the solutions produced by the technology as irrefutable. In light 
of such findings, evidence was also sought in this phase as to whether 
these particular students, all regular graphical calculator users, would 
show any similar signs of being over-reliant on the technology. The 
underlying supposition was that these students would tend not to rely as 
heavily (if at all) on the results produced by the graphical calculators 
because o f their familiarity with this form of technology. In addition, these 
particular students were repeatedly advised to question whether the 
solutions produced by the graphical calculator made sense, and to check 
these results using symbolic methods throughout the trial. However, 
whilst instances of over-dependency on the graphical calculator were 
rarely observed in this phase, it was evident from the students’ written 
work that there were a couple of occasions where over-reliance was still a 
problem, as the following examples illustrate.

In order to determine whether these students would experience some of 
the misunderstandings surrounding particular functions that had resulted 
from over-dependency on the graphical calculators in phase one, Robert, 
Martin and Julie were given similar questions for homework. In these 
questions they were asked to determine the nature and co-ordinates of any 
turning points of the following functions:

(1) y = x2 - x3, (2) y = (x+l)/(x+2)2, (3) y = (x-1) + l/(x+l), (4) y = (l+x2)/(l+x+x2).

In contrast to phase one, the function, y = x -  x did not cause them any 
problems and all three students correctly identified the co-ordinates of 
both turning points. As had been expected, these experienced students did 
not automatically assume that the calculator display screen was 
necessarily showing the whole graph of a function or all the important
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features of that graph. Instead, they made proper use of the zooming 
facilities and zoomed in on the graph of this function to obtain the correct 
co-ordinates of both turning points. This was also the case with the fourth 
function.

However, zooming out proved to be less successful and the graph of the 
second function, y = (x+l)/(x+2) was again misinterpreted. As was the 
case in phase one, Julie and Martin used the zoom menu to zoom out on 
the graph drawn in zoom standard (see figures 6.6 and 6.7) which 
produced a graph that appeared to have a minimum turning point. As a 
consequence, both students produced written answers which stated that 
there was a minimum turning point at x = -2 .

[ ? # 2 I z ? o „ y j c  jR e 6 ? a p h T n E T h rD » ' ^  I 1

1
M A I N  R A D  A F P R D X F U N C

¥
M A I N  R A D  A P P R O X F U N C

Fig 6.6 y = (x+l)/(x+2)2 ZoomOut Fig 6.7 y = (x+l)/(x+2)2 in ZoomStd

In exactly the same way as the students of the previous trial, these two 
students had misinterpreted the information provided by the technology.

What was even more surprising though was the fact that Julie’s written 
solution to this problem contained approximations produced by the 
graphical calculator. She identified two stationary points, for which the 
proposed co-ordinates were (-2, -6.44x1012) and (1.068x1 O'38, 0.25). This 
indicated that she had not thought carefully about how sensible these 
answers were, and this was further confirmed by the fact that there were 
no symbolic manipulations to accompany her answers.

Julie also made the same error in the next question, concerning the 
function y = (x -  1) + l/(x+l). She stated that there was a minimum
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turning point at (-3.266x1 O'8, 0). By substituting x=0 into the equation she 
had already determined that (0,0) was a point on the curve. Consequently, 
if  she had thought carefully about her two conflicting values of x when y 
was zero she may have realised that the graphical calculator was 
approximating zero as -3.266x1 O’8 (because of the zoom factors). The fact 
that the actual co-ordinates of the turning point were (0,0) would also have 
become clear through differentiation of the function. However, as for the 
previous question, this was not attempted.

Martin, on the other hand, had tried to differentiate the function y = 
(x+l)/(x+2) . However, his attempt was unsuccessful and thus did not 
rectify his misunderstanding. He incorrectly applied the quotient rule for 
differentiation, obtaining: dy/dx = (1- (2x+2))/(x+2)4 instead of dy/dx = 
((x+2)2 — (2x+2)(x+2))/(x+2)4.

These examples illustrate that over-dependency on the technology may 
still occur even when students are regular graphical calculator uses. 
Moreover, since there was no further evidence of dependency on the 
graphical calculators within the classroom, this raises the question of 
whether dependency is more likely to occur when students are working 
individually with the technology, rather than collaboratively. Dependency 
may also be related to students’ existing prior knowledge and whether 
they can check their answers by other means.

All of the students were made aware of the fact that the answers produced 
by the graphical calculator could be misleading. In spite of this warning 
however, Julie appeared to have complete confidence in the solutions 
produced by the graphical calculator, and as such did not question their 
legitimacy. She consequently did not feel the need to check her results by 
differentiation, as had been requested as part of the question.
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Over-dependency could be considered as a negative consequence of the 
amplification effects of the technology. The graphical calculator provides 
students with the means of quickly and easily producing answers to 
questions. This saves the students considerable time and effort, and it 
becomes easier for them to accept the solutions produced by the 
technology, rather than thinking at any great depth about the problem 
themselves, especially if time is scarce. The use of graphical calculators 
can thus encourage a certain amount of ‘laziness’ amongst students. 
Ultimately, the use of the graphical calculator in these examples did not 
enhance the students’ understanding of these particular functions because 
their graphical exploration was not supplemented by a symbolic approach.

These examples also highlighted a limitation of this particular form of 
technology with respect to resolution. Martin and Julie may have been 
misled by the lack of clarity on their graphical calculator screens, whereas 
this may not have been the case if they were using computers. In his 
questionnaire responses Martin acknowledged the “limited display 
resolution” of the graphical calculators and stressed that he would prefer 
to use computers in his A level mathematics classes because o f the 
comparatively “better display” on the computer screen. The technology 
used needs to be precise or otherwise students can be misled.

These examples suggest that the environment in which the students use 
the graphical calculator may have some influence on their level of 
dependency on the technology. As they were given these particular 
questions for homework they were completed individually (as their 
different answers show) without support from each other or the teacher- 
researcher. When they worked collaboratively, however, there was no 
evidence to suggest that they were being overly reliant on the technology. 
Consequently, it is proposed that the learning environment that was 
established in the classroom and the interaction amongst the students and 
with the teacher discouraged students from being dependent on the
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technology. In this local community of practice they were encouraged to 
compare their answers and question each other and the teacher-researcher 
about the results obtained by use of the technology. They did not need to 
be dependent on the answers produced by the technology in this 
environment, as they could gain additional support from one another and 
the teacher-researcher. Dependency thus appeared to be related to (i) 
individual work, (ii) students’ prior knowledge and (iii) display resolution.

6.2.3 Graphical Calculators and Visualisation
The findings of phase one had indicated that the graphical calculator could 
have a positive effect on students’ abilities to visualise functions. In order 
to determine the impact of the graphical calculator on the students’ use of 
visualisation in this phase, data was analysed from the student and staff 
questionnaires, the student interviews, the students’ work and audio 
transcripts.

Analysis of the student questionnaires highlighted the fact that all of the 
students, except for Robert, regarded themselves as visualisers. However, 
closer examination of individual students’ responses revealed a surprising 
lack of confidence surrounding the accuracy and validity of visual 
solutions and in the students’ abilities to visualise functions themselves. 
This was accompanied by a definite orientation towards working 
symbolically. For example, when Martin was asked whether he had a 
preference for working symbolically or visually, he responded:

When I ’m comfortable with knowing how the methods work symbolically I  
would then find  it easier to visualise it, as I  can check that I  am visualising it 
right. Visual methods are encouraged but I  would probably try to learn an 
algebraic method first until I  am comfortable with my understanding o f  the 
methods, so I  may not take as much notice o f learning a more visual approach. 
When I  am not used to the type o f problem, it is not easy to relate it to a graph 
or system, so I  would use algebra.

Julie, Robert and Rachel similarly commented that they achieved greater 
success when using symbolic arguments and all believed the symbolic
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approach to be easier and more efficient. Consequently, these three 
students all had a clear preference for working symbolically, even though 
Julie and Rachel claimed to be more visually orientated, as their responses 
to the following question illustrate:

“Do you have a preference for working either symbolically or visually?”

----------Ju lie: I  dopreferto^work symbolically, although I  visualise things more ojten.
I  tend to get the right answers when I  work symbolically more often than when 
I  visualise. It can be very difficult to work visually.

Rachel: I  find  [working] symbolically easier. I ’d like to do more maths visually 
but I  can’t apply [this approach] to some situations. For example when maths 
becomes abstract.

This underlying preference for symbolic methods could have been 
perpetuated by the fact that their pure mathematics teacher, Mr Pearson, 
tended to concentrate on the symbolic aspects initially when teaching 
functions to his sixth form students. In response to the question “when 
teaching functions to lower sixth form students, do you tend to devote 
fairly equal amounts of time exploring the graphical, symbolic and 
numerical aspects, or does one particular approach predominate?” he 
stated:

The symbolic aspect predominates initially. Then the graphical and 
numerical aspects gain equal weighting.

He also commented on the current emphasis that is placed on symbolic 
manipulation in Advanced level mathematics:

Even i f  a problem is visualised the technique for solving invariably 
involves algebra.

The students’ initial reluctance to explore visual methods was also 
reflected in their written solutions to questions from the pre-trial enquiry. 
These questions were solved without the use of technology and only 9 out
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of 32 of their solutions included graphical representations as well as 
symbolic manipulations. In particular, the only question that could not be 
solved directly using algebra (solve the equation sinx = 2x2) was 
attempted graphically by only one student, Diane. The others missed out 
this question completely. This suggested further that these students lacked 
confidence in their own graphing skills. The student interviews also 
indicated that Robert, Martin and Julie would only tend to draw graphs 
when working individually if their symbolic approaches failed or if  the 
problem was completely new to them.

The following episode demonstrates how the graphical calculator was 
needed to support the students’ visualisations.

Episode 3 — The Role of the Graphical Calculator in Supporting Students’ 
Visualisations
In this episode Robert, Martin and Julie were trying to identify the 
function represented by graph E in figure 6.5. This graph, y = ex_1 + 4  
caused the students particular problems since they were unfamiliar with 
the graphs of more complicated exponential functions.

1 Robert It could involve an exponential this time.
2 SE Yes this is an exponential.
3 Robert It's obviously got +4 on the end, so it's 

either 15, or 18 or 13 even.
[y = e'(x+1) + 4, or y = -ex+1 + 4, or 
y = ex''+ 4 ] .

Robert was able to 
recognise the function as 
exponential and thus 
identify the possibilities.

4 Julie It hasn't been reflected, so it's not 18 
fy = -ex+1 + 41.

Correct assertion.

5 Robert It's probably 13 actually, [y = ex_1 + 4]
6 SE Why do you say that one?
7 Robert Because the negative sign somehow has 

to fit that [the graph], although I can't 
explain how the minus sign affects it.

At this point Robert and 
Julie began to conjecture 
incorrectly about the 
effects of the functions 
on the shape of their 
graphs.

8 Julie That's some sort of reflection, isn't it? Referring to y = ex_1 + 4.
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9 Robert 15 [y = e"(x+1) + 4] would be a reflection.
10 Julie Why?
11 Robert It would be a reflection in x, wouldn't it?
12 Julie I don't know.
13 Robert 18 [y = -ex+1 + 4] would be a reflection in 

y. This is like ignoring the transformation 
of +4, which I’d say is 13 [y = ex_1 + 4].

14 SE Yes you are correct and if you are not 
sure you can always draw the graphs of 
them to see which is a reflection in x and
which is a reflection in y.

In this episode, each of the students clearly had difficulty in visualising 
the effects of different transformations on the graph of y = ex. Out of all 
the students’ contributions the only correct argument that was presented 
was the one proposed by Julie in line 4, which allowed her to eliminate y 
= -ex+1 + 4 from the list of possible functions.

The discussion had suggested that these students would need additional 
support to enable them to visualise the effects of certain transformations 
on exponential functions correctly, despite their knowledge of how 
different types of transformation affect other, less complex, functions. 
This is an occasion where technology was particularly effective in 
mediating the students’ visualisation powers. The students needed to test 
their conjectures and to investigate the visual connections between the 
various forms of the given exponential functions. In this way, they were 
able to study the visual effects of different transformations on exponential 
functions and develop a clearer understanding of these processes, 
following the discussion of the final graph.

The teachers also recognised the role of technology in the development of 
students’ powers of visualisation, as is evident in their responses to the 
following question: “how important, in your opinion, is technology in 
supplementing and enriching students’ visual capabilities?”
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Ms Mooney: Very - familiarity obviously helps and using technology means it 
is easy to become very familiar.

M r Pearson: O f growing importance in the teaching and enriching o f  
mathematics in general -  visual capabilities are supplemented and learned by 
use o f technology.

Triangulation of the students’ and teachers’ questionnaire responses 
suggested that, in line with their beliefs, these teachers did indeed 
encourage students to visualise in lessons and that this involved the use of 
the graphical calculators.

In light of the research exercise, Robert indicated that he may “use 
graphical methods more”, in the future, “when solving the more involved 
problems”. This was an especially promising outcome as Robert had 
initially regarded visualisation solely as a “basis on which to use an 
algebraic method”. Despite the fact that visual solutions were usually 
encouraged by their teachers, Robert stated that he “generally attempts to 
ignore such suggestions”. He claimed that he only used visualisation as “a 
last resort”. In his opinion, symbolic methods were of paramount 
importance:

A visual approach is most effective as a foundation for a symbolic solution. 
Technology is useful as an aid for analysis, yet understanding is best developed 
through algebraic methods. The concept o f functions is best taught in a more 
traditional manner, so students might gain a more profound understanding o f  
the field.

Following the trial, Robert appeared to have recognised additional 
benefits of using graphical approaches, through his exploration with the 
graphical calculator and seemed to be more confident in using them. 
Martin’s confidence had also improved and he commented:

I  think that I  will be more comfortable in using a visual method such as plotting 
points and drawing sketches when solving problems.
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Since Martin had expressed reservations about the accuracy of visual 
methods during the early stages of the trial, this outcome was particularly 
encouraging.

The students’ written solutions to the main exercises [see Appendix B] 
and the class discussions that were audio recorded also provided evidence 
concerning the effect of the graphical calculator on their understanding of 
the relationship between symbolic and visual modes of representation. In 
particular, their attempts at questions from the main exercises that 
involved symbolic and graphical representations and required solutions 
incorporating both of these aspects were very encouraging. This was 
especially so considering their apparent scepticism surrounding the use of 
visual methods. For each of these problems, they provided valid solutions 
in which symbolic and graphical approaches were effectively combined. 
For example, all parts of question four (see appendix B), both graphical 
and symbolic, were answered correctly by those who attempted this 
question. In this case they did not appear to concentrate more on the 
graphical mode of representation as a result of using the technology, 
which was a feature of phase one. On the contrary, use of the technology 
encouraged them to use a combination of symbolic and graphical 
techniques and to explore the links between these two modes of 
representation. This was illustrated in episode one, in which Robert 
investigated the identity In xa = a \ n  x (see section 6.2.1).

Analysis of the transcript data and the students’ work provided a means of 
establishing the effect that the graphical calculator had on their abilities to 
move confidently amongst different modes of representation and to 
establish connections between them. One of the most promising outcomes 
of this phase of the research was the fact that each student was able to use 
the graphical calculator effectively to graph and translate functions and to 
check their own visualisations.
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6.3 Affective Factors which Contribute Towards Students’ 
Learning of Functions
In order to determine the relationship between the graphical calculator and 
affective issues, data was analysed from each of the eight sources outlined 
in Table 6.1. The affective issues that were highlighted in the findings of 
this phase of the research have been categorised into three main areas, 
which again build on those identified in phase one:

• Graphical Calculators and Effective Collaboration
• The Role of the Learning Environment
• The Role of the Teacher in Promoting Collaboration and Meaning 

Making in a Graphical Calculator Environment

As argued by Mcleod (1992), the relationship between affective factors 
and mathematics learning is “always influenced by the social context” (p. 
587). All aspects of the social environment are seen to have an effect on 
students’ emotions, attitudes, beliefs and behaviour. The three categories 
of analysis involving collaboration, the learning environment and the role 
of the teacher have thus been classified as affective issues. It is also 
recognised, however, that these affective social factors have interrelated 
implications for cognitive development.

6.3.1 Graphical Calculators and Effective Collaboration
Ideas developed by Teasley and Roschelle (1993, see section 4.4.2.2, 
chapter 4) were used to analyse the interaction between Martin, Robert 
and Julie and the teacher-researcher, as these students attempted the 
question from the main exercises, which involved identifying the graphs 
of the six functions (see figure 6.5). Teasley and Roschelle propose that 
social interactions in the context of problem solving activity occur in 
relation to a Joint Problem Space (JPS). They maintain that the JPS is a 
shared knowledge structure that supports problem solving activity by 
integrating (a) goals, (b) descriptions of the current problem state, (c)
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awareness of available problem solving actions, and (d) associations that 
relate goals, features of the current problem state and available actions.

In this model, collaborative problem solving consists of two concurrent 
activities, solving the problem together and building a JPS. The analysis 
of the data thus involved finding evidence for the construction of a JPS as 
well as identifying student ‘initiation5 of the discourse, student 
‘acceptance5 of arguments and cases of students ‘repairing5 
misunderstandings. Evidence was also sought for instances that involved 
‘collaborative completions5 between students, where one partner's turn 
would begin a sentence and the other partner would use their turn to 
complete it. The entire set of transcript data can be found in Appendix B.

The analysis of the transcript data revealed that the use of graphical 
calculators could lead to particularly effective collaboration amongst the 
students, as the following episode demonstrates.

Episode 4 -  The Role of the Graphical Calculator in Collaborative 
Meaning Making

1 SE Finally F.
2 Robert It’s a tangent. There was a pause.
3 SE Think about the scale the TI-92 uses.
4 Robert To see if it was increasing I could just draw 

the normal graph.
5 SE Ok, if it helps you can draw the, you can all 

draw the tan x graph and see what happens on 
your machine and then from there you can 
hopefully deduce what the function is.

6 Robert It’s a stretch of factor 3.
7 Martin It’s tan of x over 3.
8 Robert Yes.
9 SE Is that number 6 or number 19 [y= tan (x/3) 

or y =(tan x)/3], because there are two of 
them?

10 Martin Number 6 [y = tan (x/3)].
11 SE Number 6 and what do you think? Have you 

managed to get the tan?
Directed at Julie
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12 Julie Yes. That’s the whole thing. Pointing to the 
tan x in (tan x)/3

13 SE That’s tan of x all divided by 3.
14 Julie So yes number 6.
15 SE Number 6, yes well done you are right.

After using the graphical calculator to graph tan x, Robert compared this

three. To complete Robert’s statement, Martin added that the correct 
function was “tan of x over three” and Robert immediately agreed, 
indicating that he had internalised Martin’s response. Robert and Martin 
having attempted to construct shared knowledge had effectively produced 
a collaborative completion. However, as there were two functions which 
could be verbalised as ‘tan of x over three’, the teacher-researcher sought 
confirmation that Martin had identified the function correctly and was 
quickly satisfied that he had. Up until this point Julie had not contributed 
to the discussion and the teacher-researcher drew her into the conversation 
by questioning her to see if she was following the arguments being 
presented. Julie agreed with the choice of function offered by Martin and 
provided some evidence that she had understood why this was the correct 
function (line 12), which was then confirmed by the teacher-researcher.

The students had thus been able to develop some shared understanding of 
the transformations used in this example through the creation of a joint 
problem space. Moreover, the use of the graphical calculator was an 
important part of this process. The interaction between the students was 
constructed in relation to the graphs produced by the graphical calculator 
and it was this factor that led directly to the collaborative completion 
between Martin and Robert. This occurred because the students were able 
to establish a shared visual interpretation of the function using the 
graphical calculator. In other words, in this episode use of the technology 
provided Julie, Martin and Robert with a common starting point from 
which they were able to think about the problem in the same visual terms.
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From this position they were each able to contribute towards correctly 
identifying the symbolic form of the function.

The graphical calculator can also be thought of as a catalyst in the 
collaboration process and in furthering individual students’ thinking. The 
students interact with the feedback provided by the graphical calculator. In 
the first episode that was discussed in this chapter, the use of the graphical
calculator resulted in cognitive conflict for Robert. This occurred when he
drew the graphs of y = 21n x and y = In x2 using the graphical calculator 
and saw that they were not identical:

3. SE: So would you say that the two expressions were the same or
not?
4. R: I ’m hesitant to say. I would say that algebraically they were
the same.

In contrast, in the second episode, it was the arguments that were posed by 
Martin and Julie that initially made Robert question his understanding, as 
these seemed to contradict his assertions. Thus, when a student works 
individually with the graphical calculator, and does not have the benefit of 
interacting with peers, the technology provides another way of viewing 
the problem that needs to be further explored and explained.

In this case, the graphical calculator provided an authoritative means by 
which Robert could investigate the ideas being discussed and modify his 
own visual images of the graphs accordingly. Robert began to have more 
confidence in the arguments being posed by his peers following his 
graphical exploration with the technology. Initially, Robert appeared to 
dismiss the arguments being presented by Martin and Julie, even though 
he lacked confidence in his own ideas as a consequence of the apparent 
contrast between them.
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In episode one, the graphical calculator became the focus of attention of 
this discussion and its use encouraged Robert to think more carefully 
about the problem and to generate conjectures. The graphical calculator 
also provided a means by which the teacher-researcher could guide 
Robert’s thinking.

6.3.2 The Role of the Learning Environment
With reference to the framework offered by Winboume and Watson 
(1998, see section 3.1.3, chapter 3), it can be seen that during this phase of 
the research Tocal communities of practice’ were established. Winboume 
and Watson (ibid) identify six key features of classroom behaviour, which 
are viewed as indicators that local communities of practice have been 
created:

• pupils see themselves as functioning mathematically within the 
classroom,

• there is public recognition of competence,
• learners see themselves as working together towards the achievement 

of a common understanding,
• there are shared ways of behaving, language, habits, values and tool- 

use,
• the shape of the lesson is dependent on the active participation of the 

students,
• learners and teachers see themselves as engaged in the same activity.

Analysis of the transcript data from this trial has provided evidence that 
each of these factors was observable in the classroom environment. Table
6.2 summarises the types of interaction used by the students and the 
teacher-researcher.
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Table 6.2 Types of Interaction Used by the Individual Students and the 
T eacher-Researcher

Robert Julie Martin SE
Presenting ideas 4 2 1 1
Explaining ideas 3 3 0 3
Making assertions 7 2 3 1
Making statements 6 1 2 5
Showing acceptance 4 4 3 6
Repairing ideas 2 0 0 3
Self repairing ideas 1 0 1 0
Questioning 1 2 2 23
Performing collaborative completions 4 0 2 2
Number of interactions involving 
natural language

18 9 8 25

Number of interactions involving 
scientific language

14 5 6 19

Total number of interactions 32 14 14 44

Firstly, as shown by table 6.2, the students each showed willingness to 
explore and explain ideas to one another. They clearly saw themselves as 
functioning mathematically within the lesson, as they were each offering 
suggestions as to which functions represented the given graphs, based on 
some mathematical reasoning which enabled them to obtain the correct 
form of the function in each case.

Secondly, the teacher-researcher ensured that the students received public 
recognition of their competence. This was achieved through the teacher- 
researcher’s acceptance of the students’ ideas (“yes, well done you are 
right”, “yes, you are all right, it’s sin 3x”).

Thirdly and most significantly, as the discussions progressed, the students 
began actively working together towards achieving a common 
understanding of each problem, through the sharing of ideas and 
questioning of one another. This led to successful collaboration in the 
form of collaborative completions between the students themselves and 
with the teacher-researcher.
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Fourthly, the students each shared behavioural traits, such as presenting 
and justifying their own arguments and listening to, accepting and 
questioning the arguments of others. The language used by the students 
was both scientific and natural, and they appeared to have shared 
conceptions of the scientific language that was used. The students also 
used the graphical calculator together as a group in their attempts to 
identity the fifth and sixth graphs.

The shape of the lesson depended on the active participation of the 
students. Each student created his or her own role in the practice, which 
varied accordingly. During the discussions the patterns of interactions 
between the students were continually changing as each new graph was 
considered. In each case, the individual students appeared to occupy 
different positions within the discussion, modifying their roles depending 
on their needs. Martin initiated the discussion around the first two graphs, 
and Robert took over this role for the discussions concerning the 
remaining four graphs. Robert also began to act as a more capable peer in 
the Vygotskian zone of proximal development. He continually made 
verbal contributions to the discussions and at times took control of the 
discussion, whilst Julie and Martin spent some time actively listening and 
thinking rather than speaking. In most cases, Julie did not contribute 
voluntarily to the discussions and needed to be drawn in by the teacher- 
researcher.

Both the students and the teacher-researcher regarded themselves as being 
involved in the same activity. The teacher-researcher attempted to initiate 
each student into the discussion with the aim of encouraging the 
construction of shared knowledge. Table 6.2 also highlights that 
questioning formed an extremely important part of the teacher-researcher 
strategy for encouraging participation and the construction and 
maintenance of a joint problem space amongst the students. It also
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illustrates the quality and frequency of interactions made by Robert in 
comparison to Martin and Julie. Robert performed more successfully 
overall in the class activities in this trial and this may have been the result 

o f his additional willingness to share ideas and difficulties with the other 
students and the teacher-researcher.

This type of environment in which local communities of practice are 
established has been found in this study to be conducive to successful 
collaborative work involving graphical calculators. Within this supportive 
environment, students are able to establish an effective means of operating 
with graphical calculators, in which the knowledge generated is shared 
amongst the participants. This may not necessarily involve working with 
graphical calculators all of the time. For example, if the students are able 
to visualise the effects of a particular transformation on the graph of a 
function effectively without the aid of technology, then they may choose 
not to use the graphical calculator in that instance. However, the way in 
which they approach the problem is likely to reflect their prior use of the 
technology. As proposed by Borba and Villarreal (1998), the human- 
graphical calculator system will still be in action. This was the case when 
Martin, Robert and Julie tried to identify the function represented by 
graph B in figure 6.5.

Episode 5 -  The Role of the Graphical Calculator Environment in 
Effective Collaboration

1 SE Can anybody think of a function for B?
2 Martin I reckon it’s sin 3x.
3 SE Sin 3x. Seeking acceptance.
4 All Yes. Confident and firm 

responses.
5 SE You seem to agree on that one. So how did 

you come up with that conclusion?
Question directed at 
the group.

6 Robert There don’t seem to be any sneaky cosine 
tricks.

Robert was wary of 
the existence of 
equivalent symbolic 
forms.
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7 SE Not this time.
8 Martin It’s a sine wave and it’s been er... Martin paused.
9 Robert Three times x would condense it.
10 Martin It’s got a stretch parallel to the x-axis of a 

third, because it got closer together, or so...
11 SE Yes, you’re all right it’s sin 3x.

Martin initiated the discussion by asserting that this was the graph of sin 
3x (line 2). The QtheMwo-students4mmediatel-y-aGcepted4hat-this-wasH:he- 

correct form of the function and when asked to give reasons why, both 
Martin and Robert took turns to give an explanation, each building and 
elaborating on the previous utterances, thereby producing a collaborative 
completion (lines 8,9,10). Rather than concentrating on developing their 
own arguments separately, Martin and Robert produced a joint 
explanation of why sin 3x was the correct symbolic representation of 
graph B. Together they provided a convincing argument for their choice 
of function. The students were thus all confident that they had identified 
the function correctly.

Martin and Robert were able to perform a collaborative completion 
together because their visual images of the function were strong and 
corresponded to one another. In this case, each of the students appeared to 
be able to clearly visualise the effects of the transformation, without using 
the technology. Yet, there was evidence that the graphical calculator was 
having an impact on the way in which these students were thinking about 
the problem. In particular, Robert was now actively looking for alternative 
symbolic forms for the graphed functions following his exploration of the 
function represented by graph A with the graphical calculator (line 6). The 
use of the graphical calculator can be seen to restructure the way in which 
students think about problems, and this is most productive when used as 
part of a local community of practice.
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6.3.3 The Role of the Teacher in Promoting Collaboration and 
Meaning Making in a Graphical Calculator Environment
Analysis of the transcript data served to highlight the important function 
of the teacher in maintaining and encouraging the discourse between 
students, in prompting the use of the graphical calculators, in verifying 
students’ assertions and in providing clarification and explanation of 
solutions, where needed.

For example in episode two (in section 6.2.1) the teacher-researcher was 
almost entirely responsible for steering the discussion and encouraging 
participation and explanations of ideas. As such, during the discussion of 
this graph, the teacher-researcher purposefully and actively engaged in the 
act of asking questions. This was particularly effective in encouraging the 
students to share ideas, to justify their suggestions and to question and 
consequently begin to repair their understanding. In Martin’s case, by 
being asked to reflect on why he had chosen cos (x + tc/2), he was 
prompted to think about the problem more carefully and in the act of 
justifying his response he realised that he had made a mistake. Thus he 
was able to identify the correct form of the function and consequently had 
self-repaired his initial understanding. Similarly, when Robert was asked 
to explain the reasoning behind his assumption that this was a sine graph 
(line 9), he began to develop an argument as to why the function might be 
sin (x/3). The use of questions also encouraged Julie to elaborate on her 
initial explanation of why she agreed with Martin’s choice, thus showing 
that she had made sense of the problem:

13 SE And what do you think? Have you got any ideas about this one?
14 Julie I think it’s number 2 [cos (x - tc/2)].
15 SE And why do you think that it’s number 2?
16 Julie It’s been moved.
17 SE It’s been moved?
18 Julie Yes it’s a translation.
19 SE And in which direction is it moved?
20 Julie Er nil in the x-axis.
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Following Julie’s contribution, the teacher-researcher re-focused attention 
on Robert and through continually questioning him about his ideas and by 
asking a specific question about the form of the graphed function, he was 
eventually able to begin to repair his initial ideas about the problem.

Only at the end of the discussion was it revealed by the teacher-researcher 
that Martin’s and Julie’s arguments were correct and that Robert’s 
recognition of this as a sine function was also valid. Thus, at this point, 
which seemed an appropriate time for the solution to this problem to be 
revealed and explained, the teacher-researcher assumed the role of a more 
knowledgeable person in the Vygotskian zone of proximal development 
and helped the students to make sense of the apparent contradictions. This 
use of questioning which allowed the students to make discoveries for 
themselves with some guidance and reinforcement of solutions, where 
relevant, was considered to be an appropriate strategy for effective 
learning. Indeed throughout the discussion of all six graphs the teacher- 
researcher was instrumental in convincing students of the validity of 
arguments. The teacher-researcher also presented ideas, explained ideas, 
made statements, repaired ideas and performed collaborative completions 
(see table 6.2), as well as actively encouraging oral participation. Julie in 
particular needed to be prompted to share her ideas with the group.

In episode two, Martin regarded the use of the graphical calculator as a 
means of cheating (line 24) rather than as a tool that could help the 
students to clarify their inner thoughts and hence move forward to a 
different level of understanding. Indeed Martin appeared to be reluctant to 
use the technology for all parts of this question. The teacher-researcher 
therefore played an important part in encouraging Martin and the other 
students to make use of the technology when it was evident that this 
would be particularly beneficial. The students’ reluctance to use the 
technology as a starting point for solving these problems raised questions
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about the long-term status of the graphical calculator in this classroom. 
The students only appeared to turn to the technology when experiencing 
difficulty and not spontaneously, as a means of initially tackling these 
problems, even though this would have given them a stronger focal point 
for discussion.

In addition Martin had commented that using the graphical calculator 
could sometimes confuse rather than clarify a problem:

For some things that I  don ’t understand fully it can be confusing when it gives 
an unexpected result.

This re-emphasised the fact that the use of technology alone may not be 
sufficient to help students to overcome misunderstandings or to make 
mathematical ideas clearer to them. There is an important role for the 
teacher in initiating discussion of the results obtained by the graphical 
calculator. This could be on a one-to-one basis, in small groups or as a 
whole class. The findings of this phase of the study combined with that of 
the exploratory phase suggest that the teacher is needed to ensure that the 
technology is being used to the greatest effect - that it is being used 
appropriately and that results are being interpreted correctly.

6.4 Conclusions
This chapter has considered the second phase of the research and the ways 
in which students who were experienced graphical calculator users were 
able to apply this technology to further their understanding of functions. 
This section summarises the findings of this phase in relation to cognitive 
and affective factors.

6.4.1 Amplification, Cognitive Reorganisation and Students’ 
Understanding of Functions
This study has shown that the ability of students to use the graphical 
calculator as a means of immediately verifying or, in particular,
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disproving their ideas can lead to them gaining a more meaningful and 
general understanding of functions. In other words, a major finding of this 
study is that the amplification effects of the technology are seen to 
contribute towards the cognitive reorganisation effects, indicating that the 
short-term and long-term consequences of using the technology are 
interrelated. This provides evidence to back up Berger’s (1998) 
speculation that these might indeed be interconnected.

6.4.2 Graphical Calculators and Dependency
The data from this phase of the study, when contrasted with that from 
phase one, suggested that students who are regular users of graphical 
calculators were less likely to be overly dependent on the technology than 
students who have comparatively very little experience. Moreover, a 
significant and previously unreported finding to emerge from this study is 
that dependency is influenced by three key factors; (i) individualistic ways 
of working, (ii) students’ prior knowledge and (iii) display resolution.

6.4.3 Graphical Calculators and Visualisation
The results from this phase have illuminated ways in which the 
technology can have a positive impact on students’ visualisation 
capabilities, enabling students to derive richer meaning from given 
problems. In this study, use of the graphical calculator encouraged 
students to make greater use of visual methods, and helped students to 
visualise functions more clearly. The class discussions suggested that 
these students had not previously made the visual connections between 
sine and cosine graphs and translations. Use of the technology in this case 
provided a means by which these relationships could be explored and 
conceptualised.

The potential use of the graphical calculator in mediating the development 
of students’ visual capacities through student-student and student teacher 
interaction was also highlighted in this phase of the study. Findings
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suggest that individual students’ images are modified through their 
interaction with the co-participants, as they share use of the technology. 
The results of this phase also suggests that ultimately technology could be 
used to begin to change students’, such as Robert’s, views surrounding the 
nature of mathematics, in which the symbolic mode of representation is 
seen as paramount.

6.4.4 The Relationship between Symbolic and Visual Modes
The students from this phase combined symbolic and visual approaches 
more frequently than was observed in the previous phase. The graphical 
calculator enabled the students to make connections between visual and 
symbolic modes of representation more easily. In this way they were able 
to move confidently between representations and were given the 
flexibility to be able to make sense of, and formulate solutions to, 
unfamiliar and challenging problems. In turn they were able to achieve a 
level of understanding which may not have been available to them if  they 
concentrated on one mode of representation alone.

6.4.5 Graphical Calculators and Effective Collaboration
The use of the graphical calculator in this study enabled the students to 
build and elaborate on each other’s arguments and thereby created the 
opportunity for effective collaboration. This was achieved because the 
students were able to produce a shared visual representation of the 
problem using the graphical calculator. This study also found that 
successful collaboration was promoted by the ability of students to 
reinforce their arguments to one another through use of the graphical 
calculator. This discouraged periods of little or no interaction. The 
graphical calculator also acted as a medium for communication between 
the teacher and student, and a means by which the teacher was able to 
guide the students’ learning.

175



6.4.6 The Role of the Learning Environment
The findings of this phase suggest that the establishment of ‘local 
communities of practice’ in the classroom was conducive to successful 
collaborative work involving graphical calculators. In this type of 
environment it was found that students shared ownership of their use of 
the technology. Findings indicate that it was not essential for the students 
to use graphical calculators all of the time in order for learning to be 
successful in their community of practice. However, the way in which the 
students operated whilst using the graphical calculators was seen to 
influence the way in which they approached problems without use of the 
technology.

6.4.7 The Role of the Teacher in Promoting Collaboration and 
Meaning Making in a Graphical Calculator Environment
Analysis of the data in this phase pointed to the centrality of the teacher’s 
role in maintaining and encouraging discussion between the students, 
especially in relation to the results produced by the graphical calculators 
and in providing additional verification of these results and the students’ 
assertions. A further important function of the teacher lay in providing 
clarity and explanation of the results of the students’ exploration with the 
technology, especially when the students are unable to reach a common 
understanding of their findings by themselves. The teacher needs to 
scaffold the students’ learning with the graphical calculators to ensure that 
the technology is used effectively and results are interpreted correctly by 
the students, so that any misunderstandings are not perpetuated.

6.4.8 Graphical Calculators and Confidence
One of the unexpected findings of this phase was the fact that the students 
in this study were very reluctant to use visual approaches initially, due to 
the perceived inaccuracy of this mode of representation. At the outset of 
this phase of the study, it was assumed that these students would be 
confident in using this type of technology and in working in the visual
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mode of representation, as graphical calculators were firmly embedded in 
the culture of the classroom. The results of this phase were therefore very 
surprising and contrary to expectations. Martin and Julie’s lack of 
confidence in visual representations was especially surprising considering 
that they both classified themselves as visualisers. All of the students 
generally found working symbolically easier than working visually. 
Moreover, this may have been related to the kind of teaching they had 
experienced.

The findings of this phase of the study suggest, however, that if 
technology is utilised purposefully, it could encourage students to have 
greater confidence in visualisation and help them overcome their initial 
difficulties. If  students are experiencing visualisation problems with 
particular areas of mathematics, such as translations of functions, then the 
graphical calculator can be used to provide effective scaffolding in these 
fields. This phase found that student visualisations could be supported and 
enhanced by frequent access to technology and that this can lead to greater 
confidence in visual approaches. The graphical calculator appeared to 
influence the students’ perceptions in a positive way towards the validity 
of visual methods in mathematics. This was especially so in Robert’s case.

6.5 Emerging Areas of Interest and Implications for Phase Three
The preceding analysis and interpretation of the data collected during 
phase two has revealed a rich picture of the kinds of interaction that occur 
between students and teacher in a graphical calculator environment and 
how these types of interaction affect meaning making. It has also provided 
useful data regarding the teachers’ role in scaffolding the learning task. 
The audio taped class discussions revealed a complex pattern of 
interactions between the students and teacher, which was continually 
changing. This raised some interesting questions particularly concerning 
the nature of shared knowledge, which had important implications for 
phase three. For example, when can knowledge be taken as shared? What
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role does each individual play in constructing such knowledge and how is 
this then ‘appropriated’ (Lerman, 1994)? How can the teacher, or use of 
the technology, facilitate the appropriation process? How does the 
individual student make further use of shared knowledge? Another aspect 
that this phase suggested might be further researched in phase three, was 
the role of the graphical calculator in relation to peer tutoring.

One of the goals of this research has been to interpret the relationship 
between the social and personal dimensions of meaning making and 
graphical calculator use. Thus phase three further considers the role of the 
graphical calculator in individual problem solving and how this might 
differ from its role in collaborative activity.
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CHAPTER 7 
INVESTIGATING THE PERSONAL 

DIMENSIONS OF GRAPHICAL 
CALCULATORS IN STUDENTS’ 

UNDERSTANDING OF FUNCTIONS

770 Introduction
This chapter consists of an analysis of the individual aspects of learning 
about functions using the graphical calculator that arose during the third 
and final phase of the research. The overall aims of this phase of the 
research were to:

• explore how students with no previous experience of using graphical 
calculators and only limited experience of functions (at GCSE level), 
learned about the concept of function through the use of this 
technology,

• investigate the role of technology in providing a basis for the 
development of students’ visualisation skills and in improving student 
confidence,

• determine whether and how the use of graphical calculators affected 
students’ preferred problem-solving strategies,

• investigate how the behaviour of individual students affected the 
shared construction of meaning, and how this behaviour was 
influenced by the use of technology.

The first three of these aims are considered in this chapter and chapter 8 is 
concerned with the latter.

179



The exploratory study (chapter 5) indicated that students who were being 
introduced to functions for the first time at Advanced level might benefit 
more concretely from being able to use graphical calculators in the long 
term, especially with respect to visualising functions and linking different 
modes of representation. Evidence from the second phase (chapter 6), also 
implied that students who had been introduced to graphical calculators at 
an early stage in their A level course would be less likely to be dependent 
on the technology. This phase of the research was aimed at looking at the 
personal and social factors involved in meaning making with graphical 
calculators and considers the effect of the timing of their introduction.

7.1 Background to the Research
Data was collected for the third phase of the research during October and 
November 1998 from the same school that was visited during phase one,
i.e. Ashby School. This time the trials involved the teacher-researcher 
working with a group of seventeen Year 12 GCE Advanced level 
mathematics students (13 male, 4 female) aged between sixteen and 
seventeen for a period of nine hours (six lessons). The students were 
initially taught the function topics which were covered in their textbook 
(Mannall and Kenwood, 1994), using this resource, the TI-82 and 
supplementary exercises. These topics consisted of: mappings and 
functions, function notation, graphing functions, composite functions, 
inverse functions, the modulus function, even and odd functions, 
sketching graphs and transforming graphs. Following this, the students 
worked on the main trial exercises (see appendix C).

During phase one, the feedback from the staff had indicated that in their 
opinion using graphical calculators to help introduce the concept of 
functions to a new group of year twelve Advanced level mathematics 
students would be particularly beneficial for these students. They felt that 
use of the graphical calculators could enhance the students’ learning of the 
material covered in the students’ textbooks. Thus, it was arranged that the 
graphical calculators would be introduced to the new intake of Advanced
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level mathematics students at the beginning of the new school year. In 
addition, one of the members of staff had also commented that a less 
powerful machine than the TI-92, which was used during phase one, 
might be more appropriate, especially if  graphical calculators were to be 
introduced in the lower school. It was stressed that it would be unlikely 
that the mathematics department would purchase a classroom set of TI- 
92s and it was felt that a more practical, compact and affordable graphical 
calculator, such as the TI-82 should be trialled.

Not surprisingly, as these students were just beginning their Advanced 
level course, they were inexperienced in dealing with functions. Only two 
students, Roy and Julian, had purchased their own graphical calculators 
and were familiar with the applications needed. The rest of the students 
had never used a graphical calculator before. Subsequently, as with the 
previous phases, part of the first lesson was spent familiarising students 
with the technology.

7.1.1 The Sequence of Lessons
For each lesson a plan of action was decided upon in advance which 
would allow plenty of time for the students to explore functions as a 
whole class, in small groups and individually. Figure 7.1 shows how these 
lessons were structured.

PLAN OF ACTION
Lesson One
1. Whole class introduction to the research, followed by the distribution 

of the visualisation questionnaires (30 mins).
2. Whole class demonstration of how to use the TI-82, encouraging the 

students’ use of the OHP to share ideas with the rest of the class and 
involving examples from the students’ textbook chapter 3 section 3.1 
Mappings and functions (30 mins).

3. Small groups work on exercise 3 A (30 mins).
4. Homework: the student interview questions.
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Research Aim: To collect data on individual students5 views surrounding 
visualisation and visual orientations using the student questionnaires.

Lesson Two

1. Whole class introduction to composite functions (section 3.2) and 
small group work on exercise 3B (1 hr).

2. Commencement of individual student interviews (30 mins).

Research Aim: To collect data on individual students5 use o f graphical 
calculators through the student interviews.

Lesson Three

1. Continued small group work on exercise 3B and completion of 
individual student interviews (30 mins).

2. Whole class introduction to inverse functions (section 3.3) and small 
group work on exercise 3C (1 hr 30 mins).

3. Homework: completion of exercises 3B and 3C.

Research Aim: To collect further data concerning personal use of the 
technology through the completion of the student interviews.

Lesson Four
1. Whole class introduction to the modulus function, odd and even 

functions and transformations (sections 3.4, 3.5 & 3.6) and small 
group work on exercise 3D (1 hr).

2. Homework: completion of exercise 3D.

Research Aim: To collect data on how the students interact whilst using 
the graphical calculators as a whole class, through audio and video 
recording of these discussions.
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Lesson Five
1. Whole class exploration of some of the additional uses of the TI-82 not 

yet introduced, namely, how to graph families of functions 
simultaneously and the maths menu (20 mins).

2. Small group work on the trial exercises: graphing functions using the 
TI-82 and identifying the graphs of functions (40 mins).

Research Aim: To collect data on the way in which students interact 
whilst using graphical calculators in small groups, through audio and 
video recording of particular groups of students.

Lesson Six
1. Completion of small group work on the trial exercises (1 hr 40 mins).
2. Closing remarks and distribution of the technology questionnaires 

(20 mins).

Research Aim: To collect data on individual students’ views surrounding 
their use of the graphical calculators using the technology questionnaires.

Figure 7.1 Plan of Action

7.2 The Personal Dimensions of Graphical Calculators and 
Students’ Understanding of Functions
In order to determine the influence of the personal dimensions of 
graphical calculator use on the individual students’ understanding of 
functions, data was analysed from seven sources:

(i) pre-trial student questionnaires,
(ii) individual student interviews,
(iii) the students’ written work,
(iv) audio transcripts,
(v) video transcripts,
(vi) post-trial student questionnaires,
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(vii) post-trial staff questionnaires.

The findings that pertain to the personal dimensions of graphical 
calculator use have been subdivided into the following categories:

• Amplification, cognitive reorganisation and students’ understanding of 
functions --------------- --------------- --------------

• Analysing the individual dimensions of visualisation and the use of 
graphical calculators

• Graphical calculators, motivation and confidence
• Graphical calculators, dependency and misinterpretation of results

7.2.1 Amplification, Cognitive Reorganisation and Students’ 
Understanding of Functions
When asked as part of their post-trial questionnaires (see appendix C) to 
specify what they considered to be the main advantages of using 
technology, nine of the students referred to the speed and ease by which 
problem solving could be achieved. Claire and Marie’s responses to the 
question “what do you consider the main advantages of using technology 
to teach the concept of functions to students such as yourselves?” capture 
the general feeling amongst the students:

Claire: Using technology such as calculators is more appealing to people o f  
my age than writing everything down and working everything out. Getting 
through work is a lot easier and a lot faster.

M arie: I  think that the main advantage is that solving the problems becomes 
much quicker.

Thus, these students were highlighting the amplification effects o f the 
technology. Nine students also commented on cognitive factors. The 
following students’ responses to the same question indicated that they saw 
the impact of the technology on related cognitive factors as the main 
advantages of using the graphical calculators:
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M arty: It removes the need for drawing graphs and makes it easier to draw 
sketch graphs. It helps when understanding translations and stretches.

Roy: It helps make the transformation o f functions easier to understand.

Julian: The fact that it gives everyone a chance to get the right 
answer, andfrom that understanding can be developed.

Paul and Jim saw the main advantages of using the graphical calculators 
as-the cognitive 
solutions to problems quickly:
“What do you consider the main advantages of using technology to teach 
the concept of functions to students such as yourselves?”

Paul: Technology gives students a quick and clear solution, which can avoid 
confusion.

Jim : Technology makes things faster, that is why we continue to refine things 
all the time, the use o f graphical calculators increases peoples' knowledge 
much quicker.

This was a view that was also shared by Marie and Julian. Marie’s 
response to the question: “do you feel that you have benefited from the 
opportunity to use the graphical calculator?” suggested that she could also 
see a link between the amplification and cognitive reorganisation effects 
o f the technology.

M arie: Yes, it has increased my understanding o f  graphs. Time was not wasted 
doing easy things such as plotting graphs. It allowed me to concentrate on the 
harder equations.

Similarly, Julian’s response to the question “do you believe that using the 
graphical calculator has strengthened your understanding of functions?” 
indicated that he partially attributed the cognitive reorganisation effects of 
the technology to the amplification effects.

Julian: Probably, as being able to visualise the function quicker has given me 
more time to explore further into the subject.
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All four of these students emphasised that as graphs could be drawn more 
easily using the technology, problem solving became quicker and more in 
depth work could subsequently be done. This in turn allowed the students 
to develop a better understanding of functions.

Thus, use of the graphical calculators was believed to minimise confusion 
and to help students to visualise the forms of different types o f functions 
and the effects of transformations. This was achieved through the clear 
and accurate graphs that were produced by the technology and the easy 
access provided by the technology to many more examples of functions 
than could be produced by hand. The students believed that the graphical 
calculator enhanced their learning of functions, through speedier 
calculations, a reduction in errors and by providing the opportunity to 
explore more graphs in the same space of time (i.e. amplification effects). 
The latter aspect, in particular, was viewed as especially beneficial for 
learning about functions and their graphs, by enabling several functions to 
be drawn simultaneously and allowing the students to explore and 
establish the patterns amongst different families of functions. Being able 
to access the graphs of functions quickly allowed further exploration of 
the subject and in turn this had a positive impact on student understanding. 
Some of the students clearly recognised this connection between the 
amplification and cognitive reorganisation effects of the technology.

These students thus appeared to have recognised the graphical calculator 
as a tool for cognitive growth more than students in phase one, who were 
also from this particular school. This could possibly be attributed to the 
fact that the students from phase three had used the technology for a 
longer period in the trial and were encountering more formal definitions of 
functions than they had met previously. Their total lack of experience with 
some of the types of functions introduced may have influenced the way in 
which the technology was perceived to be beneficial. However, for these 
students, using the technology had a more significant and longer term 
effect in helping them to appropriate the concept of functions.
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7.2.2 Analysing the Individual Dimensions of Visualisation and the 
use of Graphical Calculators
The students’ visualisation questionnaire responses revealed that ten 
students classified themselves essentially as visualisers. Table 7.1 
illustrates who these students were and which of the seventeen students 
alternatively perceived themselves as non-visualisers.

Table /.I Visualisers and Non-visualisers: Individual Students’ Self-
Classifications

Visualisers Non-visualisers
Carol, Claire, Fay, Jake, Julian, 

Justin, Marvin, Nigel, Perry, Roy
Jim, Kirk, Marie, Marty, 

Mick, Paul, Pierce

To ascertain this information the students were asked to indicate where 
they would place themselves if a continuum existed between that of pure 
visualiser and pure non-visualiser and this formed the basis of their self
classification. Figure 7.2 shows the students’ relative positions on this 
hypothetical continuum.

Claire Marie
Marvin Nigel Jake Carol Mi c k i J i m

Visualiser |-----------------------------------------    -T-W--------------------   1 Non-visualiser
Perly Justm ray Julian lark KiUlPrerce Mkrty

Figure 7.2 Students’ Perceptions of Their Visual Orientation

Using the students’ relative positions in figure 7.2, table 7.2 orders the 
students from the most visually orientated (VI) to the least visually 
orientated (V I7). This provides some indication of how the students 
viewed themselves in comparison with the other members of the class.

Table 7.2 Students’ Perceptions of How Visually Orientated They Are in
Rank Order.

VI V2 V3 V4 V5 V6 V7 V8 V9
Perry Marvin Nigel Justin Claire Jake Fay Roy Carol

V10 V ll V12 V13 V14 V15 V16 V17
Julian Kirk Mick Paul Marie Jim Pierce Marty
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Eleven students, including both visualisers and non-visualisers, indicated 
that the reason that they would tend to construct visual images was in an 
attempt to clarify their thoughts about a problem. This in turn could enable 
the students to develop solution strategies based on their visual 
perceptions and allow them to check the reasonableness of symbolic 
results. Those who classified themselves as visualisers were on the whole 
particularly positive about the usefulness of images:

Roy: I  believe that constructing mental images helps greatly when 
understanding a problem, this can help because it makes a solution method 
clearer to see.

Julian: Ifeel that images help me as they let me see clearly what the question 
is asking, i f  you like they clear any uncertainty about the problem up.

Fay: Images help me to understand the problems and often give me an idea o f  
how to solve them.

Claire: By using images I  know what the problem looks like and whether the 
answer that I  got looks right or not.

Students who classified themselves as non-visualisers had also recognised 
the potential benefits of using visual images:

Jim : Images can give you a better feel for the question. A couple o f  numbers 
on a piece ofpaper does not always mean very much to you. But i f  you 
visualise the numbers in some way then you may be able to answer a question 
better.

Mick: Images help me to set out the problem and to get all the information 
from the question into a format which I  can use.

K irk: Images give me a basis to work from. Something to see how the situation 
may occur.

The main stages during problem solving when these students would tend 
to formulate visual images would be at the beginning of the problem (8 
students), when experiencing difficulty finding a solution (5 students), 
and/or if the problem seemed complex (4 students). The students who 
classified themselves as visualisers, in particular, were keen to begin
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problem solving by formulating mental images, as illustrated by the 
following comments:

Roy: I  like to have an idea o f a problem in my head at the beginning o f a 
question so that as I  work through the problem, I  can follow it visually in my 
head.

Julian: I f  I  am tackling an area o f mathematics Ifind  testing I  will try to use 
tools like mental imagery at the beginning o f  calculation. Then as I  become

Claire: At the beginning so that I  have got everything sorted out in my mind 
before I  really begin to tackle the problem.

Carol: Either at the beginning so I  can understand the task asked or when I  hit 
a problem. The mental images help me to see where I  have gone wrong.

Whilst some non-visualisers also appreciated the value of visualising the 
problem to begin with, others were more reluctant as Marty’s comment 
reveals:

Jim : Ifind  that formulating an image at the start o f  solving a problem is 
usually the best idea, so that you get an idea o f what it looks like from the start.

Mick: This depends on the complexity o f the question, but normally as soon as 
necessary i f  I  can 7 solve the problem without them.

M arty: When I  start to get stuck and this is usually the last resort before 
looking at an example.

Perry, a visualiser, highlighted the usefulness of visualisation for dealing 
with new or complicated problems:

I f  la m  struggling with a problem, or lean  see it is going to be complicated, I  
would draw a quick sketch and write on it what I  know and what I  can work 
out. With more complex problems and new problems, visualising helps me.

Despite all of these positive comments about the usefulness of visual 
imagery, during the course of the study it became clear that the 
introduction of the graphical calculator definitely had an influence on 
individual students’ willingness to use visual approaches. This was

more
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particularly striking where visualisers were concerned. In the following 
extract Marvin, a visualiser, was asked to describe how he intended to 
approach question 8a from the main exercises (solve the equation x2+2x- 
8= 0):

Extract 1

1. SE: So how are you going to tackle this problem then?
2. Marvin: Well first of all I ’m going to put the formula into the

Y l.
3. SE: Yes.
4. Marvin: And work out where it crosses using the table.
5. SE: Right.
6. Marvin: And then do it, putting it in brackets, actually solving

it algebraically.
7. SE: If you were doing this ordinarily and didn’t have the

graphical calculator, would you still do the same 
thing, do a quick sketch and then...

8. Marvin: No. I wouldn’t do the sketch.
9. SE: You wouldn’t do the sketch. You’d do the algebra?
10.Marvin: Yes.

Jake and Julian, both visualisers, also hinted that without the graphical 
calculator they would be less likely to use a graphical approach when
discussing how they would attempt question 8b (solve the equation

0  0  •  

8x +4=(x-2)). They were intending to use both graphical and symbolic
approaches to solve the problem.

Extract 2
1. SE: If you didn’t have the graphical calculator would you

actually draw these?
2. Jake: No. We’d rely on algebra probably.
3. Julian: We tend to just battle on with the algebra.
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Similarly Nigel, also a visualiser, tended only to use visual approaches 
when experiencing difficulty with questions, or if he did not know how to 
tackle a question algebraically. This was particularly apparent when he 
was interviewed about how he would attempt to find the values of x where 
the graph of y = x2 -  x + 4 lies above the graph of y = 4x -  2 (question 3 
in the student interviews).

Extract 3
1. SE: What about question three?
2. Nigel: I wasn’t really sure about this one. What I would have

to do is I ’d have to plot it onto a pair of axes and then 
I could actually picture what it would look like and it 
would help me to understand what I ’ve actually got to 
find out.

3. SE: So you would have two graphs and they would
intersect at some points.

4. Nigel: Yes.
5. SE: So you would be able to see whereabouts one lies

above the other.
6. Nigel: Yes.
7. SE: Do you think that there is an algebraic way of doing

it?
8. Nigel: There probably is but I don’t know what it is.
9. SE: If you had the knowledge would you use a graphical

approach or would you...?
10. Nigel: If  I knew how to do it algebraically, I would always

do it algebraically.

Julian, another visualiser, was encouraged to answer the first interview 
question (For which values of x is the graph of y = 3x2 + 9x - 12 below the 
x-axis?) using a graphical approach because the graphical calculator 
facilitated this, whereas without the technology his approach would have 
been symbolic.
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Extract 4

1. SE: If  you didn’t have the graphical calculator what would
you have done?

2. Julian: If  I didn’t have the graphical calculator I would

probably have attempted it algebraically, but as I have 
the calculator it was easier to do it that way, so I chose 
that method.

The amplification effects of the technology made visual representations as 
accessible as standard symbolic techniques to these students, and so 
encouraged them to make greater use of graphical approaches.

Mick, a non-visualiser, explained how his use of the graphical calculator 
had enabled him to use a graphical approach to solve question 8a (solve 
the equation x +2x-8=0), when otherwise this would not have been the 
case:

Extract 5

1. Mick: I’ve done the graph first.
2. Perry: So you know what you’re working out before you

work it out.
3. Mick: Yes. I think I find that way easier than... well using the

calculator it would be, but if we didn’t have the 
calculators then we would h a v e  to do it algebraically. 
We wouldn’t probably consider drawing it.

Marie, another non-visualiser, described how she would use a graphical 
approach to solve the second student interview question, in which she was 
asked to find the x values where the graph of y = 3x + 6 intersects the 
graph of y = 2x + 5x. However, without access to the graphical 
calculator, she would have been reluctant to use such an approach, as she 
did not have enough confidence in her own graphing skills:
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Extract 6 
1. Marie:

2. SE:
3. Marie:
4. SE:

5. Marie:

Ok number two, probably again I ’d do a graph and 
read off the graph. If  I couldn’t, if  it wasn’t that clear, 
then I would do it algebraically.
So you would rather do the graphical approach first? 
Yes, to see if it was obvious -  if it’s an integer or not. 
So is that because you’ve got the graphical calculator
or would you do that even without the graphical 
calculator?
What draw that by hand? No because I wouldn’t trust 
myself being able to draw it well.

Mick and Marie’s comments illustrate how the use of technology can 
encourage non-visualisers to become more open to using visual 
approaches. Marie, in particular, clearly knew how to approach these 
problems visually, and yet without the graphical calculator, she would not 
have felt able to use a graphical approach through lack of confidence in 
her own graphing skills. By using the technology, Marie had the 
confidence to adopt a predominantly graphical approach when solving all 
of the interview questions, which is something that she would normally do 
“quite rarely”. Without access to the technology, she would only have 
considered drawing graphs if the problems were difficult to solve 
algebraically. The graphical calculator facilitated a graphical approach as 
graphing becomes easier, quicker and is more accurate than by hand. This 
feature clearly affected the way in which some of the students attempted 
to solve the questions.

Thus, it was apparent that whilst most of the students appeared to 
recognise the potential benefits of visualisation, this was not always 
transferred to their work with their usual mathematics teacher. Analysis of 
the pre-trial questionnaires indicated that overall only two of the students 
preferred to work visually, whilst six preferred to work symbolically and 
nine had no such preference. Of the self-identified non-visualisers five
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preferred to work symbolically, as might be expected and the remaining 
two had no preference. Of the visualisers, however, just two students, 
Claire and Jake preferred to work visually, whilst seven students had no 
particular preference and Julian actually preferred to work symbolically.

One might expect that students referring to themselves as visualisers 
would generally prefer to work visually, however as in phase two this did 
not appear to be the case here. These particular visualisers had adapted to 
the culture of the Advanced level mathematics environment and were used 
to using symbolic expressions more regularly. Indeed, the students’ 
teacher, Mr Moore (a visualiser) commented that in order for his class to 
become successful at A level mathematics, it was more important for them 
to be able to perform symbolic manipulations than to be able to visualise 
their mathematics. There seemed to be an underlying predisposition 
amongst some of the students to work symbolically in the first instant, 
even amongst visualisers:

Extract 7
1. SE: How are you going to tackle this? You’ve started

doing it with algebra again.
2. Jake: The same as we always do.

However, the student interviews revealed that following the introduction 
of the technology these students were much more willing to explore 
graphical approaches, as is illustrated in table 7.3 (n = 11).
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Table 7.3 Approaches used by students to solve the interview questions
Wholly
Symbolic

Primarily
Symbolic

Symbolic & 
Graphical Combined

Primarily
Graphical

Wholly
Graphical

Ql 0 0 6 0 5
Q2 3 0 0 1 7

Q3 0 0 3 1 7
Q4 0 0 2 0 8

Q5 0 0 0 0 . ------ 9------
Q6 0 0 0 0 4
Q7 0 0 3 0 0

For the different types of questions the students adopted different 
approaches. However the vast majority of these (95%) involved some 
graphical element. A graphical approach tended to be used in situations 
where the students were unfamiliar either with the type of question or with 
the functions to be graphed. Similarly, if a problem was regarded as 
complicated by the students or proved to be difficult to solve symbolically 
then a graphical approach would generally be used. In this way, since 
having access to the technology made the graphical approach more 
accessible to the students, they were able to tackle problems that were 
seemingly complex and completely new to them with a relatively high 
degree of success.

One of the students to perform particularly well in his interview was 
Julian. Interestingly, whilst Julian classified himself as a visualiser, he 
claimed to only use visualisation when experiencing difficulty with 
problems and generally preferred to work symbolically:

I  prefer to work with symbols. This might be that I  tend to only use 
visualisation when I ’m struggling with a problem. The majority o f the times I  
use such tools I  usually use them in tandem, the visual methods as a way o f  
simplifying and symbolic as a way o f communicating that information.

Clearly, part of the value of employing symbolic approaches in Julian’s 
opinion lies in the comparative ease by which these approaches can be
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shared, followed and/or discussed with other members of the class when 
forming a written solution. This viewpoint also appeared to be shared by 
other students as the following responses to the question “do you have a 
preference for working either symbolically or visually?” demonstrate:

Roy (visualiser): I  have no preference. I  often use both in order to gain an 
answer. I  find  that visually helps me to understand a problem, which is very 
useful, whilst symbolically is often much quicker and more simple for others to 

 follow. ~

Marie (non-visualiser): I  prefer symbolically because I  can usually find  the 
solution quicker that way and it is no more difficult. Sometimes a diagram 
helps to see and understand the problem but symbols are needed for a solution.

Marty (non-visualiser): Symbolically, because it is easier to analyse and i f  
you get stuck you can see more easily where you have gone wrong.

Six of the students would aim to use symbolic arguments for written 
purposes, even if  they had solved the problem visually. Paul’s comment 
explains why this tendency may have persisted:

Paul (non-visualiser): I  find it more difficult to include visual processes in my 
solutions especially when putting it into writing.

What was significant, however, about the students’ use of the graphical 
calculators in this phase, was that the technology enabled them to compare 
and contrast their graphical approaches much more easily than if  they had 
been using pencil and paper alone. This in turn meant that they were using 
visual arguments to communicate ideas to one another. Moreover, 
individual students’ justifications were strengthened by their ability to 
show others the basis of their argument using the graphical calculator, 
which is discussed in chapter 8. The clarity of the images produced by the 
technology also facilitated the ability of students to include sketches of the 
graphs in their written work.

Each of the students felt that by using the graphical calculator they had 
been able to visualise functions more clearly. Seven students said the 
graphical calculator had assisted them in this respect by enabling them to
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access the graphs of several functions (often simultaneously). This in turn 
promoted their abilities to recognise, reproduce and transform the graphs 
of different functions and allowed them to explore and establish the 
patterns amongst different families of functions. Jake believed that the 
main advantage of using the graphical calculator was that it “allows us to 
visualise the functions and is a change from writing all the time”.

The graphical calculator was also regarded as a tool for helping students 
to make the connections between symbolic and graphical representations:

Perry (visualiser): At A level a lot o f the algebra is learnt. By drawing the 
graph, you can see what you are doing to the graph when you are playing with 
algebra.

Claire (visualiser): I  feel that I  have benefitedfrom using the calculators. They 
have helped me to visualise what different types o f graphs look like. It has 
helped me to imagine what graphs look like just by looking at the formula o f  
the function. They make it easier to understand what happens to the graph 
when you apply a particular function and what the functions do to it.

Jim (non-visualiser): I  am starting to get better at seeing a graph and 
recognising what type o f function it uses, though I  am not an expert yet. The 
calculator definitely aids people to do this.

The use of the graphical calculator had clearly had an impact on these 
students’ problem solving strategies. Indeed, twelve of the students 
indicated that their experience of using the graphical calculator would 
influence their approach to solving problems, involving functions, in the 
future. Generally this would involve a greater use of visual approaches:

Claire (visualiser): I  will try to visualise what I  am trying to work out. I  think I  
will find this easier to do now I  have used the calculators.

Pierce (non-visualiser): I  will always consider how the calculator applied the 
functions and use this to try and help me.

Mick (non-visualiser): I  will now look to solve a problem graphically first 
rather than algebraically.

Perry (visualiser): I  would still attempt to solve them algebraically but it is 
always good to have a check by drawing it so you can see where you are 
wrong.
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Mick and Pierce classified themselves as non-visualisers and it was a very 
encouraging outcome that they were both willing to use visual approaches 
more readily at the end of the trial. This was especially so, considering the 
difficulty that Pierce claimed that he had in visualising his mathematics 
and Mick’s usual tendency to avoid drawing graphs:

Pierce: I  personally prefer symbolic working as I  often find  it difficult to 
______ visualise things in my head._________________ —

Mick: I  don ’t like graphs. I  try to stay clear o f  them as much as possible.

Mick felt that the main advantages of using the graphical calculator were 
in helping students, such as himself, who had difficulty in visualising:

“What do you consider to be the main advantages of using technology to 
teach the concepts of functions to students such as yourselves?”

For people who find it hard to visualise some things. It is a very visual method 
o f explaining things.

However Jake, like Perry claimed that he would still use algebraic 
methods in most cases, using visual approaches mainly to check answers, 
despite the fact that they both classified themselves as visualisers. Carol 
and Justin, also visualisers, and Marty a non-visualiser stated that they 
would only modify their approaches if they were given permanent access 
to graphical calculators.

The vast majority of students, fifteen in total, would welcome further use 
of graphical calculators in their mathematics lessons. The graphical 
calculators were seen as valuable visual aids to problem solving, a means 
of highlighting and eliminating mistakes, and exploring the effects of 
various operations on functions:

Perry  (visualiser): For complicated functions it has allowed me to see what I  
am working with and helps show obvious mistakes. It has also helped greatly 
with things such as inverse functions and changing the shape. While yo u ’re 
getting the grasp o f new ideas i t ’s good to have a visual aid.
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Pierce (non-visualiser): When drawing graphs the calculators aren’t 
answering the question for you, but giving a helpful aid. They can cut down on 
some careless errors. I  have benefited greatly from the use o f  the TI-82, as it 
has given me new methods o f answering questions.

However, several students felt that using the graphical calculator was most 
productive when they had developed some understanding of functions, 
indicating that they would have rather been introduced to the _
calculator following a period where functions were explored without the 
technology. In contrasting these views with the clear benefits of using the 
technology to introduce functions to students, this raised an important 
pedagogical question, namely, when exactly is the most appropriate time 
to introduce the technology to the class as a whole, taking account of the 
needs of individual students?

7.2.3 Graphical Calculators, Motivation and Confidence
One of the most noticeable features of this phase of the research was the 
effect that the graphical calculator had on the students’ enthusiasm 
towards learning about functions and on their confidence to use graphical 
approaches, talk about their findings and challenge one another’s ideas.

Observations within the classroom suggested that these students were 
keen to use the graphical calculators and thus were highly motivated 
throughout the course of the investigation. This point was also raised in 
the student questionnaires, where several students commented on the use 
of technology as motivating, enjoyable and interesting. The following 
students’ responses are typical of the general feeling towards the use of 
the technology:

Marvin (visualiser): It has been great fun and an interesting approach.

Fay (visualiser): I  enjoyed learning with the TI-82, a great opportunity.

Marie (non-visualiser): It makes the lessons more interesting as well as 
helping understanding.
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Jim  (non-visualiser): Using the graphical calculator has been very interesting 
and helpful.

Marvin in particular felt that the main advantages for students in using the 
technology were “seeing accurate diagrams on the board and the fun and 
motivation of it all!”

Through using the technology, these
problems using techniques that they may not have considered otherwise, 
with keen enthusiasm. For example, in his interview Julian, a visualiser, 
described how having access to the graphical calculator had influenced the 
way he answered the first question (for which values of x is the graph of y 
= 3x2 + 9x - 12 below the x-axis?):

Extract 8
1. Julian: For question one I just typed it into the graphical

calculator, and when it came up I used the trace 
facility on the calculator to highlight the first value 
that was below the x-axis and then wrote the answer 
out in an inequality.

2. SE: Did you think at all about using a symbolic technique
to solve the problem?

3. Julian: I was going to use a symbolic technique to solve the
problem, but then I thought this is a new toy, so I 
thought that I ’d try that.

Similarly, when Carol, a visualiser, was interviewed and asked to describe
9 9how the graphs o fy  = x + 3x -  2 and y = x + 3x + 2 are related, she 

replied:

I  did this on the graphical calculator and I  found that they were the same
graph except i t ’s moved up by four. But I  did actually know that already. I  
didn’t really need to use the calculator, but I  did seeing as it was there, 
because I  quite like it - because i t’s fun.
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The ‘novelty’ appeal of using the technology thus appeared to be a factor 
in motivating these students.

In addition to highlighting the motivational value, the students also made 
comments concerning how their confidence had improved as a result of 
using the technology:

Carol (visualiser): I  think that I~have been given the confidence to use 
graphical calculators and help me to understand functions better.

Jim  (non-visualiser): I f  I  had previous knowledge o f  using a graphical 
calculator I  would definitely have found the questions easier to complete and I  
would have been much more confident than I  was.

M arie (non-visualiser): Being more confident when using the calculator I  
think I  would now use it more.

Claire (visualiser): I f  I  had been more used to using the graphical calculator I  
would have answered the student interview questions differently because I  
would have been more confident in what I  was doing and I  would have done a 
lot more with it.

M ick (non-visualiser): I  think that without it I  would have struggled with this 
chapter. I  find it hard to visualise shapes and graphs, so it has been a real 
help. The main advantages are for people who find  it hard to visualise things.

As was seen in the exploratory study, one of the major benefits of using 
the graphical calculator lies in its potential to promote individual students’ 
overall confidence, which acts as an important affective element of the 
learning process. In his interview Julian, a visualiser, insisted that even 
when the graphical calculator is not used all the time it could still instil 
confidence in students because it plays an important part in verifying their 
answers:

Even i f  you don 7 want to use it to do the work, i t ’s definitely a good back up, 
because it gives you confidence -y o u  know you’ve got it right because yo u ’ve 
seen it happen.
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He also indicated that this factor had influenced him to use the graphical 
calculator when he described how the slope of the function y = 2x2 -  3 
changes from x = -3 to x = 3:

Extract 9

1. Julian: It’s going to go from negative to - it’s going to stay
negative, pretty steep then it will level off and it will 
get steep again and that will be the same as that 
[indicating the gradient at 3 and -3] but one will be 
minus.

2. SE: Right Ok yes that’s fine. So you can see that in your
head if you need to?

3. Julian: I didn’t need the calculator no, but I just it’s a way of
checking because there’s no problem of doing it. I t’s 
not against any exam law so you might as well make 
sure you are right instead of just hoping.

The graphical calculator represents a potential source of verification in the 
classroom, which is either used in addition to, or in conjunction with, that 
provided by the teacher and fellow students. Roy, a visualiser, indicated in 
his interview that his own graphing skills had improved as a consequence 
of using the technology and that this had given him a greater sense of 
confidence in his solutions and ownership of his mathematics.

Extract 10
1. SE: Do you feel like you’re ordinary plotting skills

have suffered at all because you’ve been using a 
graphical calculator, or because you don’t always rely 
on it and do sketches yourself do you think that it 
hasn’t made any difference, or has it helped?

2. Roy: I find that it’s helped because I can plot the graph on
my calculator and by hand and then I can check that I 
am getting it right, because if  there’s a problem I
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know that there is a problem. I don’t have to wait for 
it to be marked. I can see the problem immediately 
and try it again so that way I can make sure that I get 
it right. It’s helped in that way.

The following episode demonstrates how use of the graphical calculator 
can motivate students in such a way that they become excited, as well as 
more confident, about their mathematics.

Episode 1 -  Graphical Calculators and Student Enthusiasm for doing 
Mathematics
Perry, a visualiser, was asked to describe how he would solve the 
simultaneous equations: x -  3y = 16 and x -  4y =13,  both symbolically 
and graphically. Firstly, he explained how he had solved the problem via 
symbolic manipulation and had obtained the correct solution. Then he 
attempted to find the solution graphically using the graphical calculator. 
Following a discussion with the teacher-researcher and his classroom 
partner Mick, a non-visualiser (see Chapter 8), he was eventually able to 
use the technology to produce the right graphs of the two functions.

Once Perry had zoomed out on these two graphs and located the two 
intersection points he zoomed in on them in turn in order to obtain the co
ordinates, and was able to solve the problem:

1 SE You can see the two crossing points there can’t 
you?

Perry zoomed out 
again.

2 Perry Take them one at a time. Zoom in. Perry’s narration 
referred to zooming 
in on the point o f 
intersection on the 
right hand side.

3 SE Right so if  you trace that you can see what the 
co-ordinates are can’t you?

4 Perry Work out the intersections.
5 SE Or you can calculate yes sure.
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By using the zooming facilities, Perry was able to successfully obtain the 
co-ordinates of the first point of intersection (see figure 7.3).

Intersection 
'.)=? t

Figure 7.3 Identifying the first intersection point

This was very satisfying for Perry, and he was eager to use the technology 
to find the co-ordinates of the second intersection point:

6 Perry Hurray! Perry was jubilant.
7 SE Yes and that’s what we’ve got isn’t it, yes.
8 Perry We did get that.
9 Mick I got that as well. Mick added 

reassurance.
10 SE And the other one is on the other side of the 

screen that you haven’t got on at the moment, 
but you’d have to zoom around that wouldn’t 
you?

Perry zoomed in to 
the left and 
calculated the 
intersection point.

11 Perry You could do a dance whilst waiting for it! 
Which curve am I on now? The intersection 
point is -2.6, -16.2.

See fig 7.4

12 SE Yes. Ok that’s what we got yes.
13 Perry I got that, success! Perry was really 

pleased.
14 SE That’s great. So that shows that you got the 

correct answers with your algebra.
15 Perry Yes, I did yes. It’s very nice to know that I 

worked it out right for a change.
Perry was given 
confidence in his 
algebra and in the 
validity o f the 
graphical approach.

Peter was so eager to obtain the co-ordinates of the second intersection 
point that he became a little impatient whilst waiting for the graphical 
calculator to perform its task (line 11). When the co-ordinates finally 
appeared on the screen, he appeared to be genuinely excited (line 13).
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Intersect ion 
K= ~3E.fi

Figure 7.4 Identifying the second intersection point

He was particularly pleased that the graphical calculator had confirmed 
that he had answered the question correctly using his symbolic approach. 
Using the graphical calculator gave Perry greater confidence in his ability 
to solve these types of problems symbolically and in the validity of the 
graphical approach.

As was also demonstrated in this example, Perry was able to use the 
technology effectively to show the teacher-researcher and the students 
watching this demonstration how to solve the two simultaneous equations 
graphically. By using the technology, students were able to show one 
another, or the teacher, clear and accurate diagrams when working on 
problems together, which facilitated the sharing of ideas. Having 
confidence in the accuracy of the answers produced by the technology 
also encouraged individual students to be more self-assured when 
discussing or presenting their ideas to others. Confidence at the individual 
level is thus transferred to group work becoming a key affective element 
of the learning process, which is discussed further in chapter 8.

Consideration of individual students’ written work also shed light on how 
student confidence (or lack of it) affected their overall performances in the 
set exercises. Table 7.4 illustrates their relative success in the exercises 
overall. This includes their performance in exercises 3A-3D from their 
textbook and the main trial exercises. Their success is compared with their 
self-classification as visualisers or non-visualisers. Table 7.5 further 
displays the mean scores and the standard deviation for the visualisers and 
non-visualisers in the class.
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Table 7.4 Individual students’ overall performances compared
Position 
in Class

Student Self Classification Overall
Score

Relation to Mean 
(123.4)

1 Julian Visualiser (V10) 196 > mean
2 Paul Non-Visualiser (V I3) 176.5 > mean
3 Marty Non-Visualiser (V I7) 162.5 > mean
4 Claire Visualiser (V5) 159 > mean
5 Perry Visualiser (VI) 150 > mean

6 Roy Visualiser (V8) 142 > mean
7 Jake Visualiser (V 6) 140.5 > mean

8 Fay Visualiser (V7) 137 > mean

9 Mick Non-Visualiser (V I2) 136 > mean

10 Kirk Non-Visualiser (V I1) 132.5 > mean

11 Marie Non-Visualiser (V I4) 120 <m ean

12= Pierce Non-Visualiser (V16) 116 < mean

12= Carol Visualiser (V9) 116 < mean

14 Marvin Visualiser (V2) 109 < mean

15 Nigel Visualiser (V3) 90 < mean

16 Justin Visualiser (V4) 11.5 < mean

17 Jim Non-Visualiser (V I5) 3.5 < mean

The information presented in table 7.5 is represented pictorially by box 
and whisker plots in figure 7.5.

Table 7.5 Comparative mean scores and standard deviation for the 
visualisers and non-visualisers

Mean Overall Score for Visualisers Mean Overall Score for Non-Visualisers

137.7 140.6

Standard Deviation Standard Deviation

29.1 21.9
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Figure 7.5 Box and whisker plots to show the comparative scores of 
visualisers and non-visualisers

120 (60 200

Visualisers
—

Non-visualisers

The mean overall scores for the students who classified themselves as 
visualisers was slightly lower than that of the non-visualisers and the 
scores tended to be more spread out. As can be seen from table 7.4, Julian, 
the least visually orientated amongst the visualisers and a student who 
preferred to work symbolically in most cases, was the most successful 
student in the exercises overall. The next best scores belonged to Paul and 
Marty, both non-visualisers. To score highly in these exercises required 
the students to be able to combine symbolic and graphical approaches 
effectively in their solutions to these problems. The success of Julian, Paul 
and Marty, who all indicated a definite preference for working 
symbolically at the start of the trial, can thus be attributed to their ability 
to combine symbolic with graphical approaches. The graphical calculator 
gave them the opportunity to supplement their symbolic work with 
complementary visual images, which they were then able to link together 
to make more sense of the whole problem and to verify their symbolic 
answers. This gave them confidence in the accuracy of their symbolic 
answers. As they were encouraged to use both symbolic and graphical 
approaches throughout the series of exercises, they were thus more open 
to using graphical approaches in conjunction with symbolic manipulation.
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Apart from Jim and Justin who failed to hand in the majority of their 
work, the three lowest scores belong to visualisers. Of these, Marvin and 
Nigel were two of the most visually orientated in the group. Their relative 
lack of success appeared from observations in the classroom to lie in part 
with the difficulties that they experienced whilst working in the visual 
mode of representation and in their lack of confidence in working in this 
way. These difficulties prevented them from progressing very far through 
the exercises. This was also evident in the student interviews (see section 
7.2.4). They particularly had problems in integrating visual and symbolic 
approaches and clearly needed additional support in this area. These two 
students did derive benefits from using the graphical calculator, although 
they still struggled with some of the concepts that were introduced to 
them. Marvin emphasised that it was mainly through discussing the work 
with others that he was able to begin to make sense of the functions that 
he had explored using the technology. The use of the technology by itself 
was not sufficient to improve their understanding of functions, and input 
from the teacher and peers was necessary (see chapter 8).

7.2.4 Graphical Calculators, Dependency and Misinterpretation of 
Results
As was characteristic of the previous two phases, concerns were also 
raised in this phase about possible over-dependency on technology, 
students being drawn away from algebraic processes and theory, and 
technology replacing the need for in-depth thought processes. Overall 
thirteen of the students expressed reservations of this nature in their 
questionnaire responses. Comments made by Jim, Roy and Nigel typify 
these views:

Jim  (non-visualiser): Technology such as graphical calculators is very helpful 
but they can become easy to use. People can become dependant on technology. 
I  think that the use o f technology should continue but personally I  will try to 
learn the manual way o f working things out first.

Roy (visualiser): It can weaken the understanding o f  the symbolic side i f  
graphs are used totally.
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Nigel (visualiser): I  feel that maths should be about using your brains to work 
out problems rather than a computer, but they are useful for speeding up 
diagrams.

Mr Moore, a visualiser, was particularly wary that use of the graphical 
calculators might result in a “lack of understanding of how graphs are 
generated” amongst the students.

Jake a visualiser seemed to view using the graphical calculator as a means 
of ‘cheating’, as did Martin (also a visualiser) in phase two, although Jake 
recognised that technology could be used to support students’ collective 
thinking, rather than replacing it:

The influx ofgraphical calculators into lessons, at first, seemed unfair and in 
someway a cheat, but in mathematics it is helpful to get every method o f 
solving a problem within your group so I  suppose it is ok.

Clearly this group of students was extremely wary of using technology too 
indiscriminately, despite recognising the potential cognitive and time 

saving benefits that use of the technology can afford. In particular, Mick 
and Pierce recognised that these factors have important implications for 
the teacher:

M ick (non-visualier): It does take some o f the understanding away from the 
algebra so the teacher must be careful.

Pierce (non-visualiser): A teacher may cut corners and not give an example 
for the reason that it is time consuming and a student may become confused. 
The technology means the teacher can quickly show the diagram.

Indeed, the teacher plays a crucial part in scaffolding the students’ 
learning, ensuring that they know enough about the various functions and 
limitations of the technology to avoid the potential misunderstandings 
which can surround its use, and in introducing the students to a 
combination of problem solving strategies. This would involve placing 
equal amount of emphasis on both visual and symbolic approaches, so that
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with the aid of the technology students would be able to work comfortably 
in and between both modes.

The findings from the second phase of the research suggested that 

dependency on technology might be a consequence of how it is used by 

students and at what stage it was introduced. In particular, it was proposed

individually rather than collaboratively with technology. As such, 

evidence was also sought from the data in this phase to further 

substantiate and elaborate on these claims.

For this purpose the student interview transcripts were analysed. This 

analysis revealed that in addition to over dependency on the graphical 

calculators, there were other more poignant problems associated with 

individual use of the technology. The following three episodes, involving 

Carol and Marvin, highlight the kind of problems that students may 

experience when using technology in isolation from the input of others.

The students had been given the interview questions for homework and 

these questions were based on the content of the previous chapter from 

their textbooks, which was covered by the class immediately prior to 

commencement of the trial.

Episode 2 -  Amplification. Dependency and Missing Links between 

Representations

In this episode Carol, a visualiser, was asked to describe how she had 

attempted to solve the third interview question, in which she was asked to 

find the values of x where the graph o fy  = x - x  + 4 lies above the graph 

o fy  = 4 x - 2 :
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1 SE What about question three?
2 Carol I typed in the two equations so that I could plot the graphs on the 

calculator and then I could look on the table to find the values o f x er of 
where the graph was above the other. I used the calculator but I haven’t 
got one myself but, so I would have done it drawing the graphs I find 
them a lot better though, the calculators, they’re good.

3 SE Mm. So would you have known how to do this algebraically?
4 Carol Algebraically? How do you mean?
5 SE Using the formulas and rearranging them in some way to find out what

X is.
6 Carol I don’t think I could just say now what it would be, but I might be able 

to get my head round it if  I sort o f got stuck into it. But that would take 
longer really so ...

7 SE Is that why you prefer to do it graphically?
8 Carol Yes, it’s a lot quicker.

When Carol had originally attempted this question as part of her 
homework it would appear that she had not spent any time thinking about 
the way in which this problem might be solved symbolically. As such she 
could not offer any suggestions as to how to approach this problem 
algebraically and was reluctant to try (line 6). Her comments suggested 
that the reasoning behind her choice not to explore a symbolic method 
was that this would have required more in-depth thought about the 
problem and would thus have taken much longer than using the graphical 
calculator to obtain the solution (line 8). In this case the graphical 
calculator was seen to provide the correct solution to the problem with 
little effort on the part of the student.

Indeed Carol’s written solution to this and other problems suggested that 
she had not thoroughly thought-out the implications of the results 
provided by the technology. Carol’s written solution in this case consisted 
of a list of integer values of x: -1, 0, 1, 4, 5, 6, 7, 8, 9 and 10. Similarly, 
her solution to the first question (for which values of x is the graph of y = 
3x + 9x - 12 below the x-axis?) was also of this form and she gave x = -3, 
-2, -1, 0 as her answer. These written solutions reflected the fact that in 
both cases she had used the table facility to establish the values o f x that 
satisfied the inequalities. Whilst she had also graphed both of the
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functions in each case, she did not consider her graphs in light of the table 
she had produced to check the validity of her solution. Thus, her written 
solutions implied that she was concentrating on the numerical 
representation of the problem provided by the graphical calculator, rather 
than linking the results of the tabular exploration to the graphical 
representation. She clearly was not seeing the solution as a continuous 
range of x values, corresponding to a particular region of the graph. She 
appeared to accept the tabular solution without questioning how these 
results were obtained or how they were related to the graphs.

Carol seemed primarily concerned with the speed by which problems 
could be solved by using the graphical calculators and gave little thought 
to the nature or validity of her answers. As a consequence she was overly 
dependent on the results produced by the technology. Her failure to try a 
symbolic approach or to consider the graphs she had drawn and what 
these meant in relation to the numerical data meant that she was not 
alerted to the fact that her answers were incomplete.

Marvin, another visualiser, also had difficulty in finding the solution to 
question three as the following episode demonstrates:

Episode 3 -  Graphical Calculators and Misinterpretation 

Marvin struggled to make the connections between the visual and 
numerical representations in this example. The graphical calculator 
enabled him to explore these different representations simultaneously, 
although he was not able to use the technology effectively to help him 
formulate the links between them:

1 Marvin With question 3 what I did is I started by trying to do it 
algebraically. I did try doing it by doing it where x^-x +4 is equal to 
4 x -2 .

2 SE Yes.
3 Marvin I worked it out as an inequality but then I was really getting 

confused with that because it seemed like it was the wrong way to 
do it. So what I did was used the calculator and I drew them both 
and you get one straight line and one u shaped one...
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4 SE Yes.
5 Marvin And it looked like all the values of the u shaped one were above but 

when you zoom in, some of them are on the line and some are just 
slightly below because I did that trace thing with it.

6 SE Yes.
7 Marvin I did the table, you know where you draw the table and you get x 

down one and then you get two sets of y values because you’ve got 
two graphs right?

8 SE Yes.

made use of the table facility to produce the screens reproduced in figure 
7.6.
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Figure 7.6 Marvin’s screens

Marvin was initially confused by the symbolic approach he adopted. His 
lack of success and difficulty with applying this approach suggested to 
him that this might not be the right way to tackle the problem (line 3). 
Consequently, he began exploring the problem using the graphical 
calculator. His first action was to draw the graphs of the two functions and 
then trace the co-ordinates. However, this failed to make things any 
clearer (line 5).

His next step was numerical and he examined the table of values for the 
functions from which he was able to identify values that he believed fitted 
the inequality:

9 Marvin Now what I was trying to do is work out the relationship between
the two -  where one graph was higher than the other graph. And
there was a -  it worked yes, some, a lot o f the values were higher
than the straight line graph, but the points where I think - there were
two points where they were 6 and 10 both of the y values. I didn’t
know whether they would be classed as above the graph o f 4x-2. So
if it had of been it would have been -  it would have either been all
values minus 6 and 10 between 6 and 10 or the lot, every one. So,
but I did get confused with that.
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The two intersection points, however, caused more problems for Marvin, 
as he did not seem to recognise them as such. He questioned whether 
these points would be classed as above the graph of y = 4x -  2, rather than 
recognising them as points situated on both graphs. He concluded that, 
depending on how these points were interpreted the range of values that 
satisfied the inequality was either: 6 < y <  1 0 o r 6 < y <  10. In addition to 
giving ranges of y values instead of a range of x values which satisfied the 
inequality, the suggested ranges of y values refer to the regions where x2 -  
x + 4 < 4x -2 or x -  x + 4 < 4x -2 respectively. In other words these were 
the solutions to the wrong inequalities. What was required was the values 
of x for which x - x  + 4 > 4 x - 2 .  Marvin had clearly misinterpreted the 
graphical information produced by the technology.

In this question, Marvin viewed the graphical representation of the two 
functions inappropriately and was thus under the impression that the 
intersection points could be classified as above the graph of y = 4x + 2. 
Marvin also had difficulty with other problems. In the second question, he 
could vaguely picture the graphs of the functions, however he could not 
combine his image with rigorous analytical thought:

Episode 4 -  Graphical Calculators and Verification 

In this question Marvin was asked to determine the x values for which the 
graph of y = 3x + 6 intersects the graph of y = 2x2 + 5x. From his written 
work it was evident that he did not use any graphical images to help him 
find the solution to this problem.

1 SE You didn’t use any images in question two?
2 Marvin No, no, not at all.
3 SE Did you check it using the graphical calculator?
4 Marvin I did - 1 did check it, yes. Em I mean the reason why I didn’t use any 

imagery with that, I mean em I myself, I mean, I can imagine 
roughly what the graph would look like but I wouldn’t be able to 
link the two together, if  you see what I mean. Some people might be 
able to, some mathematical geniuses in the world might be able to, 
but I couldn’t so em that way I tried - 1 tried, I don’t know whether 
you can, but I tried -  I went for the easy option and used the 
formula. I’m quite proud of that actually, I learned that off by heart.
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This example illustrates that Marvin experienced difficulty in making 
connections between different modes of representation and that he saw the 
ability to make such connections as an almost unobtainable skill reserved 
for elite mathematicians (“some mathematical geniuses in the world may 
be able to”). He clearly lacked confidence in this area, and in this case 
applying a wholly symbolic approach was much easier for him than using 
a combination of approaches. Moreover, he derived satisfaction from 
successfully employing the quadratic formula. In this case, the graphical 
calculator occupied a mere verification role rather than a means of 
exploring possible solutions.

These episodes suggest that, at this stage, Marvin was not able to use the 
technology constructively to help him to clarify and amend his own visual 
ideas, or make connections between representations. The difficulties that 
he experienced in using visual approaches persisted despite his attempts to 
overcome them. As found in the previous two phases, the use of 
technology alone does not guarantee that individual students will 
automatically make connections between different modes of 
representation, and the teacher plays an important part in fostering this 
process. During the course of his interview Marvin was able to 
reformulate some of his ideas through discussion of these difficulties. This 
highlighted again the need for the teacher to scaffold the learning task and 
the importance of conversation in building and repairing an individual 
student’s understanding.

In question six, Marvin’s initial image of the quadratic function being of 
the form ax + c prevented him from progressing any further with the 
solution to the problem. He was, however, able to modify his image 
through discussion with the teacher-researcher.

Episode 5 -  The Importance of Discussion
In this episode Marvin was attempting to solve question six:
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When throwing a single biased dice, the probability of getting a 2 is 0.1, a 
3 is 0.12 and a 6 is 0.3. All the probabilities can be worked out using a 
particular quadratic formula. Explain how the probabilities of getting 1, 4 
and 5 can be deduced and how the quadratic formula could be obtained.

1 Marvin A quadratic curve starts at zero and it accelerates up almost. So the 
probability of 1 would be below 0.1 more towards zero, between 0 
and 0 .1 ,1 would say. Is that what you mean?

^2— -SE------- Well it’s on the right lines, but do ail quadratics actually go through 
0?

3 Marvin No I don’t mean - 1 mean between 0 and 0.1 on the y because that’s 
at 0.1. So it would be somewhere between -  see what I mean?

4 SE I see what you mean, I think, yes.
5 Marvin I mean if  the graph is like x2+3 it would go 3 up the y axis, so it 

will be between 3 and whatever the next value of x is because that’s 
0.1 and you don’t know the first value, it’s going to be between. Do 
you see what I mean? It might be below the x.

6 SE It could be possible with a quadratic though that if  you had x is 1 
and x is 2 ...

7 Marvin Right.
8 SE And you’ve got a reflection in the curve, don’t you, it goes like that 

[demonstrating the shape o f the curve] so sometimes two x values 
can give the same y value.

9 Marvin Right.
10 SE So it could be that when x is one this could be 0.1 as w ell...
11 Marvin Right
12 SE And at 2 it could be 0.1 and it could have a minimum point in 

between, I mean there are different possibilities.
13 Marvin Right I see what you mean, right yes, yes. Am I getting the right 

idea then that you’re saying that the quadratic formula would be in 
the form of ax + bx + c?

14 SE Yes.
15 Marvin Ah right, not just ax2 + c?
16 SE No.
17 Marvin Right, I see.

Marvin assumed that if a quadratic curve joined the six points then this 
would go through (0,y) and be increasing (line 3), when in fact the value x 
= 0 was of no significance here and the nature of the curve was still 
undetermined. Through the discussion it became clear that Marvin had

9 9been thinking in terms of y = ax + c, rather than ax + bx + c, so that m 
his model the maximum or minimum point of the curve would always be
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located on the y-axis (0,c). Marvin was then able to think appropriately 
about the problem and was enabled to find the solution.

7.3 Conclusions
This chapter has concentrated on the third phase of the research and the 
ways in which the individual aspects of learning with graphical calculators 
influenced the students’ understanding of functions. This section 
summarises the findings of this phase in relation to these factors.

7.3.1 Amplification, Cognitive Reorganisation and Students’ 
Understanding of Functions
This phase of the study found that individual students assigned value to 
both the amplification and cognitive reorganisation effects o f the 
technology, and saw amplification as a precursor for cognitive 
reorganisation. In other words they regarded the speed and facility by 
which they were able to operate whilst using the technology as a 
prerequisite for a more meaningful long-term understanding o f functions. 
The use of the graphical calculator was also seen to have an effect on the 
way in which individual students communicated their mathematics to one 
another, thereby changing the way in which knowledge was created. This 
occurred as a result of the amplification effects, whereby the user was able 
to immediately and easily access accurate graphs of numerous functions, 
which made graphical representations as accessible to students as standard 
symbolic techniques. This allowed students to communicate their ideas to 
one another using visual rather than symbolic reasoning, which had 
previously tended to be the norm in this classroom.

7.3.2 Graphical Calculators and Visualisation
The findings of this phase of the research suggested that the existing 
mathematics culture that had been built up in this particular classroom 
emphasised the symbolic over the visual. As a consequence, students who 
classified themselves as visualisers had been enculturated into this 
environment and were therefore more used to using symbolic approaches.
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The introduction of the graphical calculator was subsequently seen to have 
a significant impact on the visualisers’, as well as the non-visualisers’, 
willingness to use graphical approaches.

On the whole, the non-visualisers tended to achieve a greater degree of 
success in the class exercises than the visualisers. This was generally due 
to the non-visualisers’ abilities to successfully combine symbolic and 
graphical approaches. In this way, whilst both types of students benefited 
from using the graphical calculators, the non-visualisers, in particular, 
seemed to benefit the most.

7.3.3 Graphical Calculators, Motivation and Confidence
This phase of the study indicated that by using the graphical calculators to 
introduce these students to the concept of functions, they were encouraged 
to take more of an interest in actively creating their mathematics. All of 
them were enthusiastic about using the technology. This was partially 
attributed to the ‘novelty’ factor and partially due to the way that the 
graphical calculator offered the opportunity for different avenues of 
exploration than were usually available.

Use of the graphical calculator also contributed towards improving student 
confidence in several different areas, which was seen to be a key affective 
element in the quality of the learning that took place. They became more 
confident in their ability to visualise functions, in their symbolic solutions, 
in their own graphing skills, in sharing and discussing ideas with peers, 
and in presenting ideas to the whole class. The graphical calculator played 
an important part in verifying individual students’ ideas and in giving 
them a sense of ownership of their mathematics.

7.3.4 Graphical Calculators, Dependency and Misinterpretation of 
Results
One of the most significant findings of this phase is that the use of 
technology alone may not be sufficient to enable individual students to
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make the appropriate connections between complementary modes of 
representation. It is proposed that individual students need the opportunity 
to discuss their strategies and images, with either their peers or the 
teacher, in order to begin to address their problems, especially when they 
are exploring questions of a non-standard nature. It is also important to 
note that the visual images that are available to novices differ from those 
that are available to experts (Tall, 1991b). This is particularly so with 
respect to non-standard problems and consequently whilst the technology 
enables students to access these visual images, scaffolding by the teacher 
or more capable peers can enrich their understanding of them and 
discourage students from becoming dependent on the technology.

219



CHAPTER 8 
INVESTIGATING THE SOCIAL DIMENSIONS 

OF GRAPHICAL CALCULATORS IN 
STUDENTS’ UNDERSTANDING OF 

FUNCTIONS

8.0 Introduction
This chapter consists of an analysis of the social aspects of learning about 
functions using the graphical calculator that were observed during the 
third and final phase of the research. The overall aims of this phase of the 
research were presented in chapter 7. This chapter is primarily concerned 
with the fourth aim:

• To investigate how the behaviour of individual students affected the 
shared construction of meaning, and how this behaviour was 
influenced by the technology.

The exploratory study (chapter 5) highlighted the importance of the social 
environment in contributing towards students’ meaning making with 
graphical calculators. The graphical calculator was seen to promote and 
scaffold discussion and collaboration amongst students and the teacher 
was seen as an essential part of the learning process. Evidence from the 
second phase (chapter 6) further suggested that the graphical calculator 
acted as a medium for communication between teacher and student, and a 
means by which the teacher could guide the students’ learning. The 
establishment of local communities of practice in the classroom was seen 
to be conducive to successful collaborative work involving graphical 
calculators. Consequently, this phase of the research was concerned with 
further investigating the impact of social factors on students’ learning of 
functions to build on these earlier findings. Data was collected from 
Ashby School with a class of seventeen year twelve GCE Advanced level 
mathematics students (13 male, 4 female), details of which can be found 
in chapter 7.
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8.1 The Social Dimensions of Graphical Calculators and 
Students’ Understanding of Functions
In order to determine the influence of the social dimensions of graphical 
calculator use on students’ understanding of functions data was analysed 
from five sources:

(i) pre-trial student questionnaires,
(ii) the students’ written work,
(iii) audio transcripts,
(iv) video transcripts,
(v) post-trial student questionnaires.

The findings that relate to the social dimensions of graphical calculator 
use have been subdivided into the following categories:

• Students’ perceptions of graphical calculators and group dynamics and 
how these relate to practice

• Graphical calculators and collaboration between visualisers and non- 
visualisers

• The role of the teacher in scaffolding students’ understanding of 
functions in a graphical calculator environment

• Graphical calculators and peer tutoring
• Creating an effective classroom environment for learning about 

functions with graphical calculators

8.1.1 Students’ Perceptions of Graphical Calculators and Group 
Dynamics and how these relate to Practice
One of the underlying assumptions of this study as a whole was that the 
use of technology encourages interaction between the students and with 
the teacher. To ascertain whether these students believed that using the 
graphical calculators had altered the group dynamics of the classroom, and 
if so how this had affected their ability to solve problems, they were asked
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to reflect on this aspect as part of their post-trial questionnaire responses 
(see appendix C).

There were several themes surrounding the role of collaboration in 
relation to the students’ use of the technology to emerge from their 
responses. Firstly, the graphical calculator was seen mainly to have 
encouraged greater discussion in small groups and pairs, rather than as a 
whole class, as Julian’s typical response illustrates:

The graphical calculator has encouraged discussion, particularly in small 
groups, pairs and threes.

The graphical calculator was also seen to promote collaboration in which 
the students were able to provide scaffolding for one another’s 
understanding. Marvin and Fay both commented on this aspect:

M arvin: The graphical calculator has definitely encouraged group discussions 
and private discussions in pairs, to help and explain to each other. I  found this 
a great benefit.

Fay: The calculators did encourage group discussions, more in pairs/threes/ 
fours than the whole class. This was probably because it was relatively new 
methods to most o f us and discussion helped overcome problems we had 
individually or as groups. It meant you had someone to discuss, help and 
support you.

Another way in which the graphical calculator promoted discussion was 
through the students’ use of this resource as a basis for debate. Mick 
commented on the potential of the technology in this respect:

I  think that the TI-82 has promoted discussion in the classroom, mainly in pairs 
but also as a whole class. It gives people something to argue over.

The technology also facilitated the comparison of results, which was in 
turn seen to encourage greater discussion, as the following responses 
illustrate:
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Claire: I  think that the graphical calculators have encouraged group 
discussions in small groups because you ask i f  friends have got the same 
graph/answer and how they did it i f  you have different answers.

Justin : The graphical calculator has encouraged discussion more in pairs 
because you discuss what answers each other got and how they got it.

Paul: It has encouraged group discussions by us checking each other’s graphs 
against our own and discussing how to use it.

Jim : Group  discussions have definitely become more common. Instead o f  just 
— asking someone what they have done, you can show what you have done and 

see how they have gone about a question, and compare the results much easier.

The fact that the students’ use of the graphical calculator created more 
intensive discussion through the unification of their methods was also 
apparent, as Pierce’s response indicates:

I  think that using the graphical calculators has encouraged group discussions 
rather than pair work. When working algebraically everybody has their own 
preferred methods and will use them accordingly. When using the calculators 
though, only one system is used to find  the answer, meaning everyone answers 
the questions more or less the same and so group discussions result.

Marty, like Fay, indicated that the students’ lack of familiarity with the 
graphical calculator and initial difficulties in getting to grips with this 
resource created a need for greater discussion:

Yes the graphical calculator has encouraged discussion because you may need 
to ask more because the calculator is new to me and at first is difficult to use.

Marvin also found the technology difficult to use at first and he in 
particular found the collaborative component essential to his success in 
using the technology effectively. When he was asked “do you believe that 
using the graphical calculator has strengthened your understanding of 
functions?” he responded:

No, because I  struggled at first and the only way I  could combat this was to 
work it out with someone else.
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Thus Marvin’s understanding of functions was strengthened through 
collaboration with other students and the teacher-researcher whilst using 
the technology. Marvin clearly felt that the use of the graphical calculator 
by itself had not strengthened his understanding of functions.

Only Jake regarded the graphical calculator as a tool that promoted 
individual work. In his response to the question: “have you felt that use of 
the graphical calculator has encouraged group discussions (paired or 
whole class)?” he commented:

No, I  think it makes you more individual.

The remaining five students, Marie, Carol, Roy, Nigel and Perry, felt that 
using the graphical calculator had not necessarily encouraged more group 
discussion, and that any discussion which was initiated would probably 
have occurred with or without the presence of the technology:

Nigel: Discussions within small groups have occurred but they may have 
happened anyway.

Roy: I  believe that the graphical calculators have not really changed much -  
the class often discusses things as a group anyway.

Carol: No, I  don V think it encourages group discussions.

Perry: Not more than we would have discussed questions/problems.

M arie: I  don’t think it encourages group discussions.

Thus, whilst these students did acknowledge that collaboration had taken 
place, they did not feel that their use of the technology had generated any 
more intensive discussion than usual.

In practice the students’ collaborative use of the technology enabled them 
to overcome mathematical difficulties that they experienced, as the 
following episode illustrates.
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Episode 1- Graphical Calculators and Group Dynamics in Action 
The interactions of Julian, Jake and Kirk were video and audio recorded 
whilst they attempted question 4 from the main exercises, which is 
reproduced in figure 8.1.

Given that f(x) = x3, use the TI-82 to obtain the graph of g(x) = f(x/2). Sketch the two 
graphs and write down the equation of the new function g(x).

Now use the TI-82 to perform the transformation g(x+2) -  3 on g(x). Sketch the 
resulting curve h(x) and again write down its equation, in the form ax3 + bx2 + cx + d.

Finally use the TI-82 to perform the transformation 2(h(x)) on h(x), sketching the 
curve l(x) and writing down the resulting equation as before.

Figure 8.1 Question 4 from the main exercises

Each of these three students had used their graphical calculators 
effectively to graph the functions f(x) and g(x), and had correctly specified 
the symbolic form of g(x) as x /8 together. The next step was to consider 
h(x) and the group used the graphical calculators to produce the graphs 
pictured in figure 8.2.

Figure 8.2 Graphs of g and h produced by the students

These graphs gave rise to the following discussion between Julian and 
Kirk:

1 Julian Have you got the curve, the like 
bump bit at -3?

Julian showed Kirk his screen

2 Kirk Yes.
3 Julian So that makes sense because it’s 

lowered it ...
Julian was describing the 
[ 0, -3] translation

4 Kirk Yes.
5 Julian On the y and...
6 Kirk It’s moved it back 2 x. Kirk was describing the [-2, 0] 

translation
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7 Julian Yes.
8 Kirk So that actually makes sense if  you 

think about it.
Kirk was reflecting on the links 
between the symbolic form of 
the translation and the 
corresponding graphical effects

9 Julian It does.

As was typical of the interactions between these students, comparison of 
the graphs produced by different members of the group using the 
graphical calculators provided a basis for initiating a discussion o f results. 
In this case, having produced the graph of h(x) on his own graphical 
calculator, Julian initiated the dialogue with Kirk, in an attempt to 
discover whether his graph was the same as Kirk’s. The technology 
fostered the interaction between these students, giving them a shared focal 
point for discussing their mathematics.

Kirk’s acceptance of Julian’s graph enabled them to begin to rationalise 
the relative positions of the two graphs together. In doing so, they 
performed a collaborative completion (lines 3-6) and it was evident that 
they were both thinking carefully about and reflecting on the links 
between the symbolic and graphical representations of the function h(x). 
By working together using the technology, the graphical effects of 
transformations were easier for these students to interpret because they 
were able to see the graph changing position and/or changing shape on 
screen. Through being able to see these transformations being applied in a 
dynamic way, Julian and Kirk both appeared to be making sense of their 
effects and accepting one another’s assertions (lines 3 and 8). As the 
discussion continued, however, Julian began to realise that they had both 
transformed the wrong function:

10 Julian Now sketch that. Ah but it’s g. Julian was realising that they 
had transformed f  rather than g.

11 Kirk It says sketch the....
12 Julian We’ve done f, f(x), oh no!
13 Kirk No that would be h(x), wouldn’t it? 

Because that was the transformation 
and that will be that and you’ve got 
to write down its equation.

Kirk pointed to the new curve 
on the graphical calculator 
screen.

226



14 Julian Yes. What have you done? Julian agreed that the graphical 
effects of the transformation 
would be the same.

15 Kirk Oh em, well I can draw that, and 
then I’ll...

16 Julian Haven’t we done f, haven’t we 
f(x + 2) -  3. It’s g.

17 Kirk No because...
18 Julian Y1 is f  and not g.
19 Kirk Yes we have.
9 0 Tulian S!n w p  d p p H  tn  plpar that f^o h a rk  to A t th i4! n n in t thpv-kpfli-p lparpd------

that, we know what that is because 
we’ve just worked it out.

i  n  i i i i d  u u i i i i  i i i v  y  u u u i

their screens and applied the 
transformation to g.

Recognising that they had made a mistake, Julian attempted to convince 
Kirk that they had drawn f(x + 2 ) -  3 using the graphical calculator 
instead of g(x + 2) -  3. At first, Kirk did not accept this error and used his 
graphical calculator to try to convince Julian that the graph they had 
produced was h(x) (line 13). However, Julian realised that the 
transformation would have the same effect on the shape of the graphs of 
both f(x) and g(x) and was not swayed. Eventually Julian repaired this 
situation (line 18) and convinced Kirk that they needed to re-graph h(x) 
(line 19). In recognising this mistake it was clear that Julian was actively 
thinking whilst using the technology and not just accepting the results per 
se. He was connecting the symbolic representations with the graphical 
representations. The discussion also made these connections clear to Kirk.

The use of the graphical calculators enabled these students to compare 
individual answers quickly and easily, so that they could show each other 
exactly what they had done. This gave the students the same starting point 
from which to begin rationalising their answer together. As was typical of 
the pattern of interaction within the classroom, when answers differed 
between individual members of the group, as in this episode, these were 
discussed even more intensively until a shared sense of the problem 
emerged. It was apparent that the students5 lack of familiarity with the 
graphical calculators and with graphical methods of solution had also
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prompted more discussion amongst the students than perhaps would 
normally have occurred, as Marty, Fay and Marvin had suggested.

Overall, the majority of these students believed that using the graphical 
calculators encouraged a greater degree of collaboration, particularly in 
small groups and pairs, through which they could support one another’s 
use of the technology. This scaffolding between the students took the form 
of individual group members helping other members of the group to use 
the technology and to develop a shared understanding of the solution by 
explaining the results of their graphical investigations to them. This 
stimulated debate, unified the methods used by students and enabled them 
to overcome individual problems or problems that were encountered by 
the whole group.

8.1.2 Graphical Calculators and Collaboration between Visualisers 
and Non-Visualisers
Analysis of all of the video and audio recorded data representing whole 
class discussions from this phase of the research revealed that 88% of 
verbal contributions by students were made by students who classified 
themselves as visualisers. This would tend to indicate that the visualisers 
in this classroom were more comfortable in discussing the results of their 
graphical explorations with the graphical calculators than the non- 
visualisers. Indeed, the only non-visualisers to contribute verbally to the 
whole class discussions were Marie and Mick, each contributing three 
times. Moreover, all three of Marie’s contributions and one of M ick’s 
occurred after the class had been given time to explore their ideas further 
in small groups, consisting of visualisers and non-visualisers.

The transcript data from this phase provided the opportunity to study the 
interactions between visualisers and non-visualisers in small groups. This 
part of the analysis showed that non-visualisers were much more vocal 
during small group discussions than in the whole class setting. For 
example, during the audio and video recorded discussions between a non-
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visualiser, Kirk and two visualisers, Jake and Julian, each student made a 
similar number of overall contributions to these discussions; Kirk 32% (60 
out of 191), Julian 38% (73 out of 191) and Jake 30% (58 out of 191). 
Similarly, in a conversation between Perry, a visualiser and Mick, a non- 
visualiser, and the teacher-researcher, Perry’s comments accounted for 
32% (12 out of 37) of the discourse and Mick’s 27% (10 out of 37).

One possible explanation for these observations could be the way in which 
the non-visualisers in this classroom were able to work more closely with 
visualisers in the small group discussions. As was apparent during phase 
one, a visualiser can provide a non-visualiser with additional support with 
respect to their understanding of graphical approaches when using the 
graphical calculators together. Similarly a non-visualiser can scaffold the 
visualiser’s symbolic approaches. This in turn gives both visualisers and 
non-visualisers additional confidence in sharing ideas. Episode one 
illustrated how Julian, a visualiser, was able to help Kirk, a non-visualiser, 

to make the appropriate connections between the graphs that they had 
produced together using the technology and their symbolic 
representations. This helped to repair Kirk’s understanding o f the 
problem. In a similar way, in the following episode, Mick, a non- 
visualiser played a vital part in alerting Perry, a visualiser, to a mistake in 
his algebra, which then enabled Perry to rectify his error and proceed 
towards a graphical solution to the problem.

Episode 2 -  Effective Collaboration between Visualisers and Non- 
Visualisers with Graphical Calculators
Perry was asked to demonstrate how he solved the two simultaneous 
equations: x -  3y = 16 and x2 -  4y2 = 13 to those members o f the class 
who had difficulty with this question. He used the overhead projector, 
which was connected to a graphical calculator for this purpose and this 
was video recorded. He began by outlining a routine symbolic approach, 
which involved rearranging the equations, substitution, simplification and 
use of the quadratic formula. His symbolic manipulation was flawless and
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he was able to obtain two solutions: (7, -3) and (-32.6, -16.2). He then 
continued to describe how to solve the problem using a graphical 
approach with the aid of the technology:

1 Perry So we’ve got four answers there and it’s 
very complex.

2 SE Yes.
3 Perry To do that on the TI-82. What you do is you 

draw the two graphs so basically Y1 equals
Perry entered (x -16)/3 

jntothe-graphical
(x -  16)16. Oh that’s not right. The other 
one is y over ... I’ll have to rearrange the 
formula to make y the subject.

calculator as Y l.

4 SE Yes.
5 Perry X2- 4 y 2 = 13, 4y2= 13- x 2, 

Y2= (13 - x2)/4,
Y = +/- [(13 -  x2)/4]i/2 I believe. 
Could be wrong! Is that wrong?

Perry had made a 
mistake in his algebra.

6 Class No response.
7 Perry Oh thanks boys!

So it’s the square root of (13 -  x2)/4. 
So you get two graphs.

Perry entered 
[(13 -  x2)/4] 1/2 as Y2.

8 SE Right.

This was the first time that Perry had attempted this problem using the 
graphical calculator and consequently he had to spend some time thinking 
about what form the functions would need to take in order to be entered 
into the graphical calculator. He also narrated every step that he was 
making in order to make them clear to the class, so that they could follow 
exactly what he was doing. Once he had completed rearranging the 
functions, Perry looked towards the class for acceptance (line 5). Given 
that there was no immediate response, Perry proceeded to graph the two 
rearranged functions (see figure 8.3 below).

Figure 8.3 Perry’s first pair of graphs 
[Yj = (x -16)/3 , Y2 = [(13 -  x2)/4]1/2]
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Perry was subsequently surprised that the graphs did not appear to 
intersect as he had anticipated and his explanation of this was that the 
intersection points would probably occur off screen (see line 9 below). 
Before he could investigate this further however, Mick was drawn into the 
discussion:

9 Perry Oh? I suspect that that is extended. Perry pointed to 
the .curve.------------

10 Mick xz -  13 though.
11 Perry x2 -  13?
12 Mick Yes it is. That’s what I got and I got a different 

graph.
Mick was 
confident.

13 SE Mm.
14 Perry Did you?
15 Mick Yes that last bit.
16 SE Yes you have.
17 Perry But if  you move the 4y to that side -  yes you do.
18 SE It’s going to be positive yes. Ok?
19 Perry Try that.
20 SE Try that then. 

Right.
Perry entered Y2 
as [(x2-1 3 )/4 ]i/2

Mick had realised that Perry had made a mistake in his rearranging o f the 
second function. This realisation then alerted him to the fact that the graph 
that he produced for this example was different to the one that Perry had 
drawn (line 12). Consequently, Perry reconsidered his symbolic 
manipulations and corrected his error, producing the graphs displayed in 
figure 8.4.

Figure 8.4 Perry’s second pair of graphs 
[Y, = (x - 1 6 ) /3 ,Y 2= [(x 2-1 3 )/4 ]1/2]

However, the graphs again did not appear to intersect. This puzzled Perry 
because if his algebraic solutions were indeed correct, then one o f the
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intersection-points, (7, -3), should be visible on the screen. As this was not 
the case, Perry turned to Mick for acceptance of his graphs:

21 Perry Is that right Mick?
22 Mick What, that looks right.
23 SE That’s Ok yes.

From this point Perry was able to find the co-ordinates of both intersection 
points graphically. However, in order for Perry to complete the problem, 
input from the teacher-researcher was also required, as can be seen in the 
next section.

8.1.3 The Role of the Teacher in Scaffolding Students’ Understanding 
of Functions in a Graphical Calculator Environment
The second phase of the research emphasised the need for the teacher to 
scaffold the students’ use of the graphical calculator to ensure that 
interpretations of the information produced by the technology were valid 

and, where appropriate, accepted by the whole class. Analysis of the 
transcript data from this phase shed further light on the teacher’s role in 
this respect, which was especially important because the technology was 
being used to introduce functions to the students. The following episode 
demonstrates why and how the teacher may need to give students 
additional support, than that provided by the graphical calculator, when 
they encounter unfamiliar functions.

Episode 3 -  Scaffolding Students’ Understanding of the Square Root 
Function
In this episode, which is a continuation of episode two, Perry was 
contemplating the relative positions of the two graphs that he had drawn 
using the graphical calculator (see figure 8.4). However, he did not have 
the relevant prior knowledge of square root functions to be able to 
speculate as to why these graphs did not intersect as he had expected at 
this point in the discussion. Therefore, it was necessary for the teacher-
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researcher to repair this impasse, as the solution was not made apparent 
through use of the technology, and the discussion continued:

24 Perry They don’t cross.
25 SE So is there another thing that you could try? 

If you look at the square root, you’ve drawn 
the positive square root haven’t you?

No response.

26 Perry Yes.
27 SE What about trying the negative square root?

^ 8 ~ Perry ~Try the negative square root?
29 SE Why don’t you draw them both -  the next 

one as Y3 - to get the whole graph.
30 Perry This one.
31 SE Yes.
32 Perry The negative positive square root.
33 SE Yes, so it’s exactly the same but just 

negative.
34 Perry This could be fun. Perry typed in the 

negative square root 
and graphed the whole 
function.

35 SE That was the first one, yes. Yes so you can 
see one crossing point there.

See fig 8.5

36 Perry You can. I wonder if  it’s worth zooming 
out? Because that goes up there...

37 SE Yes, yes.
38 Perry Try zoom out. See fig 8.6

Perry did not realise that his graph was actually incomplete, as he had 
only drawn the positive square root. When this was brought to his 
attention, he was able to graph the whole function (see figure 8.5). By 
doing this, he was able to appreciate the symmetrical graphical form of 
this type of square root function and could immediately see the first 
intersection point from having the complete curve. He was now beginning 
to feel more confident and suggested using the zooming facilities to view 
the whole graph and obtained the screen reproduced in figure 8.6.
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Figure 8.5
l Y = 0K=0

Figure 8.6
[Yi = (x -1 6)/3, Y2 = +/-[(x2-13)/4] 1/2] Zooming Out on Figure 8.5

Perry was then able to successfully obtain the co-ordinates of these two 
points of intersection by zooming in on each intersection point in turn and 
using the maths menu (see figures 8.7 and 8.8). The interaction that took 
place whilst he did this was presented in episode 1, chapter seven.

Figure 8.7 Figure 8.8
The first intersection point The second intersection point

This example highlights the need for the teacher to try to anticipate 
conceptual problems that the students may experience when using the 
technology and be ready to respond to these, especially when introducing 
new functions by means of graphical exploration. Perry was made aware 
that both the positive and negative components of the square root made up 
the graph of this particular function, which gave him an appreciation of 
the shapes of the graphs of square root functions. The importance of the 
negative part of the square root function was an aspect that was not 
considered when he obtained the solution to this problem symbolically.

Episode four below also illustrates the teacher’s role in questioning the 
students’ comprehension of answers obtained by way of graphical 
investigations using the technology. This can ensure that a proper 
understanding has been reached and may be particularly important when
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the students concerned are non-visualisers. Superficially, it might appear 
that students have made sense of the concepts being explored with the 
graphical calculators, whereas careful probing by the teacher could reveal 
that this is not the case. Discussion with the teacher can then bridge the 
gap between what the student already knows and what their exploration 
with the graphical calculator has told them. The additional support 
provided by the teacher thus provides a link that is sometimes missing 
between the students’ use of the graphical calculator and their collective 
conceptual understanding.

Episode 4 -  The Role of the Teacher in Prompting Cognitive 
Reorganisation with Graphical Calculators
Following a whole class discussion in which the students attempted to 
identify the graph of the function y =cos (x-90°) (see episode 5), they were 
given additional time to further consider the ideas that had been posed in 
small groups, as no unanimous solution had been reached. Some students 
were then asked individually to explain how their group had determined 
which of the listed functions represented this graph and to justify their 
answer. Marie, a non-visualiser, was one such student and in this episode 
she was discussing the results of her work with Claire, a visualiser. Marie 
and Claire had identified the first graph correctly as y = cos (x -  90°), 
although, as the following dialogue indicates Marie had difficulty in 
explaining why this was an equivalent symbolic representation of the 
function to y = sin x.

1 SE So this first one here, how do you know that this is the right 
transformation?

2 Marie Well it’s the same as sine o f x. So we looked at it and if  you look at 
it, it looks like sin x but there wasn’t a sin x.

3 SE It is sin x, you’re right. You recognised that correctly. But it’s not an 
option so you’ve got to find something that’s equivalent to sin x.

4 Marie Yes.

Marie and Claire had clearly recognised that the graph could be 
represented symbolically as sin x and had deduced, following the
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argument posed by Perry in the whole class discussion, that an equivalent 
expression for sin x would be needed (line 2). This had prompted Marie to 
use an informed trial and error approach by graphing all the cosine options 
listed using the graphical calculator to see which one matched up with the 
given graph:

5 SE So how do you know that this is correct? If you compared it to the 
graph of cos x?

6 Marie Well we knew it was going to be like something like that. So then we 
did just to try it like x + 90 and x -  90.

7 SE So that’s trial and error isn’t it?
8 Marie Yes it was kind of trial and error but we had an idea. We knew which 

ones to go for. We’d go for the cos ones and not the tan ones because 
we knew the differences in the shapes of the graphs.

9 SE So if  you drew cos x on this picture at the same time what would cos, 
just cos x look like?

10 Marie It’d be like that flipped over like going like that.

Marie insisted that she had a reasonable idea about the form of function 
that the given graph represented, and could immediately rule out the 
tangent options (line 8). However, this episode emphasises how Marie 
was able to obtain the correct answer by using the technology without 
really thinking about the significance of the result. When asked to indicate 
what the graph of cos x would look like in relation to the graph o f cos (x -  
90°) (line 9), Marie traced out the graph of cos (x + 90°) on paper rather 
than cos x (line 10). She thus appeared to associate the action of the 
transformation f(x + 90°) on cos (x -  90°) with a reflection in the x-axis 
(“flipped over”):

Figure 8.9 Figure 8.10
Marie’s Graph y = cos (x+90°) y = cos (x -  90°)
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In order to illuminate and repair Marie’s error and to stimulate further 
thought, she was asked to think about what the transformation meant and 
the discussion continued:

11 SE Would it? Just think about what the transformation means.
12 Marie Oh cos (x -  90°).
13 SE This is what you’ve got here on the picture.
14 Marie Yes.
15 SE _-This-meansiTs-been^------ --------------------------------------------------------
16 Marie Has it been moved along?
17 SE It’s been moved along yes. This is cos (x -  90u) so it means that it’s 

shifted...
18 Marie Oh right.
19 SE 90° from the original cos. So where would the original cosine be on 

here?
20 Marie Em it would be like that wouldn’t it?

When questioned further, Marie realised that this transformation was a 
translation, although she appeared to lack confidence in her assertion and 
as such sought acceptance of her ideas (line 16). The effect o f this 
translation was then described to Marie in an attempt to clarify her 
thoughts about this question and she was asked again about the relative 
position of the graph of cos x (line 19). However, Marie still could not 
visualise the effects of the transformation in reverse. For the second time 
she traced the graph incorrectly, giving rise to the graph of cos (x-180°) 
this time instead of cos x (line 20):

Figure 8.11 Figure 8.12
Marie’s second graph y = cosx

In this case she appeared to be applying the transformation f(x-90°) to cos 
(x-90°), confusing the reverse transformation process with the action of 
the transformation. This prompted the teacher-researcher to focus her
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attention on the graph of cos x so that she could see that this graph was 
different to the one that she had just drawn.

21 SE That’s moving it 90 there, but what’s cosine of 
zero, can you remember?

22 Marie Just normal cosine x.
23 SE Cosine x.
24 Marie Well I thought it was like that but it goes 

through 1.
Marie was 
comparing the
graph o f cos x to 
that o f cos (x -90°)

25 SE One, that’s right. So if  you have a look it would 
look like that.

SE used the 
graphical calculator

26 Marie Yes.
27 SE Ok. So one’s crossing the other and they are 

separated by 90 degrees to the right.

When Marie was prompted to consider the value o f cos 0, she 
demonstrated that she could visualise the graph of cos x, although she was 
now a little unsure as this contradicted her previous graphs (line 24). Thus 
in order to repair any misunderstanding surrounding the shape of the 
graph of cos x in relation to that of cos (x -  90°), this seemed an 
appropriate point to utilise the graphical calculator. Both graphs were 
drawn simultaneously to clearly demonstrate the relationship between 
them (line 25).

Marie did not initially seem to have a clear sense of the effect that the 
transformation f(x-90°) would have on the graph of f(x) = cos x, even 
though she and Claire had used the graphical calculator to answer this 
question. Their trial and error approach had provided them with the 
correct answer, although this had not enabled Marie to develop a proper 
appreciation of the relationship between the graphs of translated functions. 
She clearly needed to think more carefully about the graphs that they had 
produced using technology. Marie was confused by the relationship 
between the graphs of cos x and cos (x -90°). However, by the end of the 
discussion, she had begun to develop some appreciation of the visual 
effects of this translation, which was strengthened by the use of the
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technology because this was used to reinforce the teacher’s arguments and 
role as a more knowledgeable person.

Another important role for the teacher lies in monitoring the language that 
students use when discussing the results of their explorations with the 
graphical calculator, especially when concepts are new to the students. As 
suggested by Davis (1993), students' interpretations of visual information 
tend to be expressed in natural language and action, and consequently, 
since use of the graphical calculator promotes visual approaches, teachers 
may need to formalise the language used. For example, in episode one, as 
Julian showed Kirk his screen, seeking acceptance of the graphs that he 
had produced, he used natural language to describe the shape of the new 
graph. The point of inflection was referred to as “the like bump bit”. This 
was not the first time that Julian had used such terminology to describe 
mathematical concepts, shapes or ideas. When discussing the shape of the 
graph of the tangent function in comparison to the graphs of the sine and 
cosine functions with Jake, he referred to the form of the tangent curve as 
“daft”. Presumably, he was referring to the discontinuities in the function 
and he may either have spontaneously used such phrases because they 
summarised his interpretations of the nature of the functions, or he may 
have deliberately chosen to speak in this informal manner to his peers 
through personal preference. Alternatively, he could have lacked the 
appropriate mathematical terms to describe what he was visualising. Jake, 
however, seemed to appreciate the point that Julian was making and 
accepted his choice of words:

Julian: Tan doesn ’t make a curve like that does it? I t ’s one o f  those daft ones.

Jake: Yes, it’s one o f those daft functions.

Kirk also accepted the natural language being used by Julian when he 
attempted to describe the relationship between the sine and cosine 
functions:
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Julian: Sine is the same as cosine, just the humps are in a different

place. Humps -  that’s mathematical for you, isn 't it?

K irk: It just humps differently.

Julian: That is the humps are just different, everything else is the same.

Julian was clearly a very able student who achieved the highest overall 
score in the class exercises. However, as illustrated in the examples above, 
he often tended to use very informal language when discussing his 
mathematics whilst using the graphical calculator. This was also true of 
other students and it appeared that communicating in this way was more 
natural and comfortable for these students and was indeed a successful 
way of sharing meaning and putting their points across. However, it also 
indicated that the use of the graphical calculator did not imply the use of 
more formal mathematical language. This pointed towards a role for the 
teacher in making sure that students are aware of and can understand and 
use appropriate mathematical language, especially when using the 
graphical calculator.

8.1.4 Graphical Calculators and Peer Tutoring
Analysis of the transcript data provided a window into the role of the 
graphical calculator in relation to peer tutoring. In the second phase of this 
study, findings suggested that the role of peer tutor could possibly be 
strengthened and extended through the use of technology. Consequently, 
further evidence was sought from this phase in order to provide additional 
support to these claims. The following two episodes have thus been 
interpreted with respect to the students’ positioning within the discourse, 
in an attempt to draw out the role of the graphical calculator in providing a 
support structure for peer tutoring.
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Episode 5 -  Peer Tutoring with Graphical Calculators in a Whole Class
Setting
As in the previous phase, the students were given the task of identifying 
he^graphs of six functions and were invited to discuss possible solutions 

as part of a wholeldass-activity (see figure 8.13).

Match up the six graphs with their corresponding funcH dnsr^osen_from  the list 
below:

A. (ZoomTrig) B. (ZoomTrig) C. (ZoomStd)

Y A  A Y A  A
V  V  V . V  V  v

D. (ZoomStd) E. (ZoomStd) F. (ZoomTrig)

>
/

1. y = sin (x/3)

5. y = (x - 4)2

9. y = (x + 4)2

13. y = eX 1 + 4

17. y = -ln x 2

2. y = cos (x - 90°)

6. y = tan (x/3)

10. y = cos (x + 90°)

14. y = ln x 2
x+l .

18. y = -e + 4

3 .y  = 3sinx 4. y = cos (x + 180°)

7. y = (4 - x)2 8. y = tan (x/6)

l l . y  = sin3x 12. y = ln (l/x )

15. y = e (x+1) + 4 16. y = 21nx

19. y = (tan x)/3 20. y = (tan x)/6

Figure 8.13 Whole Class Activity: Identifying the Graphs of Functions

In this example, the students were trying to identify the symbolic form of 

the first graph:
i SE Any ideas for picture A?
2 Several

students
Sin x.

3 Perry Number 10 (y = cos (x + 90°)). Visualiser
4 SE You think that it might be sin x and why did 

you say number 10?
5 Perry Because we haven’t got sin x, but cos (x + 90°) 

is the same as sine.
Perry was 
thinking along 
the right lines.



6 SE Cos (x + 90u) is the same as sin x?
7 Roy Yes, but the period is wrong. Visualiser

Whilst initial thoughts in the classroom focused on y=sin x as the 
symbolic form of the given graph (line 2), Perry was quick to realise that 
since y = sin x was not listed, the graph had to be of a translated cosine 
function which was equivalent to sin x (line 5). He did, however, 
incorrectly identify this function as y = (x + Q0°)— a function-that 

involves a translation of 90° to the left rather than to the right. When Perry 
was questioned on this point, Roy entered the community of practice with 
his suggestion that the “period” was wrong (line 7). By using the term 
‘period’ in this context he appeared to be trying to convey the idea that 
this graph was not obtained through a transformation of 90°. Clearly, 
whilst these two students were thinking along the right lines about the 
symbolic form of this function, they were having difficulty in visualising 
the effects of particular transformations. However, despite the fact that 
Roy’s contribution also appeared to be flawed, this did create the 
opportunity for further discussion. Subsequently, at this point the teacher- 
researcher tried to encourage the class, and these two students in 
particular, to use the graphical calculators to clarify their understanding 
(line 8). However, Perry continued to discuss the problem without the aid 
of the technology:

8 SE The period is wrong? So there’s some 
disagreement there. So I think maybe you do 
need to draw them out and look at the ...

9 Perry Cos (x + 180°) which is 4. Perry was 
influenced by 
Roy’s suggestion.

10 SE Cos (x + 180°) and why do you say that?
11 Perry Because if  you move cos (x + 180°) 

backwards it’s the same as sin x because the 
intervals are the same.

12 SE 1 8 0 -1  think you might have to check...
13 Marvin Utters disagreement with Perry. Visualiser
14 Perry Every little peak, right. Its full peak is at 180° 

but the full cycle is at 360°.
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Perry immediately accepted Roy’s point that this was not a translation of 
90° and consequently now proposed cos (x + 180°) as the symbolic form 
of the given graph (line 9). He then began to justify his proposal, again 
using the right ideas with the wrong transformation (line 11). He was 
clearly aware that the actual period of the sine and cosine functions was 
360°, although he was unable to picture the graph correctly in his mind -  
“Its full peak is at 180°”(line 14). At this stage other students had begun to 
use the graphical calculators to investigate the arguments being 
postulated:

15 Jake Miss it’s number 2 (y = cos (x -  90 )). You’re 
wrong Perry!

Jake a visualiser 
was confident. 
The TI-82 had 
confirmed this.

16 Marvin No he’s right Jake. Marvin changed 
his mind.

17 Perry So it will peak and go back to the x-axis every 
180°, because if you move that back 180°, it 
will peak in the gap before. It will.

18 Jake Because if  you, oh ... Still thinking.
19 Mick It’s not 180 though. Mick, a non- 

visualiser, had 
been using his 
TI-82 to graph 
the functions.

20 Perry It is. Still confident.
21 SE I think we’ve got some people saying 180 and 

some people saying 90 degrees, so what I 
suggest you do, seeing that there is no 
consensus here is ...

22 Mick That’s the graph at 180° it’s not the same as that 
one.

Mick showed 
Perry the graph 
on his graphical 
calculator.

Jake had been using the TI-82 to graph functions whilst listening to the 
discussion taking place. This had enabled him to prove to himself that 
Perry’s suggestion was incorrect and to determine the correct symbolic 
form of the function, which he was then able to share confidently with the 
rest of the class (line 15). There was, however, still some uncertainty as to 
who had proposed the correct argument. Marvin, for example, disagreed
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with Perry at first (line 13) and then changed his mind (line 16). Perry 
then tried to explain the reasoning behind his suggestion for the second 
time, acknowledging that some students had different ideas (line 17). 
Whilst the discussion was continuing Mick, a non-visualiser, had also 
been graphing functions using the graphical calculator and was able to 
assert that the required translation was not of the form f(x + 180°) or f(x -  
180°) (line 19). Perry, however, was not initially deterred by Mick’s 
unsubstantiated statement (line 20). Thus, in an attempt to convince Perry 
that his argument was correct, he showed Perry the graphs that he had 
drawn.

Clearly, at the end of this class discussion there was still some 
disagreement as to the correct symbolic form of the function and during 
the last few utterances, quite a few students were beginning to hold their 
own small group discussions, whilst the whole class discussion was 
continuing. Thus, in order to enable the students to use the technology 
effectively to negotiate the solution, they were subsequently given time to 
consider the problem in small groups. During this time the whole class 
was busy discussing results with one another in these small groups. In 
particular, active participants in the discussion, Perry and Mick, and Jake 
and Paul were showing one another their graphical calculator screens as 
part of the process of sharing and exchanging ideas. In addition Marvin 
left his seat to consult with Mick and Perry and their discussion centred on 
Mick’s graphical calculator screen. The debate was clearly continuing and 
intensifying, the outcome being that all of the students were able to 
correctly identify this function and justify their solution in their written 
work.

As the initial portion of the discussion showed, some of the students who 
regarded themselves as visualisers were having difficulty picturing the 
effects of transformations without the aid of the graphical calculator. Yet, 
the students who used the technology, both visualisers and non- 
visualisers, were able to disprove the arguments being presented and back
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up their own ideas. The use of the technology initiated a lively discussion 
and provided support to those students who needed help with their 
visualisations. Thus, the use of the graphical calculator in this episode 
enabled some of the students, especially Perry and Roy, to modify their 
own visual thinking, which allowed them to gain a clearer appreciation of 
the effects of transformations. Moreover, this occurred as a result of the 
students using the technology to tutor one another. Mick played an 
important part in convincing Perry of the validity of Jake’s solution and 
this was achieved through the use of technology. The technology 
scaffolded the learning task and students’ acquisition of concepts in the 
Vygotskian sense through facilitating the individual student’s role as a 
peer tutor.

The students who took on the role of peer tutors in this example were 
given additional confidence to contribute to the discussion through their 
use of the technology. This was especially so in Mick’s case, who had up 
until this point only contributed once before to the whole class 
discussions. By graphing functions on the graphical calculators Jake and 
Mick were able to verify, modify or reject their original assumptions and 
those of the other members of the class quickly and effectively. This gave 
them the impetus to share their findings with the class in an attempt to 
repair the ideas that were misconstrued, driving the discussion forward 
towards a satisfactory outcome. These students were actively using the 
technology to convince themselves, and others, of the validity of each- 
other’s arguments so that eventually a consensus was reached through 
shared reasoning.

This example demonstrated how the students who acted as peer tutors 
were able to use the technology effectively to support and reshape other 
students’ visual images of trigonometric functions and the actions of 
transformations on these functions. In this way, individual students were 
actively questioning each other and using the technology to confirm or 
disprove visual thinking. The use of the graphical calculator in this case
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stimulated further discussion amongst these students and eventually as a 
result of the efforts of the peer tutors, a common understanding was 
reached.

Episode 6 -  Peer Tutoring with Graphical Calculators in Small Groups 
In this episode, two visualisers and one non-visualiser: Jake, Julian and 
Kirk were attempting one of the questions from the main exercises 
together. In this question they were asked to compare the graphs o f cos x, 
2cos 2x, 3 cos 3x, sketch them and explain why these three graphs do not 
cross the x-axis in exactly the same places.

1 Julian Can I have a look at what you’ve 
done? Oh I see.

Julian viewed Jake’s screen 
and vice versa.

2 Jake It’s got to be multiplied by different 
factors -  the x is different.

3 Julian Yes.
4 Jake That’s going to be the answer. Do 

we have to ...
5 Julian It’s nothing to do with the one 

before the cos. It’s the one before 
the x.

6 Jake Yes. It makes it sort of totally 
different, doesn’t it?

Jake was referring to the 
previous two questions.

7 Kirk Right when it’s 2x it halves the 
wavelength, when it’s 3x it cuts the 
wavelength into three. So you get...

Kirk referred to his graphs.

8 Jake Yes. Emphatically.
9 Julian Yes. Emphatically.
10 Jake So like they’re sort o f totally 

different, you know, totally different 
values.

Jake was referring to the fact 
that the graphs all cross the x- 
axis in different places.

11 Julian It’s not the coefficient of the cosine 
it’s the coefficient of the x that 
moves that, yes?

Julian referred to the graphs 
on his screen.

12 Jake Yes.

As was characteristic of this groups’ collaborative problem solving 
strategies, the initial exchange between Jake and Julian involved the 
students viewing one another’s graphical calculator screens. This 
established a common starting point from which the students could begin 
negotiating as to the nature of the relationship between the graphs. Jake
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initiated this process by suggesting that it was the different x values that 
affected the position of the intersection points of the graphs with the x- 
axis (line 2). Jake’s assertion was accepted immediately by Julian, and to 
show that he had understood Jake’s argument he re-emphasised the point 
being made by Jake and further elaborated on Jake’s utterances (line 5). 
However, at this point Julian and Jake were both using natural, rather than 
mathematical, language to explain what was happening to the graphs.

Kirk the non-visualiser was the first to introduce more formal 
mathematical language into the discussion in his attempt to quantify the 
relationship between the changing x values and the corresponding shapes 
of the graphs (line 7). In doing so he was building on the arguments 
proposed by Julian and Jake, and at the same time placing them in a more 
mathematical context. Moreover, as Kirk referred to his graphs when 
outlining his argument Jake and Julian both accepted his proposal with 
confidence. Kirk’s use of language also prompted Julian to re-iterate the 
point that he made earlier, only this time using the mathematical term 
coefficient instead of “the one before the x” (line 11). Also by saying that 
“it’s the coefficient of x that m o v e s  that”, Julian appeared to be thinking 
about the relationship between the graphs in terms of one graph being a 
transformation of another. Julian sought reassurance that he was making 
the correct assertion and acceptance was provided by Jake (line 12).

Jake attempted to establish a context for this discussion by comparing the 
results of this exploration with that of the previous two questions. In these 
questions the students were asked to compare and comment on the main 
features of the graphs of cos x, 2cos x and 3 cos x; and tan x, 2tan x, and 
3tan x respectively. Jake emphasised that the effect of changing the values 
of x in this question was totally different to the effect of the changing 
coefficient of the cosine and tangent functions in the previous two 
questions (lines 6, 10). The discussion continued with each of the students 
trying to ensure that a common understanding had been reached:
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13 Jake They all peak on the y-axis as well.
14 Julian Yes, whereas sine doesn’t, it crosses the 

origin. The coefficient of cos doesn’t 
affect where the graph crosses. But x 
does, that’s what you would expect.

15 Kirk Mm, if  we’ve done the previous 
question right!

16 Jake As the value of x increases the 
wavelength increases.

17 Kirk Gets shorter, yes?
18 Jake Yes. -Jake^eeognised-his-error.
19 Jake I’ve just put as the value of x increases 

the wavelength decreases.
20 Kirk Yes.
21 Jake Gets smaller and then it’s the same as 

before, as the cosine increases it gets 
higher.

22 Kirk I’ve put that the coefficient of x moves 
the intersection along.

Referring to his written 
work.

Julian repeated his claim that the coefficient of the cosine does not affect 
where the graph crosses the x-axis, thereby re-enforcing his argument 
(line 14). By adding “but the x does, that’s what you would expect” it 
would appear that he had been formulating ideas about what would 
happen to the shapes of the graphs as the coefficients are changed and that 
these were confirmed by his graphical exploration. In other words he was 
linking the changes in the symbolic forms of the function to the 
corresponding graphical representations. Kirk, however, seemed less 
certain of this relationship and proposed that the validity of their reasoning 
would depend on whether they had solved the previous question correctly 
(line 15).

To ensure that he had a shared understanding of the proposed connection 
between the coefficient of x and the wavelength of the function, Jake 
attempted to summarise this relationship (line 16). Kirk immediately 
queried Jake’s incorrect assertion (line 17) and in doing so allowed Jake to 
recognise his mistake (line 18), and thus repaired any misunderstanding 
on Jake’s part. Jake illustrated that he understood what was happening to 
the graphs as both of the coefficients were increased, as he emphasised
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that the wavelength decreases, whilst the graph is being stretched (line 
21). Kirk’s closing statement suggested that he, like Julian, saw that 
changing the symbolic form of a function by means of the transformation 
y = f(ax) represents a dynamic process when considered in graphical 
terms: “the coefficient of x m o v e s  the intersection a l o n g ” (line 22).

The collaboration between the students in this example was very effective. 
Kirk classified himself as a non-visualiser and yet his use of the graphical 
calculator enabled him to talk confidently about the effect that the 
transformations would have on the wavelength of the function. He was 
able to steer Julian and Jake towards a more mathematical discussion of 

their findings and to repair Jake’s misunderstanding of these effects.

8.1.5 Creating an Effective Classroom Environment for Learning 
about Functions with Graphical Calculators
The second phase of the research pointed to the importance of establishing 
a local community of practice within the classroom in order for students to 
be able to carry out and discuss the results of their investigations using the 
graphical calculator effectively. On building on these findings, this phase 
was concerned with further developing an overall approach to teaching 
functions with graphical calculators, which took account of how the 
technology could be used to introduce the idea of functions to students 
most productively. Transcript data was analysed for this purpose.

Episode 7 -  Introducing the Concept of Transformations with Graphical 
Calculators
The students were introduced to the idea of transformations using the 
technology. As part of a whole class activity the students were invited to 
comment on the effects of different types of transformations. Each student 
graphed the functions being transformed individually using their graphical 
calculators whilst the overhead projector was used as a focal point for 
discussion and to bring ideas together. They were then given the 
opportunity to explore the effects of transformations further in small
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groups, before the class was brought together again to summarise the 
results of their investigations.

In the following episode the class had been asked to share their findings 
about the transformation y = af(x).

1 SE Could somebody share their results with me?
2 Fay They go upside down when i f  s negative.
3 SE They go upside down when it’s negative. 

Yes that’s one thing.
There were lots of 
students offering 
suggestions at once.

4 SE OK can everybody just listen please, what 
did you say then?

Directed at Perry.

5 Perry When you use the negative prefix it’s 
reflected in the y = 0 line.

More formal
mathematical
explanation.

6 SE It’s reflected in the y = 0 line, yes, that’s 
right. What were you going to say?

Directed at Marie.

7 Marie A reflection.
8 SE You were going to say it was a reflection as 

well. What about the actual slope of the 
curve? What happens to it when you use 
another value of a?

9 Marie The larger a is the steeper.
10 SE The larger a is the steeper. Showing acceptance.
11 Marvin As the modulus increases the steeper. The term ‘modulus’ 

had been introduced 
earlier in the same 
lesson.

12 SE As the modulus increases the steeper it is. 
That’s a good point, yes. One way of 
describing this is as a one way stretch 
parallel to the y-axis and it’s factor a.

Introduces formal 
definition.

This example illustrates that the students were able to develop a shared 
understanding of the actions of this particular type of transformation 
through their paired/group experimentation with the technology. This was 
then reinforced and formalised in the whole class discussion. Each student 
who contributed to this discussion built on the previous students’ 
observations. Perry, for example, attempted to provide a more 
mathematical description of the graphical effects of this transformation 
(line 5) than that which was made by Fay (line 2).
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Similarly, when Marie suggested that as the value of a  increased the curve 
became steeper (line 9), Marvin combined Perry and Marie's observations 
to deduce that as the modulus of a  increased the curve would become 
steeper (line 11). Marvin used the term ‘modulus’ very effectively to 
describe the transformation effects and had clearly appropriated the 
mathematical meaning of this word, which had been discussed with the 
students at the beginning of the lesson. Following his graphical 
exploration of this transformation with Pierce, he was now able to share 
his understanding of this term with the rest of the class, with confidence. 
Indeed, so great was the impact of the graphical calculator on the affective 
domain, i.e. the motivational, confidence and interaction boosting effect, 
that, as was frequently observed during this phase, several students were 
all eager to contribute at once.

The teacher-researcher had an important function in focusing the attention 
of the class on particular students’ responses and in encouraging the 
students to think about the effects of this transformation in more and more 
appropriate ways. There was also a further role for the teacher at the end 
of the discussion in introducing the students to the accepted mathematical 
way of describing such a transformation (line 12).

The ability of the students to explore these ideas freely with the 
technology in small groups, following the initial whole class introduction 
to the concept, allowed them to begin to develop a shared sense of the 
actions of transformations from a common starting point. This shared 
understanding was then furthered through the concluding whole class 
discussion, which brought the results of the independent groups of 
students’ investigations together. In this discussion, ideas that were shared 
between different groups of students formed the basis for creating a new 
piece of mathematical knowledge that was accepted by all the participants 
of the classroom. The nature of this knowledge was determined by the 
students and formalised by the teacher. It is proposed that this approach
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lay at the heart o f successfully introducing functions to these students with 
graphical calculators.

8.2 Conclusions
This chapter has further considered the third phase of the research and the 
ways in which the social aspects of learning with graphical calculators 
affected students’ understanding of functions. This section summarises the 
findings of this phase in relation to these factors.

8.2.1 Students’ Perceptions of Graphical Calculators and Group 
Dynamics
This study found that the introduction of the graphical calculator resulted 
in more intensive discussion between the students than would normally 
occur, especially in small groups and pairs. Moreover, the interaction 
between group members and the teacher-researcher was found to be 
essential in enabling certain students to use the technology effectively. 
The graphical calculator was seen to be a means by which individuals 
could quickly and easily demonstrate their arguments concretely to other 
group members and through this develop a shared understanding of the 
problem being considered. In this way, through using the graphical 
calculator, students were able to help each other overcome their individual 
difficulties and the difficulties experienced by the group as a whole.

8.2.2 Graphical Calculators and Collaboration between Visualisers 
and Non-Visualisers
This research has provided unique insight into the process of collaboration 
in the classroom by considering the interactions between students who 
classified themselves as visualisers and non-visualisers. The findings from 
this phase of the study suggested that the non-visualisers amongst the 
students were reluctant to contribute towards whole class discussions of 
the graphical results obtained by using the technology. Whole class 
discussions were consistently comprised of arguments posed by 
visualisers. However, this pattern of interaction was significantly different
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when the students worked in small groups, which paired visualisers with 
non-visualisers. In these groups, the quality and quantity of contributions 
from non-visualisers matched that of the visualisers, and it is proposed 
that this interaction contributed towards the comparative success of the 
non-visualisers in the exercises overall. This also suggested that by 
enabling the non-visualisers to work in small groups with visualisers the 
teacher of this class could promote effective collaboration and that this 
might give the non-visualisers more confidence to contribute towards 
whole class discussions.

8.2.3 The Role of the Teacher in Scaffolding Students’ 
Understanding of Functions in a Graphical Calculator Environment
Analysis of the transcript data in this study highlighted the need for the 
teacher to be aware of the conceptual problems that students might 
experience when using technology, especially when introducing new 
functions to students by means of graphical exploration. Discussion with 
the teacher was seen to scaffold students’ conceptual understanding of the 
results that they had obtained using the technology. Moreover, the role of 
the teacher in actively questioning the students’ understanding o f these 
results was found to be especially important when the student concerned 
was a non-visualiser. This was because the non-visualisers were less likely 
to contribute towards whole class discussions. It was evident that the 
teacher needed to monitor the type of language used by students when 
discussing the results obtained through use of the technology, as there was 
a need to initiate the students into a more appropriate mathematical 
discourse. In this study the use of the graphical calculator did not prompt 
students into talking about their mathematics in a more formalised way - 
this was a role for the teacher. This differs from previous research into 
computer environments, which found that the use of formal language was 
encouraged through students’ interaction with the technology (Hoyles and 
Noss, 1992).
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8.2.4 Graphical Calculators and Peer Tutoring
This phase of the research has shown that the graphical calculator can play 
an important part in scaffolding students5 roles as peer tutors, in making 
these students5 ideas more accessible to other students. In particular, non- 
visualisers may be able to tutor visualisers in visual concepts, through the 
shared use of technology. Moreover, students5 reluctance to participate in 
whole class discussions may be overcome through the use of technology, 
giving them the confidence to challenge and tutor others by adding weight 
to their arguments.

8.2.5 Creating an Effective Classroom Environment for Learning 
about Functions with Graphical Calculators
The findings of this phase of the study build on the work of Winboume 
and Watson (1998) by showing that the creation of a local community of 
practice played an important part in enculturating students into the 
meaning of new mathematical concepts with graphical calculators. Shared 
meaning for new function concepts was created through a combination of 
whole class discussions and small group activity. Following a whole class 
introduction to, and discussion of, each new topic the students were 
encouraged to explore these new concepts in small groups. Individual 
students were then invited to share their findings with the rest of the class. 
In this discussion, ideas that were held by different groups of students 
formed the basis for creating new pieces of mathematical knowledge. It is 
proposed that this type of environment formed a crucial part of the process 
of successfully introducing functions to these students through the use of 
graphical calculators.
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CHAPTER 9 
CONCLUSIONS, DISCUSSION AND 

IMPLICATIONS

9.0 Overview
This study has been undertaken to investigate the potential of graphical 
calculators for mediating students’ learning of functions. There were three 
key objectives to the research. The first of these was to investigate how 
students acquire meaning within a graphical calculator environment. The 
second objective involved investigating the ways in which the imagery 
provided by the graphical calculator mediates students’ understanding of 
functions. The third objective was to explore the role of the teacher in 
graphical calculator environments.

The study has consisted of three phases of research. The first phase 
encompassed the exploratory study and the second two phases comprised 
the main study. This chapter integrates the main findings from each of 
these phases and relates these to relevant theoretical positions. The first 
two sections of this chapter summarise the findings in terms of the various 
cognitive, affective and social factors in students’ understanding of 
functions and how these are interrelated. The final section comprises a 
discussion of these findings and considers implications for future research.

9.1 Cognitive Factors in Students5 Knowledge of Functions 
with Graphical Calculators
Throughout the course of the study, there were found to be a number of 
ways in which the students’ use of the graphical calculators had a major 
impact on the development of their thinking about functions. Here the 
results of the study are presented in relation to the main themes that have 
influenced the students’ cognitive development:

• amplification and cognitive reorganisation effects of the technology,
• graphical calculators, dependency and misinterpretation of results,
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• graphical calculators and visualisation.

9.1.1 Amplification and Cognitive Reorganisation Effects in 
Students’ Understanding of Functions
All of the students in this study appeared to be very aware of the short
term amplification effects of the graphical calculator, which refer to the 
speed and facility by which the learner is enabled to operate whilst using 
the technology. Through these effects, the students were able to access 
graphical images of functions quickly and easily, which enabled them to 
successfully attempt more difficult problems. By creating the opportunity 
for students to concentrate on interpretation rather than procedural tasks 
and through providing verification of their ideas, the amplification effects 
of the technology were seen to contribute towards the cognitive 
reorganisation effects and thus to the development of students’ thinking. 
This study therefore provides evidence to support Berger’s (1998) 
speculation that the amplification effects have a precursory role in 
inducing cognitive reorganisation.

In this study the opportunity for students to use the graphical calculator as 
a means of verifying or, in particular, disproving their ideas nearly always 
resulted in some form of cognitive reorganisation. This was seen to occur 
when students’ initial ideas surrounding particular mathematical concepts 
changed significantly as a result of using the technology. For example, 
when Robert used the graphical calculator to explore the relationships 
between translations of sine and cosine functions, and a logarithmic 
identity in Phase 2, he was able in both cases to challenge his initial 
conceptions and thus move towards a deeper understanding of these 
concepts. His use of the graphical calculator enabled him to link the visual 
with the symbolic and spontaneous concepts with scientific concepts, so 
that he could progress from the specific to the general. Episodes 1 and 2 in 
chapter 6 chart this development in Robert’s thinking. The fact that 
cognitive reorganisation had occurred more generally amongst the 
students was also reflected in their comments concerning how the use of
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the graphical calculator had furthered their understanding of functions, 
enabling them to use mathematical conceptions more meaningfully. The 
cognitive reorganisation effects of the technology therefore represented a 
more meaningful, holistic and general understanding of functions.

Previous research (e.g. Tall, 1991b) has mainly considered cognitive 
reorganisation as a product of the individual interacting with the 
technology. However, in this study input from the teacher and peers was 
also seen to be a crucial contributing factor to the cognitive reorganisation 
process. The role of the teacher in scaffolding the cognitive reorganisation 
process was particularly apparent in Phase 3. Marie, for example, clearly 
needed additional support other than that provided by the graphical 
calculator and her classroom partner, Claire, in trying to understand why 
cos (x -  90°) was the correct symbolic form of the pictured function 
(episode 4, chapter 8). In this instance my intervention proved to be a 

significant factor in altering Marie’s perceptions through the use of the 
technology. Likewise, Phase 3 also provided examples of the role that 
peers can play in supporting the use of the graphical calculator as a 
cognitive reorganiser. For example, when discussing the same problem, 
Mick used the graphical calculator very effectively to transform Perry’s 
thinking successfully (episode 5, chapter 8).

9.1.2 Graphical Calculators, Dependency and Misinterpretation of 
Results
Each phase of the study provided evidence of students regarding the 
solutions provided by the graphical calculators as irrefutable and thus 
exhibiting signs of being overly dependent on the technology. The 
students’ over reliance on the technology led to misunderstanding, 
misinterpretation and misuse of some of the information provided by the 
graphical calculator. In this way, students from both Phase 1 and 2 
completely missed and/or misinterpreted stationary points on the graphs of 
particular functions. Students, such as Julie (Phase 2) accepted the 
approximations to real numbers that were produced by the graphical
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calculator as a result of the zooming operations carried out, without 
question. Her solutions to the problems that she was set for homework 
contained answers that were clearly not thought out carefully, such as 
stationary points with co-ordinates (-2, -6.44x1012). Facility with the 
graphical calculator, as in Julie’s case, led students away from in-depth 
mathematical thinking and questioning of results. The limitations of the 
technology in terms of display resolution were also seen to give rise to 
misinterpretations.

Other researchers such as Guin and Trouche (1999), Smart (1995b) and 
Leinhardt et al (1990) have highlighted that dependency on technology is 
a potential danger in the classroom. This study sought to extend these 
findings by considering factors that contribute towards dependency. As a 
result, this study found that dependency was significantly influenced by 
three key factors: (i) students’ experience of using the technology, (ii) 
their prior knowledge (or lack of it), and (iii) individualistic working. 
Regular users of graphical calculators were found to be less likely than the 
inexperienced graphical calculator users to be overly dependent on the 
technology. Dependency was also perpetuated because students did not or 
could not use symbolic approaches to inform the answers produced by the 
technology. This in turn indicated that the visual imagery produced by the 
graphical calculator alone might not be sufficient to strengthen students’ 
understanding of functions. This study found that dependency occurred 
much less when students were working collaboratively.

9.1.3 Graphical Calculators and Visualisation
As the study developed, it became increasingly apparent that the graphical 
calculator played an important part in furthering students’ understanding 
of functions through encouraging the use of visual approaches and 
strengthening the students’ powers of visualisation. In particular, the 
graphical calculator provided a powerful support mechanism for those 
who had difficulty in visualising concepts. For example in Phase 3, Perry 
and Roy, who both classified themselves as ‘visualisers’ had obvious

258



difficulties in visualising the effects of particular transformations for 
themselves, without the aid of the technology (episode 5, chapter 8). 
However, through the use of the graphical calculator they were each able 
to see the relationships between the graphs unfolding dynamically and 
thus to reorganise and adapt their own visual thinking. This allowed them 
to gain a more meaningful comprehension of the visual effects of 
transformations and made the connections between the symbolic and 
visual representations of the functions more explicit. The scaffolding role 
afforded by the graphical calculator in this respect was seen as a means of 
improving levels of student competence, especially in areas that they 
found difficult to visualise.

More significantly, however, the graphical calculator was found to 
mediate the development of students’ visual capacities via more intensive 
student-student and student-teacher interaction. Whenever there appeared 
to be disagreement amongst the students as to the form that the graph of a 
particular function would take, this would spark a lively debate of possible 
solutions and the exchanging of ideas which was heightened through the 
use of the technology. This was particularly evident in Phase 3 (episode 5, 
chapter 8). The graphical calculator allowed students to communicate 
their ideas to one another using visual as opposed to more accepted and 
generally used symbolic reasoning. Prior to the use of the graphical 
calculators, students found that sharing ideas with others was easier using 
symbolic rather than visual arguments. By using the technology, however, 
the students were able to construct their ideas around the visual imagery 
being displayed and to discuss these more easily with others using the 
technology to back up their arguments. This led to very productive 
instances where students’ discussions centred around the images visible 
on screen and enabled them to develop a visual understanding o f the 
problems together first before applying symbolic methods of solution. 
This study thus highlights the importance of classroom interaction in the 
development of students’ visualisation skills with graphical calculators.
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9.2 Affective and Social Factors which Contribute Towards 
Students’ Learning of Functions with Graphical Calculators
This study has highlighted various affective and social issues arising from 
the use of the graphical calculators that have had a strong impact on 
students’ learning of functions. This section outlines these findings in 
terms of:

• graphical calculators, attitudes and confidence
• graphical calculators and effective collaboration
• the role of the teacher in scaffolding students’ understanding of 

functions in a graphical calculator environment

9.2.1 Graphical Calculators, Attitudes and Confidence
The use of graphical calculator was found to be a means by which 
students’ views surrounding the validity of visual methods in mathematics 
and beliefs about the nature of mathematics could be challenged. This was 
especially apparent during Phase 2 of the research, in which symbolic 
methods had been privileged over visual approaches in the existing 
classroom culture. For example, Robert strongly believed at the beginning 
of the trial that the symbolic mode of representation was of paramount 
importance in students’ understanding of functions and was only 
prompted to use visual approaches as a last resort, ignoring any advice to 
the contrary given to him by his teachers. However, at the end o f the trial 
whilst his overall view remained the same, he recognised the benefits 
afforded by using visual approaches and claimed that he would use them 
much more in future. It was also clear that the graphical calculator has the 
potential for increasing levels of motivation amongst the students by 
encouraging them to take more of an interest in actively creating their 
mathematics.

Throughout the course of the study, the graphical calculator was seen to 
be instrumental in improving levels of student confidence surrounding 
functions. This was especially so where the students concerned were
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initially reluctant to use visual approaches, believing the visual mode of 
representation to be inaccurate and/or lacking confidence in their own 
visual abilities. In contrast to expectations, the majority of the students 
who classified themselves as visualisers at the beginning of Phase 2 and 3 
lacked confidence in visual representations. This was especially surprising 
in Phase 2 when graphical calculators were already part of the classroom 
culture and reflected the higher status that was given to symbolic 
reasoning in this classroom. However, during all three phases, use of the 
graphical calculator led towards improved student confidence in many 
different ways. In particular students became more confident in their 
ability to visualise functions, in their symbolic solutions, in their own 
graphing skills, in sharing and discussing ideas with peers and the teacher 
and in presenting ideas to the whole class. The ability of students to 
verify, modify or reject their ideas and strategies visually using the 
graphical calculator allowed them to not only become more confident in 
their chosen methods and solutions, but also to develop a sense of 
ownership over their mathematics. More pertinently, even when the 
graphical calculator was not being used all of the time by the students it 
still inspired confidence, which was an important affective consideration. 
This was because the feedback provided by the technology enabled the 
students to immediately develop some sense of whether their answers 
were right or if  they were wrong, in which case they could use the 
technology to help them to see the solution to the problem more clearly.

9.2.2 Graphical Calculators and Effective Collaboration
The findings of this study have highlighted the great potential for use of 
the graphical calculator to promote and scaffold discussion and 
collaboration amongst the students and with the teacher. The framework 
for analysing collaboration developed by Teasley and Roschelle (1993) 
provided a useful starting point for developing a picture of how the 
graphical calculator functioned in terms of the collaborative activity that 
took place amongst the students themselves and with the teacher. Through 
the use of the graphical calculator, the students from each phase were able
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to produce shared visual representations of the problems they were 
exploring, which they then used to create joint problem spaces and to 
reinforce and extend one another’s arguments. This created the 
opportunity for effective collaboration and prevented breakdowns in 
communication. This aspect was well illustrated in episode 2 of chapter 6 
from Phase 2, in which Robert used the technology in an attempt to clarify 
his thinking when his ideas differed from those being offered by Martin 
and Julie. Interaction with peers and the teacher was seen to be essential 
for individual students to be able to use the technology effectively.

The graphical calculator represented another source of authority in the 
classroom, which provided rapid feedback to the students and was 
consequently a catalyst in the on-going process of furthering their 

thinking. For example in Phase 2, during Robert, Martin and Julie’s 
discussion surrounding the graph of y = cos (x - 7e /2), the graphical 
calculator provided a means by which two seemingly contradictory 
symbolic representations for the function could be explored (episode 2, 
chapter 6). Robert had identified the graph as being that of the function y 
= sinx, whilst Martin and Julie had proposed that this was y = cos (x - 
7e/2). This prompted Robert to use the graphical calculator in an attempt to 

rectify the apparent contradiction. He only began to accept the arguments 
being proposed by Martin and Julie when the graphical calculator 
provided compelling evidence that they were correct. This allowed all the 
students to realise that this was an instance where the problem had two 
equally valid solutions and drew attention to relationships between the 
sine and cosine functions that they had not explored previously. Borba 
(1996) also refers to the role of the graphical calculator as a new 
‘authority’ in the classroom, which he sees as a feature that contributes 
towards the intensification of discussion and thus reorganisation of 
activity. In this respect the findings to emerge from this research have 
parallels with those which have arisen from Borba’s study.

Previous research (e.g. Smart, 1992, Doerr and Zangor, 2000) has also
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shown that the graphical calculator could have a beneficial effect on 
collaboration. However, this study has sought to exploit and extend this 
research. It did so by investigating collaboration between ‘visualisers’ and 
‘non-visualisers’. The results show that the pairing of visualisers and non- 
visualisers was extremely beneficial to each type of student in terms of the 
collaboration that took place. This was particularly evident in small 
groups in which these students each tutored one another in the areas that 
they were most comfortable with. The visualisers were able to provide the 
non-visualisers with additional support with respect to their understanding 
of graphical approaches. For example, in the example discussed above, 
Julie and Martin, who are both visualisers, were able to provide Robert, a 
non-visualiser, with visually based explanations as to why the graph they 
were investigating could be represented symbolically by y = cos (x - 7t/2). 
Similarly, the non-visualisers scaffolded the visualisers’ symbolic 
approaches, as was the case in Phase 3 when Mick, a non-visualiser, 
pointed out the mistake in Perry’s algebraic manipulations that he had 
entered into the graphical calculator, thus unknowingly producing the 
wrong graph. This in turn enabled Perry, a visualiser, to rectify his error, 
graph the function correctly and proceed towards the right solution using 
the technology (episode 2, chapter 8).

The third phase of this research also found that whole class discussions 
were consistently led and maintained by visualisers. The non-visualisers 
appeared to be reluctant to contribute towards these discussions which 
was in complete contrast to their behaviour whilst working in small 
groups with visualisers. It was found that by continuing the practice of 
allowing visualisers and non-visualisers to work together in small groups, 
the confidence of the non-visualisers improved. For example, Kirk, a non- 
visualiser from Phase 3, never contributed towards a whole class 
discussion. However, when working closely with the technology with 
Julian and Jake (both visualisers), he was encouraged to make a 
significant proportion of the contributions, which proved to be 
instrumental in the progress that was made by the group as a whole
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(episodes 1 and 6, chapter 8). In the small group setting, non-visualisers 
were even able to tutor visualisers in visual concepts through their shared 
use of the technology. For example, Mick a non-visualiser was able to use 
the technology effectively to convince Perry and Marvin, both visualisers, 
of the validity of his graphical arguments when discussing the relative 
forms of the sine and cosine functions and the relationships between them 
(episode 5, chapter 8). This was especially significant considering Mick’s 
prior reluctance to use graphical approaches (e.g. “I don’t like graphs. I try 
to stay clear of them as much as possible” and “I find it hard to visualise 
shapes and graphs”). The graphical calculator played an important part in 
encouraging students, such as Mick, to take on the role of peer tutors and 
in scaffolding this role.

9.2.3 The Role of the Teacher in Scaffolding Students’ 
Understanding of Functions in a Graphical Calculator Environment

Throughout the study the teacher-researcher assumed a crucial role in 
fostering the development of student understanding through technology by 
providing scaffolding for student learning, which resonates with the 
findings of Bruner (1985). According to Bruner (ibid), through scaffolding 
activities, the teacher facilitates the process of internalisation, which in the 
Vygotskian sense allows the students to operate successfully within their 
zones of proximal development. Indeed, as the study progressed, the 
analysis pointed to the centrality of the teacher’s role in initiating, 
maintaining and encouraging discussion between the students, especially 
in relation to the results produced by the graphical calculators and in 
providing additional verification of these results and the students’ 
assertions. In cases where the students were unable to reach a common 
understanding of their findings by themselves, the teacher’s input was 
crucial in providing clarity and explanation of the results of their 
exploration with the technology. This was especially evident in Phase 3, 
where Marie and Claire’s joint investigation using the graphical calculator 
had not enabled Marie to make sense of the effects of the transformation 
f(x - ti/2) on the function y = cos x (episode 4, chapter 8). This
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emphasised the need for the teacher to mediate how the technology is 
introduced and the way it is then used by students and to monitor 
interactions between students, intervening when appropriate. In this way, 
the teacher can ensure that the technology is used effectively, results are 
interpreted correctly, the correct mathematical language is being used and 
can address any misunderstanding that may develop. Furthermore, as the 
use of the graphical calculator made the students’ understanding or lack of 
it more visible, the type of teacher intervention required became clearer.

9.3 Discussion
9.3.1 Cognitive Factors
The findings of this study have illustrated the potential of the graphical 
calculator for helping individual students to develop their powers of 
visualisation and also to become more autonomous and independent 
learners. The graphical calculator contributed towards the depth of 
students’ understanding of functions through the actions o f the 
amplification and cognitive reorganisation effects of the technology. The 
ability of students to use the graphical calculator as an authoritative means 
of testing conjectures and making predictions provided scaffolding for the 
students’ visual understanding of concepts. Through the removal of 
cumbersome and time-consuming procedural elements, the graphical 
calculator enabled the students to focus on the mathematics rather than the 
technical aspects. The graphical calculator allowed the students to begin to 
build a picture of the relationships between the graphs of related functions 
by quickly and easily providing lots of examples of functions to the 
students, especially those from Phase 3, who were learning about new 
function concepts throughout the trial. It also enabled students to 
overcome difficulties, transfer knowledge between different contexts and 
explore more challenging material. In this way the graphical calculator 
acted as a cognitive reorganiser and totally transformed the learning in the 
classroom.

At the same time, the research has also considered the pitfalls that can be
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associated with autonomous graphical calculator use. In particular it has 
been found that whilst there are considerable benefits to be gained in 
allowing students to experiment freely with technology, often the input of 
the teacher is required to prevent or repair the misinterpretation of results. 
This was found to be necessary at both the individual and group level. For 
example, when discussing the rationale for her solution to question 13 
from the main exercises, Marie from Phase 3 was only able to make sense 
of the actions of the transformation f(x -  90°) on the cosine function, 
through discussion with myself (episode 4, chapter 8). Similarly, when 
Diana, Jan, Guy and Lea used the technology together inappropriately to 
try to find a stationary point of the function y = 2(|x| - l)/3 in Phase 1, a 
more knowledgeable person in the Vygotskian sense was required to 
explain what had gone wrong. The production of an approximate value 
(2.16x1 O'14) for the x  co-ordinate of this non-existent minimum stationary 
point rather than an error message by the technology caused much 
confusion for the students that was only allayed through discussion with 
myself and the classroom teacher. As these and many other examples 
illustrated, the teacher was seen to play a crucial part in enabling the 
students to appropriate meaning from their explorations with the graphical 
calculator.

The individual’s role in constructing meaning was clearly related to the 
social environment and affective factors in addition to their relative 
mathematical knowledge. Interaction amongst peers was seen to be an 
important constituent in the development of individual students’ thinking. 
All three phases of the research provided rich examples of students using 
the graphical calculators collaboratively, in which understanding was 
developed through the ability of students to compare and contrast their 
visual perceptions and justifications with one another, through the use of 
the graphical calculators. Moreover, the cognitive reorganisation effects of 
the technology were sometimes manifested through one student showing 
another how they solved a particular problem in a different way with the 
technology, which challenged their initial conceptions, as well as being
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brought about by the teacher’s input. The use of the graphical calculator 
was also seen to have an impact on the students’ feelings, attitudes and 
beliefs, which led towards the creation of a more positive learning 
environment, where students confidently and enthusiastically explored 
mathematical problems.

9.3.2 Affective and Social Factors

individual and collective, that have direct bearing on students’ meaning 
making with graphical calculators. Affective and social considerations 
constituted a central part of the mathematics teaching and learning that 
took place, which resonates with the findings of McLeod (1992), who 
calls for more research on the relationship between these factors and the 
higher order cognitive processes of learners and teachers. The students’ 
performances in each phase were related to their feelings and to social 
influences as well as to individual ability. For example, part of Marvin’s 
inability to progress further with the second interview question in Phase 3 
(episode 4, chapter 7) lay in his lack of self confidence and belief that only 
students of higher mathematical ability would be able to make the 
connections between different modes of representation.

The combined use of the graphical calculator, the creation of local 
communities of practice, the introduction of a new topic, new ways of 
working (especially visual approaches) and a new classroom teacher was 
seen to have an extremely positive impact on the students’ attitudes, 
beliefs, emotions, motivation and confidence. All the students in this study 
made very positive comments about how the use of the graphical 
calculator, in particular, had been beneficial to them in one or more of 
these areas. Marie (Phase 3) recognised that the graphical calculator had a 
dual role in “making the lessons more interesting as well as helping 
understanding”. In the local communities of practice that were established, 
emphasis on public recognition of competence ensured that students were 
given additional confidence in their strategies and solutions. In addition,

a complex web of interrelated factors, both
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students were encouraged to share their arguments freely with other group 
members, regardless of whether they were technically right or wrong, so 
that all the contributions made were valid and ideas that turned out to be 
incorrect were seen merely as a means of furthering the discussion. 
Consequently, this removed some of the anxiety associated with publicly 
making a mistake and created a very positive and productive atmosphere 
in the classroom, where students persevered with difficult problems and 
became excited about doing mathematics, thus stimulating the learning 
process. May and Sue’s graphical exploration of the function y = (x + 3)3 
together using the graphical calculator in Phase 1 illustrated that the 
technology had an impact on their enthusiasm and perseverance in finding 
a solution, which they had failed to obtain symbolically. Episode 1, 
chapter 7 from the third phase also shows that the graphical calculator had 
a similar affect on Perry.

As proposed by Newman et al (cited in McLeod, 1992), cognitive change 
appeared to be as much a social as an individual process and was clearly a 
product of the social interactions and the social context in addition to 
independent thinking about problems. Furthermore, language played an 
important part in the development of students’ understanding of functions, 
which fits with a Vygotskian perspective, in which thought is seen to be 
constituted through the internalisation of social communication 
(Vygotsky, 1981). Through their interaction with the teacher, peers and 
the technology, individual students were able to develop a more 
meaningful understanding of functions than they held previously. 
Together students were seen to overcome their individual difficulties and 
to create shared knowledge using the technology. For example, in Phase 3 
(episode 5, chapter 8) Mick was able to help Perry to overcome the 
difficulty that he was having in visualising the graphs of translated 
functions and to convince him of the validity of his argument, through 
their shared use of the technology.
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9.3.3 Acknowledging the Complexity of Learning about Functions 
with Graphical Calculators in Pedagogical Practices
The findings of this study have highlighted a number of important 
pedagogical considerations in relation to the use of technology in 

promoting students’ learning of functions. Firstly, the students’ tendency 
to neglect the symbolic form of representation whilst concentrating on the 
-graphical in Phase 1. emphasised the need for teachers to present symbolic 
methods alongside visual approaches, rather than in isolation. In addition 
to this, there were also instances where students would avoid thinking 
visually for themselves when answering questions using the graphical 
calculators. This even occurred when the students were specifically asked 
to think about the possible forms certain function may take before using 
the graphical calculator as a means of confirming or disproving this. For 
example, very few students from Phase 1 actually took the time to think 
about what the graphs of the functions 6x3 -  3, sin x + cos x, e2x, In x, 
l/(x+5), sin (x + n i l )  and -(x-1) + 3 looked like and to sketch their ideas 
before using the graphical calculators as was requested. Consequently, it 
was found to be necessary to place emphasis on encouraging students to 
think visually before introducing the technology. In this way through 
careful structuring of activities and resources by the teacher, the situation 
in which students simply become proficient machine operators, no longer 
thinking for themselves and lacking understanding, can be avoided. This 
was most apparent in Phase 3, where groups of students such as Julian, 
Kirk and Jake were clearly seeking to explain and question the results 
produced by the technology (episodes 1 and 6, chapter 8).

As part of this carefully structured pedagogical approach the findings of 
the study suggest that it is important that the teacher takes account of:

(1) the type of technology being used and associated limitations,
(2) the timing of the introduction of the technology into the classroom,
(3) how the use of technology is combined with the use of other media in 
the classroom such as pencil and paper and oral communication,
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(4) the role that he or she has in mediating the use of the technology.

Furthermore, this study has highlighted the benefits of using the 
technology to introduce the concept of functions to students. However, it 
also recognises that individual students have differing needs with respect 
to the timing of the introduction of the technology. In particular, a number 
of students from the final phase of the research indicated that they would
have preferred to have been introduced to the technology following a 
period of time spent exploring the graphs of functions using pencil and 
paper. Overall, however, the evidence suggests that despite these 
particular students’ feelings, use of the graphical calculators from the 
start, as an integral part of the teaching process of functions, might be 
more beneficial for the students in the long term. However, the use of 
pencil and paper techniques should not be discouraged. Several students in 
this study noted the advantages of using the graphical calculators to 
support their own graphing skills by hand. This occurred because they 
were asked to produce sketches by hand of all the graphs that they drew 
using the technology and occasionally to speculate over the likely shapes 
of graphs in small groups, producing quick sketches by hand, before they 
actually drew them using the graphical calculators. This encouraged them 
to think more about the way in which the graphs were produced and why 
they took on particular shapes.

This project deliberately set out to foster local communities of practice 
following Winboume and Watson (1998). As a result, the creation of local 
communities of practice in the classroom, in which shared ways of 
working with the technology were developed, was found to be an 
important part of scaffolding the students’ learning. In this type of 
supportive environment, the students shared ownership of their use of the 
technology and they and the teacher could build and maintain joint 
problem spaces, which led to graphical calculators being used to the 
greatest effect. Indeed, Teasley and Roschelle’s (1993) notion of a joint 
problem space could be considered as a particular example of a local
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community of practice in action. Through the establishment of this 
particular type of local community of practice, the students in all phases of 
this study were able to establish an effective means of operating with 
graphical calculators, in which the knowledge generated was shared 
amongst the participants. For example, Julian and Kirk from Phase 3 were 
able to make sense of the connections between the symbolic and graphical 
representations of transformations through their efforts to construct and
maintain a joint problem space (episode 1, chapter 8).

However, it was not essential for the students to use graphical calculators 
all of the time in order for learning to be successful in their community of 
practice. For example, where the students were able to visualise the effects 
o f a particular transformation on the graph of a function effectively 
without the aid of technology, they did choose not to use the graphical 
calculator in that instance. However, the way in which the students 
operated whilst using the graphical calculators was seen to influence how 
they approached problems without use of the technology, as was also 
observed by Borba and Villarreal (1998). This was evident in episode 5, 
chapter 6, Phase 3 when Robert, Julie and Martin were each able to 
visualise the effects of the transformation f(3x) on the function y = sin x, 
without having to use the technology to confirm this. It was clear, 
however, that even though the graphical calculators were not used directly 
to solve this problem, the technology was having an impact on the way in 
which these students were thinking about the problem. Robert, in 
particular, was now actively looking for alternative symbolic forms for the 
graphed functions that he had to identify, following his discoveries about 
the first function through use of the graphical calculator.

A crucial part of the successful introduction of the students to the concept 
of functions lay in the way in which shared meaning for functions was 
created through a combination of whole class discussions and small group 
activity. Following a whole class introduction to, and discussion of, each 
new topic, students were encouraged to explore new concepts in small
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groups. Individual students were then invited to share their findings with 
the rest of the class. In this discussion ideas held by different groups 
formed the basis for creating new mathematical knowledge which were 
then formalised by the teacher. This approach to the teaching and learning 
of functions was seen to work particularly well in relation to the use of 
graphical calculators. Moreover, part of the success of this approach could 
be attributed to the use of the specially adapted graphical calculator that
connected to the overhead projector as a means by which arguments could 
be demonstrated to the whole class. The overhead projector set-up acted 
as a focal point for discussion, providing an overview and a means of 
bringing the comments of individual students together. Another important 
contributing factor was the ability of students to graph these ideas for 
themselves whilst listening to and following the discussion because they 
each had been given a graphical calculator. This interactive process would 
be difficult to achieve using computers, unless every student could be 
provided with a desktop computer.

In investigating social factors, this study also highlighted the importance 
of language in students’ success with using the graphical calculators to 
further their understanding of functions. In cases where students were able 
to collaborate effectively using the technology, they appeared to be using 
‘communicative speech’, rather than ‘egocentric speech’ (Vygotsky, 
1962), and were intentionally trying to convey their ideas to one another 
with the aim of furthering the group’s collective understanding. For 
example, in episode 6, chapter 8 from Phase 3, Kirk, Julian and Jake each 
made a concerted attempt to explain their ideas to one another which 
played an important part in constituting the meaning that the students 
derived from this question as a group. Sometimes the language used by 
the students would lack mathematical rigour. For example Julian, Kirk 
and Jake had a tendency to use natural, rather than more formal 
mathematical language when discussing the results of their explorations 
with the technology. However, phrases such as “it’s one of those d a ft 

functions”, “the h u m p s  are in a different place” that were used by Julian

272



were clearly laden with meaning for Kirk and Jake as they had arisen out 
of the group’s joint exploration. Subsequently, these phrases were 
immediately accepted and used as part of the group’s repertoire. In 
contrast to the findings of Smart (1995a), this study thus found that use of 
the graphical calculator alone did not necessarily result in students being 
able to talk more formally about their mathematics.

Figure 9.1 summarises the complexity of learning about functions with 
graphical calculators in relation to the associated implications for the 
teacher.

Consideration of 
the limitations of  
the type of 
technology used

Ensuring the 
integration of 
symbolic and visual

Combining the 
use o f the 
technology with 
other media

Introduction of  
more formal 
mathematical 
language

Implications for 
classroom practice

Encouragement 
and monitoring 
o f interaction 
and strategies 
for intervention

Creation o f a local 
community o f practice 
in which students can 
establish and maintain 
joint problem spaces

Introducing the 
technology - whilst 
encouraging 
students to 
formulate their 
own visual ideas

Combination o f whole 
class and small group 
activity in which each 
student has access to a 
graphical calculator

Figure 9.1 Implications of the study for the teacher

9.3.4 Implications for Further Research
This study has identified an interconnected set of factors that contribute 
towards students’ acquisition of meaning for functions with graphical 
calculators in Advanced level mathematics. One of the major implications 
to arise is that it is important that future research takes into account the 
social context of the learning environment and the shared experiences and
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interactions between students and teacher. The graphical calculator was 
not seen to be a tool that had an independent existence in the classroom, 
rather its role was created and negotiated by the students and the teacher. 
As such, future work that adopts a holistic position with respect to the 
relationship between social communication, affect and cognition is seen to 
have the potential for making a substantial contribution towards 
understanding how students learn about different areas of mathematics 
with technology.

Another important implication to be drawn from this study lies in the huge 
potential for the graphical calculator to be used as a tool for enhancing the 
learning experience of students. This is especially significant with respect 
to the current climate in mathematics education, in which calls have been 
made to limit the use of technology and A level syllabuses have placed 
restrictions on the use of graphical calculators in examinations. This study 
has pointed towards the type of learning environment in which this 
potential can be realised, through supporting collaborative learning with 
technology. In developing this picture further, future work could focus 
more on the type of language used by teachers to enculturate students into 
meaning for functions and how this in turn can provide scaffolding for 
their cognitive development and confidence.

The analysis of the data in this study has concentrated on the way in 
which students come to assign meaning for functions using the graphical 
calculators through their shared experiences, social interactions, individual 
actions and mediation by the teacher. There has been no direct comparison 
made of how and why the images held by individual students might differ 
from those produced by the technology. A fruitful question for future 
research lies in how the external images produced by the technology 
correspond to and mediate the students’ and teachers’ internal visual 
representations, and how this affects the process of internalisation.

274



A further area for subsequent research might be to investigate the potential 
of the graphical calculator for mediating the learning of younger students. 
The theoretical framework and research methodology that has been 
developed in this study would provide a suitable basis for shedding light 
on the very early stages of the process of appropriation of meaning for 
function concepts using technology. This would allow contrasts to be 
made with the way in which meaning making was seen to occur with the 
older, more experienced students of this study, to provide insight into how 
learning develops with technology, especially in relation to the 
amplification and cognitive reorganisation effects.
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The Introductory Exercises

Use the TI-92 to draw the graphs of:

I. y = 4x2-4 x  + 1 2. y = (x + 3)3 3. y = 2(|x| - 1 ) / 3  4 . y  = cos(x/2)

In each case sketch the graph on paper and use the TI-92 to find the value(s) of x when 

y = 0. [Check these values by substituting y = 0 and solving in each case].

Also for questions 1 and 2 use the TI-92 to determine the nature o f any stationary 

points and to ascertain their co-ordinates. [Check these values by differentiation].

Homework Questions

For each of the following functions find:

i) any values of x for which y = 0

ii) the nature and co-ordinates of any stationary points

5. v = x - 1 + 1 6. y = x3(l - x) 7. y =  x + 1

x + 1 (x + 2)2

8. y =  1 + x2 9. y = x2- x3 10. y = l - e x

1 + x + x2

II .  y = 1 12. y = exsinx

1 - ex

II



The Main Trial Exercises 

Graphing Functions Using the TI-92

1. Compare the graphs of cos x, 2cos x and 3cos x using the TI-92. Sketch the graphs 

and comment on the main features.

2. Repeat question 1 with tan x, 2tan x and 3tan x.

3. Compare the graphs of cos x, 2cos 2x, 3 cos 3x and sketch them. Explain why these 

three graphs do not cross the x-axis in exactly the same places.

4. Use the TI-92 to perform the following sequence of transformations on the graph of 

f(x) = x3 : i). f  (x/2) ii). f  ((x + 2)12)  iii). f  ((x +2) / 2 )  - 3 iv). 2 (f ((x +2) /  2) - 3) 

In each case sketch the resulting graphs and write down the equation of the function, in 

its simplest form, i.e. ax + bx + cx + d.

5. Use the TI-92 to graph the following functions, taking a few moments before hand 

to try to picture what the graph will look like, and to sketch your ideas:

a), y = 6x3 - 3 b). y = sin x + cos x c). y = e2x d). y = In (x/2)

e). y = 1 f). y = sin (x + n/2) g). y = - (x - 1)2 + 3

x + 5

Sketch the graphs drawn by the TI-92 next to your initial thoughts o f what the function 

might look like. If there are any discrepancies, can you explain these?

Explain how the shape of the graph of the function a) can be determined from the 

shape of the graph of y = x .

Answer the same question for c) - g), with ex, In x, 1/x, sin x and x2.

•  • 0 11 06. Investigate the relationship between the functions y = 4x + 5  and y = (x - 5f

using the TI-92. 2

III



7. Use the TI-92 to graph the 4 separate transformations which when applied to the 

graph o f y = x form the second pictured graph, y = 2(2x -1 )  + 9. Sketch and specify 

each of these transformations.

F2» T F3 T FH YFET-YFfi-rVF? yOY  ̂kf— |Zoon|Trace|ReGraph|Maih|Draw|T V  1 1

J

M A I N  R A H  A U T O F U N C

8. What transformation when applied to the given graphs below form the second 

pictured graphs and what is the symbolic form of each of the new functions?

a) y = 1/x (ZoomStd)

f^J^TzomlTrlcelReGraphlriathlDr^ul^7 1

L
"  1M A I N  R A D  A U T O F U N C

[̂ fSyĵ onTTraceTReGraphTflathTDrJwTr ^  I 1

M A I N  R A D  A U T O
1

F U N C

b) y = 3x - 9 (ZoomStd) 

x2 + 4x

PiSK.'Frr'Sc.fe.S.phliShlDfS.l? 1\J
M A I N R A D  A U T D F U N C

IZoonlTrace ( fet Y f6t Yf;
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c) y = cosec x (ZoomTrig)

fT E ^ V r i  Y Y fs^ Y Fe’r vf? a>IZoon |Tr ace IReGraph IMath IPraui I ▼ V
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d) y = 2x - 1 (ZoomStd) 

(x - l)2

F U N C
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e) y = In (x +3) (ZoomStd)
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f) y = (l+x)ex (ZoomStd)
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9. Use the TI-92 to show that a). In xa = aln x b). sinzx + cos^x = 1

10. Use the TI-92 to try to determine by a process of informed trial and error the 

symbolic form of the function which is graphed below using ZoomStd.

M A I M

What additional information would you require to solve this problem algebraically?

11. Solve the following equations numerically, graphically and algebraically 

a), x3 + 8x2 + 4 = (x - 2)2 b). In ((2x+l)/(x-l)) = 2 c). 22x+I +2 = 5(2X)

d). In (x+1) + In (x-1) = 3

12. Solve the following equations graphically

a). e5x - 3 = x2 - 4x +1 b). x4 - 2x3 - 2 = 3x c). 2X = x2

( x + l ) ( x - l )

13. Match up the six graphs with their corresponding functions, chosen from the list 

below:

A. (ZoomTrig) B. (ZoomTrig)

fCTz^VTr1 ceTRê aphTM̂ yD«? 1

A A A A A A A Y A A A A A A Av V v V V v v v

M A I N  R A D  A U T D

V v v v v v V

F U N C

[zqomIt race
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C. (ZoomStd) D. (ZoomStd)

\ y
M A I N  R A D  A U T D F U N C

E. (ZoomStd)

l?i2feS’nrTr,LeW ?aphTllS&,TDfS’»l? t?l 1J
M A I N  R A D  A U T D F U N C

PH^frr^oeTR^aphll&'hlbfS’yl? 1

M A I N  R A D  A U T D F U N C

F. (ZoomTrig)

/ J J J
M A N  R A D rA U T D F J N C

1
1. y = sin (x/3) 2. y = cos (x - 7i/2) 3. y = 3sin x 4. y = cos (x + 7r)

5. y = (x - 4)2 6. y = tan (x/3) 7. y = (4 - x)2 8. y = tan (x/6)

9. y = (x + 4)2 10. y = cos (x + 7t/2) 11. y = sin 3x 12. y = In (1/x)

13.y = exl + 4 14. y = l nx2 15. y = e (x+1̂ + 4 16. y = 21nx

2 x+1
17. y = -In x 18. y = -e + 4  19. y = (tanx)/3 20. y = (tan x)/6

VII



Post Trial Student Questionnaire on the Role of Technology 

Analysing the Effects of the TI-92 in the A level Mathematics Classroom

Name

Q 1. How important, in your opinion, is technology in the A level mathematics

classroom?

Q2. Do you feel that you have benefited from the opportunity to use the TI-92?

Q3. Has using the TI-92 enabled you to picture functions more clearly?

Q4. Do you believe that using the TI-92 has strengthened your understanding o f 

functions?

Q5. What do you consider to be the main advantages of using the TI-92?
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Q6. What disadvantages do you perceive?

Q7. Would you welcome further use of the TI-92?

Q8. Would you consider yourself to be a person who forms and makes use o f 

mental images when solving mathematical problems?

Q9. Do you have any preference for using a graphic calculator such as the TI-92 in 

your A level mathematics lessons rather than a computer, or vice versa?

Q10. How helpful have you found the materials and exercises designed for use with 

the TI-92?

I would be grateful for any additional comments or suggestions:
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Post Trial Staff Questionnaire on the Role of Technology 

Analysing the effects of the TI-92 in the A level Mathematics Classroom

Name ___________________________________________________________________

Q1. How important, in your opinion, is technology in the A level mathematics

classroom?

Q2. How often do you use technology in A level mathematics lessons?

Q3. If  possible would you use technology more frequently with your A level

students?

Q4. What do you hope to gain by using technology in A level mathematics?

Q5. Is it important, in your opinion, for students to be able to visualise 

mathematically at this level?
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Q6. Do you feel that the TI-92 has had any affect on students' abilities to visualise 

the graphs of functions?

Q7. What do you consider to be the main advantages of using the TI-92?

Q8. What disadvantages do you perceive?

Q9. Do you see any potential for using the TI-92 in your classroom?

Q10. Are there any ways in which the materials used in this project with the TI-92,

aimed at enhancing students' visual capabilities, could be improved?

I would be grateful for any additional comments or suggestions:
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Student Performances in the Trial Exercises

The student’s solutions to each of the questions from the trial exercises, were compared, 
evaluated and graded (see tables) with reference to the following criteria:

5 - Correct solution 2 - Poor solution, several errors and omissions
4 - One omission/error 1 - No understanding shown
3 - Two omissions/errors 0 - No solution offered

"able Individual Student Performances in the Introductory!exercises
Carl Bet Sal Di Em May Don Kurt Pat Guy Jan Lea Sue

Qi 3 5 5 4 3 1 4 5 5 5 0 0 1
Q2 3 5 5 4 3 5 4 5 5 5 0 0 5

Q3 4 5 5 0 3 4 4 5 5 4 0 0 4

Q4 4 4 1 0 3 3 4 4 4 3 0 0 3

Q5 4 3 1 1 2 5 5 5 3 1 0 0 4

Q6 1 5 5 1 2 1 1 4 4 1 0 0 1

Q7 1 5 1 1 2 2 , 1 2 1 2 0 0 1

Q8 5 5 4 4 5 3 5 4 5 2 0 0 2

Q9 1 1 0 1 1 1 3 5 1 1 0 0 0
Q10 5 5 0 5 5 5 5 5 5 5 0 0 0

QH 5 5 0 5 5 5 5 5 5 3 0 0 0
Q12 3 4 0 4 3 1 5 4 4 0 0 0 0

Table 2 Percentages of Students Obtaining Each Grade in the Introductory Exercises
Percentage 

Obtaining 

Grade 5

Percentage 

Obtaining 

Grade 4

Percentage 

Obtaining 

Grade 3

Percentage 

Obtaining 

Grade 2

Percentage 

Obtaining 

Grade 1

Percentage 

Obtaining 

Grade 0

Qi 38 15 15 0 15 15

Q2 54 15 15 0 0 15

Q3 31 38 8 0 0 23

Q4 0 38 31 0 8 23

Q5 23 15 15 8 23 15

Q6 15 15 0 8 46 15

Q7 8 0 0 31 46 15

Q8 38 23 8 15 0 15

Q9 8 0 8 0 54 31

Q10 69 0 0 0 0 31

Q ll 61 0 8 0 0 31

Q12 8 31 15 0 8 38

Table 3 Mean Scores in the Introductory iixercises
Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Qll Q12

3.73 4.45 4.3 3.3 3.09 2.36 1.73 4 1.67 5 4.78 3.5
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Table Questions from the Main Exercises Involving More Than One Aspect
First Grade Second Grade

Q4 Accuracy of graphs Accuracy of symbolic forms
Q5 Accuracy of graphs Accuracy of explanations concerning the actions 

of transformations
Q8 Identification of the type of 

transformation
Deduction of the symbolic form of the 
transformation

Q ll Graphical solution Algebraic solution

Table 5 Student Performances in the Main exercises
Carl Bet Sal Di Em May Don Kurt Pat Guy Jan Lea Sue

QI 4 5 5 5 5 5 4 4 4 4 4 5 4

Q2 4 5 5 5 4 4 4 3 3 4 3 5 3

Q3 4 5 5 4 4 4 4 4 4 4 4 5 3

Q4I 4 4 5 5 5 4 5 4 5 1 5 4 5 5 4 0 4 4 4 4 5 0 4 5 4 0

Q4ii 4 4 5 5 5 4 5 4 5 5 5 4 5 3 4 0 4 4 4 4 5 0 0 3 4 0

Q4iii 4 4 5 5 5 4 5 4 5 4 3 4 5 3 4 0 4 4 4 4 4 0 0 3 4 0

Q4iv 4 4 5 4 5 4 5 4 5 4 4 3 5 3 4 0 4 4 0 0 3 0 0 3 4 0

Q5a 4 5 5 5 5 5 5 5 5 5 5 0 0 0 5 0 5 0 4 0 4 0 4 5 5 0

Q5b 3 3 3 3 3 4 0 4 3 3 3 3 3

Q5c 4 5 4 5 5 5 4 5 5 5 5 0 0 0 5 0 5 0 4 0 4 0 4 5 4 0

Q5d 4 5 4 5 5 5 4 5 4 5 4 0 0 0 5 0 5 0 4 0 4 0 4 0 4 0

Q5e 4 5 5 5 4 5 4 5 4 5 5 0 0 0 4 0 4 0 4 0 1 0 5 5 4 0

Q5f 3 5 5 5 3 5 4 5 4 5 0 0 0 0 5 0 3 0 1 0 3 0 1 5 3 0

Q5g 3 5 4 5 3 5 3 5 3 0 1 5 0 0 4 0 4 0 3 0 2 0 5 4 0 0

Q6 1 3 5 3 5 0 0 5 0 4 0 4 0

Q7 4 4 5 5 3 1 0 5 5 0 4 0 0

Q8a 4 5 0 5 5 0 5 5 0 5 0 5 0 0 0 0 5 1 0 5 0 5 5 5 0 0

Q8b 4 1 0 1 5 0 0 0 5 0 0 1 0 0 0 0 5 1 5 0 0 0 5 0 0 0

Q8c 4 4 0 5 5 5 5 5 5 0 0 0 0 0 0 0 5 0 5 0 0 5 5 0 0 0

Q8d 3 3 0 4 4 4 0 4 3 0 0 4 0 0 0 0 1 0 1 0 0 3 1 0 0 0

Q8e 4 4 0 5 5 5 0 5 5 0 0 5 0 0 0 0 1 0 5 0 0 5 5 0 0 0

Q8f 4 1 0 4 5 5 0 1 0 0 0 4 0 0 0 0 0 3 1 0 0 1 1 0 0 0

Q9a 3 3 3 3 3 3 0 4 2 2 0 3 0

Q9b 4 4 4 4 4 2 0 4 0 0 0 4 0

Q10 1 4 1 0 4 2 0 1 2 0 0 0 0

Q lla 5 5 4 5 4 3 0 5 4 5 3 4 0 0 4 5 0 5 0 0 0 0 3 5 2 2

QI lb 5 5 4 5 4 0 4 0 4 5 4 0 0 0 1 0 0 0 0 0 0 0 4 3 3 0

QI lc 0 0 4 5 3 0 3 0 4 5 4 0 0 0 3 0 3 0 0 0 0 0 3 0 0 0

QI Id 0 0 4 5 4 0 4 0 3 4 4 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0

Q12a 0 4 4 4 4 1 0 0 0 0 0 4 1

Q12b 0 4 3 3 4 4 0 0 0 0 0 4 4

Q12c 0 0 3 3 4 4 0 0 0 0 0 4 4

13 5 4 5 5 5 5 5 5 5 0 5 5 5
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T able 6 Percentages of Students Obtaining Each Grade in the Main Exercises
Percent ages of Students Ac lieving Grades 0-5
% 5 % 4 % 3 % 2 % 1 %0

QI 46 54 0 0 0 0
Q2 31 38 31 0 0 0
Q3 23 69 8 0 0 0
Q4I 54 23 46 46 0 0 0 0 0 8 0 23

Q4ii 54 15 39 46 0 15 0 0 0 0 7 23

Q4iii 38 8 46 54 8 15 0 0 0 0 8 23

Q4iv 39 0 39 46 8 23 0 0 0 0 15 31

Q5a 61 46 31 0 0 0 0 0 0 0 8 54

Q5b 0 15 77 0 0 8

Q5c 38 46 54 0 0 0 0 0 0 0 8 54

Q5d 23 38 69 0 0 0 0 0 0 0 8 62

Q5e 23 46 61 0 0 0 0 0 8 0 8 54

Q5f 15 46 15 0 38 0 0 0 15 0 15 54

Q5g 8 38 23 8 38 0 8 0 8 0 15 54

Q6 23 15 15 0 8 38

Q7 31 23 8 0 8 31

Q8a 38 61 8 0 0 0 0 0 0 8 54 31

Q8b 38 0 8 0 0 0 0 0 0 31 54 69

Q8c 46 31 8 8 0 0 0 0 0 0 46 61

Q8d 0 0 8 31 15 15 0 0 23 0 54 54

Q8e 31 38 8 8 0 0 0 0 8 0 54 54

Q8f 8 8 8 15 0 8 0 0 15 23 69 46

Q9a 0 8 54 15 0 23

Q9b 0 54 0 8 0 38

Q10 0 15 0 15 23 46

QI la 8 54 31 8 15 8 8 8 0 0 38 23

Q llb 8 23 46 0 8 8 0 0 8 0 31 69

Q llc 0 15 23 0 39 0 0 0 0 0 38 85

QI Id 0 8 61 8 8 0 0 0 0 0 31 85

Q12a 0 38 0 0 15 46

Q12b 0 38 15 0 0 46

Q12c 0 31 15 0 0 54

Q13 85 8 0 0 0 8
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Table 7 Mean Scores in the Main Exercises
Question Mean score Question Mean score Question Mean score

Q l 4.46 Q5f 3.18 5 Q10 2.14

Q2 4 Q5g 3.18 4.83 Q l l a 3.63 4.4

Q3 4.15 Q6 3.75 Q llb 3.67 4.5

Q4I 4.54 4 Q7 4 Q llc 3.38 5

Q4ii 4.58 4 Q8a 4.8 4.56 Q lld 3.89 4.5

Q4iii 4.33 3.9 Q8b 4.83 1 Q12a 3.14

Q4iv 4.36 3.67 Q8c 4.86 4.8 Q12b 3.71

Q5a 4.67 5 Q8d 2.17 3.67 Q12c 3.67

Q5b 3.17 Q8e 4.17 4.83 Q13 4.92

Q5c 4.42 5 Q8f 2.75 2.71

Q5d 4.25 5 Q9a 2.9

Q5e 4 5 Q9b 3.75

Tab e 8 Individual Students’ Overall Performances Compared
Position Student Use of Imagery Overall Score Relation to Mean

1 Betty Non-visualiser 256 > mean (168.4)
2 Sally Visualiser 235 > mean
3 Emma Visualiser 230 > mean
4 Carl Non-Visualiser 217 > mean
5 Diana Visualiser 213 > mean
6 May Non-Visualiser 170 > mean
7 Pat Visualiser 167 <m ean
8 Lea Visualiser 160 < mean
9 Kurt Visualiser 153 < mean
10 Guy Non-Visualiser 119 < mean
11 Don Unknown 97 <m ean
12 Sue Visualiser 95 < mean
13 Jan Visualiser 77 < mean

Table 9 Comparative Mean Scores and Standard Deviation for the Visualisers and
Non-Visualisers

Mean overall score for visualisers Mean overall score for non-visualisers
166.25 190.5

Standard deviation Standard deviation
55 51.3
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Transcripts from Phase 1 

Discussions Surrounding the Introductory Exercises

Question 2 -  May, Sue and the additional researcher, Janies Green

May: It’s +3, isn’t it what we worked out already? The same value there.

Sue: I think so.

May: That’s a turning point isn’t it, it changes.

Sue: Yes.

May: Yes.

Sue: Let’s do question 2.

May: Right ok.

Sue: So how do you get rid of it then?

May: You go back into Y editor and you just get rid of the function don’t you?

Sue: Right.

May: Just delete it.

Sue: Ok you can just get rid o f the tick, can’t you?

May: Yes.

Sue: Instead of just writing graph it. Don’t you have to put cubed in the bracket? Or 

will it be alright?

May: Em see what it looks like when we’ve done that.

Sue: Yes enter.

May: Yes, it’s fine. When x = 3x , what did you get for the intersection of the x-axis 

for this?

Sue: I have 0 .58 ,1 think.

May: I didn’t get that, not at all.

Sue: What did you get?

May: 5. It probably doesn’t work.

Sue: Let’s go into graph and draw it.

May: Oh it’s one of those ones.

Sue: Oh yes.

May: Oh cool.

Sue: Hang on a minute what oh? It’s going to have lots of turning points as well, isn’t 

it?

May: Graph it. Graph it.
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Sue: Do you reckon we should em see if...

May: Is there only one [turning point] when y = 0?

Sue: How do you know if  there’s more than one though?

May: I don’t know I suppose you could zoom out. Are we in standard?

Sue: Yes we are, aren’t we?

May: Yes.

Sue: Em no I ’m not I don’t think. Oh no.

May: What have you got?

Sue: Do you think we should zoom out to see a bit more?

May: Yes but we’ll have to zoom out to get ourselves to get the same.

Sue: What do you mean the same centre as before.

May: Yes.

Sue: What do you reckon?

May: I think it would have shown.

JG: You can just go to point on the graph -  move it across and see what the co

ordinates are there. So you can say move it below the x-axis to about there, do you 

see?

Sue: Yes.

JG: That’s quite a useful thing to do.

Sue: But do you have to go into the maths bit to work it?

JG: But if  you want to do it, you know, yes go to maths. What are we on y = zero? 

Sue: We’re on y = 0.

JG: On the point of inflection?

Sue: Yes.

JG: So go down to inflection, press enter. Now then there could be -  this is a nice 

simple curve with a single point of inflection.

Sue: Yes.

JG: You could have a wiggly curve with all sorts o f points of inflections, minimums 

and maximums, and things.

Sue: Yes.

JG: So you’ve got to tell it that you’re interested in the point between here and here. 

Sue: Ok
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JG: So if you say -5  to - it doesn’t actually matter as long as you cover this because 

there’s only the one. But in general you’d have to estimate a point here and a point 

here, say -5 .

Sue: Do you use the cursor?

May: The cursor at all?

JG: No I think you just enter or go down.

Sue: I used that cursor thing.

May: Yes. Enter down.

JG: You’re making a box round it aren’t you?

Sue: Yes.

JG: So...

Sue: There’s an inflection at -6 .

JG: Oh yes you’ve just over type -5 .

Sue: Ah and then enter.

JG: And then enter. Upper bound is 2 say enter.

May: There’s an inflection at -3 .

Sue: That’s right yes. So that’s a stationary point as well isn’t it?

May: Yes.

Sue: Y = 0. [Working].

Question 3 -  May, Sue, the teacher researcher (SE), and James Green

Sue: Modulus y =...

May: Are you setting the gradient equal to nothing? Don’t you?

Sue: Yes.

SE: Without using the calculator.

May: What did she say?

Sue: Do you want us to work the point on the calculator?

SE: On paper, on your own.

Sue: Oh right ok. Em right then, y = that. Let’s get rid of 2.

May: Yes. y = 2 bracket. Do we have to put all this in a bracket then?

Sue: Ah hang on.

May: Do you have to put all that in a bracket and type it in?

Sue: You type in that 2 times by bracket... How do you put modulus in?

May: You do that and press 2nd 5 or something.
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Sue: Oh. Oh it’s playing tricks there it is.

May: Times bracket abs. Where’s the abs?

Sue: I don’t know. Oh it’s gone.

May: There is no abs.

Sue: Oh were’s abs?

SE: Modulus.

Sue: We’re trying to find the modulus. Don’t you just put abs in?

May: It says press second 5 for the maths menu, which is what I ’m on, and select y. 

Sue: Oh

May: It tells us what to select and it’s like 2nd abs 1 and 2.

Sue: -1. I ’ve pressed abs 5 and that one, two. Oh x, bracket -1 enter. Oh yes that’s 

worked. Good. Oh no it hasn’t.

May: Have you not put a bracket round?

Sue: Not put the brackets round?

May: Is that a minus or a...

Sue: It’s a minus but a different thing there.

May: So which is it?

Sue: I ’m not sure. Em is that a divide by or a minus?

SE: Yes. It’s a mistake I’m afraid. It’s supposed to be divide.

Sue: Oh right.

SE: But if  you’ve done minus it doesn’t matter.

Sue: Ok.

SE: It was only just an example to show you how to use the calculator. So it’s not 

crucial.

May: I’ve done the same thing as -  well I’ve done -5 . [Working]

JG: That’s -3  x 10‘38 which is 0.0... It’s not nought, it’s not zero. It’s 0 point then 38 

nothings and then a 3. Alright, it’s because the pixels, the accuracy o f the pixel is 

mixed up with the window you’ve got.

Sue: So if I set a smaller window.

JG: If  you set a -  well not necessarily smaller -  different window.

Sue: Yes.

JG: Where the pixels were sort of working in harmony with the window that you’ve 

set yes.

XIX



Question 2 - Kurt and Pat

Kurt: Em what do you do with those two?

Pat: It’s 6x. It is isn’t it? [Pause].

Kurt: Em 27.

Pat: Oh different. Oh it’s a cube isn’t it? Stupid! So it equals x3 + 9x2 + 27x + 27, yes? 

Kurt: Yes.

Pat: So one over x would be 3x .

Kurt: 3x2.

Pat: +18x.

Kurt: +18x.

Pat: +27.

Kurt: +27. Well that’s a quadratic equation. So we can take - can we take out 3 of that 

-  we can can’t we?

Pat: Yes.

Kurt: 3x2, that’s 18.

Pat: x2 + 6x + 9. It’s got to be 3 and 3. It’s got to be x+3.

Kurt: x+3.

Pat: So x is equal to -3 .

Kurt: Yes. It’s wonderful. But we had the calculator to do it for us.

Pat: But how come you did no working?

Kurt: It’s gone off, it’s gone off.

Pat: How come you did no actual working.

Kurt: It’s gone off. Oh thanks goodness.

Pat: How come you did no ...

Kurt: Because I just copied you, because I thought - 1 just thought it was x + 3 

squared.

Pat: That’s the way I always do it, because you work out the two first.

Kurt: You work out the two and then times it.

Pat: Yes.

Kurt: Do you do them all at once?

Pat: We’ve done it all, let’s do number 4.
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Question 2 -  Betty, Emma, James Green and Sally Elliott

Betty: Yes. It should exercise it for me shouldn’t it?

JG: Yes. Try and do it on solve try cubed solve equal 0. 6x2 + that.

Betty: Right go back to the home then right sort of type it in.

JG: Yes 2.

Betty: Put all this in, I need absolute don’t I. It’s the wrong one it’s in memory. 

Number 2 x bracket 3 equals 0, will that do it?

JG: No you’ve missed out the brackets there, where you need to end the bracket. 

Betty: Oh need to end the brackets. Go back end that bracket and then equals 0.

JG: =0 comma x.

Betty: Comma, where’s comma? So that’s saying that I want equals 0 for x ’s.

JG: No it’s saying that you want to solve it for x.

Betty: Right.

JG: Because you could have an equation with two variables in it and you might want 

to solve it for one o f the variables and that is express it in terms of the other one. 

Betty: Yes.

JG: If you had the x2.

Betty: And then solve it if  I had x . ..

JG: Say you had y = mx + c, you could say solve it in terms of c.

Betty: Mm

JG: So you could express the whole thing.

Betty: Right.

JG: And it would do it. I think you need another bracket there, you see, where you 

solve.

Betty: Does it? Oh that solve. Do I need a bracket there?

JG: You need a bracket right at the end.

Betty: Shall I take that one out and put one right at the end?

JG: No I think you need one there as well.

Betty: Ok. No it doesn’t want it.

JG: Too few arguments there em.

Betty: Em so I need to put another bracket in one in there. I wonder what it will think 

of that em. That’s what I had last time.

JG: Yes. You definitely want rid o f that bracket, I think.
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Betty: Oh because that’s where I’ve put my expression in brackets, isn’t it. So do I 

want to get rid of that one round the zero and put one round the x? That where it said 

there was a problem wasn’t it?

JG: There’s one there, there’s a problem there.

Betty: Put an end one there, put one round there.

JG: Yes try it.

Betty: Brackets... Can you have a look at this for me? We’re trying to make it solve 

this, but it won’t there’s a problem with the brackets. It keeps saying that we haven’t 

got enough arguments in it.

SE: I don’t think you need that bracket, try that yes.

Betty: Oh right.

SE: You put an extra bracket round the x. It doesn’t need one.

Betty: Right ok.

JG: Have you done it?

Betty: Yes. That’s great 

JG: Right so.

Betty: Right back at the beginning.

JG: Oh right it would be nice pulling that down, so you wouldn’t have to do all that. 

Betty: Yes, saving that.

JG: You can pull things down from this. It’s quite nice really. One o f the nice things 

about this, the image, is that if  you do 23 x 4 enter, then you get the answer and then 

you do enter and then so on. And then if you want to go back, it goes back through the 

history o f all the things that you’ve done. And if  you press enter there it pulls that 

down into that line again but that only works on the home screen, you see. So you can 

get back to that equation there and pull it down.

Betty: But you can’t get from one screen to the other.

JG: But you can’t get from one application to another.

Betty: Right ok.

JG: I don’t know. I’m not saying you can’t.

Betty: Ok.
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Question 3 -  Diana, Jan, Guy, Lea, Sally Elliott and classroom teacher Mr Doors

Diana: What do you get for your minimum for question 3?

Jan: I get something really horrible, -1.56.

Diana: I get +2.16 to the -14.

Jan: You get what?

Diana: 2.16 x 10'14.

Jan: I get that. I get that. They’re the same line though.

Diana: Yes that’s really odd. That’s really odd for the same function.

Jan: Because it says if  you copy that it’s -3  and that says divide by 3.

Diana: Have you done number three? For question 3, we’ve got different answers. 

W e’ve both got the same equation. But when we got to the middle it’s given us 

different ones...

Guy: Yes.

Diana: It’s given the same y value.

Guy: But it’s given you what?

Lea: Are you trying to do the minimum. You can’t do the minimum for number 3. 

Diana: Why?

Lea: You just can’t. No you can’t.

Guy: Why not?

Lea: I’ve asked and she said you can’t.

Jan: It’s given us all different numbers. Is it something...?

Lea: Exactly, because I had about 20 different numbers.

Jan: So your not supposed to do it. Oh right.

SE: The function actually goes to a point so it’s not smooth like the others.

Jan: Right.

MrD: You can’t differentiate it because the gradient is not zero, it does get to a lowest 

point, but it’s not a turning point.

SE: In these questions I’ve asked you to differentiate the other ones but I left that one 

out because you can’t differentiate it.

Jan: Right, we don’t read instructions.
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Pre Trial Student Visualisation Questionnaire 

The Role of Mental Imagery/Visualisation in A level Mathematics

N am e_____________________________________________________________________

Q l. How frequently do you form and make use of mental images when solving 

mathematical problems? Please circle the appropriate response.

Always Fairly Frequently Sometimes Quite Rarely Never

Q2. If you do construct mental images, how do you feel these images assist you in 

problem solving?

Q3. At what stage during problem solving do you usually find it necessary to 

formulate mental images?

Q4. Does the type of problem or topic area effect your use o f mental imagery? (For 

example, are there certain areas of mathematics in which you use mental imagery more 

often?)
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Q5. Are there any particular areas of mathematics that you find difficult to visualise?

Q6. Are visual methods o f solution encouraged in your A level mathematics lessons?

Q7. Do you have a preference for working either symbolically or visually? Please 

explain your response.

Q8. In general, how often do you combine different approaches (such as visual and 

symbolic) when solving individual mathematical problems? Please circle as 

appropriate and please explain your response.

Always Fairly Frequently Sometimes Quite Rarely Never

Q9. In order to become a successful mathematician which do you regard as most 

important, the ability to perform symbolic manipulations or the ability to visualise 

mathematically?
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Q1U. How would you classify yourself essentially? Please indicate where you would 

place yourself on the following hypothetical continuum by marking the line with a 

cross.

Visualiser |---------------------------------------------------------------------------- 1 Non-visualiser

Q ll .  How would you rate your visualisation powers overall? Please circle the 

appropriate response.

Very good Good Fair Poor

Q12. If  you do make use of visual processes is this always obvious in your solutions, 

or do you tend to use a different argument for written purposes?

Q13. Please describe your understanding of the difference between a visual solution 

and a symbolic solution in mathematics. You may like to give an example.

I would be grateful for any additional comments that you might like to make.
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Pre Trial Staff Visualisation Questionnaire 

The Role of Mental Imagery/Visualisation in A level Mathematics

N am e_____________________________________________________________________

Q l. Is it important, in your opinion, for students to be able to visualise mathematically 
at this level?

Q2. Do you encourage the use of visual solutions in your A level mathematics lessons 
generally?

Q3. When teaching functions to lower sixth students, do you tend to devote fairly 
equal amounts of time exploring the graphical, symbolic and numerical aspects, or 
does one particular approach dominate?

Q4. Do you personally have a preference for working either symbolically or visually? 
Please explain your response.

Q5. In order to become a successful mathematician which do you regard as the most 
important, the ability to perform symbolic manipulations or the ability to visualise 
mathematically?
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Q6. How would you classify yourself essentially? Please indicate where you would 
place yourself on the following hypothetical continuum by marking the line with a 
cross.

Visualiser |---------------------------------------------------------------------------- 1 Non-visualiser

Q7. How would you describe the overall visual capabilities of this particular group of 
A level students?

Q8. How important, in your opinion, is technology in supplementing and enriching 
students' visual capabilities?

Q9. How often do you use technology in A level mathematics lessons?

Q10. If  possible would you use technology more frequently with your A level 
students?

I would be grateful for any additional comments that you might like to make.
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Pre Trial Questions on Functions

1. Find the values of x for which -2x2-x+6 >2.

2. For which x values is f(x) = x -5x +6x <0.

3. Solve x > 3.
x+1

4. If  fj(x) = |x-3| and f2 (x) = 2|x+2|, find the values o f x where fj(x)>f2 (x).

5. Solve the following equations:
a) 2(x-4)2 + 3 = 4x b) sin x = 2x2 c) 3e2x = 4 d) 21n (x +1) = 2 + In x.

6. If f(x) = x2 + 5x and g(x) = f(x-l), find g(3) and the values of x such that g(x) = 0.

7. Give an example of a function which satisfies f(2) = 3, f(3) = 4 and f(9) =15.

8. Which linear function passes through the points (4,-3) and (1,3)?

9. If f(x) = 3x3, find the value of x for which f '( x )  = 2.

10. Solve 3x4 + 2x2 + 3x = 0.

11. Solve 2sin x - x = 0.

12. State whether the following functions are even, odd or neither, explaining your 
choice: a) cos 2 x b) x3 - x c) tan x d) 2(ex + e'x) e) sin 2x.

13. State, with justification, whether or not the following functions are periodic, and 
give the period of those functions which are: a) |sin x| b) cos x c) cos 2 x.

x

14. The following transformations are applied in succession to y = x3:
a) a translation of magnitude 2 units in the direction o f the positive y - axis,
b) a stretch parallel to the x - axis of factor 2,
c) a stretch parallel to the y - axis of factor 3,
d) a translation of magnitude 2 units in the direction of the negative x - axis.

Give the equation of the resulting curve and the co-ordinates o f three points on the 
curve.

15. Another curve undergoes in succession the transformations a), b), c), d) given in 
question 14, and the equation of the resulting curve is y = 3x^ + 3x + 9.

4
Determine the original equation o f this curve.
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The Introductory Exercises

Use the TI-92 to draw the graphs of:

1. y = 4x2- 4x + 1 2. y = (x + 3)3 3. y = 2(|x| - 1) / 3 4. y = cos (x/2)

In each case sketch the graph on paper and use the TI-92 to find the value(s) o f x when 

y = 0. [Check these values by substituting y = 0 and solving in each case].

Also use the TI-92 to determine the nature of any stationary points and to ascertain 

their co-ordinates. [Check these values by differentiation].

Homework Questions

For each of the following functions find:

a) any values of x for which y = 0

b) the nature and co-ordinates of any stationary points

5. y = x2 - x 3 6. y =  x + 1 7. y = x - l + _ J _ 8. y =  1 + x2

(x + 2)2 x + 1 1 + x + x2
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The Main Trial Exercises 

Graphing Functions Using the TI-92

1. Compare the graphs o f cos x, 2cos x and 3cos x using the TI-92. Sketch the graphs 

and comment on the main features.

2. Repeat question 1 with tan x, 2tan x and 3tan x.

3. Compare the graphs o f cos x, 2cos 2x, 3cos 3x and sketch them. Explain why these 

three graphs do not cross the x-axis in exactly the same places.

4. Given that f(x) = x3, use the TI-92 to obtain the graph of g(x) = f  (x/2). Sketch the 

two graphs and write down the equation of the new function, g(x).

Now use the TI-92 to perform the transformation g (x + 2) - 3 on g(x). Sketch the 

resulting curve, h(x) and again write down its equation in the form ax3 + bx2 + cx + d.

Finally use the TI-92 to perform the transformation 2(h (x)) on h(x), sketching the 

curve; l(x) and writing down the resulting equation, as before.

0 I/O5. Investigate the relationship between the functions y = 4x + 5  and y = (x - 5f 

using the TI-92. 2

6. What transformation when applied to the given graphs below form the second 

pictured graphs and what is the symbolic form of each of the new functions?

a) y = 1/x (ZoomStd)

M A I N  R A D  A U T D F U N C

(?t=IzS,Wic.lR^«*lH55.fcf.WVT 1

L
M A I N  R A D  A U T D

1
F U N C
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b ) y =  3x - 9 (ZoomStd) 

x2 + 4x

(zoomTrace
< Y ' 
[MathlPrau

c) y = cosec x (ZoomTrig)

F£T f T s  Y fh Y F5,r Y FfiT Y*7''
!▼ t— |Zoon|TracelReGraph|Math|Drau)K V

d) y  = 2x -1  (ZoomStd) 

(x - 1)2

S i  1

L
M A I N  R A D  A U T D

<

F U N C

e) y = In (x +3) (ZoomStd)

P iS ^ T r;L e'fee#aphTii3rhTDf5.'P S I  1

- 7 ^

M A I N  R A D  A U T D F U N C

Pf=feS5,frrlceTR^«*y«ShlD?a\,l? S i  1

V J

M A I N R A D  A U T D
f

F U N C

(?t=K.frr,lceWf*hTlShlb?il? S I  1

J

M A I N R A D  A U T O F U N C
f

(?i2feg5,Wlc.lR^?aphiiffihl[jfS.l? 1| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

M A I N  R A D  A U T D F U N C

M A I N  R A D  A U T D F U N C
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f)y  = (l+x)e* (ZoomStd)

r h d  B u r n F U N C

fFẐ yFS ' 
[ZoomTrace ('  F 6 t  Y F 7Drawl'*1

M f t I N R f t D  R U T D F U N C

7. Use the TI-92 to show that a). In x“ = a In x b). sin2x + cos2x = 1

8. Solve the following equations graphically and algebraically: 

a), x3 + 8x2 + 4 = (x -  2)2 b).hs((2x+l)/(x-l)) = 2

c). 22x+1 + 2  = 5(2X) d). In(x+1) + In(x-1) = 3

9. Without using the TI-92 sketch the following functions (each pair on the same 

axes): a), y = x3 and y = 6x3 - 3 b). y = ex and y = e2x

c). y = In x and y = In (x/2) d). y = sin x and y = sin (x + n/2)

e). y = x2 and y = 2 (2 x - l)2 + 9 f). y = x2 and y = - (x - 1)2 + 3

Explain in words how the second graph can be obtained from the first graph in each 

case. Now use the TI-92 to check whether your sketches are correct.

10. Use the TI-92 to try to determine by a process o f informed trial and error the 

symbolic form of the function which is graphed below using ZoomStd. Explain the 

reasoning behind every step you make.
f  F 5 - r  Y  F f i f  Y f 5  
hatmDraw ▼

F U N C

What additional information would you require to solve this problem algebraically?
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11. Match up the six graphs with their corresponding functions, chosen from the list 

below.

A. (ZoomTrig)

^^TzooVTrlcelReG7aphTMrA y D » ? 1

\ y  \ J  \ y

M A I N  R A D  A U T D

X 7  V /

F U N C

C. (ZoomStd)

( ? i 2 F z ? ™ T r r l » M a p h K S h K S . I ?  Si  1

V/
M A I N  R A D  A U T D F U N C

E. (ZoomStd)

(?i=feSS-BWiceWaphllKhKS.llVT 1

J

M A I N  R A D  A U T D  F U N C

B. (ZoomTrig)

P i= S f e ? « W lc e f e ^ fa p h lN f f ih T D f S .l?  SI  1

A A A A A A A Y A A A A A A Ai / v V V V v V v

M A I N  R A D  A U T D

V V V V V v V

F U N C

D. (ZoomStd)

( ^ I z S o U ^ c e l R ^ p h t e y D ^ r /  Si  1

M A I N  R A D  A U T D F U N C

F. (ZoomTrig)

IZoomTrace
f FSt Y FfiT w
|Maih|Drau>K

M A I N

1. y = sin (x/3) 2. y = cos (x - n/2) 3. y = 3sinx

4. y = cos (x + n) 5 .y  = ( x - 4  f 6. y = tan (x/3)

7- y = (4 - x)2 8. y = tan (x/6) 9. y = (x + 4)2

10. y = cos (x + n/2) 11. y = sin 3x 12. y = In (1/x)

13. y = e*'1 + 4 14. y = ln x 2 15. y = e’(x+l) + 4

16. y = 21n x 17. y = -lnx2 18. y = -ex+l + 4

19. y = (tan x)/3 20. y = (tan x)/6
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Student Interview

Please describe how you would attempt to solve the following questions:

1. For which values of x is the graph of y = 3x2 + 9x -1 2  below the x-axis?

2. For which x values does the graph of y = x + 6  intersect with the graph of 

y = 2x2 + 5x?

3. Find the values of x for which the graph of y = 3|x - 2| lies above the graph of 

y = 6x2.

4. What effect will the transformation 3f(x + 3) have on the graph of the function 

f(x) = 4x5 - 3x4 + 2x3 - x.

5. For a particular function f(x); f(2) = 6, f(3) = 14 and f(6) = 50. What type o f 

function could this be? Give an example of a function that satisfies these conditions.

6. How does the slope of the function y = x4 -  x2 change from x = -5 to x = 5?
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Post Trial Student Technology Questionnaire

Analysing the Effects of Technology in the A level Mathematics Classroom

N am e____________________

Q l. How important, in your opinion, is technology in the A level mathematics 

classroom?

Q2. Do you feel that you have benefited from the opportunity to use the TI-92?

Q3. Has the TI-92 enabled you to visualise functions more clearly?

Q4. Do you believe that using the TI-92 has strengthened your understanding of 

functions?

Q5. Will this experience influence your approach to solving problems involving 

functions in the future?
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Q6. What do you consider to be the main advantages of using technology to teach the 

concept o f functions to students, such as yourselves?

Q7.What disadvantages do you perceive?

Q8. Would you welcome further use o f technology for exploring different areas of 

mathematics?

Q9. Do you have any preference for using a graphic calculator in your 

A level mathematics lessons rather than a computer, or vice versa?

Q10. How helpful have you found the materials and exercises designed for use with 

the TI-92?

I would be grateful for any additional comments or suggestions:
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Student Performances in the Trial Exercises

The student’s solutions to each of the questions from the trial exercises, were 
compared, evaluated and graded (see tables) with reference to the following criteria:

5 - Correct solution 2 - Poor solution, several errors and omissions
4 - One omission/error 1 - No understanding shown
3 - Two omissions/errors 0 - No solution offered

Table 10 Student Performances in the Pre Trial Inquiry
Robert Julie Martin Diane Rachel

Qul 5 5 3 5 5
Qu2 5 5 0 5 5
Qu3 1 1 0 1 1
Qu4 5 0 0 5 4
Qu5a 5 5 0 5 5
Qu5b 0 0 0 3 0
Qu5c 5 0 0 5 5
Qu5d 3 0 0 3 4
Qu6 0 0 0 5 0

Table 11 Student Performances in the Introductory Exercises
Robert Julie Martin Rachel

Qul 4 5 1 5
Qu2 5 5 5 4
Qu3 1 5 0 3
Qu4 3 0 0 5
Qu5 4 4 4 0
Qu6 4 1 1 0
Qu7 4 3 3 0
Qu8 4 4 4 0

"able! 2 Questions from the Main Exercises Involving More Than One Aspect
First Grade Second Grade

Q4 Accuracy of graphs Accuracy of symbolic forms
Q6 Identification of the type of 

transformation
Deduction o f the symbolic form of the 
transformation
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Table 13 Student Performances in the Main Exercises
Robert Julie Martin

Qul 4 2 4
Qu2 5 2 4
Qu3 3 4 5
Qu4a 5 5 5 5 5 5
Qu4b 5 5 5 5 5 5
Qu4c 5 5 5 5 5 5
Qu5 5 5 5
Qu6a 5 5 5 5 0 0
Qu6b 5 5 5 5 0 0
Qu6c 5 5 5 5 0 0
Qu6d 5 4 5 0 0 0
Qu6e 5 4 0 0 0 0
Qu6f 5 5 0 0 0 0
Qu7a L 0 (
Qu7b 5 0 0
Qu8a 5 0 0
Qu8b 5 0 0
Qu8c 5 0 0
Qu8d 5 0 0

T a b le ; 4 Mean Scores in t ie Pre Trial Inquiry
Qul Qu2 Qu3 Qu4 Qu5a Qu5b Qu5c Qu5d Qu6

4.6 5 1 4.67 5 3 5 3.33 5

Table 15 Mean Scores in the Introductory Exercises
Qul Qu2 Qu3 Qu4 Qu5 Qu6 Qu7 Qu8

3.75 4.75 3 4 4 2 3.33 4

Table 16 Mean Scores in the Main Exercises
Qul Qu2 Qu3 Qu4a Qu4b Qu4c Qu5 Qu6a Qu6b Qu6c

3.75 4 3.75 5 5 5 5 5 5 5 5 5 5 5 5 5
Qu6d Qu6e Qu6f Qu7a Qu7b Qu8a Qu8b Qu8c Qu8d
5 4 5 4 5 5 4 5 5 5 5 5

Table 17 Mean Scores of Individual Students
Robert Julie Martin Rachel Diane

4.47 4.32 4.06 4.31 4.11
Non-Visualiser Visualiser Visualiser Visualiser Visualiser
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Transcripts from Phase 2

Class Discussions Surrounding Question 13 of the Main Trial Exercises

Graph A
1 SE Can anybody tell me which function 

represents the graph drawn in the first one?
2 Martin Is it cos (x + n/2)?
3 SE And why do you say that?
4 Robert It’s a sine graph. Robert was confident.
5 SE Contradiction there. Explain your choice. Directed at Martin.
6 Martin Er well it looks -  it’s got to be like sine or 

cos and I think that cos starts at the top and 
each line on the scale is 90° which is n/2 
radians, so it’s been moved ...

Martin was motioning 
in the air, tracing the 
path o f the graph of 
cos x with his finger.

7 SE It’s been moved across to the ...
8 Martin It’s got to be -7t/2 rads then because it’s gone 

the other way, so it’s number 2 
[cos (x - n/2)].

9 SE Ok so you think it’s number 2. Why do you 
say that it might be a sine [graph]?

Directed at Robert.

10 Robert Because sine o f zero is zero and I’d say that 
that is in fact -  because it seems that B is 
also a sine wave but that’s more concentrated 
-  I’d say that A is 1 [sin x/3].

11 SE You think that it’s sin (x/3)?
12 Robert I wouldn’t swear to it. Robert clearly lacked 

confidence at this 
point.

13 SE And what do you think? Have you got any 
ideas about this one?

Directed at Julie.

14 Julie I think it’s number 2 [cos (x - 7r/2)].
15 SE And why do you think that it’s number 2?
16 Julie It’s been moved.
17 SE It’s been moved?
18 Julie Yes it’s a translation.
19 SE And in which direction is it moved?
20 Julie Er n il  in the x-axis.
21 SE Yes. Ok so have you tried to actually graph 

on the TI-92 the first one that you thought it 
was?

Robert had just 
graphed the function 
y = sin(x/3).

22 Robert Yes.
23 SE And what did you get?
24 Martin Isn’t that cheating drawing the graph to see 

which?
25 SE No, no he is just convincing himself.
26 Robert To be honest I can’t remember what I typed 

in.
27 SE Well, let’s think about the first one y = 

sin(x/3). What is the graph o f that going to
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look like?
28 Robert Wide, and wider than it is there. Robert pointed to the 

graph to be identified.
29 SE Yes. Ok, I ’m going to say that you two are 

actually correct. Now it looks like a sine 
because it is sine of x, that is sin x.

30 Robert Yes.
31 SE But it can also be represented by 

y = cos (x - ti/2) that’s another...
32 Robert I see where that’s coming from. Robert had regained 

his confidence.

Graph B
1 SE Can anybody think of a function for B?
2 Martin I reckon its sin 3x. More certain than in 

episode 1.
3 SE Sin 3x. Seeking acceptance.
4 All Yes. Confident and firm 

responses.
5 SE You seem to agree on that one. So how did 

you come up with that conclusion?
Question directed at 
the group.

6 Robert There don’t seem to be any sneaky cosine 
tricks.

Robert was now wary 
o f the existence of 
equivalent symbolic 
forms.

7 SE Not this time.
8 Martin It’s a sine wave and it’s been er... Martin paused.
9 Robert Three times x would condense it.
10 Martin It’s got a stretch parallel to the x-axis of a 

third, because it got closer together, or so ...
11 SE Yes, you’re all right it’s sin 3x.

Graph C
1 SE What about c?
2 Robert It’s a quadratic so it’s either 5 or 7[y = (x-4)2 

or y = (4-x)2]. It’s positive so I’d say it’s -  
oh there are two positive ones. I ’d say 5 
[y = (x-4)2] because it’s been moved 
positive.

3 SE By four units.
4 Robert Yes. So you want one with -4 , it’s 5.
5 SE Do you two agree?
6 Martin Er I’m not sure...
7 Julie Yes.
8 SE While you’re thinking about it ...
9 Martin Yes I think so.
10 SE If you have a look at the formulas for 5 and 

7, if  you were to actually expand those, what 
would you notice?
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11 Robert It would in fact still be a positive quadratic.
12 SE Yes.
13 Martin It would be x2 + 16... Martin paused to 

think.
14 SE If you expanded number 5 what would you 

get? x2 -  8x +..
15 Robert 16.
16 SE 16. So what would you get if  you expanded 

number 7? 16 -  8x + x2.
17 Robert -8x + x2. Robert spoke at the 

same time as SE.
18 SE So those two actually give the same 

expansion, so they are one in the same. 
Either of those formulas would have been the 
correct one to use, but as you recognised 5 
represents the transformation more clearly, 
that’s the one that you plumped for.

Graph D
1 Robert Well it’s going to have a logarithm involved.
2 SE Log, yes.
3 Robert There are two of them. Referring to the two 

parts of the graph.
4 Martin It’s got... Martin paused.
5 Robert So there’s going to be a x2 involved 

somewhere, 17 perhaps [y = -In x ].
6 SE 17?
7 Julie It’s a reflection.
8 SE Yes.
9 Robert Although, since I’ve never actually seen the 

graph of the logarithm of x2. ..
10 Julie Yes.
11 Robert No, it would work. It would always make it 

positive though, so yes.
12 SE So do you agree? Directed at Martin.
13 Martin I think so. I’m just working out why it’s 

negative.

Graph E
1 Robert It could involve an exponential this time.
2 SE Yes this is an exponential.
3 Robert It's obviously got +4 on the end, so it’s either 

15, or 18 or 13 even.
[y = e‘(x+1) + 4, or y = -ex+1 + 4, or 
y = e*'1 + 4],

Robert was able to 
recognise the 
function as 
exponential and thus 
identify the 
possibilities.

4 Julie It hasn't been reflected, so it's not 18 
[y = -ex+1 + 4],

Correct assertion.
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5 Robert It’s probably 13 actually, [y = e*'1 + 4]
6 SE Why do you say that one?
7 Robert Because the negative sign somehow has to fit 

that [the graph], although I can't explain how 
the minus sign affects it.

At this point Robert 
and Julie began to 
conjecture incorrectly 
about the effects of 
the functions on the 
shape o f their graphs.

8 Julie That's some sort of reflection, isn't it? Referring to 
y = ex_1 + 4.

9 Robert 15 [y = e"^1"1̂ + 4] would be a reflection.
10 Julie Why?
11 Robert It would be a reflection in x, wouldn't it?
12 Julie I don't know.
13 Robert 18 [y = -ex+I + 4] would be a reflection in y. 

This is like ignoring the transformation of 
+4, which I’d say is 13 [y = ex' ! + 4].

14 SE Yes you are correct and if  you are not sure 
you can always draw the graphs o f them to 
see which is a reflection in x and which is a 
reflection in y.

Graph F
1 SE Finally F.
2 Robert It’s a tangent. There was a pause.
3 SE Think about the scale the TI-92 uses.
4 Robert To see if it was increasing I could just draw 

the normal graph.
5 SE Ok, if it helps you can draw the, you can all 

draw the tan x graph and see what happens 
on your machine and then from there you can 
hopefully deduce what the function is.

6 Robert It’s a stretch of factor 3.
7 Martin It’s tan of x over 3.
8 Robert Yes.
9 SE Is that number 6 or number 19 [y= tan (x/3) 

or y =(tan x)/3], because there are two of 
them?

10 Martin Number 6 [y = tan (x/3)].
11 SE Number 6 and what do you think? Have you 

managed to get the tan?
Directed at Julie

12 Julie Yes. That’s the whole thing. Pointing to the tanx in 
(tan x)/3

13 SE That’s tan of x all divided by 3.
14 Julie So yes number 6.
15 SE Number 6, yes well done you are right.
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Student Interview Transcripts

Robert

1. SE: So could you please describe to me how you would solve number one.

2. R: Em I 'd  first put y = 0 ...

3. SE: Yes

4. R: And use the quadratic formula to find the values of x where y would equal

zero...

5. SE: Yes

6. R: And then visualise the graph and since it would be positive I could find out

precisely which values lie below the value of y = 0.

7. SE: Yes, so how do you know which way the parabola would go?

8. R: Em experience, if  its positive the parabola has a bucket shape, if  its negative it

has the opposite.

9. SE: So when you say positive and negative what exactly are you referring to?

10. R: The (pause) the sign on the coefficient of x squared.

11. SE: Yes yes great, OK could you describe to me how you would do number two

then please.

12. R: (pause) This is probably slightly more difficult. I’d put the two equations equal

to each other, actually eliminating y, then get all the values on one side to equal 

0 and then use the factor theorem to deduce one or more of the factors and then 

deduce the last one from it.

13. SE: Yes, so in this case you wouldn't find it necessary to draw a graph at all?

14. R: No I don't think it would really help in the solution.

15. SE: No OK em question 3.

16. R: Em I'd put them equal to each other again ...

17. SE: Yes.

18. R: and square each side to eliminate the modulus sign and then solve the resulting

equation, although that might be quite difficult since you've got an x squared 

on this side (pointing to y = 6x2) so you end up with an x to the power four 

(pause) so I'd probably end up using factor theorem on that or actually taking a 

factor of x if  that was possible but I don't think it is in this case.

19. SE: What about a graph, do you think it would be helpful to draw a graph in this

instance?
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20. R: If I found that difficult I would draw a graph and actually use that as in

putting three bracket x -2 equal to 6x squared on the positive side ...

21. SE: Mm.

22. R: actually choosing the positive and negative sides of the modulus graph ...

23. SE: Yes.

24. R: and seeing where they would intersect with the other graph but I would use it

as a last resort.

25. SE: Yes. That would never be your first step?

26. R: No.

27. SE: OK now question 4 then please.

28. R: I would probably have to draw a graph for that one, to be honest I'm not really

sure how I would do it.

29. SE: Are you not familiar with transformations?

30. R: Yes well I'm familiar with transformations, yes.

31. SE: But the effects of transformations?

32. R: Yes. I'd probably put this - I'd probably actually change the actual equation

and then draw the graph and see how it changes it.

33. SE: Right, so you'd substitute in x + 3 in here (the expression) and then multiply

the whole thing by three?

34. R: In fact I could actually use experience to determine what effect it has.

35. SE: Yes that was what I was thinking.

36. R: This would translate it -3 in the y-axis, this would be a stretch factor 3 parallel

to the y-axis.

37. SE: Yes, are you sure about what you said first off you said it would translate it -3

in the y-axis.

38. R: I'm sorry x-axis.

39. SE: x-axis, that's what I thought, you'd just made a little error there. So in actual

fact you wouldn't necessarily have to draw the graph, I mean you described a 

method that would work first o f f ...

40. R: Right.

41. SE: But you think that you could just deduce from you're experience.

42. R: Yes I would, I would prefer not to draw a graph.

43. SE: Yes yes. OK question 5 then please. This might not be a question that you are

familiar with, this style of questioning.

XL VI



44. R: No (pause) 1 can't really say I know how to do that, I mean it doesn't, it

wouldn't be exponential otherwise you would have irrational numbers so I 

would assume that it would be quadratic.

45. SE: Right and so you've ruled out the possibility that it’s linear?

46. R: Yes.

47. SE: And why have you ruled that possibility out?

48. R: Well to be honest I'm not entirely sure. I would try linear, quadratic and then

possibly further, mind you in this case it would probably be easiest to draw it 

on a graph and see.

49. SE: Yes plot the points ...

50. R: Yes.

51. SE: and see if  you could fit a straight line to them or whether its more of a curve

shape.

52. R: Yes. Yes as you've probably gathered I would prefer to avoid graphs.

53. SE: Yes, so er once you've deduced what it could be, say for example, it was a

quadratic what would your next step be?

54. R: Actually use a general quadratic formula, as in ax3 + bx2 + cx + d and actually

try and find what values of that would fit it.

55. SE: Mm, but you've just given me the formula for a cubic rather that a quadratic,

but I know what you mean.

56. R: OK, yes.

57. SE: OK so how would these values that you have already got help you (pointing at

f(2) = 6, f(3) = 14 and f(6) = 50)?

58. R: What do you mean by help me?

59. SE: Well you say your using a general form ula...

60. R: Yes.

61. SE: What are you going to do with that, are you going to try - use a trial and error

technique try different values of x using different coefficients of a, b and c or 

are you going to do something else?

62. R: I would use the general formula as I said and substitute; you've got the value of

x in each case and you've got the value of y in each case ...

63. SE: Yes.

64. R: So I would just substitute those in and try and do it and I can't remember the

word for it.
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65. SE: Simultaneous equations.

66. R: Simultaneous equations.

67. SE: Yes, that's what, that's what I thought you were meaning, but I just wanted to

make sure.

68. R: I just find it hard to actually express what I try to do, I just do it instinctively.

69. SE: You just do it yes. OK and finally question 6.

70. R: Differentiation.

71. SE: You'd do some differentiation.

72. R: Yes I'd have to, I mean as soon as it says slope I know that differentiation is

involved somewhere in the question, however to actually see how it would 

change from -5 to 5 I'd do differential - do differentiation find the differential 

of that (pointing to the function) find the value o f the gradient at -5 and 5 and 

then just take them away from each other.

73. SE: Would that tell you how it actually changes in between -5 and 5?

74. R: What do you mean by change, do you mean as in the difference between the

gradients at these two points?

75. SE: No, I mean how the actual slope changes throughout the graph. It might be

increasing then decreasing then increasing between those values.

76. R: In that case I would differentiate again.

77. SE: You'd differentiate again?

78. R: Yes, but actually, but mind you in this instance it would be probably be easiest

to draw a graph admittedly b u t ...

79. SE: If you were to draw a graph what would you use the graph for, would you just

look at the graph and see how the slope is changing?

80. R: Yes.

81. SE: Between those values ...

82. R: Yes.

83. SE: and you think you would be able to tell what is happening to the slope by just

looking at the graph?

84. R: Well I'd get a general idea but it obviously wouldn't be exact I would (pause) to

be honest I m not entirely sure.

85. SE: I think that would possibly be the best solution method for this question in this

case.

86. R: Actually drawing the graph?
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87. SE: Mm, you might want to pick out some values between these (pointing to -5

and 5) and try those in the derivative function, but how many values would you 

try?

88. R: Every integer, as in -5 -4 -3 etc. up to 5.

89. SE: That could be a possibility.

90. R: But I would be very wary of that because you could get some anomaly in

between that.

91. SE: Exactly.

92. R: I mean its pretty obvious that's unlikely from this function, but it would still be

in the back of my mind so I would prefer to do it a calculus method, but I'm not 

entirely sure because I would prefer to do it for every value on that curve.

93. SE: Yes.

94. R: But I just don't have the mathematical skill to do that.

95. SE: OK well, thank you very much.

M artin

1. SE: Right could you please tell me how you would attempt to solve the first

question please.

2. M: OK er I'd start off by trying to factorise i t ...

3. SE: Mm.

4. M: and then if that didn't work em I'd probably use the em quadratic formula to

find the answer.

5. SE: Yes.

6. M: It might end up in like a surd or whatever it would be. I'd get the answers for

where it crossed so when y= 0 ...

7. SE: Yes.

8. M: and then em (pause) I think I'd have to draw a graph to see where it was -

which part was greater than and which part was less than, but it's not, it's not 

negative so that means it'll be the right way round. It'll be em the right way 

round because it's an x squared curve - a quadratic so is it a parabola or 

something like that.

9. SE: Parabola, yes.

10. M: Yes, so it was probably going to be the least value that its greater than and the
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highest value that its less than, but I'd have to check that I think.

11. SE: Yes, so you're saying that it's got a minimum turning point rather than a

maximum.

12. M: Yes that's right, yes.

13. SE: OK right question 2, how would you solve that one?

14. M: Right em I'd start off by putting them equal to each other and em group it

together so it would end up with em o= x3 em it would be -2x2 -5x then it 

would divide through by x.

15. SE: Ah you've forgotten +6.

16. M: Ah +6 yeah I didn't see it, right so it wouldn't - you wouldn't be able to do that.

17. SE: So you couldn't factorise it, you couldn't take a factor o f x out rather.

18. M: Yes. Or probably a better - 1 don't know whether it would be better but an

easier way might be to use a pair o f simultaneous equations. So I'd put em - so 

I'd be able to get - it would be 6= y - x3 see if I could em swap the other line. 

I'm not sure I'd probably end up with the same thing.

19. SE: Yes. Would you ever consider drawing a graph?

20. M: Probably if I was really stuck. I'd do it on the calculator, but I wouldn't be sure

whether I'd got the - whether I'd got the graph right unless I actually worked 

some values out and plotted it properly, so ...

21. SE: So you wouldn't consider drawing this graph (pointing to y = x3 + 6) and then

drawing this graph (pointing to y = 2x2 + 5x) and seeing where they actually 

cross one another. Is that what you need?

22. M: E r ...

23. SE: You could do that, that would be an easier graph to draw ...

24. M: Yes, yes.

25. SE: than perhaps when you'd combined them a l l ...

26. M: Yes.

27. SE: to have one ...

28. M: Yes that's right.

29. SE: So that might be a possibility if  working symbolically ...

30. M: Yes.

31. SE: Symbolically doesn't work.

32. M: I think.

33. SE: OK would you like to try question 3.



34. M: OK (pause) what I'd do I'd em put them equal to each to other again I think, oh

it would have to be - no it would be an inequality em it would be 3|x-2| = 6x2 

but then I'd split it up so it would be negative 3(x -2) and positive 3(x-2) and 

then there'd be two answers and then I'd draw a sketch of the graph to find out 

exactly the values like with the first one ...

35. SE: Mm.

36. M: Just to check.

37. SE: So you'd do some rearranging once you'd set up these two equations, would

you?

38. M: Yes.

39. SE: And solve them and do the graph as a back up would you say?

40. M: E m ...

41. SE: Just to make sure you're answers are correct or to help you see it more clearly?

42. M: Probably to help me see it more clearly because em I'd probably get two em

from the inequality I could get em two answers that would be like x > 3 and x > 

1/2 or something like that and then I'd have to see which was right and which 

was em which was less than, because with the graph it's easier to see which 

values are which the right way round.

43. SE: Yes OK could you try question 4 then please.

44. M: What it would do, it would be - it would be stretching it parallel with the y

axis, yes by a factor of three, so it would get taller and then it would be 

moving it backwards three so yeah it would be a translation o f -3.

45. SE: In which axis?

46. M: The x-axis.

47. SE: Yes. So which of these happens first?

48. M: I think it would be this one (pointing to the translation).

49. SE: Yes, that's right, em ...

50. M: I'm just trying to think whether it would make any difference if it was in the

other order.

51. SE: Mm.

52. M: I'd have to try it.

53. SE: So in this case you wouldn't find it necessary to actually draw a graph?

54. M: No because I know what these do, so I've got it straight in my mind what will

happen to anything with those functions.
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55. SE: So you know the effects that they will have, so that you can just look at the

transformation and imagine the effects.

56. M: Yes.

57. SE: OK question 5 then please, (pause) Again this is a rather unusual question.

58. M: Yes. (pause) I'd probably, I don't know whether it would work because we

have not done anything like it, is see if  it was like a geometric or a arithmetic 

progression, see if it ...

59. SE: Mm.

60. M: fitted it, I don't think it’s an arithmetic progression. I might see if  there was a

common ratio or something.

61. SE: And if  there wasn't, what would you do?

62. M: I'd have to em draw it - plot it see if  I could get a correlation - a quadratic or

linear or whatever.

63. SE: Right so once you've decided this could be the function, the function could be

of this type what would you do next? Say you've decided it looks like a 

quadratic what would you do then?

64. M: Em I'd probably join the rest of the curve and find the find the intercept, I think

that should be it.

65. SE: Yes.

66. M: Use the values and put (them) in em ax2 + bx + c.

67. SE: Using a general formula.

68. M: Using a general formula, because I've got x and y values already.

69. SE: And then you would?

70. M: What do you mean, just to get to get the function?

71. SE: Yes.

72. M: I'd rearrange it, I think.

73. SE: So you'd have three simultaneous equations ...

74. M: Yes, yes.

75. SE: and you'd just use the techniques you are already familiar with to solve those?

76. M: Yes.

77. SE: OK and finally question 6 then please.

78. M: What I'd do, because I'm not sure what the graph looks like for this one ...

79. SE: Mm.
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80. M: because we've not done anything - any graph like that, so I'm not familiar with

it. I'd have to differentiate it at -5 to find the gradient and differentiate it at 5 to 

find the gradient and then see if there was a turning point in between, to see 

whether it was, to see if it had changed from positive or negative to negative.

81. SE: Right, OK so you wouldn't consider actually drawing a graph at all? You

wouldn't consider em substituting in values of x and then plotting the points 

and drawing it that way and then looking how the slope changes from the 

graph? You would just look at it symbolically?

82. M: Yes.

83. SE: OK right, thank you very much.

Julie

1. SE: OK so could you please tell me how you would solve question 1.

2. J: Em well I'd set it equal to zero to find where it crosses the x axis and then I'd

say that em x was between those two values.

3. SE: And how do you know that the curve would be below the x axis between

those values?

4. J: Because the x squared is positive.

5. SE: And that influences the shape of the graph, does it?

6. J: Yes.

7. SE: How does it do that?

8. J: It means it will be a bucket shape rather than a hill shape.

9. SE: OK and em question 2 then please.

10. J: (pause) Em I'd put them equal to each other and (pause) ...

11. SE: What would you do next?

12. J: (pause) I would try and get a quadratic equation em ...

13. SE: Could you do that?

14. J: I'm not sure em ...

15. SE: Because you got a cube term here, haven't you ...

16. J: Yes.

17. SE: You've also got a constant term, so you couldn't actually take a factor of x out.

18. J: No (pause)...

19. SE: Do you think that drawing graphs might help?
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20. J: Yes, yes it would.

21. SE: So if you got stuck trying to work it out symbolically, you might consider

drawing a graph?

22. J: Yes if  I could do it accurately to get the answer.

23. SE: So em what graphs would you draw?

24. J: Em the x3 and the x2 graph.

25. SE: And just have a look where they crossed one another and that would be the

answer?

26. J: Yes if I drew these graphs (pointing at the two functions).

27. SE: Yes. OK, question 3.

28. J: Well I'd draw both graphs and to make sure I use - whether to use and 3(x-2)

and 3(2-x)...

29. SE: Right.

30. J: and then put them equal to each other and find where they cross.

31. SE: OK so em what would the shape o f the modulus graph look like?

32. J: Em well it would be em a straight line it would be a reflection (pause) it would

be reflected.

33. SE: Yes. So what kind of shape would you get?

34. J: A V  shape.

35. SE: Yes. OK, so in this case you would just draw the graphs and see where they

intersect...

36. J: Yes.

37. SE: and then you would be able to see where this one (pointing at y = 3|x-2|) lies

above the other (pointing at y = 6x2).

38. J: Yes.

39. SE: OK you would just consider doing it graphically then, you wouldn't use a

symbolic approach?

40. J: Well I'd only sketch them.

41. SE: Right.

42. J: I wouldn't use it to find the exact values.

43. SE: So you'd be going to actually use a symbolic approach then.

44. J: Yes.

45. SE: OK, question 4 then please.
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46. J: Em well it would be a translation of -3 along the x-axis and a stretch of scale

factor three parallel to the y-axis.

47. SE: So you could actually picture the effects of the transformations without

actually having to draw the graph?

48. J: Yes.

49. SE: Question 5 then please, little bit different.

50. J: Em well em I'd plot the points and see what kind of a graph it would give you

em would it be possible to try different functions to see em how - whether 

they'd give you results like these?

51. SE: So you might try a linear function, a quadratic function depending how the

po in ts...

52. J: Yes.

53. SE: Fall. So you'd use a trail and error technique then?

54. J: Yes.

55. SE: You might try x2 + 3x + 4 and see how close that is and then try different

values, is that what you mean?

56. J: Yes.

57. SE: Do you think that there is any other way that you could, you could do it?

58. J: I think there is, but I'm not sure, I don't know it.

59. SE: So that's the technique that you would use, you would just guess ...

60. J: Yes.

61. SE: and hopefully each guess would inform the next guess, so eventually you

would hopefully get to an answer.

62. J: Yes.

63. SE: OK and finally question 6.

64. J: Em I try and draw the graph. I think that that would be the best way to do it -

just use the graph and look at how the slope changes.

65. SE: Yes, between those two points.

66. J: Yes.

67. SE: So you'd be able to tell by looking at the graph what's happening to the slope?

68. J: Yes.

69. SE: OK, thank you very much.
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Summary of Student Questionnaire Responses 

The Role of Mental Imagery and Visualisation in A Level Mathematics

R obert

1. Robert quite rarely makes use o f mental images in mathematical problems.

2. He constructs mental images to provide a basis for an algebraic method.

3. He usually formulates mental images at the beginning of a problem.

4. More involved mechanics problems involve greater use o f mental imagery for 

him.

5. A few statistical applications cause him visualisation difficulties.

6. He insists that visual solutions are encouraged in class, although he “generally 

attempts to ignore such suggestions”.

7. Robert prefers to work symbolically, since he “generally find this less prone to 

error”.

8. Robert fairly frequently combines different approaches, as “a visual approach is 

most effective as a foundation for a symbolic solution”.

9. The ability to perform symbolic manipulations is regarded as being most useful.

10. Robert classifies himself as a non-visualiser.

11. He considers his visualisation powers to be good overall.

12. He stresses that he “always tends towards a symbolic argument”.

13. He describes a visual solution as one involving diagrams or a graph, however he 

believes “an algebraic solution to be more efficient and more accurate”.

Julie

1. Julie fairly frequently makes use of mental images in mathematical problems.

2. She constructs mental images to further her understanding o f problems - “they can 

tell me how the graph of an equation behaves or what might happen to a body 

when forces act upon it”.

3. She usually formulates mental images at the beginning of a problem.

4. Certain pure and mechanics problems are considered to involve greater use of 

mental imagery by Julie. However, she states that “mental imagery does not seem 

to help in statistics”.

5. Statistics questions cause Julie visualisation problems.
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6. She insists that visual solutions are “definitely” encouraged in class, and that 

diagrams are considered to be “essential” in mechanics.

7. She prefers to work symbolically, although she “visualises things more 

often”. In explaining this preference she states “I tend to get the right answers 

when I work symbolically more often than when I visualise. It can be very 

difficult to work visually”.

8. Different approaches are always combined by Julie, as “usually one method alone 

is not the best way to tackle a problem”.

9. The ability to perform symbolic manipulations is regarded as being most 

important, “as long as you use enough visualisation to know what you are doing”.

10. Julie considers herself to be a visualiser.

11. She considers her visualisation powers to be fair  overall.

12. Julie, where possible, will use a symbolic argument but believes that “examiners 

like to see diagrams”.

13. She describes a symbolic solution as “a worked answer without diagrams”. She 

sees visualisation as “occurring on paper or in the mind”.

Martin

1. Martin fairly frequently makes use of mental images when solving mathematical 

problems

2. When mental images are constructed by Martin, they are used as tools for meaning 

making and verification -  “I can imagine how points may fall on a graph to see the 

kind of result I should expect to get on paper”.

3. He usually formulates mental images at the beginning of a problem.

4. Applied subjects like mechanics, “where it's modelling a real system” are 

considered to involve greater use of mental imagery. However, when Martin is 

unfamiliar with a problem, imagery may not be used.

5. When asked about areas that cause visualisation difficulties Martin re-iterated that 

“when I am not used to the type o f problem, it is not easy to relate it to a graph or 

system, so I would only use algebra”.

6. Martin insists that visual solutions are encouraged in class, although he would 

“probably try to learn an algebraic method first, until” he was “comfortable” with 

his “understanding of the methods”, so he “may not take as much notice of 

learning a more visual approach”.
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7. Martin indicates that initially he prefers to work symbolically, stating that “when I 

am comfortable knowing how the methods work symbolically I would then find it 

easier to visualise it, as I can check that I am visualising it right”.

8. Martin fairly frequently combines different approaches because if  he “fully 

understand the problems” he “can visualise a solution, and then write it down with 

proof, algebraically”.

9. The ability to successfully visualise a problem is regarded as being very 

important, as Martin believes that “you need a more thorough understanding of the 

subject”.

10. Martin considers himself to be a visualiser.

11. He considers his visualisation powers to be good overall.

12. Martin “usually uses a symbolic solution, as this is a clear method to show in 

writing and to check”.

13. He describes a visual solution as one “using a graph or model of the problem”. A 

symbolic solution “involves algebra”.

Jason

1. Jason fairly frequently makes use of mental images when solving mathematical 

problems.

2. When mental images are constructed by Jason, they are used as tools for meaning 

making and verification -  “they help in the application o f the mathematical 

equations involved and also to check the answers I get, whether they are realistic 

or not”.

3. Jason usually formulates mental images at the beginning of a problem.

4. Pure and mechanics questions are considered to involve greater use o f mental 

imagery. Jason rarely uses imagery in statistics.

5. There are no particular areas that cause Jason specific visualisation difficulties, 

although he states that “in statistics imagery is not often helpful”.

6. Jason insists that visual solutions are encouraged in class, “mostly in mechanics”.

7. Jason tends to combine working symbolically with working visually, as “they 

complement each other”. Such an approach would involve “firstly finding an 

approximate visual answer, then applying the equations to find an exact answer”.

8. Jason thus always combines different approaches.
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9. The ability to choose one particular method, or both, where appropriate is 

regarded by Jason as being most important.

10. Jason considers himself to be a visualiser.

11. He considers his visualisation powers to be good overall.

12. It is often obvious that Jason has used a visual method, for it may be drawn as part 

of his solution.

13. Jason describes a visual solution as one involving a graph or diagram and a 

symbolic solution as one involving equations.

Diane

1. Diane always makes use o f mental images when solving mathematical problems.

2. She finds mental images very helpful in problem solving.

3. She uses mental imagery for basic calculations (addition, subtraction, 

multiplication and division).

4. For Diane, basic calculations require the use of mental imagery.

5. The graphs o f sine, cosine and tangent are difficult for Diane to visualise.

6. Diane insists that visual solutions are encouraged in class.

7. No comment is made regarding a preference for symbolic or visual methods.

8. Diane sometimes combines different approaches.

9. The ability to perform symbolic manipulations is regarded as being most important.

10. Diane considers herself to be a visualiser.

11. She considers her visualisation powers to be fair overall.

12. No comment is made regarding the use of visual processes in written solutions.

13. Diane describes a visual solution as one “direct from the brain without any paper 

work”. A symbolic solution “needs paper to work it out”.

Rachael

1. Rachael sometimes makes use of mental images when solving mathematical 

problems.

2. When mental images are constructed by Rachael, they are helpful if  “she draws 

them out”, and “only i f ’ she “draws them reasonably accurately”. Images are 

especially helpful in mechanics.
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3. Mental images are usually formulated by Rachael, for example, after rearranging 

an equation to help find where lines cross, although not at the beginning of a 

problem, as she considers this to be “often too complex”.

4. Mechanics problems and problems involving functions and equations are 

considered to involve greater use of mental imagery. Although, she feels that in 

statistics, imagery is very useful for the normal distribution.

5. Some pure mathematics that she finds “a bit abstract” cause her visualisation 

difficulties. For example, for “equations with lots of trigonometric functions, I 

can't really visualise the graphs”. Some statistics can, also, be hard for her to 

visualise.

6. Rachael insists that visual solutions are encouraged in class; in pure -  

functions/graphs, in mechanics - diagrams, and in statistics - normal distributions.

7. Rachael finds working symbolically “easier”, although recognises that it is 

“sometimes quicker to work things out with just numbers”. She would “like to do 

more maths visually” but “can't apply” such an approach “to some situations, for 

example, the abstract”.

8. Rachael fairly frequently combines different approaches. When doing graphs, she 

draws out sketches and uses them to help her with the equation. These are, also, 

useful for checking answers.

9. Neither the ability to perform symbolic manipulations nor the ability to visualise is 

regarded by Rachael as being of greater importance and she states “you have to be 

good at both, each will help give a balanced approach to maths”.

10. Rachael considers herself to be a visualiser.

11. She considers her visualisation powers to be fair  overall.

12. In mechanics it is not very obvious that Rachael has used visual processes, 

although she often draws diagrams. She, also, usually draws out the graphs in her 

solutions.

13. Rachael describes a visual solution as one involving a graph or diagram and a 

symbolic solution as one containing equations or numbers.
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Analysing the Effects of Technology in the A Level Mathematics Classroom

Robert

1. Robert believes that technology is “very useful in speeding up calculations”, 

however, he would “prefer to know how to carry out calculations on paper before 

using alternative technology”.

2. He feels that he has benefited to a “small extent” from the opportunity to use the 

TI-92. It has given him “greater experience of the technology applicable to 

mathematics”.

3. Robert does not feel that the TI-92 has enabled him to visualise functions more 

clearly, as he has “already had reasonably extensive experience o f visualising 

functions”.

4. Similarly, he does not believe that using the TI-92 has strengthened his 

understanding of functions - he does not “need the aid o f a graphical calculator”, 

since he “prefers to use the ideas o f transformations”.

5. This experience will “possibly” influence his approach to solving problems 

involving functions in the future. He may “use graphical methods more when 

solving the more involved problems”.

6. He considers the main advantages of using technology to teach the concepts of 

functions to be that “technology will graph very quickly and help students to 

recognise and visualise characteristics of many functions”.

7. As a disadvantage, Robert believes that “the concept of functions is best taught in a 

more traditional manner, so students might gain a more profound understanding of 

the field”.

8. He would “possibly” welcome further use o f technology, although he stresses that 

“technology is useful as an aid for analysis, yet understanding is best developed 

through algebraic methods”.

9. Robert felt unable to offer any preference for using either a graphical calculator or 

computer, as he has not, as yet, used a computer in his A level mathematics 

lessons.

10. The materials and exercises were considered to be “quite helpful”, however, 

Robert prefers to “experiment on a trial and error basis, with the use o f an 

instructional manual”.
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Julie

1. Julie believes that “a graphical calculator can be extremely useful” in the A level 

mathematics classroom.

2. She feels that she has benefited from the opportunity to use the TI-92, as “its 

graphical capabilities are greater” than her “calculator's own”.

3. Julie does not feel that the TI-92 has enabled her to visualise functions more 

clearly, as “having already got a graphical calculator” means she “can do this 

already”, as she has been “using it for a while”.

4. Similarly, she does not believe that using the TI-92 has strengthened her 

understanding of functions - she was “taught how to do transformations before, and 

had to learn all the basic graphs anyway”.

5. This experience will not influence her approach to solving problems involving 

functions in the future, as her “methods are usually visually based already”.

6. She considers the main advantage o f using technology to teach the concepts of 

functions to be that “students are free to spend time manipulating the different 

graphs of functions to learn how they work”.

7. As disadvantages, Julie suggests that “students must be taught how to use the 

equipment” which “is expensive”.

8. She would welcome further use o f technology, as “visualisation does give a good 

basis for solving a problem and can make certain ideas clearer to students”.

9. Julie also felt unable to offer any preference for using either a graphical calculator 

or computer, as she has not, as yet, used a computer in her A level mathematics 

lessons.

10. The materials and exercises were considered to be adequate -  “the instructions for 

use ensure that you are able to work through the exercises without difficulty and all 

the instructions necessary are given”.

Martin

1. Martin believes that “technology such as calculators are almost essential” in the A 

level mathematics classroom. In addition, he feels that “graphic calculators 

/computers can be helpful and speed up calculating answers” although he stresses 

that “if they are used all the time it would be harder to work without one”.

2. He feels that he has benefited from the opportunity to use the TI-92 -  “the TI-92 is 

useful because it can simplify equations so can help check answers. Graphs are
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easy to understand when seen plotted and it has helped me to see how graphs can 

be manipulated”.

3. Martin feels that the TI-92 has enabled him to visualise functions more clearly, 

although if  he does not “fully understand” the mathematics “it can be confusing” 

when the machine “gives an unexpected result”. He, also, comments that the TI-92 

has “definitely” helped him to “see how functions can be related and manipulated 

through translations and stretches”.

4. Martin, also, feels that using the TI-92 has strengthened his understanding of 

functions - when he “understands the theory behind the functions it helps to see 

how the graphs work on a screen”.

5. This experience will influence his approach to solving problems involving 

functions in the future, as he feels that he will be “more comfortable in using a 

visual method such as plotting points and drawing sketches when solving 

problems”.

6. Martin considers the main advantage o f using technology to teach the concepts of 

functions as “the ability to quickly see how a function will change with certain 

things happening to it”.

7. As a disadvantage, he suggests that “it is harder to take notes or revise from a 

lesson where lots of work was done using a calculator, as either the original 

functions or printouts were used”.

8. Martin would welcome further use of technology. He feels that “using technology 

for demonstrating things in mechanics” would be a particular advantage and that 

“any other uses would be an advantage”.

9. He would prefer to use a computer, despite their size, “because of the printer and 

better display”. Although, he does appreciate that graphical calculators “have an 

advantage of being portable” they unfortunately “have limited display resolution 

and can't print out”.

10. The worksheet and demonstrations were thought to “provide enough information 

to learn the functions of the calculator and they, also, helped to revise and learn 

methods of solving equations”.
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Summary of Staff Questionnaire Responses 

The Role of Mental Imagery and Visualisation in A Level Mathematics

Ms. Slater -  Statistics Teacher

1. Ms. Slater believes that it is “helpful” for students to be able to visualise 

mathematically at this level, “but not essential”- “if  students can work 

symbolically and succeed, then the visualisation can come later”.

2. She encourages the use of visual solutions in her A level mathematics lessons and 

seems to associate visual approaches with the use of graphical calculators -  “I 

usually use graphical calculators very early on in the A level course. This seems to 

encourage some students to obtain their own calculators”.

3. She has not been involved in the teaching of functions.

4. She has no preference for working either symbolically or visually. She was taught 

to work symbolically, but now works visually as well.

5. Neither the ability to perform symbolic manipulations nor the ability to visualise is 

regarded by this teacher as being of greater importance - they are seen to be of 

equal weight.

6. Ms. Slater considers herself to be a visualiser.

7. She feels unable to comment on the visual capabilities of this group o f students as 

she teaches statistics.

8. Technology is regarded as “quite important” in supplementing and enriching 

students' visual capabilities, although she feels that “the benefit would be greater if  

all students had access to the technology at times other than lesson times”.

9. Technology is used “quite often early on in the course” and “less so as we proceed 

to the 2nd year”. “Many students do not have graphical calculators and are 

reluctant to use them as time goes on”.

10. No comment is made regarding more frequent use of technology.

Ms. Mooney - Mechanics Teacher (with some pure mathematics)

1. Ms. Mooney believes that it is important for students to be able to visualise 

mathematically at this level.

2. She encourages the use of visual solutions in her A level mathematics lessons.
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3. When teaching functions to year twelve students she spends “more or less equal 

amounts of time” on the graphical, symbolic and numerical aspects, although she 

does “stress graphical aspects more”.

4. She prefers to work visually, since this “conveys more information” and is “easier 

to interpret”.

5. The ability to perform symbolic manipulations and the ability to visualise are 

regarded by this teacher as being of equal importance -  “the ability to perform 

symbolic manipulations depends on good logical thought processes and sequential 

ordering”.

6. Ms. Mooney considers herself to be a visualiser.

7. She regards the visual capabilities of this group o f students as “not particularly 

good on the whole”. Although she emphasises that “some are obviously better than 

others” and that “the Chinese student (Diane) seems to have particular difficulty”.

8. Technology is regarded as “very” important in supplementing and enriching 

students' visual capabilities, although “familiarity obviously helps” and “using 

technology means it is easy to become very familiar”.

9. As Ms. Mooney “mostly teaches mechanics with this group”, technology is not 

used “a great deal”. She tends to use technology “much more when teaching pure”.

10. If possible she would use technology more often with her A level students, stating 

that “having a classroom computer equipped with good software would help”.

Mr. Pearson -  Pure Mathematics Teacher

1. Mr. Pearson believes that it is important for students to be able to visualise 

mathematically at this level -  “at this level most topics are a combination of 

symbolic and visual i.e. graphical and diagrammatic techniques”.

2. He encourages the use of visual solutions in his A level mathematics lessons and 

also seems to associate visual approaches with the use o f graphical calculators -  

“most students have access to a graphical calculator to graph functions and these 

are used in conjunction with other techniques of analysis. Diagrams, sketches, 

wave-forms, triangles etc give an indispensable part o f most solutions”.

3. When he teaches functions to Year 12 students the “symbolic aspects predominates 

initially then the graphical and numerical aspects gain equal weighting”. He 

emphasises that “the functions topic requires both o f these approaches be covered
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in any case as the symbolic dictates understanding of the domain, range, graphical 

relationships etc”.

4. He does not express a preference for working either symbolically or visually -  “a 

diagram accompanies almost all" of his solutions and "in many cases is an integral 

part of the technique for solving a problem”. He believes that “the symbolic and 

visual aspect o f mathematics are inextricably linked”.

5. He comments on the current emphasis on the ability to perform symbolic 

manipulations -  “symbolic manipulation is the stumbling block for most would-be 

mathematicians, and in many cases causes the most anxiety. Even if  a problem is 

visualised the technique for solving invariably requires algebra - and this causes 

most o f the mistakes, errors and incorrect solutions”.

6. Mr. Pearson positions himself in the middle of the continuum between visualiser 

and non-visualiser.

7. He regards the visual capabilities o f all six o f these students as “good, 

complemented by regular use of graphical calculators”. He adds that this is a “very 

good group of further mathematicians”.

8. Technology is regarded as of “growing importance in the teaching and enriching of 

mathematics in general”. In particular, “visual capabilities are supplemented and 

learned by the use of technology”.

9. Graphical calculators are used quite regularly in Mr. Pearson’s lessons, since 

“graphical calculators are increasingly available”. However, “computers have 

never been successfully provided as a resource for maths teaching always being 

distant and dominated by IT teachers and their needs”.

10. “Given adequate training and time to learn the technological side so that one had 

confidence in using the hardware and software packages” this teacher would 

“welcome the more frequent use of technology with A level students”. He stresses 

that “I have been teaching maths for 13 years and in every single year technology 

in the math curriculum has been an issue - but no-one has ever put the cash in to 

develop IT within maths”.
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Summary of Student Questionnaire Responses 
The Role of Mental Imagery/Visualisation in A level Mathematics

In the analysis that follows the total number of students is 17 (13 male and 4 female). 
However, it is important to note that for some questions certain students’ responses 
were included in more than one category of analysis and that there were occasions 
where no responses were given.

Question 1
How frequently do you form and make use o f mental images when solving 
mathematical problems? Please circle the appropriate response.

Always Fairly Frequently Sometimes Quite Rarely Never

Male Female
Fairly Frequently 3 3

Sometimes 8 0
Quite Rarely 2 1

Question 2
If  you do construct mental images, how do you feel these images assist you in problem 
solving?

Male Female
To see the problem more clearly 7 3
To verify or inform symbolic answers 1 2
To help with particular areas of mathematics 1 0
To make clear relationships 1 0
To set out and organise the information in 
the question in a useable format

1 0

To save time 1 0
Offers an alternative approach to problem 
solving

1 0

Question 3
At what stage during problem solving do you usually find it necessary to formulate 
mental images?

Male Female
At the beginning of the problem 5 3
When experiencing difficulty 
finding a solution

4 1

Depends on the perceived 
complexity of the problem

4 0

Not immediately -  need to 
examine problem first to 
formulate algebraic understanding

1 1

Depends on the type of problem 1 0
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Question 4
Does the type of problem or topic area effect your use of mental imagery? (For 
example, are there certain areas of mathematics in which you use mental imagery more 
often?)

Male Female
Graphs and functions 6 2
Geometry 5 2
Shapes 2 1
Sequences 2 0
Inequalities 1 0
Negative numbers 1 0
Statistics 1 0
More complex or new problems 1 0
No difference 1 0

Question 5
Are there any particular areas of mathematics that you find difficult to visualise?

Male Female
Graphs of functions 5 0
Sequences and series 3 1
Inequalities 1 0
Shapes 1 0
Mechanics 1 0
Large numbers 1 0
Negative numbers 0 1
Factorisation 0 1
No difficulties 1 0
No response 1 1

Question 6
Are visual methods of solution encouraged in your A level mathematics lessons?

Male Female
Encouraged for some topics 5 3
Used to explain new concepts 2 0
Encouraged for harder questions 1 0
Encouraged use at the beginning 
of problems

1 0

Encouraged if written down 1 0
Encouraged with substantiation 0 1
Encouraged voluntarily, not 
enforced

1 0

Not specifically emphasised 2 0
Not encouraged 1 0
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Question 7
Do you have a preference for working either symbolically or visually? Please explain 
your response.

Male Female
Symbolically 5 1
Visually 1 1
No preference 7 2

Question 8
In general, how often do you combine different approaches (such as visual and 
symbolic) when solving individual mathematical problems? Please circle as 
appropriate.

Always Fairly Frequently Sometimes Quite Rarely Never

Male Female
Fairly Frequently 5 2
Sometimes 9 2

Question 9
In order to become a successful mathematician which do you regard as most 
important, the ability to perform symbolic manipulations or the ability to visualise 
mathematically?

Male Female
Symbolic manipulations 6 1
Ability to visualise 2 0
Neither 5 3

Question 10
How would you classify yourself essentially? Please indicate where you would place 
yourself on the following hypothetical continuum by marking the line with a cross.

Visualiser I----------------------------------------------------------------------------- 1 Non-visualiser

Male Female
Visualiser 7 3
Non-visualiser 6 1
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Question 11
How would you rate your visualisation powers overall? Please circle the appropriate 
response.

Very good Good Fair Poor

Male Female
Very good 1 0
Good 4 3
Fair 6 2
Poor 2 0

Question 12
If  you do make use o f visual processes is this always obvious in your solutions, or do 
you tend to use a different argument for written purposes?

Male Female
Obvious 5 2
Sometimes apparent 2 0
Not obvious / written 
symbolically

5 1

No response 1 1

Analysing the Effects of Technology in the A Level Mathematics Classroom

In the analysis that follows the total number o f students is 16 (12 male and 4 female). 
However, it is again important to note that for some questions certain students’ 
responses were included in more than one category of analysis and that there were 
occasions where responses were not given.

Question 1
How important, in your opinion, is technology in the A level mathematics classroom?

Male Female
Very important 4 1
Important 1 1
Fairly important 3 1
Not very important 4 1

Students regarded technology as important because of the following reasons:

Male Female
Speeds up work 4 4
Reduces errors/more accurate 1 1
Allows more work to be done 1 0
Helps when checking answers 1 0
Introduces different ways to 
approach problems

0 1

Helps with difficult work 1 0

LXXI



Question 2
Do you feel that you have benefited from the opportunity to use the TI-82?

Male Female
Beneficial for learning about functions and graphs 5 3
Beneficial to learn how to use technology 3 1
Made working quicker/easier 1 3
Beneficial for learning new methods o f solving 
problems

1 0

Given confidence in using graphical calculators 0 1
Allowed access to harder equations 0 1
Beneficial only if  graphical calculators are made 
available in future lessons

1 0

Beneficial although it will be more difficult to solve 
functions without using a graphical approach in the 
future/some understanding has been taken away from 
the algebra

2 0

Have own graphical calculator already 2 0

Question 3
Has the TI-82 enabled you to visualise functions more clearly?

Male Female
Yes, by enabling you to draw several functions and 
thus to recognise the graphs

5 2

Yes, the graphic calculator sketches are clear, accurate 
and easy to produce which helps with visualisation

3 0

Yes, the graphic calculator has enabled me to see the 
graphs of functions more clearly

2 1

Yes, by helping me to imagine what graphs look like 
just by looking at the formula of the function

0 1

Yes, especially the more complex functions 1 0
Yes, without the graphical calculator I think that I 
would have struggled, I find it hard to visualise graphs 
and shapes

1 0

Question 4
Do you believe that using the TI-82 has strengthened your understanding o f functions?

Male Female
Overall understanding of functions has improved 3 1
Has helped with the understanding of particular 
aspects of the work with functions, e.g. inverses, 
transformations, recognising graphs of families of 
functions, uses

3 3

Being able to visualise functions quickly has allowed 
more exploration of the subject, and has thus helped 
understanding

2 0

For complicated functions, any mistakes are 
highlighted and you are able to see what you are 
working with

1 0
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Graphical skills have been strengthened but symbolic 
skills have not

3 0

Functions can be pictured clearly, but less thought 
about the functions is required

1 0

The technology only strengthens understanding once a 
certain level o f initial understanding has been reached

1 0

Question 5
Will this experience influence your approach to solving problems involving functions 
in the future?

Male Female
Yes, a more graphical/visual approach will be adopted 3 1
Only if  given access to a graphical calculator 2 1
Possibly depending on the situation 1 1
Would use a graphical calculator in future if  possible 1 1
Yes, as a means of verifying symbolic methods 1 0
Have own graphical calculator and so am used to using 
a graphical approach already

2 0

No, this experience will not change the way I approach 
problems

1 0

No response 1 0

Question 6
What do you consider to be the main advantages of using technology to teach the 
concept of functions to students, such as yourselves?

Male Female
Problem solving becomes quicker/ more work can be 
done

3 4

Clear accurate solutions are provided which minimises 
confusion

2 0

Enables you to try many different examples 2 0
Helps with understanding the translations of functions 2 0
It is easy to sketch graphs on the graphical calculator 
and removes the need to draw graphs by hand

1 1

Offers an alternative approach to algebra 1 0
Beneficial for those who find visualisation difficult 1 0
Gives everyone the opportunity to obtain the right 
answer from which understanding can be developed

1 0

Using technology is enjoyable and motivational 1 0
The technology enables the teacher to quickly show 
examples to the class, which otherwise might not be 
possible due to time constraints -  a situation which 
could contribute to student confusion

1 0

Good to have a better understanding of technology for 
the future

1 0
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Question 7
What disadvantages do you perceive?

Male Female
Becoming too reliant on the technology and 
experiencing difficulty in working things out without it

8 1

Being drawn away from algebra and theory 4 0
Will do less working out and less mental/manual 
problem solving

1 1

Having to know how to use them properly 0 2
Expense 0 1
Easily misused or played with in lesson 1 0

Question 8
Would you welcome further use of technology for exploring different areas of 
mathematics?

Male Female
Further use of technology would be welcomed if 
beneficial

7 1

Use of graphical calculators is enjoyable and 
interesting, and would be welcomed again

1 2

As technology helps understanding future use would 
be beneficial

1 1

Any technological skills are important and useful 0 1
Future use of technology would be welcomed as a 
whole class activity

1 0

Future use would be encouraged but only in specific 
areas, to avoid taking the skill out of mathematics

1 0

Technology would be welcomed but not too much as 
students may become over reliant on the machines

0 1

Future use of technology would not be welcomed as 
too little thought is required

1 0

Question 9
Do you have any preference for using a graphic calculator in your A level mathematics 
lessons rather than a computer, or vice versa?

Male Female
Prefer graphical calculator -  more portable and 
compact

6 1

Prefer graphical calculator -  more accessible 3 0
Prefer graphical calculator -  easier to operate 3 0
Prefer graphical calculator -  specifically set up with 
mathematical functions, despite more advanced 
software and greater memory associated with 
computers

1 0

Prefer graphical calculator -  but a computer may 
show clearer images/have more functions

1 1

Prefer computer -  it covers more areas in 
mathematics

1 0
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No preference for either 1 2
Not familiar with computers 1 1

Question 10
How helpful have you found the materials and exercises designed for use with the TI- 
82?

Male Female
Very helpful/assisted understanding 2 2
Helpful in exploring functions and applications of 
the TI-82

3 0

Quite helpful in looking at a new way of exploring 
functions

1 0

Covered a wide range of knowledge 0 2
Great use of overhead projector 1 0
Useful for finding functions on my own graphical 
calculator

1 0

Very good but repetitive towards the end 1 0
Fairly helpful but not enough detail is given and 
sections were covered too quickly

1 0

Good but would have liked answers to check work 1 0
Useful but the wording is sometimes confusing 1 0
Prefer teacher led explanations rather than working 
with a sheet of examples

0 1

Question 11
If  you had permanent access to a graphical calculator do you think this would have 
affected the way in which you answered the student interview questions?

Male Female
The graphical calculator would have been used to 
answer more questions as this experience has 
resulted in increased confidence in using the 
technology

1 2

The graphical calculator would have been used to 
speed up the calculations

1 1

The graphical calculator would have made the 
questions easier to complete

2 0

The graphical calculator would certainly have been 
used more

1 1

The graphical calculator would help with working 
out, checking answers and experimentation

2 0

Graphical solutions would be considered before 
algebraic approaches as visual understanding of the 
problem would improve

1 0

Some questions would have been solved on the 
graphical calculator -  others would still be 
easier/preferable to do symbolically

2 0

The graphical calculator would make no 
difference/already have own graphical calculator

3 0

No response 1 0
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Question 12
Have you felt that use of the graphical calculator has encouraged group discussions 
(paired or whole class)?

Male Female
The graphical calculator has encouraged paired 
discussions

4 1

The graphical calculator has encouraged small 
group discussions

6 2

The graphical calculator has encouraged whole 
class discussions

1 0

The graphical calculator has encouraged 
discussions in general

1 0

The graphical calculator has had no particular 
effect on discussions -  neither encouraging or 
discouraging

2 0

The graphical calculator has not encouraged group 
discussions

0 2

The graphical calculator promotes individual work 1 0

Table 18 Comparison between phases of the students’ views surrounding visualisation
Phase 1 Phase 2 Phase 3

Images are used to derive meaning from the question N/A 67% 65%
Images are generally formed at the beginning of 
problem solving

N/A 83% 47%

Images are generally formed when experiencing 
difficulty finding a solution

N/A 17% 29%

Images are formed depending on the complexity of the 
problem

N/A 17% 24%

Images are not formed immediately. Symbolic 
understanding is sought first.

N/A 17% 12%

Students prefer working symbolically N/A 50% 35%
Students prefer working visually N/A 0% 12%
Students have no particular preference for working 
either visually or symbolically

N/A 50% 53%

Students believe that symbolic skills are more 
important in becoming a successful mathematician

N/A 50% 41%

Students believe that visual abilities are more 
important in becoming a successful mathematician

N/A 17% 12%

Students feel that visual abilities and symbolic skills 
are equally important

N/A 33% 47%

Students classify themselves as visualisers 62% 83% 59%
Students classify themselves as non-visualisers 31% 17% 41%
Visual methods of solution are apparent in written 
solutions

N/A 33% 53%
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Table 19 Comparison between phases of how students viewed the use of technology
Phase 1 Phase 2 Phase 3

Technology is viewed as a valuable addition to the A 
level mathematics classroom

77% 100% 81%

Using the graphical calculator was seen to be 
beneficial to the students’ learning about functions

92% 100% 81%

Using the graphical calculator promoted the students’ 
abilities to visualise the graphs of functions

92% 33% 100%

Using the graphical calculator strengthened the 
students’ understanding of functions

92% 33% 75%

Amplification effects were considered to be key 
advantages o f using the graphical calculator

77% 100% 56%

Cognitive factors were considered to be key 
advantages o f using the graphical calculator

23% 33% 56%

The role o f the graphical calculator in providing a 
means o f verification was considered to be a key 
advantage o f using this technology

31% 0% 6%

Students feared over reliance on technology 62% 66% 81%
Students would welcome further use of technology 92% 100% 94%
The students’ experiences in this trial would influence 
future work

N/A 66% 75%
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Student Interview

Please describe how you would attempt to solve the following questions:

1. For which values o f x is the graph of y = 3x2 + 9x - 12 below the x-axis?

2. For which x values does the graph of y = 3x + 6 intersect with the graph of 
y = 2x2 + 5x?

3. Find the values of x for which the graph o f y = x2 - x + 4 lies above the graph of 
y = 4x -2.

4. Describe how the graphs of y = x2 + 3x - 2 and y = x2 + 3x + 2 are related. 
Similarly, what is the connection between the graphs o f y = x2 + 2 and
y = x2 + 2x + 3?

5. How does the slope of the function y = 2x - 3 change from x = -3 to x = 3?

6. When throwing a single biased dice, the probability o f getting a 2 is 0.1, a 3 is
0.12 and a 6 is 0.3. All the probabilities can be worked out using a particular 

quadratic formula. Explain how the probabilities o f getting 1, 4 and 5 can be 
deduced and how the quadratic formula could be obtained.

7. A car is started from rest and accelerates uniformly to a speed of v m/s in 12 

seconds. The speed is maintained for a further 55 seconds and then the brakes are 
applied and the car decelerates uniformly to rest. The deceleration is three times 
greater than the initial acceleration. Sketch the velocity-time graph and calculate 
the deceleration time.

The total distance travelled is 945m. Hence, calculate the value o f v and the initial 
acceleration.
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The Main Trial Exercises 
Graphing Functions using the TI-82

1. Compare the graphs o f cos x, 2cos x and 3cos x using the TI-82. Sketch the graphs 
and comment on the main features.

2. Repeat question 1 with tan x, 2tan x and 3tan x.

3. Compare the graphs o f cos x, 2cos 2x, 3cos 3x and sketch them. Explain why these 
three graphs do not cross the x-axis in exactly the same places.

4. Given that f(x) = x3, use the TI-82 to obtain the graph o f g(x) = f  (x/2). Sketch the 

two graphs and write down the equation of the new function, g(x).

Now use the TI-82 to perform the transformation g (x + 2) - 3 on g(x). Sketch the 
resulting curve, h(x) and again write down its equation, in the form ax3 + bx2 + cx + d.

Finally use the TI-82 to perform the transformation 2(h (x)) on h(x), sketching the 

curve; l(x) and writing down the resulting equation, as before.

0  1I10)5. Investigate the relationship between the functions y = 4x + 5  and y = (x - 5) using 
the TI-82. 2

6. What transformation when applied to the given graphs below form the second 

pictured graphs and what is the symbolic form of each of the new functions?

a) y = 1/x (ZoomStd)

L
b) y = 3x - 9 (ZoomStd) 

x2 + 4x
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c) y = cosec x (ZoomTrig - ZoomOut Factor 2.5)

d) y = 2x - 1 (ZoomStd) 
(x -1 )2

e) y = In (x +3) (ZoomStd)

.............

f) y = (1 +x)ex (ZoomStd)

7. Use the TI-82 to show that sin2x + cos2x = 1

8. Solve the following equations graphically and algebraically: 
a), x2 + 2x - 8 = 0 b). 8x2 + 4 = (x - 2)2

9. Solve the following inequalities graphically and algebraically:

a), x2 - 5x - 9 > 0 b). (x - 3)2 < 6x c). 6x - 3x2 <-15

10. Solve these simultaneous equations graphically and algebraically: 

x - 3 y =  16, x2 - 4y2 = 13
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11. Without using the TI-82 sketch the following functions (each pair on the same 
axes): a), y = x3 and y = 6x3 - 3 b). y = sin x and y = sin (x + 90°)

c). y = x2 and y = 2 (2 x - l)2 + 9 d). y = x2 and y = - (x - l)2 + 3

Explain in words how the second graph can be obtained from the first graph in each 
case. Now use the TI-82 to check whether your sketches are correct.

12. Use the TI-82 to try to determine by a process of informed trial and error the 
formula o f the function which is graphed below using ZoomStd. Explain the reasoning 
behind every step you make.

13. Match up the six graphs with their corresponding functions, chosen from the list 
below.

A. (ZoomTrig) B. (ZoomTrig) C. (ZoomStd)

D. (ZoomStd)

1. y = sin (x/3)

4. y = cos (x + 180°) 

7- y = (4 - x)2

10. y = cos (x + 90°)

13. y = ex_1 + 4

16. y = 21n x

19. y = (tan x)/3

'VA A :/YA A\ f  \r V . W  v

E. (ZoomStd)v
2. y = cos (x - 90°)

5 .y  = (x -4 )2

8. y = tan (x/6)

11. y = sin 3x

14. y = ln x 2

17. y = -In x2

20. y = (tan x)/6 
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F. (ZoomTrig)

6. y = tan (x/3)

9. y = (x + 4)2

12. y = In (1/x)

15. y = e '(x+1) + 4

18. y = -ex+1 + 4

3. y = 3sin x



Post Trial Staff Technology Questionnaire*
Analysing the effects of technology in the A level Mathematics Classroom

N am e____________________________________________________________________

Q1. What would you hope to gain most by using technology in A level mathematics?

Q2. Do you feel that the TI-82 has had any affect on students’ abilities to visualise the 
graphs o f functions?

Q3. What do you consider to be the main advantages o f using technology to teach the 
concept of functions to students?

Q4. What disadvantages do you perceive?

Q5. Do you see any future potential for using the TI-82 in your classroom?

Q6. Are there any ways in which the materials used in this project designed for use 
with the TI-82, aimed at enhancing students' visual capabilities, could be improved?

I would be grateful for any additional comments or suggestions:

* The pre trial staff questionnaire on visualisation was identical to that used in Phase 2.
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Student Performances in the Trial Exercises

The student’s solutions to the questions from the main trial exercises, were compared, 
evaluated and graded (see tables) with reference to the following criteria:

5 - Correct solution 2 - Poor solution, several errors and omissions
4 - One omission/error 1 - No understanding shown
3 - Two omissions/errors 0 - No solution offered

Table 20 Questions from the Main Exercises involving more than one Aspect
First Grade Second Grade

Q4 Accuracy of graphs Accuracy of symbolic forms
Q6 Identification of the type 

of transformation
Deduction of the symbolic form o f the 
transformation

Q8 Graphical solution Algebraic solution
Q9 Graphical solution Algebraic solution
Q10 Graphical solution Algebraic solution
Q ll Accuracy of graphs Accuracy of explanations concerning the actions of 

transformations

Table 21 Student Performances in the Main Exercises
Q1 Q2 Q3 Q4a Q4b Q4c Q5 Q6a Q6b Q6c Q6d Q6e Q6f

Carol 5 5 4 1 4 0 1 0 0 3 5 5 5 5 5 5 5 3 0 1 0 5
Claire 5 5 5 5 5 1 1 1 1 3 5 5 5 5 5 5 5 3 5 1 5 5
Fay 5 5 4 1 4 0 0 0 0 3 5 5 5 4 5 5 5 3 5 1 0 5
Jake 4 4 4 5 5 4 5 4 5 4 5 5 4 5 4 5 0 5 0 5 4 5
Jim 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Julian 4 4 4 4 5 3 4 0 0 4 5 5 4 5 5 5 5 3 5 5 4 5
Justin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Kirk 4 4 4 4 5 4 5 0 0 4 5 5 5 5 5 5 0 4 0 5 0 5
Marie 3 3 3 5 5 0 1 0 1 4 5 5 5 5 5 5 5 5 5 4 1 1
Marty 4 4 4 5 5 4 4 4 4 4 5 0 5 0 5 0 1 0 0 0 5 0
Mick 5 4 4 2 1 0 0 0 0 5 0 5 0 5 0 5 0 5 0 5 5 5
Marvin 3 3 3 5 5 0 0 0 0 2 5 0 5 0 5 0 5 0 5 0 5 0
Nigel 4 4 2 3 1 0 0 0 0 4 0 4 0 5 0 5 0 0 1 0 2 0
Paul 4 4 4 4 5 4 4 0 0 3 5 5 5 0 5 1 5 0 5 5 1 1
Perry 4 4 4 4 1 0 0 0 0 4 5 5 5 5 5 5 0 5 0 1 5 5
Pierce 3 3 3 5 5 0 0 0 0 2 5 0 1 0 5 0 5 0 5 0 4 0
Roy 4 4 4 5 5 1 4 4 4 5 0 5 0 5 0 5 0 1 0 5 0 5
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Table 22 Student Performances in the Main
Q7 Q8a Q8b Q9a Q9b Q9c Q10 Ql l a Ql l b Q l l c Ql l d Q12

Carol 5 5 5 4 4 2 1 0 3 0 2 0 2 0 0 0 0 0 0 0 0 0
Claire 5 5 5 1 3 5 5 5 5 3 1 0 2 4 0 2 0 1 0 0 0 0
Fay 5 1 5 2 3 3 3 4 5 3 1 0 2 4 0 2 0 4 0 4 0 0
Jake 5 0 4 0 5 0 2 0 2 0 2 0 0 4 0 4 0 1 1 1 1 5
Jim 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Julian 5 0 5 0 4 5 5 5 5 5 5 4 5 5 5 3 5 1 5 3 3 5
Justin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Kirk 5 0 5 0 5 0 5 0 4 0 4 0 1 3 0 3 0 3 0 3 0 0
Marie 5 5 5 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Marty 5 5 5 5 5 5 4 4 3 4 3 0 3 5 5 1 5 1 5 1 5 0
Mick 1 0 5 0 5 0 2 0 4 0 3 0 4 5 0 5 0 5 5 5 5 5
Marv 5 3 5 0 5 4 4 4 4 0 2 0 0 0 0 0 0 0 0 0 0 0
Nigel 0 2 5 2 5 0 2 0 0 0 0 0 0 4 4 4 4 1 1 4 2 0
Paul 5 5 5 1 4 5 5 5 5 3 2 0 5 5 5 4 4 5 5 5 0 5
Perry 1 0 5 0 4 0 1 0 3 0 2 0 5 5 5 4 5 5 5 5 5 5
Pierce 5 4 5 4 5 5 4 5 4 5 4 0 0 0 0 0 0 0 0 0 0 0
Roy 0 5 5 4 5 0 5 0 5 0 2 0 4 5 0 4 0 4 0 4 0 0

Exercises (continued)

The students’ work from their textbook exercises was also assessed. The grades that 
were awarded still ranged from 0-5, but also included half point credits to account for 
the fact that the students were being given one overall grade for each exercise that 
consisted o f several questions.

Table 23 Student Performances in their Textbook Exercises and Question 13 from the 
Main Trial Exercises

Exercise 3A Exercise 3B Exercise 3C Exercise 3D Identifying functions (Q13)
Carol 4 2.5 3 3 3.5
Claire 4 5 4.5 4 3.5
Fay 4 2.5 3 3 3.5
Jake 3 3.5 3.5 2.5 0
Jim 0 3.5 0 0 0
Julian 5 4 3.5 4 3.5
Justin 4 4.5 3 0 0
Kirk 3 3.5 3.5 3.5 0
Marie 3 4.5 3.5 5 3
Marty 3.5 4 4.5 4 4.5
Mick 4 4 3.5 5 4.5
Marvin 4.5 4.5 4.5 4.5 4
Nigel 3 4.5 3 2.5 2
Paul 3 4 3.5 4 4
Perry 4 3 3.5 3.5 4
Pierce 5 4 3.5 4 3.5
Roy 4.5 5 5 4.5 5
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Transcripts from Phase 3 
Classroom Discussions Surrounding New Function Concepts

The class had just been introduced to the modulus functions and were asked to use the 
graphical calculators to graph the function y = |2x -3 |:

1 SE Ok so before you actually graph it, I know some people 
might have done already, can anybody tell me where this is 
going to make the v shape? At what point on the x-axis will 
this make the v?

2 Marvin -3, when x is 0 -  What? Seemed confused.
3 SE Any other ideas?
4 Perry + 1.5.
5 SE + 1.5 and how did you come up with that?
6 Perry Well, if  you say 0 = 2x -3  and rearrange it you get 3 = 2x so 

x = 1.5.
7 SE Right so does everybody understand that? Let’s just get the 

graph up. So you’ve entered it, and then graph.
8 Marvin Wee. Oh right. Marvin imitated the 

graph being drawn.
9 SE You can see that it’s actually cutting here. Now what’s 

happening here is this is the line o f 2x-3 but for all the 
negative values the modulus makes them positive values. So 
what you’re doing is seeing where the line cuts the x-axis -  
where it is equal to zero and then these negative values 
become positive. So you want to get 2x -  3 equal to nought 
and then solve it and that would give you this point here.

SE used the LCD 
screen and OHP for 
demonstration.
The line y = 2x-3 was 
also drawn on the 
OHP.

10 Marvin It drew the wrong graph on mine. That’s why I gave you the 
wrong answer.

11 SE It drew the wrong graph?
12 Marvin Because I didn’t put the brackets in.
13 SE You didn’t put the brackets in. Well I was afraid o f that. Ok 

so remember use brackets when you are unsure.

The graphical calculators were then used to introduce the students to the idea o f odd 
and even functions:

1 SE The question is to determine whether the following 
functions are odd or even. So it’s probably a good idea to 
draw the graph and see which of these definitions it fits. 
So if  we go back to Y= and we clear what w e’ve got. The 
first one is y = x, enter that and graph it. Now looking at 
these definitions what kind o f function is that?
If it is even then it is symmetrical about the line x = 0 or 
the y-axis.

The class was silent.

2 Marvin It’s an odd function.
3 SE So is it symmetrical about the y-axis?
4 Class No.
5 SE No. Has it got half turn rotational symmetry about 0?
6 Class Yes mostly, some no’s.
7 SE Yes. So if you’ve got this piece then it does a half turn and 

it’s the same here, so this is an odd function. Right w e’ll 
have a look at the next one y = x2. So clear that.

SE demonstrated using 
the OHP and LCD 
screen.

8 Someone It’s even.
9 SE Right. Ok what kind is that?
10 Class Even.
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11 SE Even. It is symmetrical about the y-axis. Now the next 
one is y = x3 so w e’re going up. We did x 1, x2 now we’re 
looking at x3.

12 Roy Odd. It’s odd.
13 SE Right let’s just type it in -  you’re getting ahead of me 

again. Right that one is odd again because you’ve got this 
half-turn rotational symmetry about 0. The next one is x4.

14 Marvin Even.
15 SE Right so that one is even. So what we’ve got is y = x was 

odd, y = x2 was even, x3 was odd, x4 is even. So would 
anybody like to guess what x5 might be?

16 Perry Odd.
17 SE So these particular values follow this pattern. We’ll just 

check that, some o f you might have done this already. Ok 
so that follows that pattern. But then you are asked to 
actually look at y = 1/x. So we’ll go back and type that 
one in, graph it. What’s that one?

18 Class Odd.
19 SE That one is odd, yes. And the final one you are asked to 

draw is x 1/2. So type in x to the power -  you’ll have to put 
the half in brackets. What do you think about that one?

20 Someone Neither. Puzzled looks.
21 SE Neither, you are right. Not all functions have to be odd or 

even. This one hasn’t got half turn rotational symmetry so 
it’s not odd and it’s not symmetrical about the y-axis, so 
it’s neither. So sometimes in the examination you might 
be asked the question what kind o f function is this and you 
can draw it but you’ve got to remember that not 
necessarily is it either one of odd or even.

22 Marvin Is it called anything then?
23 SE No it’s not called anything.

The next whole class activity was to consider the actions of particular types of 
transformations, beginning with y = af(x):

1 SE Could somebody share their results with me?
2 Fay They go upside down when it’s negative.
3 SE They go upside down when it’s negative. Yes that’s 

one thing.
There were lots o f students 
offering suggestions at once.

4 SE OK can everybody just listen please, what did you 
say then?

Directed at Perry.

5 Perry When you use the negative prefix it’s reflected in the 
y = 0 line.

More formal mathematical 
explanation.

6 SE It’s reflected in the y = 0 line, yes that’s right. What 
were you going to say?

Directed at Marie.

7 Marie A reflection.
8 SE You were going to say it was a reflection as well. 

What about the actual slope o f the curve? What 
happens to it when you use another value o f a?

9 Marie The larger a is the steeper.
10 SE The larger a is the steeper.
11 Marvin As the modulus increases the steeper. The term ‘modulus’ had been 

introduced earlier in the same 
lesson.

12 SE As the modulus increases the steeper it is. That’s a 
good point, yes. One way o f describing this is as a 
one way stretch parallel to the y-axis and it’s factor 
a. You’ve all noticed the right things there. That’s 
really good.
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The students were then asked to comment on the effects of other types of 
transformations as they were being drawn. They graphed the functions individually 
using the graphical calculators and the over head projector was again used as a focal 
point for discussion and to bring ideas together. 

Discussion o f the transformation ffx) + a

1 SE So that gives you what y = 1/x + 3 would look like and what’s 
happened to that?

2 Julian It’s moved up.
3 SE It’s moved up and how many units has it moved up?
4 Class 3.
5 SE 3. And what do you think for the second one, without drawing 

it?
6 Class Moves down.
7 SE Moves down 3 again.

Discussion o f the transformation fifx + a)

1 SE So what’s happened to that one?
2 Fay It’s moved.
3 SE It’s moved.
4 Fay 3 units to the left.
5 SE 3 units across the x to the left. So what do you think will 

happen for x is —4, sorry x -4?
6 Jake It goes the other way by 4.
7 SE It goes the other way by 4 units. So you can see when it’s plus 

it goes to the left and when it’s minus it goes to the right.

Discussion of the transformation flax")

1 SE So we’ll finally have a look at the last transformation. 
Clear that w e’re looking at x3 to start with. So it’s 2nd 
draw, number 6, draw function and again we want it in 
this form. So what will I be typing in? What’s the first 
step?

2 Julian Y l.
3 SE Y1 Ok. So it’s 2nd vars, function Y l. What’s next?
4 Someone Bracket.
5 SE Bracket. The value in the first one is 2, so it’s 2x close 

bracket, enter. And what’s happened to that?
6 Marvin Steeper.
7 SE It’s got steeper. So I’ll let you continue and look at what 

happens for the other values in that example.
There was a lot o f 
discussion amongst 
individual groups o f  
students.

Following the initial class discussion, the students were asked to use the graphical 
calculators to further explore the effects of the transformations. The results were then 
drawn together in a concluding discussion:

1 SE Right so the first one we discussed that when we did it so 
w e’ll move on to the next one. What was -  remind us 
what happened here for this one when you’ve got f  (x)+a.

SE pointed to the form 
f(x) + a, written on the 
board.

2 Mick When it’s positive, when a is positive then it moves 
negative along the x-axis. And when it’s negative it 
moves positive along the x-axis.

Here Mick was 
confusing f(x) + a with 
f(x + a)
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3 SE Right. Did everybody agree with that, did everybody find 
that?

4 Class Some disagreement. Some students realised 
Mick had made a 
mistake.

5 SE So what you can actually say about that is that it’s a 
translation. It’s a movement and it moves by 0 in the x- 
axis and a is the y-axis, Ok. What about this one - here? 
What did you discover in that case?

SE clarified the effects 
o f f(x) + a.
SE pointed to f(x + a), 
written on the board.

6 Roy It moved along the x-axis in the opposite direction to the 
sign.

7 SE The sign o f the a. Yes that’s right. Did everybody else 
find that? Yes?

8 Class Agreement.
9 SE So that one you would call it a translation as well and this 

time it doesn’t move in the y it moves in the x. And what 
about the last one, where you’ve got y = f(ax)?

SE pointed at f(ax) on 
the board.

10 Roy When it’s positive it just gets closer to the x-axis and you 
get (pause).

11 SE You get?
12 Roy I’ve forgotten what it’s called. What’s that number?
13 SE The coefficient?
14 Roy The coefficient.
15 SE The coefficient.
16 Roy And as that gets larger it gets closer to the y-axis.
17 SE Yes.
18 Roy And if  it’s a negative number then it’s reflected in the x- 

axis.
19 SE Yes you’re right. Did everybody else find that?
20 Class Agreement.
21 SE So what you can say about that is that it’s a one way 

stretch parallel to the x-axis and it’s got a factor, scale 
factor o f 1/a. I’ll write these out for you so you can copy 
them down before you go. Em the final thing I wanted to 
say was if  you look at this here, y = (2x)3. How can you 
simplify that? Is there any way o f simplifying it?

SE introduced a more 
formal definition of  
this transformation. 
These definitions were 
written out on the 
board following the 
discussion.

22 Someone 8.
23 SE 8, yes. You could write that one as Sx\ cube the 2 and 

cube the x. So what about this one? Referring to (x/2)3
24 Marvin -8.
25 SE -8? I’m not sure how used to you are with...
26 Marvin Oh it’s 8.
27 Perry It’s 1/8.
28 SE It’s 1/8. This is the same as x/2 all cubed because it’s a 

half x all cubed.
29 Marvin Oh I’m looking at the wrong one sorry.
30 SE Oh that’s Ok. So it’s xJ/8 that’s another way o f writing it. 

And this one would be? Referring to (-lx )3
31 Class Some suggest lx 3 some suggest - l x \

32 SE lx J, or - lx J. So which one is it going to be, is it -xJ or
x3?

33 Marie Minus.
34 SE It’s minus because if you cube -1  it becomes -1 again. 

It’s: -1 times -1 is 1 times another -1 is -1, Ok?
35 Marvin Is this one -8 then? Referring to (-2x)J
36 SE And is this one -8? Yes.
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The class was asked to identify the family of functions to which a couple o f pre-drawn 
graphs belonged:

1 SE Can anybody suggest to me what the form o f that function would 
be?

Referring to the 
graph o f x3 -  4 on 
the OHP screen.

2 Marvin Tan. (Pause) xJ.
3 Class x3.
4 Roy It’s xJ - 4 .
5 SE Right you said tan at first...
6 Marvin No I ...
7 SE And that’s kind o f the shape that tan does take but because w e’re 

in this mode you can see that w e’re not in trig mode.
The graph was 
drawn in Zoom 
standard mode.

8 Marvin Yes, yes it’s not in trig mode.
9 SE So you think it’s x3 -  4?
10 Perry It might be 2x\
11 SE So how did you come up with that? What made you think o f that?
12 Mick It’s the shape o f the x .̂
13 Roy It’s the x̂  shape.
14 SE It’s the x3 shape.
15 Roy And it’s moved four down the y-axis.
16 SE And it’s moved four down the y-axis yes. So if  you wanted to 

check that -  you say it might be two.
17 Perry It might be two.
18 SE It might be 2xJ -  4. How would you check that?
19 Perry Draw it on here.
20 SE You would draw it on there and what would you compare it to?
21 Perry To xJ -  4.
22 SE x3 -  4, right. So you would be able to see using your graphical 

calculator which it was. And what about the other function. Can 
anybody guess the form o f that?

23 Julian 2 or 3xz.
24 SE It’s an x*, it looks like an xz. 2 or 3xz. So if that’s your initial 

thought then you would have to perhaps compare it with the 
ordinary x2.

25 Perry It might be x4.
26 SE It might be x \  So you have to check it out on the graphical 

calculator, all the possibilities that you think it might be and see 
which one matches up.

The class was busy 
using the TI-82’s 
to check their 
initial thoughts.

A class discussion was then initiated surrounding question 13 from the main exercises:

1 SE Picture A, what kind o f graph is that going to be?
2 Marvin Cosine.
3 Marie Sine.
4 SE It looks like sine or cosine, yes. It could be either 

one. What about B?
5 Marvin Sine or cosine again.
6 SE Sine or cosine again. So you’ve just got to look at 

the shape o f the curve and think oh this could 
possibly be this. What about the next one, C?

7 Class xz.
8 SE It looks like an xz and for some of the others you 

might have to draw the options to see which you 
can match up. So lets go back to A. Any ideas for 
picture A?
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9 Several
students

Sin x.

10 Perry Number 10 (y = cos (x + 90u)).
11 SE You think that it might be sin x and why did you 

say number 10?
12 Perry Because we haven’t got sin x, but cos (x + 90u) is 

the same as sine.
Perry was thinking along the 
right lines.

13 SE Cos (x + 90u) is the same as sin x?
14 Roy Yes, but the period is wrong.
15 SE The period is wrong? So there’s some 

disagreement there. So I think maybe you do need 
to draw them out and look at the...

Attempt to persuade the students 
to use the TI-82 to mediate their 
thinking.

16 Perry Cos (x + 180u) which is 4. Perry was influenced by Roy’s 
suggestion.

17 SE Cos (x + 180u) and why do you say that?
18 Perry Because if  you move cos (x + 180u) backwards it’s 

the same as sin x because the intervals are the 
same.

19 SE 1 8 0 -1  think you might have to check...
20 Marvin Utters disagreement with Perry.
21 Perry Every little peak, right. Its full peak is at 180° but 

the full cycle is at 360°.
22 Jake Miss it’s number 2 (y = cos (x -  90°)). You’re 

wrong Perry!
Jake was confident. The TI-82 
had confirmed this.

23 Marvin No he’s right Jake. Marvin changed his mind.
24 Perry So it will peak and go back to the x-axis every 

180°, because if you move that back 180°, it will 
peak in the gap before. It will.

25 Jake Because if  you, oh... Still thinking.
26 Mick It’s not 180 though. Mick had been using his TI-82 

to graph the functions.
27 Perry It is. Still confident.
28 SE I think we’ve got some people saying 180 and 

some people saying 90 degrees, so what I suggest 
you do, seeing that there is no consensus here is...

29 Mick That’s the graph at 180u it’s not the same as that 
one.

Mick showed Perry the graph on 
his graphical calculator.
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Small Group Discussions

Nigel and Marvin were discussing question 2 from the main trial exercises:

1 Nigel Marvin?
2 Marvin Yes.
3 Nigel Did you do number 2?
4 Marvin Yes you change the window.
5 Nigel That’s it?
6 Marvin -1 and 1.
7 Nigel Whaty?
8 Marvin No the x bit, you want x to be -  hold on I’ll tell you if  it’s 

worked. No it doesn’t seem to be.
9 JG Is that radians or degrees? James Green entered 

the conversation.
10 Marvin Erm no zoom. Just wait until it finishes.
11 JG Oh right.
12 Marvin It won’t take long. You have to change it to zoom trig then. 

It’s worked now. You have to be in zoom trig.
13 Nigel I did!
14 Marvin You did? All right then it doesn’t work if  you change it?
15 Nigel Still didn’t work!
16 Marvin Come here. Yes yours is right. Marvin grabbed N igel’s 

Calculator.
17 Nigel Is that right?
18 Marvin Yes.
19 Nigel How do you draw it?
20 Marvin Em...

Nigel was clearly having difficulty seeing the relationship between the graphs o f tan x, 
2tan x and 3tan x in question two, so I intervened:

1 SE What you might want to do is watch it draw them again and 
perhaps draw them individually rather than all at the same 
time. That might help you see the picture.
So if  you just de-highlight those. So you can see what that 
picture is like. You can draw that one and then you could 
try and see what the next one is. So if  you just graph that.

Nigel drew the first 
graph separately on the 
graphical calculator, as 
was suggested.
He then drew just the 
second graph.

2 Nigel Yes.
3 SE Can you see anything? I know that you haven’t got the 

other one to compare but with the shapes o f those lines, can 
you see anything?

4 Nigel Em, I’ve forgotten what it looked like the first time, so 
em...

5 SE Why don’t you just draw those two to start with and 
compare those.

6 Nigel Oh right yes, the...
7 SE What’s happened to it?
8 Nigel The second one is steeper.
9 SE Yes. So the third one, what do you think will happen to 

that?
10 Nigel It will be even less o f a sharp gradient. It will be -  it’s got 

to go through on the other side.
Nigel extrapolated the 
pattern incorrectly.

11 SE Are you sure that you’ve got these the right way round, 
which one’s the first one you drew? Can you remember?

12 Nigel Oh...
13 SE Just do it again, em zoom... That’s the first one.
14 Nigel Ah yes. So the third one would be even steeper.
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15 SE Yes. The next one comes in like that, so the next one 
follows the pattern and goes over that side. So you just try 
and draw those, the best you can. I know that it’s quite 
difficult because they’re very close together, aren’t they?

16 Nigel Yes.
So when you put the third one in -  the second one is steeper 
and the third one is even steeper.

SE departed.
Nigel repeated his 
conclusion for Justin.

17 Justin Mm.
18 Nigel Let’s draw it.
19 Justin Which one, this bit?
20 Nigel I don’t know. Both students sketched 

the graphs on paper.

Carol and Fay were attempting question three from the main trial exercises:

1 Fay The minus just like runs everywhere.
2 Carol I’ve got that. Carol pointed to her 

calculator screen.
3 SE Do you know what these points are? Referring to the 

divisions on the x-axis 
on the graphs in their 
solutions.

4 Fay Are they 90°, 180u?

5 SE Yes. So you just need to label them. What about this point 
though, there and then there and then there -  zero, ninety 
there’s a point that crosses there so that’s the 180° and that’s the 
next one. What’s the next one?

6 Fay 270u.
7 SE Yes, Ok.

I departed and Fay correctly labelled the axes for her cosine graphs, but made a 
mistake when labelling the axes of the tangent graphs:

8 Carol What’s that there? Spotting her mistake, 
pointing to the 
incorrectly labelled 
graph.

9 Fay Oh why have I put that there and there? One o f them is not 
there. Have you got a rubber?

Fay watched Carol 
working on the TI-82 
and began writing out 
an explanation for her 
findings.

10 Fay What do you call it? Would you call it a wavelength? Could 
you call it the wavelength?

11 Carol No it’s not right, it’s just like points.
12 Fay I know it’s just wiggles but...
13 JG Amplitude and wavelength. Wavelength.
14 Fay So could you call it a wavelength?
15 Carol The wavelength is the...
16 JG There’s no reason why -  the wavelength is from when it does 

one thing to when it does exactly the same thing in the same 
direction. So it’s from there to there.

James referred to the 
graph on the TI-82.

17 Fay Yes. In agreement.
18 Carol Yes. In agreement.
19 Fay So could you call it a wavelength?
20 JG Yes, yes.
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Julian and Kirk discussed the first question from the main trial exercises:

1 Julian We’ve done something similar before. Put them all on one 
graph. Oh it’s playing up again.

Julian was using zoom 
standard instead of  
zoom trig.

2 Kirk You have to use the zoom.
3 Julian Oh yes I see what you mean. Don’t know what’s going to 

happen though. When the coefficient increases, will it get 
steeper?

4 Kirk Nods in agreement.
5 Julian It goes through the same points. Julian had drawn the 

three graphs.

They then moved on to question two and Jake joined in the discussion:

1 Jake Repeat with tan.
2 Julian Tan doesn’t make a curve like that does it -  it’s 

one o f those daft ones.
Julian referred to the graphs o f sine 
and cosine.

3 Jake It’s one o f those daft functions. What did you 
get for tan?

4 Julian Haven’t done it.
5 Jake The line gets steeper.
6 Julian Have you put all B on at once? Wondering if  Kirk had sketched the 

three graphs in question 2 
simultaneously on the TI-82.

7 Kirk Yes. Kirk showed Julian his screen.
8 Julian See what you mean Jake it is the same as 

before.
Referring to question 1.

9 Kirk Yes it looks better. The graphs were more easily 
distinguishable than in the previous 
question.

10 Jake The same -  the same explanation isn’t it.
11 Kirk They all go through the same points.
12 Julian Yes as it gets bigger it goes steeper but it goes 

through the same points.
Julian elaborated on the pattern.

13 Jake Yes.
14 Julian The same outline.
15 Jake It’s quite hard to sort o f get them all the same 

making the graphs look halfway decent.
16 Kirk I know look at mine. Yours looks good. Referring to Julian’s sketches.
17 Julian As long as you can understand it doesn’t really 

matter does it? It’s only a sketch. You do know 
that they’re like different formula graphs 
anyway, don’t you from before. So you kind o f  
know the shape that they should be so you kind 
of guess because sine is the same as cosine just 
the humps are in a different place. Humps - 
that’s mathematical for you isn’t it.

Julian now referred to the cosine 
graphs from the first question.

18 Kirk Yes but Julian you always just guess. It just 
humps differently.

19 Julian That’s it, the humps are just different 
everything else is the same.

The groups’ discussion was now focused on question 3:

1 Jake Are you having a go at three yet Joe?
2 Julian I’ve just got there.
3 Jake Can I have your...
4 Julian Can I have a look at what you’ve done? Oh I 

see.
Julian views Jake’s TI-82 screen.

5 Jake It’s got to be multiplied by different factors -
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the x is different.
6 Julian Yes.
7 Jake That’s going to be the answer. Do we have 

to...
8 Julian It’s nothing to do with the one before the cos. 

It’s the one before the x.
9 Jake Yes. It makes it sort o f totally different, 

doesn’t it?
Referring to the previous two 
questions.

10 Kirk Yes. Have you drawn it on your graph, yet?
11 Jake No.
12 Kirk Right when it’s 2x it halves the wavelength, 

when it’s 3x it cuts the wavelength into three. 
So you get...

13 Jake Yes. Emphatically.
14 Julian Yes. Emphatically.
15 Jake So like they’re sort of totally different, you 

know, totally different values.
Referring to the fact that the graphs 
all cross the x-axis in different places.

16 Julian It’s not the coefficient of the cosine, it’s the 
coefficient o f the x that moves that, yes?

17 Jake Yes.
18 Jake I’m trying to draw them all but I’m finding it 

right hard.
19 Kirk It just looks like a big scribble.
20 Jake I don’t know. It does a bit.
21 Kirk Those graphs look really neat and mine 

doesn’t.
Referring to the graphs produced by 
the TI-82.

22 Jake They all peak on the y-axis as well.
23 Julian Yes whereas sine doesn’t, it crosses the origin. 

The coefficient o f cos doesn’t affect where the 
graph crosses. [Pause] but x does that’s what 
you would expect.

24 Kirk Mm, If w e’ve done the previous question 
right.

As the discussion continued, Julian and Kirk attempted to make a start on question 4, 
however Jake was still contemplating question 3:

1 Julian Right question 4. It’s getting more difficult 
now.

2 Kirk The answer is given to you. You know the 
equation of the x.

3 Jake You know what I mean as the value o f x 
increases the wavelength increases.

Jake was still referring to question 3. 
He makes the wrong assertion.

4 Kirk Gets shorter, yes? Kirk queried this.
5 Jake Yes. In three I’ve just put as the value o f x 

increases the wavelength decreases.
Jake realised his error.

6 Kirk Yes.
7 Jake Gets smaller and then it’s the same as before 

as the cosine increases it gets higher.
8 Kirk I’ve put that the coefficient o f x moves the 

intersection along.
Referring to his written work.

With Jake’s questions answered the group were now free to begin tackling question 4:

1 Jake Are you on four yet Julian?
2 Julian Yes. What did you do Jake?
3 Jake I think you know the g(x)...
4 Julian Yes.
5 Jake And the f(x) combined.
6 Julian Combined?
7 Jake Combined, it’s x over 2 all cubed, I think.
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8 Kirk Well it would be xJ over 8.
9 Julian Yes xJ over 8.
10 Kirk Yes.
11 Jake Yes.
12 Julian Yes it would be. M iss...
13 SE Yes.
14 Jake You know on this one, would it be x78? Jake sought reassurance.
15 SE Yes.
16 Julian Because that’s x78, if  that’s what you got 

using the draw function, the graph.
He compared the graph on his 
calculator with Kirk’s.

17 SE Have you got onto question 4? Directed at Julian.
18 Julian Yes that’s ...
19 SE xJ.
20 Julian Yes x7
21 Jake You’ve got to sketch the graphs first. So I’ve 

got the equation.
22 Julian And there’s x there and you get that there 

which is x 3/8 .
Julian pointed to his written work.

23 SE x78, yes.
24 Julian Because you cube the x ’s.
25 SE That’s right.
26 Julian So w e’ve got the equation of the next 

function.
27 Jake Have we got -  we’ve got to draw the other 

two haven’t we?
28 Kirk Yes.
29 Jake We have haven’t we - 1 mean the two.
30 Kirk Have you done the second bit o f 4?
31 Julian No. Do they want you to draw a graph or not?
32 Kirk Yes.
33 Jake Oh have I got - 1 bet I haven’t got it in 

degrees. How did you get it into degrees again 
because I’ve got that? Is that what you got?

Jake showed his calculator image to 
Kirk. Kirk then considered the image 
more carefully.

34 Kirk No.
35 Jake You didn’t get that?
36 Kirk No I didn’t.
37 Julian I’m on B now Kirk.
38 Jake Did you type in x3 and x3 over 8?
39 Kirk No. Press Y=
40 Jake What did you put in the Y= Jake worked on the TI-82 whilst Kirk 

watched.
41 Kirk You want x over 2 that’s why.
42 Jake Oh right I want x3.
43 Kirk Yes.
44 Jake And then what?
45 Kirk x3 over 8.
46 Jake Is that it?
47 Kirk Yes.
48 Julian When you got onto stage B did you go to draw 

again?
49 Kirk That’s what I’ve done. You do...
50 Julian It’s Y1 again isn’t it? Is it Ylplus 2 in 

brackets minus 3?
Using the draw function command.

51 Kirk It’s Y1 and presumably you can change it.
52 Julian Yes but not all o f it, what you put in.
53 Kirk Yes. Is it Y 1 plus 2 in brackets and then minus 

3.
Kirk agreed with Julian’s suggestion.

54 Julian I put Y 1 and then plus 2 in brackets and then 
minus 3.
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Alter some individual work the discussion continued:
1 Jake What number are you on?
2 Kirk The second bit.
3 Julian Mm, have you got the curve, the like bump bit 

at-3?
4 Kirk Yes.
5 Julian So that makes sense because it’s lowered it... Describing the [ 0, -3] transformation
6 Kirk Yes.
7 Julian on they and...
8 Kirk It’s moved it back 2 x. Describing the [-2, 0] transformation
9 Julian Yes.
10 Kirk So that actually makes sense if  you think 

about it.
Reflecting on their knowledge o f the 
graphical effects o f transformations

11 Julian It does. Now sketch that. Ah but it’s g. Julian was confusing the function g 
for h

12 Kirk It says sketch the....
13 Julian We’ve done f, f(x), oh no. Julian was still confused
14 Kirk No that would be h(x), wouldn’t it? Because 

that was the transformation and that will be 
that and you’ve got to right down its equation.

Kirk pointed to the new curve on the 
TI-82 screen

15 Julian Yes. What have you done?
16 Kirk Oh em, well I can draw that, and then I’ll...
17 Julian Haven’t we done f, haven’t we f(x + 2) -  3. 

It’s g.
18 Kirk No because...
19 Julian Y1 is f  and not g.
20 Kirk Yes we have.
21 Julian So we need to clear that, go back to that we 

know what that is because we’ve just worked 
it out.

Referring to the function g.

22 Kirk What is that anyway?

At this point Jake rejoined the groups’ discussion:

1 Jake Is it substituting it in again?
2 Julian Pardon?
3 Jake I’m on the second part, is it substituting it in 

again?
Jake had fallen behind the other two.

4 Julian Yes. Yes using the draw function on your 
calculator.

5 Jake Oh right yes. What on Y1 or Y2?
6 Kirk Y2.
7 Julian Have you got a Y2? I didn’t have one.
8 Kirk I’ve got a Y2 and yes it’s Y2 and it gives you 

a similar graph but it’s still not on the em ...
9 Jake It goes through the middle. Referring to the point o f inflection 

passing through the origin.
10 Julian Oh yes that’s better that’s what it is. Before 

we did it with f.
11 Jake What is it second function, draw then what?
12 Julian 6. If you press the number you don’t have to 

do anything to it.
13 Kirk Now we need a formula for that.
14 Jake Have you got that Kirk?
15 Kirk I got that. So we’re putting it into the xJ/8, 

aren’t we? We do...
16 Julian What?
17 Kirk We do it we substitute in, that into x78, don’t 

we?
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18 Jake Yes.
19 Kirk So what’s this? It’s going to be this all cubed 

isn’t it?
20 Julian x78 as x. So w e’ve got...
21 Jake So is that, is the resulting curve called h(x)?
22 Kirk Yes. I’ve got that.
23 Julian Let’s have a look.
24 Kirk Now we got to substitute it in, don’t we?
25 Julian We’ve got xJ so w e’re going to have xJ/8 so 

we’re going to have x3 + 8 minus...
26 Kirk Why plus 8?
27 Julian Because w e’re substituting that in. That’s 

going to be x3 + 8, isn’t it?
28 Kirk G is x78. Oh it’s going to be xJ + 2 brackets -  

3 over 8, isn’t it? If you put g into that, yes?
29 Jake You write h(x) as an equation.
30 Julian Yes that’s what w e’re doing now.
31 Julian You make that the x, don’t you?
32 Kirk So that’s going to be x \ ..
33 Julian That’s going to be x78.
34 Kirk Oh yes it is, isn’t it.
35 Julian That’s going to be x + 2.
36 Kirk x + 2 yes.
37 Julian So I was right before. Yes.
38 Kirk Then minus 3.
39 Julian Ah, how would you simplify that?
40 Kirk Wait a min.
41 Julian Do you do 1/8 x3 over...
42 Kirk So it’s going to be -1/8.
43 Jake Have you got it wrong?
44 Kirk Yes.
45 Jake What have you got?
46 Julian Do they want it in the form o f a normal cubic?

Fay, Carol and Claire were asked about question 6 from the main trial exercises:

1 SE Right so what question have you got onto then?
2 Fay Pardon? Question 6e.
3 SE Question 6e. Right ok so how have you been having a go at 

these questions? Have you been aware o f what transformation 
it would be and then just trying to use the graphical calculator 
to find it or have you just been using a trial and error 
approach?

4 Fay I’ve been guessing.
5 SE You’ve been guessing?
6 Carol In some cases like the first couple they look like relatively 

easy but then the others were just a bit baffling so sort o f trial 
and error. Guessed a couple. Claire did them already.

7 SE Oh you’ve finished these have you?
8 Claire I have finished them but I did them but the first one I just 

looked and thought how many like units it had been moved 
and then I found it. But these ones, they were harder.

9 SE They are more difficult yes, but do you think by doing the 
question that you are getting more of an idea o f what 
transformations do to the graphs?

10 Claire Yes.
11 SE Yes or no? Directed at Carol and 

Fay.
12 Carol Yes.
13 SE Yes. Well that was the object o f the questions anyway.
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Jim was also asked about the transformations in question six:

1 Jim I think -4  because it’s moved 4 across that way. Jim indicated a 
movement to the right.

2 SE Yes.
3 Jim So I knew it was a minus but I wasn’t sure how you got 4, 

because that’s what I got.
4 SE You count four, the values on the x. SE demonstrated on the 

graphical calculator.
5 Jim Yes. And then I got that as x + 1 .1 got that to draw first time 

round as well, no problem.
Jim used the graphical 
calculator to confirm 
his assertion.

6 SE Oh that was good. So this one has moved across by 1.
7 Jim A plus number.
8 SE So it’s plus. Yes, you’ve got those right. So what about this 

one here how are you going to try doing that one?
9 Jim Oh em let me think.
10 SE Have you got any idea?
11 Jim It’s enlarged that one.
12 SE It’s enlarged, yes. So it’s a stretch.
13 Jim A stretch o f about two I reckon.
14 SE So you’ve got to think about what... o f about 2. So you’re 

going to do 2 times the function.
15 Jim Yes.
16 SE Ok I think that’s a good starting point. Do you agree?
17 Jim It could possibly be.

Nigel was having difficulty in obtaining the symbolic form of the new function in 
question 6b:

1 Nigel I can’t work out how you would get that one. I’ve tried 
putting plus one after it but that won’t do it but it gives me 
exactly the same graph.

The transformation 
f(x+ l) gave Nigel the 
second graph, using the 
graphical calculator. 
However, he was then 
trying to graph 
y = f ( x ) + l .

2 SE Right ok so you’ve just tried to type it in here, into the 
function that you already have. Right so maybe it would be a 
good idea to just look at the pictures and see what’s 
happened to them.

I was trying to help 
Nigel appreciate the 
difference between y = 
f(x+ l) and y = f(x) + 1.

3 Nigel Yes it’s gone one along the x-axis. Nigel recognised this 
movement.

4 SE Right so what kind of transformation makes that happen?
5 Nigel Forgotten what it is. Is it em...
6 SE Well let’s have a look in the book. If you’ve got a 

transformation like that, what does that one do?
7 Nigel Don’t know. Nigel was looking at 

the symbolic forms o f  
the transformations.

8 SE It stretches it.
9 Nigel Right.
10 SE So if  you have a look at these pictures. The pictures helped 

him.
11 Nigel Yes, oh right.
12 SE And this one here will move it up or down. A transformation 

like this...
13 Nigel Moves it across.
14 SE Moves it across.
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15 Nigel Yes.
16 SE So we’ve got one like that.
17 Nigel That’s what I was trying to put in plus one after it. He was still confused 

by the symbolic 
representation.

18 SE So yes right you had plus one. But the trouble is here every x 
has to become x+1 now, not just x+1 at the end. So it’s 
3 (x+1) because it’s three times x+1.

19 Nigel I need to put everything in brackets then.
20 SE Yes. It might be a better idea if  you do it on paper first and 

then type it in here.
21 Nigel Yes.
22 SE Because it’s going to have a lot o f brackets and be very 

complicated. So that needs to be all in brackets because it’s 
three times x and x is now x+1. Yes so you need a bracket 
there. It’s three times x+1.

23 Nigel 3 (x+1). That’s right weird that. Then brackets. Is that right? Nigel was still puzzled.
24 SE Yes.
25 Nigel Then divide that by...
26 SE So it’s in brackets x+1 all squared plus four.
27 Nigel Plus four x + 1.
28 SE 4(x + 1) yes. If you going to type that into the calculator you 

just need to have brackets round...
29 Nigel Put brackets round that bit.
30 SE That’s right. You’ve got that yes. And it should graph it 

now. So that should give you this picture. If it doesn’t just 
call me back.

31 Nigel Yes. Nigel was able to 
obtain the correct 
picture.

Marvin was asked about how he was going to approach question 8 from the main 
exercises:

1 Marvin I’m on 8a now. Em I’ve just done 7.
2 SE So how are you going to tackle this problem then?
3 Marvin Well first o f all I’m going to put the formula into the Y l.
4 SE Yes.
5 Marvin And work out where it crosses using the table.
6 SE Right.
7 Marvin And then do it, putting it in brackets, actually solving it 

algebraically.
8 SE So if you were doing this ordinarily and didn’t have the 

graphical calculator would you still do the same thing, do a 
quick sketch and then...

9 Marvin No. I wouldn’t do the sketch. I’d do it...
10 SE You wouldn’t do the sketch, you’d do the algebra.
11 Marvin Because yes. But that kind o f ...
12 SE But if it was an inequality would that change?
13 Marvin If it was an inequality then it would change yes because em 

where the zero is greater than the formula o f less than 
determines whether it’s a one inequality answer or two 
separate ones.

14 SE Yes.
15 Marvin So in that way I’d draw it.
16 SE You’d draw it.
17 Marvin Yes. Or imagine it would be easier.
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Kirk, Jake and Julian were also asked about question 8:

1 SE Right so which question are we on at the moment?
2 Kirk 8b.
3 Jake Yes.
4 SE 8b. So how did you get on with 8a?
5 Julian Quite simple algebraically we just factorised it.
6 Jake Put it into two brackets: (x+4) and (x-2).
7 SE Right so did you draw it on the calculator as well?
8 Jake Yes and it was right as well.
9 SE And it was right.
10 Jake We just compared the co-ordinates in I mean the places on the 

x-axis, 2 and -4 .
11 SE Yes and how are you going to tackle this b? You’ve started 

doing it with algebra again.
12 Jake The same we always do.
13 Julian Yes.
14 SE Yes.
15 Julian Because the co-efficient of x2 is large it’s going to make it 

quite difficult.
16 SE Yes.
17 Julian So w e’re going to now put it into the calculator and see if that 

helps. So w e’re going to do that now.
18 SE There is one thing that you could do with that though. You’ve 

got 7x2+4x if  you’ve done it right. What’s common to those 
terms?

19 Julian x, ah you can take an x out.
20 SE Yes you can take an x out. So I think that would make things 

easier for you.
21 Julian Yes. x equals... Julian completed the 

factorisation.
22 SE Yes so you’ve got two solutions there. Ok so now you can 

check them on the graphical calculator, to see if  you’ve got 
the right ones.

23 Jake It is right. It is because when I typed it in it was really small 
values because it was small values so I thought...

24 SE If you didn’t have the graphical calculator would you actually 
draw these...

25 Jake No.
26 SE Sketch these out or would you just rely on your algebra?
27 Jake Rely on algebra probably.
28 Julian Which ones do we sketch because in some we sketch what 

was that...
29 Kirk Inequalities, isn’t it?
30 Jake Inequalities we sketch yes.
31 SE Inequalities.
32 Julian We sketch inequalities.
33 SE Do you know which area you’re looking at?
34 Julian Yes, but the rest we tend to just battle on with the algebra.

Perry and Mick also discussed question 8:

1 SE Right I’ve just come to talk to you about what you’re doing at the moment.
2 Perry Oh right.
3 SE Which question are you on?
4 Perry I’m on question 8b.
5 Mick 8a.
6 SE 8a and 8b. So how did you do 8a?
7 Perry Well I did it the silly way em I ended up using the quadratic formula when actually you 

could have factorised it, but it’s Friday afternoon and I’m tired.
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8 SE Well that’s OK, I mean as long as you’ve got that right.
9 Perry Yes. You know calculating you get em when y = 0, x = 2 or -4 , and then you can just 

check it graphically, just put y = x2 + 2x -8  into the calculator, push graph and it graphs 
it and you can calculate the points...

10 SE So is that what you’re doing?
11 Mick I’ve done the graph first.
12 SE Oh you’ve done the graphical approach first.
13 Mick Yes.
14 Perry So you know what you’re working out before you work it out.
15 Mick Yes.
16 SE Yes, oh right well that’s fine.
17 Mick I think I find that way easier than well using the calculator it would be but if  we didn’t 

have the calculators then we would have to do it algebraically we wouldn’t probably 
consider drawing it.

18 SE Yes. What about inequalities the boys down there said that they would draw graphs for 
inequalities?

19 Mick Em inequalities, yes possibly just to work out the regions which we probably wouldn’t 
know. Yes that’s probably the only time.

20 Perry Yes. I always sketch a graph anyway. I always like to do it algebraically as well.
21 Mick I don’t like graphs. I try to stay clear o f them as much as possible.
22 SE Oh dear. Well how do you find the graphical calculator then?
23 Mick It’s been useful and I’m thinking about buying one myself, but I think I would be lost if  I 

didn’t have it for doing the functions work now, because I don’t know until I try some 
without it.

24 SE Because you’ve got used to using it.
25 Perry I just don’t know how I also could do it, how to sketch the graph o f y = (xJ + 2) /(x -  1) 

or something. To draw that would be really hard.
26 SE When you get onto the graph sketching section later on in the upper sixth I’m sure you 

will be much more confident than you are.
27 Perry Yes but w e’re not at the moment, are we?
28 SE Do you think that that’s damaging then using the graphical calculator instead?
29 Mick Em, if  you haven’t got one afterwards then yes but it is in a way but it’s not in other 

ways because it helps you. It would have taken me a lot longer to get to grips with these 
functions if  I didn’t have the calculator but I’d probably understood it a bit more and in a 
bit more depth if  I hadn’t have had it.

30 Perry Yes for demonstrating new graphs, for new functions and stuff they’re really, really 
useful.

31 SE Yes.
32 Perry But as I say you can loose all the algebra just by relying totally on the calculator. You 

can make big mistakes or something else.
33 SE That’s why I making you do both in these questions.
34 Perry Yes that’s how we’re doing it.
35 Mick Yes.
36 SE Maybe I ought to take the graphical calculator away for the final session.
37 Perry No, no, no, no. (jokingly)

Perry volunteered to demonstrate how to solve question 10 from the main trial 
exercises using the blackboard and OHP.

1 Perry Right question 10, all you’ve got to do is solve two
simultaneous equations to solve x and y. The two
equations: x - 3 y  = 16 andx2- 4 y 2= 13.
First o f all I make x the subject in the simple form:
x = 16 + 3y then substitute that into this formula
(X2_ 4 y 2= 13). So I get (16 + 3y)2 -  4y2 = 13.
Multiply out the brackets:
256 + 9y2 + 48y + 48y -  4y2 = 13 and you get that.
So you have to simplify that and you get:
5y2 + 96y +256 = 13.
So we can say from that 0 = 5y2 + 96y +243.
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You can try to factorise that but you won’t get very 
far so you have to use the big formula which is...
And what vou get is: -96+/- (4356V72

10
So we can get two answers from this, so we get: 
y = -3  or y =-16.2.
So when y = -3, x = 16 + (3.-3) = 7 
or when y = -16.2, x = 16 + (3.-16.2) = -32.6.
So w e’ve got four answers there and it’s very 
complex.

Perry wrote out the quadratic 
formula correctly.

2 SE Yes.
3 Perry To do that on the TI-82. What you do is you draw the 

two graphs so basically Y1 equals (x -  16)16. Oh 
that’s not right.
The other one is y over ... I’ll have to rearrange the 
formula to make y the subject.

Perry entered (x -16)/3 into the 
graphical calculator as Y 1.

4 SE Yes.
5 Perry Xz- 4 y 2 = 13, 4yz = 1 3 -x " ,  

Y2= (13 - x2)/4,
Y = +/- [(13 -  x2)/4]172 I believe. 
Could be wrong! Is that wrong?

Perry had made a mistake in his 
algebra.

6 Class No response.
7 Perry Oh thanks boys!

So it’s the square root o f (13 -  x2)/4. 
So you get two graphs.

Perry entered 
[(13 -  x2)/4]172 as Y2.

8 SE Right.
9 Perry Oh? I suspect that that is extended. Perry pointed to the curve.
10 Mick xz - 1 3  though.
11 Perry x1 - 13?
12 Mick Yes it is. That’s what I got and I got a different graph. Mick was confident.
13 SE Mm.
14 Perry Did you?
15 Mick Yes that last bit.
16 SE Yes you have.
17 Perry But if  you move the 4y to that side -  yes you do.
18 SE It’s going to be positive yes. Ok?
19 Perry Try that.
20 SE Try that then. Right. Perry entered Y2 as 

[(x2-13)/4 ]1/2
21 Perry Is that right Mick?
22 Mick What, that looks right.
23 SE That’s Ok yes.
24 Perry They don’t cross.
25 SE So is there another thing that you could try?

If you look at the square root, you’ve drawn the 
positive square root haven’t you?

No response.

26 Perry Yes.
27 SE What about trying the negative square root?
28 Perry Try the negative square root?
29 SE Why don’t you draw them both -  the next one as Y3 - 

to get the whole graph.
30 Perry This one.
31 SE Yes.
32 Perry The negative positive square root.
33 SE Yes, so it’s exactly the same but just negative.
34 Perry This could be fun. Perry typed in the negative 

square root and graphed the 
whole function.

35 SE That was the first one, yes. Yes so you can see one
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crossing point there.
36 Perry You can. I wonder if it’s worth zooming out? Because 

that goes up there...
37 SE Yes, yes.
38 Perry Try zoom out.
39 SE You can see the two crossing points there can’t you? Perry zoomed out again.
40 Perry Take them one at a time. Zoom in. Perry zoomed in on the 

intersection point on the right 
hand side.

41 SE Right so if  you trace that you can see what the co
ordinates are can’t you?

42 Perry Work out the intersections.
43 SE Or you can calculate yes sure.
45 Perry Hurray! Perry was jubilant.
46 SE Yes and that’s what we’ve got isn’t it, yes.
47 Perry We did get that.
48 Mick I got that as well. Mick added reassurance.
49 SE And the other one is on the other side o f the screen 

that you haven’t got on at the moment, but you’d have 
to zoom around that wouldn’t you.

Perry zoomed in to the left and 
calculated the intersection 
point.

50 Perry You could do a dance whilst waiting for it! Which 
curve am I on now? The intersection point is -2.6, 
-16.2.

51 SE Yes. Ok that’s what we got yes.
52 Perry I got that, success! Perry was really pleased.
53 SE That’s great. So that shows that you got the correct 

answers with your algebra.
54 Perry Yes, I did yes. It’s very nice to know that I worked it 

out right for a change.
Perry was given confidence in 
his algebra and in the validity 
o f the graphical approach.

55 SE But you would have chosen to do the symbolic rather 
than the graphical approach if  you didn’t have a 
graphical calculator?

56 Perry Well I would have done both.
57 SE You would have done both.
58 Perry Yes because I would have done this bit because I’m 

pretty confident with my algebra.
Perry pointed to the algebra on 
the whiteboard.

59 SE Mm.
60 Perry And then I would have checked it using the graphical 

calculator.
61 SE Yes.
62 Perry If I had one -  although I wouldn’t mind but I prefer to 

check.
63 SE Ok right thanks a lot for your demonstration.

Carol was asked to describe how she had tackled question 13 from the main exercises:

1 SE Did you actually just draw these out and then match them up? 
Or did you think that this might be this? Did you have some 
reasoning before you attempted the questions?

2 Carol I knew roughly what each was. You know that that’s going to 
be some sort o f trigonometric function.

Carol pointed to graph 
A.

3 SE Yes.
4 Carol Because it’s a -  one o f those ones. Carol was hesitant.
5 SE And it’s in zoom trig so that’s a big clue.
6 Carol And it’s in zoom trig yes. So you know that those three are 

going to be them and you know that a tan looks like that.
Carol referred to 
graphs A, B and F and 
then pointed again to 
graph F.

7 SE Yes.
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8 Carol And the other ones -  you know that’s an xz and that’s an e \ Carol pointed to graphs 
C and E.

9 SE Yes. That shape? SE pointed to graph D.
10 Carol Yes and you know that’s an inverse o f something.
11 SE That’s actually a logarithm but you haven’t actually met 

logarithms yet...
12 Carol Natural log?
13 SE Yes natural log ...Because I wanted to introduce you to some 

o f the functions that you would meet later on and what they 
would look like.

14 Carol We have done natural log, haven’t we?
15 SE You have?
16 Carol Yes. It’s just that it always looks like it’s an inverse. It looks 

like that is the inverse o f the other one.
Carol is not yet familiar 
with the shapes o f  
logarithmic functions.

17 SE So how could you show that this was the correct 
transformation?

18 Carol Em I don’t know. It’s just it went the right way round on my 
calculator, rather than the other way round. I actually did 
them by trial and error using the cos function.

19 SE So this one here with this transformation, if you drew the 
picture o f cos as well, what would that be like?

SE pointed to graph A.

20 Carol It would be the other way round. That would be there 
wouldn’t it?

Carol traced the 
position o f cos x.

21 SE Yes because it’s shifted 90°...
22 Carol To the right. Referring to the action 

o f f(x -  90°).
23 SE To the right.
24 Carol Right.
25 SE So yes that’s right well done. And this one why is this sin 3x? SE pointed to graph B.
26 Carol Because it’s 3 times smaller.
27 SE Yes that’s right, it’s been squashed.
28 Carol It’s been like compressed three times smaller than sine.
29 SE And this one here? SE pointed to graph F.
30 Carol That’s three times wider.
31 SE Wider yes.

Marie was also asked about question 13:

1 SE How did you do these questions, did you work through them 
drawing every one on the graphical calculator or did you have 
an idea o f which it would be before you started?

2 Marie Yes I had an idea.
3 SE So this first one here how do you know that this is the right 

transformation?
4 Marie Well it’s the same as sine of x. So we looked at it and if  you 

look at it, it looks like sin x, but there wasn’t a sin x.
5 SE It is sin x you’re right. You recognised that correctly. But it’s 

not an option so you’ve got to find something that’s 
equivalent to sin x.

6 Marie Yes.
7 SE So em how do you know that this is correct? If you compared 

it to the graph o f cos x?
8 Marie Well we knew it was going to be like something like that. So 

then we did just to try it like x + 90 and x -  90.
9 SE So that’s trial and error isn’t it?
10 Marie Yes it was kind of trial and error but we had an idea. We 

knew which ones to go for. We’d go for the cos ones and not 
the tan ones because we knew the differences in the shapes o f  
the graphs.
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11 SE So if you drew cos x on this picture at the same time what 
would cos, just cos x look like?

12 Marie It’d be like that flipped over like going like that. Marie traced the graph 
of y = cos (x+90) onto 
the paper.

13 SE Would it? Just think about what the transformation means.
14 Marie Oh cos (x -  90).
15 SE This is what you’ve got here on the picture.
16 Marie Yes.
17 SE This means it’s been...
18 Marie Has it been moved along?
19 SE It’s been moved along yes. This is cos (x -  90) so it means 

that it’s shifted...
20 Marie Oh right.
21 SE 90u from the original cos. So where would the original cosine 

be on here?
22 Marie Em it would be like that wouldn’t it? Marie traced the graph 

o f cos (x-180).
23 SE That’s moving it 90u there, but what’s cos o f zero, can you 

remember?
24 Marie Just normal cosine x.
25 SE Cosine x.
26 Marie Well I thought it was like that but it goes through 1. Marie was referring to 

the graph o f cos(x -90)
27 SE 1 that’s right. So if  you have a look it would look like that. SE drew the graphs of  

cosx and cos (x -9 0 ) on 
the graphical 
calculator.

28 Marie Yes.
29 SE Ok. So it’s like crossing with the other one and they’re 

separated by 90° in the right direction, to the right, which 
corresponds if  you remember to a form o f the 
transformations, which we did.

30 SE What about this one, how do you know that that’s the right 
form?

31 Marie Because to what you’d normally expect there are three more 
kind of peaks.

32 SE That’s right, yes it’s all compacted, and this one here?
33 Marie Em well we knew that it was a tangent but we didn’t know 

which one, so we just tried them. So, just trial and error...
34 SE What does this transformation do to the tangent? What would 

it do to it?
35 Marie Spreads it out.
36 SE Spreads it out yes, and what about this picture here, C?
37 Marie We knew it was like a x2 graph and it would be like -  and you 

have to move it along that line.
38 SE It’s been moved along by 4 units...
39 Marie Yes.
40 SE And it’s in the positive direction. So that tells you that it’s...
41 Marie It’ll be negative.
42 SE -4 there.
43 Marie Yes.
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Student Interview Transcripts

Marvin

1. SE: Right so can you just tell me how you were having problems with that
question 3, then?

2. M: Em well with question 3 what I did is I started by trying to do it algebraically
and I haven’t, actually brought question 3 with me but I did try doing it by 
doing it where x2 - x + 4 is equal to 4x -2 .

3. SE: Yes.
4. M: Where the values are - the values o f x -x+4 are greater than - 1 can’t

remember how I did it I worked it out as an inequality em but then I was 
really getting confused with that because it seemed like it was the wrong way 
to do it. So what I did was used the calculator and I drew them both and you 
get one straight line and one u shaped one ...

5. SE: Yes.
6. M: .. .and it looked like all the values o f the u shaped one were above but when

you zoom in, some of them are on the line and some are just slightly below 
because I did that trace thing with it.

7. SE: Yes.
8. M: Em and that confused me I don’t know if  I - could I have done it straight

away.
9. SE: You could have done it that way ...
10. M: Right.
11. SE: ... and you could have done it symbolically as well. You were on the right

track.
12. M: I did the table, you know where you draw the table and you get x down one

and then you get two sets o f y because you’ve got two graphs, right?
13. SE: Yes.
14. M: Now what I was trying to do is work out the relationship between the two -

where one graph was higher than the other graph. And there was a - it 
worked yes, some, a lot of the values were higher than the straight line 
graph, but the points where I think - there were two points where they were 6 
and 10 both of the y values. I didn’t know whether they would be classed as 
em above the graph of 4x-2. So if  it had of been it would have been - it 
would have either been all values minus 6 and 10 between 6 and 10 or the lot, 
every one. So, but I did get confused with that and after that I was on a down
hill tread the whole way em I did try these two next (pointing to questions six 
and seven).

15. SE: Yes.
16. M: And em well.
17. SE: I did understand that perhaps em some of you hadn’t met questions like this

before, I was just throwing them in, you know just to ...
18. M: Well we actually did an investigation at GCSE, now when it says, assuming it

says throwing a single biased dice, you see a dice, it’s the first thing. I don’t 
know if that is what you are looking for, but I do definitely.

19. SE: Yes.
20. M: And then that’s one aspect of it, but then saying that the probability o f getting

two is 0.1 then that’s when the algebra comes in and em I mean I don’t know 
if it says the number of faces on the dice em ...
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21. SE: Yes, it going to be six, actually.
22. M: Yes, because you’ve got six there and you’ve g o t...
23. SE: 1 ,2 ,3  ...
24. M: Yes.
25. SE: 4, 5, 6 and it doesn’t make that clear, no. Maybe the question could be ...
26. M: Em well no, no - it’s kin of obvious isn’t it. I mean em how the quadratic

formula could be obtained, we’ve never done that before so em but I did try 
my best, I really did, I had a good go.

27. SE: Yes I understand that. But thinking about this (question six) you’ve got a
value of the probability when it’s 2, when its 3 and when its 6.

28. M: Right.
29. SE: And it’s on a quadratic curve, if you’re thinking in graphical terms.
30. M: Yes, the curve w ill...
31. SE: Will go through those points.
32. M: Right, yes.
33. SE: Join them up.
34. M: Yes.
35. SE: So does that suggest anything to you, how you could have ...
36. M: Em (pause) a quadratic curve starts at zero and it accelerates up almost.
37. SE: Yes.
38. M: So the probability of 1 would be below 0.1 more towards zero, between 0 and

0 .11 would say and then - is that what you mean?
39. SE: Well it’s on the right lines, but do all quadratics actually go through 0?
40. M: No I don’t mean - 1 mean between 0 and 0.1 on the y because that’s at 0.1.
41. SE: Mm.
42. M: So it would be somewhere between - see what I mean?
43. SE: I see what you mean, I think, yes.
44. M: I mean if the graph is like x2+3 it would go 3 up the y axis, so it will be

between 3 and whatever the next value of x is because that’s 0.1 and you don’t 
know the first value, it’s going to be between. Do you see what I mean? It 
might be below the x.

45. SE: It could be possible with a quadratic though that if you had x is 1 and x is 2...
46. M: Right.
47. SE: And you’ve got a reflection in the curve, don’t you, it goes like that

(demonstrating the shape of the curve in the air) so sometimes two x values 
can give the same y value.

48. M: Right.
49. SE: So it could be that when x is one this could be 0.1 as well...
50. M: Right.
51. SE: And at 2 it could be 0.1 and it could have a minimum point in between, I

mean there are different possibilities.
52. M: Right I see what you mean, right yes, yes. Am I getting the right idea then that

you’re saying that the quadratic formula would be in the form of ax2 + bx + c.
53. SE: Yes.
54. M: Ah right, not just ax2 + c.
55. SE: No.
56. M: Right, I see.
57. SE: Ok and...
58. M: Because they are the u-shape aren’t they?
59. SE: Yes.
60. M: Right.
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61. SE: There are some em algebraic techniques that you can apply to actually work
out these values.

62. M: Right.
63. SE: What I was trying to suggest to you is if you did plot these points...
64. M: Right.
65. SE: They would lie on a curve, so you could look at what 1 is and approximate the

y value...
66. M: Right. I see, yes, right.
67. SE: As part of the curve and then for three...
68. M: Right.
69. SE: Is it three or is three given. Oh it’s given, then for four and for five.
70. M: Right, now what I was em confused with - if that’s the case can I actually do

that. I mean with the graphic calculator you write Y= and you write in the 
formula and then you draw the curve and then you trace it.

71. SE: Yes, you wouldn’t be able to do this at the moment on the calculator.
72. M: Right.
73. SE: But there is a statistics plot...
74. M: Right.
75. SE: Where you can put in particular values of x with the corresponding y’s and it

will just plot them as points.
76. M: Right.
77. SE: So if I had shown you how to do that you could use the graphical calculator.
78. M: Right.
79. SE: But you would have had to have done this on paper at the moment.
80. M: Ok.
81. SE: So I’m just going to have a look at what you’ve written down here for

(question) one.
82. M: Em am I alright to take this back and have a go at it tonight?
83. SE: Yes that’s fine.
84. M: I mean I will do.
85. SE: Yes, Ok. “Algebraically. We were taught to roughly imagine the graph in your

mind” (reading out Marvin’s written solution).
86. M: When we were doing inequalities oh quadratic inequalities is where the formula

is less than or equal to zero or greater than. If it’s greater than zero it’s em oh 
it’s two areas, two separate areas, they’re not joined together. So it would be x 
is greater than or something like that and x is less than that instead of being em 
it’s like that (pointing to his work) that’s two separate areas isn’t it?

87. SE: Yes.
88. M: If it was the other way round, if it was below the x axis, it would be em for

example -4  is less than x but one is greater than x as the other one. Do you 
understand?

89. SE: I know what you mean, yes. So in this one - you didn’t use any images in
question two?

90. M: No, no, not at all. Em...
91. SE: Would you check - did you check it using the graphical calculator?
92. M: I did - 1 did check it, yes.
93. SE: Yes.
94. M: Em I mean the reason why I didn’t use any imagery with that, I mean em I

myself, I mean, I can imagine roughly what the graph would look like but I 
wouldn’t be able to link the two together, you see what I mean. Some people 
might be able to...
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95. SE: Yes.
96. M: Some mathematical genius’s in the world might be able to, but I couldn’t so em

that way I tried - 1 tried, I don’t know whether you can, but I tried - 1 went for 
the easy option and used the formula. I’m quite proud of that actually. I learned 
that off by heart.

97. SE: Some people made a mistake in their test in that, didn’t they?
98. M: Yes that’s right.
99. SE: Yes, they got it wrong.
100. M: Yes. Is that - 1 mean are those answers right?
101. SE: I have got the answer sheet here so I’ll look for you. I mean I’ve got all the

solutions written out.
102. M: Right.
103. SE: I’ve only done them symbolically on here...
104. M: Right. I see.
105. SE: But I mean I’ll photocopy these and distribute them.
106. M: Right, that’s nice of you.
107. SE: Right, yes (It’s correct).
108. M: Oh that’s alright.
109. SE: Em so do you feel that the graphical calculator helped you with these

questions? Or only on certain questions? Or not at all?
110. M: Not all - not all the questions and I wouldn’t say not at all either em it is - it is

a help definitely. I mean it’s spurred me on to go and get one.
111. SE: Yes.
112. M: I’m getting one tonight actually.
113. SE: Oh are you?
114. M: Yes I am. I’m having a Casio one em as I say it’s spurred me on to get one. I

do find them very useful and I mean I said that I checked it there and just to 
check it, it’s an advantage.

115. SE: Yes.
116. M: It’s so good. I mean I thought it was great when you had that LCD thing on

the board and used it.
117. SE: Yes it’s quite impressive, isn’t it?
118. M: Yes but, yes...
119. SE: So useful for demonstrating to the group.
120. M: Yes I mean it’s very easy for you isn’t it, you don’t have to draw the graph or

anything.
121. SE: Oh no, it’s much better.
122. M: But I mean em I would use it, I have used it, you know I even did my physics

homework on it. I don’t know if that’s all right or...
123. SE: That’s fine.
124. M: Em I drew a graph on that.
125. SE: Ok.
126. M: Yes.
127. SE: Right thanks a lot for your time, I really appreciate it.

Nigel

1. SE: Ok so maybe if you just start describing to me how you’d have a go at
these questions.

2. N: Right. That one (pointing at number one) I’d factorise that bit first (pointing at
the formula of the function).
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3. SE: Yes.
4. N: So that I would get two values for x.
5. SE: Mm.
6. N: And then I wasn’t sure - 1 think I would... I would know how to do it if it was

an inequality, otherwise apart from that I don’t know. I think is it just the two 
values of x so say, I don’t know what it is, but say it’s just in the two brackets it 
was x-3 and say x+4.

7. SE: Yes.
8. N: It would be x is 3 or -4 .
9. SE: That would be the values when then actual graph cuts the x-axis.
10. N: Yes.
11. SE: But this is asking for whereabouts it’s actually below the x-axis. So you’ve

got some points on the x-axis where it’s actually equal to 0.
12. N: Yes.
13. SE: So how could you determine where it was below?
14. N: You’d have to - would you use an inequality?
15. SE: Yes, well you could express it as an inequality, because you’re looking at

below the x-axis so it would be less than or equal to 0.
16. N: Yes.
17. SE: So does that clarify things for you?
18. N: I think so em I’ll write it out to work it all out now. I can’t just do it.
19. SE: Would you have to plot the graph, do you think, or would it not be necessary

to plot the graph?
20. N: Em I think I would have to plot the graph just so I could just like check the

values. It would be just easier to plot the graph, so you could like picture it 
rather than just picture it in your head.

21. SE: Yes. And question two?
22. N: I use two simultaneous equations to work out x, so x is (pause).
23. SE: And that would give you?
24. N: That would give me two values of x.
25. SE: And would that be the answer in this case?
26. N: Yes.
27. SE: Yes, that would be the answer because you want to know where the graphs are

equal to one another, don’t you?
28. N: Yes.
29. SE: So would you not find it necessary at all to use any pictures in your head or

on the calculator or to draw them yourself for that one?
30. N: No I’d just work it out in algebra.
31. SE: Ok and what about question three?
32. N: (Pause) I wasn’t really sure about this one. What I would have to do is I’d have

to plot it onto a pair of axes and then I could actually picture what it would
look like and it would help me to understand what I’ve actually got to find out.

33. SE: So you would have the two pictures of the graphs and they would intersect at
some points.

34. N: Yes, mm.
35. SE: And then you would be able to see whereabouts one lies above the other.
36. N: Yes.
37. SE: Do you think that there is an algebraic way of doing it? Or would you just do

it graphically?
38. N: There probably is but I don’t know what it is.
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”5 9 . SE: That's a lair comment, but would you try for it? If you had the knowledge 
would you do the graphical approach or would you...?

40. N: If I knew how to do it algebraically, I would always do it algebraically.
41. SE: You would prefer to do it algebraically. And what about question four?
42. N: (Pause) em right with that one - the first one I can just picture it in my head

because they are fairly similar to each other. So one would cut yes one would 
be just 2 above the x-axis and one would be just 2 below it so that would be 
really easy.

43. SE: Yes.
44. N: That one (the second pair) I would have to draw them onto a graph.
45. SE: Ok and this one here (the first pair) would they have exactly the same shape?
46. N: Yes.
47. SE: Yes Ok, so they’re just - one’s shifted up.
48. N: Above yes.
49. SE: Ok and so this one (the second pair) you’d have to draw them out and see how

they were related. Right and what about question five?
50. N: (pause) em if x is there, it just em it’s just a reflection (pause). Yes it’s hard to

explain actually. All right yes on one side of the graph say I don’t know what 
the gradient would be say it was 0.5, it would be 0.5, on the other side it would 
be minus 0.5, just change the sign round.

51. SE: Yes that’s right, yes your right it’s a reflection.
52. N: Yes.
53. SE: Good and what about question six. I can see that you’re a little unsure about

those aren’t you?
54. N: Yes.
55. SE: And seven. Em if we think about a graphical approach these values are part of

a quadratic formula, so you could plot them as points on a graph. So when x is 
2 you could put y is 0.1, when x is 3 it will be 0.12 and put 6 on as well and a 
quadratic curve would join up the points. Would that help you at all in trying 
to work out what the probabilities of these x values would be?

56. N: Yes you could just, yes, find one just work up to the line.
57. SE: That’s right and you can have an approximate value for the y value.
58. N: Right, yes.
59. SE: Yes. That’s one way of doing it, but it might not give you exact values and

there is a symbolic approach you could try to work those out.
60. N: Yes.
61. SE: But obviously you’ve not come across that, so that’s not important at the

moment.
62. N: Yes.
63. SE: So the final question I wanted to ask you was, have you found the graphical

calculator to be useful?
64. N: Em no because I don’t know enough about the calculator to use it.
65. SE: You’re not that happy with it at the moment?
66. N: No it’s the first time I had seen one on Tuesday, so...
67. SE: So how are you feeling with it now are you still a little uncomfortable?
68. N: I was fine with the stuff we did in that lesson.
69. SE: That was ok.
70. N: But that was fairly simple, wasn’t it?
71. SE: Yes, yes I mean this part here - to actually plot these points on the calculator

you would have to use the statistics mode.
72. N: Yes.
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73. SE: Which I haven’t shown anybody how to use yet so unless you’ve had prior
experience you would have had to have done this one on paper.

74. N: Yes. If you did have the graphical calculator you could just put it in and you
would be able to work out those exactly.

75. SE: Yes that’s right, well thanks a lot for your time.

Fay

1. SE: Ok so if we just have a look at the questions, you’ve got a sheet there, em so
could you talk me through how you would have a go at these questions then 
please.

2. F: Em first of all I didn’t think about them as if I had a graphical calculator
because I don’t actually have one myself so I wouldn’t be using one normally.

3. SE: Right.
4. F: So I’d first of all sketch the graph and then from looking at the graph I could

see that the values must be less than 0 when substituted in the formula. So then
I would be able to see from the graph that they would be below the x axis, so
then I just did like an equation to work out whereabouts - what sort of size they
would have to be, but I only really got a rough estimate.

5. SE: Right so em you would definitely draw the graph first?
6. F: Yes.
7. SE: And how would that help you?
8. F: Because I’d be able to see from drawing the graph - I’d be able to see

whereabouts on the axis they would be to equal, well to be below the x axis.
9. SE: But you would find the points where it was on the x-axis first...
10. F: Yes.
11. SE: So then you would know whereabouts it was.
12. F: Yes.
13. SE: Ok what about question two?
14. F: Well for that one I would either draw the graphs or use the graphical calculator

to find the intercepts, just by looking at it and using the little trace.
15. SE: Yes. That would give you an exact value.
16. F: Yes.
17. SE: Would you not apply a symbolic approach at all?
18. F: Em I would draw the graphs if I was going to do it without the graphical

calculator but apart from that I would just type it in.
19. SE: Ok so what about question three?
20. F: I would have done pretty much the same by drawing the graphs having a look

at them and seeing what was there.
21. SE: Can you think of a way of doing that symbolically? Or would you prefer not

to do it symbolically?
22. F: I’d prefer not to I think. I think I would just use the calculator and put them in

and draw two lines. To have to plot values for two graphs, it would take too 
long.

23. SE: And, actually if you took this one and you set it equal to that one (pointing to
the question sheet) and you re-arranged it what would that give you? If you 
said that was equal to that, put them equal to one-another and then re
arranged it.

24. F: You would get that -2+4 = 2. Would you do that would you?
25. SE: Yes.
26. F: So 4x+2 = x2-x so you get x2=3x+2 Would that be...?
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27. SE: You could write it like that, but if you wanted to solve it using the quadratic
formula, then you would have to have it all...

28. F: x2- (3x+2).
29. SE: All on one side.
30. F: To put it into your quadratic formula.
31. SE: And that would give you the co-ordinates of when these graphs were actually

intersecting.
32. F: Crossing.
33. SE: That’s right crossing, yes so that would give you another way of working this

problem out.
34. F: Yes.
35. SE: To give you those exact values. But if you did use the graphical calculator it

would...
36. F: Save a lot of time.
37. SE: and give you those as well.
38. F: I’m not very good at re-arranging.
39. SE: Em is that why you prefer using a graphical approach?
40. F: Yes because I find it harder to swap - swapping sides and balancing equations

and things end up taking me longer like to balance the equation than just to 
solve the problem using the graphic calculator. So that’s on my Christmas list.

41. SE: And what if you didn’t have one, though, like you don’t at the moment?
42. F: Em.
43. SE: Do you still find it easier to sketch?
44. F: I still find it easier to draw them rather than - because if you draw them you get

a rough idea and then you can... I just find it easier than putting things into 
formulas.

45. SE: Ok and what about question four?
46. F: Em well by looking at the equations you can see that they both have the same

gradient and direction so they’re parallel and then from looking at the 
equations I can see that one intersects the y axis at 2 and one at -2  and roughly 
what they look like, just from imagining the graphs. Then the connection 
between the other two graphs is by looking at it they are the same but 
whereabouts they are on the x-axis -  it’s further along.

47. SE: Yes, that’s right. Did you work that out by drawing those out?
48. F: No I think we’d done some work on this before previously and I just

remembered that looking at this where that that would be -2  on the y axis and 
that would be 2 and that these would be -2  and -3 or something similar, but 
they would be placed - whereabouts they would be placed on the axis.

49. SE: Mm so on this one (the first part of the question) have they got exactly the
same shape?

50. F: Yes they’re just one’s above and one’s below.
51. SE: That’s right and are these the same shape as well?
52. F: Yes they’re just moved across.
53. SE: Yes well done and what about question five?
54. F: Em for that one I would also look at the graphs pretty much the same as in this

one, because you can see they’re both 2x and it’s just where they intercept 
that’s different. So one at 3 and one at -3. And that was just from previous 
knowledge and I wouldn’t have used the calculator for that if I didn’t have it.

55. SE: So how do you get this one, where does this one come into it, the +3. Oh I see
you’ve substituted that (the -3) for +3...

56. F: Yes.
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57. SE: Instead. These are actually x values.
58. F: So I’ve done the question wrong.
59. SE: It’s no problem. So it’s just that the -3 would have been substituted in for x.
60. F: Yes.
61. SE: And then here if you wanted to sketch this graph...
62. F: You would have got the graphs the same on top of each other, wouldn’t you.

They wouldn’t have changed at all.
63. SE: It is the same graph.
64. F: The same graph, yes.
65. SE: But you’re just looking at different points on it.
66. F: Yes. I just didn’t look at the x equals.
67. SE: It’s ok that’s fine.
68. F: Yes.
69. SE: So on this one you’re looking at the slope, so you’re looking at the gradient...
70. F: Yes.
71. SE: As you go along the curve.
72. F: Mm.
73. SE: Have you ever considered the gradients before? You’ve probably looked at

straight line gradients before.
74. F: Yes we’ve done gradients on curves.
75. SE: Yes.
76. F: Using the area of the curve or something but that was last year. We haven’t

done that since.
77. SE: Right.
78. F: And it doesn’t really come to mind.
79. SE: Ok and have you left it at question five then?
80. F: Well I tried question six but I got nowhere.
81. SE: It’s probably nothing like what you’ve ever met before.
82. F: No it was - 1 just had no idea what to do and for this one I started it but then I

couldn’t get anywhere because I worked out that your speed went from 0 
metres per second - 0 to 3 metres per second in 12 seconds and then stayed at 
that for 55 seconds...

83. SE: Yes.
84. F: And then went back down to 0 in x seconds.
85. SE: So you picked out that information.
86. F: I picked out that information but I couldn’t get anywhere from it.
87. SE: Yes.
88. F: I couldn’t see how to progress from there.
89. SE: Well you obviously gave them a good try anyway.
90. F: Yes.
91. SE: Ok thank you for your time.

Perry

1. SE: Ok Perry so could you actually show me how you’ve gone through these
questions, starting at number one.

2. P: Well first of all for number one em there are two ways of doing it. You can
either do it algebraically by saying y=0, solving it by factorising and working 
out the values of x, alternatively you could draw it on the graphical calculator 
and use the table function to see if its an integer. The problem is if its not an
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integer you have to do it algebraically, because I haven’t worked out how to 
use Y= yet.

3. SE: Right.
4. P: I found that it was actually 1 and -4  the values that are below. Em number two,

well this one was easier by using the graphical calculator because you can draw 
both the graphs and you can actually calculate the intersect on i t ...

5. SE: Yes.
6. P: By using the calculate function and it was really useful because it was just a

case of drawing it and typing in things. I got the correct values I hope.
7. SE: Yes looks like it to me. So going back to question one, which o f these

approaches would you prefer to use - do you have a preference?
8. P: Well I prefer to do it on the calculator, just by drawing the graph, because it

would save doing work. But as I say if  it’s not an integer, it can’t actually recall 
the values, so you have to do it algebraically. So either would be all right, but I 
much prefer doing it just drawing it because it saves a lot of fuss.

9. SE: Mm, but you could have done this one (pointing to question two)
algebraically as well couldn’t you?

10. P: Em you could, but it would be a lot more complex, I think. I haven’t quite got
it into my head how to do it, so I thought it would be a lot easier to draw it, to 
get an idea what the lines look like. Then just play around with it to see if  there 
is another way of calculating it, which there was.

11. SE: Yes. What about question three?
12. P: Em well again I thought that that would be hard to do algebraically. It would

mean a lot of playing around with perhaps trial and error because I haven’t 
quite sorted out how to work it out. So again by drawing the line it gives you a 
clear picture of what it looks like and so you can go on from there.

13. SE: So if you became more confident, after more experience with you’re A level,
with using the algebra.

14. P: Yes.
15. SE: Do you think you would still draw graphs and use that approach?
16. P: Em yes I would to make sure that my algebra was right, because it’s easy to do

a page of calculations in an exam and you don’t know whether its right or 
wrong, you’ve just got to hope. But if  you can actually draw that, you know 
and have an idea of what the lines look like and you get 2.34 something, and it 
looks like its between 2.2 and 2.5 then you know that you’ve got it reasonably 
right. So it’s a good use.

17. SE: Ok and question four?
18. P: Em well I know what the x2 graph would look like, you know the parabola.
19. SE: Yes the general shape.
20. P: And I know by being -2  and 2 that they would be 4 apart, because I know that

through drawing graphs and experience.
21. SE: Yes.
22. P: But if  I had no idea then just drawing it you can see the different values.
23. SE: Yes, so have those graphs got the exact same shape?
24. P: Yes the same shape, except one is 4 lower down the y-axis.
25. SE: Yes. What about the other two?
26. P: The other two is that the y= x +2x+3 is one above - no it isn’t. Well again you

can draw the graphs on the calculator.
27. SE: Yes.
28. P: And compare the shapes and just compare it by visually doing it I suppose.
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29. SE: And if you didn’t have the graphical calculator you would just do this by
hand?

30. P: Yes I would have to draw that by hand because I don’t know how to compare
them algebraically really, because I have some idea of what they look like but 
its not much use really em when you’re looking at numbers and stuff.

31. SE: Maybe it will become more clear to you when you’ve had more experience of
functions?

32. P: Yes it will yes. But while you’re getting the grasp of new ideas it’s good to
have a visual aid.

33. SE: That’s right. Ok question five.
34. P: Em well this one, I know - 1 would know personally that y = 2x2 -  3 would be

symmetrical through the x=0 line, but again by drawing that, it just helps you 
so that you can see that the gradient changes round, as it were, from a negative 
to a positive.

35. SE: Yes.
36. P: I couldn’t do six, but I did seven. Now seven, I would find very hard if  I didn’t

draw it.
37. SE: Yes.
38. P: And I couldn’t actually draw it on the graphical calculator.
39. SE: No.
40. P: So, a quick sketch really. I can draw it and write down on the graph what I

know - a basic velocity time graph and by working out the area o f a trapezium 
and stuff em you can actually work it out algebraically by visual aid.

41. SE: Yes.
42. P: But without actually drawing a graph you’ll struggle on that one.
43. SE: I think your right. Going back to question six, this biased dice. All these

values are part of a quadratic formula.
44. P: Yes.
45. SE: So if  you were to plot them individually on a graph say, using a graphical

approach. When x is 2, plot y is 0.1, when x is 3 it will be 0.12, and then you 
have x is 6 and you would go up to 0.3. Then you could join those points with 
a curve because you know they lie on a curve because it says so -  it’s a 

quadratic formula.
46. P: Yes.
47. SE: So does that give you any idea o f how you might be able to estimate the

values?
48. P: Well if  you have a good idea of what the curve would look like then you can

draw it, but it’s hard to get the graph so it looks right and then you can estimate 
the values of 1, 4 and 5.

49. SE: Yes that’s one way you could have done it, using a graphical approach, but it
would be approximate perhaps depending on how accurate your graph was.
So there is an algebraic approach that you’ll see that when I hand out the 
solution sheets.

50. P: Oh right.
51. SE: Ok. But you probably haven’t come across that yet, so I wouldn’t really

expect you to come up with that. So have you found the graphical calculator 
useful?

52. P: Yes it’s been very useful em I suppose using physics and stuff as well. If  I get a
graph and I need to draw it quick, I’ve got some idea what it looks like or I 
might have to draw a graph in the exam on a piece of graph paper, which

CXVI



happened at GCSE. You know what the graph looks like before you draw it so 
it’s an advantage really, you know what you are doing.

53. SE: You don’t think that if  you concentrate on the graphical calculators you skills
in drawing by hand will suffer?

54. P: Well I think you have got to be careful. I think if  you do just concentrate
totally on the calculator, completely leaving the paper behind and you make a 
silly mistake - you push add instead of minus or something, or times instead of 
minus, em then you’re just going to go completely wrong and you’re going to 
get bad scores. So you need to be able to do the stuff on paper to understand it 
then you can do it on the calculator. I think that to be able to work things out 
algebraically first shows understanding rather than just typing a few numbers 
into the calculator.

55. SE: Yes. Ok well thanks very much.

Roy

1. SE: Ok so can you explain to me how you would attempt to solve these
questions.

2. R: For the first one I’d try the equation, either by using the formula - the
quadratic formula or by just factorising it.

3. SE: Yes.
4. R: And I’d have to see whether, which way it - and then I ’d sketch the graph and

find the critical values. I’d be able to sketch the graph so that I could see that 
em the two critical values - in between the two of them, I ’d be able to see that 
that’s below zero so I know that my answer.

5. SE: Yes so you would sketch the graph...
6. R: Yes.
7. SE: To accompany the algebra - with the graph?
8. R: Just to make sure that I don’t make a mistake.
9. SE: Ok and what about question two?
10. R: Em I’d probably rearrange the first formula, the equation and substitute it for x

into the second one. So I could see, so that I could work out my two equations 
my two values of x and from that I can use that back in the first equation to 
work out the two values for y. Then I’ve got the two points.

11. SE: Right em and would you draw a sketch in this case?
12. R: Em I find that the calculators tend to be a bit inaccurate, so I don’t tend to

draw them on there and sometimes if  you are doing it with graphs it can take a 
bit of time because you’re plotting all the values, you’ve got to work them out 
and then you have got to calculate which values they actually cross at. So 
sometimes it’s a dodgy decimal...

13. SE: Yes.
14. R: Then it can be a bit difficult, so I find it much easier to just use the equations.
15. SE: Right Ok, what about question three?
16. R: Em that one I would use my calculator to plot them em and see if  I can em - so

that way I would be able to see the actual graphs. So I could have an idea of 
how to start out by solving it. I shall probably use the same way as the first one 
but it’s a bit more complicated then the first one, using the two ways for the 
first two questions.

17. SE: Yes but in this case you prefer to do it graphically, would you?
18. R: I’d start off by doing it graphically and then see if  I could work in say algebra.
19. SE: And then check it with the algebra that way?
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20. R: Yes.
21. SE: Ok and what about question four?
22. R: The way I ’d use my calculator because I find it much easier just to put it into

the calculator and work it out from there. So I can see that how the graphs are 
related, then if there is, if  it is slightly confused I would sit down and plot the 
graph myself.

23. SE: Yes.
24. R: And see if  I could see the relationship that way.
25. SE: So by looking at these two formulas, can you see a relationship without

drawing it?
26. R: I could actually - 1 believe that one crosses the y intercept at -2  and one

crosses at 2.
27. SE: Yes.
28. R: But I ’d check that because I’m not entirely happy.
29. SE: What about the shapes of these graphs?
30. R: Well I ’d know that they were both parabolas, the same - they’ve got the same

shape, the y ’s are parallel. I ’d know that they were both the same shape 
because they’re both x2+3x.

31. SE: Yes Ok. So how long have you had your graphical calculator?
32. R: I’ve had it about a year now since Christmas.
33. SE: Do you feel like you’re ordinary plotting skills yourself have suffered at all

because you’ve been using a graphical calculator or because you don’t 
always rely on it and do sketches yourself do you think that it hasn’t made 
any difference or has it helped?

34. R: I find that it’s helped because I can plot the graph on my calculator and by
hand and then I can check that I am getting it right, because if  there’s a 
problem I know that there is a problem.

35. SE: Mm.
36. R: I don’t have to wait for it to be marked. I can see the problem immediately and

try it again so that way I can make sure that I get it right. It’s helped in that 
way.

37. SE: Ok em, question five?
38. R: Em I ’d also plot it on my calculator again, but I can see - 1 can see from the

question that em as you go down the curve you can see that as it passes the y 
axis it changes its gradient but I’d be able to plot that using the calculator 
because I can plot tangent...

39. SE: Oh, yes.
40. R: At various points and the equation of that.
41. SE: So when you say you could see it from the question, what do you mean by

that?
42. R: Well em certain questions I am able to see in my head and so that I could - that

one I know that at a certain point the gradient on the curve the gradient would 
be -3  coming down and on the other side it would be 3 because it’s a 
symmetrical curve. So it would just change the shape o f the gradient.

43. SE: Ok and what about question six?
44. R: Em I wasn’t entirely sure because we haven’t exactly done this yet.
45. SE: No I was thinking that probably you hadn’t done that...
46. R: Yes.
47. SE: Even before I set the question but I thought I would just throw it in.
48. R: I had a look to see if there was any relationship on a graph to start with,

because the way that the values are going it looks as though it might be a
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straight line graph. I’d plot this out and see if there was a formula to it and then 
em once I ’d got all the values I ’d probably need to have a look at a formula.

49. SE: So using your graph can you actually plot statistical points?
50. R: Yes.
51. SE: So you would do it like that on your graphical calculator because you can on

these but I haven’t shown anybody yet how to do that.
52. R: Yes. And if  I was unsure how to do that I would do it all by hand.
53. SE: Yes.
54. R: But I would still plot the graph because it would help.
55. SE: Yes that would be one way o f doing it yes and what about question 7?
56. R: Em from physics I know that a velocity-time graph’s a trapezium. The area

underneath equals the total distance travelled. So em I know that and then by 
using the - by knowing what’s on the axes I can use the formula for the area of 
a trapezium to calculate it - to actually even work out the value o f v.

57. SE: Yes. You wouldn’t draw a graph, because you know what the shape is like?
58. R: I’d probably not, no but if  it was a more complicated question i.e. something

that I had not done before then I would probably sit down and draw the graph.
It just depends on what I’ve done and what I haven’t done.

59. SE: So you tend to use the graph if  you are unfamiliar with the situation?
60. R: Yes.
61. SE: Ok right, thanks very much.

Carol

1. SE: Right so could you please describe to me how you’d have attempted
these questions.

2. C: Right ok well for question one seeing as I’d got the calculator I used it and like
used the Y= and typed in the graph and then went to the table to get the values.

3. SE: Yes.
4. C: If  I hadn’t had had it though, usually I would have just like drawn the graph

and put in my own values and worked it out that way. So em that’s how I 
would have done that one.

5. SE: Would you not have used any algebra at all -  any symbolic techniques?
6. C: Em no I don’t think I would. I would have just done the graph for that.
7. SE: Why do you think that is - because you wouldn’t be happy with the

techniques using algebra or is it because you just feel it’s not necessary in 
this case or?

8. C: It’s just I’m used to doing it with graphs, you know, I find it easier.
9. SE: Ok what about question two?
10. C: Right em I’d also draw the graphs for this one so I could see where em (pause)

they meet. So that’s how I would have done that one as well. A lot o f these I 
would have done like that actually.

11. SE: So even if you hadn’t got the graphical calculator you would have still used
this approach, like you say plotting the values?

12. C: Yes, yes.
13. SE: But do you find that having the graphical calculator makes it easier?
14. C: Oh definitely yes. It definitely does.
15. SE: Do you think that if  you used it a lot your skills using your own diagrams,

drawing them yourself would suffer at all or do you think it would help 
improve those?
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16. C: 1 don’t think that it would change really either way ju s t ... I do find them a lot
easier because it gives you all the values as well so you don’t have to work that
o u t ...

17. SE: Yes.
18. C: But perhaps that might be worse, because if  sort of you didn’t know how to

make your own values up, it was just given to you, you have to know how to 
do it but because I already know how to do it then it’s fine, you know.

19. SE: Yes, and what about question three?
20. C: Question three em (pause) I typed in the two equations so that I could plot the

graph on the calculator and then em I could look on the table to find the values 
o f x em of where the graph was above the other. I used the calculator but I 
haven’t got one myself but, so I would have done it drawing the graphs em I 
find them a lot better though, the calculators, they’re good.

21. SE: Mm. So would you have known how to do this algebraically? Would you
have had an idea of how to do it?

22. C: Algebraically? How do you mean?
23. SE: Using the formulas and rearranging them in some way to find out what x is.
24. C: Em I don’t think I could just say now what it would be, but I might be able to

get my head round it if  I sort of got stuck into it. But that would take longer 
really so ...

25. SE: Is that why you prefer to do it graphically?
26. C: Yes, it’s a lot quicker.
27. SE: What about question four?
28. C: Question four (pause) em I did this on the calculator and typed the graphs into

the calculator and em I found that they were the same graph except its moved 
up by four.

29. SE: For the first one.
30. C: Yes but I did actually know that already em I didn’t really need to use the

calculator but I did seeing as it was there, because I quite like it because it’s 
fun. But I know about the, you know, the number on the end to work it out so 
that’s what I did for that one. For question five (pause) em I used the 
calculator and looked at the table and so that I could work out the graph went 
across the x axis twice and that’s how I used that. I f  I didn’t have had it, again 
I would have used the graph and for these type of questions I’m very into the 
graph drawing.

31. SE: So it crosses the x- axis twice.
32. C: Yes.
33. SE: What happens to the slope, did you consider that - the gradient of the graph?
34. C: It would decrease and then increase again.
35. SE: Decrease and then increase?
36. C: I didn’t do that actually.
37. SE: You didn’t do that.
38. C: No.
39. SE: It doesn’t matter.
40. C: And I didn’t do the last two questions as well because they just went over my

head.
41. SE: Yes, I thought that maybe you would not have met anything like this before.
42. C: No.
43. SE: With being fairly new to the A level. Em, so on this one, the slope changing

you’re right about this part its increasing (pointing to the right o f the curve).
44. C: That’s a minus gradient (pointing to the left part).
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40. Si±: lha t's  a minus gradient, so what’s happening to it? It’s quite steep and then 
its getting more shallow.

46. C: Yes.
47. SE: So it’s actually increasing the whole way through.
48. C: Yes, yes because it’s ... yes.
49. SE: Can you see that now. Right Ok then thanks a lot for your help. Just before

you go, do you think that the graphical calculators have been beneficial?
50. C: Yes, for this type of work I used them a lot it’s been good.
51. SE: Yes, you’ve enjoyed it?
52. C: Yes I have.
53. SE: Thank you.

Julian

1. SE: Could you please tell me how you answered these questions.
2. J: Right for question one I just typed it into the graphic calculator. Do you want

me to do it now or?
3. SE: No it’s no problem just describe what you did.
4. J: And em when it came up, I used the trace facility on the calculator to em

highlight the first value that was below the x axis and then wrote them out in an 
inequality.

5. SE: Mm and did you think at all about using algebra -  a symbolic technique to
solve the problem?

6. J: Em well I was going to but then I thought this is a new toy so I thought I ’d try
that.

7. SE: So having the graphical calculator lead in the path of using a graphical
approach for this question?

8. J: Yes, definitely and I ’ve got a graphical calculator o f my own.
9. SE: Yes.
10. J: So I’m a bit familiar with it so I was fine.
11. SE: So em would you have considered, without this graphical calculator, solving

this problem symbolically? Is the graphical calculator the thing that has made 
you do it graphically? If you didn’t have it what would you have done?

12. J: Oh you mean if I didn’t have a calculator yeah I would probably have
attempted it algebraically but as I have my calculator it was easier to do it that 
way, so I chose that method.

13. SE: Ok, what about question two?
14. J: What I did here was I typed in both of the functions onto the calculator, so it

would graph both at the same time, put that on there (pointing to a button on 
the calculator) and used the trace facility again to see where it intersected and 
em wrote my answer down again.

15. SE: And what about question three?
16. J: Same again - typed them both in to the calculator and used trace to show where

it first did it and then wrote an inequality for my answer.
17. SE: So in these two questions, as w ell...
18. J: Yes.
19. SE: You used this graphical approach seeing as this graphical calculator

facilitates that.
20. J: Yes.
21. SE: Em what kind of approach would you have used without it? Would it still

have been graphical? Or would it have been symbolic?
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22. J: Well I would have tried to have done it with algebra first, but if  I couldn’t
struggle that way I would tend to draw a graph for myself plotting some values 
and then do it that way.

23. SE: Em how long have you had your own graphical calculator?
24. J: Em I had it that last year o f GCSE and it helped me then when we were doing

functions and it was quite handy in the exam actually. You have to wipe the 
memory so any other use is minimal.

25. SE: Right, what about question four?
26. J: Em this is another one. I’d put them into the calculator again and they - as it

shows them both at the same time it helps you to see how they are connected.
27. SE: Em by looking at the formulas of these (pointing to the first two equations)...
28. J: Yes.
29. SE: Without drawing it could you have seen, for these two, what the relationship

was?
30. J: Em they intersect the y at different heights.
31. SE: Yes. Are they the same shape?
32. J: Yes other than that they will be the same shape. The -2  and the 2 show you that

one’s just higher up than the other.
33. SE: So do you actually need to draw the graph?
34. J: No.
35. SE: or would you have drawn it anyway to just check that you were right?
36. J: Yes, I think. Say I had twenty questions like that I would have drawn the graph

on the first one just to check my method was sound and then I would have just 
not bothered and would have just carried on like that.

37. SE: Em this ones a little bit different (pointing to the second pair o f equations)
38. J: Yes.
39. SE: Would you have needed to have graphed those?
40. J: Yes I would have graphed that one definitely.
41. SE: Yes and what about question five?
42. J: (pause) I would have graphed that one too but I presume that it gets steeper.
43. SE: It gets steeper?
44. J: As it veers towards 3.
45. SE: Right.
46. J: Because I know the shape of x2 is a parabola.
47. SE: Em and what about -3?
48. J: Oh it’s going to be a negative one isn’t it?
49. SE: Mm.
50. J: It’s going to go from negative to - it’s going to stay negative, pretty steep then

it will level off and it will get steep again and that will be the same as that 
(indicating the gradient at 3 and -3 ) but one will be minus.

51. SE: Right ok yes that’s fine em so you can see that in your head if you need to?
52. J: I didn’t need the calculator no, but I just it’s a way of checking because there’s

no problem of doing it. It’s not against any exam law so you might as well 
make sure you are right instead of just hoping.

53. SE: Yes and what about six and seven, because some people had problems with
these because obviously they’re very different from what you might have met 
before. Did you manage to get anything out of them?

54. J: Em I found them very hard. I can’t remember exactly how I did them, so I ’ll
just scan them. (Pause) No I just couldn’t do these. To do something like this, 
because I don’t understand it straight away I’d either get help or tackle it 
algebraically as far as I could go to try and get a function I could type into the
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calculator and then hopefully makes sense from it from there. But at first I 
think I’d definitely need to get some instruction.

55. SE: Yes I think it would be quite difficult because you don’t know the value of v
and you don’t really know...

56. J: All these you knew what to put into the calculator straight away.
57. SE: Yes.
58. J: Here it’s less clear.
59: SE: Here it’s totally different, yes.
60. J: So I ’d try to work out what to put in at first and then go for it from there.
61. SE: So have you found the graphical calculator a real help then.
62. J: Yes it’s been really good. It was good at GCSE and been more useful now at A

level em even if  you don’t want to use it to do the work, it’s definitely a good 
back up.

63. SE: Mm.
64. J: Because it gives you confidence. You know you’ve got it right because you’ve

seen it happen.
65. SE: Yes. Ok well thanks a lot.
66. J: Thank you.

Marie

1. M: Do you want to know how I did it?
2. SE: Yes, can you please just explain how you would have done these questions.
3. M: Right ok em I’d draw that graph.
4. SE: For the first one?
5. M: For the first one on the calculator and then probably just read off the graph to

find the values of x.
6. SE: Right, is that because you had the graphical calculator or do you particularly

like working with a graphical approach?
7. M: I think it would just be easier for this one, yes.
8 SE: Would you know how to do it symbolically -  well algebraically?
9 M: Em yes probably. Yes I’ll just do that and put it’s less than 0 and just work it

out that way probably. Em Ok number two (pause) probably again I ’d do a 
graph em and read off the graph. If  I couldn’t - if  it wasn’t that clear then I 
would do it algebraically.

10. SE: So you would rather do the graphical approach first?
11. M: Yes to see if it’s an obvious - if  it’s an integer or not.
12. SE: So is that because you’ve got the graphical calculator or would you do that

even without the graphical calculator?
13. M: What draw a graph by hand? No because I wouldn’t trust myself at being able

to draw it well enough.
14. SE: So the graphical calculator is having an influence in the way you might solve

these questions?
15. M: Yes.
16. SE: What about question three?
17. M: Em (pause) again I would draw a graph on the calculator but not by hand

(pause).
18. SE: What about question four?
19. M: Question four I’d do algebraically.
20. SE: Algebraically?
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21. M: Well I ’d probably do a bit o f both. I’d look at the graphs and then prove it,
but it’s saying to describe it, so I’d try and prove it algebraically as well.

22. SE: So how do you think you could do that algebraically?
23. M: Well hang on I might have got the question wrong (re-reads the question).

Well when it says the connection there I’d put x2+2 = x2+2x+3 and simplify 
it. I’m not sure that that’s right.

24. SE: That’s one way you could approach the problem.
25. M: And then I ’d draw that graph as well to show how they are related, because it

might be that they are reflected or something.
26. SE: Yes. That’s not the approach I was looking for in the question actually setting

them equal to one another, but if  you did that it might tell you something 
interesting. It is something that you could try because you don’t know the 
relationship that I ’ve got in mind.

27. M: Yes, that’s why I would draw the graph first to get a rough idea.
28. SE: Ok and what about question five?
29. M: Em I ’d draw the graphs, yes. I ’m not quite sure what that means though.
30. SE: The slope means the gradient of the function.
31. M: Oh right yes then I would find the gradients at each of those points, where it

crosses it.
32. SE: Did you actually manage to do questions six and seven?
33. M: No I probably didn’t get chance to do them no.
34. SE: Because a lot of people had trouble with those because they’re not like any

questions that you have met before.
35. M: No I didn’t get chance to do those.
36. SE: That’s Ok that’s fine. So how have you felt about the graphical calculator?
37. M: Em once I can use it, it is good to use, it’s just getting to know it first o f all

that’s more difficult.
38. SE: So have you found it useful?
39. M: Yes definitely.
40. SE: Do you think it’s helped your understanding of functions?
41. M: Yes.
42. SE: Yes. Ok right thanks a lot.
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VISUALISATION AND USING TECHNOLOGY IN A LEVEL MATHEMATICS

This project seeks to identify and evaluate the ways in which existing technology can 
be utilised to promote and develop students' powers o f visualisation and to encourage 
the usage o f  these skills in A level mathematics lessons. At present, a small scale pilot 
study has been carried out and the resulting data has been analysed. After briefly 
summarising current research in the area o f visualisation and technology in this 
paper, I  will report on the findings o f  this initial pilot study, in which materials 
developedfor use with the TI-92, aimed at promoting students' abilities to visualise the 
graphs o f  functions, were trialled with a class o f thirteen year twelve students. The 
subsequent consequences for future directions o f  the research will, also, be discussed.

Introduction
Visualisation is increasingly being accepted as an important aspect o f mathematical 
reasoning. Studies have revealed that 'activities encouraging the construction o f images 
can greatly enhance mathematics learning' (Wheatley and Brown, 1994). Indeed, 
potentially, technology could assume a very powerful and influential role in 
stimulating and shaping students' powers of visualisation, and as such may prove to 
contribute significantly to the depth o f students' understanding.

Zimmerman and Cunningham (1991) insist that mathematical visualisation is not 
merely 'math appreciation through pictures' - a superficial substitute for understanding. 
Rather they maintain that visualisation supplies depth and meaning to understanding, 
serving as a reliable guide to problem solving, and inspiring creative discoveries. In 
order to achieve this understanding, however, they propose that visualisation cannot be 
isolated from the rest of mathematics, implying that symbolical, numerical and visual 
representations o f ideas must be formulated and connected. This project is 
conceptualised on the basis that visual thinking and graphical representation must be 
linked to other modes of mathematical thinking and other forms of representation 
(Tall, 1989).

Issues Surrounding Visualisation
Within the current literature there exist many differing notions o f the key terms 
associated with the area of visualisation in the learning of mathematics, each 
developed with respect to a specific research purpose/focus, and each drawing on and 
expanding previous ideas.

Mariottii and Pesci (1994) acknowledge visualisation occurring when 'thinking is 
spontaneously accompanied and supported by images'. Mason (1992) regards 
visualising as 'making the unseen visible' and imagery as 'the power to imagine the 
possible and the impossible'. Solano and Presmeg (1995) see visualisation as 'the 
relationship between images' - 'in order to visualise there is a need to create many 
images to construct relationships that will facilitate visualisation and reasoning'. Hitt 
Espinosa (1997) suggests that visualisation o f mathematical concepts is 'not a trivial 
cognitive activity: to visualise is not the same as to see'. To visualise is the 'ability to 
create rich, mental images which the individual can manipulate in his mind, rehearse 
different representations o f the concept and, if  necessary, use paper or a computer 
screen to express the idea in question'. __
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Unfortunately, despite the current views of researchers surrounding the importance o f 
visualisation, there is still a tendency for visualisation to be undervalued in 
mathematics classrooms and consequently some students, whilst able to visualise 
mathematically, often opt for non-visual, more 'conventional' approaches to problem 
solving (Presmeg, 1995). Traditionally, a greater emphasis has been placed on 
algebraic or analytic proof, despite the proposed legitimacy of visual theorems. 
Presmeg's findings (1986) indicate that an ability to apply and interchange both visual 
and non-visual methods in problem solving is particularly advantageous for students, 
especially where one mode is more appropriate. However, the teaching o f school 
mathematics is predominately non-visual and 'visualisers are seriously under
represented amongst high mathematical achievers' (ibid).

Although, images presented to students by teachers will influence the students' 
understanding and individual construction of such images, the students' conception of 
these images will not necessarily correspond to that of the teachers' (Mason, 1992). 
Indeed, 'visual ideas often considered intuitive by an experienced mathematician are 
not necessarily intuitive to an inexperienced student' (Tall, 1991). Students should be 
encouraged to create and explore their own images (Cunningham 1994) - a visual 
understanding of a given situation is more robust and is thus more likely to be 
remembered by the student in the longer term than a purely algebraic proof. Yet, 
Presmeg (1986) outlines four particular difficulties involving imagery; 
images/diagrams viewed inappropriately, inflexible thinking when dealing with a non
standard diagram, rigid uncontrollable images and vague imagery. She (ibid), also, 
suggests that 'less imagery is used with greater experience or learning'.

Visualisation skills may be employed by students privately to clarify, interpret and 
make sense of the given problem intuitively, as tools for 'meaning-making' (Wheatley 
and Brown, 1994) although, such processes are unlikely to be explicit in written 
arguments (Presmeg, 1995). Furthermore, the usage o f visual techniques is 
comparatively time intensive suggesting that tests and examinations will tend to favour 
the non-visual thinker (Presmeg, 1986). In addition, visual thinking requires non
sequential, parallel processing of information, and as such poses a greater cognitive 
challenge to students than step by step sequential algorithmic reasoning (Eisenberg and 
Dreyfus, 1991).

The Perceived Role o f Technology
In light of the recent advancements in technology, a whole range of computer 
programmes and scientific instruments are currently available with the potential to 
assist students in the formation of visual mathematical images. One of the main 
objectives of this research is to evaluate and develop materials and strategies which 
aim, as far as possible, to maximise this potential, with particular emphasis on the 
graphical calculator. However, the role o f the computer in this respect is, also, 
regarded by the researcher as extremely important and influential and is thus explored 
in this review of current literature. Overall, the findings o f studies involving graphical 
calculators appear to be very similar to those which utilised computer technology, 
although the similarities and differences between these two types of technologies 
should not be overlooked.
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Many researchers realise the potential of utilising technology to promote and 
encourage visualisation skills (Souza and Borba, 1995; Smart, 1995). In particular, 
computer based visual approaches in teaching mathematics can i) increase motivation 
and ii) provide an opportunity to pursue an alternative and yet complimentary mode of 
thought to the traditional symbolic approach (Cunningham, 1994). Technology can be 
utilised to enable students to develop a deeper insight into the relationship between 
functions and their graphs (Carulla and Gomez, 1997). Furthermore, technology can be 
particularly useful in exploratory learning, where students are able to formulate 
concepts for themselves and benefit from visualisation in the process (Tall, 1991).

However, despite the advantages, students may still misunderstand, misinterpret and 
therefore misuse information provided by graphic calculators (Carulla and Gomez,
1997). Furthermore, such technology may encourage students to focus primarily on 
graphical representation whilst neglecting other modes (ibid). In contrast, other 
researchers report that graphical calculators can be utilised to foster the transitions 
between and exploration of different modes of representation (Ruthven, 1990). Multi- 
representational software, however, could contribute towards misunderstanding and 
confusion amongst students; any difficulty experienced with one particular 
representation could be intensified by the presence of other forms of representations 
(O'Reilly et al,1997). There is a danger that students could become 'saturated by 
images' (Mason, 1992). Alternatively, students may become too dependent on 
technology, regarding the solutions generated as irrefutable (Smart, 1995). 
Zimmerman and Cunningham (1991) believe that certain fundamental visualisation 
skills are prerequisite for meaningful computer based visualisation.

Many researchers maintain that the use o f technology can promote collaborative 
learning and equal opportunities (Smart, 1995). In particular, female students, have 
benefited from the private nature of the graphics calculator (ibid). Ruthven (1990), 
also, found that a reduction in student uncertainty and anxiety accompanied regular use 
of the graphics calculator, and hence stimulated improvement in the 'confidence, 
competence and performance' o f all students, especially that of the females. This study 
will investigate how graphical calculators affect the visualisation capabilities o f the 
female students in comparison with the males, with the aim o f determining whether 
female students benefit, in this manner, to a greater or lesser extent.

The First Pilot Study
Initial classroom trials were carried out at a school in Sheffield for a period o f six 
hours during February 1998, with a group of five male and eight female year twelve 
students. The fieldwork involved participant observation and a post-trial questionnaire. 
Each individual student was given a TI-92, although they generally worked together in 
pairs, sharing ideas. The exercises featured graphing functions, and involved exploring 
and identifying the effects o f transformations, finding inverse functions, solving 
equations - graphically and algebraically, and investigating trigonometric and 
logarithmic identities. The main aim of this pilot study was to enable the researcher to 
assess the suitability of early materials and techniques, to elicit preliminary reactions 
to the use of technology and to provide a framework for further data collection.
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Student Questionnaire Responses
The questionnaire responses indicated that, generally, this particular group of students 
viewed technology as an important addition to the A level mathematics classroom - a 
quick and accurate means o f strengthening their understanding and visualisations of 
functions. However, some feared over-dependency and accompanying laziness, but 
would nevertheless welcome further use o f technology in the future. Thus, these 
students appeared to appreciate the opportunity to use the TI-92 and seem to have 
benefited mathematically from the experience.

The Students* Work
A preliminary examination of the students' work revealed that a high proportion of 
students often assumed that the TI-92 was displaying the whole graph without using 
the zoom in and out facilities. The function x2- x3 caused particular problems. The 
students were asked to sketch the graph o f the function and to determine the nature and 
co-ordinates of any turning points. The first graph (fig 1) is drawn using ZoomStd 
(where the x and y axes vary from -10 to 10, in divisions o f 1 unit), and the second 
graph (fig 2) results from zooming in on the first to a degree of factor six, centred on 
the origin. The second graph provides a much better picture o f the actual shape o f the 
graph. Yet, all o f the students who attempted this question failed to use the zoom 
facilities and thus drew a sketch of the function which resembled fig 1. Consequently, 
they mistook the point (0,0) as a point o f inflection (clearly a local minimum in fig 2) 
and were unaware that a local maximum existed and as no-one checked their results by 
differentiation these errors were undetected. Clearly, these turning points were missed 
because they were not initially visible on screen.

fig 1
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In contrast, some students believed that the graph o f y = (x+l)/(x+2)2 had a minimum 
turning point at x = -2. These students failed to realise that the function is undefined at 
this x value as they completely misinterpreted the graphs displayed by the TI-92 and 
neglected to inspect the equation.
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Fig 3 shows the graph of y = (x+l)/(x+2)2, using ZoomStd again, whereas fig 4 is 
obtained by zooming out on the original graph, centred on the origin, by a factor of 
three. Since only part of the graph appeared to be visible on the screen in ZoomStd, 
some students choose to zoom out, producing graphs resembling fig 4, which seemed 
to have a minimum stationary point, and so these particular students (who were using 
the zoom facilities) were fooled. As before, these students did not spend time thinking 
logically about the function or picturing what the function might look like for 
themselves - they were confident that the technology provided them with the correct 
answer. Smart's (1995) research emphasises this problem, referred to as the 'magic' 
element o f technology.

In addition, few students successfully completed the algebraic components o f certain 
questions, and fewer still actually specified the symbolic form of the graphs resulting 
from a series of successive transformations, even though this was requested. Thus, 
these students tended to concentrate on graphical representation in questions involving 
both graphical and algebraic aspects. However, the remaining questions were 
completed satisfactorily. In particular, eleven students were able to identify the graphs 
o f all six functions in the final exercise, which was an encouraging outcome.

Implications for Future Data Collection
The data collected in this pilot study has enabled the first evaluation o f the classroom 
materials and approaches devised by the researcher, aimed at promoting the 
development o f student's powers of visualisation using technology to be undertaken, 
thereby permitting some initial progress in terms of achieving the second objective of 
the research. However, there was insufficient data to provide notable insight into the 
third and fourth objectives; to investigate the ways in which the technology acts as a 
tool in mediating the development of students' powers of visualisation and to 
investigate how powers o f visualisation might be evoked and be developed by the use 
of mathematical software. To what extent did the materials encourage, if  at all, visual 
thinking?

Thus, preliminary results suggest that it would be useful to establish a means which 
would indicate how students initially approach problems involving functions. In other 
words, before the research takes place, do they adopt a predominately visual, algebraic 
or numeric approach? If their approach tends to be visual, how successful are they? If 
their approach is not visual, how do they perform when asked to work visually? 
Moreover, following the introduction of technology does their preferred mode of 
operation change? Do the visualisation skills of all students (not only those who prefer 
to work visually) improve? Do all students necessarily have a visual approach? 
Teachers will be interviewed to determine the extent to which they have used visual 
methods in their teaching of functions, and in lessons generally. It is, also, recognised 
that to try to distinguish between visualisers and non-visualisers is problematic; there 
is a continuum between students who can be regarded as almost entirely visual 
thinkers and those who are virtually exclusively non-visual and furthermore there are 
few students at the extremes - for different types o f problems individual students may 
use different methods of solution. In the future pre-trial exercises, questionnaires and 
interviews will be utilised in an attempt to ascertain answers to these central research 
questions.
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HOW DOES THE WAY IN WHICH INDIVIDUAL STUDENTS BEHAVE 
AFFECT THE SHARED CONSTRUCTION OF MEANING?

Audio taped discussions between three students have been examined to shed light on 
the way in which the behaviour o f  individual students may affect the shared 
construction o f  meaning. These discussions revealed a complex pattern o f  interaction 
between the students. Each student was responsible for defining his or her own role 
within the discourse and these roles appeared to change as the discussion progressed. 
With reference to the framework offered by Winbourne and Watson (1998), it is 

proposed that local communities o f  practice have been established and that the 
individual student’s positioning within the community o f practice determines their 
success as a learner and contributes towards the creation o f shared knowledge.

Introduction
This paper seeks to investigate whether three GCE Advanced level further 
mathematics students were able to develop a joint conception o f the problems that they 
worked on together as part o f a class discussion. O f particular interest was the part that 
each individual student played in creating shared meaning. The theoretical position 
adopted in this study is based on the Vygotskian idea that all learning is essentially 
social and that meaning is derived through interactions between students and with the 
teacher, and is mediated by tools. Each participant occupies a different role in the 
construction and negotiation of meaning and these roles are developed through 
participation in local communities of practice. These ideas which form the basis for 
this study are elaborated below.

Social Construction of Meaning
Lerman (1994) regards meaning as socio-cultural in nature, a product o f discourse and 
discourse positions and he argues that individuals are thus acculturated into meanings. 
The individual student’s input into meaning making changes and is changed by the 
discourse. In this way the student derives meaning from their positioning in social 
practices (Lerman, 1994). Meaning is seen to be appropriated by individual students, 
whereby each student forms his or her own something, from that which already 
belongs to others (ibid). Appropriation occurs through communication and tool use. 
Hershkowitz (1999) identifies a need for focusing on the individual student’s 
development as he or she participates in the collective construction of shared cognition 
in small groups or in the whole class community. She claims (ibid) that socio-cultural 
studies focus mostly on the interaction or the interactional event itself and that the 
individual student is generally an anonymous participant in classroom episodes. This 
paper thus attempts to draw out the individual student’s role in creating, maintaining 
and deriving meaning from the discourse.

Local Communities of Practice
Winbourne and Watson (1998) identify six key features o f local communities o f  
practice'.

• Pupils see themselves as functioning mathematically within the lesson;
• There is a public recognition of competence;
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• There are shared ways of behaving, language, habits, values and tool-use;
• The shape o f the lesson is dependent upon the active participation o f the students;
• Learners and teachers see themselves as engaged in the same activity;
• Learners see themselves as working together towards achieving a common 

understanding.

They propose that any classroom can be regarded as an intersection of a multiplicity of 
these practices and trajectories. They also argue, as does Lerman, that the individual 
student’s positioning within a community o f practice will determine their learning 
success. Ultimately, the students can come to operate masterfully, within the 
constraints o f the social setting. The students fulfil their ultimate positions within the 
community o f practice through smaller-scale “becomings” in which they join the 
practice and begin to assume their eventual position. The student’s experiences at 
school are mediated by the images of themselves as learners that they bring with them.

The Role of the Teacher
Both the teacher and the students play a mutual and active part in creating the social 
environment. The teacher is seen as a mediator of student learning and assumes an 
active and necessary role in the learning process (Lerman, 1994). An important 
objective for the teacher is to apprentice students into the discourse o f the mathematics 
classroom (Lerman, 1994). The teacher assists the students in “appropriating the 
culture of the community of mathematicians as a further social practice”, so that the 
students will be able to operate masterfully in this setting. To establish local 
communities o f practice the teacher must constrain the foci for attention, and recognise 
and work with pre-dispositions, rather than ignore them (Winbourne and Watson,
1998).

The Role of Technology
Borba (1996) proposes that the use of graphical calculators can enhance mathematical 
discussions and “reorganise” the way that knowledge is constructed. The graphical 
calculator is seen as a mediator o f both the teacher-student relationships and the 
interactions between students. Pea (1987) argues that “social environments that 
establish an interactive social context for discussing, reflecting upon, and collaborating 
in the mathematical thinking necessary to solve a problem also motivate mathematical 
thinking” (p. 104). He emphasises that technology can play a fundamental mediational 
role in promoting dialogue and collaboration in mathematical problem solving.

The Class Discussions
Robert, Martin and Julie were asked to identify the symbolic forms of six graphed 
functions from a list o f twenty possibilities and discuss their ideas. The discussions 
surrounding three o f the graphs are presented below. Terminology developed by 
Teasley and Rochelle (1993) was used to analyse the interaction. This involved 
identifying student ‘initiation’ of the discourse, student ‘acceptance’ o f arguments and 
cases o f students ‘repairing’ misunderstandings. There were also instances that 
appeared to involve ‘collaborative completions’ between students, where one partner’s 
turn would begin a sentence or idea and the other partner would use their turn to 
complete it.
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Discussion of Graph B [y = sin 3x]
1. SE: Can anybody think o f a function for B?
2. M: I reckon its sin3x.
3. SE: Sin3x.
4. All: Yes.
5. SE: You seem to agree on that one. So how did you come up with that conclusion?
6. M: It’s a sine wave and it’s been e r...
7. R: Three times x would condense it.
8. M: It’s got a stretch parallel to the x-axis of a third, because it got closer together.
9. SE: Yes, you’re all right it’s sin3x.

Martin initiated the discussion by asserting that this was the graph o f sin3x. The other 
two students immediately accepted that this was the correct form o f the function. 
When asked to give reasons why, Martin and Robert took turns to give an explanation, 
each building and elaborating on the previous utterances (lines 6, 7, 8), thereby 
producing a collaborative completion. When Martin paused to think (line 6), Robert 
anticipated what he may have intended to say and completed his statement. Together 
they provide a convincing argument for their choice of function. Although, Julie did 
not participate verbally in this part of the discussion, she did make gestures that 
indicated her agreement with the arguments being put forward. The knowledge 
constructed by the students in this example appears to be shared between the students, 
especially Martin and Robert. Instead o f concentrating on developing their own 
arguments separately in the discussion (which had occurred during the discussion of 
graph A), they produced a joint explanation of why sin3x was the correct function. In 
this case each of the students appeared to be able to clearly picture the effects o f the 
transformation, without using the technology.

Discussion of Graph E [y = ex_1 + 4]
1. R: It could involve an exponential this time.
2. SE: Yes this is an exponential.
3. R: It's got +4 on the end, so it's either y = e'(x+1) + 4, y = -ex+1 + 4, or y = ex_1 + 4.
4. J: It hasn't been reflected, so it's not y = -ex+1 + 4.
5. R: It’s probably y = ex_1 + 4 actually.
6. SE: Why do you say that one?
7. R: Because the negative sign somehow has to fit that [the graph], although I can't 

explain how
the minus sign affects it.

8. J: That's some sort of reflection, isn't it? [referring to y = ex_1 + 4].
9. R: y = e'(x+1) + 4 would be a reflection.
10. J: Why?
11. R: It would be a reflection in x, wouldn't it?
12. J: I don’t know.
13. R: y = -ex+1 + 4 would be a reflection in y. This is like ignoring the transformation 

of +4, which
I’d say is y = ex' ! + 4.

14. SE: Yes you are correct. If  you two are not sure you can always draw their graphs.

The fifth graph to be considered was o f a type unfamiliar to the students and resulted 
in Robert assuming the role of peer tutor. This discussion also provided Julie with an 
opportunity to share her thoughts with Robert, and was the first example o f her
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engaging fully in the discourse. Robert was the first to comment on the possible forms 
of the graphed function. Julie then voluntarily presented her argument to eliminate y = 
-ex+1 + 4 (line 4). Following this Robert guessed the correct function. At this point 
Robert and Julie began to conjecture incorrectly, about the effects o f the functions on 
the shape of their graphs. They were unsure about their ideas, turned to each other for 
help and steered the conversation accordingly. Julie proposed that one of the functions 
was a reflection and invited acceptance or repair from Robert (line 8). Robert 
responded by suggesting that another of the functions would be a reflection, thus 
dismissing Julie’s proposal (line 9). Julie could not see why this would be a reflection 
and sought an explanation from Robert (line 10). In response Robert merely restated 
that this would be a reflection, adding that it would be in the x-axis, inviting 
acceptance or repair from Julie (line 11). Julie was still unsure and Robert’s utterances 
did not make things clearer (line 12). Robert finished by proposing that another o f the 
functions would be a reflection in the y-axis and re-emphasising his choice o f function 
(line 13).

Whilst Robert and Julie turned to one another for support, they were unable to answer 
each other’s questions satisfactorily. Julie was confused about which o f the functions 
are reflections (line 8) and Robert was confusing a reflection in the x-axis with a 
reflection in the y-axis and vice versa (lines 11, 13). In this way they were able to 
develop a shared, albeit flawed understanding of the problem. Martin on the other hand 
does not offer any comments, although he appeared to be considering the arguments 
posed by Julie and Robert. The evidence suggests that these students would need 
additional support to enable them to visualise the effects o f certain transformations on 
exponential functions correctly. This is an occasion where technology and the teacher 
could be particularly effective in mediating the students’ visualisation powers. The 
students needed to test their conjectures and investigate the visual connections between 
the various exponential functions.

Discussion of Graph F [y = tati(x/3)]
1. R: It’s a tangent.
2. SE: Think about the scale the TI-92 uses.
3. R: To see if  it was increasing, I could just draw the normal graph.
4. SE: Ok, if  it helps you can draw the - you can all draw the tanx graph and see what 

happens on your machine and then from there you can hopefully deduce what the 
function is.

5. R: It’s a stretch of factor 3.
6. M: It’s tan of x over 3.
7. R: Yes.
8. SE: Is that y = tan(x/3) or y = tanx/3 because there are two of them?
9. M: y = tan(x/3).
10. SE: y = tan(x/3) and what do you think? Have you managed to get the tan?
11. J: Yes. That’s the whole thing. [Julie pointed to the tanx in tanx/3].
12. SE: That’s tan of x all divided by 3.
13. J: So yes y = tan(x/3).
14. SE: y = tan(x/3), yes well done you are right.

Robert was the first to state that this graph belonged to the tangent family o f functions. 
There was however some uncertainty amongst the students as to what the graph o f y = 
tanx would look like in relation to graph F. Recognising this problem, I asked the
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students to think about the scale that the graphical calculator uses to draw 
trigonometric functions (line 2). Robert then suggested that he could draw the graph of 
tanx using the TI-92 and compare this with graph F to deduce the relationship (line 4). 
I then advised all three students to try this approach. Robert compared the graphs and 
deduced that graph F was obtained using a stretch of factor three. To complete 
Robert’s statement, Martin added that the correct function was ‘tan of x over three’, 
again producing a collaborative completion and Robert immediately agreed. As there 
were two functions which could be verbalised as ‘tan of x over three’, I sought 
confirmation that Martin had identified the function correctly and was quickly satisfied 
that he had. Up until this point Julie had not contributed to the discussion and I drew 
her into the conversation again to see if she was following the arguments being 
presented. Julie accepted the choice of function offered by Martin and provided some 
evidence that she had understood why this was the correct function (line 12). The 
students had thus been able to develop some shared understanding of the 
transformations used in this example.

Reflections
During these discussions local communities of practice appear to have been 
established. The students each showed willingness to explore and explain, and they 
began actively working together towards achieving a common sense of each problem 
through the sharing of ideas and by questioning one another. Each student created their 
own role in the practice, which varied accordingly and they shared behavioural traits, 
language, and technology use. I tried to ensure that they received public recognition of 
their competence and we saw ourselves as being involved in the same activity. Finally, 
the students considered themselves to be functioning mathematically within the lesson, 
as they were each offering suggestions as to which functions represented the given 
graphs, based on mathematical reasoning, which enabled them to obtain the correct 
form of the function in each case.

The patterns of interactions between the students changed as each new graph was 
considered. Throughout the discussions the individual students appeared to occupy 
different positions within the discourse, modifying their roles depending on their 
needs. Martin initiated the discussion around the first two graphs, and Robert took over 
this role for the discussions concerning the remaining four graphs. Robert began to act 
as a peer tutor (Graphs E, F). He continually made verbal contributions to the 
discussions and at times took control of the discussion, whilst the Julie and Martin 
spent some time actively listening and thinking rather than speaking. Robert, in 
particular, adopted the role of steering the discussions, whilst reacting to the arguments 
presented by the other students. So as the discussion developed, Robert’s positioning 
within the discourse evolved and he proceeded to occupy a central role. Martin was 
initially quite instrumental in moving the group towards the correct solutions (eg 
Graph B). However, as Robert took over initiation and steering of the discourse, 
Martin seemed to fade into the background. Martin indicated that he was unsure about 
the symbolic forms of some of the graphs and he made fewer contributions when 
discussing these (eg graph E) and appeared to be listening to the arguments being 
presented by the others and thinking about their validity. He needed time to take into 
full consideration the arguments offered, to enable him to form his own ideas and to 
convince himself of their meaning. In this way Martin was attempting to derive his 
‘own something’ from that which already belonged to Robert and Julie.
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Julie operated as an active listener during the majority of the discussion, offering her 
suggestions in the main when specifically asked to do so. She had to be drawn into the 
discourse. However, during the discussion of graph E this pattern changed and her 
contributions were more spontaneous. She seemed to be particularly unsure about this 
question and appeared keen to further her understanding. She actively questioned 
Robert about his arguments, whilst offering her own for acceptance or repair. In this 
instance Julie’s needs appeared to change. Her difficulties with this graph encouraged 
her to share her ideas more freely, in an attempt to derive meaning from the 
interaction.

None of the students appeared to be self-reliant. They learned from each other, my 
comments, using the technology, by participating in the community of practice and 
through their discourse. Robert was an eager and very active participant. His position 
developed into that of a peer tutor and he began to initiate and steer the discussion. His 
thought processes were more apparent as he more often verbalised his ideas. Martin’s 
role in steering and initiating the discussions was superseded by Robert, and during the 
questions that he found difficult he became more of an active listener. Julie’s position 
as a reluctant participant, was changed into that of active contributor when the need 
arose. The positions that the students occupied within the discourse were their ways of 
appropriating meaning and contributed towards their success as learners. Each made 
their own contribution to the construction of shared meaning, yet in cases when 
students were acting more as active listeners it is difficult to determine whether they 
have developed a joint conception of the problem’s solution.
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VISUALISATION AND THE INFLUENCE OF TECHNOLOGY IN A LEVEL 
MATHEMATICS: A CLASSROOM INVESTIGATION

The study reported here is part o f  a wider study, which aims to investigate the 
potential o f  the graphical calculator for mediating the development o f  students' 
abilities to visualise the graphs o f functions at GCE Advanced level. This paper 
focuses on how the graphical calculator influenced six particular students’ work with 
functions. Initial results have illuminated ways in which the technology can have a 
positive impact on students' visualisation capabilities. It is proposed that visual 
thinking forms a significant part o f many students' mathematical reasoning, enabling 
students to derive richer meaning from given problems. It is suggested further that use 
o f the technology mediates the development o f students’ visual capacities, by helping to 
highlight the links between complementary modes o f representation.

Background
Visualisation is increasingly being recognised as a fundamental aspect of mathematical 
reasoning. Potentially, technology could assume a very powerful and influential role in 
stimulating and shaping students' powers of visualisation, and as such may contribute 
significantly to the depth of students' learning. The study reported here explored how 
one form of technology, the graphical calculator, influenced six particular students' 
approaches to solving problems involving functions.

Visualisation
Many researchers have stressed the importance of mental imagery in the construction 
of meaningful mathematics (Tall, 1991; Mason, 1992; Wheatley and Brown, 1994). 
Studies have revealed that "activities which encourage the construction of images can 
greatly enhance mathematics learning" (Wheatley and Brown, 1994, p. 81). Indeed, 
Breen (1997) insists that there is "enormous potential for using images as a powerful 
starting point" for providing "rich learning situations" (p. 97). Cunningham (1994) 
proposes that "some students learn more effectively from visually based discussions 
and experiences than from symbolic and analytic work", suggesting that adding images 
to words is instrumental in providing students with a "richer set of ways to 
communicate their mathematics" (p. 84). Dubinsky et al. (1996) ultimately argue that 
virtually all thinking is based on visualisation.

Cunningham (1991) describes the key benefits of visualisation as:

the ability to focus on specific components and details of very complex problems, 
to show the dynamics of systems and processes, and to increase the intuition and 
understanding of mathematical problems and processes (p. 70).

In addition, he claims that the inclusion of visualisation in mathematics education, 
permits a broader coverage of mathematical topics and, most importantly, allows
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students access to new ways to approach their own mathematics. In particular, visual 
arguments can prove to be extremely useful in helping students to conceptualise 
particular mathematical ideas. In "real visual thinking, the students' visual 
understanding becomes the primary vehicle for delivering and developing concepts", 
which depends on "interactive student experiences" (Cunningham, 1994, p. 84).

Barwise and Etchemendy (1991, p. 16) outline three ways in which visual reasoning 
can be considered as valid reasoning:

1. visual information is part of the given information from which we reason,

2. visual information can be integral to the reasoning itself,

3. visual representations can play a role in the conclusion of a piece of reasoning.

The visual component of mathematical reasoning needs to be presented alongside the 
symbolic to enable students to develop more than merely a mechanical understanding 
of mathematical concepts, ideas and processes. Mason (1992) suggests that "imagery 
often forms a key for a rich network of connections and associations, and so has a 
crystallising effect" (p. 27).

It has been argued that visual reasoning is not mathematically adequate. As Tall (1991) 
proposes:

intuition involves parallel processing quite distinct from the step by step sequential 
processing required by rigorous deduction. An intuition arrives whole in the mind 
and it may be difficult to separate its components into a logical deductive order (p. 
107).

He therefore stresses that since visual information is processed simultaneously, an 
intuitive approach may be unsuitable in satisfying the logic of mathematics. 
Conversely, though, a "purely logical view" is similarly "cognitively unsuitable for 
students" (p. 108). Thus, ideally, both types of processing should be integrated, 
through an approach that "appeals to the intuition and yet can be given a rigorous 
formulation" (p. 108). Tall (1989) believes that although traditional mathematics has 
emphasised the "symbolic and sequential", algebraic symbolism, at the expense of the 
"integrative and holistic", visual symbolism, both are necessary requirements in the 
study of mathematics (p. 42). Whilst the proof of mathematical ideas involves 
algebraic symbolism, the construction of such ideas requires some form of visual 
symbolism. Thus, Tall (ibid) stresses the importance of the many facets of a student's 
concept image.

Similarly, Zimmerman and Cunningham (1991) emphasise the need for a multi-faceted 
approach. They argue that mathematical visualisation is not merely "math appreciation
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through pictures" - a superficial substitute for understanding (p. 4). Rather they 
maintain that visualisation supplies depth and meaning to understanding, serving as a 
reliable guide to problem solving, and inspiring creative discoveries. In order to 
achieve this level of understanding, however, they propose, like Tall, that visualisation 
cannot be isolated from the rest of mathematics, implying that symbolic, numerical 
and visual representations of ideas must be formulated and connected. This study is 
conceptualised on the basis that "visual thinking and graphical representation must be 
linked to other modes of mathematical thinking and other forms of representation" (p.
4).

Connections between different modes of representation need to be made by students, 
the significance of particular links must be recognised and most importantly an 
appropriate balance of approaches should be introduced (Hughes Hallett, 1991). 
Indeed, many researchers support the view that whilst visualisation stimulates and 
reinforces conceptual understanding, this particular mode of representation is no more 
important than other modes. What is required is a multi-representational approach to 
mathematics, incorporating the symbolic, visual and numerical modes of 
representation, where each mode complements and strengthens the understanding the 
student acquires when operating in an alternative mode.

Studies of problem solving (e.g. Presmeg, 1986) suggest that the ability for students to 
apply and interchange both visual and non-visual methods in problem solving is 
particularly advantageous, especially where one mode appears to be more appropriate. 
Students who are able to work in this way are likely to develop a deeper, more holistic 
understanding of mathematics. Dubinsky et al. (1996) propose that visualisation and 
analysis are “mutually dependent in mathematical problem solving” and reject the 
conventional notion of an analyser/visualiser dichotomy or continuum (p. 435). They 
argue that for “most people both visual and analytic thinking may need to be present 
and integrated” in order for them to be able to “construct rich understandings of 
mathematics concepts” (p. 438). Most visualisations contain some form of analysis 
(Presmeg 1986; Dubinsky et al., 1996) and conversely most analyses involves some 
use of visualisation (Dubinsky et al., 1996). Moreover, Dubinsky et al. claim that 
visual approaches benefit from analytical thinking and that analytical approaches are 
enriched by visualisation. These studies highlight the necessity of empowering 
students with multiple interchangeable approaches to problem solving.

The Role of Technology
Whilst appreciation of the importance of visualisation in mathematics is growing, 
technology is rapidly being developed which may revolutionise the mathematics 
curriculum. Following recent advances in technology, a whole range of computer- 
programmes and scientific instruments are currently available with the potential to 
assist students in the formation of visual mathematical images. One of the main 
objectives of the study reported here is to develop and evaluate materials and strategies
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that aim as far as possible to maximise this potential, with particular emphasis on the 
graphical calculator.

Many researchers have realised the potential of utilising technology to promote and 
encourage visualisation skills (Souza and Borba, 1995; Smart, 1995, Goforth, 1992). 
In particular, Cunningham (1994) recognises two essential features that contribute to 
the success of computer based visual approaches in teaching mathematics: the 
motivational aspect and the opportunity to pursue an alternative, yet complementary 
mode of thought to the traditional symbolic approach. He further acknowledges that:

one of the most remarkable things about visualisation is the amount of mathematics 
students will learn and the amount of work students will do in order to create 
images describing a mathematical concept, especially when the computer is used as 
part of the process (p. 83).

The development of new technological tools means that ideas about mathematical 
reasoning, meanings and learning need to be examined. In particular, the variety of 
forms of representation and its effects need to be studied. Barwise and Etchemendy 
(1991) contend that "much, if not most, reasoning makes use of some form of visual 
representation" and that

as the computer gives us ever richer tools for representing information, we must 
begin to study the logical aspects of reasoning that uses non-linguistic forms of 
representation (p. 22).

Confrey (1994) argues for a "epistemology of multiple representations", in which the 
contrast between representations is recognised as significant in establishing meaning 
through the convergence of understanding from each mode of representation (p. 218). 
By identifying multiple representations, we can encourage students to find multiple 
ways to make sense of their results and to develop their sense of flexibility and 
elegance. Multiple approaches support the "diversity in students' preferences and 
provide alternative approaches to use when faced with cognitive obstacles" (p. 218). 
She, also, advises that "in a multi-representational tool, no representation should 
dominate others, and, in every representation there is both a loss and a gain" (Confrey, 
1993, p. 66).

Kaput (1992) identifies two key purposes of multiple linked notations: firstly, "to 
expose different aspects of a complex idea" and secondly, "to illuminate the meanings 
of actions in one notation by exhibiting their consequences in another notation" (p. 
542). He contends that since "all aspects of a complex idea cannot be adequately 
represented within a single notation system", multiple systems are required for their 
full expression (p. 530).
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Multi-representational software, however, could also contribute towards 
misunderstanding and confusion amongst students. According to O'Reilly, Pratt and 
Winbourne (1997):

multiple representation software runs the risk that the difficulties of reading a 
representation are simply multiplied up by the number of modalities represented on 
the screen simultaneously. The child has to make sense of each modality in turn and 
the links between them (p. 88).

The relationship between functions and graphs is one area in which many researchers 
have addressed the use of technology. For example, Carulla and Gomez (1997) claim 
that technology can be utilised to enable students to develop a deeper insight into the 
relationship. When students are given the opportunity to approach functions in a visual 
manner, they are more likely to develop an intuitive understanding of translations 
(Confrey, 1994). Technology enables the teacher to demonstrate numerous functions 
and their graphs in an effective manner that could not possibly be achieved using 
relatively unsophisticated resources such as a black/white board. Consequently 
students gain a deeper insight into the relationship between functions and their graphs 
(Chola Nyondo, 1993). The ability for a student to recognise a given graph as 
belonging to or resembling some member of a family of functions is a fundamental 
stage in the development of a solution (Ruthven, 1990). For, only when a student has 
been able to successfully identify the family of functions to which the graph belongs 
can the correct symbolisation be constructed (referred to by Ruthven as the process of 
refinement).

Students must be visually aware of the effects of particular transformations and of the 
corresponding symbolic modifications. Goldenberg (1991) suggests that graphical 
exploration “provides valuable scaffolding for the required symbolic manipulations” 
(p. 85). Bloom et al. (1986) found that students who were taught to recognise the 
graphs of functions as compositions of certain transformations of standard functions 
developed a "greater understanding" of functions and their graphs and "in less time" 
than those taught in the traditional manner (p. 123). Indeed, students who are given the 
opportunity to develop graphical and numerical algorithms for understanding 
functions, and are able to use these effectively could legitimately question the need for 
symbolic skills (O'Reilly et al., 1997).

Carulla and Gomez (1997) appreciate that whilst the use of graphic calculators can 
"enhance the learning of functions and graphing concepts" (p. 224), there may be 
associated problems. Their findings indicate that these instruments can also encourage 
students to concentrate primarily on graphical representation systems at the expense of 
verbal and symbolic representations. In contrast, Penglase and Arnold (1996) reported 
that graphic calculators could promote the transition between symbolic manipulation 
and graphical investigation and exploration of the different modes of representation

CXLIII



associated with particular concepts. Ruthven's study (1990), also, supported the view 
that regular use of graphic calculators will probably “strengthen” and “rehearse” 
relationships between certain symbolic and graphic forms (p. 447).

THE STUDY
The aims of the study reported here were:

1. to develop a picture of the students' preferences for visual or non-visual 
methods;

2. to gain some insight into their perceptions of imagery;

3. to explore how and why they used images;

4. to investigate the inter-relationship between visual and symbolic methods.

This paper reports on the findings of the second phase of data collection which 
followed an initial pilot phase (see Elliott, 1998). Data was collected during June 1998 
and involved the teacher-researcher working individually with a small group of Year 
12 students, all aged 17, for a period of six hours (two three-hour sessions). In the first 
session the group consisted of six students: Diane, Martin, Jason, Julie, Rachael and 
Robert. The group for the second session consisted of three of these students: Martin, 
Julie and Robert. These students, all of whom were studying GCE Advanced level 
Further Mathematics, were described by their teachers as being very capable 
mathematicians. Each student had purchased his or her own graphical calculator and 
was familiar with using this type of technology. In addition, the staff, Mr. Pearson, Ms. 
Slater and Ms. Mooney, each of whom taught one of the components of the course 
(pure mathematics, statistics and mechanics, respectively) positively encouraged the 
use of the graphical calculators in lessons. For the purposes of this study, each student 
was given a TI-92. Although they had individual calculators, they generally worked 
together as a group, sharing ideas.

Methods of enquiry
The notion of 'study of singularities' (Bassey, 1995) is considered to be of direct 
relevance to this research. Bassey proposes that "the term study of a singularity 
embraces virtually every kind of empirical study" and is preferable because the phrase 
'case study' is often associated with generalisation (p. 112). The findings of singularity 
studies are merely related to populations outside the boundary in space and time. This 
study does not seek to generalise but rather to illuminate how one particular group of 
students solved problems involving functions with the use of the TI-92.

This study consisted of four distinct stages of data collection, which are summarised in 
figure 1.
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Two questionnaires were administered to the students, one regarding the role of 
visualisation in A level mathematics and the other concerning their reactions to the 
technology. These questionnaires were devised to illuminate why, when and how the 
students used imagery and whether the students viewed technology as a resource that 
provides support for visual learning. The questionnaire involving the students' views 
on visualisation was answered during the first lesson. The technology questionnaire 
was distributed at the end of the second and final session. The three members o f staff 
who each taught this group of students were also given a questionnaire on 
visualisation. The staff questionnaire was intended to provide a background to the 
study, in clarifying their views on visualisation and the extent to which visual methods 
are encouraged in the classroom.

Data Collection Activity Timing o f Activity Students Involved Staff Involved

Student and staff questionnaires 
concerning visualisation

Beginning of 1st 
session, 30mins

Diane, Jason, Julie, 
Martin, Rachael and 
Robert

Mr. Pearson, Ms. 
Slater and Ms. 
Mooney

Student interviews explaining 
how they would attempt to solve 
problems involving functions

Beginning o f 2nd 
session, 50mins

Julie, Martin and 
Robert

N/A

Students’ work on pre-prepared 
exercises

End of 1st session and 
the majority o f 2nd 
session, 3hrs 30mins

Julie, Martin and 
Robert (Julie also 
submitted her work 
from the 1st session)

N/A

Student questionnaires 
concerning the role o f  
technology

End o f 2nd session, 
25mins

Martin, Julie and 
Robert

N/A

Figure 1: Data Collection Activities

The student interview questions were devised in order to illuminate how these six 
students would initially attempt to solve questions which involved finding intersection 
points, solving inequalities, identifying the effects of transformations, gradients and 
identifying functions. The main purpose of this was to see whether the activities that 
the students engaged in during this study would have any effect on the way in which 
these students would solve such problems. One of the subsidiary aims o f the study was 
to highlight the validity of visual approaches and to encourage these students to 
combine visual and symbolic methods as much as possible.

Each question was selected to provide a range of different problems for the students to 
consider. In addition, styles of questions that would possibly be unfamiliar to the 
students were chosen, especially question 5 (see figure 4). The intention o f this was to 
see if  the students would tend to use more imagery with unfamiliar, non-typical 
problems.
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The questions were phrased in a manner that would not necessarily promote a 
symbolic approach. For example, the first question was worded: for which values of x 
is the graph of y = 3x + 9x - 12 below the x-axis? (See figure 4). The same question 
could have been written: solve 3x2 + 9x - 12 < 0 or for which x values is the

• 9 •expression 3x + 9x - 12 less than zero? This type o f wording could be considered as a 
prerequisite/precursor to a symbolic approach, and certainly as indicative of such a 
method.

The class activities included an introduction to the TI-92 and its applications, questions 
intended to familiarise the students with the various functions of the calculator and a 
sequence o f questions designed to draw out the students' visual abilities and develop 
key skills in understanding the concept o f function. These questions featured graphing 
functions, exploring and identifying the effects o f transformations, finding inverse 
functions, solving equations - graphically and algebraically, and investigating 
trigonometric and logarithmic identities.

The TI-92 was chosen for this study because of its facility to perform combined 
transformations. However, a further study has since involved the use of the TI-82. The 
actual type of graphical calculator used is not seen as significant in the aims o f this 
study.

DATA ANALYSIS
Student and Staff Questionnaire Responses
The student questionnaire concerning the role of mental imagery and visualisation in A 
level mathematics was administered during the first session in which all six students 
were present.

When asked to classify how often they used mental images when solving mathematical 
problems in general, the students responded as shown in figure 2.

Female Male
Always 1 0
Fairly Frequently 1 2
Sometimes 1 0
Quite Rarely 0 1
Never 0 0

Figure 2: Frequency of Use of Mental Images

Five out o f the six students would generally formulate mental images at the beginning 
of problem solving, all recognising some benefits in using images:

Jason They help me in the application o f the mathematical equations involved and 
also to check the answers I get, whether they are realistic or not

Robert They give a basis on which to use an algebraic method
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M artin  I can imagine how points may fall on a graph to see the kind o f result I 
should expect to get on paper

Martin found visualisation particularly difficult when unfamiliar with the type of 
problem, declaring that "when I am not used to the type of problem, it is not easy to 
relate it to a graph or system, so I would use algebra". Robert expressed a reluctance to 
explore visual solutions, insisting that he "generally attempts to ignore such 
suggestions".

Julie and Robert preferred working symbolically, claiming that this approach involved 
fewer errors for them and "less thought" for Robert. However, despite her preference, 
Julie "visualises things more often", although, she stressed that "it can be very difficult 
to visualise" sometimes. Jason and Rachael had no such preference. Jason believed 
that the two approaches "complement each other". Rachael, though, did find working 
symbolically easier, but expressed a desire to "do more maths visually”. Martin, did 
not state a clear preference, although he seemed more cautious about a visual approach 
and stated that "when I am comfortable knowing how the methods work symbolically I 
would then find it easier to visualise it, as I can check that I am visualising it right".

When asked to categorise how often different approaches are combined, the students 
responded as shown in figure 3.

Female Male
Always 1 1
Fairly Frequently 1 2
Sometimes 1 0

Figure 3: Frequency of Combined Approaches

The value o f combining different solution techniques was clearly recognised by these 
students:

Jason I tend to combine the two techniques, as they complement each other. First 
finding an approximate visual answer then applying equations to find an exact 
answer.

Julie Usually one method alone is not the best way to tackle a question.

Rachael You need to be good at both. Each will help give a balanced approach to 
work.

Julie, Robert and Diane regarded the ability to perform symbolic manipulations as 
being of greater importance than the ability to work visually, in order to become a 
successful mathematician. However Julie added the stipulation "as long as you use 
enough visualisation to know what you are doing". In contrast, Martin felt that visual 
capabilities were o f greater importance, to enable a more thorough understanding to be 
reached. Rachael and Jason expressed the opinion that neither o f the two was more
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significant - that the ability to combine or alternate approaches where appropriate, 
resulting in a balanced approach, was of paramount importance.

Five of the students regarded themselves as being more visually orientated, whilst 
Robert, in contrast, considered himself to be almost entirely a non-visualiser. The three 
male students considered their visualisation powers to be Good overall, whereas the 
three females rated them as Fair.

The staff questionnaire responses indicated that the graphical calculator is recognised 
as a tool that helps students to explore complementary modes o f representation and 
highlights the links between them. The students' teachers all encouraged combined 
approaches to problems solving and Mr Pearson commented that "the symbolic and 
visual aspects o f mathematics are inextricably linked". The teachers' attitudes appeared 
to have been influential in the development of their students' problem solving 
strategies, as was access to technology. Views expressed by these teachers concerning 
the use and validity of visual approaches were echoed in the students’ responses.

The second student questionnaire provided Martin, Julie and Robert the opportunity to 
evaluate the role of the technology they had been using in promoting visualisation. 
These students regarded technology as an extremely useful addition to the A level 
mathematics classroom, providing a means of "speeding up calculations", enabling 
student's to "see how the graphs of functions can be related and manipulated" and to 
"recognise and visualise characteristics of many functions". However, reservations 
regarding potential over-dependency and possible replacement o f pencil and paper 
techniques were expressed.

Following the investigation, Robert indicated that he may "use graphical methods 
more", in the future, "when solving the more involved problems". He had recognised 
the additional benefits of using graphical approaches and was more confident in using 
them. Martin's confidence had also improved and he commented, "I think that I will be 
more comfortable in using a visual method such as plotting points and drawing 
sketches when solving problems".

1. For which values of x is the graph of y = 3x2 + 9x -1 2  below the x-axis?
2. For which x values does the graph of y = x^ + 6 intersect the graph of 

y = 2x2 + 5X?
3. Find the values of x where the graph of y = 3|x - 2| lies above the graph o f y = 6x^
4. What effect will the transformation 3f(x + 3) have on the graph o f the function 

f(x) = 4x5 _ 3x4 + 2x3 _ x
5. For a particular function f(x); f(2) = 6, f(3) = 14 and f(6) = 50. What type of 

function could this be? Give an example of a function that satisfies these 
conditions.

6. How does the slope of the function y = x^ - x2 change from x = -5 to x = 5?
Figure 4 - Student Interview Questions
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Student Interviews
Martin, Julie and Robert were asked to describe how they would attempt to solve the 
questions reproduced in Figure 4. For the different types o f questions the students 
adopted different approaches, as is illustrated in figure 5.

The Class Activities
The questions from the exercises completed by the students were answered extremely 
well. Each student used the TI-92 effectively to graph and translate functions and to 
check their own visualisations, which provided a basis for discussion amongst 
themselves. The discussions between students' generally involved attempts to derive 
shared meaning from the images portrayed on screen. The students were actively 
pursuing visual solutions to problems.

Wholly
Symbolic

Primarily
Symbolic

Symbolic & 
Graphical 
Combined

Primarily
Graphical

Wholly
Graphical

Q l 3
Q2 1 2
Q3 1 2
Q4 3
Q5 2 1
Q6 1 1 1

Figure 5 - A Summary of Student Approaches

In addition, the students’ attempts at questions that involved symbolic and graphical 
representations and required solutions incorporating both of these aspects were very 
encouraging. The students each provided valid solutions to these problems in which 
symbolic and graphical approaches were effectively combined. In this case these 
students did not appear to concentrate more on the graphical mode o f representation as 
a result o f using the technology, which was a feature of the pilot study (see Elliott, 
1998). On the contrary, use of the technology encouraged the students to use a 
combination of symbolic and graphical techniques and to explore the links between 
these two modes o f representation. Possible explanations for these findings could be 
the students' familiarity with graphical calculators and their everyday use in class, 
which has led to the transparency of this resource in this particular classroom (Adler, 
1998).

An Individual Student’s Work
Robert was the only student in the group who classified himself as non-visualiser. 
Despite the fact that visual solutions were usually encouraged in class, Robert 
'generally attempts to ignore such suggestions'. Furthermore, the only reason that he 
claimed to use visual images was to 'provide a basis for an algebraic method' where 
needed, often only using visualisation as 'a last resort'. Robert's reluctance to use visual 
methods in problem solving made his use of the technology particularly interesting, as 
is illustrated below in the following example.
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Robert's use of the TI-92 was video taped. He was showing that lnxa = alnx. Initially, 
Robert used the TI-92 to draw the graphs of lnx2 and 21nx simultaneously. However, at 
this time he was unaware that this approach was unlikely to yield any discoveries, as 
one of the graphs would mask any differences between the two. When it was suggested 
that he draw them separately, Robert obtained the two graphs shown in figures 6 and 7 
and the dialogue below was initiated:

iReGraphTtlathfprauil ^^|z^Qfj?ajReGraphIriath]D^3

Figure 6: y = 21nx
o

Figure 7: y = lnx

1 SE: Does the graph o f 21nx surprise you?

2 Robert: Not really, you can't have logarithms of negative numbers.

3 SE: Exactly. So would you say that the two expressions were the
same or not?

4 Robert: I'm hesitant to say. I would say that algebraically they were the
same.

Robert recalled being taught during his previous experience o f logarithms that these 
two expressions are equivalent (line 4). However, the graphs produced by the TI-92 
here seemed to contradict this assumption, although he had established why the two 
graphs are not identical for negative x values (line 2).

5 SE: What will happen, do you think, for x : lnx and 3lnx?

6 Robert: I wouldn't have thought that there would have been any
difference.

7 SE: Think about the graph of lnx3. Why would that be different to
lnx2?

Robert drew the graph of lnx on the TI-92 (figure 8).

Pî zaTTr'LeW?.phViS5.1bfS.l? 1

M A I N  R A D  A U T O f u n c

r^TzSoVrr'icel^^ 1

M A I N  R A D  A U T O F U N C
2

Figure 8: y = lnx Figure 9: y = 31nx
8 SE: Why isn't there a part o f that graph for negative x values?
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9 Robert: For the same reason that there isn't a negative part for 21nx -
you can't have a logarithm of a negative x value.

10 SE: So is 31nx going to be the same as lnx3 then?

Robert plotted 3lnx and agreed that they are the same (figure 9).

When confronted by the question involving x3, Robert's initial reaction was to assume 
that the same thing would happen (line 6). By employing the technology, he was able 
to begin to formulate ideas as to why this is not the case. Robert was now developing 
additional insight into the problem and was able to predict what would happen in the 
case of x4:

11 SE: What do you think will happen with x4?

12 Robert: The same thing as with x2, but it would become steeper, as in
stretched.

Robert established that the two graphs would only be identical for odd values o f a and 
the reason why this is the case. His experimentation with the TI-92 enabling him to 
make sense of this standard logarithmic rule and graphical aspects that he would not 
have considered before, using a purely symbolic approach.

Discussion of Results
The study that has been reported here is part of a larger research project. It does not 
attempt to generalise these findings. Rather its aim was to provide data on how a small 
group of students used visualisation in problem solving, and in what ways the 
graphical calculator facilitated and encouraged this.

Initial findings suggest that visual thinking formed a significant part of these students' 
mathematical reasoning. Imagery tended to be used to enable the students to make 
sense o f problems and to clarify their ideas, which supports the findings o f Wheatley 
and Brown (1994). Consequently, mental images were usually formulated by these 
students at the beginning of the problem, as was also proposed by Dubinsky et al. 
(1996), which provided a basis for mathematical meaning making. The graphical 
calculator enabled the students to access graphical images o f functions quickly and 
easily, when perhaps they would have had difficulty otherwise. This in turn allowed 
them to see the problem more clearly and proceed towards a solution.

The students generally found working symbolically easier than working visually, and 
appeared more comfortable when performing symbolic manipulations, reflecting the 
findings of Eisenberg and Dreyfus (1991). According to the students, symbolic 
arguments require less thought and are less prone to error than corresponding visual 
approaches, due to the sequential and logical ordering of each step in the problem. The 
students felt that they achieved greater success when using symbolic arguments and
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believed the symbolic approach to be more efficient. Yet, surprisingly perhaps, all of 
these students except Robert regarded themselves as visualisers.

As these students are highly successful students studying Further Mathematics, one 
might assume that they would be highly efficient symbolisers, who spend little time 
visualising, considering the current emphasis on symbolism, especially in 
examinations. However, with the exception of Robert, this was clearly not the case. 
Yet, there was initially a definite lack o f confidence surrounding the accuracy and 
validity o f visual solutions. Martin illustrated this point when describing how he would 
normally approach new topic areas:

When I'm comfortable with knowing how the methods work symbolically I would 
then find it easier to visualise it, as I can check that I am visualising it right. Visual 
methods are encouraged but I would probably try to learn an algebraic method first 
until I am comfortable with my understanding of the methods, so I may not take as 
much notice of learning a more visual approach.

This lack o f confidence was less noticeable towards the end of the study and suggested 
that as a future focus of the research, technology could possibly be utilised to 
encourage students to have greater confidence in visualisation and to help them 
overcome their initial difficulties. The graphical calculator appeared to influence the 
students’ perceptions in a positive way towards the validity o f visual methods in 
mathematics. This was especially so in Robert’s case.

These students seldom used imagery in isolation from other techniques, as has also 
been found by Dubinsky et al. (1996), who propose that visualisation and analysis are 
mutually dependent. For different types of questions the students adopted different 
approaches. Initial findings suggest that certain areas o f mathematics and particular 
types o f questions encourage students to make more use o f imagery, and thus, the use 
of technology in these areas is especially rewarding. The students indicated that 
questions involving functions and their graphs, equations, inequalities and certain 
applied topics would require more visual thinking than in other areas. Observations 
also suggest that questions with which students are unfamiliar may provoke greater use 
of imagery, as might questions phrased in such a way as to appeal to the use of 
imagery. In addition, materials have been developed which are aimed at encouraging 
students to visualise when otherwise different approaches may predominate.

When the students did choose graphical approaches, these tended to be used to help 
them view the problem more clearly and as a means of verifying the results o f 
symbolic approaches. Question 2 may have been answered in a symbolic way because 
solving the equation would give the exact values of the intersection point, whereas 
when an inequality is involved, the range of x values concerned is not always 
immediately apparent. This may explain why the students tended to combine symbolic
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and graphical approaches for the problems involving inequalities - questions 1 and 3. 
The students were all fairly confident with the actions of transformations and were 
thus able to describe the effects of the particular transformation in question 4, without 
needing to picture the graph of the function in any way. This supports the 
representational-development hypothesis, which suggests that "less imagery is used 
with greater experience or learning" (Presmeg, 1985, p. 279).

Question 5 was rather different from the type of questions these students were used to 
and they initially concentrated on the graphical representation o f the function. Robert 
and Martin were then able to suggest a symbolic approach to find the exact form o f the 
function, while Julie indicated that she would have used a trial and error technique 
based on her graph. Dubinsky et al. (1996) have proposed that initial thoughts in 
problem solving involve some form of visualisation. They further suggest that weaker 
students are less likely to progress beyond the visualisation stage. The novelty o f 
question five may have prompted a visual approach. On the other hand, the phrasing in 
question six was also new to these students and in this case the student's approaches 
diversified. This was an example of how the students adapted their approaches to 
compensate for their own individual uncertainties about the question.

Overall, the students tended to combine symbolic and graphical approaches much 
more often than concentrating on one of these methods alone, as was also found by 
Dubinsky et al. (1996). Willingness and ability to combine approaches whenever 
appropriate was a theme that the teacher-researcher was keen to promote and the fact 
that these students already used a variety of solution techniques was extremely 
encouraging. Further, their choice of solution techniques benefited from access to 
technology. The graphical calculator enabled the students to make connections 
between visual and symbolic modes of representation more easily. In this way the 
students were able to move confidently between representations and were given the 
flexibility to be able to make sense of, and to formulate solutions to unfamiliar and 
challenging problems. In turn they were able to achieve a level o f understanding which 
would not have been available to them if  they concentrated on one mode of 
representation alone. This strongly supports the findings of researchers such as 
Zimmerman and Cunningham (1991), Tall (1989) and Presmeg (1986) who argue for 
multi-representational approaches to mathematics.
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HOW DOES THE WAY IN WHICH INDIVIDUAL STUDENTS 
BEHAVE AFFECT THE SHARED CONSTRUCTION OF

MEANING?

Audio taped discussions between three students have been examined to shed light on 
the way in which the behaviour o f individual students may affect the shared 
construction o f meaning with graphical calculators. These discussions revealed a 
complex pattern o f  interaction between the students. Each student was responsible for  
defining his or her own role within the discourse and these roles appeared to change 
as the discussion progressed. With reference to the framework offered by Winbourne 
and Watson (1998), it is proposed that local communities o f  practice have been 
established and that the individual student’s positioning within the community o f  
practice determines their success as a learner and contributes towards the creation o f  
shared knowledge.

Background
The study reported in this paper seeks to investigate whether three GCE (General 
Certificate of Education) Advanced level Further Mathematics students were able to 
develop a joint conception of the problems that they worked on together. They 
discussed as a group, with graphical calculators available. O f particular interest was 
the part that each individual student played in creating shared meaning in the context 
o f the technology. The theoretical position adopted in this study is based on the 
Vygotskian idea that all learning is essentially social and is mediated by tools. 
Meaning is derived through interactions between students and with the teacher. Each 
participant occupies a different role in the construction and negotiation o f meaning and 
these roles are developed through participation in local communities o f practice. These 
ideas, which form the basis for this study, are elaborated below and discussions 
between students and teacher working on a mathematical task are then analysed using 
these theoretical constructs.

Socio-Cultural Learning
Vygotsky proposed that all individual mental processes are based on social 
interactions. Interactions experienced within the social context are internalised by the 
individual and learning proceeds from the interpsychological to the intrapsychological. 
Furthermore, the learning process is mediated by the use o f tools, such as speech, 
symbols, writing and technology. Within a Vygotskian perspective, tools are seen to 
fundamentally shape and define activity. They are used firstly as a means of 
communicating with others, to “mediate contact with our social worlds”, and 
eventually “these artifacts come to mediate our interactions with self; to help us think, 
we internalise their use” (Moll, 1990, p. 11-12). In particular, Vygotsky regarded 
language as the means through which thought is developed: “thought is not merely 
expressed in words; it comes to exist through them” (p. 125).

The site in which learning takes place is the zone o f  proximal development (ZPD). 
Vygotsky defined this as “the distance between the actual developmental level as 
determined by independent problem solving and the level of potential development as 
determined through problem solving under adult guidance or in collaboration with 
more capable peers” (Vygotsky, 1978, p. 86). Individuals learn from interaction with 
other more knowledgeable persons in the ZPD. Consequently peer tutoring, peer 
collaboration and teacher intervention play an important part in constituting the ZPD.
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Social Construction of Meaning
In developing a Vygotskian perspective, Lerman (1994) regards meaning as socio
cultural in nature - a product of discourse and discourse positions. Individuals are 
acculturated into meanings and thus the intersubjective becomes the intrasubjective. 
The individual student’s input into meaning making changes and is changed by the 
discourse. In this way the student derives meaning from their positioning in social 
practices. Meaning is appropriated by individual students, whereby each student forms 
his or her own something, from that which already belongs to other people. This 
appropriation occurs through communication and tool use.

As concepts derive their meaning from being used, the acquisition o f a concept or 
understanding can be interpreted as the result o f an individual coming to share in that 
meaning through negotiation and discussion (Lerman 1996). Mathematical concepts 
are social acts and tools; as these concepts are socially determined, they are socially 
acquired. Jones & Mercer (1993) propose that successful learning occurs when two or 
more people manage to share their knowledge and understanding, so that a new 
cultural resource is created which is greater than the knowledge and understanding any 
of the individuals hitherto possessed. They stress that much learning, not least in 
relation to information technology, consists of sharing knowledge.

Local Communities of Practice
The study was concerned with creating a classroom environment that would facilitate 
and support the negotiation of meaning between students and teacher, thereby giving 
rise to successful learning opportunities. As such the teacher-researcher deliberately 
set out to establish local communities o f  practice in order to achieve this aim. 
Winboume and Watson (1998) identify six key features necessary for initiating local 
communities o f  practice (LCP):

1. Pupils see themselves as functioning mathematically within the lesson;

2. There is a public recognition of competence;

3. Learners see themselves as working together towards the achievement o f a 
common understanding;

4. There are shared ways of behaving, language, habits, values and tool-use;

5. The shape of the lesson is dependent upon the active participation o f the 
students;

6. Learners and teachers see themselves as engaged in the same activity.

They propose that any classroom can be regarded as an intersection of a multiplicity of 
practices and trajectories. They further argue that the individual student’s positioning 
within the community of practice will determine their success as a learner. Ultimately, 
the students can come to operate masterfully, within the constraints o f the social 
setting. The process by which the individual achieves his or her position within a 
community of practice is explained by the notion of telos. This notion presupposes a 
common direction of learning and Winboume and Watson broadly describe telos as 
“an unfulfilled potential to move or change in many different ways” (p. 182). They 
contend that “telos could be conceptualised as a set o f constraints in some sense 
inherent in situations and in the individual’s pre-dispositions to respond to situations as 
she does” (p. 182). In this sense the individual student’s learning is both determinant

CL VII



of the common direction of learning and in part determined by the complex paths that 
the students have taken to be where they are. The students fulfil their ultimate 
positions within the community of practice through smaller-scale “becomings” in 
which they join the practice and begin to assume their eventual position. For example 
participation in the practice of asking questions can enable students to generate 
mathematical questions themselves. Similarly, participation in the practice of using 
graphical calculators can allow students to become “masters” in the use o f these tools. 
The student’s experiences at school are mediated by the images of themselves as 
learners that they bring with them.

The Role of Technology
In exploring how the use o f technology mediates students’ learning o f mathematics, 
Pea distinguished between the amplification and the cognitive reorganisation effects 
o f technology (cited in Berger, 1998). The amplification effects refer to the speed and 
ease by which the student is able to operate whilst using the technology. In this study, 
the graphical calculator is seen to amplify the zone of proximal development by 
creating a situation where the student is able to complete more conceptually 
demanding tasks effectively and easily. The benefits o f amplification are regarded as 
short-term phenomenon, providing the student with immediate assistance during 
problem solving.

Use of the graphical calculator may also enrich or change student’s conceptions in 
some way and thus may function as a tool which helps the student’s thinking to 
develop. This is referred to as the cognitive reorganisation effect of the technology, 
which is defined by Berger as “a systematic change in the consciousness o f the learner, 
occurring as a result o f interaction with a new and alternate semiotic system” (1998, p. 
16). Long-term changes in the quality of learning arise through cognitive re
organisation. Berger argues that the learner needs to engage thoughtfully with the 
technology if internalisation is to occur. It is not sufficient for a student merely to be 
introduced to the technology. Berger further suggests that in order for the learner to 
“interact in such a mindful way” he or she needs to “use the technology actively and 
consciously in a socially or educationally significant way” (1998, p. 19).

In a study conducted by Borba (1996), the use of the graphical calculator was seen to 
“enhance mathematical discussions” and this in turn “reorganised” the way in which 
knowledge was constructed in the classroom. In such a social context, the graphical 
calculator is seen as a mediator o f both the teacher-student relationships and the 
interactions between individual students. Pea (1987) argues that “social environments 
that establish an interactive social context for discussing, reflecting upon, and 
collaborating in the mathematical thinking necessary to solve a problem also motivate 
mathematical thinking” (p. 104). Furthermore, he also emphasises that technology can 
play a “fundamental mediational” role in promoting dialogue and collaboration in 
mathematical problem solving.

The Role of the Teacher
In a Vygotskian framework both the teacher and the students play a mutual and active 
part in creating the social environment (Moll, 1990). The function of the teacher is 
seen as an integral part of any learning situation. To discuss teaching and learning 
separately would thus make no sense from a Vygotskian viewpoint. The teacher is 
seen as a mediator of student learning and assumes an active and necessary role in the
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learning process (Lerman, 1994). An important objective for the teacher is to 
apprentice students into the discourse of the mathematics classroom. The teacher 
assists the students in “appropriating the culture of the community o f mathematicians 
as a further social practice” (Lerman, 1996, p. 146). Consequently the students will be 
able to operate masterfully in this setting. Likewise Moll (1990) argues that a major 
role for the teacher is in creating social contexts for mastery o f and conscious 
awareness in the use of cultural tools. By “constraining the foci for attention, and by 
recognising and working with pre-dispositions, rather than ignoring them, a teacher is 
more likely to be able to initiate local communities o f practice which enable learners to 
see themselves as members o f a mathematical community” (Winboume and Watson, 
1998, p. 183).

The theoretical framework discussed above illustrates that interaction between peers, 
with the teacher, and with technology, within a supportive learning environment are 
key elements in students’ meaning making in the mathematics classroom. It also raises 
some important questions - particularly concerning the nature o f shared knowledge. 
For example, when can knowledge be taken as shared? What role does each individual 
play in constmcting such knowledge and how is this then “appropriated” (Lerman, 
1994)? How does the teacher or use of the technology facilitate the appropriation 
process? How does the individual student make further use of shared knowledge? This 
study has sought to address these issues and in doing so has attempted to elaborate 
further on the complex process o f knowledge acquisition in the mathematics 
classroom.

Methodology and Data Collection
The work reported in this paper forms part of a broader study o f the way in which the 
graphical calculator mediates students’ learning of functions, and the data was 
collected during the second phase of this research (see Elliott (1998) for details on the 
first phase). The methodological approach adopted in this study is both qualitative and 
ethnographic and is based on the underlying assumption that “all human activity is 
fundamentally a social and meaning making experience” (Eisenhart, 1988, p. 102). 
The principles o f ethnography have thus governed the whole approach to carrying out 
the classroom-based research to date, from the choice of methods o f enquiry, to the 
way in which each episode has been interpreted within the world o f the participants. 
For a more detailed overview of this phase of the study and the way in which data was 
collected see Elliott, Hudson and O’Reilly (2000).

The data examined in this paper pertains to a lesson where three GCE Advanced level 
Further Mathematics students, Robert, Martin and Julie were asked to identify the 
symbolic forms of six graphed functions from a list o f twenty possibilities and to 
discuss their ideas. These students were all experienced graphical calculator users and 
were each provided with a Texas Instrument TI-92 to assist them in their task. The task 
presented to the students is reproduced in figure 1. The discussions surrounding three 
o f the graphs are presented below.
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Match up the six  graphs with  
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functions.
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E. (ZoomStd)
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chosen from the list below:
C. (ZoomStd)

V /
M A I N  M D  A U T O F U N C

F. (ZoomTrig)
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( ( ( 1

M A I N  m  A U T O  F U N C

1. y = sin (x/3) 2. y = cos (x - tc/2) 3. y = 3sinx 4. y = cos (x + 7t)
5. y = (x - 4)2 6. y = tan (x/3) 7. y = (4 - x)2 8. y = tan (x/6)
9. y = (x + 4)2 10. y = cos (x + tt/2) 11. y = sin 3x 12. y = In (1/x)
13.y = ex l + 4  14. y = lnx2 15. y = e^x ^ + 4 16. y = 21nx

2 x+1
17. y = -In x 18. y = -e + 4  19. y = tanx/3 20. y = tanx/6

Figure 1 Class Activity: Identifying the Graphs of Functions 

Data Analysis
Notions developed by Teasley and Roschelle (1993) were used to analyse the 
interaction. Teasley and Roschelle propose that social interactions in the context of 
problem solving activity occur in relation to a Joint Problem Space (JPS). They 
maintain that the JPS is a shared knowledge structure that supports problem solving 
activity by integrating (a) goals, (b) descriptions of the current problem state, (c) 
awareness o f available problem solving actions, and (d) associations that relate goals, 
features o f the current problem state and available actions.

In Teasley and Roschelle’s model, collaborative problem solving consists o f two 
concurrent activities: solving the problem together and building a JPS.

Conversation in the context of problem solving activity is the process by which 
collaborators construct and maintain a JPS. Simultaneously, the JPS is the structure 
that enables meaningful conversation about problem solving to occur. Students can 
use the structure o f conversation to continually build, monitor and repair a JPS. 
(Teasley and Roschelle, 1993, p. 236)

The analysis of the data thus involved finding evidence for the construction o f a joint 
problem space as well as identifying student ‘initiation’ of the discourse, student 
‘acceptance’ of arguments and cases o f students ‘repairing’ misunderstandings. 
Evidence was also sought for instances that involved ‘collaborative completions’ 
between students, in which one student’s turn would begin a sentence and the other 
student would use their turn to complete it. We shall present three examples o f
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discussions to illustrate how the behaviour o f individual students contributes towards 
the development of shared meanings.

Discussion of Graph A [cos (x - 7i/2)]
The students’ discussion of the possible symbolic representations for the first graph 
highlighted the way in which Robert’s use o f the graphical calculator provided a 
means through which he could become part of the JPS that was being created by Julie, 
Martin and the teacher-researcher. The discussion also signified the importance of the 
teacher’s role in promoting collaboration and meaning making in a graphical calculator 
environment.

SE:

Martin: 

SE:

Robert: 

SE:

Martin:

7 SE:

8 Martin:

9 SE:

10 Robert:

11 SE:

12 Robert:

13 SE:

14 Julie:

15 SE:

16

17

18

Julie:

SE:

Julie:

19 SE:

20 Julie:

21 SE:

Can anybody tell me which function represents the graph in the 
first one?

Is it cos (x + ti/2)?

And why do you say that?

It’s a sine graph.

Contradiction there. Explain your choice. [Directed at Martin].

Er well it looks - it’s got to be like sine or cos and I think that 
cos starts at the top and each line on the scale is 90° which is 
n il  radians, so it’s been moved ...

It’s been moved across to the ...

It’s got to be -nil rads then because it’s gone the other way, so 
it’s cos (x - nil).

Ok so you think it’s cos (x - nil). Why do you say that it might 
be a sine [graph]?

Because sine o f zero is zero and I ’d say that that is in fact -  
because it seems that B is also a sine wave but that’s more 
concentrated -  I’d say that A is sin x/3.

You think that it’s sin (x/3)?

I wouldn’t swear to it.

And what do you think? Have you got any ideas about this 
one?

I think it’s cos (x - nil).

And why do you think that it’s cos (x - 7t/2)?

It’s been moved.

It’s been moved?

Yes it’s a translation.

And in which direction is it moved?

Er n il  in the x-axis.

Yes. Ok so have you tried to actually graph on the TI-92 the 
first one that you thought it was?
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22 Robert: Yes.

23 SE: And what did you get?

24 Martin: Isn’t that cheating drawing the graph to see which?

25 SE: No, no he is just convincing himself.

26 Robert: To be honest I can’t remember what I typed in.

27 SE: Well, let’s think about the first one y = sin(x/3). What is the 
graph of that going to look like?

28 Robert: Wide, and wider than it is there. [Robert pointed to graph A],

29 SE: Yes. Ok, I’m going to say that you two are actually correct. 
Now it looks like a sine because it is sine of x, that is sinx.

30 Robert: Yes.

31 SE: But it can also be represented by y = cos(x - n/2) that’s 
another...

32 Robert: I see where that’s coming from.

When asked to identify graph A, Martin was the first to offer a suggestion: ‘Is it cos (x 
+ 7r/2)?’ (line 2) in which he invited acceptance or repair. Robert on the other hand 
seemed more confident and asserted that this is a sine graph (line 4). Robert recognised 
the distinctive shape of the graph as being of the form y=sinx and as such did not 
initially think of the graph in terms of a translation of the cosine function, as Martin 
had suggested. When asked to explain his initial response Martin pictured the graph of 
cosx in his mind and then considered the effect that the transformation cos (x + n/2) 
would have. This allowed him to perform a self-repair, by recognising his original 
error and realising that the correct form of the given graph was actually cos (x - n/2) 
(line 8).

In contrast, Robert who had immediately recognised the graph as that o f sinx, was 
somewhat confused by the fact that this was not one of the listed options. His initial 
image o f this function as a sine graph was strong and instead o f considering the graph 
as a translation of cosx, he began to consider the other sine functions listed, focusing 
on sin(x/3) (line 10). Yet, he was still uncertain that this was the correct function (line 
12). At this point Julie who had remained silent throughout was drawn into the 
conversation (line 13). The teacher-researcher’s questions encouraged Julie to 
elaborate on her initial explanation of why she had accepted Martin’s argument and 
showed she had made sense of the problem. However, Robert seemed unaffected by 
the arguments proposed by Martin and Julie and in an attempt to clarify his thoughts 
he began using the graphical calculator.

When asked to consider what the graph of sin(x/3) would look like in relation to graph 
A (line 27), Robert was able to recognise that the graph of sin(x/3) would be wider 
than graph A. Use of the technology and the teacher-researcher’s question aimed at 
making him think about the relationship between the two graphs had helped Robert to 
perform a self-repair. He now realised that sin(x/3) was not the correct form o f this 
function, and he started to question his initial thoughts and to eliminate the other sine 
functions listed. When it was explained that the graph could be represented 
symbolically by either y = cos (x - n/2) or y = sinx, Robert remarked ‘I see where
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that’s coming from’. This suggested that he could visualise the action o f the 
transformation f(x-7t/2) on the graph of f(x)=cosx and how this would produce the 
graph of sinx. He appeared to have internalised the argument that the teacher- 
researcher was presenting.

Thus, the use of the technology and the discussion in this example appeared to have 
resulted in some form o f cognitive reorganisation for Robert. His thinking during the 
course of the episode had changed and by the end of this part of the discussion he was 
able to transfer his prior knowledge of trigonometric functions to this context. The 
concept of transformations became more meaningful to him, adding greater depth to 
his overall understanding of functions. He seemed to have begun to make the 
important visual connections between sine and cosine graphs and translations, which 
were also made explicit to Julie and Martin in this example. The graphical calculator 
provided an authoritative means by which Robert could investigate the ideas being 
discussed and modify his own visual images o f the graphs accordingly. Consequently, 
Robert’s use of the technology was an important part o f the process by which he was 
able to enter the JPS. Robert began to have more confidence in the arguments being 
posed by his peers following his graphical exploration with the technology. He was 
further convinced of the validity of these arguments through SE’s concluding remarks. 
Here the teacher-researcher assumed the role o f a more knowledgeable person in the 
Vygotskian zone of proximal development and helped all o f the students to make sense 
of the apparent contradictions.

The use of the graphical calculator also provided a means of furthering the discussion 
and preventing a breakdown in communication. When Robert was unable to move 
forward he turned to the graphical calculator in an attempt to clarify his thoughts, 
rather than merely accepting the arguments put forward by Martin and Julie without 
really understanding them. The teacher-researcher’s repeated questioning o f the 
students’ reasoning was also a factor in maintaining and steering the discourse and in 
the creation of a JPS. This allowed the students to make discoveries for themselves 
whilst receiving appropriate guidance and reinforcement of their solutions.

In this example the students were working in a group to find the solution to the 
problem. However, close examination of their dialogue indicates that they actually 
seemed to be working separately, within the group situation, towards achieving this 
common goal. There were plenty of interactions between each student and the teacher- 
researcher, but there was no direct interaction between the students themselves. Each 
o f the students made their own independent contributions to the discussion, which 
appeared separate from previous utterances. They did take turns in the conversation, 
but did not question one another’s contributions or request further elaboration. Robert 
did not seem to consider the contributions made by Martin and Julie. Martin and Julie 
did not question Robert’s argument. Julie did not make clear her agreement with 
Martin’s line of reasoning until she was specifically asked to share her viewpoint. 
Each student appeared to take his or her turn in the conversation in a linear way. There 
were no interruptions from the other two students when one o f them was presenting 
their argument.

The way in which these students were interacting made it necessary for the teacher- 
researcher to take an active role in maintaining and encouraging the discussion 
between students, in verifying students’ assertions and in providing clarification and
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explanation o f solutions where needed. There was also a need to promote the use of 
the technology, especially in Martin’s case, as he saw this as a means o f cheating (line 
24) rather than as a tool that could help the students to clarify their thoughts and move 
towards a different level of understanding.

At the end of the episode the students had gained some shared understanding of the 
problem posed and of the solution through the creation of a JPS. They had each 
participated in the same activity at the same time and they had all listened to each 
other’s contributions and those made by the teacher-researcher. The knowledge and 
understanding that these students had gained as a group appeared to be greater than 
that which they already possessed as individuals and as Jones and Mercer (1993) 
argue, this indicates that successful learning had taken place.

Discussion of G raph B [y = sin 3x]
The students’ discussion of graph B showed that successful collaboration can occur in 
a graphical calculator environment without the use o f this technology. However, we 
propose that even when the graphical calculator was not being used, as is the case here, 
it was still having an effect on the students’ thinking.

Can anybody think of a function for B?

I reckon its sin3x.

Sin3x.

Yes.

You seem to agree on that one. So how did you come up with 
that conclusion?

There doesn’t seem to be any sneaky cosine tricks.

Not this time.

It’s a sine wave and it’s been er...

Three times x would condense it.

It’s got a stretch parallel to the x-axis of a third, because it got 
closer together.

Yes, you’re all right it’s sin3x.

Martin initiated the discussion by asserting that this was the graph o f sin3x (line 2) and 
this time appeared to be much more confident with his suggestion. The other two 
students immediately accepted that this was the correct form of the function and when 
asked to give reasons why, both Martin and Robert took turns to construct an 
explanation, each building and elaborating on the previous utterances, thereby 
producing a collaborative completion (lines 8, 9, 10). When Martin paused to think 
(line 8), Robert anticipated what he may have intended to say and completed his 
statement. Together they provided a convincing argument for their choice of function. 
The students were thus all confident that they had identified the function correctly. 
Although, Julie did not participate verbally in this part of the discussion, she did make 
gestures that indicated her agreement with the arguments being put forward.

1 SE:

2 Martin:

3 SE:

4 All:

5 SE:

6 Robert:

7 SE:

8 Martin:

9 Robert:

10 Martin:

11 SE:
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The knowledge constructed by the students in this example appears to be shared 
between them, especially Martin and Robert, and these two students appear to have 
constructed a JPS. However, it is uncertain whether Julie had actually developed a 
fully shared sense of the solution to the problem, as she did not verbalise her ideas 
through interaction with the other students. Martin and Robert seemed to be more 
supportive of each other when discussing this graph than when discussing the previous 
one. Rather than concentrating on developing their own arguments separately, they 
produced a joint explanation o f why sin3x was the symbolic representation o f graph B.

Martin and Robert were able to perform a collaborative completion together because it 
seems their visual images of the function were strong and corresponded to one another. 
In this case each student appeared to be able to visualise clearly the effects o f the 
transformation, without using the technology. Yet, there was evidence that the 
graphical calculator was having an impact on the way in which these students were 
thinking about the problem. In particular, Robert was now actively looking for 
alternative symbolic forms for the graphed functions following his exploration o f the 
function represented by graph A with the graphical calculator (line 6). We therefore 
propose that the use o f the graphical calculator and its continued presence in the 
environment restructure the way in which students think about problems, and that this 
is most productive when used as part of a local community o f practice. This will be 
discussed further below.

Discussion of Graph F [y = tan(x/3)]
The discussion of the final graph serves to illustrate how collective use of the graphical 
calculators enabled the students to establish a JPS.

Robert:

SE:

Robert:

SE:

Robert:

Martin:

Robert:

SE:

9 Martin:

10 SE:

11 Julie:

12 SE:

13 Julie:

It’s a tangent.

Think about the scale the TI-92 uses.

To see if it was increasing, I could just draw the normal graph.

Ok, if  it helps you can draw the -  you can all draw the tanx 
graph and see what happens on your machine and then from 
there you can hopefully deduce what the function is.

It’s a stretch o f factor 3.

It’s tan of x over 3.

Yes.

Is that y = tan(x/3) or y = tanx/3 because there are two o f 
them?

y = tan(x/3).

y = tan(x/3) and what do you think? Have you managed to get 
the tan?

Yes. That’s the whole thing. [Julie pointed to the tanx in 
tanx/3].

That’s tan of x all divided by 3.

So yes y = tan(x/3).
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14 SE: y = tan(x/3), yes well done you are right.

Robert was the first to state that this graph belonged to the tangent family o f functions 
(line 1). There was, however, some uncertainty amongst the students as to what the 
graph of y = tanx would look like in relation to graph F. This was evident in the silence 
that ensued Robert’s initial suggestion. Recognising this problem, the teacher- 
researcher asked the students to think about the scale that the graphical calculator uses 
to draw trigonometric functions (line 2). Robert then suggested that he could draw the 
graph o f tanx using the TI-92 and compare this with graph F to deduce the relationship 
(line 3). The teacher-researcher then advised all three students to try this approach. 
Robert compared the graphs and deduced that graph F was obtained using a stretch of 
factor three. To complete Robert’s statement, Martin added that the correct function 
was ‘tan of x over three’ and Robert immediately agreed. As in the discussion o f graph 
B, Robert and Martin attempted to construct shared knowledge and again produced a 
collaborative completion. However, as there were two functions which could be 
verbalised as ‘tan of x over three’, the teacher-researcher sought confirmation that 
Martin had identified the function correctly and was quickly satisfied that he had. Up 
until this point Julie had not contributed to the discussion and the teacher-researcher 
drew her into the conversation again to see if  she was following the arguments being 
presented. Julie accepted the choice of function offered by Martin and provided some 
evidence that she had understood why this was the correct function (line 11), which 
was then confirmed by the teacher-researcher’s closing comments.

The students had thus been able to develop some shared understanding o f the 
transformations used in this example through the creation of a JPS. Moreover, the use 
o f the graphical calculator was an important part of this process. The interaction 
between the students was constructed in relation to the graphs produced by the 
graphical calculator and it was this factor that led directly to the collaborative 
completion between Martin and Robert. This occurred because the students were able 
to establish a shared visual interpretation o f the function using the graphical calculator. 
In other words, in this episode use o f the technology provided Julie, Martin and Robert 
with a common starting point from which they were able to think about the problem in 
the same visual terms. From this position they were each able to contribute towards 
correctly identifying the symbolic form of the function. As their discussion was 
structured around their shared use of the graphical calculator, this facilitated successful 
interaction. The decision to use the graphical calculator in this case thus proved 
extremely productive and resulted in the collaborative completion.

Local Communities of Practice in Action
During these discussions a local community o f  practice appears to have been 
established by the students and the teacher-researcher. Figure 2 summarises the kinds 
o f interactions used by each participant throughout the discussion of all six graphs.

Firstly, as shown by figure 2, the students each showed willingness to explore and 
explain ideas to one another. They clearly saw themselves as functioning 
mathematically within the lesson, as they were each offering suggestions as to which 
functions represented the given graphs, based on some mathematical reasoning, which 
enabled them to obtain the correct form of the function in each case.
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Secondly, the teacher-researcher ensured that the students received public recognition 
o f their competence. This was achieved through acceptance o f the students’ ideas 
(‘yes, well done you are right’, ‘yes, you are all right, it’s sin3x’).

Robert Julie Martin SE
Presenting ideas 4 2 1 1
Explaining ideas 3 3 0 3
Making assertions 7 2 3 1
Making statements 6 1 2 5
Showing acceptance 4 4 3 6
Repairing ideas 2 0 0 3
Self repairing ideas 1 0 1 0
Questioning 1 2 2 23
Performing collaborative completions 4 0 2 2
Number o f interactions involving natural 
language

18 9 8 25

Number of interactions involving scientific 
language

14 5 6 19

Total number of interactions 32 14 14 44

Figure 2 Types of interaction used by the participants

Thirdly and most significantly, as the discussions progressed, the students began 
actively working together towards achieving a common understanding o f each 
problem, through the sharing of ideas and questioning of one another. This led to the 
creation of joint problem spaces and successful collaboration in the form of 
collaborative completions between the students themselves and with the teacher- 
researcher.

Fourthly, the students each shared behavioural traits, such as presenting and justifying 
their own arguments and listening to, accepting and questioning the arguments of 
others. The language used by the students was both scientific and natural, and the 
students appeared to have shared conceptions of the scientific language that was used. 
The students also used the graphical calculator together as a group in their attempts to 
identify the fifth graph (not presented here).

The shape o f the lesson depended on the active participation o f the students. Each 
student created his or her own role in the practice, which varied accordingly. During 
the discussions the patterns of interactions between the students were continually 
changing as each new graph was considered. In each case the individual students 
appeared to occupy different positions within the discussion, modifying their roles 
depending on their needs. Martin initiated the discussion around the first two graphs, 
and Robert took over this role for the discussions concerning the remaining four 
graphs. Robert also began to act as a more capable peer in the Vygotskian zone o f  
proximal development (graphs C-F). He continually made verbal contributions to the 
discussions and at times took control o f the discussion, while Julie and Martin spent 
more time actively listening and thinking rather than speaking. In most cases Julie did 
not contribute voluntarily to the discussions and needed to be drawn into the discourse.
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Martin was initially quite instrumental in moving the group towards the correct 
solutions (graphs A and B). However, as Robert took over initiation and steering o f the 
discourse, Martin seemed to fade into the background. He was unsure about the 
symbolic forms of some of the graphs and he made fewer verbal contributions when 
discussing these, especially graph E (see Elliott, (1999)). He needed time to take into 
full consideration the arguments offered, to enable him to form his own ideas and to 
convince himself of their meaning. In this way Martin was attempting to derive his 
own meaning from that which already belonged to Robert and Julie.

Julie operated as an active listener during the majority of the discussion, only offering 
her suggestions when specifically asked to do so. It was only during the discussion of 
graph E that this pattern changed and her contributions became more spontaneous. Her 
difficulties with this graph encouraged her to share her ideas more freely, in an attempt 
to derive meaning from the interaction. However, at all other times she was a 
participant with a relatively voiceless role in the local community o f  practice.

Finally, both the students and the teacher-researcher regarded themselves as being 
involved in the same activity. In each case the teacher-researcher attempted to initiate 
each student into the discourse with the aim of encouraging the construction o f shared 
knowledge. Through these actions the teacher-researcher attempted to maintain and 
repair the JPS that was being created. Figure 2 highlights that questioning formed an 
extremely important part of the teacher-researcher’s strategy for encouraging 
participation and the construction and maintenance of a JPS amongst the students and 
herself. It also illustrates the quality and frequency of interactions made by Robert in 
comparison to Martin and Julie. Robert performed more successfully overall in the 
class activities in this trial, taking into account the scores that he obtained in the entire 
series of exercises, too numerous to present here, which comprised this investigation 
as a whole. This may have been the result of his additional willingness to share ideas 
and difficulties with the other students and the teacher-researcher and to use the 
technology without being prompted to do so.

This type of environment, where local communities o f  practice are established in 
which the students and teacher are able to construct and maintain joint problem spaces, 
is seen to be conducive to successful collaborative work involving graphical 
calculators. Within this supportive environment students are able to establish an 
effective means o f operating with graphical calculators, in which the knowledge 
generated is shared amongst the participants. As seen in the discussion o f graph B, this 
may not necessarily involve working with graphical calculators all o f the time. For 
example, if  the students are able to visualise the effects of a particular transformation 
on the graph of a function effectively without the aid of technology, then they may 
choose not to use the graphical calculator in that instant. However, the way in which 
they approach the problem is likely to reflect their prior use of the technology.

Reflections
The use of the graphical calculator in this study enabled the students to perform 
collaborative completions together and thereby created the opportunity for effective 
collaboration. This was achieved because the students were able to produce a shared 
visual representation of the problem using the graphical calculator and thereby create 
joint problem spaces. Successful collaboration was also promoted by the ability for 
students to reinforce their arguments through use of the graphical calculator. This

CLXVIII



discouraged breakdowns in communication between the students. The ability of 
students to use the graphical calculator as a means of verifying or, in particular, 
disproving their ideas also led to cognitive reorganisation, especially in Robert. This 
enabled Robert to gain a better understanding of the actions of transformations and the 
corresponding relationships between the graphs of sine and cosine functions. Input 
from the teacher-researcher was also seen to be a contributing factor in this cognitive 
reorganisation process.

There is an important role for the teacher in initiating the students into the local 
community o f  practice through initiating discussion of the results obtained by the 
graphical calculator. This could be on a one-to-one basis, in small groups or as a whole 
class. Through the interaction with the teacher, peers and the technology the individual 
student is able to develop a more meaningful understanding than was hitherto 
possessed. Analysis of the episodes has pointed to the centrality o f the teacher’s role in 
maintaining and encouraging discussion between the students, especially in relation to 
the results produced by the graphical calculators, and in providing additional 
verification o f these results and the students’ assertions. A further important function 
o f the teacher lay in providing clarity and explanation o f the results of the students’ 
exploration with the technology, especially when the students were unable to reach a 
common understanding of their findings by themselves. The teacher needs to scaffold 
the students’ learning with the graphical calculators to ensure that the technology is 
used effectively and results are interpreted correctly by the students, so that any 
misunderstandings are not perpetuated.

The establishment of local communities o f practices in the classroom was seen to be 
conducive to successful collaborative work involving graphical calculators. In this type 
o f supportive environment the students shared ownership of their use o f the technology 
and they and the teacher-researcher could build and maintain joint problem spaces, 
which can lead to graphical calculators being used to greatest effect. However, it was 
not essential for the students to use graphical calculators all o f the time in order for 
learning to be successful in their community of practice. Yet, the way in which the 
students operated whilst using the graphical calculators was seen to influence the way 
in which they approached problems without use of the technology.

The ways in which students define their eventual roles in a local community o f  
practice is a complex process. The patterns of interactions between the students 
changed as each new graph was considered. Throughout the discussions the individual 
students appeared to occupy different positions within the discourse, modifying their 
roles depending on their needs. Robert, in particular, adopted the role o f initiating and 
steering the discussions, whilst reacting to the arguments presented by the other 
students. So as the discussion developed, Robert’s positioning within the discourse 
evolved and he proceeded to occupy a central role. He was an eager and very active 
participant and his position developed into that of a more capable peer in the zone o f  
proximal development.

None of the students appeared to be self-reliant. They learned from each other, from 
the teacher-researcher’s comments, from using the technology and by participating in 
the community of practice, through their discourse. The positions that the students 
occupied within the discourse were their ways of appropriating meaning and 
contributed towards their success as learners. Moreover, the successful learning that
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took place in these discussions is attributed to the creation o f joint problem spaces, 
which can be thought of as particular examples o f local communities o f  practice in 
action and both the technology and the teacher-researcher played an important part in 
contributing towards their development.
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VISUALISATION AND THE INFLUENCE OF GRAPHICAL CALCULATORS

Visualisation is increasingly being accepted as a fundamental aspect of mathematical 
reasoning. Indeed many researchers stress the importance of mental imagery in the 
construction of meaningful mathematics (Presmeg, 1995; Wheatley and Brown, 1994). 
Zimmerman and Cunningham (1991) further argue that visual thinking needs to be 
linked to other modes of representation in order for students to learn optimally.

The potential of utilising graphical calculators to promote and encourage visualisation 
skills has been recognised in numerous studies. In particular, graphical calculators can 
be used to enable students to develop a deeper insight into functions and their graphs 
(Carulla and Gomez, 1997, Ruthven, 1990). Borba (1996) suggests that the use of 
graphical calculators mediates both teacher-student relationships and interactions 
between students.

This study investigated ways in which the graphical calculator mediated students' 
powers o f visualising functions. The findings indicate that this occurred in three 
distinct ways. Firstly, it appeared that the graphical calculator enabled the students to 
access graphical images o f functions quickly and easily, when perhaps they may have 
had difficulty otherwise. This in turn allowed them to see the problem more clearly 
and proceed towards a solution. Secondly, it seemed that the graphical calculator 
influenced students' perceptions in a positive way towards the validity o f visual 
methods in mathematics. Thirdly, the observations suggested that the graphical 
calculator was instrumental in improving levels of student confidence surrounding 
functions. It did so by providing scaffolding for student-student interactions, which 
enabled students to make connections between visual and symbolic modes of 
representation more easily.
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