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Abstract

Organosilanes are widely used to bond organic materials such as polymers to 
inorganic materials in polymer composites. However, the mechanism of adhesion is 
poorly understood. One postulated mechanism is the interdiffusion of the silane and 
polymer, along with condensation of the silane to form an interpenetrating polymer 
network ( IPN ).

The techniques of attenuated total reflectance Fourier transform infrared 
spectroscopy ( ATR-FTIR ) and Raman confocal microscopy have been used to study 
the diffusion, hydrolysis and condensation of three organosilanes in silicon / PVC / 
silane laminates. These processes are thought to contribute to the formation of the 
IPN, and hence to be vital for adhesion. The organosilanes studied were [3- 
(amino)propyl]trimethoxysilane, also known as A ll 10, [3-
(phenylamino)propyl]trimethoxysilane, known as Y9669, and [3- 
(mercapto)propyl]triethoxysilane, known as A1891.

ATR-FTIR was shown to be an excellent technique for studying the kinetics of 
silane diffusion through PVC films. It was shown that at room temperature, no 
diffusion through unplasticised PVC films occurred. At 70 °C, however, diffusion 
occurred readily for Y9669 and A 1891. In plasticised PVC films, diffusion was 
observed for all three silanes at room temperature. It was shown that the diffusion 
occurred more quickly with higher plasticiser concentrations, and hence lower glass 
transition temperatures. The kinetics of diffusion was found to fit a dual mode 
sorption model. Hydrolysis of the silanes was also followed by infrared spectroscopy, 
and the kinetics of hydrolysis and condensation were shown to be highly dependent 
upon silane type, the concentration of water, and the presence of an acid catalyst. The 
hydrolysis of the silanes was found to slow their diffusion through both plasticised 
and unplasticised PVC films. It was shown that the presence of water in the films 
caused the hydrolysis of the silanes in situ.

Raman depth profiles were measured of the films before, during and after 
diffusion. The spatial resolution was shown to be adversely affected by refraction at 
the air / PVC interface. It was shown that it is possible to deconvolve the confocal 
response of the microscope from the depth profiles, resulting in greater spatial 
resolution. Hydrolysis of the silanes was followed in solution by Raman 
spectroscopy, and it was found that each of the three silanes showed different rates of 
hydrolysis and condensation. It was shown that it was also possible to follow the 
kinetics of diffusion by Raman microscopy, and the results agreed well with those 
shown by ATR-FTIR spectroscopy.
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Chapter 1: Introduction

1.1 Objectives

Organosilanes may be used in a laminate containing poly(vinylchloride) ( PVC ) 

and glass, to increase the adhesion between the two materials. The main objective of this 

project is to measure the factors that affect adhesion in the glass / PVC / organosilane 

laminate system. More specifically, the factors which affect diffusion and hydrolysis of the 

organosilanes in the laminates are to be determined. It is believed that hydrolysis of the 

organosilanes and their diffusion through the PVC film in a laminate are both very 

important factors which determine the ultimate adhesion achieved in the laminate.

In order to do this, the primary techniques used are infrared and Raman 

spectroscopy; collectively vibrational spectroscopy. These techniques are ideal for the 

study because they can give distribution information on the required micrometer scale, as 

well as structural and chemical information. This is important because the factors that may 

be expected to affect adhesion include the distribution of the organosilanes, and the 

chemical structures and reactions of these materials. This project was sponsored by 

Pilkington pic, and therefore the materials and methods used are those of interest to 

Pilkington. However, as will be shown, the adhesion of minerals such as glass to polymers 

with organosilanes is of wide interest, and the results are therefore widely relevant. This
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chapter discusses the literature on organosilanes, including their uses, reactions, and 

distribution in polymer films.

1.2 The uses of organosilanes

Organosilanes, also known simply as silanes, are used in a wide variety of scientific 

and commercial applications. These include uses as adhesion promoters ( or coupling 

agents )1'3, lubricants4, chromatography substrates5,6, and chemical reagents7. However, 

this project centres on their use as coupling agents, so only literature relevant to this 

application will be reviewed. Silanes may be used to improve adhesion in systems where 

limited adhesion already exists8, to allow adhesion of materials which normally have no 

adhesion,9,10, or as a primer to provide a better substrate for another adhesive, such as an 

epoxy resin11. The most common use of silane coupling agents is in adhering inorganic 

materials such as glass to organic materials such as polymers.

Organosilanes are so called because they consist of a functional organic group and 

an alkoxysilane group, usually joined by a short aliphatic chain. The structures of the 

silanes used in this project are shown in figure 1.1. The materials shown are [3- 

(amino)propyl]trimethoxysilane, henceforth known as A ll  10, [3-

(phenylamino)propyl]trimethoxysilane, known as Y9669, and [3- 

(mercapto)propyl]triethoxysilane, known as A1891. Another silane widely studied is 3-
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(amino)propyl]triethoxysilane ( A1100) which is identical to A1110, but with the methoxy 

groups replaced by ethoxy groups.

/ — \
4  >NH(CH2)3Si(OMe)3 Y9669

H2N(CH2)3Si(OMe)3 A1110

HS(CH2)3Si(OEt)3 A1891

Figure 1.1: The chemical structures of the organosilanes

It is known that the silane functional groups of these molecules are capable of 

reacting with hydroxyl groups on mineral surfaces to form covalent bonds12'13, and that 

some organic functional groups may react with functional groups on polymers16,17. This 

leads to the 'chemical bonding' model of the action of coupling agents, which was proposed 

over thirty years ago18'20. In this model, covalent chemical bonds would be formed 

between the silane and inorganic surface, and between the silane and organic surface. The 

silane is therefore acting as a bridge, and bonding the dissimilar materials together. This is 

illustrated schematically in figure 1.2.
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Organic material

Organic functional group 

Aliphatic chain

Silane functional group

Inorganic material

Figure 1.2 : Schematic diagram of the chemical bonding model of silane adhesion

There are, however, several pieces of evidence which this chemical bonding model 

does not explain. Firstly, it has been noted that in the production of laminated safety glass, 

optimum adhesion can be achieved by application of silanes such as A1891 to the glass 

prior to laminating*" ’ . Laminated safety glass consists of a sandwich of a flexible polymer 

such as plasticised poly(vinyl chloride) ( PVC ) between glass sheets, as shown in figure

1.3. However, if the adhesion were explained wholly by the chemical bonding model, a 

monolayer applied to the glass ( as shown in figure 1.2 ) would be the optimal loading, and 

this is found not to be the case18 . Instead, it is found that in practice that an amount 

equivalent to several hundred monolayers is required for adequate adhesion23,24. Therefore 

this chemical bonding theory does not describe optimum adhesion.
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Polymer Interlayer

Glass sheet

Figure 1.3 : Construction of laminated safety glass

Edwin Plueddemann also studied several systems where covalent bonds between 

silane and polymer would not be expected, and found good adhesion . The systems 

studied were thermosetting plastics, and it was assumed that an interpenetrating polymer 

network ( IPN ) was formed between the silane and the polymer. This occurs when 

crosslinked polymers are interdiffused, so that the strength of the joint is the strength of the 

bulk materials. The structure of an IPN is compared to interdiffused polymer in 

Figure 1.4.
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Interdiffusion Interpenetrating Polymer
Network

Figure 1.4 : Schematic representations of interdiffused polymers and an interpenetrating 
polymer network ( IPN ). Black circles represent crosslinks

In some cases it was assumed that the silane primer acted as a solvent for the unset 

polymer, thus leading to interdiffusion to form the IPN, however in some cases this was 

thought not to occur due to the low solubility. It should be noted that the occurrence of 

interdiffusion, or formation of an IPN is merely a hypothesis, and that no evidence was 

presented in this work. Evidence of interdiffusion and IPN formation is discussed in 

section 1.2.3.

1.3 : The reactions of organosilanes

The reactions of organosilanes have been widely studied in order to help elucidate 

their mechanism of adhesion. One of the most widely studied reactions was the hydrolysis
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of the alkoxysilanes to the hydroxy derivative. This involved reaction of the silane with 

water to give the silanol form of the silane, producing an alcohol. The general mechanism 

for this is shown in Figure 1.5.

H2N(CH2)3Si(OMe)3 + H2O -------- ► H2N(CH2)3Si(OH)(OMe)2 + MeOH

Figure 1.5 : Hydrolysis of silane coupling agents

Further reaction can occur to the bi-silanol or tri-silanol form. The hydrolysed 

silanes are reactive and condensation is known to occur with other silanol groups to form a 

siloxane linkage . Therefore a silane which has been exposed to water may contain a 

mixture of unhydrolysed silanes, silanes with one, two or three hydrolysed alkoxy groups, 

and condensed silanes that have condensed, and formed siloxane oligomers or polymers26. 

The overall reaction of condensation is shown below:

RSiOH + H O S iR ' ► RSiOSiR' + H2O

Figure 1.6 : Condensation of silanols

Condensation may also occur at a silicate surface, with surface silanols as shown in 

Figure 1.7.
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OH OH OH

OH OH

Figure 1.7 : Schematic drawing of silane grafting at a hydrolyslated silicate surface

The silanols undergoing condensation could be from two organosilanes, or from an 

organosilane and a mineral surface. Thus, a siloxane polymer, or a silane - grafted surface 

would be formed respectively.

Shih and Koenig27 studied the hydrolysis of silanes in 50 and 2 % aqueous 

solutions. The hydrolysis was monitored in solution using Raman spectroscopy. The 

silanes studied were vinylsilane and methacrylsilane. For vinylsilane, a band at 1410 cm'1 

was thought to be indicative of hydrolysed silanes, and a band at 672 cm"1 was assigned to 

triply hydrolysed silanes. The 1410 cm'1 band increases in intensity rapidly at first, and
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much more slowly after about 50 minutes. This shows that after this time, there was veiy 

little unhydrolysed silane remaining. The 672 cm'1 band, on the other hand, increased up to 

about 50 minutes, but then started to decrease in intensity. This indicated that hydrolysis 

continued after the first silanol group was formed, and implies that all three alkoxy groups 

would have been hydrolysed eventually. A very similar result was found with the 

methacrylsilane, except that the hydrolysis was quicker, the equilibrium point of the 1410 

cm'1 band being reached after 30 minutes, and the 710 cm'1 band ( equivalent to the 672 

cm'1 band in vinylsilane) started to decrease after this time.

Blum et. al.2% studied the hydrolysis of a number of coupling agents, including 

A ll 10 and A1891. Hydrolysis was followed by measurement of methanol protons by lK  

NMR. The hydrolysis was followed in acetone - water solutions. For A1110, depending on 

the amount of water and silane present, hydrolysis took between 5 and 200 minutes to 

reach completion. In some cases, such the hydrolysis of glycidoxypropyltrimethoxysilane, 

complete hydrolysis was not observed even after several hours. Although the hydrolysis 

was complex, due to the competing reactions between silanes with different degrees of 

hydrolysis, the production of methanol was found to fit a first order rate law, so rate 

constants could be obtained. It was generally found that the aminosilanes hydrolysed much 

faster than those without amino moieties, although similar rates could be achieved with the 

non-aminosilanes by adding hydrochloric acid, which acts as a catalyst. The large 

difference in hydrolysis rates was probably due to the ability of aminosilanes to self - 

catalyse their hydrolysis29. The behaviour of A 1891 was only studied at high pH, but even
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in this regime, hydrolysis was slower than that of A ll 10 under all conditions. The 

adsorption of A1110 onto high surface area silica was also studied. The silane was used in 

acetone-water solutions, after hydrolysis was thought to be complete. After reaction with 

the silica, the silica was removed, and the concentration of the silane remaining was 

measured with FTIR spectroscopy. Adsorption isotherms were obtained in this way. It was 

found that above concentrations of around 0.2g. silane per 100 ml. solution, monolayer 

coverage was obtained, with each silanol on the silica having one grafted silane.

Leyden and Atwater26 also followed the kinetics of silane hydrolysis, but found 

different results. They used ATR-FTIR spectroscopy to follow the hydrolysis of the model 

compound trimethylmonomethoxysilane ( TMMS ) in aqueous solutions. This silane was 

chosen in order to simplify the kinetics, as just a single methoxy group is available for 

hydrolysis. The intensity of the Si-O-C stretching vibration at 1083 cm'1 was used to 

determine evolution of methanol and hence the degree of hydrolysis. However, a plot of 

ln[TMMS] vs. time did not show a straight line relationship, indicating that first order 

kinetics were not obeyed as reported by Blum et. al. and previously by other authors28,30,31. 

The hydrolysis was in fact found to be second order overall: first order in TMMS and first 

order in water. The rate of condensation was also determined, by measuring the decrease 

in the intensity of the Si-OH stretching band at 896 cm'1. The rate of condensation was 

found to be orders of magnitude slower than that of hydrolysis, and also second order 

overall. Both reactions were also found to be acid - catalysed.
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Trens et. a l32 also studied adsorption of an aminosilane on silica, although the 

silane was A1100 it could be expected that the behaviour would be very similar to that of 

A ll 10. MPS ( [3-(methacryloxy)propyl]trimethoxysilane ) was also studied. A1100 was 

found to adsorb much quicker than MPS. This could be due to the faster hydrolysis of 

Al 100 compared to. MPS. However, the adsorption of Al 100 was also compared to that of 

propylamine. Propylamine and A1100 had similar adsorption enthalpies, which is 

indicative of a similar bonding mechanism. The removal of adsorbed species by flow of 

solvent was also studied. It was found that only 40 % of the Al 100 was irreversibly bound, 

although none of the propylamine was. It was presumed that two types of adsorption occur 

in A1100, adsorption by a mechanism in common with that of propylamine, i.e. involving 

the amine group, and irreversible adsorption, presumably involving the silanol groups. It 

was also suggested that it may be possible for molecules to adsorb in both ways 

simultaneously. The bond via the amino group was likely to be a hydrogen bond with a 

surface silanol, whereas the irreversible bond was probably a siloxane condensation. This 

is concordant with work by Johannson et. al.33 who also proposed adsorption of A1100 by 

both amino and silanol groups.

Piers and Rochester studied the adsorption of unhydrolysed Al 110 and A l 100 onto 

silica in carbontetrachloride solutions13. Solutions of the silanes with a range of 

concentrations were allowed to come into equilibrium with silica in solution, and then the 

transmission infrared spectra measured. It was found that in the more concentrated silane 

solutions, intermolecular hydrogen bonding between silanes on the silica surface occurred
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much more. This occurred in solutions of both silanes. It appeared that bonding to the 

silica via both the silanol and amino moieties was observed. At higher concentrations, 

more amino bonding seemed to occur than bonding via the silanol group.

Azzopardi and Arribart34 studied the formation of silane layers at the surface of an 

ATR ( Attenuated Total Reflectance ) crystal. ATR is a highly surface sensitive infrared 

technique, which is explained in more detail in chapter 2. Because the crystal material was 

silicon, with silica at the interface, the in-situ monitoring of mono- or multi-layer formation 

was possible. The silanes used were mono- and di-hydrolysable ethyl silanes. These 

silanes were able to interact with the silica surface only through their silanol groups. With 

the monohydrolysable silane, a simple monolayer was formed. With the dihydrolysable 

silane, chains of siloxane were formed at the surface. These were determined to average 10 

silane units in length.

Plueddemann used proton NMR to study hydrolysis of silanes in solution35. The 

methyl protons of silanols were measured to give an indication of level of hydrolysis. A 

wide range of silanes were studied, including aminosilanes substituted at the 3 position ( 

like A ll 10 ) and aminosilanes substituted in the 1 and 4 positions. It was found the 3- 

aminosilanes exhibited unique behaviour. Unlike other silanes which hydrolyse slowly, 

and then condense into siloxane dimers and longer siloxane oligomers, 3-aminosilanes 

hydrolyse very quickly, but then form stable solutions, which were not observed to 

condense. The structure of 3-aminosilanes in water could not be determined, but based on
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the importance of a 3-substituted amino group, one possible structure was proposed by 

Plueddemann. This is shown in Figure 1.8.

H2 h 2

\ / c _ c \
/  \  + / CH; p o n h 2

Figure 1.8 : Ring structure of 3-amino silanes proposed by Plueddemann 

The ring structure of this structure would explain the stability in water to hydrolysis.

Morrall and Leyden followed the hydrolysis of 3-(amino)propyl]diethoxy- 

methylsilane ( APDMS )36. This silane is similar to Al 100, but with only two hydrolysable 

groups. Firstly, hydrolysis upon contact with atmospheric water followed by sealing the 

sample tube was followed. Infrared spectroscopy was used, monitoring the O-H stretching 

band area at 3080 to 3500 cm'1 in neat silane exposed to air. This was found to increase 

rapidly, until about 2.5 hours, then decrease to an equilibrium level. The area of the ethoxy 

mode at 950 cm'1 decreased on the same timescale, although it never reached zero. A 

shoulder at 1050 cm'1 also appeared, indicative of Si-O-Si linkages between hydrolysed 

silane molecules. Clearly, partial hydrolysis as well as some condensation to siloxane 

oligomers had occurred. Hydrolysis after treatment of an APDMS solution in dry toluene 

with water was also followed. In this case, the rate of formation of silanol slowed, but did 

not halt on the time-scale of the experiment (24  hours ). A solution of Al 100 was studied



in the same way and gave similar results. Although condensation occurred in neat 

APDMS, no siloxane bands were observed in the solution studies for either silane. The 

authors also studied the reaction with glass surfaces of silanes deposited from dry toluene 

solution. The silanes studied were [3-(cyano)propyl]triethoxysilane ( CNPTS ), A1891, 

A1100 and (octyl)triethoxysilane ( C8TS ). The degree of hydrolysis was determined by 

solution measurement of ethanol, and the interaction with the substrate measured by the 

capacity factor of the resulting material. Because of the dry solvent, any hydrolysis of the 

materials is likely to take place after adsorption, by interaction with water adsorbed at the 

glass surface. The Al 100 was by far the fastest silane to adsorb onto the glass surface. It 

was believed this was because of hydrogen bonding between the silane N-H group and 

surface Si-OH groups. This led to the Al 100 also undergoing the fastest hydrolysis. It was 

also found that a dried glass greatly slowed the production of ethanol, showing that 

hydrolysis was indeed occurring at the glass surface. Even taking into account the 

increased adsorption onto the surface by A1100, hydrolysis of this material was quicker, 

again showing the catalytic role of the amine group in hydrolysis. In order to determine the 

limiting step of hydrolysis in dry solution, an alkyl amine was added to the solution with 

the non amine silanes. This would be expected to perform the same catalytic role as the 

amine group in A1100. This did not increase the rate of hydrolysis. Therefore in this 

system, the rate limiting step was adsorption onto the surface, rather than hydrolysis once 

there.

14



Gauthier et. al?1 studied the hydrolysis of a silane similar to A1891, 

[mercaptomethyl]dimethylethoxysilane by FTIR. The reaction was followed in aqueous 

solution, with HC1 present as a catalyst. This did not allow for observation of the v(Si-OH) 

stretching mode of the silanols produced due to interference from water in this spectral 

region. A band due to the ethoxy group decreased, when compared to the Si-CH3 band at 

833 cm'1. A band also appeared at 886 cm'1 which was assigned to OH stretching of 

hydrolysed material. No bands appeared in the region where siloxane bands may occur, 

indicating no condensation. This was in contrast to results seen previously which would 

lead one to expect the mercaptosilane, once hydrolysed, to continue to react and form 

siloxane oligomers. The hydrolysis of both this material and the triethoxy equivalent was 

studied by !H NMR. The protons of the ethoxy group and of the evolved ethanol were both 

observed. In the case of the monoethoxysilane, the solutions were completely hydrolysed 

when the first measurement was made. The triethoxy silane took longer to hydrolyse, on 

the time-scale of a few minutes for complete hydrolysis. Hydrolysis was faster with a 

higher concentration of HC1 in solution. 29Si NMR showed very similar results, but it was 

observed that after a few hours, condensation started to occur.

Ishida and Koenig38 studied E-glass fibres coated with condensed silanes. The 

treated fibre was exposed to water, and the FTIR spectrum monitored. The authors noted 

the appearance of a band in the infrared due to Si-0 stretching of Si-OH groups, occurring 

at 870 cm'1. The effect of this hydrolysis of silanes is to break the siloxane bonds of the 

condensed layer. This showed that the condensation of silanes to oligomers is a reversible
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process. This is technologically an important fact, as it means that upon exposure to water, 

composites involving condensed layers of silane will tend to undergo hydrolysis. This 

means the siloxane layer is depolymerised, weakening the composite. It was found that the 

silane layer was considerably more stable to attack by water when polymerised. The most -  

stable was vinylsilane, which could be polymerised via the organofunctional group. It was 

also found that insolubility in water increased resistance.

In order to elucidate the effects of moisture on a glass fibre / A1100 / epoxy resin 

composite, Arvanitopoulos and Koenig39 studied model composites. These consisted of a 

single fibre mounted in epoxy resin. This fibre was used both with and without application 

of pre-hydrolysed A1100. The model composites were exposed to water in a humidity 

cabinet. The composites were studied by FTIR mapping, by automatically moving the 

sample stage in 8pm. steps in a raster pattern, and taking a transmission spectrum at each 

point. Because the FTIR spectrometer takes a full range spectrum at each point, the data 

can be analysed later to create maps of the intensity of any band in the spectrum. The 

v(OH) band of water was used to create maps of relative water concentration. The silane 

treated fibres were found to have the least water near the fibre surface. It was thought that 

the silane protects the composite against water attack in the interfacial region, thus 

prolonging the life of composites where it is applied40. This may be by inducing 

hydrophobic character in the glass surface41. It was also found that the epoxy intensity was 

maximised at the fibre surface, in the case where silane was not applied. This was thought 

to be due to the increased amount of water present, as water may catalyse the curing of the
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epoxy resin. Composites that had not been exposed to humidity were also analysed. It was 

found that the aliphatic polyamine curing agent occurred much less at the fibre surface in 

the case of the silane-treated fibres, and also the spectrum of the epoxy resin near the fibre 

surface was different when the fibre was silane treated. This was thought to indicate that 

the epoxy adopts a different conformation when in contact with silane. It is possible that 

the low level of cure of the epoxy resin near the silane-treated fibres explains the strength 

increase in composites which use silane. A composite with a low level of cure will be less 

rigid, and thus fracture at the fibre interface is less likely. A veiy similar system was 

investigated with NMR imaging42. However, the information available from this technique 

is somewhat limited compared to FTIR, and few conclusions could be made. It was 

observed, however that the silane-treated fibres caused no change in the level of cure of the 

epoxy resin. This is not in agreement with the results from FTIR mapping, as discussed 

above , so the effect of silane on epoxy resin cure level is still unclear.

Johannson et. al. studied adsorption of vinyl silanes onto glass fibres, followed by 

deposition of an epoxy resin layer43. It was found that after rinsing of the resulting material 

with tetrahydrofuran ( THF ), substantial amounts of polymer remained on the fibres, but 

that the resin on pure glass fibres showed hardly any polymer retention. This was assumed 

to occur because copolymerisation occurred between the coupling agent and epoxy resin.

McKnight et. al.AA cast prehydrolysed silane onto germanium or silicon ATR 

crystals, and pressed polypropylene films onto these to form model silica / silane /
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polypropylene laminates. The chemical formula of the silane used, known as CSS, is 

shown below.

CH3C6H4CH2NH(CH2)3NH(CH2)3Si(OCH3)3

After deposition, a band at 905 cm'1 assigned to Si-OH stretching showed partial hydrolysis 

of the silane. A peak at 115 cm'1 with a shoulder at 1038 cm'1 showed that some 

condensation of the silane had occurred. These peaks were present in both the silicon and 

germanium experiments, indicating that the condensation was oligomerisation of the silane, 

rather than grafting to the surface. When the silane was heated with polypropylene, no new 

bands appeared in the spectrum, indicating no chemical interaction. As this system showed 

good adhesion, this was believed to be evidence for the diffusional mechanism of adhesion 

enhancement, rather than the chemical bonding theory. The band assigned to Si-OH 

stretching was monitored as a function of time, after the laminate was exposed to a 

reservoir of water. The water was observed to diffuse to the ATR crystal / silane interface, 

and then the SiOH band increased as the silane was hydrolysed in situ. This was monitored 

at room temperature and at 65 °C. At 65 °C both the water diffusion and the hydrolysis 

were faster.

Kurth and Bein45 formed monolayers of A1100 and A189 ( the methoxy derivative 

of A1891 ) on oxidised aluminium mirrors. The aim was to form layers with which to 

compare reaction on surfaces with reaction in solution. The monolayers were deposited by 

vapour phase adsorption, as adsorption from solution was found to produce thick films, or 

poor quality monolayers. This was attributed to oligomerisation of silanes in solution. It
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was found that A1100 adsorbed giving a thick film. However, the large part could be 

removed by evacuation, and it was assumed that this part was physisorbed, whereas the 

remainder was a chemisorbed monolayer. This layer was proved to be a monolayer by

ellipsometry and the use of a quartz crystal micobalance. _In The caseofA  189, the .entire_____

film could be removed by evacuation, therefore no chemisorbed silane was deposited. 

However, if the A189 was deposited from aqueous solution, i.e. prehydrolysed, monolayers 

could be formed reproducibly. The films were measured by reflection-absorption infrared 

spectroscopy ( RAIRS ). This technique is very sensitive to thin layers, and can also give 

some information on the orientation of the layers. The spectra of A189 showed an Si-O-Si 

mode at 1114 cm'1 indicating condensation between the silanes, as well as a shoulder at 

1960 cm'1 characteristic of -OCH3 groups. This indicates that there was both partial 

hydrolysis, and condensation in the monolayer. The RAIRS spectra also indicated that the 

alkyl chain stands proud of the surface, which was corroborated by the ellipsometric 

measurements of the layer thickness, which gave a thickness of 9 ± 1 A. In the case of 

A1100, the thickness was 7 ± 1 A, again corresponding to a monolayer perpendicular to the 

surface. The RAIRS spectra also indicated chains perpendicular to the surface, and the 

products of partial condensation and unhydrolysed silanes were again seen.

Boerio et. al.Ae also used RAIRS to study silanes deposited onto metal mirrors. The 

silane studied was A1100, and the substrates were polished iron mirrors. Films were 

deposited from aqueous solution, and air dried. The films were found to be highly 

hydrolysed. When dipped from the natural pH of the aqueous solutions, bands at 1480 cm*1
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and 1550 cm'1 were observed, and assigned to the 8(NH2) mode of the amino group. A 

band at 1105 cm'1 from Si-O-Si groups in siloxane oligomers was observed. No ethoxy 

band at 2970 cm'1 was observed, indicating total hydrolysis of the ethoxy groups. The 

structure proposedTor the aminosilanes in theiilms is ̂ hown below:___________________

O CH2“ CH2X. + / cH 2o o—H —  NH2

This structure represents a very strongly hydrogen bonded internal chelate form of the 

silane. This was proposed because it was observed that upon exposure to water and mildly 

acidic conditions, the band at 1550 cm'1 shifts to 1585 cm'1 and the band at 1480 cm'1 

disappears. This was assigned to disruption of the strong hydrogen bonding, and a 

reversion to a standard hydrogen bonding structure. When deposited from a higher pH (9.5 

), the 5(NH2) band frequency was as found in free amino groups, at 1600 cm'1, i.e. there 

was little or no hydrogen bonding. Films formed at pH 12 showed amine bands at 1580 

cm'1 and 1488 cm'1, which were assigned to NH3+ deformation modes, indicating complete 

proton transfer from silanol to amine. In all cases, oligomerisation had occurred in the 

films.

Naviroj et. al.A1 also found the structure of adsorbed A1100 on silica to depend 

critically on the pH of the depositing solution. It was also found that from the same
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concentration solution, more silane would be applied from pH 10.6 solutions than from 

either pH 9 or pH 12 solutions. Two other silanes, namely [3- 

(methacyloxy)propyl]trimethoxysilane and (vinyl)triethoxysilane were also studied. In the 

case of these silanes, no pH dependence was shown by the films. Clearly, the pH of the 

depositing solution can strongly influence the structure of the aminosilane films.

De Haan48 et. al. studied the adsorption of organosilanes onto silica under dry 

conditions. The silanes studied were A1100 and MPS ( [3-

(methacryloxy)propyl]trimethoxysilane ). The silica had been dried at 100 °C and the 

silanes were boiled with the silica under an argon atmosphere. The transmission infrared 

spectra were then examined to determine the type of bonding present. After the boiling 

under argon, some unhydrolysed groups remained. Around 40% of the silanes existed as 

the species shown below:

R—Si(0Et)2- 0 —S i^ -

That is, the silane has one condensed bond to the silica, the other bonds remaining 

unhydrolysed. 20% of the silanes had two bonds to silica with the remaining bond 

unhydrolysed, and 35 % had two bonds to silica, with the remaining bond hydrolysed. 

Other structures, such as silanes polymerised at the surface make up the final 5% of silanes. 

After the silane-treated silica was heated at 80 °C for 30 minutes, more tri-dentate, and less 

mono-dentate bonding was present. In another experiment, the same conditions were used,

21



but some water was included in the boiling mixture. In this case, the silanes reacted more 

with each other than with the silica.

______ Vrancken et. al.A9 studied the reaction of silica gel with A1100 in dry toluene

solution. Using a combination of 29Si NMR, FTIR photoacoustic spectroscopy ( FTIR-PAS 

) and diffuse reflectance infrared Fourier transform spectroscopy ( DRIFTS ), it was 

possible to distinguish between three types of surface silanol on the silica. These are 

shown schematically in Figure 1.9.
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Figure 1.9 : Silica surface silanols observed by Vrancken et. al*9

The silica was heat-treated at 473, 672 and 973K under vacuum. The high temperature 

treatments had the effect of reducing the amount of bridged silanols. In the case of either a 

low concentration of surface silanols, which was achieved by heating at 973K, or low 

silane solution concentration, the surface had a low density of silane molecules. In these 

instances the silane silanols could be identified and were stable to condensation. At higher
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loadings, however the silanes polymerised on the surface. It was also observed that the 

high temperature - treated silica showed predominantly monodentate bonding to the 

silanes, whereas the lower temperature treated materials showed higher co-ordination. This 

was presumed to be because in the high temperature treated silica, the chance of two 

adjacent surface silanols is much lower.

Chiang et. al. studied the chemical structure of A ll 10 adsorbed onto glass surfaces 

from aqueous solutions50. The silane was applied by dipping, followed by curing at 80°C. 

Similarly to Boerio et. al*6, it was found that the NH2 deformation mode shifted to 1575 

cm'1 upon curing, however it was found that upon further heat treating, the band shifted 

back to 1600 cm"1. It was shown that this was unlikely to be due to a hydrogen bond with 

water, as the model compound propylamine did not show the same behaviour. Again, it 

was suggested that the band was due to an internal hydrogen bond, with partial protonation 

of the amine group. When deposited on silica surfaces, it was found that total hydrolysis 

occurred, as no SiOEt groups could be detected. It was suggested that the silanes were 

bound to the silica surface at both ends of the molecules, and to each other.

Kurth and Bein51 also studied silane films adsorbed on silicon by infrared 

spectroscopy. They found that upon continued heating at 75°C, silane films believed to be 

oligomeric in nature continued to condense, forming what they called a fully polymerised 

film, with no infrared bands due to hydrolysed silane remaining.

23



C9
Domingue e t a l studied hydrolysed A1100 applied to silicon wafers, which had 

had the outer oxide layer removed. Samples for XPS analysis were spin cast, and then 

extensively washed with deionised water. The films thus produced were found to be 

approximately 3.5 A thick, in comparison with the thicker films found by Kurth and Bein45. 

When examined by XPS, it was found that the silane appeared to have undergone 

fragmentation and rearrangement, as the peak due to nitrogen was lost upon washing. It 

was proposed that adsorption of the amino group onto the surface occurred, leading to 

electron loss and homolytic scission of the N-C bond. This would leave a -C. group to 

react further, though the products could not be determined. FTIR spectra were also 

obtained, from similar samples. Before washing, thick films were obtained, which 

appeared to be similar to the spectra of the neat silane. However after washing, the thin 

films showed somewhat different spectra, in that no N-H stretching modes could be seen, 

apparently confirming the XPS results. It may be that these are simply too weak to be seen, 

however, as the signal to noise ratio from the resulting monolayers is very low. This 

rearrangement and loss of nitrogen is a result not seen elsewhere, although the conditions 

used here have not been exactly repeated elsewhere in the literature.

Miller and Ishida 53studied the adsorption of [3- 

(methacryloxy)propyl]trimethoxysilane onto lead oxide surfaces from aqueous solution.. 

They used DRIFTS to study the absorption. DRIFTS is a surface sensitive technique used 

especially for particulate samples, such as the lead oxide powder used here. At monolayer 

coverage, it was found that some bands due to condensed silane occurred at 1120 cm'1 and
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1040 cm'1. The amount of silane condensed was calculated as 5 %, even though it was 

believed that the silane was completely hydrolysed. A band at 965 cm'1 could not be 

assigned to the silane, nor the substrate, but was assigned to a condensation of the lead 

oxide with the silanol from the silane, i.e. a vibration of the Pb-O-Si group. This result 

shows that the silane forms a covalent bond to the lead oxide substrate, which is harder to 

show in the case of silicon oxide surfaces, due to the similarity between the silane and 

substrate.

Ishida, Chiang and Koenig54 studied the hydrolysis and condensation of A ll  10 in 

aqueous methanol solution using Raman spectroscopy. They also studied A1100, [3- 

(amino)propyl]methyldiethoxysilane and [3-(amino)propyl]dimethylethoxysilane, i.e. 

Al 100 with three, two, and one ethoxy group available for hydrolysis. The Raman spectra 

of A ll 10 showed two bands at 615 and 645 cm'1 , assigned to stretching of the Si(OC)3 

group. These bands also occurred in the spectra of A1100 at 650 and 619 cm'1. These 

bands do not occur for the siloxane-condensed dimer in solution, and are therefore 

indicative of silane monomers. In the case of Al 100, at low concentrations, no monomers 

were detected by this technique, indicating all A1100 existed as oligomers. It was found 

that low solution concentrations led to smaller oligomers. However, no monomers were 

seen, except at high concentrations. The model compound [3- 

(amino)propyl]dimethylethoxysilane was used to simplify the spectrum, because only one 

condensation product can occur, namely the dimer. Upon condensation, the Si(OC)3 band 

at 622 cm-1 shifted to 632 cm'1 It was found that upon condensation, a band at 533 cm’1
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appeared. This could not be seen upon extraction of the dimer from solution, thus leading 

the authors to conclude that most molecules existed as monomers.

1.4 : The diffusion of organosilanes

In the paper by Sung et. al55, the diffusion of A1100, the ethoxy derivative of 

A ll 10, in the sapphire / polyethylene / A l l00 laminate system was studied. Chemical 

reaction between Al 100 and polyethylene was said to be unlikely. Therefore the chemical 

bonding model should not be applicable. Despite this, enhanced adhesion was achieved 

using A1100. This implies that another mechanism was at work This is likely to involve 

some interdiffusion of the silane with the polymer, possibly to form an interpenetrating 

network ( IPN ). The location of the silane in the laminate was studied with Scanning 

Electron Microscopy coupled with Electron dispersive X-ray analysis ( SEM-EDX ) in 

order to determine whether diffusion had occurred. It appeared that a change in silicon 

concentration profile did occur, upon changing the time the Al 110 film was allowed to diy. 

This implied both that diffusion does occur, and that some reaction of the A1100 upon 

drying influenced the diffusional behaviour. This is likely to be a combination of 

hydrolysis and condensation, as discussed in section 1.2.2.

In a later paper, Kaul and Sung56 studied laminates consisting of sapphire, A ll  10 

and Nylon 6. These showed strong adhesion compared to the polyethylene system. Peel 

tests were performed to determine bond strength after exposure to water. The strength after
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exposure to water ( wet strength ) is an important factor in polymer laminates, one that is 

considerably improved by the application of organosilanes1,2. The peel strength without a 

silane was found to decrease to 14 % of its initial value after exposure to water for 10 days, 

but application of silane meant only 50 % of peel strength was dost. The silane was applied 

to the sapphire from aqueous solution, and thus could be expected to be hydrolysed to a 

large extent. After application, the silane films were dehydrated before laminating with 

polymer. It was found that increasing dehydration decreased peel strength. It was further 

found that there was an optimum concentration of silane to apply, implying that there was 

an optimum thickness of A ll 10 film required for adhesion. The optimum concentration 

correlates to a thickness of around 190 nm. This implies that too much silane can impair 

adhesion. It was thought that the optimum thickness of A ll 10 may correlate with an 

'optimum interdiffusional thickness'. It was thought that the large increase in bonding 

strength of nylon vs. polyethylene laminates may be due to hydrogen bonding of the nylon 

with the Al 110, which is unlikely in polyethylene.

In the paper by Nordin et. al.51, the chain length of a silane coupling agent was 

varied in glass / silane / SBR ( silane-butadiene rubber ) laminates. The chain length was 

varied between n = 4 and n= 30, and the adhesion of the resulting laminate measured by a 

180° peel test. It was found that interfacial adhesion energy increased with increasing 

chain length. If the bridging model was the sole mechanism of adhesion, this would not be 

the case, therefore there is another mechanism at work. The increase in adhesion with
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chain length could be due to interpenetrating of the silane and polymer layers. It was 

suggested that the silanes diffuse into the matrix, and may also cross link with the polymer.

 In the paper by Stein et. a/.58, the system of silica filled and unfilled silicone RTV

elastomers, with Al 110 as a coupling agent was studied. In order to assess diffusion of the 

silane through the polymer matrix, Secondary Ion Mass Spectroscopy ( SIMS ) was used to 

obtain depth profiles of the materials. The silane was used in both deuterated and 

undeuterated forms, and was incorporated in the polymer formulation. The depth profiles 

were obtained over a range of depths of 3 to 60 pm. No change in elemental composition 

was detected, with deuterated or non deuterated silanes, or filled or unfilled compositions. 

These results indicate that preferential diffusion to interphase regions does not occur. It 

also implies that diffusion to the silica filler does not occur, though it may be that the depth 

resolution of the technique, which involves sputtering the sample away, was not sufficient 

to determine this.

Chaudhury et. al.59 studied a laminate consisting of PVC films on silane-primed 

germanium. The aluminium was treated with a pre-hydrolysed solution of [N-(2- 

aminoethyl-3-aminopropyl)trimethoxysilane ( referred to as AEAPS ). The silane films 

were estimated to be 150 nm. thick, and partly oligomerised. The PVC was then applied as 

a platisol, and contained 47 % plasticiser ( di-isodecyl phthalate ) and 1 % stabiliser as 

applied. It was likely that the film contained considerably less plasticiser when the 

experiments were carried out, as the film was dried at 175 °C. The PVC film was 2 mm.
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thick when applied. The drying temperature of the silane film was varied between 25 and 

175 °C. The laminate bond strength was measured with a 180° peel test. It was found that 

there was an optimum drying temperature for maximum bond strength, at about 50 °C. It 

was hypothesised that formation of an IPN was necessary for optimum adhesion in this 

system. For this to occur, both interdiffusion of silane and PVC, and polymerisation of the 

silanes must be maximised. However too much crosslinking before diffusion may reduce 

the penetration of the silane into the polymer layer. Therefore it was proposed that below 

50 °C, sufficient crosslinking of the silane does not occur, but that above 50 °C, the level 

crosslinking was too high, reducing interdiffusion of the silane and PVC. The laminates 

were also studied by XPS ( X-ray photoelectron spectroscopy) depth profile analysis. This 

is an elemental surface analysis technique, combined with sputtering of the material to 

form depth profiles. This technique is somewhat susceptible to errors from sputtering 

artefacts, meaning that the depth profiling results are often qualitative, rather than 

quantitative. The laminates studied contained silane layers dried at temperatures of 25 °C 

and 175 °C. It was found that the film dried at 25 °C diffused further into the PVC than 

that dried at 175 °C. This was presumably due to a higher level of condensation of the 

silane when dried at higher temperatures.

Dibenedetto and Scola60 investigated S-glass coated with either A l 110, epoxy resin, 

or a mixture of Al 110 and epoxy resin. The silanes were deposited pre-hydrolysed, from 

methylethylketone ( MEK) solution. The technique used for analysis was ISS-SIMS ( ion 

scattering spectroscopy - secondary ion mass spectroscopy ). This is a surface atomic
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analysis technique, but can sputter the surface, and so perform depth profile analysis. The 

results of the analysis of the silane-coated glass show 3 distinct layers in the silane layer. 

These consist of the outer 140 A, which is a hard, highly polymerised silane, a soft 

oligomeric layer between 160 and 240 A depth, and finallv anotherTiard polymerised Jayer 

from 240 A to the silane-glass interface. A large amount of water was also found at the 

glass surface. Therefore, it may be that the change in polymerisation level of the silane 

was due to the availability of water; atmospheric water at the surface, and interfacial water 

at the glass interface. This was further shown by studying the effect of humidity on the 

silane layers; upon exposure to 95 % relative humidity for 2 weeks, the entire film was 

highly polymerised. The depth profiling of the laminates coated with a mixture of silane 

and epoxy showed very little change in composition with depth, indicating no preferential 

diffusion of the silane to either the air or the glass interface.

Hoh et. al.61 followed hydrolysis of A1100 with atmospheric water by FTIR 

spectroscopy. The hydrolysis was followed by monitoring the loss of the Si-O-Et stretching 

intensity at 960 cm'1. Condensation was also observed as the appearance of the Si-O-Si 

modes 1120 cm'1 and 1044 cm'1. It was found that hydrolysis was complete after 7 days. 

In order to study the diffusion of epoxy resin, the silane was pre-hydrolysed, mixed with the 

un-cured epoxy, and heated in air. The aim was to monitor the extent of cure of the epoxy 

resin, which is related to the extent of interaction with the silane, as the aminosilane can act 

as a curing agent for the resin. This was presumed to be a measure of the diffusion of the 

epoxy resin, because the epoxy must reach the amino groups on the silane in order to be
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cured. The cure level of the epoxy was determined by measuring the loss of the epoxy 

band at 915 cm’1 by transmission FTIR spectroscopy. It was found that higher levels of 

A l 100 produced higher levels of cure, as did adding the solvent MEK. The polymer glass 

transition temperatures ( T g) of mixtures of both hydrolysed and unhydrolysed silane with 

epoxy resin were measured. It was found that in the case of unhydrolysed silane, 

increasing levels of silane decreased the polymer Tg. This is not surprising, as the 

monomeric or oligomeric silane is a much lower molecular weight material than the epoxy 

resin, and thus acts like a plasticiser for the polymer, reducing its chain stiffness. In all 

cases, the hydrolysed silane mixtures had higher Tgs than the unhydrolysed mixtures. This 

was assigned to the ability of the hydrolysed silane to form siloxane polymer networks 

when interdiffused with the epoxy, i.e. formation of an IPN. The trend in variation in Tg 

with level of hydrolysed silane in the mixture shows the highest Tg for 40% A1100, with 

lower polymer Tgs for both more and less silane in the mixture. This may be due to 

competition between the IPN effect and the plasticising effect of the silane.

Gu et. al.61 studied the effect of treatment of the silane film on the adhesion of 

copper / Al 100 / epoxy laminates. It was found that there was an optimum concentration 

of alcoholic Al 100 solution for greatest adhesion at 1 % by weight. This formed a film of 

silane around 1250 A thick. At lower thicknesses, adhesion was considerably lower, but 

only slowly decreased as the thickness was increased above this value. It was noted that at 

the critical thickness and above, blue patches appeared in the silane layer. Upon 

inductively coupled plasma analysis ( I. C. P. ) to determine the elemental composition, it
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was discovered that these patches contained relatively large amounts of copper ions. It is 

possible that the absorption of copper by the silane film is required for good adhesion. 

Similar results were found when maintaining the solution concentration, and varying the 

time for which the copper substrates were immersed in the.solution. JTJie pH of the treating- 

solution was also found to strongly affect the adhesion obtained. Whilst dry strengths were 

similar, when the adhesion was tested after boiling the sample in water for 50 hours, the 

sample treated at pH 7.2 showed greater adhesion than that treated at pH 10.4, and much 

greater than that treated at pH 5.5. It was suggested that the pH of the treating solution 

affects the adsorption mechanism of the silane on copper. The effect of variation of the 

temperature of drying of the silane film was also studied. It was found that increasing the 

temperature from 25 °C to 110 °C improved the adhesion resistance to water, but that 

increasing it further to 170 °C decreased the wet adhesion of the laminate. The increase in 

adhesion at 110 °C was almost certainly linked with increased condensation of the silane 

layer at this temperature, as this was observed in the infrared spectra. At the higher 

temperature, the amine band at 1581 cm'1 was replaced by bands at 1605 cm'1 and 1662 

cm'1 which were assigned to the C=N stretching mode of an imine formed by oxidation of 

the amine. This oxidation of amine coupling agents to the imine form at elevated 

temperatures has been previously reported63,64. Finally, the effects of rinsing the silane 

layer with alcohol were examined. The rinsed laminates were found to show considerably 

less wet adhesion than the unrinsed laminates. It was proposed that this may be because 

the weakly bound material that can be removed by rinsing is required for interdiffusion of 

the silane with the epoxy.
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Chapter 2 : Spectroscopic Techniques

2.1: Infrared Spectroscopy

2.1.1: Introduction

Infrared spectroscopy has been used for over a century to determine the chemical 

composition of matter. Infrared light occurs between 0.7 and 500 pm. in the 

electromagnetic spectrum, between the visible and microwave regions. When infrared 

light interacts with the oscillating dipole of a molecule, absorption of light can occur. The 

frequencies absorbed depend upon the fundamental frequencies of the vibrations of the 

molecules absorbing the light. This is the basis of infrared spectroscopy.

2.1.1.1: Interaction of infrared light with molecules

The oscillating molecule interacting with an incoming quantum of infrared light can 

be considered as a quantum mechanical harmonic oscillator. Figure 2.1 shows the allowed 

vibrational energy levels and transitions for a diatomic simple harmonic oscillator.
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-nergy

Internuclear Distance

Figure 2.1 : Energy levels and transitions for a simple harmonic oscillator

It can be seen that due to the quantisation of energy, only certain vibrational energies are 

allowed. This leads to the selection rules for the quantum mechanical harmonic oscillator 

in infrared.

i. Infrared absorption only occurs when infrared radiation interacts with a molecule 

undergoing a change in dipole moment.

ii. Infrared absorption only occurs when the incoming infrared photon has sufficient 

energy for the transition to the next allowed vibrational energy state.

i.e. Emfrared — hcVyibration
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where h = Planck’s constant 

c = the speed of light 

Vvibration= frequency of the oscillator 

____________ EjnfrnrH = energy of the infrared photon ____________________________

iii. According to the harmonic oscillator selection rule, transitions between non - 

adjacent energy levels in a system are not allowed.

Spectroscopically, the consequences of these rules are as follows. Rule one means 

that only those vibrations that give rise to a dipole moment change may absorb infrared. 

Rule two means that each vibration gives rise to discrete infrared absorption; therefore we 

can identify a vibration by the frequency of its absorptions. Rule three means that only the 

fundamental vibrational transition occurs ( i.e. An = 1 ). In reality, molecular vibrations are 

anharmonic. Therefore the An = 2 and An = 3 etc. transitions can occur, but they are much 

less likely. In infrared spectroscopy, the An = 2 and An = 3 transitions are known as the 

first and second order overtones, and occur with much lower intensity than the fundamental 

vibration.

2.1.1.2 : Dispersive infrared spectrometers

The traditional infrared instrument is a dispersive instrument. It is so called 

because the light emitted by the infrared source is dispersed into its component 

frequencies, which are detected one frequency at a time. A schematic of a dispersive
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instrument is shown in Figure 2.2. Briefly, it comprises a polychromatic infrared source ( 

such as a Globar rod ), optics to direct the light through the sample, some form of 

dispersive element ( usually a grating or prism ), and a detector.

In f ra red  S o u r c e  S a m p l e D is p e r s iv e
E l e m e n t

D e te c to r

Figure 2.2 : Schematic diagram of dispersive infrared spectrometer

2.1.2 : Fourier transform infrared spectroscopy

Fourier transform infrared spectroscopy ( FTIR spectroscopy ) is an alternative 

method of obtaining an infrared spectrum to dispersive spectroscopy. FTIR relies on the 

use of a Michelson interferometer

2.1.2.1 : The Michelson Interferometer

A schematic of the Michelson interferometer is shown in Figure 2.3. Light from the 

infrared source passes through the interferometer before it passes through the sample, and 

is then collected by the detector. At the interferometer, the light strikes a beam splitter 

which passes 50% of the light to mirror 1 and 50% of the light to mirror 2. Mirror 1 is a
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moving mirror, which oscillates back and forth, whereas mirror 2 is stationary. On 

reflection from these mirrors, the beam splitter recombines the light which is then guided 

on towards the sample.

Mirror 2

Beam Splitter

Infrared Source

Mirror 1

Sample

Detector

u

Figure 2.3 : Schematic diagram of the Michelson interferometer in an FTIR spectrometer

When the mirrors are the same distance from the beam splitter, the light will travel the 

same distance to each mirror, so that constructive interference occurs. This point is known 

as zero path difference ( ZPD ). However, if the moving mirror is MAX from the ZPD, the
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light on the moving mirror optical path will travel 1/2 X further than the light reflected 

from the stationary mirror, and thus destructive interference will occur. The pattern of 

interference obtained is known as an interferogram. Because the source is polychromatic, 

the interferogram obtained is the sum of interferograms from all contributing wavelengths. 

The detector therefore sees an interferogram as shown in Figure 2.4.

Figure 2.4 : The interferogram as seen by the FTIR detector

To the detector, the appears as a fluctuating intensity in the time domain. In order 

to convert this signal back to a spectrum ( intensity in the frequency domain ) a Fourier 

transform is used. The intensity of the infrared radiation at the detector can be written as

00 _
I(x)= IS(v)Cos(27ivx)dv ( 2 . 1 )

o

where I(x) is the intensity of the signal at the detector 

S(v ) is the spectral density amplitude 

and v is the frequency ( wavenumber)
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Because the Fourier Transform must be applied mathematically, the information 

that the detector collects must be digitised. This is performed by measuring the intensity of 

the signal at certain set distances of mirror travel, called the sampling interval. The

sampling interval is controlled by the frequency of a laser, most commonly a HeNe laser

emitting at 632.8 nm. The amplitude of each frequency element in the spectrum is given

by:

S(v) = Zl(x) cos(27iv)Ax (2.2 )
x=0

where Ax is the sampling interval

The path difference, x is the product of the sampling interval, Ax and the number of 

samples taken, usually in the range 500 to 10,000. Digitised sampling results in a lower 

limit on the wavelengths that can be studied. This is given by the following equation:

Ax ^ m̂inimum ^  2.3

where Lmimnm is the minimum frequency that may be studied.

This means that the highest frequency that may be studied, v maximum is given by

V maximum 1 /2  Ax ( 2.4 )

This is called the aliasing frequency. If infrared radiation of a frequency higher than the 

aliasing frequency is present, then severe distortion of the spectrum occurs. The most 

common frequency used to control the sampling interval in FTIR spectrometers is a HeNe
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laser line at 632.8 nm. Thus, if sampling every two wavelengths, the aliasing frequency is 

7960 cm'1. In spectrometers with KBr beam splitters, this does not cause a problem, as the 

spectral window of KBr limits the infrared light used to much lower frequencies.

2.1.2.2 : The advantages of FTIR spectroscopy

Clearly, FTIR spectrometers are much more complex than dispersive spectrometers, 

and more complex processing of the data obtained is required. However, FTIR 

spectroscopy was developed because it shows several advantages over dispersive infrared 

spectroscopy.

I ) The Fellgett Advantage

The Fellgett, or multiplex advantage arises because all of the spectral elements are 

measured simultaneously. Thus, a spectrum can be obtained very quickly. The number of 

spectral elements in a digitised spectrum are given by

(2 .5 )

where N is the number of spectral elements 

w is the highest wavenumber 

v l  is the lowest wavenumber

N =
\ n - V L

Aw
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and Aw is the resolution

For thermal detectors, the signal to noise ratio ( S / N ) of the spectrum obtained is 

proportional to the square root of the time each element _is_observed. JTherefore in an-FTIR- 

system, the signal to noise is given by

S /N  cc T1/2 (2 .6 )

where T is the total time of the experiment.

Whereas a dispersive system observes each spectral element in turn, therefore

S / N  ocT1/2/ N ia (2 .7 )

Therefore, a dispersive system obtains a poorer S / N in the same time, or takes longer to 

acquire a spectrum with the same S / N .  Therefore FTIR has obvious advantages for 

kinetic analysis, or where there is poor S /N.

II) The Jacquinot Advantage

The Jacquinot, or throughput advantage arises because unlike dispersive 

spectrometers, FTIR spectrometers have no slits which attenuate the infrared light.
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The spectral optical throughput of a grating instrument is given by

( 2.8 )

where G? is the optical throughput per wavenumber

H is the height of the grating 

h is the length of the entrance slit 

f  is the focal length of the collimator 

and Ro is the theoretical resolving power.

In the case of the interferometer, assuming the beam area is equal to the beam area at the 

grating,

where is the optical throughput of the interferometer. The ratio of the optical 

throughputs is therefore given by

G- =
2tcH2

I) V (2 .9 )

G; 2nf
( 2.10 )

G? hu
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For a sensitive grating spectrometer, f  / h may be greater than 30. Therefore the FTIR 

optical throughput would be around 190 times that of the grating spectrometer. This means 

the signal reaching the detector is much higher, leading to a greater S / N for an FTIR 

system.______________________________________________________________________

HI) The Connes Advantage

The Connes advantage arises because the frequency scale of the spectrum is known 

very accurately. This is because the time domain of the interferogram is fixed extremely 

precisely by the wavelength of the laser. Therefore when the Fourier transform is applied, 

the wavelength domain is very precisely known. This control over the calibration of the 

wavelength domain means mirror movement averaging is possible. This means the 

collection of many spectra and their co-addition. The addition of many spectra increases 

signal to noise ratio, because S / N  OC T1/2 ( eq. 2.6 ). An additional advantage of the 

accurate wavelength calibration is that because the wavelength is known absolutely, 

techniques such as spectral subtraction can be used without any wavelength calibration.

2.1.2.3 : The disadvantages of FTIR spectroscopy

FTIR instruments do have some disadvantages as compared to dispersive 

instruments. Firstly, FTIR instruments do not measure spectra; they measure 

interferograms. Interferograms are difficult to interpret without first performing a Fourier
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transform to produce a spectrum. This used to be a major problem, but since the dramatic 

increase in computing power, performing a Fourier transform is now a quick and easy 

process. However, the way the interferogram is transformed can affect the results, and so 

care must be t a k e n . __________________________________ ____________________

Secondly, in systems that are source noise-limited, the Fellgett disadvantage 

applies. This arises because all regions of the spectrum are observed simultaneously. 

Therefore, if noise occurs in one part of the radiation from the infrared source, it will be 

spread throughout the spectrum in an FTIR system. In a dispersive system, the noise would 

be seen only in the region of the spectrum in which it arose. Fortunately, in mid-infrared 

systems, as used here, the system is detector noise-limited, therefore the Fellgett advantage 

applies, but not the Fellgett disadvantage,

Most importantly, FTIR instruments have a single beam, whereas dispersive 

instruments usually have a double beam. Double beam instruments take a background at 

the same time as the sample, whereas single beam instruments rely on taking a background 

before the sample is inserted. Assuming there is no change in atmospheric conditions 

throughout the experiment, this does not cause a problem. However, for highly sensitive 

work, and experiments which take along time, changes in infrared absorbing gas 

concentrations can severely affect the results. Therefore, when using an FTIR instrument, 

it is necessary to purge the instrument of C02 and water vapour using an infrared 

transparent gas such as nitrogen. Otherwise changes in C02 or water vapour level between
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taking the background and sample spectra will cause absorption from these gases to appear 

in the spectrum.

2.1.3 : Attenuated Total Reflection ( ATR)

The most common sampling technique used in infrared spectroscopy is 

transmission, as shown in Figure 2.2. This technique simply involves steering the infrared 

beam through the sample, and into the detector. Transmission has the advantage of 

simplicity and ease of use, but has several restrictions. Firstly, the technique is limited to 

weakly absorbing samples, in order that total absorption of the infrared light does not 

occur. More importantly for this work, transmission provides very limited spatial 

information, thus limiting its use in situ. For example, if a thin polymer film is examined 

in transmission, the infrared beam samples the film throughout its depth, and therefore 

diffusion in the film would be impossible to measure.

The technique of ATR on the other hand, is extremely well suited to the sampling 

of strongly absorbing samples, and is highly surface sensitive, allowing the differentiation 

between bulk and surface spectra. The detailed theory of ATR has been well reviewed by 

Mirabella1 and Harrick2, therefore only the relevant points will be discussed here.

A schematic of the ATR experiment is shown in Figure 2.5.
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Figure 2.5 : Schematic of the ATR experiment

To perform ATR spectroscopy, the infrared beam is guided into an ATR crystal in 

optical contact with the sample. The incident angle ( 0mc) must be greater than the critical 

angle 9C, and the ATR crystal must have a refractive index higher than that of the sample. 

Under these conditions, the infrared light undergoes total internal reflection at the interface 

between the optically dense medium (i.e. the ATR crystal) and the optically rare medium (

i.e. the sample ). At the interface, a decaying evanescent field is created. The evanescent 

field has components in all spatial directions, and decays exponentially with distance from 

the crystal surface. This is the basis for the surface sensitivity of the ATR technique. In 

the case of the geometry shown in Figure 2.5, an evanescent field is present at each 

interaction of the light with the interface. If an infrared absorbing medium is in contact 

with the ATR crystal, the reflection will be attenuated, and therefore the material will be 

sampled at each reflection.
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Since the evanescent field samples the material of interest, its properties are 

extremely important to the spectroscopist. The important points can be summarised as 

follows:

1. There is no loss of energy at the interface between the optically dense and rare

media, and therefore total internal reflection occurs.

2. The evanescent field in the rare medium is not transverse and has components in all 

directions. Therefore the field can interact with dipoles in the rare medium occurring in all 

directions.

3. There is a non-zero energy flow parallel to the interface resulting in a displacement 

of the incident and reflected waves. This is known as the Goos-Hanchen shift.

4. The evanescent field is confined to the surface of the rare medium and decreases 

with intensity with distance from the interface ( i.e. along the z axis).

This last point is extremely important, because the decay of the evanescent field 

determines how much of the rare medium is sampled. The decay can be written as follows

(2 .1 1 )
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where E is the amplitude of the electric field a distance Z into the rare medium

E0 is the electric field amplitude at the interface

0inC is the angle of incidence

n2i is equal to n2 / n}

where

n2 is the refractive index of the rare medium 

and ni is the refractive index of the dense medium 

and X\ is the wavelength of light in the dense medium.

Equation 2.11 can be rewritten by replacing the exponential constant with the electric field 

amplitude decay coefficient, y:

E = E0exp[-yZ] ( 2.12 )

where y = (2 .1 3 )
A,

The depth at which the electric field E decays to E0exp[-1] is known as the depth of 

penetration, or dp. The depth of penetration is defined by



The depth of penetration, dp is sometimes referred to as the sampling depth. 

However, at dp, the Electric field has approximately 37% of its value at the surface, so 

some signal is collected from deeper into the rare medium. Although the evanescent field 

theoretically continues to infinity, a practical sampling depth, d. is often considered, 

beyond which very little sampling occurs. The sampling depth, ds is three times dp.

It can be seen from equation 2.13 that the decay coefficient y, and thus dp depends 

upon the incident angle, the wavelength of light used, and n2i, the refractive index 

matching between the ATR crystal and the sample. Because it is usually desirable to have 

a small dp> high refractive index materials are usually used as ATR crystals. However, the 

infrared transmission window of a material must also be taken into account. The properties 

of some common ATR materials are shown in table 2.1

Material Infrared window Refractive Index, ni

Silicon 1300 - 8300 cm'1 3.4

Germanium 600 - 5500 cm'1 4.0

Zinc Selenide 450 - 20000 cm'1 2.4

KRS5 250-20000 cm-1 2.4

Table 2.1 : Optical characteristics of common ATR materials

Assuming a refractive index for the rarer medium of 1.5 ( common for polymers ), 

dilicon as the ATR medium, an incident angle of 45° and infrared of frequency 1600 cm'1, 

a value for dp of 0.5 pm. is found, giving a value for ds of 1.5 pm. In practice, dp tends to 

vary between 0.1 and 5 pm. One important consideration arising from equation 2.13 is that 

across the spectrum dp will change, meaning that higher frequency bands will absorb less



than low frequency bands. This effect has been used to perform depth profiling with ATR3, 

as has the change in dp when the angle of incidence is changed4.

It can be shown that

A a  E2 (2 .15)

where A is the absorbance measured in the infrared spectrum. I.e. the actual spectrum 

measured depends on the square of the electric field. The effect of this is shown in Figure 

2 .6 .

Electric Field Amplitude 

A bsorbance  re sp o n se0.8
0
o|  0.6 .Q 
O 
(/)
_Q
<  0.4
LU

0.2

2
Z ( um.)

Figure 2.6 : The decay of the electric field amplitude and the absorbance response
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2.1.3.1: The advantages of ATR

1. Many reflections in the ATR crystal lead to large sampling number, thus increasing 

sensitivity.

2. Thin films can be studied with great sensitivity as most of the signal is obtained from < 1 

jam. away from the surface.

3. The interface may be studied selectively, or depth profiling may be performed by 

manipulation of the evanescent wave.

4. In situ experiments are possible.

5. Interference fringes seen in transmission are not seen in ATR.

2.1.3.2 : The disadvantages of ATR

1. Very good optical contact is required between the sample and ATR crystal.

2. The total internal reflection wave loses energy at each reflection.

2.1.4 : Diffusion measurements with ATR - FTIR

The diffusion of small molecules in polymeric materials has been widely studied, 

and there is a large body of work on the theoretical background5,6. There are many 

techniques which have been applied to the study of this diffusion, but most, such as the ‘pat 

and weigh’ technique7, where a slab of the polymer is immersed in the diffusant, and

57



removed for weighing, are ex situ techniques. In order to obtain kinetic information from 

measurements, it would be preferable to perform them in situ. In order to do this, this work 

shows the use of ATR -FTIR to monitor diffusion in a PVC film in contact with the ATR 

crystal, in situ. This section will discuss the theoreticakbasis Tor these measurements_____

2.1.4.1: Models of diffusion

Ficks’ first law states that the rate of transfer of a diffusant through a unit area is 

proportional to the concentration gradient measured normal to the unit area8. This can be 

written a s :

( 2.1 6 )

where Fx is the flux of diffusant in the x direction

fac'i
—  is the concentration gradient of the diffusant 

\dxJ

and D is the diffusion coefficient.

However, Ficks’ first law only applies to steady state diffusion, i.e. a fixed 

concentration of diffusant. For non-steady state conditions, Ficks second law gives the rate 

of change of penetrant concentration:



where C is the concentration of diffusant 

t is time

and z is the axis normal to the polymer surface.

The mass of molecules diffused at time t into.a polvmer sheet-mav-be given bv-:-

Mt 4
Moo L

^Dtv '
(2 .1 8 )

where Mt is the sorbed mass at time t

Mw is the sorbed mass at equilibrium 

and L is the sheet thickness.

Experimentally, diffusion in polymeric materials can be categorised as follows9,10

1. Case I Diffusion : This occurs when the rate of diffusion is less than the mechanical 

relaxation time of the polymer. This is also known as Fickian diffusion. This is believed to 

be found when the motion of the diffusant follows a ‘random walk’ with no interactions. 

In case I diffusion the parameter n in equation 2.18 has a value of 0.5.

2. Case II diffusion : This occurs when the rate of diffusion is fast compared to the 

mechanical relaxation time of the polymer. This diffusion is characterised by a sharp 

moving diffusant boundary which progresses into the polymer at constant velocity. In case 

II diffusion the parameter n has a value of 1.
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3. Case HI diffusion : This is also known as non-Fickian diffusion. It may occur when 

the diffusion and relaxation rates are similar, but is also used to describe all other cases 

where neither case I or II occur. The parameter n may be between 0.5 and 1. Unlike case I 

_or II, more than one parameter may be required to describe the diffusion________________

If one assumes Fickian kinetics, it is possible to derive a general solution to the 

equation for the mass of diffusant in a film of thickness 2L5 :

Ml
x

= i - I£t{ 2 n + l ) V eXP
-D (2n+l)V t  

4L2
(2 .19 )

In the ATR experiment, the measured absorbance does not have a linear 

relationship with Mt, the mass of molecules. Therefore, in order to measure D, the 

diffusion coefficient, it is necessary to combine equation 2.19 with Harricks’ equations for 

ATR11 ( see section 2.1.3 ). This has been carried out many times before12,13,18’20, and so 

only the answers will be shown here.

The equation describing Fickian diffusion in terms of ATR absorbance is given

below:

8y
— L = l - —  .
Aoo tc[ 1—exp(2Ly] n=o

exp
-D(2n + l ) V t 

4L2
(2n + 1)tc 
. 2L

exp(-2y2L) + ( - l ) n(2y)

(2n +1) 4y +2 . i (2n + 1)tc

2L

(2.20)
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where At is the absorbance at time t

and A w is the absorbance at equilibrium

A model that fits into the categorv o f case PI diffusion is the dual sorption mode.

This model has been shown to be useful in systems where more than one diffusion 

coefficient is required to describe the diffusion14,1516. In the model, one species is mobile 

and able to diffuse freely in to the polymer matrix, while another species is described as 

partially mobile. This may be due to some species being trapped in voids in the polymer 

matrix17. This results in two different but constant diffusion coefficients. The model also 

requires the parameter Xi which describes the proportion of molecules in the partially 

mobile state.

The equation for describing dual mode diffusion in terms of ATR absorption, as shown 

below, is a summation of equation 4.20 for the two species, convolved with the proportion 

factor X ] 18,19.

fX x= (i ■- IX) x ,+(i ■- IX x i  ■- x ,) ( 2.2 1 )

where

IX= 8y
7t[l -  exp(2Ly] n=o 

where x = 1 or x = 2.

exp
/ -D x(2n+1)27T20

4L
(2n+l)rc 
. 2L

exp(-2y2L) + ( - l)n(2y)

(2n+l) 4y2 +
(2n + 1)7C

~2L J
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Using these two equations ( equation 2.20 and equation 2.21 ) it is possible to 

determine diffusion coefficients from absorbance data20,21, assuming the value L and which 

model is appropriate are known. This is applied in chapter 3.

2.2: Raman Spectroscopy 

2.2.1: Introduction

The Raman effect was observed by C. V. Raman in 192822. Raman obtained 

spectra using a mercury lamp, but it was only with the advent of intense, monochromatic 

and collimated light sources ( i.e. lasers ) that Raman spectroscopy became a practically 

useful technique. Therefore, compared to infrared spectroscopy, Raman is a relatively new 

technique, but further technological advances have caused the use of Raman spectroscopy 

to grow more widespread in recent years. The theory of Raman spectroscopy has been
An A i Af

widely discussed in the literature ’ ’ , so only the main points will be discussed here.

2.2.2 : The Raman effect

The Raman effect occurs when light is scattered inelastically by matter. When a 

photon of light interacts with matter, it may be scattered in one of three ways:
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i. Elastic scattering, which results in no net energy transfer between the photon and 

the matter. This is also known as Rayleigh scattering.

ii. Inelastic scattering where the photon is scattered with lower energy than the 

incoming energy. This is known as Stokes scattering.

iii. Inelastic scattering where the photon is scattered with higher energy than the 

incoming energy. This is known as anti-Stokes scattering.

Both types of inelastic scattering ( ii and i i i ) give rise to Raman spectra.

Classically, when a molecule is placed in an electric field E, a dipole moment, \im& 

is induced. The size of the induced dipole is dependent on the polarisability of the 

molecule, i.e. the ease with which the electron cloud of the molecule may be distorted. 

The induced dipole is given by

where a  is the polarisability tensor of the molecule. If the applied field is alternating, the 

induced dipole oscillates at the same frequency. The alternating electric field may be 

expressed a s :

Hind = aE ( 2.2 2 )

E = E°cos27rtv0 ( 2 . 2 3 )
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where E° is the electric field at time t

and v0 is the angular frequency of radiation

The induced dipole emits or scatters radiation of frequency Vo which is Rayleigh 

scattering. Assuming a simple harmonic oscillator, a diatomic molecule vibrating can be 

described by

where qv is the displacement at time t 

and vv is the frequency of vibration.

If this vibration leads to a change in polarisability, the polarisability can be written

as

substituting ( 2.24 ) into (2.25 ) gives

qv = q0cos27ivvt (2 .24)

<%>s2;zvvt (2 .2 6 )
l5(JvJo
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If radiation of frequency v0 interacts with the molecule then the induced dipole is 

given b y :

jiind= aE = aE cos27iv0t (2 .27)

substituting (2.26 ) into (2.27 ) gives

jUjnd = a°E° cos27iv0t +

jLXind = a°E° cos27cv0t +

f d a '

J

r d a '

E°q0 cos27ivvtcos27tv0t
( 2.28 )

E°q0 [cos27l(v0 +vv)t + cos27t(v0 +vv)t]

Therefore for Raman scattering to occur, a change in the polarisability of the molecule 

must occur during the vibration, i.e.

r d a N

\dqvj
*  0 (2 .29 )

must be true for a vibration to be Raman active.

From a quantum mechanical point of view, the processes that may occur upon 

scattering of a photon are shown in Figure 2.7. When light is scattered, almost all of the 

photons undergo Rayleigh scattering. The low probability of Raman scattering is the 

reason why high intensity light sources are required for Raman spectroscopy. It can be 

seen from Figure 2.7 that Anti-Stokes scattering occurs from a vibrationally exited state.
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As the majority of molecules occur in the ground state, Stokes scattering is considerably 

more likely than Anti-Stokes scattering.

/ V V V / V
Virtual excited s ta te

>
>f \ F~ "

S tokes Rayleigh Anti-Stokes

Figure 2.7 : Quantum mechanical scattering processes

It can also be seen from Figure 2.7 that like infrared spectroscopy, Raman

spectroscopy probes the vibrational energy levels of a molecule. Because it is often the

S jj. da
case that for molecular vibrations, when—  ( the dipole change ) is large, —  ( the

polarisability) is small, and vice versa, many vibrations are either strong in the infrared or 

Raman, but not both. Although strictly incorrect, such vibrations are often said to be either 

infrared or Raman active. Therefore infrared and Raman give the same kind of 

information, but often about different molecular vibrations. Infrared and Raman are often 

said to be complementary techniques.
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Practically, Raman spectroscopy is usually carried out on the Stokes part of the 

spectrum, due to the higher intensity. This is illustrated in Figure 2.8, which shows the 

Raman spectrum of a silicon surface. The Stokes v(Si-Si) vibration of silicon occurs at 520 

cm-1 relative to the Rayleigh light, and the anti-Stokes vibration at-520 cm’1;—It-should be 

noted that the Rayleigh light in this spectrum has been filtered; usually Rayleigh intensities 

are several orders of magnitude greater than Raman intensities.

5000 •

£  4000*
c
3

8
3000-

2000 -

1000 -

0- 
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-600 -400 -200 200 400

Raman Shift ( c m -1 )

Figure 2.8 : Raman spectrum showing, from left, Anti-Stokes, Rayleigh and Stokes lines

2.2.3 : Raman microscopy

Like infrared spectrometers, traditional Raman spectrometers simply consist of a 

light source, a dispersive element and a detector. However, Raman light sources need to be 

monochromatic, in order to facilitate measurement of the Raman shift, which gives the
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vibrational information. The most common sources are HeNe, Argon ion, and NdYAG 

lasers, giving possible excitation wavelengths between 480 and 633 nm. These are visible 

wavelengths, which makes coupling of a Raman spectrometer to a microscope a relatively 

simple task, as a.standard optical microscope may be used. —Unlike infrared spectroscopyr 

Fourier Transform Raman spectroscopy is still relatively rare, although it is a well 

developed technique26,27. Most Raman spectrometers use a grating as the dispersive 

element, such as the Renishaw Ramascope described herein. The use of a monochromator 

and photomultiplier to reject light and detect the Raman light is common, but the 

Ramascope, as described below uses a more novel system. As the performance of this 

spectrometer is of direct relevance to this project, the details of the instrument are 

discussed in the next section.

2.2.4 : The Renishaw Ramascope

The Raman instrument used in this project was a Renishaw Ramascope system 

2000. The system 2000 features an additional optical path used for imaging which is not 

discussed here. A schematic diagram of the components of the Ramascope is shown in 

Figure 2.9.
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The spectrometer functions as follows: The source is a 25 mW. Helium-Neon laser 

at 632.8 nm. This enters the spectrometer through a laser attenuation wheel. This can be 

used to reduce the power of the laser. Unless otherwise mentioned, this was used at the full 

power setting. The laser then passes through a plasma -line rej ection filter-(-ELF-).—̂The PLF 

rejects all frequencies except the 632.8 nm. line. The laser is guided into a beam expander, 

which is simply two objective lenses required to expand the beam to the size used by the 

microscope objective ( approximately 10 mm. ). The beam expander may include a 

pinhole at the focus, to collimate the beam. However, in the system described here, the 

beam is collimated as it exits the laser, so this is not necessary. The expanded beam is then 

guided onto the first holographic notch filter ( H.N.F. ). The H.N.F.S act like 

monochromators, as they reflect Rayleigh light ( i.e. the frequency of the laser), and allow 

all other frequencies to pass. The first H.N.F. acts as a beam splitter, guiding the laser light 

into the microscope, whilst allowing the returning Raman light into the spectrometer. The 

light enters the microscope accessory ( an Olympus BH-1 optical microscope ), and is 

directed onto the sample with an ordinary microscope objective. In this work, 100X, 50X 

and 20X U.L.W.D. ( ultra long working distance) objectives have been used.

The light scattered by the sample is collected by the same objective ( 180° 

scattering geometry). This light is a mixture of Rayleigh, Stokes and anti-Stokes scattered 

light. The light is guided into the spectrometer, and passes through the two H.N.F.S. These 

remove almost all of the Rayleigh light, as can be see in Figure 2.8. Without the H.N.F.s 

the Rayleigh light swamps the spectrum. The light is next focused through an optical slit. 

This acts as one part of a spatial filter, and will be explained in the following section,
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describing confocal Raman microscopy. The light is then reflected by a triangular mirror 

onto a diffraction grating. The grating is fixed to a rotating motorised stage, and the angle 

of the grating determines the wavelengths of Raman light detected. After the grating, the 

light is focused onto a peltier-cooled C.C.D. Icharge-coupled device Tdetector----------------

The C.C.D. is a silicon array device which can detect light on any one of it’s 600 x 

400 pixels. In order to collect a spectrum, the grating disperses light which is focused in a 

line onto the long axis of the C.C.D. It is therefore possible to detect approximately 600 

spectral elements without moving the grating ( a ‘static’ spectrum). In order to collect full 

range spectra, the grating is rotated. The spectral range of the instrument is approximately 

200 to 5000 cm'1. This is somewhat limited at low frequencies compared to 

monochromator - based spectrometers, which can often detect light at Raman shifts as low 

as 20 cm'1. However, for organic materials ( e.g. polymers) most bands occur between 500 

and 3500 cm’1, so it is suited to this work. The advantages of the Renishaw Ramascope are 

high sensitivity due to the C.C.D. detector, and the ability to perform confocal Raman 

microscopy, which is discussed in the next section.

2.2.5 : Confocal Raman microscopy

Confocal microscopy is a technique of eliminating light from outside the focal 

plane. In optical microscopy, this allows images of ‘sections’ of a transparent material to 

be obtained. Confocal Raman microscopy allows the collection of a spectrum from a very 

small volume of material. In the x-y ( or focal) plane, it is easy to collect light only from a
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small area, by simply focusing the laser to small spot. The area sampled is limited to about 

1 pm.2 by the diffraction limit. In the z ( or optical axis ) however, it is not as simple to 

collect a spectrum from a small region only. Confocal microscopy eliminates back 

scattered lightirom above or below the focal plane.--------------------------------------------- -----

The signal intensity that reaches the detector for a given Raman band is given, to a 

first approximation by

S I* W iN eT xSjl (2.30)

where SI is the signal intensity at wavelength X

Io is the laser irradiance at the sample ( in watts / unit area)

is the differential cross-section for the analysed Raman band ( in cm2 sterad'1 

molecule-1)

N is the number of molecules sampled 

0 is the angle of collection of the Raman light 

T̂  is the throughput of the instrument 

and Sx is the sensitivity of the detector at the given wavelength.

When in confocal mode, there is clearly a small value for N, as a small volume is 

sampled. Using a high numerical aperture ( NA ) objective compensates for this 

somewhat. The NA of an objective is defined as follows
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where 0 is the angle of entrance

and n is the refractive index of the transmitting medium.

The collection geometry is shown in Figure 2.10, which shows both high and low 

NA objectives. It can be seen from Figure 2.10, that high NA objective can focus the light 

into a small area, and collect over a wide angle. Raman light is scattered isotropically, so a 

wide collection angle increases the signal collected per unit volume. In contrast, low NA 

objectives focus light on a larger volume of material, thus collecting Raman scattering from 

a large volume. Practically, it is found that for optimum signal, assuming a large sample, 

an intermediate NA is ideal.

high NA 
objective

low NA 
objective

waist

Figure 2.10 : The distribution of laser light near focus for high and low NA objectives



The NA, entrance angle and depth of focus ( L ) of the objectives used in this work 

are shown in table 2.2 :

Objective NA 0 ( ° ) Depth of focus, L
(p m .)

x 100 0.95 71.8 0.1
x 50 0.80 53.13 0.4

x 20 ( U.L.W.D.) 0.40 23.58 3.3
Tab]le 2.2 : Optical parameters of objective lenses used

Confocal operation is traditionally obtained by placing a pinhole in the back focal 

plane of the microscope28. The alignment of this pinhole is critical to the performance of 

the microscope. Unfortunately, pinhole alignment is a difficult and time consuming task, 

so the Ramascope uses an alternative method29. This is illustrated in Figure 2.11.
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incoming laser beam

C.C.D. area used

C.C.D. Detector

slit

microscope objective

focal plane

Figure 2.11: Schematic diagram of the operation of the Ramascope in confocal mode

The Ramascope effectively uses two slits in the back focal plane at right angles to 

each other to simulate a pinhole. One of these is a mechanical slit, the width of which is 

micrometer controlled. The other slit is made by selecting a long box of elements on the 

C.C.D. detector, and binning the data from the other elements.

The geometrical effect of the pinhole is explained here with reference to Figure

2.12, assuming no diffraction occurs at the pinhole. This assumption has been shown to be 

valid for pinholes greater than 100pm., as used here30.
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slit

slit focusing lens ( l 2 )

objective 
lens ( i  j

sample

Figure 2.12 : Diagram of confocal microscope showing pinhole operation. For clarity, only 
the returning ( Raman) light is shown, and the light from the focal plane is red, and light

from out of focus is blue

The objective lens ( I x ) focuses the beam onto the area to be sampled. At this 

point the beam has it’s smallest diameter, but this diameter remains constant within a 

certain distance from the focal plane31. This distance is known as the waist, or the depth of 

focus ( L ). L is given by :

( x Y  1 Y
L = 6.4 —   -

V27iA ta n 0y

The values of L for the objectives used are given in table 2.2.
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The size of the laser spot can be expressed as :

s(/i ± d) = s(/i) for d < x  
2

(2 .33)

(  L̂ ls(/i ± d) = s(/j) + 2 d - — tan0
V 2 J

, L for d > — 
2

(2 .34)

where f \  is the focal length of the objective lens 

and d is the distance from the plane of focus

In Figure 2.12 it can be seen that the light from out of the focal plane is imaged at 

distance Z2 from the slit - focusing lens ( l 2 ). This leads to the image at the slit of this 

light being out of focus. The distance Z2 is given by

-l

1
(2 .35 )

h  U  / , ± d j  .

where / 2 is the focal length of the slit focusing lens. The size of this spot is s(/i±d). The

diameter of this image at the slit ( It ) is given by

I ,= (2 .3 6 )

where M is the magnification power of the objective.
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As this image is much larger than the image from the focus point ( i.e. the laser spot 

image ), it is possible to eliminate most of the out of focus light by including a pinhole of 

diameter less then It in front of the detector. A high NA objective produces a more 

divergent beam, from outside Jhe Jocal plane, making it easier-to -remove -the -unwanted 

light.

The experimental confocal response is determined as follows. The laser is focused 

on the surface of a silicon crystal, and a spectrum taken. The intensity of the 520 cm'1 band 

of silicon ( see Figure 2.8 ) is measured. The focus is then moved 1 pm. away from the 

surface and another spectrum measured. This is repeated to build up a ‘confocal response 

profile’. The full width at half height ( FWHH ) of this profile is the parameter used as a 

measure of confociality. This process generates one half of the profile that would be 

obtained by measuring a thin film in transparent medium. Therefore the profile may be 

mirrored to get the true value, or the FWHH doubled. Confocal profiles, using the 100X 

objective, with and without the instrument set up in confocal mode are shown in Figure

2.13.
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Figure 2.13 : Comparison of confocal and non - confocal modes, using the 100X objective

It can be seen from Figure 2.13 that the spatial FWHH in confocal mode, using the 

100X objective is somewhat smaller than 2jum. As mentioned previously, a high NA 

objective is required for confocal measurements. To confirm this, confocal profiles were 

obtained for all three objectives used in this work. These are presented in Figure 2.14.
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II. Fluorescence from impurities and the spectrum of the substrate is often eliminated, 

due to the small volume analysed.

2.2.7 : Disadvantages of confocal Raman microscopy

I. The small volume analysed means signal intensity is always smaller in confocal 

mode.

n. Due to the concentration of laser power in a small area, the chance of sample 

burning is increased. Fortunately, in PVC, sample burning is revealed by a highly intense 

fluorescence spectrum32,33, so it is simple to detect this effect.

Despite these disadvantages, Raman confocal microscopy is an excellent technique 

for the depth profile analysis of polymer laminates29,34.
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Figure 2.14: Confocal profiles from the 100X, 50 X and 20X U.L.W.D. objectives

It can be seen from Figure 2.14 that although the optical through put is low, the 

100X objective gives by far the best spatial resolution, and therefore only the 100X 

objective was used for depth profiling work.

2.2.6 : Advantages of confocal Raman microscopy

I. Confocal Raman microscopy allows the collection of in situ depth profiles. 

Without the ability to collect a spectrum from within a transparent polymer film with 

spatial resolution on the pm. scale, depth profiling would require destructive sample 

preparation techniques, such as sectioning.
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Chapter 3 : ATR-FTIR studies of organosilane diffusion

In order to determine whether interdiffusion of silane and PVC may occur in the 

glass / silane / PVC system, ATR-FTIR experiments have been carried out. As described in 

chapter 2, similar experiments have been applied to different systems elsewhere, and have 

been successful in determining kinetics of diffusion1'4. This chapter describes the 

experiments that have been performed in situ to determine the kinetics of diffusion, as well 

as the factors which affect the kinetics.

3.1 : Experimental

In order to obtain information of relevance to glass / PVC / silane laminates, it was 

decided to perform experiments on a model laminate. A schematic diagram of the 

laminates used is presented in Figure 3.1.

Silane overlayer Silane underlayer

silane

PVC film

PVC film 

-silane

.silicon micro ATR crystal

Figure 3.1 : Schematic diagram of model laminates used for ATR-FTIR experiments

The substrate chosen for this laminate was a silicon micro ATR crystal. This serves as a 

suitable model for glass, as the surface properties of oxidised silicon and glass are similar.
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Without pre-treatment to remove the oxide layer of silicon, it would be expected to consist 

of a hydroxylated surface, i.e. the surface chemistry would be dominated by the presence of 

-SiOH groups. Unless heat-treated, it would also be expected that a certain amount of 

surface water would be.presentlJiejnicroATR crystal also serves as the optically dense-

material in the ATR experiment ( see section 2.13 ). The micro ATR crystal functions in 

the same way as a normal ( or macro ) ATR crystal, but is very thin, in this case 0.5 mm. 

thick. This has the effect of increasing the number of reflections in the ATR experiment, 

and thus increasing the sensitivity of the experiment. This is illustrated schematically in 

figure 3.2. The number of reflections ( totalled over both sides), N is given by

N = cot0 7  ( 3 -1}V« J

where 0 is the incident angle ( see figure 2.5 ) 

L is the length of the crystal 

and t is the thickness of the crystal

From equation 3.1, at 0 = 45°, a standard macro ATR crystal gave rise to 14 reflections, 

whereas the micro ATR crystal used ( L = 18 mm., t = 0.5 mm. ) gave 38 reflections, so 

that the micro ATR crystal should have been approximately 2.7 times more sensitive. The 

micro ATR geometry has the disadvantage that focusing the infrared beam onto the face is 

more difficult, which means that the overall optical throughput is lower. However, in 

practice the micro ATR crystals were found to be much more sensitive overall, especially 

for low intensity bands.
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Macro ATR

Micro ATR

Figure 3.2 : Schematic of the difference between macro ATR and micro ATR

As shown in section 2.1.3, silicon has a somewhat limited mid infrared spectral window, so 

spectral measurements were made only above 1300 cm-1.

The silicon substrates were cast with 5% PVC solutions from N,N- 

dimethylformamide. Forming films by casting does not always give films of even thickness 

over the whole area of the film. The alternative polymer film formation techniques 

considered were spin coating and dipping. Spin coating was not considered to be a viable 

alternative, as the films formed were far too thin for this experiment. Dipping was assessed 

as an alternative technique, but it was found that several coating runs were required for 

adequate thickness, and that wedge shaped films often resulted. Due to the kinetic analysis 

of the diffusion results ( see section 2.1.4 ), it is necessary that the films used be as close as 

possible to an ideal ‘slab’ of polymer as possible. In order to determine how flat the films 

were, a Talysurf surface profiler was used. This is a mechanical instrument that measures
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the step size between the substrate and film to an accuracy of ±0.02 pm. The output from a 

typical Talysurf measurement is shown in figure 3.3.

+25.0 un

+15.0 un

+5.0 urn

♦0.0 un

5.0

-10.0 urn

Figure 3.3 : A typical Talysurf surface profile. The horizontal scale is 2mm. per division

It can be seen from figure 3.3 that many samples showed considerable heterogeneity 

in thickness around the edges. In these cases, diffusion was only measured in the centre of 

the film ( by applying silane only to this area).

In order to know the average thickness, the mean value from the Talysurf profile 

was taken. The cast films were heated for 14 hours at 65°C to remove the solvent. It was
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found that after the heating process, the film was often thicker and more variable in 

thickness around the edges, but thin and of even thickness in the centre of the crystal. In 

order that this did not affect the diffusion results, in these cases the silane was only applied 

to theflatportion ofthe film. The silanewasapplied bya numberof techniques.--------------

The silane was first applied as a ‘silane underlayer’. In this configuration, the 

silane was pre-hydrolysed and cast from solution. The film was then heated to remove 

solvent. The solvent used was 9:1 ( v/v) IPA / H20  mixture, with 3% ( v /v) added acetic 

acid as hydrolysis catalyst. This solution has been previously reported to hydrolyse 

organosilanes rapidly6. After drying, PVC was cast onto the silane layer from DMF or 

MEK solution, and the laminate was heated to remove the DMF. In this configuration any 

silane diffusion would be seen as a decrease in silane band intensity.

In the ‘silane overlayer’ configuration the PVC was cast directly onto the ATR 

crystal, and then the DMF removed by heating. The silane was then applied onto the top of 

the PVC film, either by spraying or brushing. Spraying was found to be preferable in order 

to apply a fixed amount of silane. Brushing, however, was more convenient when a large 

amount was to be applied. When spraying, a template was used to ensure that the silane 

was only applied to the area required. In all cases, the silane was handled in a diy nitrogen 

atmosphere to avoid premature hydrolysis.
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3.1.1: Materials

The polymer used was poly(vinylchloride) ( PVC ), secondary standard, molecular 

weight 80,000,-fromAldrichChemical Company. The silanes usea were [3- 

(amino)propyl]trimethoxysilane ( A ll 10 ), 97%, [3-(mercapto)propyl]triethoxysilane ( 

A1891, >80% and [3-(phenylamino)propyl]trimethoxysilane, >95% from Fluka Chemicals 

( see figure 1.1 ). The plasticisers used were dihexyladipate ( DHA ) provided by 

Pilkington pic, and Diolpate 7170 from Hyperlast Ltd. Both these materials are adipic 

esters. The structure of DHA is shown in figure 3.4, Diolpate 7170 is an oligomeric 

adipate, and so has a very similar structure. The molecular weight of Diolpate 7170 is 

1650 gmoT1 whereas the molecular weight of DHA is 258 gmol'1.

[CH3(CH2)500CCH2CH2]2

Figure 3.4 : Chemical structure of the plasticiser DHA

Due to the affinity of silanes for hydroxylated surfaces, it was often found that 

silane grafting to the crystals occurred during experiments. In order to ensure the crystals 

were free of silane or other contaminants before each experiment, a 3 stage cleaning 

process was carried out after each experiment. The first stage was washing with hot 2- 

butanone. This removed PVC from the surface, as well as any physisorbed silane. To 

remove grafted silane, diamond polishing was carried out with 1 pm. diamond paste from
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Kemet International Ltd. The efficacy of this procedure was verified by examining the 

infrared spectra of the crystals before the experiment, after the experiment, and after 

cleaning. No spectrum of silane was visible in the infrared spectra after cleaning. The 

diamond polishing compound was .removed by further rinsing with hot 2-Butanone—The 

final step was to expose the crystals to hot iso-propyl alcohol ( IPA ) for 6 hours. This 

imparted hydrophilic character to the crystal surfaces, leading to more even cast PVC films.

3.1.2: Spectroscopic measurements

When infrared spectra were taken, the settings were as follows. The spectral range 

was 400 - 4000 cm'1 with a resolution of 4 cm'1. A 90 % open iris and signal gain of 4 

were used in order to maximise signal intensity. Purging of the spectrometer was not 

carried out, as the reduction of water spectral intensity as a function of time would add a 

systematic error to the results, especially where bands in the water vapour region ( i.e. 5 

(NH) bending at 1600 cm'1 ) were used. The spectra were ratioed against the background 

of the film before diffusion was begun. The number of scans co - added to obtain the 

spectra varied between 76 and 520. Where fast kinetics were observed, fewer scans were 

used to obtain data quickly, but where slow diffusion occurred, 520 spectra were taken to 

optimise signal to noise.
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3.1.3 : Spectra of materials

All of the results presented in this chapter were obtained by manipulation of the 

infrared spectra of the materials investigated. This section contains reference spectra of the 

materials used.

The spectra of the silanes used are presented in Figure 3.5. These were obtained by 

transmission, by pressing neat liquid silane between two NaCl windows. The peaks

integrated for use as markers for diffusion are shown in Table 3.1.

Y9669

A1110

500

A1891

4000 3500 3000 2500
W avenum ber (cm-1)

2000 1500 1000

Figure 3.5 : Transmission infrared spectra of the silanes
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Silane Frequency Assignment
Y9669 1602 cm’1 C=C ring stretch and 

N-Hbend
Y9669 3408 cm'1 N-H stretch
A1110 1600 cm'1 N-Hbend
A1891 2565 cm-1 S-H stretch

Table 3.1: Infrared bands used for diffusion measurements

The band at 1602 cm’1 in Y9669 is in fact a combination of two bands. The 5(NH) 

bend and v(C=C) stretching mode coincide and are impossible to tell apart even using 

Fourier deconvolution or analysis of the second derivative of the line shape. Henceforth 

the band is therefore referred to simply as the 1602 cm’1 band of Y9669.

The spectrum of PVC was obtained in the form of a film cast from DMF on an ATR 

crystal and dried for 14 hours at 65°C. This is shown in Figure 3.6. Also shown is the 

spectrum of DMF. The lack of the carbonyl stretching band of DMF at 1675 cm’1 clearly 

demonstrates that the drying method used for the PVC films removes all the solvent. The 

spectra of the two plasticisers used, DHA and Diolpate 7170 are shown in Figure 3.7.

93



1.5

PVC

Q •] --------

DMF

0-j—
4000 3500

A
jV  JWV * v U  V \ j

/M

3000 2500 2000

W avenum ber (cm-1)

III
It i  tj  \

1500 1000

Figure 3.6 : Infrared spectra of a PVC film cast from DMF and of neat DMF
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Figure 3.7 : Transmission infrared spectra of dihexyladipate ( DHA) and Diolpate 7170
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3.2 : Silane underlayer experiments

Silane underlayer experiments were performed with prehydrolysed, dried films. 

From the literature reviewed in chapterone, these may be expected to consist of 

polymerised siloxane films.

In the first experiment, the ATR crystal was dipped in a 20% Y9669 solution. PVC 

was then cast from a 5% MEK solution onto the silane film. The film was then allowed to 

dry at room temperature in a vacuum desiccator for 30 minutes. A spectrum ( 128 scans ) 

was taken at this point. This was found to be necessary to avoid blistering of the PVC film, 

when the laminate was placed in the oven and the highly volatile MEK rapidly boiled. The 

laminate was then heated at 70°C for an hour and another spectrum taken. It was also 

examined after 120 minutes, and 150 minutes of heating, also at 70°C. Spectra were also 

taken every 3 minutes after heating had been completed. The area of the infrared spectra 

showing the carbonyl stretching mode of the solvent, MEK ( at 1700 cm'1 ) as well as the 

1602 cm'1 band of the Y9669 is shown in figure 3.8.
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gure 3.8 : Spectra showing the carbonyl stretching mode of MEK and the 1602 cm'1 band of
Y9669 in a silane underlayer experiment

Figure 3.8 shows that the intensity of the MEK band increases when the PVC is cast 

onto the silane. This shows that the evanescent wave extended through the silane film, into 

the PVC overlayer. Therefore, if diffusion of silane into PVC occurred, the diffusion 

would have been detected. The MEK band then decreased rapidly when the film was 

vacuum desiccated, and more slowly after this. This was due to evaporation of solvent 

from the PVC film. The silane band however did not significantly change in intensity 

throughout the experiment. This is shown more clearly in Figure 3.9. Figure 3.9 shows the 

integrated areas of the two bands shown in Figure 3.8, as well as the 6(NH) stretching band 

of Y9669 at 3408 cm'1, all plotted against experiment time.
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gure 3.9 : Infrared silane underlayer results, showing area of Y9669 bands at 1602 cm'1 and 
3400 cm'1 and solvent band at 1700 cm'1 plotted vs. time

It should be noted firstly that the two silane bands both followed the same trend, 

showing that any variation was indeed due to concentration change in silane as assumed, 

and not due to reaction of the bond giving rise to the vibration. It can be seen again that 

there was little if any change in silane band area, and therefore no silane diffusion. The 

first part of the experiment was under vacuum conditions at room temperature, then the 

laminate was exposed to a temperature of 70°C until 170 minutes, and thereafter was left at 

room temperature. Therefore this experiment shows that the prehydrolysed silane film did 

not interdiffuse significantly with PVC at room temperature or at 70°C. This experiment 

was repeated several times, but no indication of interdiffusion was detected.
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It seems likely that the reason why no diffusion occurred was condensation of the 

silane molecules to form a polymerised siloxane film. If the silane film had condensed into 

a polymerised siloxane upon hydrolysis and heating, then interdiffusion would have been 

expected to have been considerablv-slowed, or even stopped compared with un-hvdrolvsed 

silane. In order to assess diffusion of un-hydrolysed silane, the silane overlayer geometry 

was adopted. This is described in the next section.

3.3.: Silane overlayer experiments

3.3.1: Silane overlayer experiments : heat - induced diffusion

One other reason why interdiffusion could not be seen in the silane underlayer 

experiments may have been that if diffusion did occur, only a small change in a large value 

would occur. This is because assuming that most of the silane stayed near the ATR crystal 

surface, this part would dominate the ATR spectrum. It was therefore decided to 

investigate the diffusion of silane from the outside of a PVC film towards the ATR crystal. 

This would take advantage of the sensitivity of the ATR evanescent field, because even a 

small amount of silane reaching the ATR crystal surface would give rise to a high intensity. 

The silane could also be investigated in its un-hydrolysed, un-condensed state, which was 

considered to be more likely to show diffusion.
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Another advantage of this configuration was that the PYC film could be prepared 

more slowly, allowing formation of more even films. To take advantage of this, all the 

films in the following experiments were cast from 5% DMF solutions which were found to 

lead to optimal films. This was not used in the silane underlayer experiments, as the low 

volatility of DMF meant prolonged heating of the films was required to remove solvent, 

after which any diffusion would presumably already have occurred.

The first PVC film for silane overlayer experiments was dried at 65°C for 14 hours 

to remove the DMF. A spectrum was taken once the film had dried, which confirmed full 

removal of solvent. A Talysurf surface profile showed this laminate to be 15pm. thick. 

Neat Y9669 was then brushed onto the PVC surface, and another spectrum taken. The 

laminate was then left in the spectrometer at room temperature for three and a half hours, 

with spectra taken at regular intervals. The sample was then placed in the oven at 70°C for 

an hour, and another spectrum taken. This was repeated until a total time after deposition 

of about 600 minutes. The results of experiment 7 are shown in Figure 3.10. All of the 

experimental measurements were made at room temperature.
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Figure 3.10 : Spectra showing the 1602 cm'1 Y9669 after various times at room temperature
and after annealing at 70°C

In order to show how the intensity of the silane spectral bands vary with time and 

temperature, the intensity of the 1602 cm '1 band of Y9669 has been plotted versus 

experiment time. This is shown in Figure 3.11.
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Figure 3.11: The area of the 1602 cm*1 band of Y9669 plotted vs. time for the first silane
over layer experiment

When the first spectrum was taken, there was no sign of silane. No silane intensity 

appeared even after 220 minutes at room temperature. At 70 °C however, silane band 

intensity increases with time. It appeared that diffusion was still occurring after 350 

minutes at 70 °C. This implies that diffusion occurs, but only at elevated temperatures. 

Alternatively, diffusion at room temperature occurs so slowly that on the time-scale used 

here ( i.e. up to 4 hours) it is not seen. It was thought that the diffusion at 70°C may have 

been due to the PVC being near its glass transition temperature ( Tg). The Tg of pure PVC 

is 80°C.

101



In the second overlayer experiment, similar conditions to those in the first 

experiment were used, but the laminate was not left at room temperature before heating. 

The laminate was examined in the spectrometer immediately after silane deposition, and 

then placedjn the_oven at_70_C. Jiie^ample was then periodically removed from the oven 

and another spectrum taken. The results of this experiment are shown in

Figure 3.12. This laminate was 13.5 jam thick. It can be seen that after 30 minutes 

diffusion was almost complete and that after this an equilibrium was reached in the 

diffusion, little if  any further diffusion occurring up to 350 minutes.

30

25

5

0
0 100 200 400300

Time ( m in u te s )

A rea a t 1602 cm-1

Figure 3.12 : The intensity of the 1602 cm-1 band of Y9669 plotted versus annealing time at 
70°C for the second silane overlayer experiment ( all measurements were made at room

temperature)

102



It is interesting to compare the results of this experiment with those of the previous 

experiment, which was carried out under the same conditions, but without the 4-hour pause 

at room temperature at the start. In the first experiment, the heating was stopped after 350 

minutes, at which time the diffusion was not complete. In the second experiment however,

( and similarly in subsequent experiments ) diffusion appears to be almost complete after 

30 minutes of heating. The difference in the results must be due to the time spent at room 

temperature. It has been reported that aminosilanes can hydrolyse over a period of a few 

hours, after being exposed to small amounts of water7 or to atmospheric water8,9 ( see 

section 1.2.2 ). It may be that by the time the heating was carried out, the silane had 

hydrolysed, leading to a change in diffusion properties. If this is the reason for the change 

in diffusion rate, this implies that hydrolysed silanes diffuse more slowly. We believe that 

this is the first time that a definite connection has been made between the hydrolysis of a 

silane and its ability to diffuse through a polymeric matrix. At first glance, it is not obvious 

why hydrolysis should reduce a silanes ability to undergo diffusion. However, if  the 

hydrolysis of the silane is considered as merely the first step on the reaction pathway to 

condensation ( see chapter 1 ), then this result makes more sense. It is well known that 

larger molecules tend to show much slower diffusion than smaller molecules10. Therefore 

it is assumed that the hydrolysis of the silanes slows diffusion by allowing the silanes to 

condense to form oligomers.

In order to study the diffusion at 70°C for all three silanes, an experiment was 

carried out under the same conditions for all three silanes. A PVC film was cast from DMF
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solution, to give a film 10 pm. thick. The silane was then brushed on top, and the laminate 

examined in the spectrometer. The laminate was then successively exposed to 

temperatures of 70 °C for periods of five or ten minutes, and a spectrum taken. The results 

from the Y9669 experiment are shown in Figure-3. 13. These results show the integration 

of the 1602cm'1 band of Y9669 versus time.
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Figure 3.13: The intensity of the 1602 cm'1 band of Y9669 vs. time at 70 °C ( all 
measurements were made at room temperature)

These results, as expected, show much the same as Figure3.12, i.e. fast diffusion at 

first, reaching equilibrium after around thirty minutes. This shows the results to be 

reproducible and also that the kinetics are reasonably independent of the length of time
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spent in the oven, as the results shown in Figure 3.12 were obtained with longer heating 

intervals, but show similar kinetics. The results of the same experiment carried out using 

A1110 are shown in Figure 3.13. The PVC film was 12 pm. thick.
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Figure 3.14 . The area of the N-H bending mode of A1110 ( 1600 cm'*) vs. time at 70 °C ( 
all measurements were made at room temperature)

Clearly, in Figure 3.14, no overall trend in the intensity at 1600 cm'1 was seen. This 

indicated either that there was no diffusion, or limited diffusion so that the silane did not 

reach the evanescent field. The reason for this is not clear. It may be that there was some 

reaction occurring which prevented the diffusion of the silane. This may be hydrolysis 

possibly leading to partial condensation of the silane. It might be expected that the heating
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process accelerated the hydrolysis and condensation processes. However, if this is the case, 

it is not clear why this did not occur in the case of Y9669, which also contains an amine 

group that could catalyse the hydrolysis7,8. The results of a similar experiment using 

A1891 are shown in Figure.3 J  5. Jnthis .experiment.-the-PVC film was 11 pm. thick.--------
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Figure 3.15 : The area of the S-H stretching mode of A1891 (2565 cm'1) vs. time at 70°C ( 
all measurements were made at room temperature)

Figure 3.15 shows that in the case of A1891, diffusion did occur, but the results 

appear to be rather different to those obtained for Y9669 ( i.e. Figure 3.13 ). Firstly, it can 

be seen that the area of the band is much smaller throughout the experiment. This is 

simply due to the lower intensity S-H stretching band used for A 1891 as compared to the
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very intense C=C ring stretch used for Y9669. The diffusion also appears to be slower, 

with a period, between zero time and 45 minutes in which little if any diffusion occurs, 

then a large step at about 50 minutes time, after which equilibrium is attained. One 

explanation for this is the smaller dp of-the A1891 band (O.Spm.for 2565 cm'1-vs. 0.5 pm. 

for 1602 cm'1, see equation 2.13 ) compared to the Y9669 band. This means the 

evanescent field extends less far into the PVC film, so the silane takes longer to interact 

with it. In fact, as explained in chapter 2, the infrared intensity measured depends upon the 

square of the evanescent field strength, making the dependence on dp even stronger. This 

seems unlikely to be the entire explanation however, as the difference between the dp 

values is quite small compared to the entire distance the polymer diffused ( ca. 10 pm .). It 

is known that steric effects can change diffusion rates. Larger molecules tend to diffuse 

more slowly under the same conditions than small molecules10. However, this effect would 

lead one to expect slower diffusion for Y9669, as the phenylamino group is much larger 

than the mercapto group of A 1891. Therefore, steric effects do not explain the change. 

The film used in the A 1891 experiment was somewhat thicker than that used in the Y9669 

experiment (11 pm. for Y9669 as opposed to 8 pm. for A1891 ). This seems most likely 

to explain the differences in the results.
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3.3.2 : Silane overlayers - plasticised PVC

In order to test the theory that the PVC being near its glass transition temperature ( 

Tg ) allows diffusion.itwas decided to plasticise the PVC.—Adding a plasticiser to a 

polymer formula reduces the Tg of the resulting polymer. Different plasticisers are used 

with different polymers. In the case of PVC, the most common plasticisers are phthalate 

esters and adipic esters11. The plasticiser used here is the adipic ester DHA ( see Figure 3.4 

). DHA is soluble in DMF, so it was simple to form films with the desired plasticiser 

content by dissolving both PVC and DHA in DMF prior to casting.

In the first experiment, the plasticised PVC film contained 30% DHA, and was l ip  

m. thick. After removal of the DMF solvent, a background spectrum was taken, and then 

Y9669 was brushed on top of the PVC film. The laminate was then immediately placed in 

the spectrometer and one spectrum taken per minute for 2 hours. The film was not heated 

at all to induce diffusion. The results in the 1600 cm'1 region are shown in Figure 3.16.
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Figure 3.16 : Results of Y9669 diffusion in PVC plasticised by 30% DHA

The intensity of the band at 1602 cm'1 in these results is plotted vs. time in Figure 

3.17. The time - dependent increase in the 1602 cm'1 band and the doublet around 1510 

cm'1 ( assigned to a ring breathing mode of Y9669 ) in Figure 3.16 shows that diffusion did 

occur in PVC plasticised by 30% DHA at room temperature. Figure 3.17 shows the 

kinetics of diffusion more clearly. After only one minute, diffusion had already started, 

and equilibrium was reached after 30 minutes. By comparing Figure 3.17 with Figure 3.13, 

it can be seen that diffusion at 70°C in unplasticised PVC showed similar kinetics to 

diffusion in 30% plasticised PVC at room temperature. The other major feature of Figure 

3.16 is the time - dependent decrease in the band at 1735 cm'1. This band is assigned to the 

carbonyl stretching mode of the plasticiser, DHA. This band appeared to decrease with
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very similar kinetics to the kinetics of the increase in the silane bands. This is discussed 

further later in this section.
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Figure 3.17 : The area of the 1602 cm'1 band of Y9669 vs. time for diffusion in PVC
plasticised by 30% DHA

In order to determine the effect of silane chemistry on diffusion characteristics, the 

same experiment was also carried out using A ll 10 and A1891. Figure 3.18 shows the 

results of A ll 10 diffusion in PVC plasticised with 30% DHA. The laminate was 16 pm. 

thick. It can be seen from the increase in NH bending mode intensity at 1600 cm'1 that 

A1110 was observed to have diffused at room temperature in 30% plasticised PVC. It can 

also be seen that the same decrease in the plasticiser band at 1735 cm'1 was observed. The
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smaller intensity of the silane band compared to that of Y9669 was not a concentration 

effect; it can be seen from Figure 3.5 that the band used for A1110 is much smaller than 

that used for Y9669. Y9669 was chosen for study because although it is not as widely used 

as A ll 10 or A1891 industrially12’13, it has very strongly absorbing bands in both infrared 

and Raman spectroscopy. Throughout the work described here, better signal to noise was 

found for Y9669 than for A1110 or A 1891. The band due to NH bending in A1110 is also 

broader that the 1602 cm'1 band in Y9669, leading to more interference from the water 

vapour absorptions which occur in this part of the infrared spectrum.

0 . 05-

-o.oo-

0 minutes
.-0 . 05- 5 minutes

10 minutes

30 minutes

90 minutese-0 .10 -

120 minutes

- 0 . 15-

16501750 1700 1600 1550

W a v e n u m b e rs

Figure 3.18: Results of A1110 diffusion in PVC plasticised with 30% DHA
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The area of the NH bending band of A1110 vs. time for this experiment is plotted in Figure

3.19.
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Figure 3.19: The area of the NH bending mode of A1110 (1600 cm'1) vs. time for A1110
diffusion in 30% DHA plasticised PVC

Figure 3.19 shows that A ll 10 diffused considerably more slowly than Y9669 in 

30% DHA plasticised PVC. Y9669 had reached equilibrium after around 30 minutes, 

whereas A ll 10 took about 90 minutes. This might be due in part to the increased 

thickness of the polymer film.

Figure 3.20 shows the results of A1891 diffusion in 30% DHA plasticised PVC. 

The laminate was 15 pm. thick. The spectral region shown is that containing the SH



stretching vibration of the A 1891. This region does not show any plasticiser bands, but it 

was observed that the band at 1735 cm’1 decreased in intensity with time, as was observed 

for the other silanes. It can be seen from Figure 3.5 that the intensity of this band ( 2565 

cm'1 ) is very low, and this explains the low signal to noise ratio seen in Figure 3.20. 

Fortunately, there is no absorption from water vapour or carbon dioxide in this region, so 

no interference from these fluctuating bands occurred.
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Figure 3.20 : Results of A1891 diffusion in PVC plasticised with 30% DHA

It can be seen from the increase in SH stretching vibration intensity in Figure 3.20 

that A 1891 also diffused in 30% DFIA plasticised PVC at room temperature. The area of 

the SH stretching vibration of A1891 is plotted vs. time in Figure 3.21 for this experiment.
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Figure 3.21 shows a large amount of scatter compared to the results from A ll 10 

and Y9669 diffusion, even though five minute scans were used for the later measurements 

to increase the signal to noise ratio. This was due to the low signal to noise ratio obtained. 

It can be seen that the diffusion again took about 90 minutes to reach equilibrium. This 

may be due to the thickness of the film used being similar to that used for A1110 diffusion.
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Figure 3.21 : The area of the SH stretching band of A1891 ( 2565 cm"1) vs. time for A1891
diffusion in 30% DHA plasticised PVC
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3.3.3 : Silane overlayer experiments : kinetic analysis of data

It is clear from the results presented above that diffusion of organosilanes in 

plasticised P VC occurs jreadily, and -that the -kinetics of-the process may be affected by a 

number of factors, e.g. film thickness, silane chemistry and plasticiser concentration. In 

order to quantify the kinetics of diffusion it was decided to attempt the fitting of the data to 

theoretical models of diffusion ( see section 2.1.4.1 ). The first model investigated was 

simple Fickian case I diffusion14. A program written in the Matlab programming and 

visualisation package was used to perform the fittings. This program has been previously 

described15,16. The program starts with an estimated value for the Fickian diffusion 

coefficient, D, and uses the calculated value of dp ( obtained from equation 2.14 ) and 

measured values of the film thickness, L and the equilibrium value of the absorbance, Aoo. 

The program then uses equation 2.20 to calculate what the diffusion profile would be for 

the estimated diffusion coefficient. This profile is compared to the input data from the 

experiment. The %2 merit function is used as a measure of the closeness of the fit between 

the data and the calculated diffusion profile. The diffusion coefficient is then iteratively 

modified in order to minimise the difference between the calculated and measured 

diffusion profiles. One disadvantage of this fitting technique is that the program is unable 

to distinguish between the true ‘best fit’ and any local minima in the fit error obtained. In 

order to overcome this problem, several fittings were used for each set of data investigated, 

using different estimated diffusion coefficients. The result of the fitting performed on the 

data obtained for Y9669 diffusion in 30% DHA plasticised PVC is shown in Figure 3.22.
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Figure 3.22 : Results of fitting Fickian case I diffusion model to data from Y9669 diffusion
in 30% DHA plasticised PVC

Figure 3.22 shows that the data did not fit the Fickian case I diffusion model well at 

all. This result was found to be typical of the data obtained; in no case did the data fit this 

model. The second model assessed was the dual mode sorption model ( see section 2.1.4.1 

). The method of fitting was very similar, but because the dual mode sorption model uses 

two diffusion coefficients, a Pascal program which applies the Levenberg - Marquardt 

fitting routine to the fitting process was used. This program has been well described

17previously . The Levenberg - Marquardt routine is a method for fitting a set of data with 

more than one parameter. Like the Fickian case I fitting process, it relies on the 

minimisation of the %2 merit function between the data and the calculated diffusion profile
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from estimated parameters. The equation used to generate the calculated curve was 

equation 2.21. The result obtained from the fitting of the dual mode sorption model to the 

data obtained for Y9669 diffusion in 30% DHA plasticised PVC is shown in Figure 3.23
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Figure 3.23 : Results of fitting the dual mode sorption model to data from Y9669 diffusion
in 30% DHA plasticised PVC

Figure 3.23 clearly shows that the data fit a dual mode sorption model. The 

parameters obtained for this fitting are shown in Table 3.2.
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Parameter Value

Di 6.5xl0'8 cmV1

rv Q G-l- 1 G*9 „m 2 -li>2 y.yxiu cm s

Xj 0.89

Table 3.2 : Band fitting parameters obtained from dual mode sorption fitting of Y9669
diffusion in 30% plasticised PVC

The dual mode sorption model assumes that two species undergo diffusion into the 

polymer film. A ‘mobile’ species diffuses with one diffusion coefficient into the film, and 

an ‘immobile’ species diffuses with another diffusion coefficient. It can be seen from 

Table 3.2 that D2 is more than an order of magnitude lower than Di. The parameter X] 

represents the fraction of material which is ‘mobile’, i.e. the fraction of diffusion which 

occurs with diffusion coefficient Xi therefore always has a value between 0 and 1. In 

the basic theory of dual mode sorption, one species is relatively immobilised at sites in the 

polymer network, for example voids, whilst the rest of the molecules are free to diffuse 

through the polymer18,19. However, the two species are in fact both partially mobile. 

Therefore the two species might not be chemically different molecules, but are often 

considered to be the same molecule, but in different environments in the polymer matrix.

In order to investigate the effect of different plasticiser concentration on the 

diffusion, experiments were carried out as described above for PVC films with 15, 20, 25, 

30, 35 and 40% DHA for all three silanes. The results are presented in Table 3.3. In 

several cases, two or three runs were carried out in order to check the validity of the results.
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In these cases, mean values of the diffusion coefficients have been presented. It was found 

that for all the experiments, the dual mode sorption model fitted much better than the case I 

model. Therefore table 3.3 shows only the diffusion coefficients for the dual mode 

sorption fitting.------------------------------------------------------------------------------------------------

Plasticiser Concentration Y9669 A1110 A1891
40% DHA Dj = 3.25X10*6 

D2 = 5.27x10'7 
Xi = 0.88

D1=4.35xl0'6 
D2 = 2.16xl0‘7 

X! = 0.46

Dj = 1.04xl0‘3 
D2 = 2.76x1 O'7 

Xj = 0.70
35% DHA Dj = 2.35xl0'7 

D2 = 1.755xl0‘8 
X! = 0.95

D 1 = 7.49xl0‘6 
D2 = 4.03x1 O'8 

X! = 0.57

Dj = 6.86xl0'6 
D2 = 1.36x1 O'7 

X! = 0.56
30% DHA Di = 6.51xl0’8 

D2 = 8.79x1 O’9
Xi = 0.81

Dj = 6.02x10*7 
D2 = 3.45x10‘8 

X! = 0.43

Dj = 7.86xl0‘7 
D2 = 2.89xl0‘8 

Xj = 0.76
25% DHA Dj = 8.48xl0*8 

D2 = 3.53xl0'8 
Xi = 0.62

Dj = 1.84xl0‘7 
D2 = 1.87xl0'8 

Xj = 0.29

Dj = 9.87xl0'8 
D2 = 9.51xl0*8 

Xj = 0.98
20% DHA Di = 5.79xl0‘8 

D2 = 7.88x10‘9 
Xi = 0.37

D! = 6.02xl0'8 
D2 = 5.49xl0'9 

Xi = 0.24

Di = 6.03xl0‘8 
D2 = 2.43x1 O’9 

Xj = 0.60
15% DHA Di = 8.96xl0'9 

D2 = 8.55xl0*9 
Xj = 0.69

D,=6.16xl0*8 
D2 = 1.20xl0'8

Xi = 0.20

No result

Table 3.3 : Diffusion coefficients obtained from fitting the data from silane diffusion in 
DHA plasticised PVC to the dual mode sorption model

It was found that no fitting was possible in the case of A1891 in 15% DHA 

plasticised PVC. This result is discussed later, with the other A1891 results.

In order to demonstrate graphically the trend in the data in Table 3.3, the log of the 

diffusion coefficients has been plotted versus the percentage of DHA. The log of the two
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diffusion coefficients, D\ and D2 for Y9669 diffusion has been plotted versus the 

percentage of plasticiser used in Figure 3.24.
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Figure 3.23 : The logarithm of the diffusion coefficients obtained from dual mode sorption 
fitting of Y9669 diffusion vs. percentage plasticiser in the PVC film

Figure 3.23 : The shows that as the plasticiser concentration of the PVC film was 

increased, the diffusion coefficients of Y9669 in the film dramatically increased. Over the 

range 15 to 40% plasticiser, the diffusion coefficients increased by approximately three 

orders of magnitude. The experiments using 15% plasticiser took 300 minutes to reach 

equilibrium, whereas in the 40% plasticised PVC, the diffusion came to equilibrium after 5 

minutes. As shown in Table 3.3. the diffusion coefficient of the mobile species, Di is

120



generally at least an order of magnitude greater than the diffusion coefficient of the 

immobile species, D2. An exception to this is the data obtained for the 15 % plasticised 

film. It was thought that this may indicate that this diffusion does not fit the dual mode 

sprption model properly. Jh eiittin g  of this data to the dual mode sorption model is shown 

in Figure 3.24. For comparison, the results of fitting this data to the case I diffusion model 

are shown in Figure 3.25.
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Figure 3.24 : Results of fitting data from Y9669 diffusion in 15% DHA plasticised PVC to
the dual mode sorption model

Figure 3.24 shows that although the fit of the data to the dual mode sorption model 

is not as good as shown by diffusion in 30% DHA plasticised PVC ( Figure 3.23 ), it is still
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quite a good fit. Comparison with Figure 3.25 shows that the data fits the case I diffusion 

model much more poorly. It is not known why the fitting process produced very similar 

values for Di and D2 in this case.
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Figure 3.25 : Results of fitting data from Y9669 diffusion in 15% DHA plasticised PVC to
the Fickian case I diffusion model

In order to determine the cause of the decrease in plasticiser band intensity ( see 

Figure 3.16 ), it was decided to attempt to determine the kinetics of the decrease. A plot of 

the integrated intensity of this band vs. time is shown in Figure 3.26. This data was 

obtained for Y9669 diffusion in 30% DHA plasticised PVC.
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Figure 3.26 : The area of the carbonyl stretching mode of DHA ( 1732 cm'1) plotted vs. 
time for Y9669 diffusion in 30% DHA plasticised PVC

Comparison of Figure 3.26 with Figure 3.17 shows that to a first approximation, the 

decrease in the band intensity of DHA shows the same kinetics as those shown by Y9669. 

In order to test the match in kinetics more closely, the dual mode sorption fitting program 

was applied to the data shown in Figure 3.26. The results are shown in Figure 3.27.
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Figure 3.27 : The results of fitting the decrease in DHA band intensity ( 1732 cm'1) to the
dual mode sorption diffusion model

Figure 3.27 shows that the decrease in DHA carbonyl stretching intensity fit very 

well to the dual mode sorption model. This data was found not to fit well to the case I 

diffusion model. The diffusion coefficients generated by the fitting procedure are given in 

Table 3.4.
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Parameter Value

Di 8.54xl0'8cm2s*1

TV A  1 fl"8 r-m2cJ1*2 /D X I U  C lll s

X! 0.46

Table 3.4 : Diffusion coefficients obtained from fitting the decrease in DHA band intensity 
(1732 cm'1) to the dual mode sorption diffusion model

Table 3.4 shows that the mobile diffusion coefficient ( D! ) generated for the 

plasticiser is very similar to that of the silane diffusion. The ‘immobile’ diffusion 

coefficient ( D2 ) was somewhat larger however. It is believed that the similarity in the 

kinetics of the decrease in the plasticiser band and the increase in the silane bands indicates 

that the silane displaced the plasticiser from the polymer film in the evanescent field, 

possibly due to swelling of the polymer film, or migration of the plasticiser to the outside 

of the film. This is discussed in greater detail later.

The log of the two diffusion coefficients, Di and D2 for A ll 10 diffusion has been 

plotted versus the percentage of plasticiser used in Figure 3.28.
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Figure 3.28 : The logarithm of the diffusion coefficients obtained from dual mode sorption 
fitting of A1110 diffusion vs. percentage plasticiser in the PVC film

Figure 3.28 shows that in the case of A ll 10 diffusion, much the same trend was 

seen in the diffusion coefficients as was seen in the case of Y9669 diffusion. Both and 

D2 increased overall with increasing plasticiser concentration. The greatest increase in the 

size of the diffusion coefficients occurred between 30 and 35 % DHA. Unlike the Y9669 

data, at 15% plasticiser, the value of D2 was approximately an order of magnitude less than 

that of D h as in all the plasticiser loadings. All the data fitted well to the dual mode 

sorption model.
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Figure 3.29 : The logarithm of the diffusion coefficients obtained from dual mode sorption 
fitting of A1891 diffusion vs. percentage plasticiser in the PVC film A1891

Figure 3.29 shows that in the case of A1891 diffusion, a similar trend was seen in 

the diffusion coefficients as was seen in the case of Y9669 diffusion. Both D! and D2 

increased overall with increasing plasticiser concentration. Like the Y9669 data, one point 

showed Di and D2 with very similar values, but in this case it was the point at 25% DHA. 

Again it was suspected that this meant a poor fit to the dual mode sorption model. 

However, upon attempting to fit the data to the case I model, it was found that the data did 

not fit to the Fickian Case I model. The data was found to fit much better to the dual mode 

sorption model.. Again, the reason for the very similar diffusion coefficients is not known.
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The results from the experiment where no fitting was possible ( A1891 in 15% DHA 

plasticised PVC) are shown in Figure 3.30.
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Figure 3.30 : The area of the v(SH) stretching band of A1891 ( 2565 cm'1) vs. time for
diffusion in 15% DHA plasticised PVC

Figure 3.30 shows that normal diffusion did not occur : the initial diffusion to the 

maximum intensity obtained occurred extremely quickly, and after this the intensity 

decreased, apparently reaching equilibrium at a lower intensity after about 300 minutes. It 

is not known why this occurred. The experiment was repeated twice and the same results 

observed each time. One possibility is that the initial increase was due to diffusion of the 

silane to the interface and that the subsequent decrease in intensity was due to swelling of
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the PVC film. However, this seems unlikely, as it was seen in only this case; if swelling 

due to the presence of the silane were to blame, then it would be expected that it would 

occur in more than just this one experiment. Another possibility is that the behaviour was 

due toJhejmicrostnicture of-the film.^This would explain why the effect occurred for one 

plasticiser concentration, but not why it did not occur for the other silanes. It may be that 

in the case of this particular plasticiser concentration, cracks or pinholes occurred in the 

polymer film, allowing fast initial diffusion to the surface of the ATR crystal, followed by 

diffusion into the bulk of the PVC film. This hypothesis is also very uncertain, however, as 

it does not explain why the effect was only seen with the silane A1891.

3.3.4 : Silane overlayers - PVC plasticised with polymeric plasticiser

In order to determine the effect of type of plasticiser on diffusion, it was decided to 

study the diffusion of silanes in PVC plasticised with a polymeric plasticiser. It is well 

known that in polymeric materials containing plasticiser, plasticiser migration can 

occur20,11. This can occur as a result of weathering, swelling, temperature changes, or 

simply as a function of time. It was shown that upon allowing silanes to diffuse into PVC 

containing a monomeric plasticiser, a decrease in the plasticiser band intensities was 

observed. It was thought that this may have been due to the plasticiser migration out of the 

bulk of the film towards the outer surface of the film. Another possibility is that the PVC 

film swells when the silane diffuses into it. Because the volume sampled by the evanescent 

field is fixed ( assuming no change in refractive index of the film ), this would result in a 

net decrease in the concentration of plasticiser ( and PVC ) in the evanescent field.
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Therefore the intensity of plasticiser and PVC bands in the spectra would decrease at the 

same time as the intensity of the silane bands are increasing. One way to distinguish 

between the two possibilities would be determine whether both PVC and plasticiser bands 

decreaseJnjntensity._Unfortunately,-the-only-PVC bands available in the spectral window 

of silicon are the v(CH) stretching modes around 2800 - 2950 cm'1. These bands are 

overlapped by the v(CH) modes of both the plasticiser and the silane. This makes 

definitively interpretation of the spectra in this region very difficult.

One method used commercially in order to reduce or stop the migration of 

plasticiser is the use of oligomeric plasticiser21. It is well known that the tendency of 

chemically similar materials to undergo diffusion in polymeric films varies inversely with 

their molecular weights10,22. This is due to the larger size of high molecular weight 

materials, and in the case of polymeric materials, the tendency to form entanglements with 

the matrix material. It was decided to perform similar experiments as described in section 

3.2.2 but with Diolpate 7170 replacing DHA. These two materials are almost identical 

chemically ( see section 3.1 ), and so any differences would be due to the difference in 

molecular weight.

Experiments were performed identically to those described in the last section, with 

Diolpate 7170 replacing DHA. The results obtained from the diffusion of Y9669 in PVC 

plasticised with 40% Diolpate 7170 are shown in Figure 3.31. The thickness of the PVC 

film was 7 pm.
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Figure 3.31 : The results of Y9669 diffusion in 40% Diolpate 7170 plasticised PVC

The integrated intensity of the 1602 cm'1 band of the Y9669 band in Figure 3.31, 

along with the dual mode sorption fitting obtained is shown in Figure 3.32.
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Figure 3.32 : The results of fitting data from Y9669 diffusion in 40% Diolpate 7170 
plasticised PVC to the dual mode sorption model

It can be seen from Figure 3.31 and Figure 3.32 that the silane did diffuse through 

the film plasticised with Diolpate 7170. Figure 3.32 also shows that the silane diffusion 

fitted well to dual mode sorption kinetics. The data was again found not to fit the Fickian 

case I diffusion model. It can also be seen that despite the polymeric nature of the 

plasticiser, the carbonyl stretching mode ( at 1726 cm'1 ) still decreased as the silane 

diffused into the film. This implies that the reason for this decrease was not diffusion of 

the silane to the surface of the PVC film, but swelling of the PVC film due to the uptake of 

silane. Figure 3.33 shows the area of the 1726 cm'1 band of Diolpate 7170 versus time for 

the diffusion of Y9669 in 40% Diolpate 7170 plasticised PVC.
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Figure 3.33 : Area of 1726 in 40% Diolpate 7170 PVC

Comparison of Figure 3.33 with Figure 3.32 shows that the decrease in intensity of 

the plasticiser band was somewhat slower than the increase in intensity of the silane bands. 

The difference in kinetics is not very great. It is believed that this proves the plasticiser did 

not diffuse away from the ATR crystal interface, because the large change in molecular 

weight of the plasticiser upon using Diolpate 7170 ( which has six times the molecular 

weight of DHA ) would have meant that the diffusion of the plasticiser would have been 

much slower than the diffusion of the silane if this were the case. In order to assess 

diffusion in Diolpate 7170 plasticised PVC more fully, experiments were performed with
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all three silanes, using the limits of the plasticiser concentrations that gave results when 

using DHA ( i.e. 40% plasticiser and 20% plasticiser). The results of dual mode sorption 

fitting to the data obtained are shown in Table 3.5.

% Diolpate 7170 A1-110 A t QQ"!i  > 80” AJLAIU AiO^l

40 D ^ ^ x l O -6 
D2= 1 .6 2 x 10-6 

X i = 0.53

D, = 1.07 x 10-6 
D2 = 8.80 x 10'7 

X, = 0.96

D, = 1.04 xlO'5 
D2 = 2.76 x 10‘7 

X, = 0.69
20 D ^ ^ x i c r 8 

D2 = 3.59 x 10'9
Xi = 0.86

D, = 3.74 x 10'7 
D2= 1.99 x 10'8 

X, = 0.40

Dj = 2.84x10'“ 
D2 = 2.67 x 10'9 

X] = 0.95

Table 3.5 : Diffusion coefficients obtained from fitting the data from silane diffusion in 
Diolpate 7170 plasticised PVC to the dual mode sorption diffusion model.

Table 3.5 shows that like the results with DHA as a plasticiser ( Table 3.3 ), 

increasing the concentration of Diolpate 7170 greatly increases the diffusion coefficients 

resulting from the fitting procedure. It was again found that no data fitted the case I 

diffusion model, indicating that the mechanism of diffusion is independent of plasticiser 

molecular weight.

The Y9669 results show that the diffusion coefficients obtained for Diolpate 7170 

plasticised PVC were similar to those for DHA plasticised material. Again, this showed 

that diffusion was independent of the molecular weight of the plasticiser, as well as that the 

two plasticisers have the same effect, when used in the same concentrations.

In the case of A ll 10, although the trends are the same for monomeric and 

polymeric plasticisers, there is somewhat more disparity between the values of the 

coefficients obtained. However, no overall trend can be discerned in the differences
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between the values obtained. These differences all amounted to less than an order of 

magnitude, and it is believed that they were due to experimental errors.

 Thej-esults for-A1891^howed veiy close agreement between diffusion coefficients

obtained using DHA and Diolpate 7170. At first glance, it seemed surprising that the 

results were so reproducible for A1891, considering the poor signal to noise obtained for 

the band used to generate the data ( see Figure 3.20 ). The main difference between this 

silane and the others is that A1110 and Y9669 contain an amine group. The catalytic effect 

this has on the hydrolysis has been described in the literature7,8. It seems likely that, 

despite the care taken to avoid exposure of the silanes to atmospheric water, some small 

amount of water inevitably came into contact with the silanes before the experiments were 

performed. If this were the case then one might expect the two amino silanes to undergo 

more hydrolysis than the mercaptosilane. If this did occur, and as suggested in section 

3.2.1, the hydrolysed silanes diffused more slowly than unhydrolysed silanes, then the 

unrepeatability in the aminosilane results is likely to be have been due to slight differences 

in the level of hydrolysis or condensation of the amino silanes used. In contrast, the 

resistance to hydrolysis of the mercaptosilane meant that the material used was identical in 

each experiment, even if some exposure to water had occurred.

3.4 : DSC analysis of plasticised PVC films

The glass transition temperature ( Tg ) of a polymer is the temperature at which a 

major sub-melting chain motion starts to occur23. This has the effect of radically changing
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the mechanical properties of the polymer; it is said to go from the glassy to the rubbery 

state. Several lesser transitions may also exist, known collectively as sub-Tg transitions, 

but these are not considered here. In the pure PVC supplied by the Aldrich chemical 

company, the Tg is quoted as 80 °C. The glass transition is an effect which can occur over 

quite a broad temperature range. This means that the effect of the glass transition may be 

observed that considerably lower temperatures than the measured Tg, and as a consequence 

the Tg can be difficult to measure. Often the measured Tg will depend upon the technique 

used to measure it, and the way in which the technique is applied. Specifically, if  a 

temperature -  scanning technique is used, the rate at which the temperature is raised ( or 

lowered) can change the measured Tg considerably.

Because above or near the Tg of a polymer, the polymer chains show increased 

motion, it was expected that the T would affect the diffusion seen. Therefore, it was 

decided to measure the Tg of the PVC films as cast. It was decided to use Differential 

Scanning Calorimetry ( DSC ) to measure the Tgs. Several alternative techniques exist to 

measure Tgs, notably Dynamic Mechanical Thermal Analysis ( DMTA ). However, most 

require a sample several mm. thick. Production of a sample this thick was not possible by 

casting, without severe degradation or poor solvent removal. As it was desirable to 

measure the films produced in the same way as those used in the diffusion experiments, it 

was decided to use DSC, which only requires a few milligrams of material.

DSC is a relatively simple technique. The sample in a metal sample pan, and an 

empty sample pan as a reference are placed in a closed sample holder, and directly
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connected to individual resistive heaters. A desired temperature ramp rate is programmed 

into the controller, which then adjusts the flow of energy to the heaters so that the same 

temperature is maintained in both sample and reference pans. The extra energy supplied to 

thesamplepan,therefore, shows the energy absorbed by the sample in changing its 

temperature. The output from the technique shows the energy flow to the sample versus 

the temperature. Any exothermic or endothermic process occurring in the sample give rise 

to a change in slope of this plot. In practice, the Tg of a polymer is measured as a ‘step’ in 

the plot.

DSC results were obtained at Pilkington pic using a DuPont 910 DSC cell coupled 

to a TA2100 controller. The DSC cell was calibrated for temperature using standard 

indium metal. A ramp heat rate of 10 °C per minutes was used from -100 to +100 °C. A 

sample plot is shown in Figure 3.34. This is the result from the 20% DHA plasticised 

sample.
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Sam ple: S N J0217  20X pPVC.
S iz e :  1 0 .3 0 0 0  mg
M ethod: DSC RAMP10*C/MIN TO 100  
Comment: E n c a p s u la t e d  P a n s .  No P u rg e  G a s. 
- 0 .0 5 - 1 ----------------------------- ----------------------------------------

DSC F i l e :  C: S N J 0 2 1 7 D 1 .0 0 1  
O p e r a to r :  S .N .J a m ie s o n  
Run D a te : 1 7 - S e p - 9 8  11: 43
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Figure 3.34 : Typical DSC output plot. The sample was 20% DHA plasticised PVC

The results of the Tg measurements are tabulated in Table 3.6.

Percentage

Plasticiser

Inflection Tg ( °C )

20 16

25 -1

30 -16

35 -19

Table 3.6 : The results of Tg measurements by DSC 

Unfortunately, it was not possible to obtain Tg results for the 15 and 40 % DHA

samples. However, the trend in Tg with plasticiser content is quite well known24, and is

shown by Figure 3.35 reproduced from reference 25.
137



350i

300

p

250

200

1k---------------------

X x

Y

+o7•4
*

------------

1

' ' i

\

\
•
' f  .

\ x

X .

' f

%
' 5

■s
Nw

•V 1

Wkfm"*—-«0

" * ---- --

0.2 0,4 0.6
W\

0.8 1.0

Figure 3.35 : The dependence of Tg of PVC upon plasticiser concentration ( W i ). Open 
circles represent dicyclohexylphthalate, filled circles represent dibutylphthalate25.

The measured values of the glass transition temperatures are plotted versus the 

percentage of plasticiser in the films in figure 3.36.
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Figure 3.36 : Glass Transition temperature of plasticised PVC films measured by DSC vs.
percentage of plasticiser

It can be seen from Figure 3.36 that the overall trend in the results as measured follows 

fairly closely the literature trend ( Figure 3.35 ), in that initially a linear relation is seen, but 

the slope decreases at higher concentrations of plasticiser. With knowledge of the trend that 

occurs in the data from the literature, and the measured values, it is also possible to estimate 

the values for those samples which could not be measured. These have been estimated as : 

25 °C for 40 % plasticised PVC, and 25 °C for 15% plasticised PVC. Using these values, 

the diffusion coefficients from fitting to the dual mode sorption model have been plotted 

versus Tg in figures 3.37, 3.38 and 3.39.
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Figure 3.37 : Diffusion Coefficients from dual mode sorption fitting for Y9669 diffusion in
plasticised PVC vs. Tg of the PVC
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Figure 3.38 : Diffusion coefficients from dual mode sorption fitting for A1110 diffusion in
plasticised PVC vs. Tg of the PVC
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Figure 3.39 : Diffusion coefficients from dual mode sorption fitting for A1891 diffusion in
plasticised PVC vs. Tg of the PVC

Figures 3.37, 3.38 and 3.39 show that for each of the silanes, as the Tg of a PVC 

film was reduced from 25 to -25 °C, the diffusion coefficients of the silane in the film 

increased by approximately 3 orders of magnitude.

3.5 : Silane overlayers - hydrolysed silanes

In order to determine whether hydrolysis affects diffusion, as was implied by 

previous results described in this chapter, and what the effect of hydrolysis on diffusion is,
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it was decided to perform some diffusion measurements with pre-hydrolysed silanes. 

However, it was decided not to use the standard acidified IPA / H2O solution as was 

described in section 3.2. This was because it is known that alcohols and water diffuse into 

polymers26 including PVC27’28— These materials may plasticise the polymer2— and thus 

change the diffusion of silanes in the material, as well as complicating the spectral analysis. 

Therefore, it was decided to hydrolyse the silanes by exposure to atmospheric water, thus 

avoiding the problem of the hydrolysing solvent affecting the results. This did not alleviate 

the problem altogether, because the hydrolysis products ( methanol or ethanol) would have 

been present in small concentrations in the diffusant material.

In order to determine the level of hydrolysis achieved, transmission infrared 

spectroscopy was used. The silane was sprayed onto a KBr plate, and allowed to interact 

with atmospheric water, while infrared spectra were obtained at regular intervals. The first 

experiment was performed with Y9669. The region of the spectra obtained showing the Si- 

O-Si stretching bands and the band at 992 cm-1 is shown in

Figure 3.40. This band was assumed to be equivalent to the Si-O-Et band used by Hoh et. 

al? as an indication of hydrolysis, i.e. it is assigned to the Si-O-Me stretching mode of 

Y9669.
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Figure 3.40 : The Si-0 stretching region of spectra obtained in transmission of Y9669 
undergoing hydrolysis with atmospheric water

It can be seen from

Figure 3.40 that the band at 992 cm'1 decreases in intensity with increasing time. This 

shows loss of Si-O-Me groups, i.e. hydrolysis of the Y9669. There is also a shoulder to the 

1080 peak, at about 1020 cm'1 which increases in intensity. This may be due to the 

condensation of Y9669, as observed by McKnight et. al.30 at 1038 cm*1 for the silane CSS ( 

see section 1.2.2 ). In order to determine how the Si-O-Me stretching mode decreases with 

time, the spectra were analysed with a standard curve-fitting procedure, and the integrated 

intensity of the curve fitted to the 992 cm"1 plotted against experiment time. This is shown
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in Figure 3.41.
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Figure 3.41 : The curve fitted intensity of the 992 cm'1 band of Y9669 undergoing
hydrolysis with atmospheric water

Figure 3.41 shows that hydrolysis is rapid in the first 2 hours, but that after 24 hours 

no further hydrolysis occurs. It is clear from Figure 3.41 that at this stage, and even up to 8 

days of exposure, hydrolysis is not complete, the intensity of the Si-O-Me band remaining 

at about half of its original intensity. The diffusion of Y9669 which had been exposed to 

atmospheric water for 24 hours was investigated. The experiment was similar to those 

described in section 3.2.1. An unplasticised PVC film was cast from DMF solution. The 

thickness was 7 pm. After application of the pre-hydrolysed silane, spectra were taken after 

subsequent exposures to 70 °C of five minutes duration. The intensity of the 1602 cm'1
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band of the Y9669 is plotted versus time at 70 °C in Figure 3.42. For comparison, the data 

from unhydrolysed Y9669 is also included, and the spectra are intensity normalised.
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Figure 3.42 : The area of the 1602 cm'1 band of hydrolysed and unhydrolysed Y9669 vs.
time for diffusion in PVC at 70 °C

It is clearly shown by Figure 3.42 that Y9669 exposed to atmospheric water for 24 

hours diffuses considerably slower than a fresh sample of Y9669. Therefore, it has been 

proven that hydrolysed Y9669 diffuses through unplasticised PVC at 70 °C more slowly 

than un-hydrolysed Y9669.
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The hydrolysis of A ll 10 was studied in the same way; the material was sprayed 

onto a KBr plate, allowed to react with atmospheric humidity and analysed in the infrared 

spectrometer. The spectra in the Si-0 stretching region are shown in Figure 3.43.
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Figure 3.43 : The Si-O stretching region of spectra obtained in transmission of A1110
undergoing hydrolysis with atmospheric water

Figure 3.43 shows that the band at 930 cm'1 decreased in intensity with time of 

exposure to atmospheric water. Figure 3.43 also shows that the two Si-O-Si bands at 1037 

and 1106 cm'1 broaden and move apart, with most change occurring before the second 

spectrum was taken ( i.e. during the first 30 minutes ). Ishida et al.31 found that in 

polyaminosiloxane undergoing a total cure, the two neighbouring bands at 1108 and 1045 

cm'1 sharpened and moved apart slightly. Therefore this effect in Figure 3.43 is presumed 

to be due to condensation of the silane. The band at 930 cm'1 was curve fitted and the 

intensity is plotted in Figure 3.44 versus time of exposure.
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Figure 3.44 : The curve fitted intensity of the 930 cm-1 band of A1110 undergoing
hydrolysis with atmospheric water

Figure 3.44 shows that A ll  10 undergoes rapid hydrolysis over the first day of 

exposure, and then slower hydrolysis over the following week. Comparison of the amount 

by which the intensity of the Si-O-Me peaks decrease in intensity shows that Y9669 

undergoes more hydrolysis over a week than A ll  10, but examination of the Si-O-Si 

stretching modes in the spectra suggests that A ll  10 undergoes more condensation. A 

diffusion experiment, equivalent to the Y9669 experiment described above was carried out 

using A ll 10 also. However, as with unhydrolysed A ll  10, no diffusion was observed for 

A ll  10 exposed to air for 24 hours. This is hardly surprising, as the spectra indicate that by

147



this stage the A ll 10 had undergone considerable condensation, making it less likely to 

show diffusion.

The same set of experiments were also carried out with A 1891. However, it was 

noticed that the spectra decreased rapidly in intensity after the first spectrum was taken. 

This is shown in Figure 3.45, in which the first three spectra are shown. The absolute 

intensity of the 958 cm'1 band of the A1891 is plotted versus time in Figure 3.46.

.25

.15

zero time

u 30 minutes 

>Au&WHirTntE§‘

.05

-.05
3000 2500 2000

Wavenumber (cm-1)
1500 1000

Figure 3.45 : The first 3 spectra of A 1891 undergoing air hydrolysis
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Figure 3.46 : The absolute intensity of the 958 cm-1 band of A 1891 undergoing air

hydrolysis vs. time

Inspection of the sample showed that the A1891 film had run off the KBr plate. The

experiment was repeated, keeping the time for which the sample was vertical ( which is

necessary to obtain the spectra ) to a minimum, but the same effect occurred. It was not

known why this effect was only seen with the A 1891, but it may be that this silane was less

viscous than the other two. To enable quantitative analysis of the hydrolysis, the integrated

intensity of the 958 cm'1 band of A1891 ( assigned to Si-O-Et) stretching ) was ratioed

against the integrated intensity of the CH stretching region ( i.e. 2780 to 3000 cm'1 ). This

region was chosen due to the lack of interference from water vapour or CO2 bands, and the
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high intensities seen. It was assumed that the intensities of these bands were totally 

insensitive to hydrolysis. The ratio of these two measurements is plotted versus time in 

Figure 3.47. For comparison, the absolute intensity of the 958 cm'1 band is plotted in 

Figure3.46 ____________ _____________________________________ __________
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Figure 3.47 : The ratio of the integrated intensity of the 956 cm'1 band of A1891 undergoing 
hydrolysis with the integrated intensity in the C-H stretching region

Figure 3.47 shows that over the first 24 hours of exposure, little if any hydrolysis 

occurred. After this however, the hydrolysis occurred quite rapidly, and appeared to be still 

occurring after 9 days exposure. A diffusion experiment was also performed using A 1891 

that had been hydrolysed by exposure to air for 24 hours. The PVC film was 10 pm. thick.
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The results are plotted alongside those obtained for unhydrolysed A1891 in Figure 3.48. 

Both sets of data have been intensity normalised.
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Figure 3.48 : The area of the v(SH) stretching band of hydrolysed and unhydrolysed A1891 
vs. time fro diffusion in unplasticised PVC at 70 °C

Figure 3.48 shows that the diffusion of A 1891 which had been exposed to air for 24

hours was very similar to that shown by unhydrolysed A 1891. It appears that the diffusion

may have been slightly slower in the case of the prehydrolysed silane, but the difference is

very small compared to that observed in the case of Y9669, which had undergone much

more hydrolysis in 24 hours of exposure to the atmospheric humidity. Overall, the results

presented in this section strongly agree with the hypothesis that the hydrolysis of a silane

slows the diffusion of the silane through unplasticised PVC films at 70 °C.
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Chapter 4 : Raman depth profile studies of organosilane diffusion

In order to show that diffusion of organosilanes occurs in PVC films, and to 

determine the distribution of the silanes in the PVC films before, during and after diffusion, 

Raman depth profiling experiments have been carried out. As described in chapter 1, other 

workers have used different techniques to obtain depth - resolved information about silanes 

in polymeric films1'4. However, the advantages of Raman confocal microscopy are that it 

can provide information on the micrometer scale3, and that depth profiles can be obtained 

in situ6’3, allowing the collection of depth - resolved information without the need for 

sputtering of the sample, or sectioning.

4.1 : Experimental

In order to obtain information of relevance to the glass / silane / PVC system, it was 

decided to investigate a model laminate. The first material considered for use as a 

substrate for the laminates was polished quartz. It was found that the use of quartz gave 

rise to a broad curved background absorption. This meant not only that the peaks from the 

deposited materials were harder to see, especially those of low intensity, but also that 

removal of the curved baseline was required before analysis. A much better substrate was 

found to be polished silicon wafers. This material led to a flat baseline in the spectra 

collected. Silicon does have bands in the Raman, however, most notably a sharp band at 

520 cm'1 assigned to the Si-Si stretching mode and its overtone band at 980 c m 1. As these
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bands did not interfere with any of the peaks of interest of the other materials, it was 

decided to use silicon as a substrate. An advantage of the presence of the bands due to 

silicon was that the 520 cm'1 band was found to be a very good indicator of the position of 

the surface of the silicon wafer. This helped to confirm that the depth profiles were 

calibrated correctly in the z - direction ( i.e. the optical axis ). The use of silicon as a 

substrate also meant that the resulting laminates were almost identical to those used in the 

infrared experiments, the only difference being that most of the laminates used in the 

Raman contained PVC films considerably thicker than those used in the infrared 

experiments( approximately 20 pm. vs. 10 pm. for the laminates used in the infrared 

experiments). Although silicon has a different structure to glass, the surface properties are 

very similar as the surface of oxidised silicon and glass both consist of Si02 and SiOH

7,8groups ’ .

4.1.1 : Materials

Most of the materials used for the Raman experiments were exactly the same as 

described in section 3.1.1, but no plasticiser was incorporated into any of the PVC films. 

The silicon wafers were treated in the same way to clean them, but extra care was taken 

when diamond polishing, as the long experiment times and long heating treatments often 

led to increased silane bonding to the silicon surfaces. When cover slips were used they 

were very thin ( <100 pm. ) glass slides provided by Pilkington pic. These were available 

in a variety of thicknesses in the range 20 to 100 pm. The 20 pm. slides were extremely
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fragile, but it was found that the thinner slides scattered less light, resulting in less signal 

loss when used. Therefore, 20 pm. cover slips were used for the depth profiling 

experiments described here.

4.1.2 : Spectroscopic measurements

All Raman spectroscopic measurements were made with a Renishaw Ramascope 

model 2000. The excitation source was a Helium-Neon ( HeNe ) gas laser emitting at

632.8 nm. This system is described in section 2.2.4. Only the grating optical path was 

used. The system can be operated in ‘static’ grating mode, giving a range of approximately 

500 cm'1, or in ‘extended’ mode, by rotating the grating as scanning progresses, which 

allows a range of approximately 250 cm'1 to 5000 cm'1. The static mode is not only 

somewhat more accurate, but spectral acquisition is considerably faster if only a limited 

spectral range is of interest. When measuring depth profiles, it was found that 

measurement of one band of the silane was adequate, so it was decided to use the static 

grating mode. To obtain reference spectra, the extended mode was used in the range 400 to 

4000 cm'1. To obtain depth profiles, the instrument was fitted with an electronic 

microscope stage attachment from Prior Instruments Inc., allowing movement in x, y and z 

planes with 1 jum. accuracy.

When measuring depth profiles, it was necessary to know the confocal response of 

the instrument accurately; that is, how effectively the instrument rejected light from outside 

of the focal plane, and hence what the depth resolution was. It was considered desirable to
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have 2pm. or less confociality as measured by the FWHH criterion described in section 

2.2.5. In order to ensure that this was the case, the 100X objective was used and the 

instrument set up in confocal mode by setting the entrance slit to 15 pm. width, and using 

only a 5 pixel height response on the CCD. Before each experiment a confocal test was 

carried out. This involved measuring the response from a silicon surface as the focus of the 

laser was moved away in 1 pm. steps, as described in section 2.2.5. For solid samples, 

reference spectra were obtained using the 50X objective. For liquid samples, the materials 

were placed in a quartz cuvette and the 20X ULWD objective was used.

4.1.3 : Spectra of materials

The Raman spectrum of the pure silanes are shown in shown in Figure 4.1 ( Y9669 

), Figure 4.2, ( A ll 10 ) and Figure 4.3 ( A1891 ). The spectra were obtained from pure 

liquid silanes in a quartz cuvette. The silanes were handled in a nitrogen atmosphere to 

ensure that it remained un-hydrolysed. The 20X ULWD objective was used.
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Figure 4.1 : The Raman spectrum of pure Y9669 ( unhydrolysed)
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Figure 4.2 : The Raman spectrum of pure Al 110 ( unhydrolysed )
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Figure 4.3 : The Raman spectrum of pure A1891 ( unhydrolysed )

The same bands were used in the Raman depth profiling work as in the infrared 

diffusion work. It can be seen from comparison of Figure 4.3 with Figure 3.5 that the 

v(SH) stretching band is much more intense in the Raman than in the infrared. Again, it 

was not possible to assign the band at approximately 1600 cm'1 in the Y9669 spectrum to a 

single vibration, rather it is the sum of the v(C-C) ring stretching and 6(NH) banding bands. 

It is therefore referred to simply as the 1600 cm'1 band.

Figure 4.4 shows the Raman spectrum of pure PVC powder. For comparison, 

Figure 4.5 shows the Raman spectrum of degraded PVC, obtained by heating the same 

PVC at 100 °C for 4 hours. It can clearly be seen that the spectra are very different.
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Figure 4.4 : The Raman spectrum of PVC obtained from pure PVC powder
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Figure 4.5 : The resonance Raman spectrum of degraded PVC film
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When PVC is thermally degraded, the main reaction is homolytic loss of HC1 

resulting in polyene sequences along the polymer backbone. This is shown in Figure 4.6.

—CH2 CHCI-----CH2— CHCI CH2 CHCI--------

Heat

▼

CH2 CHCI C H = C H  CH2 CHCI  + HCI

Figure 4.6 : The thermal degradation of PVC

The bands at 2560 cm'1, 2186 cm '1 and the very intense bands at 1485 cm"1 and 1098 cm'1 

in Figure 4.5 are resonance Raman bands, arising from the excitation wavelength 

coinciding with visible absorption wavelength of the polyene sequences in the degraded 

PVC. As these bands are extremely intense, they provide a very sensitive way of checking 

for degradation9,10. Figure 4.7 shows the Raman spectrum of a PVC film cast from DMF 

and dried for 14 hours at 65°C. The spectrum can be seen to be essentially identical to 

Figure 4.4. The differences present are the bands at 520 cm'1 and 980 cm'1 from the silicon 

substrate. None of the resonance bands from degraded PVC are present. This proves that 

the as - cast films were not degraded by the drying process. Since the same procedure was 

used to prepare films for the infrared experiments, the films used for the infrared
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experiments were also free of degradation. The film also shows that the solvent DMF had 

been completely removed as no carbonyl stretching band is present at 1675 cm '1.
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Figure 4.7 : The Raman spectrum of an as-cast PVC film on a silicon substrate

4.2 : Silane underlayer experiments

In the first experiments, silane was cast directly onto the silicon substrate. The 

silanes were pre hydrolysed in a 9:1 ( v/v ) IP A / H20  solution, which was acidified with 

3% ( v/v ) acetic acid to act as a hydrolysis catalyst. The silane film was heated to remove 

the solvent, and then PVC was cast onto the silane layer, and dried to remove solvent. In 

the first experiment, the laminate was then immediately examined to assess whether silane 

diffusion through the PVC film had occurred during the casting or drying process. The
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silane used was Y9669 and the laminate was determined by Talysurf surface profiling to be 

approximately 50 pm. thick. In order to measure the depth profile, the laser was focused 

10 pm. below the surface of the substrate, and the stage programmed to move 50 pm. up, in 

steps of 1 pm. A static spectrum centred at 1600 cm’1 was measured at each step.

A typical spectrum ( from a depth of 5 pm. into the laminate ) is shown in Figure

4.8.
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Figure 4.8 : The Raman spectrum from the first depth profiling experiment. Spectrum was
taken 10 pm. above the substrate surface
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Figure 4.8 shows the presence of both PVC ( by the doublet at about 1430 cm"1 ) 

and Y9669 ( by the 5(NH2) bending band at 1600 cm'1). There is also a small peak at 1709 

cm'1. It is believed that this is the carbonyl stretching band of the solvent, DMF. Clearly, 

in this case, solvent removal was not completely effective. It was believed that this was 

due to the thickness of the film used. Therefore, in subsequent experiments, thinner PVC 

films were used.

In order to show the depth profiles graphically, the data were analysed by curve 

fitting. Simple Lorentzian bands were fitted to the data to obtain the area of the silane and 

PVC bands. The area of the bands have been plotted versus the distance the focus of the 

laser had moved in Figure 4.9. The bands displayed are the 1600 cm"1 band of Y9669 and 

the 5(CH2) doublet of PVC.
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Figure 4.9 : Depth profile of a laminate consisting of silicon, hydrolysed Y9669 and PVC. 
The dashed line shows the position of the silicon interface

Figure 4.8 clearly shows that most of the Y9669 remained at the interface with the 

silicon wafer. Although some intensity of the Y9669 band was detected as far away as 30 

pm. from the interface, it is thought that this was due to the confocal profile of the 

experiment, rather than due to a small amount of diffusion.

This experiment was repeated several times with thinner films so that the entire 

laminate could be depth - profiled. Flowever, the same result was found each time : the 

Y9669 stayed near the silicon interface, and did not appear to have diffused significantly 

into the PVC film. Therefore, it was decided to anneal the laminate, to see if diffusion of
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the silane could be thermally induced. A typical spectrum is shown in Figure 4.10. It can 

be seen from Figure 4.10 that there is no carbonyl stretching band at 1735 cm'1. This 

shows that the use of a thinner PVC film allowed full removal of the solvent, DMF.
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Figure 4.10 : Raman spectrum from multiple - anneal depth profiling experiment.

Before any annealing was carried out, a depth profile was obtained to measure the 

starting position of the silane. The laminate was then annealed by placing in an oven at 

70°C for successive periods of 2.5 hours, 3.5 hours and 4 hours. A depth profile was 

obtained after each treatment. Thus, the total annealing time was 10 hours at 70°C. The 

curve-fitted band areas of the Y9669 1600 cm'1 band are shown in Figure 4.11. The 

laminate was determined to be 15 pm. thick by Talysurf profiling.
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Figure 4.11 : The area of the 1600 cm'1 band of Y9669 plotted versus distance for depth 
profiles of a silicon / Y9669 / PVC laminate. Times refer to annealing time at 70°C. The 

vertical line shows the position of the silicon interface.
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It can be seen from Figure 4.11 that the Y9669 did not diffuse significantly into the 

PVC upon annealing at 70 °C. Close examination shows that the depth profiles after 2.5 

hours annealing appear to be shifted about 1 pm. into the PVC. However, the measured 

depth resolution of the experiment was 2 pm. Therefore, the shift in the Y9669 intensity 

position was not significantly large enough to show diffusion.
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4.3 : Silane overlayer experiments

The experiments using silane underlayers showed no significant diffusion of the 

silane into the PVC film. However, in those experiments the silane had been pre - 

hydrolysed, cast from solution and dried to remove solvent. This treatment is likely to have 

resulted in a condensed siloxane film4,11'13. Therefore, it was decided to attempt to assess 

the distribution of unhydrolysed silane in PVC films. It was decided to use the silane 

overlayer configuration, as this would allow controlled formation of the PVC film, 

followed by application of the silane, which could then be monitored in its diffusion 

through the PVC film. Unfortunately, there is a practical problem with this experiment. 

The working distance of the 100X objective, which is necessary for confocal analysis is 

only 1.3 mm. This makes it difficult to use this objective to study a wet laminate without 

risking contamination of the objective with liquid. As the silanes studied are well known to 

have a strong affinity for glass surfaces14'16, it was considered that risking contamination of 

the objective in this way was to be avoided.

In the first experiment carried out in the silane overlayer configuration, the PVC 

film was cast from DMF and dried at 65°C for 14 hours. The Y9669 was then brushed onto 

the surface. In order to avoid any liquid silane remaining on the surface of the PVC film, 

the laminate was heated to induce diffusion. The PVC film with the silane layer on top 

was placed in the oven at 70 °C for 5 hours. A depth profile was then obtained at room 

temperature. The spectra showed no sign of the presence of DMF. The area of 1600 cm'1 

bending band of Y9669 is plotted versus time in Figure 4.12.
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Figure 4.12 : The area of the 1600 cm'1 band of Y9669 versus distance for Y9669 brushed
onto PVC and heated at 70°C for 5 hours

It can be seen that, unlike the case of the silane underlayer experiments, diffusion 

through the PVC film did occur in the first silane overlayer experiment. The Y9669 

appears to be present throughout the thickness of the 15 pm. PVC film. At first glance, it 

appears that most silane is concentrated in the 5 to 10 pm. deep region, with less at the 

interfaces. However, it must be remembered that the depth profile is not a true 

concentration profile. Rather, it is the convolution of a concentration profile with the 

confocal response of the instrument, i.e. the confocal curve shown in figure 2.13. Because 

the confocal response is symmetrical, intensity at a point inside the film is contributed from
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the focal plane and both above and below the focal plane, but at either the top or bottom 

interfaces, intensity is only contributed from out of the focal plane in one direction. 

Therefore the effect of the convolution will be to cause lower intensities at the interfaces, 

and higher intensities in the centre of the film, as well as to decrease the resolution of the 

experiment.

The main problem with experiment performed above was the possible 

contamination of the microscope objective with the silane. This meant that the depth 

profiles could only be measured after diffusion had occurred. It was decided to investigate 

the use of a protective cover slip. This would eliminate the possibility of contamination of 

the objective, as well as allowing the collection of depth profiles as soon as silane had been 

applied. Unfortunately, it was found that any glass cover slip significantly scattered light, 

leading to a loss of signal intensity, and hence to lower S / N. As can be seen from Figure

4.8 and Figure 4.10, the signal to noise was already quite low, due to the use of the 

confocal configuration. However, the very thin ( 20 pm. ) cover slips provided by 

Pilkington pic. were found to reduce the signal loss considerably.

In the first experiment carried out in this way, a 21 pm. PVC film was cast on the 

silicon substrate. After solvent removal, Y9669 was brushed on the upper surface of the 

PVC film, then a 20 pm. cover slip placed over the silane. A depth profile was then 

obtained of the resulting laminate by focusing the laser 3 pm. above the PVC film, and 

obtaining 30 spectra at 1 pm. intervals into the PVC film. After this measurement, the 

laminate was placed in the oven at 70 °C for 1 hour. Another depth profile was then
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obtained, in the same way as the first ( at room temperature ). After this measurement, the 

laminate was again placed in the oven for a further hour, and then another depth profile 

obtained, again in the same way. The resulting depth profiles are shown in Figure 4.13.

siliconPVC

0.6  - -

=  0.4 -

0.2  -

Depth ( microns)

0 mins heating 60 mins heating - a-  120 mins heating

Figure 4.13 : The area of the 1600 cm'1 band of Y9669 vs. distance into a PVC film. The 
times refer to time spent at 70°C. The vertical line shows the position of the silicon

interface.

Figure 4.13 shows that the Y9669 stayed mostly at the upper surface of the before 

heating. After heating for an hour, the Y9669 was mostly still at the upper surface, but 

more of the silane had diffused into the PVC. After 2 hours heating, the Y9669 has 

diffused considerably more through the PVC film. It appeared that even after 2 hours 

heating at 70 °C, the Y9669 had not fully diffused through the film to the silicon interface.
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This is somewhat surprising compared to the infrared results ( see section 3. 2 ) which 

show that Y9669 had reached equilibrium in a 10 pm. PVC film after a cumulative heating 

time of 30 minutes. However, despite the fact that the laminates were quite similar, they 

were treated quite differently. The different heating regimes used in the different 

experiments may explain why the diffusion behaviour seemed quite different. As was 

discussed in chapter 3, the hydrolysis of the silane was found to considerably affect the 

diffusion characteristics. The treatment of the laminates in the oven for an hour may have 

accelerated the hydrolysis as compared to the 5 minute treatments used in the infrared 

experiments17. However, upon comparing the results obtained when using pre-hydrolysed 

Y9669 ( i.e. Figure 4.11 in the last section ) with those obtained using un-hydrolysed 

Y9669 ( i.e. Figure 4.13 in this section ), it can clearly be seen that the un-hydrolysed, un - 

condensed material diffused much further, even with less heating.

In order to assess the effect of silane chemistry on the distribution in PVC films, it 

was decided to perform a set of experiments using all three silanes, under the same 

conditions. In order that the results could be compared to those from the infrared 

experiments which had also been carried out for all three silanes, it was decided to use 

similar conditions. Unfortunately, it was not possible to make measurements in exactly the 

same way as the infrared measurements (i.e. a measurement after 5 minutes at 70 °C, then 

another 5 minutes treatment, and so on ), as the depth profiles took at least 300 minutes to 

collect each. The time scale chosen was one depth profile before any heating, followed by 

15 minutes heating, followed by another depth profile, followed by a further 45 minutes 

heating, and then a final depth profile. According to the infrared results, these
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measurements should show no diffusion, intermediate diffusion, and equilibrium 

distribution respectively ( at least in the case of Y9669 and A1891, see chapter 3 ). It is 

important to note, however, the spatial differences in the ATR-FTIR and Raman depth 

profiles experiments : The A IR - FTIR yielded information only from the few pm. near the 

silicon interface, whereas the depth profiles contained information from throughout the 

laminate, although the spatial and temporal resolution was lower.

The first experiment carried out in this way used Y9669 as the silane. The PVC 

film was 25 pm. thick, and contained no DMF. In the previous experiment it was noted 

that the depth profile did not cover a great enough distance to measure all of the Raman 

intensity from the silane. Therefore a longer profile was measured. The results are shown 

in Figure 4.14.

Figure 4.14 shows that before heating, no silane had diffused into the PVC film at 

all. The fact that the silane intensity curve is approximately symmetrical shows that this 

must be the case. The peak is very slightly broader towards the PVC, but by no more than 

the depth resolution of the experiment. Clearly, as the PVC film was 25 pm. thick, all of 

the film had been profiled in this experiment. After 15 minutes heating, the silane 

appeared to have diffused quite far into the film. This is in contrast to the last experiment 

described which showed little diffusion after an hour at 70 °C. After a further 45 minutes, 

the silane diffused further into the film, and considerable intensity could be detected even 

at the silicon interface.
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Figure 4.14 : The area of the 1600 cm'1 band of Y9669 plotted vs. distance for Y9669 
diffusion in unplasticised PVC. Heating was carried out at 70 °C. The vertical lines show

the positions of the interfaces

Due to the similar time-scales used, it is possible to compare the results from this 

experiment with those seen in the equivalent ATR - FTIR experiment. The intensity in the 

depth profile at the position of the silicon interface should be approximately equivalent to 

the ATR - FTIR intensity, assuming the same processes are occurring. Like the ATR - 

FTIR results, before heating, no intensity in this region was seen at all. After 15 minutes 

heating, an intermediate level of silane intensity was seen, and then much more was seen 

after 60 minutes. Although in the case of the ATR - FTIR results, a larger relative intensity 

was seen after 15 minutes, this may be due to the use of a thinner film, allowing the silane 

to diffuse to the interface in a shorter time.
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The same experiment was then performed using A1110 as the silane. The film used 

was 24 pm. thick, and again there was no DMF present. The results are shown in Figure 

4.15.

siliconPVCair
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Figure 4.15 : The area of the NH bending mode of A1110 plotted vs. distance for A1110 
diffusion in uPVC. Heating was carried out at 70 °C. The vertical lines show the positions

of the interfaces.

Figure 4.15 shows that before heating, no diffusion of the A1110 through the PVC 

film occurred, and no intensity from the A1110 was detected at the silicon interface.. After 

15 minutes heating, the silane had begun to diffuse through the PVC film. A small 

intensity from the silane could be detected at the silicon interface at this time. This small
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intensity was probably only due to the ‘tail’ of the confocal response of the instrument, 

implying that the silane had only reached part of the way into the PVC film at this stage. 

After 60 minutes, however, a significant signal from the silane was detected at the silicon 

interface, showing that diffusion throughout the film had occurred.

These results contrast very strongly with those found in the ATR - FTIR 

experiments. In those experiments, no diffusion at all was observed in unplasticised PVC 

when heated at 70 °C. However, from the Raman depth profile results one would have 

expected to have seen a large intensity from the silane at the ATR crystal interface after 

one hour of heating at 70 °C. It is believed that the difference in the results was seen 

because the heating regimes were different, as in the ATR - FTER experiments, the 

laminate was heated for only 10 minutes at a time. However, the diffusion does appear to 

be slower than that observed in the case of Y9669.

The experiment was also carried out using A 1891 as the silane. The PVC film was 

20 pm. thick, and no bands from DMF were seen in the spectra. The results are shown in 

Figure 4.16.
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Figure 4.16 : The area of the SH stretching band of A1891 plotted vs. distance for A1891 
diffusion in uPVC. Heating was carried out at 70 °C. The vertical lines show the positions

of the interfaces.

Figure 4.16 shows that before the laminate was heated, most of the silane was at the 

upper surface of the laminate, but that some of the material had already diffused into the 

PVC film. After 15 minutes heating, some of the silane could be seen to remain at the 

upper surface of the PVC, but less than before the heating, and more silane was present 

through the bulk of the film. After a total of 60 minutes heating, the silane appeared much 

more evenly distributed through the PVC film. It is only the last profile ( which it is 

assumed shows the equilibrium distribution of silane ) which looks similar to the profiles 

obtained for the other silanes. The first two profiles look very different to those obtained 

for the other silanes. This implies that diffusion occurs differently for the A1891 material.
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Comparing this data with that obtained for A1891 in unplasticised PVC by ATR - FTIR, it 

is interesting to note that in both cases, diffusion appears to be a two - step process : firstly 

a small amount of silane diffuses through the PVC followed by the bulk of the silane at a 

later stage. It cannot be proven using these techniques that the diffusion follows a different 

mechanism to that of the aminosilanes, but the agreement between the two techniques 

suggests that this is the case.

4.4 : Fourier Deconvolution of Depth Profiles

The Raman depth profiles obtained and presented in the previous section were a 

convolution of the real concentration profile of the silane in the PVC matrix with the 

instrumental response to that concentration profile. Therefore, if the instrumental response 

is known, it is theoretically possible to deconvolve the instrumental response from the 

measured depth profile to obtain the true concentration profile. In the case of the Raman 

depth profiles, the incomplete rejection of light scattered from regions out of the focal 

plane causes an instrumental response which prevents one from obtaining a true 

concentration profile. Therefore it was decided to attempt to deconvolve the confocal 

response of the instrument from the measured depth profiles. This is possible because the 

two functions which are convolved in real space are multiplied in Fourier space. That is,

FT(A * B) = FT(A) x FT(B) ( 4.1 )

where FT is the Fourier transform procedure
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* is the convolution process 

A and B are the two functions.

Therefore, to obtain the concentration profile, we must perform a Fourier transform on the 

depth profile and the confocal response function, divide two functions thus obtained, and 

then perform an inverse Fourier transform to give the deconvolved depth profile. It was not 

possible to perform the deconvolution process on the measured data, as there were too few 

data points, and thus a large amount of uncertainty would result. The process has instead 

been carried out by fitting curves to the depth profiles obtained. These curves were then 

used to generate large number of data points which model the data obtained as depth 

profiles. Elsewhere18, the instrumental response used for deconvolution has been the 

response to a silicon surface in air, as shown in chapter 2. This is shown in Figure 4.17 

along with an exponential function fitted to the data.
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Figure 4.17 : The confocal response of the microscope in air ( circles ), and an exponential
function fitted to the data ( line )

The exponential fit to this data could be deconvolved from the curves fitted to the 

depth profiles, to give a deconvolved depth profile. However, the response of the 

microscope when performing a depth profile in a polymer film is not described well by this 

data. The reason for this is refraction of the laser light as it passes across the discontinuity 

in refractive indices at the air - polymer interface. This is described by Snell’s law :

nl sinGj = n2 sin02 ( 4.2 )

where n} is the refractive index of medium 1
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n2 is the refractive index of medium 2 

0i is the incident angle 

and 02 is the refracted angle.

The effect of the refraction is shown schematically in Figure 4.18.
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Figure 4.18 : Schematic of effect of focusing through a polymer film

It can be seen from Figure 4.18 that the effect of the refraction when focusing 

through a polymer film is twofold. Firstly, the focus of the laser is deeper into the film than 

expected. This would have no effect ( to a first approximation ) on the measurements 

described in the previous section, as all the distances quoted were relative to the sample. 

The second effect is that as the beam converges at the focal point at a lower angle of 

incidence, the effective NA of the experiment is lower when focusing through a transparent 

layer. This has the effect of creating a larger beam waist, and thus the depth resolution is 

reduced. Therefore in the experiments reported in the last section, and previously6, the
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confocal response was not as shown in Figure 4.17. In order to determine the experimental 

response when focusing through layer of PVC, a second confocal profile was measured. 

This was done by casting a 20 pm. PVC film onto a silicon crystal, and measuring the

confocal response under the PVC film. The results are shown in Figure 4.19.
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Figure 4.19 : The confocal response of the microscope under a 20 pm. PVC film ( circles ),
and an exponential fitting of the data ( line ).

It can be clearly seen that the confocal response under a polymer film is very 

different to that in air. The spatial resolution achieved, measured by the full width at half 

height criterion described in section 2 is 5 pm., as opposed to 2 pm. without the PVC film 

present. Because the refractive indices of all organic polymers are very similar, it may be
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18 6 * assumed that these results apply to other work ’ carried out in polymer systems, where it

was assumed that the confocal response was the same as that measured in air.

In order to deconvolve the data obtained, a program was written in the Matlab 

proprietary numeric computation and visualisation package. This package was chosen due 

to the ability to perform the analysis and plot the results within the same package. The 

program is shown below. The Matlab package does not use line numbers, so they have 

been added for ease of reference.

1 a = input('Input Gaussian curve parameter a :');

2 b = input('Input Gaussian curve parameter b :');

3 c = input('Input Gaussian curve parameter c :');

4 w = input('Input Exponential parameter a :');

5 count = 1;

6 for i=0:(30/2047):30

7 ga(count)=a*(exp(-(i-b)A2/(2*cA2)));

8 ax(count)=i;

9 ex(count)=exp(-w*i);

10 count=count+l;

11 end

12 ftga = fft(ga);

13 flex = fft(ex);

14 ftresult = ftga./ftex;
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15 result = ifft(ftresult);

16 realresult = real(ftresult);

17

1 o

realresult = realresult/max(max(realresult));

1 > / i i\I V l o piOivax,ga, i )

19 hold on

20 plot(ax,ex,'b')

21 plot(ax,conl,'w')

22 hold off

23 xlabel ('Depth(pm.)')

24 title ('Deconvolution Results')

25 legend ('DataVExponential','Deconvolution')

26 ylabel ('Intensity')

27 set (gca,'ylim',[0 1.5])

28 s = input('Input filename for result data : ','s');

29 file = [s ’.txtf];

30 eval(['save ' file ' realresult -ascii']);

The operation of the program is as follows. The first four lines accept inputted 

parameters of the curves which have been fitted to the experimental data. The program 

expects an exponential function for the instrument response and a Gaussian function for the 

data. The program then generates 2048 data points using these functions. Lines 12 and 13 

perform the Fourier transforms of the data. Line 14 then divides the Fourier transform of 

the data by the Fourier transform of the experimental response. The dividend is then
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inverse Fourier transformed to give the result ( line 15 ), the imaginary part of which is 

discarded( line 16 ). Although the program is used with normalised data, the deconvolution 

often changes the intensity scale, therefore line 17 normalises the data in the y axis. The 

remainder of the program simply plots the two original functions, and the result of the 

deconvolution. Finally the program saves the deconvoluted data. An example of the 

output of the program is given in Figure 4.20. The data used was the first depth profile of 

Y9669 in unplasticised PVC ( i.e. the blue curve in Figure 4.13 ), and the exponential is 

modelled on the response from silicon in air.

Deconvolution Results

Data
—  Exponential
—  Deconvolutior

0.8

0.4

0.2

Depth(um.)

Figure 4.20 : Deconvolution results from the first Y9669 diffusion experiment. The 
confocal response modelled was that of silicon in air.
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Figure 4.20 shows that after deconvolution of the modelled confocal response, the 

modelled depth profiles shifted to a lower depth. This indicates that the measured ( i.e. 

convolved ) profile made the silane appear to have diffused further into the PVC film than 

was actually the case. As shown by the comparison of Figure 4.17 and Figure 4.19, the 

confocal profile was considerably different when measured in a PVC film. Therefore, it 

was decided to model the confocal profile under PVC and perform the deconvolution 

process on the same depth profile to see what difference this made. The results using the 

exponential function fitted to the data measured under PVC are shown in Figure 4.21.

Deconvolution Results
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Figure 4.21 : Deconvolution of the data from the first Y9669 experiment. The confocal 
response used was that of silicon under a PVC film.
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Comparison of Figure 4.21 with Figure 4.20 shows that the use of the confocal 

response measured under a PVC film made a large difference to the deconvolution results. 

Therefore, it was decided to use this response when performing the deconvolutions. All the 

deconvolution results shown henceforth were obtained using the confocal response o f  

silicon under a PVC film. It should be noted that strictly speaking, the effect of the 

presence of the silane in the PVC film on the confocal response should also be modelled to 

give a true measure of the convolution process. However, this is an extremely complex 

process, as the silane moves in time through the film during the experiment, and is beyond 

the scope of this work.

The deconvolution results of all the depth profiles obtained in the first experiment ( 

i.e. the results shown in Figure 4.13 ), using Y9669 in unplasticised PVC, and heating at 

70°C for one and then two hours, are shown in Figure 4.22. All of the depth profiles were 

fitted to Gaussian curves for deconvolution.
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Figure 4.22 : The deconvolution results for Y9669 diffusion in unplasticised PVC heated
hourly

Figure 4.22 shows that all of the depth profiles appeared to show less diffusion into 

the PVC film when the confocal response of the instrument was deconvoluted from the 

data. The makes sense, as the lower resolution of the convolved data would have the effect 

of broadening the concentration profile, making it possible to detect the silane even were 

none was present.

The results of performing the same deconvolution process on the results from the 

second Y9669 experiment, where the film was heated for 0, 15 and 60 minutes at 70 °C are 

shown in Figure 4.23.
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Figure 4.23 : The deconvolution results for Y9669 diffusion in unplasticised PVC heated
for 0, 15 and 60 minutes at 70°C

Comparison of Figure 4.23 with Figure 4.14 shows that upon deconvolution of these 

results, the width of the depth profiles narrow somewhat, showing that the broadening 

effects of the confocal response have again been removed. This is especially true of the 

results of the first depth profile, before any diffusion which shows a sharp boundary at the 

silane / PVC interface. However, in the case of the 15 and 60 minutes heating profiles, the 

Gaussian curves do not fit the depth profiles well on the low depth side. This is because 

the depth profiles are asymmetrical. The effect of this is that the deconvolved curves are
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broader compared to the depth profiles in the low depth region. Unfortunately, a simple 

function which modelled this part of the curves well was not found.

The results of performing the same deconvoiUtion process on the iesuits uom tne 

experiment using A1110 in unplasticised PVC where the film was heated for 0, 15 and 60 

minutes at 70 °C are shown in Figure 4.24.
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Figure 4.24 : The deconvolution results for A1110 diffusion in unplasticised PVC after 0,
15 and 60 minutes heating at 70°C

Comparison of Figure 4.24 with Figure 4.14 shows that upon deconvolution 

of these results, the width of the depth profiles again narrowed somewhat, showing that the
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broadening effects of the confocal response have again been removed. This is especially 

true of the results of the first depth profile, before any diffusion which shows a sharp 

boundary at the silane / PVC interface. It can be seen that at the low depth side, the final 

depth profile has actually been broadened.-^This is because in this caserthe deptlrprofile 

does not fit well to a Gaussian model, as it is asymmetric, having a much sharper boundary 

at the low depth side. However, a simple function which modelled this aspect of the shape 

was not found.

In the case of the A1891 depth profiles, Figure 4.16 clearly shows that the data did 

not show a Gaussian distribution. The depth profiles, especially those at 0 and 15 minutes 

heating show a large concentration of silane at low depths ( i.e. at the surface of the PVC 

film ), and a smaller amount through the bulk of the film. A model which was found to fit 

this distribution was a rational function. This can be expressed as

a + bx
Y = i T T  (4 .3 )1 + cx + dx

An example of the fitting of this model to the data from an A1891 depth profile is 

shown in Figure 4.25.
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Figure 4.25 : Fitting of a rational function to the data from the first A1891 depth profiling
experiment.

An example of the results of the deconvolution of this rational function is shown in 

Figure 4.26.
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Figure 4.26 : Results of deconvolution of rational function fitted to the first depth profile of
A1891.

Figure 4.26 shows that upon deconvolution, the rational function shifts to lower 

depth, and the lobe at about 10- 15  jam. depth narrows considerably. The results of the 

deconvolution of all the depth profiles of A1891 are shown in Figure 4.27.
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Figure 4.27 : The deconvolution results for A1891 diffusion in unplasticised PVC heated
for 0, 15 and 60 minutes at 70°C

Figure 4.27 shows that in the case of the first depth profile, a much narrower 

concentration of material at the PVC surface is seen than in the raw data. The other depth 

profiles also show most of the silane remaining at the surface of the PVC film. In the case 

of the A1891 results, the deconvolution process was clearly unsatisfactory. The 

deconvolved curves show silane remaining present throughout the depth profile, i.e. even 

into the region where the silicon crystal was. This is because a simple function could not 

be found to adequately fit the distribution of the silane seen in the depth profiles. It is 

believed that the best way of getting a function to approximate the shapes seen in Figure 

4.16, would be to combine several functions together, e.g. a sharp Gaussian curve at the
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PVC interface, and a broader, less intense one throughout the remainder of the PVC film. 

However, this is beyond the scope of this project, which aimed only to show that the 

principle of Fourier deconvolution may be used to take account of the broadening process 

-caused by the instrumental response of-the microscope.—This has beemwell demonstrated 

in this chapter.
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Chapter 5 : Raman studies of organosilane hydrolysis

It was shown in the previous sections that the hydrolysis or condensation state of the 

silanes had a significant effect on the diffusion properties of the silanes in PVC films. 

However, the rates of these reactions was not well known. The hydrolysis of various 

silanes has been studied by a number of techniques previously. These include Raman 

spectroscopy1,2, NMR3,4, and infrared spectroscopy5'11. The aminosilane A ll 10 and the 

mercaptosilane A1891 are two of the most widely studied, and some of these studies have 

investigated the hydrolysis of these silanes3,7. However, the hydrolysis of Y9669 has not 

been studied at all in the literature found. Therefore, in order to obtain comparable results, 

it was decided to examine the hydrolysis and condensation of all three silanes in order to be 

in a better position to interpret the diffusion data reported in chapters 3 and 6.

5.1: Experimental

The hydrolysis measurements were carried out using Raman spectroscopy. This 

technique was chosen because previous work1,2 had identified bands common to many 

organosilanes which were indicative of the progress of hydrolysis. Hydrolysis was initiated 

as described in chapter 2, by mixing the silanes with an acidified IPA / H20  solution. The 

solution was then sealed in a quartz cuvette and placed under the microscope, and spectra 

taken at regular intervals.
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5.1.1: Materials

The materials used were as described in chapter 3. The hydrolysis solution 

containeaa 9: lIPA /H 20m ixture.T he solution was then acidified bythe addition of 3% 

( v/v ) acetic acid. All of the hydrolysis solutions contained 25% silane ( v/v ). All 

experiments were carried out at room temperature (25 ± 1 °C ).

5.1.2: Spectroscopic Measurements

Spectroscopic measurements were carried out with a Renishaw Ramascope system 

2000 as described in chapter 2. The instrument was used in normal ( i.e. non - confocal) 

mode. The 20X ULWD objective was used to allow focusing through the wall of the 

quartz cuvette. In order that a large number of Raman bands could be analysed, extended 

spectra were taken, generally in the range 500 to 1700 cm'1.

5.1.3 : Spectra of Materials

The Raman spectra of the unhydrolysed silanes were presented in chapter 4. In 

order that the bands of the other materials in the hydrolysis solutions were not erroneously 

identified as silane bands, the spectra of IP A, water and acetic acid were taken. The 

Raman spectra of IPA, acetic acid and water are shown in Figure 5.1 to 5.3 . The spectra 

were all taken in a quartz cuvette using the 20X ULWD objective.
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Figure 5.1: The Raman spectrum of iso propyl alcohol ( P A )
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Figure 5.2 : The Raman spectrum of acetic acid
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Figure 5.3 : The Raman spectrum of water

Figure 5.4 shows the Raman spectrum of the hydrolysis solution, consisting of a 9 to 

1 ( v /v ) mixture of IPA and water, acidified by 3% added acetic acid. The spectrum was 

taken in a quartz cuvette using the 20 X ULWD objective. Comparison of the spectra 

shown shows that the spectrum of the hydrolysis solution is for practical purposes the same 

as that of IP A.
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Figure 5.4 : The Raman spectrum of the hydrolysis solution (9:1 IPA / H20  with 3% added
acetic acid)

5.2 : Y9669 Hydrolysis Results >

The Raman spectrum o f , [3-(phenylamino)propyl]trimethoxysilane ( Y9669, see 

figure 1.1 ) was taken every 30 minutes, in the range 250 to 1650 cm*1 immediately after 

the Y9669 had been added to the hydrolysis solution and agitated. The spectra were taken 

until a total time of 24 hours had elapsed. The first and last spectra are shown in Figure

5.5. The spectra have been offset in the y-axis to make it easier to distinguish between 

them.
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Figure 5.5 : The spectra of Y9669 in a 25% aqueous alcohol solution after 30 minutes and 
24 hours. The spectra have been offset in the y-axis.
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Figure 5.6 : The spectra of Y9669 after 30 minutes and 24 hours. The spectra are shown on
the same y-axis
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Figure 5.5 shows that the spectra changed very little over the experimental time of 

24 hours. The spectral region of 540 to 740 cm'1 has been blown up and is shown in Figure

5.6. In this case, the spectra are shown on exactly the same scale.

Figure 5.6 shows that the two bands at 617 and 645 cm'1 both decreased in intensity 

during the course of the experiment, and that a small band at about 710 cm'1 appeared. 

Ishida et. al. assigned bands at 640 cm'1 and 612 cm'1 to Si-O-C stretching modes of 

unhydrolysed Al 1102. As Y9669 differs from Al 110 only in having a phenyl ring attached 

to the amine group ( see figure 1.1), we have assigned the 617 cm'1 and 645 cm'1 bands in 

Y9669 to Si-O-C stretching. The integrated intensity of these bands are plotted versus time 

in Figure 5.7 and Figure 5.8.
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Figure 5.7 : The integrated intensity of the 617 cm'1 band of Y9669 plotted vs. time in the
hydrolysis solution
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figure 5.8: The integrated intensity of the 645 cm* band of Y9669 plotted vs. time in the
hydrolysis solution

Figures 5.7 and 5.8 show that the intensities of the two bands assigned to Si-O-C 

stretching decreased throughout the experimental duration ( 24 hours ). This showed that 

hydrolysis was occurring over this period of time, but also that hydrolysis was not complete 

after 24 hours. Both plots, but especially figure 5.8 showed an initial ‘induction period’ in 

which no decrease in Si-O-C stretching intensity occurred. This showed that the silane was 

initially stable to hydrolysis in solution for the duration of this induction period, which 

lasted approximately 4 hours.

The integrated intensity of the 710 cm'1 band of Y9669 which appeared during 

hydrolysis is plotted versus time in figure 5.9.

206



500

£  300 -

o  200 -

T3
£
2  100 - -  D)

Tim e ( h o u r s )

A rea a t 710 cm-1

Figure 5.9 : The integrated intensity of the 710 cm"1 band of Y9669 plotted vs. time in the
hydrolysis solution

Figure 5.9 shows that the band at 710 cm"1 appeared after a total hydrolysis time of 

10 to 12 hours. Shih and Koenig1 assigned a band at 710 cm"1 in methacryl silane to Si-0  

stretching in triply hydrolysed silane. Therefore we have assigned the band in Y9669 at 

710 cm*1 to Si-0 stretching of the triply hydrolysed silane. The combination of the 

decrease of the bands due to unhydrolysed silane ( figure 5.7 and figure 5.8 ) and the 

increase of the band due to triply hydrolysed silane shows that the hydrolysis occurs over a 

time-scale of several tens of hours, the first silane molecules becoming totally hydrolysed 

only after 10 hours in the hydrolysis solution.
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It is noteworthy that bands due to intermediate products, i.e. singly or doubly 

hydrolysed Y9669, were not seen. This implies that hydrolysis of the completely 

unhydrolysed silanes was slow compared with hydrolysis of the intermediate products to 

give the triply-hydrolysed form of Y9669. This agrees with the suggestion made by Riegel 

et. al.12 that the singly and doubly hydrolysed silanes are very reactive towards hydrolysis 

compared to the unhydrolysed material.

5.3 : A ll  10 Hydrolysis Results

In order to assess the hydrolysis of [3-(amino)propyl]trimethoxysilane ( Al 110, see 

figure 1.1 ), a 25 % solution was made up as described above, rapidly mixed, and then 

placed under the microscope. The extended Raman spectrum of the A ll 10 was taken 

every 10 minutes, in the range 350 to 1700 cm'1. The spectra were taken until a total time 

of 24 hours had elapsed. The first and last spectra are shown in Figure 5.10.
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Figure 5.10: The spectra of Al 110 in a 25% aqueous alcohol solution after 10 minutes and 
24 hours. The spectra have been offset in the Y-axis.

Figure 5.10 shows that the spectra of A ll 10 in the hydrolysis solution after 10 

minutes and 24 hours were identical. One possible interpretation is that in acidic aqueous 

alcohol solution, no hydrolysis occurs, at least between 10 minutes and 24 hours after 

mixing. However, it can also be seen that the two bands assigned by Ishida to Si-O-C 

stretching at 612 cm"1 at 640 cm"1 are not present. This indicates that hydrolysis had 

already occurred in the first spectrum. If hydrolysis had occurred followed by 

condensation, then bands appearing and increasing in intensity due to the condensation 

products would have been seen. However, no increasing bands were seen, suggesting that 

condensation did not occur in this experiment. This agrees with the results found by

i 'j #
Plueddemann ~ who found that, in the case of 3-aminosilanes in aqueous solutions, 

hydrolysis occurred very quickly, but that the silane was then extremely stable to 

condensation. Morrall and Leyden found that A1100 ( the ethoxy analogue of A ll 10 )
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hydrolysed and condensed in studies of neat silane exposed to atmospheric water, but that 

only hydrolysis ( no condensation) occurred when A1100 was studied in solution, over the 

time-scale of the experiment ( also 24 hours).

It is thought that the initial rapid hydrolysis is caused by the catalysis of the reaction 

by the amine group of A11103,13. The hydrolysed silanes are then stabilised due to an 

intramolecular hydrogen-bonded ring structure14. Plueddemann proposed two possible ring 

structures of the 3-aminosilanes showing this behaviour, which are reproduced in figure 

1.8. Comparison of this figure with figure 1.1 suggests an explanation for A ll 10 showing 

this behaviour while Y9669 does not. Both structures in figure 1.8 rely on the silane being 

able to form an internal ring, allowing the Si-0 and N-H bonds coming close to each other. 

This would be considerably less likely with the very large and rigid phenyl ring attached to 

the amine group. Therefore it is believed that it is this steric effect which prevents Y9669 

showing the same hydrolysis and condensation behaviour as Al 110.

5.4 : A1891 Hydrolysis Results

In order to assess the hydrolysis of [3-(mercapto)propyl]triethoxysilane ( 

Al 891, see figure 1.1 ), a 25 % solution was made up as described above, rapidly mixed, 

and then placed under the microscope. The extended Raman spectrum of the A 1891 was 

taken every 10 minutes, in the range 450 to 1100 cm'1. The spectra were taken until a total 

time of 20 hours had elapsed. The first and last spectra are shown in Figure 5.11, including 

a blown-up spectrum of the 600 to 700 cm'1 region.
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Figure 5.11 : The spectra of A1891 in 25% aqueous alcohol solution after 10 minutes and
20 hours

Figure 5.11 shows that unlike in the case of A ll 10, considerable changes occur in 

the spectrum of A 1891 in the hydrolysis solution between 10 minutes and 20 hours after 

mixing. Ishida has assigned a band at 639 cm'1 of [3-(mercapto)propyl]triethoxysilane( i.e. 

A 189, the methoxy analogue of A 1891 ) to Si-O-C stretching of the unhydrolysed material. 

In other organosilanes, this band increases in frequency by 10 to 15 cm'1 on changing from 

the methoxy to the ethoxy form. Therefore, we have assigned the band in A 1891 at 650 cm' 

1 to the Si-O-C stretching mode of the unhydrolysed material. It can be seen from Figure 

5.11 that this band decreases in intensity over the reaction time, indicating that hydrolysis 

occurs. In order to show in more detail how this band changes over time, the integrated 

intensity of the band was obtained by using a curve-fitting routine. The integrated intensity 

of the band versus experiment time is plotted in Figure 5.12.
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Figure 5.12 : The intensity of the 651 cm'1 band of A 1891 vs. time in aqueous alcohol
solution

Figure 5.12 shows that the intensity of the Si-O-C stretching band decreased very 

rapidly at first, and more slowly after about 2 hours. However, the band did not reach a 

true equilibrium, but continued to decrease in intensity throughout the time of the 

experiment. This showed that a large number of the available ethoxy groups were 

hydrolysed quickly, and hydrolysis then slowed, but continued at a steady rate. It is also 

worth noting that even after 20 hours, half of the initial intensity of the Si-O-C stretching 

band still remains, indicating that a large number of ethoxy groups remain unhydrolysed.
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Figure 5.11 also shows a band at about 683 cm'1 which increased in intensity from 

the first to the last spectra. A band at 672 cm'1 was assigned by Shih and Koenig1 to triply 

hydrolysed silane in vinyl silane, and it was assumed here that the band at 683 cm'1 in 

A1891 could be assigned to triply hydrolysed A1891. The intensity of this band versus 

time in the solution is shown in Figure 5.13.
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Figure 5.13 : The intensity of the 685 cm'1 band of A1891 vs. time in aqueous alcohol
solution

Figure 5.13 shows that the 685 cm'1 band of A1891 initially increased quickly after 

mixing in the hydrolysis solution, and then decreased slowly in intensity throughout the 

experiment. This is consistent with the assignment of this band to triply hydrolysed silane, 

which would be expected to start with zero intensity and increase in intensity as hydrolysis
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progresses. The decrease in intensity must have been due to condensation of the trisilanols 

formed.

----------It-is interesting-to compare the results-obtained in the case of AT891with^those

found for Y9669. In both cases a band assigned to Si-0 stretching of triply hydrolysed 

silane was observed to appear in the course of the experiment. However, in the case of 

A1891, it increased in intensity very rapidly and then decreased slowly, and in the case of 

Y9669 it appeared only after 10 hours, and did not reach a maximum over the timescale of 

the experiment. Similarly, the decrease in intensity of the bands assigned to Si-O-C 

stretching in unhydrolysed silanes occurred much more quickly in the case of A 1891 than 

in Y9669. This is somewhat surprising, as from the literature it might be expected that the 

amino silane would hydrolyse much more quickly. However, the experiments described 

here were carried out in the presence of acid catalyst. It would appear that, with an 

external catalyst, the mercaptosilane may hydrolyse faster than the amino silane Y9669.

It can be seen from Figure 5.11 that two other bands at 880 cm'1 and at 1048 cm'1 

appeared during the experiment. The integrated intensities of these bands are plotted 

versus time in Figure 5.14 and Figure 5.15.
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Figure 5.14 : The integrated intensity of the 880 cm-1 band of ethanol vs. time of A1891
hydrolysis

Figure 5.14 and figure 5.15 show that both the 880 cm"1 and 1048 cm"1 bands show 

the same kinetics, increasing rapidly in intensity, and then reaching equilibrium after about 

2 hours. Clearly both bands arise from a product of hydrolysis. One of the major products 

of hydrolysis of A1891 is ethanol.. The spectrum of ethanol is shown in Figure 5.16.
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Figure 5.15 : The integrated intensity of the 1048 cm-1 band of ethanol vs. time of A1891
hydrolysis
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Figure 5.16 : The Raman spectrum of ethanol
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Figure 5.16 shows that ethanol has a strong band at 880 cm'1 and a weaker band at 

1048 cm’1. These bands are assigned to the v(CO) stretching mode and v(CCO) stretching 

modes of ethanol, respectively. This ethanol is a product of hydrolysis of A 1891, and the 

increase in intensity of this band is an alternative method of measuring hydrolysis. It is 

interesting to compare the shape of figure 5.12 with figures 5.14 and 5.15. One would 

expect, that if the ethanol is a product of the hydrolysis of A 1891, that the two curves would 

show exactly the opposite trends. To a certain extent, this is true, as figure 5.12 shows a 

rapid decrease in intensity up to 2 hours time, and the ethanol bands show a rapid increase 

up to this time. However, the band due to unhydrolysed A 1891 continues to decrease in 

intensity after this time, whereas the ethanol bands do not increase further, and decrease in 

intensity very slightly towards the end of the experiment. The ethanol produced must be 

going on to react further. It is not known what this reaction is, although it could be reaction 

with the acid catalyst which is present. However, this observation acts as a reminder that 

the system studied rapidly becomes very complex as hydrolysis progresses.

It is believed that one of the processes that may occur when lamination is carried out 

industrially using silane coupling agents is hydrolysis of the silane coupling agent by water 

present in the PVC interlayer. Furthermore, it is believed that this process may be vitally 

important to the success of the lamination process. In order to determine what parameters 

may be important for this process, several attempts were made to follow the process in 

model laminates, as were used in chapters 3 and 4. The strategy used was as follows. PVC 

films, cast onto silicon crystals, were exposed to known humidities to change the level of 

water present in the PVC. The laminates were then analysed by focusing the Raman
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microscope at a fixed position in the PVC film, and spectra were continuously taken. The 

aim was to monitor the intensities of the Raman bands sensitive to hydrolysis and 

condensation as described in this chapter for ex situ experiments.

However, the in situ experiments were found to be complicated by several problems. 

Firstly, the change in intensity of the ‘marker’ bands due to hydrolysis was overlaid with 

changes in intensity due to diffusion of the silanes through the PVC. This was not 

considered an insurmountable obstacle since, in principle, the diffusion could be taken into 

account by measuring the hydrolysis band intensity as a ratio versus a band of the silane 

which was not sensitive to hydrolysis. Secondly, PVC has two extremely intense Raman 

bands at 635 and 614 cm'1 which overlap the SiOC stretching bands of the silanes ( which 

were to be used for hydrolysis measurements ). Attempts were made to separate the 

contributions of the bands from the two materials, but as the silane was present in lower 

concentrations than the PVC, and the bands were weaker, this was found to be very 

difficult. It was decided that this method was not a viable one for following the hydrolysis 

of silanes in situ. However, it was decided that it may be possible to follow the in situ 

hydrolysis indirectly by measuring the effect it had on the diffusion properties of the 

silanes. It was shown in chapter 3 that prehydrolysed silanes were observed to undergo 

slower diffusion to unhydrolysed silanes. Therefore it was decided to follow the diffusion 

in films with different water contents, to see if in situ hydrolysis would occur, and affect the 

diffusion properties.

As described in chapter 1, various authors3,5,15,16 have attempted to use simple 

kinetics in order to follow the hydrolysis of silanes in solution. However, as discussed by
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Leyden and Atwater5, simple first and second order kinetics are not applicable to such 

complex systems. However, as various authors had reported pseudo-first and pseudo- 

second order kinetics3’5,16,the logarithmic intensities and reciprocal intensities of the bands 

were plotted against time ( i.e. first and second order plots ), in order to see whether such 

kinetics were being seen in the results shown above. In none of these cases were straight 

line relationships seen. Therefore the hydrolysis of none of these silanes showed first or 

second order kinetics under the conditions seen here. Considering the work of Atwater and 

Leyden, this is not surprising, as it was shown that even in the case of a silane with a single 

hydrolysable group, second order kinetics were seen. Clearly, much more complex 

hydrolysis kinetics were seen here.
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Chapter 6 : Studies of organosilane diffusion in humidity - controlled films

In order to determine whether the presence of water in PVC films could affect the 

diffusion properties of silanes in the films, experiments were carried out using films that 

had been exposed to known humidities. It was thought that the silane might hydrolyse 

whilst undergoing diffusion, and this would change the diffusion properties. It was shown 

in chapter 3 that prehydrolysed silanes showed different diffusion properties to fresh, 

unhydrolysed silanes. The diffusion of the silanes in humidity - controlled films was 

studied by both ATR - FTIR spectroscopy and Raman microscopy.

6.1: Experimental 

6.1.1: Materials

The silane used for the experiments was , [3-(phenylamino)propyl]trimethoxysilane 

( Y9669, see figure 1.1 ). This was chosen firstly because it was shown in chapter 3 that 

Y9669 diffusion was highly sensitive to prehydrolysis, at least in the case of heat - induced 

diffusion through unplasticised PVC. Secondly, Y9669 was chosen because the strong 

band at about 1600 cm"1 in both the infrared and Raman spectra ( figures 3.5 and 4.1 ) and 

results in high spectral signal to noise ratio. The material has been described and the 

spectra shown in chapters 3 and 4. The material was handled in an inert nitrogen 

environment ( in a glove bag) to prevent hydrolysis before the start of the experiment.
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In the Raman experiments, films approximately 24pm. thick were cast from DMF, 

as described in chapter 4. In the infrared experiments, films approximately 10 pm. thick 

were cast from DMF as described in chapter 3. In both cases the PVC contained 15% ( 

w /w ) DHA. This level of plasticiser was chosen to allow the diffusion to be followed at 

room temperature, but to make the diffusion sufficiently slow to allow the diffusion to be 

followed by Raman microscopy ( which requires fairly long spectral acquisition times ). 

The amount of water in the PVC was controlled by exposing the film to the vapour of 

saturated aqueous salt solutions. In one series of experiments, the film was exposed to the 

vapour of a saturated potassium carbonate solution ( K2C03(aq) ), which produces a 

relative humidity of 44% at 25 °C1. In the second set of experiments the films were 

exposed to the vapour of a saturated ammonium chloride solution ( NH4Cl(aq) )which 

produces a relative humidity of 80% at 25 °C1. The films were exposed to the vapour by 

placing them alongside a beaker of the salt solution in a sealed desiccator jar. The films 

were left in the desiccator for 48 hours. It is well known that water vapour diffuses into 

PVC films2,3, so it was assumed that this treatment would result in PVC films containing 

different concentrations of water. Another set of experiments used films which had not 

been exposed to controlled humidity; these films were therefore the same as the 15% DHA 

films used in the work described in previous chapters.

6.1.2: Spectroscopic measurements

In the Raman experiments, the laminates were placed under the microscope as soon 

as the Y9669 had been applied and then the microscope was focused a distance of 6pm.
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above the interface between the PVC and the silicon substrate. Thus, silane diffusion into 

the film could be monitored as a function of time by measuring the increase in intensity of 

the silane bands. This experiment was therefore analogous to the ATR-FTIR experiments, 

and should show similar results. In this respect, it would have been preferable for the laser 

to have been focused at the silicon interface, but this was found to lead to very low signal, 

so the focus was moved into the film to increase the signal to noise ratio obtained, and thus 

decrease the spectral acquisition time required. Static spectra were obtained, centred at 

1600 cm'1. Spectra were obtained every 10 or 20 minutes. After the experiment had 

finished, a depth profile of the laminate was measured, as described in chapter 4. All 

Raman measurements used a 20 pm. glass cover slip to prevent contamination of the 

microscope objective by the silane.

The infrared experiments were carried out in the same way as described in chapter 

3. Y9669 was brushed onto the upper surface of the treated films, and the laminates then 

placed in the FTIR spectrometer. Spectra were measured every 5 minutes, co-adding 520 

scans. The experiment continued for a total time of 6 hours.

6.2 : Raman analysis of Y9669 diffusion in PVC exposed to atmospheric conditions

In the first experiment, a film which was not exposed to known humidity was used. 

The results of the diffusion measurement using the Raman microscope are shown in Figure 

6.1. Spectra were obtained every 5 minutes, for a total time of 9 hours. The results show
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the integrated intensity ( obtained by curve fitting ) of the 1600 cm'1 band of Y9669 versus 

time.
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Figure 6.1 : The integrated intensity of the 1600 cm'1 Raman band of Y9669 vs. time 6pm.
above the interface. The film was exposed to normal atmospheric conditions

Figure 6.1 shows that the intensity of the silane band at the position 6 pm. above the 

bottom of the PVC film increased slowly at first, and then more rapidly. After 9 hours the 

intensity was still increasing, but the rate of increase appears to be just starting to decrease 

towards the very end of the experiment. It is supposed that an equilibrium was reached 

shortly after the end of the experiment. After this experiment, the microscope was set up in 

confocal mode and a depth profile was measured of the laminate in the same XY position

225



as the measurement described above. The depth profile was not obtained immediately after 

the measurements described above, but approximately 15 hours later. It is therefore 

assumed that the depth profile represents the equilibrium distribution of Y9669 in the PVC.

The depth profile is shown in Figure 6.2.
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Figure 6.2 : The integrated intensity of the 1600 cm"1 Raman band of Y9669 vs. distance 
after diffusion was complete. The PVC was exposed to atmospheric conditions.

Figure 6.2 shows that the Y9669 had diffused throughout the film after 15 hours 

after the end of the kinetic experiment. The distribution of the silane is similar to that 

shown in chapter 4 in unplasticised PVC after annealing. There appears to be a small 

excess of silane at the upper surface of the PVC, which may indicate that not all of the 

Y9669 had diffused into the film.
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6.2.1: Infrared analysis of Y9669 diffusion in PVC exposed to atmospheric conditions

The infrared experiments described in this chapter were carried out in the same way 

as those described in chapter 3. The only difference was the humidity exposure of the PVC 

films. Therefore, in the case of the film exposed to atmospheric conditions ( that is, no 

specific treatment) the experiment was exactly the same as one from chapter 3, namely 

Y9669 diffusion in PVC containing 15% DHA. Therefore, performing this experiment 

again provided a check on the consistency of the results. The integrated intensity of the 

1602 cm'1 band of Y9669 has been plotted versus time in Figure 6.3. Figure 6.3 also shows 

the dual mode sorption fitting obtained.

Figure 6.3 shows that very similar results were obtained as when the experiments 

described in chapter 3 were carried out. The data fits quite well to the dual mode sorption 

model. The data was not found to show Fickian Case I diffusion kinetics. In Table 6.1 the 

diffusion coefficients from the equivalent experiments in chapter 3 are compared with the 

diffusion coefficients obtained from the above fitting.
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Figure 6.3 : The integrated Intensity of the 1600 cm"1 infrared band of Y9669 vs. time. The
film was exposed to atmospheric conditions

Average result from Chapter 3 Result in Chapter 6

D| = 8.96xl0"9 D, = 9.92xl0‘9

D2 = 8.55xl0'9 D2 = 4.62xl0'9

X, = 0.69

r—H(T)o'II><

Table 6.1 : Comparison of results from chapter 3 and chapter 6

Table 6.1 clearly shows that the experiments yielded very similar results. These 

results will be discussed further later in reference to the results obtained when the films 

were humidity-controlled.
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6.3 : Raman analysis of Y9669 diffusion in PVC exposed to K2C 0 3(aq) vapour

In the second experiment, the 15% DHA plasticised PVC film was exposed to the 

vapour of K2C 03 for 48 hours before the experiment was carried out. This atmosphere had 

a relative humidity of 44 %. The film was 24 pm. thick. The spectra were taken every 10 

minutes, and the total length of the experiment was 18 hours. The results of the kinetic 

Raman experiment are shown in Figure 6.4
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Figure 6.4 : The integrated intensity of the 1600 cm '1 Raman band of Y9669 vs. time. The 
film had been exposed to K2C 03 ( Relative Humidity of 50% ).
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Figure 6.4 shows that the intensity of the 1602 cm'1 band of Y9669 initially 

increased slowly and then more quickly up to 16.5 hours after the start of the experiment. 

After this time, the spectra became so intense that the detector was saturated. This was 

initially surprising, but observation of the film after the end of the experiment showed a 

brown patch at the focal point of the laser, indicating that thermal degradation had 

occurred. This was presumably due to burning by the laser. This had not occurred in the 

depth profiling experiments described previously, as the focus of the laser was periodically 

moved ( usually at least every 20 minutes ). Clearly, with the use of the microscope in non- 

confocal mode, the intensity of the laser is such that the heat generated cannot be dissipated 

quickly enough, and degradation occurs. The depth profile could not be measured due to 

this degradation, as the intensity of the spectrum saturated the detector again. The effect of 

the degradation on the spectra was to cause a broad fluorescence background to appear, as 

shown in figure 4.5. The signal to noise ratio of the spectra was also reduced. This meant 

that although the curve fitted intensity of the silane bands was not affected by the 

degradation, eventually the baseline became so high that the peaks saturated the detector. 

This is shown in Figure 6.5, which shows one of the spectra of the degraded film.

230



190000

■£ 185000

180000

175000

1800 1700 1600 1500 1400

Delta Wavenumbers

Figure 6.5 : Raman spectrum from kinetic study of Y9669 diffusion in K2C 03(aq) treated 
film, showing poor S/N and saturation of detector.

Despite the premature end of the experiment, comparison of Figure 6.2 with Figure

6.1 shows that the diffusion was taking place much more slowly in the case of the film 

which had been exposed to the vapour of the solution of K2C 03. This is presumably 

because water in the PVC film caused the silane to undergo hydrolysis in situ, possibly 

leading to condensation to siloxane oligomers, and slowing diffusion.

6.3.1 : Infrared analysis of Y9669 diffusion in PVC exposed to K2C 0 3(aq) vapour

The infrared analysis of the film exposed to K2C03(aq) vapour was carried out in 

the same way as that exposed to atmospheric conditions. The film was 10 pm. thick. The
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integrated intensity of the 1600 cm'1 band of Y9669 is shown in Figure 6.6. The plot also

shows the dual mode sorption fit obtained.
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Figure 6.6 : The integrated intensity of the 1600 cm'1 infrared band of Y9669 vs. time. The 
film had been exposed to K2C 03(aq ) ( relative humidity 50% ).

6.4 : Raman analysis of Y9669 diffusion in PVC exposed to NH4Cl(aq) vapour

In the third experiment, the 24 pm. 15% DHA plasticised PVC film was 

exposed to the vapour of NH4C1 for 48 hours before the experiment was carried out. This 

atmosphere had a relative humidity of 80 %. It was decided that it was desirable to 

measure the intensity of the band for longer than was possible in the previous experiment (
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16.5 hours ), as the diffusion had not reached equilibrium. Therefore the intensity of the 

laser was reduced to half of its maximum power by use of the laser attenuation filter wheel 

on the Ramascope. To compensate, longer scans were used. The results of the kinetic 

Raman experiment are shown in Figure 6.7. The spectra were taken every 20 minutes, and 

the total length of the experiment was 36 hours.
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Figure 6.7 : The integrated intensity of the 1600 cm'1 Raman band of Y9669 vs. time. The 
film had been exposed to NH4C1 ( Relative Flumidity of 90 % )

After the kinetic Raman experiment was complete, a Raman depth profile of the 

laminate was obtained, The plot of the integrated intensity of the 1600 cm"1 band of Y9669 

versus distance is shown in figure 6.8.
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Figure 6.8 : The integrated intensity of the 1600 cm'1 band of Y9669 versus distance after 
diffusion into a film exposed to NFLjCKaq) vapour ( relative humidity of 90 % )

Figure 6.7 shows that initially, the intensity of the 1600 cm'1 band of the Y9669 

increased very slowly if at all. The increase in intensity then became faster, and eventually 

slowed and equilibrium appears to have been reached after about 28 hours. Clearly, 

reducing the laser power was successful in stopping degradation. It is assumed that the 

laser power was low enough so that almost all of the heat from the laser could be 

conducted away, as there was no sign of degradation in the film at all. Clearly, the 

diffusion seen in Figure 6.7 is slower than that in Figure 6.1, indicating that the presence of 

water in the film does slow diffusion of Y9669 through the film. Presumably this was due 

to hydrolysis of the silane in situ. As the diffusion was not observed to equilibrium in the
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second experiment ( Figure 6.4 ), comparison of the kinetics with those in the third 

experiment is not simple, but it would appear that the higher level of humidity that the film 

was exposed to in the later experiment slowed diffusion more than the lower level. It is 

interesting to note that the literature indicates that water may act as a plasticiser for PVC4, 

which may lead us to expect faster diffusion with higher level of water in the film. 

However, it appears that the effect of the water on silane condensation has more effect 

upon the diffusion rate than plasticising the PVC.

In order to provide some quantitative information on the change in diffusion 

properties upon treating the film with humidity control, the increase in intensity of the 

Y9669 band in the Raman kinetic analysis has been measured over a fixed time period for 

all three results. In order to do this, the integrated intensities of the band at 1600 cm '1 after 

20 minutes, and 9 hours have been ratioed. The results are shown in Table 6.2 which show 

how much more intensity was detected by the microscope after 9 hours than in the first 

spectrum. For example, for the film treated by atmospheric conditions, the intensity was 

increased by approximately 11 times after 9 hours compared to its initial value.
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Conditions 1600 cm"1 band area after 9 hours / 

initial area

Atmospheric Conditions 10.6

K2C 0 3(aq) 5.4

NFfClfaq) 1.2

Table 6.2 : The increase in intensity of the 1600 cm"1 Raman band of Y9669 after 9 hours
for all three film treatments

Table 6.2 shows that compared to the initial intensities, the film treated at 50% 

relative humidity showed twice as much increase in Y9669 intensity as the treatment at 

atmospheric conditions, and the film treated at 80% relative humidity showed ten times as 

much increase. Clearly, humidity - controlled treatment of the films can dramatically 

change the diffusion kinetics of silanes in the films. It should be noted, however, that the 

response of the system to increased diffusion is not linear. This is because of the non - 

linear confocal profile of the instrument response. A small increase in the diffusion rate 

would therefore give rise to a greater relative increase in this ratio, so these results are not 

directly proportional to diffusion rates, and cannot be compared directly to diffusion 

coefficients.

Figure 6.8 shows that after diffusion the Y9669 was present throughout the PVC 

film. The depth profile looks very similar to that shown in Figure 6.2, but without the 

small excess of silane at the surface of the film, indicating that all o f the silane diffused 

into the film. Due to the relatively non-reproducible nature of the application method of
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the silane ( It was brushed onto the PVC film by hand ), it is possible that the surface 

excess was due to more silane having been applied to the film in the earlier experiment. 

That is, if more silane than can be absorbed by the film is applied, some appears to stay on 

the surface, leading to the small bump in silane intensity seen in Figure 6.2.

6.4.1 : Infrared analysis of Y9669 diffusion in PVC exposed to NH4Cl(aq) vapour

The infrared analysis of the 10 pm. PVC film that had been exposed to NH3Cl(aq) 

vapour was carried out as described for the previous films. The integrated intensity of the 

1600 cm '1 band of Y9669 is plotted versus time in Figure 6.9.

Figure 6.9 shows that there was quite a long ( ca. 20 minutes ) induction period in 

the experiment during which little, if any, increase in the intensity from the Y9669 

occurred. The intensity the increased and eventually slowed its increase in a sigmoidal 

fashion. However, it can be seen that unlike the two previous experiments, the equilibrium 

was not reached during the 6 hour experiment. This was presumably due to in situ 

hydrolysis and possibly condensation to an oligomeric siloxane. The fact that the infrared 

intensity did not reach equilibrium, although it did in the case of the 50% relative humidity, 

showed that increased water in the PVC film led to increased hydrolysis o f the silane as it 

diffused through the film.
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Figure 6.9 also shows that the data did not fit very well to the dual mode sorption model. 

This is presumably related to the presence of the induction period seen in this experiment. 

This was not observed in any of the other Y9669 experiments using plasticised PVC. 

However, it is interesting to note that a similar effect was observed when Y9669 was 

prehydrolysed, and diffusion through unplasticised PVC was induced by annealing ( section 

3.4, figure 3.35 ).
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Figure 6.9 : The integrated intensity of the 1600 cm '1 infrared band of Y9669 vs. time. The

film had been exposed to NH4Cl(aq) vapour ( relative humidity 80% )
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It is believed that this shows that when Y9669 diffuses through a film containing a 

significant amount of water, the kinetics of diffusion are different because the silane 

undergoes simultaneous hydrolysis and diffusion. Although the dual mode sorption model 

does not fit very well to the data from the last experiment, the diffusion coefficients 

obtained from the fitting are believed to still give an approximate idea o f the relative 

kinetics of the diffusion in the three films. Table 6.3 shows the diffusion coefficients 

obtained from the fitting of infrared data of diffusion in films exposed to atmospheric 

conditions, K2C 0 3(aq) water vapour, and to NH4Cl(aq) water vapour.

Atmospheric

Conditions

K2C 0 3(aq) NH4Cl(aq)

Di 9.92xl0'9 9.12xl0'9 4.31xl0‘9

d 2 4.62x1 O'9 4.25xl0'9 2.93xl0‘9

X! 0.51 0.77 0.90

Table 6.3 : The diffusion coefficients obtained from dual mode sorption fitting of the 
infrared data from all three film exposures.

Table 6.1 shows that the values of the two diffusion coefficients were almost 

identical in the case of the film treated by exposure to atmospheric conditions, and that 

exposed to K2C 0 3(aq) vapour, which has a relative humidity of 50%. This is perhaps not 

surprising, as the humidity in the laboratory may have been expected to be close to 50%. 

The value of X] is somewhat smaller in the case of the film exposed to atmospheric 

conditions, however. This may explain the more ‘flattened’ shape of the first diffusion 

profile, as the slower diffusion process ( D2 ) dominated the behaviour more. In the case of
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the film exposed to NH4Cl(aq), both diffusion coefficients are smaller than found for the 

other two cases. Despite the poor fitting of the kinetics to the dual mode sorption model, 

this is believed to show the effect of hydrolysis of the silane in situ, causing slower 

diffusion.

There was a noticeable difference in the trend in the results found in the ATR-FTIR 

and Raman results. In both cases, diffusion in films exposed to 80% relative humidity was 

slower than that in films exposed to atmospheric humidity. However, in the Raman results, 

diffusion in films exposed to 44% relative humidity was slower than in films exposed to 

atmospheric humidity, but in the infrared results, the diffusion rates were very similar. 

Firstly, it should be stated that the atmospheric humidity was very variable, as the 

experiments were all carried out on different days. However, there is one possible 

explanation for the difference between the infrared and Raman results. In the case of the 

Raman experiments, the laminate was taped to a microscope slide at the edges to make 

sample handling simpler. Also, the laminate was covered by a glass slide after application 

of the silane. It is thought that if the humidity treatment had caused raised water levels in 

the PVC film compared to the untreated film, then these factors might mean that the film 

used in the Raman experiments retained this water for longer. This would have the effect 

of making the Raman experiments seem to show more hydrolysis, i.e. slower diffusion of 

the silane.

240



References

1 Feast, R. C, and Astle, M. J., Ed., Handbook of Chemistry and Physics, 61st. 

edition, CRC Press, Florida (1981)

2 Okuno, H., Renzeo, K. and Uragami, T., Journal of Membrane Science Vol. 103, 

p.31 ( 1995)

3 Shailaja, D. and Yaseen, M., Polymer International Vol. 32, p. 247 ( 1993 )

4 Langevin, D., Grenet, J. and Saiter, J. M., European Polymer Journal Vol. 30, p.30 ( 

1994)

241



Chapter 7 : Conclusions

All of the work described in this thesis involved the investigation of the diffusion 

and reactions of the three organosilanes Y9669, A ll 10 and A1891. Therefore the results 

of the different chapters are all of relevance to each other. In this chapter, the conclusions 

from chapters 3, 4, 5 and 6 will be discussed, and then the interrelation of the results from 

different chapters will be discussed. After this, the overall conclusions of the work will be 

drawn. Finally, some suggestions for future work will be made.

7.1: ATR-FTER analysis of the kinetics of diffusion

In chapter 3, the diffusion of all three silanes in a variety of PVC films was 

measured using micro ATR-FTIR spectroscopy. Initial experiments used the silane 

underlayer configuration used by Banga1. These experiments showed no diffusion of the 

silanes into the PVC film. We believe that this was due to the condensation of the silane 

underlayer during solvent removal.

The experiments using the silane overlayer configuration were able to detect 

diffusion. It was found that alternately annealing the laminate at 70 °C and taking a 

spectrum at room temperature led to an increase in the intensity of bands from the Y9669 

until equilibrium was reached. This showed that diffusion had occurred. However, 

exposure of the silane to atmospheric humidity before the experiment was observed to slow
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this diffusion. In the same experiment using A ll  10, no diffusion at all was detected. In 

the same experiment using A 1891, diffusion was observed, but an ‘induction period’ was 

observed at the start of the experiment in which little diffusion occurred. It was thought 

that the annealing of the PVC at 70 °C might have allowed diffusion because near the Tg of 

the PVC ( which was 80 °C ), the PVC chains were more mobile.

This hypothesis was tested by plasticising the PVC to lower its' Tg. In plasticised 

PVC, diffusion was observed at room temperature. A series of experiments were carried 

out with plasticiser levels between 15 and 40% ( v /v ), using all three silanes. In all cases, 

diffusion of the silane through the PVC was observed. However, in the case of A1891 

diffusion in 15% plasticised PVC, an anomalous diffusion profile was seen, in which the 

intensity of the silane band decreased after it had reached a maximum. In no cases did the 

data fit to Fickian case I diffusion kinetics. In all cases, except the anomalous one, a 

reasonable fit was obtained to the dual mode sorption model. The diffusion coefficients 

generated from the fitting process increased by 2 to 3 orders of magnitude ( faster diffusion 

) as the plasticiser concentration was increased from 15 to 40%. It was found that the 

infrared bands due to the plasticiser decreased in intensity as the silane diffused into the 

PVC. Experiments using an oligomeric plasticiser showed very similar diffusion kinetics 

to those using a monomeric plasticiser with similar chemistry, at the same concentrations. 

The bands of the oligomeric plasticiser also showed the same decrease in intensity as the 

silane diffused into the film. It is believed that this showed that the uptake of silane 

swelled the PVC film, explaining the decrease in intensity of the plasticiser bands.
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All three silanes were hydrolysed by exposure to atmospheric water. In all three 

cases, a band in the 900 to 1000 cm'1 region ( assigned to Si-O-R stretching by Hoh et. a l2 

) was indicative of the progress of hydrolysis. Y9669 was found to hydrolyse the quickest, 

followed by Al 110 and then A1891. Y9669 which had been hydrolysed in this way for 24 

hours was shown to undergo slower diffusion through unplasticised PVC upon annealing 

than un-hydrolysed Y9669. A ll 10 showed no diffusion when either hydrolysed or 

unhydrolysed. A1891 which showed little hydrolysis over 24 hours showed very similar 

diffusion before and after the treatment.

7.2 : Raman depth profile analysis of diffusion

It was shown that it is possible to determine the location of the silane in a silane / 

PVC / silicon laminate using confocal Raman microscopy. Depth profiles of the PVC or 

the silicon may also be obtained in the same manner. Care must be taken when interpreting 

the depth profiles to take account of the confocal response of the microscope. However, 

unlike ATR-FTTR spectroscopy, Raman confocal microscopy is capable of showing what is 

happening throughout the PVC film.

Depth profiles were measured of the silane underlayer laminates. It was shown that 

even upon annealing the laminates for 10 hours, the silane did not diffuse away from the 

surface of the silicon crystal.
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In the case of the silane overlayer laminates, the depth profiles showed the position 

of the silane in the laminate before, during and after diffusion induced by annealing. All 

three silanes underwent diffusion upon annealing the laminates at 70 °C. The depth 

profiles of Y9669 and Al 110 showed very similar shapes. In the case of A1891, however, 

a differently shaped depth profile was observed before and during diffusion. In this case a 

large reservoir of the silane stayed on the outside of the PVC film, whilst a small amount of 

the silane diffused throughout the PVC film. When diffusion was complete, however, the 

depth profiles of all three silanes looked the same. It is not known why A1891 displayed 

this anomalous behaviour.

The confocal response of the microscope was measured by measuring the intensity 

of a silicon band in 1 pm. steps from the surface of the silicon. It was shown that due to 

the refraction of the laser as it crosses the air / PVC interface, the beam waist was 

stretched, which reduced the spatial resolution from 2pm. to 6pm. The effect of the 

convolution of the confocal response was removed from the depth profiles by a Fourier 

Transform technique. This reduced the distance over which the silane was detected in the 

measured depth profiles, i.e. the spatial resolution of the experiment was effectively 

increased.

7.3 : Raman hydrolysis measurements
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In chapter 5, the hydrolysis of all three silanes in aqueous alcoholic solutions was 

investigated using Raman spectroscopy. The solution contained an acid catalyst. This 

solution was previously used by Banga to hydrolyse silanes1.

In the case of Y9669 the decrease in intensity of bands equivalent to those assigned 

to SiOC stretching in Al 110 by Ishida et. al? showed the loss of the unhydrolysed silane. 

After 10 hours the appearance of a band assigned to triply hydrolysed silanes4 showed that 

some silanes had undergone complete hydrolysis.

In the case of A ll  10, no change in the Raman spectra occurred over 24 hours. 

Correlation of the spectra with the literature showed that the A ll  10 had undergone 

extremely rapid hydrolysis, as shown by the lack of the bands assigned by Ishida et. al., but 

was then stabilised in solution to condensation by an intermolecular hydrogen-bonded ring 

structure.

The spectra of the solution containing A 1891 showed the greatest changes upon 

hydrolysis. The band assigned to SiOC stretching of unhydrolysed silanes decreased and a 

band assigned to triply hydrolysed A1891 increased rapidly, and then slowly decreased, 

showing that the hydrolysed A 1891 was undergoing condensation. Bands due to the 

ethanol, which was a product of the hydrolysis could also be seen to appear in the 

spectrum. The increase in intensity of these bands initially showed similar kinetics to the 

loss of the unhydrolysed silane, but then the intensity of the ethanol bands decreased in 

intensity slightly.
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7.4 : Diffusion in humidity- controlled films

In chapter 6, the effect of altering the water content of 15% plasticised films on the 

diffusion of Y9669 through the films was studied with both ATR-FTIR spectroscopy and 

Raman microscopy. Films exposed to two relative humidities of 44% and 80% as well as a 

film without controlled humidity were examined.

The Raman intensity near the bottom of the PVC film was monitored as a function 

of time. The Y9669 showed slower diffusion in the film exposed to 44% relative humidity 

than in the untreated film. The Y9669 showed even slower diffusion in the film exposed to 

80% relative humidity. Depth profiles after diffusion were measured, and showed the same 

shape as the equilibrium depth profiles from chapter 4.

Infrared measurements made using PVC films treated in the same way showed that 

diffusion coefficients obtained from Y9669 diffusion in a film treated at 44% relative 

humidity were only slightly less than those obtained from diffusion in an untreated film, 

however, the coefficients from a film treated at 80 % relative humidity were considerably 

lower. Differences in sample handling may explain the disparity between the relative rates 

of diffusion in the infrared and Raman experiments.

7.5 : The interrelation of the results

247



Both the infrared and Raman depth profiling results showed that in the silane 

underlayer laminates, diffusion of Y9669 into the PVC layer did not occur. From the ATR- 

FTIR results alone, it would have been difficult to confinn this, as the expected change 

would have been to see a small change in the large intensity o f the silane bands, especially 

as the sensitivity of the evanescent field of the ATR experiment rapidly decreases further 

into the PVC film. From the depth profiles measured, however ( figure 4.11 ), it can 

clearly be seen that the silane layer does not interdiffuse into the PVC layer. From the 

hydrolysis measurements, it was shown that over 24 hours, Y9669 undergoes hydrolysis in 

solution, but no condensation was observed. However, in casting the prehydrolysed silane 

films for the silane underlayer experiments, the film of silane solution was heated at 80 °C 

in order to remove the IPA and water solvents. It might be expected that this would have 

the effect of accelerating condensation, especially as the product of condensation ( i .e . 

w ater) was being continuously removed. Therefore it is believed that the silane films used 

in the silane underlayer experiments consisted of highly condensed siloxane polymers, 

explaining why no diffusion occurred.

In the silane overlayer experiments using unplasticised PVC, the results using 

Y9669 can be correlated by comparing the intensity at the same distance from the PVC 

surface ( i.e. the silanes had diffused the same distance ) at the corresponding times in the 

FTIR-ATR experiments and Raman depth profiling experiments. This can be done by 

comparing the measured ATR-FTIR intensity ( as the experiment essentially measures the 

intensity at the silicon interface, the silane concentration measured was that o f the silane 

which had diffused 10 pm. ), with the intensity in a Raman depth profile at the point 10
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Figure 7.1 : Schematic diagram showing comparison of ATR measurements of diffusion 
and measurements taken from depth profiles ( not to scale)

It can be seen from Figure 7.1 that the two experiments are somewhat 

similar in that in both cases there is a rapidly increasing response to the diffusing silane 

from the experiment as a distance of 10 pm. is approached. The experiments are different, 

however, in detail. In the Raman experiment, the silane diffuses past the measurement 

point, but does not in the ATR-FTIR experiment. This should not have a great effect if the 

silanes are distributed heterogeneously through the film at equilibrium. The quantitative 

effect of the intensity response with distance is also different in the two cases, as was shown 

in chapter 2. It is expected that the ATR-FTIR response falls off much more quickly than 

the Raman response ( cf. figures 2.6 and 2.13 ).

In the case o f Y9669, comparing figure 3.12 with figure 4.14, it can be seen that in 

both cases, before any heating, only a small intensity, if any, could be seen 10 pm. from the 

PVC surface. After 15 minutes, a large proportion ( o f the order of 90% of the equilibrium
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intensity ( the last value measured ) was seen at this point. This data may be shown more 

clearly by plotting the normalised intensity at the same distance from the PVC surface, at 

the same times, for each silane. The infrared intensity of Y9669 and the Raman intensity of 

Y9669 10 pm. into the PVC film measured in this way are compared in Figure 7.2. 

Intensities have been normalised to their equilibrium values ( which are taken as the last 

value measured)

0.8 -

0.6 -

0.4 -

0.2 -

0 minutes 15 minutes equilibrium 
Time

Y9669 infrared Y9669 Raman

Figure 7.2 : Comparison of the infrared and Raman intensities of Y9669 from annealing
experiments in unplasticised PVC

The infrared and Raman intensities for A ll  10 cannot be compared, as no 

diffusion was observed in the infrared experiment. However, the Raman values are plotted
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in Figure 7.3 to allow comparison with the results from the other silanes. The intensities 

observed in the A 1891 experiments are compared in Figure 7.3.

0.8  - -

0.6 -

0 .4  -

0.2  -

0 m i n u te s 15 m in u te s  
T im e

equil ib rium

A 1 1 1 0  R a m a n

Figure 7.3 : Plot of the normalised Raman intensity of A l 110 from annealing experiments
in unplasticised PVC
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Figure 7.4 : Comparison of the infrared and Raman intensities o f A 1891 from annealing
experiments in unplasticised PVC

The preceding three figures clearly show that the three silanes all show different 

behaviour when treated in the same way. However, figure 7.1 and figure 7.3 also show that 

it is possible to obtain the same information from both ATR-FTIR kinetic studies and 

confocal Raman microscopic depth profiles, and that the data show the same trends. This 

shows that in practice the response of the evanescent field in ATR-FTIR spectroscopy and 

the confocal profile in Raman confocal microscopy show very similar intensity - distance 

responses. We believe that this is the first time that data from the two techniques have been 

directly compared in this way. It is not clear why A l l  10 was not observed to undergo 

diffusion in the infrared experiment; especially in light that it showed very similar diffusion 

characteristics to Y9669 in the ATR-FTIR studies of diffusion in plasticised PVC, and in 

the Raman depth profile studies. The main difference which could affect the behaviour

252



between the two annealing experiments was the heat treatment of the laminate. It is 

possible that the repeated treatment o f the laminate at 70 °C for 5 or 10 minutes intervals in 

the ATR-FTIR experiment caused the A ll  10 to undergo hydrolysis, preventing the 

diffusion, whereas the treatment for 15 and then another 45 minutes in the Raman 

experiment did not have this effect.

Comparison of the various data obtained on hydrolysis shows that the conditions 

under which hydrolysis took place were very important. When hydrolysis took place in 

aqueous solution, with an acid catalyst present ( chapter 5 ), A 1891 was shown to hydrolyse 

faster than Y9669. However, in ambient conditions, reacting with atmospheric water with 

no catalyst present ( chapter 3 ), Y9669 was observed to undergo hydrolysis much faster 

than A 1891. This is presumably because A 1891 requires a catalyst to undergo rapid 

hydrolysis, whereas aminosilanes such as Y9669 are thought to be able to undergo self 

catalysis of the hydrolysis process5. In the case of Al 110, it was observed that in aqueous 

solution, hydrolysis was extremely rapid, but no condensation was observed, whereas under 

ambient conditions hydrolysis was relatively slow, but subsequent condensation also 

occurred.

Comparison of the results from chapter 3 and chapter 6 also helps to explain what 

was observed. Because the data in chapter 3 had previously shown that prehydrolysed 

Y9669 showed slower diffusion than unhydrolysed Y9669, we could be confident in saying 

that the mechanism by which the presence of water in a PVC film slowed diffusion was 

that the water hydrolysed the silane in situ, leading to slower diffusion kinetics. The
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similar depth profiles shown in chapters 4 and 6 also allow us to be confident in stating that 

these depth profiles represent an equilibrium distribution of silane throughout the PVC 

film, and that although hydrolysis slowed diffusion, the silane eventually reached the same 

distribution in the PVC film.

7.6: Overall conclusions

The broadest conclusion that can be drawn from the work presented here is that the 

organosilane / PVC / silicon system is an extremely complicated one where the reactions of 

the silanes are critically dependent on many factors, including PVC film composition and 

humidity, silane type application method and pre-treatment, and laminate age and thermal 

history. However, some more specific conclusions are stated below.

All of the silanes investigated are capable of diffusion through PVC films. 

Diffusion through unplasticised PVC is very slow or non existent at room temperature, but 

occurs readily near the glass transition temperature of the PVC. The diffusion occurs 

readily at room temperature in plasticised PVC and the diffusion is faster with higher 

plasticiser concentrations. The kinetics of diffusion may be modelled by a dual sorption 

model but do not show Fickian case I kinetics. The diffusion kinetics are also dependent 

on the hydrolysis state of the silane. Hydrolysed silanes diffuse slower through both 

plasticised and unplasticised PVC.

254



The hydrolysis kinetics of the silanes are highly dependent on silane functional 

group and the hydrolysis conditions employed. A ll  10 hydrolyses extremely quickly in 

aqueous solution but is then highly resistant to condensation to a polysiloxane. On the 

other hand, if  allowed to react with ambient humidity it shows slower hydrolysis and 

readily condenses. Y9669 showed hydrolysis under both sets of conditions and also 

showed evidence of condensing to a polysiloxane under ambient conditions. A 1891 

showed extremely slow hydrolysis under ambient conditions, but very fast hydrolysis in 

aqueous solution, when a catalyst was present. There was no evidence of condensation in 

either case. It was also shown that it is possible for Y9669 to be hydrolysed by water 

present in the PVC film as it undergoes diffusion; as expected this reaction slows the 

diffusion of the silane through the PVC film.

Both ATR-FTIR spectroscopy and Raman microscopy were shown to be extremely 

suitable to the study of the reactions and diffusion of small molecules such as organosilanes 

outside and inside polymer laminates. More importantly, the two techniques yield 

complementary information about the system and used together gave a fuller understanding 

of the reactions occurring than either technique used separately. When the measurements 

made by the two techniques were comparable, it was shown that at least qualitatively the 

two techniques gave the same results.

The evidence shown here that silanes may undergo both diffusion and hydrolysis, 

and presumably condensation in PVC / silicon laminates helps to explain the mechanism of 

adhesion in industrial PVC / glass laminates. The fact that it has been shown that these
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processes may occur in situ leads us to expect that the major process which contributes to 

adhesion is interdiffusion of the silane and PVC, and probably formation of an 

interpenetrating polymer network6, due to in situ condensation of the silanes by water 

present in the laminate. The process described as the chemical bonding theory ' may well 

occur, but it is expected that both processes are necessary for optimum adhesion.

7.7: Future Work

It was observed that the behaviour of all three silanes was different. However the 

reasons for these differences remain unclear. Performing these experiments with a wider 

range of silanes; specifically silanes with a systematic variation of alkoxy group and 

functional group, would allow determination of the factors which determine and 

organosilanes behaviour.

The experiment described here used a very simple model of laminated safety glass. 

Now that the processes which occur in such systems and the methods which may measure 

them have been determined, application of similar methods to more realistic models should 

be carried out. For example, the use of more industrially relevant temperatures ( e.g.. 120 

to 150 °C ), thicker PVC films, and the inclusion of industrial PVC additives ( e.g. heat 

stabilisers and processing aids ) would provide information more relevant to the processes 

which occur during glass lamination.
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The reason why the A ll  10 failed to show diffusion in the infrared annealing 

experiment was not clear. Several experiments could be performed to find out what was 

happening. Raman depth profiles of the laminate with 5 minutes annealing times would 

show whether the silane diffused at all. Alternatively, experiments involving applying the 

silane directly on to an ATR crystal, or alternately on a very thin PVC film ( for example a 

few 100 nm. ) could be performed. This would allow infrared spectroscopic determination 

of the hydrolysis state of the silane, using the same bands used in chapter 3. This might 

require the use of a different ATR crystal material, such as germanium, as silicon absorbs 

infrared around the 1000 cm '1 region. Carrying out the experiments using the other silanes 

as well would ensure that the differences between their behaviours could be determined.

The hydrolysis in situ was observed indirectly by the effect it had upon the diffusion 

characteristics o f Y9669. The use of an alternate ATR crystal material would also allow 

the infrared spectroscopic determination of hydrolysis kinetics, and the factors which affect 

them, inside a PVC laminate.

The analysis of the diffusion mechanism is incomplete. Although the data fitted 

well to the dual sorption model, it was not checked whether the data fitted to the Fickian 

Case II diffusion model, or other diffusion models. This should be investigated.
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