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Abstract

The urgent global need for affordable alternative and clean energy supply has 
triggered extensive research on the development of thin-film solar cells since the past 
few decades. This has necessitated the search for low-cost, scalable and manufacturable 
thin-film semiconductor deposition techniques which in turn has led to the research on 
electrodeposition technique as a possible candidate for the deposition of semiconductor 
materials and the fabrication of thin-film solar cells using these materials.

Electronic quality ZnS, CdS, and CdTe thin layers have been successfully 
electrodeposited from aqueous solutions on glass/fluorine-doped tin oxide (FTO) 
substrates, using simplified two-electrode system instead of the conventional three- 
electrode system. This process was also carried out in a normal physical chemistry 
laboratory instead o f the conventional cleanroom that is very expensive to maintain. The 
electrodeposited materials were characterised for their structural, optical, electrical, 
morphological and compositional properties using x-ray diffraction, optical absorption, 
photoelectrochemical cell, current-voltage, scanning electron microscopy and energy 
dispersive x-ray techniques respectively. The results show that amorphous n-type and p- 
type ZnS layers were deposited by varying the concentrations o f Zn2+ and S2' in the 
deposition electrolyte. The CdS layers show hexagonal structure with n-type electrical 
conduction while CdTe layers show cubic structure with n-type electrical conduction, in 
the cathodic deposition potential range explored.

Using CdTe as the main absorber material, fully fabricated solar cell structures 
of the n-n hetero-junction + large Schottky barrier type were fabricated instead o f the 
conventional p-n junction type structure. Conventional post-deposition CdCL treatment 
of CdTe rather carried out with a mixture of CdCl2 and CdF2 , resulted in pronounced 
improvement of all the device parameters. Characterisation of the fully fabricated solar 
cells was done using current-voltage and capacitance-voltage techniques. Promising 
device parameters were obtained for the best devices, with barrier heights greater than 
(1.00 -  1.13) eV, short-circuit current densities of (20 -  48) mAcrn’2, open-circuit 
voltages of (500 -  670) mV, fill factors o f (0.33 -  0.47) and overall conversion 
efficiencies o f (5.0 -  12.0)%. Remarkably, the two highest efficiency figures o f 10.4% 
and 12.0% came up for solar cells involving ZnS as buffer layer and window layer with 
the structures, glass/FTO/n-ZnS/n-CdS/n-CdTe/Au and glass/FTO/n-ZnS/n-CdTe/Au, 
respectively. At present, the reproducibility and consistency o f these devices is poor, but 
these results demonstrate that these devices structures have the potential to achieve 
efficiency values over 20% when fully optimised.
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C hapter 1: Introduction

1.1 Global energy supply and consumption

The global need for sustainable energy supply has necessitated serious research, 

development and monitoring o f various global energy supplies and consumption in 

recent years. The energy crisis of the 1970s really taught the world serious lessens on 

the need for sustainable global energy supplies [1, 2]. The BP's annual 'Statistical 

Review o f World Energy 2013' for the year 2012, indicates that oil still remains the 

dominant fuel for energy generation with 33.1% of the global total energy consumption 

as at 2012, although this value stands as the lowest share on record for oil for 13 years 

running [3]. Oil is followed in sequence by coal, natural gas, hydroelectricity, nuclear 

energy and finally renewable energy [3], as shown in figure 1.1.

World consumption
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World primary consumption grew by a below-average 1.8% in 2012. Growth was below average in all regions except Africa. Oil remains 
the world’s leading fuel, accounting for 33.1% of global energy consumption, but this figure is the lowest share on record and oil has lost 
market share for 13 years in a row. Hydroelectric output and other renewables in power generation both reached record shares of global 
primary energy consumption (16.7% and 1.9% respectively).

Figure 1.1: BP Statistical Review of World Energy 2013 [3].

Be it as it may, these major global energy sources are not without serious 

environmental concerns ranging from CO2 emission to oil spillage on land and water as 

well as nuclear waste contamination, all of which eventually contribute to the big issues 

of environmental degradation and global warming making big news headlines today. 

The 2013 climate change report released in September, 2013 by the Inter-governmental
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Panel on Climate Change (DPCC) blames this on the activities of humans which have 

eventually resulted to increase in the greenhouse gas content of the atmosphere [4]. 

These human activities eventually boil down to heavy dependence on energy source 

which produce these greenhouse gases in both our industrial and domestic activities 

without adequate consideration o f the accompanying adverse environmental effects 

such as global warming and pollution.

Nevertheless, BP’s 2013 annual Statistical Review o f world energy indicates that 

renewable energy sources (which more or less produce less adverse environmental 

effects) grew by about 15.2%. in power generation, accounting for a record 4.7% of 

global power generation [3]. This is encouraging news for the pursuit o f renewable 

energy sources. Renewable energy is so important because it is apparently infinite, clean 

and at least less toxic. For example the estimated life span o f the sun is another 7 billion
97years, while generating energy at the rate of about 4x10 W [5]. The primary 

renewable energy sources include the sun, wind, biomass, tide, wave and the earth's heat 

[6]. With renewable energy taking last position in the rank of global energy sources 

according to the BP’s Statistical Review o f world energy and the detrimental climate 

change issues, there is a serious campaign for massive research and development 

activities in search of alternative, renewable and clean energy supplies for a more 

conducive environment and survival o f man and other living things on earth.

The major conventional energy sources in the world today include oil, natural 

gas, hydroelectricity, coal and nuclear. Among these, oil, coal and natural gas generally 

come from fossil and are therefore collectively called fossil fuel. They are derived from 

deposits of dead organic matter that have existed over millions o f years. The major 

characteristic of this energy source is the production o f large amounts of carbon dioxide 

and other greenhouse gas emissions which play very prominent role in global warming 

[7, 8]. For this reason, there have been efforts over the years to find alternative energy 

sources which produce minimal carbon and other greenhouse emission. Hydroelectricity 

and nuclear energy belong to this class o f energy sources, although nuclear energy 

production has its own problems of nuclear contamination. It is therefore clear that the 

word “alternative” in energy terms does not necessarily imply “safe” or “sustainable”. 

For example nuclear energy is not as safe as hydroelectricity given its inherent nuclear 

radiation issue, such as in the present case o f the Fukushima nuclear power station 

radioactive contamination in Japan, triggered by the 2011 earthquake and tsunami. This 

in fact creates confusion sometimes when classifying energy sources in terms o f their



level of safety. For this reason, the classification o f energy sources in this thesis will be 

based on renewable and non-renewable sources.

1.2 Non-renewable and renewable energy sources

Energy sources that cannot be replenished once they are used are said to be non­

renewable [9, 10]. This replenishment is actually done naturally. Based on this, most of 

the major conventional energy sources are non-renewable and therefore stand a chance 

o f running out in future. All energy sources derived from fossil fuel belong to this class 

including oil, coal and natural gas [9, 10]. As mentioned earlier these energy sources 

take thousands and millions o f years to form and therefore they are not easily 

replenished. Added to this group also is nuclear energy [9, 10]. Nuclear energy 

generation requires a radioactive element (uranium) which is obtained from its ore in 

the ground. The quantity of this uranium present in the ground is limited and only found 

in limited locations around the globe. For this reason, nuclear energy is non-renewable.

On the other hand, energy sources that are easily replenished in nature once they are 

used are called renewable energy sources [9, 10]. These renewable energy sources 

include solar, wind, geothermal, hydropower (which includes tide and water wave) and 

biomass [9, 10]. These sources are practically infinite and can be used again and again 

without fear of exhaustion. The sun for instance has been estimated to continue to 

produce solar radiation for another 7 billion years to come [5]. Water, wind and 

geothermal energies are naturally occurring and continue in endless cycles without 

interruption. Also biomass which is mostly derived from plants continues to be 

available as long as there are plants. Biomass can be converted into biofuel using 

different methods. In fact, in some developing countries today, biomass remains the 

major source of fuel for domestic use. A typical example of this kind o f fuel is 

firewood. Because the project described in this thesis is based on the conversion of the 

sun’s energy into electricity, and the sun being a renewable energy source, a brief 

description of the above mentioned renewable energy sources will be presented in the 

following sub-sections.

1.2.1 Wind Energy

Wind energy is a source of clean energy which can be harnessed directly in form 

of mechanical power or in form of electricity. In any case, wind turbines are used to 

convert the kinetic energy of the wind into mechanical power. In the case o f electricity
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generation, a generator is used in addition to convert the mechanical energy into 

electrical power for various uses [11].

Wind is simply the flow of air or more broadly, gases, resulting from 

temperature differential in the heating of the atmosphere by the sun. This temperature 

differential or uneven heating of the earth arises from both the irregular nature of the 

earth's surface and the rotation of the earth [11]. Winds are generally classified 

according to their direction and strength. Wind energy is a clean energy source 

producing little or no greenhouse gas emissions [12]. However, some of the issues 

regarding this energy source include noise from the wind turbine rotor blades, threat to 

the avian population, as well as damage of the turbines by fire due to overheating 

caused by friction in poorly designed turbines [13, 14]. The power in a given mass of 

wind is proportional to the cube of the speed of the wind according to equation 1.1 [11, 

15].

dE i  ’
p = ^ = V 3 ( i .i)

where P  is the power, E  is the kinetic energy of the mass of air constituting the wind, t 

is time for the flow, A is area, p  is the density of the air (wind) and V is the speed o f the 

wind [11, 15]. Figure 1.2 shows the schematic of the operating principle of a typical 

wind turbine generator.
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Figure 1.2: The principle of operation of wind turbine doubly-fed induction generator.
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1.2.2 Geotherm al Energy

Enormous heat is produced at the core of the Earth by the radioactive decay of 

some naturally occurring minerals [16]. The temperature due to this heat reaches few 

thousands of degrees Celsius. This high temperature and the accompanying pressure 

cause rocks to melt, forming molten magma. The heat from the magma creates upward 

convection current that heats up the rocks and water above it up to temperatures above 

300°C [16]. This heat energy generated and stored in the Earth is called geothermal 

energy and can be harnessed in order to heat water and produce steam to turn turbines 

for electricity generation. Geothermal energy has been in use from ancient times for 

bathing and space heating [16, 17].

Although geothermal energy is abundant in the Earth, greenhouse gases trapped 

in the Earth can be released when this energy is tapped. However, the amount of these 

greenhouse gases is relatively low compared to that generated from fossil fuels. As a 

result, wide deployment of geothermal energy as an alternative to fossil fuel can help 

minimise global-warming problem. Figure 1.3 shows the schematic o f a typical 

geothermal power plant for electricity generation.
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Figure 1.3: Schematic of a typical geothermal plant for electricity generation.

1.2.3 Hydropower

Hydropower is power obtained from the kinetic energy o f a moving body of 

water. When a mass of water is made to flow from a region of higher potential to one of 

lower potential, its kinetic energy o f motion can be exploited in turning a turbine and 

this can be used to generate electricity [18]. Apart from generation o f electricity,
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hydropower has been in use since ancient times for purposes such as irrigation and 

operation of mills for various applications [19].

Hydropower naturally originates from wave power and tidal power. Water 

waves are generated by wind flowing over the surface o f the ocean or sea [20]. This 

flow transfers energy from the wind to the wave. As a result of uneven surface o f the 

see water, the wind flow creates pressure differences between different levels on the sea 

surface which in turn cause the water wave to grow in strength. Tidal power is created 

by the gravitational attraction between the Earth and the moon as well as between the 

earth and the sun. This attraction brings about distortion in the water level o f oceans 

which consequently raises the sea level. This causes water from the middle of the ocean 

to move towards the sea shore resulting in tide.

However, hydropower can be obtained artificially by constructing dams so that 

large bodies of water can be made to fall from heights. This can then be used to turn 

turbines for hydroelectricity generation. In fact, among the renewable energy sources, 

hydropower is the most widely used in the world for the generation of electricity to 

date, accounting for over 16% of global electricity generation as at 2010 [21]. Figure

1.4 shows the schematic of a hydroelectric power generating plant using a dam.

Electrical load
Waterfall

WaterDam

Turbine

Figure 1.4: Schematic of a hydroelectric power generating plant.

1.2.4 Biomass

Biomass mostly refers to all plant-based organic materials obtained from living 

or recently living plants [22, 23]. Through the process o f photosynthesis, these plants 

convert the solar energy of the sun to chemical energy stored in the plant. Biomass
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energy is therefore energy derived from biomass. The conversion of biomass into 

energy can be done in different ways giving rise to the different biomass energy 

technology applications. These involve converting biomass into solid, liquid or gaseous 

fuels called biofuels, principally used for transportation [24, 25]. This can be done 

through thermal, chemical or biochemical means. Examples of such biofuels include 

bio-ethanol, methanol, ethylene (or ethylene glycol) and propylene (or propylene 

glycol) [24 - 27]. Another method of bioenergy production is by direct combustion or 

burning of biomass such as wood to produce heat energy for direct application such as 

cooking and space heating and for indirect generation of electricity by heating water to 

produce steam for operating turbines [24, 28].

In a broader sense, biomass includes both plant and animal materials that can be 

converted into industrial chemicals for the production of bioenergy. In recent times, 

biomass has been extended to sources such as waste from industrial and agricultural 

activities. These are called lignocellulosic biomass. Biomass has always been a major 

energy source for humans right from ancient times and has been projected to contribute 

up to 15% of the global primary energy supply by 2050 [29].

1.2.5 Solar Energy

Solar energy is simply energy based on the sun's electromagnetic radiation. 

Figure 1.5 shows the solar spectrum comprising electromagnetic radiation of various 

wavelengths or frequencies [30]. This spectrum covers the ultraviolet (UV) radiation 

(100 - 400) nm, the visible (VIS) radiation (400 - 700) nm and the infrared (IR) 

radiation (700 nm and above). This covers most of the important spectrum for terrestrial 

solar energy application especially through solar thermal and photovoltaic technologies. 

Further discussion on solar energy conversion through various technologies is presented 

in the following sections.
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Figure 1.5: The Solar spectrum showing the spectral irradiance vs. photon 

wavelength in the UV, VIS and IR regions [30].

1.3 Solar radiation and air mass coefficients

The sun can be approximated to a black body radiator operating at an effective 

temperature of 5777 K [31]. As the solar spectrum passes through the atmosphere 

however, it gets attenuated due to absorption and scattering by the molecules and 

particles present in the atmosphere. As a result, some of the components of the spectrum 

are stripped off before the sunlight reaches sea level at the Earth’s surface [32]. For 

example a large portion of the short-wavelength ultraviolet component o f the solar 

spectrum is absorbed by the ozone layer in the upper part o f the atmosphere. Also water 

vapour, molecular nitrogen, carbon dioxide as well as oxygen, contribute to this 

absorption and scattering of different wavelengths o f the solar spectrum before it 

reaches the surface of the Earth. As a result, the solar intensity varies with altitude as 

well as with the sun's zenith angle as the solar spectrum travels through the atmosphere.

The solar spectrum is usually characterised after traveling through the 

atmosphere using the “air mass coefficient” or simply the ”air mass” (AM). This is 

simply defined as the ratio of the optical path length (L) o f the solar spectrum through 

the atmosphere to the vertical path length (Lo) normal to the Earth's surface at sea level 

when the sun is at the zenith as shown in figure 1.6.
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Figure 1.6: Schematic o f the sun's position for the determination o f air mass (AM).

Then

(1.2)

where Z is the angle between the zenith and the position of the sun at the time in

question [33].

Because Z varies with time of the day and seasons of the year, the air mass varies,

surface. Equation (1.2) is a very simple approximation and does not take into account 

the curved nature o f the Earth's surface. Improvements to this model (1.2) have been 

proposed by different people [33 - 36] although it is accurate for values o f Z up to -70°. 

Different AM values correspond to different levels of attenuation undergone by the 

solar radiation when the sun is at different angles relative to the zenith.

AMO: This means zero-atmosphere and represents the spectrum outside the 

atmosphere where there is essentially no attenuation to the radiation from the sun. AMO 

is used as the standard for the characterisation of solar cells used in space application 

such as those used for powering communication satellites in space [32 - 34].

AM I: This is the air mass for the spectrum that has travelled through the 

atmosphere when the sun is directly at its zenith above the point on the Earth under 

consideration. AMI is regarded as one atmosphere thickness, and under this condition, 

Z = 0°, giving the value of unity to Equation (1.2). AMI can be used for characterising 

solar cells meant for use in equatorial and tropical regions of the Earth [32 - 34, 36, 37].

depending on the sun's elevation and with the position of the observer on the Earth’s
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AM1.5: This is the solar spectrum that has passed through 1.5 atmosphere 

thickness. It represents the air mass when the sun is at an angle of Z= 48.2° to the 

Earth's surface. In fact, A M I.5 is used as the average air mass o f the solar spectrum at 

mid-latitudes. This is because the air mass of the spectrum in the region actually 

fluctuates roughly about this value within the day. This is the air mass generally adopted 

by the global solar energy industry as a standard for the characterisation o f solar cells 

and solar panels for all terrestrial applications [32 - 34, 36 -  41].

AM2 and AM3: The AM2 corresponds to the spectrum when the sun is at an 

angle Z = 60° relative to the zenith and AM3 corresponds to the situation with Z = 70°. 

These two cover the range for characterising the average performance o f solar cells in 

regions o f high latitudes such as northern Europe as well as in temperate zones where 

winter, for instance, affects the spectra irradiance [32 - 34, 36, 37].

Solar intensity or solar irradiance (I) is the power per unit area of solar radiation. 

The value of /varies as the solar radiation reaches the Earth’s surface as a result o f the 

aforementioned attenuation that takes place in the atmosphere [32]. When the radiation 

is released from the sun before any attenuation, the maximum solar irradiance Io is 

obtained. This value is also called the total solar irradiance. It is also called the total 

solar constant with an average value of about 1367 Wm ' 2 [42, 43]. The solar intensity is 

related to the air mass according to Equation (1.3) [33].

/ = 1.1 x /„ x o.7C'4M>(“ 78) (1.3)

Therefore, for AM 1.5 condition, the average value of irradiance is about 1000 W m' . 

This is the value used in different research laboratories for the purpose of comparing 

performance o f solar cells.

1.4 Solar energy conversion and technologies

The conversion of solar radiation or solar energy into other useful energy forms 

and sources takes different routes. In all cases, the primary components are photons 

which come from solar radiation. These conversion routes and the corresponding 

technologies involve the conversion of photon energy directly into heat energy, 

chemical energy or electrical energy as well as conversion into electricity through 

intermediate stages such as conversion into heat and then to electrical energy. The 

various modes of solar energy conversion and the associated technologies are discussed 

in the following sub-sections.
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1.4.1 Photo-therm al solar energy conversion

This involves the direct conversion o f photon energy (solar energy) into heat 

energy through the use of solar collectors and absorbers. The resulting thermal (heat) 

energy can then be used directly for example, for drying (as in solar dryers) [44] and 

water heating (as in solar water heaters) [45] etc. In general, materials employed as 

absorbers and concentrators for the above class of photo-thermal energy conversion 

should have desirable properties such as high absorption coefficient over the entire solar 

spectrum and low thermal emissivity in the infrared region o f the solar spectrum [46] as 

well as excellent resistance to atmospheric and environmental corrosion. The optical 

property o f the materials should also be very stable at high operating temperatures. 

Materials such as silicon [47], black cobalt [48], Aluminium [49], stainless steel [50], 

chromium [51], molybdenum [52] etc. are typical materials employed in photo-thermal 

conversion of solar energy.

Depending on the energy (thermal) need, photo-thermal converters can be 

classified in terms of their temperatures o f operation [53] as follows:

(a) Low tem perature photo-therm al converters; which can operate at temperatures 

below 100°C. These are used in applications such as water heating in homes and for 

heating o f swimming pools etc.

(b) M edium tem perature photo-therm al converters; which can operate at 

temperatures between 60°C and 150°C. They are used for water desalination, 

refrigeration cooling, space heating and for mechanical energy production such as for 

generating steam for turning turbines.

(c) High tem perature photo-therm al converters; which can operate at temperatures 

in the range 150°C to 800°C. These can be used in catalytic dissociation o f water for the 

generation of hydrogen and oxygen as well as for production of steam for the operation 

of turbines for electricity generation and other mechanical applications.

(d) Very high tem perature photo-therm al converters; which can operate at 

temperatures above 800°C. They can be employed in thermoelectricity generation, 

magneto-hydrodynamics as well as thermal dissociation of water for the production of 

hydrogen as another source of fuel.
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The basic principle of operation of a photo-thermal converter is depicted in 

figure 1.7.

Solar radiation

Photo-thermal converter (absorber)

Heat out Heat out
Heat cohveyor!

Insulator and reflector

Figure 1.7: Schematic of the basic principle of operation o f a photo-thermal converter.

The incident radiation (in the range 0.3 - 2.0 pm) is absorbed by the absorber and 

converted to heat depending on the design. The absorber therefore becomes transparent 

to longer wavelength radiation (>2.0 pm). These are then reflected back into the 

absorber. The thermal energy generated is then passed through the conveyor to the point 

where it is needed for heating application. For improved efficiency, the incident solar 

radiation can be concentrated. The collector conversion efficiency of a flat plate solar 

collector may be given by Equation (1.4).

where Qu is the useful energy gain of the solar collector, G is the solar irradiance and Ac 

is the collector area [54]. Photo-thermal solar energy conversion technology also finds 

application in medicine, particularly in the areas of photo-thermal therapy, such as in 

tumor and cancer treatment [55 - 60], blood rheology monitoring [61] etc.

1.4.2 Thermo-photovoltaic solar energy conversion

In thermo-photovoltaic (TPV) energy conversion, thermal energy is converted 

into electrical energy. Thermal energy comes from infrared radiation. This infrared 

radiation (heat) can come from the solar radiation or from the heat in the surrounding. In 

fact, strictly speaking, since infrared radiation is a part o f the broad solar spectrum, 

thermo-photovoltaic conversion is a special form of photovoltaic energy conversion 

utilising mainly the infrared radiation. In typical photovoltaic energy conversion using



solar cells, the ultraviolet visible and near infrared parts o f the solar spectrum are mostly 

converted into electricity. Conventional solar cells normally contain semiconductors 

with bandgaps between 1.0 eV and 4.0 eV [62]. This automatically makes them 

transparent to the infrared radiation corresponding to photons with energies below their 

bandgaps. In thermo-photovoltaic energy conversion therefore, very narrow bandgap 

semiconductors are used in the photovoltaic part of the entire process in order to 

effectively absorb longer wavelength infrared radiation from heat energy generated by 

an emitter. The thermo-photovoltaic converter therefore consists o f thermal emitter and 

a photovoltaic cell. The thermal emitter is a special material with high thermal 

emissivity and low thermal absorptivity. Figure 1.8 shows the schematic of the 

operation of a TPV. The thermal emitter /radiator is a system that is capable of radiating 

heat energy in a similar way to a black-body radiator. Although the emitter is not a 

perfect black-body radiator, it can be treated as a black-body radiator to a good 

approximation so that the principle o f black-body radiation governed by Planck's law 

can be applied to it. In their work, Demichelis et al [63] considered the emitter as a grey 

body radiator instead o f a black-body radiator and then expressed the energy per unit 

time emitted by the radiator at a temperature T and incident on the solar cell according 

to Equation (1.5).

source

Filter

\

/~ThOTnaT>r^
Photovoltaic

Thermal
emitter

/ - tg d ia l jo n ^
solar cell with

\ *

narrow bandgap

Output

(Electricity)

Figure 1.8: Schematic of the operating principal of a TPV. The heat source can be a 

solar concentrator consisting of a system of lenses with antireflection coatings.

uu

Pine = Sr.c J  e d  T) En (A, T)x{X)dX  (1.5)

where
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Pinc = Energy per unit time emitted by the radiator,

S r , c = geometric factor o f the radiator cell, 

c (h,T) — spectral emittance at wavelength, X and temperature, T,

En(X,T) = emissive power of a black-body at wavelength, X and temperature, T, 

r(X) = transmittance o f the filter between the emitter and the solar cell.

The energy absorbed by the solar cell per unit time ( P a b s )  is then given by

o

where A (X) = absorbance of the cell.

The efficiency o f the solar cell is given by

where

t j c e i i  =  efficiency of the solar cell,

Jmp = current density at maximum power point,

Vmp = voltage at maximum power point,

Jph = total photo-generated current density,

Vg = Eg/e is the bandgap voltage,

Eg = bandgap energy of the solar cell, and 

e = electron charge.

The conversion efficiency r]TPV o f the thermo-photovoltaic converter then becomes

00

J A(X)e(.A,T)En (.lT )T (X )< t t (1.6)

(1.8)

where Aceu = area of the solar cell.
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Equations (1.5) - (1.8) show that the efficiency o f a TPV depends strongly on the 

temperature of the emitter and the wavelength of the photons radiated by the emitter. 

Thermo-photovoltaic energy conversion is therefore a process based on 

heat/temperature differential between the emitter and the solar cell. Materials that have 

been used in TPV systems as emitters include erbium oxide (E1O 3) [64], ytterbium 

oxide (Yb2 0 3 ) [64, 65], molybdenum [63, 64], tungsten [63, 65], tantalum [63] and 

polycrystalline graphite [63]. Semiconductor solar cells that have been used in TPV 

systems include germanium solar cells [64], silicon solar cells [64], InGaAsSb/GaSb 

solar cells [6 6 ], InGaAs/InP solar cells [67], InGaAsP/InP solar cells [67] and 

InGaAs/InGaAs/InP solar cells [67]. Dasheill et al have obtained a TPV conversion 

efficiency o f 19.7% using InGaAsSb/GaSb solar cell at temperature of ~30°C with an 

emitter temperature of 950°C [6 6 ].

1.4.3 Photo-chemical solar energy conversion

Photochemical solar energy conversion deals with the conversion of radiant 

energy o f the sun into chemical energy which can further be converted directly into 

electricity (photo-electrochemical conversion) or stored in the form of hydrogen 

(through water splitting) [6 8 , 69] or in other forms such as methanol and other 

hydrocarbons. Photosynthesis is one such way of converting the sun's radiant energy 

into chemical energy which can be found in nature. The photo-chemical converter is 

therefore an energy generator as well as an energy storage system. In the case of serving 

as a storage system, the stored chemical energy can be converted into other desired 

forms of energy such as heat and electricity for utilisation. For example ethanol or 

hydrogen produced from a photo-chemical converter can be burnt as fuel in order to 

generate electricity or mechanical energy for transportation [70]. Among the various 

photo-chemical energy conversion routes, the photo-catalytic water splitting for 

hydrogen production has been researched more in recent times [6 8 , 69]. In general, the 

work by Ross and Hsiao indicates that photo-chemical solar energy conversion system 

has higher thermodynamic efficiency limit compared to a corresponding photovoltaic 

solar energy conversion system employing a p-n junction solar cell [71].

1.4.4 Photovoltaic solar energy conversion

Photovoltaic (PV) solar energy conversion is the direct conversion of solar 

energy of the sun into electricity using a photovoltaic solar cell. Among all the above 

discussed solar energy conversion technologies, the photovoltaic technology is the most

15



famous as well as most widely researched and commercialised to date. Unlike the other 

solar energy conversion technologies, PV technology has provided power for various 

levels o f application ranging from low power applications in the order o f 1.0 W as in 

calculators and wrist watches, to Megawatt applications such as in power stations [72 - 

74]. The basic principle of operation of PV solar energy conversion is based on the 

ability of photons from the solar radiation to break bonds in a photovoltaic (photo­

active) material in order to create electron-hole pairs which can then be separated by a 

built-in electric field (in a fully fabricated photovoltaic device) and collected in an 

external circuit (before they are recombined) to produce electricity [74]. The fully 

fabricated photovoltaic device is a solar cell. The photovoltaic solar cell will be 

discussed in full in chapter 2. Nevertheless, various techniques have been employed to 

increase the conversion efficiency o f PV solar cells. These include the use o f solar 

concentrators [75] and multi-junction tandem approach [76]. Various photovoltaic 

materials used to date in the fabrication of solar cells include organic (such as 

semiconducting polymers) and inorganic semiconductor materials. The conversion 

efficiency o f a photovoltaic solar cell depends on a number o f factors ranging from the 

device architecture to the energy bandgaps of the semiconducting materials used as well 

as the chemical nature of these materials. Further details on the efficiencies o f different 

types of solar cells will be presented in chapter 2. Figure 1.9 shows the schematic of a 

typical superstrate photovoltaic solar cell structure.

Incident Photons

Glass substrate

Transparent conducting oxide

Load
Window Layer

"onTnrT""

Figure 1.9: Schematic of the structure of a typical superstrate-type photovoltaic solar 

cell (not drawn to scale).

The glass substrate basically provides mechanical support to the superstrate-type device 

structure. The front contact is usually a transparent conducting oxide (TCO) and light 

enters the cell through this contact. Typical transparent conductors include indium- 

doped tin oxide (ITO) and fluorine-doped tin oxide (FTO). The window layer is a wide
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bandgap semiconductor such as CdS or ZnS to allow enough light (mostly in the near 

UV, visible and IR) to reach the absorber layer. The absorber layer is the main 

photoactive material where most of the electron-hole pairs are generated. In fact, in a 

well-designed graded bandgap solar cell, all the layers take part in absorption of 

photons in order to generate electron-hole pairs. Typical absorber layers include CdTe, 

Si, GaAs, CuInGaSe2 (CIGS) etc. The metal back contact is very crucial to the 

operation o f the solar cell. The type o f metal used here affects the electrical behaviour 

of the metal/semiconductor interface. This contact can have either ohmic behaviour or a 

rectifying (Schottky barrier) behaviour. The particular behaviour chosen depends on 

where the major depletion region in the device is located. If the contact is ohmic, there 

is no depletion region existing at that interface. In general, if  a p-n junction type device 

is intended, then the depletion region is made to exist at the interface between the 

window layer and the absorber layer. One of these two layers is then a p-type 

semiconductor and the other is an n-type semiconductor. In this case, the metal back 

contact should make an ohmic contact with the absorber layer. If  a Schottky barrier-type 

device is intended, then the interface between the metal back contact and the absorber 

layer is a Schottky (rectifying) interface. In this case, the major depletion region in the 

device is located at this interface. There may or may not be a depletion region at the 

interface between the window layer and the absorber layer but the major depletion 

region is at the Schottky contact. The nature o f this metal back contact is therefore 

crucial in the operation o f a photovoltaic solar cell.

It is important to remark at this point that the contact between the TCO and the 

window layer is usually ohmic. By definition an ohmic contact is one that obeys Ohm’s 

law such that similar electrical current passes through it in both directions. On the other 

hand, a Schottky contact is a rectifying contact which allows electrical current to pass 

through it in one direction only. In practical devices, there is a very small current that 

flows in the reverse direction. Because o f the large differences (of several orders o f 

magnitude) between the currents in these two directions, the current in the preferred 

direction is dominant so that the infinitesimal current in the opposite direction is 

neglected. A p-n junction is also a good rectifying junction.

For completeness as well as for brevity, the reviews of various thin film 

semiconductor deposition techniques and the physics of these semiconductors and their 

devices are presented in Appendices I and II respectively.
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1.5 Aims and motivation of this work

The work reported in this thesis was actually inspired by the previous work by 

Dharmadasa et al in 2002 in which an unconfirmed conversion efficiency of -18.0%  

was reported for a glass/FTO/CBD-CdS/ED-CdTe/Au solar cell by using n-CdTe as 

absorber material [5]. This work exposed a possible confusion which may have been 

responsible for the stagnation in the efficiency o f CdS/CdTe-based solar cells for 

decades. This concerns the existence of simple n-CdS/p-CdTe p-n junction as well as n- 

CdS/n-CdTe hetero-junction + large Schottky barrier height at the n-CdTe/metal 

interface, which results in the existence of a depletion region at different locations in the 

two device structures.

The main aim of the present work therefore involves further investigation o f the 

later device structure with well-established n-CdTe material using possible low-cost and 

further simplified processes, and the extension o f this approach to devices involving 

ZnS as window/buffer material. There are therefore major differences and modifications 

both in materials growth and device processing in the present work. The major 

highlights of the procedure employed by Dharmadasa et al include:

i. Use of CBD-grown CdS as the only window material.

ii. Use of three-electrode system in the growth of CdTe layers.

iii. Use of non-aqueous electrolyte for the deposition o f CdTe with ethylene glycol 

as the non-aqueous solvent.

iv. Use of CdCb and TeCU as sources o f Cd and Te ions in the deposition of CdTe.

v. Deposition o f CdTe at a relatively high temperature of 160°C due to the use of 

non-aqueous solution.

vi. Use of CdU as source of iodine for n-type doping of CdTe.

vii. Etching of CdS layers in dilute Na0 H+Na2 S2 0 3  solution prior to the deposition 

of CdTe.

viii. Post-deposition annealing of CdTe layers at 400°C for 20 minutes using the 

conventional CdCl2 treatment with CdCk dissolved in methanol.
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ix. Etching of CdTe layers in Na0 H+Na2S2 0 3  solution only before metallisation 

with Au.

x. Fabrication of only glass/FTO/n-CdS/n-CdTe/Au solar cells o f smaller cross- 

sectional area (with 1 mm diameter).

The approach used in the present work has the following differences from and

modifications to the work reported in the past:

i. Use of all-electrodeposited semiconductors (ZnS, CdS, CdTe) thereby 

eliminating the CBD process for process simplification and cost reduction.

ii. - Use of both two-electrode and three-electrode systems for the electrodeposition 

of CdTe for comparison with the aim of eliminating the use of the reference 

electrode in order to simplify the deposition process.

iii. Use o f all-aqueous electrolytes (with de-ionised water as solvent) for the 

electrodeposition of all materials thereby eliminating the use o f expensive and 

toxic non-aqueous ethylene glycol.

iv. Use of CdSC>4 and Te0 2  as sources o f Cd and Te ions in the electrodeposition of 

CdTe.

v. Electrodepostion of CdTe and in fact, all the materials, at relatively low 

temperature generally <90°C due to the use of aqueous solutions.

vi. Use of Cdl2 as well as CdCl2 and CdF2 as sources of halogens for n-type doping 

of CdTe.

vii. Cleaning of ZnS and CdS layers with methanol and de-ionised water instead of 

etching with Na0 H+Na2S2 0 3  solution before depositing CdTe.

Viii Post-deposition annealing of CdTe at 450°C for 15 minutes with CdCl2+CdF2

treatment. The CdCl2 and CdF2 were also dissolved in de-ionised water instead 

of methanol. The temperature of 450°C was used since the CdTe layers were 

grown at relatively low temperature <90°C.

ix. Etching of CdTe layers in acidified K^C^C^ solution as well as in dilute

Na0 H+Na2 S2 0 3  solution prior to metallisation.
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x. Fabrication of solar cells of relatively larger cross-sectional areas with 2 mm and 

3 mm diameters.

xi. Fabrication o f different solar cell structures including glass/FTO/n-CdS/n- 

CdTe/Au, glass/FTO/n-ZnS/n-CdTe/Au and multi-layer graded-bandgap 

glass/FTO/n-ZnS/n-CdS/n-CdT e/Au structures.

1.6 Conclusion

This chapter presented the current issues on energy supply and consumption. 

The need for alternative sustainable, renewable as well as affordable clean energy 

supply for various applications was also presented. Reduction of greenhouse gases that 

largely contribute to the current issue of global warming was identified as the ultimate 

benefit of renewable and alternative clean energy supply. Various renewable energy 

sources and the corresponding technologies to meet this need were reviewed with 

special emphasis on photovoltaic solar energy conversion for the purpose o f this thesis. 

The last section presented the aims and motivation for the work presented-in this thesis.

2 0
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2.0 Introduction

Chapter 2: Photovoltaic solar cells

Solar cells constitute the heart of photovoltaic technology. The solar cells used 

for photovoltaic energy conversion are basically made of semiconductors. These 

semiconducting materials can have n-type, p-type or i-type electrical conductivity as 

mentioned in Appendix II. When used in solar cells, they are combined in various 

junction configurations such as p-n junction, p-i-n junction, n-n hetero-junction, p-p 

hetero-junction, metal-semiconductor junction and metal-insulator-semiconductor 

junction. Two or more of these junction types must be present in a solar cell device 

before it can function.

The basic principle o f operation o f a solar cell involves the following steps [1]:

(i) Absorption o f photons from incident solar radiation as well as heat from the 

surroundings (for solar cells incorporating impurity photovoltaic effect).

(ii) Breaking of bonds in the solar cell materials by these incident photons and the 

consequent generation of electron-hole (e-h) pairs.

(iii) Separation o f these photo-generated e-h pairs (to avoid their recombination) by 

means of the built-in electric field within the solar cell device. This also depends on 

the lifetime and diffusion lengths of these electrons and holes in the solar cell 

materials.

(iv) Transportation of these separated photo-generated electrons and holes towards the 

two terminals (the electrical contacts) o f the solar cell. This depends both on the 

gradient of the slope of the energy band edges and on the mobility o f both electrons 

and holes in the semiconductor materials making up the solar cell.

(v) Final collection of these electrons and holes into an external circuit in the form of 

electric current. This depends on the nature o f contacts between the semiconductors 

and the contacting materials. Low resistance contacts are very important in this 

case.

The above mentioned processes depend on a number of factors which include:

(i) availability o f energetic photons in the incident radiation,

(ii) the nature or type of semiconducting materials involved in the solar cell device 

fabrication, and

(iii) the type and nature of active junctions existing within the device.
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The solar energy materials (semiconductors) used in solar cell fabrication range 

from inorganic to organic materials. Different types of solar cells have been fabricated 

based on each of these two groups or even a combination o f the two. One can therefore 

broadly classify solar cells based on these two groups o f materials (organic and 

inorganic materials) as well as on their combination in what is known today as hybrid 

solar cells.

The time line of photovoltaic solar cells starts with the discovery of the 

“photovoltaic effect” by Edmund Becquerel in 1839 while working with an electrolytic 

cell using two metal electrodes [2, 3]. Afterwards, Adams and Day observed PV effect 

in solid selenium in 1877 [3]. In fact, following this work, Charles Fritts developed the 

first selenium solar cell using gold contact. This produced less than 1% conversion 

efficiency in 1883 [3]. In 1887, James Moser discovered dye-sensitised solar cell using 

photoelectrochemical (PEC) cell. This continued until 1904 when the first 

semiconductor junction solar cell was produced by Wilhelm Hallwachs using copper 

and copper oxide [3]. In 1905, Albert Einstein explained the photoelectric effect for 

which he later won Noble price. In 1918, the Czochralski method of silicon crystal 

growth was introduced. In 1932, PV effect was discovered in CdSe by Audobert and 

Stora. Following these developments, silicon solar cell with 4.5% efficiency was 

produced for space applications in the 1950s. Between 1959 and 1960, Hoffman 

Electronics produced 10-14% efficient commercial solar cells. The first high efficiency 

GaAs hetero-structure solar cell was produced in 1970. In 1977, the world's PV 

production exceeded 500 kW. The energy crisis o f 1970s triggered extensive research 

and development activities in the PV area. In 1994, National Renewable Energy 

Laboratory (NREL) in United States produced concentrated solar cell exceeding 30% 

efficiency using GalnP/GaAs. In 1996, Michael Gratzel's group in Switzerland 

produced 11% dye-sensitised solar cell. In 2000s, organic solar cells came into the PV 

field and today hybrid solar cells combining organic and inorganic semiconductors are 

being researched extensively.

2.1 Inorganic solar cells

Inorganic solar cells utilise inorganic semiconductor materials. To date the 

highest efficiency solar cells in general are those using inorganic materials [4]. Major 

inorganic semiconductors involved in this category of solar cells include Si, Ge, GaAs, 

InP, Gap, GaSb, CIGS, CIS, Cu2 S, CdS, CdTe, ZnS, ZnTe, ZnSe, CdSe , PbSe, CZTS,
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PbS, SnS, ZnO, CuO and others. In general, solar cells are usually named with respect 

to the major absorber material used. For example Si solar cell uses Si as the major 

absorber material in the solar cell.

2.1.1 Silicon solar cells and silicon technology

The first modem silicon solar cell was reported by Chapin et al at Bell 

Laboratories in 1954 [5]. This solar cell had a conversion efficiency o f about 6 % which 

was the highest up to that time. Since this time rapid research and development 

activities have taken place towards the advancement of silicon solar cell. A 

comprehensive review article by M.A. Green in 1993 on the evolution, high efficiency 

design and efficiency enhancement, outlined the time line of record efficiencies of 

silicon solar cells from 1941 to 1990, showing growth in efficiency from <1% in 1941 

to >23% in 1990 [6 ]. In 1998 the monocrystalline silicon solar cell reached a confirmed 

efficiency of 24.4% [7]. This value was later revised upwards to 25.0% and re-presented 

for a 4 cm2 solar cell area by M. A. Green [8 ]. This is the record efficiency to date. 

Multicrystalline silicon solar cells also reached confirmed record efficiencies of 20.3% 

in 2004 for a 1 cm2 area device [9], while Moslehi et al produced thin film silicon solar 

cell with record efficiency of 20.1% for 242.6 cm2 solar cells as contained in the 

periodic report o f solar cell efficiencies by M. A. Green et al [4]. Figure 2.1 shows the 

schematic of a typical passivated emitter rear locally diffused (PERL) silicon solar cell.

’inverted* pyramidsfinger

oxide

oxiderear contact

Figure 2.1: Typical passivated emitter rear locally diffused (PERL) mono-crystalline 

silicon solar cell [1 0 ].

Silicon solar cells are fabricated using solar-grade silicon which has purity in the 

order of 99.9999% (6 N) or higher. Silicon used in microelectronics is called device­

grade or high-purity silicon reaching 99.9999999% (9N) purity [11]. However, the
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production of these grades of silicon is capital intensive, requiring huge amount of 

electrical and thermal energy as well as advanced chemical processing steps.

The production of Si starts with the carbon reduction of silicates (SiCb) at high 

temperatures to produce metallurgical grade silicon (MG-Si) with purity o f about 

98.5%. This is then reacted with HC1 to form chlorosilanes such as tri-chlorosilane, 

distilled for purification and then pyrolysed in a Bell reactor by passing it over a high- 

purity silicon rod called seed crystal at temperatures of about 1150°C. In this process, 

high purity polycrystalline silicon for solar cell application is produced. The chemical 

reaction for this process is shown in Equation (2.1).

2H SiCl3 +  H e a t  -> Si  +  2HCl +  S iC l4 (2 .1 )

The heat for this reaction is produced by electrical resistive heating requiring huge 

amount o f electrical energy.

In order to produce silicon wafers which are typically 200 -  350 pm thick, with 

low resistivity o f ~ 1  Q cm, the already made polysilicon is melted at high temperatures 

and then re-solidified into monocrystalline silicon ingots by the Czochralski method

[11]. These ingots are then cut into wafers for microelectronics or solar cell 

applications. The Czochralski process involves slowly pulling out a silicon seed crystal 

from a bath of high purity molten silicon while the seed is rotated. These processes 

require high degree of precision. The very high temperature and high input energy 

requirements, coupled with the high degree of precision involved in the production of 

high purity silicon make this technology an expensive one for solar cell production. 

According to the review article by Ranjan et al, the cost of polycrystalline silicon and 

silicon wafer as at 2010 is of the order o f US$60 - 70 per kg for polycrystalline silicon 

and $ 3 - 4  per 156 mm2 wafer [11].

Another method for producing silicon ingots is the Bridgeman method. This 

involves making a cast of silicon ingot in a quartz crucible in the re-crystallisation 

process [11]. This method is relatively cheaper but the major shortcoming is that it ends 

up producing multi-crystalline silicon instead of single crystal silicon. These multi­

crystalline silicon ingots therefore contain grain boundaries that constitute 

recombination or scattering centres for charge carriers in devices fabricated using them

[12]. The crucible can also introduce impurities in the ingot formed. In any case, the
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production of solar cell-grade silicon is very expensive thus driving the cost o f solar 

cells made with it high.

An alternative form o f silicon is the amorphous silicon (a-Si), which basically 

contains large numbers of imperfections resulting in the presence of dangling 

(unsatisfied) bonds. It has therefore lost the long range order that characterises 

crystalline silicon [13]. The presence o f dangling bonds creates large density of states of 

the order o f 1019 - 1020 cm ' 3 which poses a problem to the movement o f the Fermi level 

necessary in device fabrication [14]. The problem is solved by adding Hydrogen to the 

a-Si in a process of hydrogenation. This has the advantage o f passivating the dangling 

bonds and significantly reducing the density of states in the bandgap o f a-Si [15]. The 

resulting material is therefore hydrogenated amorphous silicon (a-Si:H). One major 

advantage of the amorphous silicon technology is that it can be grown and dop ed  eas ily  ; 

by some o f the conventional semiconductor growth techniques such as reactive 

evaporation [16], sputtering, glow discharge plasma process [17] PECVD [18] etc. With 

a-Si technology, relatively low cost thin-film Si-solar cells can now be produced 

compared to those produced using single crystal or polycrystalline silicon with hundreds 

of microns thickness and expensive starting high-purity materials. For example one 

major source of a-Si:H is silane (SiH4), which is a gas. The energy bandgap of a-Si:H 

ranges from about 1.70 eV to values > 2.0 eV [19]. Silicon is an indirect bandgap 

semiconductor with an energy bandgap of 1.12 eV at room temperature [20] and typical 

absorption coefficient (a) < 50 cm ' 1 near its bandgap [21]. However, hydrogenated 

amorphous silicon has a direct bandgap with improved absorption coefficient of about 

104 cm ' 1 near its bandgap [22]. Amorphous silicon solar cell has reached record 

efficiency o f 10.1% in 2009 [23].

2.1.2 III-V  compound-based solar cells

III-V compound-based solar cells are solar cells that have the group III-V 

semiconductors as their main absorber materials. The most prominent o f these are GaAs 

and InP. These have direct bandgaps of 1.42 eV for GaAs [24] and 1.35 eV for InP [25].

Both of these also have high carrier mobility [26, 27]. Other III-V semiconductors that 

feature in solar cell fabrication include GaP (direct Eg = 2.78 eV; indirect Eg = 2.40 eV)

[28], GaSb (Eg = 0.74 eV) [29], InAs (Eg = 0.36 eV) [30], and InSb (Eg = 0.17 eV) [31]. 

Sometimes their ternary compound semiconductor variants can be used for the purpose 

o f tailoring the bandgaps. Examples of these ternary III-V compound semiconductors
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include InGaP, InGaAs, AlGaAs, InAIP etc. Sometimes quartenary semiconductors of 

the III-V compounds can be formed such as GalnNAs, GaNPAs.

The III-V semiconductor-based solar cells are the best option for tandem (multi­

junction) and concentrated solar cells [32, 33]. Figure 2.2 shows the schematic of device 

structure o f a typical III-V tandem solar cell.
'Metal contact 

-Reflection coating

TCO

Glass substrate

Top cell

~~j— Tunnel junction

Bottom cell

Figure 2.2: Schematic of a tandem solar cell structure based on III-V semiconductors.

O f all the III-V based solar cells structures, the best record efficiencies for this group of 

solar cells have come from GaAs and InP-based solar cells. These include GaAs thin 

film solar cell with efficiency of 27.6% (for cell area o f -0.99 cm2) [34]; GaAs 

concentrator solar cell with 29.1% efficiency (for cell area of -0.05 cm2) as reported in

[4] and GaAs thin film module with efficiency o f 23.5% (for module area o f 858.5 cm2]

[35], crystalline InP solar cell with efficiency o f 19.1% (for cell area o f 4.02 cm2) [36], 

InGaP/GaAs/InGaAs multi-junction solar cell with efficiency of 37.9% (for cell area of 

-1.05 cm2) [37], and GaInP/GaAs:GaInAsP/GaInAs concentrator solar cell with 

efficiency of 38.5% (for cell area o f -0.20 cm2) [38]. Sharp Corporation has also 

reported record efficiency of 44.4% for a GaAs-based concentrator solar cell [39].

2.1.3 Chalcogenide solar cells

Chalcogenides are compounds that principally contain group VI elements 

(chalcogens). Chalcogenide semiconductors generally contain at least one metallic 

element and one chalcogen. The four main chalcogens that normally feature in 

semiconductors are oxygen, sulphur, selemium and tellurium. The major groups o f 

chalcogenide semiconductors include I-VI semiconductors (eg. Q 12S and CuO), II-VI 

semiconductors (e.g. CdTe and CdS), III-VI (e.g. InSe and In2S3), IV-VI (e.g. SnS), I-
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Ill-VI (e.g. CuInSe2 and CuInGaS2) and I-II-IV-VI (e.g. Cu2ZnSnS4). In this category of 

semiconductors, the major ones usually employed as absorber materials in solar cells 

include Cu2S, CdTe, CIS, CIGS and CZTS.

Presently however, only three of these solar cells are being researched and 

developed and therefore are in the efficiency table o f chalcogenide solar cells. These 

include CdTe solar cells, CIGS (or CIGSS) and CZTS (or CZTSS) with CZTS (or 

CZTSS) being the most recent. CdTe-based thin-film solar cells have recently reached 

confirmed record efficiencies of 19.6% for a cell area of -1.01 cm2 and module 

efficiency of 16.1% for a module area of 7200 cm2 as reported in ref [4]. On the part of 

CIGS family, CIGS has reached a cell efficiency o f 19.9% for a cell o f area -1  cm2 [40] 

and a module efficiency of 15.5% for a module area of 9703 cm2 [41] while CIGSS 

reached confirmed module efficiency o f 13.0% for a module area of 1.68 m 2 as reported 

in [4]. For the CZTS family, the available record efficiencies are only for laboratory 

scale solar cells. For this, CZTS has researched 8.4% efficiency for a cell area o f -0.45 

cm2 [42], while CZTSS has reached efficiency o f 11.1% for a cell area of -0.45 cm2

[43].

It is important to note that conventional solar cell structures usually fabricated 

using the above mentioned absorber semiconductors are of the p-n junction type with 

the absorber materials preferably being the p-type semiconductors even though some of 

them can be grown with n-type conductivity. Some of the basic device structures 

reported in the literature include; n-CdS/p-CdTe [44], n-CdS/p-CIGS [45] and n-CdS/p- 

CZTS [42]. In this thesis, the solar cell structures reported are o f the n-n hetero- 

junction+large Schottky barrier type involving n-type CdTe absorber material instead of 

the conventional p-type CdTe.

2.2 O rganic solar cells

Organic solar cells are the type o f solar cells made from organic compounds, 

usually polymers. They are also called polymer solar cells or plastic solar cells [46]. 

The search for suitable organic materials for photovoltaic application dates back to the 

1950s when Keam and Calvin reported photovoltaic effect at Magnesium 

phthalocyanine-oxidized TM $D junction in 1958 [47]. Kallmann and Pope also 

reported photovoltaic effect in organic crystals of antracence in 1959 [48]. In general, 

organic photovoltaics (OPVs) use organic molecules or organic polymers to absorb light 

and subsequently produce electricity. The mechanism of OPVs however differs from
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that o f inorganic solar cells in a number of ways. For example, whereas in inorganic 

solar cells, electron-hole pairs are created in the bulk o f the absorber material in such a 

way that they (electron-hole pairs) are not tightly bound together (i.e they exist as free 

carriers), bound electron-hole pairs (excitons) are created in the absorber (donor) 

material in organic solar cells [49]. These excitons then diffuse to the interface where 

they dissociate to release the electrons and holes as “free” carriers. The interface can be 

at the electrodes or at the junction between the donor material and the acceptor material 

if  the device is the hetero-junction type [46]. When released at this hetero-junction 

interface the electrons and holes are then transported to the electrodes separately with 

the electrons travelling through the acceptor material to the anode and the holes 

travelling through the donor material to the cathode for collection into an external 

circuit as shown in figure 2.3.

In the inorganic solar cell, a built-in-electric field due to band bending at the 

hetero-junction interface or at metal/semiconductor interface, separates and accelerates 

the generated free carriers toward the metal contacts. The dissociation o f excitons into 

free electrons and holes at the hetero-junction interface in organic solar cells is brought 

about by electric field at this interface created by the differences in electron affinity and 

ionisation potential between the two materials making up the hetero-junction. This field 

is not associated with any band-bending unlike in the inorganic solar cells. Figure 2.4 

shows the basic energy band diagram of a hetero-junction organic solar cell. Each 

organic semiconductor has a highest occupied molecular orbital (HOMO) and a lowest 

unoccupied molecular orbital (LUMO).

Acceptor Anode Donor-,

Exciton (a) /
Cathode F D onor

< - o
h

Acceptor

e
3  Anode

b

(b)

(c)
Figure 2.3: (a) generation of excitions in an organic hetero-junction solar cell, (b) their 

diffusion to the interface where they dissociate and (c) the separation into free carriers 

and transport towards the electrodes.
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These are analogous to the valence band and conduction band respectively in the 

inorganic counterpart. The energy bandgap of the organic solar cell is also defined as 

the differences in energy between the HOMO and LUMO. The energies corresponding 

to the HOMO and LUMO levels are the ionisation potential and electron affinity as 

shown in figure 2.4. The open-circuit voltage of the organic hetero-junction solar cell is 

then defined by the differences between the HOMO of the donor material and the 

LUMO of the acceptor material. The two metal contacts consist o f a high work function 

metal as the cathode and a low work function metal as the anode.

Typical cathode material is indium-doped tin oxide (ITO) while typical anode 

material is Al. A number of active layers (donors and acceptors) are used in organic 

solar cells. These include donor materials such as chloroaluminium phthalocyanine 

(ClAlPc), Poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenyleneVinylene](MEHPPV), 

Poly (3-hexylthiophene) (1TP3HT), copper phthalocyanine (CuPc), poly [2-methoxy-5- 

(3'7'-dimethyloctyloxy)-l, 4-phenylene vinylene] (MDMO-PPV) and poly (3- 

octylthiophene) (P3OT) as well as acceptor materials such as Fullerene- (C60), Cyano- 

PPV (CNPPV), Poly (perylene diimide acrylate (PPDA), (6 ,6 )-phenyl-C6 i-butyric-acid 

methyl ester (PCBM) and Perylene tetracarboxylic derivative (PV).

Vacuum  level

LUM O

D onor
material A cceptor

material

HOM O

HOM O

Figure 2.4: Energy band diagram showing the features o f a hetero-junction organic 

solar cell. IP is ionisation potential and other symbols have their usual meanings.

Major issues with organic solar cells include very low efficiencies [50], and cell 

degradation due to the reaction of the polymers with oxygen, water and the metallic 

electrodes [51]. Nevertheless, the major drive in the pursuit o f organic solar cells is the 

low-cost organic materials and the processing steps involved as well as flexibility in the
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range of substrates that can be used including plastic substrates. The variability in the 

type o f substrates used in OPVs gives them a wide range of (low-power) applications. 

All these advantages help to drive down the cost o f OPVs compared to inorganic solar 

cells. The confirmed efficiencies o f OPVs have reached 11.1% for cell areas of ~1.01 

cm2 and 8.2% for sub-modules area of 24.99 cm2 as reported in solar cell efficiencies 

tables (version 42) by Green et al [4].

2.3 Dye-Sensitised solar cells (DSSC)

The dye-sensitised solar cell (DSSC) is a type o f photoelectrochemical (PEC) 

cell. It is so-called because the absorption of photons from incident sunlight is 

undertaken by a dye. The modem DSSC is also called Gratzel cell although it was said 

to have been co-invented by Gratzel and O'Regan in 1988 [52]. In any case, the history 

of the invention o f DSSC written by Brian O'Regan suggests that the hue inventor of 

the cell is contestable [52].

The working principle of the DSSC differs from those of inorganic and organic 

solar cells in as number of ways [53]. In the traditional DSSC, the main components 

include, a wide bandgap mesoporous n-type semiconductor which serves as electron 

transport medium, a dye (sensitiser) which is the main light absorbing material, a liquid 

organic electrolyte which contains the redox couple necessary for the regeneration of 

the dye (sensitiser). All these components are sandwiched between two electrodes, one 

of which is a transparent conducting glass serving as the anode while the cathode is a 

metallic conductor [53]. Figure 2.5 shows the schematic of the energy band diagram and 

operating principle of the DSSC. The involvement of a liquid electrolyte in the dye- 

sensitised solar cell typically makes it a solid/liquid junction photoelectrochemical cell.

35



C ountet electrode
Semiconductor

Conducting
glass

Redox 
s/s+  couple

Figure 2.5: Schematic of energy band diagram and operating principle o f dye-sensitised 

solar cell.

The common mesoporous semiconductor used in the DSSC is titanium dioxide 

(Ti0 2 ). The required dye material is deposited on the TiC>2 so that it fills the pores in 

TiC>2 in order to facilitate intimate contact between the two materials. When light hits 

the dye, the light is absorbed by the dye and free electrons are generated in the dye. 

These are then injected into the conduction band of the TiC>2 from where they are 

transported to the TCO front electrical contact for passage into an external load. The 

photo-excitation process takes the dye from its original (ground) state S to an excited 

state S*. Injection of electrons to the semiconductor leaves the dye in an oxidised state 

S+. The redox system (usually iodine/ triiodide couple) [53] in the electrolyte 

immediately donates electrons to the oxidised dye to return it to its original state, at the 

same time, leaving the iodide oxidised to triiodide. This also triggers the recapture of 

the electrons initially released in the conduction band of the semiconductor by the 

triiodide in the redox couple through the counter electrode in order to regenerate the 

iodide by the reduction of this triiodide at the cathode. The cycle therefore continues. 

The open-circuit voltage of the DSSC is the differences between the redox potential of 

the electrolyte and the Fermi level o f the semiconductor as shown in figure 2.5.

As mentioned earlier, common oxide semiconductor used as photoanodes in 

DSSC is TiC>2 [53]. Other wide bandgap oxide semiconductors such as ZnO,

Sn0 2  have also been used. Typical counter electrodes (cathode) used in DSSC include 

platinum, carbon and others. Common dye materials include ruthenium (ii) polypyridine 

complexes, Triphenylamine-based dyes and many others as reported in the mini review 

article by Robertson [54].
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The major advantage of DSSCs lies in their low cost production [53]. Major 

difficulties include very low conversion efficiencies compared to conventional 

inorganic solar cells [53], poor stability as well as leakage due to the liquid electrolyte 

involved [55] and effect o f temperature, since the cell’s operation is based on chemical 

reaction cycles. In the bid to tackle the leakage and corrosion due to the liquid 

electrolyte content of DSSC, research on solid-state DSSC is in progress [53]. To do 

this, the redox electrolyte is usually replaced with a solid state p-type semiconductor 

which interpenetrates the mesoporous nanocrystalline TiC>2 [53]. Examples of p-type 

semiconductors that have been used include CsSnl3 , 2,2',7,7'-Tetrakis-(N,N-di-4- 

methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), Cul, CuSCN and CuBr. 

In general, DSSCs have reached confirmed conversion efficiencies of up to 11.9% for 

cell area of -1.01 cm2 and 9.9% for sub-module area of 17.11 cm2 as reported in the 

solar cell efficiencies table (version 42) by Green et al [4].

2.4 Hybrid solar cells

The general idea behind hybrid solar cells is to combine the advantages of 

organic and inorganic semiconductors to achieve balanced results. For example the low 

cost and easy proccessability of organic semiconductor materials are combined with 

high absorption coefficient of inorganic semiconductors and their ability to be produced 

in nanoparticulate form in order to produce organic/inorganic hybrid solar cells with 

improved properties [56, 57]. In fact solid-state dye-sensitised solar cells discussed in 

the previous section are typically hybrid cells. Some hybrid solar cells are based on 

nanoparticles or quantum dots. Examples include photoelectrochemical cells using 

nanoporous TiC>2 electrodes sensitised with InP quantum dots [58], hybrid solar cells 

using nanoporous TiC>2 sensitised with HgTe nanocrystals, hybrid solar cells involving 

CdSe nanorods and polymer [59], hybrid solar cells combing conjugated polymer and 

TiC>2 , ZnO and CdSe, hybrid solar cells involving polymer and silicon nanocrystals

[60]. Others include hybrid solar cells based on CuInS2 in organic matrices [57] and 

many others. However, the hybrid solar cell approach has not yet been able to compete 

favourably with conventional inorganic solar cell architectures as their conversion 

efficiencies are still below those o f conventional inorganic solar cells. For example, one 

o f the best devices based on c-Si/PEDOT:PSS produces an efficiency of 11.3% in 2012

[61].
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2.5 Conclusion

A review of different types of PV solar cells was presented in this chapter. The 

major classes of solar cells discussed include; inorganic solar cells, organic solar cells, 

dye sensitised solar cells arid hybrid solar cells based on the nature of the semiconductor 

materials used in making them. The merits and shortcomings o f each group of these 

solar cells were also highlighted based on their performances and cost o f manufacturing 

techniques. Inorganic solar cells currently dominate the solar cell efficiency table. In 

this group, GaAs-based multi-junction solar cells have reached laboratory-scale 

efficiencies o f 44.4% under concentrated sunlight and 29.1% without concentrated 

sunlight, with module efficiency of up to 23.5% for GaAs solar cell. Silicon solar cells 

follow in this group with laboratory-scale efficiency of 25.0% for monocrystalline Si 

and module efficiency of 20.1% for multicrystalline Si. CdTe and CIGS solar cells have 

reached laboratory-scale efficiencies of 19.6% and 19.9% respectively with module 

efficiencies of 16.1% and 15.5% respectively. Organic solar cells are also coming up 

with advantages such as low production cost and flexible manufacturing techniques, 

although the power outputs remain low.
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Chapter 3: Materials characterisation techniques

3.0 Introduction

Semiconductor devices are very sensitive to the properties of the materials used 

in fabricating them. These material properties include structural, morphological, 

compositional, electrical and optical properties. In semiconductor devices, the presence 

of defects (or impurities) for instance, (which can be part o f electrical, optical or 

structural properties) plays a major role in determining the behaviour of the devices. 

Whereas the presence of some types o f defects may be beneficial to the operation of a 

device, their presence may be detrimental for other kinds o f devices depending on what 

the device is designed to achieve. For reasons such as this and many others, it becomes 

imperative to understand the properties of the various semiconductor materials grown in 

this research project for the fabrication of thin film solar cells. The various techniques 

employed in the characterisation of these materials and semiconductor materials in 

general, are therefore discussed in this chapter.

3.1 Structural characterisation

Structural characterisation of semiconductor materials involves the study and 

determination of structural properties such as crystal structure and phases o f species 

present in the materials. X-ray diffraction (XRD) measurement is usually carried out for 

this purpose. One can then determine the particular crystal system present in the 

semiconductor material. The available seven crystal systems are cubic, tetragonal, 

orthorhombic, monoclinic, triclinic, trigonal and hexagonal crystal systems [1]. Any 

crystalline material must contain at least one of these crystal systems. If  the 

semiconductor material in question contains mixed phases, these phases can be 

identified through structural characterisation of the material. As an example, if  one is 

carrying out structural analysis of say Te-rich CdTe material, both Te phase and CdTe 

phase can be observed during X-ray study of the sample. Apart from determining the 

crystal system present in a material, the amount of atoms as well as the preferred 

orientation of atoms or crystallites making up the material can as well be known by 

identifying the crystal lattice planes of those atoms. Each crystal lattice plane is denoted 

by a set of three numbers (Miller indices) in brackets denoted by (hkl) [1]. Figure 3.1 

shows three typical lattice planes and their corresponding miller indices. In addition, the 

presence of imperfections such as dislocation or strain in the crystal lattice of a material 

can be studied in the course of structural characterisation.
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(hkl) = (100) (hkl) = (110) (hkl) = (111)
(a) O’) (c)

Figure 3.1: Typical crystal lattice planes o f unit cells and their corresponding Miller

indices, (a) (100) lattice plane, (b) (110) lattice plane and (c) (111) lattice plane.

3.1.1 X-Ray diffraction (XRD)

As mentioned earlier, X-ray diffraction (XRD) is a major technique employed in 

the study o f the structural properties o f materials including semiconductors. This is the 

technique used in this project for studying the structural properties of the 

semiconductors grown and used in the fabrication o f solar cells. With this, the various 

crystal structures, available crystal phases as well as the crystal lattice planes for the 

preferred orientations of atoms were determined for all the crystalline semiconductors 

used.

The principle o f XRD is based on the scattering (diffraction) of X-ray photons 

by electrons o f the atoms in the crystal lattice of the specimen. The X-ray is usually a 

monochromatic beam of short-wavelength photons. The technique is non-destructive 

since no electrons are dislodged from the sample by the impinging X-rays. If  the X-ray 

photons scattered by atoms in any given atomic plane interfere, a diffraction maximum 

is produced as a result o f constructive interference. Therefore each set o f unique crystal 

planes will produce one diffraction line. A set of such lines resulting from different sets 

of crystal planes in the lattice of the material form a diffraction pattern for that material

[2]. The diffraction pattern or diffractogram is a graph of the diffraction peak intensities 

versus the diffraction angle or inter-planar spacing. The particular crystal systems in the 

XRD result are then identified by comparing the graph with those of standard single­

phase materials which are provided by the Joint Committee on Power Diffraction and 

Standards (JCPDS). Figure 3.2 illustrates the basic principle of the XRD phenomenon.
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x  =  d sin 6
Incident Scattered

X-ray X-ray_

/  810 \

Figure 3.2: The basic principle o f X-ray diffraction from atoms in different lattice 

planes of a crystal.

As the beam of monochromatic X-ray photons of wavelength, X falls on the set 

of lattice planes A and B, they are scattered (diffracted) as shown. The condition for 

constructive interference of these scattered rays in order to produce the needed 

diffraction pattern is governed by Bragg’s law [1]. The Bragg's law states that, for 

constructive interference to occur, the path difference between the two interfering waves 

(which is equal to 2dsin0 from figure 3.2) must be equal to a whole number, n o f the 

wavelength, thus giving rise to Equation (3.1).

nX = 2 d s \n 6  (3.1)

where 6 is the angle between the X-ray beam and the atomic plane .

Since the X-ray wavelength, X is constant, determination o f the diffraction angle (26) 

will help to determine the d-spacing (inter-planar spacing) o f the lattice planes using 

Equation (3.1), where n is unity for successive lattice planes.

From the resulting peaks of the X-ray diffractogram, some other crystalline 

properties of the material can be determined. These include finding the Miller indices o f 

the various crystal planes (orientations) in the sample, obtaining the lattice constants of 

the crystal structures present in the material and estimating the sizes of the crystallites in 

the material. Equations (3.2) - (3.4) [1, 3] with Equation (3.1) are the relevant equations 

employed in the analysis of XRD results of crystalline materials such as 

semiconductors.

a =  d j h 2 + k 2 + I2 

kX
D =

P cos9

(3.2)

(3.3)
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where a is the lattice constant, D  is crystallite size, k  is Scherer constant, /? is full width 

at half maximum (FWHM) of the particular XRD peak (usually the most intense peak) 

under consideration and s is strain in the crystal lattice. The FWHM is the width of the 

XRD peak (in radians) at half the peak intensity as shown in figure 3.3.

p

20 (°)

Figure 3.3: XRD peak showing FWHM.

The XRD equipment used in the project reported in this thesis was the Philips X'Pert 

Pro diffractometer (Philips Analytical, Almelo, the Netherlands) with Cu-Ka and 

excitation wavelength o f 1.5406 A at source tension and current o f 40 kV and 40 mA 

respectively. However, another technique that is used for studying the structure of 

materials (crystalline and non-crystalline) is the transmission electron microscopy. In 

this case, the transmission electron microscope (TEM) is used in the diffraction mode 

instead of the image mode. In the image mode, it is used to obtain morphological 

information about the sample. A major requirement in the use of the TEM for obtaining 

diffraction patterns of atomic arrangement in a material is that the sample has to be very 

thin (typically of the order of 100 nm). This restriction in sample thickness is not 

encountered when using X-ray diffractometer. An example of electron diffraction 

patterns of a material obtained with TEM is shown in figure 3.4.
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F ig u r e  3 .4 :  Electron diffraction pattern obtained with TEM [4].

3.2 M orphological characterisation

Morphological characterisation of semiconductors reveals the pattern of 

arrangement of grains in the sample as well as surface morphology of the sample. The 

size of the grains, the boundaries between them (grain boundaries) and the surface 

roughness are therefore known. These morphological characteristics are of importance 

in semiconductor devices fabrication. For instance in making metal contacts to 

semiconductor materials or devices, the nature (size) of the grain boundaries becomes 

important as large grain boundaries can result in short-circuit between the two metals on 

opposite sides of the device. Again proper coverage of the semiconductor surface by an 

evaporated metal contact or by another semiconductor grown on top of it depends on 

the surface roughness of the semiconductor substrate. A semiconductor with high 

surface roughness will require a thicker metal or semiconductor layer on top of it in 

order to completely cover the surface of the semiconductor substrate. A good 

knowledge of the nature and amount of grain boundaries in a semiconductor also helps 

to understand the extent of grain boundary scattering of charge carriers.

In carrying out morphological characterisation of semiconductors, atomic force 

microscopy (AFM), scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) are typically used. Whereas the AFM uses the force on a cantilever 

to produce images of the sample surface, both SEM and TEM use electrons to produce 

images of the samples surface being studied unlike ordinary microscopes where photons
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(light) are rather used to form the images of the sample surface. All three microscopes 

however, have differences in their principles o f operation as well as in versatility. For 

example, whereas the SEM is limited in resolution and versatility, the TEM is more 

versatile in both resolution and application [5]. These similarities and differences are 

highlighted in the next sub-sections.

3.2.1 Scanning electron microscopy (SEM)

Figure 3.5 illustrates the principle of operation o f the SEM. The electron gun 

produces a beam of electrons (at voltages o f 2 -  25 kV) which is focused on to the 

sample by means o f magnetic lenses.

momtor

i l l

Electron gun

^  Electron beam
< Anode

< Magnetic lens

Scan coils

Secondary 
electron detector

Back-scattered 
electron detector

Sample

Sample stage
Figure 3.5: Schematic o f the components and operating principle of scanning electron 

microscope.

The scanning coils help to deflect the electron beam in such a way that a raster scanning 

of the specimen is done across a rectangular area to produce an image o f the sample 

surface on a screen. As the focused electron beam impinges on the specimen, a number 

of interactions take place between the incident electron beam and the specimen. These 

interactions result in the back scattering o f some o f the incident electrons as well as in 

the production of secondary electrons or even photons. These emitted electrons and 

photons are collected by various detectors and used to produce useful information about 

the material of the specimen. Among the information produced in this scanning process 

is an image of the sample surface. The level o f interaction between the incident 

electrons and the sample material depends on the energy of the incident electrons [6].
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With higher energy of the electron beam, the contrast of the resulting image improves

[6]. The SEM can produce three dimensional images of the samples under study. The 

resolution of the SEM can reach (1 -  10) nm and the magnification can reach (10 - 

500,000) [7, 8].

Figure 3.6 shows an example of image of surface morphology of CdS thin layer 

electrodeposited on transparent conducting oxide.

Figure 3.6: SEM image of the surface morphology of CdS thin film electrodeposited on 

glass/FTO substrate [Courtesy of Electron microscopy team of MERI, SHU].

The SEM image in figure 3.6 was obtained using the FEG NOVA NANO SEM 

machine (FEI Company, Holland) in the Materials and Engineering Research Institute 

(MERI) of Sheffield Hallam University (SHU), United Kingdom. This was also the 

principal SEM machine used for morphological characterisation of the semiconductor 

materials reported in this thesis. The major sample preparation for SEM measurement 

involves getting the sample rid of water and making sure that the sample is electrically 

conductive, since the machine uses vacuum condition as well as electrons for image 

production. In the case of a non-conductive sample, the sample is made conductive by 

sputtering a thin layer of gold on it. For the samples used in this project silver paint is 

used to connect the semiconductor layers to the metallic sample holder, through the 

insulating glass substrate, since the glass on which the FTO and the semiconductor 

samples were deposited is an insulator. This connection is made to prevent charging 

effect between the metallic sample holder and the semiconductor in which the insulating 

glass will eventually acts as a dielectric material. Other sample preparation procedures 

can be found in the literature [9].
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3.2.2 Transmission Electron Microscopy (TEM)

In some ways, the TEM is similar to the SEM. However, the major difference 

lies in the energy of the electron beam which is typically higher for the TEM (of the 

order o f 50 -  400 kV) compared to the SEM. For this reason and for the small thickness 

of the sample (-100 nm), the sample under investigation is partly transparent to this 

electron beam and partly scatters electrons in the beam. The emergent (transmitted and 

scattered) electron beam therefore carries some information about the internal structure, 

chemical composition, as well as the morphology of the sample. TEM has better 

resolution (about 0.5 A) and magnification (of over 50 million times) than SEM [10].

Figure 3.7 shows the schematic o f the operating principle o f the TEM. The TEM 

eliminates the scan coil present in the SEM. For this reason, TEM does not produce 

images by scanning with a focused electron beam like the SEM. It rather produces 

images by illuminating the whole sample. The emergent electron beams (both scattered 

and un-scattered) are projected on the screen by means of the projector lens to produce 

the image. Two basic operation modes are therefore available to the TEM. These are the 

diffraction mode (in which a diffraction pattern o f atomic arrangement in the sample is 

produced) and the image mode (in which the image o f the morphology o f the sample is 

produced). The TEM is therefore more versatile than the SEM as mentioned earlier 

since it can be used in addition to study the arrangement of atoms in the sample [11 -

13].
r

£ —  — Electron beam
Electron gunElectron gun

Anode

< Magnetic lens

Scattered 
electron beam

Sample
(Condenser lens) 

^.Direct 
electron beam

<— Objective lens + 
intermediate lens 

\  + projector lens

Figure 3.7: Schematic of the operating principle of the TEM.
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3.2.3 Atomic force microscopy (AFM)

Atomic force microscopy (AFM) is another techniques used to study the surface 

morphology (topography) o f thin films as well as other materials. It has high 

magnification up to the order o f 108 and a resolution up to about 0.05 A so that it can 

measure even in atomic scale [14]. These magnification and resolution are better than 

those of the SEM and TEM. As an additional advantage, the AFM can be used to 

produce 3-dimensional image o f the surface o f the sample. It does not require any 

vacuum environment for its operation. In other words, it operates in normal atmosphere 

and even in liquid environment, especially when used for imaging biological specimen. 

It requires little or no sample preparation and can image both conductive and non- 

conductive samples. There is no radiation damage to the sample due to high energy 

electron beam unlike the case of TEM where high-energy electron beams are used to 

bombard the sample [14]. Figure 3.8 shows the schematic and basic operating principle 

o f the atomic force microscope.

,aser beam source 'hotodetector

Cantilever

Sample surface

Sample

Figure 3.8: Schematic of the basic operating principle o f the atomic force microscope.

During the AFM scan of a sample, the tip attached to the cantilever moves over 

the surface of the sample. Attractive and repulsive forces between atoms in the tip and 

atoms in the surface o f the sample deflect the cantilever, hence the name atomic force 

microscopy. The deflection o f the cantilever causes the reflection of a laser beam 

incident on the back of the cantilever. The reflected laser beam is then captured by a 

photodetector which sends the signal to the data processing unit o f the system from 

where an image of the topography of the sample is produced. In summary therefore, 

AFM uses the force exerted on a cantilever to produce images whereas SEM and TEM 

use electrons to produce images.
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The AFM has three different modes of operation. These modes are; contact 

mode, non-contact mode and tapping mode [14]. In the contact mode, the cantilever tip 

(probe) makes direct and steady contact with the surface of the sample being scanned. 

As the scanning proceeds, the cantilever deflection is maintained at constant level by a 

feedback loop resulting in the scanner moving vertically in order to maintain a constant 

force on the sample surface. The vertical movement o f the scanner is then converted to a 

signal from which the image of the topography of the sample is produced [14]. The 

contact mode is most appropriately used for hard surface.

In the non-contact mode, the cantilever is vibrated vertically at a frequency 

slightly higher than its resonant frequency. The amplitude of the vibration however, is 

within few nanometres. The amplitude of vibration or the phase shift between the 

resonance frequency o f the cantilever and its actual frequency of vibration is maintained 

at a constant value by the feedback mechanism while scanning the sample surface. The 

force that maintains this constancy is used to produce the topographic image of the 

sample surface [14].

In the tapping mode, the cantilever is oscillated at its resonance frequency and 

at the same time the tip gently taps the surface of the sample during the scanning 

process. As the cantilever tip moves up and down over the sample surface, the 

electrostatic force between the tip and the sample surface fluctuates to and fro, resulting 

to fluctuation in the amplitude of the oscillation of the cantilever. The feedback loop 

tends to keep this fluctuation in amplitude constant by moving the scanner up and down, 

and this is used to produce the image o f the sample topography [14]. The vibration 

modes (non-contact mode and tapping mode) normally produce the highest AFM image 

resolutions [14]. With the AFM image, the grain sizes as well as the surface roughness 

of a sample can be determined. Other images that can be obtained with the AFM include 

phase images, electrical potential images, electrical conductivity mapping, ferroelectric 

and piezoelectric responses [14].

3.3 Compositional characterisation

Some properties of many compound semiconductors depend largely on the 

elemental (or atomic) composition of those semiconductors. As an example, the 

electrical conductivity type of CdTe is seriously affected by the amounts Cd and Te 

atoms in the material. A CdTe sample with higher Te content than Cd (Te-rich CdTe) 

naturally exhibits p-type electrical conductivity whereas a CdTe material with higher Cd
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content than Te (Cd-rich CdTe) exhibits n-type electrical conductivity. A stoichiometric 

CdTe with equal amounts of Cd and Te shows intrinsic (i-type) conductivity. On the 

other hand a semiconductor like CdS has no such composition-dependence o f electrical 

conductivity type. As a result, CdS always naturally has n-type conductivity no matter 

the amounts of Cd and S in it. For reasons such as this, it becomes important to know 

the exact or at least, the approximate atomic composition of these semiconductor 

materials in order to use them properly for specific applications. In carrying out 

compositional analysis of semiconductors, a number of techniques are used. These 

mainly include X-ray fluorescence (XRF) [15, 16], energy dispersive X-rays (EDX)

[17], X-ray photoelectron spectroscopy (XPS) [18], secondary ion mass spectroscopy 

(SIMS) [19], Rutherford back scattering spectroscopy (RBS) [16, 17] and Auger 

electron spectroscopy (AES) [17, 18]. In this research project however, only EDX was 

used for compositional characterisation of the electrodeposited semiconductors due to 

unavailability and lack o f easy access to other techniques.

3.3.1 X-ray fluorescence (XRF)

When a high-energy X-ray is incident on the atom of an element, an electron can 

be ejected from an inner shell o f this atom thus rendering the atom unstable. In order to 

return to stability, an electron from an outer energy shell can fall into this lower energy 

level electron vacancy to occupy it, thereby losing the excess energy in form o f X-ray 

photon. This manner o f production of radiation (light) is called X-ray fluorescence. The 

XRF technique is based on this principle. The wavelength of this emitted radiation is 

characteristic of the atoms of the particular element involved and is related to the atomic 

number, Z o f the element according to Equation (3.5) [2].

i =  K ( Z - f f ) 2 (3.5)

where K  is a constant depending on the spectral series and a  is a shielding constant 

whose value is < 1.

The emitted wavelengths therefore indicate the elements present. The XRF system uses

computer programs to plot the wavelength dispersion of these emitted radiations and

therefore identify the various elements in the sample being studied. The intensity of the

spectral lines actually shows the amount (concentration) o f atoms of each element

present. In this way, a quantitative mapping of the atomic composition of the elements

making up a test sample is obtained. Figure 3.9 illustrates the basic principles o f X-ray
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fluorescence. The energy (AE) of the emitted X-ray photon is related to its wavelength 

by Equations (3.6) and (3.7) [2].

12.4
/  =  -AT  ( 3 ' 6 )

where

AE = E1 -  E0 (3.7)

where E0 and E± are the corresponding energies o f the K and L shells as shown in figure 

3.9.

Emitted
photoelectron

Incident X-ray

Emitted X-ray
fluorescence with energy 
AE — Ej — E q

Figure 3.9: Illustration of the basic principle of X-ray fluorescence.

3.3.2 Energy dispersive X -ray (EDX)

The EDX process is very similar to the XRF process. The major difference is 

that, whereas the incident beam in the XRF is an X-ray beam, the incident beam in the 

EDX is an electron beam. It is for this particular reason that the EDX detector is usually 

attached to the SEM system so that common source o f electron beam is used for both 

operations. Again the emitted characteristic X-rays are used to generate an energy 

dispersion spectrum of atoms of the elements in the sample by means of the software 

programs incorporated into the equipment. From this spectrum the approximate atomic 

composition of the sample can be obtained. In addition to the X-rays produced in the
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EDX process, a continuum of white light and other radiations are also produced [20]. 

This actually causes interference when determining the atomic composition of the 

specimen. For this reason, the EDX technique is not as accurate as the XRF techniques 

for quantitative analysis of atomic composition [20]. All EDX measurements reported 

in this thesis were carried out using EDX detector (Oxford Instruments, UK) attached to 

an FEG NOVA NANO SEM equipment (FEI Company, The Netherlands).

3.3.3 Auger electron spectroscopy (AES)

In the XRF and EDX processes described above, the emitted X-ray photon can 

eventually have energy higher than the binding energy of an electron in an outer shall. 

The interaction of this photon with an electron in such outer shell can in turn result to 

the ejection of the outer shell electron from the atom. The resulting atom therefore has 

two holes each from a different orbital. This electron ejected from the outer orbital is 

known as Auger electron and the phenomenon is called the Auger effect [21].

The Auger electrons can be detected and valuable information about the 

composition of the sample extracted from them. AES is usually applied in surface 

analysis o f samples [21, 22] and it has the capacity to detect all the chemical elements 

except hydrogen and helium [22].

3.3.4 X-ray photoelectron spectroscopy (XPS)

Just like AES, XPS is also a surface analysis technique for determining the 

elemental composition o f the surface of solid samples [23]. It is however more accurate 

than AES in providing information on the chemical composition o f materials [23]. XPS 

is also based on the principle of ejection of core level electrons from the sample by 

incident X-ray photons. However, unlike in the AES, it is these primary emitted 

photoelectrons that are detected and analysed to obtain information about the chemical 

composition of the specimen [24]. The information obtained from the emitted electrons 

is used by computer programs to construct an energy dispersion spectrum o f the sample 

surface. The intensities of the spectral lines (peaks) are a measure o f the atomic 

concentration of the elements present in the sample. The energy axis of the spectrum 

represents the binding energies o f the various emitted core level electrons which are 

characteristic of the respective elements present. XPS has wide range of application in 

the thin film industry [24, 25].
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3.3.5 R utherford back scattering spectroscopy (RBS)

Rutherford back scattering involves the bombardment of a sample with a beam 

of energetic ions (usually He2+ or H*), some of which get scattered back by atoms in the 

sample [26]. Energies o f the backscattered ions are used to obtain information about the 

chemical composition of the sample. Just as in the XPS and AES, an energy dispersion 

of the backscattered ions can be constructed from which specific chemical elements 

making up the sample can be identified using the positions of the peaks on the energy 

axis. The peak intensities again give the relative concentration o f the atoms of each 

element. The RBS can reach depth resolution o f about one monolayer [26]. Figure 3.10 

illustrates the basic principle of Rutherford back scattering.

Incident high 
energy ion beam

Detector

Back-scattered 
ion beam

Sample

Figure 3.10: Illustration of the basic principle of the RBS technique.

3.3.6 Secondary ions mass spectroscopy (SIMS)

In SIMS technique, a focused ion beam is used to sputter the surface of the 

sample. In the process, secondary ions are ejected. These secondary ions are then 

collected and analysed using a mass spectrometer in order to obtain useful information 

about the elemental composition of the sample [27, 28]. As the sputtering o f the sample 

proceeds, a depth profile is obtained. Information can then be obtained about the 

elemental composition of the sample as a function of the sputtered depth. This is 

particularly useful in the study of intermixing/inter-diffusion of atoms in multilayer thin 

film structures [29].

It is important at this point to mention that, the probing depth of each of the 

above discussed techniques in sections 3.3.1 to 3.3.6 depends on factors such as the 

energy of the probing electrons or ions, and the nature of the material under study.
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3.4 Electrical characterisation

The electrical properties of semiconductors are extremely important in the 

fabrication o f semiconductor devices, as they largely control the behaviour of such 

devices. For examples, the speed o f switching devices depends on the charge carrier 

mobility whereas the storage capacity of memory devices depends largely on the proper 

capacitive behaviour of such devices [30]. Again, the conductivity type o f 

semiconductor materials are extremely important in deciding the types o f junctions that 

will exist in devices made with such semiconductors. This section therefore discusses 

the common techniques used in determining the electrical properties that characterise 

semiconductor materials.

3.4.1 Direct cu rren t (DC) conductivity measurem ent

Current-Voltage (I-V) characterisation is used principally to determine the 

electrical conductivity (<r) and resistivity (p) o f semiconductor materials by applying 

Ohm's law. In order to do this, two ohmic contacts must be made to the semiconductor. 

Varying DC voltages are then applied across the two terminals in both directions and 

the corresponding DC currents flowing through the material are recorded using an 

ammeter. Figure 3.11 illustrates the principle of this process.

Semiconductor with 
Cross- resistance R
sectional area

DC
Ammeter

DC Voltmeter

Applied varying DC

Figure 3.11: Schematic of the circuit arrangement to illustrate I-V measurement o f a 

semiconductor with resistance, R.
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A graph of current vs. voltage for the arrangement in figure 3.11 gives a straight line, 

the slope o f which is used to determine the resistance of the semiconductor by applying 

Ohm's law. All I-V measurements reported in this thesis were carried out using a 

computerized Keithley 619 Electrometer/Multimeter (Keithley Instuments Inc., OH, 

USA). Figure 3.12 shows a typical I-V characteristic o f a semiconductor for the 

determination of resistance. Equation (3.8) gives the resistance (.R) o f the semiconductor 

as well as its resistivity (p) which is the resistance per unity length per unit cross- 

sectional area.

where L and A are the thickness and cross-sectional area o f the semiconductor 

respectively, as shown in figure 3.11.

Figure 3.12: Typical I-V characteristic o f a semiconductor for the determination o f its 

resistance.

Equations (3.9) and (3.10) [30] are then used to obtain the resistivity and conductivity 

of the material respectively.

AV L
(3 .8 )

(3 .9 )

1
G

P
(3 .1 0 )

3.4.2 Hall Effect measurem ent

The Hall Effect technique is used to determine the conductivity type of 

semiconductors as well as to obtain their carrier concentration and carrier mobility. It is
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principally based on the Lorentzian force on a charge carrier flowing in a semiconductor 

confined in a magnetic field [30].

Consider a piece o f semiconductor with a current (I) flowing along it in the x-direction 

(from left to right). If  an external magnetic field vector B  is applied perpendicular to the 

direction o f current flow in the z-direction (upward) as shown in figure 3.13, then a Hall 

voltage will develop along the y-axis. Now if  an n-type semiconductor is used, the 

electrons are pushed towards the end o f the semiconductor (towards the reader) setting 

up an electric field Ey also towards the reader. A Hall voltage Vh  therefor develops in 

the direction perpendicular to /  and B. If  a p-type semiconductor is used, the holes are 

still pushed towards the end of the semiconductor (towards the reader) but an electric 

field Ey is set up into the paper which in turn sets up Hall voltage with an opposite sign 

to that due to the n-type semiconductor. From the Hall voltage data obtained and the 

known values o f the magnetic field intensity and the applied current, the Hall mobility, 

carrier concentration and conductivity type of the particular semiconductor involved can 

be obtained using Equations (3.11) - (3.17) [30].

J - ±  [■* - ±  - ±  --t A  - ±  _-fc _-h _-h

Figure 3.13: Illustration of Hall Effect in a semiconductor carrying a current I  in a 

magnetic field B  perpendicular to the direction o f current flow. A Hall voltage Vh is 

developed perpendicular to /  and B.

n  = rH
RhV

(3 .1 1 )

P = JjL. (3 .1 2 )

where Rh is the Hall coefficient (which is positive for p-type material and negative for 

n-type material) and q is electronic charge. The constant rH is the Hall factor given by 

Equation (3.13).
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<T2)

Th ~ w
(3.13)

where r is the mean free time between collisions.

The Hall coefficient can be obtained from the measured Hall voltage, applied current, 

applied magnetic field and thickness of the semiconductor used according to Equation 

(3.14).

( 3 ' 1 4 )

where ]x  is the magnitude o f x-component of the applied current density, Bz is the z- 

component of the applied magnetic field and t is the thickness of the sample.

The conductivity (a) is obtained from the applied current density and electric field by 

Equation (3.15).

<x =  ^  (3.15)

Then the Hall mobility QuH) is obtained from Equation (3.16).

n„ = \Rh \c  (3.16)

The drift mobility (fi) is related to the Hall mobility by Equation (3.17).

R h  =  r H n  (3.17)

By combining Equations (3.10) and (3.16), the resistivity can be obtained. An 

alternative method for measuring the resistivity is the four- point probe or Van der pauw 

technique as described elsewhere [31, 32].

3.4.3 Photoelectrochemical (PEC) cell measurem ent

The Hall Effect technique discussed above for determining the conductivity type 

o f semiconductors requires that the semiconductor specimen be alone or, if  a 

mechanical support is needed, the semiconductor be deposited on a non-conducting 

substrate. In the fabrication of thin film solar cells using electrodeposition technique, 

the semiconductor layers are usually grown on a transparent conducting oxide (TCO) 

substrate which serves both as a front ohmic contact and a window for light to pass into 

the cell. In most cases, it is extremely difficult to detach the semiconductor layer from
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the TCO substrate in order to carry out Hall Effect measurements. It therefore becomes 

almost impossible to carry out Hall Effect measurements on these layers since the 

applied electrical current will always tend to leak out through the conductive path of 

least resistance. For this reason, the PEC cell measurement becomes the only alternative 

for the determination o f the electrical conductivity types of these semiconductors grown 

on conducting substrates [33].

The PEC cell technique is based on the formation o f a solid 

(semiconductor)/liquid (electrolyte) junction when a semiconductor is brought into 

intimate contact with a suitable electrolyte. A Schottky type potential barrier is formed 

at the semiconductor/electrolyte interface and the direction of band bending in the 

semiconductor depends on the electrical conductivity type of the semiconductor. Figure 

3.14 shows the formation and directions of band bending in n-type and p-type 

semiconductors in contact with a suitable electrolyte [34]. The voltage across the TCO 

and the carbon counter electrode is recorded under dark condition using a voltmeter. 

The system is then illuminated using white light and voltage across the two terminals 

are recorded again. The difference between the voltage under illumination (Vl) and that 

under dark condition (Vd) gives the PEC signal. The sign of the PEC signal is then used 

to determine the conductivity type of the semiconductor involved, n-type and p-type 

semiconductors have opposite PEC signals for the same electrolyte. It is important to 

point out that the electrolyte used for PEC should be maintained at the same 

concentration and pH for any time it is used to avoid error and the system should be 

calibrated before use, using semiconductors with known conductivity types.

-ight

n-Type ^  
Semiconductor

TCO
ight

TCO Conductor Container 
(carbon rod)

Conductor Container 
(carbon rod)

Figure 3.14: Band bending and depletion region formation in PEC cell for (a) n-type 

semiconductor and (b) p-type semiconductor.
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If an n-type semiconductor has a negative PEC signal for any given electrolyte, then a 

p-type semiconductor will have a positive PEC signal for the same electrolyte. This is 

because these two semiconductors have band bending in opposite directions when in 

contact with the electrolyte as illustrated in figure (3.14). The magnitude o f the PEC 

signal gives an indication of the suitability of the doping concentration o f the 

semiconductor. Large PEC signals indicate doping concentration that is moderate [33]. 

A highly doped semiconductor will have low PEC signal. If  a metal or an insulator is 

used in place of the semiconductor, zero PEC will be registered in both cases as there is 

no band bending associated with these types o f materials. The PEC measurements 

reported in this thesis were carried out using aqueous solution of 0.1M Na2 S2C>3 as an 

electrolyte and a digital voltmeter.

3.5 Optical characterisation

A good knowledge of the optical properties of the semiconductors used in solar 

cell fabrication is o f paramount importance as a solar cell is essentially an 

optoelectronic device. Two major semiconductor layers employed in the fabrication of 

thin film solar cells are the window layer and the absorber layer. These are so-called 

because of the part they play in the solar cell when light is incident on it. The window 

layer basically acts as a “window” through which light (photons) enters the active 

junction or junctions of the solar cell. Its optical properties should therefore reflect this 

function namely; it should have high transparency (transmittance), low absorbance and 

low reflectance. On the other hand, very high absorbance and nil transmittance are 

desirable in the absorber layer whose function is mainly to absorb the incident light and 

create electron-hole pairs. In fact the amount of photocurrent produced by a solar cell is 

a strong function of these parameters. It therefore becomes imperative that these 

semiconductors are properly characterised for their optical properties [35].

3.5.1 Spectrophotometry

When light is incident on a semiconductor, part of the light is absorbed by the 

semiconductor, while the remaining portion is either reflected (scattered) at the 

semiconductor surface or transmitted through the semiconductor and emerges on the 

opposite side. In any case, the processes involved (absorption, reflection and
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transmission) depend on the optical properties of the semiconductor material under 

study.

In determining the absorbance o f a semiconductor material using a 

spectrophotometer, a light of known intensity (Jo) is directed onto the semiconductor 

and a detector behind it records the intensity (7) o f the transmitted light. From these two 

intensities, the fraction of the incident light absorbed by the material as well as the 

amount reflected back at the surface are determined using appropriate equations [1, 36 - 

38]. The transmitted intensity is related to the incident intensity according to Equation 

(3.18).

7(d) =  70 exp (—ad)  (3.18)

where d  is distance into the semiconductor layer to which the light travels. This 

represents the thickness of the semiconductor. The constant, a is the absorption 

coefficient o f the material and determines the rate at which the semiconductor absorbs 

light as it travels through it.

The ratio o f the transmitted intensity to the incident intensity defines the transmittance

(7) of the material according to Equation (3.19).

/
-  =  T  (3.19)
1o

The transmittance is then related to the absorbance by Equation (3.20).

A =  logio ( y )  =  logio (^) (3.20)

The reflectance R of the material is obtained from Equation (3.21).

(n — l ) 2
R = 7-------- t t t  (3.21)(n + 1)2 v J

where n is the real part of the complex refractive index (TV) of semiconductor material. N  

is also given by Equation (3.22)

N = n  + i K  (3.22)

where K  is the imaginary part o f the refractive index known as the extinction 

coefficient. K  actually determines the absorption coefficient according to Equation 

(3.23)
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4 nK
a  = ——  (3.23)

where X is the wavelength of the incident light.

The complex dielectric constant (<r) of the semiconductor is related to the extinction 

coefficient by Equation (3.24).

e =  (n  +  iK)2 = er + €i (3.24)

where er and e* are the real and imaginary parts of the dielectric constant.

The absorption coefficient is also related to the transmittance o f the material and 

thickness according to Equation (3.25).

InT
a  =  — —  (3.25)

a is also related to the energy (hv) o f the incident light (photons) as well as to the 

energy bandgap of the semiconductor according to Tauc's equations given by Equations

(3.26) and (3.27) for direct and indirect bandgap semiconductors respectively.

C (h v  -  Eg ) l h
cc — -------- ;----------  (3.26)

hv

C ( k v - E g ) 2
a  = -------    (3.27)

hv

where C is a constant, Eg is the energy bandgap of the semiconductor, h is Planck's 

constant and v is the frequency of the incident light.

In general, T, R  and A are related by Equation (3.28).

T + R + A  = 1 (3.28)

The graph of (ahv)2 vs. hv for equation (3.26) or the graph of (ahv)m  vs. hv for equation

(3.27) is used to obtain Eg by extrapolating the straight-line portion o f the graph to the 

hv axis. This optical characterisation technique was used in this research project for all 

the semiconductor layers grown and reported in this thesis. The equipment used for this 

was a Cary 50 Scan UV-Vis Spectrophotometer (Varian Australia, Pty. Ltd).
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3.5.2 Raman spectroscopy

Raman spectroscopy is another optical analytical technique used in 

characterising semiconductors and materials in general [41, 39,40]. It is used to identify 

the various vibrational modes of the molecules in a material by directing a strong beam 

of light (usually a laser) onto the sample.

In raman spectroscopy, the incident radiation creates a distortion in the electrons 

around the bonds in the molecules making up the sample. This creates a temporary 

polarisation o f the molecules therefore inducing an instantaneous dipole moment in the 

molecules. As the bonds relax back to their normal states, the incident radiation is re­

emitted by scattering, at different wavelengths from that of the incident radiation. This 

is known as raman shift and it depends on the structure (or chemical bonding) of the 

molecules producing it. This scattered radiation is therefore polarised with the degree of 

polarisation depending on the type o f vibration of the molecule producing it. From the 

raman scattering therefore, information is obtained about the type o f molecules (or 

bonds) present in the sample. The resulting raman spectrum is therefore used as a 

fingerprint for identifying materials [39]. The raman peak intensity mainly depends on 

the polarisability of the active species (molecules) in the sample. However, raman 

spectroscopy was not used in the research work reported in this thesis.

3.6 Defects characterisation

The presence and effects of defects in semiconductors cannot be over 

emphasised. This is because, defects play active role in carrier transport in 

semiconductor devices [42]. The presence of defect levels in the bandgap of 

semiconductors can be beneficial as well as detrimental in semiconductor devices [43]. 

For example, the presence of defect levels in some semiconductor materials helps in 

obtaining photoluminescence used in light emitting diodes [42, 44]. Also, the presence 

of defects (impurities) can be helpful in some photovoltaic devices [45, 46] contributing 

to impurity PV effect. On the other hand, the presence of certain defects in some 

semiconductors, have detrimental effects on the devices made with these materials. This 

is because these defect levels constitute trap centers for charge carriers in these devices

[47].

Defect levels can be created in a semiconductor either by introducing impurities 

into the semiconductor [48] or as a result of native defects such as structural defects
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(dislocation, vacancies, interstitials and stacking faults) [42, 49]. Various techniques are 

employed in studying and characterising defects in semiconductors. Some of these 

techniques are discussed in this section.

3.6.1 Photoluminescence (PL)

In photoluminescence (PL) a strong light source (usually a laser) is used to 

excite electrons from the valence band into the conduction band o f a semiconductor. 

These electrons are then allowed to relax back into the valence band in which process 

light is emitted. The wavelength of the emitted light is used to determine the energy 

level to which the electrons relaxed back. If  there are no defect levels in the bandgap of 

the semiconductor, the excited electrons fall back into the valence band and the energy 

of the luminescence produced corresponds to the energy bandgap of the semiconductor. 

If  there exist defect levels in the bandgap of the material, some of the excited electrons 

will relax back into these defect levels as well and the energy o f the luminescence 

produced represents the energy level o f such defects [50]. In general, a 

photoluminescence spectrum of the sample is produced in the form of peak intensity vs. 

photon energy. The schematic of the photoluminescence principle and a typical 

photoluminescence spectrum are shown in figure 3.15.

Excited states 
in the
conduction A
band > 
CB

Excitation
n h n tn n

05) ^  Photon energy

Figure 3.15: Schematic of (a) photoluminescence in a semiconductor showing electron 

excitation and defect levels Dj and D2 , and (b) typical photoluminescence spectrum 

showing defect energy levels Ej and E2, and energy bandgap Eg of a semiconductor.
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The PL peak intensity indicates the density o f electrons that fall into the various levels, 

therefore indicating the density o f the various defect levels in the semiconductor. In 

order to determine defect levels in semiconductors however, the photoluminescence 

spectroscopy is carried out at low temperatures [50] so that the defect levels are not 

saturated in order to be able to trap electrons.

3.6.2 Cathodoluminescence (CL)

Cathodoluminescence (CL) is similar to PL in its principle of operation in the 

sense that electrons are excited from the valence band into the conduction band of a 

semiconductor, and these electrons relax back to the valence band or defect levels to 

produce photons. However, the major difference lies in the way these electrons are 

excited. Whereas high-energy photons are used to excite these electrons in the PL 

process, high-energy electrons are used in the case of CL [51]. The CL detector is 

usually attached to SEM system which is the source of electron beam for the excitation

[51]. One major advantage of CL over PL is that, in CL the incident electron beam 

penetrates deeper into the sample than does the photons in PL thus allowing for a more 

in-depth study of the luminescence properties of the sample [52]. The CL spectrum is 

constructed in the same way as the PL spectrum and defect analysis is carried out in a 

similar way [52].

3.6.3 Admittance spectroscopy (AS)

In admittance spectroscopy (AS), a Schottky barrier contact is normally made on 

one side o f the semiconductor in order to make a diode with a depletion region. Then 

the complex admittance of the junction is measured as a function o f various impurity 

levels in the bandgap o f the semiconductor material [53]. The basic principle behind 

admittance spectroscopy recognises that,, for a diode with healthy depletion region
i

without impurity (defect levels), the capacitance o f the junction depends on the dc bias 

voltage but is not affected by the frequency at which the measurement is made (even in 

the frequency ranges from below, 1 kHz to over 1 MHz) [54]. However, if  impurity 

levels exist in the junction, these substantially affect the capacitance-frequency (C-F) 

response. This is because the impurities (traps) cause the movement of the Fermi level 

as they trap and un-trap charge carriers causing a fluctuation in the distribution of 

charges in the junction which in turn causes a variation in the capacitance and 

conductance of the junction as it returns to thermal equilibrium [53]. This is used to

67



produce peaks which can be associated with defect (impurity) levels in the material 

making up the Schottky junction.

In thermal admittance spectroscopy (TAS) which is a variant of AS, the 

capacitance and conductance of the junction are measured as functions of both 

frequency and temperature and these results are also used to observe the effects o f both 

frequency and temperature on the capacitance and conductance. The results also show 

peaks which represent the various defect levels present in the material [55].

3.6.4 Deep level transient spectroscopy (DLTS)

Deep level transient spectroscopy (DLTS) is similar to admittance spectroscopy. 

The major difference however is that, whereas small ac-signal is used in AS 

measurements, voltage pulse is normally used while carrying out DLTS measurement

[54]. However, DLTS is a high-frequency capacitance transient measurement technique. 

It produces a spectrum of a wide variety o f trap centers in a semiconductor [56]. The 

spectrum produced in DLTS can have both positive and negative peaks thus indicating 

whether the defect (trap) level is closer to the valence band or to the conduction band. 

The peak intensity reflects the concentration or density of the defect level present [56].

In addition to the above defect characterization techniques, there are other 

techniques such as photo acoustic spectroscopy (PAS) and Schottky barrier 

measurements at metal/semiconductor interfaces. All these techniques detect very many 

defect levels in semiconductors, but only a few defects will dominate in controlling the 

final I-V characteristics o f devices based on a particular semiconductor. Therefore, 

Schottky barrier measurements are the most appropriate for semiconductor devices, and 

this thesis discusses the Fermi level pinning situation detected in CdTe earlier in this 

programme [18, 33].

3.7 Conclusion

Various thin film semiconductor characterisation techniques are presented and 

discussed in this chapter. These techniques vary in their fundamental principles and in 

the particular properties or characteristics of the materials they are used to study. They 

generally range from structural characterisation to morphological, compositional, 

electrical, optical, as well as defect characterisation techniques. The importance o f each 

technique in understanding the nature of semiconductor materials before fabricating 

devices with them were pointed out. Although many characterisation techniques are
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available and were discussed, only a selected few were employed in characterising the 

semiconductor materials grown in the course of this research for obvious reasons such 

as availability, cost and time scale.
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C hapter 4: Device C haracterisation techniques

4.0 Introduction

Chapter 3 presented a review of the various techniques used in characterising 

semiconductor materials. The ultimate aim of growing semiconductors is to use them in 

fabricating semiconductor devices, and the basic building block o f any semiconductor 

device is the diode. The solar cell is therefore essentially a diode. In order to 

characterise these devices in general, two major techniques are used. These are current- 

voltage (I-V) technique and capacitance-voltage (C-V) technique [1 - 4]. These two 

techniques characterise the current and capacitance responses o f the devices when 

external voltage bias is applied. For a solar cell however, an additional technique is 

involved, and this is spectral response technique. This is used to characterise the charge 

carrier collection behaviour of the solar cell over a given range of photon wavelength or 

photon energy [5, 6 ]. This chapter therefore discusses these three major device 

characterisation techniques bearing the solar cell in mind.

4.1 Current-Voltage (I-V) characterisation

The I-V characterisation shows how the current through a diode responds to 

applied bias voltage. Figure 4.1 shows the equivalent circuit of a simple diode.

+  V

Figure 4.1: Equivalent circuit o f a diode showing shunt resistant ( R s h ) ,  series resistance 

(Rs) and depletion capacitance (Co).

The I-V characterisation of a diode in general only reflects the effects o f Rs and Rsi,. The 

effect of Cd is only seen in a capacitance-voltage measurement. The equations
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governing the behaviour of a diode are presented in Appendix II. Some o f these 

equations will however be re-presented in this chapter specifically for solar cells with 

the relevant modifications. As mentioned in Chapter 3, all I-V measurements carried out 

in this work were done using a computerised Keithley 619 Electrometer/Multimeter 

(Keithley Instruments Inc., OH, USA).

4.1.1 I-V Characteristics under dark  condition

Under dark condition (i.e. without illumination), the I-V characteristics of a 

diode in general, can be presented in log-linear form or in linear-linear form. In the log- 

linear form, the current through the diode is presented in logarithmic scale while the 

applied bias voltage is presented in linear scale. Figure 4.2 shows typical log-linear I-V 

characteristics of a diode.

logio I

Forward

logio h

Reverse

Figure 4.2: Typical log-linear I-V characteristics of a diode (not drawn to scale) 

showing both forward current (Ip) and reverse current ( I r ) .  Here both forward and 

reverse characteristics are plotted to be in the same quadrant for convenience, by 

changing the sign of the reverse bias voltage from negative to positive.

Figure 4.2 is very useful in obtaining a number of parameters that characterise the diode 

under dark condition. The parameters that can be obtained from this figure include; 

diode rectification factor (R.F.), diode ideality factor (n), reverse saturation current (Jo) 

and potential barrier height ((J)#).

The R.F. is defined as the ratio of forward current to reverse current at a bias 

voltage o f 1 V as shown in Equation (4.1).



The R.F. is a measure o f the rectifying quality of the diode. A rectification factor of 

about three orders of magnitude (R.F.~103) is enough to make a good diode [7]. In order

to obtain the diode ideality factor from figure 4.2, Equation (11.25) is used and is re­

presented here as Equation (4.2) for convenience.

For an applied bias of V > 0.75 V, the exponential term in Equation (4.2) becomes 

sufficiently large [7] so that

Taking the natural logarithm o f both sides of Equation (4.4), and rearranging, yields 

Equation (4.5).

Re-writing Equation (4.5) in common logarithmic form for convenience then gives

Equation (4.7) shows that the graph of log1 0  /  vs. V gives a straight line, the slope of 

which is q/2 .303nkT . Therefore from the slope o f the forward current in figure (4.2), 

the value of n can be obtained since q, k  and T  are all known. The value o f n is very 

useful in understanding the current transport mechanism in a diode. In an ideal diode 

where current transport takes place over the potential barrier only through thermionic 

emission, the value of n is unity. If current transport is dominated by recombination and 

generation (R & G) mechanism, then n = 2.00. If both mechanisms are present as is the 

case in a practical diode, n takes a value between 1.00 and 2.00. In a practical diode,

(4.2)

(4.3)

Then Equation (4.2) simplifies to Equation (4.4), thus

(4.4)

(4.5)

0.434 log101 =  —  +  0.434 log1 0 I0 (4.6)

Dividing Equation (4.6) by 0.434 gives

logio I =  (■2.303nkT;)l7 +  log1 0 / 0 (4.7)



series resistance is present. This also has an effect on the value of n. In fact, if  Rs is large 

the situation becomes more complicated and the value o f n can be greater than 2 .0 0 . 

Bayhan and Kavasoglu [8 ] obtained a good agreement between experiment and 

calculation with n values in the range (3.43 - 4.07) for a CIGS-based solar cell with 

13% efficiency by assuming the presence of high series resistance.

Equation (4.7) shows that the intercept of straight line portion o f the forward 

current with the highest gradient in figure (4.2) on the log10/ axis, gives log10/0. 

Therefore, the reverse saturation current (7o) is obtained from this value. Io is also a 

measure o f the degree o f rectification of the diode. If the diode rectification is high, then 

Io is low. Again Io will be low for a diode with large barrier height. Once I0 is obtained, 

the barrier height existing in the diode can be obtained using Equation (11.26) which is 

re-presented here as Equation (4.8) for convenience.

If the dark I-V characteristics are rather plotted in linear-linear scale as shown in 

figure 4.3, another set of device parameters can be obtained. These parameters include; 

Rs, Rsh, threshold (or cut-in) voltage ( F t)  and reverse breakdown voltage ( V b d ) .

A

(4.8)

Re-arranging Equation (4.8) will then give

(4.9)

I

Forward

V b d

Reverse

VT V

Figure 4.3: Typical linear-linear I-V characteristics of a diode under dark condition.
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The series resistance is obtained by finding the slope (A //A 7) of the straight line 

portion of the high forward current and applying Ohm's law, so that Rs is obtained from 

Equation (4.10).

r-(Z77aF) (4’10)

A low value o f Rs is desirable for a good device in which case the forward current has 

highest possible slope (A I/A V )  [9]. In a practical diode however, a high value of Rs can 

arise due to two major reasons. One o f these is the presence o f resistive oxide layer 

between the semiconductor and the metal contact (forming an MIS structure). This 

resistive interfacial layer can arise due to oxidation caused by the etching process 

preceding the metal contact formation, or due to high density o f surface states and 

therefore high surface recombination velocity [1, 10]. Another reason for high series 

resistance is the use of semiconductor materials with high bulk resistivity [1, 10]. This 

is because, at sufficiently high forward bias, the current through the diode increases 

rapidly so that the series resistance o f the diode is controlled by both bulk resistance of 

the semiconductor material used, and the contact resistance at the two 

metal/semiconductor interfaces [11]. At such high series resistance, the slope of the 

forward I-V curve decreases substantially. For an ideal diode Rs = 0, so that the slope of 

the forward current (A //AF) -» oo.

From the reverse I-V curve, the shunt resistance Rsh is obtained by determining 

the slope (A I/A V )  as in the case of Rs. The value of Rsi, is indicative o f the presence of 

current leakage paths in the diode. For a good diode, a high value of Rsh is desirable [7, 

9, 11]. For an ideal diode, Rsh -> oo. With low Rsh value, substantial leakage current (Io) 

flows in the diode under reverse bias. During the forward biasing of a diode, very small 

current flows through the diode as bias voltage increase gradually from 0 V up to a 

certain minimum voltage. Beyond this voltage, the current through the diode rises 

rapidly. This minimum voltage is known as the threshold voltage ( F t )  or cut-in voltage 

or turn on voltage of the particular diode involved [9, 11 - 13] as shown in figure 4.3. 

Ge and Si diodes have typical threshold voltages o f about 0.2 V and 0.7 V respectively

[11]. In order for a diode to operate, a forward bias > VT must be applied. The threshold 

voltage also represents the built-in potential of a diode.

Under reserve bias, a negligible current flows through the diode. However, at a 

certain high reserve bias, a large reverse current suddenly begins to flow through the
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diode as shown in figure 4.3. The reverse bias voltage at which this happens is known 

as the peak inverse voltage, or simply, the breakdown voltage ( V b d )-  This is so-called 

because, beyond this point, the diode breaks down and is permanently damaged [9, 11] 

as a result o f the large reserve current that flows through it. Various breakdown 

conditions and mechanisms in diodes are well-known and are discussed in standard text 

books [9, 11].

4.1.2 I-V characterisation under illumination

All the I-V characterisations discussed so far apply to all diodes under dark 

conditions, including the solar cell (which is essentially a photodiode). Now the solar 

cell is designed to operate naturally under illumination. It therefore becomes imperative 

to discuss the features of the I-V characteristics o f a diode (solar cell) under illumination 

condition. Since the solar cell is a current source under illumination, the relevant diode 

equations discussed so far under dark conditions, and in Appendix II, are modified 

accordingly and the diode equivalent circuit o f figure (4.1) is also modified to reflect the 

current generating property of the solar cell. If an ideal solar cell is considered first, in 

which case Rs = 0 and Rsh -  °o, then one obtains the ideal equivalent circuit under 

illumination as shown in figure 4.4.

h

Figure 4.4: Ideal equivalent circuit of a solar cell under illumination.

It should be recalled that when the solar cell is forward biased under dark 

conditions, it is just a normal diode with the diode current density Jo  flowing through it, 

where Jd replaces J in  Equation (11.18) or (4.2). But when light is shone on the solar cell 

under forward bias, photocurrent (J£) is generated which also flows through the diode in 

addition, but this time, in a direction opposite to Jd- The total current (J) in the device 

then becomes [9],
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J =  J d - h  = J o  [exp(^f) -  l] - h (4.11)

When these two currents {Jd and J£) are equal, the total current through the solar cell 

becomes zero. Then the Voc is obtained from Equation (4.11) by setting J  = 0 and Jl = 

Jsc, thus yielding Equation (4.12).

Voc =
nkT

l n l7q \Jo
(4.12)

The graph o f J  or I  vs. V in Equation (4.11) yields the result in figure (4.5) for a solar 

cell.

A

P
Illuminated I-V

Figure 4.5: I-V characteristics of a solar cell under dark and illumination conditions.

The shaded rectangular area in the graph is the power rectangle which gives the 

maximum output power (Pm) from the solar cell. The corresponding quantities Im and 

Vm are respectively the current and voltage at the maximum output power, so that

P =  I Vrm 1m vm

The maximum power point is also defined according to Equation (4.14) [9].

Pm l-mYm ~~ P P  *  h e  *  ^oc

(4.13)

(4.14)

where FF  is the fill factor which defines the “squareness” o f the I-V curve. Thus

FF =
Irr,\L 1m ym

hcVoc
(4.15)

Then the conversion efficiency, rj is defined as the ratio of the maximum output power 

to the total input power (P,„) is given by Equation (4.6).
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where P in  is the solar power density of the incident light, which for the AM 1.5, is 100 

Wcm'2.

For a practical solar cell, the effects of R s  and R s h  are brought into Equation (4.11)
\

accordingly by replacing V wtihiV-IRs). Rs is more influential than R s ft since it directly 

affects the fill factor. The equivalent circuit o f a real practical solar cell is then given in 

figure 4.6.

■* +

h

% -

Figure 4.6: Equivalent circuit of a practical solar cell showing the presence of R s  and 

R s h -

From figure 4.5 therefore, the solar cell parameters under illumination can be obtained. 

The J s c  (or I s c )  and V o c  can be read directly from the graph. The F F  can be obtained by 

drawing the largest possible rectangle through the maximum power point (X), and 

reading directly, I m  and V m  as shown, and then applying Equation (4.15). Using 

Equation (4.16) the conversion efficiency, t j  is then obtained by substitution. R s  and R s h  

under illumination are also obtained just in the same way as in the dark I-V graph 

described previously.

4.2 Capacitance-Voltage (C-V) characterisation

Every diode has a depletion region of a certain width, w. This depletion region is

the heart of the diode and where all the major activities in the diode take place. All the

equations describing the behaviour of a diode under various conditions actually show

what happens in the depletion region. The description of the formation o f a rectifying

junction given in Appendix II simply shows that the depletion region of a diode can be
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approximated to a parallel plate capacitor with a separation of w between the two 

oppositely charged plates. The capacitance of this capacitor (called depletion 

capacitance, C d )  is given by Equations (11.13) and (11.23) which have the same form for 

both p-n junction diode and Schottky barrier diode. They are also the same for a solar 

cell under dark condition. These two equations are re-presented here as Equation (4.17).

reverse bias conditions.

Now, a graph o f Cd v s . V  using Equation (4.17) under bias, gives a curve o f the form 

shown in figure 4.7. The value o f Cd at zero bias (V  = 0) gives the actual depletion 

capacitance per unit area (C0) of the junction [9]. With this capacitance, the width of the 

depletion region can be determined, using Equation (4.17).

Instead of plotting C vs. V for the depletion region, 1/C2 vs. V can be plotted 

using Equation (4.18). For an ideal diode, this should give a straight line of the form 

shown in figure 4.8, and is called the Schottky-Mott plot [9].

(4 .1 7 )

where Cd is the capacitance per unit area here.

Also, Equation (11.14) is re-presented here as Equation (4.18). Thus

(4 .1 8 )

Reverse

'Forward

 >
V

Figure 4.7: Schematic of the Cd v s . V characteristics o f a diode under forward and
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Figure 4.8: Schottky-Mott plot of an ideal diode.

The slope of the Schottky-Mott graph gives the quantity, (2 / q s 0N ) and the 

intercept on F-axis gives the built-in potential, Fj,;, o f the device [14]. From the slope, 

the carrier concentration N  o f the diode can be obtained, since es and q are known. 

Recall that N  represents the resultant uncompensated carrier density in the device. If  the 

dominant dopants in the diode material are donors, then N  = Nd-Na, but if  the dominant 

dopants are acceptors, then N  = Na-Nd. From the above discussion, the C-V technique 

becomes a very important technique for determining important electrical properties o f a 

semiconductor diode in general.

It is important to mention here that the C-V measurement is usually carried out 

at relatively high frequencies up to 10 MHz. The reason for this is to eliminate from the 

result, the effect of defects present in the device. This is because the defects are known 

to be slow traps. At high frequencies therefore, they are unable to follow the current 

through the diode and therefore cannot easily trap the charge carriers [15]. This idea is 

used to determine the density of defects (traps) in a diode using C-V measurement. In 

this case, the C-V measurement is carried out at high frequency (say, 1 MHz) and then 

at a low frequency (say, 10 Hz). The difference in the capacitance obtained from the 

low frequency and high frequency measurements gives the concentration o f impurities 

or defects in the device [15 -  17]. At low frequencies, the traps are more active and 

contribute to the capacitance of the junction by introducing diffusion capacitance to the 

normal depletion capacitance. At high frequencies however, the slow traps cannot 

follow the fast ac signal and the diffusion capacitance effect can be ignored [15]. The 

equipment used for all the C-V measurements reported in this thesis was a Hewlett 

Packard 4284A 20 Hz -  1 MHz Precision LCR Meter (Yokogawa Hewlett Packard, 

Japan) with a Keithley 6517A Electrometer/High Resistance Meter (Keithley 

Instruments, OH, USA).
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4.3 Spectral response (SR) characterisation

Spectral response (SR) characterisation is very important for solar cells since 

light of certain wavelengths must be absorbed by the solar cell in order to create 

electron-hole pairs and subsequently produce photocurrent. The spectral response is 

therefore useful in determining the total current deliverable by a solar cell [9, 18, 19] 

and the range o f wavelengths of photons that are absorbed and are converted to current 

by the solar cell.

There are three types o f spectral response used in characterising solar cells. 

These include; spectral responsivity (S) external quantum efficiency (EQE) and internal 

quantum efficiency (IQE) [18]. All of these are also related and are wavelength 

dependent.

Spectral responsivity is the amount of current that is delivered by a solar cell per unit 

incident photon power. The unit is therefore given as amperes per watt (AAV) [5].

External quantum  efficiency is defined as the ratio of the number of charge carriers in 

the current delivered by a solar cell to the number of incident photons of a given energy. 

The EQE is actually derived from the spectral responsivity [9, 18] so that

where X is incident photon wavelength, J(X) is the photocurrent at a given wavelength, 

q is electronic charge and <ft(X) is the number of photons per unit area per unit time per 

unit bandwidth of wavelengths.

Since EQE  is derived from spectral responsivity, the equation for EQE can alternatively 

by written as

to ta l inpu t p ho ton  p o w e r /(en erg y  p er  pho ton )
outnut current/(char ae ner electron) 

(4.19)

or

EQE(X) (4.20)

EQE{X) (4.21)

EQE  is usually expressed in percentage.
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In ternal quantum  efficiency is a more complicated spectral response since it involves 

the actual number of photons absorbed by the solar cell in order to produce 

photocurrent. It is clear that not all the incident photons are absorbed by the solar cell. 

Some of these photons are reflected at the point o f incidence on the solar cell. Some are 

transmitted through the solar cell while the rest are absorbed. In determining the IQE 

using the total incident photon flux therefore, the amount of photons reflected and those 

transmitted should be put into consideration. This is the major point of difference 

between IQE and EQE. I f  one assumes zero transmission for a solar cell with sufficient 

thickness and high absorption coefficient, then IQE  can be written as in Equation (4.22) 

[9, 20] by modifying Equation (4.20).

I Q E W  = q W ) [ l - R { X ) ]  (4'22)

where R(X) is the fraction of the photons reflected by the solar cell at the point of 

incidence.

Comparing Equations (4.20) and (4.22), one therefore sees that for any given solar cell, 

IQE  is higher than EQE. The IQE  result can give information on the loss mechanisms in 

the solar cell for absorbed photons with energies higher than the bandgap of the solar 

cell material [18]. From the foregoing, it is also obvious that once the spectral response 

is known, the current deliverable by a solar cell can be obtained by integrating over all 

wavelengths from zero to the bandgap wavelength, as can be inferred from Equations

(4.20) and (4.22).

4.4 Conclusion

The characterisation of semiconductor devices (including solar cells) was

presented in this chapter. The various characterisation techniques employed for this

purpose, were discussed to include, I-V, C-V and spectral response techniques. Each

technique is seen to be unique in nature and in the manner they are carried out yielding

different results that help to understand the behaviour of the devices under study. I-V

characterisation is seen to reveal the behaviour of the electrical current through the

diode (device) under external bias. C-V characterisation reveals the response o f the

depletion region capacitance of diodes under different bias conditions. Both I-V and C-

V characterisation techniques also help to understand the nature of defects (impurities)

present in the device. Spectral response measurements are particularly useful for

characterising solar cells. Since the solar cell must absorb incident light (photons), the
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particular useful range o f wavelengths o f the incident photons is known through these 

measurements. In addition, the result of the spectral response measurement can help to 

obtain the total current deliverable from the solar cell as well as help to understand the 

possible loss mechanisms that come into play in the solar cell.
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Chapter 5: ZnS deposition and characterisation

5.0 Introduction

ZnS is a direct bandgap semiconductor belonging to the II-VI compound 

semiconductor family. It is non-toxic and has a wide bandgap of about 3.68 eV for the 

bulk material [1]. Being a non-toxic material and having wide bandgap, it can 

potentially replace the CdS usually used as a window material in CdS/CdTe and 

CdS/CIGS solar cells. The success of ZnS in this regard will therefore bring about cost 

reduction and provide more environmentally friendly applications. Cost reduction will 

be achieved because it will reduce the cost of handling o f Cd-containing wastes 

generated during the CdS production process. Environmental friendliness is achieved 

because it will reduce the amount of Cd-containing waste generated during the 

processes of fabrication of CdS/CdTe and CdS/CIGS solar cells.

Because o f its wider bandgap compared to CdS, the use of ZnS as a window 

layer in the fabrication o f CdTe- and CIGS-based solar cells has the potential of 

reducing window absorption losses associated with CdS due to the relatively narrow 

bandgap of CdS of 2.42 eV [2, 3], therefore producing devices with improved short- 

circuit current. This is because the presence of ZnS in this case will allow more higher- 

energy photons to reach the CdTe or CIGS absorber layer in order to create more photo­

generated charge carriers. It can also be used as a window layer in graded bandgap solar 

cells such as ZnS/CdS/CdTe multi-layer graded bandgap solar cell. This device 

structure, under optimum design and operation, will benefit from reduced 

thermallisation effect by absorbing photons from different regions o f the solar spectrum 

at different regions in the device. Apart from its possible application in solar cells, ZnS 

has other optoelectronic properties making it suitable for use in devices such as sensors, 

lasers, thermoelectric coolers and thin film polarisers [4]. It is also applicable in 

electroluminescence devices [5], light-emitting diodes and phosphorescence devices [6 ].

The deposition of ZnS over the years has been done using various growth 

techniques. Such techniques include thermal evaporation [7], spray pyrolysis [8 ], 

electrochemical atomic layer deposition (ECALE) [9], chemical bath deposition (CBD)

[10], metal-organic chemical vapour deposition (MOCVD) [11], molecular beam 

epitaxy (MBE) [12] as well as electrodeposition (ED) [4, 13]. However, the report on 

electrodeposition of ZnS is scarce in the literature. One major reason for this is the fact
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that the electrodeposition o f chalcogenides of Zn from standard aqueous solutions is a 

difficult task [14].

It is possible to dope ZnS in order to obtain n-type ZnS (n-ZnS) and p-type ZnS 

(p-ZnS) using extrinsic doping. This has mostly been reported by researchers using 

mainly vapour techniques such as MBE [12] and vapour phase epitaxy (VPE) [15]. The 

extrinsic dopants that have been used include Cl and ethylchloride for n-type doping 

[12, 15] as well as N, P, In, Al, Ga, Ag and NH3 for p-type doping [16 - 19]. The use of 

elements like In, Al and Ga in p-type doping o f ZnS rather sounds incredible since they 

are ordinarily known as n-type dopants for II-VI semiconductors. Nevertheless, these 

elements are not actually used individually to achieve p-type doping in ZnS. They are 

rather used in conjunction with p-type dopant elements like N in a method known as co­

doping in order to achieve effective p-type doping in ZnS [18, 19]. However, the 

intrinsic n-type and p-type doping of ZnS has not been reported in the literature. The 

achievement of this intrinsic n-type and p-type doping o f ZnS thin-film layers using 

electrodeposition technique has been achieved and is presented in this chapter.

A range of characterisation techniques was used in studying the properties of 

these layers deposited. Conductivity types of the layers were established using photo­

electrochemical (PEC) cell measurements. Structural characterisation of the layers was 

carried out using XRD. Optical characterisation was done using optical absorption, 

transmittance and reflectance spectrophotometry. Scanning electron microscopy (SEM) 

and energy dispersive X-ray (EDX) were used to study the morphology and atomic 

composition of the layers.

5.1 Preparation of n-ZnS deposition electrolyte

The deposition electrolyte for n-ZnS thin-film layers was made up o f 0.3M of 

ZnCL (98% purity) and 0.03M of (NH4)2S2C>3 (laboratory reagent grade) in 800 ml o f 

de-ionised water and contained in 1000 ml plastic beaker. Both chemicals were bought 

from Sigma-Aldrich, United Kingdom. The plastic beaker was in turn contained in 1800 

ml glass beaker as a water bath. The reason for using plastic beaker as the main 

container for the electrolyte is to avoid ions such as Na+ used in making some glasses 

from leaching into the electrolyte and poison the electrolyte. This precaution is taken 

because atoms of groups 1A and IB elements are known to act as acceptor dopants in 

II-VI semiconductor [20, 21]. It is also for this same reason that (1^ 4 ) 2 8 2 0 3  was used 

as sulphur precursor instead of Na2S2C>3 commonly used in the electrodeposition o f ZnS
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[13,22] and CdS [23-25]. The reason also for using a water bath instead o f directly 

heating the electrolyte, is that, more uniform heating o f the electrolyte is obtained when 

a water bath is used than when direct heating is done. Thus the heating from the 

hotplate is transferred to the electrolyte indirectly through the water bath.

Before the addition of (NH4)2S2C>3 , cyclic voltammetry (CV) was carried out on 

the aqueous solution containing only Z11CI2 at the initial pH o f the solution which was 

~5.4+0.02. In carrying out a CV, varying direct current voltages from +100 mV to - 

2000 mV were applied across the electrolyte through cathode and anode electrodes. The 

cathode (working electrode) was a fluorine-doped tin oxide on glass (glass/FTO) 

cleaned with methanol, acetone and de-ionised water. The anode (counter electrode) 

was a high-purity carbon rod. The CV is normally used in electrochemistry to study 

reaction mechanisms of electrolytes such as during an electrodeposition process [26]. 

During the CV process, the change in current in response to the applied potential across 

the working electrode is recorded. A graph of current vs. applied potential, usually 

called a voltammogram, gives information on the deposition mechanism during the 

electrodeposition process for the particular electrolyte involved. Most importantly, the 

possible range of deposition potentials for the electrolyte system in question can be 

deduced. When the electrolyte contains only one precursor such as Z 11CI2 , the 

voltammogram is simpler in features showing more clearly the particular applied 

potential at which deposition of the metallic atoms (Zn atoms) sets in. With this, a 

slightly lower potential than that was applied to the Z 11CI2 solution for electro­

purification which lasted for 48 hours. This purification process is very important since 

the ZnCl2 precursor was of low purity (98%). During this process, any metallic ions 

present in the chemical which would have otherwise deposited along with Zn during the 

formation of ZnS, is eliminated from the solution without removing Zn. This is the 

reason why the electro-purification process was done at a potential just slightly below 

the deposition potential of Zn. It is important to note that the electro-purification 

process was only carried for ZnCb solution because o f its low purity compared to 

(NH4)2 S2 0 3 . This electro-purification and self-purification capabilities are part o f the 

advantages of the electrodeposition technique. Self-purification is the continuous 

removal o f impurities from the deposition electrolytes during the actual 

electrodeposition process. This is possible since the deposition electrolyte is used for a 

long time before replacement. It can however be topped-up from time to time by adding 

the appropriate amounts of the right chemicals.
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After the purification process, (NH4)2S2 0 3  was added to the solution to form the 

ZnS deposition electrolyte. The pH of the resulting electrolyte was then adjusted to 

3.00±0.02 using dilute HC1 and NH4OH. It is also important to note the ratio of Zn2+ to 

S2' concentrations which is [Zn2+]/[S2'] = 10. This electrolyte will be referred to in this 

thesis as the higher Zn2+ concentration bath.

5.2 Preparation of p-ZnS deposition electrolyte

The electrolyte for the deposition of p-ZnS was also made with the same ZnCl2 

(98% purity) and (NH4 )2 S2 0 3  chemicals as in the case of n-ZnS. However, their 

concentrations were 0.015M and 0.15M respectively. This brings the ratio o f 

concentration o f Zn2+ to the concentration of S2‘ to 1:10, so that [Zn2+]/[S2’] = 0.1. The 

electrolyte was also made up to the same volume as in the n-ZnS case. Similar steps 

were also taken for electro-purification and the pH was finally adjusted to 4.00±0.02 

after the addition of (> ^ 4)2 8 2 0 3 . The pH was maintained at this level as sulphur 

precipitation was observed at lower pH making the electrolyte look very cloudy. This 

was attributed to the higher concentration of S2' relative to Zn2+ which eventually 

altered the chemistry of the electrolyte in comparison with the n-ZnS electrolyte. This 

electrolyte will be referred to in this report as the lower Zn2+ concentration bath.

5.3 Substrate preparation

The principal substrate used for the electrodeposition of both n-ZnS and p-ZnS 

thin-film layers was TEC-7 glass/FTO with sheet resistance of 7 O/square, obtained 

from Pilkington Group, United Kingdom. The 30.0 cm><30.0 cm*3.0 mm plates were 

cut into smaller sizes of ~3.0 cm><2.0 cmx3.0 mm using diamond glass cutter. These 

therefore produced substrates of surface area ~6.0 cm2. These were washed with soap 

solution in an ultrasonic bath for 15 minutes. After this, they were cleaned with cotton 

buds using soap solution and then rinsed with de-ionised water. Using cotton buds, 

soaked in acetone, they were again cleaned for about 5 minutes and rinsed with de­

ionised water. This was repeated using methanol followed again by rinsing with de­

ionised water and then drying in a flow o f nitrogen gas. Using insulating 

Polytetrafluoroethylene (PTFE) tape, each glass/FTO substrate was attached to a high- 

purity carbon electrode (cathode). The glass/FTO (now working electrode), was cleaned 

again with methanol using cotton buds, then rinsed with de-ionised water, dried with 

nitrogen gas and finally inserted into the appropriate electrolyte for electrodeposition of 

the desired material.
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It is imperative here to stress the importance of surface preparation prior to 

deposition o f any semiconductor layer. The FTO surface o f the glass/FTO substrate 

serves as an ohmic electrical contact to the semiconductor material deposited on it when 

devices are made. One of the well-known issues in semiconductor device fabrication 

lies with the interfaces [27, 28]. This can be interface between a metal and a 

semiconductor, between semiconductors, between a semiconductor and an insulator or 

between a metal and an insulator. The metal/semiconductor contact can either be an 

ohmic contact or a rectifying contact depending on the type o f device being fabricated. 

Since the device performance essentially depends on the contacts, they must be as 

intimate (clean) as possible. Greasy substances or dust particles on the glass/FTO 

surface for instance, will result in the formation o f poor electrical contact between FTO 

and the semiconductor deposited on it. This can lead to peeling off o f the semiconductor 

layer during post-deposition heat treatment. In the event that the layer does not peel off, 

it can create voids at the interface between FTO and the semiconductor resulting to poor 

transport of charge carriers in a fabricated device, giving rise to very poor device 

performance. Again the presence o f such voids can lead to creation o f pinholes in the 

semiconductor which in turn results to short-circuiting effects when devices are 

fabricated with two electrical contacts.

For the above reasons, substrate preparation becomes a very crucial step in 

semiconductor growth and ultimately in semiconductor devices fabrication such as in 

solar cell production. The use of organic solvents such as acetone and methanol in 

cleaning of substrates for semiconductor deposition is therefore very important and 

therefore cannot be over-emphasized.

5.4 Electrodeposition of n-ZnS window/buffer layers

In order to proceed with the electrodeposition of a semiconductor, the right 

deposition potential (or growth voltage) should be established and applied. The 

determination of this potential is not very simple by just using the Nemst equation of 

electrochemistry. This is because Nemst equation is concerned with a case o f a single 

component of a half-cell whereas in electrodeposition of compound semiconductor 

materials more than one component are involved making the system a bit complex and 

the required stoichiometry of the deposited material involved is very crucial for example 

in device fabrication. The single deposition potential provided by the Nemst equation is 

therefore not sufficient as most semiconductors can be deposited in a wide range of
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potentials. This is in addition to other limitations of the equation [29 - 31]. It is for this 

reason that the cyclic voltammetry is very important.

A cyclic voltammetry o f n-ZnS deposition electrolyte was carried out in 

cathodic mode over a range o f potentials (from +100 mV to -2000 mV) in order to 

cover a wide range o f cathodic potentials since the actual deposition o f all the materials 

in this thesis is based on cathodic electrodeposition. To do this, the electrolyte was 

heated to a temperature o f ~30°C using a hotplate. The stirring rate was maintained at 

400 rotations per minute (rpm). At higher temperatures, the electrolyte turned cloudy 

due to sulphur precipitation. In fact, the electrolyte was relatively clear at temperatures 

ranging from room temperature to ~60°C and very cloudy beyond 60°C. The source of 

electrical power for this process and the actual deposition was a computerised Gill AC 

potentiostat. The forward and reverse cycles of the voltammetry were run at a rate o f 5 

mVmin'1. Figure 5.1 shows the resulting cyclic voltammogram for the n-ZnS 

electrolyte. In the forward cycle, as shown by the arrows in figure 5.1 (a), the formation 

of S atoms on the substrate starts gradually as soon as a cathodic potential is applied and 

the formation of Zn atoms on the substrate starts from a cathodic voltage around 1000 

mV (point A). The formation of ZnS is expected between points B and C. In the reverse 

cycle, figure 5.1(b) shows that the dissolution of Zn starts from cathodic potential 

around 1300 mV to cathodic potential around 1080 mV. Between cathodic potentials of 

1050 mV and 730 mV, S is still depositing as indicated by the positive deposition 

current density. The dissolution of S starts just below the cathodic potential o f 730 mV 

as shown by the negative deposition current density in this region. A combination of 

both cycles therefore, shows that the formation of ZnS can actually start from a cathodic 

potential around 1300 mV upwards. In fact the hump appearing between points B and C 

in figure 5.1 (a) indicates that the actual cathodic deposition potential range for ZnS is 

defined in the range 1400 -  1650 mV for n-ZnS.

A number of samples were therefore test-deposited in this cathodic voltage 

range and characterised in order to determine the best potential for depositing ZnS with 

the right stoichiometry for solar cell fabrication. This cathodic deposition potential was 

finally chosen to be 1550 mV from the results of this experiment. In order to establish 

the best growth temperature, samples were also grown at the above chosen potential for 

a fixed period of time of 30 minutes at different temperatures ranging from 30°C to 

60°C and characterised. To determine the best growth time at the fixed cathodic

94



potential of 1550 mV and temperature of 30°C, a number of samples were also grown 

for different time durations and characterised.
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Figure 5.1: (a) Two-electrode cyclic voltammogram of n-ZnS deposition electrolyte, 

(b) Expanded view to show the features of the reverse cycle around the cathodic 

potential axis.

Post-deposition annealing o f all the electrodeposited samples was carried out at 

350°C for 10 minutes as the samples became extremely transparent and 

indistinguishable from the glass/FTO substrate at higher annealing temperatures beyond 

350°C. The results of the characterisation of n-ZnS layers deposited under various 

conditions are presented in section 5.6.

5.5 Electrodeposition of p-ZnS window/buffer layers

For the p-ZnS thin film deposition, similar steps were taken as in the n-ZnS for 

carrying out cyclic voltammetry in order to determine the possible cathodic deposition 

potential range using the prepared electrolyte. Figure 5.2 shows the cyclic 

voltammogram for the electrolyte. The formation of S atoms on the substrate is shown 

to begin as soon as a potential is applied to the electrolyte from the forward cycle. For 

Zn atom formation, this is shown to start from a cathodic potential of -850  mV (point 

A). For the reverse cycle, it is observed that the dissolution of Zn takes place in the 

cathodic potential range (1150 -  830) mV while the dissolution of S is observed to start 

from around 250 mV downwards. A combination of the two cycles then shows that the 

possible cathodic potential range for the depositipon of p-ZnS from this electrolyte is 

(1100 ~ 1400) mV (between points B and C). The best deposition temperature for this
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material was also taken as 30°C for the same reason given in the case of n-ZnS. This 

was also the temperature at which the cyclic voltammetry was carried out. The best 

cathodic deposition potential was established as 1365 mV after deposition and 

characterisation of a number of samples. The deposited p-ZnS layers were annealed at 

350°C for 10 minutes as in the case of n-ZnS layers and the results obtained are 

presented in section 5.6.

- 1 0 C 300 700 1100 1500

Cathodic potential (mV)

Figure 5.2: Two-electrode cyclic voltammogram of p-ZnS deposition electrolyte.

It is noted that S atoms were the first to deposit before Zn atoms in the 

electrodeposition process described above. This follows from the fact that S has a lower 

standard reduction potential o f E° = -0.476 V than Zn with E° value o f -0.762 V [32]. 

This is in agreement with the fact that in a cathodic deposition process* the  species with 

the lowest E° value (or more electropositive species) deposit first followed by the 

species with the next higher E° value (or less electropositive species) [26]. Thus the 

reaction

S  +  2e~ <-» S 2~ (E° = -0 .4 7 6  V) (5.1)

will proceed at a lower cathodic potential than the reaction

Z n2+ + 2e~ <-» Zn (E° =  -0 .7 6 2  V) (5.2)

Thus the reaction resulting in the formation of S atoms on the cathode (substrate) takes 

place first. This then encourages the co-deposition of Zn atoms to form ZnS on the 

cathode. The proposed equations of reaction leading to the formation of ZnS on the 

substrate are then given as
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S20 l~  +  6  H+ ~  2 S + 3 H20  +  4 e “ (5.3)

and

Z n2+ + 2e «-» Zn (5.2)

Equation (5.3) shows that 4 moles of electrons are required to form 2 moles of S 

atoms. This then means that only 2 moles o f electrons are required to form 1 mole of S 

atoms. From equation (5.2), only 2 moles of electrons are required to form 1 mole o f Zn 

atoms. On the whole therefore, a total of 4 moles of electrons are involved in the 

formation of 1 mole of ZnS so that

5.6 Characterisation of electrodeposited ZnS layers

A range of techniques available within the Materials and Engineering Research 

Institute (MERI) were used in characterising the electrodeposited n-ZnS and p-ZnS 

thin-film layers. These techniques include X-ray diffraction for structural 

characterisation, photoelectrochemical (PEC) cell for determination o f electrical 

conductivity type, current-voltage measurement for determination of electrical 

resistivity/conductivity, spectrophotometry for optical characterisation, scanning 

electron microscopy for surface morphological studies and energy dispersive X-ray for 

determination of atomic composition of the various layers.

5.6.1 X-ray diffraction of n-ZnS and p-ZnS layers

Figures 5.3 (a) and (b) show the X-ray diffractograms of ZnS layers grown from 

the higher Zn2+ and lower Zn2+ baths. The figures show clearly that the ZnS layers from 

both baths had no XRD peaks. All the XRD peaks present in the figures are those o f the 

underlying FTO substrate. These ZnS layers are therefore amorphous in nature. After 

annealing at 350°C for 10 minutes, the layers still showed no XRD peaks, confirming 

their amorphous nature as shown in figure 5.4.

Zn +  S  «-> ZnS (5.4)
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Figure 5.3: XRD patterns of as-deposited n-ZnS and p-ZnS layers deposited at different 

cathodic potentials for 60 minutes from (a) higher Zn2+ concentration bath and (b) lower
^ I

Zn concentration bath.
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Figure 5.4: XRD patterns of annealed n-ZnS and p-ZnS layers deposited at different 

cathodic potentials for 60 minutes from (a) higher Zn2+ concentration bath and (b) lower 

Zn2+ concentration bath.
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Figure 5.5: XRD patterns of as-deposited n-ZnS and p-ZnS layers grown for different
^ I

durations at the respective best voltages from (a) higher Zn concentration bath and (b) 

lower Zn2+ concentration bath.

In order to check the effect of thickness (or deposition time) on the structural 

properties of these layers, another set each of three samples were grown at a particular
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Figure 5.6: XRD patterns of annealed n-ZnS and p-ZnS layers grown for different 

durations at the respective best voltages from (a) higher Zn2+ concentration bath and (b) 

lower Zn2+ concentration bath.

voltage (the best voltage) from each bath for different durations. Figure 5.5 shows the 

XRD of such samples. Again, there were no XRD peaks observed for these materials. 

After annealing at 350°C for 10 minutes, there were still no XRD peaks observed as 

shown in figure 5.6. These results therefore confirm that the electrodeposited n-ZnS and 

p-ZnS layers from both higher Zn2+ and lower Zn2+ baths were all amorphous [33].
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5.6.2 Photoelectrochemical (PEC) cell study

PEC measurements were carried out on ZnS layers grown from both higher Zn2+ 

and lower Zn2+ baths in order to establish their conductivity types. To do this, several 

samples were grown from each bath at a wide range of growth voltages in order to study 

how the conductivity type changes with growth voltage since stoichiometry of 

electrodeposited semiconductors vary with growth voltage. From the higher Zn2+ bath, 

nine samples were grown at cathodic voltages ranging from 1450 mV to 1700 mV
94-giving a wide window o f 250 mV. From the lower Zn bath also, nine samples were 

grown at cathodic voltages ranging from 1290 mV to 1460 mV giving a window of 170 

mV. The results of the PEC measurements are shown in Table 5.1 and figure 5.7.

The results clearly show that all the ZnS layers grown from the higher Zn2+ bath 

were n-type in electrical conduction, hence n-ZnS, while all the ZnS layers grown from 

the lower Zn2+ bath were p-type, hence p-ZnS. These results are astonishing as this is

the first time intrinsic n- and p-type doping of ZnS is achieved at least using
/

electrodeposition technique, and the results have been published [33]. Reports o f n-type 

and p-type doping of ZnS in the literature have mainly been based on extrinsic doping 

by introducing external dopants [12, 15-19] as mentioned in section 5.0.

Although change in deposition voltage is known to produce this type o f intrinsic 

doping using a given deposition electrolyte, for example in CdTe, by changing the 

stoichiometry o f the material [34, 36], the results of the PEC measurements shown in 

Table 5.1 and figure 5.7 did not precisely show this trend since the two electrolytes used 

were not essentially the same. There is no defined observation of conductivity type 

change with deposition voltage in any of the two baths. This therefore suggests that the 

observed n-type and p-type conductivities displayed by ZnS from both baths have to do 

with defect distribution in the ZnS materials produced. Most probably, the presence of a 

combination of high Zn2+ concentration and low S2' concentration favours the kind of 

defect distribution that pushes the Fermi level o f the deposited ZnS closer to the 

conduction band, thus producing n-ZnS layers. Conversly, a combination o f low Zn2+ 

concentration and high S2‘ concentration favours the kind o f defect distribution that 

moves the Fermi level closer to the valence band resulting in the production o f p-ZnS. 

This therefore confirms the crucial role of defects in semiconductors.
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Table 5.1: PEC signal and electrical conductivity types o f annealed ZnS layers grown 

from the two baths.

(a) [Zn2+]/[S2-] = 10 (b) [Zn2+]/[S2*] = 0.1

Cathodic

Voltage

(mV)

PEC

Signal

(mV)

Conductivity

type

Cathodic

Voltage

(mV)

PEC

Signal

(mV)

Conductivity

type

1450 -40 n 1290 + 2 P

1488 - 1 0 n 1320 +14 P

1490 -7 n 1350 +13 P

1515 -5 n 1365 + 6 P

1520 - 6 n 1370 +14 P

1600 - 1 2 n 1375 +5 P

1650 - 2 n 1390 +15 P

1690 - 2 n 1400 +19 P

1700 -5 n 1460 +9 P
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Figure 5.7: PEC signal vs. deposition voltage for ZnS layers grown from (a) higher 

Zn2+ bath and (b) lower Zn2+ bath respectively.
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5.6.3 Current-Voltage measurements

The current-voltage (I-V) measurement was carried out to obtain the DC 

electrical resistivity/conductivity of the electrodeposited ZnS layers. In order to do this 

on the n-ZnS layers, ohmic contacts were made on the ZnS samples using indium (In), 

this resulted in the fabrication o f glass/FTO/n-ZnS/In structure. In was used for this 

purpose since it is a low-workfunction metal with a workfimction ((j)m) of 4.12 eV [36] 

while ZnS has an electron affinity (x) of 3.90 eV [37]. Rhoderick and Williams [38] 

showed that to make ohmic contact to an n-type semiconductor, a low-workfunction 

metal is required while a high-workfunction metal is required to make an ohmic contact 

to a p-type semiconductor. Indium dots each of 2 mm in diameter were evaporated on to 

the n-ZnS surface after cleaning with methanol and de-ionised water. The evaporation 

was carried out using an EDWARDS Auto 306 vacuum coater with diffusion pump at a 

pressure of 10*4 Pa (10‘6 Torr). The above mentioned diameter of each In dot defines a 

cross-sectional area (A) of -0.031 cm2 which serves as the area o f the ZnS material 

being studied. I-V measurement was carried out by placing one probe o f a computerised 

Keithley 619 Electrometer/Multimeter on the FTO and the other probe on an In dot. 

Variable DC voltages were then applied across the structure under dark condition and 

the corresponding current passing through the ZnS material was recorded by the system. 

A plot of current v. applied voltage for each measurement gave a straightline passing 

through the origin. To confirm the ohmic behaviour o f the contacts, the probes o f the 

electrometer were interchanged and the measurement repeated. Similar I-V 

characteristics showing similar current confirmed the ohmic nature o f the contacts. 

About five In contacts were measured on each ZnS sample and the graph of I vs. V 

plotted for each contact. Using Ohm’s law, the resistance of the ZnS material under 

each In contact was determined. The average of the five resistances from each sample 

was obtained and used therefore as the resistance o f the ZnS material. Using this 

resistance (R), the thickness (/) o f the ZnS layer and the cross-sectional area (A) o f ZnS, 

the resistivity (p) of each ZnS layer was calculated using Equation (5.5) below.

RA
P = —  (5.5)

The thicknesses of the layers were measured using a thickness profilometer. The 

electrical conductivity (o) o f each layer was also obtained from equation (5.6).
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1
o  =  —  

p
(5.6)

Table 5.2 and figure 5.8 show the resistivity and conductivity values obtained 

for as-deposited and annealed n-ZnS o f different thicknesses grown at a cathodic 

voltage of 1550 mV.

Table 5.2: Electrical resistivity of as-deposited and annealed n-ZnS layers o f different 

thicknesses.

Serial

NO

Sample

ID

Growth 

Time (min)

Thickness

(nm)

AD-ZnS

pxlO4

(Ocm)

HT-ZnS

p x io 4

(Ocm)

1 K405 60 281 3.9 4.8

2 K407 1 2 0 352 3.6 3.3

3 K408 150 448 2.5 3.1

4 K406 180 462 2.3 2.7

5 K410 2 0 0 569 2 . 2 2 . 6

6 K409 180 755 1.4 2.5

7 K411 240 785 1.9 1.9

Note: AD = as-deposited, HT = heat-treated.
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Figure 5.8: Electrical resistivity vs. film thickness for (a) as-deposited and (b) annealed 

n-ZnS layers.

Table 5.2 and figure 5.8 show that the resistivity of as-deposited n-ZnS decreases 

continuously as the thickness of the layer increases within the thickness range 

experimented. The error in these resistivity measurements is about about ±5% with 

reproducibility of up to 80%. A curve fitting of the resistivity trend shows that the 

decrease in resistivity with increase in thickness follows a 5th order polynomial 

behaviour described by Equation (5.7).

y  =  4.0 x  10 " 1 2 * 5 -  1.0 x  10~8 x 4  +  1.0 x  10 - 5 * 3 -  5.4 x  10 " 3 * 2 +  1.2828*

-1 1 3 .5 1  (5.7)

The observed resistivity (l/ne[i) behaviour can be explained in terms of increase in

carrier mobility resulting from increase in grain sizes which leads to reduction in grain

boundaries assuming carrier concentration remains constant. At the start of the

deposition, the pattern of nucleation of the grains is influenced by the nature o f surface

of the FTO substrate. ZnS grains will tend to nucleate first and faster on the spikey areas

on the FTO surface since the deposition mechanism is driven by an electric field. As a

result, any inhomogeneity on the surface of the FTO substrate affects the nucleation

pattern resulting to non-uniform coverage o f the substrate surface by ZnS grains.

Certainly, areas with high nucleation rate will have larger grains than other areas on the

same substrate surface. This also results in non-uniformity in grain sizes giving rise to

high density o f grain boundaries. However, as the deposition proceeds in time, the

grains grow in size such that they get closer to each other and tend to close up the gaps

(grain boundaries) between them. The effect of this will then be improvement in carrier
104



transport property of the layer through improved mobility. Charge carriers therefore 

travel through the layer with relative ease due to reduced scattering at grain boundaries. 

The direct effect of this is increase in electrical conductivity (or reduced resistivity). 

Another possible cause o f reduced resistivity as film thickness increases is the presence 

o f excess unreacted (metallic) Zn. Zn atoms are metallic atoms with high electrical 

conductivity compared to ZnS molecule. Again, due to the mechanism of deposition in 

the electrodeposition process, Zn and S atoms deposit atom by atom on the substrate. 

These then react on the substrate to form ZnS. Depending on the growth parameters 

(growth voltage, pH and temperature), it is possible to have situations in which either 

some free Zn or S atoms are left unreacted resulting therefore to a material with mixed 

phases containing excess Zn or S. If  the prevalent condition favours the presence of 

more unreacted Zn than S, the resulting material therefore displays improved 

conductivity. As the deposition time (or thickness of deposited layer) increases, 

therefore the amount of free Zn atoms increases, resulting in increased conductivity or 

reduced resistivity. It then follows that if  the balance shifts to the opposite side, with 

resultant excess S, the resulting layer rather displays reduced conductivity or increased 

resistivity for the as-deposited material. This trend of resistivity increase with increase 

in film thickness has been reported by other researchers [39,40].

During post-deposition annealing, a number of things can happen in the ZnS 

material. Due to the supply of thermal energy by the annealing process, reaction of the 

unreacted species can be triggered. This therefore may result to the formation o f more 

semiconducting ZnS, reducing the amount of excess Zn or S as the case may be. This 

definitely gives rise to ZnS material with different resistivity from the as-deposited one.

During annealing process, Na ions can diffuse into ZnS layer from the 

underlying soda lime-based FTO substrate. As pointed out earlier in section 5.1, species 

like Na and K are acceptor impurities to II-VI semiconductors including ZnS [33]. For 

the n-ZnS therefore, Na diffusion can result to compensation by trying to cause p-type 

doping in the material. This reduces the n-type doping of the n-ZnS depending on the 

amount of diffused Na and initial n-doping level of the n-ZnS. In any case, an effective 

reduction in conductivity (increased resistivity) of the layer takes place as observed in 

the slight increase in the resistivity of the n-ZnS after annealing as shown in Table 5.2 

and figure 5.8. The trend in the resistivity variation with thickness after annealing also 

follows that of a 5th order polynomial given by Equation (5.8).
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y  =  -3 .0  x  10~12x 5 +  7.0 x  10" V  -  8.0 x  10~6x 3 +  3.9 x  10~3x 2 -  l.Ox 

+ 1 0 4 .4 9  (5.8)

A similar experiment on the effect of film thickness on resistivity was not 

carried out on the p-ZnS. The reason being that only n-ZnS layers were used in the 

fabrication of CdTe-based solar cells reported in this thesis due to the particular device 

architecture researched which only supports the use o f n-type semiconductors. The 

application of the p-ZnS in solar cell fabrication will form part of the future work in 

furtherance of this project. For this same reason, the full optical characterisation of ZnS 

was only carried out on n-ZnS in the following section. However, an initial attempt on 

resistivity measurement o f p-ZnS sample with a thickness of -218 nm, gave resistivity 

values of 3.0x104 Qcm  and 2.0xlO4 flcm  for as-deposited and annealed samples 

respectively [33]. The metal contact used was Au with workfunction of 5.10 eV [36]. 

This shows that the resistivity o f both n-ZnS and p-ZnS deposited in this project are o f 

the same order o f magnitude. The decrease in resistivity of the p-ZnS layer fits into the 

explanation of increase in resistivity of n-ZnS after annealing based on Na diffusion. 

The diffusion of Na into p-ZnS layer should increase the p-type doping and hence the 

conductivity (decrease in resistivity) of the layer as confirmed by the reduced resistivity 

value of 2.0x104 Hem observed for the p-ZnS after annealing.

5.6.4 Spectrophotometry

In this spectrophotometry, mainly the optical properties of the electrodeposited 

n-ZnS thin film layers were studied. The parameters studied include optical absorbance 

(A), transmittance (7), reflectance (R), absorption coefficient (a), extinction coefficient 

(K), optical bandgap energy (Eg), refractive index (n) and dielectric constant (e). In the 

first part of this section, the optical absorption and optical bandgap energies o f n-ZnS 

and p-ZnS were compared. The results show no major differences. Consequently, the 

remaining part of the section concentrates on the full optical properties o f n-ZnS 

without repeating the same for p-ZnS. The reason mentioned in the previous section 

also warranted this.

5.6.4.1 Comparison of absorbance and energy bandgaps of n-ZnS and p-ZnS 

layers.

Figures 5.9 (a) and (b) show respectively the optical absorption of annealed 

samples of n-ZnS and p-ZnS layers grown at different cathodic voltages. In each case,
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three different cathodic voltages have been chosen including the best deposition 

voltages for each material. The figures show that the materials exhibit comparable 

absorption which is generally low.

0.02 i

(a) n-ZnS
0.016 -

c  0.012 - o]

0.008 -

0.004 -

0 .015  i

(b) p-ZnS oono
0.01 -

<  0.005 -

Figure 5.9: A2 vs. photon energy (hv) for annealed (a) n-ZnS and (b) p-ZnS layers 

deposited at different growth voltages for comparison.

The energy bandgaps estimated for both materials are generally in the range (3.68 -

3.72) eV, showing a fairly small variation o f -0.04 eV in bandgap for -100 mV change 

in growth voltage. The samples were all deposited for a period o f 30 minutes. This 

result strongly support the fact that both n-ZnS and p-ZnS layers (and in fact some other 

semiconductors) can be grown over a wide range of voltages without significantly 

changing their optical properties.

In figure 5.10, the effects of film thickness (or growth time) on the absorption 

behaviour of as-deposited and annealed n-ZnS layers are presented.
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Figure 5.10: A2 vs. hv for (a) as-deposited and (b) annealed n-ZnS layers grown 

at cathodic voltage o f 1550 mV for different times.

The graphs show that n-ZnS exhibits low absorption property and the absorbance 

becomes even lower after annealing. However, as the deposition time (or thickness) 

increases, the absorbance increases, and energy bandgap decreases. This behaviour 

suggests that as the thickness increases, smaller grains in the material tend to coalesce to 

form larger grains. The result o f this is that the optical property of the material tends 

towards that o f the bulk material with the bandgap approaching that o f the bulk 

material. After post-deposition annealing, the bandgaps were observed to increase 

slightly. This may be as a result o f loss o f excess S or Zn or rather as a result of 

complete reaction between excess S and Zn forming more ZnS material. The energy 

bandgap values estimated for the various layers from figure 5.10 are in the range (3.58 -

3.72) eV for as-deposited samples and (3.66 -  3.78) eV after annealing. These values 

are in very good agreement with literature values for ZnS [1, 9, 41]. The thicknesses of 

the layers used were -284  nm, 361 nm and 526 nm for growth times of 30, 45 and 60 

minutes respectively. It is important to point out that the use of A2 vs. hv, instead of 

(ahv) 2 vs. hv, to estimate energy bandgap of a semiconductor is a very quick way of 

estimating the energy bandgap and gives result similar to that obtained using (ahv) 2 vs. 

hv.

Figure 5.11 shows similar absorption results for as-deposited and annealed p- 

ZnS layers grown for different time durations.

108



1.5 1.9 2.3 2.7 3.1 3.3' 
Photon Energy (eV)Photon Energy (eV)

Figure 5.11: A2 vs. hv for (a) as-deposited and (b) annealed p-ZnS layers grown 

at cathodic voltage of 1365 mV for different growth durations.

Similar absorption trend also emerges here as in the case of n-ZnS. The longer the 

deposition time (the higher the thickness), the lower the energy bandgap and the 

absorption is also generally low. However, after annealing, there is no observed 

significant change in the energy bandgap as well as in the absorbance. The estimated 

energy bandgap is in the range (3.68 -  3.78) eV which is generally similar to the values 

obtained for n-ZnS. The observed constancy in absorbance and bandgap o f p-ZnS as 

shown in figure 5.11, suggests that the as-deposited ZnS materials from the lower Zn2+ 

bath are relatively more stable in terms of optical properties than their higher Zn2+ bath 

counterparts. The thicknesses of the layers used were 279 nm, 404 nm and 464 nm for 

deposition times of 30 minutes, 45 minutes and 60 minutes respectively. Again the 

observed constant bandgap of both n-ZnS and p-ZnS after annealing suggests that 

actually ZnS of similar quality were formed after the annealing process. The 

observation of bandgap values higher than the bulk values for n-ZnS and p-ZnS at 

smaller thicknesses is an indication of quantum confinement effect in these materials.

It is important at this point to comment on the feature o f the absorption curves 

obtained for both n-ZnS and p-ZnS. The spectra generally display interference features 

due to well defined thicknesses of the layers. This kind of features could also arise due 

to the presence of mixed phases within the material. The most likely of these phases is 

ZnO. However, the absorption edge closest to that of ZnS corresponds to bandgap in the



range (2.70 - 3.10) eV which is actually less than the optical bandgap o f bulk ZnO 

which is 3.37 eV [40]. The lack of any XRD peak really makes it difficult to confirm 

the presence o f ZnO. But if  there is amorphous ZnO present in these layers, the 

observed bandgap is expected to be higher than 3.37 eV, due to quantum confinement 

effects which also has been observed for ZnS with small thicknesses. This therefore 

makes it difficult to conclude the presence of mixed phases such as ZnO and these 

observed three peaks separated by equal distances must be arising due to interference of 

light. Whatever the case is, this feature is very typical o f the electrodeposited ZnS layers 

produced in this project.

5.6.4.2 Full optical characterisation of n-ZnS layers of different thicknesses

This sub-section presents the full optical characterisation of three n-ZnS layers 

of different thicknesses before and after annealing. The thicknesses of the layers were 

400 nm, 500 nm and 700 nm measured using a UBM Microfocus Optical Measuring 

System. Normal incidence transmittance o f the layers was measured using a Carry 50 

UV-VIS spectrophotometer in the wavelength range (315 -  800) nm. Before the 

transmittance of the glass/FTO/ZnS layers was measured, the transmittance of 

glass/FTO was measured in baseline mode as the reference. This serves to automatically 

cancel the effect o f glass/FTO in the measured transmittance of glass/FTO/ZnS so that 

the result obtained is only the transmittance of ZnS. Using the equations in section 3.5, 

and the transmittance spectra measured, the absorbance, reflectance, absorption 

coefficient, extinction coefficient, energy bandgap, refractive index and dielectric 

constant of each ZnS layers were obtained.

Figures 5.12 (a) and (b) show the transmittance spectra o f the three n-ZnS 

layers. The figures show that the transmittance of the layers decreases as the film 

thickness increases both before and after annealing. However, after annealing, the 

transmittance generally increases. The transmittance of the as-deposited layers in the 

visible region of the electromagnetic spectrum (A. = 400 -  700) nm is in the range o f (69 

-  75)%, (55 -  62)% and (45 -  52)% for the samples with thickness of 400 nm, 500 nm 

and 700 nm respectively.
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Figure 5.12: Transmittance spectra o f (a) as-deposited and (b) annealed ZnS layers of 

different thicknesses.

The corresponding transmittance after annealing is in the range (83 -  92)%, (76 -  

87)% and (67 -  78)% respectively. Post-deposition annealing therefore improves the 

transmittance of the layers. Again, it shows that the transmittance o f the layers has 

strong thickness dependence. The transmittance also increases as the wavelength of 

incident light increases.

The absorbance spectra of the layers are shown in figures 5.13 (a) and (b). 

Again, the figures show that absorbance of the layers is thickness dependent with the 

thickest layer (700 nm) showing the highest absorbance and the thinnest layer (400 nm) 

showing the lowest absorbance in the wavelength range explored. The absorbance also 

decreases as the wavelength of incident light increases.
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Figure 5.13: Absorbance spectra of (a) as-deposited and (b) annealed ZnS layers of 

different thicknesses.

Figure 5.13 (b) shows that annealing reduces the absorbance generally. The 

implication of figures 5.12 and 5.13 is that, depending on the required application, the 

transmittance and absorbance of these ZnS layers can be tuned to the desired levels by 

simply varying the thickness. Thus for application as window material in solar cells, the 

thickness should be kept as low as possible in order to allow enough photons to pass 

through to the absorber layer in order to create more charge carriers.

Figure 5.14 presents the reflectance o f the three ZnS layers as a function of 

wavelength of incident light. The reflectance is generally having a maximum value of 

~20% for all three layers at a wavelength of 315 nm for both as-deposited and annealed 

samples. Again the reflectance depends on the film thickness, increasing with thickness 

across the entire wavelength range under consideration. The as-deposited samples 

nevertheless, exhibit a week dependence on the incident light wavelength in comparison 

with the annealed samples which show relatively drastic decrease with increase in 

wavelength of incident light. Annealing generally reduces the reflectance especially 

towards longer wavelengths.
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Figure 5.14: Reflectance spectra o f (a) as-deposited and (b) annealed ZnS layers of 

different thicknesses.

Figures 5.15 (a) and (b) show the dependence o f absorption coefficient

(a) on incident photon energy for ZnS layers before and after annealing respectively, a 

increases as photon energy increases and as film thickness increases. For as-deposited 

samples, there is a sharp rise in a at a photon energy o f -3.60 eV.
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Figure 5.15: Graphs of absorption coefficient vs. photon energy for (a) as-deposited 

and (b) annealed ZnS layers of different thicknesses.

In the annealed samples, this occurs at a photon energy of -3.68 eV. It is

observed from both figures that the absorption coefficients of the thicker samples (with

thicknesses of 500 nm and 700 nm) tend to come to the same value. This suggests that

in this thickness range, the ZnS material properties are tending towards those of the bulk

material. In the visible region of the spectrum, the value of a for the as-deposited
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samples across the explored thickness range is in the range (7.2x103 -  1.2xl04 cm '1). 

For the annealed samples these values are in the range (2.1 xlO3 -  5 .5xl03 cm '1). The 

fall in the value of a after post-deposition annealing follows the same trend as the 

absorbance.

"y
The graphs o f {ahv) vs. photon energy for as-deposited and annealed ZnS layers 

are presented in figures 5.16 (a) and (b) respectively. From these graphs, the energy 

bandgaps of the ZnS layers under study are obtained by extrapolating the straight line 

part of the graph to the photon energy axis. The estimated Eg values for as-deposited 

layers were 3.62 eV, 3.57 eV and 3.52 eV for the samples with thicknesses o f 400 nm, 

500 nm and 700 nm respectively. The bandgap value obtained for the annealed samples 

was 3.70 eV for the three different thicknesses. These results clearly show that the 

energy bandgap decreases as film thickness increases and generally increase after post­

deposition annealing as was seen earlier. These trends are common observations in ZnS 

and have been reported by other researchers [22]. The reasons for this behaviour have 

been associated with the release of stress/strain and defect passivation [22]. Quite 

recently however, Gode [43] reported a contrary observation in ZnS after annealing. 

Gode observed that the energy bandgap of the amorphous ZnS layers grown by CBD 

method decreases after annealing.

The variation of extinction coefficient (K) with photon energy for the ZnS layers 

is presented in figure 5.17. K  generally increases with film thickness and shows features 

that look like interference fringes. In the as-deposited samples, K  generally decreases as 

photon energy increases in the visible region, reaching a minimum value at a photon 

energy of -2.90 eV, which corresponds to photon wavelength of -427 nm.
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Figure 5.16: Graph of (ahv)2 vs. photon energy for (a) as-deposited and (b) annealed 

ZnS layers of different thicknesses.
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Figure 5.17: Extinction coefficient (K) vs. photon energy for (a) as-deposited and (b) 

annealed ZnS layers of different thicknesses.

This value falls within the visible range o f the electromagnetic spectrum. Below this 

wavelength, (i.e at higher photon energies > 2.90 eV), the value of K  begins to increase 

gradually again, thus displaying a kind of parabolic behaviour. After annealing, K  

remains fairly constant up to a photon energy of 2.90 eV where it has a sharp drop and 

suddenly rises again continuously towards higher photon energies. For these samples, it 

is also observed that at photon energy > 3.70 eV (the energy bandgap), the values o f K  

for all three thicknesses converge. This behaviour is also seen in the absorption 

coefficient in figure 5.15 (b) after annealing. This trend supports the argument that post­

deposition annealing leads to the release of stress and strain in the crystal lattice of
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materials as well as helps in the passivation of defects. The introduction of stress/strain 

most likely results from the presence o f unintended inclusions like ZnO and Zn(OH )2  or 

even due to the presence of excess unreacted Zn and S in the as-deposited samples as 

has been mentioned in earlier section. In the annealing process, these inclusions like 

Zn(OH )2  can decompose in the presence o f heat energy in addition to further reaction of 

the excess Zn and S resulting to purer and more stable ZnS with improved quality 

especially since these materials were grown at low temperatures.

The dependence of refractive index on photon energy for the ZnS layers is 

presented in figure 5.18. Figures 5.18 (a) and (b) generally show that refractive index 

(n) increases as film thickness increases. They also show that n increases as the incident 

photon energy increases, although this increase is more rapid in the annealed samples 

than in the as-deposited samples. However, in both cases, n gets closer to each other in 

the ultraviolet region with higher photon energy. The refractive index is related to the 

propagation velocity (v) o f light in the material and the speed of light in vacuum (c) 

according to n = c/v [44]. The implication o f this equation is that as the refractive index 

increases towards-higher photon energy region, the corresponding incident light travel 

more slowly through the layers with reduced velocity o f propagation. This implies in 

turn that these photons get mostly absorbed in the material. However, photons o f lower 

energy tend to travel through the layer with higher propagation velocity without 

absorption leading to transmission of these photons through the material layer.

For as-deposited samples, the value o f n falls in the range (2.00 -  2.60) while for 

the annealed samples n is in the range (1.50 -  2.59). The fall in the value o f n after 

annealing implies that light will propagate faster through the annealed samples than in 

the as-deposited ones. This result also supports the fact that annealing improves the 

materials by removing stress/strain and passivating defects which act as scattering 

centres in the as-deposited materials.
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Figure 5.18: Refractive index (ri) vs. photon energy for (a) as-deposited and (b) 

annealed ZnS layers of different thicknesses.

Figure 5.19 presents the real part o f the dielectric constant (er) as a function of photon 

energy. The response o f cr to incident photon energy follows similar trend as the 

refractive index in figure 5.18. The dielectric constant is a measure o f the capacitance of 

the material and indicates the charge retention capacity o f devices made with these 

materials.
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Figure 5.19: Real part o f dielectric constant (er) vs. photon energy for (a) as-deposited 

and (b) annealed ZnS layers of different thicknesses.

The as-deposited samples show er values in the range (4.0 -  7.0) while annealed

samples have values in the range (2.3 -  7.0). The maximum value of cr occurs at the

high photon energy end of the spectrum considered. The low values of er in the lower

energy region displayed by the annealed samples show that these samples have
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relatively low capacitance and therefore will display shorter response time in this energy 

region. This therefore makes these layers very useful, for instance, in fast 

photodetectors.
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Figure 5.20: Imaginary part of the dielectric constant (e,) vs. photon energy for (a) as- 

deposited and (b) annealed ZnS layers of different thicknesses.

Figure 5.20 shows the imaginary part o f the dielectric constant £/. This also 

varies with photon energy in the same manner as the extinction coefficient in figure 

5.17. has its minimum value occurring at photon energy o f -2.90 eV in the as- 

deposited samples just as in the case of K.

5.6.5 Scanning electron microscopy (SEM) and energy dispersive X -ray (EDX).

Figure 5.21 shows the SEM images o f as-deposited and annealed n-ZnS layers 

grown at different cathodic voltages for a period of 2 hours each. The images generally 

show good coverage of the FTO surface by ZnS grains. There is essentially no 

remarkable change in morphology between as-deposited and annealed samples except 

for slight difference in the contrast o f the pictures as a result o f the level o f focusing 

used while taking the images. The lack of clear difference in morphology of these 

samples is a confirmation o f the fact that n-ZnS can be deposited over a wide range of 

voltages as pointed out in section 5.6.2. A close look at the grains however, shows that 

there is slight increase in the grain sizes after annealing. The average grain sizes o f as- 

deposited and annealed samples obtained from these images are in the range (100 - 380) 

nm and (129 -  400) nm respectively. The lack o f clear improvement in the grain sizes 

after annealing also supports the amorphous nature of these layers.
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Figure 5.21: SEM images of as-deposited and annealed n-ZnS layers grown for 2 hours

at different cathodic voltages.

Figure 5.22 shows the corresponding EDX spectra of the n-ZnS samples grown 

at different voltages. All the spectra clearly show the presence of Zn and S atoms in the 

electrodeposited ZnS. However, the atomic compositions of three n-ZnS samples of 

different thicknesses obtained from the EDX spectra analysis using the composition 

analysis software associated with the SEM equipment are summarised in Table 5.3. It is 

important to point out that atomic composition analysis using EDX does not produce 

very accurate quantitative result. However, the results are qualitative enough to 

understand the trend in the composition o f the compound under study.
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Figure 5.22: EDX spectra of as-deposited and annealed n-ZnS layers grown for 2 hours 

at different cathodic voltages.

The as-deposited samples clearly show that the n-ZnS samples grown under the 

conditions described in this thesis are all Zn-rich with higher Zn concentration in each 

case. The trend in the atomic composition with respect to thickness is not clear from the 

as-deposited samples. However, after annealing, a clear trend emerges with respect to 

the sample thickness. The results after annealing show that all three samples remain Zn- 

rich.
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Table 5.3: Percentage atomic compositions of the as-deposited and annealed ZnS layers

of different thicknesses.

Thickness
(nm)

Atomic composition (%)

As-deposited Annealed

Zn S Zn S

400 54.9 45.1 52.9 47.1

500 54.3 45.7 54.2 45.8

700 56.7 43.3 56.3 43.7

A close observation also shows a slight decrease in the Zn-content with a 

corresponding increase in S-content after annealing and the material in each case comes 

closer to stoichiometry than in the as-deposited condition. This is an indication that 

annealing brings about re-adjustment of stoichiometry in these materials. This 

observation may explain the behaviour of these materials after annealing as has been 

seen in the results presented so far.

5.7 Conclusion

The electrodeposition and characterisation of n-type and p-type ZnS thin layers 

were presented. All depositions were carried out using a two-electrode system for 

process simplification. ZnCl2 and (NH4)2S2 0 3  were used as precursors. Deposition of n- 

type ZnS layers was done at a pH of 3.00±0.02 using an electrolyte containing higher 

Zn2+ than S2" in the concentration ratio o f 10:1 while p-type ZnS layers were deposited 

at a pH of 4.00±0.02 from an electrolyte with lower Zn2+ than S2* in the ration 1:10. In 

general, the cathodic deposition potention range for n-ZnS was higher than that for p- 

ZnS with values of (1450 -  1700) mV and (1290 -  1460) mV respectively. The best 

deposition potentials for n-ZnS and p-ZnS were identified as 1550 mV and 1365 mV 

respectively. All samples were deposited at a temperature of 30°C, while post­

deposition heat-treatment was done at 350°C for 10 minutes to avoid loss of material at 

higher temperatures. Both n-ZnS and p-ZnS layers depositied were amorphous in nature 

showing no significant XRD peaks. The energy bandgaps of both materials were seen to 

decrease with layer thickness. After annealing, the bandgaps show slight increase with 

values generally in the range (3.68 -  3.72) eV for both materials. Both materials also
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show electrical resistivity values of the order of 104 Qcm for both as-deposited and 

annealed materials. A comprehensive study o f the optical properties of n-ZnS layers o f 

different thicknesses shows that the optical properties o f these materials are 

significantly influenced by thickness and annealing with the properties becoming 

enhanced (more uniform) after annealing. As an indication o f good window material for 

solar cell fabrication, the layers generally show low absorption and high transmittance 

with absorption coefficients o f the order o f 103 cm '1 for annealed samples. The 

refractive index and extinction coefficient for the annealed samples fall in the range 

(1.50 -  2.59) and (0.01 -  0.03) respectively. SEM results show that these materials also 

have grain sizes in the range (129 -  400) nm. EDX results also show that the 

electrodeposited n-ZnS layers are Zn-rich under the conditions used.
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Chapter 6: CdS deposition and characterisation

6.0 Introduction

CdS is a wide bandgap II-VI compound semiconductor with a direct bulk 

bandgap o f 2.42 eV [1]. Due to its desirable properties, it finds use as a window/buffer 

material in photovoltaic solar cells [2-7], piezo transducer [8], photoresistor, phosphor 

material, electroluminescent material [9-11], space-charge limited diode and triode [12, 

13], heterojunction diode [14], insulated gate thin film transistor [15] and radiation 

detector [16]. It is also used in microelectronics, non-linear optics, catalysis, 

photoelectrochemistry [17-19] as well as in electron-beam pumped lasers [20]. In its 

photovoltaic application, CdS has been used as an n-type heterojunction partner to 

CdTe, CuxS and Cu(In, Ga)Se2 (CIGS) solar cells for the fabrication of CdS/CdTe [21, 

22], CdS/CuxS [6, 23] and CdS/CIGS solar cells [24, 25].

Several growth techniques have been used for the deposition of CdS for the 

various uses mentioned above. These techniques include CBD [26, 27], vacuum 

evaporation [28] chemical vapour deposition [29, 30], spray pyrolysis [31, 32], 

sputtering [33, 34], screen printing [35, 36], sol-gel [37, 38], close space sublimation 

[39, 40] and electrodeposition [41, 42]. As is common in most electrodeposited 

semiconductors in the past, electrodeposition of CdS has always been reported in the 

literature based on the conventional three-electrode configuration [43, 44]. Only one ,v 

report on the use of two-electrode system for the electrodeposition of CdS can be found 

in the literature today [42]. One of the reasons for the use of two-electrode system in 

this project is to eliminate any possible contamination of the deposition electrolyte by 

ions such as Ag+ and K+ which may eventually leak into the bath from the commonly 

used Ag/AgCl and Ag/HgCl (SCE) reference electrodes during the electrodeposition 

process as mentioned in chapter 5.

In the fabrication of high efficiency solar cells using CdS as window material, 

the most commonly used techniques for the deposition o f CdS is CBD [2,45 - 47] while 

CdTe is deposited using CSS [2, 45, 47 - 50], sputtering [34] or electrodeposition [41, 

44, 46, 51 - 53]. Due to the nature of the CBD process (a batch process), lots o f Cd- 

containing waste are generated in the large-scale deposition of CdS for solar cell 

fabrication. This no doubt, raises a lot of environmental concern and costs huge sums o f 

money for waste management and disposal. In a production line, this situation, coupled
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with the use of at least two different deposition techniques, presents real issues and 

leads to the production of expensive solar panels. It is preferable in such an industrial 

process to have only one production line by using only one technique to deposit both 

CdS and CdTe. A continuous process such as electrodeposition fits into this one

production line that can be used for the production of less expensive solar panels. It is

for this reason that the electrodeposition of CdS thin-films using two-electrode system 

has been researched and reported in this chapter.

6.1 Preparation of CdS deposition electrolyte

In order to carry out the electrodeposition of CdS thin-films for use in CdTe- 

based solar cells, the deposition electrolyte was prepared using 0.3M CdCh.HbO (molar 

mass = 215.31 g) and 0.03M Na2S2 0 3 .5H20 (molar mass = 248.18 g) in 800 ml of de­

ionised water. Both CdCfe-^O and Na2S2 0 3 .5H20 were laboratory reagent grade, 

purchased from Fisher Scientific United Kingdom. The resulting solution is contained in 

a 1000 ml plastic beaker. Because o f the purity grade o f the CdC^.IUO, the solution 

containing only CdC^.fbO  was first prepared. The pH was adjusted to 1.80±0.02 using 

HC1 and NH4OH. The 1000 ml plastic beaker containing this solution was put inside a 

2000 ml glass beaker containing some de-ionised water. This serves as a water bath to 

ensure uniform heating o f the electrolyte. The entire container was placed on a hot plate 

with a magnetic stirrer. After stirring the C d C ^ .^ O  solution at 400 r.p.m. for 24 hrs, it 

was heated to a temperature of (80±2)°C and a cyclic voltammetry was carried out 

using two-electrode configuration as was done in the case o f ZnS deposition electrolyte 

in section 5.1 using glass/FTO as the cathode and high-purity carbon rod as the anode. 

The CdCl2.H20 solution was then subjected to electro-purification for 48 hrs before the 

addition o f Na2S2 0 3 .5H20. The pH o f the resulting electrolyte was then adjusted again 

to 1.80± 0.02 at room temperature.

6.2 Substrate preparation

Two different types of substrate were used for the electrodeposition o f CdS in 

this project. These were glass/FTO and glass/FTO/ZnS. The same steps detailed in 

section 5.2 were taken to prepare the glass/FTO substrates by cleaning with soap 

solution, acetone, methanol, de-ionised water and drying in a stream of N 2 . Similar sizes 

(3.0 cm x 2.0 cm x 3.0 mm) of glass/FTO were also used. The glass/FTO/ZnS 

substrates were obtained from the previously electrodeposited n-ZnS layers. Prior to the 

deposition of CdS however, the ZnS layers o f the glass/FTO/ZnS substrates were rinsed
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with methanol and finally with de-ionised water and dried in a stream of N 2 before 

being attached to carbon plate to serve as the working electrode (Cathode).

6.3 Electrodeposition of CdS window/intermediate m aterial

After preparing the CdS deposition electrolyte which will be referred to as CdS 

bath hence forth, a cyclic voltammogram of the electrolyte was recorded using the two- 

electrode system as in the case of ZnS in section 5.4 and 5.5. This was done at a 

temperature of (80±2)°C with a stirring rate of 400 r.p.m using glass/FTO as the 

substrate. The cyclic voltammogram is shown in figure 6.1.

I 0-2

600 900 12001500
- 0.2 -

O-0.4 -

-0 .6  J
Cathodic Potential (mV)

0 300 600 90012001500

-0.05 -

-0 .1  J
Cathodic Potential (mV)

Figure 6.1: (a) Two-electrode cyclic voltammogram of CdS bath containing 0.3M 

CdCl2 + 0.03M Na2S2C>3 at a pH of 1.80±0.02 and temperature of (80±2)°C. (b) 

Expansion of the area around the potential axis for clarity.

The possible range of cathodic deposition voltages for CdS was obtained from 

the voltammogram to be (1300 - 1500) mV. A comprehensive study of the separate 

voltammograms of CdCl2 .H2 0 , Na2S2C>3 , and (CdCl2 .H2 0  + Na2S2C>3) electrolytes 

carried out by Sasikala et al [54] shows that the reduction of S2O 32'  ions take place 

earlier at a lower cathodic potential than the reduction of Cd2+ ions which happens at a 

relatively higher cathodic potential. The overall reaction for the deposition o f CdS is 

therefore given by the chemical equation:

C d 2+ +  S2Ol~ +  2e~  ^  CdS  +  SO f" (6 .1 )

A number of CdS layers were deposited on glass/FTO in the above identified
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voltage range and characterised in order to determine the best deposition voltage for 

CdS. The selected characterisation techniques for this purpose were based on PEC, 

optical absorption and XRD. From the results obtained, the best cathodic deposition 

voltage for CdS was taken as 1450 mV. With this, a number o f CdS layers were 

deposited on glass/FTO under different conditions for characterisation and fabrication 

of CdS/CdTe solar cells. Also some CdS layers were deposited on glass/FTO/ZnS for 

the fabrication of ZnS/CdS/CdTe multi-layer grade bandgap solar cells. All deposited 

CdS layers were dipped in a saturated solution o f CdCb in de-ionised water. The 

samples were allowed to dry in air and then annealed in air at 400°C for 20 minutes 

before using them for solar cell fabrication.

6.4 Characterisation of electrodeposited CdS layers

The various CdS layers deposited were characterised for their structural, 

electrical, optical, morphological and compositional properties using XRD, PEC, I-V, 

optical absorption, SEM and EDX measurements. This was done in order to further 

understand the behaviour and quality of these layers under various growth conditions 

before applying them in the fabrication of solar cells.

6.4.1 X-ray diffraction of CdS layers

The same XRD equipment used for the characterisation of ZnS layers was used 

for the characterisation of these CdS layers. Figure 6.2 shows the XRD patterns of CdS 

layers deposited for 45 minutes at a temperature of (80±2)°C and at different cathodic 

voltages within the identified deposition potential range. The five CdS layers were 

grown at cathodic voltages from 1445 mv to 1465 mV in steps o f 5 mV. All as deposited 

samples in figure 6.2 (a) show a characteristic polycrystalline feature with mixed 

hexagonal and cubic crystalline phases. There are four peaks corresponding to the 

hexagonal phase with (100), (002), (101) and (110) orientations and two peaks 

corresponding to the (111) and (200) cubic phase. The hexagonal peaks match the 

reference JCPDS file no 01-075-1545 for hexagonal CdS while the cubic peaks match 

the reference file no 01-080-0019 for cubic CdS. In the five samples the (100) peak 

occurs at 20 values in the range (24.7 - 24.9)°, the (002) peak occurs at 20 values in the 

range (26.3 - 26.5)° the (101) peak occurs at 20 values in the range (27.9 .- 28.2)° and 

the (110) peak occurs at 20 values in the range (43.6 - 43.7)°. Similarly the cubic (111) 

peak occurs at 20 values in the range (26.3 - 26.4)° and the (200) peak occurs at 20 in 

the range (30.4 - 30.5)°.

129



1600 (a) as-deposited

1465 mV

. 1455 mV

. 1450 mV

800

c 400

1600 (b) annealed

1465 mV

1460 mV

800 1455 mV

mV

400 1445 mV

FT<

Figure 6.2: XRD patterns o f (a) as-deposited and (b) annealed CdS layers deposited for 
45 minutes at different cathodic growth voltages.

After CdCl2 treatment and annealing in air at 400°C for 20 minutes, a startling 

observation was made. This was the disappearance of the peaks representing the cubic 

phase o f CdS. Figure 6.2 (b) shows the XRD patterns of the annealed CdS layers with 

only peaks representing the hexagonal phase. Metin et al [55] reported a similar 

scenario of mixed cubic and hexagonal phases in CBD-CdS in which the cubic phase 

disappeared after annealing. A slight narrowing of the range of 20 values for the four 

peaks was also observed with all the (100) peaks occurring at a 20 value o f 24.7°, all the 

(002) peaks occurring at a 20 value of 26.4°, the (101) peaks occurring at 20 range of 

(28.0 - 28.1)° and the (110) peaks occurring at 20 range of (43.5 - 43.6)°.

Figure 6.2 (b) shows that the preferred orientation of the crystallites in the

hexagonal CdS phase is in the (002) crystal plane. The disappearance of the peaks

corresponding to the cubic phase after annealing suggests that the cubic phase of CdS is

not stable, at least, at the annealing temperature used in this project. The essence o f this

particular experiment is to determine the best deposition voltage for CdS. For this

reason an estimation of the crystallite sizes was done and the effect of annealing on

them was investigated for the five samples grown at different voltages. To do this only

the hexagonal phase is considered since the cubic phase is not stable on annealing. The

(002) peak was considered as the preferred orientation for these samples. Although the

(002) peak coincides with FTO peak, close look at this peak in comparison with the

highest FTO peak (at 20 -37°) in the XRD patterns of the five samples shows that the

(002) peak actually represents the preferred orientation of CdS crystallites in the layers.

However, for crystallite size analysis, the (101) peaks were used for two reasons. First,
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because the (002) peaks coincide with FTO peak which will likely introduce error in the 

analysis. Secondly the (101) peaks are the next in intensity to the (002) peaks.

Tables 6.1 and 6.2 show the results o f analysis of the (101) peak for as-deposited 

and annealed CdS layers respectively. Using the JCPDS file No 01-075-1545 for 

hexagonal CdS phase (20 = 28.2°, d = 3.1648 A and relative intensity = 100%) for the 

(101) peak) as a reference, Tables 6.1 and 6.2 show that all the as-deposited and 

annealed samples displayed a slight downward shift in the 20 values and a slight upward 

shift in the d-spacing.

Table 6.1: XRD analysis of the (101) hexagonal peak for as-deposited CdS thin films 
grown at different cathodic potentials.

Sample
ID

Growth
Voltage
(mV)

Growth
time
(min)

20
(°)

FWHM
(°)

d-spacing
(A)

Crystallite
size
(nm)

CS106 1445 45 28.2 0.3247 3.1658 25.22
CSI05 1450 45 28.1 0.3897 3.1752 21.01
CS104 1455 45 28.1 0.1948 3.1714 42.03
CS103 1460 45 28.0 0.3897 3.1873 21.01
CS102 1465 45 28.1 0.3897 3.1704 21.01

Table 6.2: XRD analysis of the (101) hexagonal peak for annealed CdS thin films 
deposited at different cathodic potentials.

Sample
ID

Growth
Voltage
(mV)

Growth
time
(min)

2theta
(°)

FWHM
(°)

d-spacing
(A)

Crystallite
size
(nm)

CS106 1445 45 28.0 0.1299 3.1840 63.02
CS105 1450 45 28.0 0.1299 3.1855 63.02
CS104 1455 45 28.0 0.2598 3.1818 31.51
CS103 1460 45 28.1 0.2598 3.1792 31.51
CS102 1465 45 28.1 0.2598 3.1803 31.51

In terms o f the FWHM, only the sample grown at cathodic voltage of 1455 mV showed 

a broadening of the (101) peak after annealing relative to the as-deposited sample. All 

other samples experienced increase in crystallite sizes after annealing with the samples 

grown at 1445 mV and 1450 mV showing the highest crystallite size. However, in terms 

o f the crystallite sizes after annealing, 1450 mV was the best voltage since the sample 

has the highest percentage increase in crystallite size. With these and the results o f the 

compositional analysis carried out on these samples in section 6.4.5, the cathodic
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voltage of 1450 mV was chosen as the best voltage for the electrodeposition o f CdS in 

this project. An experiment carried out on solar cell fabrication and assessment across 

these voltages also supported this choice.

6.4.1.1 Effect of growth tem perature on the XRD of CdS layers

Here, five different CdS layers were grown at a cathodic voltage of 1450 mV for 

30 minutes and at five different temperatures. This is to study the effect o f growth 

temperature on the XRD results of these CdS layers. Figures 6.3 (a) and (b) show the 

XRD results of these layers, grown at temperatures o f 30°C, 40°C, 50°C, 60°C and 

70°C, before and after annealing respectively.

2000(a) as-deposited g  (b) annealed
2000

1500

50°C ^1000

40°C

500 30°.C30°C

FT]

Figure 6.3: XRD patterns of (a) as-deposited and (b) annealed CdS samples grown for 
30 minutes at different growth temperatures.

Both figures show that the deposition temperatures from 30°C to 50°C for 30 

minutes did not produce any noticeable XRD peaks for CdS. At a temperature o f 60°C, 

the clear XRD peaks began to emerge at the usual 20 positions. At a temperature of 

70°C, the peaks become clearer. Physically, the samples grown from 30°C to 50°C 

looked very transparent and yellow showing that the layers were very thin. Again it 

shows that at the initial nucleation stage, the deposited CdS has an amorphous nature. 

At higher temperatures of 60°C and above, the as-deposited samples grown for 30 

minutes looked dark yellow and as the temperature and growth time increased, they 

turned greenish-yellow. At this stage, the growth rate increased substantially as seen 

from rapid increase in deposition current density, and the samples always showed very 

clear XRD features. After annealing in air, the greenish-yellow samples turned orange
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yellow to orange depending on the thickness. The thicker the samples, the more they 

tend towards orange colour. These results and many other experiments done during this 

project, show that growth temperature and time have very strong influence on the nature 

of CdS layers deposited.

6.4.1.2 Effect of growth time on electrodeposited CdS layers

In order to investigate the effect of growth time on the nature of CdS samples 

grown, another set of five samples were grown at a temperature of 80°C, cathodic 

voltage of 1450 mV and for different times from 5 minutes to 25 minutes. Figures 6.4(a) 

and (b) show the XRD patterns of the samples grown, before and after annealing 

respectively. In this case, up to a time of 10 minutes, the XRD features did not show up 

clearly, suggesting that the materials at this early formation stage are amorphous. From 

15 minutes of growth and above, the materials begin to crystallise and the XRD peaks 

begin to show up.

2000 i

57 nm  (25min
1600

nm mm

mm
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§400 -
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20 (°)
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Figure 6.4 : XRD patterns of (a) as-deposited and (b) annealed CdS layers grown at 

cathode voltage of 1450 mV and temperature of 80°C for different durations producing 

different thicknesses.

A possible reason for this observed amorphous nature of CdS at the initial nucleation

and formation stages is the fact that the formation of sulphur atoms is the one to take

place at the cathode before the formation of Cd atoms. This prior formation o f sulphur

then helps to drive the deposition of Cd. At the initial stage therefore more sulphur gets

deposited on the cathode with only very little amount of Cd. As the deposition

progresses in time, more and more Cd is attracted to and deposited on the cathode
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leading to the formation of CdS with increased Cd-content as the two species react 

together at the cathode. As a result, CdS peaks begin to show up in the XRD at this 

growth time. Also with increase in growth temperature as shown in figure 6.3, the rate
I

of attraction and discharge of Cd and the resulting reaction between S and Cd at the 

cathode increases and the CdS crystals begin to form and grow.

Tables 6.3 and 6.4 show the variation o f CdS thickness with growth time for two 

sets of samples grown at 1450 mV, but at different temperatures. Each set o f samples 

was grown at a particular temperature.

Table 6.3: Variation of film thickness with growth time for samples grown at 80°C.

Sample ID Growth time 
(min)

Film thickness 
(nm)

CS170 12 172
CS171 15 239
CS172 19 317
CS173 24 374
CS174 28 452
CS175 34 466

Table 6.4: Variation of film thickness with growth time for samples grown at 85°C.

Sample ID Growth time 
(min)

Film thickness 
(nm)

CS144A 5 127
CS145 10 201
CS146 15 295
CS147 20 377
CS148 25 557

Figures 6.5 and 6.6 also show the graphs of thickness vs. growth time for the CdS data

given in Tables 6.3 and 6.4. Both tables and figures show that the thickness o f deposited

CdS layers increases as deposition time increases. This relationship is however not

linear but rather appears as a fourth order polynomial. The error in the measurements is

about ±50 nm and the reproducibility is up to 90%. The reason for this nonlinearity is

not far-fetched. The condition of the deposition bath at the time of growth o f each

sample plays a significant part. Experience acquired during the project shows that

because of the problem of sulphur precipitation, especially at elevated temperatures like

the ones used in this experiment the concentration of sulphur in the bath runs low very

easily. This usually manifests in the rapid fall in the deposition current density. To try to

restore the concentration of sulphur in the bath, a calculated amount of the sulphur
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source (Na2S2 0 3 ) is usually added to the bath from time to time. The same thing 

happens with Cd2+ but to bring this situation under control, the initial concentration of 

Cd2+ is made higher (10 times higher in this case) than that o f S2* in the bath. This is 

another reason why the ratio o f the concentration o f these two ions in the bath is [Cd2+] / 

[S2'] = 10 / 1. As a result of the above issues, there is a fluctuation in the thickness of the 

samples obtained under constant temperature following the fluctuation in the 

concentration of the ions in the bath.
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Figure 6.5: Variation of film thickness with growth time for the set of samples grown at 

80°C.

800 n
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Figure 6.6: Variation of film thickness with growth time for the set o f samples grown at 

85°C.

6.4.2 Photoelectrochemical (PEC) cell study

The PEC results of the electrodeposited CdS layers are shown in Table 6.5 and 

figure 6.7. The measurements were done with CdS layers grown at cathodic voltages 

ranging from 1300 mV to 1480 mV covering the range of deposition potentials 

identified earlier from previous experiments.
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Table 6.5: PEC signal of n-type CdS deposited at different cathodic potentials.

Cathodic Voltage 
(mV)

PEC Signal 
(mV)

1300 -158
1350 -107
1380 -103
1400 -99
1450 -97
1480 -110

The PEC signals of all the samples have negative value indicating that the samples all 

have n-type electrical conductivity. This result is in perfect agreement with the fact that 

CdS occurs naturally as an n-type semiconductor. It is a difficult task to obtain intrinsic 

p-type doping o f CdS. However, some researchers have achieved extrinsic p-doping of 

CdS by mainly using Cu as a dopant [56 - 59]. Bi has also been used to achieve p-type 

doping in CdS through ion implantation [60]. The results in Table 6.5 and figure 6.7 are 

for annealed CdS layers. The as-deposited layers also displayed n-type PEC signals 

although the results are not shown in this report.

1300 1350 1400 1450 1500-30 -

-80 -

130 -

-180 J
Cathodic Voltage (mV)

Figure 6.7: PEC signal of n-type CdS deposited at different cathodic potentials.

6.4.3 Current-voltage m easurement

The purpose of this I-V measurement is to determine the resistivity o f CdS layer 

deposited at the cathodic voltage of 1450 mV for different time duration as wells as to 

determine the effect of CdC^ and CdCl2+CdF2 treatments on the resistivity/conductivity 

of the electrodeposited CdS layers. Six CdS samples were grown with different 

thickness. Each sample was divided into four pieces. One piece of each sample was left 

as-deposited. The second piece was annealed at 400°C for 20 minutes without any prior 

chemical treatment. This sample was designated annealed without CdC^. The third
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piece of sample was treated with CdC^, by dipping it in saturated solution of CdCh in 

de-ionised water and allowing it to dry in air. It was then annealed at 400°C for 20 

minutes. The last piece o f sample was treated with a saturation solution o f CdC^ and 

CdF2 as in the previous case before annealing at the same temperature and time. The 

solution contained about 0.1 mM of CdF2 . After annealing, the samples were allowed to 

cool in air atmosphere. Indium metal contacts were then evaporated onto the samples as 

in the case of n-ZnS samples in section 5.6.3. Each In contact was circular with 2 mm 

diameter, giving an area o f 0.031 cm each. The 1-V measurements were then carried 

out in exactly the same manner as in the previous case o f ZnS layers.

Table 6.6 and figure 6.8 show the results of the resistivity measurements on the 

six different samples.

Table 6.6: Effect o f various annealing conditions on the room temperature resistivity of 
CdS layers of different thicknesses.

S/NO Sample
ID

Thickness
(nm)

As-Deposited 
p (Ocm) 
xlO4

Annealed 
without 
CdCl2 
p (Qcm) 
xlO4

Annealed 
with 
CdCl2 
p (Hem) 
xlO4

Annealed
with
CdCl2+CdF2 
p (£2cm) 
xlO4

1 CS241 223 4.4 4.1 4.0 3.8
2 CS238 235 4.9 4.5 4.2 4.6
3 CS242 323 4.6 6.4 4.9 4.8

4 CS236 405 2.4 2.1 2.1 2.4
5 CS237 526 2.5 2.8 2.2 2.3
6 CS240 600 2.9 3.4 3.0 3.2

-“4—As-dep 
—a —HT
-& -H T  with CdC12 
-* -H T  with CdCl+CdF2

200 300 400 500 600
______________ Thickness (nm)__________

Figure 6.8: Effect of various annealing conditions on the room temperature resistivity 
of CdS layers with different thicknesses.
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From Table 6.6 the trend of the resistivity dependence on film thickness does not seem 

to be clear. However, if  the samples are separated into the upper three and the lower 

three, then a sensible trend is observed. For each group o f three samples, the resistivity 

increases as thickness increases for all the samples. In each condition, the three samples 

in the lower group have lower resistivity values than the other three samples in the 

upper group. From figure 6.8, one sees a clearer picture of the resistivity variation with 

film thickness. It can be seen that the resistivity o f CdS increases with thickness up to a 

thickness of -323 nm. It then falls rapidly as the thickness increases up to a thickness of 

-405 nm. Then the resistivity increases again slowly as the thickness o f the layers 

increases. The error in the resistivity measurement is about within 5% with 

reproducibility of up to 80%. The most significant trend in this whole result is that the 

resistivity values are high for small thicknesses up to 323 nm and are lower for large 

thickness >323 nm. There are two possible reasons for this observed trend in the 

resistivity of CdS with respect to material thickness. One is to do with excess S-content 

especially at the early stages of nucleation and formation as explained previously in 

section 6.4.1.2. In this situation, the CdS with thickness up to 323 nm are still 

amorphous with a lot of S and only very little amount of Cd, therefore producing S-rich 

CdS. As the deposition progresses and the film thickness builds up, more and more Cd 

is incorporated in the CdS formed resulting to the formation of CdS material with 

improved stoichiometry and crystallinity. This resulting crystalline CdS certainly has 

more improved qualities compared to the amorphous and S-rich CdS. Consequently the 

resistivity values of the CdS materials with higher thicknesses (>323 nm) are lower than 

those of samples with lower thicknesses. This explanation correlates with the observed 

XRD results for samples grown for different durations having different thicknesses.

Annealing with or without CdCl2 and CdCl2+CdF2 treatment does not seem to 

have any pronounced effect on the resistivity of these materials. It is very difficult to 

figure out any existing trend in the resistivity of both annealed and as-deposited CdS 

materials in this experiment. Liu et al [61] reported similar behaviour for CBD-CdS 

with no clear trend in resistivity with respect to film thickness. They however, only 

observed significant reduction in resistivity by about two orders of magnitude (from 105 

£2cm to 103 Qcm) with increased growth temperature of 80°C. The most important 

observation in this regard however, is that the resistivity of both as-deposited and 

annealed CdS layers are of the same order o f magnitude. The values are also in good 

agreement with literature values [61 - 63]. A good number of papers however, have 

reported drastic reduction in resistivity o f CdS after annealing with or without CdCL
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treatment [54, 55, 64 - 66] and some have reported decrease in resistivity with 

increasing film thickness [28, 67]. Preusser and Cocivera reported increase in resistivity 

after annealing [63]. For the present samples in the annealed form, the resistivity 

decreased slightly with CdCl2 treatment compared to the samples annealed without 

CdCl2 treatment. With CdCl2+CdF2 treatment the resistivity went up slightly again. This 

suggests that there is compensation effect in the materials when they are annealed with 

CdCl2+CdF2 treatment. However, the two samples exempted from this group (ie CS241 

and CS242) rather displayed continuous slight decrease in resistivity with CdCk and 

CdCl2+CdF2 treatment suggesting no such compensation effect.

6.4.4 Spectrophotometry

In this section the results of optical characterisation of electrodeposited CdS 

layers are presented. Different experiments ranging from effects o f growth voltage to 

effects of growth time/thickness, annealing and temperature on the optical properties of 

CdS layers were carried out and the results are presented.

6.4.4.1 Effect of growth voltage on the optical absorption of CdS layers

Figures 6.9 (a) and (b) show respectively the graphs o f absorbance vs. 

wavelength and square of absorbance vs. photon energy for CdS samples grown at 

different cathodic voltages for 45 minutes. Figure 6.9 (a) shows that the five samples 

have similar absorbance patterns showing absorption edge at the same photon 

wavelength of 512 nm. Figure 6.9 (b) shows the different layers displaying 

approximately the same energy bandgap of 2.42 eV again with similar absorbance 

edges. These results simply show that CdS of similar quality can be deposited in this 

range of growth voltage.
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Figure 6.9 : Optical absorption spectra of annealed CdS samples grown at different 
cathodic voltages for 45 minutes, (a) absorbance (A) vs. photon wavelength (b) A2 vs. 
photon energy.

6.4.4.2 Effect of annealing on the absorption properties of CdS layers ^

The effect of post-deposition annealing on CdS was investigated using five CdS 

layers with different thicknesses. Figures 6.10 (a) and (b) show the absorbance spectra 

of those samples before and after post-deposition annealing respectively.

Figure 6.10 (a) shows large scatter in the absorbance of the as-deposited layers. The 

samples even show significant absorption in the long wavelength region. In the 

annealed samples (fig 6.10 (b)), the absorbance curves show more defined absorption 

edges with reduced scatter in absorbance. There is also considerable (over 50%) 

reduction in the absorption o f photons in the long wavelength region o f the spectrum. 

The raised absorption tail in the as-deposited samples indicates the presence of 

significant amount of photon scattering in these samples. This may be due to the 

presence of mixed phases and strain/stress in the samples as was pointed out earlier in 

the XRD study. After annealing, CdS materials with improved qualities are obtained 

with significantly reduced scattering hence the results in figure 6.10 (b).
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Figure 6.10: Absorbance spectra of (a) as-depoaited and (b) annealed CdS layers of 
different thicknesses grown at the same cathodic voltage o f 1450 mV.

In figures 6.11 (a) and (b), the graphs of the square o f absorbance vs. photon 

energy are shown. The purpose of these graphs is to estimate the energy bandgaps o f the 

CdS samples. Again figure 6.11 (a) shows scatter in the absorption spectra indicating 

significant presence of scattering of photons in the as-deposited samples. The variation 

in bandgaps of the materials is large with values in the range (2.38 -  2.45) eV.

127 nm127 nm

1

0
1.5 2 2.5 3 3.5

Photon energy (eV)
2 2.5 3 3.5

Photon energy (eV)

Figure 6.11: Square o f absorbance vs. photon energy for (a) as-deposited and (b) 

annealed CdS layers of different thicknesses grown at the same cathodic voltage of 

1450 mV.

After annealing, the quality of the materials improved with reduced stress/strain

resulting in significant reduction in photon scattering. These samples therefore display

relatively low absorption with more defined absorption edges. The bandgap values

come to approximately the same value of 2.42 eV. These observations are common for

over 250 CdS samples deposited in the course of this research.
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6.4.4.3 Effect of growth tem perature on the absorption properties of CdS layers

Figure 6.12 shows the effect o f growth temperature on the optical absorption of 

CdS layers grown at five different temperatures at the same voltage and for growth time 

of 30 minutes. In figure 6.12 (a), the absorption curves show large scatter with the 

curves showing high absorption with very weak absorption edges. This results in energy 

bandgap values in a wide range (2.39-2.56) eV with values of 2.56 eV, 2.50 eV, 2.40 eV 

and 2.39 eV corresponding to samples grown at 43°C, 50°C, 60°C and 70°C 

respectively. The absorption increases as the growth temperature increases, while the 

energy bandgap decreases as the growth temperature increases. The samples grown at 

33°C did not show any absorption, indicating that no significant deposition o f CdS 

actually took place at this temperature at the chosen growth time of 30 minutes. In fact 

the curve corresponding to this temperature is not visible in the two figures.

 33°C
• -  • 43°C
 50°C
 60°C
 70°C

e0.5 - 

-fiO.4 - 33°C
• -  • 43 °C
 50°C
 60°C
 70°C

Photon energy (eV) Photon energy (eV)

Figure 6 .12: Effect of growth temperature on the optical absorption o f (a) as-deposited

and (b) annealed CdS layers grown at 1450 mV for 30 minutes.

After annealing, figure 6.12 (b) shows that significant changes took place in 

these samples during the annealing process. The absorbance of all the samples got 

drastically reduced. The high absorption tails due to photon scattering lowered 

considerably indicating the presence of little or no scattering centres resulting from the 

release of stress/strain in the crystal lattices of the samples. Significant improvement of 

the absorption edges become evident and the bandgaps o f the samples came to the same 

value of -2.42 eV except for the sample grown at 33°C whose absorption curve did not 

appear in the figure just like in figure 6.12 (a). Generally again, the absorbance 

increases as the growth temperature increases indicating that more CdS materials were
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deposited at higher temperatures than at lower temperatures.

6.4.4.4 Effect of thickness on the full optical properties of CdS layers

In this particular experiment, the full optical characterisation o f CdS samples o f 

different thickness was undertaken. This involved determining the absorbance, 

transmittance, reflectance, absorption coefficients extinction coefficients, refractive 

indices and dielectric constants o f these materials with different thicknesses. Since the 

preceding sections have covered the effects o f various growth parameters on the 

absorption properties of CdS layers and since better CdS materials are obtained after 

annealing, only the annealed samples grown at the cathodic voltage o f 1450 mV were 

used in this characterisation.

Figures 6.13 (a) and (b) show the absorbance vs. wavelength and square of 

absorbance vs. photon energy o f the five different layers respectively. The figures 

generally show that absorption increases as film thickness increase and the gradient of 

the absorption curve also increases with film thickness.
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Figure 6.13: (a) Absorbance vs. Wavelength and (b) A2 vs. Photon energy for annealed 

CdS layers of different thicknesses.

Figures 6.14 (a) and (b) show the transmittance and reflectance spectra o f CdS 

layers of different thicknesses respectively. In figure 6.14 (a), one observes that 

transmittance decrease as film thickness increases.
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Figure 6.14: (a) Transmittance vs. Wavelength and (b) Reflectance vs. Wavelength for 

annealed CdS layers of different thicknesses.

Also transmittance increases as incident photon wavelength increases. For 

samples with thickness >201 nm, there is no significant transmission of light in the 

lower wavelengths up to 480 nm. However, for the sample with thickness o f 127 nm, 

there is relatively significant transmission o f photons in this wavelength range with up 

to 50% transmittance. This shows and explains the reason why it is generally accepted 

that for solar cell application as window material, CdS needs to have very small 

thickness, even as small as (10 - 50) nm [68]. The problem however in this situation, is 

the issue of good coverage o f the underlying TCO layer. If the thickness o f CdS is too 

low, it may not properly cover the TCO surface and this leads to short-circuiting when 

CdTe is deposited on CdS for solar cell fabrication. But if the particular CdS used is 

highly photovoltaic, then very thin layer is not necessary as absorption o f photons by 

the CdS layer helps to create more photo-generated charge carriers. Figure 6.14 (b) 

shows that the reflectance of all the layers have a maximum value of 20%. However, the 

photon wavelength at which this maximum occurs is strongly thickness dependent. As 

the thickness of the layer increases, this reflectance maximum as well as the onset of 

reflectance shift towards longer wavelengths. Towards the longer wavelengths from the 

point of maximum reflectance, the reflectance falls rapidly below the bandgap o f CdS. 

This results shows that it is not very helpful to use extremely thin CdS as a window 

layer for example in CdS/CdTe solar cell since there will be significant reflectance o f 

the incident light in the short wavelength regions as some photons in this wavelength 

region (high energy photons) will be reflected back into the atmosphere by very thin 

CdS. Using very thick CdS layer again will result in the reflection of significant amount 

o f photons in the visible region. There should therefore be a balance somewhere in-
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between, requiring an optimum thickness of CdS for this kind of application.

Figures 6.15 (a) and (b) show the graphs of absorption coefficient vs. photon 

energy (hv) and (ahv)2 vs. photon energy respectively. Both figures show similar trend 

in the dependence o f absorption on incident photon energy. Unlike in figure 6.13 (b), 

the absorption edges shift towards shorter wavelength as film thickness increases; this is 

surprising as the opposite trend is expected. From figure 6.15 (a) the absorption 

coefficients of these layers around the bandgap of CdS lie in the range (4.3 *104 - 

7 .2xl04) cm"1 which is in agreement with literature values [62, 65]. From figure 6.15 

(b), the bandgaps of the various layer come to the same value o f -2.42 eV as seen 

earlier in figure 6.13 (b).
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Figure 6.15: (a) Absorption coefficient vs. Photon energy and (b) (ahv)2 vs. Photon 

energy for annealed CdS layers with different thicknesses.

Figure 6.16 (a) and (b) show the dependence of extinction coefficient and 

refractive index on photon energy respectively.
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Figure 6.16: (a) Extinction coefficient vs. Photon energy and (b) Refractive index vs.

Photon energy for annealed CdS layers of different thicknesses.
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Figure 6.16 (a) follows the trend as absorption coefficient with thinner samples 

displaying higher if-values than thicker samples, showing that incident light will travel 

further in the thinner samples before getting completely absorbed than in the thicker 

samples. The ^-values of these samples are in the range (0.16 -  0.28) around the 

bandgap of CdS. In figure 6.16 (b), the refractive index shows a maximum value o f ~2.3 

around the bandgap of CdS for all the layers. This shows the uniformity in the quality 

o f all the layers since they were annealed. The refractive index generally follows a sort 

o f parabolic trend with a maximum. Below the bandgap energy o f the layers, the 

refractive index decreases. Above the bandgap energy, n falls more rapidly. The only 

exception to this particular behaviour is the thinnest layer with thickness of 127 nm in 

which n rather falls very slowly beyond the bandgap energy of CdS. This suggests that 

there is significant scattering o f light o f shorter wavelengths in this particular material in 

correlation with the observation in the reflectance.

Figures 6.17 (a) and (b) show respectively, real and imaginary parts o f the 

dielectric constant of the CdS layers of different thicknesses. The real dielectric constant 

(£>) in figure 6.17 (a) has the same feature as the refractive index showing a maximum 

value o f -6 .9  for all the layers. The photon energy corresponding to this value of er 

varies slightly according to the thickness of the material. The thicker the sample, the 

lower this energy value relative to the bandgap energy of the layer. Again towards lower 

energy values from the bandgap energy, the e> values fall gradually while towards 

higher energy values, they fall more rapidly. The implication of this behaviour is that 

the material will exhibit higher capacitive properties in the lower photon energy region 

than in the higher energy region.
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Figure 6.17: (a) Real dielectric constant vs. Photon energy and (b) imaginary dielectric

constant vs. Photon energy for CdS layers of different thicknesses.
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The imaginary dielectric constant (£,) in figure 6.17 (b) decreases as the film 

thickness increases in the energy region below the bandgap value of the layers. For each 

layer however, ey increases with increasing photon energy reaching a maximum value at 

a certain cut-off energy beyond which it falls rapidly. This cut-off point varies with film 

thickness slightly towards higher energy as the film thickness decreases. The sample 

with thickness of 127 nm again displays a different behaviour beyond this cut-off 

energy. The value of e,- for this layer tends to increase beyond this energy reaching 

another higher maximum value around photon energy of 3.2 eV.

6.4.5 Scanning electron microscopy (SEM) and energy dispersive X-rays (EDX)

Figure 6.18 shows the SEM images o f as-deposited (AD) and annealed (HT) 

CdS samples grown for 45 minutes each at five different cathodic voltages from 1445 

mV to 1465 mV in steps of 5 mV. The very first striking observation in the figures is the 

effect of post-deposition annealing with CdCl2 treatment on these samples. It is 

important to mention that these samples were treated with saturated CdCl2 solution in 

methanol whereas those presented in figure 6.20 were treated with CdCb in de-ionised 

water. The use of CdCh in methanol was done at the early stages of this research but 

was discontinued with after discovering that it sometimes created tiny pinholes in CdTe 

layers after using it. The cementing effect on the grains observed in the SEM of the 

annealed samples in figure 6.18 therefore appears to be as a result of treatment with 

CdCl2 in methanol since this effect is seen in samples grown at different voltages. 

These were the same samples used in the XRD analysis in figure 6.2.

In the as-deposited samples, one notices that the grains in the SEM images are 

more clearly visible in the samples grown at lower cathodic voltages o f 1445 mV and 

1450 mV. As the growth voltage increases, the tendency of the grains to fuse together 

increases as well. This therefore makes it difficult to estimate the grain sizes o f these 

layers as is also the case in the annealed sample. The observation of clear grain size in 

the samples grown at cathodic voltages o f 1445 mV and 1450 mV is in agreement with 

the XRD analysis of the crystallites in these materials. It can be recalled that the XRD 

analysis of Tables 6.1 and 6.2 show that only the samples grown at these two voltages 

displayed higher increase in crystallite sizes. The crystallite sizes after annealing 

according to Table 6.2 was 63.02 nm for both 1445 mV and 1450 mV. This result 

appears to be in agreement with the observed grain sizes of these as-deposited samples 

in figure 6.18 with the sample grown at 1445 mV showing larger grains than the sample 

grown at 1450 mV.
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Figure 6.18: SEM images of as-deposited (AD) and annealed (HT) CdS samples grown 

at different cathodic voltages for 45 minutes. CdCh treatment was done with saturated 

CdCb in methanol.

Figure 6.19 shows the EDX spectra o f the same samples before and after post 

deposition annealing indicating the presence of both Cd and S atoms in these materials. 

The peaks showing C, N, O and Si must have come from the underlying glass/FTO 

substrate on which these CdS layers were grown. The percentage atomic concentrations 

of Cd and S in these samples, obtained from analysis of the EDX are presented in figure

6.21 and Table 6.7.

1465 mV (AD) 1465 mV (HT)

:ut Scale ffld sC m sor. 6.850Scale cts Cursor 7.M7 d s |

1460 mV (HT)

65 1
 keV :uB Scala 403 d s  Cursor 6 S5Q:i l  Scale 205 els Cursor 7.035 (4 d sj

149



1455 mV (HT)1455 mV (AD) s*

'■111 
(.5

:ul Scale 2893 d s  C m  5.003 (51 d s)i i i S d e W c t s  Cursor 6 850 (17 cts)

1450 mV (HT)1450 mV (AD)

keV :ufl S d a  1071 d s  Cursor. 5015 (28 ds):u> Scale 1036 cts Cursor. 6.850 (13 ctsj

1445 mV (HT)1445

:uB Scab 1159 els Cursor 6.015 (23 ctsj:uB Scale 450 cts Cursor 6.850 (13 ds)

Figure 6.19: EDX spectra of as-deposited (AD) and annealed (HT) CdS samples grown

at different cathodic voltages for 45 minutes. Annealing was preceded by CdCl2 

treatment.

Figure 6.20 shows the SEM images o f CdS samples grown at a cathodic voltage 

of 1450 mV with different thicknesses. It can be seen that as the thickness of the layers 

increase, the grains become clearer and more closely packed. At thicknesses o f (127 and 

201) nm however, the amount of deposited CdS material could not completely cover 

these particular FTO substrates. These two samples therefore show significant amount
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of gaps in-between CdS grains with some FTO grains clearly exposed. The use o f CdS 

layers of these thicknesses for example, in the fabrication of glass/FTO/CdS/CdTe/metal



Figure 6.20: SEM images of as-deposited (AD) and annealed (HT) CdS samples grown 
at cathodic voltage o f 1450 mV with different thicknesses. CdCl2 treatment was done 
with saturated CdCl2 in de-ionised water.

definitely be a failure as a result of shunting o f both CdTe and the metal contact with the 

FTO which will result in loss of fill factor and open-circuit voltage. Apart from the 377 

nm sample (corresponding to a growth time of 20 minutes), the other samples did not 

show any significant increase in grain size after post-deposition annealing. This 

suggests that this thickness may be the approximate optimum thickness for CdS based 

on grain size improvement after annealing for this particular glass/FTO substrates used 

in this research.

The cementing effect after annealing observed in the samples o f figure 6.18 is 

not visible in the samples o f figure 6.20. As mentioned earlier, this may be because 

these samples (in figure 6.20) were treated with CdCh dissolved in de-ionised water as 

against CdCl2 dissolved in methanol used in the samples o f figure 6.18.

Table 6.7 and figure 6.21 show the percentage S and Cd compositions o f the 

CdS layers grown at different cathodic voltages for 45 minutes.

Table 6.7: Percentage S and Cd atomic compositions of as-deposited and annealed CdS 

samples growm for 45 minutes at different cathodic voltages.

Cathodic
voltage
(mV)

Sample
ID

Growth
time
(min)

Atomic composition (%) As-
deposited
Cd/S

Annealed
Cd/SAs-

deposited
Annealed

Cd S Cd S
1445 5 45 46.6 53.4 46.7 53.3 0.87 0.88
1450 4 45 46.6 53.4 47.8 52.2 0.87 0.92
1455 59 45 50.4 49.6 49.1 50.9 1.02 0.96
1460 2 45 45.1 54.9 45.7 54.3 0.82 0.84
1465 1 45 42.1 57.9 44.2 55.8 0.73 0.79
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Figure 6.21: Percentage S and Cd atomic compositions of (a) as-deposited and (b) 
annealed CdS samples grown for 45 minutes at different cathodic voltages.

These atomic concentrations were obtained from the EDX using EDX analysis software 

of the SEM equipment. Both Table 6.7 and figure 6.21 (a) show that all the as-deposited 

samples were S-rich, except for the sample grown at cathodic voltage o f 1455 mV 

which rather showed Cd-richness. With the exception o f this particular sample, it is also 

observed in the as-deposited samples that the concentration of S in the layers increases 

as the growth voltage increases while the concentration of Cd decreases accordingly.

After annealing, both Table 6.7 and figure 6.21 (b) reveal all the samples to be 

clearly S-rich. A very close observation also shows that the samples become more 

stoichiometric after annealing. The only exception to this is only the sample grown at 

1455 mV. These results and others seen previously demonstrate also that the best 

electrodeposited CdS material from this experiment comes after post-deposition 

annealing. The sample with the best stoichiometry before and after annealing (with the 

exception of the sample grown at cathodic voltage 1455 mV sample) is the sample 

grown at the cathodic voltage of 1450 mV with Cd/S = 0.92 after annealing. All other 

samples have Cd/S < 0.92 after annealing.

Table 6.8 and figure 6.22 show the percentage S and Cd composition o f the 

samples grown at cathodic voltage of 1450 mV for different times with different 

thicknesses.
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Table 6.8: Percentage S and Cd atomic compositions of CdS layers grown at cathodic

voltage o f 1450 mV for different durations.

Vg
(mV)

Sample
ID

Growth
time
(min)

Thickness
(nm)

Atomic composition (%) As-
deposite

d
Cd/S

Annealed
Cd/SAs-

deposited
Annealed

Cd S Cd S
1450 CS148 5 127 42.2 57.8 30.9 60.1 0.73 0.51
1450 CS147 10 201 44.7 55.3 47.9 52.1 0.81 0.92
1450 CS146 15 295 48.1 51.9 48.8 51.2 0.93 0.95
1450 CS145 20 377 51.4 48.6 48.7 51.3 1.06 0.95
1450 CS144 25 557 48.5 51.5 48.6 51.4 0.94 0.95
1450 CS4-D 45 700 46.6 53.4 47.8 52.2 0.87 0.92

100

(a) As-deposited (b) Annealed

- f l

45
Growth time (min) Growth time (min)

Figure 6.22: Percentage S and Cd atomic compositions of CdS layers grown at cathodic 
voltage o f 1450 mV for different durations.

The results show generally again that as-deposited samples are S-rich except for the 

sample grown for 20 minutes with thickness o f 377 nm. The trend in S-content o f these 

samples is that, as the deposition time (thickness) increases the S-content decreases up 

to the thickness of about 377 nm and then begins to increase as thickness increases 

beyond this point. After annealing, all the samples emerged S-rich. The best 

stoichiometry after annealing comes for thickness in the range (295 - 557) nm 

corresponding to growth time in the range (15 - 25) minutes according to Table 6.8 and 

figure 6.22 (b).

It is also important to point out here that EDX technique is not an accurate 

technique for precise determination of atomic composition as mentioned in section 3.3.2 

of chapter 3. The results presented in this chapter may therefore be taken as qualitative 

and not quantitative.
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6.5 Conclusion

Electrodeposition and characterisation of CdS layers have been presented in this 

chapter. The electrodeposition of these layers was carried out using two-electrode 

system for process simplification. The precursors used were CdCfeJHkO and 

Na2S203.5H20 while the pH and deposition temperature were 1.8±0.02 and 85±2°C 

respectively. All deposited samples showed n-type electrical conductivity over a wide 

range of cathodic deposition potentials with the best cathodic deposition potential 

identified as 1450 mV. XRD results show that as-deposited samples were 

polycrystalline in nature with mixed phases of cubic and hexagonal structures. After 

annealing however, the XRD peaks representing cubic phase disappear completely 

while the peaks of the hexagonal phase are enhanced with preferred orientation in the

(002) plane. Also, the bandgap of all the layers come to 2.42 eV after annealing, 

indicating improvement in the quality o f the materials after this process. Results of 

optical characterisation show that absorption increases with sample thickness with a  in 

the order of 104 cm"1 around the bandgap. Refractive index also increases with thickness 

showing a maximum value of 2.3 around the bandgap and extinction coefficient 

decreases with increasing thickness with values in the range (0.16 -  0.28) around the 

bandgap. The resistivity o f the layers also increases with thickness with values generally 

in the range (2.1 -  6.4)xl04 Hem. CdCk treatment with CdCk dissolved in methanol 

results in cementing together of the grains unlike in the case of CdCk dissolved in de­

ionised water. Crystallite sizes of annealed samples were observed to be in the range (31 

-  63) nm while EDX analysis shows that the samples are S-rich under the conditions 

described.
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Chapter 7: CdTe deposition and characterisation

7.0 Introduction

The electrodeposition o f CdTe for the fabrication o f CdS/CdTe solar cells has 

received research attention for quite some time now [1 - 9]. The manufacturability and 

scalability o f this simple but powerful process has been undoubtedly demonstrated by 

British Petroleum (BP Solar) company in the late 1990s by the production o f over 10% 

efficiency solar panels o f ~1 m2 [3]. The conventional electrodeposition set-up usually 

involves three electrodes (working electrode or cathode, counter electrode or anode and 

reference electrode) and most of the work reported so far on the electrodeposition of 

CdTe and other semiconductors in general, have been based on the three-electrode 

system [1, 9 - 15]. The use of simple two-electrode system for electrodeposition of 

semiconductors is uncommon as the conventional electrochemical deposition process is 

traditionally based on the principle o f three-electrode system [16]. As a result, only very 

few reports can be found in the literature involving the use of two-electrode systems for 

the electrodeposition of semiconductors [17-19].

In the whole history of electrodeposition of CdTe thin films however, it is 

difficult to find any documented report on the use of two-electrode systems in the 

literature. This situation therefore prompted the use o f two-electrode system in the 

electrodeposition of CdTe as well as other thin film semiconductors for the fabrication 

o f CdTe-based solar cells in this thesis. In addition, the suspicion that possible leakage 

o f unwanted groups 1A and IB ions like K+ and Ag+ from saturated calomel electrode 

(SCE) and Ag/AgCl reference electrode [20] could deteriorate the efficiency of CdTe 

solar cells (since n-type CdTe is the preferred species in this work instead of p-type 

CdTe), gave strong impetus to the investigation o f the use of the two-electrode system 

in the electrodeposition of CdTe and other semiconductors. These ions are known to 

have detrimental effects on CdTe-based solar cells [6 , 21]. This approach therefore 

serves to eliminate one possible impurity source (the reference electrode) for the 

development of n-CdTe-based solar cells as well as to simplify the electrodeposition 

process and reduce cost at the same time. Again, the deposition temperature can be 

raised without the fear of exceeding the operating temperature limit of the reference 

electrode usually specified by the manufacturers (~70°C for SCE and ~100°C for 

Ag/AgCl electrode) [22]. This will have the benefit of improving the crystallinity of the 

semiconductors deposited. Along the line, a brief comparative study of the possible
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effects of the two-electrode and three-electrode systems was carried out to study the 

effects of these different electrode systems on the quality of CdTe layers produced. This 

study however, showed no particular difference in the quality of CdTe layers deposited 

using both electrode systems.

The fact that CdTe can be grown with n-type or p-type electrical conductivity 

without extrinsic doping is well known [23, 24] and this is particularly achieved by 

changing the stoichiometry of the material. A Cd-rich CdTe results in n-type 

conductivity (n-CdTe) while a Te-rich CdTe results in p-type conductivity (p-CdTe)

[24]. In electrodeposition, this stoichiometry change is simply achieved by varying the 

deposition potential. At lower cathodic deposition potentials within the possible 

deposition potential range of CdTe, p-CdTe is obtained. At higher deposition potentials 

n-CdTe is obtained [23], and at a potential somewhere in-between, intrinsic CdTe (i- 

CdTe) is obtained. This shows that such a material can be deposited in a certain range o f 

deposition potential depending on which conductivity type one wants. This same 

situation has also been reported for electrodeposited p-, i- and n-type copper indium 

diselenide (CIS) within a cathodic deposition potential range of (2.20 -  2.80) V in two- 

electrode system [17] and p+-, p-, i-, n-, and n+-type copper indium gallium diselenide 

(CIGS), within a cathodic deposition potential range of (0.40 -  1.35) V in three- 

electrode system [25] as well as for p- and n-type ZnSe, within a cathodic deposition 

potential range of (0.50 -  0.60) V in three-electrode system [26], though the doping in 

this case o f ZnSe was by addition of extrinsic dopants (As and Ga). In all these 

examples, it becomes very clear that the electrodeposition of any particular 

semiconductor can actually be carried out over a certain wide range o f deposition 

potentials. As another example, the work by Diso et al. [19], on two-electrode 

deposition of CdS layers, shows that good quality CdS layers can be obtained in a 

cathodic deposition range of (1300 -  1500) mV under the conditions they used. In the 

work by Takahashi et al in ref [23], p-type and n-type CdTe were electrodeposited in a 

cathodic potential from 300 mV to 600 mV vs. Ag/AgCl which is actually a potential 

range of 300 mV.

One of the issues usually raised about the two-electrode system in favour o f the 

three-electrode system is that of fluctuation in the deposition potential and current 

density over the surface of the working electrode due to the measurement o f the applied 

potential with respect to the anode unlike in the three-electrode system where the 

applied potential is measured with respect to the reference electrode. The three-
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electrode system is known to provide a stable deposition potential and current density at 

the working electrode/electrolyte interface during an electrodeposition process by 

measuring the deposition potential relative to the reference electrode instead o f the 

counter electrode (anode) [27]. The above cited examples in the literature therefore 

show that such a small fluctuation in the deposition potential (of few millivolts of 

course), does not necessarily have any adverse effect on the semiconductor material 

deposited considering the wide range of potentials over which this material can 

normally be deposited, whether with three-electrode system or with two-electrode 

system. This therefore helps to clear the suspicion and fear that two-electrode deposition 

does not produce good quality materials (at least in semiconductors) due to fluctuations 

in the deposition potential and current density over the surface of the working electrode. 

The comparison of some properties o f electrodeposited CdTe layers and 

glass/FTO/CdS/CdTe/metal thin film solar cells fabricated using both two-electrode and 

three-electrode systems in this thesis, shows that both systems can produce CdTe layers 

of similar qualities for thin-film solar cell applications.

7.1 Preparation of CdTe deposition electrolyte

Two similar deposition electrolytes were used in the electrodeposition of CdTe 

layers in both two-electrode and three-electrode configurations. Both electrolytes 

contain aqueous solutions of 1M CdS0 4  of 99.0% purity and Te0 2  of 99.999% purity 

dissolved in H2 SO4 of 98% purity all in 800 ml of de-ionised water. A major issue 

worthy of note here is the problem of TeC>2 dissolution. Te0 2  is practically insoluble in 

water [28]. It is however soluble in sulphuric acid [29] although the solubility is not 

hundred per-cent. About 30 mM of Te0 2  solution was prepared by dissolving in 

concentrated H2 SO4 for about 1 hour as much as possible and then diluting with de­

ionised water in 250 ml plastic round-bottom flask ready for addition into CdSC>4 

solution. Before the addition of TeC>2 solution, the CdSC>4 solution was stirred for 24 

hours and then electro-purified for 48 hours following the steps outlined earlier in 

chapters 5 and 6 . Then about 4 ml of TeC>2 solution was added into the CdS0 4  solution 

and stirred for 24 hours before taking a cyclic voltammogram of the resulting electrolyte 

to identify the possible deposition potential range for CdTe. All voltammetry and 

electrodeposition processes were carried out using two-electrode system for the main 

deposition electrolyte to which 1000 parts per million (1000 ppm) each of 99.999% 

CdCl2 and CdF2 were added for n-type doping. The counter electrode in the case of 

two-electrode system was high-purity platinum plate or carbon rod. For the second
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electrolyte, the voltammetry and deposition were done in three-electrode configuration 

for comparison with the two-electrode system. The counter electrode was high-purity 

carbon rod and the reference electrode was saturated calomel electrode. It also 

contained 1000 parts per million of 99.999% Cdl2 for n-type doping. The pH of both 

electrolytes was maintained at 2.00±0.02 with moderate stirring rate o f 300 rpm. The 

deposition temperature for the two-electrode bath was maintained at (85±2)°C while 

that for the three-electrode system was maintained at a (68±2)°C since it had saturated 

calomel reference electrode whose manufacturer-specified maximum operating 

temperature is 70°C. All the cyclic voltammetry were also taken under similar 

conditions for uniformity. It is important to mention that the main aim o f the use of 

these two systems is to show that CdTe of similar qualities can equally be produced 

using either electrode systems. The aim is not strictly to compare the qualities o f the 

CdTe produced from the two electrolytes that have slightly different compositions in 

terms of the dopants used and with different counter electrodes. It is rather to show that 

the two-electrode system is as good as the three electrode system and therefore can be 

used even at better advantage in terms of its simplicity (reducing cost), minimised 

contamination of the bath and higher deposition temperature for better crystallinity 

when compared to the three-electrode system. For this reason major work carried out on 

CdTe was with two-electrode system. In fact the SCE used in this project was a 

modified one. Because of the observation of gradual leakage of the 3M KCI2 solution in 

the outer jacket, the electrode was modified by replacing the solution with exactly 3M 

CdCb with purity of 99.999% to avoid getting K+ into the deposition bath. It is 

important to remark that for the comparative study of CdTe obtained from two-electrode 

and three-electrode systems using carbon anode in both cases, the two-electrode bath 

contained only 1000 ppm of CdCk as an n-type dopant. The main two-electrode bath 

used for the rest o f the project contained 1 0 0 0  ppm each of CdCh and CdF2 using 

platinum anode. The reasons for these variations will be seen in the course o f this 

chapter.

7.2 Substrate preparation

For establishment o f the right deposition conditions for these baths, glass/FTO 

substrates were used. After the optimisation, glass/FTO/ZnS and glass/FTO/CdS as well 

as glass/FTO/ZnS/CdS were then used as substrates to deposit CdTe for solar cell 

fabrication. However, to prepare the glass/FTO substrates, the same procedure used in 

electrodeposition of ZnS and CdS, in chapters 5 and 6 , was also used in the case of
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CdTe. Soap solution, acetone, methanol and de-ionised water were used as solvents for 

cleaning the glass/FTO substrates while only methanol and de-ionised water were used 

for cleaning glass/FTO/ZnS, glasss/FTO/CdS and glass/FTO/ZnS/CdS substrates.

7.3 Electrodeposition of CdTe absorber layers

The voltammograms obtained from the cyclic voltammetry o f the two deposition 

baths using the three different electrode configurations are shown in figures 7.1 (a), (b) 

and (c) and were used to determine the possible deposition potentials for CdTe using the 

different electrode configurations.

*(a) 2-E with .carbon anode (b) 2-E with platinum abode

Cathodic potential (mV)
Cathodic potential (mV) /  ^

H =V ^wW>\  1 / /  1 r~
10J) 400 v 98€r^ 1400 1900

 ̂ Cathodic potential (mV)

0 600 1200 1800 2400

Cathodic potential (mV)

(b) 3-E with carbon anode

-100 800 1 1 0 0

"O

- 1 0

-15
Cathodic potential (mV)

Figure 7.1: Cyclic voltammograms of CdTe deposition electrolytes containing the

respective precursors and dopants for (a) two-electrode system with carbon anode (inset

is expansion of the region around the horizontal axis), (b) two-electrode system with

platinum anode (inset is expansion of the region around the horizontal axis) and (c)
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three-electrode system with carbon anode. The points marked A and B indicate the 

possible deposition potential ranges for CdTe.

The two-electrode systems used were o f two types. One has carbon anode and the other 

has platinum anode as shown in the figures. The essence of using platinum anode is to 

observe/eliminate any possible contamination from the carbon anode. Since platinum is 

an inert metal, it is believed that it will bring about little or no contamination compared 

to carbon. Afterwards, the bulk of the work done on CdTe deposition in this project was 

with the two-electrode system using platinum anode.

After determining the deposition potentials of Cd in each case as was done for 

ZnS and CdS, electro-purification o f the CdSC>4 solutions was carried out at a 

temperature of (85.0±0.2)°C for the two-electrode systems and (68.0±0.2)°C for the 

three-electrode system for 48 hours. The temperature of 68.0°C was used for the three- 

electrode system to avoid damaging the reference electrode since its maximum 

operating temperature is 70.0°C according to the manufacturer’s specifications. TeC>2 

was added afterwards and the pH of both electrolytes adjusted to 2.00+0.02 at room 

temperature. After stirring for 24 hours, the set of voltammograms in figure 7.1 was 

recorded to identify the possible range of deposition potentials for CdTe in each case. 

The various dopants were then added accordingly as mentioned in section 7.1. Few 

samples were then deposited on cleaned glass/FTO from each electrolyte using the 

various electrode configurations across the identified deposition potential ranges for 

characterisation using XRD, PEC cell and optical absorption to find out the best 

deposition potential for n-CdTe from each electrolyte and each electrode configuration. 

The baths were continuously stirred moderately at 300 rpm during the deposition and 

the plating current density in all cases was maintained in the range (150 -  180) pAcm'2. 

The layers were deposited on glass/FTO as well as on annealed glass/FTO/ZnS, 

glass/FTO/CdS and glass/FTO/ZnS/CdS substrates at the respective best cathodic 

potentials for device fabrication.

Generally, in CdTe deposition, Te (with standard reduction potential E° = 

+0.593 V) deposits first since it has a more positive standard reduction potential than Cd 

(E° = -0.403 V). The chemical reactions for the reduction o f Te and Cd from HTe0 2 + 

and Cd2+ leading to the formation of CdTe on the cathode are given by [2]:

H TeO l +  3H+ +  4 e"  Te +  2H20 ( 1 )



Cd2+ + Te + 2e~ -* CdTe (2)

The points marked A and B in figures 7.1 (a), (b) and (c) indicate the various ranges of 

cathodic deposition potentials of CdTe using the various electrode configurations.

7.4 Characterisation of electrodeposited CdTe layers grown using two- and

three-electrode systems with carbon anode

This characterisation section is of two parts. The first part consists of 

characterisation of initial samples grown using the three-electrode system and the two- 

electrode system with carbon anode. In other words, there are two sets o f samples. The 

major aim here is to compare the qualities of the CdTe samples grown using two- 

electrode system and three-electrode system. This comparison is mainly based on 

optical absorption XRD, and PEC measurements. The second part o f this section then 

dwells on the full characterisation of CdTe grown with the two-electrode system using 

platinum anode. The CdTe materials in this case include those grown on glass/FTO, 

glass/FTO/ZnS and glass/FTO/CdS substrates. The characterisations carried out here 

include structural, electrical, optical and morphological characterisations.

7.4.1 X-ray diffraction (XRD)

Figures 7.2 (a) and (b) show the XRD patterns of two sets of as-deposited CdTe 

samples grown using two-electrode system with carbon anode and three-electrode 

system with carbon anode respectively. These samples in each case were grown for 1 

hour at ten different cathodic voltages within the identified deposition voltage range. 

Voltages were changed in steps o f 1 mV, close to the optimum growth voltage, guided 

by previous work of this research programme.

Both figures show the presence of the prominent (111) peak of cubic CdTe 

material. The other peaks present belong to the FTO substrate. In fact, based on the peak 

intensities, the best growth voltages can be seen clearly from both figures. For the two- 

electrode system, this corresponds to 1578 mV while for the three-electrode system it 

corresponds to 697 mV. From these figures also one simply notes that the as-deposited 

CdTe grown using these different electrode configurations are similar in structural 

quality.
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Figure 7.2: XRD patterns of as-deposited CdTe layers grown at different cathodic 

voltages for 1 hour using (a) two-electrode system with carbon anode and (b) three- 

electrode system with carbon anode.

Figures 7.3 (a) and (b) show the XRD of the annealed samples used for results 

shown in figure 7.2. Again the (111) peak is very prominent in both cases.
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Figure 7.3: XRD patterns of annealed CdTe layers grown at different cathodic voltages 

for 1 hour using (a) two-electrode system with carbon anode and (b) three-electrode 

system with carbon anode.

There is also a gradual emergence of two other peaks corresponding to the (220) and

(311) crystal planes o f the same cubic CdTe. These two peaks are more visible in figure

7.3 (a) than in figure 7.3 (b). The reason for this difference may be due to difference in

the deposition current densities in the two different baths. In fact it was generally
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observed in the course of this project that the two-electrode system always showed 

higher deposition current density compared to the three-electrode system. The overall 

average deposition current density recorded over the deposition of all ten samples in the 

two-electrode system was -180 pAcm ' 2 while that for the three-electrode system was 

-150 pAcm"2. In the two-electrode system (figure 7.3 (a)), there appears to be a shift in 

the best deposition voltage in terms o f the intensity of the (111) peak. The best voltage 

in this case appears to be 1573 mV. This shift from the original values of 1578 mV must 

have to do with re-crystallisation which also resulted in the appearance o f the (2 2 0 ) and 

(311) peaks. In the case of the three-electrode system, the best growth voltage remains 

697 mV based on the highest (111) XRD peaks intensity. The appearance o f (220) and 

(311) peaks after annealing was also observed several times in thicker samples grown 

with the three-electrode system for other purposes. Some times this observation is 

associated with variation in the annealing temperature used. The samples in figure 7.3 

however, were annealed at 450°C for 15 minutes after CdCk treatment. The XRD data 

of CdTe materials from both electrode configurations match the JCPDS reference file 

No. 00-015-0770.

Figures 7.4 (a) and (b) show the variation o f the (111) XRD peaks intensity o f CdTe 

samples grown using the two-electrode and three-electrode systems with carbon anodes. 

The figures show clearly that annealing improves the peak intensity o f the (111) 

preferred orientation in all the samples irrespective of the electrode configuration used. 

There are however, few samples whose (111) peaks intensities reduced after annealing. 

This may be due to deterioration o f the crystallinity due to excess heat from the 

annealing. If such materials are already crystalline enough, additional heat treatment 

may not lead to further improvement in crystallinity but could rather deteriorate the 

crystallinity by causing disorder and randomisation in the crystal structure of the 

materials. The XRD intensity reduction could also be due to loss o f materials through 

sublimation.
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Figure 7.4: Graph of intensity of (111) XRD peaks for as-deposited and annealed CdTe 

layers grown using (a) two-electrode system with carbon anode and (b) three-electrode 

system with carbon anode.

7.4.2 Photo electro chemical (PEC) cell study

Table 7.1 and figure 7.5 show the PEC signal results of CdTe layers grown using 

two-electrode system with carbon anode. The results show that the as-deposited CdTe 

layers were n-type in electrical conduction. After annealing with CdCl2 treatment, all 

the samples converted to p-type across the entire voltage range.

Table 7.1: PEC signal results o f as-deposited and annealed CdTe layers grown using 

the two-electrode system with carbon anode.

Vg
(mV)

As-deposited Annealed
v D

(mV)
VL

(mV)
PEC

(V l-V d)
(mV)

Type

>
! VL

(mV)
PEC

(V l-V d )
(mV)

Type

1571 - 2 1 0 -277 -67 n - 1 2 1 -49 +72 P
1572 -250 -419 -169 n -114 -41 +73 P
1573 -281 -395 -114 n -117 -49 + 6 8 P
1574 -240 -382 -142 n -98 -28 +70 P
1575 -207 -272 -65 n -123 -57 + 6 6 P
1576 -192 -264 -72 n -119 -45 +74 P
1577 -168 - 2 2 2 -54 n -135 -39 +96 P
1578 -195 -251 -56 n -149 -35 +114 P
1579 -159 -249 -90 n - 1 0 0 - 2 0 +80 P
1580 -190 -261 -71 n - 1 1 2 -33 +79 P
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Figure 7.5: PEC signals o f (a) as-deposited and (b) annealed CdTe layers grown at

different cathodic voltages for lhour using two-electrode system with carbon anode.

In the case of the three-electrode system with carbon anode, Table 7.2 and figure 7.6 

also show that all the as-deposited samples were n-type across the chosen growth

voltage range. After annealing with CdCl2 treatment, only two samples turned to p-type
\

while the rest remained n-type. The conversion of n-type CdTe to p-type after CdCl2 

treatment is a well-known phenomenon [2, 30-34] which has a lot to do with the 

presence and nature of native defects present in the CdTe. The phenomenon is not 

observable in CdS materials which are also usually heat-treated with CdCl2 treatment 

before use in CdS/CdTe solar cells. This type conversion in CdTe is also independent 

of the technique used to grow the CdTe. It appears that the nature o f these native defects 

in CdTe is such that it encourages the formation of certain complexes with Cl from 

CdCl2 used in the treatment in the presence of heat (up to 400°C) to create dominant 

acceptor states which give rise to the observed p-type conductivity after annealing.
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Table 7.2: PEC signal results of as-deposited and annealed CdTe layers grown using

the three-electrode system with carbon anode.

Vg
(mV)

As-deposited Annealed
v D

(mV)
VL

(mV)
PEC

(VL-VD)
(mV)

Type VD
(mV)

VL
(mV)

PEC
( V l-V d )

(mV)

Type

695 -197 -256 -59 n -141 -164 -23 n

696 -190 -241 -51 n -144 -136 +08 P
697 -209 -272 -63 n -144 -171 -27 n

698 -175 -234 -59 n -150 -145 +05 P
699 -190 -253 -63 n -133 -152 -19 n

700 -208 -269 -62 n -75 -99 -24 n

701 -219 -292 -73 n -136 -147 - 1 1 n

702 -195 -256 -61 n -131 -146 -35 n

703 - 2 0 0 -278 -78 n -145 -155 - 1 0 n

704 -255 -305 -50 n -138 -141 -03 n

705 -184 -224 -40 n -156 -173 -17 n

2 0  nI

710 (b) Annealed
- 1 0 6 i> 0  

- 2 0  - 
> - 3 0  - 
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Figure 7.6: PEC signals of (a) as-deposited and (b) annealed CdTe layers grown at

different cathodic voltages for 1 hour using three-electrode system with carbon anode.

BP group [30, 31] also reported type conversion after heat treatment, from n-type to p- 

type without mentioning the use of CdC^. Some researchers have also reported a 

contrary observation of conversion from p-type to n-type after heat treatment with and 

without CdCl2 treatment [35 -3 7 ] . The general trend is towards p-type conductivity by 

changing the position o f the Fermi level. The distance the Fermi level moves during the 

heat treatment depends on the defect structure of the initial material and doping o f the 

CdTe during the treatment. However, the fact that some CdTe samples in Table 7.2 and 

figure 7.6 remained n-type after the CdCl2 heat-treatment, points to a major issue in
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CdTe. This kind of inconsistency in the conductivity type behaviour of CdTe due to the 

nature o f native defects present in it may explain the strong Fermi level pinning 

behaviour in CdTe [38 - 40]. For instance, Dharmadasa [38, 39] studied Metal/n-CdTe 

interfaces and identified five distinct Fermi level pining positions at this interface. The 

implication o f this is that the same CdTe sample can display very different device 

behaviours even when the same metal is used to form metal/CdTe at different times 

under similar conditions or even at the same time under similar conditions [40]. This 

may also explain the prolonged dead-lock in the improvement of the conversion 

efficiencies of CdS/CdTe solar cells. Almost all CdS/CdTe solar cells reported in the 

literature are regarded as n-CdS/p-CdTe p-n junction solar cells. The general impression 

and the generally accepted idea as literature reveals is that CdTe is always converted to 

p-type after CdCb heat-treatment even if  the initial sample is n-type and even if n-type 

dopants such as Cl, F and I were introduced during the growth [1, 6 , 30 -  34, 41]. It is 

important at this point to recall that B. M. Basol who pioneered the type-conversion 

junction formation in CdTe-based solar cells also reported that n-CdTe thin films 

electrodeposited from an electrolyte containing over 500 ppm of Br‘ (a known donor in 

CdTe) did not type-convert to p-CdTe after CdCb heat treatment even at 400°C for 10 

minutes. As a result, he added that annealing time, in addition to native impurities, plays 

a strong role in the type conversion mechanism [1, 2]. The results o f Table 7.2 and in 

fact several other observations during this project show that the conversion o f n-CdTe to 

p-CdTe after CdCh heat treatment is not always achieved especially when sufficient 

source o f halogens (CdCl2 , Cdl2 , CdF2 etc) is contained in the deposition environment. 

The disappointing implication therefore is that sometimes one ends up fabricating n- 

CdS/n-CdTe solar cell and still thinks it is n-CdS/p-CdTe device and o f course goes 

ahead to analyse and assess it as such when in reality it is not. This can really create 

huge confusion in the literature. It was also observed during this research project that 

even among CdTe samples grown at a particular voltage at different times, some may 

change from n-type to p-type after CdCb treatment and others may not. The 

observation also was that increasing the halogen concentration in the deposition bath 

helps to retain the n-type nature of the electrodeposited CdTe samples. Also treatment 

with a mixture of CdCl2 and CdF2 instead of CdCl2 alone before annealing, also helps to 

retain the n-type behaviour of CdTe. These two approaches were used for the 

subsequent deposition of n-CdTe samples for solar cell fabrication as will be seen in the 

following sections and chapters.
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7.4.3 Spectrophotometry

Figures 7.7 (a), (b), (c) and (d) show the optical absorption spectra of as- 

deposited and annealed CdTe using the two-electrode system with carbon anode over 

ten different cathodic growth voltages. The absorption edges o f the as-deposited 

samples (fig. 7.7 (a) and (b)) are not as sharp as those of the annealed samples (fig. 7.7 

(c) and (d)). Clearly, there is significant improvement in the absorption edges of the 

samples after annealing. This is certainly due to the improvement in both crystallinity 

and stoichiometry o f these materials as a result o f the post-deposition heat treatment. 

The obtained bandgap energies o f all the as-deposited samples come to the same value 

of 1.55 eV which is larger than 1.45 eV for the bulk material [42]. The energy bandgap 

o f the annealed CdTe materials are in the range (1.46-1.48) eV which is significantly 

lower than those of the as-deposited samples. These bandgap values are also closer to 

the bulk value showing that the materials have improved considerably after annealing.

(a) As-deposited (b) As-deposited
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Figure 7.7: Optical absorption of ((a) & (b)) as-deposited and ((c) & (d)) annealed 

CdTe samples grown with 2-electrode system for 1 hour at different cathodic voltages 

using carbon anode.
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Figures 7.8 (a), (b), (c) and (d) also show the optical absorption o f the CdTe 

samples grown using the three-electrode system with carbon anode. Again the as- 

deposited samples (fig. 7.8 (a) and (b)) generally have weaker absorption edges than 

annealed samples (fig. 7.8 (c) and (d)) due to the same reasons mentioned above. The 

absorbance and the energy bandgaps are also generally higher than those of the 

annealed samples. The bandgaps are in the range (1.50 -  1.53) eV. For the annealed 

samples, the bandgap energies are in the range (1.48-1.50) eV. The reason for this slight 

variation is also due to the improvement of the qualities of the samples on annealing. 

The results presented in section 7.4 show that, the qualities of CdTe layers grown using 

both two-electrode system and three-electrode system are essentially similar.
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Figure 7.8: Optical absorption of as-deposited ((a) & (b)) and annealed ((c) & (d)) 

CdTe samples grown with the three-electrode system at different cathodic voltages for 

lhour using carbon anode.
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7.5 Characterisation of CdTe layers grown using two-electrode system with

platinum  anode

The results and discussion in section 7.4 highlighted the similarity of the CdTe 

layers grown using both two-electrode and three-electrode systems with carbon anode. 

The essence is to show that instead o f the three-electrode system, one can also use the 

two-electrode system without compromising the quality of the materials deposited. Cost 

is reduced by saving the cost o f reference electrode. The risk o f poisoning o f the 

deposited semiconductor due to possible leakage of unwanted ions from the reference 

electrode into the deposition bath can be avoided. Deposition of materials at relatively 

higher temperature is taken to advantage and the deposition process is made simpler. 

These are the potential advantages of using two-electrode system over three-electrode 

system. For these reasons, the main electrodeposition of CdTe materials for solar cell 

fabrication in this research was carried out using the two-electrode system with 

platinum anode. The results of the characterisation o f the CdTe layers deposited using 

this electrode system are presented and discussed in this section.

7.5.1 X-ray diffraction (XRD

Table 7.3 and figure 7.9 present the XRD results of as-deposited and annealed 

CdTe layers deposited across a range o f ten cathodic voltages in the vicinity o f the 

optimum growth voltage. Figure 7.9 (a) shows the presence o f the cubic CdTe (111) and 

(2 2 0 ) peaks for samples grown at all the voltages with the ( 1 1 1 ) crystal plane as the 

preferred orientation. Table 7.3 shows that the highest (111) peak intensity occurs at a 

cathodic voltage of 2038 mV followed by 2037 mV. After annealing in air at 450°C for 

15 minutes with CdCb + CdF2 treatment, figure 7.9 (b) shows the emergence o f weak 

(311) peak in addition to the existing (111) and (220) peaks. This time around, Table

7.3 shows that the highest (111) peak intensity shifts to a cathodic voltage o f 2039 mV 

followed by 2041 mV. The three XRD peaks also match those of the JCPDS reference 

file no.00-015-0770 of cubic CdTe. Based on the combination o f XRD, optical 

absorption, PEC and initial solar cell device results, 2038 mV was used in the rest o f the 

CdTe deposition as the best deposition voltage.
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Table 7.3: (111) XRD peak intensities of as-deposited and annealed CdTe layers grown

at different cathodic voltages for 1 hour using two-electrode system with Pt anode.

Sample
ID

Cathodic
Growth
voltage

(Vg)

Growth
time
(min)

(111) XRD Intensity

As-deposited Annealed

PtlO 2036 60 1782 2895
Pt9 2037 60 1942 2084
Pt8 2038 60 1968 2707
Pt7 2039 60 1667 3275
Pt6 2040 60 1543 1473
Pt5 2041 60 1792 2902
Pt4 2042 60 1242 2241
Pt3 2043 60 799 1513
Pt2 2044 60 6 6 8 1252
Ptl 2045 60 820 1584
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Figure 7.9: XRD patterns of (a) as-deposited and (b) annealed CdTe layers grown at 

different cathodic voltages for 1 hour using the two-electrode system with Pt anode.

7.5.1.1 Effect of deposition time on the XRD results of CdTe layers grown using

two-electrode system with platinum  anode

In order to study the effect of growth time on the structural property o f these 

electrodeposited CdTe layers using XRD, six samples were grown at the cathodic 

voltage o f 2038 mV for different durations. XRD measurement was carried out on the 

as-deposited samples. They were annealed at 450°C for 15 minutes with CdCl2+ CdF2



treatment and XRD measurement was carried out again on the annealed samples. 

Figures 7.10 (a) and (b) show the XRD results o f the as-deposited and annealed samples 

respectively.
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Figure 7.10: Effect o f growth time on the XRD of (a) as-deposited and (b) annealed 

CdTe layers grown for different times using two-electrode system with platinun anode.

Both figures show that as the deposition time increases from 30 minutes to 180 

minutes, the main (111) XRD peak of CdTe grows in intensity with the maximum 

intensity occurring for the growth time of 150 minutes (2.5 hours). The (111) peak 

occurs at 20 values in the range (23.56 - 23.61)° in the as-deposited samples and (23.53 

- 23.62)° in the annealed samples. The crystallite sizes calculated using the Sherrer 

equation for this peak in the six samples are in the range (50 - 62) nm in both as- 

deposited and annealed samples. There is clear evidence of increase in crystallite sizes 

after annealing as shown in Table 7.4. There is also an indication of mixed phases in 

both as-deposited and annealed sample as indicated by the small peak marked with 

asterisk (*) which occurs at 20 in the rang (22.6 - 22.8)°. This peak is present in all the 

samples but becomes more prominent from 90 minutes of growth.

Table 7.4 contains the variation of the FWHM and the corresponding crystallite 

sizes for the six samples. The as-deposited samples show relatively wider spread in the 

trend of both FWHM and crystallite sizes o f these sample with growth time. After 

annealing however, a more systematic trend emerges for these two parameters.
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Consistency in the narrowing o f the peaks (reduction in FWHM) and the consequent 

growth in crystallite sizes on annealing, in fact, appears from a growth time o f 1 2 0  

minutes. According to Table 7.4, the crystallite size tends to saturate at 62 nm beyond 

the thickness corresponding to the growth time of 1 2 0  minutes.

Table 7.4: Effect o f growth time on the (111) XRD peak of as-deposited and annealed

CdTe layers grown using the two-electrode system with platinum anode.

Growth
time
(min)

2 0  of 
pea

a n )
k(°)

FWHM of (111) 
peak (°)

Crystallite size of (111) 
peak (nm)

As-
deposited

Annealed As-
deposited

Annealed As-
deposited

Annealed

30 23.61 23.55 0.1624 0.1624 50 50
60 23.56 23.61 0.1624 0.1299 50 62
90 23.57 23.53 0.1299 0.1624 62 50

1 2 0 23.63 23.62 0.1299 0.1299 62 62
150 23.59 23.62 0.1624 0.1299 50 62
180 23.58 23.54 0.1624 0.1299 50 62

This shows that these electrodeposited CdTe materials are nano-materials 

instead of micro-materials such as in CdTe materials grown using techniques like CSS 

[41, 43, 44]. This observed saturation in crystallite size may also have to do with 

limitation of the XRD machine as well as limitation of the Sherrer equation used in the 

measurement and analysis of these samples respectively [45,46].

A careful study of the peak marked with asterisk (*) shows that it corresponds to 

a number of possible phases which include Te0 3 , Te2 0 s, CdsTeOe and hexagonal CdTe 

as summarised in Table 7.5.

Table 7.5: Identification of the XRD peak observed at 20-22.6° -  22.8° in comparison

with possible JCPDS reference files.

Compound JCPDS ref 2 0 (°) d-spacing
d ( A)

Relative
Intensity

(%)

Miller
indices

(hkl)
T e0 3 00-022-0911

(unknown
system)

2 2 . 8 3.900 30.0

TeOs 00-025-1113
(monoclinic)

2 2 . 8 3.900 80.0 ( 1 0 1 )

Cd3T e0 6 01-076-1007
(monoclinic)

2 2 . 6 3.936 0 . 8 ( 1 1 0 )

Hex-CdTe 00-019-0193
(hexagonal)

22.3 3.980 90.0 ( 1 0 0 )

Observed 2 2 .6 -2 2 . 8 3.892-3.930 4.46-9.40
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Among all these possibilities, the closest match to the observed peak in terms of 20, d- 

spacing and relative peak intensity values are the monoclinic cadmium tellurate 

Cd3Te0 6  and TeOs. This peak therefore must have to do with crystallized tellurium 

oxide phase. This seems to be an issue with tellurium-containing semiconductors. In 

CdTe crystals grown using the travelling heater method (THM), Jayatirtha et al reported 

the presence o f Te precipitates in the un-doped sample [47]. Since Te is more 

electropositive than Cd, it deposits first during the electrodeposition of CdTe. Since 

also this deposition was carried out in normal laboratory atmosphere and from aqueous 

solution, it is very easy for Te to oxidise resulting in the formation o f Cd3TeC>6 or TeOs 

species which appear to be stable on annealing.

Figure 7.11 shows variation of the (111) peak intensity with growth time before and 

after annealing. Figure 7.11 clearly shows that the peak intensities of the (111) peak 

actually increase after post-deposition annealing. The figure also shows that the peak 

intensity reaches a maximum at a growth time between 150 minutes and 180 minutes (ie

2.5 - 3.0) hours after which it tends to fall. This observation was made a number of 

times. It simply suggests that the layer thickness represented by this growth time should 

be the optimum thickness of CdTe in terms of structural property. This is in agreement 

with the observation on improvement of crystallinity based on crystallite sizes as 

presented in Table 7.4.

1 1 0 0 0  n

S? 8800 -
Annealei

6600 -

As-deposited
g  4400 -

2 2 0 0  -

90 120 1
Growth time (min)

Figure 7.11: Variation o f (111) peak intensity with growth time for CdTe grown using 
two-electrode system with platinum anode.

Figure 7.12 shows the variation of CdTe layer thickness with growth time for 

these six samples. The graph clearly shows that the thickness of the samples grown is a
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function of the deposition time. The thickness increases with growth time although the 

increase is not perfectly linear with error of about ±0.05 pm. The reproducibility in 

these thickness values is up to 90%. However, the linear trend line (curve fitting) shown 

in the graph almost nearly matches the time dependence o f the thickness. The deviation 

from this linear trend is easily explicable. As mentioned earlier, in the electrodeposition 

o f CdTe studied in this research, the easy deposition nature o f tellurium poses a serious 

problem. The presence o f high Te4+ content in the bath, results in very high deposition 

current density (high deposition rate) which eventually leads to deposition of very thick 

CdTe in a relatively short time. As a result, it is possible to obtain a CdTe layer of say 

2 . 0  pm thickness in a deposition time of 60 minutes on a particular day with large 

concentration of Te4+ in the bath and in 120 minutes with less concentration o f Te4+ in 

the same bath the next day. To avoid excess Te4+ content in the bath, TeC>2 solution is 

preferably added to the bath at regular intervals in a fairly controlled manner in order to 

adjust the deposition current density to a certain range o f levels. From the experience 

gained in this research, it is more productive to keep the deposition current density at an 

average value of -150 pAcm ' 2 for each deposition.

2 . 2

C/5

0 . 6

0.4
0 . 2

Deposition time (min)

Figure 7.12: Variation o f CdTe thickness with deposition time, using a two-electrode 
system with Pt anode.

This practice is however, not as easy as it sounds and there are fluctuations from sample

to sample. The implication o f all this is that the sample thickness is not strictly a

function of deposition time alone. It is a function of a combination of deposition

current density and deposition time. In fact in real terms, the current density plays a

prominent role. This therefore explains the deviation of the dependence o f CdTe

thickness on growth time from linearity as seen in figure 7.12.
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In the light of the discussion on effect of Te4+-containing bath on the deposited 

CdTe material, it is important to note that high Te4+ content in the deposition bath 

results in the deposition o f Te-rich CdTe. From experience and from literature, Te-rich 

CdTe does not produce good solar cell devices [36, 38]. Cd-rich CdTe is preferable for 

good devices.

7.5.1.2 Effect of different annealing conditions on XRD of CdTe layers grown 

using two-electrode system with platinum anode

In this particular experiment, four different CdTe layers with different 

thicknesses were deposited on glass/FTO substrates. Each sample was then divided into 

four parts. One set of four samples was left as-deposited. Another set of four samples 

was annealed but without prior CdC^ or CdCl2+CdF2 treatment. Another set of four 

samples was annealed with prior CdCl2 treatment. The last set o f four samples was 

annealed with prior CdCl2+ CdF2 treatment. All annealing was done at 450°C for 15 

minutes. The aim here is to see how the various annealing conditions affect the XRD 

results o f these samples. This will help to understand the reason why the well-known 

CdCl2 treatment is important.

Figure 7.13 shows XRD patterns of the CdTe sample with thickness o f 1.1 pm 

and different annealing conditions. The figure shows the clear difference in the intensity 

of the (111) peak for the various conditions. Treatment with CdCh and CdCl2+CdF2 

clearly improved the intensity of the (111) peak. Treatment with CdCl2+CdF2 appears 

to be better than treatment with only CdCh based on these peak intensities.
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Figure 7.13: XRD of 1.1 pm CdTe sample with different annaling conditions.

Figure 7.14 shows the XRD results of the 1.3 pm-thick CdTe sample under similar 

annealing conditions as those in figure 7.13. Again, the (111) peak intensity improves 

with annealing and with chemical treatment. Treatment with CdCl2+CdF2 also appears 

better than with only CdCl2 .

In figure 7.15, the XRD results of the 1.8 pm sample are shown. Also the peak 

intensity o f the ( 1 1 1 ) plane increases with annealing.
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Figure 7.14: XRD of 1.3 pm CdTe samples with differet annaling conditions.
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Figure 7.15: XRD of 1.8 pm CdTe samples with differet annaling conditions

Figure 7.16 also shows the XRD patterns o f the 2.1 pm sample. Again annealing 

shows to improve the (111) peak intensity. Just like in figure 7.15, the sample annealed 

with CdCl2+CdF2 again shows lower (111) peak intensity than the one annealed with 

only CdCl2 . Remarkably again, the (220) and (311) peak intensities have grown very 

much higher than in the 1.8 pm sample with an additional peak corresponding to the 

(331) plane at 20 -62.4°. The (111) peak intensity also begins to fall below that o f the 

as-deposited sample.
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Figure 7.16: XRD of 2.1 pm CdTe samples with differet annaling conditions.

Clearly the sample in figure 7.16 (d) becomes more polycrystalline than the others with 

a total o f four distinct CdTe peaks. The summary of these observations with the results 

of analysis of the (111) peak are presented in Tables 7.6 - 7.9 and figure 7.17. They 

also agree with the results of section 7.5.1.1.

Table 7.6: Results of XRD study of As-deposited CdTe layers of different thicknesses.

Sample
ID

Thickness
(pm)

2theta
(°)

(111)
peak

intensity

d-
spacing
d (A)

Lattice 
constant 

a (A)

FWHM
P(°)

Crystallite 
size D (nm)

Cl-1 1.1 24.0 7041 3.71136 6.428 0.1299 63
C3-1 1.3 24.0 7380 3.70739 6.421 0.1299 63
C2-1 1.8 24.0 13373 3.70554 6.418 0.1624 50
C4-1 2.1 24.0 9546 3.71480 6.434 0.1624 50

Matching reference JCPDS file No: 00-015-0770 with: 20 = 23.8°, d = 3.74200 A and a 

= 6.4810 A.
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Table 7.7: Results of XRD study of CdTe layers of different thicknesses annealed at

450°C for 15 minutes.

Sample
ID

Thickness
(pm)

2theta
(°)

(111)
peak

intensity

d-
spacing
d(A)

Lattice 
constant 

a (A)

FWHM
P(°)

Crystallite 
size D 
(nm)

C l-2 1.1 23.8 7949 3.74607 6.488 0.1299 63
C3-2 1.3 24.1 8171 3.69754 6.404 0.1299 63

C2-2 1.8 24.0 13681 3.71247 6.430 0.1299 63

C4-2 2.1 24.0 15066 3.70878 6.424 0.1299 63
Matching reference JCPDS file No: 00-015-0770 with: 20 = 23.8°, d = 3.74200 A and a

= 6.4810 A.

Table 7.8: Results of XRD study o f CdTe layers o f different thicknesses annealed with

CdCb at 450°C for 15 minutes.

Sample
ID

Thickness
(pm)

2theta
(°)

(111)
peak

intensity

d-
spacing
d(A)

Lattice 
constant 

a (A)

FWHM
P(°)

Crystallite 
size D 
(nm)

Cl-3 1.1 24.0 16668 3.70767 6.422 0.1299 63
C3-3 1.3 24.1 10055 3.69664 6.403 0.1299 63
C2-3 1.8 24.1 15605 3.69672 6.403 0.1299 63
C4-3 2.1 24.0 15528 3.71501 6.434 0.1299 63

Matching reference JC PDS file No: 00-015-0770 with: 20 = 23.8°, d = 3.7^ 200 A and a

= 6.4810 A.

Table 7.9: Results o f XRD study of CdTe layers o f different thicknesses annealed with

CdCl2+CdF2 at 450°C for 15 minutes.

Sample
ID

Thickness
(pm)

2theta
(°)

(111)
peak

intensity

d-
spacing
d (A)

Lattice 
constant 

a (A)

FWHM :
P(°)

Crystallite 
size D 
(nm)

C l-4 1.1 24.0 26855 3.71505 6.434 0.1299 63
C3-4 1.3 24.0 22606 3.71491 6.434 0.1299 63
C2-4 1.8 24.0 14557 3.71443 6.433 0.1624 50
C4-4 2.1 24.0 5311 3.72640 6.454 0.1299 63

Matching reference JC PDS file NO: 00-015-0770 witih: 20 = 23.8°, d = 3.7^ 200 A and a

= 6.4810 A.
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Figure 7.17: Bar chart of the effect of different annealing conditions on the (111) peak 
intensity o f CdTe of different thicknesses.  ̂ 1

In order to shed more light on the effects of CdCl2 or CdCl2+CdF2 treatment on the 

structural properties of CdTe, a sample of CdTe was deliberately grown for four hours 

with Te-richness by adding a lot of TeC>2 solution into the deposition bath. The sample 

was then divided into three pieces. One of the pieces was just annealed without CdCl2 

treatment and one was annealed with CdCh treatment. The last piece was left as- 

deposited. All the annealing again was done at 450°C for 15 minutes and the results of 

the XRD on these samples are shown in figures 7.18 (a), (b) and (c). Figure 7.18 (a) 

shows clear Te-richness o f this as-deposited sample with a mixture o f peaks belonging 

to cubic CdTe (JCPDS No. 00-015-0770) and hexagonal Tellurium (JCPDS No. 00- 

036-1452). The three main CdTe peaks; (111), (220) and (311), are all visible here with 

broad widths showing that only small amount of CdTe is present in this sample. The
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main Te peak is rather sharper with narrower width than the main CdTe peak indicating 

also how much Te is present in the sample in the crystalline form.

On annealing without CdCh treatment (fig. 7.18 (b)), the main peaks of CdTe 

and Te increased in intensity and became narrower in width. This indicates that there is 

clear improvement in crystallinity o f the two species in the sample as a result of the heat 

treatment. This is clearly one o f the benefits of post-deposition annealing. Another 

remarkable observation here is that the annealing in the presence o f oxygen in air 

resulted to the formation of small amount o f cadmium tellurate (Cd3Te06) or TeOs as 

was reported earlier in section 7.5.1.1. There is also appearance of an additional peak at 

20 -56.8° belonging to both CdTe and Te.
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Figure 7.18: Effect of CdC^ treatment and annealing on the XRD of Te-rich CdTe.
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Figure 7.18 (c) shows the result after annealing with CdCl2 treatment. Here the 

entire story changes completely. A complete disappearance o f all Te peaks is very 

obvious. More prominent CdTe peaks emerged with two additional peaks belonging to 

cubic CdC>2 (JCPDS No 00-039-1221). The Cd3TeC>6 peak also disappeared. This result 

is very startling and reveals another important effect of CdCh treatment on CdTe. This 

particular result suggests that excess Cd from the CdCh  treatment reacts with any 

excess Te in the sample during annealing to form more CdTe material. This definitely 

has the potential of producing a more Cd-rich CdTe which results in the production of 

CdS/CdTe solar cells with improved device results. Similar observation of 

disappearance of Te phase was reported by Jayatirtha et al in their study o f Te 

precipitate in CdTe grown by the travelling heater method [47]. It can be recalled that 

this CdCl2 treatment has been widely reported to be a very crucial step in the fabrication 

of high-efficiency CdTe solar cells [1, 2, 6, 30 -  34, 41]. This step has even been 

termed “a magic step” in an expression of its remarkable influence on device 

performance [48]. It is therefore very clear from these results that among other effects, 

CdCl2 treatment has a pronounced effect on the structural properties of CdTe materials.

In figure 7.19 below, the XRD of CdTe grown on both ZnS and CdS are 

presented. The CdTe layers in both cases were grown for 3 hours each and annealed at 

450°C for 15 minutes. The aim of this experiment is to see if  there is any structural 

difference between the CdTe layer grown on ZnS and that grown on CdS.
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Figure 7.19: XRD patterns of as-deposited CdTe grown on (a) ZnS and (b) CdS for 3 
hours.
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The results in figures 7.19 (a) and (b) show that CdTe grown on both substrates have 

similar structural quality.

7.5.2 Photoelectrochemical (PEC) cell study

The aim o f this experiment is to establish the electrical conductivity types of the 

CdTe materials before fabricating solar cells with them. The solar cell device structures 

targeted in this research are glass/FTO/n-CdTe/Au, glass/FTO/n-ZnS/n-CdTe/Au, 

glass/FTO/n-CdS/n-CdTe/Au and glass/FTO/n-ZnS/n-CdS/n-CdTe/Au. All the 

structures involve the use o f all n-type semiconductors in order to fabricate n-n 

heterojunction/Schottky barrier solar cells.

In the previous chapters the conditions for the growth of n-ZnS and n-CdS layers 

have been established. In this chapter and particularly in this section, the aim is to 

establish the conditions for the growth of good quality n-CdTe layers. Hall Effect 

measurement could not be carried out on the electrodeposited semiconductors in this 

project due to the fact that they were all grown on conducting glass/FTO substrates 

which definitely will interfere with the results if  Hall Effect measurements were to be 

done on these samples. As a result, PEC cell measurement becomes the only alternative _ 

for the determination o f the conductivity types o f these materials as was mentioned 

earlier.

To carry out PEC measurements on CdTe, only CdTe materials grown on 

glass/FTO were used. Table 7.10 and Figure 7.20 show the PEC results of CdTe layers 

grown on glass/FTO using two-electrode system with platinum anode and description of 

how the Fermi level moves towards p-type conductivity during annealing. Both Table 

7.10 and the figure 7.20 (a) show that the as-deposited samples were all n-type at all the 

growth voltages. After annealing with CdCl2 treatment however, only three samples 

remained n-type while the rest converted to p-type (including the one grown at -2038 

mV). This shows the tendency of conductivity type of CdTe to move from n-type to p- 

type on annealing, with CdCh treatment as shown in figure 7.20 (b). The distribution of 

the n-and p-type follows no definite order relative to the growth potential. This bath at 

the time of growth o f these samples contained only 1000 ppm of CdCH as the n-type 

dopant. To improve the n-type doping, additional 1000 ppm of CdF2 was also added to 

the bath.
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Table 7.10: PEC results of as-deposited and annealed CdTe layers grown using two-

electrode system with platinum anode.

Cathodic
Voltage

(mV)

As-deposited Annealed
VD

(mV)
VL

(mV)
PEC

(Vl-Vd)
(mV)

Type VD
(mV)

VL
(mV)

PEC
(Vl-Vd)

(mV)

Type

2036 -250 -427 -177 n -96 -146 -50 n
2037 -263 -430 i o\ n -59 -56 +03 P
2038 -281 -450 -169 n -90 -74 +16 P
2039 -254 -425 -171 n -73 -116 -43 n
2040 -223 -359 -136 n -91 -87 +04 P
2041 -259 -397 -138 n -87 -77 +10 P
2042 -156 -329 -173 n -84 -75 +09 P
2043 -166 -311 -145 n -85 -78 +07 P
2044 -142 -302 -160 n -72 -87 -15 n
2045 -163 -315 -153 n -144 -88 +56 P

---------------------------------------- E c
E L (  As-deposited)

Heat treatment

• FL(intrinsic)

--------------------------------E v

(b)

Figure 7.20: (a) PEC results of as-deposited and annealed CdTe layers grown using two 

electrode system with platinum anode and (b) movement of Fermi level (FL) o f CdTe 

layers on annealing, with CdC^ treatment.

Two samples with different thicknesses were then grown at cathodic voltage o f 2038 

mV. Each one was divided into five parts and subjected to different annealing 

conditions to study the conductivity type using PEC. Tables 7.11 and 7.12 show the 

results o f this experiment. CdCh treatment was used for the samples in table 7.11 while 

CdCl2+ CdF2 treatment was used for the samples in Table 7.12 prior to annealing.
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Table 7.11: Conductivity type confirmation o f CdTe layers (grown at cathodic voltage 
of 2038 mV) under different annealing conditions with CdCl2 treatment.

Sample
ID

Thickness
(pm)

CdCl2
treatment

Annealing 
temp (°C)

Annealing
time
(min)

v D
(mV)

> 
| PEC

signal
Vl-Vd
(mV)

type

FNl-a 1.8 None None none -114 -194 -80 n
FNl-b 1.8 none 450 15 -166 -267 -101 n
FNl-c 1.8 Yes 350 15 -97 -141 -44 n
FNl-d 1.8 Yes 400 15 -132 -202 -65 n
FNl-e 1.8 Yes 450 15 -96 -138 -42 n

Table 7.12: Conductivity type confirmation of CdTe layers (grown at cathodic voltage

of 2038 mV) under different annealing conditions with CdCl2+CdF2 treatment.

Sample
ID

Thickness
(pm)

CdCl2+CdF 
2 treatment

Annealing
temp
(°C)

Annealing
time
(min)

v D
(mV)

v L
(mV)

PEC
signal
Vl-Vd
(mV)

type

FN-a 2.6 None None none -196 -339 -143 n
FN-b 2.6 none 450 15 -140 -250 -110 n
FN-c 2.6 Yes 350 15 -251 -344 -93 n
FN-d 2.6 Yes 400 15 -125 -218 -93 n
FN-e 2.6 Yes 450 15 -49 -100 -51 n

All the samples, both before and after various chemical and heat treatments, remained 

n-type. Another set of four samples were grown with four different thickness at the 

same cathodic voltage of 2038 mV and the experiment repeated with annealing, this 

time at 415°C for 15 minutes, but different CdCl2 and CdCl2+CdF2 treatments. Tables 

7.13 - 7.16 show the results. Again all samples remained n-type under all annealing 

conditions confirming that the CdTe material grown from this bath were all n-type for 

solar cell fabrication.

Table 7.13: PEC measurements of as-deposited CdTe layers with different thicknesses.
Sample

ID
Growth

time
(min)

Thickness
(pm)

VL
(mV)

VD
(mV)

PEC
signal
(mV)

Conductivity
type

Cl-1 156 1.1 -312 -158 -154 n
C3-1 187 1.3 -109 -67 -42 n
C2-1 240 1.8 -39 -03 -36 n
C4-1 300 2.1 -313 -197 -116 n
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Table 7.14: PEC measurements of CdTe layers of different thicknesses annealed in air
at 415°C for 15 min.

S/No Growth
time
(min)

Thickness
(pm)

VL
(mV)

vD
(mV)

PEC
signal
(mV)

Conductivity
type

Cl-2 156 1.1 -15 -01 -14 n
C3-2 187 1.3 -34 -03 -31 n
C2-2 240 1.8 -240 -170 -70 n
C4-2 300 2.1 -12 -08 -04 n

Table 7.15: PEC measurements of CdTe layers of different thicknesses annealed in air 
at 415°C for 15 min with CdCl2 treatment.

S/No Growth
time
(min)

Thickness
(pm)

VL
(mV)

vD
(mV)

PEC
signal
(mV)

Conductivity
type

Cl-3 156 1.1 -105 -49 -56 n
C3-3 187 1.3 -07 -01 -06 n
C2-3 240 1.8 -121 -70 -51 n
C4-3 300 2.1 -182 -102 -80 n

Table 7.16: PEC measurements of CdTe layers of different thicknesses annealed in air 
at 415°C for 15 min with CdCl2+CdF2 treatment.

S/No Growth
time
(min)

Thickness
(pm)

V l

(mV)
VD

(mV)
PEC
signal
(mV)

Conductivity
type

C l-4 156 1.1 -23 -03 -20 n
C3-4 187 1.3 -84 -15 -69 n
C2-4 240 1.8 -143 -44 -99 n
C4-4 300 2.1 -152 -53 -99 n

7.5.3 Spectrophotometry

Figure 7.21 (a) - (d) shows the graphs of square of absorbance vs. photon energy 

for ten CdTe samples grown on FTO for one hour using the two-electrode system with 

Pt anode. Figures 7.21 (a) and (b) are for as-deposited samples while figures 7.21 (c) 

and (d) are for annealed samples. Figures 7.21 (a) and (b) show a weakening of the 

absorbance as the growth voltage increases. The energy bandgaps estimated from both 

figures are in the range (1.53-1.55) eV for the as-deposited samples. After annealing 

however, figures 7.21 (c) and (d) show an improvement in the absorption edges of all 

the samples which generally become sharper and shift towards lower photon energy. 

As a result, the estimated energy bandgap values fall slightly to the range (1.48-1.50) 

eV across the entire deposition voltage range.

193



In order to study the full optical properties of CdTe, four CdTe layers of 

different thicknesses were grown on glass/FTO, annealed under different conditions 

(based on CdCl2 and CdCl2+CdF2 treatment) at 450°C for 15 minutes and then 

characterised for their full optical properties as was done for ZnS and CdS in the 

previous chapters. For brevity, only the comparative results for as-deposited samples 

and samples annealed with CdCl2+CdF2 are presented since this CdCl2+CdF2 treatment 

is the preferred treatment used in this project for the fabrication of solar cell devices. 

Results of XRD studies in the previous sections also showed that CdCl2+CdF2 treatment 

has more positive effects on the samples than only CdCl2 treatment.
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Figure 7.21: Optical absorption of as-deposited ((a), (b)) and annealed ((c), (d)) CdTe 
samples grown with 2-electrode system for 1 hour at different cathodic voltages using 
platinum anode.
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Figures 7.22 (a) and (b) show the graphs of absorbance vs. photon wavelength 

for as-deposited and annealed samples respectively. The as-deposited samples in figure

7.22 (a) show increase in absorbance with increasing thickness. After annealing (figure

7.22 (b)), this variation in absorbance with thickness becomes narrow showing only 

very little observable increase in absorbance with increase in thickness.

(a) As-deposited (b) Annealed

750 800 850 900 950 1000 
Wavelength (nm)

750 800 850 900 950 1000 
Wavelength (nm)

Figure 7.22: Absorbance vs. wavelength of (a) as-deposited and (b) annealed CdTe 
layers of different thicknesses.

More prominent rather, is the effect of annealing on the absorbance of all the samples. 

The fact that the four graphs come very close to each other after annealing shows the 

pronounced effect of annealing on the overall quality o f these materials. The absorption 

edges are also improved after annealing. As mentioned earlier, this could be due to 

annealing out o f defects and overall improvement of the material properties during the 

annealing process.

Figures 7.23 (a) and (b) show the graphs of the square of absorbance vs. photon energy 

for the estimation of the energy bandgaps of these samples. Again the graphs for as- 

deposited samples show larger scatter in the absorption and hence in the values o f the 

energy bandgap which fall in the range (1.48-1.52) eV as seen in figure 7.23 (a). The 

absorption also increases as thickness increases. After annealing (figure 7.23 (b)), the 

absorption curves of all the samples come closer together thus narrowing down the 

energy bandgap values to the range (1.46-1.48) eV. In addition, there is remarkable 

improvement of the absorption edges of all the samples helping to shift the bandgap 

values downwards.
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Figure 7.23: A vs. Photon energy o f (a) as-deposited and (b) annealed CdTe layers of 
different thicknesses.

Figures 7.24 (a) and (b) show the transmittance spectra of the samples before 

and after annealing. Figure 7.24 (a) shows wide spread in the transmittance across the 

entire thickness range with the transmittance in the range (20 - 63)% at the wavelength 

of 1000 nm. The results also show that the transmittance decreases as the material 

thickness increases as is expected. After annealing, there is improvement in the 

transmittance edges of all samples (figure 7.24 (b)). The gradient of the transmittance 

edges have their maximum values at -850 nm for the 2.1 pm sample and -857 nm for 

the rest of the samples. Towards and up to wavelength o f 1000 nm, the transmittance of 

all four samples falls in the range (40-52)% which is mid-way of the range in the as- 

deposited samples. The important thing here is the narrowing o f this transmission range 

in the annealed samples and the fall in the maximum transmittance indicating 

improvement in the optical absorbance of the samples. This is an advantage since these 

samples are meant to be used as the main absorber materials in solar cells.

These figures show also a shift in the transmission edges from (780 - 800) nm 

(which is o f course not well defined) in the as-deposited samples to a single value of 

-820 nm in the annealed samples which actually shows the enhancement o f the 

absorption range of the samples. The shape o f the graph in the annealed samples shows 

that with these materials, all the photons in the visible range o f the spectrum are ideally 

absorbed assuming there is no reflection.
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Figure 7.24: Transmittance vs. wavelength o f (a) as-deposited and (b) annealed CdTe 
layers of different thicknesses.

In figures 7.25 (a) and (b), one sees the reflectance spectra of these materials before and 

after annealing. The figures also show relatively wide spread in the reflectance spectra 

of the as-deposited samples across the entire thickness especially at the wavelengths 

where the reflectance sets in. This cut off wavelength also increases as the thickness of 

the samples increases. In the annealed samples, the cut off wavelength tend to converge 

to a narrow range with samples of thicknesses <2.1 pm having their cut-off wavelength 

come to the same value. Towards higher wavelengths up to 1000 nm, all the curves also 

converge to a reflectance of -20%  in the annealed samples. In the as-deposited samples 

the reflectance in this wavelength range falls within (11 - 20)% across the sample 

thicknesses.
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Figure 7.25: Reflectance vs. wavelength of (a) as-deposited and (b) annealed CdTe 
layers of different thicknesses.

Figure 7.26 shows the graphs of absorption coefficient (a) vs. photon energy for 

the as-deposited and annealed CdTe layers of different thicknesses. Figure 7.26 (a) 

shows that the absorption coefficient increases with film thickness and is in the range 

(2.0 - 3.0)xl04 cm '1 across the thicknesses explored in this experiment.
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Figure 7.26: Absorption coefficient vs. photon energy of (a) as-deposited and (b) 
annealed CdTe layers o f different thicknesses.

After annealing, there is general increase in a  with the values coming in the range (2.6 - 

4.0) x io 4 cm '1 towards the visible region of the spectrum. This is an improvement 

resulting from the annealing. Strikingly too, there appears to be a reverse trend here in



the variation of a  with thickness compared to that in the as-deposited samples. The 

absorption coefficient in the annealed samples rather increases as the sample thickness 

decreases. This result suggests that as the sample thickness increases in the micro-meter 

range, to certain extent, the room for improvement in the qualities of the samples on 

annealing seems to decrease. It can be recalled that similar observation was made in the 

XRD study o f these same samples annealed with CdCl2+ CdF2 in figures 7.13 - 7.16 

where the (111) peak intensity reaches its maximum for thicknesses of 1.8 pm and 2.1 

pm. These results tend to suggest that there should be an optimum thickness o f the 

material for optimum structural and optical qualities of these samples.

The graphs o f (ahv)2 vs. photon energy (hv) are shown in figure 7.27. In both 

as-deposited samples (figure 7.27 (a)) and annealed samples ( figure 7.27 (b)), one 

observes that the absorption (ahv)2 beyond the bandgap energy, decreases as the sample 

thickness increases similar to the case of figure 7.26.
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Figure 7.27: (ahv)2 vs. photon energy o f (a) as-deposited and (b) annealed CdTe layers 
of different thicknesses.

In the annealed samples there is a clear improvement in the absorption edge o f all the 

samples. The energy bandgap values estimated from these figures for the as-deposited 

samples are in the range (1.47 - 1.52) eV. For the annealed samples, the bandgap values 

are in the range (1.47-1.49) eV showing a contraction of this range and overall shift 

towards lower energy values. These ranges of bandgap values are similar to those 

obtained from figures 7.23 (a) and (b).
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Figure 7.28 presents the dependence of extinction coefficient on photon energy for these 

samples before and after annealing. Again the extinction coefficient follows similar 

trend as the absorption coefficient and absorption (ahv)2 in figures 7.26 and 7.27. The 

extinction coefficient values are higher in the annealed samples compared to the as- 

deposited samples owing to improvement by post-deposition annealing.

The dependence of refractive index on photon energy is shown in figure 7.29. 

Figure 7.29 (a) shows how relatively widespread the refractive index is over the entire 

sample thickness range compared to the values in the annealed samples where they 

converge, to the same values towards the longer wavelength (lower photon energy). In 

this lower energy region (near 1.20 eV), the spread in the value of n in the as-deposited 

samples is (2.00 - 2.63) whereas in the annealed sample only one value of n -2.63 is 

observed. The fall in the refractive index in the higher energy region (form the bandgap 

energy) is more rapid in the annealed samples than in the as-deposited samples. These 

results show that the refractive indexes of these materials are more stable after 

annealing indicating improvement in the optical properties o f the materials than in the 

as-deposited samples.
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Figure 7.28: Extinction coefficient vs. photon energy of (a) as-deposited and (b) 
annealed CdTe layers of different thicknesses.
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Figure 7.29: Refractive index vs. photon energy o f (a) as-deposited and (b) annealed 
CdTe layers of different thicknesses.

Figure 7.30 shows the graphs of the real dielectric constant er vs. photon energy 

for both as-deposited and annealed samples.

(a) As-deposited (b) Annealed

Photon energy (eV) Photon energy (eV)

Figure 7.30: Real dielectric constant vs. photon energy of (a) as-deposited and (b) 
annealed CdTe layers of different thicknesses.

Here we also see similar trend in er as we saw in the refractive index. The values o f er in 

the as-deposited samples are in the range (4.00 - 7.00) whereas the range is (6.70 - 7.00) 

in the annealed samples in the lower energy region near 1.20 eV. Also the values o f er 

fall very rapidly from the bandgap energy towards higher photon energy in the annealed 

samples than they do in the as-deposited samples. When those results are compared to 

those of ZnS in chapter 5 and CdS in chapter 6, one quickly sees that CdTe will have
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higher capacitance for equal thickness in the infrared region of the spectrum. In the 

visible region however ZnS and CdS will have higher capacitive effect than CdTe.

Figure 7.31 shows the variation of imaginary part or the dielectric constant (cy) 

with photon energy. £y is generally low in the as-deposited samples than in the annealed 

samples over the entire thickness range and across the range of photon energy under 

consideration. Again £, values for each sample thickness are more distinctly presented in 

the annealed samples than in the as-deposited samples where there is significant overlap 

between ey for various thicknesses. This is also attributed to the improvement o f material 

quality due to post-deposition annealing.

Having studied the full optical properties o f CdTe grown on glass/FTO 

substrates, another experiment was carried out just to have a look at the optical 

absorption of CdTe grown on glass/FTO/ZnS, glass/FTO/CdS and glass/FTO/ZnS/CdS 

substrates. The essence o f this experiment is to see if  these various substrates have any 

effect on the optical absorption of CdTe. For this study only the optical absorption 

measurements on the annealed samples were carried out.
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Figure 7.31: Imaginary dielectric constant vs. photon energy of (a) as-deposited and (b) 
annealed CdTe layers of different thicknesses.

Figures 7.32 (a), (b), (c) and (d) show the graphs o f square o f absorbance vs. 

photon energy for CdTe grown on glass/FTO, glass/FTO/ZnS, glass/FTO/CdS and 

glass/FTO/ZnS/CdS respectively after annealing. The samples were grown for the same 

period of 4 hours and therefore assumed to be of similar thickness. The samples display 

energy bandgaps that appear to depend on the nature (transparency) of the particular
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material upon which the CdTe layer is directly grown which is also an indication of the 

bandgap o f these materials. Since the bandgap values of these substrates are of the 

order Eg (FTO) > Eg (ZnS) > Eg (CdS), the bandgap of the CdTe on these substrates also 

appears in the order 1.50 eV > 1.48 eV > 1.46 eV > 1.45 eV for the samples in (a), (b), 

(c) and (d) respectively. These bandgap values however do not vary that much and 

observations during this project show that if  the thickness of CdTe or any other material 

(especially, CdS) is sufficiently large, the bandgap measured for these layers remain the 

same irrespective of the nature of the underlying substrates. Thus one can conclude that 

for sufficiently thick CdTe layer, the optical absorption behaviour is similar for CdTe 

grown on the different substrates used in this project.
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Figure 7.32: Optical absorption of CdTe grown on different substrates.
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7.5.4 Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX)

In order to explore the morphology and atomic compositions of the CdTe layers, three 

samples of CdTe were grown for equal time of 4 hours each on glass/FTO, 

glass/FTO/ZnS and glass/FTO/CdS substrates. Each sample was divided into two. One 

part was annealed at 450°C for 15 minutes with CdCl2+CdF2 treatment. SEM images of 

all the samples were recorded and EDX analysis carried out on all the samples to 

explore the morphology and compositions of the CdTe layers grown under the 

conditions used. The cathodic growth voltage used was 2038 mV using the two- 

electrode system with platinum anode.

Figure 7.33 shows that as-deposited samples in all three cases have more 

compact grain arrangement. The grains are very closely packed such that there is no 

visible presence o f pinholes. Again, these grains are made up of agglomeration of even 

smaller grains which form into clusters giving the layers cauliflower-like morphology. 

Grain agglomerates as large as 1 pm can be seen in these images. After annealing, there 

appears to be a sort of randomisation of the grains revealing the presence of gaps. A 

closer look at the images then reveals what look like small grains whose sizes are in the 

range (70 - 300) nm. One of the possible problems of this presence o f pinholes or gaps 

between grains in these layers is shunting effect that results when solar cells are finally 

fabricated with these materials. In this case, when the metal back contact is evaporated 

onto the CdTe surface, the tendency is that the metal passes through these pinholes 

(gaps) and makes contact with the underlying substrates resulting in poor device 

performance namely low fill factor and open-circuit voltage.

-Vvl glass/FTO/CdTe (Annealed)glass/FTO/CdTe (As-deposited)
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glass/FTO/CdS/CdTe (As-deposited) 1w glass/FTO/CdS/CdTe (Annealed)

Figure 7.33: SEM images of CdTe layers grown on different substrates.

Closer look at these images at higher magnification is shown in figure 7.34 and 

the cross-sectional SEM images of glass/FTO/ZnS/CdS/CdTe sample are shown in 

figure 7.35 at different magnifications.

Figure 7.34: Magnified SEM images of CdTe surface showing the true nature of the 
morphology.
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Figure 7.35: SEM cross-section o f glass/FTO/ZnS/CdS/CdTe revealing the true nature 
of the morphology.

These two figures show the true nature o f the morphologies of these materials. Figure 

7.34 shows that the observed CdTe grains of figure 7.33 are actually made up of 

extremely tiny grains that are tightly packed together. This close-packing is so much 

that the cross-sectional SEM shows the bulk of the layer as one solid and continuous 

block of material. This morphology is completely different from regular morphologies 

of CdTe grown with techniques such as CSS reported in the literature [44, 49, 50].

Figure 7.35 shows that the gaps or voids observed in figure 7.33 may sometimes 

not penetrate through the entire thickness of the layer. The only holes (voids) observed 

in these figures are those at the FTO/ZnS interfaces possibly arising as a result o f poor 

substrate cleaning prior to the deposition o f ZnS or even prior to the deposition of CdS 

or CdTe. There is no clear demarcation of CdS and CdTe layers in these images. This 

indicates that there is intermixing between these two materials especially during the 

annealing process. The dense nature of these layers as seen in figure 7.35 implies that 

there are no grain-boundaries present in the bulk of the layers. The implication o f this is 

that in a device the charge carries will exhibit maximum possible mobility with little or 

no scattering resulting in very high short-circuit current density in a solar cell, for 

example. This effect was severally observed in the solar cells fabricated during this 

project as will be discussed in the next chapter.

The EDX spectra of the CdTe grown on various substrates are also shown in 

figure 7.36. Figure 7.36 clearly shows the presence of Cd and Te in all the layers both 

before and after annealing. The percentage atomic concentrations of Cd and Te in these
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samples were obtained from the EDX spectra using the appropriate quant software of 

the SEM/EDX system and are shown in Table 7.17.

Table 7.17 shows that all three CdTe grown at a cathodic voltage o f 2038 mV 

for 4 hours are all slightly Cd-rich both before and after annealing. This is one o f the 

reasons for choosing this growth voltage other than lower voltages. Also this is the 

reason why very low tellurium content is maintained in the deposition by gradually 

adding Te4+ from time to time instead of initially adding high Te4+ concentration in the 

bath. As mentioned earlier the target in this project was to obtain n-CdTe for solar cell 

fabrication and Cd-rich CdTe provides n-CdTe while Te-rich CdTe provides p-CdTe. 

This is the nature o f CdTe. It is recognised that EDX is not a very accurate technique 

for determination o f atomic concentration. However, the unavailability of more precise 

techniques such as Rutherford back scattering within the Materials and Engineering 

Research Institute (MERI) of the Sheffield Hallam University necessitated the use of 

EDX for this analysis. The result, although it may not be precisely quantitative, is 

sufficiently qualitative for the purpose of this research.
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Figure 7.36: EDX spectra of CdTe grown on different substrates.

Table 7.17: Atomic percentage concentrations o f Cd and Te in CdTe layers grown on 
different substrates under similar conditions.

Sample structure Atomic % 
(As-Deposited)

Atomic % 
(Annealed)

Cd Te Cd Te
Glass/FTO/CdTe 51.50 48.50 51.19 48.81

Glass/FTO/ZnS/CdTe 50.96 49.04 51.74 48.26
Glass/FTO/CdS/CdTe 51.50 48.50 50.96 49.04

7.6 Conclusion

Two sets o f CdTe materials have been deposited using two- and three-electrode 

systems. The electrolyte for deposition of each set o f samples contained different n-type 

dopants, although the same sources of Cd2+ and Te 4+ were used. The two-electrode 

system is o f two types- one with carbon anode and the other with platinum anode. The 

three-electrode system had carbon anode. PEC results show that conductivity type 

conversion from n-type to p-type after CdCh treatment is a common trend in CdTe, 

especially, when the deposition electrolyte does not contain sufficient n-type dopants. 

With 1000 ppm of Cdl2 or CdCl2 , the probability of n- to p-type conversion is still high. 

However, with 1000 ppm each of CdCl2 and CdF2 , type conversion did not take place 

again. XRD results show that all deposited CdTe layers have cubic structure with 

preferred orientation in the (111) crystal plane. The result o f the effects o f annealing 

with CdCl2 and (CdCl2+CdF2) treatments shows that inclusion o f CdF2 in the CdCl2 

treatment results in pronounced improvement in crystallinity of CdTe, based on the 

intensity of the (111) peak. Apart from improvement of crystallinity, CdCl2 or 

CdCl2+CdF2 treatment converts any excess Te in the deposited CdTe to CdTe. The
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energy bandgap o f CdTe shifts from the range (1.47 -  1.52) eV to (1.47 -  1.49) eV after 

annealing for thicknesses in the range (2.1 -  1.1) pm. A comparison of the CdTe grown 

with both electrode systems, shows that the materials are similar in many respects. 

However, two-electrode system appears to offer higher deposition rate than three- 

electrode system. Comprehensive optical characterisation of samples grown with two- 

electrode system using Pt anode, shows that thickness has influence on the optical 

properties, and annealing tends to bridge the gap created by difference in thickness, 

resulting in improved quality. The absorption coefficient was found to increase from 

(2.0 -  3.0)xl04 cm 'l to (2.6 -  4.0)* 104 cm '1 (towards the visible region o f the solar 

spectrum) after annealing, for thicknesses in the range (1.1 -  2.1) pm. The refractive 

index, in the infrared region, was observed to vary in the range (2.00 -  2.63) for the as- 

deposited samples, but converge to a value of 2.63 after annealing, in .the above 

thickness range. The extinction coefficient varies in the range (0.03 -  0.06) for both as- 

deposited and annealed samples. SEM results show that grain sizes of CdTe are in the 

range (70 -  300) nm while the crystallite size obtained from XRD shows a saturation at 

63 nm across the thickness range explored. EDX analysis shows that all the CdTe layers 

grown at the cathodic voltage o f 2038 mV using Pt anode in the two-electrode system 

are all Cd-rich.
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Chapter 8 Solar cell fabrication and characterisation

8.0 Introduction

In this chapter the fabrication of different solar cells under different conditions 

and their assessment are presented. These cells were fabricated using the three main 

materials deposited and characterised as presented in Chapters 5 - 7 .  The different solar 

cell device architectures implemented basically include glass/FTO/n-CdTe/Au, 

glass/FTO/n-ZnS/n-CdTe/Au, glass/FTO/n-CdS/n-CdTe/Au and glass/FTO/n-ZnS/n- 

CdS/n-CdTe/Au (multilayer graded bandgap solar cell). Other device structures 

involving i-ZnO and Al-ZnO buffer layers grown on FTO were also fabricated.

The device processing steps used in this research include post-deposition 

annealing of the various device structures (before making the Au back contacts) with 

prior CdCl2 and CdCl2+CdF2 treatment, chemical etching and back contact 

metallisation. The main etchants used were dilute acidified K^C^O? aqueous solution 

(oxidising etch) and aqueous solution of NaOH+Na2 S2C>3 (reducing etch). An attempt 

was also made to see the effect o f replacing K^C^C^+F^SCU mixture with a mixture of 

K^C^Cb+HNC^+FkPCU on device performance. The main device assessment tool used 

was current-voltage characteristics. An attempt was also made to carry out capacitance- 

voltage measurement o f few solar cells with good rectifying properties. The fabrication 

and assessment results of all these solar cells are presented in this chapter.

8.1 Solar cell fabrication

Similar steps were involved in the fabrication of all the solar cells reported in 

this thesis. The general procedure after the deposition of the absorber layer (CdTe) 

involved CdCl2 or CdCl2+CdF2 treatment by dipping in a saturated solution o f CdCl2 or 

CdCl2+CdF2 in water or in methanol. Alternatively some CdCh or CdCl2+CdF2 solution 

could be spread on the CdTe surface using a pipette. The samples were then allowed to 

dry in air inside a fume cupboard. To facilitate the drying a warm air blower was used 

to blow warm air over the samples in order to dry the CdCb or CdCl2+CdF2 solution on 

it. After the drying, the samples were then annealed in a carbolite furnace at the desired 

temperature generally in the range (350 - 450)°C for the time period in the range (15 - 

60) minutes depending on the particular need. The samples were then allowed to cool 

in air. The white CdCl2 and CdCl2+CdF2 powder on the samples were then washed off
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with de-ionised water and the samples dried using the warm air blower or in a stream of 

N2.

The next stage in the processing is the chemical etching. For this process, two 

solutions were used. One of the etchants was the acid (oxidising) etchant containing 

about lg  o fK 2Cr20 7, 20 ml o f de-ionised water and two drops of concentrated sulphuric 

acid all in a 50 ml beaker. This solution actually provides a dilute acidic aqueous 

solution o f K2Cr20 7. The second etchant was the basic (reducing) etchant. This etchant 

contains about 0.5g each o f NaOH and Na2S2C>3 in 50 ml of de-ionised watgr all 

contained in a 100 ml glass beaker. This solution is then heated over a hot plate with a 

stirrer to about 60°C ready for use. The already annealed samples were then etched in 

the acid etchant by dipping them in the oxidising etchant for about 5 seconds and then 

rinsed in de-ionised water. Again they were etched in the reducing etchant by dipping 

them in the basic etchant for about 2 minutes while the solution is continuously stirred 

moderately. They were then rinsed again in de-ionised water and dried in a stream of 

nitrogen gas. All the etched samples were then transferred immediately to a metallic 

mask with circular holes. The choice of these etchants followed the work by 

Dharmadasa, Dharmadasa et al and Das and Morris [1 - 3]. Two different masks were 

used. The main one used for most of the devices was one with 2 mm-diameter circular 

holes. The other used had 3 mm-diameter circular holes. The mask containing the 

etched samples was then placed in the EDWARDS 306 vacuum coater (metalliser) with 

an FTM7 Film Thickness Monitor. A piece o f gold wire o f 99.999% purity was then cut 

and placed in the tungsten filament for evaporation o f Au. The evaporation chamber of 

the metalliser was then closed and evacuated to a pressure of 10-4 Pa (10*6 Torr). When 

this pressure was attained, about 100 nm-thick Au layer was evaporated onto the 

samples. The thickness o f the evaporated Au was controlled using the thickness monitor 

and shutter accompanying the metalliser. The whole system was allowed for about 30 

minutes to cool and the completed solar cell devices were removed and then 

characterised using current-voltage and capacitance-voltage measurements. The I-V 

system used was a Kiethley 619 Electrometer/multimeter using a solar simulator with 

light intensity of 1000 Wm'2. The C-V system used was a Kiethley 6517A 

Electrometer/High resistance Meter with Hewlett Packard 4284A (20 Hz -  1 MHz) 

Precision LCR Meter. The results of the characterisation of the various solar cell 

structures fabricated are presented in the following sections.
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8.2 Characterisation of n-CdTe/Au solar cells

Figure 8.1 shows the graphs o f I-V characteristics o f four different glass/FTO/n- 

CdTe/Au solar cells with CdTe grown at cathodic voltage o f 2038 mV for different 

times. One major observation in these graphs is the very poor device characteristics of 

all the cells. Again the reproducibility of the devices reported in this thesis is still poor 

at present (especially for the best devices) and is generally around 40%.
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Figure 8.1: I-V characteristics of glass/FTO/n-CdTe/Au solar cells with CdTe grown 
for (a) 2.5 hr, (b) 3.0 hr, (c) 4.0 hr and (d) 5.0 hr.

This is a common observation during the course of this research. The best device 

obtained using this device structure was the one involving CdTe grown for 5 hours with 

Voc = 170 mV, Jsc = 12.8 mAcm'2, FF = 0.31 and r| = 0.7%. The summary o f all the 

device results is given in Table 8.1 below and these measurements have error of about 

±5%.
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Table 8.1: Summary o f device results for glass/FTO/n-CdTe/Au solar cells. The error 
in these measurements is within ±5%.

Sample ID CdTe Growth time 
(hr)

V o c

(mV)
Jsc

(mAcnf2)
FF il

(%)
C l-4 2.5 330 3.5 0.48 0.55
C3-4 3.0 400 3.8 0.41 0.62
C4-4 4.0 350 4.0 0.33 0.46

F 5.0 170 12.8 0.31 0.70

With the exception of the device with CdTe grown for 4 hours the results show that the 

overall device efficiency increases as growth time (thickness) of CdTe increases. Again 

the short-circuit current density increases as the growth time (thickness) o f CdTe 

increases. The FF generally decreases as CdTe growth time increases. The Voc does not 

show any consistent trend with respect to CdTe growth time. The reason for the very 

poor results may have to do with the large lattice mismatch between CdTe and Sn02 

(FTO). Cubic CdTe has lattice constant a = 6.4810 A according to the JCPDS file No. 

00-015-0770 while tetragonal SnC>2 has lattice constant a = 4.7200 A according to 

JCPDS file No. 00-001-0625. This amounts to lattice mismatch of 27% relative to CdTe 

and 37% relative to Sn02.

8.3 Characterisation of n-CdS/n-CdTe/Au solar cells

Different structures of n-CdS/n-CdTe/Au solar cells were fabricated using both 

two-electrode system and three-electrode system. Even in two-electrode configuration, 

CdS/CdTe solar cells were fabricated using both carbon anode and platinum anode. 

Another set o f cells were also fabricated incorporating i-ZnO as a buffer layer resulting 

to the fabrication of glass/FTO/i-ZnO/n-CdS/n-CdTe/Au solar cells in addition to the 

glass/FTO/n-CdS/n-CdTe/Au solar cells. The i-ZnO used also came from Pilkington 

Group United Kingdom in the form of glass/FTO/i-ZnO substrates. All these devices 

and the results of their characterisation are presented in this section.

8.3.1 n-CdS/n-CdTe solar cells using CdTe from  two-electrode system with 

platinum  anode

Figures 8.2 (a) - (f) show the I-V characteristics of glass/FTO/n-CdS/n-CdTe/Au solar

cells fabricated using CdS grown for different durations representing different

thicknesses in order to determine the best growth time (thickness) of CdS for making

CdS/CdTe solar cells. All the CdS samples were grown at a cathodic voltage o f 1450

mV while the CdTe layers were grown at a cathodic voltage of 2038 mV for 4.5 hours
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and annealed at 450°C for 18 minutes after CdCl2+CdF2 treatment. Figure 8.2 shows 

that these devices have high series resistances and low shunt resistances. The sample in 

figure 8.2 (a) however, shows relatively higher shunt resistance and actually has lowest 

series resistance. This is reflected in its highest fill factor among other devices.

Table 8.2 shows the summary of the device parameters of these devices under A.M 1.5 

illumination. From Table 8.2, it is clear that none o f the device parameters in general 

has any clear dependence on the growth time (or thickness) of CdS. However, the best 

device in terms o f Voc, JSc and r\ is the device with CdS grown for 28 minutes showing 

an efficiency o f 4.9%.
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! figure 8.2: I-V characteristics of glass/FTO/n-CdS/n-CdTe/Au solar cells with CdS of
different thicknesses. CdTe was gorwn for 4.5 hrs using two-electrode system with Pt 
anode.

Table 8.2: Summary of glass/FTO/n-CdS/n-CdTe/Au solar cells with CdS grown for 
different durations. The error in these measurements is within ±5%.
Sample

ID
CdS

growth
time
(min)

CdS
thickness

(nm)

V oc
(mV)

Jsc
(mAcm'2)

FF n
(%)

Series
resistance,

R .( « )

Shunt
resistance,

R sh (^)

CS170-A 12 172 480 23.0 0.35 3.8 236 7665
CS171-B 15 239 510 2 0 .2 0.32 3.3 334 2686
CS172-C 19 317 490 18.9 0.33 3.1 295 3129
CS173-D 24 374 510 20.7 0.33 3.5 365 2963
CS174-E 28 452 535 29.4 0.31 4.9 271 3410
CD175-F 34 466 460 16.5 0.33 2.5 453 2980

Table 8.3 shows the device results o f solar cells fabricated using CdS samples 

grown at different growth voltages in order to identify the best deposition voltage of 

CdS for device fabrication. Each glass/FTO/CdS/CdTe sample was divided into two and 

annealed at two different temperatures before fabricating the complete devices.

Table ,8.3: Optimisation of CdS growth voltage. The error in these measurements is 
about ±5%.

CdS
cathodic
growth
Voltage

(mV)

450°C, 15 min 360°C, 69 min
V o c

(mv)
Jsc (mAcm'2) FF h

(%)
V o c

(mV)
Jsc

(mAcm'2)
FF if

(%)

1445 580 22.9 0.26 3.5 340 9.2 0.45 1.4
1450 600 26.3 0.34 5.4 450 16.5 0.48 3.6
1450 600 19.1 0.31 3.6 360 7.0 0.45 1.1
1455 560 31.8 0.37 6.6 480 11.4 0.46 2.5
1460 560 26.7 0.39 5.8 400 7.6 0.45 1.4
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The best device using annealing temperature o f 450°C for 15 minutes was the device 

with CdS cathodic voltage of 1455 mV while the best CdS growth voltage using 

annealing temperature of 360°C for 69 minutes was 1450 mV. However, in terms of the 

best Voc, FF and r|, the best CdS growth voltage should be between 1450 mV and 1455 

mV using both annealing temperatures. In this work, the cathodic growth voltage of 

1450 mV was preferred for CdS based on several experiments carried out both on the 

bases o f single CdS layers and CdS/CdTe solar cells using different electrode 

configurations.

It also became very important to determine the best growth voltage for CdTe for 

solar cell fabrication having established a preferred growth voltage from the 

characterisation o f CdTe single layers as presented in chapter 7. For this reason, 

different sets o f solar cells were fabricated using CdTe grown with two-electrode 

system having Pt anode. The CdTe layers used for this purpose were grown at different 

cathodic voltages including the best voltage identified from characterisation o f CdTe 

layers.

Table 8.4 shows the device results obtained for CdS/CdTe solar cells using CdTe 

grown at different cathodic voltages. Again each CdS/CdTe sample was divided into 

two so that two different annealing conditions were used. In this case the same 

temperature of 450°C was used but with different annealing times o f 15 minutes and 20 

minutes.

Table 8.4: Optimisation o f CdTe growth voltage using CdS/CdTe device structure. The 
error in these measurements is about ±5%.

Vg
(mV)

450°C, 15 min 450°C, 20 min
V o c

(mv)
Jsc

(mAcm'2)
FF 0

(%)
V o c

(mV)
Jsc

(mAcm'2)
FF

(%)
2036 410 11.4 0.25 1.2 350 8.9 0.25 0.8
2037 400 7.6 0.25 0.8 260 11.1 0.25 0.7
2038 440 7.6 0.25 0.8 360 8.9 0.25 0.8
2039 420 7.6 0.25 0.8 310 10.1 0.25 0.8
2040 ------ ------ 310 2.5 0.33 0.25
2041 380 9.5 0.25 0.9 350 6.3 0.25 0.55
2042 ------ ------ 200 4.3 0.26 0.22

From Table 8.4, the best cathodic growth voltage of CdTe appears to be 2036 mV 

which produced the best efficiency in both annealing conditions. Apart from this the 

cathodic voltages of 2038 mV and 2039 mV followed with next highest efficiency for
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both annealing conditions. Therefore the best voltage lies in the range (2036 - 2039) 

mV. However, in terms of the best Voc, the cathodic voltage of 2038 mV displays the 

best Voc in both annealing conditions. This become the preferred growth voltage for 

CdTe based on results also obtained from other different device structures as will be 

seen in later sections in addition to its emergence as the best voltage from the earlier

CdTe characterisation results. The entries marked “-----“ indicate damaged samples due

to peeling off of the layers.

With best cathodic growth voltages o f 1450 mV and 2038 mV for CdS and 

CdTe respectively, the best 2 mm diameter glass/FTO/n-CdS/n-CdTe/Au solar cell 

realised using the two-electrode system with Pt anode in this programme produced a 

conversion efficiency of 8.0% with Voc = 630 mV, Jsc = 38.5 mAcm'2 and FF = 0.33. 

The J-V characteristics of this particular solar cell both under dark and AM 1.5 

illumination conditions are shown in figure 8.5.

8.0%

fc <

j 9/  
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Figure 8.5: J-V characteristics of the best CdS/CdTe solar cell using two-electrode 
system with Pt anode, (a) linear-linear J-V in the dark (b) log-linear I-V in the dark and 
(c) linear-linear J-V under illumination.
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The CdS sample used in this device was a double layer grown in two stages of 

20 minutes each. After the first growth for 20 minutes, the sample was annealed with 

CdCb treatment at 400°C for 20 minutes. The second layer was also grown for 20 

minutes and again annealed with CdCb treatment at 400°C for 20 minutes before CdTe 

was grown on it for 4 hours. The combination was then annealed at 450°C for 15 

minutes after CdCl2+CdF2 treatment. The shapes of the graphs in figure 8.5 (a) and (c) 

show that the device has high series resistance. The series resistance from these figures 

were 2054 Q. and 316 Q respectively. The shunt resistance ( R Sh )  obtained from figure

8.5 (c) is 4574 £ 1  The rectification factor ( I f / I r ) v = i (usually defined at a bias voltage of 

V = 1) obtained from figure 8.5 (b) for this solar cell was 104'1 with a diode ideality 

factor n = 2.54. The saturation current density (J0) and Schottky barrier height (4>b )  

obtained from figure 8.5 (b) were 1.0x1 O'7 Acm'2 and 1.10 eV respectively. The high 

series resistance definitely has contribution from the CdS window layer which was 

shown in chapter 6 to have high resistivity generally. Also, contribution to high series 

resistance could come from any oxide layer formed on the CdTe surface during the 

chemical etching process, therefore resulting in an unintended MIS structure. It can be 

recalled that the acidic etchant used in the processing o f this, and all the devices 

principally contain K.2Cr2 0 7  which is an oxidising agent. During the etching process, 

this chemical oxidises, the CdTe surface while the reducing etchant containing NaOH 

and Na2 S2C>3 reduces the surface. The extent to which these oxidation and reduction 

take place is not exactly known. The etching times were set from experimental results 

over time. It is therefore possible that excessive oxidation could take place that produces 

reasonable oxide layer between the CdTe surface and the Au metal contact giving rise to 

the observed high series resistance. Another possible cause of high series resistance is 

compensation effect caused by diffusion o f K+ and Na+ from both acidic and basic 

etchants into the top layer o f CdTe during etching. In fact this is a very possible 

occurrence and also explains the observation of high Schottky barrier height which is 

common to the good solar cells produced in this research. Since K and Na are group 1 

elements which generally act as acceptor atoms in n-CdTe, it is possible that these 

atoms may by adsorption or diffusion find their way into a thin top layer o f the n-CdTe 

converting it towards p-type by compensation. This has the advantage o f pulling the 

Fermi level of the CdTe towards the valence band therefore resulting in high Schottky 

barrier height as well as high resistance in the compensated thin CdTe layer near the 

CdTe/Au interface. It is well known that adding a thin p-type or p+ layer on an n-type
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semiconductor before making a metal contact helps to improve the Schottky barrier 

height o f the device formed [4, 5].

The high rectification factor greater than four orders of magnitude obtained is an 

indication o f how good the Schottky diode formed is. Only rectification factor o f two 

orders of magnitude is required to make a good solar cell [5]. The strength o f this 

rectification is seen in the shape o f the dark linear-linear J-V curve in figure 8.5 (a) 

where the dark shunt resistance tends to infinity.

The diode ideality factor (n) o f 2.54 obtained for this device is rather high. This is in 

part attributed to the observed high series resistance. Bayhan and Kavasoglu [6] showed 

from both experiment and model calculation that high n-values ranging from 3.43 to 

4.07 is perfectly explained for a 13% n-CdS/p-Cu(In,Ga)Se2 solar cell by the presence 

of high series resistance in the device. High n-values could also arise from high density 

of surface states possibly resulting from chemical etching o f the CdTe which modifies 

this surface and thus enhances tunnelling through the Schottky junction of the device. 

The presence of recombination centres in the materials used in this device could also 

cause this high value of diode ideality factor.

The reverse saturation current density (Jo) obtained from figure 8.5 (b) is 1.0x10' 

?Acm'2. This value is high compared to typical values obtained for p-n junctions [7 - 

10]. It is however within the range of values obtained from Schottky junctions [11 - 14]. 

Nevertheless, high Jo values indicate the presence of leakage paths and recombination 

centres in a device. From the equation of saturation current density o f a Schottky diode, 

Jo depends on temperature as well as on barrier height. However, the temperature 

dependence appears to be more pronounced than the barrier height dependence such that 

for any given barrier height, 1° rise in temperature has a huge influence on Jo [15]. This 

is not the case in p-n junction diode where Jo depends principally on the diffusion 

properties of the charge carriers [4].

The barrier height (4>b )  obtained for this device is 1.10 eV which is sufficiently high. It 

should be noted however, that the use o f high n-value such as the one obtained for this 

device, for the estimation o f $ b  actually under estimates <])b . The implication o f this is 

that the actual barrier height existing in this particular solar cell is greater than 1.10 eV. 

The high (])b value comes as a result of chemical modification of the CdTe surface by 

etching which actually helps to pin the Fermi level close to the valence band o f CdTe.
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This is the main reason for using the etching conditions described above even though it 

may end up introducing high series resistance.

The pronounced Fermi level pinning phenomenon in CdTe due to the existence 

of up to five possible Fermi level pinning positions creates a serious problem in 

fabricating metal/CdTe junctions. Depending on the predominant condition in any given 

case, the Fermi level of the CdTe can be pinned at any of the five possible positions. 

The implication for instance, is that five different Au/n-CdTe interfaces fabricated from 

the same n-CdTe stock at five different times using the same metal contact, can exhibit 

completely different device behaviours producing different barrier heights. The essence 

o f surface preparation before metal/semiconductor junction formation is to passivate 

most or all o f the available Fermi level pinning positions leaving only the preferred 

position that will result in the production o f the best barrier height for the device 

intended. When such surface modification is made, the behaviour o f the resulting device 

may not strictly obey established theories. The etching conditions used in all the device 

fabrications in this research were chosen in order to pin the Fermi level of CdTe at the 

lowest position close to the valence band which is capable of producing Schottky barrier 

heights o f up to 1.20 eV [1, 2, 5].

Typical energy band diagram of the glass/FTO/n-CdS/n-CdTe/Metal solar cell 

is shown in figure 8.6

Figure 8.6: Energy band diagram of glass/FTO/n-CdS/n-CdTe/Metal solar cell.

The region marked “a” in the band diagram shows that inter-mixing between CdS and 

CdTe takes place at the CdS/CdTe interfaces resulting in the possible formation o f an 

intermediate material (CdSxTei_x) [5, 16 - 21]. This helps in the formation o f graded



bandgap across the entire device. This situation is encouraged by the post-deposition 

CdCl2 or CdCl2+CdF2 heat treatment o f the CdS/CdTe bi-layer during device 

processing. As a result, the CdS/CdTe junction is not an abrupt junction but a graded 

one with the bandgap gradually varying from 2.42 eV (bandgap o f CdS) to 1.45 eV 

(bandgap of CdTe). This bandgap grading helps in the absorption o f photons from 

different regions o f the solar spectrum at different regions of the bandgap. This helps to 

reduce thermalisation effect in the device [5, 22 - 26]. In a solar cell, incident photons 

interact with the covalent bonds in the solar cell materials to break the bonds and release 

electron-hole (e-h) pairs which results in the generation of electricity when these photo­

generated charge carriers are collected to an external circuit. However, not all incident 

photons can break the bonds and create e-h pairs. In principle, only photons with energy 

(hv) equal to or greater than the energy bandgap of the solar cell materials can create 

such e-h pairs. When the energy of the incident photon is very much higher than the 

energy bandgap o f the solar cell material, the excess energy of this photon is transferred 

to the crystal lattice o f the solar cell material and causes heating effect in the lattice of 

the material. In addition, the photo-generated charge carriers created by these high- 

energy photons quickly lose their extra energy (in excess of the bandgap energy) to the 

lattice of the semiconductor material in order to return to thermal equilibrium with the 

semiconductor. This results in increased lattice vibrations (phonons). Subsequently, this 

causes increased scattering of the photo-generated charge carriers and results in losses 

in the photo-generated current. This phenomenon is called thermalisation and the 

associated loss is called thermalisation loss [27 - 30]. This effect is more pronounced in 

single junction solar cells with low energy bandgap absorber materials. This can as well 

damage the solar cells due to the heat produced in the process. With bandgap grading, 

the burden of absorption of high-energy photons is shared across the entire bandgap of 

the solar cell. Apart from reducing thermalisation effect, the graded bandgap structure 

helps in the effective collection and acceleration of photo-generated charge carriers 

towards the metal contacts by providing gradually varying electric field across the 

device length. It can therefore result in increased current output of the solar cell since 

current is not only a function of the number o f charge carriers involved but also a 

function of the mobility; rate at which these charge carriers are transported from one 

point to another under an applied electric field.

The device structure shown in figure 8.6 is therefore a combination of n-n 

hetero-junction and a large Schottky barrier resulting in the enhancement of the slope o f
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the energy band diagram. When the CdS and CdTe layers are optimised with optimum 

doping densities, the resulting device is fully depleted with the depletion region 

spreading across the entire length of the device. With this, very high values of device 

parameters can be obtained from the solar cell.

An attempt to scale up this device from 2 mm diameter cells to 3 mm cells 

produced still encouraging device results. Two devices were fabricated with this 

dimension. One of the device produced Voc = 560 mV, Jsc = 31.9 mAcm'2, FF = 0.28 

and rj = 5.0%. The second device produced even better results as shown in figure 8.7. 

This device produced Voc = 660 mV, Jsc = 33.6 mAcm'2, FF = 0.38 and r) = 8.4%. The 

overall conversion efficiency o f 8.4% is even better than 8.0% obtained for the 2 mm- 

diameter device shown in figure 8.5. This shows that electrodeposition technique is 

quite scalable just as BP solar has proved in the past [31 - 33].
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Figure 8.7: (a) Dark and (b) light J-V of 3 mm-diameter glass/FTO/n-CdS/n-CdTe/Au 
solar cell with conversion efficiency of 8.4%.

Figure 8.8 shows typical C-V characteristics of the 8.0% glass/FTO/n-CdS/n- 

CdTe/Au solar cell with 2 mm diameter, fabricated using CdTe grown with the two- 

electrode system using Pt anode. The C-V measurement was done at room temperature 

and in dark condition at a frequency of 1 MHz. Figure 8.8 (a) is the C-V relationship 

while figure 8.8 (b) is the Mott-Schottky plot o f 1/C2 vs.V.
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Figure 8.8: Typical (a) C vs. V and (b) 1/C vs. V graphs of the glass/FTO/n-CdS/n- 
CdTe/Au solar cell with 8.0% conversion efficiency.

Figure 8.8 (a) shows that the depletion capacitance o f the device remains constant under 

reverse bias. The capacitance however, increases with applied bias under forward bias 

condition. The depletion capacitance obtained from figure 8.8 (a) for this device is C0 = 

179 pF. This capacitance of 179 pF represents the geometrical capacitance, C, o f the 

device. The geometrical capacitance of this device structure using relative permittivity 

of CdTe, sr -  11, permittivity of free space, £ 0 ~ 8.854xl0'12 Fm '1, CdTe thickness, d 

-1.64 pm and active device area, A~  0.031 cm2 is -184 pF using Equation (8.1). The 

two capacitance values are comparable.

C =
£0£rA

(8.1)

The constant capacitance under reverse bias suggests that this device is fully depleted 

even at zero bias. However, the forward bias result shows that the depletion width 

becomes smaller as forward bias increases. Figure 8.8 (b) shows the variation o f 1/C2 

with applied bias voltage. Under forward bias there is a fairly constant drop in 1/C2 with 

increasing bias. The doping concentration for electrons calculated from figure 8.8 (b) 

gave the value Nd-Na -  2.5* 1015 cm-3 which is within the values reported in the 

literature for good solar cells [11 ,33-37].
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8.3.2 n-CdS/n-CdTe solar cells using CdTe from two-electrode system with

carbon anode

Using the two-electrode system with carbon anode for deposition of CdTe, a set 

o f solar cells was fabricated in an attempt to determine the best deposition voltage for 

CdTe in terms o f device fabrication. The CdS layers used were grown for the same time 

o f 20 minutes each and CdTe layers were grown at different voltages onto each CdS for 

4 hours. The same processing conditions were maintained for all the five samples for 

comparison. Figures 8.9 (a) - (j) show the J-V characteristics of the glass/FTO/i-ZnO/n- 

CdS/n-CdTe/Au solar cells fabricated under AM 1.5 illumination and dark conditions.
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Figure 8.9: (a) -  (j) Light and dark J-V characteristics of glass/FTO/i-ZnO/n-CdS/n- 
CdTe/Au solar cells fabricated with CdTe grown at different cathodic voltages from 
two-electrode system with carbon anode.

The summary of the device parameters obtained for these devices are presented in Table

8.5 and figures 8.10 (a) - (e).
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Table 8.5: Summary of device parameters for glass/FTO/i-ZnO/n-CdS/n-CdTe/Au solar 
cell fabricated using CdTe from two-electrode system with carbon anode. The error in 
these measurements is about ±5%.

Sample ID CdTe growth 
voltage (mV)

Voc
(mV)

Jsc
(mAcm'2)

FF h
(%)

Rs(fJ)

ICS12-i 1574 430 10.0 0.28 1.2 865
IC S ll-g 1575 480 11.5 0.30 1.6 638
ICSlO-e 1576 500 18.7 0.32 3.0 443
ICS9-c 1577 470 29.2 0.33 4.5 248
ICS8-a 1578 410 31.8 0.35 4.5 219
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Figure 8.10: Graphs of the glass/FTO/i-ZnO/n-CdS/n-CdTe/Au device parameters as a 
function of CdTe growth voltage using two-electrode system with carbon anode.

229



A close observation of figure 8.9, figure 8.10 and Table 8.5 shows there is a 

clear trend in the performance of the devices with respect to the CdTe growth voltage. 

The overall efficiency o f the devices increases as the CdTe growth voltage increases. 

The short-circuit current density and fill factor values also increase as the CdTe growth 

voltage increases. There is however, inconsistency in the Voc values but the series 

resistance values obtained from the light J-V curves show a consistent decrease as CdTe 

growth voltage increases.

The implication of this consistency in the device parameters show that better solar cells 

are obtained using Cd-rich CdTe which are obtained at relatively higher cathodic 

growth voltages. The series resistances of these devices under illumination are very high 

and are attributed to the additional resistance of the i-ZnO layer used. The results show 

generally that the best cathodic growth voltage for CdTe using this electrode 

configuration is between 1577 mV and 1578 mV.

8.3.3 n-CdS/n-CdTe solar cells using CdTe from three-electrode system with

carbon anode

In this experiment, two different sets o f solar cells were fabricated using CdTe 

grown from the three-electrode system with carbon anode. The deposition voltages of 

CdTe were taken in the cathodic voltage range (697-700) mV since the best cathodic 

growth voltage established from XRD results was 697 mV and since Cd-rich CdTe 

obtained from higher cathodic voltages produce better solar cells as seen from the 

previous section. In the end the best solar cells obtained with this system also came with 

CdTe grown at the cathodic voltage of 697 mV. One set of the devices had the structure 

o f glass/FTO/n-CdS/n-CdTe/Au and the other set had the structure o f glass/FTO/i- 

ZnO/ri-CdS/n-CdT e/Au.

Tables 8.6 and 8.7 show the summaries of the parameters obtained for these two 

sets of devices. The results in the two tables show that CdTe grown at 700 mV in some 

cases produced solar cells with impressive Jsc values. However, in terms of the best Voc, 

FF and ri values, the best CdTe cathodic growth voltage was 697 mV.
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Table 8.6: Summary of device results for glass/FTO/n-CdS/n-CdTe/Au solar cells 

fabricated using CdTe from three-electrode system with carbon anode. The error in 

these measurements is about ±5% and the reproducibility o f the device parameters is 

about 40% which is still low at present.

Sample ID CdTe 
Cathodic Vg 

(mV)

Voc
(mV)

Jsc
(mAcm*2)

FF
(%)

CS116-4 697 400 15.2 0.27 1.6
N13CT-9 699 580 7.6 0.43 1.9
CS50-1 699 430 17.8 0.32 2.4
CS55-6 697 480 17.8 0.29 2.5
CS55-5 697 500 12.7 0.43 2.7
CS56-7 700 500 18.7 0.34 3.1

N13CT-g 699 580 16.0 0.37 3.4
CS56-8 700 450 28.0 0.32 4.0
CS25-i 699 560 22.0 0.35 4.3
CS53-c 700 600 33.0 0.33 6.5

CS143-a 697 630 23.5 0.44 6.5
CS63-f 697 640 25.0 0.41 6.6
CS63-e 697 670 22.0 0.47 6.9

Table 8.7: Summary of results of some glass/FTO/i-ZnO/n-CdS/n-CdTe/Au solar cells 

fabricated using CdTe grown using three-electrode system with carbon anode. The error 

in these measurements is within ±5%.

Sample ID CdTe growth 
voltage (mV)

V o c

(mV)
Jsc

(mAcm*2)
FF

(%)
ICSl-a 700 460 12.7 0.3 1.7
ICS4-1 697 460 14.9 0.38 2.6
ICS-7-c 700 480 17.5 0.34 2.8
ICS3-b 697 500 15.2 0.44 3.3
ICSl-b 700 460 28.0 0.34 3.8

Figure 8.11 shows the light J-V and dark logl-V characteristics of two of the best 

device from Table 8.6 for brevity. Both devices were made with CdTe grown at a 

cathodic voltage of 697 mV for 4 hours. These two devices have the best fill factors in 

Table 8.6. The rectification factors and reverse saturation current densities obtained 

from the logl vs. V curves in figure 8.11 (b) and (d) respectively were 104'9 and 2.0x10* 

8 Acm"2 for the 6.5% device and 104'8 and 3.2xl0"8 Acm'2 for the 6.9% device.
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Figure 8.11: Current-voltage characteristics of two best solar cells fabricated using 

CdTe grown at a cathodic voltage o f 697 mV from the three-electrode system with 

carbon anode ((a) and (c)) under illumination and ((b) and (d)) under dark conditions.

8.4 C haracterisation of n-ZnS/n-CdTe solar cells

In this section glass/FTO/n-ZnS/n-CdTe/Au solar cells were fabricated. As 

mentioned earlier, the aim of using ZnS as a window layer instead o f CdS is to see if  it 

is possible to replace CdS with ZnS in CdTe-based solar cells and by extension to other 

solar cell structures using CdS as a window material such as CIGS. There are two major 

reasons for this targeted replacement. First is that ZnS has higher energy bandgap than 

CdS and therefore can give rise to solar cells with improved short-circuit current 

densities. Second is that ZnS is non-toxic, containing no Cd and therefore will bring 

about a reduction in Cd-containing toxic waste generated during the CdS deposition 

process especially using wet chemistry routes.
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Different sets o f glass/FTO/n-ZnS/n-CdTe/Au solar cells were fabricated using 

CdTe from the three different electrode configurations namely two-electrode with 

carbon anode, two-electrode with platinum anode and three-electrode with carbon 

anode. Table 8.8 summarises the device results o f the solar cells made using these three 

electrode systems.

Table 8.8: Summary o f glass/FTO/n-ZnS/n-CdTe/Au solar cells fabricated using CdTe 
from both two-electrode and three-electrode systems. The error in these measurements 
is about ±5% with reproducibility o f about 40% for the device parameters.

Sample
ID

V o c

(mV)
Jsc

(mAcm*2)
FF *1

(%)
CdTe electrode system

K207-k 400 6.3 0.25 0.6 3-electrode with carbon anode
K243 260 12.0 0.25 0.8 3-electrode with carbon anode
K265 280 22.9 0.27 1.7 3-electrode with carbon anode
K262 500 11.4 0.48 2.7 3-electrode with carbon anode

K317-C 390 19.7 0.36 2.8 2-electrode with carbon anode
K321-a 500 21.8 0.40 4.4 2-electrode with carbon anode

K326-b 620 22.5 0.38 5.3 2-electrode with Pt anode
K326-2 646 47.8 0.39 12.0 2-electrode w ith P t anode

The results in Table '8.8 clearly show that the best two devices came from those 

involving CdTe grown using two-electrode system with Pt anode. Figure 8.12 shows the 

J-V characteristics of some of these devices each representing a particular electrode 

system. The overall best glass/FTO/n-ZnS/n-CdTe/Au device fabricated in this research 

produced a conversion efficiency o f 12.0%. This is the best solar cell produced in this 

research in terms of the overall conversion efficiency. It also produced the highest 

short-circuit current density among all other devices fabricated. The success in 

fabricating this particular solar cell demonstrates the possibility of replacing CdS with 

ZnS in all the solar cells where CdS is involved as a window material.
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Figure 8.12: Ligth and dark J-V curves o f some glass/FTO/n-ZnS/n-CdTe/Au solar 
cells.

Figures 8.13 (a) and (b) show the graph of logl vs. V for this particular device 

and the typical energy band diagram for glass/FTO/n-ZnS/n-CdTe/Au solar cell 

respectively.
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Figure 8.13: (a) LogI vs. V of the 12.0% glass/FTO/n-ZnS/n-CdTe/Au solar cell and 

(b) Typical energy band diagram for glass/FTO/n-ZnS/n-CdTe/Metal solar cell.

The region marked “b” in figure 8.13 (b) shows the result of inter-diffusion of atoms at 

the ZnS/CdTe interface producing an intermediate material, ZnCdxTei.x. This 

intermixing, as in the case of CdS/CdTe devices, is enhanced by the annealing process 

after the CdCl2+CdF2 treatment of the top CdTe layer [5, 16-21] .  The presence of this 

intermediate material serves to facilitate band gap grading and minimising any lattice 

mismatch between ZnS and CdTe. Just like in the case of CdS/CdTe devices discussed 

previously, the bandgap of the resulting ZnS/CdTe structure is effectively graded from 

the bandgap of ZnS (Eg = 3.70 eV) to the bandgap of CdTe (Eg = 1.45 eV). This will 

result in a relatively continuous slope in the bandgap which helps to minimise 

thermalisation and facilitate acceleration o f photo-generated charge carriers towards the 

metal contacts giving rise to improvement in short-circuit current density from the solar 

cell. Again the use of ZnS window material helps to allow higher energy photons into 

the CdTe absorber layer for generation of more electron-hole pairs compared to when 

CdS is used as a window material. These advantages have actually come into play in 

this particular device which produced the highest short-circuit current density among all 

solar cell structures fabricated in this research project.

The series resistance obtained for this device from figure 8.12 (f) under 

illumination was 112 Q  and that from figure 8.12 (g) under dark condition was 126 Q. 

The relatively reduced series resistance of this device compared to that o f the 8.0% 

CdS/CdTe solar cell is attributed to the formation of relatively thinner oxide layer on 

the CdTe layer as a result of chemical etching as has been explained earlier in the case
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of CdS/CdTe cells. The rectification factor (RF), diode ideality factor (n), reverse 

saturation current density (Jo) and Schottky barrier height (4>b )  obtained for this device 

from figure 8.13 (a) were 104'7, 2.36,4.0x1 O'7 Acm'2 and 1.13 eV respectively. The high 

value o f n (n = 2.36) is also attributed to the presence of high series resistance as well as 

recombination and generation. This therefore means that the barrier height o f 1.13 eV 

obtained from this device using this high n-value is actually under-estimated.

The full solar cell parameters o f this device under illumination are Voc = 646 

mV, Jsc = 47.8 mAcm'2 and FF = 0.39, which produced the conversion efficiency of 

12.0%.

8.5 Characterisation of n-ZnS/n-CdS/n-CdTe multi-layer graged-bandgap

solar cells

In this section, two sets o f solar cells were fabricated with the glass/FTO/n- 

ZnS/n-CdS/n-CdTe/Au structures using CdTe grown from two-electrode system with Pt 

anode and three-electrode system with carbon anode. However, majority of the devices 

came from two-electrode system with Pt anode. These devices were all fabricated at 

different times during this research.

The schematic and the energy bandgap diagrams of the glass/FTO/n-ZnS/n- 

CdS/n-CdTe/Au solar cell structure are shown in figures 8.14 and 8.15.

Au back contact 

- v

n-CdS

n-ZnS____________

FTO (Front contact)

Glass

Figure 8.14: Schematic diagram of the glass/FTO/n-ZnS/n-CdS/n-CdTe/Au multi-layer 
graded bandgap solar cell structure.
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One way of reducing or preventing the loss o f photo-generated current and 

prevent damage due to thermalisation effect in a solar cell, as mentioned earlier, is to 

grade the bandgap of the solar cell so that photons of varying energies can be absorbed 

at different regions o f the solar cell [22 -  26, 38 - 40]. In this way high-energy photons 

are absorbed by wider bandgap regions of the solar cell and lower energy photons 

absorbed by narrower bandgap regions of the solar cell.

#  x  l-X

Figure 8.15: Typical energy band diagram of glass/FTO/n-ZnS/n-CdS/n-CdTe/Au 
multi-layer graded-bandgap solar cell.

Electron-hole pairs are therefore created in different regions of the cell without 

heating up of the crystal lattice. One of the ways o f bringing about grading in the 

bandgap of the solar cell is to use different semiconductor materials with different 

bandgaps and arranging them in such a way that the resultant energy bandgap o f the 

solar cell is graded in a descending order from the window material to the main 

absorber material. This type of device therefore is a multi-layer graded bandgap device. 

Another way of achieving bandgap grading is by gradually changing the composition of 

the solar cell material during the growth process. This method however holds only for 

materials whose bandgaps change with change in composition such as in AlGaAs/GaAs 

solar cell where the bandgap o f GaAs increases as the A1 content increases [25, 26, 38 - 

40].

In the graded bandgap solar cells fabricated in this research, the multi-layer 

graded bandgap approach was used in which the wider bandgap material used was ZnS 

and the narrow bandgap absorber material was CdTe. The intermediate bandgap 

material used was CdS. Figure 8.14 shows the schematic o f this device structure while
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figure 8.15 shows the energy bandgap diagram. During the post-deposition heat 

treatment, inter-diffusion o f atoms o f the various constituent materials takes place at the 

interfaces. This facilitates the formation o f intermediate materials at these interfaces. In 

the ZnS/CdS and CdS/CdTe interfaces, materials such as ZnxCdi.xS and CdSxTei.x are 

possibly formed respectively. This further helps the bandgap grading as well as 

minimises possible lattice mismatch and therefore surface states at these interfaces. 

With this kind of device structure, impurity photovoltaic effect and impact ionisation 

can combine in one device and help in the possible creation o f more than one e-h pairs 

by one photon, hence resulting in increased short-circuit current density. Impurity 

photovoltaic effect takes place through existing impurity or defect levels in the bandgap 

of the solar cell. In this situation, heat energy from the surrounding and infrared 

radiation, from the sun can promote electrons from the valence band to an impurity 

level. Now because of the shape o f the bandgap, the accompanying hole is quickly taken 

towards the back contact as in figure 8.15. The electron promoted to the impurity level 

in the bandgap has little or no chance of recombining again with the accompanying 

hole. Electron accelerating from a higher energy level towards the front contact can 

knock out this “suspended” electron from the impurity level towards the front contact in 

a form of impact ionisation. The result is that one photon can effectively create two e-h 

pairs and eventually resulting in increase in Jsc. The shape of the graded bandgap helps 

in effective collection of all photo-generated e-h pairs without allowing room for 

recombination. All these advantages o f course will become evident only in optimised 

device structure.

In figures 8.14 and 8.15, one can also look at the device structure as a CdS/CdTe 

solar cell with ZnS as a buffer layer. Buffer layers can be used in this way especially 

when very thin CdS window layer is used in order to minimise window absorption loss. 

In this case the thin CdS layer may not be able to cover the FTO surface properly thus 

resulting is shunting effect between FTO and CdTe. To prevent this shunting effect 

which results in loss o f fill factor and V0c, a wide bandgap buffer layer is used. The use 

of buffer layers such as ZnO [17], aluminium-doped ZnO (Al- ZnO) [35], Sn02 [18], 

and zinc stannate (ZTO) [41] have been reported in the literature. This has resulted to 

improved FF and Voc but at the same time has led to reduced Jsc due to the relatively 

high resistivity of these buffer layers. In the present work, ZnS with relatively lower 

resistivity than the above mentioned buffer layers, has been used. This has also resulted 

in improved Jsc as well as FF and Voc compared to simple CdS/CdTe device, for the best
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devices. Table 8 . 9  shows the summary o f device parameters obtained for the various 

solar cells made with this structure. The overall best device came from those using 

CdTe from two-electrode system with Pt anode. For simplicity, only the best 

glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar cell with efficiency of 1 0 . 4 %  will be used for 

the device analysis of this multi-layer graded bandgap structure. The various current- 

voltage characteristics o f this same device under illumination and dark conditions are 

presented in figures 8 . 1 6  (a), (b) and (c). The device parameters obtained for this device 

under dark conditions from figures 1 6  (a) and (b) were R.F = 1 0 4 '4, n = 2 . 3 7 ,  Jo = 

8 .0 > < 1 0 * 8 Acm'2 and 4>b  =  1 .1 3  eV.

Table 8.9: Summary of glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar cells fabricated using 

CdTe from both two-electrode and three-electrode systems. The error in these

measurements is about ±5% with reproducibility o f about 40% for the best devices.

Sample ID V o c

(mV)
Jsc

(mAcm'2)
FF T]

(%)
CdTe grown using

K214HCS 500 4.0 0.50 1.0 3-electroed with carbon anode
K280HCS-9 500 16.5 0.30 2.4 3-electroed with carbon anode

K280HCS-10 600 14.6 0.37 3.3 3-electroed with carbon anode

K392HCS-b 360 0.9 0.28 0.1 2-electrode with Pt anode
K392HCS-2 510 4.0 0.25 0.5 2-electrode with Pt anode
K327HCS-a 400 6.3 0.25 0.6 2-electrode with Pt anode
K237HCS-1 350 8.0 0.25 0.7 2-electrode with Pt anode
K387HCS-a 540 5.4 0.36 1.0 2-electrode with Pt anode
K330HCS-b 420 7.0 0.37 1.0 2-electrode with Pt anode
K329HCS-C 500 12.7 0.27 1.7 2-electrode with Pt anode
K330HCS-2 460 12.7 0.33 1.9 2-electrode with Pt anode
K 318HCS-d 500 6.6 0.59 1.9 2-electrode with Pt anode
K337HCS-2 500 15.8 0.36 2.8 2-electrode with Pt anode
K329HCS-3 610 21.0 0.27 3.4 2-electrode with Pt anode
K338HCS 570 28.6 0.33 5.3 2-electrode with Pt anode

K337HCS-b 600 25.0 0.36 5.4 2-electrode with Pt anode
K325HCS-a 590 28.0 0.40 6.6 2-electrode with Pt anode
K318HCS-d 630 38.5 0.33 8.0 2-electrode with Pt anode
K318HCS-4 640 40.8 0.40 10.4 2-electrode with Pt anode

These device parameters are no doubt better than those obtained for glass/FTO/n-

CdS/n-CdTe/Au structure presented in section 8.3.1 for the reasons mentioned above.

The relatively higher R.F value of 104'4 and lower n-value of 2.37 shows improved

rectification behaviour and reduced recombination (ie improved carrier collection)

compared to the glass/FTO/n-CdS/n-CdTe/Au device and/or more optimum oxide

formation at the CdTe/Au interfaces as a result of chemical etching. This is also why the
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barrier height and reverse saturation current density are better than those of the 

glass/FTO/n-CdS/n-CdTe/Au device in section 8.3.1.
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Figure 8.16: (a) Dark J-V, (b) Dark logl-V and (c) Light J-V characteristics of the 
10.4% glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar cell.

The parameters obtained under A.M1.5 illumination from figure 8.16 (c) gave Rs 

= 175 n, Rsh = 3825 £2, V„c = 640 mV, Jsc = 40.8 mAcm'2, FF = 0.40 and ri = 10.4%. 

Again these values are better than those obtained for the glass/FTO/n-CdS/n-CdTe/Au 

device. The buffer effect o f the ZnS layer in this device is seen in the improved Voc and 

FF values over those o f the glass/FTO/n-CdS/n-CdTe/Au counterpart and the multi­

layer graded bandgap effect is seen in the improved short-circuit current density o f 40.8 

mAcm'2 over 38.5.mAcm'2 o f the glass/FTO/n-CdS/n-CdTe/Au device. All these 

improvements effectively resulted in better conversion efficiency of 10.4% over 8.0% 

as is seen.
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It is important now to point out that the observed high short-circuit current 

densities reported for the different devices reported in this thesis were remarkable and 

not observed all the time. The reason for this is the instability problem associated with 

these devices that makes them deteriorate after few months or even weeks. For this 

reason, part o f the future work should be focused on reproducibility and improvement 

of the stability o f these promising device structures. However, in order to ensure that the 

observed high short-circuit current densities were genuine, the particular diodes 

producing them were isolated by carefully removing the CdTe material around the Au 

back contact and the measurements repeated.

Figure 8.17 (a) and (b) show the C vs. V and Mott-Schottky plots o f the solar 

cell o f figure 8.16 under discussion. The C-V measurement was carried out at room 

temperature and a frequency o f 1MHz with applied bias voltages from -1.0 V to +1.0 V. 

Figure 8.17 (a) shows a gradual increase in the depletion capacitance as bias increases 

from reverse to forward bias. The measured depletion capacitance at zero bias gave the 

value C0 = 151 pF. This capacitance value suggests that this device has a reasonably 

wide depletion region comparable to the device thickness.
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1.00E+191.45E-10 -

1 0.50.5
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Figure 8.17: Typical (a) C vs. V and (b) 1/C2 vs. V graphs o f the glass/FTO/n-ZnS/n- 

CdS/n-CdTe/Au multi-layer graded bandgap solar cell with 10.4% conversion 

efficiency.

Figure 8.17, (b) shows the response of 1/C2 to applied reverse bias. As forward 

bias increases, the drop in the value of 1/C2 is more rapid up to a forward bias o f 0.35 

V. At forward bias voltages >0.35 V, 1/C2 remains fairly constant. The doping 

concentration of electrons (Nd-Na) estimated from figure 8.17 (b) is approximately
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8 .1 x l 0 14 cm3. This is a relatively moderate doping density supporting the presence of 

wide depletion region in this device. The diffusion voltage of this device could not be 

estimated since the slope line of the 1/C2 vs. V graph falls well outside the bias voltage 

range within which the C-V measurement was made.

8.6 Optimisation of CdTe annealing conditions for solar cell fabrication

In this section, the choice of CdCl2 or CdCl2+CdF2 treatment prior to annealing 

and the choice o f annealing temperature and annealing time after the best chemical 

(CdCl2+CdF2) treatment were experimented. The decision to consider the use o f 

CdCl2+CdF2 in addition to CdCl2 in this treatment came from the work o f Mazzumuto 

et al [42] in which they maintained a flow o f Freon gas (CHF2CI) in their CSS chamber 

during the post-deposition heat treatment o f CdS/CdTe as a form of CdCl2 treatment 

and produced solar cells with efficiency close to 16.0% [42]. Also the choice of the 

range o f annealing temperature and time came from the range reported in the literature 

[31,37,43].

In order to choose between CdCl2 and CdCl2+CdF2 treatment, a set of five 

glass/FTO/n-CdS/n-CdTe samples was used for this experiment. Each sample was 

divided into two pieces. One set of these pieces was treated with CdCb and the other 

treated with CdCl2+CdF2 . Both sets of treated samples were then annealed at the same 

temperature of 450°C for 15 minutes and the device fabrication completed by 

evaporation o f Au contacts on the CdTe surfaces after chemical etching. All the samples 

were etched under similar conditions and the metallisation with gold done under similar 

conditions as well.

Table 8.10 shows the summary of the device results obtained from this 

experiment. The results show very clear difference in the device parameters obtained for 

the two different treatments. All device parameters (Voc, Jsc, FF and rj) are clearly higher 

for the devices with CdCl2+CdF2 treatment than those with only CdCl2 treatment. The 

increase in Jsc for the CdCl2+CdF2-treated devices is massive and remarkable. It is 

because of this result that CdCl2+CdF2 treatment was preferred to the conventional 

CdCl2 treatment in this research.
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Table 8.10: Results of comparative study of CdCk and CdCl2+CdF2 treatment for 
glass/FTO/n-CdS/n-CdTe/Au solar cell structure. The reproducibility o f these device 
parameters is about 40% with measurement error o f about ±5%.
Device
S/No

CdCb treatment CdCl2+CdF2 treatment
V o c

(mv)
Jsc (mAcm'2) FF ft(% ) V o c

(mV)
Jsc (mAcm-2) FF ft (%)

1 550 11.4 0.31 1.9 630 23.5 0.44 6.5
2 600 19.7 0.42 5.0
3 430 9.9 0.28 1 .1 610 23.9 0.42 5.8
4 500 16.8 0.37 3.1 500 19.1 0.45 4.2
5 380 1 0 . 1 0.25 0.9 620 38.2 0.33 8 . 0

In order to determine the best annealing temperature and annealing time after 

CdCl2+CdF2 treatment, several samples corresponding to different solar cell structures 

were used. Each sample was also divided into parts. Both parts were given the same 

CdCl2+CdF2 treatment but each part was afterwards annealed at different temperatures 

and annealing times

Tables 8.11 (a) -  (e) show the device results of different device structures under 

different annealing temperatures and times. From all the results, it is clear that annealing 

at 450°C for 15 minutes always produced the best device results and especially 

producing the highest Voc and Jsc values. The FF values are generally low under this 

annealing condition. A close look at Tables 8.11 (a) and (b) show strikingly that at the 

particular annealing temperature o f 360°C, the FF values are generally higher than 

those obtained at other temperatures. This improved FF values however come at the 

expense of Voc and Jsc.

Table 8.11 (a): Optimisation of annealing conditions using glass/FTO/n-CdS/n- 
CdTe/Au and glass/FTO/n-ZnS/n-CdS/n-CdTe/Au device structures. The 
reproducibility o f these device parameters is about 40% with measurement error of 
about ±5%.
Device
S/No

450°C, 15min 360°C, 20min
V o c

(mv)
Jsc (mAcm'2) FF ft(% ) V o c

(mV)
Jsc (mAcm'2) FF ft(% )

1 510 24.2 0.30 3.7 500 7.6 0.60 2.3
2 600 30.5 0.34 6 . 2 440 6.3 0.52 1.4
3 610 24.8 0.43 6.5 490 1.9 0.50 0.5

4* 640 40.8 0.40 10.4 500 6 . 6 0.59 1.9
*Device 4 is glass/FTO/n-ZnS/n-CdS/n-CdTe/Au structure.
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Table 8.11 (b): Optimisation of annealing conditions using glass/FTO/n-CdS/n- 
CdTe/Au device structure. The reproducibility o f these device parameters is about 40% 
with measurement error o f about ±5%.
Device
S/No

450°C, 15min 360°C, 69min
V o c

(mv)
Jsc (mAcm'"1) FF T ! ( % ) V o c

(mV)
Jsc (mAcm'7) FF T | ( % )

1 600 26.3 0.34 5.4 450 16.5 0.48 3.6
2 560 31.8 0.37 6 . 6 480 11.4 0.46 2.5
3 560 26.7 0.39 5.8 400 7.6 0.45 1.4
4 580 22.9 0.26 3.5 340 9.2 0.45 1.4
5 600 19.1 0.31 3.6 360 7.0 0.45 1 . 1

Table 8.11 (c): Optimisation o f annealing temperature and time using different device 
structures. The reproducibility o f these device parameters is about 40% with 
measurement error o f about ±5%.

Device
S/No

450°C, 15min 380°C, 30min
V o c

(mv)
Jsc

(mAcm'2)
FF T1

(%)
V o c

(mV)
Jsc

(mAcm'2)
FF il

(%)
1 * 500 1.9 0.28 0.3 350 0.45 0.26 0.04

2 ** 500 4.0 0.25 0.5 360 0.9 0.28 0 . 1

400 8 . 2 0.28 0.9 450 2 . 0 0.26 0 . 2
4 ** 350 4.5 0.26 0.4 300 1.7 0.25 0 . 1

is glass/FTO/n-Cc S/n-CdSe/n-CdTe/Au, ** is glass/Fr ’O/n-ZnS/n-CdS/n-CdT e/Au

*** is glass/FTO/n-CdSe/n-CdS/n-CdTe/Au.

Table 8.11 (d): Optimisation of CdTe annealing time at 450°C using

glass/FTO/n-CdS/n-CdTe/Au device structure with CdTe grown at different voltages. 
The reproducibility o f these device parameters is about 40% with measurement error o f 
about ±5%.

CdTe
cathodic
growth
voltage
(mV)

450°C, 15min 450°C, 20min
V o c

(mv)
Jsc

(mAcm'2)
FF Tl

(%)
V o c

(mV)
Jsc

(mAcm'2)
FF il

(%)

2036 410 11.4 0.25 1 . 2 350 8.9 0.25 0 . 8

2037 400 7.6 0.25 0 . 8 260 1 1 . 1 0.25 0.7
2038 440 7.6 0.25 0 . 8 360 8.9 0.25 0 . 8

2039 420 7.6 0.25 0 . 8 310 1 0 . 1 0.25 0 . 8

2040 ----- ------ 310 2.5 0.33 0.25

2041 380 9.5 0.25 0.9 350 6.3 0.25 0.55
2042

T
------ 2 0 0 4.3 0.26 0 . 2 2

2 4 4
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Table 8.11 (e): Optimisation of CdTe annealing conditions using

glass/FTO/n-ZnS/n-CdS/n-CdTe/Au device structure with CdTe grown at different 
voltages. The reproducibility of these device parameters is about 40% with 
measurement error o f about ±5%.

CdTe
cathodic
growth
Voltage

(mV)

400°C, 20min 450°C, 15min
V o c

(mv)
Jsc

(mAcm'2)
FF i)

(%)
V o c

(mV)
Jsc

(mAcm'2)
FF

(%)

2036 ----- -----
2037 420 7.0 0.37 1 . 0 460 12.7 0.33 1.9
2038 500 12.7 0.27 1.7 610 2 1 . 0 0.27 3.4
2039 400 6.3 0.25 0 . 6 350 8 . 0 0.25 0.7

8.7 Comment on the possible reasons for the observation of high J sc values -  - r  t

Some o f the device results presented in this chapter showed very high Jsc values 

which are rather remarkable. These levels of Jsc values are completely outside the range 

o f values reported to date in the literature for CdTe-based solar cells. The main stream 

CdTe-based solar cells reported in the literature are mostly p-n junction type structures 

whereas the devices reported in this thesis are n-n+large Schottky barrier type 

structures. These two device structures are different although there are few similarities. 

The major similarities lie in the fact that the basic CdS/CdTe device structures in both 

cases consist o f the same semiconductors namely; CdS and CdTe, irrespective o f the 

conductivity type of CdTe. Again in both device structures, photo-generated electrons 

move towards the TCO front contact (i.e towards the CdS side) while the photo­

generated holes move towards the metal back contact (i.e towards the CdTe side). 

Figure 8.18 shows the energy band diagrams of the p-n junction type and n-n+Schottky 

junction type glass/TCO/CdS/CdTe/Metal solar cells for comparison.

The main differences in these two device structures are as follows:

(i) Conductivity type of the CdTe layer

This is the fundamental difference between these two device structures in figure 8.18. 

Whereas p-CdTe is used in figure 8.18 (a), n-CdTe is used in figure 8.18 (b). This 

difference is fundamental in the sense that it gives rise to the two different energy band 

diagrams.
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(ii) Position of the depletion region

For any semiconductor solar cell, and in general any semiconductor device to function, 

there must be an active depletion region within the device. This depletion region arises 

as a result o f an energy band bending created within the device. In the p-n junction type 

device, this band bending is created by metallurgically joining a p-type semiconductor 

and an n-type semiconductor as in the case of figure 8.18 (a). This region is also called 

space-charge region because it does not contain any charge carriers and does not allow 

any to stay within it due to the existing electric field within it which is created by the 

band bending. The extent to which this electric field (or the depletion region) spreads in 

the device defines the depletion width (w) of the device as shown in figure 8.18.

i p -

w

n-CdS

w
n-Cd

n-CdS

Figure 8.18: Energy band diagrams of p-n and n-n+Schottky junction for

glass/TCO/n-CdS/p-CdTe/Metal and glass/TCO/n-CdS/n-CdTe/Metal solar cells.
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In the Schottky barrier-type device, the depletion region is formed within the 

device very close to the metal back contact as shown in figure 8.18 (b). If the device is 

the n-n+Schottky barrier type as in the case of the devices reported in this thesis, there 

may or may not be an additional but weak depletion region (x) at the n-n heterojunction 

[44 - 46]. If  this region exists eventually, it becomes complimentary to the main 

depletion region due to the Schottky barrier at the n-CdTe/Metal interface. Depending 

on the extent o f both regions, they may eventually merge into one wider depletion 

region in the device which helps in easily driving the device to full depletion.

The implications of the position of the main depletion region will be different in 

both device structures in figure 8.18. Consider a case of equal but definite depletion 

regions of width, w, in both device structures. When a photon of sufficient energy hits 

the depletion region, an electron-hole pair is created. Due to the existing electric field in 

the depletion region (in the same direction in both device structures), the electron moves 

to the left towards the TCO while the hole moves to the right towards the metal contact. 

Now there are extra bulk o f semiconductor materials to the left and right o f the 

depletion width in figure 8.18 (a) whereas the extra material only exists to the left o f the 

depletion width in figure 8.18 (b). In figure 8.18 (a) both photo-generated electron and 

hole have to overcome the resistance of these extra materials before reaching the 

respective electrical contacts. In figure 8.18 (b) only the electron moving towards the 

TCO will encounter this resistance o f the extra material. The hole encounters virtually 

no resistance before reaching the metal back contact because of the position o f the 

depletion region. The implication is that the photo-generated electron and hole may 

have a chance of recombining in the bulk of the materials before reaching the electrical 

contacts in the case of figure 8.18 (a). In the case of figure 8.18 (b), the hole almost 

instantly reaches the metal back contact as soon as it is created, leaving the electron 

with little or no option o f recombining with a hole before reaching the TCO front 

contact. As a result, more photo-generated charge carriers are effectively collected in 

the device of figure 8.18 (b) compared to that o f figure 8.18 (a). This definitely leads to 

higher output Jsc from the device in figure 8.18 (b) compared to that in figure 8.18 (a). 

This is one of the possible reasons for the very high Jsc values observed in the devices 

reported in this project using the device structure o f figure 8.18 (b).

247



(iii) Quality of electrodeposited m aterials and the mobility of charge carriers

Another possible reason for the observed high Jsc values has to do with the quality o f the 

electrodeposited semiconductor materials in general. After studying the quality of 

different CdTe samples based on the presence of detrimental impurities present in them, 

Lyons et al concluded that electrodeposited CdTe was o f best quality among the others 

which were obtained from different growth techniques [47]. This conclusion is very 

important to note. In figure 7.35 in section 7.5.4 o f chapter 7, we see the cross-sectional 

SEM images of the electrodeposited materials used in this research which indicate that 

the bulk of these materials grow as continuous block of materials showing no visible 

sign o f grain boundaries unlike materials grown by other techniques like CSS. The 

implication of the reported high quality of electrodeposited CdTe by Lyons et al and the 

result of the SEM cross-section reported earlier in chapter 7 will be the improvement in 

the mobility o f charge carriers in these materials. The presence of little or no grain 

boundaries in these materials will mean little scattering of photo-generated charge 

carriers. This will culminate in enhanced Jsc values in solar cells made with these 

materials. Charge carrier mobility is known to be higher in n-type CdTe than in p-type 

CdTe [48 - 50]. The use of n-CdTe in this project therefore supports the enhancement of 

mobility of photo-generated electrons and holes which leads to increase in Jsc since 

current density in a semiconductor is a direct function of both carrier density and carrier 

mobility. Cd-rich CdTe without extrinsic doping ensures n-type conductivity and the 

CdTe materials used in this research were all deliberately grown with Cd-richness by 

virtue of the deposition potential chosen in addition to the n-type doping by halogens as 

shown in Table 7.17. In fact in figure 8.18, the photo-generated electrons moving 

towards the TCO will move more easily and faster in the device in figure 8.18 (b) with 

n-CdTe than that in figure 8.18 (a) with p-CdTe thereby minimising the chances of 

recombination o f these electrons in figure 8.18 (b) before reaching the TCO front 

contact. This enhances the Jsc in this type o f solar cell.

(iv) Possibility of im purity photovoltaic effect and im pact ionisation

It is possible in these devices for photons with energy lower than the bandgap 

energy of CdTe to create useful electron-hole pairs through the impurity photovoltaic 

effect and for impact ionisation to take place as well, resulting in one photon possibly 

creating two electron-hole pairs in order to enhance Jsc. [51, 25]. This is possible 

because of the shape of the energy band diagram of the device structure used in these 

solar cells. Although the author has not carried out measurements such as quantum
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efficiency (QE) and responsivity on these devices to confirm the existence o f impurity 

photovoltaic effect and impact ionisation, previous work published in the literature 

based on AlGaAs/GaAs system has shown experimental evidence o f impurity 

photovoltaic effect using responsivity measurements. The full account of this work is 

contained in ref [52] in which evidence o f photocurrent generation by photons with 

energy lower than the bandgap energy of GaAs was experimentally observed. This 

current collection in the longer wavelength region o f the spectrum could not however be 

detected by conventional QE measurement indicating also a fundamental deficiency of 

QE measurement in this regard. Again recent unpublished work by the Solar Energy 

group o f Sheffield Hallam University, on the the above mentioned AlGaAs/GaAs solar 

cells has shown an internal photon to current conversion efficiency (IPCE) of up to 

140%.

The major reasons these measurements were not carried out on the devices 

reported in this thesis are the instability and reproducibility issues associated with these 

device. This is because at present these devices degrade easily within weeks and even 

days of their fabrication and reproduction of the devices with the high Jsc values is not 

easy at present. In general, the reproducibility o f the device parameters (especislly for 

the best devices) is only about 40% at present which is still low for commercialisation 

purpose. This issue is attributed to the complex nature o f this subject. For these reasons 

the author has not been able to arrange for these measurement of spectral response to be 

made in laboratories where the equipment are available since these equipment are not in 

the Solar Energy Research laboratory o f Sheffield Hallam University at present.

However, the existence o f several native defect/impurity levels in the bandgap o f 

CdTe that causes strong Fermi level pinning effect at the CdTe/metal interface in CdTe 

[1, 51] is taken to advantage in the solar cells reported in this thesis. As shown in 

figures 8.15 and 8.18 (b), electrons can be promoted to these defect levels by photons 

with energy lower than the bandgap energy of CdTe. These photons can come from the 

incident radiation from the sun or from the heat energy in the surroundings o f the solar 

cell. Because of the position of the depletion region and the shape of the band diagram 

of these devices, the holes associated with the electrons promoted to the defect levels, 

are immediately drifted towards the metal back contact leaving these electrons little or 

no room for recombining with the holes. From these defect/impurity levels, these 

electrons can easily be promoted to the conduction band by other lower-energy photons 

giving rise to impurity photovoltaic effect. Alternatively, electrons accelerating from the
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higher potential barrier existing in the device can knock out these “suspended” electrons 

from the impurity levels into the conduction band of CdTe in a form o f impact 

ionisation. In this way the combination of these two processes can result to one photon 

effectively creating two electron-hole pairs bringing about improvement of photocurrent 

of the solar cell. This impurity photovoltaic effect may not be as easy in a p-n junction 

type CdS/CdTe or ZnS/CdTe solar cell due principally to the position of the depletion 

region as shown in figure 8.18 (a). In the p-n junction type device, electrons can as well 

be promoted to impurity levels near the p-CdTe/metal interface but because of the 

position of the depletion region, there will be no available electric field near this 

interface to immediately drift the holes towards the metal back contact (unless in the 

case of frilly depleted device which o f course is not needed for the n-n+large Schottky 

junction device) due to the presence of bulk region o f CdTe materials between the 

depletion region and the metal back contact. The result is that these photo-generated 

electron-hole pairs are still within each other’s reach for easy recombination. In 

addition, the fact that charge carriers generally have higher mobility in n-CdTe than in 

p-CdTe facilitates the easy transport of these photo-generated electrons and holes 

towards the respective electrical contacts [48]. The overall shape of the device structure 

therefore, plays important role in ensuring effective collection of photo-generated 

electrons and holes resulting in improved Jsc such as are seen in the devices reported in 

this thesis and published recently [53].

8 . 8  Conclusion

Fabrication and assessment of different solar cell structures have been presented. 

The main features o f these devices include: the use of n-CdTe as main absorber material 

instead of the conventional p-CdTe; the implementation of device structures of n-n 

hetero-junction + large Schottky barrier height type, as against the conventional p-n 

junction type, and the use of (CdCl2+CdF2) treatment instead of the conventional CdCl2 

treatment. The processing steps used resulted in the fabrication of (best) devices with 

large Schottky barrier heights of ~1.2 eV at the n-CdTe/metal interface. The four device 

structures fabricated include glass/FTO/n-CdTe/Au, glass/FTO/n-ZnS/n-CdTe/Au, 

glass/FTO/n-CdS/n-CdTe/Au and glass/FTO/n-ZnS/n-CdS/n-CdTe/Au. Two best 

devices with efficiencies of 10.4% and 12.0% came from those involving n-ZnS as 

window/buffer material, thus underlining the advantage of these ZnS layers in CdTe-
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based solar cell development. The advantage of (CdCl2+CdF2) treatment over 

conventional CdCb treatment, is seen in the pronounced and consistent improvement of 

the device parameters, especially Jsc, in all the cases. Annealing of CdTe at 450°C for 

15 minutes was observed to produce the best devices although this process can be 

improved further. Device results show that the best cathodic growth voltages for n-ZnS, 

n-CdS and n-CdTe using two-electrode system are around the values of 1550 mV, 1450 

mV and 2038 mV respectively. The best devices displayed unusual high Jsc values, 

suggesting the existence of impurity photovoltaic effect, impact ionisation as well as the 

advantage o f device structures involving the use o f n-CdTe in these devices. However, 

the devices generally suffer from low FF, possibly due to high series resistance and/or 

presence of shunting paths. Preliminary results o f C-V measurements indicate that the 

best devices have doping densities o f the order of 1014 -  1015 cm'3. The device results 

also show that two-electrode system produces materials and devices with qualities 

similar to and even better than those produced from three-electrode system. Although 

solar cells with efficiencies up to 1 2 .0 % were produced, the reproducibility and stability 

of these devices still remain issues needing serious attention.
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Chapter 9: Challenges encountered and Future work

9.0 Introduction

The growth and handling of semiconductor materials for device fabrication has 

always been a serious business, demanding the highest level o f discipline and hard 

work. More demanding yet is the fabrication of microelectronic semiconductor devices. 

This is because, semiconductors are very sensitive to “foreign” atoms and ions as these 

atoms and ions (even in parts per million levels) seriously interfere with their properties 

and therefore the behaviour of the devices which are fabricated with them. For this 

reason the entire semiconductor growth and fabrication processes are conventionally 

carried out in “clean rooms.” and with clean equipment and materials [1]. Again, high 

degree of precision is required in handling the concentrations of atomic species (such as 

in the doping process) in order to ensure reproducibility. Carrying out semiconductor 

growth and device fabrication in an environment other than a clean room is therefore a 

very difficult task. This chapter highlights the challenges encountered during the growth 

of semiconductors and fabrication o f the solar cells reported in this thesis. The 

corresponding measures taken to overcome these difficulties are also presented. 

Because the business of semiconductor growth and device fabrication is not an easy; 

one, not all the desired work and results with respect to fabrication of different device 

structures were achieved within the time available for this research work. The remaining 

work required in order to achieve these targets are also presented in this chapter as part 

o f future work.

9.1 Challenges encountered in the course of this research

This section discourses the various levels of challenges encountered at different 

levels of the research work that resulted to this thesis.

9.1.1 Control of electrodeposition process

Trying to carry out electrodeposition of semiconductors for the first time was a 

huge challenge. The process is relatively simple compared to many other deposition 

techniques, but not just to a beginner. The preparation of the right deposition 

electrolytes was not something that goes very easily. Solution chemistry comes into 

play. For somebody who does not have adequate chemistry background, this can indeed 

be an additional problem. A difficult but important decision had to be taken about the 

initial concentrations of the various precursors that will make up the deposition
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electrolytes. For electrolytes such as those for the deposition of CdS and ZnS, this was 

very difficult as the concentration o f the S precursor is crucial. Excess S2' in the 

electrolyte results in lots of precipitation even as soon as the electrolyte is prepared. One 

of the major problems in a solution growth technique, such as chemical bath deposition, 

is that o f precipitation which results in the generation o f lots o f chemical waste, such as 

Cd-containing waste, in the case of CdS deposition. This same issue is one of the major 

reasons for choosing electrodeposition as an alternative growth technique with the 

lowest possible waste generation since the deposition electrolyte is re-used for a long 

time. Therefore one has to deal with the issue of precipitation. Deep literature search on 

the electrodeposition of compound semiconductors containing sulphur component was 

very useful in this regard. This revealed that the concentration of S precursors need not 

be high in order to minimise or eliminate unwanted precipitation.

In addition to the concentration o f these precursors, the pH of the electrolyte is 

in fact a major key player in arresting precipitation. High pH values (in the basic range) 

tend to encourage precipitation while low pH values (in the acidic range) tend to 

discourage precipitation. This is evident in the CBD process where the solutions are 

usually maintained at pH values in the basic region [2, 3].

Similar situation is seen in the preparation of CdTe deposition electrolyte, 

although this is more tricky compared to the S-containing cases in a sense. This is 

because excess Te-content does not manifest in visible precipitation but rather manifests 

in Te precipitation in the deposited CdTe sample [4, 5] because Te tends to deposit very 

rapidly on application of voltage [6 ]. This is a very serious situation because such Te- 

rich CdTe layers do not produce good solar cells in the end [7]. Te-rich CdTe layers 

also tend to develop lots of pinholes or even peel off during post-deposition heat 

treatment. Te concentration therefore needs to be kept as low as possible to avoid 

depositing CdTe containing excess Te.

In both cases of S and Te, the remedy used was to make low-concentration 

solutions of S and Te precursors and to gradually add small quantities of these solutions 

into the deposition electrolytes carefully and gradually at regular intervals during 

electrodeposition process. This approach really helped to deposit layers with good 

quality and reasonable reproducibility for solar cell fabrication.
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9.1.2 Control of ion balance in the electrolyte during deposition

When a deposition electrolyte is freshly made, the amounts of the constituent 

ions are exactly known. However, as deposition proceeds, these ions get depleted 

gradually in the electrolyte. The stoichiometry of the layers deposited subsequently, 

therefore differ from those deposited initially when the electrolyte was made. This 

situation seriously affects the reproducibility of the layers and the subsequent devices 

fabricated with them, since the electrolyte used in electrodeposition is targeted to last 

for a long time before replacement. There is therefore need to restore the initial 

concentration o f the ionic species in the electrolyte as deposition continues, in order to 

ensure good degree of reproducibility in the layers deposited, as well as in the solar 

cells produced at last. This restoration o f the concentration of ions in the deposition 

electrolyte was a very big challenge during the course of this research as there was no 

available equipment or system to achieve this. Nevertheless, the technique used to 

achieve this was the systematic addition of these ionic species from prepared feedstock 

at regular intervals during the deposition process. After preparing the electrolytes, 

separate solutions of the precursors were prepared with the same concentrations as those 

in the deposition electrolytes. From these separate solutions therefore, the deposition 

electrolytes were fed from time to time. In order to minimise the variations, the metallic 

ions (Cd2+ and Zn2+) in the electrolytes are made to have much higher concentrations 

than the non-metallic ions o f S2' and Te4+. This way, only the S2+ and Te4+ are fed into 

the deposition electrolytes regularly while Cd2+ and Zn2+ are fed once in a while. This 

helps to reduce the difficulty in trying to control the balance of all the ions in the 

electrolyte at the same time.

In the case of CdTe deposition, about 2 ml of Te0 2  solution is fed into the 

deposition electrolyte after each round of CdTe deposition, which takes 4 to 5 hours. 

This is also done immediately after the deposition while the electrolyte is still hot, in 

order to facilitate the dissolution of Te0 2  from the top-up solution. It can be recalled 

that Te0 2  has very low solubility in water, and even in dilute H2SO4 as mentioned 

earlier. As a result, the TeC>2 solution always has undissolved white power o f TeC>2 in 

the solution. The added TeC>2 solution is then left to stir for about 2 hours before another 

sample is grown. In this way, an approximately constant amount of Te4+ is maintained 

in the electrolyte for each CdTe deposition, hence ensuring consistency and 

reproducibility to a reasonable extent. In the case o f CdS and ZnS deposition, similar 

steps were taken in maintaining the concentration of S2'in the deposition electrolytes.
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9.1.3 Purity of starting materials, deposition environment and materials handling

Another major challenge during the course o f this project was the issue o f purity 

o f the electrodeposited semiconductor layers grown in a normal physical chemistry 

laboratory environment instead o f in a clean room. As mentioned earlier, the ideal 

environment for the growth of semiconductors and fabrication of semiconductor devices 

is the cleanroom environment, which is actually expensive to maintain. Because the 

major target in this project is to produce low-cost thin film solar cells using low-cost 

techniques, the use of cleanroom with its associated cost o f maintenance is eliminated. 

The consequence o f this is therefore additional discipline and care in preparing the 

electrolytes, carrying out the deposition, processing the samples and fabricating the 

solar cells. This no doubt demands a lot from the researcher in terms of high degree of 

responsibility needed. This situation can be aggravated by having more than two 

researchers in the same laboratory working on different materials, which can create 

serious cross-contamination problem. In any case, certain measures were taken to 

minimise this problem of contamination at various stages during this programme in 

order to produce functional solar cells. -

The three semiconductors grown and used in the fabrication of solar cells in this 

research are all II-VI semiconductors. For this group of semiconductors, atoms o f group 

LA and IB elements (such as Na, K, Ag and Cu) are known to be detrimental impurities 

in them and in the devices made with them, as they introduce acceptor levels in these 

materials [8 , 9]. For this reason, effort was made to avoid the leaching o f ions like Na+ 

from glass beakers used as containers for the deposition electrolytes by replacing these 

glass beakers with plastic beakers. Again to avoid possible leakage of Ag+ and K+ ions 

from Ag/AgCl and Hg/HgCl2 reference electrodes into the deposition electrolytes, the 

use o f reference electrodes was completely eliminated in most of the deposition 

processes reported in this thesis. The only place a reference electrode was used was in 

the initial CdTe deposition where the KC1 solution in the outer jacket of the Hg/HgCl2 

reference electrode was replaced with a CdCl2 solution.

In order to ensure that good quality semiconductors were grown with minimum 

possible impurities, the starting chemicals were electro-purified before the growth o f the 

semiconductors as stated in the experimental sections of chapters 5, 6  and 7. The 

handling of materials in the laboratory was done with great care, ensuring that clean 

hand gloves and laboratory coats were worn while in the laboratory. All

2 5 8



electrodeposition exercises, chemical treatments and heat treatments were done inside 

fume cupboards to minimise contamination. The entire laboratory environment was kept 

as clean as possible and activities of other researchers working in the laboratory were 

monitored with care to ensure high degree of discipline in order to further minimise 

contamination. Only de-ionised water was used for all washings and rinsing involving 

the semiconductors and materials used in handling the chemicals and the 

semiconductors as well. By doing all this, huge effort was made to ensure the highest 

possible purity in an ordinary physical chemistry laboratory environment such as the 

one in which the semiconductors and solar cells reported in this thesis were produced.

9.1.4 Annealing of ZnS

In chapter 5, the annealing condition of the ZnS layers grown in this project was 

given as 350°C for 10 minutes. It was observed that, at higher annealing temperatures, 

the ZnS materials tend to sublime, leaving pinholes in the remaining layer. This 

situation posed a great challenge for solar cell fabrication using these ZnS layers as 

window layers. This is because the CdTe absorber layer has to be annealed at up to 

450°C for 15 minutes in order to achieve good solar cell device parameters as was 

reported in chapter 8 . It therefore became very difficult to make good solar cells 

involving ZnS as the 450°C annealing temperature tends to affect ZnS. This issue 

became of great concern because the use of ZnS as a window or buffer layer in CdTe- 

based solar cell is expected to produce solar cells with better conversion efficiencies 

compared to those involving CdS as window layer. This is due to the higher bandgap of 

ZnS compared to CdS as also explained in chapter 8 . As a result o f this difficulty, only 

one solar cell with glass/FTO/ZnS/CdTe/Au structure produced an efficiency o f 12%, 

which was the highest efficiency achieved in this project. Many others could not survive 

annealing at 450°C. The few surviving ones incurred pinholes resulting in poor 

conversion efficiencies as reported also in chapter 8 . The next good solar cell involving 

ZnS was the graded bandgap structure o f glass/FTO/ZnS/CdS/CdTe/Au which also 

produced the second highest efficiency of 10.4%. In fact these two solar cells with the 

best efficiencies actually used double layers of ZnS and CdS as a step taken to solve the 

problem of annealing temperatures of ZnS. This idea however came as the last resort. 

Part of the future work will therefore consider the use o f double layers for the window 

and buffer materials, as well as growing ZnS using other possible precursors to see if  

stronger ZnS can be obtained that can easily stand heat treatment at up to 450°C.
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9.2 Future work

Having highlighted the major challenges encountered during this research 

programme and some of the measures taken to address them, future work to further the 

progress o f this research has been mapped out. This will help to fully develop the solar 

cell structures experimented upon in this programme as well as explore further possible 

device structures. In addition, this will help to establish the best recipe for fabricating 

solar cells with highest attainable conversion efficiencies at the lowest possible cost, 

using electrodeposition technique as a future semiconductor growth technique for 

macro-electronics device fabrication. The following sub-sections therefore outline the 

proposed future work for this purpose.

9.2.1 Implementation of p-n junction solar cell structures using p-ZnS window

material and n-CdTe absorber material

Research and development activities on CdS/CdTe solar cells over the decades 

have been based mainly on the use o f p-type CdTe absorber layer and n-type window 

layers resulting in p-n junction-type solar cell structures [7, 10 - 12]. The solar cells 

researched and reported in this thesis are of n-n hetero-junction type with large Schottky 

barrier at the CdTe /Metal interface. These solar cells therefore employ n-type CdTe . 

instead o f the commonly used p-type. This work actually arose from the initial work by 

Dharmadasa et al on the use of n-CdTe for fabrication of CdS/CdTe solar cells [13, 14]. 

The main point in this device structure is the use of n-type CdTe absorber material 

instead of p-type CdTe and the above mentioned work [13, 14] revealed the great 

potential in using n-type CdTe absorber layer. The major advantage o f this device 

structure which was observed and reported in this thesis is the extraordinary high short- 

circuit current densities > 30 mAcm ' 2 [13, 15] observed in these solar cells which are 

not observed in the p-n junction type solar cells using p-CdTe absorber layer. However, 

the observed fill factors in these devices are usually low (< 0 .6 ) for some of the reasons 

already highlighted in chapter 8 . The Voc values are generally < 700 mV for the best 

solar cells with efficiencies up to 6.0% and above. On the other hand the p-n junction- 

type devices using p-type CdTe usually show higher fill factor > 0.7 [16]. The Voc 

values for the best solar cells are as high as > 800 mV [12, 16]. However, the short- 

circuit current densities are generally < 28 mAcm ’2 for the best devices [17, 18].
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As part o f the future work in furtherance of the research work reported in this 

thesis, a combination of the use o f p-n junction structure and n-type CdTe absorber 

material for CdTe-based solar cells, will be pursued. In doing this, the aim will be to 

combine the high Jsc values coming from the use o f n-type CdTe absorber material and 

the high Voc and FF values coming from the use o f p-n junction structures. The window 

material in this resultant device will therefore be a p-type wide bandgap material. P-type 

ZnS will be used for this. It can be recalled that the electrodeposition and 

characterisation of p-type ZnS layers were reported in chapter 5. However, these layers 

were not used in solar cell fabrication yet for some reasons. One o f the reasons is to 

avoid handling too many materials and projects at the same time. Three materials were 

used so far (n-CdS, n-ZnS and n-CdTe). The electrodeposition and characterisation of 

these three materials as well as their use in solar cell fabrication were not easy tasks. 

Again, the etching process and metal back contact already in use in the group are for 

making Schottky contacts on n-type CdTe. In order to fabricate glass/FTO/p-ZnS/n- 

CdTe/Metal solar cell structure, the right recipe for etching of n-CdTe has to be 

established for making suitable ohmic contact to n-CdTe. The successful 

implementation and optimisation of this device structure is expected to yield solar cells 

with the highest possible device parameters.

9.2.2 Application of automated pumping system for replenishing Te and S ions in

the deposition electrolytes

One major difficulty in the electrodeposition process is the replenishing of the 

ions in the deposition electrolyte as electrodeposition proceeds. At the moment, there is 

not a precise way of doing this. In chapters 5, 6 , 7 and early parts o f this chapter, the 

method used for the addition of ions into the deposition electrolytes was stated. This 

method was helpful to some extent but was not very accurate given that one is dealing 

with semiconductors. A more precise and consistent way of doing this will involve 

automation, by means o f a pumping system which systematically, precisely and 

consistently injects the solution containing the required ions into the deposition 

electrolyte as the deposition process goes on. Addition of Te into CdTe deposition 

electrolyte will be the first to be experimented in this way. This is because Te 

concentration in CdTe is the most influential in CdTe-based solar cell performance than 

the atoms of the other chalcogens such as sulphur. This procedure will help to establish
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high degree of reproducibility in the material layers deposited which in turn will ensure 

good reproducibility and consistency in the solar cells fabricated using these materials.

An alternative approach to this will be the application o f ion selective electrodes 

(ISE) also called specific ion electrodes (SIE) [19] which can be used to monitor the 

concentration of ions in solution. To use this, the concentration o f the ions of interest is 

measured as soon as the deposition electrolyte is prepared. This concentration is then 

used as a benchmark. After each round o f deposition the ion concentration is measured 

again. With few initial monitoring experiments, the required exact amount o f solution 

containing the ions can then be added to the electrolyte manually to restore the 

concentration of ions in the electrolyte.

9.2.3 Im plementation of the two- and three-junction device structures using p-

ZnS as window m aterial

Apart from the single p-n junction structure using p-ZnS as mentioned in 

section 9.2.1, other two-junction and three-junction structures using p-ZnS will be 

pursued. These include glass/FTO/p-ZnS/p-CdTe/n-CdTe/ohmic metal contact 

structure, and glass/FTO/p-ZnS/p-CdTe/i-CdTe/n-CdTe/ohmic metal contact structure.

Figure 9.1: Schematic o f proposed energy band diagrams for the device structures of 

(a) glass/FTO/p-ZnS/p-CdTe/n-CdTe/ohmic metal contact and (b) glass/FTO/p-ZnS/p- 

CdTe/i-CdTe/n-CdTe/ohmic metal contact. (Figures are not drawn to scale).
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The aim of all this is to search for the best possible device structure for next-generation 

solar cells. In addition, the already experimented glass/FTO/n-ZnS/n-CdTe/Schottky 

contact graded bandgap device structure will be pursued further and developed having 

produced encouraging device result already. Proposed energy band diagrams o f some of 

the device structures mentioned above, to be pursued, are shown in figure 9.1.

9.2.4 Application of pinhole plugging layers and MIS structures

It is suspected that possible pinholes exist in the electrodeposited material layers 

that may lead to short-circuit especially between the evaporated back metal contact and 

the front contact or the window layer. A possible cause o f such pinholes will be the 

pattern of nucleation in electrodeposition. This involves initial nucleation at sharp 

points on the FTO substrate as a result o f concentration of electric field at such points 

when a potential is applied across the FTO surface. Some o f these pinholes are 

sometimes observed physically on the samples especially after post-deposition heat 

treatment. In order to ensure that these pinholes do not create short-circuit problem, it is 

necessary that a semiconducting or very thin insulating layer is deposited on the last 

layer before the application of back metal contact. At the moment the best available 

material for this purpose is polyaniline which is a semiconducting polymer. This 

material is being researched and developed at present in the author's research group. 

This approach, if  successful, will result in hybrid solar cells combining organic and 

inorganic semiconducting materials. The feasibility o f this approach has also been 

demonstrated recently [2 0 ].

Apart from plugging the pinholes, the organic material layer or thin insulating 

layer as the case may be, serves as an insulating layer, resulting in MIS-type device 

structure, which also helps to improve barrier height and hence the solar cell Voc- 

Roberts et al have also demonstrated this using C4-anthracene as the organic thin 

insulating layer [2 1 ].

9.2.5 Detailed study of the effect of fluorine on solar cell performance

In chapter 7, it was mentioned that fluorine, in the form o f CdF2 , was 

incorporated into CdTe layers in two ways. One way was by adding CdF2 into the CdTe 

deposition electrolyte. The second way was by using a mixture of CdCl2 and small 

amount of CdF2 to do post-deposition heat treatment o f CdTe layers prior to etching and 

back metal contact formation. In chapter 8 , the result of this experiment was presented
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in comparison with the use of only CdC^ in the post-deposition heat treatment. The 

results showed that using (CdCl2+CdF2) mixture in the post-deposition heat treatment 

consistently resulted to drastic improvement in all the device parameters.

Now only a certain amount of CdF2 (about 0.1 g) was used in this experiment 

together with about 50 ml o f saturated CdCk in aqueous solution. As part of the future 

work, this particular experiment will be re-visited and different combinations of both 

CdCl2 and CdF2 experimented in order to establish the optimum combination that 

produces the best device result. In addition to this will also be the determination of the 

optimum CdCl2/CdF2 combination in the CdTe deposition electrolyte.

9.2.6 Further work on the resistivity of CdS and CdTe layers

In chapter 6 , the electrodeposition and characterisation of CdS layers were 

presented. The resistivity values obtained for these electrodeposited CdS layers were 

rather high (in the range of 1 0 4 flcm to 1 0 5 Hem) and this is suspected to contribute to 

the high series resistance of the solar cells which ultimately affected the fill factor 

values adversely. As part of the future work, attempt will be made to reduce the 

resistivity values of these CdS layers. To do this, fluorine, bromine and iodine doping 

will be attempted by adding appropriate sources of these atoms into the deposition 

electrolyte. The major sources in mind at present are CdF2 , CdBr2 and Cdl2 .

Again, the results o f characterisation o f CdTe layers presented in chapter 7 did 

not include the resistivity measurements on CdTe layers. The reason for this was that 

the attempt made (within the available time for this programme) to make ohmic contact 

to the electrodeposited n-CdTe layers using In-Ga eutectic, as well as In metal was not 

successful. The resulting contacts displayed very resistive behaviour that was not 

reliable for determining the resistivity o f the layers. Further work on ohmic contact 

formation on the electrodeposited n-CdTe layers will be pursued in order to determine 

the resistivity range of these layers and to see how this affects the performance o f solar 

cells made with these layers. In order to do this, doping with other possible n-type 

dopants will be attempted in addition to Cl and F doping already in place.

More accurate quantitative determination of the atomic concentrations o f all the 

three semiconductor layers (ZnS, CdS and CdTe) will be embarked upon using 

techniques such as XRF, SIMS and XPS. This will help to understand the stoichiometry 

of these layers and the best stoichiometry of each material for making the best devices.
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Chapter 10 The future of solar cells

10.0 Introduction

In chapter 2, different types of solar cells were discussed. The major solar cell 

classification discussed was based on the main absorber material used in the different 

types of solar cells. Those cells were also either organic, inorganic or hybrid devices 

and they all have different operating principles as well as different levels of 

performance. In any case however, the efficiencies of the solar cells in general are still 

below the theoretical limits (in view of the Shockley-Queisser limit) and require further 

improvements in order to reach and exceed these limits, so as to bring down the cost of 

solar panels. In the light of this, several approaches have been proposed over the last 

two decades for the next generation solar cells with potential for possible improvement 

of the solar cell efficiencies beyond the Shockley-Queisser limit. These proposed ideas 

include; intermediate band solar cells, plasmonic solar cells, hot-carrier solar cells, solar 

cells with up-conversion, solar cells with down-conversion, concentrator solar cells, 

quantum dot/quantum well solar cells and graded bandgap solar cells. This chapter 

briefly discusses the basic ideas behind these proposed solar cell designs and the extent 

they have gone in producing solar cells with improved performance over the traditional 

designs. Based on the results achieved so far, and the possibility o f further progress, the 

way forward for next generation solar cells with improved performance is suggested.

10.1 Existing proposals for next generation solar cells

This section briefly reviews the above named proposed solar cell models with 

possible potentials to serve as the next generation solar cells. This short review includes 

the main ideas behind each model, the extent of research work carried out and still 

going on so far on them, the results obtained to date and the prospect of each of these 

models.

10.1.1 Intermediate band (IB) solar cells

In any given solar cell with an absorber material o f energy bandgap Eg, incident 

photons with energy > Eg are absorbed while photons with energy < Eg are transmitted. 

These transmitted sub-bandgap energy photons do not therefore contribute to creation of 

electron-hole pairs in the solar cell. They are therefore lost. If these photons can be 

captured in the solar cell, so that, they can effectively participate in promoting electrons 

from the valence band of the absorber material to the conduction band, it is believed that
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the efficiency of the solar cell can be improved mainly through the improvement of 

photo-generated current. This is the idea behind the intermediate band (IB) solar cell

[1]. Here, energy levels, called intermediate bands, are created within the bandgap of 

the solar cell by deliberately introducing appropriate atoms. Photons with energy < Eg 

can then promote electrons from the valence band to the intermediate band and then 

from the intermediate band to the conduction band [1]. A major assumption in this 

approach is that null density o f states exists between the valence band and the IB, and 

between the IB and the conduction band. The maximum theoretical efficiency for a 

single junction IB solar cell has been calculated to be up to 63% [2]. The IB solar cell 

idea is just similar to the impurity photovoltaic effect originally proposed by W olf in 

1960 [3].

The practical efficiency values achieved to date by IB solar cells have not 

exceeded those of the conventional solar cells without intermediate bands. In fact 

disappointingly, the efficiencies have not yet competed with those of conventional solar 

cells according to Luque et al [2]. The idea has not worked yet and majority o f the work 

done so far are theoretical calculations. A possible reason for this could be the fact that 

the behaviour of these intermediate band states as recombination centres has been 

grossly neglected. Another possibility is that, the right device structure may not have 

been used, in which case, both the shape of the energy band diagram and the existing 

built-in electric field do not facilitate rapid separation and collection o f the photo­

generated charge carriers before they recombine.

10.1.2 Plasmonic solar cells    *

Plasmonic solar cells tend to employ the quantised oscillation o f free electron 

gas in certain metals to facilitate light trapping in the solar cell leading to improved 

absorption of photons with energy lower than the bandgap energy o f the solar cell 

absorber material. These quanta of plasma oscillations are called plasmons [4]. The 

application of plasmonic oscillation in solar cells is usually done by applying thin 

coatings of plasmonic metals (such as gold and silver) on the back of the solar cell 

absorber layer [5]. This is expected to enhance the trapping of longer wavelength 

photons and scatter them back into the solar cell for absorption. This principle is 

expected to enhance the photo-generated current density and therefore improve the 

efficiency of solar cells [6 ].
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Many research groups have carried out lots of research work on fabrication of 

plasmonic solar cells to date [5 - 7]. However, just like in the case o f intermediate band 

solar cells, there has not yet been any real convincing result to show that the plasmonic 

solar cell approach can solve the efficiency problem of solar cells in order to qualify for 

the next generation solar cells.

10.1.3 Hot-carrier solar cells

When photons with energy very much higher than the bandgap energy of a solar 

cell absorber material are absorbed, high-energy photo-generated charge carriers are 

created. The extra energies of these carriers (in excess of the bandgap energy of the 

absorber material) are transferred to the lattice of the semiconductor material in the 

form of lattice vibration and are eventually dissipated as heat. In this way, these excess 

energies of the carriers are lost and do not contribute to useful photo-generated current

[8]. The main idea of hot-carrier solar cells is to collect these high-energy (“hot”) 

carriers before they are “cooled down” through thermalisation. That is, before they lose 

their energy to lattice vibration [8, 9].

In order to implement hot-carrier solar cell idea, two main requirements are 

necessary. These are; (i) using an absorber material that facilitates the slowing down of 

the rate of cooling of the hot carriers so as to allow time for them to be collected before 

they thermalise (cool down), (ii) using appropriate energy selective contacts for 

effective collection of the hot carriers before they are cooled [8]. The theoretical 

efficiency of the hot-carrier solar cell has been calculated to be as high as 84% for 

single bandgap solar cell [10]. Just like in the intermediate band solar cells, most o f the 

work done so far on hot-carrier solar cells has been theoretical calculations [8, 10]. The 

experimental work done by Hanna et al only showed about 0.2% efficiency increase [9] 

which is not yet enough to conclude whether or not the hot-carrier solar cell idea is 

going to compete successfully for next generation solar cell.

10.1.4 Solar cells with down conversion

Another proposed way of harnessing high-energy photons in solar cells is the 

idea of down conversion. Unlike in the hot-carrier solar cell idea, the down conversion 

technique does not allow the high-energy photons to generate hot carriers. Rather, each 

high-energy photon is converted to two or more low-energy photons which are then 

absorbed by the solar cell to create “normal” charge earners [11 - 13]. In order to
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achieve this, an appropriate down conversion material (usually rare-earth metal-doped 

material) with intermediate bands for recombination, is placed in front of the solar cell, 

or used as a window material for the solar cell. A necessary condition is that, the 

emitted (or resulting) low-energy photon must have energy higher than the bandgap 

energy o f the solar cell absorber material.

Theoretical calculations show that a limiting efficiency close to 40% is possible 

in a single bandgap solar cell using the down conversion principle [13]. Unlike some of 

the ideas discussed earlier, some practical solar cells have been fabricated with the 

incorporation of the down conversion mechanism and their resultant efficiencies clearly 

reported. For example, Cheng and Yang reported an efficiency of 17.2% for a solar cell 

with down conversion as against 15.2% for a control solar cell without down conversion

[11]. This demonstrates an efficiency increase of 2%. On the contrary, Shao and Lou 

reported 16.25% for a solar cell with down conversion as against 16.32% for a control 

solar cell without down conversion, representing rather an efficiency decrease o f about 

0.07% [12]. Nevertheless, these results are not yet sufficient to conclude that the down 

conversion idea is the one that will take the photovoltaic industry into the future with 

the expected efficiency improvement that can help to drive down the cost of solar 

panels.

10.1.5 Solar cells with up conversion

The up conversion idea is the opposite of the down conversion. In this case, 

lower energy photons with energy lower than the bandgap of the solar cell absorber 

material are converted to photons with energy higher than the bandgap energy o f the 

solar cell absorber material [14, 15]. In this way, the lower energy photons that would 

have been transmitted through the solar cell are rather “recycled” and then absorbed by 

the solar cell to create electron-hole pairs. Again, rare-earth metal-doped materials as 

well as materials doped with some transition metals are used as the up-converters. The 

up-converters are placed at the back o f the solar cell so that they can capture the sub- 

bandgap photons and produce high-energy photons. These materials are essentially 

phosphors [15].

They contain virtual states within their bandgap which serve as stepping stones 

for promotion of electrons into the conduction band by successive low energy photons. 

These excited electrons then relapse from the conduction band and recombine with 

holes in the valence band to give out photons which are absorbed by the solar cell [14,
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16]. The theoretical limiting efficiency of the up-converter solar cell has been calculated 

to be up to 40% [15]. The best practical solar cells fabricated by Chen and Chen yielded 

conversion efficiencies in the range (16.2 -  16.5)% for bare solar cells and (16.7 -  

16.8)% for solar cells with up conversion materials [14]. Again, this result is still not 

sufficient to see the benefits of up-converter solar cells.

10.1.6 Concentrator solar cells

Concentrator solar cells are actually multi-junction or tandem solar cells that are 

made up of multiple p-n junctions or a series o f individual solar cells connected together 

in series through tunnel junctions. Each p-n junction or unit solar cell is made up of 

material with different bandgap [17, 18] and the entire solar cell therefore absorbs light 

from a wide range o f the solar spectrum. These types o f solar cells are usually made out 

of III-V compound semiconductors [17, 18], although organic tandem cells are also 

available but with relatively low efficiencies compared to the inorganic counterparts

[19]. Under concentrated sunlight, these solar cells are capable of producing high 

conversion efficiencies. To date, conversion efficiencies from this group of solar cells 

have reached over 40% [17, 18, 20], with the world record efficiency of 44.4% coming 

from Sharp Corporation [20].

Compared to the proposals and ideas discussed so far, only the concentrator 

solar cells appear to be viable candidates for next generation solar cells having produced 

the highest conversion efficiencies compared to other solar cell designs. The drawbacks 

of these solar cells are the involvement of large numbers o f material layers and the 

expensive techniques (such as MBE and MOCVD) involved in their fabrication. The 

tunnel junctions also pose recombination problems.

10.1.7 Quantum dot/quantum well solar cells

The basic idea o f quantum dot or quantum well solar cells is to improve the 

absorption of sub-bandgap energy photons through the use o f quantum dots and 

quantum wells [21]. This is possible because the properties (such as the energy bandgap 

and absorption coefficient) of these quantum dots and wells can be tuned by varying 

their size [21, 22]. The approach is expected to enhance the current density and 

therefore the conversion efficiency of solar cells. The limiting efficiency o f such solar 

cells for a single bandgap system has been calculated to be about 40% by Bamham and 

Duggan [21, 23]. Zachariou et al reported an efficiency of (9±2)% for InP/InxGai.xAs
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multiple quantum well solar cell in 1996 and claimed that it was the highest efficiency 

achieved using those materials [24]. Jiang et al have just reported an efficiency increase 

to 3.3% for a quantum dot solar cell compared to a control cell without quantum dot 

producing an efficiency o f 1.7% [25], while Im et al have achieved an efficiency of 

6.5% which appears to be best so far for this type of cells although they did not compare 

the cell with one that has no quantum dot [26]. From the goings on so far, it is clear that 

the quantum dot and quantum well solar cell approaches have not yet delivered their 

promises.

10.1.8 Graded bandgap solar cells

The graded bandgap solar cell is another method proposed for the improvement 

of the conversion efficiency of solar cells. Unlike the multi-junction solar cells, graded 

bandgap solar cells consist essentially o f one single solar cell. However, the absorber 

material is prepared in such a way that the bandgap is not constant throughout the entire 

thickness. The bandgap is rather graded gradually as was discussed in chapter 3 [27]. 

Also instead of using a single absorber layer with graded bandgap, a multi-layer 

approach can be used in which different materials with different bandgaps can be grown 

successively on top of each other to provide a graded bandgap structure [28 - 31]. Two 

major advantages of the graded bandgap design are known. These are; (i) elimination of 

thermalisation of “hot carriers” due to shared absorption of photons by different regions 

of the solar cell, and (ii) improvement o f carrier collection due to the presence of 

continuous electric field approximately throughout the entire thickness o f the solar cell. 

These advantages are actually what lead to efficiency improvement as well as improved 

lifetime in the graded bandgap design.

The theoretical limiting efficiency of the graded bandgap solar cell was 

calculated by Rafat et al to be about 31.7% [32]. There have also been other calculations 

yielding limiting efficiencies below that calculated by Rafat et al, such as 13.75% [33] 

and 28.9% [34]. In practice however, efficiencies in the range (14 -  22)% have been 

achieved for different device configurations [29 -  31, 35 -  39]. A comparison o f the 

efficiencies of a graded bandgap AlxGai_xAs/GaAs solar cell and a GaAs solar cell 

without bandgap grading by Hutchby showed an efficiency of 17% for the graded 

bandgap solar cell as against 9% for the cell with no bandgap grading [40]. This is the 

only report on such comparison and it shows a clear efficiency improvement and with 

an encouraging efficiency value unlike most o f the earlier discussed approaches.
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The results of the graded bandgap AlxGa(i.X)As/GaAs solar cell reported by 

Dharmadasa et al is worth commenting on at this point [39, 41]. This device structure 

has produced the highest reported Voc of 1.175 V for a single device without light 

concentration in addition to maximum possible fill factor of -0.85. The efficiency of 

this solar cell has increased from 12% to 20% in just two attempts. Most strikingly yet, 

this solar cell has been reported to be active in complete darkness, producing Voc of 

-800 mV in complete darkness, as an evidence o f the incorporation of impurity 

photovoltaic effect in the device [42]. In fact, following this idea, an attempt on multi­

layer graded bandgap solar cell during the research work reported in this thesis, using 

glass/FTO/ZnS/CdS/CdTe/Au device structure, produced an efficiency of 10.4% with a 

high Jsc of 40.8 mAcm ' 2 as reported in chapter 8  [30, 31]. Based on these results, one 

can say that the graded bandgap approach has future prospect for possible application in 

next generation solar cells. In comparison with the concentrator solar cell approach, the 

graded bandgap solar cells offer more cost-effective option, considering that the 

concentrator solar cells involve large numbers o f material layers and expensive 

techniques.

10.2 Conclusion

A brief review o f various proposed approaches for improvement of solar cell 

conversion efficiencies has been presented in this chapter. Most o f the proposed ideas 

have not yielded convincing results to substantiate their future prospect in the PV 

industry. Most of the claimed efficiency improvements reported in the literature for 

many of these proposals are not clearly presented with the major solar cell efficiency 

comparison between the proposed and the control device structures missing. In most 

cases, authors present quantum efficiencies in place o f the actual power conversion 

efficiency which involves Jsc, Voc and FF. Other authors either present only Jsc or Voc 

enhancement, saying nothing about the overall conversion efficiency, but rather use the 

single Jsc or Voc or FF improvement to represent the efficiency improvement. Yet other 

authors present the percentage increase in either Jsc or Voc and leave out the rest o f the 

device parameters together with the overall conversion efficiency. The clear observation 

from literature is that most of these ideas and proposals have not yet produced 

meaningful convincing results to prove their strengths. In some of the places the actual 

efficiency was mentioned, the values were so low to be taken seriously.
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Only two ideas appear to have produced reasonable efficiency results that can be 

seen as real and encouraging. These two ideas are the concentrator solar cell approach 

(which involves multi-junction and tandem solar cell structures) and the graded bandgap 

approach. These two approaches have one thing in common. That is ability to absorb 

photons from a broad range o f the solar spectrum due to the presence of different 

bandgaps. These two approaches at present appear to be the ones that can provide the 

results expected from next generation solar cells.
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Appendix I: Thin film semiconductor deposition techniques

1.0 Introduction

The semiconductor materials used for device fabrication in the past were mainly 

o f the bulk type with thickness of the order of few hundred micrometres [1 - 3]. Silicon

(Si), germanium (Ge) and gallium arsenide (GaAs) are examples o f this kind o f 

semiconductors that have found use in microelectronics. In recent times, with the advent 

o f nanotechnology, the thicknesses of semiconductors used in device fabrication have 

been drastically reduced by some orders of magnitude such that,, semiconductor devices 

can now be fabricated using materials with thicknesses in the nanometre range without 

really compromising device performance. This thin film technology has one major 

advantage of reducing the amount of materials used in device fabrication thus driving 

down the cost o f such devices [4, 5]. To date, different types o f thin-film semiconductor 

devices have been produced ranging from thin-film diodes and transistors [4] to thin 

film lasers [6 ] as well as thin film solar cells [5]. Different techniques have been used 

over the decades for the deposition of thin film semiconductors. These techniques can 

broadly be classified into vapour phase techniques and liquid phase deposition 

techniques. The survey o f these various techniques is the subject o f this appendix I.

1.1 Vapour phase deposition techniques •

Vapour phase semiconductor deposition techniques cover a wide range o f thin 

film deposition methods in which semiconductor films are deposited on a solid substrate 

using source material usually in the vapour phase. Insulating and conducting films can 

as well be deposited. Depending on the nature of the source materials, these techniques 

can also be divided into physical vapour phase (involving purely physical process such 

as vacuum evaporation at high temperature followed by condensation) and chemical 

vapour phase (involving a chemical reaction at the surface of the substrate to form the 

desired material). In general, vapour phase deposition techniques require vacuum 

systems. This usually makes the techniques expensive. Different types o f vapour phase 

deposition methods include molecular beam epitaxy (MBE), metal organic vapour 

phase epitaxy (MOVPE), chemical vapour deposition (CVD), metal organic chemical 

vapour deposition (MOCVD), sputtering and close space sublimation (CSS) [7].

1.1.1 Molecular beam epitaxy (MBE)

MBE is one of the physical vapour evaporative deposition techniques used for
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depositing single crystal semiconductors. As the name implies, it encourages the layer- 

by layer (epitaxial) growth o f semiconductors. In a typical MBE growth, the precursor 

material which can be in solid or gaseous form [8 ] is placed in a Knudsen effusion cell 

from which it is evaporated in the form o f a beam of atoms, ions or molecules onto a 

heated substrate which is usually a clean semiconductor (usually Si or GaAs). In order 

to achieve good uniformity of the deposit, the hot substrate is continuously rotated. 

Another essential requirement for the growth of high quality materials is ultra-high 

vacuum (UHV) condition, involving pressure as low as 10' 11 Torr (~1.3xl O' 9 Pa) as well 

as ultra-pure source materials [7]. Because o f the evaporation process for generating the 

molecular beam of material being deposited, the evaporation Knudsen effusion cell 

(crucible) is usually made of high refractory materials that can withstand such high 

temperatures. Materials like pyrolytic boron nitride are used as crucibles because they 

have good chemical stability at high temperatures up to 1400°C as well as low gas 

emission [9]. High refractory tantalum is also used as a good heating element.

The MBE system also has adequate facilities for precise control of uniformity, lattice 

match, composition, doping level and thickness of the growing sample. In addition, it 

also has the capability of allowing in situ characterisation of the growing sample 

through the use of tools like the reflection high energy electron diffraction (RHEED) 

and mass spectrometer [7, 9] as shown in figure 1.1.

Vacuum pump

^  Mass 
spectrometerRHEED

detector

RHEED
gunHeating

coil

Knudsen effusion cells 
containing precursors

Figure 1.1: Schematic of a typical MBE system.

The system has different Knudsen effusion cells making it possible to contain different 

types of precursors at the same time for multicomponent (such as ternary and 

quartenary) semiconductor deposition. Each effusion cell has its independent heating 

coil for heating the precursor since different precursors have different evaporation
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temperatures. Because each effusion cell is at a certain angle to the substrate, the MBE 

technique has relatively poor throwing power which is affected by the line of sight for 

substrates with complex shape as well as blind holes. Nevertheless, the technique has 

high deposition rate of up to 75 pm per minute [7, 9]. The scalability is only up to large 

wafer size of -450 mm diameter.

Some o f the limitations o f the MBE technique include low throughput due to the 

requirement o f high vacuum condition, complicated system operation requiring high 

level of training and expertise coupled with the fact that the equipment is very 

expensive to procure and maintain.

Thin-film semiconductor materials that have been grown using MBE technique include 

ZnS on sapphire [10], Cdi_x ZnxS on GaAs [11], ZnSe on GaAs [12], CdSe on GaAs

[12], Si on Si [13], GaN on GaAs [14], Ge on Ge [15] etc.

1.1.2 Sputtering

The sputtering technique involves the bombardment of a target (precursor) with 

high energy ions in order to eject surface atoms which eventually deposit on a substrate 

placed at a close distance from the target [7]. It is therefore an etching process. It is 

based on the principle of momentum transfer from the bombarding ions to the atoms of 

the bombarded substrate.

The basic operating principle of sputtering deposition is depicted in figure 1.2. 

The material to be sputtered (for example CdTe crystal or gold metal) is used as the 

target. The bombarding ions usually come from the plasma of an inert gas source such 

as Argon. When the target is bombarded by ions with sufficient energy and momentum, 

atoms o f the target are dislodged from the target material and then travel to the substrate 

and get deposited to form the desired thin film deposit. The entire process takes place in 

a vacuum chamber. Different types o f sputter deposition exist, and these include the 

following
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Figure 1.2: Basic operating principle o f sputtering deposition technique.

1.1.2.1 DC Sputtering

In DC sputtering, the target and substrate are biased with direct current (DC) 

voltage such that the target is used as the cathode and the substrate as the anode [7]. 

This applied bias (-1000V) helps to accelerate the plasma ions towards the cathode. On 

hitting the target they transfer their high energy to the target thus sputtering it out and 

depositing onto the surface of the substrate. For this reason the target must be a 

conducting material (such as semiconductor and metal). Insulator cannot be used as 

targets in DC sputtering due to their very high resistance which otherwise will require 

extremely high bias voltages to sputter [7, 16]. DC sputtering technique has been used 

to deposit thin film materials like indium tin oxide (ITO) [17], ZnO [18], CdS [19], NiO

[2 0 ] etc.

1.1.2.2 R F sputtering

In order to achieve the sputtering o f non-conducting (insulating) materials, a 

voltage oscillating at radio frequency (RF) can be applied to the cathode o f the 

sputtering system instead of a DC voltage in the case o f DC sputtering. The frequency 

of the applied RF power is typically o f the order o f 13.5 MHz [16]. The effect o f the RF 

voltage is to prevent the accumulation of positively charged ions (from the bombarding 

ions) on the insulating target which ordinarily will require a very high DC bias of up to 

1012 V to sputter in a DC sputtering arrangement. On one cycle (say the positive cycle), 

electrons are attracted towards the target (cathode). This then creates a negative bias on 

the target. On the reverse cycle, the ion bombardment of the target continues. In this 

way the insulating target is effectively sputtered. Typical applied RF peak voltage used 

in this operation is about 1000 V at a frequency of about 13.5 MHz [7, 16].
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Semiconductor materials that have been grown by RF sputtering include CdTe [21], 

CdS [22], ZnS [23], ZnO [24], ZnTe [25], ZnSe [26] etc.

1.1.2.3 Magnetron Sputtering

In magnetron sputtering, a magnetic field is applied between the anode and the 

cathode o f the sputtering system. The magnetic field is arranged to be closer to the 

surface of the target with the effect that secondary electrons generated by the target 

during bombardment do not travel straight to the anode to bombard the substrate. These 

electrons are rather confined in a kind o f cycloidal trajectory near the surface of the 

target. As a result, their high density increases the plasma density and helps in achieving 

more efficient sputtering result [27]. Again this helps to reduce the heat generated in the 

substrate by otherwise higher momentum electrons, therefore reducing radiation damage 

as well as allowing for the use of temperature-sensitive and surface-sensitive substrates 

such as plastics and metal oxide semiconductors. As a result o f the modification by 

magnetic field, magnetron sputtering yields higher deposition rate than the traditional 

DC sputtering and allows for large area industrial application [28]. A recent variety of 

magnetron sputtering known as high power impulse magnetron sputtering (HIPIMS) is 

mostly applied in the sputtering of metallic coatings. In this system, very high target 

power pulses of density up to 2800 -  3000 Wcm ' 2 are achieved [29, 30] whereas in a 

conventional magnetron sputtering power densities of 20 - 50 Wcm ' 2 are usual [27]. 

Magnetron sputtering can be done in form of DC or RF magnetron sputtering depending 

on the target material. Several semiconductor materials have been deposited by 

magnetron sputtering method according to literature, which include CdTe [31], ZnS

[32], CdS [33], ZnO [34], GaAs [35] etc.

1.1.2.4 Reactive sputtering

Reactive sputtering combines physical and chemical deposition processes in one 

deposition run. To do this, a reactive gas such as oxygen or nitrogen is added to the inert 

gas flow that is traditionally part of the sputtering process [7]. This helps to synthesize 

compounds such as oxides and nitrides on a wide variety of substrates [7]. During the 

sputtering process, the reactive gas reacts chemically with the sputtered atoms, thus 

producing the needed compound on the substrate. If the sputtering rate is higher than the 

chemical reaction rate for example, the reaction will then take place on the substrate, 

and if  the reaction rate is faster than the sputtering rate, then the reaction will take place 

on target. The control o f these two processes therefore affects the stoichiometry o f the
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material produced [36]. For this reason, reactive sputtering requires precise control and 

expertise for a good result. One of the major issues with reactive sputtering is that 

excessive introduction of the reactive gas can result to counter oxidation and nitridation 

o f the target which affects the sputtering yield [36]. Some of the materials that have 

been grown by this method include M 0 2 O3 [37], InN [38], GaN [39], ZnO [40], CdO

[41] etc.

1.1.3 Close space sublimation (CSS)

Close space sublimation is a ‘dry’ vapour deposition technique in which the 

source material (usually in solid state) is heated to sufficient temperature so that it 

sublimes into the gaseous state and eventually condenses again into the solid state on a 

substrate. The major features of the CSS process are: (i) the high-purity sources 

(precursors) are usually heated to a temperature greater than the temperature o f the 

substrate so that re-condensation on the substrate is facilitated by this temperature 

difference, (ii) The distance of separation between the source and substrate is usually 

small, typically ranging from few millimetres to few tens of millimetres in order to 

ensure re-condensation of nearly all the sublimed species on the substrates [42]. (iii) 

The sublimation process traditionally takes place in a vacuum environment with 

pressure as low as 10' Torr (1.3x10' Pa). Higher pressure deposition environment is 

also possible depending on the need. Figure 1.3 shows the schematic of a CSS 

deposition chamber.

To grow a compound semiconductor, say CdTe, the precursors (sources) can be 

high purity CdTe powder or high purity Cd and Te solids. The source is placed in a 

crucible (usually graphite). The substrate is also placed in the substrate holder after 

cleaning, and the chamber is evacuated by means of rotary and diffusion pumps. When 

the right pressure is attained, the source and substrate are then heated to the desired 

temperatures. The substrate is first heated and maintained at the desired temperature 

before the source is heated to sublime the precursor(s). The sublimed precursor(s) then 

react at the substrate. Since the substrate is at a lower temperature than the source, the 

sublimed precursor(s) condense at the substrate to form the required material film. In 

some cases, a gas may be required to flow in the growth chamber while deposition takes 

place. In such cases, the required gas is let into the chamber through the gas-in orifice

[43].
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Figure 1.3: Schematic of a typical CSS growth chamber.

The CSS technique is already in application at industrial level for semiconductor 

growth, especially in CdTe based solar cell manufacture [44, 45]. The CSS technique 

has the advantage o f producing semiconductors with improved crystallinity and 

relatively large grains [46]. Some of the semiconductor materials grown by the CSS 

method to date include CdTe [43, 46], CdS [47], ZnTe [48], ZnS [48], CdSe [49], InP

[42] etc.

1.1.4 Chemical vapour deposition (CVD)

Chemical vapour deposition (CVD) is a vapour phase deposition technique that 

involves the reaction of gaseous reactants (precursors). This reaction normally takes 

place near or on the surface of a substrate which is heated to a desired temperature [50]. 

The CVD process actually uses a volatile chemical compound as a vehicle to transport 

much less volatile material that is intended to be deposited to the reaction zone near or 

on a substrate where the deposition is formed as a solid coating [50]. CVD is used to 

deposit compounds as well as elements. Because the CVD process is carried out from 

the gaseous phase, it offers a sort of atomistic deposition which can yield pure materials 

with fine structural control down to atomic scale. Figure 1.4 shows a schematic diagram 

o f the CVD deposition system.
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Figure 1.4: Schematic o f a CVD deposition system.

The CVD process is typically carried out inside a vacuum since gaseous precursors are 

involved. The pressure in the chamber varies depending on the material to be deposited 

and the particular modification made to the basic CVD system. The technique generally 

has moderate deposition rates up to 250 nm per minute with good throwing power on 

substrates with complex shape. It can as well be scaled up to the large wafer size. There 

are several variations of the CVD technique depending on the particular modification 

made to the standard CVD process. These variations include the following:

1.1.4.1 Plasma enhanced CVD (PECVD)

In PECVD, the precursor gases are subjected to time varying electric fields with 

frequencies of 50 kHz to 13.5 MHz or even microwave frequencies. This eventually 

causes partial ionisation of the gas atoms and creates plasma o f the precursor gases [51]. 

DC power can also be used to create the plasma [52]. The presence of this plasma 

enhances the reaction of the carrier gases at the substrate to produce thin film coatings. 

The deposition rate in this case is higher. The deposition process takes place at 

temperatures up to 700°C [51, 52]. A range o f thin film coatings that have been 

produced with the PECVD technique include ZnO [51, 53], ZnS [52], CdS [54], HgTe- 

CdTe [55], Ge [56], InP [57] etc.

1.1.4.2 Low pressure CVD (LPCVD)

This is done under vacuum condition because of the low pressure involved. The 

pressure can be as low as 17 mTorr (2.3 Pa) [58]. The growth temperatures are as high
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as 900°C, helping to obtain dense and stable deposits [59]. Some of the materials 

deposited by LPCVD include Cr0 2  [60], Si [61], graphene [58], ZnO [62] etc.

1.1.4.3 Atomic layer deposition (ALD)

This is a variant of CVD technique involving pressure typically in the range 0.1 

- 10 mbar (i.e 170 -  17000 Pa) or even atmospheric pressure and temperature in the 

range 50 - 500°C [63]. It allows fine control of the deposited film thickness down to 

atomic levels with the ability o f allowing deposition on large, as well as complex­

shaped surfaces [64]. As an industrial technique, ALD is commonly used for the 

deposition of thin films for electroluminescent flat-panel displays.

The basic feature of ALD is that deposition of films proceeds in cycles with a 

definite film thickness deposited in each reaction cycle. The total thickness of the film 

produced is therefore directly proportional to the number of cycles involved [64]. Each 

cycle typically takes place within seconds with about 0.1 A to 3 A thickness of film 

deposited [64]. This process however depends on the reaction rate of the precursors in 

the reactor as well as on the type o f reactor used and the amount o f available adsorption 

sites on the substrate. The average deposition rate is low and in the range 100 - 300 nm 

per hour and the range o f materials that can be grown by this method is limited due to 

cost [64]. Some of the semiconductor materials grown by this technique include ZnO

[65], ZnS [6 6 ], In2 S3 [67], ZnTe [6 8 ], CdTe [6 8 ], PbS [69], GaAs [70] etc.

1.1.4.4 Atmospheric pressure CVD (APCVD)

The APCVD process is carried out under normal atmospheric pressure as the 

name suggests. It is suitable for the deposition of oxides [71, 72]. High-temperature 

APCVD is usually used for the deposition of epitaxial layers such as SiGe [73] as well 

as hard compound metallurgical coatings like TiN [74]. Low temperature APCVD is 

best suitable for the deposition o f many insulating oxides [71, 72]. The deposition rate is 

generally low giving rise to low throughput. Good uniformity o f the deposited films is 

not always ensured in this technique and the incidence o f pinholes is highly probable. 

APCVD is not common for growing other semiconductors. One can however find a 

publication involving the use of APCVD-grown CdTe in solar cell fabrication [75].

1.1.4.5 Photo-enhanced CVD (PHCVD)

In photo-enhanced CVD (PHCVD), electromagnetic radiation (photons) is used

to activate the vapour-phase reactants. Short-wavelength (UV) radiation is normally
286



used in this process in order to create reactive free-radicals that react to the films [76]. 

Unlike APCVD, PHCVD has a more wide range o f application in thin film growth. The 

range of materials grown with this technique to date include S i0 2 [77], a-Si:H [78], 

SiNx, T i02, Ta2 0 5 , H f0 2 [79], ZnSe [80], ZnO [81] etc. A variant of PHCVD is Laser- 

induced CVD (LCVD), which employs laser as a source o f photons.

1.1.5 Metalorganic chemical vapour deposition (MOCVD)

Metalorganic chemical vapour deposition (MOCVD) is also known as 

metalorganic vapour phase epitaxy (MOVPE). This is a type o f CVD technique in 

which the precursors are usually metalorganic vapour rather than inorganic vapour used 

in the conventional CVD process. Metalorganic compounds are essentially metal atoms 

with some alkyl radicals attached to them. Such alkyl radicals include methyl, ethyl and 

isopropyl [82]. This technique offers the growth of epitaxial layers o f doped and 

undoped compound semiconductors. It has the advantage o f being used to grow most 

semiconductors that prove difficult to grow using other high-quality epitaxial growth 

techniques such as MBE [83].

The MOCVD technique involves very complex processes but can be used to 

grow semiconductors with complex multilayers. The growth chamber does not actually 

involve a vacuum condition but deposition pressure in the growth chamber can be in the 

range o f 10 to 760 Torr (~1333 to 101325 Pa). This is one of the reasons it can be used 

to grow a very wide variety of semiconductors with high quality. The precursor gases 

must be o f ultra-high purity as a requirement for growing high-quality semiconductors. 

The substrate must also be a lattice-matched semiconductor such as GaAs. In any case, 

MOCVD does not have the type of fine precision found in MBE technique, such as in 

the control o f thickness as well as doping density [83].

MOCVD is in active application in the fabrication of semiconductor devices 

such as multi-junction solar cells with high efficiencies, light emitting diodes as well as 

laser diodes [82]. Many semiconductors have been grown using the MOCVD technique 

to date. These include ZnSe, ZnMgSSe, ZnSSe [84], GaAs [85], AlGaAs [8 6 ], InGaAs

[87], InP [8 8 ], InAs [89], InSb [90], GaSb [91], CdTe [92], CdS, CdSe [93], ZnS [94], 

GaN [95], ZnO [96] and so on.

1.2 Liquid phase deposition (LPD) techniques

In liquid phase deposition of thin films the precursors consist o f ions, atoms or 

molecules in liquid solutions. The solution can either be aqueous or non-aqueous
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depending on the need. The LPD techniques in general do not require any vacuum 

system. The reagents are more or less easily available, thus solving the problem o f 

acquiring expensive and sometimes, very sensitive metal-organic precursors as used in 

chemical vapour deposition. As a result, LPD techniques provide cheaper and more 

environmentally friendly growth techniques unlike in vapour-phase techniques. Some 

temperature-sensitive substrates can be used in LPD. In other words, a wide range of 

substrates can be used. Also large area deposition is very easy in liquid phase deposition 

since there are no vacuum chambers to restrict the size o f the substrates that can be 

used. Below are some o f the liquid phase (or wet chemical) deposition techniques 

available for thin film deposition.

1.2.1 Spray pyrolysis

In spray pyrolysis, a liquid solution of the compound to be deposited is made. 

This solution is then pulverised by means o f a neutral gas and atomised by an atomiser 

to form an aerosol. This aerosol is sprayed by the atomiser on a heated substrate so that 

the solvent evaporates, and the solute precipitates on the substrate. Due to the 

temperature of the substrate, the precipitate dries thermally onto the substrate and 

solidifies into a thin film with crystallites. This process of adhesion and solidification 

into crystallites is called sintering.

Figure 1.5 shows the schematic of the spray pyrolysis technique. The properties 

of the deposited film are controlled by a set of variables including temperature, 

concentration of precursors in the solution, the type of solvent used to dissolve the 

precursors, the atomisation method etc. [97]. Among all these however, temperature ■ 

appears to be the most influential.

Spray pyrolysis is mostly used to deposit oxides although other semiconductor 

films can be grown using it [97, 98]. Some of the thin films grown by the spray 

pyrolysis techniques include SnC>2 [99], Sn0 2 :F [100], In:Sn0 2  [101], ZnO [102], 

Al:ZnO [103], ZnS [104], CdTe [105], CdS [106], CdSe [107] and others.
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Figure 1.5: Schematic o f the spray pyrolysis deposition technique.

1.2.2 Sol-gel deposition technique

Sol-gel technique involves initially making a suspension o f precursors for the 

compound to be deposited in a colloidal form [108]. In general, these precursors are 

usually metals or metalloids that are surrounded by different ligands [108] such as the 

alcohol groups. During the sol-gel process, two major reactions take place. These are 

hydrolysis o f the ligands to form hydroxyl groups, and the subsequent condensation of 

these hydroxyl groups. Four major steps are then involved in sol-gel deposition of thin 

or thick coatings as depicted in figure 1 .6 .

lllllllllllllllll
Substrate ----- >| Substrate 1----- > Substrate

Sol-gel
formation

Sol-gel 
application on 

substrate

Polymerisation 
and formation 
of continuous 

network

Heat treatment 
and pyrolysis 

to form 
coating

Figure 1.6: Schematic of the sol-gel deposition process.

Application of the sol-gel on the substrates can be either by dipping the substrate in the 

sol-gel solution, or by dropping the sol-gel on the substrates and spinning to spread it, or 

by painting it on the substrate, or by spraying. Then the particles o f the compound being 

deposited polymerise from the solution forming a continuous network. During this 

stage, the compound which serves as the vehicle for carrying the precursor particles is 

removed from the sol-gel solution. On heat-treating the resulting network o f particles, 

pyrolysis of the remaining components takes place forming the desired coating. The sol-

289



gel deposited coating (film) can be amorphous or crystalline in nature.

The sol-gel technique is a cost-effective technique used for the production of 

organic and inorganic industrial coatings such as anti-corrosion coatings as well as for 

the deposition of semiconductor thin films [109, 110]. Some o f the materials that are 

produced by sol-gel technique include TiC>2 [111], ZnO [112], Cdln2 0 4  [113], CdO 

[114], ZnS [115], CdSe [116], ZnSe [117] and others. Substrates for sol-gel coating can 

be conducting or non-conducting materials.

1.2.3 Spin coating technique

Spin coating is another type of wet chemical deposition technique used for 

making different types of coatings. Similar to the sol-gel process, the material to be 

spin-coated is prepared as a solution in a solvent that evaporates easily. In order to carry 

out the coating process a puddle of the solution is dispensed at the centre o f the 

substrate which is attached to a spinner. The substrate with the fluid is then spun at a 

high speed o f 1000 - 6000 rpm. The centripetal force on the fluid causes it to spread 

over the entire surface o f the substrate while the solvent evaporates simultaneously. The 

deposited material then dries in the process to form a film. Depending on the need, this 

deposited film can be given heat treatment in other to enhance its quality. Film thickness 

from few nanometres up to few micrometres, can be deposited using this technique. The 

thickness and other properties of the deposited film depend on a number o f parameters 

ranging from the spin speed to the rate of drying of the solvent (which also depends on 

the nature o f the solvent), surface tension, spin time, concentration of the solution and 

volume o f the solution dispensed at a time. Figure 1.7 illustrates the processes involved 

in a spin coating process as explained above. Spin coating can be used for depositing a 

thin film on both conducting and non-conducting substrates.

The spin coating process is applied extensively in the industry such as in the 

production of optical mirrors, photolithography [118] etc. The technique produces films 

with good uniformity at a relatively low cost compared to some other techniques. Some 

of the thin film semiconductors deposited using spin coating include TiC>2 [119], ZnO 

[120], Sn02 [121], organic semiconductors [122 - 124], single wall carbon nanotubes 

(SWCNT) [125] etc.
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Figure 1.7: Schematic of the spin coating process.

1.2.4 Screen printing

In screen printing technique, a paste of the material (compound) to be screen- 

printed is prepared and used as the ink for printing. A mesh is used to precisely define 

the area o f the substrate that is to be printed upon. A screen printer is then used to apply 

the paste evenly to the mask [126]. The paste application process involves rubbing the 

paste on the mask with a roller called squeegee, thus pushing the paste through the 

openings in the mask in order to deposit it on the underlying substrate [126]. Figure 1.8 

shows the schematic of the screen printing process.

Squeegee

si
Print

\

ed area

t

Mas
sten

\

k o r
cil

r
-- I IT.:™! 1n-.-.-i | .  . .

Substrate

Figure 1.8: Schematic o f the screen printing process.

After the printing, the printed sample is left to dry. Annealing of the sample can as well 

be done. The annealing condition depends on the nature of the substrate and the 

thickness of the printed film depends on the thickness of the mask used [126]. The 

quality of the printed film depends on a number of factors which include, the viscosity 

of the paste used, the rate of drying o f the printed paste, the pressure o f the squeegee on 

the paste during the printing process and so on [127, 128].

The screen printing technique finds application in the semiconductor inductry 

such as in fabrication of biosensors [129], solar cells [130], light-emitting diodes [131]
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etc. Some other materials produced by screen printing including organic and inorganic 

semiconductor materials as well as ceramic materials are T1O2 [132], 

(Nao.5Bio.5)o.94Bao.o6Ti03[133], CdSe [134], ZnO, poly (3,4-ethylenedioxythiopene) poly 

(styrene-Sulfonate)(PEDOT:PSS), Poly-(3-(2-methylhexan-2-yl) oxy-carbonyl 

dithiophene) (P3MHOCT) [130] etc.

1.2.6 Successive ionic layer adsorption and reaction (SIL AR)

The SILAR technique is a low-cost solution-based technique for the deposition 

of a wide range o f thin film compound materials. It is a convenient technique for large 

area thin film deposition. It is based on the adsorption o f ions of the different precursor 

species on a substrate in a successive fashion and the consequent reaction o f these ions 

on the substrates to form the required compound [135,136].

In order to deposit a given compound, separate solutions o f the various 

precursors are prepared in separate beakers to provide anions and cations. The substrate 

(after cleaning) is then dipped in the solutions separately in succession with rinsing in 

de-ionised water in-between dips. When the substrate is dipped in all the precursors, a 

cycle is completed. The thickness of the film produced depends directly on the number 

of cycles performed [137]. During the dipping process, ions of the precursors adsorb (at 

nucleation sites) on the surface of the substrate. These anions and cations then react on 

the substrate to form atoms of the thin film being deposited. The rinsing process helps to 

prevent precipitation in the solutions. Figure 1.9 illustrates the SILAR process. SILAR 

method is a modification of the chemical bath deposition (CBD) where precipitation 

causes a lot of material waste. Several compound semiconductor and composite thin 

films have been deposited using the SILAR method. These include (NiS)x(CdS)(i.X) 

composite [138], ZnS [139], M 0 S2 , Bi2Se3 , SbSe3 , Bi2Se3-Sb2-Se3 [137], CdS, LaS, 

MnS, ZnSe [137], CdO [140], Cu2ZnSnS4 [141], ZnTe [142], In2S3 [143], CuInSe2, 

CuInSeNxSx [144], SnS [145], T i02 [146] etc
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Figure 1.9: Schematic o f the SILAR deposition process.

1.2.5 Chemical bath deposition (CBD)

The chemical bath deposition (CBD) technique is one o f the low-cost and 

widely researched thin film deposition techniques since 1919. It is scalable and used as 

a batch process. The major challenge in CBD process is the generation of large volumes 

of chemical waste after each round of deposition. This is because it is difficult to re-use 

the solution once the reaction is completed during any deposition process as a result of 

large amount of precipitation generated in most cases. The thickness and quality o f the 

deposited films in CBD depend on a number of parameters including temperature, 

stirring rate, deposition time, nature of substrate and concentration of the precursors in 

solution [147, 148].

In the CBD technique, the deposition of the required compound, say XY,jffom a 

solution containing ions of XY, say X+ and Y,' depends on the solubility product (Ksp) 

of the compound XY and the ionic product (K ip) of X+ and Y." If the ionic product (Kn>) 

exceeds the solubility product (Ksp), then, the excess ions precipitate to form XY [147, 

148]. In order to control the rate of the release o f these ions (especially the metallic ion 

X*), a complexing agent (or chelating agent) is added to the solution. One example o f a 

complexing agent usually employed in the CBD process is ammonia. The complexing 

agent helps to form a complex of the metallic ion species, making the ion soluble in the 

solution which is most favoured by an alkaline environment [147, 148]. CBD technique 

has been used for the deposition of semiconductor thin films for various applications. 

Some of the semiconductors include ZnSe [148], CdS [149], ZnS [150], PbS [151], ZnO 

[152], SnS-CuS [153], CuO [154], CdTe [155], Sn02, Cd2Sn04 [156], CdO [157] and 

others.
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1.2.6 Electrochemical deposition (ED)

Electrochemical deposition or simply, Electrodeposition (ED) is the deposition 

of dissolved or suspended materials on a substrate (electrode) by means of applied 

electric field [158]. In other words, the chemical reaction resulting in the deposition of 

the solid material does not proceed on its own as is the case with CBD. The reaction is 

thus thermodynamically unfavourable because the overall change in free energy (G) for 

the reaction is positive. Therefore, the applied electrical field supplies the energy needed 

to drive the reaction [159]. Electrodeposition, otherwise known as electroplating is a 

well-known industrial process traditionally used to deposit coatings o f noble metals on 

conducting substrates for protection of the substrates which are usually metals. It is also 

used over the centuries for extracting and purifying metals.

The application of electrodeposition as a semiconductor deposition technique 

became known mainly in the 1970's [160 - 164]. However, in the case of deposition of 

compound semiconductors, the deposition reaction becomes more complicated than the 

deposition of single metals or elemental semiconductor materials such as Si and Ge. The 

reason for this complexity is because two or more elements must be co-deposited at the 

substrate with one o f the elements being a non-metal. In order to electrodeposit a 

semiconductor (elemental or compound semiconductor), a liquid electrolyte containing 

the ions of the elements o f the semiconductor is prepared in a beaker or tank. This 

solution can either be aqueous or non-aqueous provided the precursors are very soluble 

in whichever solvent used [165 - 167]. Through a working electrode (usually the 

cathode) and a counter electrode (usually the anode) a DC current is passed through the 

electrolyte by means of a potentiostat in order to drive the deposition process: The> 

deposition takes place cathodically so that the applied potential (cathodic voltage) can 

be maintained constant. In a conventional electrodeposition process, a third electrode 

(the reference electrode) is required which helps to stabilize the applied voltage and 

current. Two major reference electrodes used in this case are Ag/AgCl electrode and 

Hg/HgCl2 (saturated calomel) electrode. The use of reference electrode in the 

electrodeposition of semiconductors can sometimes pose a contamination problem. This 

is because the electrical properties of semiconductors can drastically be affected by the 

presence of unwanted ions even in parts per billion levels [168]. Hg/HgCl2 and 

Ag/AgCl reference electrodes contain K+ and Ag+ which are ions o f groups LA and IB 

elements that are p-type dopants for II-VI semiconductors [169, 170]. These ions are 

known to be detrimental to CdTe-based solar cells [168, 171]. Possible leakage o f these 

ions from the reference electrode into the deposition electrolyte can cause serious
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problem. For this reason the reference electrode can be eliminated from the 

electrodeposition process [172- 176].

Determination of the right electrodeposition potential is a complicated case from 

the thermodynamic point of view due to the complex nature of the reactions involved in 

the deposition process. This difficulty is however circumvented practically through the 

use of cycle voltammetry [177]. A cyclic voltammogram of the deposition electrolyte is 

recorded from which the approximate range o f the deposition potential is easily 

identified. The deposition potential is then optimised by carrying out test deposition 

across this identified potential range and characterising the deposits obtained. Figure 

1.10 shows electrodeposition set-ups for both 2-electrode and 3-electrode systems.

fa)
Working electrodi 

(GlassTCO plate)

Beaker

Electrolyte Solution-

Counter electrode

O .

(e.g.Cartx>arod)

Hot plate

-Magnetic stirrer

/
2-Electrode deposition set-up

(b)

Working electrode 

(GlassTCO plate)

•Reference electrode

Beaker

Electrolyte
Solution

Hotplate

3-Electrode deposition set-up

— Counter 
electrode

(Carbon rod)

■ Magnetic stirrer

Figure 1.10: Schematics of (a) 2-electrode system and (b) 3-electrode system.

A number of factors affect the electrodeposition process. These include: (i) pH 

of the solution, (ii) applied deposition potential, (iii) deposition temperature, (iv) stirring 

rate and (v) concentration of ions in the deposition electrolyte. Some o f the advantages 

offered by electrodeposition technique include: (i) low deposition temperatures (which 

helps to minimise point defects), (ii) ease o f depositing n-type, i-type and p-type 

semiconductors (for some semiconductors whose conductivity type depends on 

stoichiometry) by changing the stoichiometry o f the ion in the electrolyte or by varying 

the deposition potential [174, 176, 177], (iii) possibility of bandgap engineering [176, 

178 - 180], (iv) self-purification of the electrolyte as deposition continues [176], (v) 

prolonged life time of the deposition electrolyte [176], (vi) deposition o f uniform layers 

[176], (vii) low cost [176], (viii) ease of extrinsic doping by adding appropriate ion 

sources into the deposition electrolyte [181], (ix) scalabilty [182, 183] and (x) 

manufacturabilily [182, 183]. The electrodeposition technique is very flexible and its
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manufacturability has already been demonstrated by BP producing solar panels of ~1 m 2 

with -10%  efficiency in the recent past [182]. It can be used to grow both single crystal 

and polycrystalline materials [176, 184]. This is the deposition technique employed in 

the research project reported in this thesis. Many semiconductors, conducting polymers, 

as well as different solar cell structures and other devices have been produced using 

electrodeposition technique. These include CdTe [185], CdS [173], ZnS [172], ZnSe 

[167,181], ZnTe [186,187], GaP [187], GaAs [161], InP [188], Polyaniline [189 -191], 

Polymer-semiconductor composites [192], CuInSe2 [167, 174, 175], CIGS [178], Si 

[193], Ge [194], InSb [195], InAs [196] and many others.
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Appendix II: Review of physics of semiconductors and semiconductor devices

11.0 Introduction

In this appendix II, the physics o f semiconductors and semiconductor devices is 

reviewed. This review is necessary since “solar cells”, which are the main focus of this 

thesis, involve semiconductors in their fabrication as devices. The sections of the 

appendix will discuss briefly the band theory of solids as the basis for discussion on 

semiconductors. The various types o f semiconductors based on the position of the Fermi 

level will be discussed. Further from this, junctions involving semiconductors will be 

discussed to include semiconductor-semiconductor junctions and metal-semiconductor 

junctions. The last section will focus on metal-insulator-semiconductor junctions 

followed by concluding remark.

11.1 Band theory of solids

According to the Bohr model of the atom, an atom consists o f a positively 

charged nucleus surrounded by negatively charged electrons moving in circular orbits 

with electrostatic force of attraction between them and the nucleus sustaining the 

motion. These electrons are contained in different orbits which represent different 

energy levels [1]. Electrons in the outer most shells (orbits) are more loosely bound to 

the nucleus and are relatively free to move about in the orbits. An electron can only 

move from one energy level (orbit) to the next higher level only if  it has or loses as the 

case may be, additional energy equal to the energy difference between these two energy 

levels. When two or more atoms combine to form a substance, the outermost shells 

(with their various subshells) merge together to make available more energy levels 

where the electrons can move about. As the number of atoms increases, these available 

energy levels form into continuous energy bands available for occupation by electrons. 

The width of these bands and the separation between them characterise the material 

formed and determines the ease with which electrons can move from one band to the 

other under the influence of an electric field or supply of any other form of energy. In 

some substances (we consider solid substances now) the empty energy bands (higher 

energy bands) overlap with electron-filled bands so that electrons need little or no 

additional energy in order to move into these higher levels. The outer electrons in the 

atoms of such solids are then said to be “free” and easily move in the solid as soon as an 

electric field is applied across the solid. Solids of this nature are called conductors [2]. 

In other substances, these energy bands do not overlap but are separated by a definite
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energy gap. If this energy gap is not so wide such that the application of certain amount 

of energy (electrical, light, heat, magnetic etc) at room temperature gives electrons in 

the filled bands enough energy to move into the next higher unoccupied level, then the 

material is regarded as a semiconductor. If  the energy gap between these occupied and 

empty levels is very wide that it is difficult to promote electrons into the empty band at 

room temperature then the concerned material is an insulator. Figure II.l shows the 

energy band diagrams for conductor, semiconductor and insulator. The highest occupied 

energy band is called the valence band (VB), while the lowest unoccupied energy band 

is called the conduction band (CB). The gap between the top of the valence band (Ey) 

and the bottom of the conduction band (Ec) is called the energy gap or energy band gap 

(Eg) of the material [1, 3]. Typically for conductors, Eg = 0 - 0.3 eV or even negative 

value. For semiconductors, Eg = 0.3 - 4.0 eV and for insulators, Eg = 4.0 -12.0 eV [4].

CB

/N

E

VB

Ec

(a) (b) (c)
Figure I I .l :  Energy band diagrams o f (a) a conductor (b) a semiconductor and (c) an

insulator.

II.2 Types of semiconductors

The energy-momentum (E-k) relationship o f the conduction band edge and 

valence band edge can be approximated to a quadratic equation of the form in Equation 

(II. 1) [1 - 3].

h2k 2
E(k) =

2 m *
(II.l)

where h  is the reduced Plank's constant and m * is the effective mass association with 

the particle (electron or hole) involved in the transition. The graphs of Equation (II.l) 

for both direct bandgap and indirect bandgap semiconductors are given in figure II.2.
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A Symmetry a x i s ^ .

Symmetry axis

Figure II.2: Schematic o f the E-k plot for (a) direct bandgap semiconductor and (b) 

indirect bandgap semiconductor.

The alignment of the valence band maximum and the conduction band minimum plays a 

crucial role in the transition o f an electron from the valence band to the conduction 

band. When both points align at the same momentum (k), as in figure II.2 (a), 

momentum is conserved and the bandgap of the semiconductor is regarded as direct. 

The implication o f this is that an electron at the top of the valence band can move to the 

bottom of the conduction band if  it has sufficient energy, without changing its 

momentum vector. Such electron therefore moves with a single effective mass (m*) - 

along the symmetry axis. This type of transition is a direct transition. Examples of 

semiconductors with direct bandgap include GaAs, CdTe, CdS, ZnS etc. On the other 

hand, figure II.2 (b) shows a case for an indirect bandgap transition in which there is a 

misalignment between the conduction band minimum and valence band maximum, 

resulting in a change in momentum of an electron moving from the top o f the valence 

band to the bottom of the conduction band. Momentum is therefore not conserved for 

such transition as the electron involved will have two effective masses (one (mt*) 

transverse to the symmetry axes and another {m f)  along these axes). The bandgap, Eg, 

involved in this case is therefore an indirect bandgap [2, 3]. Examples o f indirect 

bandgap semiconductors include Si, Ge, GaP etc.

The nature of transition from valence band to conduction band in a semiconductor has a 

consequence on the absorption property o f the semiconductor. In indirect transition, 

phonons are involved in addition to change in energy. The phonons (a quantum of 

lattice vibration) have large amount of momentum and a small amount of energy so as 

to make up for the discrepancy in momentum that is the origin o f the indirect bandgap. 

This participation of phonons is necessary since both energy and momentum must be 

conserved in order for a fundamental transition to be effected. In direct transition,



phonons are not involved. The indirect transitions are therefore less probable than direct 

transitions because fewer electrons participate in them [1 - 3].

The energy band diagram of any semiconductor (direct bandgap or indirect 

bandgap) is characterised by the position o f the Fermi level (Ep) relative to the top of 

the valence band and bottom of the conduction band. The Fermi level, by definition, is 

the energy level in a material which probability o f occupation by electrons is V2 at 0 K. 

All energy levels below the Fermi level are occupied while energy levels above it are 

empty [1 - 3]. The position of the Fermi level (usually between the Ec and Ey) 

determines the nature o f electrical conductivity o f the semiconductor concerned. When 

the Fermi level is exactly midway between the top o f the valence band and the bottom 

of the conduction band as shown in figure II.3 (a), the semiconductor behaves 

essentially as an insulator, exhibiting very low conductivity (o) (or high resistivity (p)). 

Such semiconductor is known as an intrinsic (i-type) semiconductor. Electrical 

conduction in a semiconductor involves both electrons (e) and holes (h). An i-type 

semiconductor has equal number of electrons and holes.

Ec Ec Ec
------------------------- Ef

 ---------------------- Ef

---------------------- - E p
Ey Ey Ey

(a) (b) (c)

Figure II.3: Schematic o f the energy band diagrams showing positions o f the Fermi

level for (a) intrinsic (i-type) semiconductor, (b) n-type semiconductor and (c) p-type

semiconductor.

When the Fermi level is closer to the bottom of the conduction band than to the top o f 

the valence band, the semiconductor is n-type (figure II.3 (b)). In this case there are 

more electrons than holes and therefore electrical conduction is dominated by electrons. 

If there are more holes in the semiconductor than electrons, the semiconductor is p-type 

(figure II.3 (c)) and the Fermi level is located closer to the top o f the valence band than 

to the bottom of the conduction band. Conduction then is dominated by holes. The 

relative concentration of electrons and holes is a measure o f the doping level o f the 

semiconductor.

From the mathematics of the physics of semiconductors [1, 3], relationships 

between the Fermi level and the charge carrier concentrations for the various non­

degenerate semiconductor types can be given by equations (II.2) - (II.4) for n-type, p-
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type and i-type semiconductors respectively.

nr (  EC — EF\  
n = Nc exp {— — )

p =  Nv exp ^
Ep Ey

kT
(II. 3)

n =  p =  ni = Nc exp ( — C~ j ^ )  = Nv 6Xp (
Ec Ej 

kT
E j  ~  E v  

kT  .)
(I I A )

where N c  and Ny  are the effective densities o f states in the conduction band and valence 

band respectively, k  is Boltzmann constant, T  is absolute temperature, is intrinsic 

carrier concentration, Ei is the Fermi level in the intrinsic semiconductor and Eg is the 

energy bandgap of the semiconductor.

For any given semiconductor, the product o f the majority and minority carrier 

concentrations is a constant so that equations (II. 2) and (II. 3) yield

Equation (II.5) is the law of mass action. If the intrinsic properties are used as reference, 

then n andp  can be obtained alternatively as

II.3 Interfaces in semiconductor devices

The fabrication of semiconductor devices requires the formation of junctions or 

interfaces. These interfaces can be between two semiconductors as well as between a 

semiconductor and suitable metal or insulator. Depending on the need, as well as the 

processes and the type of materials and semiconductors involved, these interfaces or 

junctions can have rectifying property (in which case the flow of electrical current is 

preferred only in one direction) or ohmic property (in which case current flow across the 

junction can go in both directions, obeying Ohm’s law). Sometimes also, a
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metal/semiconductor interface may require a thin insulating material between the metal 

and semiconductor to form a metal/insulator/semiconductor junction for certain reasons 

and applications.

11.3.1 Semiconductor/semiconductor interfaces

In device fabrication, a rectifying junction can be formed between two different 

semiconductors o f similar or different conductivity types. Such junction involving 

dissimilar semiconductors is known as hetero-junction [2, 5 -  14]. Instead o f using 

dissimilar semiconductors, the same semiconductor in its different conductivity types 

(n-type and p-type) can be used to form a rectifying junction in which case the junction 

is known as a homo-junction [15 - 18]. The main purpose of forming these junctions is 

to create a built-in electrical potential (or electric field) at these junctions for effective 

carrier separation and transport in a semiconductor device.

11.3.1.1 Hetero-junctions

A semiconductor hetero-junction can either be an n-n, p-p or p-n junction, 

depending on the conductivity types o f the two dissimilar semiconductors involved [5 - 

14]. In any case, it is necessary that the bandgaps of the two semiconductors are 

generally not the same. Another major requirement for a good and healthy hetero­

junction formation is that, the two semiconductors involved are lattice matched. This 

means that they have similar lattice constants [3]. If the lattice constants are not 

matched, the semiconductors are strained at the junction creating dislocations that act as 

charge carrier trap centres. As a result, the properties of the hetero-junction formed 

deviate from the ideal behaviour. However, it is difficult to obtain perfect hetero­

junction properties in practice and therefore practical hetero-junctions are not ideal [3 - 

14].

Figure II.4 shows the formation o f an n-n hetero-junction using two different 

semiconductors. Different rectifying n-n hetero-junctions have been reported in the 

literature. These include AlGaAs/GaAs n-n hetero-junction [5], Si/Si n-n hetero­

junction [19], GaSb/GalnAsSb n-n hetero-junction [20], InP/GaAs n-n hetero-junction

[6], Ge/Si n-n hetero-junction [7], InP/InSb n-n hetero-junction [9], InAsSb/GaSb n-n 

hetero-junction [8] etc. Similarly, rectifying p-p hetero-junctions have been reported, for 

example, for GalnSbAs/GaSb p-p hetero-junction [20] and Ge/Si p-p hetero-junction

[7]. The physics o f these hetero-junctions are also well documented in the literature [6, 

7 ,2 1 -2 3 ].
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Figure II.4: Energy band diagrams for the formation of n-n hetero-junction between 

two n-type semiconductors (1 and 2) (a) before junction formation and (b) after-junction 

formation. & = electron affinity o f semiconductor, (j)s = work function of semiconductor 

and Vbi = built-in potential at the hetero-junction. Other symbols have their usual 

meanings.

Hetero-junctions can also be of p-n junction type as mentioned earlier. The p-n junction 

is a very important junction in electronic devices. Many practical p-n junction devices 

fabricated to date, such as solar cells, are of the hetero-junction type. These include 

CdTe-based solar cells [24 - 26], CIGS-based solar cells [27], carbon nanotube/silicon 

p-n junction solar cells [28], InGaN/GaN p-n junction solar cells [29], CuS-based solar 

cells [30] etc. The theory of the p-n hetero-junction will be discussed in the next section 

together with p-n homo-junctions.

II.3.1.2 Homo-junctions

Homo-junctions involve a particular semiconductor in both n-type and p-type 

conduction modes. The bandgaps o f both side o f the junction remain the same. This 

type of junction requires semiconductors that can naturally exist in both n-type and p- 

type conduction mode, or that can be doped n-type and p-type without essentially 

altering the bandgap. The essential condition for a p-n homo-junction therefore is that 

the bandgap should be constant across the entire junction. Typical examples of 

semiconductors that can form p-n homo-junction include CdTe, GaAs and Si.
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II.3.1.2.1 p-n junctions

Figure II.5 shows the formation of p-n homo-junction. During the p-n junction 

formation between p-type and n-type semiconductors in intimate contact, electrons 

diffuse into the p-type semiconductor from the n-type semiconductor while holes from 

the p-type semiconductor diffuse into the n-type semiconductor. This continues, 

resulting in the formation of a space charge (depletion) region at the junction. Due to the 

concentration of donors (No) and acceptors (Na) on opposite sides o f this junction, an 

electric field is set up within the depletion region. The built-in electric field tends to 

counteract the inter-diffusion of charge carriers across the junction resulting in an 

equilibrium condition called thermal equilibrium. This then causes the Fermi levels in 

the semiconductors on both sides of the junction to align as shown in figure II.5 (b).

Xsn

V b i

E v E v
p-type n-type

(b)

Figure II.5: Energy band diagram for the formation o f p-n junction (a) before junction 

formation and (b) after junction formation.

A built-in potential Vbi is therefore formed within the depletion region due to the 

electrostatic potential difference between the p-type semiconductor and the n-type 

semiconductor on opposite sides of the junction. This built-in potential is then given by 

equation (II.8) [3, 31].

kT NaM
Vb i= - l n - i4iVD

n?
(//. 8)

where q is electronic charge and other symbols have their usual meanings.

Figure II.6 shows the schematic of the depletion approximation for the space-charge 

distribution of an abrupt p-n junction in thermal equilibrium.
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Figure II.6: Schematic o f the space-charge distribution of an abrupt p-n junction in 

thermal equilibrium.

From the well-established theory o f p-n junction [3, 31], the maximum built-in electric 

field (Em) existing at x  = 0 in the depletion region is given by Equation (II. 9).

\Em \ =
q N Ax p q N Dx n

(11. 9)
£s £s

where xp and xn are the distances by which the depletion region extends into the p-type 

semiconductor and n-type semiconductor respectively. £s is the dielectric constant o f the 

semiconductor material.

The maximum electric field in the depletion region is related to the built-in potential 

according to Equation (11.10).

Vb l = j \ E m \ W  ( 1 1 . 1 0 )

where W = xp + x„ is the width of the depletion region given by Equation (II. 11).

W  =

N

2 £s 

<7
Vbi (77.11)

Equation (11.11) shows that reducing either the donor concentration or acceptor 

concentration or both, increases the depletion width of the junction. In a one-sided
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abrupt junction such as p+-n junction, such that N a »  N d , the depletion width extends 

more into the n-side of the junction. Then equation (11.11) simplifies to equation (11.12).

2£sVbi
W  = — ^  (II. 12)

a) <In d

Equations (II.8) - (11.12) are based on thermal equilibrium condition in which case there 

is no applied external bias across the p-n junction. If however an external bias voltage V 

is applied across the junction, then the total electrostatic potential across the junction is 

modified to (Vbi ~ V) where V takes a positive value for forward bias and negative value 

for reverse bias [3]. Equations (II.8) - (11.12) are then modified accordingly.

Under bias condition the behaviour of the p-n junction changes in response to 

the applied bias voltage. One can then describe the junction in terms o f its current- 

voltage (I-V) response. Under reverse bias condition, the depletion layer capacitance per 

unit area (Q>) is given for one-sided abrupt junction by Equation (11.13) [3].

qesN  i
^ 4 -  (Vb l - \ 0  2 (//. 13)

£s
c° = w  ,

where N  is Na or Nd.

If  Equation (11.13) is rearranged, we can obtain 1 /C d2 as in Equation (11.14). 

1 2
(Vb i- V )  (77.14)

Q) q£sN

Then, differentiating 1 /C d  with respect to applied bias V gives Equation (11.15).

( £ )  2D -  (77.15)
dV qesN

Equation (11.15) therefore shows that the graph of 1/C d2 versus V should give a straight 

line, and from the slope, the doping concentration N, can be obtained. Again, 

extrapolating the straight line to 1 /C d2 -  0, gives the built-in potential, Vbi.

It should be noted that, it is difficult in practice to obtain the abrupt p-n junction 

jdescribed_aboYe._Injother_words,_the_depletion_approximationJs_not_practical._IhisJs_
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because the approximation considers only the contribution from minority impurity 

concentration. In a practical device, the majority charge carriers also contribute to the 

properties of the junction in addition to the contribution from the minority carriers. As a 

result therefore, the depletion approximation can be modified by replacing the built-in 

potential, by (V^ - 2kT/q) [3]. The term 2kT/q comes from the contribution from the 

majority carrier electrons in the n-side of the junction and majority carrier holes in the 

p-side o f the junction. In the case of the Schottky diode (see section H.3.2.2), this term 

is given as kT/q since current contribution is mainly by one type o f charge carriers.

The I-V characteristics of an abrupt p-n junction under bias, is given by the Shockley 

equation which relates the total current through the p-n junction (which is a diode) to 

the applied bias according to Equation (11.16) [3].

7 = / n + / p = y o [ e x p ( | ^ ) - l ]  (.11- 16)

where J  is total current density ( / =  current per unit area), Jn and Jp are current density 

contributions from electrons and holes respectively and Jo is the reverse saturation 

current density defined by Equation (11.17).

qDnri? qDvn}Jo =  +  2-J^-L  ( // . 1 7 )
Jo LnNA LpND K J

where Dn is electron diffusion constant, Dp is hole diffusion constant, Ln is electron 

diffusion length and Lp is hole diffusion length. Equation (11.16) is also known as the 

ideal diode equation. In fact in a real practical diode, the effect o f recombination and 

generation modifies the I-V characteristics by incorporating a factor, n, in the 

exponential function, thus modifying Equation (11.16) to Equation (11.18).

/ = / o exp (— ) - l  
\nkT J

(II. 18)

where n is called the ideality factor. For an ideal diode such as that represented by 

Equation (11.16), n = 1.00, while for a practical diode 1.00 < n < 2.00 in which case 

recombination and generation processes are comparable. Figure II.7 shows typical I-V 

characteristics of a p-n junction diode both under forward and reverse bias conditions.
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Reverse
bias

Figure II.7: Typical I-V characteristics o f a p-n junction diode under forward and 

reverse bias conditions.

II.3.2 M etal/semiconductor (MS) interfaces

Any semiconductor device must have at least two metal/semiconductor contacts 

in order to pass current through it or extract current from it as the case may be. 

Sometimes, these MS interfaces (junctions) can allow the flow of electric current in 

both directions in which case the relationship between the current and voltage across the 

junction obeys Ohm’s law. In some other cases, one of the contacts (MS interfaces) may 

allow current flow only in one direction in which case the junction is a rectifying MS 

junction [3].

II.3.2.1 Ohmic MS interfaces

Figure II.8 shows the schematic o f a semiconductor device with two MS ohmic 

contacts. An ohmic MS contact is one that has negligible junction resistance in both 

directions, when compared to the resistance o f the entire device involved [3].

Semiconductor device

Metal (e.g. Cu) Metal (e.g. Cu)

MS contact MS contact

Figure II.8: Schematic of a semiconductor device with two ohmic contacts.

The-formationof-M Sinterfaces-is-nota w erystraightTbrw ard-taskduetothe mature J)f
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interactions between the semiconductor and the contacting metal. A necessary 

requirement for making ohmic contact on any semiconductor however is that work 

functions of the semiconductor and the metal must be close enough so that band- 

bending does not happen in the semiconductor due to substantial electrostatic potential 

difference or barrier height between the positions of the Fermi level in the 

semiconductor and the metal. An ohmic contact will result if the potential barrier height 

is less than about 0.30 eV so that the depletion region formed in the semiconductor is 

narrow [32]. Doping the semiconductor heavily, in excess of 1018 cm'3, helps to produce 

very narrow depletion region in the semiconductor in order to facilitate ohmic behaviour 

of the junction. Modification of the semiconductor surface is another way o f facilitating 

ohmic contact fabrication. Surface states have pronounced effects on the electrical 

properties of semiconductors. For example, Fermi level pinning in semiconductors is 

encouraged by bulk defects and surface states [33 -  35]. Modification of these surfaces, 

for example by mechanical polishing and chemical etching, can help to passivate these 

defects and thus adjust the semiconductor work function by adjusting the Fermi level 

for effective ohmic contact formation.

II.3.2.2 Rectifying MS interfaces (Schottky junctions)

In a rectifying MS or Schottky diode, substantial potential barrier (in excess of 

0.40 eV) exists at the metal/semiconductor interface [32]. As a result, a depletion region 

is formed at this junction, which extends reasonably into the semiconductor. A 

necessary condition for the formation of a Schottky junction is that the metal and the 

semiconductor should have work functions that differ substantially unlike in the case of 

ohmic MS contact.

Consider a metal of work function, 4>m and an n-type semiconductor o f work 

function <j)s and electron affinity Suppose also that the gap between the metal and the 

semiconductor is 5, as shown in figure II.9 (figure II.9 (b)).
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Figure II.9: Energy band diagrams for the formation o f Schottky barrier between a 

metal and n-type semiconductor, (a) Metal and semiconductor before contact, (b) 

Metal/semiconductor contact with a definite separation 8 between the metal and 

semiconductor at the junction and (c) metal/semiconductor contact with zero gap 

between the metal and semiconductor.

When the metal and semiconductor come into intimate contact as shown in figure II. 9

(b), electrons flow from the semiconductor into the metal due to the fact that the Fermi 

level of the semiconductor is higher up than that of the metal (as seen in figure II.9 (a)). 

As this continues, the Fermi level of the semiconductor is lowered until it aligns with 

that of the metal and the conduction band and valence band o f the semiconductor bend 

downwards in response. Thermal equilibrium is therefore established between the two 

materials. The lowering of the Fermi level of the semiconductor results in the formation 

of a potential barrier for electrons flowing into the metal as shown in figure II.9 (b). 

Now there is a build-up of negative charge at the metal surface and a corresponding 

build-up of positive charge in the semiconductor near this junction. This creates an 

internal electric field (E) and a depletion region of width (W). If the intimacy between 

the metal and the semiconductor improves such that the gap between them (8) becomes 

so small (comparable to inter-atomic distance), and transparent to electrons, then a 

limiting value of the potential barrier height (4>b) is reached as shown in figure II.9 (c) 

and this barrier height is given by the difference between the metal work function and 

the electron affinity of the semiconductor according to equation (11.19) [3, 32].

4>B =  4> m  -  X s  ( / / .  1 9 )

If  the semiconductor involved is a p-type semiconductor instead, in which case, the 

band-bending is in opposite direction to that in n-type material as shown in figure 11.10, 

the Schottky barrier height (4 ^ )  will be given by Equation (11.20) [3].

--------------------------------------------------------------------------------------------------------------  ( 7 7 . 2 0 ) -----
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In any case, the depletion region formed is similar to that in one-sided abrupt (say p+-n) 

junction. Thus for a Schottky diode with an n-type semiconductor for example, one can 

write the expression for the rest o f the device parameters under abrupt approximation as 

in equations (11.21) - (11.22).

4>b p

W ///M

' E c

•Ef

' E v

Figure 11.10: Schottky barrier formation between a metal and a p-type semiconductor.

W  =
2  £5

qND
Vbi (77.21)

|Em| =
2qND„ _ 2 V bi
T~Vbi~ir

Under bias conditions, the above equations are modified by replacing Vbi with (Vbi-V), 

where V is the bias voltage as seen in the p-n junction case. The depletion capacitance 

and the doping density can then be written as in equations (11.23) - (11.24).

r  — —— —
Cd ~ w ~

qssND
2{Vb i- V )

(77.23)

(77.24)

The I-V characteristic of the Schottky diode is similar in form to that o f the p-n junction

diode. However, the difference between the two lies in the definition o f the saturation

current. This is because, whereas the current transport mechanism in the p-n junction

diode is governed by the diffusion of minority carriers, based on the diffusion theory,

the-current-transport-mechanism-in-the-Schottky-barrier-diode-is-govemed-by-the-
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thermionic emission theory involving mainly the majority carriers [3]. The I-V 

characteristic is then given by Equations (11.25) - (11.26) [3, 32].

Where Jo is given by

(77.26)

where A* = effective Richardson constant for thermionic emission.

3.3.3 Metal/insulator/semiconductor (MIS) interfaces

The barrier height of a simple Schottky junction o f the type shown in figure II.9

(c) is naturally lower than that o f a p-n junction [3, 32]. However, this barrier height can 

be increased by incorporating an insulating (interfacial) layer o f optimum thickness, 5, 

between the metal and the semiconductor, similar to the situation shown in figure II.9

(b), thus forming an MIS junction instead of an MS junction [3, 32]. The advantage is 

that the thin insulating layer decouples the semiconductor from the metal in such a way 

that the band bending in the semiconductor increases and thus the effective barrier 

height of the junction increases. As a result, the I-V characteristic o f the junction is 

modified to the type in equation (11.27).

where £ (in eV) is the effective barrier height contributed by the insulating layer of 

thickness 8.

the value o f the ideality factor, n [3]. However, the necessary condition for an effective 

MIS junction is that the thickness of the interfacial layer must be very small (of the 

order of 1-3 nm) [3]. Figure 11.11 shows the energy band diagram of an MIS junction 

with an n-type semiconductor. The decoupling of the metal from the semiconductor 

removes the interface interaction between the metal and the semiconductor and hence 

reduces the degradation of the electrical contact. Therefore, electrical contacts 

incorporating MIS structures increase the lifetime of the electronic devices. The solar 

..cell_deyjc.es fabricated in this project are based on the Schottky barrier structures.______

(77.27)

This modification however, does not go without few sacrifices which include; decrease 

in current density due to the additional resistance of the interfacial layer and increase in
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Figure 11.11: Energy band diagram of an MIS interface showing enhancement in 

potential barrier height due to incorporation o f thin insulating layer o f thickness, S at the 

interface.

II.3.4 p-i-n and m ultilayer graded bandgap interfaces

There are two interesting extensions o f the semiconductor/semiconductor 

interfaces (junctions). These are the p-i-n junction and multilayer graded-bandgap 

junction. The p-i-n structure is usually a homojunction-type structure making use o f the 

same semiconductor in its three different conduction modes (p-, i- and n-) [3]. Figure 

11.12 shows the schematic band diagram of a p-i-n junction diode. The essence o f the 

intermediate i-type layer is to improve the slope of the depletion region between the p- 

type and n-type materials. This has the effect of strengthening the built-in electric field 

in the depletion region. Being insulating relative to the p-type and n-type layers, the i- 

type layer acts as a dielectric material between the p- and n-type layers, and therefore 

maintains a strong electric field and hence a healthy depletion region for effective 

separation of charge carriers.

Figure 11.12: Schematic of the energy band diagram of a p-i-n junction diode.

In the graded-bandgap structure, different semiconductor layers with different 

bandgaps and different conductivity types are used. The material layers are then
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arranged either in order of decreasing bandgap or in order of increasing bandgap as 

needed. For a PV device however, decreasing bandgaps from the window layer towards 

the absorber layer is preferable. The conductivity types are then arranged to change 

either in the order: p+-p-p'-i-n‘-n-n+ or in reverse order [32, 35]. In any case, the graded 

bandgap structure helps to improve the slope of the band edges within the depletion 

region and therefore strengthens the built-in electric field in order to ensure a healthy 

depletion region so as to improve carrier collection. Figure 11.13 shows a schematic of 

the energy band diagram of a graded bandgap device structure. Apart from providing a 

healthy depletion region in the solar cell device, the multilayer graded bandgap device 

helps to minimise or eliminate thermalisation effect in a solar cell by distributing the 

absorption of photons over the entire thickness of the solar cell.

Figure 11.13: Schematic o f the energy band diagram of a graded-bandgap diode 

structure starting from p+ (left end) to n+ (right end).
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