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SYMBOLS

a thermal expansion coefficient, K"1, or angle of normal load to crack plane
£ strain
e angle around crack tip, radians
A ratio of lateral to normal load or stress
p density, kg/m3
CT stress, Pa
A ct stress range
<7m AX maximum stress in a thermal shock cycle, Pa
CTx lateral stress component, Pa
C7y normal stress component, Pa
(7yield yield stress, Pa
CTxy shear stress component, Pa
O r non-singular biaxial T-Stress, Pa
CTl lateral applied biaxial load, Pa
CTn normal applied biaxial load, Pa
OQ lateral applied biaxial load to the crack tip, Pa
Gp normal applied biaxial load to the crack tip, Pa

NOTATION

a crack length, mm
A, B, C fitted constants
Bi Biot Number
B  1,2,3 biaxial ratio function
c P specific heat capacity, J/kgK
FD finite difference
FD&T finite difference and Timoshenko
FE finite element
Fo non-dimensional time or Fourier Number
h heat transfer coefficient, W/m2K
k thermal conductivity, W/mK
Kj mode I stress intensity range, Pa.m'3/2
Ku mode II stress intensity range, Pa.m'3/2
L length



Qf heat flow by convection, J
Qk heat flow by conduction, J
r radial distance from crack tip, mm
rp plastic zone size, mm
R R-ratio, ratio of minimum load to peak load of Ag in isothermal loading
tp time period of thermal shock cycle, s
T temperature, °C
Ta Ambient temperature or cooling medium temperature, °C
Tend temperature at shocked surface at the end of a thermal shock cycle, °C
Tfactor thermal gradient function; fraction of, T e n d , T initia l  and TA
T initial Initial conditions of thermal shock, °C
TP nodal temperature, °C
Tn northward nodal temperature, °C
Ts southward nodal temperature, °C
Te eastward nodal temperature, °C
Tw westward nodal temperature, °C
Tpt+1 temperature, Tp one time increment in the future
At time increment
Ay element length, m
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Abstract

The work presented covers numerical analyses of edge-cracked thin plates of 

austenitic stainless steel, AISI 316, loaded with transient thermal downshock. Further 

to this isothermal centre-cracked plates loaded under isothermal biaxial conditions are 

modelled. Crack growth rates are then applied to the models to determine a correlation 

between the two geometries.

The work presented demonstrates that a correlation exists between thermal 

downshock and biaxial isothermal crack growth rates. For such a correlation to be 

determined, the thermal shock and isothermal biaxial loading must be studied with an 

elastic-plastic material response. It is also determined that biaxiality in thermal shock 

is a function of the shock localisation due to localised contraction of the specimen in 

the direction of heat flow, making it necessary to evaluate thermal shock stresses in a 

two-dimensional sense. The relationship between biaxiality and localisation is found 

to be non-linear. At shocked regions greater than 25% of the available area maximum 

stresses remain largely unchanged. Below 25% of the available area maximum stresses 

drop significantly, by up to 50%.

Finally a method is proposed whereby thermal shock crack growth rates can be 

estimated by the bounding conditions of isothermal biaxial loading. This method uses 

an estimation of the heat transfer coefficient determined through a thorough analysis 

of a broad range of thermal shock cycles for AISI 316. Using the defining 

temperatures and time period of the cycle the h value can be estimated to within 3%. 

Once known the h value is fed into a simple log function describing maximum thermal 

stress, which can then be converted for any localisation present. It is also found that 

the correlating isothermal peak load is approximately equal to that of the thermal 

stress calculated. From this a modified Paris law is proposed to predict two sets of 

crack growth rates; one at equibiaxial conditions and the second at a biaxiality 

determined from the thermal shock load. This is shown to be a minimum of 0.35 at 

maximum localisation. This will calculate the upper, and lower, bounding limits of the 

thermal shock crack growth rates, providing a good estimation of the thermal shock 

crack growth rates.
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1 -  Introduction

Thermal shock is a severe form of thermal loading. Much work is conducted 

today to study its effect on reactor pressure vessels due to the accident scenario known 

as the ‘loss of cooling event’. It can also occur on turbine blades and gun barrels in the 

form of rapid heating. Events creating thermal shock therefore, occur primarily in 

hazardous environments making understanding its nature on vital components such as 

reactor pressure vessels one of great importance. As a result of this severe form of 

loading, the high temperatures required and the rapid extraction or input of heat makes 

the experimental study of thermal shock expensive.

The subject of this thesis is to determine a correlation between the severe forms 

of loading in thermal shock fatigue and its correlation to bounding biaxial isothermal 

crack growth rates. To determine such a correlation would allow a much cheaper 

evaluation on estimating the severity of thermal shock loading. To this end numerical 

models have been conducted on transient heat transfer, linear-elastic and elastic plastic 

stress analyses and fracture mechanics. These analyses have been complemented with 

experimental data determined from a previous study by S. T. Hasan. A review of the 

work conducted in thermal shock and isothermal biaxiality is made and the 

contributions of numerical analyses noted. A successful method of analysis is then 

proposed.

Methods of the various analyses conducted are described in chapter 5 and their 

results presented in chapter 6. A discussion is then made in relation to the correlation 

of thermal shock to isothermal biaxial crack growth rates in chapter 7 and conclusions 

drawn and recommendations for further study made in chapters 8 and 9.

Chapter 5 is divided into 4 separate sections. Both theoretical and analytical 

analysis is covered, for thermal shock temperature and stress distributions, and 

determination of crack tip descriptors. This includes the mode I stress intensity range 

and a new plastic zone parameter derived for the purpose of this work. The parameter 

determines the biaxial form of the plastic zone coupled with its magnitude to perform 

a complete description of the plastic zone under linear-elastic and elastic-plastic 

material responses. Presented with this parameter is its theoretical determination from 

linear-elastic fracture mechanics for a von Mises mixed mode (I, II) plastic zone
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including the non-singular term of biaxiality. Also presented is a method by which 

explicit definitions of the thermal shock cycle can be used to determined the state of 

loading and the proposed form such functions must take.

Chapter 6 covers the results of theoretical, finite difference and finite element 

models showing the important effects of localisation and elastic-plastic material 

response under two-dimensional analyses. The end functions describing the state of 

thermal shock loading and their relationship to isothermal biaxial models are also 

presented using the defining thermal parameters of thermal shock, i.e. initial 

conditions, end temperature of the shocked surface, ambient temperature and time 

period.
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2 - Literature Review

2.1 -  Overview of Fatigue & Fracture

There are many kinds of fatigue failure attributed to the micromechanisms at 

work in the material and the type of load cycle applied. However, the general pattern 

of crack propagation is the same and shown by Figure 1. Three stages are identified, 

Stage I - initiation, Stage II - propagation, Stage III - unstable and fast fracture.

Stage I is open to interpretation, just when a crack becomes a crack can depend 

on the perspective of the designer. Probably the best description is that of threshold - 

defined as a minimum range of a crack tip descriptor below which no crack 

propagation will occur, it is consequently a function of both loading and crack length. 

This makes the definition of minimum crack length only half of the problem, certainly 

when crack growth rates are of interest. However, it is agreed that initiation of a crack 

is generated at the microscopic scale by slip band deformation. Figure 2 is a schematic 

of the effect. Continuous cycling can create build-ups of these slip bands either as 

extrusions or intrusions effectively creating a stress raiser at the microscopic scale. 

Cracks have been found to initiate at the root of these slip-band positions [1]. Towards 

the end of the stage I region a threshold value, AKth, is found below which no 

propagation occurs.

A model of stage II crack propagation is presented by Tomkins [2]. This region 

is the primary region of growth for fatigue cracks and Tomkins’ model demonstrates a 

repetitive deformation of crack tips through applied cyclic loads. The model is 

illustrated in Figure 3 where a fully compressed crack, Figure 3a, is loaded through a 

tensile/compressive cycle. On increasing the load through the tensile cycle the crack 

opens and 45° shear bands create plastic flow ahead of the crack tip, Figure 3b. At the 

tensile strain limit, Figure 3c, shear decohesion of the material occurs by these bands 

creating new crack surface. On the compressive reversal of loading the crack tip closes 

without recohesion of the new crack surface, Figure 3d. On returning to full 

compression a deformation of new surface occurs in the form of a ripple. Under 

repeated cyclic loading these ripples repeat with each cycle creating the familiar 

fatigue crack surface effects of striations. Quantification of this region of crack 

propagation was made by Paris and is known as the Paris Law;
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da
—  = C(A£)m

eqn. 1

The Paris law provides a logarithmic relationship between the crack growth rate, 

da/dN, and a crack tip descriptor, K - the stress intensity factor.

The stress intensity function, K, was first quantified by Irwin in 1957 [3] as a 

simple function of the force tending to cause crack extension and today is generally 

given as a function of applied stress and crack length;

Erdogan gives a full description of K and further detailed analysis [4]. However, 

the function must reflect the conditions and geometric constraints to which the crack 

tip stress field is exposed. This is usually achieved through a Green’s function method 

with simplifications taken against geometry and loading. Even then such functions can 

be extremely difficult to use in terms of the integral equation resulting from the Paris 

law. Much work has been conducted to this effect and presented in data books, [5]. A 

descriptive form is,

where a is the length of an edge crack or half the length of a contained crack and 

W is the overall length of the cracked plane.

Further description of the intensity of loading is provided by AK - the range of 

stress intensity factor between the maximum and minimum tensile values of K as 

determined by the stress cycle. The ratio of these values, R:

eqn. 4

is found to increase crack growth rates as it increases, behaviour more prominent 

in stages I and HI.

The constants C and m are required parameters to carry out the analysis. They 

are both related to material and loading conditions and m is commonly said to vary

eqn. 2

eqn. 3
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between 2 and 4. Since a logarithmic scale is adopted, m describes the gradient of 

stage II.

Stage III, introduces a critical point at which the crack will accelerate to 

catastrophic failure. This is described by a critical stress intensity range, AKc, which is 

found to decrease substantially with increasing thickness of specimen. As plane strain 

conditions approach the value falls to a constant. Thick specimens for plane strain 

conditions are therefore needed in order for such a critical stress intensity to be used as 

a meaningful measurement of material fracture toughness.

The fracture toughness of a material can be a consequence of very different 

micromechanisms at work within the material. Original work into the fracture of 

materials was carried out by Griffiths in the 1920’s on brittle materials - primarily 

glass with elliptical cracks. Today fracture is grouped into either brittle or ductile 

fracture and Figure 4 shows some of the main mechanisms involved. To determine the 

type of fracture (brittle or ductile) in a crystalline material means identifying whether 

or not plastic flow is required for material separation. From a brittle standpoint 

fracture primarily occurs from the separation of atomic planes, while requiring high 

stress to separate planes the energy involved to create the new surfaces is small [6]. 

Ductile fracture, however, requires around 106 times more energy to separate material 

since plastic flow has to take place.

The primary mechanism of ductile fracture is due to nucleation of microscopic 

voids, either at dislocation pile ups, points of severe deformation, or around the 

interface of particle inclusions. These voids grow in size ahead of the crack tip where 

the stress/deformation field is greatest, increasing in concentration until they coalesce 

to create larger voids or separate completely to form further crack surface. As with 

brittle fracture, ductile fracture can occur by transgranular or intergranular fracture 

illustrated by Figure 4. This is dependent on the amount of slip planes present in the 

material structure; the more slip planes present the more dislocation pile ups occur at 

grain boundaries and therefore the greater energy present to initiate void growth and 

crack propagation. Consequently, face centred cubic (FCC) materials, having more 

slip planes than body centred cubic, are more likely to fracture by intergranular 

processes [7,8]. At high temperatures creep effects can also be present. These 

processes can combine to generate complex fracture processes, to study this, further
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work has been presented by Miller [9] and Ashby [10] to group the mechanisms at 

work in different materials as conditions of temperature and loading.

Both ferritic and austenitic steels demonstrate a range of fracture processes. 

Austenitic steels specifically can fracture under low loading and long times by 

intergranular processes. However, at high temperature transgranular creep fracture 

dominates. This can, however, be returned to intergranular fracture if inclusions or 

precipitates are present at the grain boundaries, fracture will occur due to their effect 

as a stress raiser.

For AISI 316 the mechanisms of fracture are difficult to isolate. High levels of 

dislocation pile ups at grain boundaries, generating high strain energies, induce the 

precipitation of carbide particles at grain boundaries. This occurs primarily at 

temperatures ranging from 500 to 700°C, which maintain the materials stiffness at 

these temperatures. A general trend of transgranular fracture is found in thermal shock 

(TS) tests by Marsh [11,12] where oxide penetration is also noted at all crack initiation 

sites. Whereas Miller presents data on monotonic loading for creep and shows for the 

above temperature region, with yield order loads, intergranular creep fracture 

dominates.

It is apparent for a full description of fracture the immediate conditions taking 

place must be known and quantified. Fatigue and fracture spans into many different 

fields which can be divided into two categories, environmental fatigue/corrosion and 

mechanical fatigue/fracture. The latter being the focus of the current work, with its 

various branches shown by Figure 5. Essentially groups are defined in terms of 

mechanical and temperature types of loading. The groups have evolved with attempts 

at furthering the accuracy of predictive methods and together describe the 

environments engineering components are exposed to.

2.1.1 -  Fracture mechanics

Classical linear-elastic fracture mechanics (LEFM) has long been established. 

Over past decades it has been the subject of much work resulting in the fields 

divergence to many varied areas of engineering. As a result a few of the key papers 

and those relevant to this work will be mentioned. Tomkins [2] furthered the field by 

presenting a thorough analysis to quantitatively assess the mechanism of fatigue crack
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growth in metals. Centred on the propagation of a crack by damage in the shear planes 

the basic theoretical laws governing fatigue failure at both high and low stress regions 

were derived, with material parameters controlling crack growth presented. Made in 

conjunction with experimental work the theoretical and experimental findings 

compared favourably throughout the fatigue regime and confirmed low stress crack 

propagation previously presented by Paris.

LEFM is however limited to low loads and stress fields in relation to a materials 

yield stress and the field of fracture mechanics has always searched for a method of 

equal rigour to be applied under higher loading conditions in the elastic-plastic (EP) 

region. To this end parameters such as crack opening displacement (COD), crack tip 

opening displacement (CTOD) and plastic zone (rP) have been looked at. However, an 

elastic-plastic fracture mechanics (EPFM) analysis does not generally present a 

complete solution.

In 1968 [13], furthered in 1976 [14] and 1988 [15] Rice presented a parameter 

known as J , the path independent contour integral. The parameter was based on the 

accumulated strain energy around a contour taken from one crack face to the other. It 

was unique in that the value of J was independent of the path chosen. This made the 

parameter in later years ideal to finite element analyses. Based on strain energy the 

parameter was not subject to the limits of linear-elastic (LE) models and could be 

equally applied to both LE and EP material responses. Mathematically equivalent to 

the energy release rate (G), the J-Integral could be related back to COD and K values 

under linear-elastic conditions and approximate estimates to these were made. Rice 

also showed the integrals capability to deal well with blunt crack tips under both LE 

and EP conditions.

The J-Integral was also expanded to use in mixed mode fracture mechanics, an 

excellent derivation of which is presented by Hellen [16]. An illustration of this 

derivation was put well by Chen [17] in 1981. Here the determination of J is orientated 

between two different orthogonal limits resulting in two separate values of J referred 

to as Ji and Jn. It is important to note that these are simply values of J and do not 

represent equivalent modal stress intensity values. Ji and Jn can also be described as 

functions of Ki and Kn and thus can be determined by solving simultaneously. This 

renders the J-Integral even more useful to the methods of finite element.

In 1988 Lambert et al [18] evaluated the AISI 316 thick plates for crack 

propagation using J as a fracture parameter. Using both numerical and theoretical



methods of calculating J a conservative Paris correlation was found and proposed as a 

calculation method for generalised plasticity in structures. Banks-Sills et al [19] in 

1991 used an empirical relationship to calculate AJ by integrating the load vs. 

displacement curve and comparing to J values determined through G equivalence. 

Again the AJ parameter was successfully used in a Paris law correlation, Mao et al 

[20] presented the use of AJ in the damage tolerance of a compressor blade. Placed 

under centrifugal and gas forces a critical J was already known and the corresponding 

critical crack length was determined.

As well as the use of J and COD the plastic zone, rp, presents itself as a 

promising indicator to the state of a crack tip. Since rp is a direct result of the crack tip 

it must therefore be an ideal indicator to the prediction of crack propagation. The 

plastic zone is long established as a fundamental attribute to UEFM, however, it has 

never been able to demonstrate itself as a thorough crack propagation parameter. Due 

to its direct relationship with crack tip stress the plastic zone can become more 

descriptive of specimen geometry and general yielding under high load scenarios than 

the singular stress about a crack tip. It is tempting, however, as a biaxial parameter 

since the non-singular term describing T-Stress can be introduced to its description. 

Consequently the rp could be used as a measure determined by numerical methods for 

understanding the state of loading about the crack tip. On the other hand it could also 

be used under known mixed mode loading as a predictor to the direction and rate of 

crack propagation. Some recent work has used the rp to determine the effects of 

biaxiality in various conditions.

Bobet et al [21], used the rp in conjunction with critical direct and shear 

strengths of gypsum rock under uniaxial and biaxial loading. The rp was used in 

numerical models to determine the onset of initiation in brittle fracture, showing a 

rigorous application to results from external works. Bhargava et al [22] also used rP 

with the Dugdale model to describe biaxially loaded cracks. Shaniavski et al [23] also 

used rp in modelling crack growth in aluminium alloys. The plastic zone was used 

under various R-ratios and biaxial loading scenarios. However the orientation of the 

plastic zone was not used to determine the direction of crack propagation. It was noted 

however, the plastic zone was not linearly related to the ratio of biaxial loading. This 

is analytically determined in the work presented within this thesis, where limits of 

numerical stability are determined. Plastic zone is not consigned to numerical
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analyses, it has been studied via transmission electron microscopy by Farkhutdinov et 

al [24] in 1995 to study the plastic zone under impact bending tests after superplastic 

thermomechanical treatment. It would seem therefore that rp is an equal contemporary 

candidate for a crack tip descriptor as the J-Integral mixed mode K values. The 

capability of rp, however, to maintain a realistic description when it is large, compared 

to the crack length is still questionable. A possible by-product of this is the use of 

plastic zone shape around notches containing cracks in elastic-plastic models to 

determine crack growth as conducted by Ahmad et al [25].

2.1.2 -  Isothermal Biaxialitv Fatigue

Isothermal fatigue is the simplest form of cyclic fatigue. The majority of 

engineering components can be described as operating at a constant and uniform 

temperature. Along with the cyclic loads of service this temperature is the only 

external parameter of interest and is used only in selection of appropriate 

cyclic/mechanical material properties. Indeed other more complicated forms of cyclic 

loading are sometimes referred back to a single representative isothermal temperature. 

Until recently isothermal fatigue tests have been conducted on simple plane strain 

uniaxial compact-tension (CT) specimens. In practice however, a component is usually 

subjected to a more complex stress system than uniaxial. Biaxial stress fields, for 

instance, are set up by structural constraints, changes in geometry, ductile behaviour or 

simply loaded in a non-uniaxial fashion during service. Therefore in today’s more 

demanding economic climate and high competition for accurate component 

specification in life as well as in performance more complex methods of evaluation are 

required.

The Paris law has been successfully used for uniaxial fatigue test analysis. For a 

similar method to be determined for biaxiality then the dependency of crack growth 

rate on AK as derived from surrounding biaxial conditions must be known. Since the 

Paris law predicts crack growth rates that are only a function of stresses affecting the 

crack tip stress field the consequence of biaxiality and the possibility of mixed mode 

crack growth must be evaluated.

In 1974 Miller and Kfouri [26] compared the performance of LE to EP models 

using various crack tip parameters including J-integral and plastic zone size under
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biaxial loading. It was concluded that for LE materials the stress intensity factor 

adequately defines the crack tip state, whereas in EP materials more complex 

descriptions are required. This is contrary to work later submitted by Eftis et al [27,28] 

who described the requirement of an additional non-singular term in the descriptions 

of stress and displacement around a crack tip when dealing with any form of 

biaxiality. In the same year Kfouri and Miller demonstrated the changes in fracture 

toughness parameters J and GA under biaxial conditions [29]. In the following year, 

Kfouri and Miller [30] demonstrated that J and plastic zone can be used to described 

the biaxial stress state about a crack tip.

Brown and Miller [31] have designed a biaxial thin-plate test-specimen for plane 

stress scenarios. This ‘cruciform’ specimen is able to carry out both biaxial and 

uniaxial loading tests, whilst still maintaining a biaxial effect. The design is such that 

in a uniaxial test the free edges are constrained from displacing inwards so creating an 

effective biaxial system. A similar specimen of more complex geometry, and designed 

for both horizontal and slant cracks has been used for biaxial tests on weldable metals 

by Kitigama et al [32]. Charvat et al [33] designed a test rig for the study of crack 

growth rates of biaxial loading systems. Using similar specimens to Charvat, Rhodes 

and Radon [34] looked at the inherent local biaxiality ahead of a crack tip in 

aluminium alloys finding applied biaxial loads manipulated the local biaxiality. Kfouri 

and Miller [35] have also investigated inclined cracks in biaxial stress fields using 

finite element models of Brown and Miller’s cruciform specimen.

Initial definitions of the applied and resulting biaxial stresses are described by 

two parameters, Or and A, where;

Gt =  Gl -

eqn. 5

eqn. 6

where Gl and Gn are the lateral and normal applied stresses respectively, Gp and 

G q  are the principal stresses at the crack tip. For non-rotated cracks, would be fully 

described with crL and Gn by;

gt = gn(A -1 )
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eqn. 7

Under increasingly negative values, i.e. increasing normal stress (a process of 

Mode I crack growth) its effect is thought to accelerate mode I cracks along with 

increasing plastic zone size and crack opening displacement (COD), with Ao^ 

governing the magnitude of the effect. Interestingly, Kfouri also found a reduction in 

crack tip stress whilst supporting the use of CFr to describe biaxiality along with mode I 

and II stress intensity factors. Furthermore, rotated cracks are found to adjust 

themselves to a path where AKn = 0 or to a path corresponding to Mode I loading.

All previous biaxial tests have been presented in terms of the Paris equation. 

However, no single unambiguous method of representing the crack tip state under 

biaxial loading has been made, i.e. expressing K as a function of A. Due to what 

appears to be a dominance of mode I loading on a crack tip under biaxiality such 

enhanced consideration may not even be necessary [31].

At high temperatures (=0.4+ of melting temperature) creep fatigue takes place. A 

material of previously mentioned studies by Brown and Miller in this thermal region is 

that of AISI 316. In 316 creep fatigue occurs at around 600-700°. At these 

temperatures oxidation of new crack surfaces can take place - a mechanism associated 

with crack closure and thought to ease the effective stress intensity factor.

A thorough review of the early biaxial work carried out is made by Smith and 

Pascoe in 1983 [36]. The review found contradicting results, where biaxiality was said 

to accelerate, decelerate and affect in no way at all the growth of fatigue cracks. 

Several suggestions were put forward as reasons for this, including geometry, testing 

parameters, material behaviour and the use of Paris law reducing the ability of small 

changes to be observed. Therefore the effect of biaxiality is not absolute, like all other 

aspects of engineering it is dependent on different factors. It can be said however, that 

biaxiality is certainly manifest in theory and in numerical practice at the level of the 

crack tip singularity and should therefore be of direct relevance to the quantification of 

complex loading.
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2.1.3 -  Thermal Fatigue

Thermal fatigue can be known by many different names - creep fatigue, thermal 

shock, craze cracking, thermal rupture, thermal strain fatigue, thermal stress fatigue 

and high temperature fatigue. All these names isolate the importance of one effect on 

fatigue performance - temperature. Spera [37] has defined thermal fatigue as ‘the 

gradual deterioration and eventual cracking of a material by alternate heating and 

cooling during which free thermal expansion is partially or completely constrained’. In 

other words basic fatigue with loads induced from thermal expansion/contraction as 

opposed to externally applied loads. An exception is creep fatigue, which can not 

solely be described by thermal fatigue; since creep effects are observable at high 

constant temperatures (isothermal fatigue) as well as high cyclic temperatures (thermal 

fatigue). Creep-fatigue interactions are an important mechanism and their relevance to 

a situation must be evaluated in high temperature models. However, AISI 316 is 

sufficiently unique in its high temperature cyclic behaviour to allow a more in depth 

approach to creep models. Rios et al [38] shows that AISI 316 generates dislocations 

at temperatures above 550°C creating non-uniform patterns in material behaviour with 

increasing temperature. By way of short summary work has been conducted 

[39,40,41,42,43,] on creep behaviour of AISI 316 and found to emphasise above 

550°C the importance of oxidation and precipitation of carbides on fatigue life. The 

effects of mechanical dwell periods are also reported to drastically reduce the fatigue 

of AISI 316.

Quantifying a crack tip under thermal loading conditions is not as easily made or 

readily available in literature than that of isothermal mechanical loading, though the 

first major study towards this was the work conducted by Coffin [44, 45] where the 

effects of thermal cycling on ductile metals was investigated. It has also been 

confirmed by Sih [46] that Irwin’s concepts of brittle fracture can be applied to 

determine stress intensities from thermoelastic stresses. This led to later work 

conducted by Emery [47] to determine the analytical solution of an edge-cracked plate 

subject to thermal stresses.

Figure 6 shows a long and thin specimen containing a small edge crack 

perpendicular to its length, either fully or partially constrained. Under such simplistic 

geometry a thermal cycle could be attributed to mode I loading, since thermal 

expansion or contraction would generate compressive or tensile stresses respectively.

13



This would infer standard use of the stress intensity function K in terms of the 

effective mode I stress from constraints of thermal expansion. For the elastic regime 

simple thermal stresses can be found by;

o -  aEAT

eqn. 8

where E  = Young’s Modulus, a=  coefficient of thermal expansion, AT = change 

in temperature. Taking into account R-ratios a stress range would be written as;

A g  = ccEAT(1-R)

eqn. 9

However, specimens will rarely lend themselves to such simple geometries and 

the multiaxial effects of thermal expansion may have to be accounted for. As such a 

singular interpretation of mode I, II or m  loading is not sufficient, crack tip 

descriptions using K must be approached in specific terms of temperature and thermal 

stresses. In isothermal analyses K is defined from derivatives of stress functions in two 

dimensions which in turn are taken from the considerations of strain. Temperature 

introduces another dimension, by further complicating analyses to such a degree that a 

single value of temperature is inevitably taken as representative of the thermal cycle. 

Simplifications may even be made to calculate the primary stresses induced by thermal 

cycling and used as a basic mechanical approach. As mentioned in the previous 

section biaxial loading systems could be used to attempt to model transverse and in

plane loading of thermal expansion. This may lead to a dominance of model I loading 

losing accuracy of any biaxial thermal stress system. Adopting a purely mechanical 

approach leads to the fundamental lack of modelling temperature dependant properties 

of the material. As with using a single temperature to describe a thermal cycle, single 

values of material properties may be used in the analysis. Though the larger the 

temperature range of the cycle the more gross the simplification. This is clearly shown 

by Kokini [48] who showed when significant changes in thermal properties occur, 

including, specific heat, thermal conductivity and expansion, drastic under 

approximations can be made in stress intensity factors.

It is here that computer power can be harnessed by using finite element methods. 

Crack descriptors such as the energy release rate (G), J-Integral (J), crack opening 

displacement (COD) and crack tip opening displacement (CTOD) can be calculated 

relatively easily from nodal displacements of a mesh model. Hence any form of
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loading can be made in a model along with temperature dependant material properties 

and the required information gained by sub-routines from the model results. The 

commercial package ABAQUS is able to calculate stress intensity values for surface 

cracks whose depth is capable of increasing on a small scale. Any of these values 

determine a description for a static crack.

The majority of service loads involving thermal fatigue are substantially less 

complicated than mechanical loading situations, since thermal fluctuations are 

generally the result of machine start-up and shut-down. Elevated or even sub-zero 

temperatures are often held at an approximate constant where start-up and shut-down 

of the system invariably causes most damage. Figure 7 shows basic representations of 

the thermal load cycle. Turbine blades in a gas generator are prone to the kind shown 

by Figure 7a where rise and falls in demand require the start-up and shut-down of 

further generators. A similar form would be that of turbine blades in a jet engine 

shown by Figure 7b where take-off and landing expose the blades to large increases in 

temperature whilst flight time incurs a steady-state and overall lower temperature.

The steady-state periods are the equivalent of mechanical dwells in isothermal 

fatigue cycles. It is generally agreed that such mechanical dwells at high temperatures 

are sufficiently damaging. However, thermal dwells need to be well within the creep 

region to create such damage.

It is rare however, for thermal fatigue to be considered exclusive of any form of 

mechanical loading. Components tend to be constrained in operation or sufficiently 

loaded to require application of mechanical loads as well. More detailed high 

temperature operating environments can be accounted for if mechanical load cycles 

are included and superimposed with thermal load cycles to create another area termed 

thermomechanical fatigue. An area discussed in the following section.

2.1.4 -  Thermomechanical Fatigue

Thermomechanical cycling is used to model situations which cannot be 

accurately tested by straightforward isothermal tests with uniaxial data. Thermal and 

mechanical load cycles are applied in two ways, out-of-phase (OP) and in-phase (IP) 

shown in Figure 8. Loading scenarios where the maximum mechanical strain applied 

coincides with the maximum temperature are termed in-phase and similarly where the
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minimum applied mechanical strain coincides with the maximum temperature are out- 

of-phase scenarios.

In order to discover if simpler isothermal tests are a viable alternative 

comparisons were made by Miller and Priest to those of isothermal tests using the 

maximum temperature of the thermal cycle with varying degrees of success [49]. IP 

cycles are considered to be the most damaging since maximum thermal strains are 

superimposed on maximum mechanical strains, essentially a two fold effect, whilst OP 

cycles are a contrary scenario such that any maximum mechanical load will not be 

supported by a low thermal strain. These conditions, however, are dependant on 

experimental conditions. If, for instance, an R-ratio of -1 is used for both cycles then 

thermal contraction will be generated at the same instant of mechanical tensile 

straining and a maximum ‘cancelling’ effect will take place. If an R-ratio 0.1 is used 

then the effect will be similar but not as pronounced.

Work conducted by Beauchamp [50] on AISI 316 in the range of 400-625°C 

shows that IP cycles are very accurately matched to those of isothermal tests whilst OP 

cycles provide excessive endurance. Beauchamp explained this not as an effect of net 

loading but in terms of a coincidental effect of fracture mechanisms.

In isothermal tests Beauchamp found fracture mechanisms to be intergranular 

nucleation followed by mixed mode crack growth. IP tests, however, revealed 

significant intergranular cracking whereas very little took place in OP tests. A lower 

mean temperature through thermal cycling would mean less surface cracking which 

would be compensated for by internal cracking in IP tests giving endurances 

coincidentally close to isothermal results. A lack of internal cracking in OP tests 

means that little overall damage takes place and so longer lives are a result.

Consequently, situations of thermomechanical fatigue require complicated 

models to verify any simplistic use of isothermal fatigue data.

2.1.5 -  Thermal Shock Fatigue

It is fair to assume that a material has been sufficiently well chosen for its 

performance at elevated temperatures, hence cycles shown in Figure 7a and b become 

a matter of primary damage by large changes in temperature over a brief period of 

time. Indeed some situations are exposed only to this kind of cycle. Figure 7c shows
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such an event by cooling systems in liquid metal fast breeder reactors using molten 

sodium as a coolant and heat extractor. By a combination of the sodium coolants high 

heat transfer coefficient and high conductivity, component surfaces exposed to the 

coolant follow thermal fluctuations very rapidly. This can occur during reactor 

shutdowns where power is quickly reduced. Marsh et al [51,52,53] has conducted 

work on such events with cooling rates of 10°C/s over 200°C initiating from 550- 

650°C. Other examples of similarly rapid temperature reductions given by Baron [54] 

are local quenching of piping by water droplets carried in superheated steam and gas 

turbine components when combustion is halted. From the opposite point of view 

Figure 7d shows the likely cycle for a gun barrel experiencing rapid increases in 

temperature during each firing and generating a distinct form of fracture known as 

craze-cracking. Northcott and Baron conducted work on rapid heating with high 

frequency induction and wedge shaped specimens showing this form of cracking [55].

This kind of cycle is described as a thermal shock cycle and is the most 

damaging form of low cycle thermal fatigue.

Thermal shock events primarily take place at elevated temperatures. As such the 

up-shock event (increasing temperature) is much more common as a repeating cycle 

than the down shock (decreasing temperature) event. This is due to an operations 

cooling rate commonly left to natural cooling by conduction and/or convection. 

However, as mentioned previously the less common downshock events do take place 

and in extreme environments.

One of the first accredited works into experimenting with thermal shock is that 

of Glenny et al [56], with evaluations of various methods for carrying out both thermal 

upshock and downshock tests within predetermined temperature ranges. 

Acknowledging the importance of thermal shock exposure on both brittle ceramics 

and metallic materials, methods presented are orientated around a disc specimen now 

known as the Glenny Disc. Figure 9 shows the specimen geometry used by Glenny et 

al. A tapered design is used to simulate wedge geometry of turbine blades 

incorporating the effects of a non-uniform section on the generation of thermal 

stresses. Methods including radiation and high frequency induction heating, forced 

convection and immersion in high temperature molten metals and salts were all 

rejected against each methods inability to maintain reliable values of heat transfer 

coefficients, damage to the specimen and control over temperature ranges produced.
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The suggested method was that of fluidised bed heating or cooling of the 

specimen. A refractory powder is made fluid by passage of gas through a permeable 

support plate. Altering the rate of gas flow and conductive properties of both gas and 

powder high fluidity and high levels of heat transfer are obtained under controlled 

conditions. Rapid cooling can be achieved by plunging a hot specimen into a room 

temperature fluidised bed or rapid heating by raising the beds temperature with 

surrounding electrical resistance heaters. Bed temperatures of 1000°C were reported 

with higher temperatures achievable from a secondary heater.

Behaviour of brittle and ductile materials under thermal shock is similar to those 

of ordinary isothermal mechanical conditions. Brittle fracture tends to occur as a 

shattering of the specimen when multiple small cracks or craze cracking becomes 

unstable. Griffith’s brittle fracture theory still holds - instability occurs when the 

elastic energy released in extending the crack exceeds the energy required to create 

new surfaces. Ductile behaviour can be accounted for by modifying the surface energy 

term to include the energy for local plasticity around the crack tip. This may prove to 

be somewhat more complicated for thermal shock since localised tensile and 

compressive stresses are set-up, as well as plastic deformation, not solely due to the 

crack tip.

The most common downshock event is that of quenching. It is well known that 

component warping can occur from residual stresses incurred from rapid cooling. 

Manson [57] studied the effects of single shock quenching and thermal cycling, 

producing parameters for material choice when quenching and thermal cycling are 

considerable loads. Skelton studied the effects of quenching on cylinders of austenitic 

steels [58] cycling the event to 30 000 cycles - finding austenitic steels accelerated 

cracks slower in the early stages than ferritic steels, though managing to penetrate 

further. Quenching is also a concern of the aerospace industry, where Ramakrishnan 

[59] using a hollow disc for a specimen, generated a designers information database to 

address solution heat treatment quenching. Similar analyses were also conducted by 

Askel [60] and Rasty et al [61] who determined the deflections of a beam under 

quenching by various numerical methods.

Probably the harshest example of thermal shock is that described by Seki [62] in 

1991 for plasma facing components in the research programme of the international 

thermonuclear experimental reactor. Assessing different materials including type SUS
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of 316 for containment of the plasma surround analysis of shocks of 1460°C over 60 

milliseconds were attempted. Predictably the lack of material property performance at 

these temperatures hindered any meaningful results from the analysis.

Brown [63] and Hasan [64,65] have studied repeated thermal downshock cycles 

with additional mechanical loads. Using air jet cooling of hot specimens rapid cooling 

was obtained on edge cracked stainless steel plates. A strain intensity factor was used 

to correlate results to isothermal tests with some success. However, analytical 

derivation of fracture parameters was based on a one-dimensional system when it is 

possible a two or even three-dimensional thermal distribution was present. Correction 

of this discrepancy could result in a better correlation than was originally found. Rapid 

acceleration of crack growth at early stages was found which then fell into arrest. 

However, the application of a tensile uniaxial load of a similar order to the 

compressive mid region stress could maintain crack growth beyond the compressive 

region.

An introductory paper by Skelton [66] presents a good description of the stress- 

strain system induced by a thermal shock cycle. Figure 10a shows a schematic of 

applied up and downshocks on the edge of a thin plate while Figure 10b shows the 

resulting stress/strain hysteresis loop through the process of an up and down thermal 

shock cycle as illustrated by Skelton.

When the surface of a body is exposed to a medium of much lower or higher 

temperature, a large thermal gradient can be set-up through the slow response of 

thermal conductivity within the material. When an upshock is applied to a surface, its 

temperature will rapidly increase forcing surface into expansion. The bulk material, 

which could be up to 75% of the whole, still at the initial temperature will generate a 

resisting constraint against that expansion, forcing the surface into compression and 

creating a large negative stress gradient at the surface. With high temperatures and 

ductile material this will likely pass into plasticity to point A of Figure 10b. As thermal 

conductivity catches up, heat will spread through the remainder of the region initially 

unloading the material, reducing the stress and thermal gradient only to pass the whole 

into expansion to point B approximately at the original state of strain. Holding times at 

a constant temperature may relax the residual stress imparted. Application of a 

downshock will then reverse the process. The surface will attempt contraction but will 

again be resisted by bulk material throwing the surface into tension to point C until
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thermal conductivity reduces the thermal gradient and hence the stress gradient. As the 

whole cools bulk material forces the yielded surface into compression, point D. After 

repeated cycles the system reduces to a closed hysteresis loop initiating and 

propagating fatigue cracks by reversed plasticity. Such a dual event Skelton attributes 

to the start-up and shut-down of power plants.

Since under downshock situations a surface is instantly thrown into tension 

generating plastic deformation in the very region where a crack will initiate it is the 

most damaging of the two. As such it is downshock models that will be the focus of 

this research.

2.1.6 -  Pressurised Thermal Shock

A review of thermal shock would not be complete without a description of the 

work undertaken in recent years on pressurised thermal shock (PTS). Created by use 

of the emergency core cooling system of a reactor pressure vessel (RPV) thermal 

shock can take place under pressurised conditions increasing cooling rates and 

introducing possible mechanical loads. Sievers et al [67] obtained a simplified method 

to determine the stresses and stress intensity factors through the pressure vessel wall 

under this form of loading. Sievers concluded that a particularly complex loading 

system was present making triaxiality an important factor in correlating results. This is 

supported by Chawla [68]. The importance of PTS in the modem power generation 

industry is clear when it is the subject of significant safety work on specific reactors, 

[69,70]. Further to this the available fracture mechanics concepts have been evaluated 

by Roos et al as late as 2000 [71] to ensure they adequately represent the fracture of an 

RPV.

Much work has been done in recent years to develop the numerical simulation of 

damage and crack propagation of RPV’s subject to PTS. Probabilistic fracture 

mechanics (PFM) has been used [72,73], where various required inputs to the model, 

such as geometry, material properties, crack length and shape etc. for RPV’s are 

altered to evaluate the designs sensitivity. This allows the consideration for the origin 

of most likely failure to be quantified. Numerical simulations into the propagation of 

cracks is conducted by Zhao et al [74], where the possibility of continued crack 

propagation as opposed to arrest is studied in terms of crack tip channelling and
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spalling. The effect of crack orientation under PTS is studied by Jang et al [75], 

determining that screening methods did not represent the same level of risk to 

circumferential flaws than axial ones. Matsubura [76] looked at the effect of the heat 

transfer coefficient on the relationship between crack tip parameter J and non- 

dimensional crack length, concluding the shape of the relationship is governed more 

by the material constants of a Ramberg-Osgood type model than the heat transfer 

coefficient.

Finally in 1999 Bass et al [77] designed a cruciform specimen to study the 

effects of PTS on surface flaws under uniaxial and biaxial conditions. It was 

successfully demonstrated that equibiaxiality could reduce fracture toughness by 42% 

at certain temperatures, whilst at lower temperatures it appeared to have no effect. 

This supports the previous review by Smith and Pascoe that material behaviour is a 

key factor in the response to biaxiality. It was also shown that principal stress analysis 

did not illustrate these effects.

2.2 - Numerical Analysis in Continuum & Fracture 

Mechanics

2.2.1 -  Continuum Mechanics

Continuum mechanics is the application of strength of materials theory to a 

component model in order to determine its performance under certain constraints and 

loading conditions. For linear elasticity the equilibrium and compatibility equations 

are satisfied by Airy’s stress function resulting in eqn. 10.

3*0
— —+ 2 ----- —  + — — = 0
dx\ dx\dx\ dx\

where

d 20 d 20
® \ \  ~  t . 2  5 ^ 2 2  “  n, 2  » ° 1 2  —  _  T  T ,ox2 cocl dxxdx1

eqn. 10

Requiring the selection of a function, 0, satisfying known boundary and loading 

conditions greatly restricts the complexity of component geometry, which must then
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be overlaid by simplistic forms. Though such functions can be relatively 

straightforward their application to a strength of materials theory is extremely arduous 

and normally outside the scope of the typical engineer and in the domain of the 

mathematician. However, up until the last few decades analytical solutions were the 

only real method by which to study the mechanics of a system. In recent years 

numerical approaches have been developed in an attempt to bypass this problem, 

resulting in the methods of finite difference (FD) and finite element (FE).

Both methods are long accepted laborious approximations to the differential and 

integral equations rising from the theory of elasticity. It took the advent of the 

computer in the 1960’s to start further interest in these methods. Probably the best 

illustrative example of the difficulties inherent in the FD method is that of Benham 

and Hoyle [78]. An autoclave blocking ring is modelled through FD approximations of 

the elastic equilibrium equation and the mathematics presented is just as arduous as 

that of an analytical approach. Once equations have been determined a very specific 

iterative routine needs to be programmed and correctly maintained during running by 

an operator who must adjust values in accordance with a hand drawn graph of the 

programmes results.

An earlier example of applying FD to thermomechanical problems is that of 

Boley [79], a thorough analysis is given on a thick bar with a thermal distribution. 

Though a two dimensional case is proposed only a one-dimensional stress system is 

given. It is clear from both these examples that the FD approach to mechanical 

solutions is not far removed from the specific complexity of analytical solutions.

Although complex for approximations to high order mechanical theory the FD 

method is still a straight forward method for approximating the low order heat transfer 

solutions and can give equally good results as those of an expensive FE package. This 

will be seen in later sections on the work conducted.

FE was not a consequence of attempts to work around the FD complexities, both 

methods developed together, though significantly more evolution took place in FE. In 

1976 Brown [80] conducted work on expanding FD methods into elastic-plastic 

studies still showing itself to be highly mathematically intensive. Whilst much earlier 

in 1960 Clough [81] presented a paper describing the manner of elastic plane stress 

analysis as it exists today in commercial FE codes. However one may find the 

beginnings of FE in 1941 by Hrennikoff [82] where a component was replaced by a 

wire mesh framework of struts organised to a specific pattern for optimum
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performance. This is reminiscent of the geometry requirements posed in finite element 

for an appropriate solution to be gained.

Much work was conducted in the 1970’s to expand the applicability of FE to 

fracture mechanics and life prediction whilst also using it as a tool to test the then 

standard recommendations of fracture toughness testing. Efforts were also made to 

further understanding of various crack tip parameters such as crack opening 

displacements (COD) and Rice’s path independent integral, J. To this effect the 

Department of Industry issued a report [83] on the determination of stress intensity 

factors in single edge-cracked plates using FE. Various methods are presented and 

compared to a collocation solution of which J was the recommended, though not the 

easiest or quickest. Once determined, J was readily converted to K via G equivalence.

In 1977, Atluri et al [84] used a special embedded singular element type to 

model the presence of a blunt crack tip in a ductile material. Using FE the effects of 

incremental plasticity, kinematic hardening and non-linear geometry were all included 

into the model, excellent correlation to experimental results was found. It was also 

determined that the path independence of J demonstrated good independence under 

linear-elastic conditions and though slightly reduced in the presence of plasticity still 

maintained good independence. This slight reduction in path independence under 

elastic-plastic conditions is still a consideration in contemporary codes such as 

ABAQUS.

In the same year using FE, Roche [85] suggested that the calculation of J for 

elastic-plastic materials be best determined by the incremental plasticity method as 

opposed to the deformation plasticity method. This however, is likely due to the 

behaviour of the code used, and probably leant more towards solving for linear 

response models. Parks [86] also demonstrated that a method for calculating J based 

on energy comparison of two slightly different crack lengths can be replaced by a 

single elastic-plastic FE analysis where the crack tip position is altered slightly. This 

method was successfully applied to 3D analysis. In 1998 Yuan et al [87] showed that J 

provided a good estimate of stress intensity factors under thermal transient loading. 

However, the method used reduced in accuracy with increasing crack lengths.

The nodal displacement nature of FE immediately lends itself to the concepts of 

COD. During this period Kuo et al [88] , Nakagaki et al [89], Dawes [90] and Berger 

et al [91] studied crack tip behaviour in relation to COD. Whilst not using FE, Berger 

used various methods to determine the fracture toughness of steels with both linear-
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elastic and elastic-plastic methods. Demonstrating that established methods of 

experimentally determined stress intensity factors by CTOD measurement compared 

very well with J-Integral methods shows the importance of the COD in research of this 

time. Kuo calculates COD by FE and determines by experiment under various 

thickness of specimen. Kuo suggests that the standard Dugdale model is inappropriate 

for thick specimens at high loads under which condition elastic-plastic FE is more 

preferable. Bilby [92] conducted similar work in the late 1980’s where it is suggested 

size limitations on fracture toughness parameters may be inadequate for lightly 

hardening materials.

Studying the effects of size on fracture toughness, by or supported by, the FE 

method was taken a step further by attempts to model crack growth. Nakagaki et al in 

1979 constructed a model of the stable crack growth of a centre cracked specimen 

under uniaxial loading. The results were matched admirably to those of experimentally 

determined data. However, in order to advance the crack length incrementally, 

constant increases were used resulting in a difficulty to determine the onset of unstable 

crack growth. Similar to this was work on solder joints by Ju et al [93] in 1993, mixed 

mode crack growth was addressed with similar methods by Reimers [94] and complex 

load histories were introduced by Jeng et al [95]. Here the crack path was 

predetermined and AJ-Paris law correlation was used again with constant increases in 

crack length. A good comparison to experimental results was found, however the 

model normally requires excessive input from these experimental results, reducing the 

independence of the model. This form of analysis generally marks the start of 

continuum damage mechanics (CDM), whereby the introduction of experimentally 

determined material properties such as softening ahead of the crack tip to generate 

void growth are introduced to model the actual damage of the material on a 

macroscopic scale.

Some examples of CDM are given by Ayari et al [96], Hayhurst [97] and Chow 

et al [98]. Ayari in 1994 and in Hayhurst 1996 introduce creep fatigue interactions 

with Ayari demonstrating the parameter intensive nature of CDM. In this case a 

methodology is set-up rather than comparing model performance to experimental 

results and uses 18 different parameters. Chow introduced a unified method in 1997 

where the elastic energy release rate was combined with damage mechanics theory 

allowing crack propagation to be modelled as a function of microcrack nucleation. The
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results however, were not promising, producing similar form results, with errors from 

3% to 86%. Damage mechanics had already been applied by Bilby et al [99] in 1995, 

where the method of cell softening to modelling void nucleation ahead of a crack tip is 

offered. Results presented are based on cylindrical specimens and show compelling 

performance of these models. In 1997 the model was further refined [100]. However, 

conclusions were drawn that further geometries needed to be tested in order to fully 

validate the model.

Today FE theory is widely accepted and used in industry for a huge array of 

problems in areas of automobile suspension, chassis design and static, thermal, elastic 

and elastic-plastic stress analysis. Though the theory of FE is complex it possesses a 

foundation that is consistent across all engineering problems and it is this which makes 

it capable of programming into a versatile tool for modem engineers to advance their 

capabilities.

As mentioned previously, Hellen and Chen showed determination of K values 

from J-Integrals to be very thorough, however, further methods are available under LE 

conditions. Shown also by Chen, a similar method is shown by Chu [101] where 

displacements near a crack tip can be used to determine stress intensity factors. This 

requires the use of an elegant manipulation of the FE mesh to incorporate the singular 

nature of the crack tip.

2.2.2 -  Crack Tip Finite Elements

The versatility of FE inevitably grew into the application to fracture mechanics. 

In 1971 Tracey [102] described the use of a new finite element called a triangular 

singularity element. In truth this was a four noded quadrilateral element with two 

adjacent points collapsed together as in Figure 11a. A specific shape function was then 

applied to match the behaviour of standard stress intensity functions and the element 

surrounded by standard quadrilateral elements. A 5% error was determined from 

models when compared to theoretical values. In 1975 and 1976, however, Henshell & 

Shaw [103] and Barsoum [104] respectively removed the need for such separate 

calculations for modelling a crack tip singularity. Using standard eight noded 

quadrilaterals, as in Figure lib , midside nodes adjacent to a crack tip were displaced 

to a quarter distance of the element side from the crack tip instead of half way along.
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From these quarter-point elements it was found Westegaard’s inverse square root of 

distance from the crack tip resulted in the element formulation. Barsoum also touches 

on the possibility of collapsing two adjacent nodes to the crack tip to create a 

degenerated triangular element as Tracey suggested. This method is present today in 

the commercial FE software ABAQUS and incorporated into most custom written 

fracture mechanics FE codes.

The two or even three-dimensional nature of the quarter-point element provides 

the ability to model full mixed mode loading and is presented in both the Henshell and 

Barsoum publications. Double edge notch, three-point bending, and centre cracked 

specimens all result in very good performances when compared to the well established 

classical solutions. Further to this Saouma [105] conducted extensive numerical 

studies on these elements to present the following recommendations for their use:

• Use at least 4 quarter point elements around the crack tip for mode I loading 

and 8 for mode II loading.

• Use a reduced 2x2 integration scheme on quarter point elements.

• Keep internal angles of triangular quarter point elements approximately 

equal to 45°.

2.2.3 -  Numerical Thermal Shock Modelling

Probably the most recent and best analytical solution to a thermally shocked 

edge cracked plate is that of Nied in 1987 [106, 107]. Though analytically determined 

the final equations still had to be numerically solved for a solution. Conducting 

analysis on both downshock and upshock Nied determined the relationship between 

Fourier number and maximum stress intensity through the cycle. Interestingly he also 

determined the tendency of crack closure at the surface during an upshock cycle 

generating a form of internal cusp shaped crack. He concludes that the normally less 

severe upshock stress intensities can become larger than the downshock stress 

intensities at approximately one third through the width of the plate. Therefore in 

combined upshock and downshock cycles crack retardation in downshock 

compressive regions could be over ridden by upshock stresses.

A similar analytical study leading to a numerical solution was conducted some 

time later in 1993 by El-Fattah et al [108, 109]. Still relating all shocks to the Fourier 

number El-Fattah addressed the non-linear rapid cooling and heating of thermal
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shocks with both a step and ramp function, concluding the instantaneous change in 

temperature caused by a step function resulted in the severest of stresses.

Other numerical analyses of note for the thermal shock problem are those by 

Xuejun et al [110], Tsai et al [111] and Lee [112]. Xuejun studied a surface crack 

subject to thermal loading whilst Tsai and Lee studied the concepts of weighting 

function methods for edge crack problems. Shimamura [113] also attempted to model 

the effects of craze-cracking using a 3D lattice propagating cracks based on a strain 

energy basis. Models showed near independence on the lattice shape though it was 

only applied to LiF crystals. Numerical simulation of thermal shock alumina disks was 

also conducted by Tomba et al [114,115], where thermal shock was achieved by the 

use a high velocity air jet, as used previously by Hasan. The work was centred on 

determining the thermal shock resistance of various surface finishes to crack initiation 

with experimental results explained on the basis of FE stresses.

Kokini [116] presented FE thermal shock models for edge-cracked plates and 

internally cracked plates in plane strain. Using a numerical equation to determine Ki 

values and comparing to the analytically determined K values by Nied, Kokini found a 

very good correlation.

Work into the mixed mode nature of thermal shock has been conducted by Chen 

et al [117] and Katsareas et al [118]. A consideration of Kn is unusual, as models were 

symmetrical about the crack plane as was loading, except Chen who conducted 

inclined internal crack models, an issue not addressed by Nied, Rizk or Lee. Though 

Katsareas’ work was based on a boundary-only element method, both works 

determined Kn values approximately an order less than Ki values. This is supported by 

the work of Emery in 1977 [119] who used the quarter point finite elements to 

determine a solution to edge cracked thermal downshock.

2.3 -  Mixed Mode Loading

A short section on mixed mode loading is presented here as it can have some 

bearing on thermal shock. Mixed mode loading is a relatively new area and little 

understood to the extent of standard applications. Its importance comes from the 

ability of mixed mode scenarios to increase crack growth rates significantly enough to 

render single mode tests inappropriate. The main difficulty comes from the inability of
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different mode stress intensities to be summed to an overall effective K value and the 

lack of an otherwise sufficiently directional crack tip parameter. The separate 

mechanical modes are shown in Figure 12.

Mixed mode scenarios by thermal loading are also possible. Emery [120] 

determined a Ki and Kn analysis of thermal shock as caused by severe thermal 

gradients existent at the crack tip. These gradients can be considered as a direction of 

heat flow not parallel to the cracked surfaces. Under such conditions heat flow would 

be obstructed by a break in material behind the crack tip and continuous ahead of the 

crack tip as illustrated by Figure 13 resulting in a high thermal gradient across the 

crack tip, i.e. a thermal singularity. Just how such a scenario is quantified is never 

made clear by Emery, instead a thermal singularity value is determined and used as an 

additional term to Ki and Kn equations. Since Sih, section 2.1.2, showed stress 

intensities could be determined with thermoelastic stresses the classical descriptions of 

stress at a crack tip can still be applied. The descriptions of stress components at a 

mixed mode loaded crack are given by LEFM [4] as eqn. 11
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eqn. 11

For mechanical loading isothermal biaxiality and mixed mode loading are not 

necessarily mutually combined. Only when a crack rotates or branches to a non- 

orthogonal angle to applied loads, can it be certain that mixed mode loading is taking 

place. In thermal loading mixed mode conditions will arise if a non-zero angle is 

present between the crack and direction of heat flow as described above and by Figure 

13.

Quantification of mixed mode loading has been attempted with some success by 

Hua et al [121] using the plastic zone size in the Paris law.

da 14
dN 0.8066

ŷield

eqn. 12
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Where rp’ is the maximum radius of the plastic zone and given as a function of 

both Ki and Kn. The correlation at larger plastic zones, around 300pm, showed a good 

fit, though for smaller plastic zones the correlation could over estimate by some 50%.

Pook [122] attempted to characterise combined mode I and IH loading with little 

success regarding thin plates. Hua and Fernando [123], however, continued to address 

the plastic zone size in non-proportional overloading finding again the relevance of 

plastic zone size and shape with regard to its component Ki and Kn forms. The plastic 

zone therefore seems to be an obvious candidate for quantifying the effects of mixed 

mode loading. Using a von Mises yield criterion, Mohr’s stress circle and eqn. 11 the 

plastic zone size can be determined for both plane stress and plane strain as eqn. 13 

and eqn. 14 respectively.

Plane Stress
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Resulting plastic zones are displayed in Figure 14. The consequence of mixed 

mode can then be seen to rotate the plastic zone about the crack tip, effectively altering 

the angle of shear planes. The result is a rotating crack.
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2.4 -  Thermal Shock Biaxiality

Thermal shock is a severe form of thermal loading, generating low cycle fatigue 

lives. Biaxiality is an additional component to uniaxial loading which is known to 

reduce fatigue lives under isothermal conditions, but can also be generated by multi

dimensional thermal loading. It is important therefore that the presence of biaxiality in 

thermal shock be quantified. To this date very little work has been done on the subject, 

specifically the work by Bass et al [77] previously mentioned in section 2.1.6 who 

found a large reduction in fracture toughness is a result of mechanical biaxial loading 

on surface flaws.

Since mechanical biaxiality in specimens is a result of applied far-field loads, the 

biaxial stress field present is consistent over a broad region. Biaxiality generated under 

thermal loading will not reflect this uniform distribution since it is thermal gradients 

that create stresses. Therefore it is surmised that bounding limits of biaxiality will be 

present under thermal loading conditions and these limits could be reproduced via 

uniform mechanical stress fields. Should these fields be generated under isothermal 

conditions at the maximum temperature of the thermal shock cycle crack growth rates 

could be related to those of thermal shock.

It is this problem that the following work is concerned with. By using isothermal 

crack growth rates at limiting cases of biaxiality and thermal shock crack growth rates, 

a correlating analysis of the two is presented. From the results, it will be shown 

whether the effects of isothermal biaxiality can be compared with the effects of 

biaxiality from thermal loading.
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3 -  Methodology

3.1 -  General Information

Two types of numerical analyses were conducted; finite difference models to 

determine applied forced convection loads and finite element models to determine two 

dimensional thermal and stress distributions.

Finite difference models were written using a Borland C compiler version 4.52 

and run on a standard PIE 450MHz PC. Finite element models were constructed 

through ABAQUS Standard version 5.7 using ABAQUS Post version 5.7-7 for 

visualisation of results. A Sun Sparc 2 workstation was used with a remote connection 

to a Sun Microsystems Enterprise E450 server with dual 248MHz processors and a 

maximum available memory of 1Gb and user quota of 5.5Gb.

Pre-processor user programmes, data extraction programmes and ABAQUS user 

routines were written with a Sun Microsystems Workshop containing C compilers and 

Fortran 77 version 5.

A general methodology for numerical analysis can be performed as follows:

1: Conceptual modelling - determine environmental constraints: thermal, 

fluidic, mechanical and/or dynamic loads for theoretical model. Locate any 

planes of symmetry and evaluate material properties for specific model type, 

thermal, fluidic, mechanical or dynamic.

2: Pre-Processing - generate geometry and refine model to appropriate 

accuracy, observing characteristics such as element density for use in further 

analyses of a similar kind.

3: Processing - run analysis using appropriate platform; commercially available 

software or user code.

4: Post-Processing - extract required information.

For the thermal shock models conducted in this work a more detailed 

methodology is presented, isothermal biaxial models are conducted in much the same 

manner with the obvious exception of thermal considerations.
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3.2 -  Modelling Methodology

3.2.1 -  Thermal Shock Model

A thermal stress analysis was constructed through a two stage uncoupled 

superposition of thermal distribution to a mechanically constrained model. The 

thermal analysis consisting of a two-stage cycle was first edge cooled from a 

maximum initial temperature to a final end temperature using a film convection 

loading routine allowing specification of ambient conditions and forced convection 

coefficient (surface heat transfer coefficient, h, W/m2.K). A value of h was determined 

for the required thermal gradient and thermal shock cycle via a finite difference 

programme written in C (appendix B.I.). This programme was developed for both 

non-temperature dependant and temperature dependant thermal properties using 

modified Fourier numbers to determine the required h value through a linear iteration 

routine. The thermal distribution was then passed into its second stage reheat cycle to 

the initial maximum temperature via a user routine (appendix B.2) reducing the 

current thermal gradient at a node to zero at a decaying exponential rate.

This thermal distribution was then imported to a static stress model of the same 

design with mechanical constraints applied as shown by Figure 15. A symmetry 

condition was applied at AB and a single node zero x-displacement condition at C 

situated centrally through the width. This provides a full two dimensional description 

of restraint whilst still allowing free bending to take place under non-symmetrical 

thermal loading.

Model geometry was kept as simple as possible whilst maintaining the same 

fixed points as specimens tested in the previous study [124] for use of crack growth 

data. This required a minimum height of 106mm from the symmetry plane AB to the 

central pin jointed mechanical loads situated at point C in Figure 15. A plot of the 

finite element mesh is shown in Figure 16a and b and the forms of loading in the 

models conducted are shown in Table 1.

3.2.2 -  Cruciform Model

Isothermal-biaxial stress analyses were conducted under limiting cases of 

biaxiality. Sinusoidal stress ranges of 118MPa and 200MPa with an R-ratio of 0.1
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were applied perpendicular to the crack, <Jn- Applied parallel to the crack both dead 

loads and sinusoidal loads, ctl, were applied at the mean level of (In for unibiaxial 

loading and equal to cr̂  for equibiaxial loading. A plot of the finite element mesh used 

is shown in Figure 17a and b and loads conducted tabulated in Table 2.

3.3 -  Finite Element Pre-Processing

Standard two dimensional eight noded continuum elements for plane stress were 

used in the analyses. This allowed the inclusion of a singularity effect into the model 

at the symmetry plane through quarter point element manipulation, with degeneration 

of quadrilateral elements into triangular elements surrounding the crack tip position. In 

stress models this resulted in many free nodes occupying the same point at the crack 

tip which could not be relied upon to accurately open the crack under application of 

thermal loading, therefore further constraints were required. The y-displacements of 

these multiple nodes at the symmetry plane was fixed in the same way as other 

boundary conditions. For the remaining active degree of freedom, jc, one of the 

multiple nodes was allowed to displace freely along the symmetry plane with 

displacements of the remaining multiple nodes equated to any displacements at this 

free node.

It was found for a model width of 40mm a crack tip singularity mesh of 1mm 

square containing over 50 elements was sufficient. This small size allowed relatively 

small edge cracks to be modelled whilst maintaining 6 or more element paths around 

the crack tip for a suitable averaging of the J-Integral crack tip parameter output by the 

model. Crack tip stress refinement was difficult to obtain, however the above allowed 

stresses one or two nodes ahead of the crack tip to refine well.

These refinement characteristics were written into a C programme to calculate 

mesh-numbering specifications allowing changes in crack length, element density and 

biasing within an element aspect ratio of 12 to 1 (appendix B.3, appendix B.4). A 

second programme then used these specifications to generate the required number of 

ABAQUS input files for processing (appendix B.5, appendix B.6). Sample input files 

are listed in appendix B.7 and B.8 for thermal shock and cruciform models 

respectively.
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3.4 -  Finite Difference Processing

The finite difference model to determine heat transfer coefficients is a linear 

estimation to the non-linear thermal distribution. As is shown in later chapters the 

solution is very close to theoretical and finite element results. The programme runs in 

minutes and executes in an MS-DOS prompt window.

A programme layout is as follows,

- User Input
Uniform start temperature 
Final surface temperature 
Ambient temperature 
Model length & Element quantity 
Material properties (bulk)

Thermal Conductivity 
Density 
Specific Heat 

Initial surface heat transfer coefficient 
Time Period
Output to Summary File Setting

- Output File Setup
Setup summary file layout

- Heat transfer iteration loop
Reset/write initial temperatures to array 1

- Time loop
- Node loop

Scan relevant nodal temperatures from array 1 
for calculating new temperature 

Calculate new nodal temperature,
Select appropriate model equation 

Output new temperature to array 2 
Output new temperature to summary file if required 
Increment Node number

- End Node loop on last node condition

Copy all written temperatures from array 2 to array 1 
Increment Time by one time increment

- End Time loop on end o f time condition

Output heat transfer iteration summary to summary file 
Test final surface temperature 
Apply error to heat transfer coefficient 
Re-calculate time increment and set to a suitable value

- End heat transfer iteration loop on final temperature condition 
- Close down files
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A complete solution is required for every time increment conducted. Therefore, 

to save memory on the many time increments required over a transient solution, two 

solution arrays are constructed. The programme then alternates between these two 

arrays writing any complete solutions through the time period required to a text file.

Once all information is collected from the user, the programme runs through 

time incrementally, according to a minimum time increment. The temperature at each 

node is calculated based on the previous time increment and the appropriate equation 

for that location in the model. When all nodal temperatures have been calculated, the 

time incrementation proceeds by one increment and the process begins again until the 

end of the time period specified by the user is reached. The end result is checked 

against the required temperature, specified by the user, repeating if not within 

tolerance or ending if within tolerance and writing all information to a summary file 

for post-processing.

In order to find the required heat transfer coefficient a simple linear iteration 

scheme is used where an error from the required result is fed back into the previous 

heat transfer coefficient until that error drops below 0.1%.

3.5 -  Finite Element Processing

Analyses were run with a remote server connection taking approximately 3 

hours for the thermal-stress uncoupled analyses to complete. Isothermal biaxial 

models would take significantly longer, around 4 to 5 hours due to increased mesh 

size.

A reheat cycle was obtained through a simple inverse exponential equation given 

as eqn. 15 (appendix B.2),

T = TMI!J+ A T [l-e-h \
eqn. 15

where AT, k and t are the thermal gradient, a constant of decay and reheat time period 

respectively. A single constant of decay was determined by comparison to a previous 

study on thermal distribution tests, see Table 3 [124], and used to describe reheat 

magnitudes. This is required since the rate of cooling and reheat is believed to affect the 

magnitude of end stresses, and so any estimation of AKi or other crack tip descriptor. 

Consequently a linear or step reheat would be insufficient.
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3.6 -  Finite Element Post-Processing

Post-processing was conducted using ABAQUS’ own post-processor ABAQUS 

Post. This requires the generation of a coded results file in excess of 100Mb. Thermal 

and stress distributions, crack opening displacements and J-Integral values are easily 

output to file, however recording of plastic zone size and shape is less convenient and 

inaccurate. By plotting the stress distribution to a limiting value, i.e. the yield stress, 

the plastic zones are easily observed. However, recording the contours of the zone 

perimeter required estimating distances between nodes all the way around the 

perimeter. This leads to cumulative errors and consumes much post-processing time 

for every analysis. To ease this, a Fortran user routine (appendix B.9) and data 

extraction programme (appendix B.10) was written in C. The user routine writes yield 

zone perimeter stresses with element numbers and integration points to the ABAQUS 

data file. The data extraction programme then searches the data file converting the user 

routine information in to x-y co-ordinates by correlating element numbers to node 

numbers and their corresponding x-y co-ordinates. This then defines the plastic zone 

perimeter and is then tabulated to a text file.

Since these perimeter stresses are only available at integration points within 

elements, the programme must search for co-ordinates of nodes defining these 

elements, determining integration point locations to interpolate for the two yield points 

as shown by points A and B in Figure 18.

3.7 -  Evaluation

This method is repeated for different crack lengths to obtain a crack tip 

descriptor for any severity of thermal downshock loading or isothermal biaxial 

scenario. Beyond a crack length of 5mm gross increases in plastic zone are observed, 

however stress intensities determined by eqn. 16 are found to remain fairly consistent 

with theory.

k , = 4 J e

eqn. 16

When coupled with crack growth data this method can be used to determine 

different crack tip descriptors for comparison to isothermal biaxial crack growth rates.
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4 -  Materials Analysis

4.1 -  Property Evaluation

4.1.1 -  A Ramberg-Osgood Analysis

Cyclic material properties have been obtained for solution annealed AISI 316 

stainless steel [6] for room and elevated temperatures and presented in Table 4. For 

elastic analyses a cyclic modulus and 0.2% proof stress are plotted in Figure 19. It is 

immediately clear that little changes in cyclic modulus are encountered at elevated 

temperatures. However, a slight discontinuity exists at around 500°C as a result of 

material hardening from precipitation of carbides. Rios et al [38] described this as 

typically coarse carbides at the grain boundaries of 0.05 to 0.1pm and fine 

transgranular carbides of 0.01-0.02pm. This is believed to induce the large changes in 

0.2% proof stress as a consequence of relatively large changes in strain hardening 

exponent.

Using a Ramberg-Osgood model in the form of eqn. 17,

G£ = — + 
E

eqn. 17

for a full elastic-plastic (EP) consideration these large changes in strain hardening 

caused by carbide precipitation are illustrated by Figure 20. Failure stress is not 

consistent with temperature, mirroring changes at 500°C and 700°C as with cyclic 

modulus, although over all ductility does increase with temperature.

For finite element models considering only the downshock cycle unloading is 

not a consideration. Therefore the non-linear elastic constitutive law deformation 

plasticity can be used and written as eqn. 18.

eE = a+y„
/ \

G

V ŷield )

G

eqn. 18

Material constants for a stress-strain response equivalent to eqn. 17 are given in 

Table 5.
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4.2 -  Bulk Thermal Stress

4.2.1 -  Incremental Plasticity

A bulk thermal stress represents a general stress from a uniform thermal 

distribution. For an elastic analysis this is obtained simply through an interpretation of 

Hookes’ law for thermal strain by eqn. 19.

g th ~ E oT

eqn. 19

This is used by Timshenko’s theoretical elastic thermal stress equation. Since 

thermal stresses by this method will be excessively over yield it is appropriate to 

model plasticity into the calculation. Using the material properties given in Table 4 

and eqn. 17 an equivalent EP bulk stress can be determined with a Newton-Raphson 

iteration procedure. Rewriting eqn. 17 as eqn. 20 for known thermal strains

a-----h
E

G

~K
-a A T  = 0

y
eqn. 20

the Newton-Raphson iteration can be performed using eqn. 21.

G ^ = G ; —
E

-a K T

1+1 ' ! f  Gn-\\1
--- H
E v

( n - 1)
K " ,

eqn. 21

Introduction of aAT as opposed to cT  provides a full elastic-plastic 

consideration. In elastic analyses Timoshenko produces mathematically equal results 

for both cT  and aAT, however when plasticity is introduced this equality ceases to 

exist. This problem is demonstrated in a later section.

Four material models are conducted and illustrated in Figure 21 and Figure 22.

1: Cyclic linear elasticity 
2: Elastic-Plastic full Ramberg-Osgood 
3: Pseudo mechanical elasticity
4: Linear-Elastic (mechanical) Elastic-Plastic (Ramberg-Osgood)

Figure 21 shows models 1 and 2 where a full Ramberg-Osgood relationship is 

calculated through eqn. 21 and compared to the cyclic modulus response. Figure 22 

shows models 3 and 4 where a mechanical modulus is determined from a 0.2% proof
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stress and equivalent strain. The constitutive law used to obtain a thermal bulk stress is 

determined by the following simple conditions,

if aAT 5s £yield

then use eqn. 19 with mechanical modulus 

if aAT > €yjew

then use eqn. 21 with Newton-Raphson method

where £^eid is determined by

where crps = AT(0.002)/"

and mechanical modulus = Gps
ŷield

The two pairs of models illustrate large differences as a consequence of the high 

ductility of AISI 316. The difference in strain energy of both LE and EP models for 

both pairs is significant. Figure 22 shows the least change in strain energy as a 

consequence of using plasticity and therefore little difference in the final solution 

should be determined. However, such a material model would grossly underestimate 

the non-linear stresses occurring in the mechanically linear region as shown by the 

Ramberg-Osgood line. The consequence of larger differences in strain energy should 

therefore show larger deviations of the final non-linear solution to the linear solution. 

This will be shown in a later section.
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5 -  Theory

5.1 -  Analytical Solution

5.1.1 -  Crack Growth Data

5.1.1.1 -  SECANT METHOD

Crack growth data for single and double edge thermal downshock on a thin 

stainless steel plate and isothermal-biaxial cruciform specimens from previous work 

[124] are presented in Table 6 through Table 13. It is required that an account is made 

of how such data is evaluated. The ASTM standard E647 [125] provides two methods 

of evaluation, the secant method and the incremental polynomial method.

The secant method is a simple forward difference calculation of the slope 

between two points of the a-N curve and is given in eqn. 22

where i is a sequential data point number. Such a method works well with relatively 

simple data distributions.

5.1.1.2 -  INCREMENTAL POLYNOMIAL METHOD

The incremental polynomial method allows a short sequential series of points to 

be fitted with a second order polynomial shown by eqn. 23.

eqn. 23

This allows some elimination of the inevitable scatter found in the data. Unlike 

the secant method laborious calculations are required possibly using a least squares 

iterative solution. However, the standard provides a Fortran code listing to evaluate the

eqn. 22

rV ^2
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data. An adaptation of this routine for coding into a Matlab solver is listed in appendix 

B .ll.

5.1.2 -  Isothermal Biaxialitv

5.1.2.1 -T-STRESS

Isothermal biaxiality has been discussed previously in section 2.1.2. The 

importance of T-stress is emphasised by Brown and Miller [31] and Kfouri and Miller 

[26,30] using the cruciform specimen. Defined in full the non-singular term for 

biaxiality around a crack tip is written as eqn. 24 and should not be confused with Oj 

of eqn. 5 and 6 .

TStress = crN( l -  A)cos 2 a
eqn. 24

This is illustrated by Figure 23, where a  is the angle spanned from the normal 

axis to the crack plane. Under mode I conditions c o s2 a - -1, therefore the description 

simplifies to

TStress = crL -  <rN = crT
eqn. 25

Kitagama [32] presented similar work on slant cracks using a biaxial specimen 

differing by the presence of large in plane radii. The work determined biaxiality has 

little or no effect at low stresses and long cracks whilst influencing crack growth at 

short cracks and high stresses. This was explained by the theoretical work suggesting 

that fully tensile biaxial loading creates smaller plastic zones than tension/compression 

biaxial loading. Consequently at lower stress levels tension/compression loading can 

generate higher crack growth rates than fully tensile loading. Crack orientation was 

also found to occur such that Ki reached a maximum and Kn a minimum.

Rhodes and Radon [34,126] presented a simple conclusion on biaxiality as the 

tendency for centre cracked specimens to have higher crack growth rates than those of 

standard CT specimens.
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5.1.2.2 -  STRESS INTENSITY FACTOR

To determine the behaviour of a crack tip under biaxial loading the Brown and 

Miller cruciform specimen design was used. Using a standard centre cracked specimen 

geometry, fins are added to all four sides such that a load can be applied distant from 

the plate edges allowing a form of free deformation. Applying an orthogonal dead load 

can counteract any distortion caused by Poisson’s ratio. The specimen geometry is 

sufficiently complex however, to require a more in depth study. Brown and Miller [31] 

present a correlation of fatigue crack growth rate with AK as defined by eqn. 26.

- Finite element models of the cruciform specimen conducted in this work have 

shown that variable thickness between the plate and loading fins is a governing factor. 

Consequently the strength of in and out of plane stress raisers at the junction of plate 

to fins is likely to cause problems. Plane stress variable thickness models are 

problematic whereas uniform thickness equated to that of the plate are more in line 

with eqn. 26.

5.1.3 -  Biaxial Plastic Zone

5.1.3.1 -  COMPONENT STRESSES

Plastic zones for stresses normal and lateral to the crack plane can be determined 

simply from eqn. 11. Both normal, <7yy, and lateral, <7XX, stresses can be plotted to 

determine plastic zone sizes and shapes and are presented in Figure 24. However, only 

at low stresses are both lateral and normal plastic zones of similar radius at 6 = 0. In 

order to allow the lateral plastic zone size to differ from the normal zone size the T- 

stress term must be accounted for in the lateral stress radii, crxx. Singular stresses at a 

crack tip are now written as eqn. 27 and illustrated by the small lateral plastic zone of 

Figure 24. Appendix A shows how a von Mises plastic zone accounting for T-Stress is 

determined.

IsK  =  A ct — —

eqn. 26
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eqn. 27

5.1,4 -  Thermodynamics

5.1.4.1 -  THEORETICAL ONE DIMENSIONAL DESCRIPTION

Thermodynamics can be separated into the transient and steady state forms of 

heat flow. All dynamic systems begin with some transient behaviour where transient 

heat flow is defined by the rate of change of the thermal gradient between two points 

through time. A more practical description would be that the shape and magnitude of a 

transient thermal distribution curve changes through time. When the thermal gradient 

ceases to change appreciably through time the transient state is said to have settled into 

steady-state conditions. The distribution curve will then only change in magnitude. 

Both transient and steady-state forms for a one dimensional consideration are 

represented by eqn. 28 and eqn. 29 respectively, where T, x  and t are the temperature, 

distance and time respectively.

d 2T _  1 9T 
dx2 D dt

eqn. 28

a 2r
dx2

=  0

eqn. 29

D is the thermal dijfusivity and is given by eqn. 30, where k is the thermal 

conductivity, p  is the density and Cp is the specific heat capacity.

D =
p c ,

eqn. 30
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Thermal shock is a transient heat transfer process and so steady-state will play 

no part in its analysis. Figure 25 shows the straight forward scenario of eqn. 28, a 

single edge cooled plate, one edge is considered perfectly insulated and the opposite 

edge cooled by free or forced convection. A solution to eqn. 28 can be found in Nied 

[106,107] and Eastop and McConkey [127] as derived by the boundary conditions,

a tt = 0  => AT = T - T a 

for initial uniform temperature conditions, TA = ambient temperature

c)T
at x  = 0  => —  = 0  

dx

at the insulated surface, x  = 0 , no heat flow occurs

at x = L => k -—  =  h \ r A —T] 
ox

for heat flow at the convecting surface

For this simple one dimensional problem the analytical solution is given as eqn. 

31 where, L is the length of the model, 7/ is the initial condition temperature and Fo is 

the Fourier number.

T ~ T* = 2 ±
n=1T - Tl l 1A

sin(pnL)cos(pnx)
p„L+0.5&in(2pnL)

c  &F o -

- ( p nL ?F o

pCpL2
eqn. 31

The values pn are eigenvalues determined from eqn. 32 where Bi is the Biot 

number and h is the surface heat transfer coefficient.

hT
(pnL)t<m(pnL) = Bi = —

k
eqn. 32

5.1.4.2 -  EMPIRICAL SOLUTION

Further to the analytical solution, Hasan presented an empirical solution based 

on thermal downshock experiments [64]. The theory correlated well to experimental 

results and is used as a function of distance and time to determine the thermal 

distribution.
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z<o: r=r_(i-A?)-r[—

Z>0: T = r „ ( l - A t )

^0.3+1.70^ 
V 1+1.70/ J

Z — x  — x  — 1.26( T — To  \  max a

eqn. 33

Split into two parts eqn. 33 sets a distance, xo, beneath the shocked surface 

where no thermal gradient exists at any one time. This distance is of course a function 

of the severity of cooling as are the constants A  and T  which allow bulk cooling 

through time and location of the minimum temperature at the end of the cooling cycle.

The excellent correlation is however only valid for the form of air jet shock tests 

conducted by Hasan. Creating a diverging envelope of localised forced convection 

along side faces of the specimen as well as the cooled edge creates a scenario more 

conducive to two dimensional analysis. It is also likely in these tests a thermal gradient 

was achieved through the specimen thickness producing even a third dimension 

consideration. As it will be seen these apparently large differences do not produce 

significantly large changes in the final stress distribution.

5.1.5 -  Thermomechanical Stress

5.1.5.1 -  TIMOSHENKO’S NET STRESS SOLUTION

A one dimensional stress distribution can be calculated using Timoshenko’s 

thermoelastic consideration [128] given in eqn. 34. Figure 26 shows the typical stress 

profiles produced by symmetric and non-symmetric thermal shock. The bending effect 

induced by non-symmetric cooling is determined by the third term of eqn. 34

Non-symmetric or single edge shock
w w

Tdx + x  dx
2

o o
Symmetric or equal double edge shock

w

o
eqn. 34
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where a  is the linear coefficient of thermal expansion and W is the specimen width 

with zero at the shocked edge for single edge shock.

Figure 27 shows a diagrammatic representation of the superposition of thermal 

stress effects. Initially a compressive stress is applied to completely suppress the 

uniform thermal expansion equal to -aET, where T is the temperature of a point. To 

this is added the sum of stress equivalent to the uniform expansion aET at each point 

as determined by the thermal distribution. A bending term is then added to account for 

static imbalance caused by non-symmetric cooling.

It is likely for non-symmetric cooling that two functions similar to that of eqn. 

31 would adequately represent cooling over each edge, as illustrated by Figure 28. If 

this is the case then eqn. 34 can be rewritten as eqn. 35.

w

a z = -aE T  + —  [Tdx+—  [Tdx
W J W J

+■
12aE
W;

x — -
W

*i

If
w

T \ x - W dx + 12 aE
W : #B]dx

0 x,

where f o r  0 < x < x j  then T = T j  = fj(x, t) and 0 < x < x j  then T = T 2 = f 2(x, t)
eqn. 35

This is purely a thermal stress consideration, should a mechanical load be 

present to represent body forces or component mechanical working then the 

summation of same direction stresses allows the Timoshenko equation to be modified 

into the following.

Non-symmetric or single edge shock with mean mechanical load

aE \ 12 aEcr = -a E T + —  I Tdx+ — —w J w3
0

W
wFBIdx+ a M

Symmetric or equal double edge shock with mean mechanical load
eqn. 36

w
aEa  = -a E T + —  I Tdx+ crMz ^  I M

I

eqn. 37

where crM is the applied load perpendicular to one dimensional heat flow.
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5.1.6 -  Stress Intensity Factors

5.1.6.1 -  A GREEN’S FUNCTION APPROACH

An analytical calculation of stress intensity factors for single-edge cracked plates 

subject to thermal stress is given by Emery et al. Having determined the elastic 

thermal stress distribution, a Green’s function for an arbitrary stress distribution can be 

utilised to calculate the stress intensity factor. This factor applies for crack lengths in 

the tensile region of the uncracked stress solution only. Given by eqn. 38, Gt is the 

thermal stress distribution in the uncracked state and G(x,a,W) is the Green’s function 

accounting for specimen geometry and crack length.

The stress intensity range is given by eqn. 39, where K max  and K Min  are the 

maximum and minimum stressed states of the thermal shock cycle respectively.

It is not always the case that the maximum stress state occurs at the end of the 

shock cycle. Emery stated that stresses decrease with time. However, the tensile stress 

at the shocked edge can demonstrate a rapid rise and fall throughout the cycle and the 

point of zero stress closest to the shocked edge moves inward at a decelerating rate. 

Emery showed that a relationship exists between these two factors causing the time of 

maximum stress intensity not to be solely linked with the fall of tensile stress at the 

edge. As time periods decrease and crack lengths are close to the shocked edge the 

largest gradients in stress across the crack create the greatest intensity at the crack tip. 

As the crack tip moves towards the zero stress point the reduction in stress across the 

crack takes place at a lesser rate mirrored in a more gradual change in stress intensity 

factor through the cycle. Consequently at crack lengths close to the zero point in stress 

the maximum stress intensity will likely be at the end of a short time period cycle.

This is more simply illustrated in Figure 29. A position x y exists where stresses 

from different points in time may intersect and consequently stresses behind this point 

would raise and fall over the shock cycle for large thermal gradients and small time 

periods. If a crack of length a is smaller than x ' then the load of stress on the crack tip

a

0
eqn. 38

— ^  m a x  K Min

eqn. 39
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will oscillate in this fashion causing a proportionate oscillation in stress intensity 

through the cycle, resulting in a maximum stress intensity at some point inside the 

cycle. Ahead of the point x ’ tensile stresses only increase but at a decelerating rate. 

Therefore for crack lengths greater than x ’ loading stresses would cause stress 

intensities to mirror a decelerating increase through the applied shock cycle, causing 

the maximum stress intensity to exist at the end of the cycle. Whether such a position 

as x ’ exists for a particular thermal shock load would certainly be a function of its 

severity. It is likely that initial oscillations in near surface stresses are caused by the 

rate of heat extraction by forced convection exceeding that of the rate of heat 

conduction to the surface by the materials own thermal conductivity.
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5.2 -  Numerical Theory

5.2.1 -  Finite Difference Forced Convection Determination

5.2.1.1 -  NON-TEMPERATURE DEPENDANT THERMAL PROPERTIES

The energy balance method is used to set-up a set of linear equations which can 

be used to describe a transient state heat transfer problem. By equating the sum of all 

heat flow rates to the overall heat flow rate in the material, as in eqn. 40 a straight 

forward series of algebraic manipulations are required,

Qf  + Qk = mCP —  = pVCP
dT 3 T
3 -  = /?VCP —
31 31

eqn. 40

where Qy and Q* are the heat flow rates by convection and conduction determined by 

Fourier and Newton respectively.

•  •  f
Qf =hA{Ts -T„) and Qk =kA ~

\o x  J

A diagrammatic representation of a one dimensional model is given in Figure 30 

with a perfectly insulated edge and rapidly cooled opposing edge, a direct 

interpretation of Figure 24.

Two equations are required to fully describe the system, one at the shocked node 

and another to describe internal nodes. Partial derivatives are estimated in the standard 

finite difference manner, with a central difference used with respect to distance x  and 

forward difference used with respect to time t. Assuming heat flow is towards the 

current node and elements are square and equal in size eqn. 40 leads to eqn. 41.

Shocked Node: T!*1 =2Fo - \ - B i \ T !  + T ‘ + BiT.
2 Fo ~ ) s ~J+1

Internal Node: T ‘*' = Fofr^ + )+ T ‘ (l -  2Fo)

,  h A xwhere Fo =    and Bi--------
pCptsx k

eqn. 41

A stability condition is easily obtained from the shocked node equation such that 

the coefficient to T ‘ remains greater than 0. This premise results in the condition given
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by eqn. 42 showing the time increment At must not exceed the value otherwise 

oscillations will occur in the solution.

pCpAx2 
2k{Bi + l)

eqn. 42

The value of h, the surface heat transfer coefficient, is the single value which 

determines the severity of thermal shock loading for a given material. These 

definitions can easily be written into a computer programme and used to determine the 

required h value for a given start and end temperature over a given time period. This 

value can then be used to load a finite element thermal distribution model for thermal 

stress evaluation.

A simple linear iteration procedure is used to reduce an initial guess for h to the 

required value. Using the error between the final end temperature and the required end 

temperature as a percentage the original h value is reduced or increased for another 

run. The programme is terminated when the error is within 0.1%. The following shows 

the straight forward calculation required.

T - Trp   current required
factor ~ rp

required

h - h  +(h 'T  )new current \ current factor /

As well as being straightforward to introduce into code this simple form has the 

added advantage of never overshooting the required solution.

Convergence is very rapid, completing in around five iterations for an initial 

error of 50%. However with smaller thermal gradients the number of iterations can be 

doubled since only small h values are required inducing smaller changes in Tfactor-

Once completed Timoshenko’s equation can be used to determine the resulting 

stresses orthogonal to the model plane at any recorded time during the downshock 

cycle. Such a programme models a full edge shock on the plate, in order to determine 

the effect of localising the shock on the thermal gradient and surface heat transfer 

coefficient a two dimensional model was generated on the same principles as above. 

The number of equations required however is increased to ten and are listed below in 

conjunction with Figure 31 moving left to right and top to bottom.
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Top left comer 

Top side inner 

Top right comer 

Left side inner 

Internal

Right side inner 

Shocked region 

Left symmetry 

Internal symmetry 

Shocked symmetry

r; 1 =  Fo

r ; +1 = Fo

r ; +1 = Fo

r;' = Fo

T ‘p*' = Fo

r ; '  = Fo

r;' = Fo

r;' = Fo

r;' =  Fo

t;:1 = Fo

2Te + 2 Ts +  4
VFo J

T w  + T e  +  + —  - 4  
VFo J

2TW+2TS +
\F o

- 4 T ,

Tn +Ts +2Te +  4
VFo J

Tn + T s +  2T W +  4
VFo

(  1
TN +TS + 2TW + 2BiT + —— — 2 Bi — 4

\F o

 4
VF<? J

2Tn +2Te +

2 T n  + T e  + T w  +

2Tn + 2TW + 2BiTa + —— 2 B i-A \T ,
KFo

eqn. 43

The most stringent stability condition is present as the 7p coefficient in the 

shocked node equations and results in the condition of eqn. 44.

A t< pCpAy4
2k(Bi + 2)

eqn. 44

This produces the requirement of smaller time increments to be taken in the 

solution and coupled with an increase in nodes by at least an order, the number of 

calculations can enter the millions as opposed to the tens of thousands for a one 

dimensional model. Run times are consequently increased to fractions of an hour 

instead of minutes.

There is little or no effect on the thermal distribution at the symmetry plane 

when including a 2D consideration for localised shock. However the surface heat 

transfer coefficient is significantly changed depending on the size of the localised
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region. Finite element models using this localised shock demonstrate a large reduction 

in both tensile and compressive stress levels with the generation of a significant lateral 

compressive stress region not present in full edge shock.

5.2.1.2 -  TEMPERATURE DEPENDANT THERMAL PROPERTIES

A re-evaluation of the finite difference equations was made to account for 

changing thermal properties through the shock cycle. Changes in thermal conductivity 

and density were accounted for whilst specific heat capacity is considered relatively 

constant for metals above 0°C.

Again the energy balance method was used, assuming heat flow is towards the 

current node and elements are square and equal in size. Each node was assigned a 

separate thermal conductivity and density resulting in separate Fourier terms. For a 

one dimensional consideration the equation at the shocked node was unchanged. 

However for internal nodes two Fourier numbers resulted from the two adjacent nodes 

as eqn. 45.

Shocked Node: T t+1 = 2Fo r 1 , A - 1  - B i T !+ T s'+l+BiTa
v 2 Fo J

Internal Node: T'*' = F o J ^  + Fo2T ’tl +  (l -  Fo, -  Fo2 )l]’

, _ k.,A t , ^ ki+,At
where Fo, = — —— -  and Fo, = — —— -

p tCpAx p.CpAx
eqn. 45

A single density value at the current temperature need only be used since it is 

only present in equating total heat transfer. However, the following linear equations, 

eqn. 46, are provided in the solution to describe the thermal conductivity and density 

for any temperature in the specified range.

k = 15 + 0.013T for 100°C < T <  500°C 

p  = 7900 -  0.5T for -196°C < T <  +1000°C
eqn. 46

Temperatures encountered in the models will exceed that of the 500°C quoted 

here. At this point thermal conductivity will still be evaluated according to this 

criterion. Large deviations in linearity are not expected in the immediately higher 

range as well as thermal conductivity changing little over the given range.
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For stability the most stringent condition is as before, eqn. 42. For a coarse mesh 

where changes in thermal conductivity may be large, a second stability condition 

arising from the coefficient of internal node equations may need to be checked. A 

further condition can be made to ensure permanent stability for cooling models; 

maximum temperature properties can be used to calculate a maximum usable time 

increment, At. Since it is known for AISI 316 density is inversely proportional and 

thermal conductivity is directly proportional to increasing temperature, using 

properties at the maximum temperature of the model will generate the smallest 

possible time increment and so permanent stability.

However, if heating is taking place the maximum temperature may not be known 

and consequently an over estimation must be made for the maximum time increment 

and constantly checked and re-run for stability to be assured.

The two dimensional consideration was made for temperature dependence 

resulting in the equations listed below again in conjunction with Figure 31.

Top left comer Tp+' = 2FoETE + 2FosTs + (l -  2FoE -  2Fos )rp

Top side inner

Tp+1 = FowTw + FoeTe + 2FosTs + (l -  Fow -  FoE -  2Fos )TP 

Top right comer Tp+1 = 2FowTw + 2FosTs + (l -  2Fow -  2Fos )TP

Left side inner Tp+1 = FoNTN + FosTs + 2FoETE + (l -  FoN -  Fos -  2FoE )TP

Internal

T p l = FonTn + FosTs + FoeTe + FowTw + ( l - F o N -  Fos -  FoE -  Fow )rp 

Right side inner

Tp = FonTn + FosTs + 2FowTw + ( l — FoN — Fos — 2 Fow )7’p 

Shocked Region

Tp+1 = FonTn + FosTs + 2FowTw + 2CTa+ ( l -  FoN -  Fos -  2Fow -  2C )TP 

Left symmetry Tp+1 = 2FoNTN + 2FoETE + (l -  2FoN -  2FoE )TP
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Internal symmetry Tp+l = 2FoNTN + FoETE + FowTw + (l -  2FoN -  FoE -  Fow )TP 

Shocked symmetry Tp+1 = 2FoNTN + 2FowTw + 2CTa+ (l -  2FoN -  2Fow -  2C)TP

where C = ^  and At < ■ —
AXpCp ^̂ max 2 ^

Ay
eqn. 47

A summation of thermal conductivity values from all adjacent nodes is required 

for a stability condition, but is here replaced with the maximum temperature 

conductivity for permanent stability. As well as the change in time incrementation, a 

further difference to the fixed thermal property solution is that a separate Fourier 

number is required for each adjacent node, the current node being a function of all 

these Fourier numbers.

5.2.2 -  Finite Element Elastic Thermal Stresses

5.2.2.1-ELASTICITY

The theory of elasticity is modified by thermal strains to determine expressions 

of two dimensional plane stress in conjunction with a thermal distribution. Mechanical 

elastic stresses and strains for a two dimensional element are given by eqn. 48

da  d a xr
- ^ + ^ r + ^ = 0ax ay

yy + ^ r L+ fy=  0

£ = du,
dx

dy dx

dv du dv
£ y~~dy £xy~~dxJr~dy

and can be rewritten in matrix form as eqn. 49.

dw
£y dz

eqn. 48

Y *  o %  

o %  * /*
yy

*y J

+  ■
7*
/v

= 0 = S ct + B = 0
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£ x V *  0

8  = " £ y ’ - 0 %
-  H

S . %  * /*
i  j

eqn. 49

For a plane stress element, the relationship between stresses and strains can be 

described by eqn. 50 and manipulated into single stress terms to produce eqn. 51

CT V
£  = — —  - —  CTx  E  E  y y

CT,yy V

s>=T ~ I a* £> = - l
eqn. 50

“ "

cr 1 V 0
X X E X

V y y ~ l - v 2
V 1 0  

1 - V
•  <

£ y

0 0
2 . V

CT = D e
eqn. 51

A consideration of plane strain requires a little more manipulation and produces 

a different D term. This is purely a mechanical relationship and must therefore be 

modified to account for thermal strains. Total strain is considered as a summation of 

both mechanical and thermal strains and so mechanical strain, eM, is introduced as a 

description of total and thermal strain,

£ t ~ £ m  +  £ e  

CT = D (8t  - Be)
eqn. 52

Once a thermal distribution is known thermal strains can be considered simply 

as a{AT} allowing the relationship of stress to total strain to be written in conjunction 

with eqn. 49 as eqn. 53.

ct = D-(et - aAT) 

ct = D(SU- aAT)
eqn. 53

An approximation for the unknown displacement function U is made by the 

finite element method. The modified Galerkin method demonstrates that a continuous 

problem domain can be represented by a discretised summation of linear terms 

through that region given by eqn. 54.
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n n

U '(x,y) = k . 0(x, y ) F ' (x, y) = ^  vf 0 (x, y)
i=l i=1

U = Ofl
eqn. 54

Approximate x and y displacements at the nodes are represented by u and v 

respectively and shape functions (j) describe their function between nodes. Strains are 

calculated from these functions by eqn. 48 to give eqn. 55.

£ = S ’<jm = B -a 

where aT = {ui, Vi, u2, v2, u3, v3 . . .  un, vn}
eqn. 55

5.2.2.2 -  GENERAL WORK THEORY

All finite element models have been conducted using the general work theory 

equating work done by external forces to internal strain energy and can be written as 

eqn. 56.

JSea dV = SaTf + \ S U Tb d V + \ S U Tt dV
)v  J,

eqn. 56

This accounts for applied concentrated loads, body forces and any applied 

traction loads. Using eqn. 53 and eqn. 55 a description of the finite element solution is 

as eqn. 57.

f  BTDBa dV = f +  f  <1>Tb d V + \  ® r f d V + \  B TDcAhT] dV 
Jv Jv "V Jv

[*]•{«}•={/}*

[k Y  = f
Jv

B DBa6 dV
Ve

{ / Y ={fP}+ {fb)+{ft}+ i fo }
eqn. 57

The advantage of this method is the summation of required effects. The user is 

able to specify the form of loading as is required, without accounting for any 

unnecessary parameters. It is also very convenient to load a model under its 

constitutive conditions to obtain component solutions of a superposition model. For 

example, a pressure vessel under combined direct and bending stress could be
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analysed separately for the direct stress and bending stress solutions. Providing no 

large thermal stresses are present and the material is elastic the two separate solutions 

can be determined for independent study or combined together for an overall response. 

The disadvantage is the solution can easily be an inadequate description of the 

problem should a subtle aspect to the problem be neglected, for example, body loads 

can be relevant in large structures as a description of a components mass.

5.2.3 -  Numerical Fracture Mechanics

5.2.3.1 -  OUARTER-POINT METHOD

The complexities of determining a valid crack tip descriptor can to some extent 

be eased by a numerical approach. Here the finite element quarter-point method is 

utilised to generate a singularity effect. By positioning midside nodes of quadrilateral 

second order elements to a quarter distance from a comer node, an inverse square 

relationship on distance from that comer node is achieved. For a one dimensional 

element Henshell and Shaw show strain to be described by an inverse square root as 

eqn. 58.

d u  C i  \  (  n \  f  i N
£  - - - - - - - =  U,

dr 1
1 ------------7 =  \ - U , 2 -  2 1 -  1

2V27 )  V  4 2 r )  \  i f T r j
eqn. 58

Figure 32 shows the mesh structure originally used and the contemporary 

method used in the current work. Degeneration of elements surrounding the crack tip 

by collapsing two nodes together at the singularity to form a degenerated triangle from 

a quadrilateral provides a slight improvement in evaluation of a contour integral, 

though care must be taken not to induce derogatory element distortions. Mesh studies 

made in the work on this structure of model have shown that quoted contour integrals 

remain constant for a variety of mesh densities, whilst only the highest densities 

generate appropriately refined crack tip stresses. However, near tip stress refinement 

can be achieved sufficiently well with a moderate density.

A measure of energy release rate with crack advancement, a contour integral 

evaluation in finite element is given by ABAQUS [129] as eqn. 59.
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J  = I X(s)nHq ds
S

f
where H = WI - a

\
eqn. 59

For an elastic material W is the elastic strain energy. The remaining terms, X(s), 

n , q and s are virtual crack advance, the outward normal to s, the virtual crack 

propagation direction and the surface contour surrounding the crack tip respectively.

Using this method stress intensity values can be determined directly or indirectly 

from J-Integral values and cracked edge displacements respectively. For plane stress, 

the theoretical relationship between J  and K  is as eqn. 60

and a numerical method determined from near tip displacements for a symmetrically 

loaded crack is given as eqn. 61

where fi is the shear modulus and uy refers to the y-displacement of a cracked edge 

node approaching the crack tip.

It is important at this point to note constraints placed on the crack tip nodes. 

Many coincident nodes are generated at the crack tip as a result of the modelling 

process and are consequently able to fan out on loading. Though this may have 

advantages in possible applications to plastic flow and crack tip blunting near tip 

displacements were found to be erratic and unpredictable. Any application to crack tip 

blunting would also be partially dependant on the number of coincident nodes.

By placing a dependant constraint on these nodes this erratic behaviour was 

eliminated. All coincident nodes except one were grouped together and displacements 

constrained to equal that of the remaining node which was left to displace accordingly. 

Such a constraint may be written as eqn. 62.

J  = - J +^ u => Kj = JJe  contour method (Kn = 0)
E

eqn. 60

l im— direct method

v l+ * v

E
M 2(1 + i>)

eqn. 61
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U TIP~n — j j n u  x u  x
eqn. 62

This demonstrates how the je-direction displacements of a set of nodes at the 

crack tip, TIP-n, are equated to that of the displacements of a single node, n. This 

remaining node was chosen as the crack tip node of the element ending the crack face. 

This allowed the flow of displacements at the cracked edge to perform as a continuous 

face, i.e. displacements at the crack tip node were driven by the opening of the crack 

immediately before it, as opposed to coincident nodes or nodes ahead of the crack tip.

5.2.4 -  Model Verification

5 .2 .4 .1 -MODEL SCOPE

Elastic finite element test models were conducted at 5mm crack lengths, with a 

load of 75MPa on two separate types of model;

• Centre cracked thin square plate
• Thin edge-cracked rectangular plate.

These models allow a plane stress evaluation to be made of the required 

geometries, types of deformation and their behaviour on the singularity inclusion. No 

thermal verification is made in regard to singularity behaviour as it is felt only non

parallel heat flow would require study. Since this study is based on parallel heat flow, 

verification is applied to mechanical behaviours only.

5.2.4.1 -  VERIFICATION METHODOLOGY

To determine the validity of numerical fracture mechanics two classical uniaxial 

scenarios were conducted and compared to established theory. By modelling a series 

of crack lengths, and evaluating them by stress intensity factor and plastic zone, with 

and without a dependant constraint at the crack tip nodes, the applicability to LEFM 

can be determined.

Verification of a uniaxially loaded centre cracked square specimen and edge- 

cracked rectangular plate with unrestrained bending was conducted to mirror the 

geometric constraints of biaxial and thermal shock models. Figure 33a shows the basic 

centre cracked square geometry with symmetry constraints whilst Figure 33b shows 

the rectangular edge cracked construct (x marks locations of fixed constraints). A
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single transverse constraint is placed at the centre of the top face of scenario b to allow 

elongation with applied loads and free rotation to allow bending, as would also be 

present in non-symmetric thermal shock. Both scenarios are given by the classical 

solutions of eqn. 63 below as provided by Rooke and Cartwright.

K,

1-0.5 ' a ' + 0.326
J

1 -

Centre cracked plate

_
K,

= 1.12-0.23 ' a ' + 10.6 -21.7 'a '*

K0 =CT^[m

+ 30.4
' a '

Edge cracked plate
\ u J

eqn. 63

The centre crack solution was obtained by Isida with boundary collocation of 

complex stress functions for large bib values (>1) and all a/b values. A solution for the 

edge-cracked model was obtained through a collocation method by Brown and 

Srawley in the range of h/b > 1 .0  and a/b < 0.6. The term Ko is the stress intensity 

factor for an isolated crack of length 2a in a plate subjected to a uniaxial load a.

Verification of stress intensity values are made by eqn. 60, eqn. 61 and eqn. 63. 

Plastic zone sizes and shapes are also verified based on the biaxial LEFM solution 

described in the following chapter (section 6.1). At an angle of zero degrees and a 

uniaxial load the solution can be greatly simplified to eqn. 64.

r P Y  ~

r P X  ~
K f

2
eqn. 64

This will provide the magnitude of the plastic zone size at an angle of zero 

degrees ahead of the crack tip. Its derivation is discussed in the following sections.
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5.3 -  Fracture Analysis

5.3.1 -  Biaxial T-Stress

5.3.1.1 -  COMPONENT STRESSES

Biaxial loading is the next logical step from uniaxial loading in assessing the 

structural integrity of components. It is not inherently related to mixed mode loading, 

however the two can easily occur together. The effects of biaxiality are quantified as a 

non-singular term and referred to as the T-stress, Gt, affecting the lateral stress 

distribution ahead of the crack tip but not the stress intensity factors. This does not 

however stop the a t from affecting crack propagation. The Gf is included into the 

description of component stresses ahead of a crack tip by accounting for the higher 

order terms of a Taylor series expansion in the original biaxial derivation of the stress 

intensity factor. Here it is quoted in eqn. 65 as determined by Hua, taking the form of a 

non-singular term added to the lateral stress component.

Kj 0
g  —  — 7= = =  cos—

V2m  2
‘ . e  . 30
1 + sin—sin —  

2 2
K, 0 0 30+ —, " sin—cos—cos—  

4 2 m  2  2  2

K t 0
G r =  . C O S  —

4 2 m  2

, . 0 . 30
1 - s in —sm —  

2 2
K, 0

-   sm —
4 2 m  2

0 30
2  + cos—cos—  

2 2

+  g n [l -  A]cos(2or)

0 . 0  30 K IIcos—sin—cos— +  ___
Jtr 2  2  2  fb tr

0
cos—

2
, . 0 . 30
1 -  sm—sm —  

2 2
eqn. 65

The state of stress near the crack tip consequently becomes a function of the 

stress intensity factor and the Gj. The Gt being defined by the stresses acting normal 

and lateral to the crack tip and the angle, a, of the crack to an applied primary load. 

The parameter A is the ratio of biaxiality around the crack tip.

A =
G,
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Where G p  and G q  are the normal and lateral stresses acting on the crack 

respectively. Kfouri and Miller described the normal, Gn, and lateral, Gl, applied loads 

in terms of Gp and G q  as in eqn. 6 6 ;

= ^ ( cr/> + ^ e )+U<^p - o - J c o s 2 a

<7 L —~ i p p & q ' ) ~ ~ z { & p  ~  ® Q ) c O S  1.CC

eqn. 66

Solving simultaneously for [gl -  gn], Gq and gp  can be described as eqn. 67

° q ~ g n

Gp — g n +

Gp Gn
1 + 1

G  l .  Gn
1 -

cos 2  a

1 '

cos 2  a
eqn. 67

Since Gn and Gp are known as applied loads distant from the crack, a full 

description of the near tip stress state can now be determined.

5.3.2 -  Biaxial Plastic Zone

Kfouri and Miller, to quantify the state of applied biaxial loading, have used a 

parameter [gl - 0 Jv]. The value A has also been used similarly by Hua. All these values 

however, must be used in conjunction with the stress intensity factor leading to a 

cumbersome dual parameter approach. It therefore seems natural to consider the 

plastic zone, for, whilst small in relation to the crack length, the plastic zone is a direct 

consequence of the crack tip state. Hua incorporated the Gp into a mixed-mode von 

Mises plastic zone with good results. However, only the plastic zone radius ahead of 

the crack tip, rp*, was used. It is possible, however, for this parameter to be inadequate 

as the same rp* value can be created by different combinations of Ki and Gp. The result 

being the same rp* value for two different von Mises plastic zone shapes.

To overcome this a parameter describing the shape and size of the von Mises 

plastic zone is proposed.
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5.3.2.1 -  BIAXIAL PLASTIC ZONE FUNCTION

For a linear-elastic material under mixed mode loading but not considering <7T 

the von Mises plastic zone magnitude is a function of Kj and Kn in the from of eqn. 6 8 .

rtm = f ( .K , \K „ \K ,K n )
eqn. 68

This means all loading conditions can be described by the stress intensity factor, 

and consequently the shape of the plastic zone remains constant whilst its size is 

variable. However, when T-Stress is included the relationship becomes more complex, 

being related to K\ and Kn and Gf by eqn. 69.

rPvM = / (^ / ’K-h , K j K n ,K j ,K u ,&T)
eqn. 69

Since o f  is effective only on the lateral stress component, crx, the von Mises 

shape will be similarly affected; should the lateral stress component be increased the 

lateral plastic zone will extend and be reflected in the von Mises distribution. 

Consequently the shape of the von Mises plastic zone is controlled by oT and can 

therefore no longer be considered constant.

For single mode loading the plastic zone is permanently symmetrical about the 

crack plane. It is therefore proposed that the radius ahead of the crack tip and the 

normal height uniquely described the shape of the plastic zone, i.e. the length and 

height of the von Mises plastic zone. The ratio of these two dimensions should 

therefore uniquely express the shape of the von Mises plastic zone. For oscillating 

loads, the change in these dimensions can be used to account for stress range. Such a 

ratio is given by eqn. 70.

A T
von Mises plastic zone shape ratio = —

ArPvMH
eqn. 70

In order that magnitude is accounted for, the absolute size of the plastic zone 

must be introduced. By using the length of the plastic zone created by stress normal to 

the crack plane, oy for non-inclined cracks, the primary normal load is accounted for. 

This stress component is advantageous since it is the primary stress acting on the crack 

and will not be affected by any changes in <Jt- It is proposed that a parameter
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providing a unique description of the plastic zone is given by eqn. 71 and illustrated in 

Figure 34.

^ r PvML a

Ar *PvMH

eqn. 71

A theoretical determination of this function is required to test the assumption 

that the shape ratio is a unique description of biaxial loading on a crack tip. This 

determination follows in the next section, and though mixed mode loading is not 

considered in the final analysis, it has been included for completeness and for further 

work.

5.3.2.2 -  THEORETICAL MIXED-MODE-BIAXIAL VON MISES PLASTIC ZONE

Using eqn. 65 and the von Mises yield criterion of eqn. 72, plane stress and

plane strain functions can be derived for a mixed mode biaxial von Mises plastic zone 

and are both presented in eqn. 73 and eqn. 74.

yield ~  O7 ! “  ^  ( ° 2  “  ^ 3  )  ^  ( ^ 3  ~  ^ 1 )

<7 ~ ( Jx y

<73 = 0  for plane stress

<r3 = v(cr1 +cr2) for plane strain
eqn. 72

Appendix A shows the derivation in more detail, the final solution for both plane 

strain and plane stress conditions is shown below.



For plane stress: -

2 K )1 2 0j L  = —— cos — 
w 2  nr 2

2 03sin —+ 1 
2

+ — 77 sin 0\i cos 0 - 1] 
2m

+  ■
K\
2m

+ cr7

— (Jn

+ cr:

3 + sin2 — 
2

0
" 7 COS —

2

’ *// • 0- . sm — 
4 2 m  2

l - 9 c o s 2 —

"i * • * ■ 30'l - 3 s in —sin —
2 2 .

\  n 6 304 + 3cos—cos—  
2 2

For plane strain: -

eqn. 73

^  yield
K] 2 0 
——cos — 
2m  2

3 sin2-̂ - + (1-21/)" + ^ 11 sin #[3  cos 0 -  (l -  2v )2 ]
2m

+ k :
2m

-C T-r

+ cr:

o , • 2 @3 + sm — 
2

Kj 0- 7—— cos —
V2 ^r 2

' *// • 0- , sin — 
_42m  2

( l - v  + v 2)

( l - 2 v ) 2 - 9  cos2

(l -  2 r ) 2 -  3 sin—sin—  
'  2 2

(1 -2 f )2 +3 c o s — c o s —  + 3 
v ' 2 2

where a T = crN (A - 1) cos 2 a
eqn. 74

The von Mises plastic zone radius, r, of eqn. 73 and eqn. 74 must consequently 

be obtained by solving as a quadratic for 1/ 4 r . This is more clearly shown if eqn. 73 

and eqn. 74 are reduced to non-inclined cracks with 0= 0 .

For plane stress: -

2 K 2 g t K j 2

(7yield~ 2m + 4 ^ +<7t

For plane strain: -

2 K f ( l - 2 v 2) g tK j ( l - 2 v 2) 2 (t 2\
  + ' ^   ̂+ a 2 ( l - v  + i/2)

2^r
eqn. 75
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In general the quadratic can be described as

a b _
- + - = + c = 0  
r Vr

eqn. 76

Once the quadratic solution is made it is not immediately clear which of the two 

resulting solutions is correct. Both plastic zone shapes can be similar under biaxial and 

mixed mode loading and are equal when Or = 0. By substituting both obtained values 

of r back into the quadratic of eqn. 73 or eqn. 74 only the positive version of the 

quadratic makes a solution under biaxial loading. In fact the negative solution of the 

quadratic performs the opposite biaxial effect on the plastic zone.

A key term within the quadratic solution is Or - <Tyiei d ,  which occurs as part of 

the denominator when solving for r. Under the conditions of crT = <Tyieid a division by 

zero occurs for the correct positive solution. Consequently the linear-elastic conditions 

of -(Jyidd < Of < +CFyieid must be imparted to the initial problem.

5.3.3 -  Summary of Stress Intensity Determination

With contemporary finite element methods, practical determination of this 

plastic zone parameter is relatively easy. Previous mathematically intensive methods 

to determine stress intensity factors can be replaced with very accurate numerical 

approximations. Either through direct modelling of the crack tip with quarter point 

elements or by calculating changes in strain energy through release of multi-point 

constraints. In this work only the quarter point element technique was used. For 

verification models this method provided accurate determination of stress intensity 

factors to within less than 1% and 1 0 % for plastic zones sizes.

Using the quarter-point method excellent plastic zone shapes for component 

stresses and von Mises stresses can be determined. However, using the more 

straightforward meshing capabilities of multi-point constraints the plastic zones are 

not as accurate. Though, once built, a change in strain energy analysis can determine 

stress intensity factors to be used in the above formulation.
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5.4 -  Quantification of Thermal Loading

5.4.1 -  Overview

Past studies of thermal shock loading [48,106-110,116] have successfully used 

the dimensionless Biot number, /?, to describe the thermal downshock condition and is 

given in eqn. 77.

eqn. 77

Essentially this number represents the magnitude of transient loading, h, and 

thermal resistance provided by the material and geometry, L/k. These past studies have 

been fuelled on understanding the overall nature of thermal shock for a wide variety of 

Biot numbers. The time scale, t, over which these shocks are applied are normally 

given in non-dimensional time, t \  or Fourier number, Fo, defined in eqn. 78.

k-t r  t = ---------- -  = Fo
P - C p L 2

eqn. 78

For thermal down-shock loading both eqn. 77 and eqn. 78 are required, however 

h is an empirical value based on thermal and fluidic characteristics of the component 

and film medium respectively. Correlating methods are available such as Nusselt 

numbers, however, a numerical analysis is preferred since this allows greater freedom 

and accuracy in the determination of heat transfer coefficients. By providing an 

explicit description of the thermal downshock, i.e. start, end and ambient temperatures 

and a time period over which these occur the definition of loading is invariably more 

descriptive but difficult to use in relation to any further analysis. It would therefore be 

convenient if an empirical description of thermal down-shock could be simply related 

to the resulting stress state using only the explicit definition values. Relating this to a 

description of bounding isothermal crack growth rates would allow final description of 

the thermal shock crack growth rates by explicit definition of thermal loading.

This would require a description of biaxiality. It is proposed to determine an 

estimation of the non-singular biaxial stress, <7r, under isothermal conditions by the 

stresses induced from thermal downshock loading. In order to do this the stresses must
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be related to the surface heat transfer coefficient, h  and is addressed in the following 

section.

5.4.2 -  Thermal Loading Evaluation

As described previously the thermal loading is to be defined by a time period 

and the initial, end and ambient temperatures. The severity of thermal loading is 

initially described by the normalised thermal gradient in relation to ambient 

conditions.

T - T  T  _  l e n d  j aJ-1F A C TO R  r p  r ji

IN IT IA L  A

eqn. 79

Time period is an independent effect and must therefore be included as a 

separate variable in a function describing h. The form of such a function is proposed to 

be a power law as in eqn. 80.

^  =  f ‘( t f a c t o r  J p )

eqn. 80

This is reasoned on the simple basis of exponential cooling. As T en d  approaches 

Ta  the lower the natural cooling rate and consequently the higher h  must be to force 

the thermal distribution to T e n d -

5.4.3 -  Thermoelastic Stress

The maximum stress calculated at the shocked edge through the cycle as 

opposed to the stress at the end of the cycle is a more characteristic and relevant 

measure of loading. When determining a stress intensity factor range, for instance, the 

maximum and minimum stress states are required to fully describe the extremes of 

loading on the crack tip. Therefore it is necessary that the time of maximum stress is 

used as opposed to the stress at the end of the cycle. Hence, it is more likely that a 

good relationship to the h  value can be determined during this period of transient 

behaviour.

The stress at the shocked surface, Umax, is used to characterise the overall stress 

state through the model. Since the profile of thermal shock stress is predictable, any
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point on the profile could be used. However, the most meaningful to fracture 

mechanics and hence to crack growth rates is that at the shocked surface, since it is 

this stress which governs the initial propagation of edge cracks.

®  M A X  ~  f { h t E ( x )

eqn. 81

Therefore the maximum elastic thermal shock stress produced by loading 

described by T factor of e q n . 80, must be said to be described in the form of eqn. 81.

In order for this thermal stress, oMax, to be related to an isothermal biaxial stress, 

cTt, a relation must be determined. The relationship is likely to be one related to the 

biaxiality present in thermal shock and the crack geometry, centre cracked or edge 

cracked for instance. Such a relationship can only partially be determined analytically 

and it is inevitable that empirical evidence must be used to determine the exact nature 

of the relationship described below in eqn. 82.

& T  ~  f  ^ M A X  )
eqn. 82

The constant B can only be found by further long term experimental study, 

however, the experimental evidence [124] presented here in later sections provides a 

good starting point and is elaborated on in further sections. As such the final step in 

the proposed correlation of thermal shock to isothermal crack growth rates is proposed 

in eqn. 83.

f
c - j  <Tr

( a k , t
V _ y

eqn. 83

The form of this function is essentially equivalent to the findings of Brown and 

Miller [31] where increasing negative o f  was found to accelerate crack growth. In eqn. 

83 when Of becomes more negative in relation to some positive nominal stress, such 

as the mean stress of a sinusoidal cycle, crack growth rates are increased.
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6 -  Results

6.1 -  Model Verification

Elastic finite element test models were conducted at a 5mm crack length with a 

load of 75MPa on two separate types of model: a centre-cracked thin square plate 

(CCP) and a thin edge-cracked rectangular plate (ECP). This allows a plane stress 

evaluation to be made of the required model geometry, type of deformation and their 

behaviour on the singularity. No thermal verification was made in regard to the 

singularity as it is felt only non-parallel heat flow would require study. Since this 

study is based on parallel heat flow, verification is applied to mechanical behaviours 

only.

Table 14 through Table 18 present results of the models conducted with a variety 

of mesh refinements. Table 14 and Table 16/Table 17 show the CCP and ECP studies 

respectively, whilst Table 15 and Table 18 show the respective classical solutions.

Classical stress intensity factors are determined by eqn. 63, with plastic zones 

from eqn. 64. Both compare extremely well maintaining an excellent relation to the 

classical solution. Though component plastic zone sizes are seen to agree very well 

with classical size in the CCP the relation is not as good for that of the ECP model. 

This is likely due to the less straightforward manner of boundary and loading 

conditions. Where uniaxial load will apply a relatively predictable stress at the crack 

tip region, any bending taking place could easily differ from the classical solution. In 

this case boundary conditions both parallel and perpendicular to the crack plane are 

required in the finite element model. Symmetry conditions are straight forward, whilst 

the entire top edge of the rectangular model parallel to the crack plane and 

perpendicular to the applied load is constrained from transverse motion. Consequently, 

bending is partially constrained and it is likely that this stiffer condition produces 

higher stresses around the crack tip, and consequently larger plastic zone sizes.

The classical edge-cracked solution as determined by eqn. 63 is applicable for all 

height to width ratios (h!b) greater than one. Therefore, finite element models 

requiring boundary conditions both parallel and perpendicular to the crack plane 

solution should demonstrate independence of parallel constraint. Two types of 

constraint were conducted; a pin-joint at the centre of the top edge allowing rotation
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and free deformation, and a complete lateral constraint indicative of a built-in top-edge 

presented in Table 16 and Table 17 respectively. The results in plastic zone are 

essentially equal. This supports the behaviour of the finite element model though it 

demonstrates its conservative estimation of plastic zone size.
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6.2 -  Thermal Analysis Results

6.2.1 -  Finite Difference Model Refinement

Refinement of the explicit finite difference model was conducted using the 

surface heat transfer coefficient, thermal distribution, surface cooling and initial 

cooling gradient as indicators of a concurrent solution. Both time increment and 

element density are evaluated in a fixed property one dimensional model, this is later 

extended into temperature dependant (appendix B.l).

A series of models were conducted shown in Table 19 through 21 for 3 separate 

levels of thermal downshock with properties specified at the maximum temperature. 

Maximum run times of the models were 6 , 12 and 13 minutes converging in 5, 8 and 

10 iterations for Table 19 through 21 respectively. Results of these models are shown 

in Figure 35 through 46 and are discussed in the following sections.

6.2.1.1 -  SURFACE HEAT TRANSFER REFINEMENT

Refinement of the surface heat transfer coefficient is shown in Figure 35 to 

Figure 37 for the three separate levels of downshock. Both stable and unstable regions 

in time incrementation are shown, and demonstrate the occasional capacity of the 

model to run satisfactorily outside stable conditions. In most cases however, unstable 

time incrementation generates large divergences and accelerates the solution wildly 

out of control and unable to complete. In coarse meshes, the surface heat transfer 

coefficient cannot be refined even with the smallest of time incrementation, even 

though values may become concurrent. Increasing element density causes rapid, then 

permanent refinement of the solution in space and in any region of stable time 

incrementation.

In comparison to a fixed property one dimensional theoretical value determined 

from the eigenvalue solution, the finite difference solution compares within 1 0 % of 

refined values.
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6.2.1.2 -  THERMAL DISTRIBUTION

Using refined time incrementation values for the three downshock levels, the 

effect of element density on thermal distribution is evaluated in Figure 38 to Figure 

40. It can be seen that a very rapid refinement is achieved in the parabolic region of 

the distribution requiring only a few elements. Refinement of nodal position values is 

clearly excellent, showing a general trend of large refinement error only at the 

intermediate positions in highly coarse meshes. Theoretical values determined from 

the eigenvalue solution are also plotted and demonstrate approximately a 2 % vertical 

deviation of the finite difference model from the theoretical.

6.2.1.3 -  COOLING CURVE

Cooling rates of the shocked surface with refined time incrementation are 

presented in Figure 41 to Figure 43 with theoretical values shown for comparison. A 

large refinement error is present in coarse meshes as would be expected from the 

reduced level of heat flow to the surface from bulk material. Refinement is reached at 

50 elements requiring time incrementation in the order of hundredths of a second. 

However, the initial cooling gradient appears unable to refine producing an initial 

cooling rate less severe than the exponentially based theoretical cooling rate.

6.2.1.4 -  INITIAL COOLING RATE

As a measure of the severity of explicitly described thermal shock, i.e. with 

thermal gradient and time period, the initial cooling gradient was determined by a 

simple forward difference method. Figure 44 to Figure 46 show the results of such a 

measure to be clearly unrefinable. At any level of refined element density for thermal 

distribution and surface heat transfer coefficient the initial cooling gradient can be 

seen to refine well. However, with increasing element density the initial cooling 

gradient is shown to increase in a linear fashion related to the number of elements by 

unity, and so never refine unless the number of elements is also specified.

A forward difference treatment of theoretical values is shown in Table 22. 

Again, the same unrefinable rise occurs demonstrating approximation of an initial 

cooling rate to be indeterminate. Since the theoretical solution is itself the 

approximation to an infinite series summation, the initial cooling rate can not be used
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as a refinement indicator or as a means by which thermal downshock can be explicitly 

quantified.

6.2.2 -  Numerical Finite Difference Solution

6.2.2.1 -  COMPARISON TO THEORETICAL SOLUTION

To determine the effectiveness of the finite difference solution in long term 

convection models a comparison was made to the theoretical solution. Initially 

transient in behaviour, the thermal distribution will settle in to steady-state, illustrated 

graphically by changing temperatures but a consistent distribution pattern through 

time. All transient solutions will settle in to steady-state behaviour, and consequently 

the finite difference model is run at a given Biot number for time periods spanning 

four orders of magnitude, 1, 10, 100 & 1000 seconds. Figure 47 shows the effect of a 

fixed boundary condition at the insulated edge. Temperatures settle into a steady-state 

form, however such a scenario would require a constant heat flux to maintain the 

insulated edge temperature when convection effects reach through the entire body of 

the model.

By applying a further equation allowing heat flow by conduction from internal 

material to the insulated end, the finite difference model follows further cooling as 

found in the theoretical solution and illustrated in Figure 48. Consequently it is shown 

that the finite difference model is capable of accurately modelling the theoretical 

solution to a one dimensional asymmetrical short and long term shock, given explicit 

definitions of thermal gradient and time period or simply an initial temperature and 

surface heat transfer coefficient.

6.2.2.2 -  COMPARISON TO SINGLE & DOUBLE EDGE AIR JET SCENARIO

A previous study has provided experimental thermal distributions of single edge 

and double edge symmetrical shock consisting of cooling a thin plate by small air jets 

situated close to the plate edge. Air jets were held vertically and activated 

simultaneously under equal pressure for double edge shock for a given amount of 

time.
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The idealised nature of the finite difference model can be seen in Figure 49 and 

Figure 50. As the air jets are activated localised cooling takes place at the leading edge 

and lesser cooling takes place on the plate surface, as turbulent air creates a cooling 

envelope around the specimen. Initially this results in a gross cooling region ahead of 

the shocked edge causing a smaller thermal gradient to exist across the plate. As the 

shock cycle progresses the more intense cooling at the edge takes hold and creates a 

more severe thermal gradient across the plate. Consequently the finite difference 

model is found to over idealise the single edge air jet scenario at early stages in the 

cycle, and is unable to model the small scale global cooling across the plate. However, 

the majority of the shock cycle thermal gradients at the shocked edge demonstrate a 

very good correlation.

The introduction of far edge air jet cooling to generate a symmetrical double 

edge shock and its consequences to the idealised finite difference model is shown in 

Figure 50. Narrowness of the experimental specimen width causes both air jets to 

interact and superimpose their cooling effects throughout the surface of the plate. This 

causes a combined global cooling effect at each edge greater than the effect of single 

edge cooling modelled at either end. Again a dynamic surface heat transfer coefficient 

is shown to exist where an initially low level of shock is observed which then 

accelerates to that shown by the finite difference model in near-edge regions.

6.2.23 -  TEMPERATURE DEPENDENCE ON THERMAL PROPERTIES

Thermal shock gradients are extreme enough to warrant a temperature dependent 

analysis of the solution. For the same three levels of shock as conducted above results 

are shown in Figure 51 to Figure 53. For such a significant change to take place in 

thermal distribution, large changes must be present in the thermal properties. For AISI 

316, thermal properties change by approximately 25% for thermal conductivity and 

only 5% for density. Since thermal conductivity is the most dependent, coupled with 

its greater importance in the temperature-dependent finite difference equations, a fairly 

significant change is observed.

At early stages the general distribution is shown to be consistently similar to that 

of the fixed thermal property models. At the shocked edge, however, cooling is 

consistently increased by temperature dependence. As time progresses through the 

shock cycle, cooling falls in line with the fixed property model as cooling rates
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decrease. The general distribution however, begins to cool less rapidly, an effect 

increasing with time. This is due to the lower thermal conductivity values present at 

lower temperatures than the maximum temperature properties used in the fixed 

property model. This should consequently result in slightly higher stresses generated 

using the temperature dependent model than the fixed property model.

6.2.3 -  Finite Element Two-Dimensional Solution

6.2.3.1 -REFINEMENT

Refinement of the finite element solution shown in Figure 54 and Figure 55 is 

obtained through a short series of models listed by Table 23. The minimum stability 

condition is such that the relative time increment refines at values of zero. The more 

positive a value the larger the overall time incrementation, hence the coarser the 

solution, whereas the more negative the increment the more likely spurious 

oscillations are to occur in the solution.

Using the maximum/minimum property regime to calculate the largest possible 

stability condition results in the models capacity to generate a solution inside the 

unstable region. However, the further into this region the solution goes the more likely 

the solution is to fail. As time incrementation refines to the minimum increment, 

surface heat transfer coefficient values reduce towards the theoretical solution.

It appears from Figure 54 that the finite element model is more dependent on 

time incrementation than that of the finite difference model. With coarse meshes the 

model determines surface heat transfer coefficients very close to the theoretical 

solution, when advantage is taken of the ability to run in the unstable region. However 

highly sensitive dependence is present on time incrementation in these coarse meshes 

and consequently is inadvisable for general use.

This sensitivity reduces with increasing mesh density until mesh size is almost 

entirely dominating as in the finite difference model. This is a consequence of the 

stability condition itself since the smaller the characteristic element length the smaller 

the minimum time increment. As a result refined meshes inherently cause refined time 

incrementation.

Using stable time incrementation Figure 55 demonstrates the low mesh density 

required for refinement of the thermal distribution. Only at the greatest rate of thermal
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gradient is the refinement active, showing a final solution with a similar mesh size to 

that of the finite difference model.

6.23.2 -  COMPARISON OF TWO-DIMENSIONAL FINITE ELEMENT & FINITE 

DIFFERENCE SOLUTIONS

Maintaining the highest level of severity of the models refined above, the two 

dimensional finite difference solution was compared to that of the finite element 

model. A two dimensional model consists simply of the localisation of a thermal 

downshock to a particular region as opposed to an entire edge surface. Assuming the 

cooling is uniformly distributed over the thickness of the model, a cold spot will be 

generated ahead of the shocked surface and could consequently affect the surface heat 

transfer coefficient required to attain the explicitly described thermal shock.

Figure 56 shows an almost exact match between both models in distribution and 

in cooling rate, when exposed to an 8mm localised half-region. However, in order to 

achieve such a match, the surface heat transfer coefficient must further be 

manipulated. As shown above, a discrepancy exists in the one-dimensional finite 

difference model in its ability to converge on the theoretical surface heat transfer 

coefficient. This manifests itself as a 5-10% error over the theoretical solution and 

finite element approximation.

No change on the thermal distribution at the symmetry plane is found for 

localised shock over full edge one-dimensional shock. The effect of localisation on the 

surface heat transfer coefficient required to achieve the specified shock is shown by 

Figure 57. For highly localised shock the required surface heat transfer coefficient is 

almost double that required for full edge shock, an effect more pronounce in the finite 

element model. However, for localisation above a 10% half-region, the value is 

maintained at a constant.

Thermal distribution is affected considerably at shocks of high localisation. 

Figure 58 and Figure 59 show the increased rate of cooling for the finite difference 

and finite element models respectively. A series of half-regions are shown up to 

16mm, equating to a relative height of 0.151. Beyond this point the effect ceases and 

thermal gradients remain consistent. This is in direct correlation to the point of 

consistent surface heat transfer coefficients in Figure 57.
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When refinement of the model is attempted with highly localised shock, 

inconsistent surface heat transfer coefficients are determined. Consequently the 

approximating solutions can not, at this stage be relied upon to adequately model 

conditions of high localisation. This can only be considered a flaw in the finite 

approximations where severe solution changes occur, from node to node, at regions 

highly sensitive to small changes.
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6.3 - Stress-Strain Analysis Results (

6.3.1 -  Linear-Elastic Stress Analysis

The linear-elastic solution as determined analytically by Timoshenko, eqn. 36 

[128] is conducted based on a net summation of bulk elastic stresses determined 

through a cyclic modulus and thermal strains. Thermal strains are here determined 

from a thermal distribution, calculated via the finite difference solution described in 

section 5.2.1. This method shall henceforth be referred to as the FD&T method. These 

can then be used as an independent means of verifying the finite element thermal 

shock models. It must be noted that due to its net stress summation, eqn. 36 also 

returns zero thermal stress over linear thermal distributions. Since thermal shock is a 

non-linear distribution this does not present a problem. However, eqn. 36 is a one

dimensional solution, and as such does not account for multi-dimensional effects, and 

is likely to inadequately describe the total strains taking place. It cannot therefore be 

used to analyse the effects of localisation of the shocked region. It can be used well, 

however, to verify the linear-elastic and elastic-plastic models of the finite element 

models.

6 .3 .1 .1 -FULL EDGE SHOCK

Figure 60 through Figure 62 show typical thermal shock stress profiles through 

the shock cycle. Stresses are calculated from eqn.36 with fixed and temperature 

dependent elastic thermomechanical properties. A maximum temperature elastic 

modulus and thermal expansion coefficient is used for the fixed property calculation.

Very little difference is determined between the two and since thermal gradients exist, 

approximately in the first 15mm, stresses are closely matched ahead of this region. 

However, prior to this region stress gradients can be noticeably larger, as the severity 

of thermal stress at the surface is increased and the penetrative distance of the first 

tensile region is reduced.

A comparison of end-of-cycle stresses is made for the three levels of shock 

between FD&T and finite element temperature dependence. Illustrated in Figure 63 

and Figure 64 an excellent relation to both models is determined for fixed property 

analysis. However finite element demonstrates higher stresses and gradients for the
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same thermal distribution and properties as determined analytically by the FD&T 

solution.

It must be noted at this point that the overall change in elastic modulus and 

thermal expansion is approximately 10% and 15% respectively. Therefore, material 

with a greater susceptibility to thermal changes is likely to encounter a greater 

reduction in tensile region, and much higher levels of stress at the surface over a fixed 

property analysis.

Lower maximum stress levels and a much broader spanning of stresses through 

time indicate the reducing severity of thermal shock loading. This is illustrated in 

Figure 65 showing elastic stress at the shocked surface for both finite difference and 

finite element analyses determined from a fixed cyclic modulus and thermal expansion 

specified at the maximum temperature. It is apparent the large changes in temperature 

at the initiation of the downshock cycle is reflected by sudden changes in stress in the 

near surface region. These high gradients are seen to ease off as the cycle proceeds, 

and for high downshock loads begin to fall off at the end of the cycle. This results in 

the further consideration of the maximum stress state to be at some intermediate point 

in the cycle as opposed to the end, consequently affecting the classical definition of 

the stress intensity range.

In these cases of high levels of shock, a point exists in the model at which 

stresses cease to reduce in the later stages of the cycle. This can be shown to be a 

direct result of the rate of heat extraction by forced convection exceeding the rate of 

heat flow by conduction and will be discussed in detail in a later section.

Figure 6 6  shows the effect of introducing temperature dependant cyclic modulus 

and thermal expansion coefficient. The solids lines indicate the fixed property 

analytical stresses of Figure 65. Using the same properties for the finite element 

solution and FD&T solution, considerable differences in the time distribution are 

found at high levels of shock. This discrepancy is not considered a result of the two- 

dimensional thermomechanical strains present in the finite element model, since it 

would be displayed in Figure 65. The greatest difference lies at the low temperature 

end-of-cycle region for the 625-225°C in 3s shock. It is also in this temperature region 

of 0-300°C that changes in cyclic modulus are coarsely defined due to the lack of 

information for AISI 316 at these temperatures. Both FD&T solution and finite 

element solution conduct a linear interpolation from quoted temperatures. Since
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properties are maintained between models and methods of property interpolation are 

consistent, it must be concluded two-dimensional effects are enhanced under changing 

material properties.

For the 650-350°C in 5s shock, the small oscillation in stress determined by the 

FD&T method early in the cycle takes place in the range of 450-550°C. From higher 

temperatures the cyclic modulus slowly rises, with a sudden drop taking place around 

500°C to slowly increase again with decreasing temperature. Consequently, a small 

drop in stress is observed, continuing into higher stresses than the fixed property 

profile. This is not observed in the two remaining models, since the 450-550°C range 

exists very early in the cycle; approximately before 0.2s. The fact that this does not 

take place in the finite element models demonstrates further difference on a two- 

dimensional stress field, accounting for mechanical as well as thermal strains.

6.3.1.2 -  BIAXIAL EFFECT OF LOCALISATION

Although little effect of localising the thermal shock region is observed in 

thermal loading and distribution, the effect on stress distribution is significant. Figure 

67 and Figure 6 8  illustrate the effect on the end-of-cycle stresses for the most severe 

shock of the three discussed.

Primarily when the shocked region is reduced, biaxial stress fields are generated 

ahead of the shocked surface. Maximum tensile and compressive normal stresses are 

seen to reduce as the amount of contraction desired at the surface is reduced. However 

lateral stresses do not follow the same behaviour. Because localisation allows relative 

contraction to take place parallel to heat flow, compressive stresses are forced into the 

plate as the shocked region contracts inwards, generating further compressive stresses 

through the plate. With no lateral mechanical loads, this stress field starts and ends at 

zero, with an internal compressive region initially zero for full-edge shock. As 

localisation increases the compressive lateral stress increases in magnitude and width 

of distribution. As localisation becomes very small the compressive stress decreases 

only slightly, as is illustrated in Figure 69. The maximum compressive lateral stress 

clearly occurs at 8 mm (16mm overall due to symmetry) or 7.5% of full edge shock. 

This occurs at position very close to the maximum normal compressive stress, 

illustrated in Figure 70. Here, the point of maximum compressive lateral stress moves 

away from the crack tip, only to return to very much its original position. Hence, there
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exists a distinct level of localisation where the two normal and lateral maximum 

compressive stress states can combine in close proximity to the crack tip. The level of 

localisation coincides with the experimental work used here from a previous study. 

Thermal downshock was achieved via an air jet 16mm wide creating a very similar 

region of localised thermal shock. Crack tip blunting could be due to a compressive 

lateral stress and therefore dampen the crack closure caused by the compressive 

normal load leading to increased, though slow crack propagation than otherwise 

believed under a full edge thermal shock analysis.

It is interesting at this point to hypothesise that the inverse could occur for 

thermal upshock, where tensile normal and lateral component stresses may combine. 

Under such conditions crack propagation may be slowed due to the lateral tensile 

stress inducing crack tip closure.

Figure 71 and Figure 72 demonstrate the evolution of the maximum compressive 

normal and lateral stresses through time respectively. Normal stresses show a steady 

reduction as the shocked region reduces, with a rapid rise to a maximum for small 

regions. As the shocked region increases the maximum compressive stress state lays 

more toward the end of the shocked cycle, requiring significantly longer cycles in 

order to observe any level of stress reduction. This is not mirrored however in the 

lateral stresses. Again, initial stresses rise quickly but are significantly reduced by the 

end of the shock cycle when localisation is small. With increasing size of the shocked 

region, lateral stresses reduce in magnitude and rate, leaving a maximum state at 

around an 8mm half region, i.e. a 16mm shocked region in practice.

To describe the resulting biaxiality three biaxial parameters are plotted in Figure 

73. Parameters are described below.

n _ £ j£ n_ t> _  &L n _  iPN
1 ~ ~  / t 2 2  ~  rr 3 “  z t 2  , _ 2

&  yield ^  N  ®  L ^  N

eqn. 84

Functions B\ and # 3  have been derived here in an attempt to avoid the singular 

event of normal stresses passing through zero. In this case the standard biaxial 

parameter, B2, is caused to rapidly accelerate to infinity. Using Bi, which introduces a 

control such as a yield stress, and maintaining both normal and lateral stresses as 

nominators can alleviate this. This creates the linear comparison of biaxiality, whilst 

also introducing a weighting effect of the overall stress level in relation to yield. # 3  is 

a second order function which might be introduced to maintain a zero value for either
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zero normal or lateral stress, whilst maintaining a unity value for normal and lateral 

equality. The function still does not behave linearly and consequently overestimates 

the standard biaxial function of £ 2-

It is clear from Figure 73 that a high level of biaxiality is present in the 

compressive region of the model. However the behaviour of a crack in this region is 

not easily predictable and certainly unlikely to propagate along the symmetry plane in 

this region. At the shocked edge only a slight level of biaxiality is found because no 

mechanical loads are applied in this region, though both B2 and B3 parameters show a 

very rapid increase toward the start of the compressive normal region. As expected, 

the second order function overestimates the standard B2 parameter though it does 

mirror the parameter well whilst never exceeding unity. The weighted parameter 

shows biaxiality in the same places as the standard parameter, £ 2, whilst also 

indicating the low levels of lateral stress in relation to a yield stress.

The three lines of constant value represent the predefined levels of biaxiality 

present in the unibiaxial tests previously conducted. With equibiaxiality represented 

by a value of 1 for functions B2 and B3 the lines show bounding limits of biaxiality for 

the isothermal load cases on thermal shock. For function Bi, the equibiaxial value is 

dependent on yield. However, it will be higher than the unibiaxial line. Consequently, 

the Bi function does not bound the thermal shock levels of biaxiality at all, although, 

functions B2 and B3 are more favourable. Both B2 and B3 unibiaxial functions pass 

through the approximate average of the biaxial profile of thermal shock. This indicates 

that the thermal shock biaxiality, localised to that of the previous experimental study, 

is partly bounded by the unibiaxial study. The crack growth rates of these two 

scenarios, isothermal-biaxial and localised thermal shock, are therefore shown to 

coexist over the similar biaxial ranges.

To extrapolate this to its furthest extent, the fully bounding condition of 

unibiaxiality can be read from Figure 73 as approximately 0.35 for the standard 

function B2 and approximately 0.65 the second order function B3. It is then a question 

of determining the loading magnitudes to create the best comparison between 

isothermal-biaxial and localised thermal shock crack growth rates.
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6.3.2 -  Strain Analysis

Using the finite difference thermal solution, thermal strains are calculated from 

dT  for an elastic stress analysis. Thermal strains by finite element are calculated by 

eqn. 85.

£„(0 ) = < m a ( 0 , )• [T, - Tref]
eqn. 85

A reference temperature, Tref, is provided only for temperature dependant 

thermal expansion, a. This allows the second term to remove any thermal strains 

incurred by initial conditions, T\, different to that of Tref allowing initial conditions to 

represent zero thermal strain; consequently thermal strains for a fixed property finite 

element model also uses dT.

Further to this, finite element methods allow strains to be calculated which 

account for the presence of a two-dimensional thermal field and bending caused by 

asymmetrical thermal distributions. These total strains illustrate the effects of 

localisation on stress distributions but do not show a distinct enough difference on 

fixed property to temperature dependent analyses to explain the large differences 

observed in 625-225°C in 3s shock.

6.3.2.1 -  TOTAL STRAIN

Figure 74 illustrates the simple thermal strain calculation by dT. Little difference 

is observed between temperature dependent and fixed property analyses, as would be 

expected for the slight changes in thermal expansion taking place. Figure 75, however, 

demonstrates something more interesting. Total lateral strains are approximately equal 

to thermal strains near the shocked edge, with a fall off in strain at the far edge. This 

fall off is due to the significant bending effect taking place throughout a full edge 

asymmetrical shock. As the far edge goes into normal-tension, Poisson’s ratio 

withdraws material laterally causing a reduction in tensile strain. This results in a 

slight drop in strain at the far edge, proportional to the size of the bending moment. 

This is supported by Figure 76 where normal strains are linearly distributed through 

the model. At the shocked edge these strains fall off through the cycle as temperatures 

recede, at the far edge however, strains increase as the bending moment increases
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through time. A comparison of end-of-cycle strains is illustrated by Figure 77. Unlike 

stresses, orthogonal strains are seen to exist within the same magnitude even at full- 

edge shock levels.

6.3.2.2 -  EFFECT OF PLASTICITY

Using a deformation plasticity model to follow the full stress/strain behaviour 

determined by Neuber’s relation, the effect of plasticity on mechanical strains can be 

determined. Figure 78 illustrates the presence of larger levels of normal strain in the 

plasticity model in near shocked regions for the full-edge shock model of Figure 77. 

Such an increase is likely to cause an increase in magnitude and a broader spanning of 

the near-edge tensile region of a stress distribution. Introduction of plasticity generates 

lower stresses for a given strain, this causes lower bending stresses, and consequently 

a more shallow normal strain distribution. This is shown by Figure 79 where 

decreasing the level of shock severity shows a reduction in the gradients of normal 

strain. The higher mean value of the 650-350°C in 5s shock is not a result of higher 

shock severity, but of higher bulk temperature. This would lead to the assumption that 

normal strain for full-edge shock under symmetrical conditions would be constant. 

Localisation of the shocked region supports this, whilst symmetrical double edge 

shock is discussed in a later section.

6.3.2.3 -  EFFECT OF LOCALISATION

When the applied forced convection is localised to a partial region of the plates 

edge similar changes take place in strain distribution to that of the stress distribution. 

Illustrated by Figure 80, lateral strains show only slight changes over large increases in 

localisation. The most prominent effect being that of the models with a larger surface 

area exposed to forced convection, i.e. 27mm and 53mm. Here a larger mid-section 

strain and lower far edge strain is shown, undoubtedly a result of a higher level of 

bending. This can be explained where small shocked regions cause the bending effect 

to be significantly reduced as only a small surface area is attempting to contract. This 

in turn will generate a much smaller and localised bending moment at the far edge.

Again this is supported by Figure 81. At small exposed surface areas normal 

strain distribution possesses much the same form as that of the lateral strain. This is

85



due to the form of the normal thermal distribution being very similar to the lateral 

thermal distribution. With increasing levels of shocked surface area the effect of 

bending moment on strain becomes more prominent; less thermal gradient exists 

normal to the symmetry plane and strains fall in the near shocked region, only to be 

increased by the rising bending moment at the far edge.

6.3.3 -  Elastic-Plastic Stress Analysis

Elastic analyses produce very high stresses at the shocked surface. Since such 

stresses are greatly beyond any yield stress of the material it is appropriate to quantify 

plasticity effects on the stress distribution. It is quickly apparent that for an absolute 

strain, cflT, thermal strains are already above a strain corresponding to yield stress at 

temperatures over 100°C approximately, therefore the elastic strain region will be 

bypassed entirely. A more appropriate thermal gradient analysis using a[T-TJ is 

performed with interesting results.

6.3.3.1 -FULL-SINGLE-EDGE SHOCK

Using the FD&T method to perform an elastic stress analysis, it is found that the 

solutions for thermal strain calculated by both oT  and o\T-T{\ are identical. This is a 

result of the net effect consideration of eqn. 36, from three separate stress terms, where 

the relative difference between these terms is used to determine the stress distribution. 

Since oT  and o[T-Ti] describe the thermal distribution from a constant reference 

temperature the results are consequently equal. This equality is illustrated by Figure 82 

where a cyclic elastic modulus is used. The result of conducting elastic-plastic 

analyses with ctT is also illustrated for a full Neuber’s (EP) stress/strain material 

response and a partial linear-elastic, elastic-plastic (LE-EP) response. Very low 

unlikely stresses are a result. Both methods equate since oT  determines no strains in 

the linear region, and so differences due to linear analyses do not appear.

Using the thermal gradient for determining thermal strains, the same two 

plasticity models, EP and LE-EP, are conducted using the FD&T method and 

compared to FE results. Figure 83 illustrates the first; a full elastic-plastic relationship 

is modelled by Neuber’s equation embedded into the FD&T solution. In comparison to

86



the cyclic modulus elastic analysis the differences are extreme, the tensile and 

compressive regions are reduced in magnitude by 80% and 50% respectively and the 

width of the tensile region is significantly increased by over 30%. The result being a 

very good match between elastic FD&T and FE stress distribution. However when the 

same plasticity model is introduced to a FE model the stress distributions are markedly 

different. This is a result of the inherent biaxiality present in plasticity.

Further to this, a partial LE-EP model was conducted using a pseudo mechanical 

modulus below an equivalent yield strain and the standard Neuber’s relationship above 

the equivalent yield strain. By conducting an elastic analysis at this pseudo mechanical 

modulus, a comparison can be made between the partial LE-EP and the linear-elastic 

model. Figure 84 demonstrates the results. Again a very high reduction in stress is 

gained for the LE-EP model similar to that of the full Neuber’s EP distribution. 

Interestingly, however, the mechanical LE stress distribution illustrates a very close 

correlation to the LE-EP distribution, diverging only around the specified yield stress. 

This is a result of the difference in strain energy over the given thermal strain range 

when using a[T-Ti] as mentioned previously in materials analysis, Chapter 4.

The relative change in spanned area between the elastic and elastic-plastic 

material responses is very similar to that of the relative change in absolute area 

spanned by the resulting thermal shock stress distribution. Table 24 presents an 

analysis of area ratio for the four different material models used for three different 

levels of shock.

Strain energy represents the area beneath a stress-strain (cr-£) material response 

and is calculated from the material model which determines a bulk stress for a given 

maximum thermal strain. The ratio of elastic strain energy by cyclic modulus to 

Neuber’s EP strain energy is given as the cyclic ratio. Similarly the ratio of 

mechanical modulus to LE-EP strain energy is given as the mechanical ratio. For 

comparison this is also done with the absolute spanned areas of the stress distribution 

( ct-jc)  through the symmetry plane. The pseudo-mechanical model for 550-350°C in 5s 

generates thermal strains just below that corresponding to a 0 .2 % proof stress. 

Consequently no plasticity is introduced into the LE-EP model and a spanned area 

ratio of unity is determined. A unity ratio is not determined for the strain energy 

quantity due to the 0 .2 % proof stress introducing a small error in the linear-elastic to 

elastic-plastic transition.
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The result is a very good correlation between spanned area of resulting stresses 

and total strain energy for the three levels of shock shown. Illustrating materials with a 

reasonably high level of ductility will require a plastic stress analysis to correctly 

determine near shocked edge stresses.

Finite element analyses using a deformation plasticity model to follow the same 

stress/strain response as that of Neuber’s, produces stresses significantly different 

from that of a one-dimensional thermal strain analysis by the FD&T method. The 

presence of mechanical strains increase the overall stresses induced from thermal 

strains. This effect is increased in the presence of plasticity, where bending stresses 

reduce but normal strains increase. Consequently, accounting for thermo-mechanical 

strains, larger stresses are created in an EP analysis than a similar EP analysis by the 

FD&T method accounting only for thermal strains.

6.3.3.2 -  DOUBLE-EDGE SYMMETRICAL SHOCK

Three major changes occur when a symmetrical thermal shock is generated. All 

are related to the changes in bending moment taking place. Figure 85 shows the 

bending moment displacements of the neutral axis determined by the finite element 

model with varying degrees of localisation. Also included are the theoretical bending 

displacements for a simple beam with a bending moment at either end. As proposed in 

previous sections, bending is reduced both by the introduction of plasticity and 

localisation of the shocked region. As expected when symmetrical conditions arise, no 

bending occurs for full-edge or localised shock.

Increasing localisation creates further differences between the bending observed 

and the classical solution. This is due to the non-uniformity of bending across the 

model when shocks are localised. Full-edge shock performs as an end moment, 

however, with localisation of shock, loading becomes more similar to a distributed 

load in that region.

Analysis of lateral strain renders very little difference than that expected when 

compared to single-edge as illustrated by Figure 86. However, as proposed at the end 

of section 6.3.2.2, the normal strain shown by Figure 87, behaves similarly to that of 

single-edge shock until large shocked areas are used. As the shocked surface area 

increases the normal strains do in fact level out to a constant, due to the absence of 

bending.
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Finally, stress analyses show an elevated level of stress for double-edge shock 

over single edge illustrated by Figure 88. In elastic analyses this increase is even 

greater, and is considered to be a consequence of the levelling out of normal strains, 

where single-edge strains are significantly lower in the near edge region. Lateral 

stresses are also increased more significantly than normal stresses shown by Figure 89. 

Since lateral compressive stresses are caused by localised contraction of near edge 

material, it is inevitable that double-edge shock will generate a larger compressive 

region as opposing regions contract against each other.

This could create an exaggeration of the Tomkins shear decohesion model of 

crack propagation. With increased tensile stress at near shocked regions, the length of 

the tensile region is increased, allowing cracks to propagate further. With additional 

compressive lateral stress the effect on crack tip blunting would be marked. As a 

result, the possibility of crack tip spalling to regions of lower normal tensile stress 

could occur, pushing the crack away from the compressive region. The further 

possibility arises that opposite edge cracks, generating their own small tensile stress 

fields ahead of the crack tip, could spread around the compressive zone and merge to 

cause catastrophic failure. Taking place under large widths will likely suppress any 

such activity. However, with small widths, such as those of the thickness of pressure 

vessels, could be vulnerable to a spalling event and further in-depth study on the 

likelihood of crack tip spalling under symmetrical shock must be recommended.
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6.4 -  Fracture Analysis Results

6.4.1 -  Isothermal Cruciform Analysis

6.4.1.1 -  LINEAR-ELASTIC STRESS INTENSITY FACTOR

A mode I stress intensity range describing the cruciform specimen crack tip 

loading behaviour is taken from Brown and Miller [29] and given below in eqn. 86,

where A c t  is the applied stress range normal to the crack and W is the gauge 

length of the central square of the cruciform. As is the nature of the stress intensity, it 

is immediately apparent that no effect of biaxiality is accounted for; specifically the 

non-singular term for T-Stress governing biaxiality plays no part of the stress 

intensity. This is illustrated by the dashed lines of Figure 90, where a set of crack 

lengths for 4 separate loading conditions, quoted from crack growth data made 

available from a previous study [124], are used to determined the respective AKi. The 

4 loading conditions were applied in-phase in equibiaxial and unibiaxial manners at 

stress ranges of 118.8MPa and 200MPa with an R-ratio of 0.1. Unibiaxial loading 

consisted of oscillating the normal load whilst holding the lateral load at a constant 

stress equal to the mean stress of the normal load.

A set of finite element models were also conducted with AKi values determined 

from the closed contour integral J  by determining Ki values for the peaks of a 

sinusoidal load form and determined through eqn. 87.

eqn. 87

These are indicated by the single point values of Figure 90 correlating almost 

exactly with theoretical values. As is expected there is no change in result when T- 

Stress is changed from equibiaxial to unibiaxial loading.

' (**}  1 cos —I {wj
eqn. 86
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The FE models of Figure 90 were conducted at a uniform thickness equal to that 

of the central square plate. However, when the thickness is modelled in a plane solid 

section, the effect on the stress intensity is marked.

Crack growth data was available for cruciform specimens with a central plate 

thickness of 4mm and a loading fin thickness of 15mm. Figure 91 illustrates the effect. 

Three sets of data are determined; theoretical of eqn. 86, finite element models by 

contour integral and finite element by crack tip opening displacement.

The two methods conducted by the finite element models are in excellent 

agreement, however, they are far removed from the theoretical. This is due to the 

theoretical model not accounting for the change in stress encountered at the loading 

fins and plate intersection. A stress is applied at the loading fins and is increased by 

the reduction in area at the intersection of the loading fins and plate. Since it is more 

appropriate to describe the applied stress on a crack tip as that undisturbed by any 

discontinuity, the stress at the plate edges must be used, and not the stress at the 

loading fins.

Therefore, the applied stress range, Aa, must be calculated from the applied load 

and plate section area or by applying a geometry factor trf tB to eqn. 86, where tp and 

ts are the loading fin thickness and the central square plate thickness respectively.

m
/  _  \

7TCL
cos

eqn. 88

Illustrated in Figure 92, the modified theory falls in line with the finite element 

models almost exactly.

6.4.1-2 -  EFFECTIVE STRESS INTENSITY

To determine the effect of plasticity on the FE fracture models, elastic-plastic 

material properties were introduced and a AKi determined from eqn. 87. Although 

such stress intensity is theoretically invalid, it does illustrate predictability almost as 

rigorous as the linear-elastic results. Figure 93 shows the effective AKi to be slightly 

less than the linear-elastic. This is due to a decrease in strain energy around the crack 

tip resulting in lower contour integrals. Stress intensity factors are presented for all 

four loading conditions for both linear-elastic (LE) and elastic-plastic (EP) properties
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with uniform thickness through the model set at the plate thickness (UT). Results for 

elastic-plastic models at longer crack lengths and a stress range of 200MPa were 

unable to be obtained. This was due to convergence difficulties around the crack tip, 

caused by the onset of collapse due to the high ductility of the material. Neither could 

non-uniform thickness models be conducted with elastic-plastic properties for the 

same reasons, though the increase in stress at the plate due to the change in thickness 

was the primary cause.

Curves can be fitted to the effective stress intensity using eqn. 86 and altering 

A ct to A cf indicated on the figure and approximated by eqn. 89 where n is the strain- 

hardening exponent of a Ramberg-Osgood material i.e. 0 < n < 1.

A o ' ~ nAcr
eqn. 89

To create a complete model with elastic-plastic properties and non-uniform 

thickness a three-dimensional model would be required with radii included at the 

loading fin to plate intersection. Such a model would require a further programme of 

study to evaluate the effects of the intersection radii. These would likely control the 

models capability to converge creating similar problems already encountered in the 

two dimensional model. As a result such a model was considered to be outside the 

time scale of this work.

6.4.1.3 -  SUMMARY OF CRACK GROWTH RATES

Crack length to number of cycles data for isothermal cruciform tests from a 

previouds study is analysed by using ASTM E647 crack growth analysis model. Crack 

growth rates have been calculated and plotted with stress intensity factors from the 

linear-elastic material and elastic-plastic material models. Figure 94 shows the 

correlation of crack growth rates to the stress intensity range determined by a linear- 

elastic uniform thickness analysis for the four loading conditions described above. 

Stress ranges of 118MPa show a good distribution where equibiaxial loading has 

significantly reduced crack growth rates, however, at higher stress ranges of 200MPa 

the data is less coherent. Unibiaxial data at a stress range of 200MPa shows a 

distinctive line higher and steeper than that of lower loads. For equibiaxial loading at 

200MPa, crack growth rates experience more scatter but show a definite increase in 

crack growth, approximately equal to the decrease experienced at the lower 118MPa
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stress range. At higher stress intensity ranges, a sudden drop occurs making crack 

growth rates approximately equal to those of the unibiaxial data.

Figure 95 shows the correlation of crack growth rates to the stress intensity 

range determined by elastic-plastic uniform thickness models. The same correlation is 

found as in Figure 94 with a slight shift to the left, resulting from elastic-plastic 

material properties. Figure 96 shows a comparison of the two. With the inclusion of 

elastic-plastic material properties, it can be seen that the crack growth rates are 

significantly underestimated when using linear-elastic material properties. Since the 

crack growths rates are calculated directly from a-N data, a typical reduction in stress 

intensity of around 30% from elastic-plastic material can result in crack growth rates 

70% higher than that described by linear-elastic material models.

6.4.2 -  Theoretical Plastic Zones for Linear-Elastic Materials

6.4.2.1 -  COMPONENT STRESSES

The theoretical plastic zone parameter derived in a previous section and 

reiterated below in eqn. 90 for convenience is here evaluated as a viable parameter.

^ rPvML a

Ar *P vM H

eqn. 90

In order for the parameter to be viable, two conditions must be satisfied;

• Must describe effect of normal load magnitude independent of Gf.
• Shape ratio must be constant and unique over a for full range of T-stress.

Stress intensity factors from the above finite element isothermal models have 

been used in conjunction with the four different loading scenarios described above. 

Theoretical plastic zones from component stress functions (normal, N, and lateral, L, 

to the crack plane) are illustrated at several crack lengths in Figure 97. Specifically the 

normal plastic zone sizes are equal for equibiaxial and unibiaxial loading. This 

satisfies the first of the two viability conditions for the plastic zone function. 

Equibiaxial lateral plastic zones are not illustrated in the figure since they are by 

definition equal to the equibiaxial normal plastic zones. Figure 98 shows the ratio of 

change in these values as would be used under the von Mises shape ratio. The ratio of 

the two component stresses at equibiaxial loading shows to be, predictably, unity.
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The main feature to be taken from this figure is that as predicted all crack 

lengths conducted show a constant and unique ratio for different biaxial loading. It is 

therefore likely that a von Mises plastic zone shape ratio would show the same 

characteristic.

6A.2.2 -  VON MISES STRESS

Figure 99 shows the length (L) and height (H) of the theoretical linear-elastic 

von Mises plastic zone accounting for o t. A primarily linear relationship is found in 

relation to increasing crack length. As loads, however, are increased the relationship 

develops a slight parabola. There is also present a shift in ordering of the length and 

height of von Mises plastic zone. Whilst the size of the stress range always holds 

priority, the length of the plastic zone is favoured by equibiaxial loading and the 

height is favoured by unibiaxial loading. This means that o t is directly affecting the 

shape of the von Mises plastic zone with loading magnitude maintained as a separate 

effect on size.

The shape ratio for the change in a von Mises plastic zone is plotted in Figure 

100. As predicted, the ratio is constant and unique for separate biaxial conditions. A 

value of unity is not present for equibiaxial loading since the von Mises plastic zone is 

not circular, hence the length and height are not equal. Coupled with Figure 99 a 

complete description of the von Mises plastic zone, satisfying the two required 

conditions, is presented in Figure 101. A very similar plot is obtained to that of Figure 

97 and Figure 99. However, in this case the four loading conditions are identified 

entirely by a single parameter. Loading magnitude is favoured such that high loads 

create proportionally higher parameter values with equibiaxial loading than unibiaxial. 

This is as required since equibiaxial loading creates greatest effect on the plastic zone.

By way of demonstrating the shape ratio’s capability to uniquely describe the 

applied biaxiality, Figure 102 is presented. It shows the relationship of shape ratio to 

the ratio of o t  to yield stress for all values of o t  within yield stress. Positive values 

indicate a lateral stress greater than that of the normal load and visa-versa for negative 

values. Several limiting points are illustrated here. Firstly, a kink occurs at around 

0.75oyieid• This is due to oscillation in the change of the plastic zone shape. As the 

shape changes with increasing ot, ‘tail fins' develop behind the crack tip, these are

94



larger in height than the zone ahead of the crack tip. Since the parameter is describing 

only mode I non-inclined cracks, only the maximum height ahead of the crack tip is 

taken. Under mixed mode loading the plastic zone becomes much more complex and 

would require an account of these tail fins and their orientation to the crack plane. 

Secondly, the relationship shows that for <jt equal to ±yield an infinite solution is 

obtained. This would require, however, that the solution be passed through an 

unverifiable region. The curve begins and ends at values of Or/cTyieid equal to -0.617 

and +0.893 respectively. Outside this region the quadratic check on the solution fails 

and an appropriate solution can not be found.

6.4.3 -  Finite Element Plastic Zones for Elastic-Plastic Materials

6.4.3.1 -  COMPONENT STRESSES

Using elastic-plastic properties, finite element models for the above scenarios 

have been conducted. Figure 103 and Figure 104 mirror the theoretical linear-elastic 

relationships presented in Figure 97 and Figure 99. However, Figure 103, shows only 

the peak load plastic zone as minimum load plastic zones showed small compressive 

regions in the first element ahead of the crack tip and no coherent shape outside that of 

the element itself. For this reason the minimum component plastic zones were not 

considered. Though a linear relationship exists primarily for lateral plastic zones and 

low loads the relationship becomes distinctly non-linear for normal plastic zones and 

high loads. The size of the plastic zone, however, is also increased significantly to the 

same order as the crack length. This may result in an inadequate description of the 

near tip stress field.

The shape of the plastic zones has also changed. Under equibiaxial loading the 

lateral and normal plastic zones are no longer equal in length, the lateral is smaller as 

if in the presence of negative (Jj. Lateral plastic zones have also lost the fish tail form 

behind the crack tip. These effects are all due to the phenomenon of the plastic mixity 

parameter, produced in the non-linear elastic theory of the stress intensity factor. First 

calculated by Shih in 1974 plastic zones for various strain-hardening exponents, n, 

were shown. As n is increased the shape of the plastic zone protrudes forward, 

increasing in length and reducing in height. A consequence of this is that the shape
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ratio of the proposed plastic zone parameter may not remain constant or form a unique 

description of Of.

It must also be noted at this point that the normal plastic zone shape may no 

longer be independent of Or. This is used in the first viability condition of section 

6.4.2.1. Illustrated in Figure 105 and Figure 106 theoretical component plastic zones 

are compared with the finite element plastic zones using elastic-plastic material 

properties for equibiaxial and unibiaxial loading respectively. It can be seen that the 

normal plastic zone for equibiaxial loading is slightly longer and taller than that of the 

unibiaxial version. Since these changes are relatively small compared to the changes in 

lateral plastic zone size the effect is confined to plasticity. As lateral strains will 

partially restrain normal strains through Poisson’s ratio, it is likely disproportionate 

increases in plastic strain are generated for increases in lateral load. Whereas for 

linear-elasticity, changes in elastic strain are consistently proportionate to changes in 

load, therefore plastic zones will not be adversely effected.

The ratio of normal to lateral component plastic zone sizes at maximum load is 

given in Figure 107. When compared to Figure 98 the results are not promising. 

Though for three out of the four loading scenarios an approximate constant is still 

evident, the equibiaxial 200MPa load possesses an extreme downward trend. A further 

point is the significant inequality of the two equibiaxial ratios. This infers that the von 

Mises plastic zone shape ratio may no longer uniquely describe the biaxial state.

6.4.3.2 -  VON MISES STRESS

Figure 108 shows the shape ratio for the full change in von Mises plastic zone. 

In contrast to Figure 107 the results are quite promising. The ratio is maintained at a 

good approximate constant and shows the same order as demonstrated in the 

theoretical linear-elastic material in Figure 100. Though the equibiaxial loading states 

do not show equality in shape ratio as in linear-elastic theory, it must be resigned that 

elastic-plastic material will create this effect due to the plastic mixity parameter 

mentioned above. As a consequence it is also likely that no uniqueness in description 

will be lost to this effect, since the mixity parameter is due to the material only and not 

to differences in applied loads.

Using the normal component plastic zone at peak load only, Figure 109 shows 

the von Mises plastic zone parameter accounting for Oj. The relationship is very much
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like that of the linear-elastic relationship in Figure 101 but with order of magnitude 

increases, and increased non-linearity at high loads. The relationship also holds very 

well, describing the four separate loading conditions as uniquely as that of the linear- 

elastic description.

Since the change in plastic zone size is an integral part of the loading 

description, the linear-elastic value of the normal component plastic zone was included 

to determine its approximate consequence. Figure 110 shows the complete von Mises 

plastic zone parameter accounting for Ot with the linear-elastic minimum normal 

plastic zone. Little difference actually takes place, only a slight reduction in magnitude 

occurs, with the relationship becoming more linear than non-linear. Since a change 

nonetheless occurs, however, it is prudent to perform the same check on all profiles, 

especially those with greater non-linearity such as those for thermal shock.

6.4.4 -  Thermal Shock Analysis

6.4.4.1 -  EFFECTIVE STRESS INTENSITY FACTOR

Fracture analyses of various thermal shock scenarios have been conducted for 

both single-edge and double-edge shocks, with and without a mean applied load. 

Using elastic-plastic material properties and eqn. 87, effective stress intensity factors 

have been calculated. As previously discussed the maximum load occurs very much at 

the end of these applied shocks, and it is this end-of-shock stress intensity which is 

plotted in Figure 111. The general trend is that of the expected rise and fall in the 

stress intensity due to the crack tip encroaching on the compressive field. Application 

of a mean load of similar size to that of the maximum compressive stress can, 

however, result in continued rise of the stress intensity [124]. The shocks presented 

here are particularly severe, resulting in a considerably high compressive field. The 

effect of shock severity on the magnitude of this compressive stress is very similar to 

that of the tensile stress found at the surface, consequently for less severe shocks the 

mean load required to override the fall in stress intensity will be proportionately 

smaller.

This can be seen in the double-edge shock data with a mean load of 75MPa. The 

magnitude of the compressive region is in the region of 75-100MPa making the mean
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load just under that required. Consequently the stress intensity levels off, peaking at 

around twice the crack length of a zero mean load and slowly falling off.

Stress intensity ranges, however, are not effected in this way as illustrated in 

Figure 112 where all shocks fall off. This is a result of residual strains collecting ahead 

of the crack tip. As crack lengths increase higher plastic strains are generated, leading 

to higher residual strains ahead of the crack tip. Consequently, the minimum stress 

intensity changes at a lesser rate than that of the maximum, producing larger decreases 

in stress intensity range at higher crack lengths. This is a vital factor in the correlation 

of crack growth rates for thermal shock. The maximum stress intensity oscillates over 

a range of around lOMPa.m'372 for individual shocks, and around 30MPa.m'3/2 for the 

range of shock levels shown, whilst the stress intensity range oscillates at only half 

this. When compared with stress intensity ranges for isothermal cruciform models this 

is a much higher range at early crack lengths, but isolated to a distinct mid range band. 

Consequently, correlation to crack growth data generates very steep gradients over a 

considerable range of crack growth rates. The plastic zone parameter proves no 

exception to this.

6.4.4.2 -  THERMAL SHOCK VON MISES PLASTIC ZONE WITH T-STRESS

The plastic zone parameter for the above thermal shocks is illustrated in Figure 

113 and Figure 114. Figure 113 shows the parameter using only the normal plastic 

zone size at peak load. Very similar profiles to those of the end-of-shock stress 

intensity factor are obtained indicating the plastic zone parameter is appropriately 

defined. Again mean load models show a distinctive rise in magnitude and a reduction 

in the tendency for the parameter to fall at longer crack lengths. Applying the 

minimum size of the linear-elastic normal plastic zone, calculated from the minimum 

effective stress intensity factor, the plastic zone parameter should experience the same 

effect as the stress intensity range, i.e. the continued rise due to a mean load should 

disappear. This is indeed the case as illustrated in Figure 114.

The range over which the plastic zone parameter exists for these thermal shocks 

is proportionally greater than that of the stress intensity factor and range. However, the 

range is much reduced when compared to the range for isothermal cruciform values 

illustrated in Figure 115. Consequently, correlation to crack growth rates will likely 

create equally steep gradients to those of a stress intensity range. When compared to
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isothermal cruciform values it is immediately obvious that the plastic zone parameter 

is far more sensitive to changes in loading scenario. Here the plastic zone parameter 

shows under thermal shock conditions to be highly suppressed in relation to the high 

values of the cruciform results. This does, however, present some intriguing results; at 

short crack lengths where loading on the crack tip is highest the thermal shock plastic 

zone parameter follows the high loading cruciform scenarios. As crack lengths 

increase and loading around the crack tip falls, the thermal shock plastic zone 

parameter moves away toward the low loaded cruciform results. This would indicate 

the plastic zone parameter is a better correlating parameter for thermal shock and 

isothermal biaxial loading than the stress intensity range.

Figure 114 shows some overlapping of results around the peak values and some 

uncharacteristically high scatter for numerical solutions. This is due to the method of 

plastic zone data extraction from the models. Though selection of these magnitudes is 

quite accurate, some error is inevitable due to the plastic zone post-processing 

programme calculating co-ordinates of integration points without extrapolating data to 

the nodes. Consequently, any part of the plastic zone passing close to the edge of an 

element, i.e. outside the area spanned by the integration points, are missed. This results 

in further approximation which, whilst only minor, accumulates to relatively large 

scatter over the six values required for the full parameter’s description. The fitted 

lines, however, do demonstrate a good representation to the response of the parameter.

6.4.5 -  Correlation of Isothermal Biaxial & Thermal Shock 

Crack Growth Rates

6.4.5.1 -  PLASTIC ZONE PARAMETER

Figure 116 to Figure 118 show the final correlation of thermal shock crack 

growth rates to isothermal biaxial crack growth rates using the von Mises plastic zone 

parameter. Figure 116 shows the isothermal crack growth rates, and demonstrates the 

ability of the plastic zone to be related to isothermal crack growth rates. The parameter 

is, however, less tolerant of data scatter. Whilst the 118MPa stress range data still 

holds a good relationship, the quality of 200MPa data has been reduced further. Whilst 

the general trend is certainly still present increased scatter has made identification of
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the distribution difficult. Of particular interest is the increased step reduction in crack 

growth rates of the equibiaxial 200MPa stress range. Under the stress intensity range 

regime of Figure 94 and Figure 95 this step reduction was such that crack growth rates 

were still slightly higher than the unibiaxial. However, with the plastic zone 

parameter, they are now slightly lower.

Introduction of thermal shock to isothermal crack growth rates is made in Figure 

117. Here the von Mises plastic zone parameter is used with only the maximum 

normal plastic zone of Figure 113. The importance of a complete description of the 

plastic zone state is immediately obvious. The single edge shock with a mean of 

120MPa shows reducing crack growth rates with increasing magnitude of the plastic 

zone parameter. Introduction of the minimum normal plastic zone produces Figure 118 

where the distribution is changed dramatically.

Problematic forms, however, still exist in the distribution. At high crack growth 

rates in both single-edge loading scenarios the plastic zone parameter is seen to 

reverse in magnitude. These reversing crack growth rates take place at short crack 

lengths when the severity of thermal shock loading is greatest. Although the plastic 

zone is a direct function of the stress intensity the plastic zone radius responds to 

increases in crack length at a slower rate than the stress intensity. Consequently, under 

the conditions of high crack growth rates from high stressing on small cracks the 

plastic zone is restrained more by the shortness of the crack than increased by the 

magnitude of the loading. As a result crack growth data will encounter reversing at 

small cracks with high growth rates. This would not be expected in the isothermal 

biaxial loading data since no oscillation of the load takes place over the given range of 

crack lengths.

6.4.5.2 -  STRESS INTENSITY FACTOR

Returning to the stress intensity factor, results become far more legible. Still 

applied over a narrow range in comparison to the isothermal data the results do 

demonstrate an excellent correlation to the isothermal data.

Figure 119 shows the elastic-plastic crack growth rates in relation to the linear- 

elastic isothermal biaxial data. Though the double-edge mean load data still fall well 

outside the region of the majority of data, much of the growth rates for thermal shock 

fall within the low load biaxial region. If the effects of plasticity are introduced to the
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isothermal growth rates the correlation is improved further. Shown in Figure 120 the 

majority of thermal shock growth rates now correlate excellently within the isothermal 

growth rates, specifically, between the equibiaxial and unibiaxial at a stress range of 

200MPa.
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6.5 -  Quantification of Thermal Loading

6.5.1 -  h  Determination

The FD&T method described previously has been used to determine the effect of 

start, end and ambient temperatures and time period on h  and (JMAX. A series of one 

dimensional finite difference temperature dependent thermal models were conducted 

and are listed in Table 25.

The determination for a function of h  is found from the normalised thermal 

gradient function, eqn. 79. When these temperatures are normalised in this fashion an 

excellent power law relationship is found between this explicit thermal cycle 

definition and their required h  value. This is illustrated in Figure 121.

The effect of time period is shown by a vertical shift of the results inversely 

proportional to the change in time period, i.e., the longer the time period the lower the 

required h  value. Figure 121 also demonstrates the increased difficulty of forced 

convection cooling to ambient conditions as predicted previously by eqn. 80. The 

power law shows good correlation for all shocks with a T f a c to r  less than around 0.75, 

however, due to lack of a zero boundary condition for no shock at 7 > a c  =  1  the 

approximation should be avoided for thermal cycles with small AT or T f a c to r  values 

greater than 0.8. This can easily be overcome by replacing eqn. 79 with eqn. 91, which 

would introduce the condition of T f a c to r  = 7 at T en d  =  7 a .

T1  F A C TO R
T  - T^ 1  E N D  1 A

T  - T1  IN IT IA L  1  A

eqn. 91

However, further terms in the final description are required in order to make 

convergence. This leads to bulky handling of constants not conducive to a complete 

solution. It is also clear from Figure 121 that the 3, 4 and 5 seconds time periods are 

very similar in result. Though having a marked effect on stress as will be illustrated in 

the following section, little change is found over the three time periods. So much so, 

that it is only relevant to illustrate the bounds of the conducted models, 3 and 5 second 

time periods. This is reflected in the final analysis shown by eqn. 92 below, describing 

the relationship of h  to the normalised thermal gradient, T factor-
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h =
5885

■yjtp

f  T _ T \~hm ‘p 
1  E N D  *  A

T ~ TV IN IT IA L  1  A  J
- 0.86

eqn. 92

The time period must occur in both the coefficient and exponent, however, its 

presence places a dual effect on the function. From within the exponent, time period 

strongly holds the exponents’ magnitude to low values, however, as time period 

increases the exponent increases and consequently the magnitude of h . This is in 

contradiction to that expected, increasing time periods should required a lower heat 

flux for a given Tfactor- The effect of this apparent discrepancy is, however, offset by 

the time period within the coefficient. Here, an inverse square law is found 

demonstrating the non-linear rise of h  with reducing time period. Not only does the 

model predict infinite heat flux for an instant reduction in temperature, but also 

predicts the rise will be significantly non-linear.

Once the h  value is determined according to the explicit description of the 

thermal load, it can be used to obtain the characterising maximum stress. Results are 

described in the following section.

6.5.2 -  Maximum Elastic Stress

Corresponding stresses were calculated using thermomechanical properties of 

AISI316 stainless steel specified at the maximum temperature of the shock.

Though a realistic stress analysis of thermal shock is more complex, the FD&T 

thermoelastic theory is adequate to provide some indication of the loading severity of 

a thermal shock cycle. Its relative simplicity is also convenient for evaluation of the 

large number of models conducted.

When maximum stress is plotted against the h  value, presented in Figure 122, a 

very distinctive non-linear relationship is found supporting the non-linear behaviour of 

the h  value to Tfactor- Each point on the plot represents the shocked edge maximum 

stress of a single model and illustrates the three distinctive factors of thermal loading; 

thermal gradient, AT, time period, tp, and proximity to ambient conditions, Te n d -T a - 

Each line represents a specific initial temperature and is separated into groups of AT 

(the greater AT the higher the stress). Each group consists of the three different time 

periods, 3 ,4  and 5s.
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It can easily be seen that the effect of time period even for small changes can be 

large for small shocks whilst for large shocks it can become negligible. It is important 

to note at this point that although initial temperature elastic modulus values were used, 

there was only 5-10% change in modulus over these temperatures. Consequently the 

effect of initial temperature is clearly as important as the thermal gradient.

The effect of proximity to ambient conditions on a thermal cycle can be more 

clearly seen in Table 25. With Ta fixed, for any given tp and AT the resulting 

maximum stress can be very similar (an example is highlighted in bold within the 

table). However, the required h value to generate the thermal cycle can be two or three 

times greater for the lower T in it ia l • This is due to the increased proximity of T e n d  to 

ambient conditions. In natural cooling the rate of cooling is drastically reduced when 

approaching ambient conditions, consequently greater effort is required when forcing 

temperatures to near ambient conditions.

This has costly implications in thermal fatigue rig design. To induce high 

thermal gradients rapidly, expensive thermal apparatus is required. The economical 

advantages of using relatively low temperatures is offset by the increased forced 

convection required to gain large thermal gradients with end temperatures close to 

ambient conditions.

The overall relationship shown in Figure 122 is very similar to that of a 

Ramberg-Osgood style stress/strain response; however, such a relationship requires 

iteration procedures to solve. A good approximation can be determined by a simple 

log function. The entire set of data can be conveniently described by a single function 

given by eqn. 93 where K  is a constant and E a  is the product of the linear-elastic 

modulus and the thermal expansion coefficient at the maximum temperature, or initial 

conditions of thermal downshock.

^MAX = |̂ /M77AL 1.  ̂1 °§(^)— E&\ K  = E123E+6
eqn. 93

Thus, it has now become possible to quantify the stress state of a component 

subject to thermal shock loading by an explicit and practical description of the thermal 

downshock loading present.
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7 -  Discussion

7.1 -  Thermal Analysis

7.1.1 -  Thermal Distribution

Three methods have been used to determine a thermal shock temperature 

distribution: theoretical, finite difference and finite element. Only edge cooling has 

been modelled, neglecting the global cooling in experimental data provided by Hasan

[124], caused by turbulence around the specimen from the air jets. This was not 

considered as a quantified event and an idealised thermal shock scenario was 

maintained in the models. This allowed a welcome simplicity to the models whilst also 

providing a pessimistic evaluation of thermal shock.

Both fixed and temperature dependant thermal properties have been used in the 

finite approximations and compared to test results, as illustrated by Figures 49 through 

53. Fluctuations in fixed and temperature dependant models were small, due to the 

relatively small changes in thermal properties, i.e. specific heat, density and thermal 

conductivity. Consequently, their relative difference to experimental data was small.

A good approximation to the experimental data was obtained at near shocked 

edge regions whilst the global cooling effect reduced mid-region and opposite-edge 

region temperatures. For the experimental set-up this would reduce the overall thermal 

gradient and so reduces stresses. Under single edge loading, however, the reduction is 

not great and the model stresses show a good comparison to those determined by the 

experimental thermal distribution. This is a result of the global cooling encountered in 

the experimental study resulting in an end of cycle temperature at the mid-region of 

the specimen not far removed from the idealised model.

Very little difference is found in the T f a c t o r ,  as described in eqn. 79, for the 

experimental and idealised model. For the 650-310°C in 5s thermal shock the T f a c t o r  

from eqn. 79 is 0.461 for the model and approximately 0.475 for the experimental 

results, see Figure 49 where T in it ia l  is taken as the mid-region temperature at the end 

of the time period. This represents an increase of T f a c t o r  and hence a loss of loading 

severity of only 3%. This is reflected in the corresponding stresses, illustrated in 

Figure 123. For the most extreme shock conducted, 625-225°C in 3s, stresses for both
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experimental and thermal distributions show little difference for a single-edge shock 

scenario. Consequently the single edge models can be used in relation with crack 

growth models taken from the previous experimental study to demonstrate a 

correlation to isothermal models.

7.1.2 -  Quantification of Thermal Distribution

The attempt to provide an explicit definition of the thermal shock loading 

severity by the explicit parameters of the thermal gradient, AT, and time period, tp 

have been very successful. However, the method of initial cooling rate has been shown 

to be an unrefmable quantity in numeric analyses. Further to this, since the theoretical 

cooling rate is an infinite series summation, deriving an initial gradient function by a 

derivative is arduous at best. This flaw is also reflected in the linear-average cooling 

rate, AT/tp, correlated to the maximum tensile stress in the downshock cycle as shown 

in Figure 124. A fairly coherent but widespread set of data is obtained, with tiers and 

dual points for a given linear average. The tiers describe time period, the smaller the 

time period the higher the stress and the higher the tier the higher the thermal gradient. 

Dual points are a result of the same thermal gradient and time period but with a 

different initial condition, the lower the initial condition the higher the stress. Though 

little difference separates the dual points at low linear-averages, the difference is 

directly proportionate to the increasing linear-average. The consequence, however, is 

that of a very crude description of the thermal shock loading severity. Any explicit 

quantification of thermal loading must account not only for thermal gradient and time 

period, but also for initial conditions or more accurately the proximity of initial 

conditions to ambient conditions. This is quantified by eqn. 94, where A, B and C are 

constants equal to 5885, -1.199 and 3.25E-3 respectively.

h  =

' f t p

E N D

T - T\ 1  IN IT IA L  1  A  J

- 0.86

eqn. 94

The function shows itself to be quite capable of predicting a range of time 

periods over T f a c t o r  values between 0.2 and 0.8 and is illustrated in Figure 125. Time 

periods of 0.1 to 100 seconds are indicated with the finite difference model solution
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for comparison. Since this data is taken from the finite difference model the solution is 

not exact. As shown previously in Figure 54 the solution is around 5-10% more 

pessimistic than the FE and theoretical solutions, therefore constants A, B and C are 

solution method dependent. Consequently they cannot be related to the likely thermal 

transient parameters of thermal conductivity, density and specific heat and length. 

However, since the FD solution has been verified both by FE and theoretical thermal 

distributions, only the magnitudes of A, B and C will be effected and not the form of 

the equation. Consequently the likely form of the three constants will be related to the 

thermal resistance, R , as

a.b,c = / ( j? ) = / [ A
y k A J

eqn. 95

In this case L is the width of the specimen, k the thermal conductivity and A  the 

heat flow sectional area.

7.1.3 -  Double-Edge Scenario

In the double-edge scenario, the cooling at the mid-region is much greater than 

in a single edge scenario, generating a lower overall thermal gradient and this is 

reflected by reduced stresses in this region, as illustrated by Figure 126. Using Tfactor 

again as a quantification of the difference in thermal distribution, the model 

determines a T factor of 0.473 and experimental is determined at 0.549, see Figure 50. 

This demonstrates the previous supposition of section 6.2.2.2 that heat transfer 

coefficients superimpose at the mid-region of the experimental set-up. This can be 

expressed functionally for single edge and double edge shocks as follows.

hs = h - f(x n) 0 < x < W  single edge

W
ho ~hs 0 < x  < C —  double edge

W
ho ~2hs C — < x<

2
WW - C  —  
2

double edge

Under single edge loading the heat transfer coefficient, hs, is a variable across 

the width surface in the experimental set-up. As the distance through the width 

increases, hs will reduce from h at the shocked edge directly as a function of distance.
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When double edge is introduced, hs will not be greatly changed at the near edge region 

defined as a fraction, C, of the half width W/2, as long as C is small, i.e. in the vicinity 

where thermal gradient approaches zero. In the mid-region, however, it is proposed 

that hs of separate single edge scenarios combine to create a higher value, ho.

This does not, however, increase the severity of the thermal shock loading, but 

rather reduces it. By increasing h to ho in the mid region the temperature of the bulk 

material is reduced. Consequently, near edge thermal gradients are reduced resulting 

in lower overall stresses at any given time.

1 . 2  -  Stress-Strain Analysis

7.2.1 -B iaxiality

Localisation of the thermally shocked region under a quarter of full-length 

exposure creates significant biaxiality. This is an effect which to date has only been 

addressed by Bass et al [77] for the fracture of surface flaws in RPV’s for PTS. Since 

no mechanical loads are applied in generation of thermal shock stresses, and 

component stresses are both tensile and compressive, it is difficult to quantify the 

biaxiality. At positions where stress crosses from tensile to compressive the biaxiality 

defined as a ratio of lateral stress to normal stress approaches infinity. This emphasises 

the importance of an accurate correlation of isothermal mechanical data to thermal 

shock data.

Descriptions of biaxiality have been presented: specifically a linear and 

quadratic relationship. Since these functions are variable across the shocked specimen 

width it is necessary to place bounding limits on the biaxiality by maximum and 

minimum values. A maximum of 1 must be considered for both linear and quadratic 

functions. For thermal downshock, at an optimum localisation of 16mm over a 212 

mm long specimen, a minimum biaxiality for the linear and quadratic functions is 

around 0.35 and 0.65 respectively. Isothermal crack growth rates used here are 

determined from loads of a minimum biaxiality of 0.55 and 0.84 for the linear and 

quadratic functions respectively.

Therefore, the quadratic function produces higher biaxiality ratios than the 

linear. Meaning it is less sensitive to changes in biaxiality, using the linear function
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would create a larger spread of loading cases. Since only the bounding biaxial limits 

are required for any given thermal shock scenario the anomalous singular values 

created by the linear function, see Figure 73, can be ignored. Consequently the linear 

function of biaxiality can be used to determine the lower biaxial limit encountered in 

the given thermal shock scenario. Its larger spread of values, over the quadratic, 

making it less narrow in selection of possible load cases. Once this is determined the 

appropriate magnitude of the isothermal load can be addressed and coupled with the 

biaxiality used to define the isothermal crack growth tests cases bounding the given 

thermal shock scenario.

7.2.2 -  Effect of Plasticity

Introduction of plasticity creates a reduction in the high tensile elastic-stresses at 

the surface in direct relation to oT  passing an effective yield strain. This is expected 

and shown by Hasan, [64]. However, introducing plasticity to eqn. 36 is an over 

simplification in that the equation does not account for normal strains. Whilst not 

affecting a linear-elastic analysis, the plasticity induced by these strains is significant 

enough to increase the general stress distribution, generating a longer tensile region 

ahead of the shocked edge. This is a result of the inherent biaxiality present in 

plasticity. With high biaxiality a one-dimensional analysis such as eqn. 36, is 

inadequate since it is unable to account for plastic incompressibility. Normal strains 

responding to large lateral strains induced by the thermal shock profile are created as 

an integral effect. Therefore, when a one-dimensional analysis is conducted with 

plasticity the complete strain response is not modelled and therefore underestimated. 

When a full Ramberg-Osgood elastic-plastic material model is used the under 

estimation of stress by eqn. 36 is marked both in magnitude and shape, this is 

illustrated in Figure 83.

7.2.3 -  Bending Effects

Increased stresses observed under symmetrical double-edge thermal shock are a 

result of the shock applied to one edge constraining free bending of the opposite edge. 

When a single edge shock takes place the rate of heat flow from the surface carried
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away by the cooling film is such that the bulk material does not cool. When held in 

expansion this bulk material throws the shocked surface, attempting to contract, into 

tension. However, some contraction of the cooled edge does take place and bending 

into the cooled edge occurs. When this is counteracted by an equal thermal shock on 

the opposite edge, contraction forces cancel each other out and bending is restrained. 

This induces further tensile stresses adding to the single-edge stress produced by the 

same thermal distribution. This is demonstrated by normal strains distributing 

horizontally in the absence of bending.

Further to this, global cooling also reduces bending. Air jet cooling tests 

conducted by Hasan [124] cool the mid-region of the specimen as well as the shocked 

surface, albeit at a much lower rate. Nevertheless thermal gradients will be reduced 

and consequently the overall stress distribution will fall. This will reduce the absolute 

difference between tensile stress at either edge, consequently reducing bending. If 

bending is reduced, the amount of crack tip opening is increased and crack tip closure 

at near shocked-edge crack lengths reduces, consequently crack growth rates will 

increase. This is described in more detail in a later section.

The amount of crack tip closure taking place is a summation of the opposite 

effects of tensile stress, just behind the crack tip and compressive loading of the 

cracked face by bending. This summation is in the normal tensile stress region, hence 

any crack ahead of the tensile region is under compressive bending, illustrated by 

Figure 127. However, at the far side of the specimen, stresses again pass into a tensile 

state as the roles of thermal membrane and bending stress are reversed.

The consequence of this to crack closure by oxidation effects, at newly formed 

crack surfaces, is that oxidation will have a rapidly increasing effect on decelerating 

crack growth rates. As the tensile stress rapidly falls at the edge, the force available 

just behind a crack tip falls with it. This assumes the crack tip stays on the same 

symmetrical path until total crack closure or catastrophic failure occurs. In the event of 

crack spalling due to crack tip blunting tensile force can still be maintained around the 

crack tip as it rotates away from the compressive bending zone.
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7.2.4 -  Quantification of Thermal Stress

7.2.4.1 -  FULL EDGE SHOCK

Further to quantifying the thermal distribution it is possible to do the same for 

the thermal stresses. Section 6.5.2 shows in more detail the derivation of eqn. 96.

Once the heat transfer coefficient, h, has been determined from eqn. 94, then 

eqn. 96 can be used to determine the maximum elastic tensile stress at the shocked- 

edge. These stresses are determined by a linear-elastic analysis using the FD&T 

method with a ID thermal distribution. As with the thermal quantification, constants 

can not be fully described in terms of material properties since the analysis uses an 

over estimation of the heat transfer coefficient. It is shown, however, that the 

maximum tensile stresses can be accurately described by a simple dual equation 

method.

To account for localisation, eqn. 96 must be factored by a general shape 

function. However, illustrated in Figure 69, the shape function is not straightforward, 

and requires either a bulky two form equation or the normalised function to be read 

from a chart as illustrated in eqn. 97 and Figure 128.

Although such a method is not as elegant as a single function proposed by eqn. 

96, it has the advantage of dependence only on localisation and specimen width. Since 

the reduction in stress due to localisation also reduces bending, the specimen width 

will have a further effect on this shape function. From simple bending theory the likely 

form will be of a second order width term in the shape function.

eqn. 96

Shape Function = /
UIJ J L

Shape Function = 1 for 0.25 <= ■— < 1

where I = localised height L = specimen height
eqn. 97
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7.3 -  Fracture Analysis

7.3.1 - Plastic Zone Parameter

Though the plastic zone parameter demonstrates the behaviour of a biaxially 

loaded crack tip well, it does not perform well under interrogation of thermal shock 

crack growth rates. A possible explanation to this is illustrated in Figure 129 and 

Figure 130 where the increasing stress intensity factor is compared to the increasing 

plastic zone size under increasing crack length and loading respectively. It is clear that 

both stress intensity and plastic zone methods are very different. The plastic zone 

response to increasing crack length and applied load is always slower than that of the 

stress intensity factor. The primary difference on crack tip loading between isothermal 

biaxiality and thermal shock loading conditions is that under thermal shock loading the 

loads experienced by the crack tip are changing in accordance with the thermal stress 

distribution.

Figure 129 demonstrates a linear response of increasing plastic zone with 

increasing crack length and a non-linear increase in stress intensity. Therefore, if the 

crack length is doubled at a given load, the plastic zone size will double but the stress

intensity will rise by only x-s/2. The opposite is illustrated for changing loads at a 

given crack length by Figure 130. Consequently the plastic zone is less sensitive to 

changing loads than to changing crack lengths. Therefore, under thermal shock with 

changing loads for increasing crack lengths, the plastic zone will be repressed at small 

crack lengths and exaggerated at larger crack lengths. This is a relative effect on 

variable loads with increasing crack lengths and is consequently not observed under 

isothermal biaxial conditions where loads are applied at a constant magnitude.

The end result of this is a uniform response of increasing crack lengths to 

isothermal crack growth rates making them able to be correlated using the plastic zone 

parameter, shown by Figure 116. Thermal shock crack growth rates however, show 

high growth rates from high loads at small crack lengths and low growth rates from 

low loads at longer crack lengths, indicated by Figure 117. As the plastic zone is more 

sensitive to crack length than load, the plastic zone parameter will inevitably be small 

at small crack lengths even though the load is high. Further more, at longer crack 

lengths, the plastic zone parameter will tend towards higher values even under the 

presence of low loads.
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7.3.2 -  Isothermal-Thermal Shock Crack Growth Correlation

Using both plastic zone parameter and stress intensity factor the same behaviour 

of isothermal biaxiality is observed. At low loads, unibiaxial loading produces higher 

crack growth rates than equibiaxial loading. However, at high loads, the opposite is 

observed. This is considered to be a result of crack tip blunting due to increased 

plasticity ahead of the crack tip. At high loads, plastic strain around the crack tip will 

be disproportionately high resulting in greater shear decohesion and so greater 

blunting. Under the influence of a high compressive lateral stress, lateral strains will 

cause greater blunting under equibiaxial loading than unibiaxial, since the lateral 

component is equally high. Further intermediate load tests are required to confirm this 

response.

An excellent correlation of isothermal to thermal shock crack growth rates is 

made by the high isothermal loads of Ag = 200MPa. Crack lengths for both models 

exist in very similar ranges, 3-10mm for isothermal data and l-7mm for thermal shock 

data, making the need for a function relating crack lengths between the two models 

unnecessary.

Using this data, a Paris type equation can be developed to describe the bounding 

isothermal limits on the thermal shock crack growth rates.

da__r
dN

^ A O j  & T-MEAN

A o N
(a k , t

eqn. 98

Presented in eqn. 98, a standard Paris type equation is modified to include the 

additional effect of o r, where C = 4.5x1 O'9, m = 4 and A = 0.589. Using the Of value 

as a description of the biaxial loading conducted at an R-ratio of 0.1 the total 

sinusoidal load form used in the cruciform models can be described. In the case of the 

isothermal cruciform models conducted, the o f value is equal to the total stress range 

of the applied normal load cycle. The value of O t -m e a n  is also zero, this occurs under 

these loading conditions when the lateral dead load is held at the mean of the normal 

load, On. If the lateral load was not held at this value, i.e. in near uniaxial loading, Or 

would no longer oscillate about zero. It is proposed that this would increase crack 

growth rates and is consequently positioned in the function as an increasing addition to 

the stress range.
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A condition of zero Gf is set for equibiaxial loading. Under unibiaxial loading, 

the lateral load otl, equates to the mean of the applied normal load, <7m, consequently 

the value of Ot-mean equates to zero.

Further work is needed to clarify its range of use and relationship of applied 

biaxial loads to thermal shock loading severity. By using the correlation of eqn. 98 

thermal shock crack growth rates can be estimated from isothermal biaxial test data.

The thermal shock and isothermal cruciform models studied show a distinct 

correlation in crack growth rates, as illustrated in Figure 120. The figure demonstrates 

the ability of three different levels of thermal shock, 625-225°C in 3s single-edge and 

612-300°C in 5s double edge, to be bound at its upper and lower limits by the 200MPa 

stress range of the isothermal cruciform models. Also included are the effects of end 

load on both scenarios. In the single edge scenario, Figure 120 still demonstrates a 

good correlation. Interestingly, the rate of crack growth has been reduced into a 

compact region of shallower gradient. Consequently, the effects of mean load on 

thermal shock do not appear to be simply an accelerating factor, rather one of levelling 

to a smaller growth rate. This can be explained by the summation of a constant 

mechanical load, of magnitude similar to the maximum compressive normal stress, to 

the stress by thermal shock. In the mid-region where the compressive stress is 

alleviated by the applied load, crack growth rates will be increased by the reduction in 

compressive stress. However, only small tensile stresses in this region may be present 

and consequently a crack tip parameter such as stress intensity range, does not undergo 

large reductions, instead it continues to slowly increase producing crack growths of a 

narrow band as illustrated in Figure 120.

The double-edge dead load data shows no correlation to the isothermal data. 

Though few data are presented it must still be considered as a possible genuine 

response. As with single edge data, the response of a narrow crack growth rate band 

over a relatively large stress intensity range is present. However, illustrated by Figure 

88, the difference in compressive normal stress is not so different from that of the 

single-edge whilst the tensile stresses are significantly different. With a large applied 

dead load of 120MPa the resulting amplification on the maximum tensile stress is 

50%. This would create a much larger tensile region in the specimen and enlarge the 

tensile load in the mid-region. Consequently, very high crack growth rates would be a
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result. This could therefore mean the data of 612-300°C in 5s is genuinely created 

from the excessive dead load of 120MPa.

It is interesting to note from Figure 88 that the maximum tensile stress at the 

surface for high localisation of the single edge scenario is equal to the stress range of 

the isothermal cruciform tests, 200MPa. The localisation of the thermal shock test data 

is 16mm in a 212mm long specimen. According to Figure 128 this would place the 

maximum elastic-plastic thermal stress in the region of 250MPa, where, with an R- 

ratio of 0.1, the maximum normal load in the isothermal models is 222MPa. For 

double edge at 612-300°C in 5s this would be reduced to 200-250MPa. This shows 

that the maximum tensile stress of elastic-plastic thermal shock to be approximately 

equal to that of the correlating stress range of isothermal data at an R-ratio of 0.1.

Consequently, the preliminary proposal can be made that isothermal biaxial 

crack growth rates can be used under bounding biaxial conditions to correlate the 

thermal shock growth rates when loaded to the maximum normal EP thermal shock 

stress.

Once this value is known the bounding isothermal crack growth rates can be 

calculated from eqn. 98, using Of and the biaxial ratio determined from Figure 73. 

Thermal shock crack growth rates can then be estimated to lie within these lines. Since 

thermal shock stress intensity ranges, or other parameters such as plastic zone, are in a 

narrow band range essentially centred within the isothermal data it is reasonably 

simple to approximate a stress intensity range. This can be done by a straightforward 

fracture model or determined from a Greens function as previously presented by eqn. 

38 [124]. Whichever route is taken, it is a cheaper and less arduous method to estimate 

the effects of thermal shock on crack growth rates.
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8 -  Conclusions

8.1 - Thermal Analysis

A comparison is made of theoretical single-edge and double-edge shock thermal 

distributions to experimental results of a previous study [124]. Both theoretical and 

numerical solutions are determined, with numerical solutions consisting of both finite 

difference and finite element analyses at fixed and temperature dependant thermal 

properties for A ISI316.

It is found that the change in thermal distribution due to temperature dependence 

is only slight. This is a result of only marginal changes in thermal properties over the 

large temperature ranges used. Comparison between numerical and theoretical thermal 

distributions is excellent, as should be the case, since both solutions are based on the 

same first principles of conduction and convection.

Both solutions are ideal in that comparison to air jet convection tests, they do not 

account for the diverging stream of turbulent air on either side of the specimen. In near 

shocked edge regions, approximately one third of the specimen width, numerical and 

theoretical models compare very well to the air jet experimental data. However, in mid 

and opposite-edge regions, models show a constant temperature of initial conditions. 

This does not compare well to the experimental data, which shows a drop of up to 5% 

of initial conditions. This is marked even further under double-edge shock where the 

superposition of heat transfer coefficients generates higher levels of cooling than 

single-edge in the experimental data, resulting in up to a 15% drop in mid-region 

temperatures from initial conditions. This is demonstrated in stress analyses to have 

little significant difference.

It is also demonstrated that a wide range of heat transfer coefficients can be 

estimated to within 3% from the explicitly defining characteristics of thermal shock 

for AISI 316 in air; initial conditions, shocked surface end temperature, ambient 

temperature and time period. Made in relation to a thermal gradient factor, Tfactor, the 

relationship holds for a wide variety of thermal gradients covering factors of 0.15 to 

0 .8 .
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The effect of localisation on a 2D thermal distribution model are shown to be 

essentially non existent at the symmetry plane to that of a ID thermal distribution 

model.

8.2 -  Stress-Strain Analysis

The effects of lower mid-range temperatures, due to diverging airflow under 

experimental conditions, are shown to be negligible on single edge stresses. However, 

under double-edge shock the effects begin to be more pronounce. This is due simply to 

the greater reduction in temperature in these regions from superposition of heat 

transfer coefficients. Therefore, stresses could be reduced in single-edge shocks over 

longer time periods, where the thermal gradient has time to conduct further into the 

mid region. Consequently, at longer time periods, models will require to account for 

the effects of turbulent airflow other than that at the shocked edge. For the models 

presented here, however, the effect is negligible.

Localisation of the thermally shocked region has two significant effects. The 

normal tensile stress at the symmetry plane is found to decrease in the region of 50%- 

60%. The introduction of biaxiality also occurs due to the generation of a compressive 

lateral stress. A linear biaxial function is felt best to describe this level of biaxiality. 

The quadratic function, proposed to avoid divide by zero events, compresses the range 

of biaxiality to approximately half that of the linear function making it less sensitive to 

changes in biaxiality. The biaxial range of the thermal shock models is shown to be

0.35 to 1, with 0.35 representing the position of maximum compressive lateral stress. 

This effect however, appears to be short lived, once the shocked region is greater than 

approximately 25% of the total surface, normal tensile stresses are maximised. The 

experimental shock tests are conducted at a localisation of approximately 10%, 

meaning stresses are lower than a ID thermal analysis would suggest. This also 

coincides with a maximum compressive lateral stress state.

Under double-edge shock, stresses are demonstrated both by the finite element 

method and by the FD&T method to be higher than those of single-edge stresses. This 

is a result of each shocked edge restraining compressive bending of the opposite edge. 

As a result the single edge compressive bending stress is thrown into tension 

superimposing itself on the tensile stress caused by thermal shock at that surface.
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Reduced crack tip closure is a likely consequence of this restrained bending and hence 

higher crack growth rates result.

Quantification of maximum normal thermal stress is described by a simple log 

function of heat transfer coefficient and elastic thermomechanical properties E  and a. 

Used in conjunction with the estimation of heat transfer coefficient a very quick and 

accurate estimation of maximum normal elastic stress can be made for single-edge 

shock. Since the increase in stress for double-edge shock is a function of the single 

edge shock bending stress it will be universal and not dependent on material properties 

or level of shock. Therefore, the single-edge estimation can simply be factored to 

obtain the double-edge stress.

8.3 -  Correlation of Crack Growth Rates

The plastic zone parameter derived to introduce a description of biaxiality on the 

crack tip is shown to illustrate the nature of both isothermal biaxial and thermal 

downshock loading. However, when introduced to crack growth rates it is clear that 

the plastic zone parameter is not sufficient. A result of the plastic zones tendency to be 

governed more by the length of crack than magnitude of loading shows a broader 

ranging flaw in the use of plastic zone on loads which oscillate over increasing crack 

lengths.

As a result a mode I stress intensity range function is determined with a linear 

addition of biaxial loading. This allows the nature of loading at a crack tip to be 

quantified outside the effects of biaxiality, with an additional effect by biaxiality 

accounted for based on the level of non-singular Of and biaxial ratio.

Also proposed, is the introduction of a mean value of Of. Using a sinusoidal 

normal load with a lateral dead load equal to the mean of the normal load, creates 

unibiaxial conditions and values of Of oscillating around zero. Should the lateral dead 

load be a value other than the mean of the normal load a mean o f  will result. It is 

proposed that this, with increasing negative values of of, as found by Kfouri and 

Miller [33] will increase crack growth rates and is included on this basis.

It is observed that for the models conducted, the maximum tensile normal stress 

of the thermal shock scenarios using elastic-plastic properties are very similar to those 

of the peak isothermal biaxial loading. It is therefore proposed that the peak thermal
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shock stress determined with elastic-plastic properties is approximately equal to that of 

the bounding isothermal biaxial peak load with an R-ratio of 0.1.

8.4 -  Proposed Method of Correlation

It is now possible to propose a complete method of correlating thermal shock 

crack growth rates with isothermal biaxial bounding crack growth rates.

1. Estimate h from eqn. 94 and explicit definitions of thermal shock cycle.

2. Use estimation of h in eqn. 96 and Figure 126 to estimate thermal stress.

3. Equate thermal stress to peak isothermal load at R = 0.1.

This method, however, does not account for elastic-plastic properties. This 

requires further work into determining the exact form of eqn. 96 for an elastic-plastic 

material response. Since it is shown that eqn. 36 inadequately represents plasticity, and 

thermal stresses dependant on localisation, full finite element models would be 

required to determine eqn. 96 for plasticity. The form of the equation will be very 

much like that of the elastic version but shallower for high h values.

Once achieved, however, it will produce a description of an isothermal loading 

stress range. When coupled with biaxial ratios bounding thermal shock, i.e. 0.35 and 

1, the bounding crack growth models can be calculated.

Consequently, an estimation of thermal downshock crack growth can be made 

using a simple analysis of the explicit conditions defining the thermal downshock 

cycle, i.e. initial conditions, end temperature at the shocked surface, ambient 

temperature and time period.
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9 -  Recommendations

The work presented here demonstrates that a correlation exists between thermal 

shock and isothermal biaxial crack growth rates. The crack growth rates used however, 

do not cover a broad range of loading scenarios and as such further study is needed to 

confirm the conclusions made.

This study must take the form of the experimental work in both isothermal and 

thermal shock loading. In order to study the manner in which biaxiality changes with 

increasing loads it is necessary to conduct a range of test on the cruciform specimen 

through the elastic and elastic-plastic range. This would mean tests with stress ranges 

from 20MPa to 200MPa to encompass the complete behaviour under a full order of 

magnitude change.

It will also be advisable to study particular levels of load, i.e. at either end of the 

scale, with various levels of biaxiality. It is suggested that equibiaxial, unibiaxial and 

biaxial levels be studied, where biaxial tests would be conducted at the minimum 

thermal shock biaxiality of 0.35. This would also introduce the effect of mean o f in to 

the results.

This should be done in conjunction with finite element models on thermal shock 

with elastic-plastic material properties. From these models an elastic-plastic thermal 

stress can be estimated as presented here for elastic stress. This will guide the direction 

of choosing the specific magnitudes of isothermal stress ranges to use in tests. Once 

this magnitude is determined, a spread of ±50% should be applied to better define the 

relationship between peak elastic-plastic thermal stress and peak isothermal loading, 

here proposed to be approximately equal.

Double-edge thermal shock models should also be studied with complete 

description of the heat transfer coefficient on all convecting surfaces. A numerical 3D 

finite difference method similar to the 2D method already described could be applied 

to known experimental 2D thermal data for such types of shocks. Since the heat 

transfer is transient and surface temperatures can be determined from pyrometer 

readings, only initial conditions and the time dependent surface temperatures would be 

needed to determine heat transfer coefficients local to each node of the model. This 

would provide a complete description of biaxiality and its relationship between 

thermal shock and isothermal biaxial tests.
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Tmax

(°C)

Tmin

(°C)

AT

(°C)

tp

(s)

Crack

Type

Crack 

Length a 

(mm)

Mechanical 

Load (MPa)

625 225 400 3 SEN 1 0 & 120

- - - - - 2 0 & 120

- - - - - 3 0 & 120

- - - - - 4 0 & 120

- - - - - 5 0 & 120

- - - - - 6 0 & 120

- - - - - 7 0 & 120

650 350 300 5 SEN 1

2

3

4

-

550 350 300 5 SEN

5

6 

7 

1 

2

3

4

-

612 300 300 3 DEN

5

6 

7 

1 0 & 75

- - - - - 2 0 & 75

- - - - - 3 0 & 75

- - - - - 4 0 & 75

- - - - - 5 0 & 75

- - - - - 6 0 & 75

- - - - - 7 0 & 75

Table 1: Types of thermal shock loading conducted.
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Biaxial

State

Stress Range 

Ac (MPa)
R-Ratio

T

(°C)

Crack

Type

Crack Length 

a (mm)

Unibiaxial 118.8 0.1 650 CCP 1

- 118.8 0.1 650 CCP 2

- 118.8 0.1 650 CCP 3

- 118.8 0.1 650 CCP 4

- 118.8 0.1 650 CCP 5

- 118.8 0.1 650 CCP 8

- 118.8 0.1 650 CCP 11

Unibiaxial 200.0 0.1 650 CCP 1

- 200.0 0.1 650 CCP 2

- 200.0 0.1 650 CCP 3

- 200.0 0.1 650 CCP 4

- 200.0 0.1 650 CCP 5

- 200.0 0.1 650 CCP 8

- 200.0 0.1 650 CCP 11

Equibiaxial 118.8 0.1 650 CCP 1

- 118.8 0.1 650 CCP 2

- 118.8 0.1 650 CCP 3

- 118.8 0.1 650 CCP 4

- 118.8 0.1 650 CCP 5

- 118.8 0.1 650 CCP 8

- 118.8 0.1 650 CCP 11

Equibiaxial 200.0 0.1 650 CCP 1

- 200.0 0.1 650 CCP 2

- 200.0 0.1 650 CCP 3

- 200.0 0.1 650 CCP 4

- 200.0 0.1 650 CCP 5

- 200.0 0.1 650 CCP 8

- 200.0 0.1 650 CCP 11

Table 2: Loading of cruciform models conducted.
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Distance Cycle Time (s)

(mm) 0.5 1 2 3 4 5 6 8 10 15 20 30 50 60

0 591 520 426 363 335 310 332 433 485 542 568 600 626 627

1 601 543 463 409 377 352 358 438 485 541 568 599 625 628

3 619 592 538 498 461 433 413 455 492 544 571 601 626 631

5 629 617 584 552 524 501 474 489 514 558 582 613 632 637

7 627 619 602 574 558 539 530 521 535 568 589 612 630 634

10 637 632 624 614 602 590 574 566 570 590 606 626 641 644

15 645 641 636 631 625 618 607 604 604 610 618 631 647 650

20 652 648 643 638 634 629 621 621 622 624 629 640 654 657

25 653 649 644 640 635 632 624 625 626 630 635 644 655 657

30 648 645 640 636 631 625 617 617 620 627 631 638 650 653

35 653 649 644 639 632 626 618 620 623 630 634 640 655 658

39 643 636 627 620 613 608 603 611 616 624 630 639 648 649

Table 3: Experimental space-time thermal distribution by Hasan, [124].

Temperature
(°C)

Cyclic
Modulus

(Gpa)

Strength
Coefficient

(MPa)

Strain
Hardening
Exponent

0.2% 
Proof Stress

23 210.0 2000 3.356 313.8

400 171.5 1997 3.339 310.4

500 178.0 1281 5.013 370.6

600 168.5 1246 4.435 306.8

700 175.5 684 5.025 198.6

Table 4: Cyclic material properties for AISI 316 -  Ramberg-Osgood.

Temperature
(°C)

Cyclic
Modulus

(Gpa)

Yield 
Offset, y0, 

(MPa)

0.2% 
Proof Stress

Strain
Hardening
Exponent

23 210.0 1.338 313.8 3.356

400 171.9 1.106 310.4 3.340

500 180.2 0.957 370.6 5.033

600 166.8 1.036 306.8 4.505

700 168.0 1.630 198.6 5.067

Table 5: Cyclic material properties for AISI 316 -  Deformation Plasticity.
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SEN 625-225°C in 3 seconds -  OMPa

Experimental ASTME647

a (mm) N a' (mm) da/dN

1.08 0 0.000 0.00E+00

1.14 595 0.000 0.00E+00

1.48 1449 0.000 0.00E+00

1.53 1732 1.553 2.86E-04

1.89 2860 1.887 2.71E-04

1.98 3206 1.940 2.70E-04

2.24 4476 2.291 2.85E-04

2.32 4712 2.330 2.84E-04

2.68 5674 2.623 2.58E-04

2.73 5965 2.730 2.74E-04

2.79 6215 2.793 2.58E-04

2.94 7122 2.977 2.06E-04

3.10 7448 3.048 2.05E-04

3.23 8583 3.270 2.02E-04

3.38 8994 3.360 1.95E-04

3.54 10054 3.550 1.87E-04

3.67 10466 3.631 1.98E-04

3.80 11514 3.845 1.81E-04

3.92 11934 3.929 1.85E-04

4.19 13143 4.134 1.62E-04

4.33 14570 4.362 1.43E-04

4.51 15887 4.527 1.27E-04

4.59 16362 4.570 1.33E-04

4.69 17299 4.702 1.44E-04

4.76 17759 4.774 1.38E-04

4.92 18793 4.916 1.33E-04

5.03 19404 5.006 1.28E-04

5.09 20266 5.098 1.20E-04

5.15 20679 5.148 1.11E-04
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5.27 22052 5.300 1.01E-04

5.51 23876 5.461 9.85E-05

5.59 25297 5.605 9.06E-05

5.67 26590 5.723 8.36E-05

5.89 27960 5.828 7.34E-05

5.93 29472 5.940 6.89E-05

6.02 30902 6.021 6.20E-05

6.10 32448 6.103 4.90E-05

6.22 35274 6.241 4.84E-05

6.35 36890 6.317 4.50E-05

6.41 39766 6.440 4.23E-05

6.52 41264 6.502 3.95E-05

6.54 42578 6.548 3.48E-05

6.63 44362 6.621 3.24E-05

6.66 45764 6.648 2.89E-05

6.68 47004 6.684 2.93E-05

6.73 49949 6.771 2.66E-05

6.84 51326 6.807 2.82E-05

6.86 52780 6.851 2.95E-05

6.99 58717 7.021 3.15E-05

7.08 60194 7.056 3.87E-05

7.10 61582 0.000 0.00E+00

7.18 63090 0.000 0.00E+00

7.32 65705 0.000 0.00E+00

Table 6: Crack gorwth data for single edge thermal shock test 625-225°C in 3 seconds 

with no uniaxial dead load [124].
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SEN 625-225DC in 3 seconds -  OMPa

Experimental ASTME647

a (mm) N a' (mm) da/dN

1.05 0 0.000 0.00E+00

1.10 375 0.000 0.00E+00

1.36 1323 0.000 0.00E+00

1.75 1779 1.637 3.73E-04

1.96 2772 2.027 4.02E-04

2.25 3221 2.236 4.12E-04

2.80 4694 2.796 3.80E-04

3.45 6185 3.399 3.65E-04

3.66 7122 3.721 3.46E-04

3.92 7636 3.902 3.37E-04

4.20 8560 4.186 3.28E-04

4.37 9088 4.384 3.25E-04

4.65 10027 4.666 2.94E-04

4.85 10504 4.809 2.89E-04

5.05 11440 5.065 2.79E-04

5.18 11898 5.156 2.89E-04

5.44 12928 5.542 2.86E-04

5.62 13393 5.681 3.04E-04

6.26 14896 6.069 2.47E-04

6.43 17245 6.507 1.87E-04

6.71 18712 6.725 1.81E-04

6.90 20147 6.931 1.75E-04

7.23 21578 0.000 0.00E+00

7.56 23043 0.000 0.00E+00

7.87 24800 0.000 0.00E+00

Table 7: Crack growth data for single edge thermal shock test 625-225°C in 3 seconds

with 120MPa uniaxial dead load [124].
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DEN 612-300°C in 5s -  OMPa

Experimental ASTME647

a (mm) N a' (mm) da/dN

L12 0 0.000 0.00E+00

1.26 487 0.000 0.00E+00

1.55 1119 0.000 0.00E+00

1.68 1327 1.706 5.19E-04

1.82 1512 1.820 5.54E-04

2.06 1802 2.003 6.00E-04

2.36 2550 2.406 4.57E-04

2.47 2738 2.493 3.82E-04

2.64 3005 2.580 3.24E-04

2.67 3257 2.627 2.98E-04

2.76 3994 2.807 4.63E-04

2.85 4245 2.954 3.37E-04

3.10 4491 3.052 3.33E-04

3.32 4731 3.215 4.48E-04

3.33 5406 3.396 1.50E-04

3.35 5598 3.365 2.18E-04

3.43 5851 3.406 1.98E-04

3.44 6092 3.494 2.75E-04

3.71 6785 3.700 2.64E-04

3.82 7145 3.787 2.56E-04

3.87 7567 3.892 2.47E-04

3.99 8217 4.027 2.01E-04

4.12 8585 4.088 2.25E-04

4.20 8946 4.174 2.48E-04

4.27 9641 4.377 2.26E-04

4.49 9959 4.425 2.09E-04

4.57 10335 4.503 2.03E-04

4.70 11880 4.795 1.64E-04

4.96 12691 4.897 1.38E-04
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5.09 13956 5.066 1.34E-04

5.12 14568 5.166 1.16E-04

5.23 15305 5.228 9.14E-05

5.32 15853 5.280 9.02E-05

5.34 16706 5.354 8.00E-05

5.39 17497 5.400 5.89E-05

5.51 19565 5.484 7.03E-05

5.52 20243 5.528 9.17E-05

5.54 20929 5.597 9.25E-05

5.71 21750 5.716 1.03E-04

5.88 22970 5.833 9.58E-05

5.91 23869 5.876 8.07E-05

6.00 26627 0.000 0.00E+00

6.09 28046 0.000 0.00E+00

6.28 29423 0.000 0.00E+00

Table 8: Crack growth data for double edge symmetrical thermal shock test 

612-300°C in 5 seconds with zero uniaxial dead load [124].

DEN 612-300°C in 5s -  120MPa

Experimental ASTME647

a (mm) N a' (mm) da/dN

1.47 0 0.000 0.00E+00

1.60 126 0.000 0.00E+00

1.81 290 0.000 0.00E+00

2.08 417 2.226 2.34E-03

3.18 708 2.901 2.82E-03

4.96 1355 5.210 3.26E-03

5.54 1495 5.812 2.65E-03

6.73 1673 6.277 2.48E-03

7.27 2031 7.170 2.18E-03

7.65 2776 8.109 1.42E-03

8.06 2903 8.141 2.54E-03
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8.67 3068 8.517 3.01E-03

8.92 3206 9.165 3.33E-03

10.01 3442 9.912 2.99E-03

10.38 3577 10.239 2.68E-03

11.57 4234 11.557 1.59E-03

11.97 4540 11.706 1.01E-03

12.19 5613 12.335 3.41E-04

12.22 6106 12.274 1.84E-04

12.32 6961 12.365 1.55E-04

12.41 7174 12.392 1.33E-04

12.44 7384 12.428 1.34E-04

12.48 7652 12.461 1.40E-04

12.53 8394 12.525 1.44E-04

12.55 8715 12.569 1.82E-04

12.64 9036 12.675 1.83E-04

12.84 9793 12.859 2.02E-04

12.98 10126 12.909 1.92E-04

13.04 11182 13.051 1.24E-04

13.07 11873 13.108 8.34E-05

13.19 12590 13.151 5.91E-05

13.23 14194 13.235 4.16E-05

13.24 14547 0.000 0.00E+00

13.28 16812 0.000 0.00E+00

13.30 17400 0.000 0.00E+00

Table 9: Crack growth data for double edge symmetrical thermal shock test 

612-300°C in 5 seconds with OMPa uniaxial dead load [124].
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Unibiaxial - A c t  = 118.8MPa

Experimental ASTME647

a (mm) N a' (mm) da/dN

2.30 4560 0.00 0.00E+00

2.63 8160 0.00 0.00E+00

3.10 11760 0.00 0.00E+00

3.52 14580 3.51 1.56E-04

3.56 14814 3.56 1.52E-04

3.72 15894 3.72 1.58E-04

3.89 16974 3.89 1.61E-04

4.07 18054 4.07 1.69E-04

4.26 19134 4.26 1.76E-04

4.44 20214 4.45 1.83E-04

4.64 21186 4.63 1.93E-04

4.65 21294 4.65 1.92E-04

4.86 22374 4.88 1.96E-04

5.10 23454 5.10 1.83E-04

5.31 24534 5.29 1.65E-04

5.42 25614 5.47 1.92E-04

5.44 25614 5.46 1.90E-04

5.51 25884 5.51 1.86E-04

5.76 26964 5.74 2.34E-04

6.00 28044 6.00 2.50E-04

6.27 29124 6.28 2.67E-04

6.60 30204 6.59 2.82E-04

6.91 31284 6.91 2.99E-04

7.24 32364 7.25 2.72E-04

7.56 33444 7.54 2.25E-04

7.64 33642 7.60 2.16E-04

7.73 34524 7.78 2.66E-04

7.73 34524 7.77 2.24E-04

7.84 34830 7.85 2.55E-04

139



8.22 35910 8.21 3.49E-04

8.58 36990 8.59 3.63E-04

9.00 38070 9.01 3.58E-04

9.40 39150 0.00 0.00E+00

9.84 40230 0.00 0.00E+00

10.09 41310 0.00 0.00E+00

Table 10: Crack growth data for isothermal unibiaxial cruciform test at 

Aa = 118.8MPa [124].

Unibiaxial - Aa = 200.0MPa

Experimental ASTME647

a (mm) N a' (mm) da/dN

3.67 409 0.00 0.00E+00

3.69 634 0.00 0.00E+00

3.72 694 0.00 0.00E+00

3.76 814 3.75 2.90E-04

3.79 934 3.79 3.85E-04

3.84 1054 3.84 4.36E-04

3.92 1276 3.95 6.38E-04

3.99 1294 3.96 6.21E-04

4.04 1414 4.04 7.46E-04

4.13 1511 4.12 8.08E-04

4.12 1534 4.13 8.08E-04

4.25 1654 4.24 9.79E-04

4.27 1696 4.30 9.81E-04

4.45 1834 4.43 9.68E-04

4.45 1852 4.37 6.45E-04

4.73 2194 4.87 1.08E-03

4.82 2314 4.97 9.52E-04

5.37 2434 5.02 7.35E-04

5.45 3842 5.51 2.55E-04

5.55 4202 5.57 2.36E-04
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5.64 4562 5.63 2.50E-04

5.75 4922 5.73 2.90E-04

5.74 4964 5.74 2.80E-04

5.81 5282 5.84 2.98E-04

5.97 5642 5.95 3.18E-04

6.07 6002 6.07 3.56E-04

6.18 6362 6.20 3.84E-04

6.27 6542 6.26 3.81E-04

6.50 7082 6.50 4.29E-04

6.66 7442 6.66 4.49E-04

6.82 7802 6.82 4.51E-04

6.98 8162 6.98 4.76E-04

7.16 8522 7.15 4.99E-04

7.31 8882 7.34 5.13E-04

7.55 9242 7.53 5.38E-04

7.74 9602 7.72 5.73E-04

7.91 9962 7.93 6.07E-04

8.15 10322 8.15 6.20E-04

8.41 10682 8.38 6.74E-04

8.64 11042 8.64 6.92E-04

8.67 11144 8.71 6.87E-04

8.91 11402 8.88 6.88E-04

9.14 11762 9.15 7.07E-04

9.39 12122 9.39 7.31E-04

9.62 12446 9.62 8.12E-04

9.64 12482 0.00 0.00E+00

9.95 12842 0.00 0.00E+00

10.33 13202 0.00 0.00E+00

Table 11: Crack growth data for isothermal unibiaxial cruciform test at

Aa = 200.0MPa [124].
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Equibiaxial -  A ct = 118.8MPa

Experimental ASTME647

a (mm) N a' (mm) da/dN

2.18 271792 0.00 0.00E+00

2.20 272332 0.00 0.00E+00

2.29 275392 0.00 0.00E+00

2.40 278992 2.41 4.48E-05

2.57 282412 2.58 6.24E-05

2.65 283546 2.65 7.14E-05

2.73 284626 2.73 7.29E-05

2.83 285706 2.82 7.62E-05

2.91 286786 2.90 7.76E-05

2.98 287866 2.99 8.08E-05

3.07 288946 3.07 8.20E-05

3.16 290026 3.16 8.65E-05

3.27 291106 3.26 9.14E-05

3.35 292186 3.36 9.21E-05

3.47 293266 3.46 9.26E-05

3.57 294346 3.56 9.29E-05

3.66 295426 3.66 9.60E-05

3.77 296506 3.76 9.78E-05

3.87 297586 3.87 1.01E-04

3.99 298666 3.99 1.05E-04

4.10 299746 4.10 1.09E-04

4.21 300826 4.22 1.15E-04

4.34 301906 4.34 1.16E-04

4.47 302986 4.47 1.20E-04

4.62 304066 4.61 1.24E-04

4.73 305146 4.74 1.27E-04

4.88 306226 4.88 1.30E-04

5.02 307306 5.02 1.33E-04

5.17 308386 5.17 1.39E-04
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5.32 309466 5.32 1.43E-04

5.47 310546 5.47 1.50E-04

5.64 311626 5.64 1.56E-04

5.81 312706 5.81 1.62E-04

6.01 313786 5.99 1.69E-04

6.17 314866 6.18 1.69E-04

6.35 315946 6.36 1.74E-04

6.57 317026 6.55 1.79E-04

6.72 318106 6.75 1.86E-04

6.96 319186 6.95 1.91E-04

7.16 320266 7.16 2.12E-04

7.23 320608 7.23 2.00E-04

7.26 320806 7.27 2.00E-04

7.40 321346 7.38 2.05E-04

7.48 321886 7.49 2.05E-04

7.60 322426 7.60 2.06E-04

7.82 323506 7.82 2.08E-04

8.06 324586 8.05 2.20E-04

8.29 325666 8.30 2.26E-04

8.54 326746 8.54 2.36E-04

8.82 327826 8.80 2.42E-04

8.96 328510 8.97 2.49E-04

9.08 328906 9.07 2.50E-04

9.34 329986 9.34 2.57E-04

9.64 331066 0.00 0.00E+00

9.91 332146 0.00 0.00E+00

10.22 333226 0.00 0.00E+00

Table 12: Crack growth data for isothermal equibiaxial cruciform test at

Act= 118.8MPa [124].

143



Equibiaxial - Aa = 200.0MPa

Experimental ASTME647

a (mm) N a' (mm) da/dN

3.43 561 0.00 0.00E+00

3.46 926 0.00 0.00E+00

3.52 1329 0.00 0.00E+00

3.57 1466 3.57 2.95E-04

3.61 1586 3.61 3.03E-04

3.67 1706 3.65 3.28E-04

3.68 1826 3.69 3.44E-04

3.70 1899 3.72 3.05E-04

3.74 1946 3.73 3.04E-04

3.78 2066 3.77 3.44E-04

3.79 2186 3.81 3.25E-04

3.86 2306 3.84 2.74E-04

4.05 3101 4.04 2.62E-04

4.04 3146 4.06 2.60E-04

4.08 3206 4.07 3.88E-04

4.10 3266 4.09 4.12E-04

4.11 3326 4.12 4.43E-04

4.16 3386 4.15 3.55E-04

4.18 3446 4.17 3.81E-04

4.19 3506 4.19 3.84E-04

4.19 3566 4.21 3.40E-04

4.24 3621 4.24 3.84E-04

4.28 3746 4.28 4.13E-04

4.35 3866 4.34 4.25E-04

4.36 3986 4.38 3.75E-04

4.44 4106 4.42 4.33E-04

4.48 4226 4.47 4.27E-04

4.49 4300 4.51 4.35E-04

4.59 4420 4.56 4.05E-04
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4.54 4432 4.56 4.25E-04

4.65 4631 4.65 4.91E-04

4.68 4720 4.68 5.96E-04

4.78 4840 4.76 4.65E-04

4.76 4854 4.77 5.39E-04

4.82 4900 4.79 5.52E-04

4.82 5020 4.86 4.64E-04

4.93 5140 4.90 4.68E-04

4.97 5260 4.96 4.81E-04

4.99 5380 5.02 5.12E-04

5.10 5500 5.08 5.27E-04

5.13 5584 5.13 5.64E-04

5.15 5620 5.15 6.02E-04

5.21 5740 5.21 5.52E-04

5.29 5860 5.29 5.59E-04

5.30 5886 5.30 5.25E-04

5.36 5980 5.35 5.83E-04

5.39 6049 5.39 5.60E-04

5.39 6100 5.42 5.73E-04

5.51 6220 5.49 5.59E-04

5.54 6304 5.54 5.41E-04

5.54 6340 5.55 5.91E-04

5.61 6460 5.61 5.48E-04

5.67 6580 5.69 6.30E-04

5.81 6700 5.77 6.81E-04

5.84 6820 5.86 7.29E-04

5.93 6940 5.95 6.22E-04

6.00 7003 5.98 5.60E-04

6.01 7011 5.98 5.54E-04

6.12 7305 6.13 4.87E-04

6.52 8091 6.52 4.82E-04

6.70 8451 6.69 5.15E-04

6.88 8811 6.89 5.12E-04
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7.03 9171 7.07 5.76E-04

7.13 9186 7.08 5.60E-04

7.25 9531 7.28 6.13E-04

7.54 9891 7.51 6.57E-04

7.74 10251 7.74 7.35E-04

8.05 10607 8.03 7.93E-04

7.98 10611 8.04 7.57E-04

8.35 10971 8.33 8.09E-04

8.64 11331 8.60 8.13E-04

8.87 11691 8.89 8.75E-04

9.16 12051 9.20 8.92E-04

9.55 12411 0.00 0.00E+00

9.95 12771 0.00 0.00E+00

10.25 13131 0.00 0.00E+00

Table 13: Crack growth data for isothermal equibiaxial cruciform test at 

Aa = 200.0MPa [124].
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Number

o f
Contours

Mesh

Density

J -

Integral

(N/mm)

Ki

(MPa.m3/2)

Crack Tip Stress 

(MPa)

Plastic Zone Size 

(mm)

B yJ ByUy crx rpx rpy

8 10.7 0.5508 9.5 9.5 3380 3524 0.172 0.350

12 19.0 0.5508 9.5 9.6 5126 5283 0.172 0.355

20 43.3 0.5508 9.5 9.6 8653 8794 0.180 0.355

30 130 0.5508 9.5 9.6 13074 13175 0.180 0.355

Table 14: Linear-elastic finite elements stress intensity and plastic zone sizes 

for thin centre-cracked square plate model verification.

Kj/Kq
Kj

(MPa.ms/2)

Plastic Zone Size (mm)

rpx rpy
1.005 9.4 0.189 0.347

Table 15: Classical solution by Rooke & Cartwright for CCP.

Number

o f
Contours

Mesh

Density

J -

Integral

(N/mm)

K j

(MPa.ms/2)

Crack Tip Stress 

(MPa)

Plastic Zone Size 

(mm)

B yJ B y U y crx °y rpx rpy

8 10.7 0.8025 11.5 11.6 4129 4256 0.355 0.537

12 19.0 0.8026 11.5 11.5 6237 6378 0.359 0.525

20 43.3 0.8026 11.5 11.6 10495 10616 0.346 0.511

30 130 0.8026 11.5 11.3 15832 15904 0.339 0.516

Table 16: Linear-elastic finite elements stress intensity and plastic zone sizes 

for thin edge-cracked rectangular plate model verification -  pin-joint constraint.

147



Number

o f

Contours

Mesh

Density

J -

Integral

(N/mm)

Kj

(MPa.m3/2)

Crack Tip Stress 

(MPa)

Plastic Zone Size 

(mm)

B yJ B y U y crx rpx rpy
8 10.7 0.8025 11.5 11.6 4129 4256 0.357 0.537

12 19.0 0.8026 11.5 11.5 6237 6378 0.349 0.501

20 43.3 0.8026 11.5 11.6 10495 10616 0.345 0.520

30 130 0.8026 11.5 11.3 15832 15904 0.349 0.516

Table 17: Linear-elastic finite elements stress intensity and plastic zone sizes 

for thin edge-cracked rectangular plate model verification -  built-in constraint.

Kj/Kq
Kt

<MPa.m3/2)

Plastic Zone Size (mm)

rpx rpy
1.222 11.5 0.256 0.469

Table 18: Classical solution by Rooke & Cartwright for ECP.
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# Elements f  (s) h (W/m2K) tmax (s)

5 1.5 5925 1.721352

5 1 6489 1.617898

5 0.1 7781 1.421989

5 0.01 7923 1.403620

5 0.001 7937 1.401511

10 0.5 7057 0.591021

10 0.1 7319 0.579167

10 0.01 7387 0.576175

10 0.001 7395 0.575867

20 0.25 7381 0.200264

20 0.1 7454 0.199501

20 0.01 7519 0.198820

20 0.001 7525 0.198751

50 0.05 7539 0.041637

50 0.001 7557 0.041617

50 0.0001 7558 0.041617

100 0.01 7555 0.011608

100 0.001 7561 0.011606

100 0.0001 7562 0.011606

200 0.0025 7561 0.003080

200 0.001 7562 0.003080

200 0.0001 7563 0.003080

Table 19: Finite difference refinement series for 625-225°C in 3s.
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# Elements f  (s) h (W/m2K) Imax (s)

5 2.5 2697 2.691858

5 1 2919 2.589545

5 0.1 3147 2.492460

5 0.01 3171 2.482719

10 0.5 2914 0.863063

10 0.1 2973 0.857346

10 0.01 2987 0.856021

10 0.001 2988 0.855887

20 0.25 2945 0.258185

20 0.1 2966 0.257812

20 0.01 2979 0.257586

20 0.001 2980 0.257563

20 0.0001 2980 0.257561

50 0.05 2971 0.049270

50 0.001 2978 0.046917

50 0.0001 2978 0.046917

100 0.01 2977 0.012297

100 0.001 2978 0.012296

100 0.0001 2978 0.012296

200 0.001 2978 0.003150

200 0.0001 2978 0.003150

Table 20: Finite difference refinement series for 650-350°C in 5s.
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# Elements f  (s) h (W/m2K) tmax (s)

5 2.5 1856 3.297714

5 1 2064 3.155243

5 0.1 2208 3.064431

5 0.01 2222 3.055494

10 1 1926 1.021637

10 0.1 2019 1.009054

10 0.01 2028 1.007917

20 0.25 1989 0.291840

20 0.1 2001 0.291556

20 0.01 2016 0.293148

20 0.001 2010 0.291366

20 0.0001 2010 0.291365

50 0.05 2001 0.051366

50 0.01 2005 0.051360

50 0.001 2005 0.051359

50 0.0001 2005 0.051359

100 0.01 2004 0.013289

100 0.001 2005 0.013289

100 0.0001 2005 0.013289

200 0.001 2005 0.003381

200 0.0001 2005 0.003381

Table 21: Finite difference refinement series for 550-350°C in 5s.
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625-225°C 3s 650-350°C 5s 550-350°C 5s

t’ Tr dT/dt' t' Tf dT/dt’ t’ Tf dT/dt'

0.1 484 1412 0.1 585 652 0.1 511 388

0.01 574 5137 0.01 628 2185 0.01 537 1278

0.001 608 17031 0.001 643 7042 0.001 546 4096

0.0001 619 58758 0.0001 648 24065 0.0001 549 13969

Table 22: Forward difference determination of initial cooling rate from theoretical solution.

# Elements t'(s) h (W/m2K) tmin (s)

10 0.1 7100 0.587

10 0.5 7400 0.587

10 1.0 7775 0.587

20 0.01 7000 0.147

20 0.1 7100 0.147

20 0.5 7400 0.147

20 1.0 7775 0.147

40 0.025 7000 0.037

40 0.1 7100 0.037

40 1.0 7800 0.037

75 0.005 7000 0.01

75 0.01 7000 0.01

75 0.1 7100 0.01

Table 23: Finite element refinement series for 625-225 in 3 s.
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Shock Level 625-225 3s 650-350 5s 550-350 5s

Material

Model

Strain

Energy

(a s )

Spanned

Area

(a-x)

Strain

Energy

(a s )

Spanned

Area

(cr-x)

Strain

Energy

(a s )

Spanned

Area

(a-x)

Cyclic

Elasticity
4.627E+6 5.697E+6 2.662E+6 4.596E+6 1.16E+6 3.055E+6

Neuber’s

Elastic-Plastic
1.910E+6 2.228E+6 1.200E+6 1.766E+6 783E+3 1.945E+6

Cyclic Ratio 2.423 2.557 2.218 2.603 1.479 1.571

Mechanical

Elasticity
2.119E+6 2.609E+6 1.146E+6 1.979E+6 569E+3 1.500E+6

Linear-Elastic

Elastic-Plastic
1.728E+6 2.144E+6 1.033E+6 1.770E+6 512E+3 1.500E+6

Mech. Ratio 1.226 1.217 1.109 1.118 1.111 1.000

Table 24: Strain energy and spanned areas for elastic and elastic-plastic material models.
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TlNITIAL

(°C)

T e n d

(°C)

T a

(°C)

AT

(°C)

T fac tp

(s)

h

(W/m2K)
0>MAX

(MPa)

750 120 20 630 0.137 3 34946 1445

750 220 20 530 0.274 3 14314 1134

750 320 20 430 0.411 3 7555 897

750 420 20 330 0.548 3 4266 687

750 520 20 230 0.685 3 2330 477

650 120 20 530 0.159 3 27258 1198

650 220 20 430 0.317 3 10874 914

650 320 20 330 0.476 3 5470 693

650 420 20 230 0.635 3 2823 483

650 520 20 130 0.794 3 1262 273

550 120 20 430 0.189 3 20448 957

550 220 20 330 0.377 3 7855 701

550 320 20 230 0.566 3 3628 488

550 420 20 130 0.755 3 1530 276

750 120 20 630 0.137 4 30361 1398

750 220 20 530 0.274 4 12421 1082

750 320 20 430 0.411 4 6559 845

750 420 20 330 0.548 4 3684 640

750 520 20 230 0.685 4 2019 445

650 120 20 530 0.159 4 23664 1157

650 220 20 430 0.317 4 9437 869

650 320 20 330 0.476 4 4762 649

650 420 20 230 0.635 4 2448 451

650 520 20 130 0.794 4 1093 255

550 120 20 430 0.189 4 17772 921

550 220 20 330 0.377 4 6810 662

550 320 20 230 0.566 4 3144 457

550 420 20 130 0.755 4 1335 260

750 120 20 630 0.137 5 27226 1363



750 220 20 530 0.274 5 11130 1042

750 320 20 430 0.411 5 5852 804

750 420 20 330 0.548 5 3300 603

750 520 20 230 0.685 5 1807 418

650 120 20 530 0.159 5 21179 1124

650 220 20 430 0.317 5 8458 833

650 320 20 330 0.476 5 4262 615

650 420 20 230 0.635 5 2191 425

650 520 20 130 0.794 5 987 241

550 120 20 430 0.189 5 15922 892

550 220 20 330 0.377 5 6100 632

550 320 20 230 0.566 5 2824 431

550 420 20 130 0.755 5 1186 244

Table 25: Finite difference thermal model series.
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Figure 1: Crack growth rate pattern.
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Figure 2: Slip band deformation, a) extrusion, b) intrusion.
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Figure 3: Tomkins’ model for Stage II crack propagation.
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Figure 10: a) Schematic for up and down shock in a thin plate,
b) Hysteresis loop for a thermal up and down shock cycle [66].
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Crack Tip at Corner '1'

Figure 11: Crack tip finite elements,
a) Tracey's triangular singularity element, b) quarter point element.
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Figure 12: Modes of loading.
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Figure 13: Effect of non-parallel heat flow around a crack tip.
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Figure 14: Mixed mode plastic zone shapes, crack tip at ‘o’.
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Figure 15: Conceptual thermal shock static stress model.
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Figure 16b: Thermal shock edge cracked finite element mesh -  close up.
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Figure 17a: Cruciform centre cracked finite element mesh.



Figure 17b: Cruciform centre cracked finite element mesh -  close up.
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Figure 20: Stress-strain response curves by Ramberg-Osgood relationship.
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Figure 21: Elastic-Plastic Ramberg-Osgood & cyclic elasticity material models.
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Figure 22: Linear-Elastic Elastic-Plastic material model using 
pseudo mechanical modulus and Ramberg-Osgood plasticity.
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Figure 23: Non-singular stress description for biaxial loading.
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Figure 24: Normal and lateral plastic zones.
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Figure 25: One dimensional cooled edge model 
with opposite edge perfectly insulated.

o

a) Single edge cooling

o

T W/2 W/2

b) Symmetric double edge cooling 

Figure 26: Typical stress profiles in symmetric and non-symmetric cooling.



Cooled Edge

—►
Single Edge 

Normal Stress
< —
<—

Insulated Edge

—►
General

<—

—► 
—►

Compression
-ccEAT

<—
<—

+

Sx Response to 
Temperature, T = f(x ,t)

+

Bending caused by 
Non-Symmetric Cooling

Figure 27: Superposition of thermal stress effects.
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Figure 28: Dual thermal distribution equations for non-symmetric cooling.
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Figure 29: Thermal shock stresses through cycle.
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Figure 30: ID finite difference model, 
perfectly insulated edge and rapidly cooled opposing edge.
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Figure 31: 2D finite difference model with localised edge shock.
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Figure 32: a) Henshall & Shaw quarter point arrangement, b) Contemporary arrangement.
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Figure 33: Model constructs for fracture mechanics verification.

180



H
ei

gh
t 

(r
pv

MH
)

Length ( Q

Normal Stress 
Component

von M ises (rT = 

a y component

von Mises „ 
Plastic Zone

Length (i^ML)

Figure 34: Determination of von Mises plastic zone parameter.

181



Su
rfa

ce
 

He
at 

Tr
an

sf
er

 C
oe

ffi
ci

en
t 

(W
/n

^K
)

8500 -i

8000 -

7500 -

7000 -

6500 -

6000 -

5500 -

5000 4-1 
-0.3

Figure 35:

Unstable Reeion Stable Region

Decreasing Time 
Increment, t’

-♦----- 5 Elements
—  10 Elements

■*----  20 Elements
-•----- 50 Elements

 100 Elements
A 200 Elements
 Theoretical

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Time Increment = (tmax-t')/tmax

Relative time increment to forced convection refinement for 625-225°C in 3s.
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Figure 36: Relative time increment to forced convection refinement for 650-350°C in 5s.
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Figure 38: Thermal distribution refinement and theoretical eigenvalue 

solution for 625-225°C in 3s.
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Figure 39: Thermal distribution refinement and theoretical eigenvalue 

solution for 650-350°C in 5s.
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Figure 40: Thermal distribution refinement and theoretical eigenvalue 

solution for 550-350°C in 5s.
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Figure 41: Cooling curve refinement for 625-225°C in 3s.
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Figure 42: Cooling curve refinement for 650-350°C in 5s.
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Figure 43: Cooling curve refinement for 650-350°C in 5s.
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Figure 44: Relative time increment to initial cooling rate (dT/dt at t = 0s) for 625-225°C in 3s.
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Figure 45: Relative time increment to initial cooling rate (dT/dt at t = 0s) for 650-350°C in 3s.
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Figure 46: Relative time increment to initial cooling rate (dT/dt at t = 0s) for 550-350°C in 3s.
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Figure 47: Finite difference model with fixed temperature insulated boundary condition 

to theoretical solution over small and large Fourier numbers.
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Figure 48: Finite difference model with dependant end temperature 

to theoretical solution over small and large Fourier numbers.
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Figure 49: Single edge shock for Hasan and numerical at 650-310°C in 5s [124].
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Figure 50: Double edge shock for Hasan and numerical at 612-300°C in 3s [124].
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Figure 51: Effect of thermal property dependence on temperature for 625-225°C in 3s.
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Figure 53: Effect of thermal property dependence on temperature for 550-350°C in 5s.
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Figure 54: Space-time refinement of finite element model for 625-225°C in 3s.
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Figure 55: Thermal distribution refinement of finite element model for 625-225°C in 3s.
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Figure 56: Comparison of space-time thermal distribution from 

finite difference & finite element models for 625-225°C in 3s.
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finite difference for 625-225°C 3s.
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Figure 59: Effect of localisation on thermal distribution for 

finite element model for 625-225°C in 3s.
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Figure 60: One dimensional elastic stresses by Timoshenko for fixed (FP) & 

temperature dependent (TD) thermomechanical properties at 625-225°C 3s.
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Figure 61: One dimensional elastic stresses by Timoshenko for fixed (FP) & 

temperature dependent (TD) thermomechanical properties at 650-350°C 5s.
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Figure 62: One dimensional elastic stresses by Timoshenko for fixed (FP) & 

temperature dependent (TD) thermal properties at 550-350°C 5s.
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Figure 64: End-of-Cycle stress profiles for temperature dependant 

elastic properties for 2DFD/Timoshenko and 2DFE models.
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Figure 65: Change in elastic stress through time for full-edge downshock by 

temperature dependant thermal distribution & fixed mechanical property solution.
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Figure 66: Change in elastic stress through time for full-edge downshock by 

temperature dependant Timoshenko/2DFD thermal distribution & 

temperature dependant finite element solution.

Note: solid lines indicate FD solution of Figure 65.
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Figure 68: Effect of localisation on lateral stress for 625-225°C in 3s by FE.
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through time for 625-225°C in 3s by FE.
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through time for 625-225°C in 3s by FE.
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Figure 75: Total lateral strain through time for 625-225°C in 3s shock 

for fixed property and temperature dependent thermal expansion.
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Figure 76: Total normal strain through time for 625-225°C in 3s shock 

for fixed property and temperature dependent thermal expansion.
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Figure 77: Total strains for 625-225°C in 3s shock 
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Figure 78: Effect of plasticity on total strain for 625-225°C in 3s by FE.

225



To
ta

l 
St

ra
in

14E-3 i

12E-3 -

10E-3 -

8E-3 -

6E-3

4E-3 -

♦625-225 3s 

A 650-350 5s 

■550-350 5s

2E-3 -

000E+0

5 150 10 20 25 35 4030

Distance from Shocked Edge (mm)
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Figure 80: Effect of localisation on lateral strains for 625-225°C 3s shock by FE.
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Figure 81: Effect of localisation on normal strains for 625-225°C in 3s shock by FE.
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Figure 82: Elastic-plastic stresses for 625-225°C in 3s for aT strain by FD&T.
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Figure 83: Elastic-plastic stresses for 625-225°C in 3s for a[T-Tj] strain, 

using Neubers full elastic-plastic material model.
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Figure 84: Elastic-plastic stresses for 625-225°C in 3s for a[T-Tj] strain, 

using partial linear-elastic elastic-plastic material model by FD&T.
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Figure 125: Predicted h values with eqn. 79.

272



St
re

ss
 

(M
Pa

)

800

-♦— Single Edge: Edge + Surface Cooling 

-■— Single Edge: Edge Cooling
700

600

500

400

300

200

100

-100

-200

-300
5 150 10 20 25 35 4030

Distance from Shocked Edge (mm)

Figure 126: Double edge stresses for a 612-300°C in 3s shock for experimental [124] 

and model thermal FD&T distributions.
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Appendix A

Inclusion of T-Stress into Theory of Elasticity Plastic Zone

Since T-Stress is an integral part of biaxial plastic zone sizes a relationship must 

be determined to describe its inclusion on the von Mises yield criterion of section 2.3. 

Following is a summary of the derivation to this effect.

The principal stresses as determined by Mohr’s stress circle are as follows,

<7 + cr cr -<7

a 3 =v(at +<r2)

The von Mises yield criterion is written as follows,

- 1 f  + - t r 3 f +  (cr3 -  a, f

Using eqn. 18 and rewriting terms as below,

A = - 5 =  B = ^J!—- C = cos— D = sin—
V2^r 42m  2 2

0 30 0 302? = sin—sin—  F ~ cos—cos—  T  = (j(l-A )cos2a
2 2 2 2 v }

a x = AC\l.-E]-BD[2+F]+T  

a y =AC\l+E]-BDF  

a x =ACF + B C [ l -E ]

With Mohr’s stress terms given as

cr +cr cr -cr
VMX = —---- L and VM2 = J — ----- y-  + t

1 2 2 V 2 ^

eqn. 1

eqn. 2

eqn. 3

eqn. 4
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the von Mises yield criterion can be written in simpler form as 

=  V M ?  + 3 V M \  for plane stress

CTyield =  V M  2 (l — 2v) +  3V M 2 for plane strain
eqn. 5

By substituting eqn. 3 into eqn. 4 and then into eqn. 5 we obtain the following 

Plane stress

o 2y:M = A2[c2+3C2F 2+3D2F 2] 

+ B2|4D2 +6D2F + 3D2F 2 +3C2 - 6 C 2£ + 3 C 2F 2] 

+ AB[6CDE+ 6CDF -  2CD]

+ A C r[l-3 £ ]-B D r[4 + 3 F ]+ T 2

eqn. 6

Plane strain

<r2eW = A2[c 2(1-2p)2 +3C2£ 2 +3D2F 2j 

+ B2 [d 2 (1 -  2vf  + 3D2 + 6D2F  + 3£>2F 2 + 3C2 -  6C2£  + 3C2E 2 J 

+ Afl[6CD£+ 6 CDF -  2CD(1 -  2vf  j 

+ ACr[(l -  2v)2 -  3 F j-  BDf[(1 -  2vf  + 3F + 3j+F2 (1 -  v + v)2
eqn. 7

Using trigonometric identities this creates the same set of equations as those in 

section 2.3 with the addition of an extra term, here the last term in eqn. 6 and eqn. 7. 

When written in full, the von Mises yield criterion is as follows,
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Plane Stress

^  yield
K, iO- ——cos — 
2m  2

2 03sin —+ 1 
2

+—l^ n sin fl[3 cos-1] 
2m

+•
K,
2m

3 + sin'
n \

l -9 c o s 2 —
V

+ (j(l-A)cos2ci'

K, e
■—— COS —

^ 2 m  2
l -3 s m —sin—  

2 2
K, e“ s m -  

V2m  2
A 'I 6 ^4 + 3cos—cos—  

2 2
+ cr(l-A)cos2or

Plane Strain

ŷield
K t 2 e- — cos —
2m

3sin2y + ( l - 2 v ) 2 + K iKn
2m

sin ^ [3  cos— (l — 2v)2 ]

+ ■
K,
2m

3 + sin2f( l-2 v )2 -9 co s2-^

+ cr(l-A )cos2cir

k ,  e1— cos — 
a/2 m  2

K„

(l -  2v)2 -  3 sin—sin—  
v } 2 2

(1 o \2 o ^ ^0 -" s m -  (1 — 2v ) +3cos—cos— +3
a/2 ^ 7 2 _ '  2 2 .

+ cr(l -  A)(l -  v + v 2 )cos 2a

These equations must either be solved numerically for r or by rearranging to a 

quadratic that solves for 1 l 4 r  in the range of n >  0 > -n. The quadratic solution 

produces positive and negative solutions for different values of 6. It must however be

remembered that the solution is for 1/ Vr and not r therefore it is not directly obvious 

which solution is the correct one, since to find r any negative sign will be illuminated

by squaring. In order to confirm the solution, the two values obtained for 1 /V r must 

be replaced in the original quadratic, this generates a single true solution, though at 

high loads the solution is unstable and the quadratic check fails in both cases.
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Appendix B.l

Programme Code: Thermal Analysis

Temperature Dependant Finite Difference Solution fo r  an Explicitly 

D escribed One-Dimensional Thermal Shock Transient Thermal 

Distribution



/* 2D FINITE DIFFERENCE
TRANSIENT HEAT CONDUCTION 
TEMPERATURE DEPENDANCE

Thin Rectangular Plate: Symmetry on bottom horizontal edge
Shocked on lower right edge,
height of this region is only half
o f the full shock region due to symmetry */

/* LIBRARIES */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <time.h>

/* GLOBAL VARIABLES */ 
char reply, go, pmtoscm; 
char sumname[ll];
int check,checkl, tent, stop, switchtol,switchto2, iterend,itemum;
long tosouth,tonorth, linelength, rent,cent, Nwnodes,Nhnodes,Nshnodes;
double initemp,endtemp,Ta;
double width,height,shock, dx,dy;
double Nwelements,Nhelements,Nshelements, eqnno;
double Kmax,Kn,Ks,Ke,Kw, densitymax,density;
double Cp,h,oldh;
double Elen, tperiod,mine,oldminc,tine,oldtinc, Bi,Fo,oldFo;
double Fon,Fos,Foe,Fow, C;
double Nincrements,outinc;
double timer,timeout, sumcnt;
double Tp.Tptpl, Tn,Ts,Te,Tw;
double Tshock,Terror,Tfac;

/* GLOBAL ARRAYS */ 
double huge temps 1 [200] [1000]; 
double huge temps2 [200] [1000];

/* FILES */
FILE * table;
FILE *fp;
FILE *ilog;

/* SUB-ROUTINES */
/* User definitions and inputs */ 
void intro(); 
void modelsettingsO; 
void thermalpropertiesO; 
double inimaxtime(); 
double timeset(double mine); 
int tperiodcheck(); 
double resultsoutput(); 
void numbereqns();

/* Initialise array to start temperatures */
void initarray(long rent, long cent, double initemp);

/* Scanning Routines */
double leftcomer(long rent,long cent, int switchtol,int switchto2); 
double topside(long rent,long cent, int switchtol,int switchto2); 
double rightcomer(long rent,long cent, int switchtol,int switchto2); 
double leftside(long rent,long cent, int switchtol,int switchto2); 
double intemal(long rent,long cent, int switchtol.int switchto2); 
double rightside(long rent,long cent, int switchtol.int switchto2); 
double shocked(long rent,long cent, int switchtol.int switchto2); 
double leftsymm(long rent,long cent, int switchtol.int switchto2);
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double intemalsymm(long rent,long cent, int switchtol.int switchto2); 
double shockedsymm(long rent,long cent, int switchtol.int switchto2);

void summarypre(double timer, double sumcnt); 
void itersummaryO; 
void timerstart(); 
void timerend();

main()
{
/* SHOW PROGRAMME INFORMATION */ 
intro();

/^REQUEST TEMPERATURE ENVIRONMENT */ 
printf("\nINITIAL UNIFORM TEMPERATURE (C) = "); 
scanf(" %lf', &initemp);
printf("FINAL SURFACE TEMPERATURE (C) = "); 
scanf(" %lf", &endtemp); 
printf("AMBIENT TEMPERATURE (C) = "); 
scanf(" % lf', &Ta);

/* Calculate maximum temperature properties */
Kmax = 15.0+(0.013*initemp); 
densitymax = 7900.0-(0.5*initemp);
Kn = Kmax; Ks = Kmax; Ke = Kmax; Kw = Kmax; 
density = densitymax;

/* GENERATE MODEL DATA, THERMAL PROPERTIES & TIME INCREMENT */ 
check = 0;  
check 1 = 0; 
while (check != 1)
{
while (check 1 != 1)
{

modelsettingsO; 
thermalproperties(); 
mine = inimaxtime();

/* Provide oppurtunity to reset all model and thermal properties */ 
printf("\nMAXIMUM TIME INCREMENT IS ** %f seconds **\n", mine); 
printf("IS THIS INCREMENT OF AN ACCEPTABLE ORDER? Y /N :"); 
scanf(" %c", &reply);

if ((reply =  ’Y’) || (reply =  ’y’))
{
/* Provide time period */ 
printf("\nREQUIRED TIME PERIOD (s) = "); 
scanf(" %lf', &tperiod); 
tine = timeset(minc);
/* Calculate the new Fourier number to be applied */
Fo = (Kmax*tinc)/(densitymax*Cp*Elen*Elen); 
printf("\nMAXIMUM Fourier NUMBER is: %lf\n", Fo); 
printffMAXIMUM TIME INCREMENT IS: %lf\n", mine); 
printf("ACTUAL TIME INCREMENT USED IS: %lf\n", tine); 
}

}
/* Ensure time period is greater than time increment */ 
check = tperiodcheck();
}

/* DEFINE NUMBER OF NODES */
Nwnodes = (long)Nwelements + 1L;
Nhnodes = (long)Nhelements + 1L;
Nshnodes = (long)Nshelements + 1L;

/* SET-UP OUTPUT INTERVAL FOR RESULTS */
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outinc = resultsoutputQ;

/* SHOW NUMBER OF CALCULATIONS TO ABORT OR CONTINUE */ 
numbereqnsO;
printf("\nPrint analysis summary to screen? [Y/N]");
scanf(" %c", &pmtoscm);
printf("\n\n");

if ((fp = fopen("array.txt", "w+")) =  NULL)
{
printf("\n\n*** Cannot open file array.txt ***\n\n"); 
exit(O);
}

/* CALCULATE FINITE DIFFERENCE SOLUTION */
/* Open iteration summary file "2DLOG.txt" */ 
if  ((ilog = fopen("2Dlog.txt", "w+")) == NULL)
{
printf("\n\n*** Cannot open file 2Dlog.txt ***\n\n"); 
exit(O);
}
timerstart();

itemum = 1; 
iterend = 0; 
while (iterend == 0)
{
switchtol = 1; 
switchto2 = 0; 
timer = tine; 
timeout = tine; 
sumcnt = 1;

/* Re-initialise the temperature array */ 
rent = 0; 
cent = 0;
ini tarray (rent,cent, initemp);

while (timer <= tperiod+(tinc/2))
{

rent = 0;
while (rent <= Nhelements)
{
cent = 0;
while (cent <= Nwelements)
{
/* Scan appropriate values */ 
if  ( (rent =  0) && (cent =  0 ))
{ leftcomer(rcnt,ccnt, switchtol,switchto2); }
if ( (rent =  0) && (cent > 0) && (cent < Nwelements))
{ topside(rcnt,ccnt, switchtol,switchto2);} 
if  ( (rent =  0) && (cent =  Nwelements))
{ rightcomer(rcnt,ccnt, switchtol,switchto2); }
if  ( (rent > 0) && (rent < Nhelements) && (cent =  0 ) )
{ leftside(rcnt,ccnt, switchtol,switchto2); }
if ( (rent > 0) && (rent < Nhelements) && (cent > 0) && (cent < Nwelements))
{ intemal(rcnt,ccnt, switchtol,switchto2); }
if ( (rent > 0) && (rent <= (Nhelements-Nshnodes)) && (cent =  Nwelements))
{ rightside(rcnt,ccnt, switchtol,switchto2); }
if ( (rent > (Nhelements-Nshnodes)) && (rent < Nhelements) && (cent == Nwelements)) 
{ shocked(rcnt,ccnt, switchtol,switchto2); } 
if  ( (rent =  Nhelements) && (cent =  0 ))
{ leftsymm(rcnt,ccnt, switchtol,switchto2); }
if ( (rent =  Nhelements) && (cent > 0) && (cent < Nwelements))
{ intemalsymm(rcnt,ccnt, switchtol,switchto2); } 
if  ( (rent =  Nhelements) && (cent == Nwelements))
{ shockedsymm(rcnt,ccnt, switchtol,switchto2); }
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cent ++;
}
rent ++;
}
timer = timer + tine; 
timeout = timeout + tine;
/* Set swap switches to alternative array

Switchtol for array 1 & Switchto2 for array2 */ 
if  ((switchtol =  1) && (switchto2 =  0))

{ switchtol = 0; switchto2 = 1; }
else

{ switchtol = 1; switchto2 = 0; )
}

if  ((switchtol =  1) && (switchto2 =  0))
{ Tshock = temps l[Nhnodes][Nwnodes]; } 
if  ((switchtol =  0) && (switchto2 = 1 ) )
{ Tshock = temps2[Nhnodes][Nwnodes]; }

Terror = Tshock - endtemp;
Tfac = Terror/endtemp;

oldh = h; 
h = h + (h*Tfac); 
oldminc = mine; 
mine = inimaxtime(); 
oldtinc = tine; 
tine = timeset(minc);

if ( (Tfac > -0.0009) && (Tfac < 0.0009))
{ iterend = 1; }

itersummary(); 
itemum ++;
}

printf("\nSurface Heat Transfer = %lf\n", h); 
printf("Maximum Time Increment = %lf\n", mine); 
printf("Time Increment used = %lf\n", tine);

timerend(); 
printf("\n\nDONE"); 
fclose(lp); 
fclose(ilog); 
return (0);
}

/* PROGRAMME INFORMATION */ 
void intro()
{

printf("**Programme: 2dconv.c\n");
printf("**Pure convection FINITE DIFFERENCE programme^"); 
printf(" To calculate the required\n"); 
printf(" ’surface heat transfer coefficient (h)’");

return;
}

/* MODEL DATA: DIMENSIONS & ELEMENT QUANTITY */ 
void modelsettingsO 
{
printf("\n**MODEL SETTINGS: WIDTH & HEIGH'Rn"); 
printf("Width (mm) =");
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scanf(" % lf, &width); 
width = width/1000; 
printf("Height (mm) ="); 
scanf(" %lf', &height); 
height = height/1000;
printf("Height o f the shocked region (mm) = "); 
scanf(" %lf", &shock);

shock = shock/1000;
printf("\nNUMBER OF ELEMENTS ACROSS THE WIDTH = "); 
scanf(" %lf", &Nwelements); 
dx = width/Nwelements;
Nhelements = height/dx;
Nhelements = floor(Nhelements+0.5); 
dy = height/Nhelements;
printf("SQUARE ELEMENTS MAINTAINED: %.01f ELEMENTS THROUGH THE HEIGHT", Nhelements); 

Nshelements = (shock/height)*Nhelements;

Nshelements = ceil(Nshelements);

printf("\nNUMBER OF SHOCKED ELEMENTS IS %.01f', Nshelements);

return;
}

/* THERMAL PROPERTY DEFINITION */ 
void thermalproperties()
{
printf("\n\n**SPECIFY THERMAL PROPERTIES\n"); 
printfC'SPECIFIC HEAT (J/KgK)="); 
scanf(" % lf, &Cp);
printf("SUGGESTED SURFACE HEAT TRANSFER COEFFICIENT (W /m2K)="); 
scanf(" % lf, &h);

return;
}

/* INITIAL MAXIMUM TIME INCREMENT */ 
double inimaxtime()
{
/* Calculate maximum allowable time increment

for inital surface heat transfer coefficient */ 
if (dy <= dx) { Elen = dy; } 
if  (dx <= dy) { Elen = dx; }
Bi = (4*Kmax)/(2*Elen*h);
mine = (Elen*densitymax*Cp)/(2*h*(Bi+1));

retum(minc);
}

/* TIME INCREMENT SELECTION */ 
double timeset(double mine)
{
int tcheck, order;

checkl = 1; 
tcheck = 0; 
order = 1; 
while (tcheck =  0)
{
if  ((mine >= 0.50/order) && (mine < tperiod)) 
{

tine = 0.50/order; 
tcheck = 1;

}
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if  ((mine >= 0.25/order) && (mine < 0.50/order))
{

tine = 0.25/order; 
tcheck = 1;

}
if ((mine >= 0.20/order) && (mine < 0.25/order))
{

tine = 0.20/order; 
tcheck = 1;

}
if ((mine >= 0.10/order) && (mine < 0.20/order))
{

tine = 0.10/order; 
tcheck = 1;

}
order = order* 10;
}

retum(tinc);
}

int tperiodcheck()
{
while (tperiod <= tine)
{
printf("\n***ERROR: The selected time increment, %.4g, is greater than", tine); 
printf("\n or equal to the overall time period, %.4g", tperiod); 
printf("\n\nRE-SPECIFY THE REQUIRED TIME PERIOD:"); 
scanf(" %lf', &tperiod);
}

if  (tperiod > tine) { check = 1; }

return (check);
}

void numbereqnsO 
{
char stop;

eqnno = Nwnodes*Nhnodes*tperiod/tinc;
printf("\nThere will be %g calculations to conduct/iteration\n", eqnno);
printf("Do you wish to continue? [Y /N ]:");
scanf(" %c", &stop);
if  ((stop != 'Y') && (stop != 'y'))
{
if  (eqnno >= le6)
{

printf("\n!!*!?Holy Panicking Processors Batman!!*?!"); 
printf("\n**!??Let's Get the Heck Out of Here!**?!\n");

}
printf("\nProgramme Terminated"); 
exit(0);
}

return;
}
/* SET INTERVAL FOR OUTPUT OF RESULTS */ 
double resultsoutput()
{
Nincrements = tperiod/tinc;
printf("\nTHERE WILL BE %g INCREMENTS", Nincrements);
printf("\nAT WHAT TIME INTERVAL DO YOU WISH TO OUTPUT VALUES:");
scanf(" %lf', &outinc);

while (outinc > tperiod)
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{
printf("\n ***ERROR: This time interval must be smaller"); 
printf("\n than the time period %.lf", tperiod); 
printf("\n\nRE-SPECIFY THE OUTPUT TIME INTERVAL:"); 
scanf(" %lf", &outinc);
}

if  (tperiod/outinc > 5 .0 )
{
printf("\n* * * W ARNIN G THIS WILL GENERATE %.01f SUMMARY FILES PER ITERATION", 

tperiod/outinc);
printfOn INTERVAL TO CREATE 5 SUMMARY FILES IS %lf', tperiod/5.0); 
printf("\n CONFIRM THE INTERVAL: "); 
scanf(" %lf', &outinc);
}

retum(outinc);
}

/* INITIALISE ARRAY TO START TEMPERATURES */ 
void initarray(long rent, long cent, double initemp)
{
rent = 1;
while (rent <= Nhnodes)
{
cent = 1;
while (cent <= Nwnodes)
{

if  ((switchtol =  1) && (switchto2 == 0))
{ temps 1 [rent][cent] = initemp; } 
if  ((switchtol =  0) && (switchto2 ==1))
{ temps2 [rent] [cent] = initemp; }

cent ++;
}
rent ++;
}

return;
}

/* SCAN APPROPRIATE VALUES FOR CALCULATION */ 
double leftcomer(long rent,long cent, int switchtol,int switchto2) 
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{
Tp = tempsl[rcnt+l][ccnt+l];
Te = tempsl[rcnt+l][ccnt+2];
Ts = tempsl[rcnt+2][ccnt+l];
}
if  ((switchtol =  0) && (switchto2 =  1))
{
Tp = temps2[rcnt+l][ccnt+l];
Te = temps2[rcnt+l][ccnt+2];
Ts = temps2[rcnt+2][ccnt+l];
}

Ke = 15.0 + (0.013*Te);
Ks = 15.0 + (0.013*Ts); 
density = 7900.0 - (0.5*Tp);

Foe = (Ke*tinc)/(Elen*Elen*density*Cp);
Fos = (Ks*tinc)/(Elen*Elen*density*Cp);

Tptpl = (2*Foe*Te)+(2*Fos*Ts)+(Tp*(l-(2*Foe)-(2*Fos)));
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/* Write new value to alternative array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+l] = Tptpl; } 
if  ((switchtol =  0) && (switchto2 =  1))
{ tempsl[rcnt+l][ccnt+l] = Tptpl; }

if ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{
summarypre(timer, sumcnt);
fprintf(table, "%41d %6.31f %7.31f", rcnt+1 ,(height-(rcnt*(height/Nhelements)))* 1000, Tptpl); 
sumcnt ++;
}

return (Tptpl);
}
double topside(long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{
Tw = temps l[rcnt+l] [cent];
Tp = tempsl[rcnt+l][ccnt+l];
Te = temps l[rcnt+l][ccnt+2];
Ts = tempsl[rcnt+2][ccnt+l];
}
if  ((switchtol =  0) && (switchto2 =  1))
{
Tw = temps2[rcnt+l][ccnt];
Tp = temps2[rcnt+l][ccnt+l];
Te = temps2[rcnt+l][ccnt+2];
Ts = temps2[rcnt+2][ccnt+l];
}

K w = 15.0 + (0.013*Tw);
K e= 15.0+ (0.013*Te);
Ks = 15.0 + (0.013*Ts); 
density = 7900.0 - (0.5*Tp);

Fow = (Kw*tinc)/(Elen*Elen*density*Cp);
Foe = (Ke*tinc)/(Elen*Elen*density*Cp);
Fos = (Ks*tinc)/(Elen*Elen*density*Cp);

Tptpl = (Fow*Tw)+(Foe*Te)+(2*Fos*Ts)+(Tp*(l-Fow-Foe-(2*Fos)));
/* Write new value to alternative array */ 
if  ((switchtol = = 1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+l] = Tptpl; } 
if  ((switchtol =  0) && (switchto2 =  1))
{ tempsl[rcnt+l][ccnt+l] = Tptpl; }

if  ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{ fprintf(table, "%9.31f', Tptpl); }

retum(Tptpl);
}
double rightcomer(long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{
Tw = temps 1 [rcnt+l][ccnt];
Tp = tempsl[rcnt+l][ccnt+l];
Ts = tempsl[rcnt+2][ccnt+l];
}
if  ((switchtol =  0) && (switchto2 =  1))
{
Tw = temps2[rcnt+l][ccnt];
Tp = temps2[rcnt+l][ccnt+l];
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T s =  tem p s2 [rc n t+ 2 ][c c n t+ l] ;

}

Kw = 15.0 + (0.013*Tw);
Ks = 15.0 + (0.013*Ts); 
density = 7900.0 - (0.5*Tp);

Fow = (Kw*tinc)/(Elen*Elen*density*Cp);
Fos = (Ks*tinc)/(Elen*Elen*density*Cp);

Tptpl = (2*Fow*Tw)+(2*Fos*Ts)+(Tp*(l-(2*Fow)-(2*Fos)));
/* Write new value to alternative array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+l] = Tptpl; } 
if  ((switchtol =  0) && (switchto2 =  1))
{ tempsl[rcnt+l][ccnt+l] = Tptpl; }

if ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2)»)
{ fprintf(table, "%9.31f\n", Tptpl); }

return (Tptpl);
}
double leftside(long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{
Tn = tempsl[rcnt][ccnt+l];
Tp = temps l[rcnt+l][ccnt+l];
Te = temps l[rcnt+l][ccnt+2];
Ts = temps 1 [rcnt+2][ccnt+l];
}
if  ((switchtol == 0) && (switchto2 =  1))
{
Tn = temps2[rcnt][ccnt+l];
Tp = temps2[rcnt+l][ccnt+l];
Te = temps2[rcnt+l][ccnt+2];
Ts = temps2[rcnt+2][ccnt+l];
}

Kn = 15.0 + (0.013*Tn);
Ke = 15.0 + (0.013*Te);
Ks = 15.0 + (0.013*Ts); 
density = 7900.0 - (0.5*Tp);

Fon = (Kn*tinc)/(Elen*Elen*density*Cp);
Foe = (Ke*tinc)/(Elen*Elen*density*Cp);
Fos = (Ks*tinc)/(Elen*Elen*density*Cp);

Tptpl = (Fon*Tn)+(Fos*Ts)+(2*Foe*Te)+(Tp*(l-Fon-Fos-(2*Foe)));
/* Write new value to alternative array */ 
if  ((switchtol = = 1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+l] = Tptpl; } 
if  ((switchtol =  0) && (switchto2 =  1))
{ tempsl[rcnt+l][ccnt+l] = Tptpl; }

if  ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{
fprintf(table, "%41d %6.31f %7.31f, rcnt+l,(height-(rcnt*(height/Nhelements)))*1000, Tptpl); 
}

retum(Tptpl);
}
double internal (long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))

B.1.10



{
Tn = tempsl[rcnt][ccnt+l];
Tw = temps l[rcnt+l] [cent];
Tp = temps l[rcnt+l][ccnt+l];
Te = temps l[rcnt+l][ccnt+2];
Ts = temps l[rcnt+2] [ccnt+1];
}
if ((switchtol =  0) && (switchto2 =  1))
{
Tn = temps2[rcnt][ccnt+l];
Tw = temps2[rcnt+l][ccnt];
Tp = temps2[rcnt+l][ccnt+l];
Te = temps2 [rcnt+1 ] [ccnt+2];
Ts = temps2[rcnt+2][ccnt+l];
}

Kn = 15.0 + (0.013*Tn);
Kw = 15.0 + (0.013*Tw);
Ke = 15.0 + (0.013*Te);
Ks = 15.0 + (0.013*Ts); 
density = 7900.0 - (0.5*Tp);

Fon = (Kn*tinc)/(Elen*Elen*density*Cp);
Fow = (Kw*tinc)/(Elen*Elen*density*Cp);
Foe = (Ke*tinc)/(Elen*Elen*density*Cp);
Fos = (Ks*tinc)/(Elen*Elen*density*Cp);

Tptpl = (Fon*Tn)+(Fos*Ts)+(Foe*Te)+(Fow*Tw)+(Tp*(l-Fon-Fos-Foe-Fow)); 
/* Write new value to alternative array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+l] = Tptpl; } 
if  ((switchtol =  0) && (switchto2 =  1))
{ tempsl[rcnt+l][ccnt+l] = Tptpl; }

if  ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{ fprintf(table, "%9.31f\ Tptpl); }

return (Tptpl);
}
double rightside(long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{
Tn = temps 1 [rent] [ccnt+1];
Tw = temps l[rcnt+l] [cent];
Tp = temps l[rcnt+l] [ccnt+1];
Ts = temps l[rcnt+2] [ccnt+1];
}
if  ((switchtol =  0) && (switchto2 = 1 ) )
{
Tn = temps2[rcnt] [ccnt+1];
Tw = temps2[rcnt+l][ccnt];
Tp = temps2[rcnt+l] [ccnt+1];
Ts = temps2[rcnt+2] [ccnt+1];
}

Kn = 15.0 + (0.013*Tn);
Kw = 15.0 + (0.013*Tw);
K s=  15.0 + (0 .013*Ts); 
density = 7900.0 - (0.5*Tp);

Fon = (Kn*tinc)/(Elen*Elen*density*Cp);
Fow = (Kw*tinc)/(Elen*Elen*density*Cp);
Fos = (Ks*tinc)/(Elen*Elen*density*Cp);

Tptpl = (Fon*Tn)+(Fos*Ts)+(2*Fow*Tw)+(Tp*(l-Fon-Fos-(2*Fow)));



/* Write new value to alternative array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+1] = Tptpl; } 
if  ((switchtol =  0) && (switchto2 = 1 ) )
{ tempsl[rcnt+l][ccnt+1] = Tptpl; }

if ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{ fprintf(table, "%9.31f\n", Tptpl); }

retum(Tptpl);
}
double shocked(long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{
Tn = temps 1 [rent] [ccnt+1 ];
Tw = tempsl[rcnt+l][ccnt];
Tp = temps l[rcnt+l] [ccnt+1];
Ts = temps 1 [rcnt+2] [ccnt+1 ];
}
if  ((switchtol =  0) && (switchto2 = 1 ) )
{
Tn = temps2 [rent] [ccnt+1];
Tw = temps2[rcnt+l][ccnt];
Tp = temps2[rcnt+l] [ccnt+1];
Ts = temps2 [rcnt+2] [ccnt+1];
}

Kn = 15.0 + (0.013*Tn);
Kw = 15.0 + (0.013*Tw);
Ks = 15.0 + (0.013*Ts); 
density = 7900.0 - (0.5*Tp);

Fon = (Kn*tinc)/(Elen*Elen*density*Cp);
Fow = (Kw*tinc)/(Elen*Elen*density*Cp);
Fos = (Ks*tinc)/(Elen*Elen*density*Cp);
C = (h*tinc)/(Elen*density*Cp);

Tptpl = (Fon*Tn)+(Fos*Ts)+(2*Fow*Tw)+(2*C*Ta)+(Tp*(l-Fon-Fos-(2*Fow)-(2*C))); 
/* Write new value to alternative array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+1] = Tptpl; } 
if  ((switchtol == 0) && (switchto2 =  1))
{ tempsl[rcnt+l][ccnt+1] = Tptpl; }

if ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{ fprintf(table, "%9.31f\n", Tptpl); }

retum(Tptpl);
}
double leftsymm(long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{
Tn = temps 1 [rent] [ccnt+1];
Tp = temps l[rcnt+l] [ccnt+1];
Te = temps l[rcnt+l][ccnt+2];
}
if  ((switchtol =  0) && (switchto2 =  1))
{
Tn = temps2[rcnt] [ccnt+1];
Tp = temps2[rcnt+l] [ccnt+1];
Te = temps2[rcnt+l][ccnt+2];
}
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Kn = 15.0 + (0.013*Tn);
Ke = 15.0 + (0.013*Te); 
density = 7900.0 - (0.5*Tp);

Fon = (Kn*tinc)/(Elen*Elen*density*Cp);
Foe = (Ke*tinc)/(Elen*Elen*density*Cp);

Tptpl = (2*Fon*Tn)+(2*Foe*Te)+(Tp*(l-(2*Fon)-(2*Foe)));
/* Write new value to alternative array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+1] = Tptpl; } 
if ((switchtol =  0) && (switchto2 = 1 ) )
{ tempsl[rcnt+l][ccnt+1] = Tptpl; }

if ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{
fprintf(table, "%41d %6.31f %7.31f, rcnt+l,(height-(rcnt*(height/Nhelements)))*1000, Tptpl); 
}

retum(Tptpl);
}
double intemalsymm(long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol —  1) && (switchto2 =  0))
{
Tn = temps 1 [rent] [ccnt+1];
Tw = temps l[rcnt+l] [cent];
Tp = temps l[rcnt+l] [ccnt+1];
Te = temps l[rcnt+l][ccnt+2];
}
if  ((switchtol == 0) && (switchto2 =  1))
{
Tn = temps2 [rent] [ccnt+1];
Tw = temps2[rcnt+l][ccnt];
Tp = temps2[rcnt+l] [ccnt+1];
Te = temps2[rcnt+l][ccnt+2];
}

Kn = 15.0 + (0.013*Tn);
Kw = 15.0 + (0.013*Tw);
Ke = 15.0 + (0.013*Te); 
density = 7900.0 - (0.5*Tp);

Fon = (Kn*tinc)/(Elen*Elen*density*Cp);
Fow = (Kw*tinc)/(Elen*Elen*density*Cp);
Foe = (Ke*tinc)/(Elen*Elen*density*Cp);

Tptpl = (2*Fon*Tn)+(Foe*Te)+(Fow*Tw)+(Tp*(l-(2*Fon)-Foe-Fow));
/* Write new value to alternative array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+1] = Tptpl; } 
if  ((switchtol =  0) && (switchto2 = 1 ) )
{ tempsl[rcnt+l][ccnt+1] = Tptpl; }

if  ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{ fprintf(table, "%9.31f, T p tp l);}

return (Tptpl);
}
double shockedsymm(long rent,long cent, int switchtol,int switchto2)
{
/* scan appropriate array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{
Tn = temps 1 [rent] [ccnt+1];
Tw = temps l[rcnt+l] [cent];
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T p  =  tem p s l [ r c n t+ l ]  [ccn t+ 1];

}
if ((switchtol == 0) && (switchto2 == 1))
{
Tn = temps2[rcnt][ccnt+l];
Tw = temps2[rcnt+l][ccnt];
Tp = temps2[rcnt+l] [ccnt+1];
}

Kn = 15.0 + (0.013*Tn);
Kw = 15.0 + (0.013*Tw); 
density = 7900.0 - (0.5*Tp);

Fon = (Kn*tinc)/(Elen*Elen*density*Cp);
Fow = (Kw*tinc)/(Elen*Elen*density*Cp);
C = (h*tinc)/(Elen*density*Cp);

Tptpl = (2*Fon*Tn)+(2*Fow*Tw)+(2*C*Ta)+(Tp*(l-(2*Fon)-(2*Fow)-(2*C)));
/* Write new value to alternative array */ 
if  ((switchtol =  1) && (switchto2 =  0))
{ temps2[rcnt+l][ccnt+1] = Tptpl; } 
if  ((switchtol =  0) && (switchto2 == 1))
{ tempsl[rcnt+l][ccnt+1] = Tptpl; ]

if  ( (timeout >= (outinc-(tinc/2))) && (timeout <= (outinc+(tinc/2))))
{
fprintf(table, "%9.31f\n", Tptpl);
fprintf(table, "\n\nANALYSIS INFORMATIONXn");
fprintf(table, "VnTime period(s) = %lf Time Increment(s) = %lf\n", tperiod,tine);
fprintf(table, "\nSpecific Heat Capacity(J/KgK) = %.31f, Cp);
fprintf(table, "\nSurface Heat Transfer Coefficient(W/m2K) = %.31f\n", h);
fprintf(table, "\nWidth(mm) = %.31f Height(mm) = %.31f", width* 1000, height*1000);
fprintf(table, "\nNumber of Width Elements = %.01f', Nwelements);
fprintf(table, "\nNumber of Height Elements = %.01f, Nhelements);
fprintf(table, "\nElement length(mm) = %.31f, Elen* 1000);
fprintf(table, "\nNumber of Shocked Elements = %.01f', Nshelements);
fprintf(table, "\nTotal Number o f Elements = %.01f\n", Nwelements*Nhelements);
fprintf(table, "\nNumber o f FD Equations per Iteration = %g", Nwnodes*Nhnodes*tperiod/tinc);
fprintf(table, "\nNumber of Iterations = %d", itemum);

fclose(table); 
timeout = 0;
}

return (Tptpl);
}

/* GENERATE SUMMARY FILES */ 
void summarypre(double timer, double sumcnt)
{
char name[12], csumcnt[l]; 
char *ext = ".txt", *sum = "Sum"; 
long column;
int sig = 1; /* significant digits */

gcvt(sumcnt, sig, csumcnt); 
strcpy(name, sum); 
strcat(name, csumcnt); 
strcat(name, ext);

if  ( (table = fopen(name, "w")) =  NULL)
{
printf("\n*** Cannot open file %s ***\n", name); 
exit(0);
}
fprintf(table, "*************\n");
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fprintf(table, "Time = %.301f\n", timer); 
fprintf(table,
fprintf(table," COLUMN"); 
column = 1;
while (column <= Nwnodes)
{
if  (column < Nwnodes)
{ fprintf(table, "%9d", column); } 
if  (column =  Nwnodes)
{ fprintf(table, "%9d\n", column); } 
column ++;
}
column = 1;
fprintf(table," ROW POSTN."); 
while (column <= Nwnodes)
{
if  (column < Nwnodes)
{ fprintf(table, "%9.31f", (width-((column-l)*(width/Nwelements)))*1000); } 
if  (column =  Nwnodes)
{ fprintf(table, "%9.31f\n", (width-((column-1 )*(width/Nwelements)))* 1000); } 
column ++;
}

return;
}

/* PRINT ITERATION SUMMARY TO SCREEN AND LOG FILE */ 
void itersummaryO

fprintf(ilog, "ITERATION NO. %d\n", itemum);
fprintf(ilog, "Time increment = %.31f, (max = %.31f)\n", oldtinc, oldminc);
fprintf(ilog, "Surface Heat Transfer Coefficient = %.31f\n", oldh);
fprintf(ilog, "Fourier Number = %.31f\n", oldFo);
fprintf(ilog, "After %.31f seconds\n", tperiod);
fprintf(ilog, "Shocked centre Temperature = %.31fC\n", Tshock);
fprintf(ilog, "Temperature error = %.31fC\n", Terror);
fprintf(ilog, "Temperature error factor = %lf\n", Tfac);
if ( (Tfac <= -0.0009) || (Tfac >= 0.0009))
{
fprintf(ilog, "Next Surface Heat Transfer Coefficient = %.31f\n", h);
}
fprintf(ilog, "Number of shocked nodes = %.01f\n", Nshelements+1); 
fpniltf(llOg •̂

I* fprintf(fp, "End o f iteration %d\n\n", itemum); */

if  ( (pmtoscm =  ’Y’) || (pmtoscm == 'y' ) )
{

printf("ITERATION NO. %d\n", itemum);
printf("Time increment = %.31f, (max = %.31f)\n", oldtinc, oldminc); 
printf("Surface Heat Transfer Coefficient = %.31f\n", oldh); 
printf("Fourier Number = %.3If\n", oldFo); 
printf("After %.31f seconds\n", tperiod); 
printf("Shocked centre Temperature = %.31fC\n", Tshock); 
printf("Temperature error = %.31fC\n", Terror); 
printf("Temperature error factor = %lf\n", Tfac); 

if  ( (Tfac <= -0.0009) || (Tfac >= 0.0009))
{
printf("Next Surface Heat Transfer Coefficient = %.31f\n", h);
}
printf("Number of shocked nodes = %.01f\n", Nshelements+1);

}
else
{
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printf("ITERATION NO. %d Shocked Temperature = %.31f\n", itemum, Tshock); 
printf("Time = %.301f\n", timer-tinc);
}

return;
}

void timerstartO 
{
time_t t; 

time(&t);
printf("Programme Began: %s\n", ctime(&t)); 
fprintf(ilog, "Programme Began: %s\n\n", ctime(&t));

}
void timerend()
{
time_t t; 

time(&t);
printf("\n\nProgramme Completed: %s\n", ctime(&t)); 
fprintf(ilog, "\n\nProgramme Completed: %s\n", ctime(&t));

}
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Appendix B.2

Programme Code: U D I S P  Fortran Code

Exponential Reheat fo r  Return Thermal Shock Cycle by; 

*BOUNDARY\ UDISP User Routine
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u 
u 

u 
u 

u 
u

SUBROUTINE DISP(U,KSTEP,KINC,TIME,NODE,JDOF) 
C

INCLUDE 'ABA_PARAM.INC'
C

DIMENSION U(3),TIME(2)

TMAX = 625

REHEAT EXPONENTIAL EQUATION 
U (l) = U (l) + ((TM AX-U (!))*(! -EXP(-0.125 *TIME( 1))))

RETURN
END

B.2.2



Appendix B.3

Programme Code: Thermal Shock Analysis Mesh Generator

Mesh Generator fo r  Thermal Shock Fracture Model Configuration 

(Stress Analysis)
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/* Mesh Generator - Multiple Files 
Thermal Shock Variable Crack Length */

#include <stdio.h>
#include <math.h>

main()
{
char reply;
int Elsh,Elsw,con, Elaft,Elaftmin,Elbef,Elabov,Elabovmin;
int shintervals;
int crcnt.ncracks;
float shreg;
float crinc;
float SElh,SElw, height,width,theight; 
float x, postn, priormd,aftermd,abovemd, singh,singw; 
float biasu, afirstElen,alastElen,bfirstElen,blastElen,ufirstElen,ulastElen, 

sum;
float biaso, aratio,bratio,uratio,fratio, distance, aerror,berror,uerror; 
double Elbias, cnt;

FILE *fp;

printf("**Programme: shockmesh.cNn"); 
printf("**MESH DATA GENERATION programme^"); 
printf(" To calculate required model components"); 
printf(" CREATE 'datasum’ FILE");

height = 106.0; 
width = 40.0;

/* Make Geometry and Element Requests */ 
printf("\n** Geometry Information **\n"); 
printf("Crack Tip Position ="); 
scanf(" %f’, &postn); 
printf("Singularity Mesh Width (mm)\n");
printf("Maximum Width Possible With Current Crack Length is %.3f:", postn*width*2); 
scanf(" %f", &singw); 
printf("Singularity Mesh Height (mm)= "); 
scanf(" %T', &singh);
printf("Height of Shocked Region for Upper Crack Edge (mm)= "); 
scanf(" % f’, &shreg); 
if  (shreg < singh)
{
printf("***WARNING - The shocked region is smaller than the singularity height\n"); 
printf(" You will have to define the region yourself\n");
}

/* Test Crack and Singularity Geometry */ 
while ((singw/2) > (width*postn))
{
printf("*** Error: Half the specified width, %.3fmm, is greater than the crack length, %.3fmm ***\n", 

singw/2, width*postn); 
printf("Crack Tip Position = "); 
scanf(" % f, &postn); 
printf("Singularity Mesh Height (m m )="); 
scanf(" %fl, «&singh); 
printf("Singularity Mesh Width (mm)= "); 
scanf(" % f, &singw);
}

/* Open Crack Length minus Singularity Mesh */ 
priormd = (postn*width)-(singw/2);
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if  (singw =  postn*width*2) { priormd = 0; }
/* Ligament Length minus Singularity Mesh*/ 
aftermd = ((l-postn)*width)-(singw/2);

/* Distance Above Singularity to tied Surface */ 
abovemd = height-singh;

printf("\n** Element Information **\n"); 
printf("No. of Contours ="); 
scanf(" %d", &con);
printf("No. o f Elements Up Singularity Mesh ="); 
scanf(" %d", &Elsh);
printf("No. of Elements Across Singularity Mesh ="); 
scanf(" %d", &Elsw);
printf("\nMinimum No. o f Elements After Crack = "); 
scanf(" %d", &Elaftmin);

printf("\n** Biasing - only takes place outside singularity **\n"); 
printf("Suggested Outward Bias ="); 
scanf(" %f’, &biaso); 
while (biaso >= 1.0)
{
printf("Bias must be less than 1.0\n"); 
printf("Suggested Outward Bias = "); 
scanf(" %f', &biaso);
}

printf("\nMinimum No. o f Elements Upwards:\n");
printf("Suggested Region - %.lf: Required Minimum = ", (abovemd/aftermd)*Elaftmin);
scanf(" %d", &Elabovmin);
printf("Suggested Upward Bias =");
scanf(" %{", &biasu);
while (biasu >= 1.0)
{
printf("Bias must be less than 1.0\n"); 
printf("Suggested Upward Bias = "); 
scanf(" % f& biasu);
}

/* printf("Upward Bias taken as %.3f\n\n\n", biaso); 
biasu = biaso;*/

/* Singularity Bulk Element Size */
SElh = singh/Elsh;
SElw = singw/Elsw;

/* After Crack Outward Biasing and No. of Elements Calculation */ 
aerror = aftermd+1; 
aratio = 8.1; 
while (aratio > 8.0)
{
aerror = 0.06*aftermd; 
while ((aerror > (0.05*aftermd)))
{
cnt = 0; 
sum = 0; 
distance = 0;
Elaft =  Elaftmin-l;
while ((distance <= aftermd) || (Elaft < Elaftmin))
{
Elbias = pow(biaso,cnt); 
sum = sum + (1/Elbias); 
afirstElen = SElh; 
alastElen = afirstElen/Elbias; 
distance = afirstElen*sum;
Elaft = cnt+1; 
cnt++;
}
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aerror = distance - aftermd; 
biaso = biaso + 0.005;
}
aratio = alastElen/afirstElen; 
biaso = biaso - 0.001;
}
biaso = biaso - 0.004;

/* Open data summary file for writing required information */ 
fp = fopen("datasum", "w");

/* Output Data For After Tip Mesh Generation */

printf("\n\n***Final Output data for after tip mesh generation***\n");
printf("First Element Length is %.3f Last Element Length is %.3f\n", afirstElen.alastElen);
printf("Distance Error = %.3f\n", aerror);
printf("First to Last Element Ratio = %.3f\n", aratio);
printf("Outward Biasing = %.3f\n", biaso);
printf("No. of Elements in after crack mesh = %d\n\n", Elaft);

/* Pre-Crack Mesh Generation */
Elbef = 0; 
if  (priormd != 0)
{
cnt = 0; 
sum = 0; 
distance = 0;
Elbef = 0;
while (distance < priormd)
{
Elbias = pow(biaso,cnt); 
sum = sum + (1/Elbias); 
bfirstElen = SElh; 
blastElen = bfirstElen/Elbias; 
distance = bfirstElen*sum;
Elbef = cnt+1; 
cnt++;
}
berror = distance - priormd; 
bratio = blastElen/bfirstElen;

/* Output Data For Before Tip Mesh Generation */ 
printf("***Final Output data for before tip mesh generation***\n"); 
printf("Prior mesh distance = %f\n", priormd);
printf("First Element Length is %.3f Last Element Length is %.3f\n", bfirstElen,blastElen); 
printf("Distance Error = %.3f\n", berror); 
printf("First to Last Element Ratio = %.3f\n", bratio); 
printf("No. of Elements in prior crack mesh = %d\n\n", Elbef);

}

/* Upward Biasing and No. of Elements Calculation */ 
uerror = abovemd+1; 
uratio = 25.1; 
while (uratio > 25.0)
{
uerror = 0.06*abovemd; 
while ((uerror > (0.05*abovemd)))
{
cnt = 0; 
sum = 0; 
distance = 0;
Elabov = Elabovmin-1;
while ((distance <= abovemd) || (Elabov < Elabovmin))
{
Elbias = pow(biasu,cnt); 
sum = sum + (1/Elbias);
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ufirstElen = SElw; 
ulastElen = ufirstElen/Elbias; 
distance = ufirstElen*sum; 
if  (distance <= (shreg-singh))
{
shintervals = cnt+1;
}
Elabov = cnt+1; 
cnt++;
}
uerror = distance - abovemd; 
biasu = biasu + 0.005;
}
uratio = ulastElen/ufirstElen; 
biasu = biasu - 0.001;
}
biasu = biasu - 0.004;

/* Output Data For Above Tip Mesh Generation */

printf("***Final Output data for above tip mesh generation***\n");
printf("First Element Length is %.3f Last Element Length is %.3f\n", ufirstElen,ulastElen);
printf("Distance Error = %.3f\n", uerror);
printf("First to Last Element Ratio = %.3f\n", uratio);
printf("Upward Biasing = %.3f\n", biasu);
printf("No. of Elements above singularity mesh to top surface = %d\n", Elabov); 
printf("No. of Elements above singularity mesh to shock limit = %d\n\n", shintervals);

/* Write Element Givens to data summary file */ 
fprintf(fp, "*** Fixed Model Data ***\n"); 
f^)rintf(fp, "Crack Tip Position (a/w) = %.3f\n", postn);
fprintf(fp, "Singularity Height is = %.3f\n", singh);
fprintf(fp, "Singularity Width is = %.3f\n", singw);
fprintf(fp, "Number of J-Int. Contours = %d\n", con); 
fprintf(fp, "Elements Up Singularity = %d\n", Elsh); 
fprintf(fp, "Elements Across Singularity = %d\n", Elsw); 
fprintf(fp, "Calculated Outward Biasing = %.3f\n", biaso); 
fprintf(fp, "Calculated Upward Biasing = %.3f\n", biasu); 
fprintf(fp, "Number of Shocked Elements = %d\n", shintervals);

/* Begin Repeated Crack Length Model Generation */

printf("Would You Like to Generate Further Crack Lengths?\n"); 
printf("Cracks will use quoted biasing and advance on original length (y/n):"); 
scanf(" %c", &reply);

if  ((reply == 'y') || (reply =  'Y'))
{
printf("\nWhat is the a/w increment? "); 
scanf(" % f', &crinc);
printf("How Many Crack Lengths are Required? "); 
scanf(" %d", &ncracks);

/* Write Number Of Crack Lengths to data summary file */ 
f]printf(fip, "Number o f Crack Lengths = %d\n", ncracks); 
fprintf(fp, "Crack Length Increment = %.3f\n\n", crinc);
}

if ((reply !='y') && (reply != 'Y'))
{ fprintf(fp, "Number of Crack Lengths = l\n\n"); }

fprintf(fp, "***\n");
fprintf(f)>, "*** Crack 1 Data *** a/w = %.3f\n", postn); 
fprintf(fp, "Number o f Afterward Elements = %d\n", Elaft); 
f̂ »rintf(f̂ >, "Number of Prior Elements = %d\n", Elbef);
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fprintf(fp, "Number o f Upward Elements = %d\n", Elabov);

if ((reply == 'y') || (reply =  ’Y’))
{
crcnt = 1;
while (crcnt < ncracks)
{
/*After Tip Element Calculation */ 
cnt = 0; 
sum = 0; 
distance = 0;
Elaft = Elaftmin-l; 
while (distance <= aftermd)
{
aftermd = ((l-(postn+(crcnt*crinc)))*width)-(singw/2);
Elbias = pow(biaso,cnt); 
sum = sum + (1/Elbias); 
afirstElen = SElh; 
alastElen = afirstElen/Elbias; 
distance = afirstElen*sum;
Elaft = cnt+1; 
cnt++;
}

/* Before Tip Element Calculation */ 
if  (priormd > 0.0)
{
cnt = 0; 
sum = 0; 
distance = 0;
Elbef =0;
while (distance <= priormd)
{
priormd = ((postn+(crcnt*crinc))*width)-(singw/2);
Elbias = pow(biaso,cnt); 
sum = sum + (1/Elbias); 
bfirstElen = SElh; 
blastElen = bfirstElen/Elbias; 
distance = bfirstElen*sum;
Elbef = cnt+1; 
cnt++;
}

}

/* Abaove Tip Element Calculation */ 
cnt = 0; 
sum = 0; 
distance = 0;
Elabov = Elabovmin-1;
while ((distance <= abovemd) || (Elabov < Elabovmin))
{
Elbias = pow(biasu,cnt); 
sum = sum + (1/Elbias); 
ufirstElen = SElw; 
ulastElen = ufirstElen/Elbias; 
distance = ufirstElen*sum;
Elabov = cnt+1; 
cnt++;
}
fprintf(fp, "***\n");
f^rintf(fj), "*** Crack %d Data *** a/w = %.3f\n", crcnt+1, crinc*(crcnt+l));
fprintf(fp, "Number of Afterward Elements = %d\n", Elaft);
fprintf(fp, "Number of Prior Elements = %d\n", Elbef);
f^>rintf(fp, "Number of Upward Elements = %d\n", Elabov);
crcnt++;
}

}
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Appendix B.4

Programme Code: Cruciform Analysis Mesh Generator

Mesh Generator fo r  Cruciform Fracture Model Configuration
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/* Mesh Generator - Multiple Files 
Cruciform Variable Crack Length */

#include <stdio.h>
#include <math.h>

main()
{
char reply;
int Elsh,Elsw,con, Elaft,Elaftmin,Elbef,Elabov,Elabovmin; 
int crcnt,ncracks; 
float crinc;
float SElh,SElw, height,width; 
float x, postn, priormd,aftermd,abovemd, singh,singw; 
float biasu, afirstElen,alastElen,bfirstElen,blastElen,ufirstElen,ulastElen, 

sum;
float biaso, aratio,bratio,uratio,ffatio, distance, aerror,berror,uerror; 
double Elbias, cnt;

FILE *fp;

printf("Multiple Crack Length Input File Generator\n"); 
printf("C Programme: meshgen.c\n"); 
printf("Creates a file called 'datasum' in current directoryVn"); 
printf("C Programme: progen.c requires this file to run\n");

height = 50.0; 
width = 50.0;

/* Make Geometry and Element Requests */ 
printf("\n** Geometry Information **\n"); 
printf("Crack Tip Position = "); 
scanf(" %P, &postn); 
printf("Singularity Mesh Width (mm)\n");
printf("Maximum Width Possible With Current Crack Length is % .3f:", postn*width*2); 
scanf(" % f& singw ); 
printf("Singularity Mesh Height (mm)= "); 
scanf(" %P, &singh);

/* Test Crack and Singularity Geometry */ 
while ((singw/2) > (width*postn))
{
printf("*** Error: Half the specified width, %.3fmm, is greater than the crack length, %.3fmm ***\n", 

singw/2,width*postn); 
printf("Crack Tip Position ="); 
scanf(" %f', &postn); 
printf("Singularity Mesh Height (mm)= "); 
scanf(" %f', &singh); 
printf("Singularity Mesh Width (mm)= "); 
scanf(" %f', &singw);
}

/* Open Crack Length minus Singularity Mesh */ 
priormd = (postn*width)-(singw/2);

/* Ligament Length minus Singularity Mesh*/ 
aftermd = ((l-postn)*width)-(singw/2);

/* Distance Above Singularity to tied Surface */ 
abovemd = height-singh;

printf("\n** Element Information **\n"); 
printf("No. o f Contours ="); 
scanf(" %d", &con);
printf("No. of Elements Up Singularity Mesh = "); 
scanf(" %d", &Elsh);
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printf("No. o f Elements Across Singularity Mesh ="); 
scanf(" %d", &Elsw);
printf("\nMinimum No. o f Elements After Crack = "); 
scanf(" %d", &Elaftmin);

printf("\n** Biasing - only takes place outside singularity **\n"); 
printf("Suggested Outward Bias ="); 
scanf(" %f’, &biaso); 
while (biaso >= 1.0)
{
printf("Bias must be less than 1.0\n"); 
printf(”Suggested Outward Bias ="); 
scanf(" %f', &biaso);
}

printf("\nMinimum No. of Elements Upwards to Tied Surface:\n");
printf("Suggested Region - %.lf: Required Minimum = ", (abovemd/aftermd)*Elaftmin);
scanf(" %d", &Elabovmin);
printf("Suggested Upward Bias = ");
scanf(" %f', &biasu);
while (biasu >= 1.0)
{
printf("Bias must be less than 1.0\n"); 
printf("Suggested Upward Bias = "); 
scanf(" % f, &biasu);
}

/* printf("Upward Bias taken as %.3f\n\n\n", biaso); 
biasu = biaso;*/

/* Singularity Bulk Element Size */
SElh = singh/Elsh;
SElw = singw/Elsw;

/* After Crack Outward Biasing and No. o f Elements Calculation */ 
aerror = aftermd+1; 
aratio = 4.1; 
while (aratio > 4.0)
{
aerror = 0.06*aftermd; 
while ((aerror > (0.05*aftermd)))
{
cnt = 0; 
sum = 0; 
distance = 0;
Elaft = Elaftmin-1;
while ((distance <= aftermd) || (Elaft < Elaftmin))
{
Elbias = pow(biaso,cnt); 
sum = sum + (1/Elbias); 
afirstElen = SElh; 
alastElen = afirstElen/Elbias; 
distance = afirstElen*sum;
Elaft = cnt+1; 
cnt++;
}
aerror = distance - aftermd; 
biaso = biaso + 0.005;
}
aratio = alastElen/afirstElen; 
biaso = biaso - 0.001;
}
biaso = biaso - 0.004;

/* Open data summary file for writing required information */ 
fp = fopen("datasum", "w");
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/* Output Data For After Tip Mesh Generation */

printf("\n\n***Final Output data for after tip mesh generation***\n");
printf("First Element Length is %.3f Last Element Length is %.3f\n", afirstElen.alastElen);
printf("Distance Error = %.3f\n", aerror);
printf("First to Last Element Ratio = %.3f\n", aratio);
printf("Outward Biasing = %.3f\n", biaso);
printf("No. o f Elements in after crack mesh = %d\n\n", Elaft);

/* Pre-Crack Mesh Generation */
Elbef = 0; 
if (priormd > 0.0)
{
cnt = 0; 
sum = 0; 
distance = 0;
Elbef = 0;
while (distance <= priormd)
{
Elbias = pow(biaso,cnt); 
sum = sum + (1/Elbias); 
bfirstElen = SElh; 
blastElen = bfirstElen/Elbias; 
distance = bfirstElen*sum;
Elbef = cnt+1; 
cnt++;
}
berror = distance - priormd; 
bratio = blastElen/bfirstElen;

/* Output Data For Before Tip Mesh Generation */

printf("***Final Output data for before tip mesh generation***\n");
printf("First Element Length is %.3f Last Element Length is %.3f\n", bfirstElen,blastElen);
printf("Distance Error = %.3f\n", berror);
printf("First to Last Element Ratio = %.3f\n", bratio);
printf("No. of Elements in prior crack mesh = %d\n\n", Elbef);
}

/* Upward Biasing and No. o f Elements Calculation */ 
uerror = abovemd+1; 
uratio = 4.1; 
while (uratio > 4.0)
{
uerror = 0.06*abovemd; 
while ((uerror > (0.05*abovemd)))
{
cnt = 0; 
sum = 0; 
distance = 0;
Elabov = Elabovmin-1;
while ((distance <= abovemd) || (Elabov < Elabovmin))
{
Elbias = pow(biasu,cnt); 
sum = sum + (1/Elbias); 
ufirstElen = SElw; 
ulastElen = ufirstElen/Elbias; 
distance = ufirstElen*sum;
Elabov = cnt+1; 
cnt++;
}
uerror = distance - abovemd; 
biasu = biasu + 0.005;
}
uratio = ulastElen/ufirstElen; 
biasu = biasu - 0.001;
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}
b iasu  =  b ia su  - 0 .004 ;

/* Output Data For Above Tip Mesh Generation */

printf("***Final Output data for above tip mesh generation***\n");
printf("First Element Length is %.3f Last Element Length is %.3f\n", ufirstElen.ulastElen);
printf("Distance Error = %.3f\n", uerror);
printf("First to Last Element Ratio = %.3f\n", uratio);
printf("Upward Biasing = %.3f\n", biasu);
printf("No. of Elements above singularity mesh to tied surface = %d\n\n", Elabov);

/* Write Element Givens to data summary file */ 
f]printf(fp, "*** Fixed Model Data ***\n"); 
fprintf(f)), "Crack Tip Position (a/w) = %.3f\n", postn);
f))rintf(f^, "Singularity Height is = %.3f\n", singh);
fprintf(fp, "Singularity Width is = %.3f\n", singw);
fprintf(fp, "Number of J-Int. Contours = %d\n", con); 
f )̂rintf(f]p, "Elements Up Singularity = %d\n", Elsh); 
f)irintf(f)), "Elements Across Singularity = %d\n", Elsw); 
f))rintf(f)>, "Calculated Outward Biasing = %.3f\n", biaso); 
fprintf(fp, "Calculated Upward Biasing = %.3f\n", biasu);

/* Begin Repeated Crack Length Model Generation */

printf("Would You Like to Generate Further Crack Lengths?\n"); 
printf("Cracks will use quoted biasing and advance on original length (y/n):"); 
scanf(" %c", &reply);

if ((reply == ’y') || (reply == 'Y'))
{
printf("\nWhat is the a/w increment? "); 
scanf(" % f, &crinc);
printf("How Many Crack Lengths are Required? "); 
scanf(" %d", &ncracks);

/* Write Number Of Crack Lengths to data summary file */ 
fprintf(fp, "Number o f Crack Lengths = %d\n", ncracks); 
fprintf(fp, "Crack Length Increment = %.3f\n\n", crinc);
}

if  ((reply !='y') && (reply != 'Y'))
{ fprintf(fp, "Number of Crack Lengths = l\n\n"); }

fprintf(fp, "***\n");
f̂ >rintf(f̂ >, "*** Crack 1 Data ***\n");
fprintf(fp, "Number of Afterward Elements = %d\n", Elaft);
f)jrintf(f^, "Number of Prior Elements = %d\n", Elbef);
fprintf(fp, "Number of Upward Elements = %d\n", Elabov);

if ((reply == 'y') || (reply =  ’Y'))
{
crcnt= 1;
while (crcnt < ncracks)
{
/*After Tip Element Calculation */ 
cnt = 0; 
sum = 0; 
distance = 0;
Elaft = Elaftmin-1; 
while (distance <= aftermd)
{
aftermd = ((l-(postn+(crcnt*crinc)))*width)-(singw/2);
Elbias = pow(biaso,cnt); 
sum = sum + (1/Elbias);
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afirstElen = SElh; 
alastElen = afirstElen/Elbias; 
distance = afirstElen*sum;
Elaft = cnt+1; 
cnt++;
}

/* Before Tip Element Calculation */ 
if  (priormd > 0.0)
{
cnt = 0; 
sum = 0; 
distance = 0;
Elbef = 0;
while (distance <= priormd)
{
priormd = ((postn+(crcnt*crinc))*width)-(singw/2);
Elbias = pow(biaso,cnt); 
sum = sum + (1/Elbias); 
bfirstElen = SElh; 
blastElen = bfirstElen/Elbias; 
distance = bfirstElen*sum;
Elbef = cnt+1; 
cnt++;
}
}

/* Abaove Tip Element Calculation */ 
cnt = 0; 
sum = 0; 
distance = 0;
Elabov = Elabovmin-1;
while ((distance <= abovemd) || (Elabov < Elabovmin))
{
Elbias = pow(biasu,cnt); 
sum = sum + (1/Elbias); 
ufirstElen = SElw; 
ulastElen = ufirstElen/Elbias; 
distance = ufirstElen*sum;
Elabov = cnt+1; 

cnt++;
}
fprintf(fp, "***\n");
fprintf(fp, "*** Crack %d Data ***\n", crcnt+1); 
fprintf(fp, "Number o f Afterward Elements = %d\n", Elaft); 
f)printf(f̂ >, "Number o f Prior Elements = %d\n", Elbef);
fprintf(fp, "Number o f Upward Elements = %d\n", Elabov); 
crcnt++;
}
}

printf("\n\nrm Done\n\n");

fclose(fp);
return;
}
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Appendix B.5

Programme Code: Thermal Shock Input File Generator

ABAQUS Input File Generator fo r  Thermal Shock Fracture M odel 

(Stress Analysis)
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/* Input File Generator - Multiple Files 
Thermal Shock Variable Crack Length */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

main()
{
char postnc[5], fhame[20],fhamex[20], fadd[10];
char Elaftc[3],Elbefc[3],Elabovc[3], Elshc[3],Elswc[3], conc[2];
char biasoc[5],biasuc[5], singhc[4],singwc[4];
char ncracksc[2],crincc[5];
int inChar;
int Elaft,Elbef,Elabov, Elsh,Elsw, con;
int Snl,Sn2,Sn3,Sn4,Sn5,Sn6,Sn7,Sn8,Sn9, Sine;
int Bnl,Bn2,Bn3,Bn4,Bn5,Bn6,Bn7,Bn8, Bn9,BnlO,Bnl l,B n l2 , Bine, Tine; 
int S, Ba,Bb,Bc,Bd,Be, temp,tcheck, line; 
int ncracks, crcnt; 
long cnt;
float postn, singh,singw, priormd; 
float biaso,biasu, Srange.Smean, fx2,fx3,fy5,fx7,fx8; 
float sx l.sy l, sx2,sy2, sx3,sy3, sx4,sy4, sx5,sy5, 

sx6,sy6, sx7,sy7, sx8,sy8, sx9,sy9, 
bxl.by l, bx2,by2, bx3,by3, bx4,by4, bx5,by5, 
bx6,by6, bx7,by7, bx8,by8, bx9,by9; 

float crinc; 
float height, width;

FILE *read;
FILE *fp;
FILE *mat;

height = 30.0; 
width = 40.0;

/* Open data summary file for reading */ 
if  ((read = fopen("datasum", "r")) =  NULL) 
{ printf("Cannot open datasum\n"); }

/* Read & Write Fixed Element Data */ 
cnt = 31;

fseek(read, 25+(l*cnt), 0); 
fscanf(read, "%s", postnc); 
postn = atof(posmc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", singhc); 
singh = atof(singhc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", singwe); 
singw = atof(singwc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", cone); 
con = atoi(conc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", Elshc);
Elsh = atoi (Elshc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", Elswc);

B.5.2



Elsw = atof(Elswc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", biasoc); 
biaso = atof(biasoc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", biasuc); 
biasu = atof(biasuc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", ncracksc); 
ncracks = atoi (ncracksc);

if (ncracks > 1 )
{
fseek(read, cn t+1 ,1); 
fscanf(read, "%s", crincc); 
crinc = atof(crincc);
}

if  (ncracks = = 1)
{
crinc = 0;
fseek(read, 27+cnt, 1); 
fscanf(read, "%s", Elaftc);
Elaft = atoi (Elaftc);

fseek(read, cn t+1 ,1); 
fscanf(read, "%s", Elbefc);
Elbef = atoi (Elbefc);

fseek(read, cn t+1 ,1); 
fscanf(read, "%s", Elabovc);
Elabov = atoi(Elabovc);
}

if  (ncracks > 1 )
{
fseek(read, 26+1+cnt, 1); 
fscanf(read, "%s", Elaftc);
Elaft = atoi(Elaftc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", Elbefc);
Elbef = atoi (Elbefc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", Elabovc);
Elabov = atoi(Elabovc);
}

/* Define Singulrity Nodes */
Sine = (2*con)+(2*Elaft)+l;
Snl = 1;
Sn2 = Snl+(2*con);
Sn3 = Sn2+(Elsh*Sinc);
Sn4 = Sn3+(Elsh*Sinc);
Sn5 = Sn4+(Elsw*Sinc);
Sn6 = Sn5+(Elsw*Sinc);
Sn7 = Sn6+(Elsh*Sinc);
Sn8 = Sn7+(Elsh*Sinc);
Sn9 = Sn8-(2*con);

printf("What is the Cyclic Stress Range (MPa, R=0.1):"); 
scanf(" %f,  &Srange);
Smean = (0.45*(Srange/0.9))+(0.1*(Srange/0.9));
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printf("What is the Temperature (celcius):");
scanf(" %d", &temp);
printf("\n");

tcheck = 0; 
while( tcheck =  0)
{
if  (temp =  300) { tcheck = 1; } 
if  (temp =  350) { tcheck = 1; } 
if  (temp =  400) { tcheck = 1; } 
if  (temp =  450) { tcheck = 1; } 
if  (temp =  500) { tcheck = 1; } 
if  (temp =  550) { tcheck = 1; } 
if  (temp =  600) { tcheck = 1; } 
if  (temp =  625) { tcheck = 1; } 
if  (temp =  650) { tcheck = 1; } 
if  (temp =  700) { tcheck = 1; }

if (tcheck =  0)
{
printf("*** ERROR: Temperatures are only available for:\n"); 
printf(" 3 0 0 ,3 5 0 ,4 0 0 ,4 5 0 ,5 0 0 ,5 5 0 ,6 0 0 ,6 2 5 ,6 5 0 ,700\n\n"); 
printf("Please provide one the available Temperatures:"); 

scanf(" %d", &temp); 
printf("\n");

}
}

/* Start of Programme Loop For Multiple Crack Length Files */ 
crcnt = 0;
while (crcnt < ncracks)
{
if ( ncracks > 1 )
{
printf("Provide a file name for crack %d at a/w = % .3f:", crcnt+1,postn);
scanf(" %s", fname);
strcat(fname, ”.inp");
if ((fp = fopen(fhame, "w")) == NULL)
{ printf("Cannot open %s\n", fname); }
}
if  ( ncracks = 1 )
{
if  ((fp = fopen("input.inp", "w")) =  NULL)
{ printf("Cannot open file input.inp\n"); }
}

/* Define Body Nodes */
Bnl = Sn2+(2*Elbef);
Bn2 = Bnl+(2*Elsh*Sinc);
Bn8 = Sn8+(2*Elaft);
Bine = Bn8-Sn4+1;

printf("Minimum Nodal Increment Upwards is %d\n", Bine); 
printf("Provide an increment greater or equal to this:"); 
scanf(" %d", &Tinc); 
while (Tine < Bine)
{
printfflncrement must be greater than %d\n", Bine); 
printf("New Upwards Increment = "); 
scanf(" %d", &Tinc); 
printf("\n");

}
Bine = Tine;

Bn3 = Bn2+(2*Elabov*Binc);
Bn4 = Bn3-(2*Elbef);
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Bn5 = Bn4+(2*Elsw*Sinc);
Bn6 = Bn5+(2*Elaft);
Bn7 = Sn6+(2*Elaft);
Bn8 = Sn8+(2*Elaft);

priormd = (postn*width)-(singw/2); 
printf("Prior Mesh Distance is %.3f\n\n", priormd);

fx2 = singh*0.25;
if (fx2 >= 0.40*priormd) { fx2 = 0.40*priormd;} 
fx3 = singh*0.175;
if (fx3 >= 0.25*priormd) { fx3 = 0.25*priormd; } 
fy5 = singw*0.15; 
fx7 = singh*0.175; 
fx8 = singh*0.25;

/* Singularity node co-ordinates */ 
sxl = width*postn; 
syl = 0.0;
sx2 = (width*postn)-(singw/2)-fx2; 
if  (Elbef = 0 )  { sx2 = 0.0; } 
sy2 = 0.0;
sx3 = (width*postn)-(singw/2)-fx3; 
if  (Elbef = 0 )  { sx3 = 0.0; } 
sy3 = singh/2;
sx4 = (width*postn)-(singw/2);
if (Elbef = = 0) { sx4 = 0.0; }
sy4 = singh;
sx5 = (width*postn);
sy5 = singh+fy5;
sx6 = (width*postn)+(singw/2);
sy6 = singh;
sx7 = (width *postn)+(singw/2)+fx7; 
sy7 = singh/2;
sx8 = (width*postn)+(singw/2)+fx8;
sy8 = 0.0;
sx9 = width*postn;
sy9 = 0.0;

/* Body node co-ordinates */
bxl = 0.0;
byl = 0.0;
bx2 = 0.0;
by2 = singh;
bx3 = 0.0;
by3 = height;
bx4 = (width*postn)-(singw/2); 
by4 = height;
bx5 = (width*postn)+(singw/2);
by5 = height;
bx6 = width;
by6 = height;
bx7 = width;
by7 = singh;
bx8 = width;
by8 = 0.0;

/* Generate Abaqus Input File */

fprintf(fp, "*HEADING\n");
fprintf(fp," ISOTHERMAL - %dC\n", temp);
fprintf(fp," EQUIBIAXIAL - CYCLIC STRESS RANGE = %.lfMPa\n", Srange); 
fprintf(fp," %.3f AAV CRACK LENGTH\n", postn); 
fprintf(fp, "**\n");
fprintf(fp, "^RESTART, WRITE, FREQUENCY=5\n");
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fprintf(fp, '^PREPRINT, ECHO=NO, MODEL=NO\n"); 
fprintf(fp, "**\n");
fprintf(fp, "**NODE GENERATION^"); 
fprintf(fp, "**SINGULARITY\n"); 
fprintf(f{>, "*NODE\n");
f)>rintf(f)>, "%5d, \t-%.3f, %.3f\n", Snl, sx l,sy l); 
fprintf(f)), "%5d, \t-%.3f, %.3f\n", Sn2, sx2,sy2); 
fprintf(f)>, "%5d, \t-%.3f, %.3f\n", Sn3, sx3,sy3); 
f̂ >rintf(f̂ ), "%5d, \t-%.3f, %.3f\n", Sn4, sx4,sy4); 
f^rintf(f)), "%5d, \t-%.3f, %.3f\n", Sn5, sx5,sy5); 
fj)rintf(f)), "%5d, \t-%.3f, %.3f\n", Sn6, sx6,sy6);
4)rintf(fJ), "%5d, \t-%.3f, %.3f\n", Sn7, sx7,sy7); 
f̂ >rintf(f̂ ), "%5d, \t-%.3f, %.3f\n", Sn8, sx8,sy8); 
fprintf(fp, "%5d, \t-%.3f, %.3f\n", Sn9, sx9,sy9); 
fprintf(fp, "*NGEN, LINE=P, NSET=SINGRITE\n"); 
fjprintf(f£>," %d,%d, %d,%d\n", Sn2,Sn4, Sinc,Sn3); 
fprintf(fp, "*NGEN, LINE=P, NSET=SINGTOP\n"); 
f̂ >rintf(f^>," %d,%d, %d,%d\n", Sn4,Sn6, Sinc,Sn5); 
fjprintf(fp, "*NGEN, LINE=P, NSET=SINGLEFT\n"); 
fprintf(f^)," %d,%d, %d,%d\n", Sn6,Sn8, Sinc,Sn7); 
fprintf(fp, "*NGEN, NSET=TIP\n"); 
f^rintf(f^)," %d,%d, %d\n", Snl,Sn9, Sine); 
fprintf(fp, "*NSET, NSET=SINGSURR\n"); 
fprintf(fp," SINGRITE,SINGTOP,SINGLEFT\n"); 
fprintf(fp, "*NFILL, NSET=NSING,SINGULAR=l\n"); 
fprintf(fp," TIP.SINGSURR, %d\n", 2*con,l); 
fprintf(fp, "**\n");
fj)rintf(fp, "**BODY SURROUNDINGSVn"); 
fprintf(fp, "*NODE\n"); 
if  (Elbef != 0)
{
fprintf(fp, "%7d, %8.3f,%8.3f\n", B nl,bxl,byl); 
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn2,bx2,by2); 
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn3,bx3,by3);
}
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn4,-bx4,by4); 
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn5,-bx5,by5); 
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn6,-bx6,by6); 
fprintf(f}>, "%7d, %8.3f,%8.3f\n", Bn7,-bx7,by7); 
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn8,-bx8,by8); 
fprintf(fp, "*NGEN, NSET=RITELOW\n"); 
f))rintf(f^)," %d,%d, %d\n", Bnl,Bn2, Sine); 
fprintf(fp, "*NGEN, NSET=LEFTLOW\n"); 
f))rintf(f)>," %d,%d, %d\n", Bn7,Bn8, Sine); 
fprintf(fp, "*NGEN, NSET=HIGHTOP\n"); 
fprintf(fp," %d,%d, %d\n", Bn4,Bn5, Sine);
fprintf(fp, " W IL L , NSET=NSURRA, TWO STEP,BIAS=%.3f\n", biasu);
fprintf(fp," SINGTOP,HIGHTOP, %d,%d\n", 2*Elabov,Binc);
fprintf(fp, "*NSET, NSET=LEFTINN, GENERATE^");
f̂ >rintf(f^>," %d,%d, %d\n", Sn6+Binc,Bn5, Bine);
fprintf(fp, "*NSET, NSET=RITEINN, GENERATED");
f^rintf(f)>," %d,%d, %d\n", Sn4+Binc,Bn4, Bine);
fprintf(fp, " W IL L , NSET=NSURRB, TWO STEP,BIAS=%.3f\n", biaso);
if (Elbef != 0)
{
fprintf(fp," SINGRITE,RITELOW, %d,%d\n", 2*Elbef,l);
}
fprintf(fp," SINGLEFT,LEFTLOW, %d,%d\n", 2*Elaft,l);
fprintf(fp, "*NCOPY, CHANGE NUMBER=%d, OLD SET=LEFTINN,NEW SET=LEFTHIGH, 

SHIFT, MULTIPLE=lVn", 2*Elaft);
fprintf(fp," -%.3f,%.3f,%.3f\n", width-(width*postn)-(singw/2),0,0); 
fprintf(fp," 0.0,0.0,0.0,0.0,0.0,1.0,0.0\n"); 
if  (Elbef != 0)
{
fprintf(fp, "*NCOPY, CHANGE NUMBER=%d, OLD SET=RITEINN,NEW SET=RITEHIGH, 

SHIFT,MULTIPLE=l\n", 2*Elbef);
fprintf(fp," %.3f,%.3f,%.3f\n", width-(width*(l-postn))-(singw/2),0,0);
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fprintf(fp," 0.0,0.0,0.0,0.0,0.0,1.0,0.0\n");
}
fprintf(fp, "W IL L , NSET=NSURRC, TWO STEP,BIAS=%.3f\n", biaso); 
fprintf(fp," LEFTINN,LEFTHIGH, %d,%d\n", 2*Elaft,l); 
if  (Elbef != 0)
{
fprintf(fp," RITEINN,RITEHIGH, %d,%d\n", 2*Elbef,l);
}
fprintf(fp, "**\n");
fprintf(fp," **BOUNDARIESXn");
fprintf(fp, " W E T , NSET=LOADEDGE, GENERATE^");
if (Elbef !=0)
{
fprintf(fp," %d,%d, %d\n", Bn4,Bn3,1);
}
fprintf(fjp," %d,%d, %d\n", Bn4,Bn5, Sine); 
f)irintf(f))," %d,%d, %d\n", B n5,Bn6,1); 
fprintf(fp, "*NSET, NSET=CRFRONT, GENERATEVn"); 
fprintf(f)>," %d,%d, %d\n", Sn9,Bn8,1); 
fprintf(fp, "**\n");

/* Calculate Element Quantities */
S = ((2*Elsh)+Elsw)*con;
Ba = Elsh*Elbef;
Bb = ElbePElabov;
Be = Elsw*Elabov;
Bd = Elabov*Elaft;
Be = Elsh*Elaft;

/* Continue Programme */ 
fprintf(fp, "**ELEMENT GENERATION\n"); 
fprintf(fp, "**SINGULARITY\n"); 
fprintf(fp, "^ELEMENT, TYPE=CPS8R\n");
fprintf(fp," %d, %d,%d,%d,%d, %d,%d,%d,%d\n", 1, l,3,3+(2*Sinc),l+(2*Sinc), 2,3+Sinc,2+(2*Sinc),l+Sinc); 
fprintf(fp, "*ELGEN, ELSET=ELSING\n");
fprintf(fj)," %d, %d,%d,%d, %d,%d,%d\n", 1, con,2,l, (2*Elsh)+Elsw,2*Sinc,con); 
fprintf(fp, "**BODY SURROUND\n"); 
fprintf(fp, "*ELEMENT, TYPE=CPS8R\n"); 
if  (Elbef != 0.0)
{
fprintf(fp," %d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n",S+l, Sn2,Sn2+2,Sn2+2+(2*Sinc),Sn2+(2*Sinc), 

Sn2+1 ,Sn2+2+Sinc,Sn2+1+(2*Sinc),Sn2+Sinc);
fprintf(fp," %d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n",l+S+Ba, Sn4,Sn4+2,Sn4+2+(2*Binc),Sn4+(2*Binc), 

Sn4+l,Sn4+2+Binc,Sn4+l+(2*Binc),Sn4+Binc);
}
fprintf(fp," %d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", S+Ba+Bb+1,
Sn4+(2*Sinc),Sn4,Sn4+(2*Binc),Sn4+(2*Sinc)+(2*Binc),
Sn4+Sinc,Sn4+Binc,Sn4+Sinc+(2*Binc),Sn4+(2*Sinc)+Binc);
fprintf(fp," %d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", S+Ba+Bb+Bc+1,
Sn6+2,Sn6,Sn6+(2*Binc),Sn6+2+(2*Binc), Sn6+l,Sn6+Binc,Sn6+l+(2*Binc),Sn6+2+Binc);
fprintf(fp," %d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", S+Ba+Bb+Bc+Bd+1,

Sn6+2+(2*Sinc),Sn6+(2*Sinc),Sn6,Sn6+2, Sn6+l+(2*Sinc),Sn6+Sinc,Sn6+l,Sn6+2+Sinc);
fprintf(fp, "*ELGEN, ELSET=ELSURR\n");
if (Elbef != 0.0)
{
fprintf(fp," %4d, %2d,%3d,%d, %2d,%4d,%2d\n", S+ l, Elbef,2,1, Elsh,2*Sinc,Elbef); 
fprintf(fp," %4d, %2d,%3d,%d, %2d,%4d,%2d\n", 1+S+Ba, Elbef,2,l, Elabov,2*Binc,ElbeQ;
}
fprintf(fp," %4d, %2d,%3d,%d, %2d,%4d,%2d\n", l+S+Ba+Bb,Elsw,2*Sinc,l, Elabov,2*Binc,Elsw);
fprintf(fp," %4d, %2d,%3d,%d, %2d,%4d,%2d\n", 1+S+Ba+Bb+Bc,Elaft,2,1, Elabov,2*Binc,Elaft);
fprintf(fp," %4d, %2d,%3d,%d, %2d,%4d,%2d\n", 1+S+Ba+Bb+Bc+Bd,Elaft,2,1, Elsh,2*Sinc,Elaft);
fprintf(fp, "*ELSET, ELSET=ALL\n");
f^rintf(fi>," ELSING,ELSURR\n");
fprintf(f)3, "**\n");
f^rintf(f^, "**LOADINGS\n");
fprintf(fp, "*ELSET,ELSET=LOADED3, GENERATED"); 
if  (Elbef != 0)
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{
fprintfifp," %d,%d, %d\n", S+Ba+Bb-Elbef+l,S+Ba+Bb, 1);
}
fprintf(fip," %d,%d, %d\n", S+Ba+Bb+Bc-Elsw+l,S+Ba+Bb+Bc, 1); 
fprintf(fp," %d,%d, %d\n", S+Ba+Bb+Bc+Bd-Elaft+l,S+Ba+Bb+Bc+Bd, 1); 
fprintf(fp, "**MATERIAL DEFINTION\n");
fprintf(fp, "*SOLID SECTION, ELSET=ALL,MATERIAL=AISI316\n"); 
f^rintf(f{>," 4.0\n");
fprintf(fp, ’̂ MATERIAL, NAME=AISI316\n"); 
fyrintf(f{>, "^DEFORMATION PLA STIC ITW );

/*Read from materials summary file - matsum */

if  ((mat = fopen("matsum", "r")) =  NULL)
{ printf("Cannot open materials summary file ’matsumVi"); }

if (temp == 300) {line = 0;} 
if  (temp =  350) {line = 1;} 
if  (temp =  400) {line = 2;} 
if  (temp == 450) {line = 3;} 
if  (temp =  500) {line = 4;} 
if  (temp =  550) {line = 5;} 
if  (temp == 600) {line = 6;} 
if  (temp =  625) {line = 7;} 
if  (temp =  650) {line = 8;} 
if  (temp =  700) {line = 9;}

fseek(mat,(47*line)+197,0); 
while ((inChar = getc(mat)) != '\n')
{ putc(inChar,fp); }

/* Continue Programme */ 
fprintf(fp, "\n**\n");
fprintf(fp, "**SINUSIODAL LOADING DEFINTIONXn");
fprintf(fp, "*AMPLITUDE, DEFINITION=PERIODIC,VALUE=ABSOLUTE, NAME=SINWAVE\n");
fprintf(fp," 1,6.283185307,0.0,-%.3f\n", Smean);
fprintf(f)>," 0.0,-%.If, 0.0,0.0, 0 .0 ,0 .0 ,0.0,0.0\n", Srange/2);
fprintf(fp, "**\n");
fprintf(fp," *B OUNDARY\n");
fprintf(f)>," CRFRONT, 2\n");
f{)rintf(fi>," LOADEDGE, l\n");
f))rintf(f)>, "**\n");
fj)rintf(fi), "** APPLY LINEAR RAMP TO MEAN STRESS\n");
^rintf(fj), "*STEP, INC=100\n"); 
fprintf(fp, "*STATIC\n"); 
f{)rintf(f)>," 0.1,1.0\n"); 
fJ)rintfCfp, "*DLOAD, OP=MOD\n"); 
fprintf(fp," LOADED3, P3, -%.3f\n", Smean);
fprintf(fp, "*CONTOUR INTEGRAL, CONTOUR=%d, SYMM, OUTPUT=BOTH\n", con);
fprintfifp," TIP, -1.0,0.0\n");
fjnintf(fp, "*NODE PRINT, FREQUENCY=0\n");
fprintf(f)>, "*EL PRINT, FREQUENCY=0\n”);
fprintfifp, "*NODE FILE, FREQUENCY=l\n");
f^>rintf(fp," U\n");
fprintfifp, "*EL FILE, FREQUENCY=l\n");
f̂ >rintf(f^>," S\n");
f̂ >rintf(f^>," E\n");
fprintf(fp," PE\n");
fprintf(fp, "*END STEP\n");
f̂ )rintf(f̂ >, "**\n");
f^rintf(f{), "** APPLY SINUSIODAL LOADING PATTERNXn"); 
fprintf(fp, "*STEP, INC=100\n"); 
fprintf(fp, "*STATIC, DIRECT\n");
I )̂rintf(f^>," 0.025,1.0\n");
fjmntf(f{), "*DLOAD, AMPLITUDE=SINWAVE, OP=MOD\n");
^)rintf(fp," LOADED3, P3\n");
fprintf(f)), "*CONTOUR INTEGRAL, CONTOUR=%d, SYMM, OUTPUT=BOTH\n", con);
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fprintf(fp," TIP, -1.0,0.0\n"); 
fprintf(fp, "*NODE PRINT, FREQUENCY=0\n"); 
fprintf(fp, "*EL PRINT, FREQUENCY=0\n"); 
f^>rintf(fp, "*NODE FILE, FREQUENCY=5\n"); 
f^rintf(f^>," U\n");
fprintf(fp, "*EL FILE, FREQUENCY=5\n"); 
fprintf(fp," S\n"); 
fyrintf(f^," E\n");

" PE\n");
Iprintf(f^>, "*END STEP\n");

crcnt++;
postn = postn+crinc; 
fseek(read, 25+1+cnt, 1); 
fscanf(read, "%s", Elaftc);
Elaft = atoi(Elaftc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", Elbefc);
Elbef = atoi(Elbefc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", Elabovc);
Elabov = atoi(Elabovc);
}

fclose(read);
fclose(fp);
fclose(mat);
return;
}
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Appendix B.6

Programme Code: Cruciform Analysis Input File Generator

ABAQUS Input File Generator fo r  Cruciform Fracture Model
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/* Input File Generator - Multiple Files 
Cruciform Variable Crack Length */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

main()
{
char postnc[5], fhame[20],fhamex[20], fadd[10];
char Elaftc[3],Elbefc[3],Elabovc[3], Elshc[3],Elswc[3], conc[2];
char biasoc[5],biasuc[5], singhc[4],singwc[4];
char ncracksc[2],crincc[5];
int inChar;
int Elaft,Elbef,Elabov, Elsh,Elsw, con;
int Snl,Sn2,Sn3,Sn4,Sn5,Sn6,Sn7,Sn8,Sn9, Sine;
int Bnl,Bn2,Bn3,Bn4,Bn5,Bn6,Bn7,Bn8, Bn9,BnlO,Bnll,Bnl2, Bine, Tine; 
int OU1 ,OU2,OU3,OU4,OU5,OU6,OU7,OU8;
int Fhrl,Fhr2,Fhr3,Fhr4,Fhr5,Fhr6,Fhr7,Fhr8,Fhr9,Fhrl0,Fhrll, NSOa,NSOb; 
int Fvrl,Fvr2,Fvr3,Fvr4,Fvr5,Fvr6,Fvr7,Fvr8,Fvr9,Fvrl0; 
int flag;
int S, Ba,Bb,Bbb,Bbm,Bbt,Bc,Bcb,Bcm,Bct,Bd,Bdb,Bdm,Bdt,Bel,Bem,Ber,Be, temp,tcheck, line; 
int ncracks, crcnt;
int Elnuml,Elnum2,Elnum3,Elnum4,Elnum5,Elnum6,Elnum7,Elnum8,Elnum9,Elnuml0; 
int Elnumhl,Elnumh2,Elnumh3,Elnumh4,Elnumh5,Elnumh6,Elnumh7; 
long cnt;
float postn, singh,singw, priormd; 
float biaso,biasu, Srange,Smean, fxl,fx2,fy2,fx7,fx8; 
float sx l.sy l, sx2,sy2, sx3,sy3, sx4,sy4, sx5,sy5, 

sx6,sy6, sx7,sy7, sx8,sy8, sx9,sy9, 
bxl.byl, bx2,by2, bx3,by3, bx4,by4, bx5,by5, 
bx6,by6, bx7,by7, bx8,by8, bx9,by9, 
ouxl.ouyl, oux2,ouy2, oux3,ouy3, oux4,ouy4, 
oux5,ouy5, oux6,ouy6, oux7,ouy7, oux8,ouy8, 
fg2,fg3,fg4,fg5,fg6,fg7,fg8,fg9,fgl0,fgl 1, NSOax,NSObx; 

float Gap,Fin;
double Elgapv,Elfinv,Elhgapv, Elfinvl,Elgapvl,Elfinvlr; 
int ElgapvI,ElfinvI,ElhgapvI, ElfinvlI,ElgapvlI,ElfinvlrI; 
int ElfinhtI,ElgaphtI,ElfinhtbI,ElgaphbI,ElfinhbI,ElfmhbbI; 
double Elgapht,Elfinht,Elfinhtb, Elgaphb,Elfinhb,Elfinhbb,Elfinhbs;

float crinc; 
float height, width;

FILE *read;
FILE *fp;
FILE *mat;

pnntf("\n\n* *
printff'Multiple Crack Length Input File Generator\n"); 
printf("C Programme: progen.c\n");
printf("Creates a file called 'input.inp' in current directoryNn"); 
printf("Uses mesh data from the file 'datasum' to mn\n"); 
printf('"datasum' file is generatoed by C Programme: meshgen.c\n");

height = 25.0; 
width = 25.0;

/* Open data summary file for reading */ 
if  ((read = fopen("datasum", "r")) =  NULL) 
{ printf("Cannot open datasum\n"); }

/* Read & Write Fixed Element Data */ 
cnt = 31;
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fseek(read, 25+(l*cnt), 0); 
fscanf(read, "%s", postnc); 
postn = atof(postnc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", singhc); 
singh = atof(singhc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", singwc); 
singw = atof(singwc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", cone); 
con = atoi(conc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", Elshc); 
Elsh = atoi(Elshc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", EIswc); 
Elsw = atof(Elswc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", biasoc); 
biaso = atof(biasoc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", biasuc); 
biasu = atof(biasuc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", ncracksc); 
ncracks = atoi(ncracksc);

if  (ncracks > 1)
{
fseek(read, cnt+1,1); 
fscanf(read, "%s”, crincc); 
crinc = atof(crincc);
}

if  (ncracks == 1)
{
crinc = 0;
fseek(read, 27+cnt, 1); 
fscanf(read, "%s", Elaftc); 
Elaft = atoi(Elaftc);

fseek(read, cnt+1,1); 
fscanf(read, ”%s", Elbefc); 
Elbef =  atoi (Elbefc);

fseek(read, cnt+1, 1); 
fscanf(read, "%s", Elabovc); 
Elabov = atoi(Elabovc);

if  (ncracks > 1)
{
fseek(read, 26+1+cnt, 1); 
fscanf(read, "%s", Elaftc); 
Elaft = atoi(Elaftc);

fseek(read, cnt+1, 1);
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fscanf(read, "%s", Elbefc); 
Elbef = atoi(Elbefc);

fseek(read, cnt+1,1); 
fscanf(read, "%s", Elabovc); 
Elabov = atoi(Elabovc);
}

printf("What is the Cyclic Stress Range (MPa, R =0.1):"); 
scanf(" %f', &Srange);
Smean = (0.45*(Srange/0.9))+(0.1*(S range/0.9));

printf("What is the Temperature (celcius):");
scanf(" %d", &temp);
printf("\n");

tcheck = 0; 
while( tcheck =  
{
if  (temp == 300) 
if  (temp =  350) 
if  (temp == 400) 
if  (temp =  450) 
if  (temp =  500) 
if  (temp =  550) 
if  (temp =  600) 
if  (temp == 625) 
if  (temp =  650) 
if  (temp == 700)

0)

tcheck = 1;}  
tcheck = 1; } 
tcheck = 1;}  
tcheck = 1; } 
tcheck = 1; } 
tcheck = 1; } 
tcheck = 1; } 
tcheck = 1; } 
tcheck = 1; } 
tcheck = 1;}

if (tcheck == 0)
{
printf("*** ERROR: Temperatures are only available for:\n"); 
printf(" 300 ,350 ,400 ,450 ,500 , 550,600, 625, 6 5 0 ,700\n\n"); 
printf("Please provide one the available Temperatures:"); 

scanf(" %d", &temp); 
printf("\n");

}
}

/* Start of Programme Loop For Multiple Crack Length Files */ 
crcnt = 0;
while (crcnt < ncracks)
{
if  ( ncracks > 1 )
{
printf("Provide a file name for crack %d at a/w = % .3f:", crcnt+1,postn);
scanf(" %s", fname);
strcat(fname, ".inp");
if ((fp = fopen(fname, "w")) == NULL)
{ printf("Cannot open %s\n", fnam e);}
}
if ( ncracks = 1 )
{
if  ((fp = fopen("input.inp", "w")) =  NULL)
{ printf("Cannot open file input.inp\n"); }

}

/*Defme Element Quantities Thru Fingers and Gaps */
/* Top Right Side */
Elgapv = floor(7.2/(25.04/(Elaft+Elsw+Elbef)));
Elfinv = floor((Elgapv/2.0)+0.5);
Elhgapv = (Elaft+Elsw+Elbef)-(2*Elfmv)-(2*Elgapv);
/*Top Left Side */
Elgapvl = floor(7.2/(24.96/Elaft));
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Elfinvl = floor((Elgapvl/2.0)+0.5);
Elfinvlr = Elaft-(2*Elgapvl)-Elfinvl;
/* Horizontal */
Elgapht = Elgapvl;
Elfinht = Elfinvl;
Elfinhtb = Elfinvlr;
Elgaphb = floor(7.2/(25.04/(Elabov+Elsh)));
Elfinhb = floor((Elgaphb/2.0)+0.5);
Elfinhbb = Elabov-((2*Elgaphb)+Elfinhb);
Elfinhbs = Elsh;

/* Define Singulrity Nodes */
Sine = (2*con)+(2*(Elaft+Elaft+(int)Elfinvl+30+30))+l;
Snl = 1;
Sn2 = Snl+(2*con);
Sn3 = Sn2+(Elsh*Sinc);
Sn4 = Sn3+(Elsh*Sinc);
Sn5 = Sn4+(Elsw*Sinc);
Sn6 = Sn5+(Elsw*Sinc);
Sn7 = Sn6+(Elsh*Sinc);
Sn8 = Sn7+(Elsh*Sinc);
Sn9 = Sn8-(2*con);

/* Define Body Nodes */
Bnl = Sn2+(2*Elbef);
Bn2 = Bnl+(2*Elsh*Sinc);
Bn8 = Sn8+(2*Elaft);
Bine = Bn8+(2*(Elaft+(int)Elfinvl+30+30))-Sn4+l;

printf("Minimum Nodal Increment Upwards is %d\n", Bine); 
printf("Provide an increment greater or equal to this:"); 
scanf(" %d", &Tinc); 
while (Tine < Bine)
{
printf("Increment must be greater than %d\n", Bine); 
printf("New Upwards Increment ="); 
scanf(" %d", &Tinc); 
printf("\n");

}
Bine = Tine;

Bn3 = Bn2+(2*Elabov*Binc);
Bn4 = Bn3-(2*Elbef);
Bn5 = Bn4+(2*Elsw*Sinc);
Bn6 = Bn5+(2*Elaft);
Bn7 = Sn6+(2*Elaft);
Bn8 = Sn8+(2*Elaft);

/*Define Outer Square Uniform Nodes */
OU1 = Bn3+(2*Elaft*Binc);
OU2 = OUl-(2*Elbef);
OU3 = OU2+(2*Elsw*Sinc);
OU4 = OU3+(2*Elaft);
OU5 = OU4+(2*Elaft);
OU6 = Bn6+(2*Elaft);
OU7 = Bn7+(2*Elaft);
OU8 = Bn8+(2*Elaft);

priormd = (postn*width)-(singw/2); 
printf("Prior Mesh Distance is %.3f\n\n", priormd);

fx l = singh*0.25;
if  (fxl >= 0.40*priormd) { fx l = 0.40*priormd; } 
fx2 = singh*0.175;
if  (fx2 >= 0.25*priormd) { fx2 = 0.25*priormd; } 
fy2 = singw*0.15; 
fx7 = singh*0.175;
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fx8 = singh*0.25;

/* Singularity node co-ordinates */ 
sxl = width*postn; 
syl = 0.0;
sx2 = (width*postn)-(singw/2)-fxl; 
if  (Elbef = 0 )  { sx2 = 0.0; } 
sy2 = 0.0;
sx3 = (width*postn)-(singw/2)-fx2; 
if  (Elbef = = 0) { sx3 = 0.0; } 
sy3 = singh/2;
sx4 = (width*postn)-(singw/2);
if  (Elbef = 0 )  { sx4 = 0.0; }
sy4 = singh;
sx5 = (width*postn);
sy5 = singh+fy2;
sx6 = (width*postn)+(singw/2);
sy6 = singh;
sx7 = (width*postn)+(singw/2)+fx7; 
sy7 = singh/2;
sx8 = (width*postn)+(singw/2)+fx8;
sy8 = 0.0;
sx9 = width*postn;
sy9 = 0.0;

/* Body node co-ordinates */
bxl = 0.0;
byl = 0.0;
bx2 = 0.0;
by2 = singh;
bx3 = 0.0;
by3 = height;
bx4 = (width*postn)-(singw/2); 
by4 = height;
bx5 = (width*postn)+(singw/2);
by5 = height;
bx6 = width;
by6 = height;
bx7 = width;
by7 = singh;
bx8 = width;
by8 = 0.0;

/* Outer Square Uniform Co-ordinates */ 
ouxl = 0.000; 
ouyl = 46.480;
oux2 = ((25.0/(Elbef+Elsw+Elaft))*Elbef); 
ouy2 = 46.480;
oux3 = ((25.0/(Elbef+Elsw+Elaft))*(Elbef+Elsw));
ouy3 = 46.480;
oux4 = 25.000;
ouy4 = 46.480;
oux5 = 46.480;
ouy5 = 46.480;
oux6 = 46.480;
ouy6 = 25.000;
oux7 = 46.480;
ouy7 = 3.600;
oux8 = 46.480;
ouy8 = 0.000;

/* Finger and Gap Positions */
Gap =7.200;
Fin = 3.520; 
fg2 =3.600; 
fg3 =fg2+Fin;
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fg4 =fg3+Gap; 
fg5 =fg4+Fin; 
fg6 =fg5+Gap; 
fg7 =fg6+Fin; 
fg8 =fg7+Gap; 
fg9 = fg8+Fin; 
fglO = fg9+Gap; 
fg l l  =50.000;

I* Generate Abaqus Input File */

fprintf(fp, "*HEADING\n");
f̂ >rintfCQ>," ISOTHERMAL - %dC\n", temp);
fprintf(fp," EQUIBIAXIAL - CYCLIC STRESS RANGE = %.lfMPa\n", Srange); 
f̂ >rintf(f^>," %.3f AAV CRACK LENGTHVn", postn); 
f))rintf(^), "**\n");
f̂ >rintf(f̂ >, "^PREPRINT, ECHO=NO, MODEI^NO\n"); 
fprintf(fp, "**\n");
fprintf(fp, "**NODE GENERATIONS"); 
fprintf(fp, "**SINGULARITY\n"); 
f^rintf(fp, "*NODE\n");
f̂ »rintf(f̂ >, "%5d, \t-%.3f, %.3f\n", Sn l, sx l.sy l); 
f))rintf(f^, "%5d, \t-%.3f, %.3f\n", Sn2, sx2,sy2); 
fprintf(fp, "%5d, \t-%.3f, %.3f\n", Sn3, sx3,sy3); 
fprintf(fp, "%5d, \t-%.3f, %.3f\n", Sn4, sx4,sy4); 
f))rintf(f)3, "%5d, \t-%.3f, %.3f\n", Sn5, sx5,sy5); 
fjprintf(fp, "%5d, \t-%.3f, %.3f\n", Sn6, sx6,sy6); 
fprintf(f)>, "%5d, \t-%.3f, %.3f\n", Sn7, sx7,sy7); 
fprintf(fp, "%5d, \t-%.3f, %.3f\n", Sn8, sx8,sy8); 
fprintf(fp, "%5d, \t-%.3f, %.3f\n", Sn9, sx9,sy9); 
fprintf(fp, "*NGEN, LINE=P, NSET=SINGRITE\n"); 
fprintf(fp," %d,%d, %d,%d\n", Sn2,Sn4, Sinc,Sn3); 
fprintf(fp, "*NGEN, LINE=P, NSET=SINGTOP\n"); 
fprintf(fp," %d,%d, %d,%d\n", Sn4,Sn6, Sinc,Sn5); 
fprintf(fp, "*NGEN, LINE=P, NSET=SINGLEFT\n"); 
fprintf(fp," %d,%d, %d,%d\n", Sn6,Sn8, Sinc,Sn7); 
fprintf(f{>, "*NGEN, NSET=TIP\n"); 
f̂ >rintf(f^>," %d,%d, %d\n", Snl,Sn9, Sine); 
f̂ »rintf(f̂ >, " W E T , NSET=SINGSURR\n"); 
fprintf(fp," SINGRITE,SINGTOP,SINGLEFT\n"); 
fprintf(fp, "W IL L , NSET=NSING,SINGULAR=l\n"); 
fprintf(fp," TIP,SINGSURR, %d\n", 2*con,l); 
f{)rintf(f)), "**\n");
fprintf(fp, "**BODY SURROUNDINGSXn"); 
fjprintf(fi), "*NODE\n"); 
if  (Elbef != 0)
{
fprintf(fp, "%7d, %8.3f,%8.3f\n", B nl,bxl,byl); 
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn2,bx2,by2); 
f^rintf(f^), "%7d, %8.3f,%8.3f\n", Bn3,bx3,by3);
}
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn4,-bx4,by4); 
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn5,-bx5,by5); 
f^rintf(f{>, "%7d, %8.3f,%8.3f\n", Bn6,-bx6,by6); 
fprintf(fp, "%7d, %8.3f,%8.3f\n", Bn7,-bx7,by7); 
f)irintf(f)), "%7d, %8.3f,%8.3f\n", Bn8,-bx8,by8); 
fprintf(fp, " W E N , NSET=RITELOW\n");
Q)rintf(f))," %d,%d, %d\n", Bnl,Bn2, Sine); 
fprintf(fp, "*NGEN, NSET=LEFTLOWVn"); 
f))rintf(f)3," %d,%d, %d\n", Bn7,Bn8, Sine); 
fprintf(fp, "*NGEN, NSET=HIGHTOP\n"); 
fprintf(fp," %d,%d, %d\n", Bn4,Bn5, Sine);
fprintf(fp, " W IL L , NSET=NSURRA, TWO STEP,BIAS=%.3f\n", biasu); 
fprintf(fp," SINGTOP,HIGHTOP, %d,%d\n", 2*Elabov,Binc); 
fprintf(fp, "*NSET, NSET=LEFTINN, GENERATE\n"); 
fprintf(f)>," %d,%d, %d\n", Sn6+Binc,Bn5, Bine);
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fprintf(fp, "*NSET, NSET=RITEINN, GENERATES");
fprintf(f)>," %d,%d, %dS", Sn4+Binc,Bn4, Bine);
fprintf(fp, " W IL L , NSET=NSURRB, TWO STEP,BIAS=%.3fS", biaso);
if  (Elbef != 0)
{
fprintf(fp," SINGRITE,RITELOW, %d,%dS", 2*Elbef,l);
}
fprintf(fp," SINGLEFT.LEFTLOW, %d,%dS", 2*Elaft,l);
fprintf(fp, "*NCOPY, CHANGE NUMBER=%d, OLD SET=LEFTINN,NEW SET=LEFTHIGH, 

SHIFT,MULTIPLE=1S", 2*Elaft);
fprintf(fp," -%.3f,%.3f,%.3fS", width-(width*postn)-(singw/2),0,0); 
fprintf(fp," 0.0,0.0,0.0,0.0,0.0,1.0,0.0S"); 
if  (Elbef != 0)
{
fprintf(fp, "*NCOPY, CHANGE NUMBER=%d, OLD SET=RITEINN,NEW SET=RITEHIGH, 

SHIFT,MULTIPLE=1S", 2*Elbef);
fprintf(fp," %.3f,%.3f,%.3fS", width-(width*(l-postn))-(singw/2),0,0); 
fprintf(fp," 0.0,0.0,0.0,0.0,0.0,1.0, 0.0S");
}
fprintf(fp, " W IL L , NSET=NSURRC, TWO STEP,BIAS=%.3fS", biaso); 
fprintf(fp," LEFTINN,LEFTHIGH, %d,%dS", 2*Elaft,l); 
if  (Elbef != 0)
{
fprintf(fp," RITEINN,RITEHIGH, %d,%dS", 2*Elbef,l);
}
fprintf(fp, "**S");
fprintf(fp, "**OUTER UNIFORM NODES FOR SQUARES"); 
fj)rintf(fp, "**HORIZONTAL LINES"); 
f)irintf(fp, "*NODES");
fprintf(fp," %7d, %7.3f,%7.3fS", OU1, -ouxl,ouyl);
fprintf(fp," %7d, %7.3f,%7.3fS", OU2, -oux2,ouy2);
fprintf(fp," %7d, %7.3f,%7.3fS", OU3, -oux3,ouy3);
fprintf(fp," %7d, %7.3f,%7.3fS", OU4, -oux4,ouy4);
fprintf(fp," %7d, %7.3f,%7.3fS", OU5, -oux5,ouy5);
fprintf(fp," %7d, %7.3f,%7.3fS", OU6, -oux6,ouy6);
fprintf(fp," %7d, %7.3f,%7.3fS", OU7, -oux7,ouy7);
fprintf(fp," %7d, %7.3f,%7.3fS", OU8, -oux8,ouy8);
fprintf(fp, "**TOP RIGHT CORNERS");
fprintf(fp, "*NGEN, NSET=OUHRS");
fprintf(fp," %d,%d, %dS", OU2,OUl, 1);
fprintf(fp," %d,%d, %dS", OU2,OU3, Sine);
fprintf(fp," %d,%d, %dS", OU3,O U 4,1);
fprintf(fp, "*NSET, NSET=MIDHR, GENERATES");
f]printf(fi)," %d,%d, %dS", Bn4,Bn3,1);
f^)rintf(f))," %d,%d, %dS", Bn4,Bn5, Sine);
f))rintf(f{)," %d,%d, %dS", Bn5,Bn6,1);
f})rintf(fp, "*NFILL, NSET=TOPRS");
fprintf(fp," MIDHR,OUHR, %d,%dS", 2*Elaft,Binc);
fprintf(fj), "**BOTTOM LEFTS");
fprintf(fp, "*NGEN, NSET=OUVBBS");
fprintf(fp," %d,%d, %dS", OU7,OU8, Sine);
fprintf(fp, "*NGEN, NSET=OUVBTS");
fprintf(fp," %d,%d, %dS", OU7,OU6, Bine);
fprintf(fp, "*NSET, NSET=OUVBS");
fprintf(fp," OUVBB,OUVBTS");
fprintf(fp, "*NSET, NSET=VMIDB, GENERATES");
fprintf(fp," %d,%d, %dS", Bn7,Bn8, Sine);
fprintf(I))," %d,%d, %dS", Bn7,Bn6, Bine);
f))rintf(fp, " W IL L , NSET=BOTLS");
fprintf(fp," VMIDB OUVB, %d,%dS", 2*Elaft,l);
fprintf(f)p, "**TOP LEFTS");
fprintf(fp, "*NSET, NSET=HMIDL, GENERATES");
lj)rintf(fp," %d,%d, %dS", Bn6,O U6,1);
fprintf(fp, "*NGEN, NSET=OUHTOPLS");
f]printf(fp," %d,%d, %dS", 0 U 4 .0 U 5 ,1);
fprintf(fp, " W IL L , NSET=TOPLS");
fprintf(fp," HMIDL,OUHTOPL, %d,%dS", 2*Elaft,Binc);

B.6.8



fprintf(fp, "**\n");
fprintf(fp, "**OUTER SQUARE EDGES SETUP FOR FINGERSS"); 
fprintf(fp, "**HORIZONTAL LINES");

/* Position & Number o f The Singularity Extension Nodes *1 
if  ( ((Elbef+Elsw) == (Elhgapv+Elfmv+Elgapv))

&& (Elbef > (Elhgapv+Elfinv)) )
{ flag= 1; }
if ( ((Elbef+Elsw) < (Elhgapv+Elfmv+Elgapv))

&& (Elbef > (Elhgapv+Elfinv)))
{ flag = 2; }
if ( ((Elbef+Elsw) < (Elhgapv+Elfmv+Elgapv))

&& (Elbef =  (Elhgapv+Elfinv)))
{ flag = 3; }
if ( ((Elbef+Elsw) > (Elhgapv+Elfinv))

&& (Elbef < (Elhgapv+Elfinv)))
{ flag = 4; }
if ( ((Elbef+Elsw) =  (Elhgapv+Elfinv))

&& (Elbef < (Elhgapv+Elfinv)))
{ flag = 5; }
if ( ((Elbef+Elsw) < (Elhgapv+Elfinv))

&& (Elbef >Elhgapv))
{ flag = 6; }
if ( ((Elbef+Elsw) < (Elhgapv+Elfinv))

&& (Elbef =  Elhgapv))
{ flag = 7; }
if ( ((Elbef+Elsw) > Elhgapv)

&& (Elbef < Elhgapv))
{ flag = 8; }
if ( ((Elbef+Elsw) == Elhgapv)

&& (Elbef < Elhgapv))
{ flag = 9; }
if ( ((Elbef+Elsw) < Elhgapv)

&& (Elbef < Elhgapv))
{flag = 1 0 ; }
if ( ((Elbef+Elsw) < Elhgapv)

&& (Elbef = 0 ) )
{ flag= 11; }

fprintf(fp, "**FLAG = %dS", flag);

if  (flag =  1)
{
NSOax = 7.12+((7.2/Elgapv)*(Elbef-Elhgapv-Elfinv));
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
NSObx = 14.32;
NSOb = (OUl+(Elfinht*2*Binc))-(2*Elbef)+(2*Elsw*Sinc);

Fhrl = OU l+(2*Elfinht*Binc);
Fhr2 = Fhrl-(2*Elhgapv);
Fhr3 = Fhr2-(2*Elfinv);
Fhr4 = NSOb;
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(fp, "*NODES");
fprintf(fp," %7d, %7.3f,%7.3fS", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", Fhr2, -fg2,50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", Fhr3, -fg3,50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", NSOa, -NSOax, 50.000); 
f})rintf(fj)," %7d, %7.3f,%7.3fS", NSOb, -NSObx, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", Fhr5, -fg5, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", Fhr6, -fg6, 50.000); 
fprintf(fp, "*NGEN, NSET=OSQRBEFS"); 
fprintf(fp," %7d,%7d, %dS", NSOa,NSOb, Sine); 
f]printf(f))," %7d,%7d, %dS", NSOa,Fhr3,1);
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fprintf(fp," %7d,%7d, %d\n", Fhr3,Fhr2,1); 
f})rintf(fp," %7d,%7d, %d\n", Fhr2,Fhrl, 1); 
fprintf(f^>, "*NGEN, NSET=OSQRAFT\n"); 
fprintf(fp," %7d,%7d, %d\n", NS0b,Fhr5,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr5,Fhr6,1);
}
if  (flag =  2)
{
NSOax = 7.12+((7.2/Elgapv)*(Elbef-Elhgapv-Elfmv));
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
NSObx = NSOax+((7.2/Elgapv)*Elsw);
NSOb = (OUl+(Elfinht*2*Binc))-(2*Elbef)+(2*Elsw*Sinc);

Fhrl = OU1+(2*Elfinht*Binc);
Fhr2 = Fhrl-(2*Elhgapv);
Fhr3 = Fhr2-(2*Elfinv);
Fhr4 = NSOb+(2*((Elhgapv+Elfinv+Elgapv)-(Elbef+Elsw))); 
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(fp, "*NODE\n");
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr2, -fg2,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr3, -fg3,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOb, -NSObx, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4 ,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr6, -fg6 ,50.000); 
fprintf(fp, " W E N , NSET=OSQRBEF\n"); 
fprintf(fp," %7d,%7d, %dS", NSOb,Fhr4,1); 
fprintf(fp," %7d,%7d, %dS", NSOa,NSOb, Sine); 
fprintf(fp," %7d,%7d, %dS", NSOa,Fhr3,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr3,Fhr2,1); 
fprintf(fp," %7d,%7d, %dS", Fhr2,Fhrl, 1); 
fprintf(fp, "*NGEN, NSET=OSQRAFT\n"); 
fprintf(fp," %7d,%7d, %dS", Fhr4,Fhr5,1); 
fprintf(fp," %7d,%7d, %dS", Fhr5,Fhr6,1);
}
if  (flag == 3)
{
NSOax = 7.12;
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
NSObx = NSOax+((7.2/Elgapv)*Elsw);
NSOb = (OUl+(Elfinht*2*Binc))-(2*Elbef)+(2*Elsw*Sinc);

Fhrl = OUl+(2*Elfinht*Binc);
Fhr2 = Fhrl-(2*Elhgapv);
Fhr3 = NSOa;
Fhr4 = NSOb+(2*((Elhgapv+Elfinv+Elgapv)-(Elbef+Elsw))); 
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(fp, "*NODES");
fprintf(fp," %7d, %7.3f,%7.3An", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", Fhr2, -fg2,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", NSOb, -NSObx, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", Fhr6, -fg6, 50.000); 
f^rintf(fp, "*NGEN, NSET=OSQRBEF\n"); 
fprintf(fp," %7d,%7d, %dS", NSOb,Fhr4,1); 
fprintf(fp," %7d,%7d, %dS", NSOa,NSOb, Sine); 
fprintf(fp," %7d,%7d, %d\n", NSOa,Fhr2,1); 
fprintf(fp," %7d,%7d, %dS", Fhr2,Fhrl, 1); 
fprintf(fp, "*NGEN, NSET=OSQRAFT\n"); 
fprintf(fp," %7d,%7d, %dS", Fhr4,Fhr5,1); 
fprintf(fp," %7d,%7d, %dS", Fhr5,Fhr6,1);
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}
if  (flag =  4)
{
NSOax = 3.6+((3.52/Elfinv)*(Elbef-Elhgapv));
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
NSObx = 7.12+((7.2/Elgapv)*((Elbef+Elsw)-(Elhgapv+Elfinv))); 
NSOb = (OUl+(Elfinht*2*Binc))-(2*Elbef)+(2*Elsw*Sinc);

Fhrl = OU l+(2*Elfinht*Binc);
Fhr2 = Fhrl-(2*Elhgapv);
Fhr3 = NSOa+(2*Sinc*((Elhgapv+Elfinv)-Elbef));
Fhr4 = NSOb+(2*((Elhgapv+Elfinv+Elgapv)-(Elbef+Elsw))); 
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(fp, "*NODE\n");
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr2, -fg2,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr3, -fg3,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOb, -NSObx, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4 ,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr5, -fg5 ,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr6, -fg6 ,50.000); 
fprintf(fp, "*NGEN, NSET=OSQRBEF\n"); 
fprintf(fp," %7d,%7d, %d\n", NSOb,Fhr4,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr3,NSOb, Sine); 
fprintf(fp," %7d,%7d, %d\n", NSOa,Fhr3, Sine); 
fprintf(fp," %7d,%7d, %dS", NSOa,Fhr2,1); 
fprintf(fp," %7d,%7d, %dS", Fhr2,Fhrl, 1); 
fprintf(fp, " W E N , NSET=OSQRAFT\n"); 
fprintf(fp," %7d,%7d, %dS”, Fhr4,Fhr5,1); 
fprintf(fp," %7d,%7d, %dS", Fhr5,Fhr6,1);
}
if  (flag =  5)
{
NSOax = 3.6+((3.52/Elfinv) *(Elbef-Elhgapv));
NSOa = (OU 1+(Elfinht*2*Binc))-(2*Elbef);
NSObx = 7.12;
NSOb = NSOa+(2*Elsw*Sinc);

Fhrl = OUl+(2*Elfinht*Binc);
Fhr2 = Fhrl-(2*Elhgapv);
Fhr3 = NSOb;
Fhr4 = NSOb+(2*Elgapv);
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(fp, "*NODES");
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", Fhr2, -fg2,50.000); 
fj)rintf(f{)," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOb, -NSObx, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3fS", Fhr4, -fg4, 50.000); 
fj»rintf(ft»," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3fvn", Fhr6, -fg6, 50.000); 
fprintf(fi>, "*NGEN, NSET=OSQRBEF\n"); 
fprintf(fp," %7d,%7d, %dS", NSOb,Fhr4,1); 
fprintf(fp," %7d,%7d, %dS", NSOa,NSOb, Sine); 
fprintf(fp," %7d,%7d, %dS", NSOa,Fhr2,1); 
fprintf(fp," %7d,%7d, %dS", Fhr2,Fhrl, 1); 
fprintf(fp, "*NGEN, NSET=OSQRAFT\n"); 
fprintf(fp," %7d,%7d, %dS", Fhr4,Fhr5,1); 
fprintf(fp," %7d,%7d, %dS", Fhr5,Fhr6,1);
}
if  (flag =  6)
{
NSOax = 3.6+((3.52/Elfinv) *(Elbef-Elhgapv));
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
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NSObx = 3 .6+((3.52/Elfinv)*((Elbef+Elsw)-Elhgapv)); 
NSOb = NSOa+(2*Elsw*Sinc);

Fhrl = OUl+(2*Elfmht*Binc);
Fhr2 = Fhrl-(2*Elhgapv);
Fhr3 = NSOb+(2*((Elhgapv+Elfinv)-(Elbef+Elsw)));
Fhr4 = Fhr3+(2*Elgapv);
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(fp, "*NODE\n");
fjprintf(fp," %7d, %7.3f,%7.3f\n", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr2, -fg2,50.000); 
f})rintf(fp," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOb, -NSObx, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr3, -fg3, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr6, -fg6, 50.000); 
fprintf(fp, "*NGEN, NSET=OSQRBEF\n"); 
fprintf(fp," %7d,%7d, %d\n", NSOb,Fhr3,1); 
fprintf(fp," %7d,%7d, %d\n", NSOa,NSOb, Sine); 
f^>rintf(f]p," %7d,%7d, %d\n", NSOa,Fhr2,1); 
fprintf(fp," %7d,%7d, %dS", Fhr2,Fhrl, 1); 
fprintf(f{), "*NGEN, NSET=OSQRAFTVn"); 
f})rintf(f))," %7d,%7d, %dS", Fhr3,Fhr4,1); 
fprintf(fp," %7d,%7d, %dS", Fhr4,Fhr5,1); 
fprintf(fp," %7d,%7d, %dS", Fhr5,Fhr6,1);
}

if  (flag == 7)
{
NSOax = 3.6;
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
NSObx = 3.6+((3.52/Elfinv)*((Elbef+Elsw)-Elhgapv)); 
NSOb = NSOa+(2*Elsw*Sinc);

Fhrl = OUl+(2*Elfmht*Binc);
Fhr2 = NSOa;
Fhr3 = NSOb+(2*((Elhgapv+Elfinv)-(Elbef+Elsw)));
Fhr4 = Fhr3+(2*Elgapv);
Fhr5 = Fhr4+(2*Elfmv);
Fhr6 =  Fhr5+(2*Elgapv); 
fprintf(fp, "*NODES");
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOb, -NSObx, 50.000); 
fprintf(fip," %7d, %7.3f,%7.3f\n", Fhr3, -fg3, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4, 50.000); 
fj)rintf(fi)," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
f))rintf(^)," %7d, %7.3f,%7.3f\n", Fhr6, -fg6, 50.000); 
fprintf(fp, "*NGEN, NSET=OSQRBEPoi"); 
fprintf(fp," %7d,%7d, %dS", NSOb,Fhr3,1); 
fprintf(fp," %7d,%7d, %dS", NSOa,NSOb, Sine); 
fprintf(fp," %7d,%7d, %dS", NSOa,Fhrl, 1); 
fprintf(fp, "*NGEN, NSET=OSQRAFT\n"); 
f}>rintf(f}>," %7d,%7d, %dS", Fhr3,Fhr4,1); 
fprintf(fp," %7d,%7d, %dS", Fhr4,Fhr5,1); 
f̂ >rintf(f^>," %7d,%7d, %d\n", Fhr5,Fhr6,1);
}
if  (flag =  8)
{
NSOax = (3.6/Elhgapv)*Elbef;
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
NSObx = 3.6+((3.52/Elfinv)*((Elbef+Elsw)-Elhgapv)); 
NSOb = NSOa+(2*Elsw*Sinc);

Fhrl = OUl+(2*Elfinht*Binc);
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Fhr2 = NS0a+(2*(Elhgapv-Elbef)*Sinc);
Fhr3 = NS0b+(2*(Elaft-(Elgapv+Elfinv+Elgapv)));
Fhr4 = Fhr3+(2*Elgapv);
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(fp, "*NODE\n");
f^>rintf(f]p," %7d, %7.3f,%7.3f\n", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr2, -fg2,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOb, -NSObx, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr3, -fg3, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr6, -fg6, 50.000); 
f̂ >rintf(f̂ >, "*NGEN, NSET=OSQRBEF\n"); 
j£>rintf(f)>," %7d,%7d, %d\n", NSOa,Fhrl, 1); 
fprintf(fp," %7d,%7d, %d\n", NSOa,Fhr2, Sine); 
f)>rintf(f})," %7d,%7d, %d\n", Fhr2,NSOb, Sine); 
f̂ >rintf(f^>," %7d,%7d, %d\n", NSOb,Fhr3,1); 
fprintf(fp, "*NGEN, NSET=OSQRAFT\n"); 
f̂ >rintf(f^>," %7d,%7d, %d\n", Fhr3,Fhr4,1); 
f})rintf(f))," %7d,%7d, %d\n", Fhr4,Fhr5,1); 
fjprintf(fp," %7d,%7d, %d\n", Fhr5,Fhr6,1);
}
if  (flag =  9)
{
NSOax = (3.6/Elhgapv)*Elbef;
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
NSObx = 3.6;
NSOb = NSOa+(2*Elsw*Sinc);

Fhrl = OUl+(2*Elfinht*Binc);
Fhr2 = NSOb;
Fhr3 = NS0b+(2*Elfmv);
Fhr4 = Fhr3+(2*Elgapv);
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(f]p, "*NODE\n");
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOb, -NSObx,50.000); 
f^rintf(f^)," %7d, %7.3f,%7.3f\n", Fhr3, -fg3 ,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr6, -fg6, 50.000); 
fprintf(fp, " W E N , NSET=OSQRBEF\n"); 
fyrintf(fp," %7d,%7d, %d\n", NSOb,Fhr3,1); 
fprintf(fp," %7d,%7d, %d\n", NSOa,NSOb, Sine); 
f)>rintf(f^," %7d,%7d, %d\n", NSOa,Fhrl, 1); 
fprintf(fp, "*NGEN, NSET=OSQRAFT\n"); 
fprintf(fp," %7d,%7d, %d\n", Fhr3,Fhr4,1); 
fprintf(f^>," %7d,%7d, %d\n", Fhr4,Fhr5,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr5,Fhr6,1);
}
if  (flag = 1 0 )
{
NSOax = (3.6/Elhgapv)*Elbef;
NSOa = (OUl+(Elfinht*2*Binc))-(2*Elbef);
NSObx = (3.6/Elhgapv)*(Elbef+Elsw);
NSOb = NSOa+(2*Elsw*Sinc);

Fhrl = OUl+(2*Elfinht*Binc);
Fhr2 = N S Ob+(2 *(Elhgapv- (Elbef+Elsw)));
Fhr3 = Fhr2+(2*Elfinv);
Fhr4 = Fhr3+(2*Elgapv);
Fhr5 = Fhr4+(2*Elfinv);
Fhr6 = Fhr5+(2*Elgapv);
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fprintf(fp, "*NODE\n");
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhrl, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOa, -NSOax, 50.000); 
fprintf(fjp," %7d, %7.3f,%7.3f\n", NSOb, -NSObx,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr2, -fg2, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr3, -fg3, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
fprintf(f{)," %7d, %7.3f,%7.3f\n", Fhr6, -fg6, 50.000); 
fprintf(fp, "*NGEN, NSET=OSQRBEF\n"); 
fprintf(fp," %7d,%7d, %d\n", NSOb,Fhr2,1); 
fprintf(fp," %7d,%7d, %d\n", NSOa,NSOb, Sine); 
f̂ >rintf(f^>," %7d,%7d, %d\n", NSOa,Fhrl, 1); 
fprintf(fp, "*NGEN, NSET=OSQRAFT\n"); 
fprintf(f^>," %7d,%7d, %d\n", Fhr2,Fhr3,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr3,Fhr4,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr4,Fhr5,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr5,Fhr6,1);
}
if (flag = 1 1 )
{
NSOax = 0.0;
NSOa = (OU1+(Elfinht*2*Binc));
NSObx = (3.6/Elhgapv)*Elsw;
NSOb = NSOa+(2*Elsw*Sinc);

Fhrl = NSOa;
Fhr2 = NSOb+(2*(Elhgapv-Elsw));
Fhr3 = Fhr2+(2*Elfinv);
Fhr4 = Fhr3+(2*Elgapv);
Fhr5 = Fhr4+(2*Elfmv);
Fhr6 = Fhr5+(2*Elgapv); 
fprintf(fp, "*NODE\n");
fprintf(fp," %7d, %7.3f,%7.3f\n", NSOa, 0.000,50.000); 
fprintf(fp," %7d, %7.3f,%7.3fm", NSOb, -NSObx,50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr2, -fg2, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3fVi", Fhr3, -fg3, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr4, -fg4, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr5, -fg5, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr6, -fg6, 50.000); 
fprintf(fp, "*NGEN, NSET=OSQRBEF\n"); 
fprintf(fp," %7d,%7d, %d\n", NSOa,NSOb, Sine); 
fprintf(fp," %7d,%7d, %d\n", NSOb,Fhr2,1); 
fprintf(fp, "*NGEN, NSET=OSQRAFT\n"); 
fprintf(fp," %7d,%7d, %d\n", Fhr2,Fhr3,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr3,Fhr4,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr4,Fhr5,1); 
f^rintf(f^)," %7d,%7d, %d\n", Fhr5,Fhr6,1);
}

fprintf(fp, "**LEFT HAND SIDE OF TOP OUTER EDGE\n"); 
Fhr7 = Fhr6+(2*Elfinvlr);
Fhr8 = Fhr7+(2*Elgapvl);
Fhr9 = Fhr8+(2*Elfmvl);
FhrlO = Fhr9+(2*Elgapvl);
Fhrll = FhrlO+(2*Elfinvl);
fg7 = fg6+Fin;
fg8 = fg7+Gap;
fg9 = fg8+Fin;
fglO = fg9+Gap;
fg l l  =fgl0+Fin;
f]printf(fip, "*NODE\n");
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr7, -fg7, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fhr8, -fg8, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3fVi", Fhr9, -fg9, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", FhrlO, -fglO, 50.000); 
fprintf(fp," %7d, %7.3f,%7.3An", Fhrll, - fg ll ,  50.000);
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fprintf(fp," *NGEN,NS ET=OS QLL\n"); 
f^rintf(Q)," %7d,%7d, %d\n", Fhr6,Fhr7,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr7,Fhr8,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr8,Fhr9,1); 
fprintf(fp," %7d,%7d, %d\n", Fhr9,FhrlO, 1);

fprintf(fp, "*NSET, NSET=OUL, GENERATE\n"); 
fprintf(fp," %d,%d, %d\n", O U 3,O U 5,1); 
fprintf(fp, "*NSET, NSET=OSQL, GENERATE\n"); 
f^rintf(f^," %d,%d, %d\n", NSOb,FhrlO, 1); 
f^rintf(fp, "*NFILL, NSET=HTOPSQ\n"); 
fprintf(fp," OUL,OSQL, %.01f,%d\n", 2*Elfmht,Binc); 
fprintf(fj), "*NSET, NSET=OUM, GENERATE\n"); 
fprintf(fp," %d,%d, %d\n", OU2,OU3, Sine); 
f()rintf(fp, "*NSET, NSET=OSQM, GENERATE\n"); 
fprintf(fp," %d,%d, %d\n", NSOa,NSOb, Sine); 
fj>rintf(fp, " W IL L , NSET=OUSQM\n"); 
fprintf(fp," OUM,OSQM, %.01f,%d\n", 2*Elfinht,Binc); 
fprintf(fp, "*NSET, NSET=OUR, GENERATE\n"); 
fprintf(fp," %d,%d, %d\n", OU2,OUl, 1); 
fprintf(fp, "*NSET, NSET=OSQR, GENERATE^"); 
fprintf(fp," %d,%d, %d\n", NSOa,Fhrl, 1); 
fprintf(f^>, "*NFILL, NSET=OUSQR\n"); 
fprintf(fp," OUR,OSQR, %.01f,%d\n", 2*Elfinht,Binc);

/* Nodal Generation for Left Vertical Edge */
Fvrl = OU8+(2*Elfinvl);
Fvr2 = OU7+(2*Elfinvl);
Fvr3 = Fvr2+(2*Binc*Elfinhbb);
Fvr4 = Fvr3+(2*Binc*Elgaphb);
Fvr5 = Fvr4+(2*Binc*Elfinhb);
Fvr6 = Fvr5+(2*Binc*Elgaphb);
Fvr7 = Fvr6+(2*Binc*Elfinhtb);
Fvr8 = Fvr7+(2*Binc*Elgapht);
Fvr9 = Fvr8+(2*Binc*Elfinht);
FvrlO = Fvr9+(2*Binc*Elgapht);
fprintf(fp, "**LEFT HAND SIDE VERTICAL OUTER EDGE\n"); 
f̂ »rintf(f̂ >, "*NODE\n");
fprintf(fp," %7d, %7.3f,%7.3f\n", Fvrl, -50.000,0.000); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fvr2, -50.000, fg2); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fvr3, -50.000, fg3); 
f̂ >rintf(f^>," %7d, %7.3f,%7.3f\n", Fvr4, -50.000, fg4); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fvr5, -50.000, fg5); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fvr6, -50.000, fg6); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fvr7, -50.000, fg7); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fvr8, -50.000, fg8); 
fprintf(fp," %7d, %7.3f,%7.3f\n", Fvr9, -50.000, fg9); 
fprintf(fp," %7d, %7.3f,%7.3f\n", FvrlO, -50.000, fglO); 
fprintf(fp, "*NGEN, NSET=OSQRV\n”); 
fjprintf(f^)," %7d,%7d, %d\n", Fvr2,Fvrl, Sine); 
f̂ >rintf(f^>," %7d,%7d, %d\n", Fvr2,Fvr3, Bine); 
f̂ >rintf(f^>," %7d,%7d, %d\n", Fvr3,Fvr4, Bine); 
fprintf(fp," %7d,%7d, %d\n", Fvr4,Fvr5, Bine); 
fprintf(fp," %7d,%7d, %d\n", Fvr5,Fvr6, Bine); 
fj)rintf(f()," %7d,%7d, %d\n", Fvr6,Fvr7, Bine); 
fyrintf(fp," %7d,%7d, %d\n", Fvr7,Fvr8, Bine); 
f^>rintf(f^>," %7d,%7d, %d\n", Fvr8,Fvr9, Bine); 
fprintf(fp," %7d,%7d, %d\n", Fvr9,FvrlO, Bine); 
fprintf(fp," %7d,%7d, %d\n", FvrlO,Fhrll, Bine); 
fprintf(fp, "*NSET, NSET=OUVBB, GENERATE\n"); 
fprintf(fp," %d,%d, %d\n", OU7,OU8, Sine); 
fprintf(fp, "*NSET, NSET=OSQVB, GENERATE\n"); 
f^>rintf(f)p," %d,%d, %d\n", Fvr2,Fvrl, Sine); 
fprintf(fp, " W IL L , NSET=OUSQVB\n"); 
fprintf(fp," OUVBB,OSQVB, %.01f,%d\n", 2*Elfinvl,l); 
fprintf(fp, " W E T , NSET=OUVT, GENERATED");
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fprintf(fp," %d,%d, %d\n", 0U7,FhrlO, Bine); 
fprintf(fp, "*NSET, NSET=OSQVT, GENERATED"); 
fprintf(fip," %d,%d, %d\n", Fvr2,Fhrll, Bine); 
fprintf(fp, "*NFILL, NSET=OUSQVT\n"); 
fprintf(fp," OUVT,OSQVT, %.01f,%d\n", 2*Elfinvl,l);

/* Generate Nodes For Vertical Fingers */ 
fprintf(fp, "**\n");
fprintf(fp, "**NODES FOR VERTICAL FINGERSNn"); 
fprintf(fp, "*NSET, NSET=VFINBR, GENERATE\n"); 
fprintf(f^>," %d,%d, %d\n", NSOa,Fhrl, 1); 
fprintf(fp, "*NSET, NSET=VFINBM, GENERATE\n"); 
fprintf(fp," %d,%d, %d\n", NSOa,NSOb, Sine); 
fprintf(fp, "*NSET, NSET=VFINBL, GENERATED"); 
fprintf(fjp," %d,%d, %d\n", NSOb,Fhrll, 1); 
fyrintf(fp, "*NSET, NSET=VFINB\n"); 
fj)rintf(fp," VFINBR,VFINBM,VFINBL\n");
fprintf(Q), "*NCOPY, CHANGE NUMBER=%d, OLD SET=VFINB, SHIFT,MULTIPLES, NEW

SET=VFINM\n", 2*30*Binc);
fprintf(fp," %.3f,%.3f,%.3f\n", 0.0,25.0,0.0);
f^rintf(f^>," % .lf,% .lf,% .lf, %.lf,%.lf,%.lf, %.lf\n", 0.0,0.0,0.0,0.0,1.0,0.0,0.0);
fprintf(fp, "*NCOPY, CHANGE NUMBER=%d, OLD SET=VFINM, SHIFT,MULTIPLE=1, NEW

SET=VFINT\n", 2*30*Binc);
fprintf(fp," %.3f,%.3f,%.3f\n", 0.0,55.0,0.0);
fprintf(fp," % .lf,% .lf,% .lf, % .lf,% .lf,% .lf, %.lf\n", 0.0,0.0,0.0, 0.0,1.0,0.0, 0.0);
fprintf(fp, " W IL L , NSET=VFIN\n");
fprintf(fp, " VFINB,VFINM, %d,%d\n", 2*30,Bine);
fprintf(fp," VFINM,VFINT, %d,%d\n", 2*30,Bine);
/* Generate Nodes For Horizontal Fingers */ 
fprintf(fp, "**\n");
fprintf(fp, "**NODES FOR HORIZONTAL FINGERS\n"); 
fprintf(fp, "*NSET, NSET=HFINRB, GENERATE^"); 
fprintf(fp," %d,%d, %d\n", Fvr2,Fvrl, Sine); 
fprintf(fp, "*NSET, NSET=HFINRT, GENERATED"); 
fprintf(fp," %d,%d, %d\n", Fvr2,Fhrll, Bine); 
fprintf(fp, "*NSET, NSET=HFINR\n"); 
fprintf(fp," HFINRB,HFINRT\n");
fprintf(fp, "*NCOPY, CHANGE NUMBER=%d, OLD SET=HFINR, SHIFT,MULTIPLE=1, NEW

SET=HFINM\n", 2*30);
fprintf(fp," %.3f,%.3f,%.3f\n", -25.0,0.0,0.0);
fprintf(fp," %.lf,%.lf,%.lf, % .lf,% .lf,% .lf, %.lf\n", 0.0,0.0,0.0,0.0,1.0,0.0,0.0);
fprintf(fp, "*NCOPY, CHANGE NUMBER=%d, OLD SET=HFINM, SHIFT,MULTIPLE=1, NEW

SET=HFINL\n", 2*30);
fprintf(fp," %.3f,%.3f,%.3f\n", -55.0,0.0,0.0);
fj)rintf(f{>," %.lf,%.lf,%.lf, %.lf,%.lf,%.lf, %.lf\n", 0.0,0.0,0.0,0.0,1.0,0.0,0.0); 
fprintf(fp, " W IL L , NSET=HFIN\n"); 
fprintf(fp," HFINR,HFINM, %d,%d\n", 2*30,1); 
fprintf(f^>," HFINM,HFINL, %d,%d\n", 2*30,1);

fprintf(fp, "**\n");
fprintf(fp, "**BOUNDARIES\n");
fprintf(f^, "*NSET, NSET=SYMMSIDE, GENERATED");
if  (priormd != 0)
{
fprintf(fip," %d,%d, %d\n", Bnl,Bn2, Sine); 
fprintf(Q)," %d,%d, %d\n", Bn2,Fhrl, Bine);
fprintf(fp," %d,%d, %d\n”, Fhrl+(2*30*Binc),Fhrl+(2*30*Binc)+(2*30*Binc), Bine); 
}
if  (Elbef =  0)
{
fprintf(fp," %d,%d, %d\n", Sn2,Sn4, Sine); 
fprintf(fp," %d,%d, %d\n", Sn4,Fhrl, Bine);
fprintf(fp," %d,%d, %d\n", Fhrl+(2*30*Binc),Fhrl+(2*30*Binc)+(2*30*Binc), Bine); 
}
fprintf(fp, "*NSET, NSET=CRFRONT, GENERATE^");
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fprintf(fp," %d,%d, %d\n", Sn9,Fvrl, 1); 
fprintf(f^)," %d,%d, %d\n", Fvrl+(2*30),Fvrl+(2*(30+30)), 1); 
fprintf(fp, "*NSET, NSET=TIPSLAVE, GENERATED"); 
fprintf(f^>," %d,%d, %d\n", Snl+Sinc,Sn9, Sine); 
f̂ >rintf(f£>, "**\n");

/* Calculate Element Quantities */
S = ((2*Elsh)+Elsw)*con;
Ba = Elsh*Elbef;
Bbb = ElbePElabov;
Bbm = ElbePElaft;
Bbt = Elbef*(int)Elfmht;
Bb = Bbb+Bbm+Bbt;
Bcb = Elsw*Elabov;
Bern = Elsw*Elaft;
Bet = Elsw*(int)Elfmht;
Be = Bcb+Bcm+Bct;
Bdb = (Elaft+Elaft+(int)Elfmvl)*(Elabov+Elaft+(int)Elfinht); 
Bd = Bdb+((Elabov+Elaft+Elfinht)*(30+30));
Bel = Elsh*Elaft;
Bern = Elsh*Elaft;
Ber = Elsh*(int)Elfmvl;
Be = Bel+Bem+Ber+(Elsh*(30+30));

/* Continue Programme */ 
fprintf(fp, "**ELEMENT GENERATION\n"); 
fprintf(fp, "**SINGULARITY\n"); 
fprintf(fp, '^ELEMENT, TYPE=CPS8R\n");
fprintf(fp," %d, %d,%d,%d,%d, %d,%d,%d,%d\n", 1, l,3,3+(2*Sinc),l+(2*Sinc), 2,3+Sinc,2+(2*Sinc),l+Sinc); 
fprintf(fp, "*ELGEN, ELSET=ELSING\n");
fprintf(fp," %d, %d,%d,%d, %d,%d,%d\n", 1, con,2,l, (2*Elsh)+Elsw,2*Sinc,con); 
fprintf(fp, "**BODY SURROUND\n"); 
fprintf(fp, "^ELEMENT, TYPE=CPS8R\n"); 
if  (Elbef != 0)
{
fprintf(fp," %5d, %5d,%5d,%5d,%5d, %5d,%5d,%5d,%5d\n",S+l, Sn2,Sn2+2,Sn2+2+(2*Sinc),Sn2+(2*Sinc), 

Sn2+1 ,Sn2+2+Sinc,Sn2+ l+(2*Sinc),Sn2+Sinc);
fprintf(fp," %5d, %5d,%5d, %5d, %5d, %5d,%5d,%5d,%5d\n",l+S+Ba, Sn4,Sn4+2,Sn4+2+(2*Binc),Sn4+(2*Binc), 

Sn4+l,Sn4+2+Binc,Sn4+l+(2*Binc),Sn4+Binc);
}
fprintf(fp," %5d, %5d,%5d,%5d,%5d, %5d,%5d,%5d,%4d\n", S+Ba+Bb+1, 

Sn4+(2*Sinc),Sn4,Sn4+(2*Binc),Sn4+(2*Sinc)+(2*Binc), 
Sn4+Sinc)Sn4+Binc,Sn4+Sinc+(2*Binc),Sn4+(2*Sinc)+Binc); 
fprintf(fp," %5d, %5d,%5d,%5d,%5d, %5d,%5d,%5d,%4d\n", S+Ba+Bb+Bc+1, 

Sn6+2,Sn6,Sn6+(2*Binc),Sn6+2+(2*Binc), Sn6+l,Sn6+Binc,Sn6+l+(2*Binc),Sn6-t-2+Binc); 
fprintf(fp," %5d, %5d,%5d,%5d,%5d, %5d,%5d,%5d,%4d\n", S+Ba+Bb+Bc+Bd+1, 

Sn6+2+(2*Sinc),Sn6+(2*Sinc),Sn6,Sn6+2, Sn6+l+(2*Sinc),Sn6+Sinc,Sn6+l,Sn6+2+Sinc); 
fprintf(fp, "*ELGEN, ELSET=ELSURR\n");

if (Elbef != 0)
{
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", S + l, Elbef,2,l, Elsh,2*Sinc,Elbef);
f̂ >rintf(f^>," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", 1+S+Ba, Elbef,2,1, Elabov+Elaft+(int)Elfinht,2*Binc,Elbef);
}
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", l+S+Ba+Bb,Elsw,2*Sinc,l, 

Elabov+Elaft+(int)Elfmht,2*Binc,Elsw);
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", l+S+Ba+Bb+Bc,Elaft+Elaft+(int)Elfmvl,2,l, 

Elabov+Elaft+(int)Elfinht,2*Binc,Elaft+Elaft+(int)Elfinvl+30+30);
fprintf(fp, ” %5d, %3d,%3d,%d, %3d,%5d,%3d\n", l+S+Ba+Bb+Bc+Bd,Elaft+Elaft+(int)Elfinvl,2,l, 

Elsh,2*Sinc,Elaft+Elaft+(int)Elfinvl+30+30);

fprintf(fp, "**FINGER GENERATION\n");
Elhgapvl = (int)Elhgapv;
Elfmvl = (int)Elfinv;
Elgapvl = (int)Elgapv;
Elfinvlrl = (int)Elfmvlr;
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Elgapvll = (int)Elgapvl;
Elfinvll = (int)Elfinvl;

if (flag =  1)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+(Elbef-(ElhgapvI+ElfinvI))+l;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfinvlI))+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+l;
Elnum6 = Elnum5+Elfinv+Elgapvl;
Elnum7 = Elnum6+Elfinvlrl+Elgapvll;
Elnum8 = Elnum7+Elfmvll+Elgapvll;

fjprintf(fp, ’̂ ELEMENT, TYPE=CPS8R\n");
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml,

Fhr3,Fhr3+2,Fhr3+2+(2*Binc),Fhr3+(2*Binc), Fhr3+l,Fhr3+2+Binc,Fhr3+l+(2*Binc),Fhr3+Binc); 
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2,

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2* 
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
Fhr4+(2*30*Binc)+2,Fhr4+(2*30*Binc),Fhr4+(2*30*Binc)+(2*Binc),Fhr4+(2*30*Binc)+2, 
Fhr4+(2*30*Binc)+l,Fhr4+(2*30*Binc)+Binc,Fhr4+(2*30*Binc)+l+(2*Binc),Fhr4+(2*30*Binc)+2+Binc);

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6,
Fhr6+2,Fhr6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7, 
Fhr8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+1 ,Fhr8+Binc,Fhr8+ l+(2*Binc),Fhr8+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8,
FhrlO+2, FhrlO, FhrlO+(2*Binc),FhrlO+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),FhrlO+2+Binc); 

fprintf(fp, "*ELGEN, ELSET=ELVERT\n");
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elfinvl,2,l, 30,2*Binc,Elbef); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elbef,2 ,1 ,30 ,2*Binc,Elbef); 
f))rintf(fj)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
f^rintf(fj)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elaft+Elaft+Elfinvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfinvlI);
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfmvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elfinvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
f)jrintf(f))," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
f))rintf(f)>," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if  (flag =  2)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+(Elbef-(ElhgapvI+ElfinvI))+l;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfmvlI))+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfmvI+ElgapvI-(Elbef+Elsw))+l;
Elnum6 = Elnum5+Elfmv+Elgapvl;
Elnum7 = Elnum6+Elfinvlrl+Elgapvll;
Elnum8 = Elnum7+Elfmvll+Elgapvll;

fprintf(fp, ’̂ ELEMENT, TYPE=CPS8R\n");
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml,

Fhr3,Fhr3+2,Fhr3+2+(2*Binc),Fhr3+(2*Binc), Fhr3+l,Fhr3+2+Binc,Fhr3+l+(2*Binc),Fhr3+Binc); 
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2,

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc),
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc);
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fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3,
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2*
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2, 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc);

f)printf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6,
Fhr6+2,Fhr6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fjprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7,
Fhr8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+l,Fhr8+Binc,Fhr8+l+(2*Binc),Fhr8+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", ElnumS,
Fhrl 0+2,Fhrl 0,Fhrl 0+(2*Binc),Fhrl 0+(2*Binc)+2, Fhrl 0+1 ,Fhr 10+Binc,Fhr 10+1+(2*Binc),Fhr 10+2+Binc); 

fprintf(fp, "*ELGEN, ELSET=ELVERT\n");
fj)rintf(f^)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elfinvl,2,l, 30,2*Binc,Elbef); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elbef,2,l, 30,2*Binc,Elbef); 
fprintf(f)>," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elaft+Elaft+Elfmvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfmvlI);
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elfmvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfm vll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfm vll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if  (flag =  3)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+1;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfinvlI))+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfinvI+ElgapvI-(Elbef+Elsw))+l;
Elnum6 = Elnum5+Elfinv+Elgapvl;
Elnum7 = Elnum6+Elfinvlrl+Elgapvll;
Elnum8 = Elnum7+Elfmvll+Elgapvll;

fprintf(fp, "^ELEMENT, TYPE=CPS8R\n");
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml,

NSOa,NSOa+2,NSOa+2+(2*Binc),NSOa+(2*Binc), NSOa+l,NSOa+2+Binc,NSOa+l+(2*Binc),NSOa+Binc); 
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2, 

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc); 

fjprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2* 
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc), 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc);

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6, 
Fhr6+2,Fhr6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7,
Fhr8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+l,Fhr8+Binc,Fhr8+l+(2*Binc),Fhr8+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8,
FhrlO+2,FhrlO,Fhrl 0+(2*Binc),Fhrl0+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),FhrlO+2+Binc);

fprintf(fp, "*ELGEN, ELSET=ELVERTVn");
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elfinvl,2,l, 30,2*Binc,Elbef); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elbef,2,l, 30,2*Binc,Elbef);
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fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elaft+Elaft+Elfinvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfinvlI);
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elfinvl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(f))," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elfinvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfinvll,2 ,1 ,30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfinvll,2 ,1 ,30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if (flag =  4)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+1;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfmvlI))+l;
Elnum6 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfmvI+ElgapvI-(Elbef+Elsw))+l;
Elnum7 = Elnum6+Elfmv+Elgapvl;
Elnum8 = Elnum7+Elfinvlrl+Elgapvll;
Elnum9 = Elnum8+Elfinvll+Elgapvll;

fjprintf(f]p, "^ELEMENT, TYPE=CPS8R\n");
f̂ >rintf(f^>," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml, 

NSOa,NSOa+2,NSOa+2+(2*Binc),NSOa+(2*Binc), NSOa+l,NSOa+2+Binc,NSOa+l+(2*Binc),NSOa+Binc); 
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2,

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
NSOa+(2*Sinc),NSOa,NSOa+(2*Binc),NSOa+(2*Sinc)+(2*Binc), 
NSOa+Sinc,NSOa+Binc,NSOa+Sinc+(2*Binc),NSOa+(2*Sinc)+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2* 
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5, 
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc), 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6,
Fhr4+2,Flu-4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7, 
Fhr6+2,Fhr6,FhT6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

f]printf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8, 
Fhr8+2,Flir8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+l,Fhr8+Bine,Fhr8+l+(2!|cBinc),Fhr8+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum9, 
FhrlO+2,FhrlO,FhrlO+(2*Binc),FhrlO+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),FhrlO+2+Binc);

fprintf(fp, "*ELGEN, ELSET=ELVERT\n");
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elbef-Elhgapvl,2,l, 30,2*Binc,Elbef); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elbef,2,l, 30,2*Binc,Elbef); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, (ElhgapvI+ElfinvI)-Elbef,2*Sinc, 1, 30,2*Binc,Elsw); 
fprintf(f^," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elaft+Elaft+Elfinvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfinvlI);
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfinvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fj)rintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfifp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum9, Elfinvll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}

if  (flag == 5)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+1;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfinvlI))+l;
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Elnum6 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfinvI+ElgapvI-(Elbef+Elsw))+l;
Elnum7 = Elnum6+Elfinv+Elgapvl;
Elnum8 = Elnum7+Elfmvlrl+Elgapvll;
Elnum9 = Elnum8+Elfinvll+Elgapvll;

fprintf(fp, "*ELEMENT, TYPE=CPS8R\n");
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml,

NSOa,NSOa+2,NSOa+2+(2*Binc),NSOa+(2*Binc), NSOa+l,NSOa+2+Binc,NSOa+l+(2*Binc),NSOa+Binc); 
fjprintf(fp," %5d, %4d, %4d, %4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2,

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
NSOa+(2*Sinc),NSOa,NSOa+(2*Binc),NSOa+(2*Sinc)+(2*Binc), 
NSOa+Sinc,NSOa+Binc,NSOa+Sinc+(2*Binc),NSOa+(2*Sinc)+Binc); 

fjprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2* 
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5,
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc), 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7,
Fhr6+2,Fhr6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8,
Fhr8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+1 ,Fhr8+Binc,Fhr8+1+(2*Binc),Fhr8+2+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum9,
FhrlO+2,FhrlO,FhrlO+(2*Binc),FhrlO+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),FhrlO+2+Binc); 

fprintf(fp, "*ELGEN, ELSET=ELVERT\n");
fprintf(f)>," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elbef-Elhgapvl,2,l, 30,2*Binc,Elbef); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elbef,2,l, 30,2*Binc,Elbef); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, (ElhgapvI+ElfinvI)-Elbef,2*Sinc, 1, 30,2*Binc,Elsw); 
f̂ >rintf(f^>," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elaft+Elaft+Elfinvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfinvlI);
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elfinvl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfinvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum9, Elfm vll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if  (flag =  6)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+1;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+l;
Elnum6 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfinvlI))+l;
Elnum7 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfinvI+ElgapvI-(Elbef+Elsw))+l;
Elnum8 = Elnum7+Elfinv+Elgapvl;
Elnum9 = Elnum8+Elfmvlrl+Elgapvll;
Elnuml 0 = Elnum9+Elfmvll+Elgapvll;

fprintf(fp, "*ELEMENT, TYPE=CPS8R\n"); 
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml, 

NSOa,NSOa+2,NSOa+2+(2*Binc),NSOa+(2*Binc), NSOa+l,NSOa+2+Binc,NSOa+l+(2*Binc),NSOa+Binc); 
fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2,

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2!,:30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(25|:Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc); 

fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
NSOa+(2*Sinc),NSOa,NSOa+(2*Binc),NSOa+(2*Sinc)+(2*Binc), 
NSOa+Sinc,NSOa+Binc,NSOa+Sinc+(2*Binc),NSOa+(2*Sinc)+Binc);
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fprintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4,
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2*
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5, 
NSOb+2,NSOb,NSOb+(2*Binc),NSOb+2+(2*Binc), NSOb+l,NSOb+Binc,NSOb+l+(2*Binc),NSOb+2+Binc); 

fprintfffjp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6, 
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc), 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc);

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8,
Fhr6+2,Fhr6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+1 ,Fhr6+Binc,Fhr6+1+(2*Binc),Fhr6+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum9,
Fhr8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+l,Fhr8+Binc,Fhr8+l+(2*Binc),Fhr8+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", ElnumlO,
Fhrl0+2,FhrlO,Fhrl0+(2*Binc),Fhrl0+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),FhrlO+2+Binc); 

fprintf(fp, "*ELGEN, ELS ET=ELVERT\n");
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elbef-Elhgapvl,2,l, 30,2*Binc,Elbef); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elbef,2,l, 30,2*Binc,Elbef); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fjprintf(f)>," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, (ElhgapvI+ElfmvI)-(Elbef+Elsw),2,l, 

30,2*Binc,Elaft+Elaft+ElfmvlI);
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elaft+Elaft+Elfmvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfinvlI);
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfinvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfmvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum9, Elfinvll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", ElnumlO, Elfinvll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if  (flag =  7)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfinvlI))+l;
Elnum6 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfinvI+ElgapvI-(Elbef+Elsw))+l;
Elnum7 = Elnum6+Elfinv+Elgapvl;
Elnum8 = Elnum7+Elfinvlrl+Elgapvll;
Elnum9 = Elnum8+Elfinvll+Elgapvll;

fprintfffp, "^ELEMENT, TYPE=CPS8R\n"); 
f))rintf(f))," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml, 

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc); 

f]printf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2, 
NSOa+(2*Sinc),NSOa,NSOa+(2*Binc),NSOa+(2*Sinc)+(2*Binc), 
NSOa+Sinc,NSOa+Binc,NSOa+Sinc+(2*Binc),NSOa+(2*Sinc)+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2* 
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
NSOb+2,NSOb,NSOb+(2*Binc),NSOb+2+(2*Binc), NSOb+l,NSOb+Binc,NSOb+l+(2*Binc),NSOb+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5, 
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc), 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc); 

fprintfffp," %5d, %4d, %4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc);
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fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7,
Fhr6+2,Fhr6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8,
Fhr8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+l,Fhr8+Binc,Fhr8+l+(2*Binc),Fhr8+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum9,
Fhrl 0+2,Fhrl 0,Fhr 10+(2*Binc),Fhr 10+(2*Binc)+2, Fhrl 0+1 ,Fhrl 0+Binc,Fhr 10+1+(2*Binc),Fhr 10+2+Binc);

fprintfffp, "*ELGEN, ELSET=ELVERT\n");
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elbef,2,l, 30,2*Binc,Elbef); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fpmntfffp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, (ElhgapvI+ElfinvI)-(Elbef+Elsw),2,l, 

30,2*Binc,Elaft+Elaft+ElfinvlI);
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elaft+Elaft+Elfmvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfmvlI);
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elflnvl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfinvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum9, Elfinvll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if  (flag =  8)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(ElhgapvI-Elbef)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfmvlI))+l;
Elnum6 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfinvI+ElgapvI-(Elbef+Elsw))+l;
Elnum7 = Elnum6+Elfinv+Elgapvl;
Elnum8 = Elnum7+Elfmvlrl+Elgapvll;
Elnum9 = Elnum8+Elfinvll+Elgapvll;

fprintfffp, "^ELEMENT, TYPE=CPS8R\n");
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml,

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2, 
Fhr2+(2*Sinc),Fhr2,Fhr2+(2*Binc),Fhr2+(2*Sinc)+(2*Binc), 
Fhr2+Sinc,Fhr2+Binc,Fhr2+Sinc+(2*Binc),Fhr2+(2*Sinc)+Binc); 

fprintfffp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2* 
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
NSOb+2,NSOb,NSOb+(2*Binc),NSOb+2+(2*Binc), NSOb+l,NSOb+Binc,NSOb+l+(2*Binc),NSOb+2+Binc); 

fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5, 
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc), 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc); 

fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7, 
Fhr6+2,Fhr6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8, 
Fhr8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+l,Fhr8+Binc,Fhr8+l+(2*Binc),Fhr8+2+Binc); 

fprintfffp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum9,
FhrlO+2,FhrlO,FhrlO+(2*Binc),FhrlO+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),FhrlO+2+Binc); 

fprintfffp, "*ELGEN, ELSET=ELVERT\n");
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elbef,2,l, 30,2*Binc,Elbef);
fp)rintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, (Elbef+Elsw)-ElhgapvI,2*Sinc,l, 30,2*Binc,Elsw);
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elsw,2*Sinc,l, 30,2*Binc,Elsw);
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, (ElhgapvI+ElfmvI)-fElbef+Elsw),2,l,

30,2*Binc,Elaft+Elaft+ElfmvlI);
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elaft+Elaft+Elfinvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfmvlI);
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fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n”, Elnum6, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfinvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum9, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if  (flag =  9)
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfinvlI))+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfmvI+ElgapvI-(Elbef+Elsw))+l;
Elnum6 = Elnum5+Elfinv+Elgapvl;
Elnum7 = Elnum6+Elfinvlrl+Elgapvll;
Elnum8 = Elnum7+Elfinvll+Elgapvll;

fprintfffp, "*ELEMENT, TYPE=CPS8R\n");
fprintfffp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml, 

NSOa+(2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2*30*Binc)+Binc); 

fp)rintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2, 
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2* 
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3,
NSOb+2,NSOb,NSOb+(2*Binc),NSOb+2+(2*Binc), NSOb+l,NSOb+Binc,NSOb+l+(2*Binc),NSOb+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc), 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc);

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6,
Fhr6+2,Fbr6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fp)rintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7,
Fhr8+2,Fhr8 ,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+1 ,Fhr8+Binc,Fhr8+l+(2*Binc),Fhr8+2+Binc); 

fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8,
FhrlO+2, FhrlO, FhrlO+(2*Binc),FhrlO+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),Fhrl 0+2+Binc);

fp)rintf(fp, "*ELGEN, ELSET=ELVERT\n");
fpMintfffp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elbef,2,l, 30,2*Binc,Elbef); 
fp)rintf(fp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fpjrintfffp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elfinvl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elaft+Elaft+Elfmvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfinvlI);
fp)rintf(fp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fp)rintf(fp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elfmvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fp)rintfffp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfm vll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfm vll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if (flag = 1 0 )
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+(30*Elbef)+l;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI-(Elbef+Elsw))+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfmvlI))+l;
Elnum5 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfinvI+ElgapvI-(Elbef+Elsw))+l;
Elnum6 = Elnum5+Elfmv+Elgapvl;
Elnum7 = Elnum6+Elfinvlrl+Elgapvll;
Elnum8 = Elnum7+Elfinvll+Elgapvll;

fprintfffp, ’̂ ELEMENT, TYPE=CPS8R\n");
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml, 

NSOa+f2*30*Binc),NSOa+(2*30*Binc)+2,NSOa+(2*30*Binc)+2+(2*Binc),NSOa+(2*30*Binc)+(2*Binc), 
NSOa+(2*30*Binc)+l,NSOa+(2*30*Binc)+2+Binc,NSOa+(2*30*Binc)+l+(2*Binc),NSOa+(2!t:30*Binc)+Binc);
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fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2,
NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2*
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
Fhr2+2,Fhr2,Fhr2+(2*Binc),Fhr2+2+(2*Binc), Fhr2+l,Fhr2+Binc,Fhr2+l+(2*Binc),Fhr2+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4,
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc),
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc);

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5,
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6, 
Fhr6+2,Fhr6,Fhr6+f2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7,
Flu-8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+l,Fhr8+Binc,Fhr8+l+(2*Binc),Fhr8+2+Binc); 

fprintfffp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum8,
FhrlO+2,FhrlO,FhrlO+(2*Binc),FhrlO+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),FhrlO+2+Binc); 

fp)rintf(fp), "*ELGEN, ELSET=ELVERT\n");
fprintfffp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elbef,2 ,1 ,30,2*Binc,Elbef); 
fprintfffp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fp)rintf(fp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fp)rintf(fp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elaft+Elaft+Elfinvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfinvlI);
fp)rintf(fp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfmvlI); 
fp)rintf(fp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elfinvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp), ” %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fp)rintf(fp)," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum8, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}
if (flag = 1 1 )
{
Elnuml = S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)+(30*Elsw)+l;
Elnum2 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI-(Elbef+Elsw))+l;
Elnum3 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(30*(Elaft+Elaft+ElfinvlI))+l;
Elnum4 = S+Ba+Bb+Bc+Bd+Be+((Elbef+Elsw)*(30+30))+(ElhgapvI+ElfmvI+ElgapvI-(Elbef+Elsw))+l;
Elnum5 = Elnum4+Elfinv+Elgapvl;
Elnum6 = Elnum5+Elfinvlrl+Elgapvll;
Elnum7 = Elnum6+Elfinvll+Elgapvll;

fp)rintf(fp), "^ELEMENT, TYPE=CPS8R\n");
fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnuml, 

NSOa+(2*30*Binc)+(2*Sinc),NSOa+(2*30*Binc),NSOa+(2*30*Binc)+(2*Binc),NSOa+(2*30*Binc)+(2*Sinc)+(2* 
Bine),
NSOa+(2*30*Binc)+Sinc,NSOa+(2*30*Binc)+Binc,NSOa+(2*30*Binc)+Sinc+(2*Binc),NSOa+(2*30*Binc)+(2*Si
nc)+Binc);

fp)rintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum2, 
Fhr2+2,Fhr2,Fhr2+(2*Binc),Fhr2+2+(2*Binc), Fhr2+l,Fhr2+Binc,Fhr2+l+(2*Binc),Fhr2+2+Binc); 

fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum3, 
NSOb+(2*30*Binc)+2,NSOb+(2*30*Binc),NSOb+(2*30*Binc)+(2*Binc),NSOb+(2*30*Binc)+2+(2*Binc), 
NSOb+(2*30*Binc)+l,NSOb+(2*30*Binc)+Binc,NSOb+(2*30*Binc)+l+(2*Binc),NSOb+(2*30*Binc)+2+Binc);

fprintfffp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum4, 
Fhr4+2,Fhr4,Fhr4+(2*Binc),Fhr4+(2*Binc)+2, Fhr4+l,Fhr4+Binc,Fhr4+l+(2*Binc),Fhr4+2+Binc); 

fprintfffp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum5,
Fhr6+2,Flu-6,Fhr6+(2*Binc),Fhr6+(2*Binc)+2, Fhr6+l,Fhr6+Binc,Fhr6+l+(2*Binc),Fhr6+2+Binc); 

fp)rintf(fp)," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum6, 
Fhr8+2,Fhr8,Fhr8+(2*Binc),Fhr8+(2*Binc)+2, Fhr8+l,Fhr8+Binc,Fhr8+l+(2*Binc),Fhr8+2+Binc); 

fp)rintf(fp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnum7,
FhrlO+2,FhrlO,FhrlO+(2*Binc),FhrlO+(2*Binc)+2, FhrlO+l,FhrlO+Binc,FhrlO+l+(2*Binc),FhrlO+2+Binc);

fprintfffp, "*ELGEN, ELSET=ELVERT\n");
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnuml, Elsw,2*Sinc,l, 30,2*Binc,Elsw); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum2, Elfm vl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fp)rintf(fp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum3, Elaft+Elaft+Elfinvll,2,l, 

30,2*Binc,Elaft+Elaft+ElfmvlI);
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fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum4, Elfinvl,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum5, Elfmvlrl,2,l, 30,2*Binc,Elaft+Elaft+ElfmvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum6, Elfinvll,2,1, 30,2*Binc,Elaft+Elaft+ElfinvlI); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnum7, Elfm vll,2,l, 30,2*Binc,Elaft+Elaft+ElfinvlI);
}

/* Horizontal Fingers */ 
fprintfffjp, "**\n");
fprintfffp, "**HORIZONTAL FINGERS\n");

Elfmhtl = (int)Elfinht;
ElgaphtI = (int)Elgapht;
Elfmhtbl = (int)Elfinhtb;
Elgaphbl = (int)Elgaphb;
Elfinhbl = (int)Elfinhb;
ElfinhbbI = fint)Elfmhbb;

Elnumhl = S+Ba+Bb+Bc+Bd+Elaft+Elaft+ElfinvlI+30+1;
Elnumh2 = S+Ba+Bb+Bc+Elaft+Elaft+ElfinvlI+1;
Elnumh3 = Elnumh2+((Elaft+Elaft+ElfinvlI+30+30)*((ElfinhbbI+ElgaphbI)-l));
Elnumh4 = Elnumh3+((Elaft+Elaft+ElfmvlI+30+30)*((ElfinhbI+ElgaphbI)-l));
Elnumh5 = Elnumh4+((Elaft+Elaft+ElfinvlI+30+30)*((ElfinhtbI+ElgaphtI)-l));
Elnumh6 = Elnumh5+((Elaft+Elaft+ElfinvlI+30+30)*((ElfinhtI+ElgaphtI)-l));
Elnumh7 = Elnumh2+30;

fprintfffp, ’̂ ELEMENT, TYPE=CPS8R\n");
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnumhl, 

Fvr2+(2*30)+2+(2*Sinc),Fvr2+(2*30)+(2*Sinc),Fvr2+(2*30),Fvr2+(2*30)+2, 
Fvr2+(2*30)+l+(2*Sinc),Fvr2+(2*30)+Sinc,Fvr2+(2*30)+l,Fvr2+(2*30)+2+Sinc); 
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnumh2,

Fvr2+2,Fvr2,Fvr2+(2*Binc),Fvr2+(2*Binc)+2, Fvr2+l,Fvr2+Binc,Fvr2+l+(2*Binc),Fvr2+2+Binc); 
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnumh3,

Fvr4+2,Fvr4,Fvr4+(2*Binc),Fvr4+(2*Binc)+2, Fvr4+l,Fvr4+Binc,Fvr4+l+(2*Binc),Fvr4+2+Binc); 
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnumh4,

Fvr6+2,Fvr6,Fvr6+(2*Binc),Fvr6+(2*Binc)+2, Fvr6+l,Fvr6+Binc,Fvr6+l+(2*Binc),Fvr6+2+Binc); 
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnumh5,

Fvr8+2,Fvr8,Fvr8+(2*Binc),Fvr8+(2*Binc)+2, Fvr8+l,Fvr8+Binc,Fvr8+l+(2*Binc),Fvr8+2+Binc); 
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnumh6,

FvrlO+2,FvrlO,FvrlO+(2*Binc),FvrlO+(2*Binc)+2, FvrlO+l,FvrlO+Binc,FvrlO+l+(2*Binc),Fvrl 0+2+Binc); 
fprintfffp," %5d, %4d,%4d,%4d,%4d, %4d,%4d,%4d,%4d\n", Elnumh7, 

Fvr2+(2*30)+2,Fvr2+(2*30),Fvr2+(2*30)+(2*Binc),Fvr2+(2*30)+2+(2*Binc), 
Fvr2+(2*30)+l,Fvr2+(2*30)+Binc,Fvr2+(2*30)+l+(2*Binc),Fvr2+(2*30)+2+Binc);

fprintfffp, "*ELGEN, ELSET=ELHORI\n");
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnumhl, 30,2,1, Elsw,2*Sinc,(Elaft+Elaft+ElfmvlI+30+30)); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnumh2, 30,2,1,

ElfinhbbI, 2*Binc,(Elaft+Elaft+ElfinvlI+30+30));
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnumh3,30,2,1,

Elfinhbl,2*Binc,(Elaft+Elaft+ElfinvlI+30+30));
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnumh4, 30,2,1,

ElfinhtbI,2*Binc,(Elaft+Elaft+ElfinvlI+30+30));
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnumh5,30,2,1,

Elfmhtl, 2*Binc,(Elaft+Elaft+ElfmvlI+30+30));
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnumh6,30,2,1,

Elfmhtl,2*Binc,(Elaft+Elaft+ElfmvlI+30+30)); 
fprintfffp," %5d, %3d,%3d,%d, %3d,%5d,%3d\n", Elnumh7,30,2,1, 

Elabov+Elaft+ElfinhtI,2*Binc,(Elaft+Elaft+ElfinvlI+30+30));

fprintfffp, "*ELSET, ELSET=ALL\n");
fprintfffp," ELSING,ELSURR,ELVERT,ELHORI\n");
fprintfffp, "**\n");
fprintfffp, "**LOADINGS\n");
fprintfffp,"*ELSET.ELSET=L0ADED3, GENERATE\n"); 
if  (Elbef != 0)
{
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fprintfffp," %d,%d, %d\n", S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef)- 
Elbef+l,S+Ba+Bb+Bc+Bd+Be+((30+30)*Elbef), 1);
}
fprintfffp," %d,%d, %d\n", S+Ba+Bb+Bc+Bd+Be+((30+30)*(Elbef+Elsw))- 

Elsw+l,S+Ba+Bb+Bc+Bd+Be+((30+30)*(Elbef+Elsw)), 1);
fprintfffp," %d,%d, %d\n", S+Ba+Bb+Bc+Bd+Be+((30+30)*(Elbef+Elsw+Elaft+Elaft+ElfinvlI))- 
(Elaft+Elaft+ElfinvlI)+l,S+Ba+Bb+Bc+Bd+Be+((30+30)*(Elbef+Elsw+Elaft+Elaft+ElfmvlI)), 1); 
fprintfffp, "*ELSET,ELSET=L0ADED4, GENERATEVn");
f]printf(fp," %d,%d, %d\n", S+Ba+Bb+Bc+Bd+Elaft+Elaft+ElfinhtI+30+30,S+Ba+Bb+Bc+Bd+Be, 

Elaft+Elaft+ElfinvlI+30+30);
fprintfffp," %d,%d, %d\n", S+Ba+Bb+Bc+Elaft+Elaft+ElfinvlI+30+30,S+Ba+Bb+Bc+Bd, 

Elaft+Elaft+ElfinvlI+30+30); 
fprintfffp, "**\n");
fprintfffp, "**MATERIAL DEFINTIONXn");
fprintfffp, "*SOLID SECTION, ELSET=ALL,MATERIAL=AISI316\n"); 
fprintfffp," 4.0\n");
fprintfffp, "^MATERIAL, NAME=AISI316\n"); 
fprintfffp, "^DEFORMATION PLASTICITYXn");

/*Read from materials summary file - matsum */

if ((mat = fopenfmatsum", "r")) =  NULL)
{ printff'Cannot open materials summary file 'matsum'Xn");}

if (temp =  300) (line = 0;} 
if  (temp =  350) {line = 1;} 
if  (temp =  400) {line = 2;} 
if  (temp =  450) {line = 3;} 
if  (temp == 500) {line = 4;} 
if (temp == 550) {line = 5;} 
if (temp == 600) {line = 6;} 
if (temp =  625) {line = 7;} 
if  (temp == 650) {line = 8;} 
if (temp == 700) {line = 9;}

fseekfmat, (47 *line)+197,0); 
while (finChar = getcfmat)) != V )
{ putcfinChar.fp); }

/* Continue Programme *1 
fprintfffp, "\n**\n");
fyrintfffi), "**SINUSIODAL LOADING DEFINTION\n");
fprintfffp, "*AMPLITUDE, DEFINITION=PERIODIC,VALUE=ABSOLUTE, NAME=SINWAVE\n");
fprintfffp," 1,6.283185307,0.0,-%.3f\n", Smean);
fj)rintf(f^)," 0.0,-%.lf, 0 .0 ,0 .0 ,0 .0 ,0 .0 ,0.0,0.0\n", Srange/2);
fprintfffp, "**\n");
fprintfffp, "*BOUNDARY\n");
fprintfffp," SYMMSIDE, l\n");
fprintfffp," CRFRONT, 2\n");
fprintfffp," 1, 2\n");
fprintfffp," TIPSLAVE, 2\n");
fprintfffp, "*EQUATION\n");
fprintfffp," 2\n");
fprintfffp," TIPSLAVE,1 ,1 .0 ,1,1,-l.OVn"); 
fprintfffp, "**\n");
fprintfffp, "**APPLY LINEAR RAMP TO MEAN STRESS\n");
fprintfffp, "*STEP, INC=100\n");
fprintfffp, "*STATIC\n");
fprintfffp," 0.1,1.0\n");
fprintfffp, "*DLOAD, OP=MOD\n");
fprintfffp," LOADED3, P3, -%.3f\n", Smean);
fprintfffp," LOADED4, P4, -%.3f\n", Smean);
fprintfffp, "*CONTOUR INTEGRAL, CONTOUR=%d, SYMM, OUTPUT=BOTmn", con);
fprintfffp," TIP, -1.0,0.0\n");
fprintfffp, "*NODE PRINT, FREQUENCY=0\n");
fprintfffp, "*EL PRINT, ELSET=LOADED3, FREQUENCY=6\n");
fprintfffp," S22\n");

B.6.27



fprintfffp, "*EL PRINT, ELSET=L0ADED4, FREQUENCY=6\n"); 
fprintfffp," Sll\n");
fprintfffp, "*NODE FILE, FREQUENCY=0\n"); 
fprintfffp, "*EL FILE, FREQUENCY=0\n"); 
fprintfffp, "^RESTART, WRITE, OVERLAYVn"); 
fprintfffp, "*END STEP\n"); 
fprintfffp, "**\n");
fprintfffp, "** APPLY SINUSIODAL LOADING PATTERN\n"); 
fprintfffp, "*STEP, INC=100\n"); 
fprintfffp, "*STATIC, DIRECT\n"); 
fprintfffp," 0.05,1.0\n");
fprintfffp, "*DLOAD, AMPLITUDE=SINWAVE, OP=MOD\n"); 
fprintfffp," LOADED3, P3\n"); 
fprintfffjp," LOADED4, P4\n");
fprintfffp, "*CONTOUR INTEGRAL, CONTOUR=%d, SYMM, OUTPUT=BOTH\n", con);
fprintfffp," TIP, -1.0,0.0\n");
fprintfffp, "*NODE PRINT, FREQUENCY=0\n");
fprintfffp, "*EL PRINT, ELSET=LOADED3, FREQUENCY=5\n");
fjprintfffp," S22\n");
fprintfffp, "*EL PRINT, ELSET=LOADED4, FREQUENCY=5\n"); 
fprintfffp," Sll\n");
fprintfffp, "*NODE FILE, FREQUENCY=0\n"); 
fprintfffp, "*EL FILE, FREQUENCY=0\n"); 
fprintfffp, "^RESTART, WRITE, FREQUENCY=5\n"); 
fprintfffp, "*END STEP\n");

crcnt++;
postn = postn+crinc; 
fseekfread, 25+1+cnt, 1); 
fscanffread, "%s", Elaftc);
Elaft = atoi(Elaftc);

fseekfread, cnt+1,1); 
fscanffread, "%s", Elbefc);
Elbef = atoi(Elbefc);

fseekfread, cnt+1,1); 
fscanffread, "%s", Elabovc);
Elabov = atoi (Elabovc);
}

fclosefread);
fcloseffp);
fclosefmat);
return;
}
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Appendix B.7

ABAOUS Input File: Thermal Shock Analysis

ABAQUS Input File fo r  Thermal Shock Fracture Analysis 

(Stress Analysis)
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* HEADING
PURE THERMAL SHOCK -  SINGLE EDGE
BOUNDARY LOAD METHOD = 6 2 5 . OC t o  2 2 5 . OC
STRESS ANALYSIS
0 . 0 2 5  A/ W CRACK LENGTH 

*  *

* RESTART, W RITE, FREQUENCY=1 
* PR EPR IN T, ECHO=NO, MODEL=NO 
*  *

* *NODE GENERATION 
* * SINGULARITY
*NODE

1 , - 1 . 0 0 0 , 0 . 0 0 0
1 3 ,  - 0 . 0 0 0 ,  0 . 0 0 0
5 2 ,  - 0 . 0 0 0 ,  0 . 5 0 0
9 1 ,  - 0 . 0 0 0 ,  1 . 0 0 0

1 3 0 ,  - 1 . 0 0 0 ,  1 . 1 5 0
1 6 9 ,  - 1 . 5 0 0 ,  1 . 0 0 0
2 0 8 ,  - 1 . 6 7 5 ,  0 . 5 0 0
2 4 7 ,  - 1 . 7 5 0 ,  0 . 0 0 0
2 3 5 ,  - 1 . 0 0 0 ,  0 . 0 0 0

*NGEN, L IN E = P , N SET =SIN G R IT E
1 3 , 9 1 ,  1 3 , 5 2

*NGEN, L IN E = P , NSET=SINGTOP
9 1 , 1 6 9 ,  1 3 , 1 3 0

*NGEN, L IN E = P , NSET=SINGLEFT
1 6 9 , 2 4 7 ,  1 3 , 2 0 8

*NGEN, N SE T =T IP
1 , 2 3 5 ,  13

*N SE T , NSET=SINGSURR
S IN G R IT E ,SIN G T O P ,S IN G L E F T

*N F IL L , N SE T =N SIN G ,SIN G U L A R =1
T IP ,S IN G S U R R , 12  

*  *

**BODY SURROUNDINGS 
*NODE

9 1 , - 0 . . 5 0 0 , 3 0 . . 0 0 0
1 6 9 , - 1 . . 5 0 0 , 3 0 . . 0 0 0
1 6 9 , - 4 0 . . 0 0 0 , 3 0 . . 0 0 0
1 6 9 , - 4 0 . . 0 0 0 , 1 . . 0 0 0
2 4 7 , - 4 0 . . 0 0 0 , 0 . . 0 0 0

*NGEN, NSET=LEFTLOW
1 6 9 , 2 4 7 ,  1 3  

*NGEN, NSET=HIGHTOP
9 1 . 1 6 9 ,  1 3

*N F IL L , NSET=NSURRA, TWO S T E P , B I A S = 0 . 9 6 0  
SIN G TO P,H IG H TO P, 0 , 2 0 0  

*N SE T , N SET =L E FT IN N , GENERATE
3 6 9 . 1 6 9 ,  2 0 0

*N SE T , N SE T =R IT E IN N , GENERATE
2 9 1 , 9 1 ,  2 0 0

* N F IL L , NSET=NSURRB, TWO S T E P , B I A S = 0 . 9 4 4
SIN G L E FT , LEFTLOW, 0 , 1

*NCOPY, CHANGE NUMBER=0, OLD SET=LEFTINN,NEW  SET=LEFTH IG H,
SH IF T ,M U L T IP L E =1

- 3 8 . 5 0 0 , 0 . 0 0 0 , - 0 . 0 0 0
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0.0

*N F IL L , NSET=NSURRC, TWO S T E P , B I A S = 0 . 9 4 4
L EF T IN N ,L E FT H IG H , 0 , 1  

*  *

* * BOUNDARIES
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*N SE T , NSET=LOADEDGE, GENERATE
9 1 . 1 6 9 ,  13
1 6 9 . 1 6 9 ,  1

*N SE T , NSET=CRFRONT, GENERATE
2 3 5 , 2 4 7 ,  1 

* *

* * ELEMENT GENERATION 
* * SINGULARITY  
* ELEMENT, TYPE=CPS8R  

1 ,  1 , 3 , 2 9 , 2 7 ,  2 , 1 6 , 2 8 , 1 4  
*ELGEN, ELSET=ELSING  

1 ,  6 , 2 , 1 ,  9 , 2 6 , 6
* *BODY SURROUND 
* ELEMENT, TYPE=CPS8R

5 5 ,  1 1 7 ,  9 1 ,  4 9 1 ,  5 1 7 ,
5 5 ,  1 7 1 ,  1 6 9 ,  5 6 9 ,  5 7 1 ,
5 5 ,  1 9 7 ,  1 9 5 ,  1 6 9 ,  1 7 1 ,

*ELGEN, ELSET=ELSURR
5 5 ,  3 ,  2 6 , 1 ,  0 ,  4 0 0 ,  3
5 5 ,  0 ,  2 , 1 ,  0 ,  4 0 0 ,  0
5 5 ,  0 ,  2 , 1 ,  3 ,  2 6 ,  0

*E L SE T , ELSET=ALL
E LSIN G ,EL SU R R

*  *

**LOADINGS
*E L SE T , ELSET=LOADED3, GENERATE

5 2 . 5 4 ,  1
5 5 . 5 4 ,  1

* * MATERIAL D EFIN TIO N
*SO L ID  SECTIO N, ELSET=A LL, M A T E R IA L =A ISI3 1 6

4 . 0
*MATERIAL, N A M E = A ISI316  
*DEFORMATION P L A ST IC IT Y  

1 8 9 . 7 4 8 0 1 6 E 3 , 0 . 3 , 1 5 4 . 4 , 3 . 6 4 7 4 6 7 , 0 . 1 7 4 0 2 1 ,  
1 7 5 . 6 0 9 2 2 2 E 3 , 0 . 3 , 1 4 6 . 9 , 3 . 4 2 3 4 5 4 , 0 . 1 9 2 7 8 5 ,  
1 7 1 . 8 8 7 7 9 3 E 3 , 0 . 3 , 1 4 4 . 7 , 3 . 3 3 8 1 4 9 , 0 . 1 8 6 0 5 9 ,  
1 7 2 . 7 2 3 3 2 8 E 3 , 0 . 3 , 1 4 7 . 2 , 3 . 5 4 7 0 7 7 , 0 . 1 7 0 8 0 0 ,  
1 8 0 . 1 8 2 2 9 4 E 3 , 0 . 3 , 1 7 0 . 7 , 5 . 0 0 3 7 5 8 , 0 . 0 4 3 9 3 5 ,  
1 6 9 . 7 3 3 8 4 2 E 3 , 0 . 3 , 1 6 1 . 9 , 4 . 7 7 6 5 8 8 , 0 . 0 6 5 6 7 2 ,  
1 6 6 . 7 9 2 6 6 6 E 3 , 0 . 3 , 1 5 3 . 1 , 4 . 4 4 3 1 8 4 , 0 . 0 9 8 4 7 3 ,  
1 6 4 . 9 2 5 8 9 6 E 3 , 0 . 3 , 1 5 0 . 3 , 4 . 5 1 5 3 4 0 , 0 . 1 1 9 6 0 0 ,  
1 6 7 . 2 1 2 5 5 2 E 3 , 0 . 3 , 1 4 6 . 4 , 4 . 5 1 2 7 2 2 , 0 . 1 1 1 2 7 0 ,  
1 6 8 . 0 0 3 4 6 5 E 3 , 0 . 3 , 1 3 1 . 4 , 4 . 6 3 9 4 0 8 , 0 . 1 0 9 7 4 0 ,  

* EXPANSION, T Y P E =ISO , ZERO=0
1 6 . 2 E - 6 , 3 0 0
1 7 . 5 E - 6 , 3 5 0
1 7 . 5 E - 6 , 4 0 0
1 7 . 5 E - 6 , 4 5 0
1 7 . 5 E - 6 , 5 0 0
1 8 . 5 E - 6 , 5 5 0
1 8 . 5 E - 6 , 6 0 0
1 8 . 5 E - 6 , 6 2 5
1 8 . 5 E - 6 , 6 5 0
2 0 . 0 E - 6 , 7 0 0

* *

* BOUNDARY
CRFRONT, 2
LOADEDGE,, 2
9 1 ,  1
1 6 9 ,  1

* *

1 0 4 ,  2 9 1 ,  5 0 4 ,  
1 7 0 ,  3 6 9 ,  5 7 0 ,  
1 9 6 ,  1 8 2 ,  1 7 0 ,

3 1 7
3 7 1
1 8 4

3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0
6 2 5
6 5 0
7 0 0

B.7.3



* * APPLY LINEAR RAMP TO MEAN STRESS  
* S T E P , IN C = 1 0 0  
* STATIC
*TEMPERATURE, F I L E = in p u t
*CONTOUR INTEGRAL, CONTOUR=6, SYMM, OUTPUT=BOTH 

T I P ,  - 1 . 0 , 0 . 0  
*NODE P R IN T , FREQUENCY=0 
*EL P R IN T , FREQUENCY=0 
*NODE F IL E , FREQUENCY=1 

U
*EL F IL E , FREQUENCY=1 

S 
E
PE

*END STEP
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Appendix B.8

ABAOUS Input File: Cruciform Analysis

ABAQUS Input File fo r  Cruciform Fracture Analysis
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*HEADING 
ISOTHERMAL -  6 2 5C
E Q U IB IA X IA L  -  CYCLIC STRESS RANGE = 2 0 0 . 0 M P a
0 . 0 2 5  A/ W CRACK LENGTH 

*  *

* PREPRINT, ECHO=NO, MODEL=NO 
*  *

**NODE GENERATION 
* * SINGULARITY
*NODE

1 ,  - 0 . 6 2 5 ,  0 . 0 0 0
1 3 ,  - 0 . 0 0 0 ,  0 . 0 0 0

4 1 2 ,  - 0 . 0 0 0 ,  0 . 5 0 0
8 1 1 ,  - 0 . 0 0 0 ,  1 . 0 0 0

1 2 1 0 ,  - 0 . 6 2 5 ,  1 . 1 5 0
1 6 0 9 ,  - 1 . 1 2 5 ,  1 . 0 0 0
2 0 0 8 ,  - 1 . 3 0 0 ,  0 . 5 0 0
2 4 0 7 ,  - 1 . 3 7 5 ,  0 . 0 0 0
2 3 9 5 ,  - 0 . 6 2 5 ,  0 . 0 0 0

*NGEN, L IN E = P , N SET =SIN G R IT E
1 3 , 8 1 1 ,  1 3 3 , 4 1 2

*NGEN, L IN E = P , NSET=SINGTOP
8 1 1 , 1 6 0 9 ,  1 3 3 , 1 2 1 0

*NGEN, L IN E = P , N SET=SIN G LEFT
1 6 0 9 , 2 4 0 7 ,  1 3 3 , 2 0 0 8

*NGEN, N SE T =T IP
1 , 2 3 9 5 ,  1 3 3

*N SE T , NSET=SINGSURR
SIN G R IT E ,SIN G T O P ,S IN G L E F T

*N F IL L , N SE T =N SIN G ,SIN G U L A R =1
T I P , S I N G S U R R ,  1 2  

*  *

**BODY SURROUNDINGS 
*NODE

8 1 1 , - 0 . 1 2 5 , 2 5 . 0 0 0
1 6 0 9 , - 1 . 1 2 5 , 2 5 . 0 0 0
1 6 0 9 , - 2 5 . 0 0 0 , 2 5 . 0 0 0
1 6 0 9 , - 2 5 . 0 0 0 , 1 . 0 0 0
2 4 0 7 , - 2 5 . 0 0 0 , 0 . 0 0 0

*NGEN, NSET=RITELOW
1 3 . 8 1 1 ,  1 3 3  

*NGEN, NSET=LEFTLOW
1 6 0 9 , 2 4 0 7 ,  1 3 3  

*NGEN, NSET=HIGHTOP
8 1 1 . 1 6 0 9 ,  1 3 3

* N F IL L , NSET=NSURRA, TWO S T E P , B I A S = 0 . 9 8 0  
SIN G TO P,H IG H TO P, 0 , 2 0 0 0  

*N SE T , N SE T =L E FT IN N , GENERATE
3 6 0 9 . 1 6 0 9 ,  2 0 0 0

*N SE T , N SE T =R IT E IN N , GENERATE
2 8 1 1 . 8 1 1 ,  2 0 0 0

*N F IL L , NSET=NSURRB, TWO S T E P , B I A S = 0 . 9 8 1
SIN G L E FT , LEFTLOW, 0 , 1

*NCOPY, CHANGE NUMBER=0, OLD SET=LEFTINN,NEW  SET=LEFTH IG H,
SH IF T ,M U L T IP L E =1

- 2 3 . 8 7 5 , 0 . 0 0 0 , - 0 . 0 0 0
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0.0

*N F IL L , NSET=NSURRC, TWO S T E P , B I A S = 0 . 9 8 1
L E F T IN N , LEFTHIGH, 0 , 1  

* *

* * OUTER UNIFORM NODES FOR SQUARE
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* *HORIZONTAL L IN E  
*NODE

8 1 1 ,  0 . 0 0 0 ,  4 6 . 4 8 0
8 1 1 ,  0 . 0 0 0 ,  4 6 . 4 8 0

1 6 0 9 ,  - 2 5 . 0 0 0 ,  4 6 . 4 8 0  
1 6 0 9 ,  - 2 5 . 0 0 0 ,  4 6 . 4 8 0  
1 6 0 9 ,  - 4 6 . 4 8 0 ,  4 6 . 4 8 0  
1 6 0 9 ,  - 4 6 . 4 8 0 ,  2 5 . 0 0 0  
1 6 0 9 ,  - 4 6 . 4 8 0 ,  3 . 6 0 0
2 4 0 7 ,  - 4 6 . 4 8 0 ,  0 . 0 0 0

**TOP RIGHT CORNER 
*NGEN, NSET=OUHR

8 1 1 , 8 1 1 ,  1
8 1 1 . 1 6 0 9 ,  1 3 3
1 6 0 9 . 1 6 0 9 ,  1

*N SE T , NSET=MIDHR, GENERATE
8 1 1 , 8 1 1 ,  1
8 1 1 . 1 6 0 9 ,  1 3 3
1 6 0 9 . 1 6 0 9 ,  1 

*N F IL L , NSET=TOPR
MIDHR,OUHR, 0 , 2 0 0 0  

* * BOTTOM LEFT  
*NGEN, N SET= OUVBB

1 6 0 9 . 2 4 0 7 ,  1 3 3  
*NGEN, NSET=OUVBT

1 6 0 9 . 1 6 0 9 ,  2 0 0 0  
*N SE T , NSET=OUVB

OUVBB,OUVBT 
*N SE T , NSET=VM IDB, GENERATE

1 6 0 9 . 2 4 0 7 ,  1 3 3
1 6 0 9 . 1 6 0 9 ,  2 0 0 0  

* N F IL L , NSET=BOTL
V M IDB,O UVB, 0 , 1  

**TOP LEFT
*N SE T , NSET=HM IDL, GENERATE

1 6 0 9 . 1 6 0 9 ,  1 
*NGEN, NSET=OUHTOPL

1 6 0 9 . 1 6 0 9 ,  1 
*N F IL L , NSET=TOPL

HMIDL, OUHTOPL, 0 , 2 0 0 0
*  *

* * OUTER SQUARE EDGES SETUP FOR FINGERS
* *HORIZONTAL L IN E
**FLAG = 9
*NODE

8 1 1 , 0 . 0 0 0 , 5 0 . 0 0 0
8 1 1 , 0 . 0 0 0 , 5 0 . 0 0 0

1 6 0 9 , - 3 . 6 0 0 , 5 0 . 0 0 0
1 6 0 9 , - 7 . 1 2 0 , 5 0 . 0 0 0
1 6 0 9 ,  - 1 4 . 3 2 0 , 5 0 . 0 0 0
1 6 0 9 ,  - 1 7 . 8 4 0 , 5 0 . 0 0 0
1 6 0 9 ,  - 2 5 . 0 4 0 , 5 0 . 0 0 0

*NGEN, NSET =OSQRBEF
1 6 0 9 , 1 6 0 9 , 1

8 1 1 , 1 6 0 9 , 1 3 3
8 1 1 , 8 1 1 , 1

*NGEN, NSET ii o CO lO $ >-3

1 6 0 9 , 1 6 0 9 , 1
1 6 0 9 , 1 6 0 9 , 1
1 6 0 9 , 1 6 0 9 , 1

**L E FT  HAND S ID E  OF TOP OUTER EDGE
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*NODE
1 6 0 9 ,  - 2 8 . 5 6 0 ,  5 0 . 0 0 0  
1 6 0 9 ,  - 3 5 . 7 6 0 ,  5 0 . 0 0 0  
1 6 0 9 ,  - 3 9 . 2 8 0 ,  5 0 . 0 0 0  
1 6 0 9 ,  - 4 6 . 4 8 0 ,  5 0 . 0 0 0  
1 6 0 9 ,  - 5 0 . 0 0 0 ,  5 0 . 0 0 0  

*NGEN,NSET=OSQLL
1 6 0 9 ,  1 6 0 9 ,  1
1 6 0 9 ,  1 6 0 9 ,  1
1 6 0 9 ,  1 6 0 9 ,  1
1 6 0 9 ,  1 6 0 9 ,  1

*N SE T , NSET=OUL, GENERATE
1 6 0 9 . 1 6 0 9 ,  1

*N SE T , NSET=OSQL, GENERATE
1 6 0 9 . 1 6 0 9 ,  1 

*N F IL L , NSET=HTOPSQ
O U L,O SQ L, 0 , 2 0 0 0  

*N SE T , NSET=OUM, GENERATE
8 1 1 . 1 6 0 9 ,  1 3 3

*N SE T , NSET=OSQM, GENERATE
8 1 1 . 1 6 0 9 ,  1 3 3  

*N F IL L , NSET=OUSQM
OUM,OSQM, 0 , 2 0 0 0  

*N SE T , NSET=OUR, GENERATE
8 1 1 , 8 1 1 ,  1 

*N SE T , NSET=OSQR, GENERATE
8 1 1 , 8 1 1 ,  1 

* N F IL L , NSET=OUSQR  
OUR,OSQR, 0 , 2 0 0 0  

**L E FT  HAND S ID E  VERTICAL OUTER EDGE 
*NODE

2 4 0 7 , - 5 0 . 0 0 0 , 0 . 0 0 0
1 6 0 9 , - 5 0 . 0 0 0 , 3 . 6 0 0
1 6 0 9 , - 5 0 . 0 0 0 , 7 . 1 2 0
1 6 0 9 , - 5 0 . 0 0 0 , 1 4 . 3 2 0
1 6 0 9 , - 5 0 . 0 0 0 , 1 7 . 8 4 0
1 6 0 9 , - 5 0 . 0 0 0 , 2 5 . 0 4 0
1 6 0 9 , - 5 0 . 0 0 0 , 2 8 . 5 6 0
1 6 0 9 , - 5 0 . 0 0 0 , 3 5 . 7 6 0
1 6 0 9 , - 5 0 . 0 0 0 , 3 9 . 2 8 0
1 6 0 9 , - 5 0 . 0 0 0 , 4 6 . 4 8 0

*NGEN, NSET=OSQRV
1 6 0 9 , 2 4 0 7 , 1 3 3
1 6 0 9 , 1 6 0 9 , 2 0 0 0
1 6 0 9 , 1 6 0 9 , 2 0 0 0
1 6 0 9 , 1 6 0 9 , 2 0 0 0
1 6 0 9 , 1 6 0 9 , 2 0 0 0
1 6 0 9 , 1 6 0 9 , 2 0 0 0
1 6 0 9 , 1 6 0 9 , 2 0 0 0
1 6 0 9 , 1 6 0 9 , 2 0 0 0
1 6 0 9 , 1 6 0 9 , 2 0 0 0
1 6 0 9 , 1 6 0 9 , 2 0 0 0

*N SE T , NSET=OUVBB, GENERATE
1 6 0 9 . 2 4 0 7 ,  1 3 3

*N SE T , NSET=OSQVB, GENERATE
1 6 0 9 . 2 4 0 7 ,  1 3 3  

* N F IL L , NSET=OUSQVB
OUVBB,OSQVB, 0 , 1  

*N SE T , NSET=OUVT, GENERATE
1 6 0 9 , 1 6 0 9 ,  2 0 0 0  

*N SE T , NSET=OSQVT, GENERATE
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1 6 0 9 . 1 6 0 9 ,  2 0 0 0
*N F IL L , NSET=OUSQVT

OUVT, OSQVT, 0 , 1  
*  *

**NODES FOR VERTICAL FINGERS  
*N SE T , N SET =V FIN B R , GENERATE 

8 1 1 , 8 1 1 ,  1 
*N SE T , NSET=VFINBM , GENERATE

8 1 1 . 1 6 0 9 ,  1 3 3
*N SE T , N SE T =V FIN B L , GENERATE

1 6 0 9 . 1 6 0 9 ,  1 
*N SE T , N SET=V FINB

V F IN B R , VFINBM , V FIN BL
*NCOPY, CHANGE N U M B E R = 120000 , OLD S E T = V F IN B , SH IF T ,M U L T IP L E = 1, NEW
SET=VFINM

0 . 0 0 0 , 2 5 . 0 0 0 , 0 . 0 0 0
0 . 0 , 0 . 0 , 0 . 0 ,  0 . 0 , 1 . 0 , 0 . 0 ,  0 . 0

*NCOPY, CHANGE N U M B E R = 120000 , OLD SET=VFINM , S H IF T ,M U L T IP L E = 1, NEW
SET=VFIN T

0 . 0 0 0 , 5 5 . 0 0 0 , 0 . 0 0 0
0 . 0 , 0 . 0 , 0 . 0 ,  0 . 0 , 1 . 0 , 0 . 0 ,  0 . 0

*N F IL L , N SE T =V FIN
V F IN B ,V F IN M , 6 0 , 2 0 0 0
V F IN M ,V F IN T , 6 0 , 2 0 0 0  

*  *

**NODES FOR HORIZONTAL FINGERS 
*N SE T , N SET =H FIN R B , GENERATE

1 6 0 9 . 2 4 0 7 ,  1 3 3
*N SE T , N SET =H FIN R T , GENERATE

1 6 0 9 . 1 6 0 9 ,  2 0 0 0  
*N SE T , NSET=H FINR

H FIN R B , HFINRT
*NCOPY, CHANGE NUM BER=60, OLD SE T=H FIN R , S H IF T ,M U L T IP L E = 1 , NEW 
SET=HFINM  

- 2 5 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0  
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0  

*NCOPY, CHANGE NUMBER= 6 0 ,  OLD SET=HFINM , S H IF T ,M U L T IP L E = 1 , NEW 
SET=H FINL  

- 5 5 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0  
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0  

*N F IL L , NSET=H FIN  
H FIN R ,H FIN M , 6 0 , 1  
H F IN M ,H F IN L , 6 0 , 1  

*  *

* * BOUNDARIES
*N SE T , NSET=SYMMSIDE, GENERATE

1 3 . 8 1 1 ,  1 3 3
8 1 1 . 8 1 1 ,  2 0 0 0
1 2 0 8 1 1 . 2 4 0 8 1 1 ,  2 0 0 0
1 3 . 8 1 1 ,  1 3 3
8 1 1 . 8 1 1 ,  2 0 0 0
1 2 0 8 1 1 . 2 4 0 8 1 1 ,  2 0 0 0

*N SE T , NSET=CRFRONT, GENERATE
2 3 9 5 . 2 4 0 7 ,  1 
2 4 6 7 , 2 5 2 7 ,  1

*N SE T , N SE T =T IP SL A V E , GENERATE
1 3 4 , 2 3 9 5 ,  1 3 3  

*  *

* * ELEMENT GENERATION 
* * SINGULARITY  
* ELEMENT, TYPE=CPS8R
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1 ,  1 , 3 , 2 6 9 , 2 6 7 ,  2 , 1 3 6 , 2 6 8 , 1 3 4  
*ELGEN, ELSET=ELSING  

1 ,  6 , 2 , 1 ,  9 , 2 6 6 , 6  
**BODY SURROUND 
* ELEMENT, TYPE=CPS8R

5 5 , 1 0 7 7 ,  8 1 1 , 4 8 1 1 , 5 0 7 7 , 9 4 4 , 2 8 1 1 , 4 9 4 4 , 3 0 7 7
5 5 , 1 6 1 1 ,  1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 , 3 6 0 9 , 5 6 1 0 , 3 6 1 1
5 5 , 1 8 7 7 ,  1 8 7 5 , 1 6 0 9 , 1 6 1 1 , 1 8 7 6 , 1 7 4 2 , 1 6 1 0 , 1 7 4 4

*ELGEN, ELSET=ELSURR
5 5 , 3 , 2 6 6 , 1 , 0 ,  4 0 0 0 ,  3
5 5 ,  0 ,  2 , 1 ,
5 5 ,  0 ,  2 , 1 ,

* * FINGER GENERATION 
* ELEMENT, TYPE=CPS8R

0 ,  4 0 0 0 ,  6 0  
3 ,  2 6 6 ,  6 0

2 3 5 , 1 2 0 8 1 1 , 1 2 0 8 1 3 , 1 2 4 8 1 3 , 1 2 4 8 1 1 ,  1 2 0 8 1 2
3 2 5 , 1 2 1 0 7 7 , 1 2 0 8 1 1 , 1 2 4 8 1 1 , 1 2 5 0 7 7 ,  1 2 0 9 4 4
4 1 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 3 6 0 9 , 5 6 1 0
4 1 5 , 1 2 1 6 1 1 , 1 2 1 6 0 9 , 1 2 5 6 0 9 , 1 2 5 6 1 1 ,  1 2 1 6 1 0
4 1 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 3 6 0 9 , 5 6 1 0
4 1 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 3 6 0 9 , 5 6 1 0
4 1 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 3 6 0 9 , 5 6 1 0
4 1 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 3 6 0 9 , 5 6 1 0

*ELGEN, ELSET=ELVERT
2 3 5 , 0 ,  2 , 1 ,  3 0 , 4 0 0 0 , 0
3 2 5 , 3 , 2 6 6 , 1 ,  3 0 , 4 0 0 0 , 3
4 1 5 , 0 ,  2 , 1 ,  3 0 , 4 0 0 0 , 0
4 1 5 , 0 ,  2 , 1 ,  3 0 , 4 0 0 0 , 0
4 1 5 , 0 ,  2 , 1 ,  3 0 , 4 0 0 0 , 0
4 1 5 , 0 ,  2 , 1 ,  3 0 , 4 0 0 0 , 0
4 1 5 , 0 ,  2 , 1 ,  3 0 , 4 0 0 0 , 0
4 1 5 , 0 ,  2 , 1 ,  3 0 , 4 0 0 0 , 0

* * HORIZONTAL FINGERS  
* ELEMENT, TYPE=CPS8R

8 5 , 1 9 3 7 , 1 9 3 5 , 1 6 6 9 , 1 6 7 1 , 1 9 3 6 , 1 8 0 2 , 1 6 7 0 , 1 8 0 4
5 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 , 3 6 0 9 , 5 6 1 0 , 3 6 1 1
- 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 , 3 6 0 9 , 5 6 1 0 , 3 6 1 1

- 6 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 , 3 6 0 9 , 5 6 1 0 , 3 6 1 1
- 1 2 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 , 3 6 0 9 , 5 6 1 0 , 3 6 1 1
- 1 8 5 , 1 6 1 1 , 1 6 0 9 , 5 6 0 9 , 5 6 1 1 , 1 6 1 0 , 3 6 0 9 , 5 6 1 0 , 3 6 1 1

8 5 , 1 6 7 1 , 1 6 6 9 , 5 6 6 9 , 5 6 7 1 , 1 6 7 0 , 3 6 6 9 , 5 6 7 0 , 3 6 7 1
*ELGEN, ELSET =ELHORI

8 5 , 3 0 , 2 , 1 ,  3 ,  2 6 6 , 6 0
5 5 , 3 0 , 2 , 1 ,  0 ,  4 0 0 0 , 6 0
- 5 , 3 0 , 2 , 1 ,  0 ,  4 0 0 0 , 6 0

- 6 5 , 3 0 , 2 , 1 ,  0 ,  4 0 0 0 , 6 0
- 1 2 5 , 3 0 , 2 , 1 ,  0 ,  4 0 0 0 , 6 0
- 1 8 5 , 3 0 , 2 , 1 ,  0 ,  4 0 0 0 , 6 0

8 5 , 3 0 , 2 , 1 ,  0 ,  4 0 0 0 , 60
*E L SE T , ELSET =ALL

E L SIN G , ELSURR, ELVERT, ELHORI 
*  *

**LOADINGS
*E L SE T , ELSET=LOADED3, GENERATE

4 1 2 . 4 1 4 ,  1
4 1 5 . 4 1 4 ,  1

*E L SE T , ELSET=LOADED4, GENERATE
1 1 4 , 2 3 4 ,  6 0
1 1 4 , 5 4 ,  6 0  

*  *

* * MATERIAL D EFIN TIO N
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*SO L ID  SECTIO N, ELSET=A LL, M A T E R IA L =A ISI31 6
4 . 0

*MATERIAL, N A M E = A ISI316
*DEFORMATION P L A ST IC IT Y

1 6 4 . 9 2 5 8 9 6 E 3 , 0 . 3 , 1 5 0 . 3 , 4 . 5 1 5 3 4 0 , 0 . 1 1 9 6 0 0 ,  6 2 5  
*  *

**SIN U SIO D A L  LOADING D EFIN T IO N
*AMPLITUDE, D E F IN IT IO N = P E R IO D IC , VALUE=ABSOLUTE, NAME=SINWAVE

1 , 6 . 2 8 3 1 8 5 3 0 7 , 0 . 0 , - 1 2 2 . 2 2 2
0 . 0 , - 1 0 0 . 0 ,  0 . 0 , 0 . 0 ,  0 . 0 , 0 . 0 ,  0 . 0 , 0 . 0  

*  *

* BOUNDARY 
SYMMSIDE, 1 
CRFRONT, 2
1 ,  2 
T IP SL A V E , 2 

^EQUATION 
2
T I P S L A V E , 1 , 1 . 0 ,  1 , 1 , - 1 . 0  

* *
* *APPLY LINEAR RAMP TO MEAN STRESS  
*S T E P , IN C = 1 0 0
* STATIC  

0 . 1 , 1 . 0  
*DLOAD, OP=MOD 

LOADED3, P 3 , - 1 2 2 . 2 2 2  
LOADED4, P 4 , - 1 2 2 . 2 2 2  

* CONTOUR INTEGRAL, CONTOUR=6, SYMM, OUTPUT=BOTH 
T I P ,  - 1 . 0 , 0 . 0  

*NODE P R IN T , FREQUENCY=0 
*EL P R IN T , ELSET=LOADED3, FREQUENCY=6 

S 2 2
*EL P R IN T , ELSET=LOADED4, FREQUENCY= 6 

S l l
*NODE F IL E , FREQUENCY=0 
*EL F IL E , FREQUENCY=0 
* RESTART, W RITE, OVERLAY
*END STEP
*  *

* * APPLY SIN U SIO D A L LOADING PATTERN 
*S T E P , IN C = 1 0 0  
* ST A T IC , DIRECT  

0 . 0 5 , 1 . 0
*DLOAD, AMPLITUDE=SINWAVE, OP=MOD 

LOADED3, P3 
LOADED4, P4

*CONTOUR INTEGRAL, CONTOUR=6, SYMM, OUTPUT=BOTH 
T I P ,  - 1 . 0 , 0 . 0  

*NODE P R IN T , FREQUENCY=0 
*EL P R IN T , ELSET=LOADED3, FREQUENCY=5 

S 2 2
*EL P R IN T , ELSET=LOADED4, FREQUENCY= 5 

S l l
*NODE F IL E , FREQUENCY=0 
*EL F I L E ,  FREQUENCY=0 
* RESTART, W RITE, FREQUENCY=5 
*END STEP
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Appendix B.9

Programme Code: U V A R M  Fortran Code

Yield Zone Perimeter Stresses Written to ABAQUS .dat File fo r  Extraction 

by Plastic Zone Extraction Programme



n
oo

n
 

on
 

on
 

o 
o 

no
n 

on
 

n
o

o
n

SUBROUTINE UVARM(UVAR,DIRECT,T,TIME,DTIME,CMNAME,ORNAME, 
1NUVARM,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,NDI,NSHR)

C
INCLUDE 'ABA_PARAM.INC'

C
CHARACTERS CMNAME,0RNAME,FLGRAY(15)
DIMENSION UVAR(NUVARM),DIRECT(3,3),T(3,3),TIME(2)
DIMENSION ARRAY(15),JARRAY(15)
REALS PNTX(2,2), PNTY(2,2)

Error Counter:
JERROR = 0

Get Stress Components:
CALL GETVRM('S',ARRAY,JARRAY,FLGRAY,JRCD)
JERROR = JERROR + JRCD

Error message:
IF(JERROR.NE.O)THEN
WRITE(6,*) 'REQUESTED VARIABLE IS INAPPROPRIATE FOR ELNUM ', 

1 NOEL,’INTEGRATION POINT NUMBER \NPT 
ENDIF

Biaxiality Function:

E = 165D3 
ALPHA = 18.5D-6 
DELTAT = 400
MATCON = E* ALPHA*DELT AT

Sx = ARRAY(l)
Sy = ARRAY (2)
YIELD = 200

UVAR(l) = Sx*Sy/1500000 
UVAR(2) = Sx/Sy
UVAR(3) = (2*Sx*Sy)/((Sx**2)+(Sy**2))
UVAR(4) = ((2*Sx*Sy)/((Sx**2)+(Sy**2)))*Sy 
UVAR(5) = Sx-Sy 
UVAR(6) = Sy*(l-(Sx/sy))

Test if Biaxial Quantity is Greater Than 1 
IF(UVAR(3).GE. 1.0) THEN
WRITE(6,*) ’S l l  EQUALS ’,ARRAY(1),’ S22 EQUALS ',

1 ARRAY(2),' & B EQUALS ’,UVAR(3)
ENDIF

Test if Biaxial Quantity is Less Than 1 
IF(UVAR(3).LE.-1.0) THEN

WRITE(6,*) 'S ll EQUALS ’,ARRAY(1),' S22 EQUALS ’,
1 ARRAY(2),' & B EQUALS ’,UVAR(3)
ENDIF

If at maximum increment or minimum increment 
Write integration point values to x and y arrays - PNTX & PNTY 

IF ( (KSTEP .EQ. 1) .OR. (NOEL .GT. 13000)) RETURN

IF ( (KINC .EQ. 25) .OR. (KINC .EQ. 75)) THEN 
IF (NPT .EQ. 1) THEN
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PNTX(2,1) = Sx 
PNTY(2,1) = Sy 

ENDIF
IF (NPT .EQ. 2) THEN 

PNTX(2,2) = Sx 
PNTY(2,2) = Sy 

ENDIF
IF (NPT .EQ. 3) THEN 

PNTX(1,1) = Sx 
PNTY(1,1) = Sy 

ENDIF
IF (NPT .EQ. 4) THEN 
PNTX(1,2) = Sx 
PNTY(1,2) = Sy 

ENDIF

IF (NPT .EQ. 4) THEN 
xmin = PNTX(1,1) 
xmax = PNTX(1,1) 
ymin = PNTY(1,1) 
ymax = PNTY(1,1)
IF ( PNTX(1,2) .LT. xmin) THEN 

xmin = PNTX(1,2)
ENDIF
IF ( PNTX(2,1) .LT. xmin) THEN 

xmin = PNTX(2,1)
ENDIF
IF ( PNTX(2,2) .LT. xmin) THEN 
xmin = PNTX(2,2)

ENDIF
IF ( PNTX(1,2) .GT. xmax) THEN 

xmax = PNTX(1,2)
ENDIF
IF ( PNTX(2,1) .GT. xmax) THEN 

xmax = PNTX(2,1)
ENDIF
IF ( PNTX(2,2) .GT. xmax) THEN 
xmax = PNTX(2,2)

ENDIF

IF ( PNTY(1,2) .LT. ymin) THEN 
ymin = PNTY(1,2)

ENDIF
IF ( PNTY(2,1) .LT. ymin) THEN 

ymin = PNTY(2,1)
ENDIF
IF ( PNTY(2,2) .LT. ymin) THEN 
ymin = PNTY(2,2)

ENDIF
IF ( PNTY(1,2) .GT. ymax) THEN 

ymax = PNTY(1,2)
ENDIF
IF ( PNTY(2,1) .GT. ymax) THEN 

ymax = PNTY(2,1)
ENDIF
IF ( PNTY(2,2) .GT. ymax) THEN 
ymax = PNTY(2,2)

ENDIF
ENDIF
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C Output element information to DAT file if above and below YIELD 
C After all integration points have been passed 

IF (NPT .EQ. 4) THEN 
IF ( (xmin .LT. YIELD) .AND. (xmax .GT. YIELD)) THEN 
WRITE(6,*) 'X ELEMENT YIELDED ELNUM \NOEL 
WRITE(6,*) 'NTP 1 \PNTX(2,1)
WRITE(6,*) 'NTP 2 \PNTX(2,2)
WRITE(6,*) 'NTP 3 \PNTX(1,1)
WRITE(6,*) 'NTP 4 \PNTX(1,2)

ENDIF
IF ( (ymin .LT. YIELD) .AND. (ymax .GT. YIELD)) THEN 

WRITE(6,*) 'Y ELEMENT YIELDED ELNUM ’,NOEL 
WRITE(6 ,*) 'NTP 1 \PNTY(2,1)
WRITE(6,*) 'NTP 2 \PNTY(2,2)
WRITE(6 *) 'NTP 3 \PNTY(1,1)
WRITE(6,*) 'NTP 4 \PNTY(1,2)

ENDIF
ENDIF

ENDIF

RETURN
END

C
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Appendix B.10

Programme Code: Plastic Zone Extraction

Data File Scanner to Extract and Tabulate Component Stress Plastic Zones 

from  ABAQUS .dat File



/* Text Scanner For Nodal Locations
using element number and integration point number 

Writes files by *zone flag with
Element Number — Yield Pt — x coordinate — y coordinate */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>

/* GLOBAL VARIABLES */
char elmndef[37] = " E L E M E N T  D E F I N I T I O N S " ;
char ndef[31] = " N O D E  D E F I N I T I O N S " ;
char inc6[15] = "INCREMENT 6";
char yyield[27] = "Y ELEMENT YIELDED ELNUM ";
char xyield[27] = "X ELEMENT YIELDED ELNUM ";
char inc50[15] = "INCREMENT 50";
char sign[2] = "
char XorY[2] = "";

int endlist; 
long elrow = 1;

double pi = 3.14159265358979;

/* SUB -TROUTINES */ 
void timerstart(); 
void timerend();

void geteldata(char *yield, double sarray[500][5]); 
void searcher(char *heading, int numch); 
void elscan(double sarray[500][5], long elarray[500][5]); 
void nscan(long elarray[500][5], double narray[2000][3]); 
void intpnt(long elarray[500][5], double narray[500][3], 

double iarray[2000][4]); 
void pzone(double iarray[2000][4], double sarray[500][5], char *file, 

char *when);

/* FILE OPERATORS */ 
FILE *data;
FILE *zone;

int main(int argc, char *argv[], char *env[])
{
double xstress, ystress, inc;

/* Maximum & Minimum x and y stresses */ 
double sxmax[500] [5] ,sxmin[500] [5]; 
double symax[500] [5] ,symin[500] [5];

/* Maximum & Minimum x and y elements */ 
long elxmax[500] [5] ,elxmin[500] [5]; 
long elymax[500][5],elymin[500][5];

B.10.2



/* Maximum & Minimum x and y nodes */ 
double nxmax[500][3],nxmin[500][3]; 
double nymax[500][3],nymin[500][3];

/* Maximum & Minimum x and y Integration Point Coordinates */ 
double ipxmax[4] [4] ,ipxmin[4] [4]; 
double ipymax[4] [4] ,ipymin[4] [4];

int i, doflag, dec,sign;
char increment, *incstr, incmax[3] = " ";

timerstart();

printf("\nARGC is %d\n",argc); 
if (argc == 4) { doflag = 1; } 
if (argc == 6) { doflag = 2; } 
printf("\nDo flag is %d\n”,doflag); 
if ( (argc != 4) && (argc != 6))
{
printf("\n***OOOPS: Requires 3 or 5 arguments\n"); 
printf(" file - inc - step - inc - step\n\n");
exit(l);
}

if ((data = fopen(argv[l], "r")) == NULL)
{
printf("***OOOPS: Cannot open file %s\n", argv[l]); 
printf(" It doesn't exist here.\n\n");
printf("I have terminated myself\n\n"); 
exit(l);
}

printf("These are the %d arguments passed to main\n\n", argc); 
for (i = 0; i < argc; i++) 

printf("argv[%d]: %s\n", i, argv[i]);

/* GET MAXIMUM DATA - first inc/step set of given arguments */ 
if ( doflag <= 2)
{
/* Make Increment search strings */
inc = atoi(argv[2]);
inc = (double)inc - 1;
incstr = ecvt(inc,2,&dec,&sign);
if ( dec == 1)
{
incmax[l] = incstr[0];
increment = strcat( "INCREMENT ",incmax); 
printf("\nSTRING IS %s\n",increment);
}
if (dec = = 2 )
{
increment = strcat( "INCREMENT ",incstr); 
printf("\nSTRING IS %s\n",increment);
}

/* Search out maximum loading x stresses and nodal points */
fseek(data,0L,0);
searcher(increment, 14);
geteldata(xyield, sxmax);
elscan(sxmax, elxmax);
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nscan(elxmax, nxmax); 
intpnt(elxmax, nxmax, ipxmax); 
pzone(ipxmax, sxmax, "xmax.txt", argv[2]);

/* Search out maximum loading y stresses and nodal points */
fseek(data,0L,0);
searcher(increment, 14);
geteldata(yyield, symax);
elscan(symax, elymax);
nscan(elymax, nymax);
intpnt(elymax, nymax, ipymax);
pzone(ipymax, symax, "ymax.txt", argv[2]);
}

/* GET MINIMUM DATA */ 
if ( doflag == 2 )
{
/* Make Increment search strings */
inc = atoi(argv[3]);
inc = (double)inc -1;
incstr = ecvt(inc,2,&dec,&sign);
if ( dec =  1)
{
incmax[l] = incstr [0];
increment = strcat("INCREMENT ",incmax); 
printf("\nSTRING IS %s\n",increment);
}
if ( dec == 2 )
{
increment = strcat("INCREMENT ",incstr); 
printf("\nSTRING IS %s\n",increment);
}
/* Search out minimum loading x stresses and nodal points */
fseek(data,0L,0);
searcher(increment, 14);
geteldata(xyield, sxmin);
elscan(sxmin, elxmin);
nscan(elxmin, nxmin);
intpnt(elxmin, nxmin, ipxmin);
pzone(ipxmin, sxmin, "xmin.txt", argv[3]);

/* Search out minimum loading Y stresses and nodal points */
fseek(data,0L,0);
searcher(increment, 14);
geteldata(yyield, symin);
elscan(symin, elymin);
nscan(elymin, nymin);
intpnt(elymin, nymin, ipymin);
pzone(ipymin, symin, "ymin.txt", argv[3]);
}

timerend();
fclose(data);
fclose(zone);
printf("\nDONE\n");
return;
}

/* SUB-ROUTINES */
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/* Timers */ 
void timerstart()
{
time_t t; 

time(&t);
printf("Programme Began: %s\n", ctime(&t));
}
void timerend()
{
time_t t; 

time(&t);
printf("\n\nProgramme Completed: %s\n", ctime(&t));
}

/* String Searcher */
void searcher(char *heading, int numch)
{
char start[37] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
char spaces[ll] = "xxxxxxxxxx";
long n = 0;
long m = 0;
int startflag = 0;

while (startflag == 0)
{
start[n] = fgetc(data); 
if (start[n] == heading[n])
{
if (n == numch) { startflag = 1; } 
n ++;
}
else
{
n = 0;
if (start[0] ==' ’)
{
if (m == 9) { endlist = 1; } 
m++;
}
else
{
m = 0;
}
}

if (start[n] == EOF)
{
startflag = 1; 
endlist = 1;
}
}

}

void geteldata(char *yield, double sarray[500][5])
{
int check = 1; 
int cnt, flag;
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long element;

double stress;

printf("\n\nRetrieving Integration Point Stresses and Element Numbers\n");

elrow = 1; 
while (check ==1)
{
endlist = 0; 
searcher(yield, 26);
if ( (elrow > 1) && (endlist == 1)) { break; }

fscanf(data, "%ld", &element); 
sarray[elrow][l] = (double)element;

cnt = 1;
while (cnt <= 4 )
{
fseek(data, 11L,1);
sign[0] = fgetc(data);
if ( sign[0] =='-’) { flag = 1; }
else { flag = 0; }
fscanf(data, "%lf", &stress);
if ( flag == 1) { stress = -l*stress; }
sarray [elrow] [cnt+1] = stress;

cnt++;
}
printf("\nElement: %7.01f, Stress: %8.31f, %8.31f, %8.31f, %8.31f 
sarray[elrow][l],
sarray [elrow] [2],sarray [elrow] [3],sarray [elrow] [4],sarray [elrow] [5]);

fseek(data, 2L, 1);
XorY[0] = fgetc(data);
if ( (XorY[0] =  ’Y') || (XorY[0] == 'X') )
{ check = 1;} 
if (XorY[0] ==' ’)
{ break; }
fseek(data, -3L, 1);

if (elrow == 500)
{
printf("\n\n\n***** ELEMENT ROW ARRAY IS INADEQUATE AT 500 ROWS *****"); 
printf("\n\n\n***** PROGRAMME IS TERMINATED: INCREASE SY ARRAY SIZE *****"); 
printf("\n\n\n***** TO A VALUE UNRELEASED TO PEOPLE CALLED RICHARD\n\n\n *****"); 
exit(l);
}

elrow++;
}
printf("\nNumber of elements found is %ld\n\n", elrow-1);
}

void elscan(double sarray[500][5], long elarray[500][5])
{
char *elstrl, elstr[17] = "xxxxxxxxxxxxxxxxx"; 
char eladd[9] = " CPS8R"; 
char nscanc[l] = "x"; 
char nstr[25];
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int len, dec,sign;
int cnt, nflag,ncnt;
long nnum; 
long elcnt =1;

double nnumd;

printf("\n\nRetrieving Elements and Defining Node Numbers\n");

while (elcnt < elrow)
{
/* Construct search string */
elstrl = ecvt(sarray[elcnt][l],10,&dec,&sign);
printf("\nELEMENT = %lf, STRING = %s, DEC = %d", sarray [elcnt] [1],elstrl,dec); 

cnt = 0;
while (cnt <= 9-dec-1)
{
elstr[cnt] =''; 
cnt ++;
}
cnt = 0;
while (cnt <= dec-1)
{
elstr[9-dec+cnt] = elstrl [cnt]; 
cnt++;
}
cnt = 0;
while (cnt <= 7)
{
elstr[9+cnt] = eladd[cnt]; 
cnt ++;
}

/* Search for string */ 
fseek(data,0L,0); 
len = strlen(elstr); 
searcher(elstr,len-1); 
fseek(data,10L,l);

/* Scan node numbers */
ncnt = 1;
while (ncnt <= 4)
{
nflag = 0; 
while (nflag == 0)
{
nscanc[0] = fgetc(data); 
if (nscanc[0] == ") { nflag = 0; } 
else 
{
nflag = 1; 
fseek(data, -1L,1);
}

}

fscanf(data, "%ld", &nnum); 
elarray[elcnt][l] = (long)sarray[elcnt][l]; 
elarray[elcnt][ncnt+l] = nnum;
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ncnt ++;
}

printf("\nElement %71d, Nodes %81d, %81d, %81d, %81d %41d of %41d", 
elarray[elcnt][l],
elarray [elcnt] [2],elarray [elcnt] [3] ,elarray [elcnt] [4] ,elarray [elcnt] [5], 
elcnt,elrow-l);

elcnt ++;
}

}

void nscan(long elarray [500] [5], double narray[2000][3])
{
char *nstrl, nstr[9] = " 
char cscan[l] = "x";

int len, dec,sign;
int cnt, ccnt,cflag;

long elcnt = 1; 
long ncnt = 1; 
long nnodes=l;

double coord;

printf("\n\n\nRetrieving Node Numbers and Defining x-y CoordinatesV'); 
while (elcnt < elrow)
{
while (ncnt <= 4)
{
narray[nnodes][l] = (double)elarray[elcnt][l+ncnt]; 
nstrl = ecvt(narray[nnodes][l],10,&dec,&sign);

/* Construct search string */ 
cnt = 0;
while (cnt <= 8-dec-1)
{
nstr[cnt] ='';  
cnt ++;
}
cnt = 0;
while (cnt <= dec-1)
{
nstr[8-dec+cnt] = nstrl [cnt]; 
cnt++;
}

I* Search for nodal co-ordinates starting from NODE DEFINITIONS*/
fseek(data,0L,0);
searcher(ndef,30);
len = strlen(nstr);
searcher (nstr,len-1);

/* Scan co-ordinates */
cent = 1;
while (cent <= 2)
{
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cflag = 0; 
while (cflag == 0)
{
cscan[0] = fgetc(data); 
if (cscan[0] = = 1')
{
cflag = 0;
}
else
{
if (cscan[0] ==
{
cflag = 2;
}
else
{
cflag = 1; 
fseek(data, -1L,1);
}

}
}

fscanf(data, "%lf", &coord);
if (cflag == 1) { narray[nnodes][ccnt+l] = coord; }
if (cflag == 2) { narray[nnodes][ccnt+l] = -l*coord; }

cent ++;
}

printf("\nNode: %8.01f, XCoord: %9.51f YCoord: %9.51f, %41d of %41d", 
narray[nnodes][l],
narray[nnodes] [2] ,narray [nnodes] [3], 
elcnt,elrow-l);

ncnt ++; 
nnodes ++;
}
ncnt = 1; 
elcnt ++;
}

}

void intpnt(long elarray[500][5], double narray[500][3], double iarray[4][4J)
{
long search,ntest, elcnt,ncnt, nsearch, i,j,k,l; 
long nlxf,nlyf, n2xf,n2yf, n3xf,n3yf, n4xf,n4yf;

double node, element, carray[4] [2];

double nlx,nly, n2x,n2y, n3x,n3y, n4x,n4y; 
double L12,L23,L34,L41, hi 12,hl23,hl34,hl41; 
double D12,D23,D34,D41; 
double A12,A23,A34,A41;
double IP112x,IPl 12y, IP212x,IP212y, IP223x,IP223y, IP423x,IP423y; 
double IP434x,IP434y, IP334x,IP334y, IP341x,IP341y, IP141x,IP141y; 
double IPlx,IPly, IP2x,IP2y, IP3x,IP3y, IP4x,IP4y; 
double ml3,m24,m!2,m34, C13,C24,C12,C34;

printf("\n\nRetrieving Elements, Integration Point Stresses and Locations\n");
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/* Find Nodal Co-ordinates */ 
elcnt = 1;
while (elcnt <= elrow-1)
{
ncnt = 1; 
while (ncnt <= 4)
{
node = (double)elarray[elcnt][ncnt+l];
/* Search for correct x y coords */
nsearch = 0;
search = 1;
while (nsearch == 0)
{
ntest = narray[search][l]; 
if (ntest == node)
{
carray[ncnt][l] = narray [search] [2]; 
carray[ncnt][2] = narray [search] [3]; 
nsearch = 1;
}
else { search ++; }
}
ncnt ++;
}

nix = carray[l][l]; nly = carray[l][2]; 
n2x = carray[2][l]; n2y = carray[2][2]; 
n3x = carray[3][l]; n3y = carray[3][2]; 
n4x = carray[4][l]; n4y = carray[4][2];

/* Determine Element Edge Lengths by Pythagoras */
LI 2 = sqrt(pow(n2x-nlx,2)+pow(n2y-nly,2));
L23 = sqrt(pow(n3x-n2x,2)+pow(n3y-n2y,2));
L34 = sqrt(pow(n4x-n3x,2)+pow(n4y-n3y,2));
L41 = sqrt(pow(nlx-n4x,2)+pow(nly-n4y,2));

/* Determine Half of Edge Lengths for Additions to 
Integration Point Distance */

hll2 = L12/2; 
hl23 = L23/2; 
hl34 = L34/2; 
hl41 =L41/2;

/* Determine Integration Point Distance From Edge Centre */
D12 = L12/(2*sqrt(3));
D23 = L23/(2*sqrt(3));
D34 = L34/(2*sqrt(3));
D41 = L41/(2*sqrt(3));

/* Determine Angles of Edges in Relation to Horizontal and Vertical 
Global Axes */

A12 = sqrt(pow(atan((n2y-nly)/(n2x-nlx)),2));
A23 = sqrt(pow(atan((n3x-n2x)/(n3y-n2y)),2));
A34 = sqrt(pow(atan((n4y-n3y)/(n4x-n3x)),2));
A41 = sqrt(pow(atan((n4x-nlx)/(n4y-nly)),2));

if (nly == n2y) { A12 == 0.000; } 
if (n2x == n3x) { A23 == 0.5*pi; } 
if (n3y == n4y) { A34 == 0.000; }
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if (n4x == nix) { A41 == 0.5*pi; }

if (nix == n2x) { A12 == 0.5*pi; } 
if (n2y == n3y) { A23 == 0.000; } 
if (n3x == n4x) { A34 == 0.5*pi; } 
if (n4y == nly) { A41 == 0.000; }

/* Determine +1 or -1 flags for perimeter point locations from 
Comer Nodes */

/* X-FLAGS */
i f  (n2x >  n ix )  { n lx f  =  1; } e lse  { n lx f  =  -1; } 
i f  (n3x >  n2x) { n 2x f =  1; } e lse  { n 2x f =  -1; } 
i f  (n4x <  n3x) { n 3x f =  -1; } e lse  { n 3 x f =  1; } 
i f  (n4x >  n ix )  { n 4x f =  -1; } e lse  { n 4 x f =  1; }

/* Y-FLAGS */
i f  (n2y >  n ly )  { n ly f  =  1; } e lse  { n ly f  =  -1; } 
i f  (n3y >  n2y) { n 2y f =  1; } e lse  { n 2 y f =  -1; } 
i f  (n4y >  n3y) { n 3y f =  1; } e lse  { n 3 y f =  -1; } 
i f  (n4y >  n ly )  { n 4 y f =  -1; } e lse  { n 4y f =  1; }

/* Determine Perimeter Points at Integration Point Distance 
From Edge Centre: IP112 = IP1 on line 1 to 2 */

IP112x = nix + (nlxf*(hll2-D12)*cos(A12));
DPI 12y = nly + (nlyf*(hll2-D12)*sin(A12));
IP212x = nix + (n 1 xf* (hi 12+D 12) *cos( A 12));
IP212y = nly + (nlyf*(hll2+D12)*sin(A12));

EP223x = n2x + (n2xf*(hl23-D23)*sin(A23));
IP223y = n2y + (n2yf*(hl23-D23)*cos(A23));
IP423x = n2x + (n2xf*(hl23+D23)*sin(A23));
IP423y = n2y + (n2yf*(hl23+D23)*cos(A23));

EP434x = n3x + (n3xf*(hl34-D34)*cos(A34));
IP434y = n3y + (n3yf*(hl34-D34)*sin(A34));
IP334x = n3x + (n3xf*(h!34+D34)*cos(A34));
IP334y = n3y + (n3yf*(hl34+D34)*sin(A34));

IP341x = n4x + (n4xf*(hl41-D41)*sin(A41));
DP341y = n4y + (n4yf*(hl41-D41)*cos(A41));
IP141x = n4x + (n4xf*(hl41+D41)*sin(A41));
IP141y = n4y + (n4yf*(h!41+D41)*cos(A41));

if ( L12 == 0 )
{ IP112x = nix; DPI 12y = nly; EP212x = n2x; IP212y = n2y; } 
if ( L23 = = 0 )
{ EP223x = n2x; IP223y = n2y; IP423x = n3x; IP423y = n3y; } 
if ( L34 = = 0 )
{ IP434x = n3x; IP434y = n3y; DP334x = n4x; IP334y = n4y; } 
if ( L41 = = 0 )
{ IP341x = n4x; IP341y = n4y; IP141x = nix; IP141y = nly; }

/* Determine Linear Equation Constants: Gradient'm' & Intercapt 'C' */
ml3 = (IP334y-IPl 12y)/(IP334x-IPl 12x);
m24 = (IP434y-IP212y)/(IP434x-IP212x);
ml2 = (IP223y-IP 141 y)/(IP223x-IP 141 x);
m34 = (IP423y-IP341 y)/(IP423x-IP341 x);

C13 = IP112y - (ml3*IP112x);
C24 = IP212y - (m24*IP212x);
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C12 = IP141y - (ml2*IP141x);
C34 = EP341y - (m34*IP341x);

/* Determine x-y Co-ordinates of Integration Points by Bisection of 
Linear Equations */

IPlx = (C13-C12)/(ml2-ml3); IPly = (ml2*IPlx)+C12;
IP2x = (C24-C12)/(m 12-m24); IP2y = (ml2*IP2x)+C12;
IP3x = (C34-C13)/(ml3-m34); IP3y = (ml3*IP3x)+C13;
IP4x = (C34-C24)/(m24-m34); IP4y = (m24*IP4x)+C24;

/* If Divide by zero occurs from vertical gradient */ 
if (IP334x == IP112x) { IPlx = IP112x; IP3x = IP334x; } 
if (IP434x == IP212x) { IP2x = IP212x; IP4x = IP434x; } 
if (IP141y == IP223y) { IPly = IP141y; IP2y = IP223y; } 
if (IP341y == IP423y) { IP3y = IP341y; IP4y = IP423y; }

/* Place Integration Point co-ordinates into iarray */. 
i = (elcnt*4)-3; j = (elcnt*4) - 2; k = (elcnt*4)-l; 1 = (elcnt*4); 
element = (double)elarray[elcnt][l];

iarray[i][l]=element; iarray[i][2]=l; iarray[i][3]=IPlx; iarray[i][4]=IPly; 
iarray[j][l]=element; iarray[j][2]=2; iarray[j][3]=IP2x; iarray[j][4]=IP2y; 
iarray[k][l]=element; iarray[k][2]=3; iarray[k][3]=IP3x; iarray[k][4]=IP3y; 
iarray[l][l]=element; iarray[1][2]=4; iarray[l][3]=IP4x; iarray[l][4]=IP4y;

printf( "Element %lf, Int Pt. 1, x %lf, y %lf\n", 
iarray[i][l],iarray[i][3],iarray[i][4]); 

printf( "Element %lf, Int Pt. 2, x %lf, y %lf\n", 
iarray[j][l],iarray0][3],iarray[j][4]); 

printf("Element %lf, Int Pt. 3, x %lf, y %lf\n", 
iarray [k] [ 1 ], iarray [k] [3], iarray [k] [4]); 

printf("Element %lf, Int Pt. 4, x %lf, y %lf\n", 
iarray [1] [ 1],iarray [1] [3], iarray [1] [4]);

elcnt ++;
}

}

void pzone(double iarray[2000] [4], double sarray[500] [5], char *file, 
char *when)

{
long i,j,k,l; 
long elcnt = 1; 
long yptcnt = 1;

double yield = 200.0;
double IPlx,IPly, IP2x,IP2y, IP3x,IP3y, IP4x,IP4y; 
double sl,s2,s3,s4; 
double factor, yptx,ypty;

printf("\n\nWritting Elements, Yield Points and Coordintates to File %s\n\n", 
file);

if ((zone = fopen(file, "w+")) == NULL)
{
printf("Cannot open file %s\n\n", file); 
exit(l);
}
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fprintf(zone," Element Yield Pt x y INCREMENT %s\n", 
when);

while (elcnt <= elrow-1)
{
/* Find Integration Point coords from iarray */ 
i = (elcnt*4)-3; j = (elcnt*4) - 2; k = (elcnt*4)-l; 1 = (elcnt*4);
IPlx = iarray[i][3]; IPly = iarray[i][4];
IP2x = iarray [j] [3]; IP2y = iarray [j] [4];
IP3x = iarray[k] [3]; IP3y = iarray[k] [4];
IP4x = iarray[1] [3]; IP4y = iarray[1] [4];

/* Find Integration Point Stresses from sarray */ 
si = sarray [elcnt] [2]; 
s2 = sarray [elcnt] [3]; 
s3 = sarray [elcnt] [4]; 
s4 = sarray [elcnt] [5];

/* Determine Yield Line From Stresses at Integration Points */ 
if ( ((si < yield) && (s2 > yield)) || ((s2 < yield) && (si > yield)))
{
factor = (yield-sl)/(s2-sl); 
yptx = IPlx + (factor*(IP2x-IPlx)); 
ypty = IPly + (factor*(IP2y-IPly)); 
if ( (yptx > -25.0) && (ypty < 25.0))
{
fprintf(zone, "%10.01f %91d %101f %101f\n", 
sarray [elcnt] [ 1 ] ,yptcnt,yptx,ypty); 

printf("Element %lf IP1 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IPlx,IPly, si); 

printf("Element %lf IP2 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP2x,IP2y, s2); 

printf("Element %lf IP3 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP3x,IP3y, s3); 

printf("Element %lf IP4 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP4x,IP4y, s4);

printf("Element %10.01f Yield Pt. %101d x %lllf y %lllf\n", 
sarray [elcnt] [ 1 ] ,yptcnt,yptx,ypty);

}
yptcnt ++;
}
if ( ((s2 < yield) && (s4 > yield)) || ((s4 < yield) && (s2 > yield)))
{
factor = (yield-s2)/(s4-s2); 
yptx = IP2x + (factor*(IP4x-IP2x)); 
ypty = IP2y + (factor*(IP4y-IP2y)); 
if ( (yptx > -25.0) && (ypty < 25.0))
{
fprintf(zone, "%10.01f %91d %101f %101f\n", 
sarray [elcnt] [ 1 ],yptcnt,yptx,ypty); 

printf("Element %lf IP1 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IPlx,IPly, si); 

printf("Element %lf IP2 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], DP2x,IP2y, s2); 

printf("Element %lf IP3 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP3x,IP3y, s3); 

printf("Element %lf IP4 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP4x,IP4y, s4);

printfC'Element %10.01f Yield Pt. %101d x %lllf  y %lllf\n",
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sarray [elcnt] [ 1 ],yptcnt,yptx,ypty);
}
yptcnt ++;
}
if ( ((s4 < yield) && (s3 > yield)) || ((s3 < yield) && (s4 > yield))) 
{
factor = (yield-s4)/(s3-s4); 
yptx = IP4x + (factor*(IP3x-IP4x)); 
ypty = IP4y + (factor*(IP3y-IP4y)); 
if ( (yptx > -25.0) && (ypty < 25.0))
{
fprintf(zone, "%10.01f %91d %101f %101f\n", 
sarray [elcnt] [ 1 ],yptcnt,yptx,ypty); 

printf("Element %lf IP1 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IPlx,IPly, si); 

printf("Element %lf IP2 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP2x,IP2y, s2); 

printf("Element %lf IP3 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP3x,IP3y, s3); 

printf("Element %lf IP4 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP4x,IP4y, s4);

printfC'Element %10.01f Yield Pt. %101d x %lllf  y %lllf\n", 
sarray [elcnt] [ 1 ],yptcnt,yptx,ypty);

}
yptcnt ++;
}
if ( ((s3 < yield) && (si > yield)) || ((si < yield) && (s3 > yield))) 
{
factor = (yield-s3)/(sl-s3); 
yptx = IP3x + (factor*(IPlx-IP3x)); 
ypty = IP3y + (factor*(IPly-IP3y)); 
if ( (yptx > -25.0) && (ypty < 25.0))
{
fprintf(zone, "%10.01f %91d %101f %101f\n", 
sarray [elcnt] [ 1 ],yptcnt,yptx,ypty); 

printf("Element %lf IP1 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IPlx,IPly, si); 

printf("Element %lf IP2 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP2x,IP2y, s2); 

printfC'Element %lf IP3 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP3x,IP3y, s3); 

printfC'Element %lf IP4 x %lf y %lf stress %lf\n", 
sarray[elcnt][l], IP4x,IP4y, s4);

printfC'Element %10.01f Yield Pt. %101d x %lllf y %lllf\n", 
sarray [elcnt] [ 1 ],yptcnt,yptx,ypty);

}
yptcnt ++;
}

yptcnt = 1; 
elcnt ++;
}
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Appendix B. 11

Programme Code: ASTM E647

Matlab Polynomial Solver fo r  Determination o f  da/dN Crack Growth Rates 

from  a-N Data



function [a,N,ahat,cgr] = crucgr(name,range)
% Fits Measured Crack Lenghts to a 3rd Order Polynomial 
% against N (Number of Cycles) by 7pt cycling.
% Data set loaded from a text file with N data 
% in the 1st column - type name without .ext
% Then places the fitted crack lengths into ahat array 
% and plots them together.
% Finally Calculates Crack Growth Rates and Plots them 
% with output to a file cgr.txt

% Set raw data
fhame = strcat(name,'.txt');
data = load (fhame);

a = data(:,2);
N = data(:,l); 
rows = size(N,l); 
rows = rows-6;

% Fit 3rd Order Polynomial as for 7pt cycling 
for i = 1 :rows 

afit = polyfit(N(i:i+6,l),a(i:i+6,l),2); 
ahat(i+3,l) = polyval(afit,N(i+3,l)); 
trig = cos(pi*ahat(i+3,l)*0.001/0.1);
dK(i+3,l) = (range*le6*(sqrt(pi*ahat(i+3,l)*0.001/trig)))/le6; 
rate(i+3,l) = afit(l,2)+(2*afit(l,l)*N(i+3,l)); 

end

% Add Trialing Zeros to End of ahat & rate array to maintain equal size 
for i = 1:3 

ahat(rows+3+i,l) = 0; 
dK(rows+3+i,l) = 0;

rate(rows+3+i,l) = 0;
end

% Assign Values to a Crack Growth Rate Array - cgr 
cgr(:,:) = [ahat, dK, rate]; 
save cgr.txt cgr -ascii;

figure(l);
plot(N(4:rows+3,l),a(4:rows+3,l),'bd’,N(4:rows+3)l),ahat(4:rows+3,l),'r-');
figure(2);
loglog(cgr(4:rows-3,2),cgr(4:rows-3,3),'bd');
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