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An Investigation into the Design and Performance of

an Automatic Shape Control System for a Sendzimir
Cold Rolling Mill

Ken Dutton

SYNOPSIS

Shape (or flatness) control for rolled steel strip
is becoming increasingly important as customer requirements
become more stringent. Automatic shape control is now more
or less mandatory on all new four-high cold mills, but no
comprehensive scheme yet exists on a Sendzimir mill. This
is due to the complexity of the control system design on
such a mill, where many more degrees of freedom for control
exist than is the case with the four-high mills.

The objective of the current work is to develop, from
first principles, such a system; including automatic ’
control of the As-U-Roll and first intermediate roll
actuators in response to the measured strip shape. This
thesis concerns itself primarily with the As-U-Roll control
system.

The material presented is extremely wide-ranging. Areas
covered include the development of original static and
dynamic mathematical models of the mill systems, and test-
ing of the plant by data-logging to tune these models. A
basic control system philosophy proposed by other workers
is modified and developed to suit the practical system
requirements and the data provided by the models. The
control strategy is tested by comprehensive multivariable
simulation studies. Finally, details are given of the
practical problems faced when installing the system on the
plant. These include problems of manual control inter-action
bumpless transfer and integral desaturation.

At the time of presentation of the thesis, system
commissioning is still in progress and production results
are therefore not yet available. Nevertheless, the
simulation studies predict a successful outcome, although
performance is expected to be limited until the first
intermediate roll actuators are eventually included in
the scheme also.
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CHAPTER 1

INTRODUCTION

1.1 Background to the Shape Control Problem

By the end of the 1960's and beginning of the 1970°'s,
the problem of designing automatic gauge (i.e. thickness)
control systems for cold metél rolling mills had largely
been solved. (See for example Bryant (1)). The re-
sultant improvements in consistency of strip gauge,
coupled with an increasing demand for ever thinner prod-
ucts, inevitably led to an increase in customer rejections
of rolled metal strip on the grounds of poor flatness -
€eLo ﬁaterial having wafy edges or a buckled middle.

The controlling of such defects falls within the field
of shépe control, and the desire for shape control sysfems

gfew rapidly within the metal rolling industry.

The tefm "shape" is, in truth an unfortunate mis~
nomer, aﬁd can lead to some confusion during discussions.
Let us define the meaning which will attach to the term
"shape" throughout this work. Rolled strip is said to
have "good shape" if it is free (or almost free) from
internal stresses when removed from the mill. Such strip
will lie flat if placed upon a flat surface. Bad shape
rolled into a strip (whose shape was previously good)
arises basically because of non-conformity between the
cross-sectional profile of the incoming strip, and the
profile of the roll gap through which it is rolled. Such
non-conformity will cause the profile of the rolled strip

to change, thus causing differential elongation at



different points across the strip width (neglecting width-
wise spread). If this strip were to be slit into narrow
lengthwise ribbonsy, some would then be found to be longer
than others. Within the as-~rolled strip; these length
differentials must be accommodated within the boundaries
set by the strip length. This clearly gives rise to in-
ternal stresses which will remain in the strip after
rblling9 and results in aAtendency for the strip .to bucklg.
If these sfresses are large enough to overcome the section
modulus of the strip, visible buckling will occur, and
"Manifest bad shape" is the result. If however,; the
stresses are less than this level; the strip will still
appear to be flat, and is said to possess "latent bad
shape®., (It should be noted that in the literature some
workers have confusingly used the term "latent" bad shape
to refer solely to shape which is masked by tension during
rolling, and which then becomes "manifest" when the tension
is removed). Figure i.l shows the "latent" and "manifest"
effects which may result from a certain internal stress
distribution. Manifest bad shape may take a number of
forms dependent upon the nature of the internal stress
distribution in the strip. Figure 1.2 illustrates some

of the more common forms (2).

There have arisen over the years several methods of
quantifying strip shape. A literature survey was carried
out by the author in 1976 (published as an internal
British Steel Corporation document only) which yielded

some 73 papers and other documents pertaining to research
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in this area, and no less than seven methods of assigning

a numerical value to "shape' had been proposed at that
time. Of these, only two are of direct relevance to the
present work, the remainder being of academic interest

only or used only by other workers (e.g. in Japan). As
mentioned above, if strip having bad shape is slit into
lengthwisé ribbons, length differentials will result
between the ribbons. Pearson (3) in 1964 defined shape as
being given by é%.lO4 "mons per unit width". Where Al
represents the length difference between longitudinal
filaments of mean length 2 s and w is the transverse spacing
of the filaments. A second definition based upon the
different filament lengths in slit strip defines shape in
dimensionless"I-units", one I-unit being equal to %%.105
where Al here refers to the difference between the longest
and shortest filaments (4).

Some sensors of strip have been developed over the
years which attempt directly to measure-'éxg-9 but these will
measure only manifest shape which'is not obscured by
rolling tension, and are therefore of limited application’
(see for example (3)). Many different designs of in-
struments for shape measurement have been reported in the
literature, some using rollers in various arrangements in
contact with the strip (e.g. (5-8)), others based upon
non contact methods of various types ((9-11) and several
6thers besides). The two most well-established "shapemeters"
in commercial use however are of the segmented-roll type,

being the ASEA "stressometer" roll (4,5) and the Loewy-

Robertson "Vidimon" roll (6) which was originally designed



by British Aluminium. These two devices both measure

shape indirectly, by measuring the differential stresses

at a number of points across the strip width (which could
then be converted to the shape definitions above if desired,
using knowledge of Young's Modulus qu the strip.) The
ASEA device is the one used in the present project,; and

is described in detail in Chapter 2.

These reliable devices for shape measurements have
only become commercially available in the last ten years
or so, yet they have already been applied to many rolling
mills around the world. In the majority of cases, they
are used simply to display to the mill operator what
the shape of the strip he is rolling looks like, and he
will then adjust the mill controls accordingly so as to
achieve a better shape - i.e. the operator forms part of
the "closed-loop" control scheme. (Note that on mills
without shapemeters, the only ways in which the operator
can assess strip shape are to stop the mill and release
the rolling tnesion so that a visual assessment of mani-
fest shape can be made, or to strike the strip - e.g.
with a broom handle - and use his experience to assess
the results - neither method having the attribute of
ultimate accuracy). Some shapemeters however have been
incorporated in closed-loop automatic shape control (ASC)
schemes. The first well documented scheme was the
application of an ASEA stressometer roll to a Canadian
aluminium mill (4). The first application (known to the

author) of an ASC scheme to a steel mill, involves the



use of the Loewy-Robertson Vidimon roll on a large
tandem mill at British Steel Corporation's Shotton works
(12). Several other ASC systems are known around the
world, but they are all operating on conventional four-
high mill stands (i.e. stands having two workrolls,
supported by one backup roll each, in a vertical plane -
Fig. 1.3). It is a much more difficult matter to apply
an ASC system to a Sendzimir type mill (this will be
clarified later), and although several Sendzimir mills
are known to be equipped with shapemeters, at this time
it is believed that only one other mill is actively con-
sidering an AFC scheme. It is hoped that the work des-
cribed in this thesis will therefore lead to one of the

first Sendzimir mill ASC systems ever to operate.

It should perhaps be mentioned at this point, that
since the thesis includes work on an ongoing industrial
development, some aspects of the work (especially the
implementation of the scheme) will not be finished before
the thesis submission date. Hence, it will not be
possible to include, say, operating results in the
discussion. Nevertheless, the various modelling aspects
of the work have been made as self-contained as possible

so that '"completion' is possible in several areas.
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1.2 Means of Shape Control in Four-High Stands

| If strip having good shape is rolled by a mill and
found to have bad shape after rolling, the reason is that
the cross sectional profile of the strip being rolled did
not coincide with the profile of the roll gap (see
section 1.1). There is a number of reasons why this may
be so. Referring to figure 1.3; when a rolling load is
applied, since the only support for the rolls is by means
of their neck bearings,; the rolls will bend giving a
"crowned" profile to the strip (i.e. thickest. in the
centre). Since cold rolled steel strip is normally re-
quired to have a sméll parobolic crowned cross section,
this is acceptable in principle. Nevertheless, the amount
of érown caused in the roll gap by roll bending must
accurately match the crown in the incoming strip, other-
wise bad shape will result. Workrolls are ﬁsually ground
ﬁith parabolic crowns, carefully calculated so that under
normal rolling conditions the roll gap profile will match
the cross section of the incoming strip. Further crown
is imparted to the workrolls in the form of “"thermal
camber" during rolling. This arises because the heat
generated during rolling can more readily escape from the
ends of the rolls than the céntre, and the centre therefore
expands more than the edges. Now, if the mill rolls are
correctly ground for stéady state rolling (including the
effects of thermal camber), it can be seen that the roll
gap profile will be incorrect whenever the rolls are cold

(e.g. at the beginning of a coil). Thus bad shape can



result when the rolls are not at their correct temp-
erature; or if the crown ground onto the rolls is in-
correct (which can occur due to roll wear even if it was
originally correct), or if the profile of the incoming
material is.different from that for which the rolls>are
designed (which can often be the case, especially when
material is bought from different suppliers), also the
preceding stand in a tandem mill may have upset the shape

if not scheduled correctly.

The foregoing description, in itself, suggests the
normal methods of adjusting shape in rolling stands.
Firstly, to control thermal effects, differential cooling
is often employed, whereby cooling sprays afranged at many
points across the rolls are selectively switched on or off
‘as required. This means of control is particularly
favoured by operators of aluminium rolling mills - see
for example (4) - but is also used on steel mills. The
major control on most mills where shape control is possible
is to bend the workrolls during rolling. In the 4-high
type of mill, this is‘usually achieved by hydraulic jacks
situated between the roll chocks as indicated in figure 1.3.
"A" represents jacks placed between the backup roll and
workroll chocks, whilst "BY représents'jacks placed
between the workroll chocks. Either method can be used,
each having its own advantages. Stone and Gray (13) have
shown that in general, backup roll bending (i.e. with jacks
operating between the backup roll necks, outboard of the
chocks) is the best system, but it is very expensive to

engineer and maintain and is not used much in the steel

10



industry except in heavy plate mills (to the best of the

author's knowledge).

The reasons for using a Sendzimir type of mill
rather than a four-high mill for certain purposes will
be outlined in Chapter 2, but the foregoing description
of mechanisms for control of shape in four-high mills

has been included here for completeness.

1.3 Description of the Present Project and the Thesis

In the mid 1970°'s fwo large Sendzimir mills were
built at British Steel Corporation'’s Shepcote Lane works.
These mills are described in Chapter 2. Each mill is
equipped with ASEA "Stressometer" shapemeter rolls which
provide the mill operators with information about the
shape of the strip being rolled (the shapemeters are also
described in Chapter 2). It was decided at an early stage
thaf these mills would eventually be furnished with closed
loop automatic shape control schemes. Likely suppliers
of such schemes were contacted, but for wvarious reasons
BSC decided to develop the scheme locally; and so the

project was born.

A great deal of original work has been necessary to
progress this project, as will be made clear in the
following chapters. Any collaboration with other workers
which has taken place will also be made clear at the

appropriate points.

Prior to the control system design, a large amount
of mathematical modelling and simulation had been carried

out. Chapter 3 describes the development of models per-

11



taining to the static behaviour of the mill stand and

its various control actuators. These models attempt to
predict the effects upon strip shape of any combination of
ﬁill actuator movements. The resultant information is
used in Chapter 4 where a model is developed pertaining

to the dynmamic behaviour of all parts of the plant rele-
vant to shape control (i.e. the mill actuators, the
characteristics of the strip between the mill and the
shapemeter, the shapemeter itself and its eléctronic
systems, and the shape controller). Chapter 5 describes
plant £esting which was carried out to check the accuracy
of the various models. ~The development of the control
system itself is covered in Chapter 6, whilst Chapter 7
introduces the dynamic simulation methods used to test

the various systems developed. (These were all developed
by the author, as no dynamic modelling package was other-
wise available to him). Chapter 8 includes as much as can
be said at the time of writing concerning the actual
installation of the control system on the plant, and

concluding remarks end the work in Chapter 9.

12
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PHYSICAL DESCRIPTION OF THE

SENDZIMIR MILL INSTALLATION



CHAPTER 2

PHYSICAL DESCRIPTION OF THE
SENDZIMIR MILL INSTALLATION

2.1. Introduction

The major limitations of the 4-high mill stand from
the point of view of shape control are twofold., Firstly,
any change made to the screwdown mechanism on the stand
for purposes of gauge control; will change the degree of
roll-bending evident in the workrolls. This will cause a
shape change in the strip leaving the mill, which may be
significant for certain gauges and materials. Secondly,
since roll bending is only applied at the roll necks, only
a limited amoﬁnt of roughly parabolic bending is po;sible.
This severely limits the amount of shape correction possible,
and the forms of shape which can be corrected (e.g. on a
4-high mill no correction could be made to the "herringbone"
or "quarter buckle" shapes shown in fig. 1.2 by meansrof
roll bending; an& if differential-ccooling is available,
even this is of limited use due to the magnitude of
co?rective action possible and sometimes to the relativeiy
long time constant involved). A further limitation of the
4-high mill becomes apparent if it is desired to take high
reductions on hard materials (e.g. stainless steel).

Under these circumstances, rolling theory suggests the use
of small diameter workrolls, and if used in a 4-high stand
these would be prohe to an unacéeétable degree of bending

under the high rolling loads required.

The Sendzimir rolling stand is designed to overcome

to a large extent these limitations. It is, however, an

13



extrehely complex mechanical system, and the primary
purpose of this chapter is to describe the mechanics of/
the system so that the later chapters on modelling can be
readily reconciled with the plant. The following section
describes the general layout of the mill stand; and this
is followed by a section devoted entirely to a description
of the control actuators, which are not at all easily
described in writing! The final section describes the

operation of the ASEA "Stressometer" shapemeter system.

2.2 Mechanical Description of the Sendzimir Stand

The Sendzimir mill permits the use of small diameter
workrolls by providing massive support, in an extremely
rigid ﬁousing. Various configurations are available, but
the mills at BSC,; Shepcote Lane, are of the twenty roll
type. Figure 2.1 shows an end view of the roll stack
(or cluster) of such a mill, using standard notation for
the various rolls. Each of the backup roll assemblies
(A-H, fig. 2.1) is segmented into seven separate short
rolls, with support to the housing being provided by a
saddle (which is bolted to the housing) between each pair
of segments as indicated in figure 2.2. Each segment is
known as a "backing bearing', and is free to rotate on
the shaft which passes through the saddles. The complete
mill housing is of mono?lock construction (i.e. machined
from a single piece Sf 'steel) and is extremely‘stiff.

The other rolls in the cluster (I-T, fig. 2.1) have no
neck bearings, but ére free to float (the upper half of
the cluster is prevented from collapsing during threading
of the mill, by means of tie rods which allow rolls

I-K;0 and P to move downwards by only a limited amount when

14
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Fig.2:2 Schematic Section of one Upper Backup Roll Assembly
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the upper workroll is removed). The mill drive (from a
single motor) is applied to.the outer second inter-

mediate rolls (I,K,L and N) and transmits to the workrolls
by inter-roll ffiction. This means of construction provides
great support to the thin workrolls, and unwanted roll
bending is minimized. The mill type under consideration is
designated ZR21B-63, wherein "Z" stands for the Polish
"Zimna" meaning "cold", "R" stands for "reversing", "21"

is an indication of the mill housing bore sizes, "B"
indicates a modification to the mill housing dimensions to
allow slightly larger workrolls than standard to be used

if required and "63" is the mill width in inches (1600mm).

The layout of the plant is indicated in figure 2.3.

To give an idea of scale a typical set of nominal

roll diameter may be as follows:

Backing Bearings (A-H) - 0.406 m
Second Intermiediate (Drive) Rolls (I,K;L,N)0.235 m
Second Intermediate (Idler) Rolls (J,M) 0.230 m
First Intermediate Rolls (0-R) 0.135 m

Workrolls (S-T) 0.075 m

The distance from the roll gap to each shapemeter is
approximately 2.91lm, from the shapemeter to the deflector
roll 0.56m and from the deflector roll to the coiler 1.85m.

The mill housing weighs some 200T,

16
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2.3 Mechanical Déscriptionrpf the Mill's Control Actuators

The mill is equipped with various actuators which
allow the cluster to be opened up for roll changing and
strip threading, the pass line height to be édjusted (i;e.
the path taken by the strip during rolling) and also per-
form functions of gauge and shape control. During the
author's reading of the literature; no description of
the operation of these actuators (other than the most
fudimentary detailsy,; which would only be of use to those
already in possession of the appropriate facts) could be
found. Even Sendzimir's brochures appeared rather vague
in this area. Therefore, many hours were spent in study-
ing BSC's sets of plant drawings; and also studying the
plant itself, in order to gain sufficient insight into
the working of these systems to allow them to be modelled.
The information thus gleaned is described in this section,
and the author has also passed it on in discussions with
other workers, in this field; to help their work to

proceed (14-18).

Referring back to fig. 2.2, it will be recalled that
each of the outer rolls (A to H) in the Sendzimir mill
cluster is Segmented into seven backing bearings, mounted
on roller bearings, and running on a shaft supported by
eight saddles which are bolted to the mill housing.
Wherever the shaft passes through a saddle, it is keyed
into an eccentric disc which can rotate in the saddle
bore on roller bearings (see figure 2.4). Therefore, if

the shaft is rotated through some angle (as indicated at
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MAM in fig. 2.4), since it is keyed to the eccentric disc,
both shaft and disc will rotate in the saddle bore together.
This causes the cenffe of the shaft (C2 in fig.2.4 - which
is also.of course the centre of the backing bearings at
each side of the saddle) to move around the fixed centre of
the saddle bore (Cl in fig.2.4 - which is also the centre
of the mill housing bore). Due to the geometry of eccentric
motion; the locus of C2 is a circle about Cl, whose radius
is equal to the eccentricity in the disc - this will not

be proved here. Thus, rotation of the shaft causes the
 backing gearings at either side of the saddle to move
relative to the mill housing. Since the shaft is keyed t©
an .identical eccentric disc in each of the eight saddles,
rotation of the shaft causes an identical motion at each
saddle, and therefore the entire set of backing bearings

on the shaft moves relative to the mill housing and

parallel with its original position.

2.3.1 Push-up System Operation

The lower baékup roll assemblies (F and G in fig.2.1)
each have the construction described above, If figure 2.4
is taken to represent a saddle on shaft G; then the
corresponding saddle on shaft F is constructed as a mirror
image of fig.2.4. The necessary rotational movement is
simultaneously imparted to shafts F and G by means of a
rack and pinion arrangement as shown in fig. 2.5. There
is such an arrangement at each end 6f fhe shafts, the
racks being constrained to move simultaneously. The mill

operator sets the position of the racks by opefating an
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electrical solenoid valve which controls the hydraulic
push-up cylinder connected to the racks. The way in which
this affects the magnitude of the roll gap is indicated

by the arrows in fig.2.5.

The major function of the push-up system is to allow
the mill cluster fo be opened up for strip threading and
roll changing. Under normal rolling conditions the racks
are usually in the fully closed (down) position, and are

not used for any control action.

2.3.2 Side Eccentrics Operation

The pairs of backup roll assemblies (A,H) and (D,E)
at each side of the mill are equipped with similar
mechanisms to the push-up system described in the previous
sub~ection. The main difference is that the operation is
via electric drives and pinions situated only at: the
back of the mill., The shafts of assemblies A and H are
simultaneously contra-rotated as described above, and so
are the shafts of assemblies D and E. Note, however,
that the two systems (A,H) and (D,E) are adjusted

independently.

The function of these eccgntrics is to allow the
mill pass line to be correctly set (as otherwise the pass
line would vary according to the combination of roll
diameters - especially workrolls - in use at the time).
The side eccentrics are usually set af the beginning of

a pass,; and then left undisturbed.
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2.3.3 Screwdown System Operation for Gauge Control

The term "screwdown" is somewhat misleading for a
mill equipped with hydraulic cylinders, but it is still
employed by convention. It arises from the fact that until
recent years, all four-high rolling stands employed
electrically or mechanically driven scfews to position the
rolls and vary the rolling load. Many modern mills
(including almost all Sendzimir mills) employ hydraulic

"screws" which are in reality "rams",

The two upper backup roll assemblies (B and C in
fig. 2.1) are equipped with an identical arrangement to
that described for the push-up system in sub-section 2.3.1
above (and fig.2.5 - inverted, and with the roll
designations for the upper half of the cluster!). The
difference is that whereas the push-up system is used ohly
for roll changing and mill threading, the screwdown system
is used for control during rolling. It is used to control
strip thickness (gauge) either manually by the operator
or automatically as part of the automatic gauge control
system shown in figure 2.3. In the latter case, the
automatic system uses hydraulic serveo valves to position
the screwdown cylinders, in response to signals of strip
gauge received from the X-ray gauges at each side of the

mill,

It is important to note that as described previously,
the operation of these eccentrics causes the backup roll
assemblies to move parallel with their original positions.

Due to the massive support provided by the monoblock mill

23



housing, this motion remains essentially parallel even
when it reaches the workroll. Therefore, compared with
the four-high mill (section 1.2), there is very little
effect upon strip shape due to making gauge changes. This

is a primary advantage of the Sendzimir mill stand.

2.3.4 As-U-Roll Operation for Shape Control

For purposes of shape control, it is necessary
deliberately to be able to bend the workrolls during
rolling (section 1.2). The system employed in the Sendzimir
mill is referred to by Sendzimirs' trade name "As-U-Roll"
(since it allows roll bending "as-u-roll"), this also
operates on the upper pair of backup roll assemblies, B and

C.

Each of the saddles supporting either of the two
shafts B and C is fitted with an extra eccentric ring,
interposed between the saddle bore and the screwdéwn
éccentric disc as shown in figure 2.6. The eccentricity
of this ring is much less than that of the screwdown disc
(typically less than 20 percent of sérewdown eccentricity)
since workroll motion required for shape correction is

exceedingly small.

The As-U-Roll eccentric ring at each saddle can be
rotated independently of the shaft and screwdown system
(and of the As-U-Roll rings at the other saddleé) by
moving a forked rack which engages with cheek pieces
fastened to each side of the ring as shown in figure 2.7

and 2.8. The forked rack straddles the pair of saddles

24



sbuiseag Jajjoy

+4€Us

Alup 1389

Aay| -

um._n_ "33 UMOpMIJIIS

Bury 333 1104-n-sv

31ppes
Burseag Buispeg .

S}jeys - spiesq dlppes 9.z ‘biy

R UNY PO UPMIIS 1344Ud) - €D
P tupmids ‘obug
3eg ‘Hjeys 344ua) -3

T ‘PO YNy ‘saJog 3ippes
| / buisnoy :34ju3y - 1o
/ 23
UMOYsS uotaJig
/ . 11%Y-N-sy
u 0} an
V. 2 Nw 40 _u_ um.w_

/ busnoy i1l

25



Fig.27 Form of As-U-Roll Cheek Piece and Rack
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concerned, so that its teeth mesh with the four appropriate
check pieces (one on each side of the As-U-Roll rings at
the corresbonding saddles on shafts B and C). The mill
operator can raise or lower each of the eight As-U-Roll
racks independently, by operating electric solenoid valves.
These supply a hydraulic motor for the selected As;U—Roll
system9 which raises or lowers the rack by a worm and rack

arrangement.

As one As-U-Roll rack is raised or lowered, it
rotates the As-U-Roll eccentric rings at.the corresponding
pair of saddles on shafts B and C via the check pieces
(fig.2.8). Referring back to fig.2.6, this causes C3 to
move around the fixed Cl on a circular path whose radius
equals the eccentricity in the As-U-Roll ring. Since we
are assuming that the screwdown system is not being
operated at this time C2 will follow a "parallel" circular
path to C3. Now C2 is the centre of the shaft and of the
backing bearings on each side of the saddle under con-
sideration. Therefore by moving one As-U-Roll rack only,
the position of the backup roll assemblies B and C is changed,
relative to the mill housing only adjacent to the saddle
whose rack has been moved. Thus the roll is effectively
bent, and this bending propagates down through the mill
cluster onto the workroll. By manipulation of all eight
racks, various bending profiles can be forced onto the

workroll (see for example figure 2.9).
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It is worth reiterating that the design of the
Sendzimir mill minimises interaction between gauge and
shapé control systems. When a shape change is made, only
the As-~U-Roll eccentric rings move, forcing a suitable
profile onto the workrolls. The resultant change in gauges
is extremely small, due to the small eccentricity in the
As-U-Roll rings,; and the fact that there are constraints
upon the amount of As-U-Roll control possible (this will
be discussed later). The automatic gauge control system
is fast-acting compared with shape control, and if a shape
change does cause a net gauge change visible to the AGC
system, it will be corrected very quickly. On the other
hand; when a gauge change is made, only the screwdown
eccentric discs move (rotated by the shafts B and C) and
as discussed in sub—séction 2.3.3 above, the discs move
an identical amount at each saddle. Thus the bending
profile on the workroll is virtﬁally unchanged, and an

almost pure gauge change results.

2.3.5 First Intermediate Rolls for Shape Control

Although tﬁe As-U-Roll system permits a much wider
range of bending profiles to be forced onto the workrolls
than is the case in a four-high mill, it is not as flex-
ible as may at first appear. This is due to mechanical
constraints upon the amount of bending which can be
tolerated by the backup shafts B and C and the other rolls
in the cluster under rotating conditions. The As-U-Roll

actuators are set by the operator according to scales

marked in ten arbitrary units. The manufacturers of the
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mill and the mill engineers lay down a constraint that

the position of any As-U-Roll actuator shall not deviate by
more than 1} of these units from the mean position of its
two neighbours. Large gradients and sudden maxima and

minima are therefore ruled out.

To allow much more freedom.of control at the critical
areas of the strip edges, a seconid means of shape control
is provided. The first intermediate rolls O and P (in
fig.2.1) are tapered off at the front of the mill, and Q
and R at the rear as shown in figure 2.10. These tapers
can be moved laterally into or out of the cluster as in-
dicated in the figure., The upper and lower pairs of rolls
are independently adjustable, thus allowing separate control
of shape at the front and back edges of the s£rip. The
motion is imparted to these rolls by means of internally
threaded thimbles which run on extermnal threads cut on
non-rotating extensions coupled to the back ends of the
first intermediate rolls. The thiﬁbles are laterally
constrained with respect to the mill housing, so that if
the thimbles are rotated, the screw action of the threads
will move the first intermediate rolls in or out. The
drive to the thimbles is by chain from hydraulic motors
controlled by switches on the mill operator's desk via

solenoid valves. (Described in more detail in Chapter 4).

The control action obtainable by this method at the
strip edges is very fine and very powerful. This is
underlined by Urayama (19), although in Urayama's

application it was actually desired to roll quarter buckle
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into the strip, and it is known that the As-U-Roll system
alone cannot produce two inflexions in the workroll, due
to the mechanical constraints (20). Also, tapered
intermediate rolls have recently been introduced for shape
control in four-high‘mills by Hitachi (21), thus forming
the six-high mill, which is making very rapid progress now

in Japan.

The automatic shape control system for the Shepcote
Lane mills will incorporate control of the As-U-Rolls and
the first intermediate rolls, although initial effort has
been directed at the As-U-Roll systems for various reasons

which will become apparent.

2.4 The ASEA Shapemeter System

To conclude this chapter, a brief description will
now be given of the syétem which measures strip shape on
the mills in question. The system comprises the transducer
itself, which takes the form of a pass-line foll, and the
electronics necessary to process the transducer signals and

provide a shape display in the operator's pulpit.

2.4.1 Description of the Stressometer Roll

One Stressometer measuring roll (4,5) is placed at
each side of the mill, approximately 2.91lm from the roll
gap. Each roll takes the form of a solid core, having
four axial grooves milled along it at equally spaced points
about its circumference (figure 2.11). Each groove houses
31 modified "Pressductor!" loadcells, which are installed to

be slightly proud of the core surface and then machined to
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the correct height. These transducers are then covered
by 31 hardened steel rings which are shrink-fitted over
the core so as to pre-stress the transducers. Each ring
is 52mm wide, and is separated from its neighbours by
small gaps of typically 20 to 40 microns. Each ring,
with its group of four transducers therefore forms an
independent measuring ione. The four tfansducers in each
zone are connected together in such a way that the pre-
stressing forces due to the shrunk-on steel ring, thermal
effects,; centrifugal force, bending of the roll due to
strip tension and also stray magnetic effects are all
effectively cancelled out. This leaves only the force on
each zone due to the tension in the strip passing over it
to be measured (because this affects only one transducer
at a time, whereas the above mentioned are all common-

mode effects).

The roll is mounted in roller bearings; and all the
transducer signals are brought out by means of a multi-
pole silver slipring and brush system at the rear of the

mill.

2.4.2 Description of the Signal Processing

The primary windings of the transducers in each =zone
are connected in series, and energized with a 2kHz signal.
If the four transducers in a zone are labelled A,B,C and D
sequentially around the roll, then the secondary windings
(the transducers operate on the principle of magneto-
striction) are connected in series as follows
A(+), B(-), c(+), D(-). Therefore, when strip under ten-

sion is passing over the rotating roll, the output from

34



each zone will take the form of an amplitude modulated
ane, having a carrier frequency of 2kHz, a modulating
frequency dependent upon strip speed, amplitude which
exhibits four pulses per revolution of the roll-
alternatively less than and greater than the carrier
amplitude, and of a magnitude dependent upon the load
placed on the zone by the strip. This signal from each
zone is fed to one channel of fhe signal processing
electronics. Here, it is fed through phase-sensitive
rectifiers and filters to obtain a direct voltage

proportional to the radial force on the measuring zone.

In order to obtain good filtering characteristics; a
variable time constant is used in the signal electronics.
This is selected automatically as a function of strip

speed (Table 2.1).

Strip Speed 0-90% Response

(m/s) Time (s)

0.3 - 1 10,0
1 -2 3.3
2 - 5 ) 107
5 - 15 0.7
15 - 50 0.25

Table 2.1

Automatically Switched Filter Time
Constants -
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Having obtained wvalues F for the radial

X |x=1,31

force exerted by the strip on each measuring zone (N), the

processing

Let

P\

PR R 5

proceeds as follows:

L]

1]

mean force (N)

stress in strip at zone x (Nm—z)
mean stress (Nm_z)

deviation of stress at zone x from mean (Nm~

shape

total strip tension (N)
strip gauge (m)

strip width (m)

number of shapemeter rotors covered by the
strip.

The parameters T; t and w are available to the

shapemeter electronics,; therefore o, can be calculated as

also

Now

Therefore

The quantity

so s; can be

T -2
o = e——
m wetl (Nm™")
1 N .
F_ = N.:E;FX (N)
9%
7
x
6& -2
=Fx.'i;— (Nm )
"l x=1,31
?32 is evaluated by the elctronics, and
F
fOund for each zone. (Nm~2)

Then finally

AO’ = & - (Nm
x x Tl x=1,31
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-2 and dis-

The 31 values are then scaled in N mm
played to the mill operator by means of 31 edge-meters
arranged side by side. The range of the display is

¥ 200 N mm-'2 for each zone.

There is only one set of shapemeter electronics, and
this is switched to whichever of the two Stressmeter rolls

is at the output side of the mill.
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CHAPTER 3
STATIC MATHEMATICAL MODEL OF THE MILL

3.1 Introduction

This chapter coﬁsiders the non-dynamic aspects of
the mill stand itself, including the various actuator
mechanisms described in section 2.3. The purpose of the
model is to predict, from any possible combination of
actuator movements, the magnitude of the effects upon the
transverse internal stress distribution of the striﬁ
leaving the roll gap (fig.3.l). Clearly, for shape control
considerations, the major emphasis is placed upon a per-
turbation analysis of the As-U-Roll and first intermediate
roll taper effects upon the strip shape. However, it should
be borne in mind that the settings of the screwdown and
side eccentric systems affect the range of control of the
shape control actuators by modifying the roll stack
geometry. A unique feature of the present model is that
it attempts rigorously to define these effects,'by careful
modelling of the complex mechanical mechanisms by which
the distribution of rolling load throughout the cluster is
affected when any of the mill's actuators is moved. In
addition, every effort has ten made to keep the model non-
iterative, so that the long computation times associated
with such models are avoided. Some details of the
computer mechanisation of the model are given. The
chaptef concludes with the derivation of a gain matrix
by which the mill can be represented ing; for example,

a state space derivation of a control scheme.
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List of principal symbols, abbreviations and notations to

be found in this chapter and Appendices 1 to 4

Subscripts (unless otherwise defined)

General subscripts used are;-

B Quantity refers to backing bearings

2 Quantity refers to second intermediate rolls
1 Quantity refers to first intermediate rolls
W Quantity refers to workrolls

N .Used as a count (i.e. N = 1,2,3,4......etc.)

Common second subscripts used are:-

L ' Quantity refers to the Left-hand side or end
R Quantity refers to the Right-hand side or end
S Quantity refers to the area over the strip being rolled
T Refers to the top half of the roll stack (used )
B Refers to the bottom half of the roll-stack ) with LI
o Indicates mill actuator datum positions (used with
Lsns.)
‘ 152
D Drive roll)(used with D2)
I Idler rollg
Main Variables and Abbreviations
aBV Motion of upper central backing shafts (roll B)
N towards centre of upper central second intermediate
rol11(J) at the NP saddle from front of mill (i.e.
due to motion of the NP As-U-Roll rack). (m)(close
approximation) (positive for roll B moving towards
roll J).
AUR As-U-Roll
AAxg General functions defined in beams-on-elastic
B ) foundations theory (Appendix 1)
Ax)
)
B.O.E.F. Beams~on-Elastic Foundations
cg Camber off diaméter of roll specified by subscript s.
' (m)
c )
Xx) As A and B above
D, )
Ax)
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Maximum diameter (including camber) of roll specified

by subscripts s (m)

Base of natural logarithms

Eccentricity of As-U-Roll rings, screwdown and

side Eccentric Discs respectively (m)

Young's Modulus for all rolls (Nm~

2)

Abbreviated form of "end-conditioning-force®

Intermediate values defined in beams-on-elastic

foundations theory (Appendix 1).

Value

of concentrated force; subscripted as ap-

propriate. (N) (positive downwards).

Values of force defined for roll specified by

subscript s in b.o.e.f. theory (N).

mill gain matrix (N mm™2)

input gauge over the centre of the Nth shape-

Strip

meter rotor covered by the strip. (m)

Strip output gauge corresponding to hy. (m)

Strip general entry and exit gauges used in rolling
theory (m)

Second moment of area of roll specified by subscript

s. Roll assumed cylindrical and of diameter Ds (mq)

Number of backing bearings

Number of shapemeter rotor centres covered by strip

Number of rotors of shapemeter

Number of concentrated forces taken to act on roll

specified by subscript s. (Symmetrical about

vertical centre-line of mill and equally-spaced).
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Yield stress of strip in roll gap (Nm-z), -variable as k(g)

Foundation modulus defined in b.o.e.f. theory

(Appendix 1) for roll specified by subscript sy

resting on roll specified by subscript s,. (Nm™2)

Taper off base (i.e. uncambered) diameter of first

intermediate rolls. {m)

Length of 1IR tapered portion (m)

Length of each backing bearing.v(m)

Length of tapered section of first intermediate rolls

which is slid into the cluster. (m)

Width of each shapemeter rotor. (m)

Strip Width.

(m)

Total roll length (m). (Length of non-tapered portion

of 1IRs).

Unsupported
edge of the

Abbreviated
"j]eft-hand"
mill.

length of workroll overhanging each

strip. (m)

form of "left-hand". Note that the
end of any roll is at the front of the

Distance between centres of rolls specified by sub-

scripts Sy and s, (used in cluster angle and force

analysis). (

2
m)

Various values of moment defined in the b.o.e.fe.

theory (Appendix 1) for roll specified by subscript

s. (Nm) (Positive when clockwise onthe left of a

section - i.

e. in the direction of the positive

shearing force Q on the left of the section. Thus

M is positive for a sagging beam).
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As-U-Roll Rack position (operator's units)
(positive downwards)

side eccentric position (operator's units)

screwdown rack position ( " n )

"Even number of points (symmetrical about the vertical

centre line of mill and equally spaced) at which
deflection is calculated for roll specified by
subscript Sl'
Pitch of backing bearings (m)
Total Rolling Load (N)
Distributed Rolling Load (Nm_l)

Value of uniformly-distributed loading,
subscripted as appropriate. (Nm-l)(positive down-

wards)

Values of shear defined in b.o.e.f, theory
(Appendix 1) for roll specified by subscript s. (N)

(Positive when acting upwards on the left of a section).

Undeformed roll radius (m)
Deformed roll radius (m)

Abbreviated form of "right-hand"

Gain of As-U-Roll, screwdown and side eccentric

actuators (rad/operator's unit)
Normal rolling pressure (Nm™2) (Variable as s(4)).

Entry & Exit Tensions (N)

n " Tension stresses (Nm™2)
Peak wvalue of triangular-distributed loading due to
backing bearing N. May be further subscripted

if the Nth bearing produces two triangular-
distributed loads. (Nm™1).

Abbreviated form of "triangular-distributed loading"

Abbreviated form of M"Muniformly-distributed loading"
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Abbreviated form of "workroll"
Strip width (m) used in rolling theory.

Distance of front edge of Nth backing bearing
along second intermediate roll. Measured from
front of mill. (A zero preceding the "N" indicates
that the measurement is taken at zero As-U-Roll
travel). (m)

xM‘ Array of distances of the M_ points from the
M:l,M S

AL

N=1,JH filament of strip corresponding to N

front of the mill. (m)

Distance from front of mill of point of

N‘N—l J application of Nth concentrated force
-9

sF  acting on roll specified by subscript s. (m)

Definition of workroll at LH edge of strip

th
due to N~ element of array FW(JWF)' (m)

Deflection of workroll at RH edge of strip
th
due to N element of array FW(JWF)' (m)

Deflection of roll specified by subscript s

at the section Xye (m)

M=1,M
S

A number of algebraic reduction factors

used in section 3.9.21, defined as required.

p.u. ReduqtionAof strip gauge due to
rolling

Differential elongation (w.r.t. mean) of
th

covered shapemeter rotor centre from front
of mill. (m)

Differential stress (shape) in the above
H filament. (Nm_z)
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QA’G 8 Deviation of As-u-Roll, Screwdown and side
eccentric rings/discs from datum position
(rad). (positive when clockwise viewed from

the frontat shafts A,B,G,H)

&) Deflection angle corresponding to y, . (rad.)
L L
N _ N
o) Deflection angle corresponding to yRN. (rad.)
9W Deflection angle corresponding to y, . (rad.)
M *M
91 - 98 ) Cluster angles defined in figure 3.16 (rad.)
)
-
elR 8R)
-1
Xs See E1S (m )
/a Co-efficient of frictioh in roll gap.
Y Poisson's Ratio for roll material.

ﬁs, ﬂp "Rotation" of screwdown, side eccentric discs
to achieve datum from “horizontal". (rad.)

o Angle subtended at workroll centre by the arc
of contact between exit plane and some plane of
interest (rad.)

including:

( ﬁo = 4 (exit plane) = O(rad.)

(

( bi = 4 (entry plane) = arc of contact of strip in

( roll gap (rad.)

E ﬁn = neutral angle (rad.)

1IR First Intermediate Roll
2IR Second Intermediate Roll
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3.2 Modelling of the Control Actuators

This section describes that part of the model which
determines the effect upon the cluster geometry of moving
the eccentric actuators (the first intermediate roll tapers
are not discussed until section 3.8, as their effect is
more.sensibly included there). The next section considers
the implications of the clﬁster geometry in terms of

rolling load distribution.

Consider first the upper half of the mill cluster.
Section 2.3 has made it clear that when any of the ec-
centric actuators is moved (excepting here the push-up
system,; which acts only on the lower half-of the roll
stack) the centres of the backing shaft assemblies A to H
(fig.2.1) will move relative to the fixed mill housing
and relative to each other. Furthermore, perusal of
sub-sections 2.3.3 and 2.3.4 (and the analysis below)
will show that since the eccentrics at shafts B and C
always move together, a line joining the centres of
shafts B and C will remain horizontal at all times.
Therefore, given a knowledge of the roll diameters, the
set of five parameters shown in figure 3.2 is necessary
and sufficient Fo specify the complete geometry of the
bupper half of the cluster. (¢ is itself a function of
the other 5 parameters). Note that the roll diameters
are modified by roll flattening under the influence of
rolling load. These effects are included in section 3.4
(since they are so small as to make no appreciable

difference to the cluster geometry effects under con-

sideration here).
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Let us establish a datum position from which all
actuator movements will be measured. The positions of
the operating mechanisms for the screwdown, push-up and
side eccentric systems are displayed to the mill operator
on scales graduated in arbitrary units from zero to ten.
The zero positions correspond to the fully open mill
position (maximum roll gap) and these will be taken as
the datum position. The As-U-Roll rack positions are
displayed on scaleé of f5 divisions (45 divisions being
the position to which the rack is fully lowered), and
the centre zero posit;ons are taken as the datum here.
The physical meaning of the datum position in terms of
eccentric rotations is illustrated in figure 3.3. At
each backing shaft pdsition, Cl represents the (fixed)
housing bore centre, C2 the centre of the backing bearing
shaft assembly at the datum position and C3 (shafts B
and C only) the centre of the inner diameter of the
As-U-Roll eccéntric ring. All eccentric movements in
figure 3.3 have, of course, been grossly exaggerated for
clarity, typical values of eccentricity being of the order
of 9mm, 4.5mm and l1.5mm for the screwdown, side eccentric
and As-U-Roll respectively (compared with the typical
backing bearing diameter of 406mm). The various angles
of rotation of the eccentric discs in fig.3.3 are defined
below, and then the set of measurements between shaft
centres (fig.3.2) is derived. At the datum position,
the parameters shown in figure 3.2 will be referred to

as LA,B s LB c Lc D and LA D * These can be calculated
o o o o oo o o

from the known housing dimensions and the known rotations
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of the eccentrics required to achieve the datum position

(measured from the horizontal).

Consider one saddle of the backing shaft assembly
B as shown with the ecéentrics in the horizmontal position
in fig.3.4. Thebeffect of moving the As-U-Roll eccentric
ring only is illustrated in figure 3.5, and it is qlear
that since shaft C always moves as a mirror iﬁaga of
shaft By then

1
L 5 - L

BC

Therefore, LBC

2(11 + e,.cos eA + es)

Figure 3.6 shows the same situation with the
addition of a screwdown rack movement causing a rotation

of the screwdown eccentric ring of ﬁs, when

L = 2(11 + .COS GA + e

BC -Cbs ﬂs) ooo'--.ooo(B-l)

€A S

It can be shown that all other cases are a special
case of equation 3.l1. From figure 3.3 at the datum

position, 8A=O, and therefore from (3.1)

LBC = 2(11+e + e

o O

A .COS ﬂs).............o(3.2)

S
The situation at shaft A is shown in figure 3.7, whence

L = 1 + e _ cos o
2 p Ibp

Now at the datum position,; the magnitude of the right-
hand side eccentric rotation will be the same as the
left, therefore,

L = 2L=2(l + e p)oao-oooocooooon( . )
AD, o + ep cos £y 3.3

The situation pertaining to the derivation of LA B (and
o o
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Fig.3-4 Saddle on
‘ Shaft B

L

t '8
Fig.3-5 As Above +
As-U-Roll Motion

Fig.3:6 As Above+ Screw-
down Motion to Datum
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Lc p ) is illustrated in figure 3.8. It can be shown
[o 2 o]

that

2 2
1, = V/113 + (12 - 11)

and & = tan—l 13

This gives rise to the geometrical figure shown in fig.3.9,

where
Xo is the centre of housing bore A,
Yo is the centre of the inner diameter of the As-~-U-Roll

eccentric ring (and therefore also the outer diameter

of the screwdown eccentric ring) at the datum point.
Zo is the centre of housing bore B.

Note: Since X0 and Zo are saddle bore centres they are

fixed with respect to the mill housing.

Applying the cosine rule te the triangle XoYoZo in

figure 3.9

2 2
LXOYO = ¢/14 + e, - 2.14. ep COS«cC

and also
2
-1 L 2 2
/3 = cos XOYO + e, - 14 _p
2.L S
*UX Y €A
o o

Applying the cosine rule to the triangle XOBOYO,

2 2
Ly 5 3/'px v teg” + 2Ly y .eg .cos/3
o o o o o o

and the sine rule gives,

X = sin-l eg sinﬂ

E B

o O

52



L Bore A gjé
Mill

4 L
b A Y

' P TAL S,
N / ' Bore
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Fig.3-9 See Text

Fig.310 Displacement of Screwdown from Datum
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Finally,applying the cosine rule in triangle A_OBOXo

2 2
A_B, J/r XOBo P XoBo.ep.cosgﬁ+ ﬁs—ﬂp—x)...(B.ﬁ)

and LCD LAB .cn-.n..o.c........cl.-...-o...o-'..l.(3.5)

The fully open mill position is now completely specified
as the datum position by equations (3.2) to (3.5), since
11 to 14, ﬁs and the various eccentricities are known from

the investigation of the plant drawings.

Havingvdefined the datﬁm configuration; we can now
model the variations in the distances between the backing
shaft assembly centres (figure 3.2) due to displacement of
the actuators from their datum positions. The actuator
positions are specified to the model in terms of the units
displayed to the mill operators. These convenient
arbitrary units are converted for use in the model using
appropriate angular conversion constants calculated from

mill drawings and plant tests.

For a screwdown rack position of MS units indicated
to the mill operator, the screwdown eccentrics will ro-
tate through an angle of 95 radians from the datum

as shown in figure 3.10 where

9 = M_,.r

S S°°S

Since the screwdown eccentric discs on shafts B and C
always move in simultaneous contrarotion, it is clear

that in figure 3.10, L will always remain parallel

Bic

with LB c .
o o
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Therefore,

LBlc - LBOCO + 2es(cos(ﬁs—es)—cosﬂs)..ooco-.-oo..-.-(306)

Equation 3.6 is valid for all possible practical
values of es with the As-U-Roll racks at the datum
posifion. However, we shall now modify it to take account
of the movement of the As-U-Roll racks. In the general
case this will yield a different value for LBC at each
saddle position on shafts B and C. However, the effect due
to rotation of the As-U-Roll ring at any given saddle
is small compared with the effect due to screwdown motion.
This is because firstly the screwdown eccentricity is
much greater than the As-U-Roll eccentricity, and secondly
the rotation of the screwdown eccentric disc from the
datum will also be greater in general than that of the
As-U~Roll eccentric ring. Therefore, in calculating the
distribution of rolling load throughout the cluster, the

mean As-U-Roll rotation éA will bé uséd where

8
6 _ Ta 2 MAn (n=1 refers to the front
AT 8 n=1 As-U-Roll rack on the mill)

Note that in general aAn = r,-M, , and the re-
sulting sign of Ein'specifies clockwise (+ve) or anti-
clockwise rotation. Thus, positive (downward) motion of
the As-U-Roll rack causes positive (clockwise) rotation
of the ring at shaft B (see e.g. figure 2.8). This
causes the backing shafts (and fherefore the workroll)
to move upwards (fig.3.5) which opens the roll gap.

Therefore less reduction is taken at that area across

the strip width and a positive change in differential
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stress (tightening) results in the strip. The operators
display of As-U-Roll rack position is wired to indicate
positive rack motion upwards,from zero, so as to tie in
with the shape display. Hence the equation for OAn

above, yields the correct sign.

Motion of the As-U-Roll rack through an angle —éA
from the datum will modify figure 3.10 to figure 3.1l1.

Since L and L are equal and parallel, the correction

BlYo BY

to %LB c is given by
1

CorreC'tiOIl - -eA (1-COS§A) coouooocoo.-o.0-(307)

which is very small for all practical purposes, but is
included for completeness. Therefore, combining (3.6)

and (3.7) we have

L = L + 2es(cos(ﬂs—Qs)-cosﬂs)-ZeA(l-coséA) (3.8)

BC
o o

Equation (3.8) is valid for all practical values.
(if éA is positive rather than negative, the cosine term

being an even functidn, automatically compensates of

course).

Considering now the side eccentrics,; since the left
and right hand units can be moved independently it is
necessary to evaluate their separate effects. Figure

3.12 depicts a saddle on shaft A, For a '"rack" position

of M

PL unitsg

7] M

PL T TpUpL
The figure assumes that,for the present,shafts B and D

are held at the datum position. From the figure (or more
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clearly from figure 3.13),

LAAO = zePSin(QPL/Z) ooooo.o.o-oooooo-oo.ouccc(309)

which is wvalid for all practical values of GPL'

Also since the datum position is symmetrical (Fig.3.3),

it can be seen that

S: Cos-l L - L .oooo.oooo-oooc(B-lo)

o O

Also from Fig. 3.12, by cosine rule,

2 2 .
LAD = Y/' LA D + LAA + 2LA_D' LAA' 51n(¢P—9PL)..(3.11)
o o o o o o o ~5

Equation (3.11) above is correct for all practical values

of b, . Similarly at shaft D,

and L . . .
DD0=2er sln BPR ...........O...'............(3.12)
2

The combined effects of moving both side eccentrics can
now be used to calculate the value of LAD' Figure 3.13
illustrates the situation, whence the cosine rule applied

to triangle AODOA,gives

-1 2 2 2
ﬁ’= cos LA D + LAD - LAA
o o o o
2.L

AD ° LA D
o oo

Applying the cosine rule to triangle ADOD gives

2 2 .
LAD = IAD + LDD - 2.LAD 'LDD' 51n(9PR- ¢P+73--(3-13)
o o o o —5=
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Note LAOD is given by equation (3.3)

o

LAD is given by equation (3.11)
o

LAA is given by equation (3.9)
o

LDD is given by equation (3.12)
o

Equation (3.13) can be shown to hold true for all possible

practical combinations of PR and BPL

Having obtained gemneral equations for LBC (3.8) and
LAD (3.13) we now turn our attention to the somewhat more
complex problem of LAB and LCD‘ Figure 3.14 comprises
a geometrical figure which arises from the comﬁination of
the datum state of fig.3.10 and the final (general) state
of fig.3.11. We assume that, for the present, shaft A
(the left hand Side eccentric) remains at its datum
position. From figure 3.14, we see that (noting that §A

as shown in the figure is negative)

L
YY* epsin 2

Application of the cosine rule in triangle BoYoY then

yields ,
2 a2 [Bal Al
Ly vy =V//;Y y * eg + 2Ly yecsin(fg+
o o o _
<
GA\.zero
2 2 2
and //( = cos_ LBOY + LYOY - €g
2ly v-Ly v
o o
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Then from triangle BBOY

/ 2 2 .
LBB¢ = LB Y + eq + 2LB Yess:Ln( s~¢s— - 2 )
o 9A< zero
2 2

. L + L 2

and o = cos T BB, BoY - ©s
2lgg g v
o o

Finally, from triangle AoBoB we obtain similarly

2]
2 2 | . |64
Iap * v//LA g+ Llpgg - 2Ly p Lgg sin(b+p-—=)
(o] . O 0 [e] O O (o] _
exgzero

D e e . . (3.14)

(where L is given by (3.4) and § by (3.10))

AOBO

NOTE That if éA is positive rather than negative (i.e.
the As-U-Roll ring is rotated clockwise) certain altera-
tions are required in the above sequence of equations

as follows: -

LY Y is calculated as before
o
_ 2 2 . (B ,
Lo v _V/rLY y * eg + 2LY Ye551n(_é - ﬂs)
o o o 2 -
BA > zero
/%4 is calculated using this value of LB Y
o
L v/fL2 2 <)
= i /.
BB B)Y + eg + 2LBoYe551n(¢s s .55)
BA > zero

0~ 4is calculated using this value of Lgg
o
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It can be demonstrated by manipulation of figure
3.14, that for éA positive (rotating clockwise from the
datum rather than anticlockwise as shown), LA B is given
by one of two equations depending upon whethe; B lieé

above or below the line BoY' Thus

Ly B =v/£§ g * 12 - 2L, 5 Lgo sin@f-57#‘— EA )oeo(3.15)
o o o oo o 2

for (@A> zero) and (ﬁs—es)z (u- % + iﬁ )

or v// o o -
Ly, g = L + L - ZLAOBOL s1n(-f267u- AY. . (3.16)

A B BB BB —_
o o o o o 2
B ;) .=, ®
for (BA}zero) and (ﬁs s)<9ﬂ 5 + 79)
The equations for LAB and LCD can now be derived by

considering these results in conjunction with the side
eccentric motion evaluated previously. The geometrical
figure arising from a combination of figures 3.12 and 3.14

is shown as figure 3.15, whence

2 : 2 2
jp =cos”t | TaB * Iy~ Ipp
_ o o o o
2Ly s a B
o o o
where L, o is given by (3.4)
o o
Ly B is given by (3.14, 3.15 or 3.16 as appropriate)
o i
LBB is given in the derivation of LA B above

. (o]
and
2 2 . 9PL
L,p =V/,LAA0 + LAOB - 2LAAOLAOB51n(—§— - ”p"sff)-"3‘17)

(see conditions of validity below)
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Fig.315 Overall Effect Pertaining to Derivation of L,
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where LAA is given by (3.9)
o

is given by (3.10)
Equation (3.17) is true only if point B lies below
line AOBO or its projection beyond Bo' If the values of

95 and éA are such that B rises above this line, then

v
2 2 . (°PL
L.g =\/LAAO + LAo B - 2LAA0LAoB sin(—5= - pp-ij)..xs.la)

(see conditions of validity below)

Figure 3.15 can be drawn in many ways depending upon
the relative magnitudes of OPL’ BS and §A. In fact over
15.permutations which could conceivably yield different
solutions for L were identified anq analysed. All
these permutations reduced to one of the two equations

(3.17) or (3.18) according to the following conditions:-
For éAs:zero (e.g. figs. 3.14 & 3.15) wuse (3.17)

= . , B
For §, > zero (clockwise) and (ﬁs - Gs)zgﬂ—§+ 7? )

Iif (%—8+°’—/«4—_2_A ) > zero use (3.17)

otherwise use (3.18)

o] d

For éA)>zero (clockwise) and (ﬁs—es)<( - + “A)
' 2

If (%; -§ —G’Z/L— Eé )> zero wuse (3.17)

otherwise use (3.18)

These apparently cumbersome conditions are triv-
ially implemented in the computer model of course. It
should also be pointed out that certain safeguards must

be built into the model. For example, if the mean
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rotation of the As-U-Rolls (§A) was zero, then the quantity

Ly y in the derivation of (3.14) would be zero (see
o

figure 3.14). This would give an indeterminate result in

the following equation fot/b. Therefore the condition

O

value; which turns out to be g:- ﬁs. Other similar

=0 must be trapped, and/u-set explicitly to a default

situations are also trapped in this way.

The derivation of L., follows identical lines to

that of LAB'

L. p is given by (3.5) due to the symmetry of the -
o .
datum position.

§ is given by (3.10)
L is given by (3.12)
o
LCC is given by the appropriate equation for
L . . .
BBo since LCD and LAB are identically

affected by As-U-Roll and Screwdown motion

L is given by (3.14),(3.15) or (3.16) as ap-~

D C
° propriate, for the same reason.
Then

2 2 2

Jp = cos™t| Yep *Ic - Fec
[ 3Ke) o) o)
2LC D * LD c

o o o

and V// )
2 2 . . (VPR
Lep = LDDO + LDOC - 2LDDJ LD0051n(—§—-¢p—s-tf]

»

‘e .. .(3.29)

or J/ [$]
2 2 ___BpRr
Lep = LDDO+ LDOC - 2LDD;LDOCSIn(_§“ -8, -8-p)

... (3.20)
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as appropriate - using the same conditions as were used

for deciding between (3.17) and (3.18).

The cluster geometry is fixed by the parameters
shown in figure 3.2, and the only outstanding parameter
is now the angle 7 . This is also indicated in figure

3.15, whence from triangle AAOB

2 2 2
€ = cos™t Laa *lap - Ia B
o o
2LAA LAB
o
where
LAAO is given by (3.9)
Lip is given by (3.17) or (3.18) as appropriate.
L, 5 is given by (3.14),(3.15) or (3.16) as
o appropriate
Th = E_p + koo € (3.21)
us ? -— 2— p 2 - ® ® © & 5 9 C O 59 & O 0 00 9 o> 3.

The geometry-fixing parameters illustrated in
figure 3.2 have now been completely specified for any

combination of eccentric actuator settings as follows:-

LBC is given by (3.8)

L,p is given by (3.13)

LAB is given by (3.17) or (3.18) as appropriate '
Lep is given by (3.19) or (3.20) as appropriate

7 is given by (3.21).
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3.3 Modelling of Roll Force Distribution in the Cluster

Considering still the ﬁpper half of the cluster,; we
shall now use the five cluster-fixing parameters derived
in the previous section, together with knowledge of the
roll diameter, to specify the various angles shown in
figure 3.16. The distribution of rolling load will then
be'evalﬁated by resolution of forces. Note that roll-
flattening effects are not included at this stage, as

their influence upon the cluster angles is negligible.

It should be noted at the outset that if the left and
right hand side eccentrics are set differently, then

L and Lc in figures 3.2 and 3.16 will be of different

AB D

lengths, and LBC and LAD

in the left-hand and right-hand halves of the cluster

will not be parallel. The angles

will therefore differ and must be calculated separately.
The angles will be distinguished by adding a subscript "R"
to those in the right-hand half. The angles of importance
are 91 to 98 in figure 3.16, the other angles being

intermediate values in the flow of calculation.

Since LBC remains horizontal at all timés, the

cosine rule in triangle BCJ yields 96 and b directly as

6R
2
2L
BC
6 -6 -1 -1 - z|.--(3.22)
6 = Y%pr = 5 cos 1 (DB+ DZL)
(where Dy and D, are the diameters of rolls (A-D) and J
respectively
o =K _
now Yo =3 =7 2
2L
and 910 = cos—l 1 - [§3) +Ag Y2
| B an’
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and since triangle ABI is isosceles,

- %10
11 - 2

so that ©_ is given by

7

97 = 99 - 911 coee . - (3.23)
and 5 5 5

5% Y107 "7 v e v .. J(3.24)

Furthery, it is evident that

912 = 96 +97

And from triangle IBJ,

=+ / 2 2 - Jeosh
Liyj =5 V//;DB+D2D) +(Dg+D, ) -2(Dg+D ) (Dp+D, 1/ c0sT,
(where D, is the diameter of rolls I and K)

in0
(DB+D2D)Sln 12

and 3] = sin
13 2LIJ

Now from triangle IJO

2 2 2
1 QLIJ + (D21+Dl) -(D2D+Dl)

QLIJ(D21+D1)

914 = cos

(where D, is the diameter of rolls O and P)

1l

Therefore we can now obtain V) as

3

63 =T-0,-6,-86 e e oo, .(3.25)

13 14

Also from triangle IJO,

1 (D..+D.)2%4(D__+D. )2 4L2
915 = cos™ o1*Vy/ tWoptP ) ~%hgy
2(D21+Dl)(D2D+Dl)
and 9 _
lf - 915 -83 e o L] . 0(3‘26)
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Insufficient information is so far available to
‘allow calculation of 92, because J is not necessarily
vertically above S, therefore the triangle 0JS does not

contain the simple angleS’B and 92. We therefore firstly

3
calculate the angles in the right-hand half of the cluster

which correspond to the left-half angles calculated so far:-

Initially, calculate the anglelﬁ which appears in
figure 3.2 and 3.16, and corresponds with the left-half
angle 7 (it will be easier to refer to figure 3.2 for
this purpose).

Applying the cosine rule in triangle ABC, we can

find

2 2
Lac =/LA, B *tgc*2yprlpgcreos?
(where the parameters on the right of the equation are

evaluated in section 3.2).

The sine rule then gives

A - -
BCA = sin~1| a B Sin7
Lr ¢

The cosine rule in triangle ACD then gives us

2 2 2

A - -
ACD = cos™t | Yac*tLp-ap

2LA c .LC D

A A
and then ;é = ™ -BCA - ACD

Starting from the equation following (3.22) and re-

placing 7 by ¢', we now claculate B9R’ eloR’ BllR’ 97R’
) 6

5R? " 12R? 913R’ BIQR’ e311’6‘151?1"

equations as before.

and 94R using the same

Now referring again to figure 3.16, from the isosceles
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(6,+90..)
triangle OPJ we obtain LOP = (D21 + Dl)sin —2—323—
and similarly, from triangle OPS,
Lop = (D, + D )sin ©p ; " 2n?
(where D = diameter of roll Ss)
so that we can write
92 = 2s:i.n-'l ﬁ;gg_ﬁ;_ - BZR v e e e .. (3.27)

Also, the vertical separation of J and S can be calculated
twice over (using the left-side and right-side angles)
and equatedy; giving

(D21+Dl)(c0593— cosBBR) (3.28)

B IR §
oR = cos coseb + D+ D
1 w

Equations (3.27) and (3.28) are then solved

simultaneously to obtain O and 92R as

2

92 - 2tan— e o o o o 0(3029)
- 2sin X
y 2
L
where x = Zsin—l D Of D
1 W
_ (th + Dl)(cos93 - cos93R)
y = D. + D
1 w
and from (3.28)
-1 .
op = ©OS (00592 +y) e e .. .« (3.30)

Equations (3.22) to (3.26) and (3.29) and (3.30)
have therefore specified the angles which most of the
component of rolling load (shown in fig.3.16) make with

the vertical. The exceptions are 98 and 98R which cannot
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yet be found, and 91 which is zero at all times since

the rolling load is assumed for the present to act ver-

tically through the workroll.

The distribution of rolling load throughout the
cluster can now be specified. The force components
Fl to F8 and Fl to F8R in figure 3.16 represent fractions
of the total rolling load transferred between the various
rolls'as indicated. Let PT represent the total rolling
load transferred between the strip and the upper workroll,

thus

F. = 1.0 P (3.31)

l T ¢ . . . . .

Vexrtical and horizontal resolution of forces at

roll S(fig.3.16) assuming equilibrium to exist, gives

F. = F 00592 + F

1 o c0592

2R R

and . .
F251n92 = F2R51n92R

whichy, when solved simultaneously,; and incorporating

(3.31), gives

F2R = Sinez e PT » & o . . 3 (3032)
51n(62+92R)
F ..sine
and F, = 2R BZR e v e v 2 (3.33)
sin®,

Regarding the quantities F_, and Fq as balancing F

3 2

at roll O, we can similarly solve for F3 and F4 by
resolving in the direction of F2 and perpendicular to F2,

when we obtain o

3 - b
. F2 sin( I 2)
= 9 ) . . » . .
Yy

) . (3.34)

sin(B

3
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Fg sin(93 +6,5)

and

Fy = sin(8, -6 ,) | < e -0 - (3.35)

F and F are found using F

3R 4R »2R99 6 and °

2R? 3R 4R

in the same equations.

In a similar manner,; considering equilibrium at

roll I, we obtain

F_ = F?Sig(e5 = 5 c e e . .(3.36)
7 sin( 5 67)
and Fy = F7fin(97 + 9,) e . (3.37)
51n(95 - 4)
(The same equations will yield F7R and F5R as above).

Now consider roll J. It is known that 96 = e6R
from previous discussion; therefore sufficient information
is available to obtain F6 and F6R by horizontal and
veftical resolution as:

F sin(96 - 93)+ FBRsin(96 + 0, )

F6 = 3 3R ¢ o e (3.38)
sin26
6
and F_sinb_ - F__sinb
F - F + 3 3 3R 3R - . . - - -(3.39)
R -
sin 6

The remaining unknown angles 98 and 98R can now
be found. At roll B, resolving perpendicular to F8
gives.

leading to
inB. -
F551n 6 F

F7cos67

inb
1 751n 7

o C e .. (3.40)

98 = tan—
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and solution in the direction of F8 gives

= b, - B o e e e

Fg F6cos( 6 8) + F7cos(97 +98) (3.41)
BSR and F8R are of course obtainable by using

Fens F?R">6R and 97R in the above equations. The reader

may, if he so wishes; verify that the overall effect of
reactions from the mill housing balances the rolling load
i.eo

Fscos 5 + F8cos 8 + F8Rcos 8R + FSRCOS 5R= PT

The various equations in this section therefore
completely specify the geometry and overall load dis-
tribution pattern in the upper half of the mill cluster
as shown in figure 3.16. A set of results is given below
for screwdown rack at 8 operator's display units, left
and right hand side eccentrics at 5 and 7 units respectively

and mean As-U-Roll rack position at 41 unit.

91 = 0 F, = P
(o} . (o]

B, = 37.5 92R = 38.3 F, = 0.639P,, F, = 0.628P,
(o] o]

93 = 22.4 QBR = 21.7 F3 = 0.241PT F3R = 0.228PT
(o] (o}

B, = 59.5 94R = 59.2 F, = 0.558P, F,. = 0.551P

95 = 77.8° 65R = 77.7° Fy = 0.504P,, Fep = 0.495P,

B = 40.9° E%R_= 40.9° F, = 0.282P;, Fgp = 0,294P,

[} [e]

97 = 3.8 :7R = 3.4 F, = 0.177P; F_p, = 0.176P,,
o] (o]

98 = 23.9 o = 24.6 Fg = 0.426?T Fgp = 0.438P,

Similar results are easily obtained for the lower half
of the mill cluster by substituing the push-up rack
position for the screwdown rack position, setting §A=zero
(no As-U-Rolls in lower half) and applying the analysis
from equation (3.5)ff.
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Although this section has defined the overall
pattern of load distribution, it is of course necessary
to examine the way in which the load varies across the
mill for shape control purpose. This is considered in

a later section.

3.4 Rolling Load and Roll Flattening Calculations

In order to quantify the forces discussed in the
previous section it is now necessary to obtain knowledge
of the rolling load (PT). On a four-high mill, this can
be had from loadcells placed between the mill screws and
backup roll chocks. In the Sendzimir mill it would be
difficult (not to mention extremely costly) to obtain a
direct measurement of rolling load; and only an indirect
indication is available.b This takes the form of indication
of the differential pressure in the hydraulic screwdown
¢ylinders. From knowledge of the cylinder dimensions,
this can be converted to rack-pull in some convenient
units (e.g. MN). The mill manufacturers then provide a
rule—pf—thumb conversion from rack-pull to rolling load.
Accurafe measurement of rolling load is therefore un-

available.

The measurement of rolling load is not however
necessary for operation of the on-line control scheme,
but only for use in the static mill model (which is run
off-line). The value of rolling load used in the static
model is calculated using a rolling load model, and can

be represented in functional form as
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P, = f(w,hi,ho,Ti,To,k,/u.,E,']),R)
(where the various symbols are defined at the beginning

of the chapter).

The drawback is that since no acéurate measure of
mill rolling load is available,it is not easy to assess
the accuracy of the value of PT thus calculated. For
this reason, steps have been taken to allow the use of a
rolling load model which is well tested; but which has
often been rejected in the past, for models requiring
rapid execution; on the grounds of computational

difficulties.

The "yardstick" as it were, by which the accuracy
of cold rolling models has traditionally been judged,
is the work of Orowan (22), although this work itself is
not suitable for efficient computer mechanization. The
work of Orowan set this standard of accuracy by removing
arbitrary simplifications imposed by previous models.
Due to the need for more rapidly evaluated models,
various workers have simplified the theory by judiﬁiops
re-incorporation of some of the simplifying factors,; made
possible by fhe understanding of Orowan's work. Typical
examples are given in (23) to (27), but the most widely
accepted of these from an accuracy point of view is
probably the theory of Bland and Ford (23). Unfortunately
Bland and Ford's model involves iterative solution of
implicit simultaneous equations; which renders it, at
first sight,; unsuitable for use in models (such as the

present static model - see later sections) requiring
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several rolling load evaluations. To overcome this
difficulty, Bryant and Osborn (26) have proposed an
explicit solution by introducing further simplifications
and Carlton, Edwards and Thomas (28) have subsequently
extended this work. Despite the simplifications, the
model of Bryant and Osborn compares acceptably with the
more accurate models under certain conditions, and has

been used by other workers in the area under discussion(14).

The author hés removed some of the objections to
the use of Bland and Fords' model (in a mill off-line
static model) by the use of a fast, but little known,
algorithm for solution of the equations. (Note that for
applications requiring on-line calculation of rolling
load, such as mill scheduling and automatic set up
systems, this method would probably still not be fast
enough under étringent timing constraints). The algorithm
‘involves the use of a modification to the secant method,
which can have a greatly beneficial effect upon the
solution time under certain conditions - in the case of
this static model, convergence to within 0.5% is achieved
after typically only two iterations through the process

outlinéd below.

Bland and Ford's model assumes that the arc of
contact remains circular during rolling, as depicted in
figure 3.17. The deformed roll radius is given by
Hitchcock (29) as

cP!

R' = R(1 + ET") (m)
o]

(3.42)

. . . 3 . . .
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16 (1-V7)
TE

">

where c

Figure 3.17 shows the loaded roll gap as envisaged
by Bland and Ford, where § is a general éngle subtended
at the roll centre by the exit plane and some plane of

interest. A function H(¢) is defined

R! -1 /Rt
2 E— . tan E . ﬂ e v o o o .(3043)

(o]

u>

H

The wvalue (Hn) of H at the neutral angle (where
slip of strip against rolls is zero) is given explicity
from a different formula,. after which the position of the

neutral angle is found from

g = ho . tan ho . Hn

RY R! 2

Figure 3.17 also depicts the pressure distribution
throughout the roll gap and according to Bland and Ford
the normal roll pressure to the exit side of the neutral

plane is given by

k(8) .1 () T
s (8) = h, 0 (- 220t L (5ikka)
o

and to the entry side, by

x(#).h(P). T (H,-H())
Si(ﬁ) = ——-——171:——-— . (1 - -li )- e/‘ i ...(3.44b)

where k(ﬁ),ki and ko are known from curves of yield
stress against reduction, h(#) is easily found as
h =h_ + 2R'(1-cosf) and Ti and Té are the input and exit

tension stresses corresponding to the known tension wvalues
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T3

(3.43).

and T,. The values of H(f) are found from equation

The specific rolling load is then found as a
function of the area under the curve of figure 3.17(b).

Namely
[

11 ”1
P' = R' L[ s _(£).a8 + ‘f s.(P).ap| - . . . -(3.45)
(o] ﬁ 1

o
n

Equation (3.45) is solved by the author using a
piecewise Simpson's rule integration procedure, taking
one intermediate point midway between O and ﬂn, and
three intermediate points in the interval b to O where
greater accuracy is desirable., These points are indicated
in fig. 3.17(b), and equations (3.44Xa) and (b) are used
as appropriate to calculate the corresponding values of

S Or S. .
o 1

Clearly, the magnitude of the value of P! given by
(3.45), must be consistent with the value of P! used in
(3.42) and an iterative procedure is therefore necessary.
The system is solved by a fast modification of the secant
method which is used to’solve a rearranged version of

eqﬁation 3.42, thus
cP!

f(rR') = R(1 - 5

) -R' =0 (3.46)

The secant method (see for example (30),(31))
requires two starting valueé of the function. These must
lie one at either side of the solution and are found by
taking R' = 1.25R as an initial guess and using a forcing

procedure to obtain via equations (3.45) and (3.46) two
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values, f(R'{, being positive and f(R')2

The next estimate for R' is then found by using the

being negative.

secant method,; i.e.

1 ] Rt
R' - R! _ £ (R )n—l(R n-1 R n-2)
n

n-1 fTR')n_l - f(R')n_z cee e

(3.47)

equations (3.45) and (3.46) then give Pﬁ & f(R')n

If R' - R! <€ .R'n (where £ = convergence limit)

n n-1 -2

then Pﬁ is taken as the solution. Otherwise, the
parameters are updated according to the modification to

the secant method as follows;

If f(R')n and f(R')n_l are of opposite sign
then ' - 1
R -2(new) = Rl
1 1
£ (R )n—2(new) = f(R )n-l
otherwise
' f£(R') f(R')
f(R') = n-2 n-1
n-2(new) £(R") + £(R")
n-1 n
and R'n__2 remains unchanged.

R!

. . _
In either case, R n-1(new) = n

£(Rr?) = f(R')n

n-1(new)

and the procedure is repeated from equation (3.47).
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When convergence is achieved,; the final values are taken

to be

R! R

n

P Pt

n

so that total rolling load is given by

Pp = Ptow  (N) cee e oL . (3.48)

The magnitudes of the various rolling load
components given by equations (3.31) to (3.41) may now
be calculated by substitution of (3.48) into (3.31) to
(3.41). |

Now,for purposes of calculating the roll bending in
the mill cluster due to movements of the control
actuators, the rolls are each treated as a beam resting on
an elastic foundation formed by the surrounding rolls.
Although this analysis is covered in a later section, it

is convenient to introduce it here.

The theory used is Hetenyil's theory of beams on
elastic foundations, which is given in reference (32).
Since the roll bending model cannot be understood with-
out knowledge of this theory, it has been considered
prudent to include the basic derivations and results
in Appendix 1 of this thesis. The calculation of de-
flection of a beam on an elastic foundation cannot proceed
without a knowledge of the "foundation modulus" (see
section Al.1). The magnitude of the foundation modulus
is dependent upon rolling load as will be seen from its
derivation given in Appendix 2, Therefore, having a
knowledge of the distributed loading acting upon any

given pair of rolls (from the load components calculated
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above, acting on a width equal to the strip width) the
methods of Appendix 2 can now—be used to give the roll
flattening between any pair of touching rolls, and the

appropriate foundation modulus also.

3.5 Philosophy of Roll Stack Deflection Model

The foregoing sections have fixed, in terms of
the actuator settings,; the basic roll stack geometry
(section 3.2), the distribution of rolling load throughout
the cluster (section 3.3) and the magnitude of the mean
1oéding at each roll interface (section 3.4). In addition,
the methods of Appendix 2 have given values of roll flat-
tening and the foundation modulus (required by Hetenyi's
theory of beams on elastic foundations).for each inter-
face. The following sections give details of how this
information is used to predict the tranverse wbrkroll
- profile (and hence strip shape) due to any combination

of the mill actuator settings.

In an attempt to achieve relatively simple cal-
culations and fast computation times,; certain simplifying
assumptions have been madey; and these are stated as they
occur, together with justifications. At this stage, it
is helpful to consider an overall flowchart of the roll
deflection model, which is given in figure 3.18. The
results of the actuatorAmodelling will be used in section
3.6 to give the magnitude and distribution of the loading
acting upon roll J (fig.3.16) due to movement of the
eight As-U-Roll actuators in any specified manner. A

major assumption is then made, in that the effects of
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control actuator movements for purposes of shape cor-
rection, whilst causing differential loadings across the
mill of sufficient magnitude to cause the desired roll
bending, do not make a significant change to the total
rolling load. This assumption is numerically sub-
stantiated later, and has two major advantages so far as
complexity and speed of calculatidn in the model are

concerned.

Firstly, it removes the need to iterate several
times around each roll interface due to the local feed-
back mechanism between roll force and roll bending and
flattening. Secondly, it becomes possible to assume that
any feasible path between the As-U-Rolls and the roll gap
can be used for calculation without reference to the other
rolls in the cluster, due to the fact that the iterations
around the entire roll stack (which would otherwise have
been necessary) are obviated. Thus, the only path con-
sideredAin this analysis is from the As-U-Rolls to roll
B (fig. 3.16), then to roll J and then O and finally to
the workroll; S. The deviations of the lines of action
of the various forces from the vertical (the angles ©

in fig.3.16) are allowed for in the analysis.

Having calculated the loading on roll B, the theory
of beams on elastic foundations is used to.obtain the
resulting deflection profile of roll J, which is modified
by any cambér existing on roll J (section 3.7 and
Appendix 4). The profile is then converted into a load-
ing pattern acting upon the first intermediate roll O

(section 3.8) modified by any camber on roll O, and by
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the amount of first intermediate roll tapers slid into
the mill., This process is éontinued until a workroll
deflection is obtained (when strip width is taken into
account?}(section 3.9). Finally, section 3.10 combines
knbwn input strip dimensions with the calculated work-
roll deflection profile to yield strip shape.

3.6 Calculation of the Loading Pattern on the Upper
Central Second Intermediate Roll

We now consider a set of As-U-Roll actuator move-
ments and define the manner in which it affects the roll J
in figure 3.16. The starting point of this analysis is
the distance by which displacement of the As-U-Roll
rack at any given backing saddle moves the backing shaft
radially relative to the central second intermediate roll
(abbreviated to 2IR in future). The sense of this dis-
placement is indicated in figure 3.19, and more detail is
shown in figure 3.20. Note the assumption in figure 3.20
that for this purpose point V, is effectively fixed omn
the circumference of roll B. This is justified on the
grourd s that the As-U-Roll motion only is being considered,

and the maximum value of LB B due to full scale As-U-Roll
l .

travel has been calculated to be of the order of O,7mm,
which is much more than will ever occur in practice. This
is then greatly attenuated at point V due both to the fact

that RB is typically almost twice R2 and the fact that

I,

A
the angle VBB. is very obtuse in any case.

1

The length LBC is given by equation (3.8), and it

can be seen that L
-1 BC

6, = cos TR IR o
c 2 RB+R21)
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Fig.319 Backing Bearing Mofion Relative te Central
2IR Due to As-U-Roll Motion

{ Shaft(Before AUR Motion)
Shaft{After)

Fig.3:20 Analysis of fig. 319
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Now, in figure 3.20, only As-U-Roll motion is involved in

moving point B1 to point B. Therefore BlYOYB is a

parallelogram so that

A
LB B = LY y = 2eA§1n 5
1 o
AN P
and Y YU = B_BU
o 1 1

where Bl = centre of shaft B at the saddle in question,

consdering screwdown motion only

and B = B, plus As-U-Roll motion

1
The cosine rule in triangle BlVB then gives
L = RZ + 12 _ + 2R L_ _si O + D | (3.49)
B,V = B B, B Ry B,B™™™ | 2 cl'- 7

Rearrangement of figure 3.20 will show that equation

(3.49) is also correct for values of ) and BS such that

A
B falls above the line BlV. However, for the case sA
rotating clockwisey; thus taking BY above BlYC, it is
necessary to use
Oul
2 2 . A
LBlv = RB + LBlB + 2RBLB1B51n 5 - GC . ..(3.50)

Finally, the motion of the shaft B along BV (i.e. towards

the centre of the 2119is given, to a very good approximation,
by

agy = Lg v - Bp e v o o« «(3.51)

where apy will be called the "attempted motion' towards

the 2IR, and is considered positive for motion of B towards
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the centre of roll J, Ly . being given by (3.49) or (3.50)

lV

as appropriate.

This wvalue a is calculated for the As-U-~Roll

BV
motion at each of the eight As-U-Roll positions; thus
giving a set of 8 such values. Note that the set need
only contain one value per As-U-Roll rack,; as shaftsB and
C always move by an identical amount. These dis-

placements a are, however,; restricted by the rolling

BV
load pushing up through the roll stack, and hence a load-

ing profile results along the roll J.

Figure 3.21 illustrates the general situation at a
backing bearing on shafts B or C where the As-U-Roll racks
have been raised at each side of the bearing, butAthe
front rack has been raised more than the rear. Together
with figure 3.22 it shows how the As-U-Roll racks are
used to place a bending profile onto the 2IRs. Note that
fig. 3.22 has been chosen to illustrate seven out of the
eight possible loading configurations which can exist at
a backing bearing (the eighth' being the case where racks
N and N+1 are both moved upwards equally). The 2IR is
assumed to be able to respond to the negative loadings
(e.g. ¢c and d in fig. 3.22) because of the upward=acting
effect of the rolling load.I.e. since the motion of the
As-U-Roll racks has caused bearings ¢ and d to move away
from the 2IR, the rolling load pushing upwards from
below the 2IR will cause it to follow. bearings c¢ and d
as if they had the capability of pulling it upwards.
Returﬁingvnow to fig. 3.21, we calculate the loading

required in the following manner.
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The distance Lp between each edge of the backing
bearing and the centre-line of the adjacent saddle is
assumed to be equal at the front and rear of the bearing,
and also to be independent of As-U-Roll motion (these
assumptions are, for all practicai purposes,; entirely
valid; Dbearing in mind the physical dimensions of the
plant - a more rigorous analysis has been carried out,
but was found to be completely unnecessary). Thus,

P, - L
~ _B B
Lp~ 5 e« ..o . . (3.52)

Also, it is easily shown from fig.3.21 (bearing in

‘mind that the quantities a

BVN and aBVN+l as shown are
both positive) that
L -
Ve T BV T ﬁg (anN ) aBVN+1) 43-53)
and L +Lg
Yry = %BVy T Py (anN - anN+l)
i N=19°’JB,

where JB = number of backing bearings.

It will be seen from fig. 3.22 (ii) that there are
eight possible loading conditions for any given backing
bearing (labelled "a" to "h" in the figure). Re-
drawing of fig. 3.21 for each of these conditions shows
that the pair of equations (3.53) need be re-written in

only three forms to cover all eight cases,; thus,
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L i
Ye = 2%y~ P ‘]an ~ ®pv '
N
N B N N+1 ... . (3.54)
L+ L
y = a - 2" ]a - a N=l,..J
Ty BV Py BV BVN+1l ‘B
cases "a''y"e
J and "h"
3 T
y = a + ‘]la - a !
£y BV Py |7BVy BVy, 1
. . .(3.55)
L+ Ly
Y = 2y * . '|®BV. ~ 2BV N=l,..Jg
N N B N N+l cases "dH,lIeIl

and "gll

For cases b and f, two triangular loadings result as

shown in fig. 3.23(for case Q. Here,

Yy = Lf a
fN Lf + Lp BVN (
] . e ..30
“p
Vry TV, | YT T - L, - ifl "oteeeeB
p cases "b" and

where Lf(see fig. 3.23) is given by -

‘aBVNl + ’ anN+l[

(from similar-triangles' geometry)

The different cases are easily distinguished in

computer model by consideration of the relative signs

gl [ o] 4

56)

llfll

57)

the

and

magnitudes of the appropriate pair of apy Values. Note
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however, that apparent occurrences of cases "b" and "f"
identified by this method may be erroneous. For example,

consider a negative and a positive. This leads

BV BV

N N+1
to the assumption of case "f" (e.g. fig. 3.23). However,

if a

B is only very slightly positive, the "zero

VN+1
crossing" of the loading may occur in the region labelled
X in the figure. In this case; the loading is not of the
form of case "f", but rather case "e" (fig.3.22). In a
similar way, apparent occufrences of case "b"™ may in
reality be "a" or "e", and case "f" may also really be
case "g". These occurrences are all trapped in the

model by simple geometric tests. However, the region Lp
is small (typically some 29mm) comparéd with PB (about

227mm on the mills under consideration) so that this

trapping and changing case is rarely called into action.

Knowing these "attempted motions" +towards (or
away from) the second intermediate rolls at each end of
every backing bearing, we must now evaluate the beams-

on-elastic-foundations constant ("foundation modulus™) sz

so that the loading applied to the second intermediate

roll can be found from an equation of the form

(Nm_l)

q = k (c.f. equation (Al1.1) -Appendix 1)

B2°Y

An estimate of rolling load PT has already been
obtained (equation (3.48», and reference to figure 3.16
shows that the component of this passing between roll J
and the backing shaft assembly B is designated Fge
Furthermore, F, is given by equation (3.38) so that the

overall load transmitted via the path B-J is therefore
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known (typically O.28PT - see end of section 3.3)
The foundation modulus can therefore be found by the

methods of Appendix 2 as

N £y | (Nm™2). . (3.58)
B2 © 1n(f2) + 1n(DB+D21)~1n(F6/L;7
where TE (Nm-z)
£, = 2(1-92)
3/ 2 ’
£ .ﬁfig:;fg (Nm_z)
2 T 4(1 -79°) :

Now consider again fig. 3.21, and the relevant pair
~ of equations (3.53). The magnitude of the uniformly
distributed loads and triangular distributed load shown

in fig. 3.21 (ii) and (iii) are now given as

-1
q = k y (Nm™ ™)
fN B2 fN
-1
q = k y (Nm™ ™)
ry B2 ry
and therefore Qy = sz Y. (Nm_l)
N . . - . Py (3.59)
ty = sz(yf Yy ) (Nm™1)
N N - N:l’o-.JB

Note however, that the TDL given by tN is reversed in

sense compared with fig. A.l.7(Appendix 1) in that the
maximum magnitude of the loading occurs at the left rather
than at the right. A flag is set in the computer model to
indicate this fact, which is taken into account in the

2IR deflection model (next section).
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Equations (3.59) may be generalized in the same

way as before, thus:-
-1
= k ’ (Nm™ ™)
N B2 er
ty = sz(yf - v, ) (Nm~Y)
N N

wiL ags se orxr reverse
(with f1 t f " an ty

(note tN=O in cases "d" and "h")
7
_1)
qN = kB2 yf (Nm
N
-1
t. = k (y -y, ) (Nm™)
N B2 ry fN :
Cases "b" and "f" in fig.
‘two TDL's as shown in fig.
called tf and t
N N
=
ay = 0]
tf = sz yf (Nm_l)
N N
-1
t = k. . ¥ (Nm™ ™)
ry B2 ry
(with flags set for "reversed" ty
t. ).
N

in

. .(3.60)

N=19 . .JB

ot 1 gttt 18
cases "a',"d'";%e
and "h"

cases "a" and "e")

. (3.61)

.

N=l, . .JB

cases "c"and"g"

3.22 each resolve into

3.23,

which will be

where, in each case,

. (3.62)

N=l,..JB

cases '"b" and "f"

in the case of

Note that in equations (3.53) to (3.62), the sign

conventions are automatically maintained,

finally obtain downward-acting loadings positive.

t and t
r

N N
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The final task of this section is to specify the

points of application of the various loadings given by

equations (3.60) to (3.62). These are trivially found

from the mill geometry shown in figure 3.24, whence

L. - J.P P, - L
xg = ——22 4 2B (n1)Py| (m) .. .(3.63)
N 2 2
N=1929 -oJB

where JB = number of backing bearings

(= 7 for the mills in question)

The loading due to each bearing is now fully

specified as shown in figure 3.25; and may take any of the

forms of figure 3.22 (ii). To sum up, referring to

fig.

a)

b)

c)

d)

3.25,

xp is given by (3.63)

N

L, is known, or is given by L_ in (3.57) for the

B £

"front" portion of loadings of the form "b" or "f",
or is given by (LB—Lf) for the "rear" portion

of such loadings.

are given by (3.60), (3.61) or (3.62) as
t appropriate

Flags are set to indicate whenever the non-zero

end of a TDL (tN) is at the left ("front") of the

loading.

100



3.7 Upper Central Second Intermediate Roll Deflection
Calculation

The previous section has specified loadings acting
on roll J in figure 3.16 along the path denoted Feo We
now wish to evaluate the deflection of roll J due to these
loadings,; and eventually to apply this to roll O along the

path denoted by F We must therefore apply some form of

3°
compensation to account for the fact that F6 and F3 are

not colinear. It will be recalled from earlier sections

in this chapter that the angles 96 and 96Rare always equal.
Also,; from the previous sectiony, it will be appreciated
that loadings along the path of F6 due to As-U-Roll motion
(EQE to be confused with the general rolling>load component
F6 itself) for shape control, are exactly duplicated by

an identical set of loadings acting along the path of

Fer., Thus for a general loading of, say, qN(Nm-l) given
by one of the equations (3.60) to (3.62) for a certain
setting of the As-U-Roll racks; there will be a total
downward acting loading of 2 qycosUg (Nm-l) on roll J

(in addition to the rolling load before the As-U-Rolls

were set). The component of this which acts in the
direction of F3 is then given by 2choseécos 93.
Therefore a transformation of this type is made upon all

the loadings given by (3.60) to (3.62):

q = qy - T2 (Nm_l)
effective
-1
t = t..T : (Nm )
Neffective N2
t% =t T, (Nm‘l) e« o« .« (3.64)
effective N
-1
trN =t .T, (Nm™ ")
R N
effective
N=l;..J
4 B
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where T2 = 2 cos 9600593

and 96 is given by equation (3.22)

6

3 is given by equation (3.25)

N.B. The values qy5 tyy t and t below must now be

— N N fN rn

read as q ) tN etc.—i.e. as the
effective effective

transformed wvalues.

The foundation modulus k21 for the beam formed by

roll J resting upon the foundation formed by roll O is

given by the methods of Appendix 2 as

K - fl v (Nm_z)
21 In(f,) + In(D, +D ) - 1n(F3/LT)

where fl and f2 are as given in equation (3.58)ff,

F3 is given by equation (3.3%4)

Other constants which will be required in the

analysis are as-follows

>\2 = '[;‘————EI21 (m—l)_
oo L
0.5 2°7T
sinh(AzLT)+sin(A2LT)
L
0.5 Aoy
sinh(kzLT)—sin(XzLT)

=
i

=
!
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The general functional abbreviations

Ay = e-kx (cos(kx) + sin(Mx))
=\ :

ka = e x sin(kx)

e_>\X (cos(\x) = sin(Ax))

o
>
b

]

e_)\X cos (Ax) will also be widely

o
>
o]

n

employed. To avoid too much complication, the effects
of roll camber have been omitted from this section; but

are described separately in Appendix k.

The 2IR is now considered to be divided into an
even number (Mz) of equal sections across the mill, and
the deflection of the roll will be calculated at a point
corresponding to the centre of each section. The distances
of these points from the LH end of the roll (i.e. the
front of the mill) are therefore given by

LT(ZM-l)

(m) for M=l eeeoo.,M « e+ . (3.66)

2
The components of loading (UDL and TDL) due to each
backing bearing are now considered in turn, applying the
theory of beams on elastic foundations for each, and
evaluating the resulting deflection at all the M2 points
(xM) along the 2IR for each. The total deflection profile
of the 2IR is finally found by algebraically summing the

deflections found for all the components of all the JB

loadings at each of the M2 points. As an example, consider

the loading due to the N'P backing bearing shown in fig.3.26.

We will consider firstly the UDL, magnitude qN(Nm-l)
due to this bearing. Applying the procedure of Appendix 1,

section Al.4, the sequence of compufation is as follows.
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Fig. 327 Reversal of fig.3:26 (iii)
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We fifstly evaluate the moments and shears due to
this UDL (acting on an infinitely long 2IR) at points
corresponding to the ends of the actual 2IR., For this,
equations (A1.21),(A1.25),(A1.22) and (Al.26) are used.
Thus: (but see also Appendix 4, where the effect of roll

camber is considered).

"qN .
M = ———+ (B - B )
A 2 ApoX A, e (x ) (Nm)
2 4A2 2°7Ey 2 Ey + Ly
q
My = =By g ) - By« (Lo-x. - L) (2¥m)
2 4x2 2° T Ey o° ‘T Ey B
q
%, = g Ok, - O+ 1)) (N
2 2 2" Ey 2° By B
N
Q, = «(c c ) (N)
B2 EX; Xz.(LT- XEN) - AZ'(LT—XEN—LB)
Equations Al1.40 then give
M; = 0.5(M, + M) (Nm)
g 2 2 .
M7 = 0.5(M, - M) (Nm)
Ay Ag MBz "
Q; = 0.5(Q, - Q) : (N)
Ay Ay B,
/4
Q, = 0.5(Q, + Qg ) (N)
Ay Ay By

The end-conditioning forces (ECFs), which need to
be applied to cause the portion of the dnfinite beam
under consideration to behave precisely as if if were
the 2IR of length LT with free ends, subjected to the UDL

qy as shown in fig.3.26(ii), are then found using

equations (A1.41) and (Al.42) as
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F = 4E [Q' (14D )+ MM (1-a )] (N)
0 12 A2 szT 2 Az AZLT

-2E [} !
M/ = 12 | @, . (14C ) + 2% .M, . (1-D 5](Nm)
0, "TE;" [ Ay XZLT o fo szT
Fg = 4B, |Q) (1-Dy ) + xz,M:. (L+4y ¢ )] | (N)>
2 2 2T 2 2T
-2E
29 " 1
M! = —————-[Q (1-C ) + 2)\M, . (14D )] (Nm)
0, Mo Ay Agly o Ag AZLT
And then
F = F' + " (N)
OA, 0, 0, ,
] "
F = F - F (N)
o, T T, 7 7o,
Moy = Mé + Mé’ (Nm)
2 2 2
M = M - M (Nm)
o 0, 0,

The deflection of the 2IR at each of the M2 points
along the roll is then given for FOA by equation (Al.7)
2
(but see also Appendix 4, where the effect of roll camber

is considered).

y, = 272 LAy (m) for M=1,...,M_, , ., (3.67)

2
2 k21

where k,, is given by (3.65)

and the xy are given by (3.66)

Similarly the deflection due to FOB2 is given by

F
| OB A
y = 22 A
2 _— Xz(LT-xM)

(m) for M=1,...,M_..(3.68)
x 2 k 2
M 21
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Equation Al.ll gives the deflections due to the moments:-

For M ’
0A,
Moa_ A2
y = 22 B (m) for M=1,....,M, .., . .(3.69)
2 ik Aoy 2
M 21 .
and for MOB s
2
2
MOBZ)\Z BX L (m) for M=l,...,M2...(3.70)
Yy = 5 2 T-XM)
XM 21

2

Note that the sign here is positive (rather than
negative as might at first be expected) because of the
sense in which My, is taken to act (c.f. figs. Al.5 and

2
A1.8).
The four components of deflection calculated above

are then algebraically summed at each of the M2 points to

give the 2IR deflection profile due to the ECFs for the

UDL: -
Ao [ F Ay F A
Yy = . . + . _
ZXM 2k, 0A, “A2: ¥y OB, “Age (Lp—xy)
2
+ Mo M B + M B (m) for M=1 M
— -— 0..9

k21 OA_2 xzxM 0B, AZ(LT xM) 2

e e . . W (3.71)

Next, the deflection profile due to the UDL itself must
be found at each of the M2 points along the 2IR. Here,
equations Al.19, Al.15 or Al.23 are used,; depending upon

whether the point XM falls to the left of the loading,
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or to the right of the loading respectively:-

N )
y = D .
’xy 2 Fa1 >‘2("*51\{"}4) - DAz(xEN-xM+LB ;
)
for O0<x,,< X
: M™ By ; (m) ...(3.72)
)
or )
)
a )
N 2-D - D
= A ( ) }\ ( +L_ - )J
Y2 2 K, 2 M By 2 ¥ TBTMY| ) Lo
M ; M=l,....M,
f < x,s(x, +L.) )
)
)
or ;
q
Yo C I N D - D )
Xy Eigi Az(xM-xEN) AZ(XM~xEN—LB) ;
)
for (xE + LB)<ngLT )
N a

The total 2IR deflection due to the UDL of fig 3.26
(ii) is then found by summing the results of equations
(3.71) and (3.72) at each of the M2 points:-

Yy, = (y2 due to egqn.3.71) + (y2 due to equn.3.72ﬂ (m)
x x

M M M

fOI‘ M=lgooo.-.ogM2

e .. (3.73)

To this result must now be added the effect of the
TDL (fig.3.26 (iii)). It will be recalled that Appendix 1
considers results only for TDLs whose non-zero end is to

the right, and the TDL of fig.3.26 (iii) does not conform
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to this pattern. A simple method of overcoming this
problem is to use a mapping which conceptually "reverses"

the roll and TDL as shown in fig. 3.27 the mapping being

x;, =L, - x. - L (m) e o L3.74)

This is applied by the computer model in response
to the flags set at equations (3.60) and (3.62).

The procedure below is then applied using xé
' N

throughout (as shown), and when the total 2IR deflection
profile due to the TDL has been found (equation 3.77)
the mapping is reversed by equation (3.78) so that the

roll reverts to the "correct way round".

As in the case of the UDL above, the whole procedure
of Appendix 1, section Al.4 is applied. Equations Al.33,
Al.37, Al.34 and Al1l.38 yield the moments and shears at

points corresponding to the roll-ends on an infinite beam

as: -
-t B
N A ;s - A -2\, L
M, = A, X )\(x'+L) 2B)\(x +L.) (Nm)
Ay 8)\3 Ly L 2 Ey 2By Ey B
-t B
N A
My = —5— )\z(L x )\ (L LB) +
2 8)\2 Ly i N Ex
2>\L. ,\ (L ;3"'1-') (Nm)
N
-t B
N B ’ B + \.L
Q. = — N X X (x +Lg ) 2B A L) (N)
A, 4)\2 Ly 2 EN Ey 2 EN+ B
Q, = —tg———— ~B>\2(LT~X;3 )—B/\ (LT-x' —LB)
o 4)\% L N 2 Ey
2 B |
AsL..C (N
2B AZ(LT-XéN—LB)
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Equations Al.40, Al.41 and Al.42 are then applied

as above to give the ECFs FOAZ, FOBz’ MOAZ and MOB2 due
to the TDL. The deflection profile of the 2IR due to the

ECFs for the TDL is then found as before (c.f. equation
3.71) as
A2

Yo = =—— | F A + F A _
2 2k, OA, )éxM OB, )\Z(LT xM)

+ M (m) for M:‘.‘lg.oo.’M‘

B B
k OA, xgxM OB, "), (Lp-xy) 2

e . .. . L3.75)

Where F
OAZ OB2 OA2 5

the TDL of magnitude tN.

, F s M and M, are evaluated for

The deflection due to the TDL itself must now be
found at each of the M2 points along the 2IR. Equations
Al.31, Al.27 or Al,.35 are used, depending upon whether

the point x,, is to the left of the loading of fig.3.27

M
under it, or to the right of it. Thus,

t v )
N C ’ - C ’
yzx; -4-}\—2—1{—2?}3— ,\2 (XEN—XM) AZ (XEN+LB—XM) g
)
- 2h,Lg sz(xg +Lg-xy,) ;
N for ngM<xé ;
’ ) (m)
or )
tN c » c , ) for
y. = A, (x-x0 ) T TA (xf +L_-x =lgeee
A NI 2 M B N M) g M=l;...M
)
- 2}‘ZLB %ﬁ(xé +LB-xM)+ 4A2(xM—xé )} g
N N )...(3.76)
for xig x,<(x! +L;)
EN M EN B %
or £ )
Yy = EXL C}\ (X —X, )— C)\ ( / L ) )
®xyy o¥o118 27 M TEy 2 Mg "B ;
+ 2>\2LB D AZ.(XM-XE: - LB') -:l , ;
N for (xp +LB)<xM$LT )

N
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The total 2IR deflection profile due to the TDL of
fig.3.27 is then found by summing the results of

equations (3.75) and (3.76) at each of the M, points,i.e.

Yy, = (y2 due to egn.3.75) + (y2 due to egn.3.76)| (m)
*M *M *M

for M=l,....,M_ ... ..3.77)

2

Now if the TDL had to be "reversed" as in this

example, the order of the M_, points must now be reversed

2

to "correct" the mapping which was made at (3.74) above.

This is accomplished by:-

v§ = vy, (m) for M=l,....,M, )
then ; o ¢ o o o -(3.78)
v, = Vi (m) for Msl,...,M, g

*M * (M, +1-M) )

The final deflection profile of the 2IR due to the
loading of fig. 3.25 (c.f. fig.3.26 (i)) is then found
by summing the contributions due to the UDL and the TDL

at each of the M, points, thus

2

Yy = (y2 due to eqn. 3.73) + (y2 due to eqn.3.78)| (m)
x

XM M XM

for M:l,..onn..gMz "-(3079)

The overall deflection profile of the 2IR due to
all As-U-Roll rack movements is found by applying the
above procedure to each of the JB loadings caused by the

backing bearings, and summing all the results at each
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of the M2 points along the roll. Note, however, the

following points (refer to fig. 3.22 (ii)):-

NOTE A When a loading acts "upwards! (such as in cases

c, d and e), it is treated as if it in fact acted downwards
(i.e. as above), and the sign conventions in the b.o.e.f.
theory will automatically give the correct sign to the

deflection profile.

NOTE B When a TDL acts the "correct" way round (i.e. with
its non-zero end on the right, such as cases c and g),
the mapping of equation (3.74) is not applied. The sub-

sequent analysis continues, using Xp rather than xé .
N N
Equation (3.78) is also not applied, and the results of

equation (3.77) are used directly in equation (3.79).

NOTE C The cases b and f, where the backing bearing is

tilted about its horizontal axis, are treated as follows.

Consider case f as depicted in fig. 3.23. VHere we
have two TDLs. The first acts over a length of roll Lf
given by equation (3.57), and the second over a length
of roll (LB—Lf) (from fig.3.23). Furthermore, the position
of the LH end of the first loading is already known from
the appropriate value of xEN given by equation (3.63),
and the position of the LH end of the second loading will

be known as Xg where xE = XE + Lf.
N2 N2 N

The 2IR deflection profile due to a loading of this
form is therefore found by firstly applying the previous

TDL analysis (i.e. from equation (3.74) onwards) to the
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LH part (i.e. using t, dinstead of ty, and Ly instead of
N
LB) and storing the deflection profile yielded by equation

(3.78). The analysis is then applied a second time for

the RH part (i.e. using t . instead of t
N

instead of L, and x_. instead of x_ ), but this time the
B Ey Ey
2

loading is the "correct" way round and so NOTE B above

N°? (LB"Lf)

applies also. The deflection profile given for this RH
part by equation (3.77) is then summed with that
previously stored for the LH part to give the total 2IR,

deflection profile due to the loading of fig.3.23 as

Yo = (y2 for the LH part of loading, due to egn.3.78)
*M *M

+ (y2 for RH part of loading, due to eqn.3.77)| (m)
x
M

o - < . - (3.80)

This is then added into the overall total deflection
profile for the 2IR in the same way as the profile due to
any other backing bearing (note that equation (3.79) is

not needed here, as UDL is zero).

For a loading of the form shown in case b (fig.3.22
(ii)), precisely.the same method is used, i.e. applying
equation (3.74), etc. and obtaining the result at
equation (3.80). The b.o.e.f. sign convention will
automatically compensate for the fact that case f is the

inverse of case b.

To sum up, the final deflection profile of the

upper central 2IR due to the J, loadings transferred

B

from the backing bearings is given by
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Deflection at section x,, due
yz = to

+ Deflection at section x,, due
to TDL from bearing N

where the deflection at

is zero for

or is given by

and the deflection at x

UDL from bearing N

M

x,, due to the UDL

M

cases b and f

equation (3.73) for

due to the TDL

M

is zero for
or is given by
or is given by

or is given by

cases d and h
equation (3.77) for
equation (3.78) for

equation (3.80) for
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3.8 Treatment of the First Intermediate Rolls

The second intermediate roll deflection profile
given by equation (3.81) in the previous section will now
be converted into a system of loadings acting upon the
upper first intermediate roll labelled "O" in fig.3.16.
The system of loadings is then used to calculate a
similar deflection profile for roll O. The effects of
roll camber are left out of the discussion for the
present only, so as not to complicate matters any further,
as are the effects of the tapered-off ends of the first
intermediate rolls used for shape control. The inclusion
of both these effects is described separately in
Appendix 4.

3.8.1 Conversion of the Upper Central 2IR Deflection

Profile into a System of lLoadings Acting on the
First Intermediate Roll '0O!

The simplest system of loadings which can be en-
visaged to give accurate results is a set of concentrated
forces, and this is the system which has been adopted.

In order to simplify the calculations a condition is im-
posed that the number of concentrated forces chosen (JlF)
should be an integer sub-multiple of the number of sections
along the roll at which the 2IR deflection is known (M2),
whilst remaining large envugh to yield a smooth and
meaningful deflection profile of the 1IR. (Typical values
used in the model are M, = 100, Jip = 20). As in the

case of the xy values (equation 3.66), the J,p forces are
taken to act at thie centres of equal divisions of the 1IR
so.that the points of application of the forces from the

front of the mill are given by
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Xip = Eé%%—:ll (m) for N=ly.eeeesdip .+ - (3.82)
N 1F
The relationship between the Nth of these forces from

the front of the mill, and the deflection values given by
(3.81) is shown in fig, 3.28 (assuming the ratio between
the typical values of M2 and JlF as given above). The

local values of UDL due to each deflection value are

found from equation (Al.l1) in Appendix 1., as

(Nm™ 1)
M fOI‘ M:l,ooo,M

q = k

y
XM 21 2x

, ... (3.83)

where the y, are given by equation (3.81),
%
M

and the local value of concentrated force due to each

value of deflection is therefore given by

Ir_ S21Ya-lp
Y M = M (N) for M=l,...,M, . . .(3.84)
M 2 — 2
2
The value of the Nth concentrated force FlN is then
M
computed as the sum of the appropriate 32 values of
1F
local concentrated force given by (3.84). Thus
NM2
Q= T
1F
k. .L
__.-—21 T . Yy (N) for N:'—l, o e .J
F = M 2 1F
1N 2 Xq
(N-1)M
2
Q=1+ 5
1F

e« « . .(3.85)

where the y2 are the appropriate results of equation
xX !

(3.81). Q
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Now, as in the case of the 2IR considered in the
previous section, we must make compensation for the fact
that we eventually wish to apply a loading along the path

denoted F, in fig. 3.16, from information pertaining to

the path denoted by F3; the problem being that F3 and
F2 are not colinear. Strictly, we should calculate the

loadings on path F4 also, and resolve forces as before

to obtain the fraction of the loadings due to F3 and F4

which should be considered to yield the correct mag-

nitude of Fz. However, due to the mill geometry it

was thought that a change in As-U-Roll actuators would
" provide a much greater percentage change in the direction

of F3 than in the direction of Fq. Therefore the effect

of changes in Fq is dignored, and the vertical changé

acting upon roll O becomes FlNCOSBB for one of the forces

given by equation (3.85). The component of this acting

in the direction of F2 is then given by F cosejcosez.

1N

Therefore a transformation is carried out upon the forces

given by (3.85):

T (N)
effective . . . . . (3.86)

FlN = F

N=1, ...JlF

- b )
where T1 = cCcOos 3cos 5

and 83 is given by equation (3.25)

Bé is given by equation (3.29)

The values of FlN below must now be read as

F - i.e. as the transformed values.
1N .
effective
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Note that the assumption above concerning changes in FQ
has been called into some doubt by recent model results

at the time of writing. There is therefore scope for more
work in this area, whereby in addition to the present work
a diagram such as figures 3.19 and 3.20 could be drawn

and analysed for the motion of the backing bearings on
shaft B relative to roll I (rather than J). This would
give, by identical methods to those used in sections 3.6
and 3.7, a deflection profile for roll I. The proper
values of loading upon the roll O would then be found from
a combination of F. . values given by (3.85) for the

1

loading due to roll J, and another set of FlN vélues for
the loading due to roll I along the path qu The required
modifications to the static model program are not
particularly difficult in order to achieve this (the model
being wellfstructured), but time has not yet permitted it
to be carried out.

3.8.2. Evaluation of First Intermediate Roll Deflection
Profile

The 1IR (O in fig.3.16) is now treated as a beam
subjected to the system of forces given by (3.86), and
resting upon an elastic foundation formed by the upper
workroll (WR). The foundation modulus (k w) for the

1
1IR/WR interface must therefore be found. The methods

of Appendix 2 give us
fl

K w = 1n(f,)+In(D, +D_J-1n(F, /LY (

Nm‘z) ... .(3.87)

where f, and f, are given by (3.58)frf

2

F, is given by equation (3.33)
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Other required constants are

4
TFDl ( 4
1= o )

|
'

k

x _ 1w
14 EEIl
\- L
0.5 e - T
E, = 51nh(XlLT)+51n(AlLT)
2\ L
0.5 e 1T
E2l = 51nh(X1LT)-51n(AlLT)
The effect of each of the J forces is now in-

1F

vestigated in turn, using the procedure of Appendix 1,
section 4. Consider as an example the Nth concentrated

force from the front of the mill (FlN) shown in fig.3.29.

Firstly, equations A.9 and A.10 are used to specify

the moments and shears which would be produced by FlN at

points on an infinitely long beam which correspond with

the ends of the WR:- (see also Appendix 4)

MA = 4X ° Cx'x
1 lFN

= . Cy,
MBl EXI xl(LT-xlFN)

- . D
Ay 2 Aixuh

Q = 5 e D,
B 2 Al(LT~XlFN)

Equations (A1.40), {Al.41) and (Al.42) are then

applied using k etc. to yield the ECFs

1w? Ell’ E21’ xl

Foa s Fop.s Mos and Myo .

OAl 1 1 1
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The deflection profile of the 1IR due to the
combined effect of these ECFs is then found as before

(c.f. equation (3.71)):-

M

Yy = 2 k F .A + F oA _
1XM 1W 0a," A Xy 0B, kl(LT %)

M
+ k [MOAl’ Bh.x, * MOBi Bxl(LT-xM) (m)..(3.88)

for M=l,...°Ml

Note that Ml need not be the same as M2 used previously,

but it must nevertheless be an even number. If Ml

differs from M2 the new Xy values are given by using Ml

in equation (3.66)>rather than M2.

The deflection profile of the 11R caused by FlN

itself is found by applying equation (Al.7) as:- -

F__\
1IN 1
y = —_ s, A (m) a9 0 » 0(3.89)
1 2 k Aol x - x|
Xy 1w T7iFy - ™ e M-1,....,M

1

The total deflection profile of the 11R due to the Nth
concentrated force is then found by summing the results

of equations (3.88) and (3.89) at each of the M, points:-

Y, = (yl due to egn.(3.88))+ (yl due to eqn.(3.89){Lm)
*M *M *M

¢+« + + +(3.90)

fOI’ le,...’Ml

and the overall deflection of the 11R due to all the JlF

forces is then found by summing all the JlF results of

121



equation (3.90) at each of the M; points:-

R
P
1 , (m)
y = Deflection due to F at for
1 1N
X . M=l9.oo,M
M section XM 1
N=1
L .

» e e e+ e (3.91)

Where the deflection in question is given by (3.90).

The effects of roll cambers and the lateral
positions of the 1IR tapers on this result are evaluated

in Appendix 4.

3.9 Treatment 6f the Upper Workroll

The deflection profile at the first intermediate roll
given by equation (3.91) in the previous section will now
be converted into a system of loadings acting upon the
upper workroll labelled "S" in fig.3.16. The system of
loadings is then used to calculate the workroll profile.
The effects of roll camber are emitted at this stage, as
this section will be found quite complex enough without
them! Appendix 4 gives the means by wﬁich they are
included in the model.

3.9.1 Conversion of the 11lR Deflection Profile Into a
System of Loadings acting on the Upper WR

As in section 3.8.1 above, a system of (J_.) con-

WF

centrated forces is chosen to act (at points XWF) on the
N

workroll. The wvalue JWF chosen for the WR need not be

the same as JlF used for the 11R; but it must be an
integer sub-multiple of M;. Equation (3.82) yields

the points of application of the forces as
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LiaN-1) (m) for N=l,...,

WFN 2 JWF

e e v v o (3.92)

i
"

JWF

and the values of the forces are given by(c.f.eqn.(3.85))

Q= N » Mi
JWF
k | y |
F _ —IJ:{—Wir-E . lXQ (N) for N=19.o.-9JWF
WN ~ 1
a-1)+M
Q=1 + J

WF
coe o e . . (3.93)

where ¥y is the appropriate result of equation (3.91).
X
Q
Also, as before, we must compensate for the non-
colinearity of the paths of F, and F1 in fig. 3.16, and
once again a simplifying assumption has been made. This
time, we assume that since the only differences between
due to As-U-Roll

the chiange in F_ and the change in F2

2 R
rack changes, are due to different settings of the mill
side eccentrics, the differences will be negligible for
practical purposes. Thus for this purpose only it is
assumed that the changes in force acting along path F2
(given by (3.93) above) also act along the path Fore
This assumption can easily be removed if desired,; by
carrying out the analysis of sections 3.6, 3.7 and 3.8
for the path of rolls C-J-P in addition to the path
B-J-0 as given. Then equation (3.93) will yield the

loading along the path F2 also, which will then be

R
rigorously incorporated. However, returning to the as-

sumption, the vertical change acting upon roll S becomes

FWN(COSBZ + cosezR) for one of the forces given by (3.93).
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This is then colinear with F1 (the rolling load), so that
the transformation upon the forces given by equation (3.93)

is given by,

F = F . T (N) e v v . . (3.94)

effective

= )
yhere TW = CcOs 2 + cosGE

R
and 92 is given by equation (3.29)
92R is given by equation (3.30)

The values of F below must now be read as F .
WN .
effective.

3.9.2. Evaluation of WR Deflection Profile

The situation here is more complex than that of
section 3.8.2 due to the fact that the upper WR is not
supported over its entire length. The presence of the
strip being rolled means that the ends qf the upper WR
are completely unsupported as shown in fig. 3.30 (the
Sendzimir mill having no neck bearings.) This in turn
means that all the rolls in the cluster are in fact more
firmly supported over the strip than at the ends, which
calls into question the practice of using a single value
of foundation modulus (k21 or le above) over the entire
mill width. The practice is def ended on the grounds
that it is a relatively simple assumption, and it should
be accurate enough for present requirements since loadings
which are not directly over the stiip, and occur high up

in the cluster, will have relatively small effects on the

strip compared with forces which are directly over it.
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Future work is clearly possible in this area, should the

need ever become apparent.

In view of the points outlined above, it is clearly
not possible to use a foundation modulus which covers the
entire length of the WR. The WR is considered as a beam
subjected to the loadings specified by equation (3.94)
and supported as shown in fig. 3.31 where LS is the strip
width. The foundation modulus must only be evaluated for
the supported section. For the purposes of this cal-
culation, it is assumed that the upper WR rests directly
" upon the lower to remove variable plastic effects due to
the strip (this approximation could also be removed in

future if desired).

- Thus, from Appendix 2, we obtain

f
K - 1 (Nm™2) .. .(3.95)
S 1n(f2)+1n(2DW)-1n(PT/Ls)

where fl and f, are given by (3.58)ff

Pp is the rolling load given by (3.48)(N)

Lg is strip width (m)

Other required constants are

Ty = B‘EE (™)
Kaws -1
Mis = \Y zET )
L
oseWSS
Eiug = 51nh(XWSL )x+ Sln(xWSLS) _
L
L 0.5 o WSS
2Ws ~

51M1(XWSLS) - sin(AWSLS)
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Also, from figure 3.31,

L, = 0.5 (LT—LS) (m) c v v . . (3.96)

WR

forces specified by equation (3.94) must now be calculated.

The deflection profile of the WR due to the J

The point of application of each force (XWFN) is examined,
and the method of calculating WR deflection depends upon
whether the corresponding force (FWN) acts over the LH
unsupported end, over the RH unsupported end, or directly

over the strip. These three cases are considered separately

below.

The deflection is calculated at Mw points along the
workroll due to each of the JWF forces, using the results
summarised at the end of the appropriate sub-section below
(depending upon the point of application of the force under
consideration), and the results at each of the MW sections
are summed as before to‘obtain the total bending profile
of the upper WR., The value of MW need not be the same as
either M2 or ﬁi,

is different from M2 or M

but must remain an even number. vaMw

19 the new Xy values are found

by using MW in equation (3.66). The effect of WR camber
is evaluated in Appendix 4.

3.9.2.1 WR Deflection due to a force acting on the
LH unsupported end

The free LH end of the WR under these conditions is
treated as an elastically mounted cantilever according to
the theory developed in Appendix 3. Most of the necessary
equations for the deflection under this condition there-
fore_exist in that Appendix. There are however, two out-

standing problems worthy of note, and requiring special
solution.
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THE FIRST problem is to specify the deflection of the RH
unsupported end of the WR due to the force acting on the
LH end. It may be suggested that this is irrelevant as
far as strip shape is considered, but nevertheless it will
be considered for completeness; and in case a full-width
WR deflection profile should be required for some future

purpose.

If the value of BRN given by equation (A.3.14) is
non-negative, then the deflection is easily specified by
considering the RH end to remain straight as shown in
fig. 3.32 whence it can be seen that the deflection of the

RH end is given by

y = y, + a.sinb (m) coe e 2(3.97)
Y RN Ry
M
for (LU+LS)< xys L
and M:lg.ooong
where a = xM—LU—LS
If however; the value of B is negative, this

Ry

approach would result in the RH end of the WR continuing
upwardé in a straight line as shown in fig. 3.33(i). This
is impc;ssible9 as the presence of the 1IRs above would
stop it from happening. The problem is overcome by
assuming that if BRN is negative, then the RH end of the
WR will "bounce" back off the 1lIR untii the angle b

again becomes positive, after which the straight-line

"approach can again be used. This is achieved by re-

garding the values of y and D (fig.3.33(i)) as having

By 0 Ry
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been caused by some unknown values of force and moment
acting on the RH end at the point where it joins the
supported section (i.e. at the point where yRN and BRN
exist., The mill is now considered temporarily to be
inverted so that the situation is as shown in fig.3.33(ii).
The RH "unsupported" end of the WR now 'rests" on an
elastic foundation formed by the 1IR, and the beam diagram

for this appears in fig.3.33(iii), where F and M., are

TN
the unknown force and moment "transmitted" from the
supported section of the roll due to the Nth concentrated
force acting on the LH end. Simultaneous equations

can be formed and solved for FTN and M%N (see below), and
the deflection profile for the beam of fig.3.33(iii) can
then be evaluated in the usual way (but for the RH end

of the WR above the 1IR). As soon as a section is reached
where the angle of deflection changes sign so that the

WR tends to move away from the 1IR, the "bounce™ is con-
sidered to be complete, and the "straight line" approach

is adopted for the remainder of the roll to the extreme

RH end. The analysis is as follows.

Consider the case shown in fig.3.33(i) where yRN

is positive but BR is negative. If the mill is now
N
considered to be inverted so that the WR is above the 1IR,

these values will change sign (fig.3.33(ii)). The RH end
of the WR is now drawn as in fig. 3.33(iii), where Frn
and MTN cause the known values of yRN and BRN. The con-
stants for the beam of fig.3.33(iii) are given by

equation (3.87)ff, the fact that the system is inverted

being immaterial.
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Fig.3.33(iii) bears obvious similarity to fig.A.3.3

and the equations for YL and SL in Appendix 3 (equations
N N »
(A.3.12) and (A.3.13)) can therefore be employed to obtain

expressions for yr and 9R in fig.3.33(iii). Firstly,
N N
the appropriate ECFs (FoA s Fop 1 Mgy and Mg ) must be
R R R R
found in the usual way:-

-F M

™ TN
M o= TN N (Nm)
R
. Powoey o, IDwopy o (m)
MBR = T\ 1ty 5 1M
1
Q "FTN MTNXl (N)
A, 2 2 ’
R
F M. A
TN D N1 , A
QBR = 5 leU - = AlLU (N)

Equations (A1.40, (A1.41) and (A.1.42) are then applied
(using le’xl etc.) to give the ECFs. (But note that

F and M are unknown, see below).

TN TN

Now applying equations (A.3.11) and (A.3.13)

2
M (-F,. +F F A ) Ay M B (m)
-y =% ° - + + e A 4+ T . m
Ry = 2k, TN 0Ap" OBy leU_ k;y; OBg AlLU
(3.98)
2 : 3
A % : (rad)
1 (M - . C
-Bp = El “FoprBar * E“'( TN+M°AR MOBR AlLU)
Ry W R ™'U W

e (3.99)

Note that -Yr and -eR must be used; as the

"inversion®" of the mill has changed their signs.
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Now,

and 9 are known

Ry

in these two equations, Yr
N

from the previous application in Appendix 3 of equations

(A.3.12) and (A.B.l&), le’)\l and LU are also known.
However, FOA ’ FOB s MOA and MOB are functions of FTN
- R R R R :
and MTN which are as yet unknown.
In the equations for these variables above, let,
Zl = >\1LU
22 = AZl Z3 = BZl Z4 = CZl and Zs = DZl
giving MA = ~FTN _ MTN (Nm)
‘R Exl 2
-F M
TN TN
MBR = -4)\— Zli + -2— . Z5 (Nm)
1
~F M
o - T M) )
A 2 2
R
o - FTN.z5 - Moy, (N)
BR - 2 2 1 2

Now applying equations (A.1.41) and rearranging,

%:~;§-§ F(142)) - My (1_25)} (Nm)
%[—-Z-'ﬁlf(l-zq) - TN.(1+ZS)] (Nm)
%:—FTN‘.(1+ZE) - Mph (1-z2)} (N)
i [-FTN(l-ZS) = Mpehs - (1+z2)] (N)
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Now let Z6 = l+Z2 Z7 = 1»22
Z8 = l+Z4 Z9 = 1-24
le = l+25 le" l—ZS

Applying equations (Al.41) then yields:-

/ 2 Z_Z ,
FOR =E;, _FTN(le + 728 - 2¥TNA1'Z7J (N)
7] i 2 Z, .7
Fo = Ey ~Foy (25,4 26%9 - 2MTNX1- Zg (N)
R 2
L
_ . , -
/ F_.7Z yA
MOR = B, TN“8 + Moy (zll + Z 8 (Nm)
«‘_ >\l -
" P Z 7
M. = E TN“9 2 Z.2
Op 21 X + Moy (zlo + “6%9 (Nm)
B 1 2
Z.Z
' 2 78 _ 22 Z. .7
Now let Z12 = ZlO + 5 Z13 = le + Z 9
2 Z Z 2 Z.Z
Zyy = 299 ¢ 728 215 = 290 * 629

Application of equations (A.1.42) then gives the ECFs as

)
FOAR = Foy ("Ell'zlz - By 213) 3
+ 2)1. o (-Eqq z, - E21.Z6) (N) g
)
FOBR = Fpy (-By1.Z0, + Eyy e Zy4) | g
N zkl. o (-Epq « By * Epy o Zg) (N) ;
F )

M = TN (3.100)
OAL XI— (Ell.28+E21.29)+MTN(E11.Zl4+E21.215) (Nm)g
F )

M = TN v

OB, XI— (Ell.ZB—EZl.Z9)+MTN(E11.214—E21.le) (Nm)%
)
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Equations (3.100) can now be substituted into equations
(3.98) and (3.99) above, which after rearrangement into

matrix form gives

— s 9 - S
M Zig A1 245 .
2k Ky TN yRN
2 3 ) -
1kZ18 Xizl9 Mo | gy
_ 1w 1w J L ] |

where z16 = Ell. (26212 - 22328)+ Ezl.(z7213+ 22329)+1

z17 = E; - (z6z7 - z3214)+ Ezl,(z627+z3zl5)
Z,g = Byq- (z3212_28z9) + E21.(-Z3Z13 - z829)
z19 = Ell.(22327 - z9zl4) + EZl-(-zzsz6-28215)—1

The matrix equation is easily solved to give

2
)
1
Foo = =—=——a—-O\_ .y .2., -0_ .2 __) (N) . e« . .(3.101)
TN = Ty 2,0 1 7RETLY Ry “17
M. = -ii;——— (6, .2, .-2\..y z. ) (Nm) (3.102)
TN 2.lez20 RN 16 1 RN 18 , . . .
qu 4, Z Z. 7 -2
where ZZO = 5 16719 - 17718 (N"=)
L 2 :

These values are then substituted back into equations
(3.100) give the values of the ECFs for fig.3.33(iii).
The deflection and angle at any section "a" in fig.3.33(iii)
can now be found from equations similar to (A.39) and

(A.3.10):-
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M (-F F ) A F A
-y = - + Ay + A\ (L -
W, 2k, TN OAp ,\la OB )\l( " a)

+ == | (M_4+M__ ) By. K + M B _ (m)
1y TN" "OAp )\la OBy >‘1 (L,~a)

for O<asLy e« o -« (3.103)

where a = x,~L_.~L__ on the R.H.S.

M TsT"U
>\2
1
-6 = —— | (F, -F ) B + F B
a K. TN OAp )\la OB, }‘1‘ (LU a)
A (M. #M,, ) Cy _ - M, C (Rad.)
o TN O0Ap" “\ja ~ T0Bp )\l.(LU-a)
1w
for O<asLU ' SR RN (3.104)

Where "a" on the R.H.S. will be given by a = x,-L.-L

for M:l, . e .9Mw

Note the introduction of minus signs on the LHS of each

equation to '"re~invert" the mill to its correct state.

Now as soon as a value of "a!" is reached where Sa
becomes positive (say a=a’ ), then the "bounce" of the
WR off the 1lIR is considered complete as it is heading
downwards again. Equation (3.103) is now suspended,
‘and subsequent deflection values are calculated by the

Nstraight-line" principle (c.f. equation (3.97) as

yWXM = ywa' + (XM - a') sin Ga, (m) e e e e . .(3.105)
for a’<XM< LU

and M:l, -oo,l\iw-
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THE SECOND problem of note occurs when the original force

on the LH unsupported WR end is mnegative, i.e. in figs.
A,3.1 and A.3.2 FWN acts upwards rather than downwards.
‘Under this condition, equation (A.3.8) cannot be used to
specify the deflection of the LH end of the WR (for the
same reason that equation (3.97) could not bekused for

the RH end with a negative BRN value above). The procedure
of "inverting" the mill is therefore once more adopted,

but in this case it would be of little vaXue to specify
separate cases for the portion of the WR over the strip,
and the RH end, and so the entire WR width is considered

in a single step. Figure 3.34 depicts.the situation with

the WR resting above the 11R.,

The deflection profile of the WR due to the force

FWN‘is then found in the same way as was the 1IR deflectiomn

profile due to any given force in section 3.8.2. i.e.

M, = WN . C (Nm)
A axl )‘leFN. "
gL (Nm)
M_. = ¢« C N
By, % Xl A\ 1 (LT—xWFN) m
-F
WN D .
Q, = —X.Dy
Ay P 1xWFN v)
Q. = Dy Dy (Lex ) (N)
By, 5 1T
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Equations (A.1.40), (A.1.41) and (A.1.42) are then applied

using k..., A\., etc. to give the ECFs F , F ., M
‘ 1w 1 OAw OBW OAw
and MOBW’ after which the deflection at each of the MW

sections across the roll is found by (c.f. equation (3.90)):-

M

-y = =—— | -F Ay x -x y+F . . A +F . A
W%M 2k, WN OATWRTTM| TR 0A L A 2, T 0BT A (Texy)
2
+ — |M_, .B + M _ .B (m)
Iy | TRy Thgxy OBy A (Lexy) for M=l,... M

-« - +(3.106)

Note that ~Yu is found so as to "re-invert" the mill to
x
its correct stgte.
We have now completely specified the deflection at
the MW points along the WR resulting from the application

of a concentrated force FWN to the unsupported LH end of

the WR. The results are summarised below for convenience.
For the N'! concentrated force (FWN) from the front

of the mill,

A) If FWF is negative (i.e. acting upwards, away from
’ the roll gap),

For OstSHﬁ Y is given by equation (3.106)
X B
M

B) If F"N is non-negative

For OSngxWF Yw is given by equation (A.3.8a)
N x
M
For xyp<sxy<Ly ¥y, is given by equation (A.3.8b)
N x
M
For L&sts(LU+LS) ng is given by equation (A.3.9)
M
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For (LU+LS)<stLT lEFehN given by equation (A.3.1%4) is

positive for FWN’ then
¥y is given by equation (3.97)
*M
(using y and O given by
Ry Ry
(A.3.12) and (A.3.14))
OTHERWISE
Yw is given by equation (3.103) up
x
M to and including the first value
of xy (say X) for which equation
(3.104) gives ex positive. For
all values of xMMto the right of
this point,
Yw is given by equation (3.105)
x

M where a’' = X

Note that since the value of F affects every one of these

WN
results,; the whole procedure must be repeated for every
value of N, and the resulting Yy values summed at each
of the MW points to give the totﬁ%’WR deflection profile
due to all the elements of the array of JW forces which

act over the unsupported LH end (JU in number).

3.9.2.2. WR Deflection due to a force acting on the RH
unsupported end

This case is a mirror-image of the case considered
in section 3.9.2.1 and is treated as such. Therefore,
the analysis of section 3.9.2.1 is used after replacing

x with (L. - x... )
WF T WF

Thus XWF and the M values are effectively measured from
N

the RH end of the roll rather than the left, and the sit-

uation becomes identical to that of section 3.9.2.1.
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The final set of MW values of yw which result from
. W
M

the application of section 3.9.2.1 must then be reversed
in order (using the method of equation (3.78)) to correct

for the "mirror-image" approach.

3.9.2.3. WR deflection due to a force acting directly over
the strip

For the portion of the WR over the strip (fig.3.35)

this is the "normal" situation. The same method as used

in section 3.8.2 therefore applies giving

F
R i W L) (Nm)
s WS WS XWFN - My m
F
WN
= . C
MBS WS AWS(LS—XWFN + LU) (Nm)
F
WN
Q = —=.p
Ag 2 XWS(XWFN - LU) (N)
o o D
Bg 2 st(Ls XWFN + LU) (N)

where A\ is given following equation (3.95).
. wS

Equations (A.1.40), (A.1.41) and (A.1.42) (using k.o

Aws etc.) then give the ECFs FOAS, FOBS, MOAS and MOBS.

The resulting equations for deflection and angle are then

A
WS
Yw = ok P Mo 1% - x 1+ F.. .A
Xy WWS wsl we, T M)t Toag fA (L)

+ F . A
OBS XWS(LU+LS - XM)]

2 |
+ kws M

B
. OAg st(Xm“LU)*MOBéBkWS(LU+LS-xM) (m)

for Lysx < (Lytls) 4 MelyeenessMy oo o (30107)
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© XWS F. .7Z.B

W -F
M T ks | WV XWSIXWFN ‘XMl

By,
OAg" “hyg lryLyy)

+ F ., B ,
OB XWS(LU+LS—XM)]

3
st M » C
4 —= 0A (x,~L . )-M__.C
Kiws 's WS MU T 0B, XWS(LU+LS-XM) (rad)
A ‘(3.108)

for LUS Xy<$ (LU+LS)

and M:lg oo e 9Mw

where Z +1 for LUS X< XyF

N

Z = -1 for Xy, < st:(LU+LS)
N

(Note that these equations could be compared also with
equations (A.3.9) and (A.3.10), except that here there is

zero moment and the force does not act at the LH end of

the supported section).

By 1ns§rt1ng Xy = Ly and Xy = (LU+LS) into these

equations we obtain y. , 6 and y, , V) as indicated
L LN RN RN

N
in fig.17 (c.f. Appendix 3 following equation (A.3.10))

due to the NP force from the front of the mill:-
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y. = == F._. A 3+ F F._ A
Ly 2Ky es| T WN XWS(XWFN L) | OAg+ ~ OB “ALcLg
XZ
+ EEE . MOBS- BXWSLS (m) .. . .(3.109)
WWS
=2 WN T (L. +L_-x + F A + F
Ry Kws ws Ut TE oA A Lt ToBg
xz
+ Eﬂé © Mos +By 1 (m) . . . .(3.110)
WWS s “ws"s
xz
B. - “us
L — | F.__.B
N WN' Ao ( -L.) + F__ .B
ks ws wr U OBg' Aysls
XB
+ ‘ws M - M . C (rad.)
Fos [ OAg OBg AWSLS]
(3.111)
>\2
b = Mws -F._B - F B
R, = — WN Ao (L 4Lo=x o ) OA. " AL
N K s WS U IS TIWR s ws"s
XB
+ “‘ws Moa CA L - Mg (rad.)
s S ws™”s S
. . . J(3.112)

The deflection at any section of the WR where XM
falls over the strip has béen given by equation (3.107)
but the question of the unsupported WR ends remains. For
the RH end, the situation is absolutely identical to that
discussed in section 3.9.2.1, above (figs.3.32 and 3.33)

ice. vy is given by equation (3.97) (using yRN and eRN)
x
M

v
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if the result of (3.112) is non-negative or by equations
(3.103) and (3.105) (with the ECFs corresponding to the
force F .. under investigation) if the result of (3.112)

is megative.

For the LH cunsupported end, if BL (given by
N .
equation (3.111) is negative, then the mirror image

of fig. 3.32 applies, and it is easily shown that

Yy = y - (LU - xM) sin 9L (m) (3.113)
XM LN N

f“or O'\<xM<LU

and M:‘.lg..lgbllw-

If, however, b is positive, then the situation is the

Ly

mirror-image of fig.3.33 and the analysis leading to
equations (3.103) and (3.105) can be applied after re-
placing

e with =0
Ry Ly

and y with y
R L
N N

and using a = LuexM

It is then necessary to apply the analysis for

INCREASING "a" (i.e. decreasing xM) so that the position
can be found where the WR "bounces back!" off the 1lIR.
This will be the value of xy, for which Qa(given by
equation (3.104)) becomes positive again (say point a)

after which equation (3.103) is suspended and Yw is then
x
M
calculated by equation (3.105) for the remaining values

of XM until the extreme LH end of the roll is reached.
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The déflection of the WR has now been completely
specified due to the action of a concentrated force FWN
acting over the strip. The results are summarised below

for convenience.

<Ly, IFF BL given by equation (3.111) is
N

For O< Xy

negative,; then

is given by equation (3.113)
M
OTHERWISE
is given by equation (3.103)(using

=—9 Yy =Yy
Ly’ TRy Ly

and the corresponding values of FTN

and MTN

Yw
X

YWk
i\

given by equations (3.101)

and (3.102)). The analysis must begin

at the value of XM nearest the top of
of the range (i.e. xMzzLU) and con-
tinue for decreasing XM until the
section is reached (say Xy = X)

where Bx (given by (3.104) with
M
values as above)becomes positive.

For all subsequent XM values (i.e.

xM<:X):—

Yy is given by equation (3.105) written

X
M as =

Yy %t (X—xM) sin.ex

Yy
Wﬁ X

M

For Ly< xy< (LU+LS) ywx is given by equation (3.107)
M

For (Ly+Lg) <xy<L IFF B_ given by equation (3.112) is

Ry

positive then

Yw is given by equation (3.97)
x
M
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OTHERWISE

Yog is given by equation (3.103)
*M using the appropriate values of

FTN and MTN given by equations

(3.101) and (3.102) up to and
including the section (say
Xy = X) for which equation
(3.104) gives ex positive.

M
For all xM>X, is given by

M equation (3.105) using a’' = X

3.10 Calculation of Strip Shape

The analysis of strip shape changes in response to
roll gap geometry changes forms a literature in its own
right (see for example (37)-(39)). However, for the
pufposes of the present model, the philosophy of relative
simplicity is maintained in this area, also and a purely
geometric approach is taken. Any of the more complex

methods could be used instead if desired.

Consider a piece of strip having the cfoss—sectional
gauge profile shown in fig. 3.36(i), where the strip is
divided across its width into JH equal filaments,; and the
h values are measured'at the centre of each. ‘JH is an
odd number so as to give a gauge measurement at the centre
of the strip. Let the gauge profile after rolling be as
shown in fig. 3.36(ii), where the measurements are taken

at the same points, and zero width-wise spread is assumed.

Further, consider the piece of strip to have & length lo
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prior to rolling, and after rolling let it be slit

lengthwise into J., filaments as shown in fig.3.37. If

H
the reduction of gauge profile between figs. 3.36(i) and
(ii) is not uniform across the width of the strip, then

the filaments of fig.3.37(ii) will have non-uniform

lengths as shown.

Assuming zero internal stress prior to rolling,; no

lateral spread, and conservation of volume during rolling,

we can say that for the Nth filament,

2
lohy = LyHy (m“)
hN :
o Ly =1, . ﬁ; (m) for Na=ljeeeeeoyJy <o .(3.114)

Also, the mean length of the rolled filaments is given by
JH

- iﬂ . hN
L= 7, z;% ﬁﬁ (m) .. ... (3.115)

During normal rolling, the filaments obviously
cannot extend relative to each other in the way shown in
fig.B.B?(ii), but are either stretched or compressed so
as to conform to the length L. This amount of stretching

is called differential elongation, and is here defined as

AL, = L - L. (m) for N=1,...,J

y . e e v - . (3.116)

H

so that for a filament which is stretched (i.e. the strip
is tight) AL is positive. The differential strain in

each filament is then defined as

ALN

AE =

N for N:lgouugJ

i H

and therefore the differential stress distribution across

the striphis given by
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Aoy = B A (Nm™2) for N=l,...,J (3.117)

N H “« .o

where Eg = Youngs Modulus for the strip»(Nm-z)

This quantity of differential stress is a measure
of strip shape; and is displayed by the ASEA Stressometer

shapemeters on the Sendzimir mill in question.
Substituting (3.114), (3.115) and (3.116) into

(3.117) gives

zScﬁ& = Eg . 1 -

(Nm™2) .. . (3.118)

fOr N:lgooogJH

fes
2
S

Thus, shape is positive where the strip is tighter
than the mean, and negative where it is slacker. For
strip to have "perfect!" shape, this internal stress dis-
tribution equation should give AG& = 0 for all N. Non-
zero values Of.Acﬁ lead to the intermnal stresses in the
strip forming "latent" (bad) shape. If these stresses
grow large enough to overcome the section modulus of

the material, then the strip will visibly buckle, forming

"manifest" (bad) shape (see section'], chapter 1.).

The input gauge profilebof the strip (hN in equation
(3.118)) is knowﬁ either from an estimate of the
characteristics of the incomiﬁg strip (on the first pass)
or by reading the output gauge profile stored at a number
of points during the previoué pass. The output gauge
profile (HN) is calculated as follows, using the knowledge

of the mean output gauge (from the plant instrumentation)

and the WR profile generated by the model:-
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The values of Acﬁ given by equation (3.118) must
be given at points which coincide with the centres of the
rotors on the ASEA Stressometer, if any simple model/plant
comparison is to be made. Let the shapemeter have JR
rotors of width LR(m). Note that JR is an odd number
(31 for the present Z mill).so as to place a rotor centre
at the strip centre. Fig.3.38 shows the strip passing

over the segmented shapemeter roll. The number of shapeé

meter rotors covered by the strip is given by

Ls

== e v v s . J(3.119)
Lr

which will probably not be an integer at this stage, but
must be made such. Since-JR is an odd integer, and fig.
3.38 is symmetrical about its vertical centre-liney; then
the number of shapemeter rotor centresbcovered by the
strip (JH) must also be odd. An integerised version of

(3.119) is obtained by truncating its fractional part:-

i . 3
H LR fractional part

set to zero.

This is then tested to ascertain whether it is even or
odd (e.g. by dividing by 2 and testing for a remainder).
Consideration of fig. 3.38- shows that if iy is even,
then JH = iH+l; whereas if iH is odd it needs no

alteration., Therefore

JH = iH for iH odd
o o - . L] .(3.120)

or J

even

S St SN

1H+1 for iy
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The value of Lps in fig. 3.38 is then found by

L. - L. (J,.-1)
L = S R H (m)
pPs 2

The distance from the LH end of the mill at which
the Nth value of gauge must be calculated to coincide with

a shapemeter rotor centre, can then be found as

L. + Lps + (N—l)LR (m) for N=l,...,J, .- {3.121)

*N < U H
Now the WR defiection is known at MW points along
the roll (from section 3.9), also measured from the front
of the mill, but it is most improbable that the JH values
of XN given by (3.121) will correspond precisely with
values from the set of'Mw values of XM used in section 3.9
to find Yu To find WR def lection at points corresponding
x
M
to (3.121) therefore, a curve could be fitted to the M,
valuesof Y previously calculated for the WR (section
X

3.9) and theMJ values of yX read off it. Fitting a

H N
single high-order curve and interpolating in this way,
is prone to numerical inaccuracies howeverg; and™the
method employed instead (see below) is more accurate,

although somewhat laborious to set down on paper. (The

computer mechanization is quite simple of course).

For each xy value given by (3.121), a search is made
through the MW values (at which WR deflection is known)

until the nearest value of X\ to XN is found. The XM

values on either side of this value (i.e. XM-1 and xM+l)
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are also taken; so that three values of Xy are con-
sidered, with the value of XN falling within the range
of the three. A quadratic of the form y= axz+bx+c is

then fitted to the three points. We therefore have

2
W = ay Xy g + by Xy 4 + oy
M-1
= a x2 + b, x,, + ¢C
Yw = ay *M N *M N
X
M
= a x2 4+ b,. x + C
Y - N "M+l N "M+l N
™ 41 s

which are simultaneously solved_to give

2 27, 2 2
Yy Yy M M- Yw ~ Yw *M41 " *M-1
L *Mo1 XM41 XM XM-1

by = 2.2 . « 1.2 2
LXM-l" M1 ] FMFM-1 *MTEM-1 [1F me1 - *M-1

Yw ~ Yy [x -x }
XM xMél - bN' M "M-1
aN=
2 .2
XM T *M-1
. ¢ - 2 -
ey = L an ¢ XMy by¥Me1

M+1

The WR deflection corresponding to the point Xy
measured from the front of the mill (i.e. corresponding

to a shapemeter rotor centre) is then given by
Yy = awx> + b.x_+ c. (m) for N=1 I, (3.122)
wx NxN NN N gooogH . s e« .

N

where the xy are given by (3.121).

151



(Note that if a value of XN should fall so close to one
end of the WR that the nearest xM value is the last on the

roll, then the end three values of x, are used).

M

Since the number of forces taken to act on the WR
(JWF) and the numbér of points at which deflection of the
WR was calculated (Mw) were chosen to be large enough to
give a smooth deflection profile, the fitting of a quad-
radtic to any three consecutive points w%ll introduce

negligible errors.

When rolling strip in a four-high rolling mill, the
conditions around the roll-bite are such that if a bending
profile is forced onto the upper WR,’then the lower WR
will always adopt the inverse pfofile. The strip will
therefore alwaysllook symmetrical about its horizontal
axis. It is thought however,; that this condition will not
apply in a Sendzimir mill, since the lower WR is not free
to deflect to the same extent. Therefore, if the in-
coming strip has the gauge profile of fig. 3.39(i) and
good shape, to maintain the godd shape whilst imparting
a per-~unit reduction SR the roll-bite must adopt in the
limit the profile shown in fig.3.39(ii) (neglecting
elastic recovery of gauge and the lower WR camber). As
has been mentioned previously, although fig. 3.39(ii)
looks extreme, it is grossly exaggerated as Cg is some

four or five orders of magnitude less than L Due to

T.
this relatively minute lateral bending of the strip, it

is expected that it will elastically recover after rolling
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to the profile of fig. 3.39(iii), and so the good shape

will be maintained.

The output gauge vector (H) for use in equation
(3.118) is therefore found by considering the roll-bite
profile to be as per fig.3.39(ii). The mean output
gauge H is known from the mill instrumentation, and the
mean upper WR deflection for the JH points across the

strip can be found by

yw = (m)

[
e}
=
w
=4

where the y,, are given by (3.122).
x
N

We now assume that this mean value of WR deflection
corresponds to the mean output gauge as shown in fig.3.40.
The JH values of HN are then found by superimposing the
deviation of the WR deflection from the mean onto H at
each point:-

H =H+73y, - ¥ (m) for N=l,...,J, v v 3.123)
*N

Equation (3.118) can now be used with the results
of equations (3;120) and (3.123) and the known input
gauge profile, to give the change in strip shape due to
all the acfuator movements) at points across the strip
which coincide with the centres of all the covered shape-
meter rotors. If the incoming strip has "perfect!" shape

(al1 AGfN = 0) thenequation (3.118) gives absolute shape
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after rolling. Otherwise, the stress profile given by
(3.118) muét be superimposed oﬁ that existing in the strip
to obtain absolute shape. (This is thought to be the best
simple approximation which can be made). The incoming
shape must be estimated on the fifst pass, but on each
subsequent pass the shapemeter. output stored at a number

of intervals during the preceding pass can be " used.

3.11 The Computer Model and the Mill Gain Matrix

It is not proposed to enter into great detail Eon—
cerning the actual algorithms and flowcharts of the model,
since the previous discussion of the static model itself
covers; in one way or another, all that would be said.
Suffice it to say that the model is fundamentally a com-
puter mechanization of the pseudo-flowchart shown in
figure 3.18, and as such it contains all the necessary
programming to implement all the equations developed in
sections 3.2 to 3.10 inclusive and appendies 1 to 4
inclusive. The language of the model is FORTRAN (with

DEC additions).

The model started life mounted on an ICL1903 in-
stallation, where it was overlaid to run in 32k of memory.
By force of circumstance, it presently resides on a .
Digital PDP11/70 installation under the RSTS/E operating
system. This limits user memory to 28k, and no amount of
overlaying could achieve this. Therefore, the program is

split into two parts called ZMODEL and ZMODL2. The

structure of each part is broken down into a large number
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of function and subroutine subprograms,; but no details
of these will be given here. The model can' be run either
interactively from a terminal, or in a batch mode. The

overall function of each half of the model is as follows.

Programme ZMODEL requires as input data:

Young's Modulus and Poisson's Ratio for the rolls,

The length of the rolls.

The maximum (i.e. barrel-centre) diameter of every réll
in the top half of the cluster (this allows for example,
different diameters of the outer second intermediate
rolls and the central second intermediate rolls - which
is normal practice).

The camber taken off these diameters for every roll.

The length and magnitude of first intermediate roll
tapers fitted.

The geometry of the mill housing and backing bearings in
the form of wvarious plant dimensions, eccentricities,

. pitch circle radii, length and pitch of backing bearings etc.
Number of backing bearings (variable so as to allow
application to any 20-high Z mill).

Strip width.

Strip annealed gauge and yield stress.

Entry and Exit gauges and tensions for the present pass.
Setting of Screwdown rack (in operatorfs divisions).
Setting of all eight As-U-Roll racks (pertufbation)
(operator's divisions).

Setting of both side eccentrics (in operator's divisions),

Setting of upper and lower first intermediate roll tapers.
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Clearly, much of this data will not be varied from
one run of the model to the next. Therefore such data
are fixed at the beginning of the programme, and are only
alterable by editing the appropriate file. The remainder
of the data are input from the keyboard or batch file

in answer to programme prompts.

The output data from ZMODEL includes the following

{and much more besides!):-

All input data for verification.

Rolling load predicted by the roll force model,; together
with accuracy indication.

All force components and angles shown on figure 3.16.
B.O.E.F. foundation moduli.

Forms and magnitudes of loadings transferred via the
backing bearings.

All data required by the éecond half of the model is then
written onto a disc file and the first programme terminates
with a suitable prompt to the user or batch control

programmes to run the second half of the model.

Programme ZMODL2 requires as input data: .

All the data stored on disc by ZMODEL (which is checked
for sensible values as it is read in automatically).
The number of points along the various rolls at which
deflection is to be calculated.
The numbers of forces to be calculated to act on each roll.
Options for graph plotting énd shape calculation (éee
below).
The output from ZMODLZ2 includes:-

Tables of deflection values taken along the 2IR, 1IR and WR.
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Optional graphs plotted on a CIL plotter to include any
or all ofvthe workroll deflection profiles due to each
force acting upon the wofkroll, the total workroll de-
flection profile; and an amplified version of the de-

flection over the strip width.

Tables of roll gap magnitude vs. distance across the mill,
together with strip gaugés and shape. These may op-
tionally be given at the shapemeter rotor centres; at
eight points across the mill, or at eight points across

the strip (see beélow).

One set of model results occupies typically seven
sheets of 120 character line-printer péper, and cannot
therefore readily be reproduced in a form suitable for
direct inclusion in this thesis.A However, selected re-

sults and sample graphs are discussed below.

Now for the purposes of a control scheme design,
what we require is a gain matrix for the mill. This
takes the form of a matrix of shape sensitivities to
actuator movements. Tﬁe initial work on thevcontrol
system (Chapter 6) assumed for simplicity a system of
eight As-U~Roll actuators controlling the shape at eight
poiﬁts measured across the hill, yielding obviously an
8 * 8 system. The mill matrix for such a system ("Plant

matrix") is given as
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gll glz g13000000'.00Q0000g181

gzl g22 g230000000..o.-000g28

L] L] . .

[}
i

p L) . e L)

g g g OOOOOOC.OOCCOI.g
I 81 82 83 88‘1

where gij represents the shape gain of the jth As-U-Roll

actuator from the front of the mill, at the ith section of
strip from the front of the mill (in units of shape change
3

per unit rack displacement, Nm—z/m. However, Nmm - is a

more practical unit).

To obtain such a matrix,; the entire static model is
run eight times in succession. Each time, one As-U-Roll
rack only is moved by a given small amount. The vector
of eight shape values across the strip given by the run
is then divided by the As-U-Roll motion thus giving the
column of the gain matrix corresponding to the As-U-Roll
which was moved. Therefore eight runs give the entire

matrix.

For practical guntrol schemes however (see chapter
6), the matrix will not be 8*8, but will be of size N*8
where N is the number of covered shapemeter rotors;
Nevertheless, the same procedure applies, and each of
the eight runs of the model will yield an N-vector for

~

one column of Ep, where Gp is now:-
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-

gll glzoooacoacc.0..0.-...g18

gzl g22.ooooo0o-oooooooooog28

R
L

p . . . (Nmm™3) . .(3.124)

LgNl gszooooooooooooooonocgN8

N

3.12 Discussion of Results

Very many runs of this static mill model have been
carried out for various purposes, but it is not intended
to present here a vast anthology of results. Rather,
the mill gain matrices produced by the model will be dis-
cussed (since these are its major raison d'etre).
Furthermore, the matrices for only a limited range of
parameters will be considered - namely those most rel-

evant to the present studies.

Many model parameters were held constant during all
the runs to be described, and these are as follows (based

upon practical values in the main):=-

For roll material, Young's modulus = 203*109 Nm"'2
Poisson's Ratio = 0.3 Length of roll barrels = l.7m
Roll diamters (m):- (zero roll cambers were used for

these runs)

Backing Bearings 0. 405

All Second Inter.Rolls D.235

First Inter.Rolls 0.137 Plus a section 0.559n
long tapered at 2mm/m
off diameter.

Workrolls 0.09
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Mill Geometry

Separation of central backing shaft centres (e.g. B & C)
= 0.419m

Separation of outer backing shaft centres (e.g. A & D)
= 1.094m

Separation of central and outer backing shaft centres
(e.g. A & B) = 0.423m

Number of backing bearings = 7

Length of barrel of each bearing = 0.171lm

Pitch of bearings = 0.221lm

8.89*10 2m

Screwdown disc eccentricity

As<U-Roll ring eccentricity 1.55*10-3m

Side eccentric disc eccentricity = 4. 4L*10™3m

Miscellaneous

Amount of first inter-roll tapers in play = O
Strip incoming gauge = 2.4*10 3m

Strip incoming camber = O |

Roll gap coefficient of friction = 0.06

C -
Young'®s Modulus for strip = 203*10) Nm 2

Other model parameters were perturbed to investigate
their effects, but the values unless otherwise stated
were as follows:-

Screwdown Position = O (Dbatum)
Side Eccentric Positions = O (Datum)

As-U-Roll positions = O (Datum) except for the single
As-U.-Roll perturbed to produce
the appropriate columm of the
gain matrix, which is moved to
-0.54 operator's divisions..

Strip width = 1.61lm (to give all 31 shapemeter rotors
' covered)

. -3
Annealed gauge of strip = 2.4*10 7y
(Cont'd.)
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Yield stress curve = INCO curve of yield stress vs.reduction
for EN304 stainless steel.

Exit strip gauge = 2.05‘10—3m

Back Tension = 134*103N
Front Tensinn = 191*103N

This set of data yields the cluster angles and force
components (see fig.3.16) below, which may be compared

with those given in section 3.3 (following eguation (3.41)).

0, = 0° F, = P
o, = 40,3° F, = 0.655 P,
6, = 23,3° Fy = 0.219 Pp
8, = 59.7° F, = 0.591 P,
B = 78.3° F, = 0.536 Pg
6 = 40.8° Fg = 0.266 P
o, = 4. 4° F, = 0.191 Pj
&g = 22,2° Fg = 0.423 P

(the cluster is symmetrical under these conditions

so the right-half values are identical).

The rolling load P, is calculated as 3025*106N under

T
these conditions,; with a deformed workroll radius of
50.9*10—3m, This represents a fairly light loading for

this mill.

The gain matrix corresponding ta this standard set
of data, and evaluated at eight points across the strip
is given in Appendix 5 (section A5.8)q Every element
in the matrix has been ftreated with a simple scalar
multiplier (the same for each element) to givé these
values. This was done in the light of early plant tésts9

to give values in closer agreement with reality than
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the untreated model. The multiplier is 0.0054. One
possible reason for this requirement is the simplistic
approach to the calculation of the actual strip shape
(equation (3.118)) in which Young's modulus is used as

a multiplier. It is very probable that, due to the
plastic nature of the rolling processy, a value of gradient
on the portion of the stress-strain curve above the yield
point should be used rather than Young's modulus (which
is, of course, the gradient below the yield point). For
the material in question, this upper portion of the curve
flattens out very significantly, and the factor given
above is quite feasible. All the matrices to be dis-
cussed have béen processed in this way to allow diréct

comparison.,

The matrix of A5.8 may be compared with that given in

A5.9 which was derived by Gunawardene for similar
conditions (Ref.l6, section 6.6, p.151 ). It can be seen
that the two models are in good basic agreement, although
the present model's computer execution time is only a
small fraction of that of Gunawardene's model. Further-
more, it can be seen that the matrix produced by the
present model exhibits the absolute symmetry which is
expected under the conditions for which it was r1run

(i.e. gij = g(9-i),(9—j))° whereas numerical errors in
Gunawardene's model have disrupted this to some extent

in the matrix of A5.9. This is due to the much greater

computational complexity of Gunawardene's model - which

does, however, pay off in other respects (sec later).
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Another feature of the matrix is that, as expected,
vertical columns sum to zero (within rounding errors);
since shape is displayed with respect to mean the

average value across the strip (down the column) must be
zero. The horizontal rows should also sum to zero (if
each As-U-Roll is moved by the same amount, 3 pure gauge
change will result - not a shape change), but this is not
actually the case 4 small errors béing present. The
discrepancy is»due to numerical errorsg, but is generally
less than the errors in the matrix of A5.9. One unusual
feature common to both models is that As-U-Roll number 2
appears to have a greater effect upon the portion of strip
nearer to As-U-Roll number 1 than does As-U-Roll number 1

itself (i.e. ). This is at first sight, incorrect,

€12 7811
and has not been conclusively observed on the plant, but
a tentative explanation is possible (this applies to the

present model, i.e. to the matrix given in A5.8) and is

now proffered.

Figures 3.41(a) to 3.41(d) give the workroll deflection
graphs produced by the model during calculation of the
matrix of A5.8. Graph (a) is the deflection due to motion
of As-U-Roll 1 only,; graph (b) is for As-U-Roll 2 only,
etc. As-U~Rolls 8,7,6 and 5 simply produced mirror
images of the graphs for As-U-Rolls 1,2,3 and 4 re-
spectively. Consider graphs (c) and‘(d), and hotice that
the deflection profiles are extremely similar both in
form and magnitude; being simply shifted laterally to
coincide with the appropriate As-U-Roll position. This is

due to the fact that for both these As-U~Rolls there is
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plenty of strip to either side of the As-U-Roll location,
and the strip edges have no effect therefore. Consider
now graph (b). Here, the edge of the strip becomes
significant. It is'placéd at 0.045m on the horizontal scale,
whilst As-U-Roll 2 is at 0.275m, The downward métion of.
the As-U-Roll rack will therefore cause é certain amount
of force on that part of the workroll which is unsupported
to the left of the strip edge. This is treated as a
contilever and is expected to deflect much more than when
strip is present (as will be seen by comparing the maxi-
mum deflection of graph (b) with graphs (c) or (d)).

Graph (b) exhibits two distinct portions to the deflection.
The portion over the strip (from about 0.15m t040.92m)
exhibits similar behaviour to the right-hand portions of
graphs (c) and (d), tending to "bottom out" at
approximately -2.8*10"°m. The cantilevered portion,
however, deflects more easily and causes thinning of the
strip edgé as it runs into the supported portion thus
building ﬁp the entire graph. Now, in graph (a),

As-U-Roll 1 is wvirtually coincidentxwith the strip edge.
Thereforey, its influence on the supported portion of the
strip is not as great as that of As-U—Rélls 2,3 and 4.

The "supported" portion of the deflection curve, such as

it is, appears to "bottom out" therefore at say -1.5*10-5m.
However, the As-U-Roll (1) is not actually over the un-
supported portion of the workroll (as would be the case
for narrower strips) and its influence on the cantilevered
portion is therefore not much greater than that of
As-U-Roll 2. The net effect consequently is that the

maximum deflection due to As-U-~Roll 2 is greater than
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that due to As-U-Roll 1; hence the entries in the gain
matrix. It is stressed that the Author does not have
great confidence in this "explanafion“, and clearly more

work is possible in this area.

The 8 x 8 matrix discussed above is of little
practical use, and was included simply to allow comparison
with the work of Gunawardene. The practical matrix for -
1.61lm strip is actually 31*8 (i.e. shape calculated at
each co?ered shapemeter rotor) and is given in Appendix 5,
section A5.10. The same comments apply as for the matrix
of A5.8, which in fact describes precisely the same con-
ditions (for example, row 1 of the A5.8 matrix lies at a
position on the strip between rows 2 and 3 of the A5.10
matrix, whilst row 4L of A5.8 is almost coincident with
the position on the strip of row 14 of A5.10, etc.).

This is the matrix which will later be used to represent

the plant in simulation studies (Chapter 7, section 7.5)..

The model was run to produce such matrices for several
different strip widths. Sections A5.11 and A5.12 of
Appendix 5 give the matrices for 1l.3m strip (25 covered
rotors) and 0.99m strip (19 covered rotors) respectively.
For an identical rolling schedule except for narrower
material, the rolling load would be expected to reduce.
This is found to be the case, the rolling loads for 1.61m

widey 1l.3m wide and 0.99m wide strip being 3.25*106N9

6N and 1.81*106N respectively as given by the model.

2.53*10
As the strip becomes mnarrower, the roll flattening

therefore reduces. The elastic foundation constants are
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.therefore somewhat reduced, which implies that a given
deflection forced onto the second intermediate rolls by
the As-U-—Rolls»9 will produce lower loadings upon the
other rolls in the cluster, and less deflection of the
strip. The elements in the gain matrices would there-~
fore be expected to reduce as one progresses from section
A5.10 to A5.12. It appears initially however, that this
is not the case; as the eye automatically begins to scan
the @atrices from element 8q1° However, we can only
directly compare the actions of As-U-Roll racks which are
well over the strip for every width considered, so that
strip edge effects are excluded. This limits the com-
parison to columns 3,4,5 and 6 of the matrices. In ad-
dition, we can similarly only compare the shape at rotors
which are not much affected by As-U-Rolls other than
3,4,5 and 6 for the same reason. This limits us to the
middle 11 rows or so of each matrix. Thus only the
central 11 rows and 4 columns may be compared fairly.
When comparison is limited in this manner,; it can be seen
that the gains do in fact decrease with decreasing strip
width. For example, taking the middle row and column 4
in each matrix (A5.10, A5.11 and A5.12) as the strip
width decreases 1.61lm, 1.3m; 0.99m; the gain decreases
l.l8Nmm—3, O.93Nmm_3, 0.58Nmm—3. The reason for the large
gain increases in other parts of the matrix (e.g. element
gll) is that as the strip becomes narrower, the outer
As-U-Rolls do not lie over the strip‘at all, but over
the unsupported (cantilevered) sections of the upper

workrolls. There is consequently only a relatively small
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resistance to deflection, and some very large deflections
indeed are given by the model at the workroll ends. The
effect of this is to bend the cantilevered sections over
the strip edges like a lever, giving much greater re-
ductions in the edge zones than might be expected, and
therefore higher gains. That having been said, it must be
admitted that these peripheral gains are thought to be
much too high under these conditions. There are various
reasons for this,; but one of the main inaccuracies in the
model is probably the manner in which loadings on the
unsupported workroll ends are calculated and handled
(section 3.9), and it has already been said that further
work is required in this area. Also,; no facility has

so far been included in the model to allow for the ends
of the upper and lower workrolls coming into contact
when rolling narrow strip. This would also reduce these
large peripheral gains, as the leverage effects of the
cantilevered roll ends on the strip edges would be
greatly reduced. The lack of confidence in the mill
matrices for very narrow strip is not a serious problem
however, as most of the control system design and simu-
lation (see later chaptefs) uses wider strips. Where
narrow-strip matrices were required,; the extreme elements
were intuitively adjusted to more believable values.

The strip width was held at 1.61m for all the remaining

model runs reported in this section.

The next area of investigation was the effect of strip
hardness. The annealed gauge of the strip was changed to

4,0mm, whilst the incoming gauge was maintained at 2.4mm.
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This had the effect of simulating a much harder material,
as a 40% reduction of the material must have occurred
before the present pass, The input yield stress according

6 2 6 2

to the model changed from 278%*10 Nm “ to 1087*10 Nm ° due
to this alteration. It would be expected, all other things
remaining unchanged, that the rolling load would heed to
increase accordingly; and this was the case. The model
gave a load of 8.2*106N as opposed to the previous
3.25*106N. For harder materials then, any given loading
has less effect, and the gains are therefore expected to
decrease and this was found to be the case. The gain
matrix is not reproduced here»as it is similar to A5.10
in structure; suffice it to say that all elements"
experienced a reduction of 2 to 5% compared with section
A5.10. There was a tendency for the lower reductions

to occur in the body of the matrix, but this was not

exclusive.

The next parameter to be changed was the reduction
taken during the pass. Two runs will be considered.
Firstiy9 an output gauge of 1l.7mm instead of 2.05mm
(an increase of 100% in reduction) and secondly an output
gauge of 2.25mm (a decrease in reduction of about 60%).

The rolling loads were given by the model as 5.9*106N

and 1.8*1O6N respectively. By the argument used previously
to explain the effect of narrower strip widths, the gains
would be expected to increase for higher reductions and
decrease for lower reductions. This was observed to

occur. For the higher reductions, all gains increased by

an amount 18 to 20% uniformly distributed around the
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matrix. For the lower reductions, a similarly distributed

reduction of 6 to 8% was noted.

For an increase in (front) tension on the strip, the
same reduction should require a lower rolling load. This
is cofifirmed by the model. However, sufficiently large
tension changeslto cause meaningful load changes were
not possible (due to pulling the neutral angle outside
‘"the roll gap for example), and therefore the effects on
the gain matrices are not clear. From the previous
arguments, it would be expected that higher front tensions
(lower rolling load) would decrease the gains; However,
with a tension of 286*10°N instead of 191*10°N, the
rolling load decreased by some 0.8%, and the gains appeared
actually to increase. Since the percentages involved
(typically 0.008%) are negligible, no further analysis

was attempted.

Finally, the effects of changing the cluster geometry
bear a mention. As an example, if the screwdown rack
and each side eccentric rack are moved from the datum.
positions to +5 operator's divisions (half scale), the

model gives the following geometry (see fig.3.16):-

A0

el = O . F, = Pg

e, = 38.1o F, = 0.635 P
93 = 22.10 F3 = 0.236 PT
94 = 59.60 F, = 0.557 P,
95 = 78.3o F5 = 0.502 PT
96 = 41.i F6 = 0.290PT
.e7 = 3.6 . F7 = 0.180 P
68 = 24.3 F8 = 0.437 P
The 6

rolling. load PT is still 3.25*10°N,
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As a result, the gains are reduced by 7 to 11%. The
reason for this is simply one of force resolution - more of
the effort produced by the As-U-Rolls goes into the mill

housing rather than the strip for this geometry.

To sum up, the results have in geﬁeral confirmed the
correct qualitative operation of the model. Chapter 5
describes an attempt to verify the quantitative operation.
The resultant gain matrices for wide strips appear to be
realistic enough to use in plant simulations and control
system design (nothing more reliable being available).

The model is very much faster in execution than that of
Gunawardene (16), but results of the latter model appear

more plausible for narrow strips at present.
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CHAPTER 4

DYNAMIC MATHEMATICAL DESCRIPTION OF THE PLANT

4,1 Introduction

In order to carry out a control scheme design, it is
necessary to know the plant transfer functions. Compared
with the static model; the dynamic description of the
plant is fairly straightforward. The mill cluster itself
is considered to be non-dynamic, and is represented only
by the gain matrix relating shape changes to actuator
changes (see Chapter 3). That is to say, when an
actuator mers, the response at the roll gap is taken to

be instantaneous.

This chapter therefore develops transfer function
representations for the remaining elements of the plant;
namely the As-U-Roll actuators, the first intermediate
roll lateral motion, the dynamic transfer of strip
shape from the roll gap to the shapemeter and the shape-
meter system itself. The controller dynamics are con-

sidered in Chapter 6.

4.2 The As-U-Roll Actuators

Figure 4.1 gives a schematic representation of the
manual system of As-U~Roll control which has always
existed on the mills in question. The mill operator is
provided with a separate "Raise-Off-Lower" switch for
each of the eight actuators, ana a position transducer
(in the form of a linear variable potentiometric type

of transducer) supplying a meter indicating the actuator's

position to the operator on an arbitrary scale of 1'5
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divisions. Whenever the operator engages the "Raise"

or "Lower" switch positions, the As-U-Roll rack moves at

a nominally constant rate, i.e. the system is "bang-bang".
For each As-U-Roll the operator's switch controls relays
which, in turn, energize hydraulic solenoid valves feeding
a hydraulic motor. This motor is geared onto the As-U-~Roll

racke.

Clearly, closed-loop control of these actuators is
desirable if they are to form part of an automatic sqheme.
The optimum means of providing such control would be to
replace the bang-bang elements with a proportiomnal
servo valve system, but this was not possible for
financial reasons. Therefore a simple closed-loop system
around the existing plant has been incorporated in the
system software. This takes the form of figure 4.2.

The transfer function of the hydraulic valve (time
constant) has been estimated from plant tests (see
Chapter 5.). The transfer function of the rack is an
integrator whose gain is found from>the rack velocity.
Although this velocity is mominally fixed, the hydraulic
supplies to the hydraulic motors are fitted with wvariable
restrictions in each direction, so that in practice each
rack may raise and lower at different rates. Furthermore,
the hydraulic supply to these mofors is not rated to
drive all eight actuators simultaneously, therefore the
rate at which any actuator moves will change depending
upon how many other actuators are moving at the same
time. The "demonstration" rack gain given in the figure

is a value obtained for one actuator moving alone before
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the plant engineers slowed down its response at the
Author's request, - the "actual" value was then obtained
(see Chapter 5, section 5.4.1). Some backlash is to be
expected in the rack mechanism, and this is therefore
also shown in figure 4.2, The "actual" magnitude of

the backlash has also been estimated from plant tests.
The controller simply takes the form of a small pro-
portional gain and an imposed dead-band to prevent system
hunting (which would shorten fhe life expectancy of the
mechanical componehts). The initial selections of con-
troller gain and dead-band were made by digital and

analogue dynamic simulations discussed in Chapter 7.

For the purposes of control system design and sim-
ulation (see Chapters 6 and 7) the non-linear As-U-Roll
system has been replaced by a second order system which
gives a comparable response to the system of fig.4.2
under simulated coﬁditiohs. The resultant system is
described by

K’ w2

g (s) = 2.2 N T
a . 2
s 426 w_s+w_-
a a a

where
/ . ’
K =1.0 K =1.0
a a
w, = 1.95 rad/s or w, = 0.4 rad/s
ga = 0.85 '§a = 1.0
(for "demonstration" system) (For "actual" system)

and s = Laplace Operator
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Figure 4.3 shows a step response as an example of
the representation of the non-linear system by equation
(4.1). The reason for using the somewhat unreal values
of the "demonstration" system is to illustrate where the
lack of fit occurs at the origin of figure 4.3 . For the
"actual" values, the fit is much better in this area as
the effective dead-band width (da/Ka) is much smaller.
(However, the fit at the "top" of the characteristic is

not quite so good).

Since the actuators are not mutually interactive,

the block diagram matrix (ﬁa) is simply ga = ga(s).IB

where ga(s) is given by the Yactual" wvalues in equation

(4.1) and TS is the identity matrix (8 square).

It is also worth reiterating at this point that
constraints are imposed by the mill manufacturer upon
the relative positioning of adjacent As-U-Roll actuators.
This is designed to prevent attempts at excessive backing
shaft bending gradients, or excessively sharp maxima or
minima in the bending profile - any of which could
damage the mill. The means of ensuring compliance with
these constraints are discussed in detail in Chapter 8

(section 8.2).
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4.3 First Intermediate Roll Lateral Adjustment Actuators

The manual system for contrel of the first inter-
mediate roll lateral positions is very similar in concept
to that previously described for the As-U—Roli systems.
Again the operator is provided with three position
switches ("In-0ff-0Out") which control "constant" speed
hydraulic motors (about 590rpm) via relays and hydraulic
valves . The major differences are that the drive is not
directly transmitted to the rolls; but is fed wvia quite
long runs of chain drive and gear trains (overall
reduction ratio about 18.7:1) which drive an internally
threaded thimble (see figure 4.4). This thimble is
rotated by the chain drive (at about 31.5rpm) and en-
gages a non-rotating threaded section coupled to the end
of the first intermediate roll, which is therefore moved
into or out of the threaded thimble depending upon the
thimble's direction of rotation. The pitch of the thread
is about 6mm, giving a lateral velocity of 3.15mm/s.

In addition, the position indication device is more complex.
A selsyn transmitter is driven by one of the intermediate
shafts in the chaip drive system. This is cabled to a
matching selsyn receiver mounted at the front of the mill.
The shaft of the receiver drives via a gear train-onto a
leadscrew arrangement, which linearly moveé an indicating
pointer visible to the mill operator. Apart from these
differences (mechanical drive arrangenent and trans-
ducer), the system can be represented by the same

schematic diagram and block diagram (minus the controller

and feedback) as the As-U-Roll system (figs.4.l1 and 4.2).
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However, the coarse-pitch chain drive system gives rise

to greater backlash than in the As-U-Roll system. Never-
theless, when this backlash is referred to lateral first
intermediate roll motion, its effect is greatly

attenuated by the reduction gearing giving the system shown

in figure 4.5.

The automatic scheme for these actuators takes the
same form as fig.4.2, but extra transdicers had to be
introduced onto the plant to avoid the conversion of the
selsyn signals (for financial reasqns). These were of
potentiometric type, of rugged construction so as to

withstand the plant environment.

4.4 Transfer of Strip Shape Between Mill and Shapemeter

Consider initially a gauge (thickness) change
occuring at the roll gap. If this is to be measured by
a gauge transducer some distance downstream of the mill,
then a transport lag (distance/velocity lag) would exist
between the gauge changes at the roll gap and at the
transducer. Consider now a change in mill exit tension.
Such a change would have instantaneous effects both at
the roll gap and at a downstream tensiometer. . Since a
change in strip shape is conceptually a hybrid of these
two cases,; it is to be expected that some transport lag
will exist between the mill and the shapemeter, but that
this will not necessarily be of the magnitude expected
due to strip velocity and the disfance of the shapemeter
from the roll gap. An ancient principle due to St.

Venant (referenced in (36)) suggests that stresses
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existing at some section across a steel strip, will decay
to zero (given that the strip is not subjected to
external stresses also) within say one-and-one-half strip
widths of the section. We can therefore postulate a
transfer function for the strip between the roll gap and

shapemeter of the form

g (s) = e sl e (Ba2)

distance/velocity lag for distance from

where Tsl

mill to shapemeter minus l%*strip width

Tsz = +time constant for the build-up of the

differential tension readings to the maximum

For plant values, this suggests

—~ 2.9 - 1l.5w
TSl ~ v (S)

R D

T . =~ 0.3 (s)

s2

<=

where w = strip width (m)

v = strip velocity (ms™1)
Plant trials (see Chapter 5) have been carried out

to test the validity of equations (4.3).

As in the case of the As-U-=Roll actuators, there is
assumed to be no interaction between the transfer
functions of each ''ribbon"  of .strip

corresponding to one shapemeter rotor (although there
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will in reality be some small cross-coupling) so that

thé overall transfer function matrix Es(s) contains one
independent gs(s) per covered shapemeter rotor.

Further work is possible in this area which is very com-
plex if treated rigorouslj,and is not yet well understood
judging by the dearth of available literature on the

subject.

4.5 The Shapemeter System

The electronics of the shapemeter system are fairly
complex, and therefore no attempt has been made to derive
a transfer function by analysis of the circuitry. Perusal
of the shapemeter manuals indicates that the system gain
is switched under various conditions,; but this must clearly
be done in order only to maintain the same input-output
calibratioﬁ under all conditions. Therefore tﬁis function
is "transparent®" to the user, and need not be included in

the transfer function,

The system is apparéntly representable by two
cascaded first-order lags, one  'of which is of fixed time
constant and the other of switched time constant according
to strip speed. The latter is always much greater than
the fixed time constant, and therefore a representation
(relating measured shape to strip shape) of

~l+ST v e e e - .(ll'nli)
m
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will be used, where

T = 4.35 (0.3<vsl.O ms™ 1)
T = 1.43 (1.0<vs2.0 ms™ 1)
T = 0.74 (2.0<vg5.0 ms™ 1)
T = 0.3 (5.0cvgl5.0 ms™ 1)
T = 0.19 (15.0<vg30.0 ms™ 1)

(A1l time constants in seconds) (c.f. Table 2.1,
Chapter 2).

The shapemeter rotors do not interact with each other,
so that the overall transfer function matrix Em(s) simply

contains one gm(s) per rotor.
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-'CHAPTER 5
PLANT TESTING FOR MODEL VALIDATION

5.1 Introduction

In work such as the present project, heavily reliant
upon modelling, it is a general principle that any mathe-
matical model purporting to represent a physical plant or
system, should be checked against the plant or system to
confirm its accuracy. This laudable intent however,
cénnot always be accomplished for a variety of reasons -
unobservable plant, safety constraints, financial con-
straints etc., (which indeed are often the reasons for
modelling in the first place). Nevertheless, it is

certainly good policy to validate models wherever possible.

That having been said, anyone who has understood the
preceeding two chapters will realise that there are great
difficulties in validation of some of these models, and
rigorous validation is virtually impossible. Logging
equipment valued at well over £100000 has been employed
(some of it specifically designed and constructed by the
author) in efforts to prove the validity of the models,

and this chapter describes these efforts and their results.

It should be pointed out that at the time of writing,
plant tests are still being carried out further to refine
the models, and results are therefore to some extent

open-ended.
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5.2 Test Instrumentation and Set-Up

Various configurations of test equipment have been
employed from time to time, but figure 5.1 gives a good

indication of the type of systems used.

The equipment was installed in the mill computer room,
where most of the required signals were available. Brief
details of the equipment shown in the figure are given here

for interest (other equipment was also used as required).

Signal Isolation - Direct Current Isolator (DCI) units to
isolate up to 2kV, designed by B.S.C. Sheffield
Labs. and built by outside contractors. Multi-

range inputs for *10Vd.c. output.

Signal Conditioning - Operational amplifier units connected
to patch panels allowing various configurations,
gains and filters to be selected. 24-channel
units designed by B.S.C. Sheffield Labs. and
built by outside contractors, 32-channel unit

designed and built by the author.

32-Channel Analogue Multiplexer Unit - Accepts up to 32
analogue inputs in the range *10V d.c.
Simultaneously samples and holds, then sequent-
ially outputs to a single output channel.
Single-Shot, or repeated sampling up to 1OHz.

Designed and built by the author.

14-Channel Instrumentation analogue magnetic tape recorders -

Type SE7000 (Thorn EMI Datatech).
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SE2112
SE6800

24 - Channel Ultra-Violet Oscillographs - Types {
(Thorn EMI Datatech).

X-Y-t Analogue Plotter - Linseis - Type LY1800 or Bryans-26000.

Microprocessor - based‘data logger - Uses a single-board
microcomputer marketed by J.B. Microsystems Ltd.
(see Appendix 7), software developed by B.S.C.
Sheffield Laboratories (by engineers supervised
by the author).

The plant connections, and also the interconnections
between the various items of instrumentation, were made in

such a manner that the set of recorded parameters could

easily be changed for different investigations.

A typical set of logged signals comprises:-
All eight As-U-Roll rack positions (continuous)

Upper and Lower First Intermediate Roll Lateral
Positions (continuous)

Strip shape at 31 points across the mill multiplexed
to a single channel so as to mimic the operator's
display (sampled at a rate appropriate to the
purpose of the trial).

Strip speed (continuous)
Tensions

Gauges

Strip Width

Other signals as appropriate
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5.3 Static Model Validation

The aim of these tests was to obtain a steady shape in
the strip, make a small measured movement of a single
As-U-Roll actuator, and record the effect upon strip shape.
So long as records were made of the schedule being rolled;
the actuator settings for screwdown, As-U-Rolls, side
eccentrics and first intermediate rolls; tensions, speed
and other mill parameters, then the same small As-U-Roll
change should be able to be run via the static mill model,
to produce a good approximation to the shape change observed
on the mill. These small As-U-Roll changes could be made
during normal mill production on the early passes of multi-

pass coils without harming the eventual end product.

As an aside, it may occur to the reader that correlation
methods of identification (see for example (40)) could well
be employed here. In fact, correlation equipment and pseudo
random binary sequence generators were available at
B.S.C. Sheffield Laboratories; but since the principal
action of the actuators is that of an integrator, and since
significant non-linearities were thought to exist in the
system, and also it would not be easy to interface a PRBS
with the '"bang-bang'" mill systems, this approach was

rejected.

In practice, it proved exceedingly difficult to obtain
a change of shape on the plant (by the above means) which
could be definitely tied down to As-U-Roll motion and no
other cause. 'This was basically due to two effects. Firstly
small random variations of the shape display occur con-

tinuously at a frequency which is too low and irregular to
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be ascribed to normal 'noise'". Their origin is therefore
either in the strip itself, or due to sporadic electro-
magnetic effects from other parts of the plant. 1In either
case, their magnitude is significant compared with the
changes in shape which can be deliberately introduced
without risk of damaging the (very expensive) material
being rolled on the mill. The second problem was that the
mill operators were only prepared to make these deliberate
As-U-Roll disturbances on the first or second pass of a
multi-pass coil, so that plenty of opportunity existed to
correct the deliberate errors thus introduced. On such
passes, the strip is often travelling very slowly, when
the-shapemeter readings may not be accurate. Furthermore,
it was not possible to convince the mill operator to allow
the "error" introduced to remain long enough for a steady-
state to be achieved before he felt obliged to correct it
again, fearing damage to the rolled material. In fact,

up to the time of writing, no really satisfactory result
has been achieved, in spite of many efforts spaced over a

period of some four or five years!

Typical of the results obtained is the following set.
It does tend to confirm the philosophy of the model, as will
be seen in the ensuing discussion, but there are areas of

doubt which are unresolved.
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Trial Parameters

Rolls:

DB =  405mm

D2D = 235mm (DZI assumed, no record available)

D1 = 134mm, with 584mm length tapered off diameter
at 2.5mm/m

D, = 84mm (top), 101mm (bottom) |

Cambers:- 0.15mm (top idler), 0.36mm(bottom idler),
O0.1mm (workrolls - assumed)
0.15mm (first intermediate rolls)

Strip Material: EN304 stainless 1.016m wide,

annealed gauge 2.95mm, input gauge 1.52mm, exit gauge 1.29mm

Mill Setup:

Front tension 450 kN, back tension 425 kN, screwdown
position 4.5 operator's divisions, both side eccentrics
4.2 divisions, pushup system 9.8 divisions, upper/lower
first intermediate roll tapers positioned 110mm/100mm
over the strip respectively. As-U-Roll positions
(operator's divisions) prior to test, 2.0, 1.1, -0.2,

-1.6, -1.7, -0.5, 0.8, 2.0

Test:
As-U-Roll 4 moved from -1.6 div. to -3.6 div.
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Shapemeter After Model
Rotor Before Test Test Change Change
(6) (-3.0) (-2.9) (+0.1) -

7 +0.1 +0.2 +0.1 -0.4

8 - - - +0.01

9 -2.0 -2.1 -0.1 +0.03
10 -1.7 -1.8 -0.1 -0.14
11 -0.7 -0.8 -0.1 -0.34
12 0.4 0.1 -0.3 -0.54
13 0.6 0.3 -0.3 -0.64
14 1.1 0.8 -0.3 -0.68
15 1.3 1.1 -0.2 -0.64
16 1.5 1.2 -0.3 -0.53
17 1.0 0.8 -0.2 -0.38
18 2.1 2.0 -0.1 -0.18
19 0.8 0.7 -0.1 +0.04
20 0.1 0.1 0.0 +0.26
21 -0.4 -0.3 +0.1 -+0.48
22 -0.9 -0.8 +0.1 +0.67
23 -1.1 -0.8 +0.3 +0.85
24 -0.2 0.0 +0.2 +1.00
25 +0.2 +0.7 +0.5 +1.14
(26) (-1.5) (-1.1) (+0.4) -

Table 5.1 Comparison of Plant and Static Model Shape Values

(A1l units are operator's divisions)

Note that in table 5.1, rotors 6 and 26 were partially
covered by the strip edges, and therefore gave very low
readings. Calculations based upon strip width show that
for a centrally-tracking strip thése rotors should be
covered by only 27% or so, and therefore should not be
included in the shape display reading (see Chapter 8,
section 8.6 for a discussion on this point). No reading
is available for rotor 8, due to a fault in the equipment
at the time of the trial. (A crude interpolation based
upon the mean of the neighbouring values would give - 0.1

div. both before and after the test).
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As would be expected, in the fourth column of table
5.1, the shapemeter rotors neafest to the position of
As-U-Roll 4 (rotor 14 is below As-U-Roll 4) show a
loosening of the strip, which gradually reduces and then
changes to a tightening as one moves away from rotor 14
towards the strip edges (so as to preserve the mean level).
It is likely that the apparently excessive tightening at
the rear of the strip (rotors 23 to 25) is due to a first
intermediate roll movement, which was made by the operator
before the steady-state readings (given in the third column

of the table) had been achieved at the shapemeter.

The static mill model - was run with the same set of
mill and strip data, and the same change was applied to
As—U-Roll 4. The resulting predictions of shape change
in the strip are given in the right-hand column of
table 5.1.. It is known (see chapter 3) that there are
inaccuracies in the static model at the strip edges for
the case of narrow strips (which is the case here) and
this is borne out by the predictions for rotor 7 and rotors
20 to 25, the errors being due to the very large de-
flections predicted for the workroll ends which are not
over the strip, as discussed in Chapter 3. (As an aside,
the model predicted that the front end of the workroll would
deflect by approximately O.7mm under these conditions). If
these areas of significant doubt are excluded, it can be
seen that the form of the model results is in accord with the
experimental results, with the maximum loosening of the strip
at rotor 14. However, the gain of the model appears from
this test to be too great by a factor of, say, two. Much of

this error can be attributed to non-linearity in the mill.
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The As-U-Roll change of -2 divisions represents 20% of
full-scale, and therefore no longer constitutes a "small
change". In table 5.2, the column of the mill gain

matrix produced by the model whilst calculating the
right-hand column of table 5.1, is compared with the
19-rotor small-change version taken from column 4 of the
matrix given in Appendix 5, section A5.12. Indeed,

if the ratio of the '"small-change'" to '"large-change'" column
entries of table 5.2 is applied as a multiplier to correct
the corresponding entry in the right-hand column of table
5.1, many of the entries for rotors 11 to 19 become

identical to the plant trial results.

Thus, although there are many uncertainties and
inaccuraéies, the plant tests tend to confirm the pre-
dictions of the small-signal gain matrices, except at
the areas of the strip edges. The edge-effects are much
more apparent for narrower strip widths, and the model

is therefore only to be trusted for wide strip.
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Column 4 of 'small- Column 4 of "large-change"
Rotor change' gain matrix gain matrix (from the
Number (from section A5.12) present model run)
7 1.07 0.72
8 0.21 -0.01
9 -0.04 -0.05
10 0.07 0.25
11 0.30 0.62
12 0.55 0.98
13 0.69 1.16
14 0.74 1.23
15 0.71 1.16
16 0.58 0.95
17 0.41 0.68
18 0.18 0.32
19 -0.07 -0.07
20 -0.33 -0.46
21 -0.59 -0.86
22 - =0.83 -1.21
23 -1.05 -1.53
24 ' - =1.23 -1.81
25 -1.39 -2.06
Table 5.2 Comparison of Model Gains

5.4 Dynamic Model Verification

This section describes the tests carried out to identify

the transfer functional parameters of the various dynamic

items of the plant, as modelled in Chapter 4.

5.4.1. The As-U-Roll Actuators

Using the magnetic tape and UV recorders shown in

fig.5.1, it was a relatively simple matter to move the

As-U-Roll actuators whilst recording their positions.

When such a test was first carried out it was found that the

eight actuators moved at very different rates, a range

of speeds of 3:1 being apparent.

The plant engineers

therefore adjusted the hydraulic flow regulators to

achieve more closely matched actuator velocities. The

resultant response of a single actuator is shown in figure
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5.2 for the manual control system of fig.4.1

From figure 5.2, it is clear that the response 1is
primarily that of an integrator, having a gain of
approximately 10mm/s. However, due to hydraulic flow-
limiting, this gain varies according to the number of
actuators moving at any given time. If all eight
actuators should move together for example the gain will
be of the order of 6.5mm/s. For simulation purposes a

compromise value of 8mm/s was therefore selected.

Due to the difficulty of recording the instant at which
the As-U-Roll rack was asked to move by moving the
RAISE-OFF-LOWER switch (since the switches,solenoids and
valves were remote from the recording gear and on a lower
floor), estimation of the time constant of the hydraulic
components (TV in figure 4.2, Chapter 4) and the rack
_ backlash (bR in figure 4.2) was postponed until the
automatic system was capable of closed loop control of the
actuators. (The controlling digital outputs would then
be cabled from a position immediately adjacent to the

recording gear). This is described in section 5.4.4 below.

5.4.2. First Intermediate Roll Lateral Adjustment Actuators

At the time of writing, effort has been concentrated
upon automatic control of the As-U-Rolls,with control of the
first inter.roils to be added later. One reason for this
is the lack of easily calibrated instrumentation around
these rolls, and the difficulty of providing readily
zeroed position transducers. The existing transducers are

driven from a leadscrew arrangement running via a gear train
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from a selsyn receiver, and any measurement of backlash
using this arrangement would be misleading. For the
present then, a value of O0.5mm is estimated, although
this may turn out to be rather high. Nevertheless, since
the first intermediate roll dynamics are not under active
consideration (at the time of writing) in simulation work

or controller design, the value will pass for the present.

The integrator gain was measured by recording the
speed of the hydraulic motor using an optical tachometer,
and then dividing this down by the various gear ratios
and thread pitch effects in the drive-train (see section

4.3 in Chapter 4) giving an overall figure of 3.15mm s-l.

The valve and motor time constant is roughly
estimated also, for the reasons given above (see fig.4.5).
More accurate results will be obtained as soon as they are
required for simulation purposes.

5.4.3. The Transfer of Strip Shape Between the Mill and
Shapemeter (Including the Shapemeter Dynamics)

Since the only way of measuring the dynamics of strip
shape is by using the shapemeter, it is not possible to
separate the d&namics of the shapemeter itself from those
of the transfer of strip shape between the roll gap and
the shapemeter. Furthermore, since the As-U-Roll
actuators move at only say 10mm/s maximum it is also
impossible to inject a true step change in strip shape
into the system. These two factors, taken together with
the random shape variations discussed in section 5.3, make
this particular identification exercise inordinately

difficult , and in the end it is perhaps one area where at
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least the philosophy of the modelling simply has to
be taken on trust (which is somewhat unfortunate, since
it is also one of the areas most open to inaccuracy and

incorrect assumption!).

The test method employed was to make deliberate changes
to a single As-U-Roll rack, of as large a magnitude as was
deemed permissible, during the first or second pass of a
coil (exactly as was done in the attempts to verify the
static model). The rotors of the shapemeter which
corresponded most closely to the area of strip directly
below the As-U-Roll in question were added to the con-
tinuous magnetic tape record. Thus, recordings were ob-
tained which contained a reasonably large As-U-Roll move-
ment (albeit a ramp, rather than a step) and the time-
amplitude responses of the shapemeter rotors most closely

related to the As-U-Roll being moved.

Figure 5.3 shows a typical recording, and is a
tracing of a UV recording obtained during plant trials.
It shows the mill operator's movement of As-U-Roll number
4, and the corresponding response (according to the
shapemeter) of shapemeter rotor 14. Several points should

be hoted.

a) The "stepped" nature of the injected (i.e. As-U-Roll)
signal is entirely typical of these trials. The mill
operators were loth to inject such large changes in a
single ramp.

b) The shapemeter signal has been passed through a 100ms
first-order filter to attenuate the ripple to the

level shown.
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c) The shapemeter signal ''zero'" level was estimated from
30cm or so of chart preceding the event in figure 5.3.
d) The shapemeter signal "final" level is estimated
from the figure. No other information is’available,
as the operator induced a change on another pair of
As-U-Rolls after 9.5s, and the shapemeter signal

then began to decrease again.

Turning now to an analysis of the figure, if we
regard the two initial movements of the As-U-Roll as a
single change, then we have two distinct changes, one from
O to 0.53 and the other from 0.53 to 1.00 on the normalized
scale (the total actual movement was 2 operator's divisions,
i.e. 40% of f.s.d, and the shape response 3% of f.s.d.).
If these levels are translated to the shapemeter rotor
trace, we can in fact see the two resulting responses
postulated by the dashed lines. (Although, in truth,
a straight line approximation would have been just as valid
for the first of the two!). Support for assuming the
presence of two separate responses in this manner comes
from the fact that fhe time of 2.8 seconds, between the
"starts'" of the dashed responses, corresponds fairly
'closely with the time of 2.9 seconds marked on the
As-U-Roll trace at the centre-points of eéch ramp (again

considering the two small initial ramps as a single event).

If the transport delay is measured from the ramp
centre-points in the As-U-Roll trace, to the start of
the corresponding dashed response drawn on the shapemeter

trace, then we obtain 2.1 seconds for the first response

201



and 1.9 seconds for the second response. If we assume

a transport delay given by e-STsl, from section 4.4

2.9 - x.w.

T where w= strip width (m)

1.016 for this trial

sl v

]

strip speed (ms—l)
= 1.833 for this trial

<
I

then we obtain x as -0.75. The negative value implies a
transport lag longer than the pure distance/velocity lag
between the roll gap and the shapemeter,by 75% of the strip
width. This is not reconcilable with the present under-
standing of the system, and an alternative explanation

must exist. This presumably will include the fact that a
ramp is injected, rather than a step, but even measuring
from the ends of the ramps, the value of Tsl is still 1.6
seconds, giving x#~ 0. This implies that a shape change
does not propagate away from the roll gap, and should be

treated in the same way as a gauge change so far as its

dynamics are concerned.

If this is the case, then the shapemeter should
measure a straightforward stepchange in shape. Now the
shapemeter time constant for a strip speed of 1.83 ms~ 1
is 1.43s (from the table following equation (4.4) in the
previous chapter). If the two dashed responses of
figure 5.3 are plotted on a sheet of graph paper, together
with the step response of the shapemeter (assuming the

shapemeter to be represented by T:legg),then the two

responses lie one on either side of the shapemeter response.

This does initially suggest that step changes are being
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measured, but it must be borne in mind that the time constant
of the exponential rise in measured shape expected from
equations (4.2) and (4.3) can be very small. For the

values used in the trial, equation (4.3) predicts a time
constant of approximately 0.17s. This would be entirely
swamped by the shapemeter dynamics, and so cannot be

discussed further.

It should be pointed out that other trials have yielded
similarly puzzling results also, whilst still others have
supported the theories of Chapter 4, section 4.4, con-
cerning the propagation of shape from the mill to the
shapemeter. It is concluded that more variables affect
this problem than was anticipated (for example, strip
tension may have an effect), but due to the difficulties
in executing a well-controlled trial, with well-scaled
results and low noise disturbances, the proposed model will

be accepted for simulation purposes.

§5.4.4. Closed Loop Controlled As-U-Rolls

As mentioned in section 4.2, the As-U-Roll actuators
must be closed-loop position controlled in the overall scheme,
and this is done as per figure 4.2. The design and
implementation of the controller are discussed in sections

7.6 and 8.5 respectively.

During the early commissioning of these systems step
responses were obtained for these closed-loops, and figure
5.4 depicts one such, with the control loop being executed

every 50 ms by the microcomputer system. The deadband in
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the controller was tuned in order to obtain a response
which occasionally exhibited a little overshoot (as in

the figure); but usually settled on the final value
immediately, thus saving wear on the mechanical components.
The deadband selected was of total width 0.833mm in

figure 4.2. Therefore, including the effect of the

gain ka’ the total effective deadband was 2.5mm or

+1.25% of total rack travel.

In the figure (5.4), the command for the As-U-Roll to
raise was isgued by the microcomputer at time=0. It can be
seen therefore, that a deadtime of approximately 89ms
existed. This constitutes the time taken for the various
relays and hydraulic valves to operéte. When the rack was
returned to the zero position and the test repeated, the
deadtime amounted to approximately 107ms. For the first
test, the rack had previously been moved to zero from the
negative direction, and for the second test from the positive
direction. The differences in these deadtimes, of 18ms,
may therefore be tentatively ascribed to the presence of
rack backlash. The measurements are very imprecise however,
due to the difficulty in distinguishing from plant recording
the exact instant at which the rack begins to move, in the
presence of measurement noise pickup. Nevertheless, for a
rack velocity of 10mm s-l, this gives a backlésh of 0.18mm.
ﬁllowing some time for acceleration of the rack from rest,
an estimate of O0.3mm was reached (see fig.4.2, '"actual"

values).
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It is not particularly clear from figure 5.4, but
some very slight evidence of rack acceleration was present,
which appeared to be complete after approximately 190ms.
If a first-order lag approximation for the valve and
hydraulic motor is made (see fig.4.2) this leads to a time
constant estimation of say 50ms (visible aéceleration
complete two time constants after start of motion, and
some time for pressure build-up to overcome stiction

etc before that).
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CHAPTER 6
CONTROL SYSTEM DESIGN

6.1 Introduction

This Chapter describes the design of the control
scheme itself. Since this scheme is to be implemented on
the plant, the design must be practically applicable.
After much discussion with the present author concerning
the operation of the Sendzimir mill; and the requirements
of such a control scheme, Fotakis and Grimble ((17),(18))
developed the basic principle of the scheme to be used.
Their work is acknowledged wherever appropriate, but
their results given in (17) and (18) are not immediately
applicable in practice. Therefore, although the design
principles of Fotakis and Grimble are preserved intact,
the present author has re-worked a number of aspects of
the scheme so as to achieve a practicaily realisable
system, The most important of the author's contributions
are in the area of parameterization of the measured strip
shape signals, and the expansion of the square system of
Fotakis and Grimble (in which eight shape measurements
were considered throughout for convenience in matching
the number of As-U-Roll actuators) to a non-square
system coping with a variable number of measured shape

signals, depending upon the width of strip being rolled.

- 6.2 Parameterization of Shape Measurements

The shapemeter devices used on the Sendzimir mills
in question, are furnished with thirty one measuring zones
across the mill width. Clearly, for different widths

of strip being processed, there will be a different
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number of measuring zones registering the strip shape.

In fact, in the present application, this number may lie
in the range seventeen to thirty one. This wvariable
number of plant measurement signals, if used directly,
would pose problems to the control system. It is
therefore desirable to reduce the number of signals
representing the measured shape to a number of parameters
which is independent of the number of signals involved.
This may be done by fitting a series of polynomials to

the strip shape measurements as described below.

From observations of the plant during rolling, and
the recordings referred to in Chapter 5, it was found
that a typical shape of strip produced on the mill before
the automatic system was introduced took the form of a
éentral maximum of intermnal stress together with two
internal stress minima more or less symmetrically placed
on either side of the maximum (figure 6.1). It is
consequently possible to represent this shape to a
reasonable degree of accuracy using fourth order poly-
nomials. Higher order behaviour has, however, been
noted, and the effects of this are discussed ih Chapter 8

(section 8.6). It does not affect what follows.

Let Pi(wj) be an i'? order polynomial (whose form
will be chosen later) in w, evaluated at the value of w
given in the jth element of a vector w, and write

P.. = P.(w.) for short, where
ij i3

order of polynomial, i=1l,4

H.
n

section across strip width, j=1,N where

[N
n

N= number of covered shapemeter rotors.
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Note that the zeroth order polynomial (i=0) is not re-
quired. (since shape is always measured as deviation from

the mean there will never be any zeroth order offset).

Let the vector xme.ﬁN represent N measured values of

strip shape.
Let the vector ﬁmER4 represent the four parameter
values corresponding to Yo (assuming a ch order fit

for the present).

Thus,
A A A A
yml(t) = P,y (t)+P21ym (t)+P31ym (t)+P41ym (t)+ 81
! 2 3 o
3 j | L. (6.1)
. A A A A ‘
ymN(t) = PlNyml(t)+P2Nym2(t)+P3Nym3(t)+P4Nym4(t)+ SN

where §§RN represents a vector of fitting errors.

In matrix form, we rewrite equatiohs (6.1) as

~T A '
y (t) = X_ ¥ (t) +§ e . .. (6.2)

where X is given by X5 Pij’ i=1l,4, j=1,N

We therefore have the problem of determining gm(t)
given Im(t) and io’ so as to minimise the fitting error §.
This is accomplished by linear regression (least-squares),
when it can be shown (see for example (44)) that the

. A :
best estimate for zm(t) to minimise § is given by

oy (0 Ce e (6.3)

~

(Note the interchange of Xo and i: compared with the stan-

dard classic equation, due to the form of (6.2)).
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Now, there is likely to he much computation involved
in the calculation of (XOX:‘;[;).—1 in equation (6.3) for a
general io matrix. However, this is greatly reduced if

is chosen to contain
i=1,4 '

the set of polynomials Pi

only orthogonal polynomials. In this case; from the

definition of orthogonality,

N

Eg PP, .
521 kji"%j
kA9

and it therefore follows that all off-diagonal elements
of the matrix (§O§Z) are zero. The required matrix

(ioizi—l, which will be called L, is therefore given'

simply by

ik j=1 Y
(6.4)

itk

if a set of orthogonal polynomials from first to

fourth order is chosen for the Pi(wj)'

There are many such sets of polynomials in the
literature, but one set in particular has a number of
astonishing properties. This is the set of Chebyshev
polynomials, and it can be shown (see ref.(45)) that omne

such property is that if a function is approximated by
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a number ofbdifferent sets of polynomials, of equal degree,
then the least maximum fitting error will always exist
when the Chebyshev polynomials are used. This is called
the "minimax" approximation, (but is to be had only at

the expense of a larger mean square error than other
methods). Grimble and Fotakis chose the Chebyshev poly-
nomials for parameterization in their work because of the
minimax benefit,; but unfortunately these polynomials are
not practically suited to the problem in hand for other

reasons which will now be discussed.

The Chebyshev polynomials are orthogonal over the
following set of N discrete points equally spaced in the

angular domain:-

T
. T 2’ (N-2)T
_9_ = 0, 'N__'ls_ﬁ geseecese TJT—— 97?: 3 but are nO't

orthogonal over equally-spaced points in the limnear

domain as assumed by Fotakis and Grimble.

When translated into the linear daomain as

\

w. = cos B. we obtaih
J J T
T (N-2)w
W = l,cos(N:I),......,cos N-1 s =1 for the same N
points,
(j-1)1
i.e. Wj = cos N-1

J=1,N

Thus, for say twenty one covered shapemeter rotors
(N=21 above), the Chebyshev polynomials would require
data at points across the stfip (normalized to lie in

(-1,1)) the first few of which would be given by
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w = (-1, -0.9877, -0.9511, -0.8910, -0.8090, etc.)T
(for
el 21, 20, 19, 18, 17 etc.)
. o . .(6.5)

whereas the shapemeter rotor centres for twenty omne
covered rotors similarly mnormalised would lie at evenly

spaced points in the linear domain:-

ws (-1, =0.9, =-0.8, -0.7, -0.6 etc)t .. .. .(6.6)

(see (6.7)below)

Clearly the values in (6.5) are not those which occur
in practice (6.6), and correct interpolation of (6.6) to
the Chebyshev points would be out of the question for
reasons both of accuracy at the extreme ends of the
vector w and the expense involved in terms of com-
putational effort. We therefore reject the Chebsyhev
polynomials in favour of a set of polynomials which,
whilst retaining the properties of orthognality to allow
the use of the simple equation (6.4), will operate on data
given at equally spaced points across the strip in the

linear domain.

As an aside at this point, it is to be noted that for
N covered shapemeter rotors, the vector w of equally spaced
points in the linear domain, normalized in y_e(—l.,l)9 is
given by

2(j-1)
Wj = N-1 -1 e e e . .(6.7)

j=1,N

(by which the values of (6.6) were enumerated)
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Returning to the choice of polynomials, the author,
together with Dr. John Barrett (46), decided that the
Gram polynomials were a much better choice. These may
be constructed by applying the Gram-Schmidt orthogon-

3 etc.(47)9

alization method to the sequence lgw,wz,w
but for computer usage the present author prefers to use
a set of recurrence relationships. A suitable recurrence

relation is given in (48) after Forsythe, and takes the

form

P, = P (w) = (w-¥)P,  (w) - §P.  (w) ... .(6.8)

izl,q

subject to Po(w) =1, P-l(W)=O

where ¥. =
i

1"
0

Fa
Now let Ek
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then for s equally spaced in (-1,1), which is our

concern,

zl=§3 =§5 etc. = 0O

and it will be found in the recurrence relations (6.8)
that this leads to Xi = O for all i. This simplifies
the recurrence relations sufficiently to obtain the first

four polynomials explicitly as:

xol'j = Pl(wj) = Wy
2 1l 2
onj = PZ(WJ.) = Wy - 5 =
:?
= - 3 _
x°3j = P3(wj) = wj - W, S ... . (629)
=
2 _4 6 2 6 4
R b - G ST,
x, = = Pé(wj)=wj+wj' +
b j NE? - (52)2 NE? _ ng)z

N
k .
whereS" = ;;§§(w35 as above, j=l,25.0.,N

In practice, the first two polynomials are cal-
culated explicitly, and the remainder by the recursion.

T

Appendix 5 gives examples of the XO matrix generated

by (6.9) at the points given by (6.7) for a fourth order
fit, and N=8 (to allow direct comparison with the matrix
of Fotakis and Grimble given in (49) and for the more
practical case of N=21. The matrix (ioio;g‘i is also

given for each case. (Where X, = Pij as above).
ij
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To check the accuracy of fit using these polynomials,
an arbitrarily selected vector of measured plant values
Y for N=19 covered shapemeter rotors was taken (see
fig.6.1). Using the Gram polynomials (6.9), the
estimated parameter values ﬁm corresponding to Yy, were
calculated using equation (6.3). An "estimate" of the
measured shape QE was then obtained using QE = i:&m

(c.f. equation (6.2)) and the result is plotted ontop of

the original data (of fig.6.1) in figure 6.2.

It can be shown that for a large number of points
N, the Gram polynomials approximate to the Legendre
polynomials in suitably normalised form. The Legendre
polynomials are calculated by a much simpler recursion
than (6.8) (see for example (50)) and these were there-
fore also tried on figure 6.2 to see if N€E(17,31) was
large enough to allow their use instead. However,
the lack of fit was not encouraging, and therefore the

Gram polynomials are retained.

6.3 Target Shape for the Control System

The purpose of the control scheme is to maintain the
stfip shape at some desired form of internal stress dis-
tribution in the face of varying plant conditions.

In line with the work of Fotakis and Grimble, this is
achieved by parameterizing the measured shape values

(at regular intervals in time) using equation (6.3), and
controlling the resulting vector of parameter values.

A set of four reference parameter values at which the

resultant vector of (6.3) should be held constant (as-

suming again a fourth order fit) must therefore be given,
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but how are these to be provided?

In one mode of operation, the mill operator can
press a button labelled "hold present shape', in case some
shape is transiently achieved which is considered de-
sirable for some particular reason. In this case,; the
vector of parameter values given by (6.3) (at the instant
the button is pressed) is used as the reference vector,
for the remainder of the current pass through the mill
(unleés the 'hold® mode is cancelled by the operator in
the meantime). This mode was installed in respanse

to mill personnels'! suggestions.

Of greater interest; and more conventional for
control purposes, is the case where a certain "target shape"
is specified to the controller from the outset. For
reasons of plant operation,; this may differ on pass
number 1 of a coil from subsequent passes, but in
general the desired shape laid down by the plant per-
sonnel takes the following form. For all strip widths,
the extreme outer rotors covered by the strip should
be at ~1.0 units on the operators' shape display (which
is arbitrarily scaled from +4+5.0 to -5.0 units). The
next rotor towards the strip centre from each edge should
be at -0,5 units,., All the remaining rotors should be
as near to zero as possible -~ they will have to be at
some small positive value in practice of course, as
shape is displayed with respect to mean tension. It is
therefore neceésary to determine the parameter wvalues
which correspond with these ideal shapes. To do this,

the vector Yo used in the previous section is calculated
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as follows.

shapemeter rotors,; ideally
Yo = -1.0 div.
1
l}’n = —005 diV.
2
h = O div.
J
J

giving the form of figure

is displayed with respect

3,N-2

6.3(i).

to the mean,

For a strip width corresponding to N covered

"‘loo di'V'o

However, since shape

the horizontal

zero axis in fig. 6.3(i) must be moved downwards (as

shown by the dashed line) until the sum of the values

at rotors 1,2,N-1 and N balances the sum of the values

at rotors 3 to N-2,.

If the extreme end values are to

be maintained at a true level of -1.0 divisiony; it can
be shown, by a trivial exercise in geometry, that the
target shape having zero mean is then given by
= -1.0 div. = -=1.0 div.
Zml XmN
N-6 N-6
Y. = - oy_g div. Yo, == ony_g dive [+-(6.10)
2 N-1
Yo = NEB div,
J
j=3,N-2

The reader may verify that + +
Xml sz sz-
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Thus, for 17 covered rotors, (see figure 6.3(ii))..

= Y ~1.0 div. = = —00393 div.
zml My xmz Xm16

+0.214 div.

to
imB Xm15

Whilst for 31 covered rotors,

= = -1.0 div. = = —0.446 div.
Xml Xm31 sz szO

to = 4+0.107 div.
1m3 1m29

Whilst employing these values to obtain the cor-
responding parameter values &m from equation (6.3) using
appropriate . io matrices given by (6.9); it was noted that
the resulting values for seventeen or thirty one covered
rotors were not greatly different, especially in the
fourth order parameter. Therefore similar values for all
possible cases of covered rotors (N= all odd numbers
from 17 to 31 inclusive) were calculated, and the mean
value of each ﬁarameter was selected. Figure 6.4 shows
-the fitting errors introduced by this practice for the
case of seventeen covered rotors -~ the worst casé dué to
the lowest number of points making the ideal shape least
attainable of all cases by a fourth order curve. However,
were this shape to be obtained in practice the plant
personnel would certainly not object (since such a flat
shape is not easily attained under manual control).

Zero mean is automatically retained due to non-use of

the zeroth-order polynomial.
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This use of a single target vector for any strip
width is a significant discovery by the Author as it
éompletely removed any need to sglect target shapes
according to strip width, thus saving on éomputing time

and storage of data.

6.4 Control System Philosophy

Since we have here a plant with up to 31 shape
measurements,; plus measurements of speed; tension, width,
gauges etc.; and we need to control eight As-U-Roll
actuators and two sets of first intermediate roll
actuators, a multivariate design would seem appropriéte.
Howevery; the mill matrix Ep given by the static model
has some unusual properties which must be considered.
Due to the symmetrical nature of the mill, given that
the left and right hand side eccentrics are set at
equal points, a movement of As-U-Roll 1 will cause an
identical shape change from front to rear of the strip
as the same movement of As-U-Roll 8 would from the rear

to the front. Thus if the mill matrix is partitioned

o~

G, = (g; &, g5 8, 85 8; &, 85 )

— — T —— T e — S——

where the g; are all N-vectors, then gg = &

with the order of elements reversed, with the

&, = &y
order of elements reversed and so on. Also, since shape
is displayed with respect to mean, the elements of each
of the g5 vectors must sum to zero. Furthermore, if all

eight As-U-Roll actuators were to be changed by the same

amount, then no shape change would occur (only a very
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small gauge change), therefore every row of Ep also sums
to zero. These properties mean that for the case where
the strict inverse of Ep is defined (i.e. for N=8) the
matrix will be singular and the inverse therefore mean-
ingless. In the general case of gp as an N*8 matrix,
the natural inverse could be found (see for example
Lanczos (51)) but this teo would have no significance.
This problem would appear to rule out the direct use of
the Characteristic Locus (MacFarlane and Kouvaritakis (52))
or Inverse Nyquist Array (Rosenbrock (53)) methods, as
these would both produce a controller highly dependént

o~

upon Gp—l due to the fact that all the interactions in
the system occur in Ep. Optimal control methods applied
to a state-space representation of the system could be
considered (54), but would be expected to be sensitive
to parameter variations due to the presence of non-
linear elements. The method chosen by Fotakis and
Grimble and maintained here, is therefore to linearise
the plant and use the parameterization of the measured
signals (given correctly by the present author in
section 6.2 above) to introduce a measure of redundancy
which can be used to obtain an invertible transformed
system (see below). This can then be compensated by its
inverse so as to form four identical single-loop

systems which can be treated by classical concepts

(e.g. Bode diagram) to obtain the required controllers.
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6.5 Control System Design

Figure 6.5 depects the control system in block
diagram form. The actuator transfer functions Ea(S)g
mill matrix Ep‘~«, strip as(s), shapemeter Em(s) and
parameterization io matrices have all been previously
defined. The matrix i which compensates for the fact
that the Gram polynomials are only orthogonal (rather
than orthonormal) has .also been defined as
)

L= (ioio “1 (if the Gram polynomials were orthonormal

‘would reduce to the unit matrix). The means of pro-

(i}

viding the reference parameters Y. has also been discussed.

Having controlled (in some manner) the four para-
meters &m by operating upon the error vector g;zr—&m,
we obtain the control vector 2;ER4 (assuming the use of
fourth or@er polynomial fitting). This must be depara-
meterized so as to give suitable control signals to the
eight As-U-Roll actuators (note that the comntrol of the
first intermediate roll lateral adjustment will be in-
cluded at a later date). This could be achieved in a
number of ways. There are, however, constraints upon the
motion of the As-U-Roll actuators relative to each other
which are imposed by the mill manufacturer (see Chapter 8,
section 8.2), and therefore the As-U-Roll actuator
positions are constrained to lie on a smooth curve. For
this reason, and to be consistent with the method of
parameterizing strip shape discussed in section 6,2 above
it was decided to use the appropriate goT matrix for this

purpose., Now, since the location of the As-U-Roll actuators
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is fixed relative to the mill housing and shape
measurement points, it would seem sensible that a constant

deparameterization matrix could be used.

Referring back to equation (6.2), if the fitting
error § has been minimized in a least squares regression,

then T
A

L™ Xo Yy

In the same way, on figure 6.5, the u, are (con-

trolled) parameter estimates for the actual control

signals 2, and we therefore write
~T
ag = X e (6.11)

~

where XT is calculated according to the method of
equation (6.9) with- N=8 and therefore j=1,8. This gives
% as a 4*8 matrix, so that X' is 8*k (which is

dimensionally correct).

It can therefore be seen from the block diagram that
we now have the entire knowledge of the transformed

plant given by

_2_(.s_).~~ ~ ~T
y(s) = pls) L.X .G, X .Ep(s) - e - o(6.12)

which is a four input,; four output system.

where p(s) and z(s) are the poles and zeros respectively

of gm(slgs(slgé(s).
Now, let the transformed plant matrix be given by

Gn = L xo ep X e e e o . (6.13)
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(Note that we are about to investigate the symmetry

r~

properties of GT and so we can now consider X rather
"~
than Xo for convenience).

~

Let X be partitioned into (il iz)T such that X,
contains the low order (first and second) terms and
iz the high order (third and fourth) terms. (Thus il

and iz are both 2*8 matrices).

The transformed plant matrix (6.13) can then be

expressed in partitioned form as

X.G X X.6 X

v oIl s P xT_3| 191 17p 2
Gp = L | X, G [xl Xz]_L o e .. (6.14)

X, X6 X, X,6 X,

The contents of the four terms in the partitioned
matrix (6.14) are identical to those found by Fotakis(56)
and Grimble, but note that the notation of X and ET is
intetchanged here due to the conventions of polynomial
evaluation adopted, and the matrix i is omitted from
Fotakis and Grimble's work as they assumed their poly-

nomials to be orthonormal (giving i:ig), which is not

the case in practice.

During calculation of the matrix ET by (6.14) using
various versions of the plant matrix Ep, Fotakis and
Grimble noted that the two blocks on the diagonal of

~

(6.14) namely XiGpXiT tended to become diagonal.
Furthermore, the lower off-diagonal term (XszilT)
tended to wvanish compared with the upper off-diagonal

T T . . . o . .
term (XleX2 ), which remained significant in comparison

with the diagonal blocks. Thus the entire matrix ET

was of a dominantly upper-triangular form (the L matrix
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being purely diagonal as given by (6.4)) and was there-
~ fore invertible. This allows the possibility of de-
composing the entire plant to four single-loop systems
by multiplying by a precompensating matrix equal to

the inverse of the transformed plant. Therefore, for
use in figure 6.5,

~ ~ =1
P = Gp e e v . . . (6.15)

These matrix characteristics noted by Fotakis and
Grimble however, would appear to be characteristics due
to the use of the Chebyshev polynomials, as they have not
been reproducible by the present Author using the Gram
polynomials. Similarly useful characteristics are
however apparent. The transformed plant matrix
produced by using the Gram polynomials to give i,% and iT

in equation (6.13) always tends to the multi-diagonal

form: -
[ a 0 b 0
~ (o) c 0 d
GT =
e f 0]
0 0 h
B -

~

for all Gp matrices investigated. The version of G
\

corresponding to the case of eight (theoretical) covered

rotors is given in Appendix A5.6. The determinant of

~

the GT matrix is given by

IETI = acfh - agfd - hecb+bdeg

and the terms (agfd), (hecb), (bdeg) are all small compared

with the diagonal product (acfh). The matrix is therefore
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again always considered to be full rank, and the pre-
compensator given by

-~ ~_1
P = GT

as before.

Fotakis and Grimble have investigated the use of
such a precompensator (17),(18) bearing in mind the un-
"~
certainties and inaccuracies in the computation of Gp’

and showed that it is acceptable.

Having reduced the problem to four single loop
systems, we return to equation (6.12) and having effectively
removed any matrix interaction we .are left with a system

including the precompensator as

1420(5)

&m(s) =

(s) ~
) S

The dynamic terms, as mentioned before, are identical

in each loop and are given (from the block diagram) as

N
~
n
~

= gm(s)gs(slga(s)

E

Using the various values given previously (for a
medium strip speed of 3ms—l and 1.2m wide strip) we thus

obtain from equations (4.2),(4.3),(4.4) and (4.1)

Z(S) Oo 16 e-0.37s . (6 6)
p(s) ~ 2 wcoolo.l
P (1.+ 0.74s)(1+0.125)(s“+0.8s+0.16)

For which a Bode plot is given in figure 6.6, and
Nyquist plot in figure 6.7. These indicate a system having

a gain margin of 14,8 dB, and a phase margin of 180°.
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An integral controller will ensure that this system has

zero steady-state error, and can also be designed to give

a gain margin having the usual value of say about 12 dB.
K

We may write the controller transfer function as —

where K_ is the integral gain.

I

Using the conventional classical design technigues
on the Bode plot, we obtain KI = 0.1 for the dynamic
compensator, giving the overall open loop transfer function

as

-0.37s
z(s) - 0.016 e _,(6.17)

p(s) s(1+0.74s) (140.12s) (s2+0.85+0.16)

for which the Bode plots are given in figure 6.8, and the
Nyquist plot in figure 6.9. The gain and phase margins

are then 12.4 dB and 56.3° respectively.

Using the same controller at low (1ms™1) and high
(say 8ms™1) strip speeds, we obtain (for the same strip

width) the following:-

Gain Margin (dB) Phase Margin

(Degrees)
Low speed : 6.4 35.2
High Speed: 15.2 60.6

It can be seen that at low speeds, the system
response will be more oscillatory than one would like.
This leads to the possibility that a different controller
may be required at very low speeds. Furthermére, at
high speeds, although undoubtedly stable, the controller
is fairly slow. Nevertheless, this is not a severe
problem, as changes in @he controlled variable (strip

shape) are generally fairly slow phenomena. Alternatively
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the integral gain could be reduced so as to give a

greater margin of stability at low speeds, at the expense
of response time at other speeds. This may well prove
acceptable, due both to the reason just mentioned and to
the fact that the limits of As-U-Roll relative motidn will
probably be reached fairly quickly whatever the response

‘time (within reason) - see chapter 7.
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CHAPTER 7
DYNAMIC SIMULATION STUDIES

7.1 Introduction

A complete multivariable dynamic computer simulation
of the plant, as described in the previous chapters, was
written in oréer to compare the relative performance of
various controllers; test the effects of different
controller parameters and investigate the system's
robustness in the face of uncertain gain matrices and

mis~matched matrices and operating conditions.

The model is written in FORTRAN (specifically
FORTRAN 77) and implemented on the PDP11/70 computer at
B.S.C. Sheffield Laboratories under the RSTS/E operating

system,

Appendix 6 gives the mathematical techniques used for
the simulation routines. The package was written by the
author, since no dynamic simulation package was other-
wise available, From the appendix it will be seen that
thé routines in the package (with the exception of that
for the transport delay) are all single—ihput-single-
output routines. This is of no consequence in the present
context; as all the system dynamical blocks are non-
interative, and so the full state-space treatment would

reduce to purely diagonal systems in any case,
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7.2 Description of the Simulation

The system as simulated is shown in figure 7.1, and
comprises the mill gain matrix produced by the static
model (Chapter 3), the dynamical eléments of the plant
(as modelled in Chapter 4) and the control system (of
~chapter 6.) The system state vectors for 8 control
actuators, 4 controlled parameters and N covered shape-

meter rotors are identified as followS.e.o

206 R8 positions of the eight As-U-Roll actuators at
the start of the simulation (mm from datum,
positive downwards). Also allows injection of

"noise" onto the As-U-Roll control signals.

As-U-Roll actuator position setpoints (mm from

datum, positive downwards).

a €R Actual As-U-Roll actuator measured positions

(mm from datum, positive downwards)
Ipe‘RN, 17¢N¢31 Shape at roll gap caused by EP operating
upon Ep' (Nmm-z). N depends upon strip width

and the yp are given at positions
Hisl,N ‘
corresponding to the centres of covered éhape—

meter rotors.

Xde Ry 17¢Ng31 Vector of shape disturbances at the
roll gap, used to simulate incoming strip shape

variation effects. (See also Y., below)

Yy € R", 17<Ng31 Shape in strip at shapemeter (Nmm-z).

lmé R, 17sNg31 Shape measured by shapemeter (Shape-
meter system output)(Nmm-g).

XOG R, 17<sNs31 Shape offset vector (Nmm—z)° Allows

Y, to be initialized to any desired value at

the start of the simulation (when Y  would

237



(43]1044U0] JapiQ y4uno4) wesbeig uotje|nwis dweuiq

Lo AL
JSRUS adeys duys
pa4edipul
R N\ T B
3 Nx¥ A
(4xa} 32 N % 14
yajins 7 wp ~ . ~
137133} I
-aweded ~0UOY4 4O
N uou Joj
Jojesuadwod
| 1
s
A
ey .l\:/
% Z ﬁm u@
(5°g | diys ‘
= N X e8| .
“ e e e mm
% N ApBXN R . @ X8 I Lt
WILLY R R (s — X | d (519 y
- @ - e
N X 1B sJojenjay * 197143} 10Jesua Rty °
i W 10y -N-sv °s -gwesedap  -dwolaud

238



otherwise be unalterably fixed by the values
given in go). Also allows injection of
"measurement noise" onto the measured shape
signals and simulation of out-of-action

measuring zones.

&te;}&lli Shape parameter values given when the matrix
io operates upon the measured shape signals.

2m6§R4 Least squares estimate of the shape parameters
corresponding to Y-

xre R4 Setpoint values for shape parameters.

e € R4 Shape parameter error.

Ece Rli Controller outputs due to the error e.

EPE RZL Controller signals operated upon by the diagonal-
izing matrix 5.

_ce R8 As-U-Roll actuator correction signals (to be
added algebraically to 20) given when i?
operates upon Bpo (mm, positive dowvnwards).

N

xwe R, 17sNg31l, Version of zp perturbed by Y4
(x, = ¥, +¥)
The system matrices are identified as follows:

Ga(s) is the 8x8 diagonal matrix of linearized As-U-Roll

actuator transfer functions given by

0.16 ~

~ T .
G,(s) = 2, 5.8s40.16 8 (c.fe equazli?

where 58 is the 8x8 identity matrix.

Ep is the Nx8, 17¢Ns31, matrix given by the static mill
model relating strip shape to As~U-Roll positions.
(Nmm—B)(equation 3.124)
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~
Gs(s) is the NxN, 17¢Ng31l, diagonal matrix of strip
transfer functions given by

e[-(2-9~1-5w)s] ~
G_(s) = v o Iy

Lty
(c.f. equation 4.3)

Em(s) is the NxN,;17s<Ns31l, diagonal matrix of shapemeter

transfer functions, given by

l ~
_ . I (c.f. equation
Gulsd = 4, st N b.k)

However, this is shown switched "out of circuit"
as it were, because since Es(s) was identified
by plant tests upon the measured shape signals

~

Y9 then Gm may be automatically included in

~

Gs unless Gm is specifically extracted,
io is the 4xN, 17sNs31 matrix which parameterizes the
measured shape vector Yo into first, second,

third and fourth order orthogonal components.

is a b4x4 diagonal matrix which compensates for the

(@l

fact that ig\ and io are not orthonormal, and
is given by

~ ~~T__l

-L = (deo ) i
Hence ﬁm is obtained as the least squares

estimate of the parametefs.

Ec(s) is a A4x4 diagonal matrix of controllers given

by for example

0.1

g (s) _ 0.1 g (s) = 2
€11 ¥ TS Can s
0,1 0,1

g (s) = - g (s) = -

033 S (311‘[i S

(Provision is made for proportional terms to be

introduced if required).
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jae 2

is the 4x4 matrix which diagonalizes the system to
allow use of non interactive controllers. It
is given by
P= (IX GX
iT is the 8x4 matrix which deparameterizes the con-
troller outputs so as to give the As-U-Roll

positions changes 2.

7.3 Calculation of Initial States

It is assumed that the sysfem is at steady-state
before the simulation begins. The method is to specify
existing As-U~Roll positions and existing strip shape,
and from these to calculate a consistent set of initial
values of all the other sttes in figure 7.1, This in-
cludes an initial calculated value for the shape set-
point Y. vectory, since this must be consistent with the
existing shape given above if a steady state is assumed
to exist. The matrices io’ 1 and P are obtained as per
Chapter 6, based upon a knowledge of strip width. The
ﬁs matrix is obtained as in the previous section, using
knowledge of strip width and speed. All other matrices

are fixedy; so all the necessary information is now to

hand.

Given the existing shape vector Y2 We can immediately

calculate &t and &m as

A ~
Xt = Xo Xm
~ A
%:L_Xt

Now, for steady state

2:0

e Ly = ~In
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Given also the existing As-U-Roll rack position vector
a  and assuming steady state conditions, the transient
~
response of the actuators Ga makes no contribution;

o~
therefore, since the gain of each diagonal element of Ga

is unity, it must be the case that

ag = 2,

Furthermore, at steady state, no change in actuator

positions can be demanded, therefore

a = 0
—C
and Eo = Ed

Since a,_ is zeroy, we see that

-p
oo u = 0

—c
and since we have previously shown that the error
vector e = O; then in order for u, to be zero it is
clear that the outputs of the proportional and integral

portions of all the controllers must be zero.

Finally,

= E a
L p

P 2, and, since Yq = O initially, Yo = Yp

andy, since the strip transfer functions are of unity

gain, and steady state obtains,
Yo = ¥,

Therefore, in order to make this consistent with Yo

Yo = In ~ L
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The initial condition of the simulation is therefore

completely defined, and can be summarized as:-

. *
Given Ep and Yoo

e = u = u = 0
= 0
—C
=0
XLy .
~ (7.1)
= = = G a :
Ip = Ls = Ly T Tpp

g

I
o
0
>
)
4

~A
Lt

14>

.

All controller outputs (P&I) = O

*Note that these vectors are specified to the program
in terms of divisions on the operators displays for
convenience. The program converts Ep to mm of rack

movement from the datum position, and Yo to Nmm-zo
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7.4 Post-Initialization Operaticn of the Simulation

After the system vectors have been assigned their
initial values (equations (7.1)), the simulation may
proceed in a number of ways, depending upon the reasons

for which it is being run. These include:-

a) In order to simulate the "bump" which would occur
when the mill operator selects automatic control,
(unless measures are taken to prevent it - see
section 8.3), the vector Yy, may be replaced with a
new set of target parameters. Thus,; the setpoint
shape for which the controller is to seek can
replace the present (manually) rolled shape as a

step function.

b) The vector a, may be perturbed in any desired manner
to investigate the ability of the controller to hold
the initial shape in the face of "noisy" As-U-Roll
control signals. It will also be possible for the
mill operator to move the actuators whilst in the

"auto" mode under certain conditions. These

effects can also be simulated at 20°

c) The vector Y, may be perturbed in any desired manner
to investigate the ability of the controller to hold
the initial shape in the face of "noisy" and/or

non-operational shapemeter segments.

d) The effects of variations of shape in the incoming
stock to the mill (including possible step changes
in shape where incoming coils are welded together)

can be investigated by appropriate perturbations of
the vector y .
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Whichever of these modes is employed, the procedure
by which the simulation progresses is identical, and may

be summarized as follows.,

Firstly, the integration step size is selected as 0.1
times the smallest of the system time constants.
(The user is given the option of selecting a
different step size, should he so wish).

The number of integration steps over which the sim-
ulation is to run is entered.

The user can then select listing and/or plotting of
any of the state'vectors.

A step in input shape may be selected, to be applied
after a specified interval.

The user must entef the interval between samples of
the strip shape by the controller. This allows
the effect of different controller sample times to
be investigated. The inclusion of this effect is
considered important, since a computer-based con-
troller sampling at an ill-chosen rate can easily

destabilize an otherwise stable scheme.

The method of limiting relative As-U-~Roll actuator
movements (as mentioned in section 4.2 and dis-
cussed in section 8.2) may be selected to allow
the "unlimited" operation of the control scheme
to be investigated, which is not allowed in
practice. Thus the As-U-Roll actuators can be
limited correctly (as in Chapter 8) or they can
be completely unconstrained,; or they can be

limited to the working range of the racks but
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without the relative motion constraints., The pur-
pose of these choices is to allow simulations to
reach steady-state; so that the meeting of design
criteria can be checked. Otherwiseg; it is likely
that the relative motion constraints would come
into action (and restrain further control action)
before the system had reached its natural steady

state.

Several options are then offered to the user (by the
program) pertaining to outputting of results.
‘Any state vector or vectors in figure 7.1 can be
output to a terminal, to a disc-based data file,or
both, in tabular or plotted (time response) form.
The data sent to file can be subsequently offlined

to a line printer for examination.

The simulation then runs in a manner fundamentally
identical to the simple example given in section 7 of
Appendix 6, with results being updated and output as

previously specified by the user.

7.5 Simulation Results

The vast range of tests which could be performed
using this extremely flexible model will be appreciated
from the foregoing sections. It will also be appreciated
that the number of such tests which can be practically
performed on a time-sharing installation of mediocre
power (slowed mainly by its operating system in this case)
is somewhat more limited! 1In fact'it is considered a

feat of programming that this model (occupying up to
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100k byte of memory on another machine) was overlaid
into the 28k byte available space on the PDP11/70 at all!
Nevertheless, many useful runs were carried out, and some

of the findings follow.

For the basis of comparisons in the results which
follow, a "standard" set of input data to the model was
used. The strip width was taken to be 1610mm so that all
31 shapemeter rotors were covered. The initial input
strip shape was a typical early-pass shape measured

from the plant, and is given in Table 7.1

Rotor No. Shape Shape
(from front) (Nmm—z)’ (Operator's Display
Units)
1 78 1.95
2 36 0.9
3 8 -0.2
4 -36 -0.9
5 =52 ~1.3
6 -60 -1.5
7 -60 -1.5
8 -52 -1.3
9 =-42 -1.05
10 -24 -0.6
11 (0] 0.0
12 28 0.7
13 54 1.35
14 72 1.8
15 76 1.9
16 80 2.0
17 72 1.8
18 64 1.6
19 48 1.2
20 28 0.7
21 6 0.15
22 -16 -0.4
23 -32 -0.8
24 - =48 -1l.2
25 -56 ~1l.4
26 -56 -1l.4
27 =52 -1l.3
28 ' ~4h -l.1
29 -20 -0.5
30 24 0.6
31 80 2.0

TABLE 7.1 "“STANDARD" INCOMING STRIP SHAPE
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The As-U-Roll initial positions were always set to
zero. An integral controller having a gain of 0.l was
used upon each parameter error. The parameterization and
precompensating matrices are computed as per Chapter 6,
using the 31*8 mill gain matrix given in Appendix 5
(section A5.10). The target shape was calculated using
equations (6.10) with N=31, and was then parameterized
using the calculated parameterization matrix. This gives

us the parameter values of Table 7.2

Order of Parameter 1 2 3 4
Initial Shape (Table

7.1) -1,04 | -26.13 [ -9.41 | +570.28
Target Shape 0] -25.57 0] -84.60

Initial Parameter Error 1.04 0.56 9.41 654.88

TABLE 7.2 UYSTANDARD" PARAMETER VALUES (Units to
give shape in Nmm~#<) '

For a strip speed of 3ms—l (a medium speed), the
simulation was allowed to achieve steady-state from these
initial conditions. In order to permit the target shape
to be achieved,; the As-U-Rolls were not limited in any
manner whatsoever., The resultant time responses of the
four parameters of measured shape are shown in figure 7.2
by the traces labelled 1 to 4 (the traces denoted by the
"primed" indicators will be discussed later). It can be
seen that the system is "slow" by the normal standards of
rolling mill control schemes, but it must be remembered
that strip shape is in general a slowly-varying parameter,
there is a transport delay in the control loop (although

this is only relatively small at a strip speed of 3ms—l)9

248



(@Jnyie4 Jojoy e jo 433343 Duipn)aug) sasuodsay Jajaweded pauredjsuodun  Z-L°Dig
l

4

S -

hZ-

407~

W=

(12

(s) awiy

- T T L
— 8 o

4 JapJo JoJ 3}eIss
£0} | SJ3pJO JOJ m_mumg&

249



and the As-U-Roll actuators themselves are slow. It will
also be noted that the fourth-order parameter response
exhibits an overshoot of some 8% even at this speed of
response (i.e. the overshoot taken from initial position).
This suggests that attempts to increase the speed of
response would be unwisey, which has been borne out by

other simulation runs using different controllers.

Although the target parameters were achieved by the
control system, the final strip shape did not coincide
with the target shape in the simulatioﬁ° This is il-
lustrated in figure 7.3 which shows the initial, target
and final shapes corresponding with the parameter
responses given in figure 7.2 and discussed above. The
discrepancy is principally due to the errors in the gain
matrix discussed in Chapter 3 (section 3.12), whereby
As;U~Rolls 2 and 7 have dispfoportionately large effects
at sections of strip below As-U-Rolls 1 and 8 re-
spectively. This has led in this instance,; to a pro-
nounced "turning" in strip shape ét the strip edges (see
the figure) which would not occur in practice. The strip
shape has thus become markedly sixth-order in appearance,
and will not adequately be represented by the fourth-
order parameter fitting. Therefore,; although the
parameters havé been controlled to their target values,
the strip shape thus represented is itself in error.

Even so, it is a great improvement over the initial shape.

The major difficulty with figures 7.2 and 7.3 is that
in order to achieve this performance, the As-U-Roll

actuators (which were unconstrained) have had to adopt
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totally impractical values. This is shown in figure 7.3,
where the dotted lines on the As-U-Rolls graph represent
the physical limits of absolute As-U-Roll motion (t 5
divisions on the operator's scales), not to mention

the relative motion constraints which also apply in
practice! This simulation run was therefore repeated
with the correct As-U-Roll limiting algorithm (described
in section 8.2 of Chapter 8) included to constrain the
As-U-Roll motion. The resulting final shape and
As-U-Roll positions are shown in figure 7.4 together with
the same initial and target shapes previously given imn
figure 7.3. The obvious feature of figure 7.4 is the
negligible improvement in shape which was achieved before
the As-U-~Roll constraints prohibited any further action.
This underlines dramatically the very limited gain of the
As-U-Roll system alone as a means of shape control.
However, in practice the As-U-Rolls would not be expected
to cope alone with such a large shape error. The first
intermediate roll tapers would be positioned over the
strip in such a way as to greatly loosen the strip edges
(initially by the mill operator, but eventually auto-
matically when: the first I.R.s are included in the
control system). As the shape is displayed as a de-
viation from mean, this loosening of the edges will be
reflected in the display not only at the edges, but as

a relative tightening of the strip centre also. This
calls for an increase in mill crown (or camber) to

counteract it; and the As-U-Rolls are much more suited to

making such a change than to trying to remove the W shape
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as shown in figure 7.k. dbservations on the mill, of the
operators at work, confirm that this is in fact a typical
mode of operation. The weakness of the As-U-Rolls in
correcting the defect of figure 7.4 unaided is therefore
not serious. So far as these simulation studies are
concerned, the As-U-Rolls were always allowed to run un-
constrained (unless otherwise stated) so as to permit a
realistic steady-state to be achieved and to allow a

consistent basis for comparisons.

Having obtained an initial satisfactory response,
the'simula£ion was repeatéd under varying conditions.
The first of these was to investigate the effects of
non-operative shapemeter rotors. One rotor was selected
randomiy (rotor 6) and was caused to fail after 8 seconds
of the simulation. The mode of failure chosen was a
shape reading which is permanently off-scale in the
negétive direction (-225 Nmm—z) as this has been ob-
served in practice. The resulting time responses of the
parameters are shown as traces 1’, 2,, 3, and 4, in
figure 7.2. (Note that the step in the 3rd order
parameter caused saturation of the plotting routine -
hence the gap!). It can be seen that in spite of this
failure of rotor 6, the target parameters are achieved
after the failure, albeit in a more oscillatory manner.
The strip shape represented by these final parameters
is however not good. It takes the form of the final
shape in figure 7.3, but with the first positive peak
about three times as large (peaking at 1.6 operator’'s

divisions).
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A further run was performed in which both rotors 6
and 7 were caused to fail in this manner. The parameter
"steps'" at the instant of failure were much larger, as
would be expected (exceﬁt for the second-order parameter
whose step was the same). Again the target values were
dchieved within a total time of 60 seconds from the
failure, and again the shape represented by these para-
meters was most abnormal, the three major maxima being
+3, -1.5 and +1.0 divisions. A run with rotors 11 and 26
failing gave a result only about 20% worse than the final
shape of figure 7.3. The As-U~Rolls also moved to more
extreme positions in all these cases in order to achieve

the target shape.

One reason for the magnitude of these disturbing
results (apart from the obvious one of the measured shape
being not representable by the fourth order fitting due
to the discontinuities at the failed rotors) is that the
model continues to use the failed rotors in its calculations
of mean stress. The plant equipment may or may not do
this, depending upon precisely in which part of the shape-
meter system the failuré occurs. If,; for example, the
failure was only in the display drivérs, then the mean
stress would be correct, and the effect upon the shape
display much less pronounced. These results suggest
however; that, if sufficient time is eventually available
in the control scheme software, it would be possible to
cope with a single failed rotor by replacing the "failed"
measured shape value (which can be detected by its

magnitude) with the mean of the two neighbouring values.
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As an example, at the instant before rotor six failed in
the first of the three failure cases studied, the shape
measured at rotors 5,6 and 7 was -1.023, -1.084 and
~1.003 operator's di&isions respectively.. Taking the
mean for the rotor 6 value immediately after failure
would have given -1.023, -1.013 and -1.003 at‘rotors

5,6 and 7. The minimum of the waveform which previously
occurred at rotor 6 (see "initial shape trace in figure
7.3) has been moved to rotor 5 by this operation; but the
change is small, and the target parameters would be
achieved with a much more acceptable final shape. In the
case where rotors 11 and 26 were caused to fail,; the
values at rotors 10, 11 and 12 would be changed from
(-0.342, 0.0659, 0.545) to (-0.342, 0.102, 0.545); and
the values at rotors 25, 26 and 27 from (-0.911, -0,986,
-1.016) t§ (-0.911, -0.963, ~1.016). Both these are in-
significant errors,; and would allow continuation of
reasonable control as opposed to simply switching back

to MANUAL mode.

Next, the effect of severe disturbances in input
shape (which may occur at a weld for example) were
examined by re-running the simulation of figures 7.2
and 7.3, and injecting a huge disturbance onto the in-
coming strip shape after some 13.5 seconds of the
simulation (traces 1 to 4 in fig. 7.2 show that the
original shape was well under control by this time).

The disturbance added to the incoming shape took the form
of the initial shape with all values in table 7.1

multiplied by 125% and the order of the rotors reversed.
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The performance of the parameter values due to the dis-

turbance are summarized in Table 7.3.

due to measurement from low-resolution plots):-

(Tolerances are

Parameter order 1 2 3 4
Error Jjust prior to . + + N +

disturbance -0.4~0,2 0=1 {-2,8-0.2 | +120-6
Maximum error im- + + +

mediately following +1.2-0.2 | -32-1|+10,4-0.2| > +600

disturbance (satur-

ated)

Time from disturbance

to first crossing of no

target value (s) crossing 20.9 21.7 18.2
Overshoot (%) none 7.5 9.2 =~ 8.5
Time from disturbance to

stable achievement

of target values (s) 17.7 34,9 40.8 41.3

TABLE 7.3 Dynamic Response of Parameters to a Large

Step Disturbance

The final shape was approximately 75% further away

from target than that of figure 7.3, but this was due

solely to the fact that the much larger As-U-Roll

motions required (As-U-Rolls 1 and 8 at -34 divisions,

for example!) exacerbated the effects of the inaccuracies

in the mill gain matrix,

edge turn-up effect.

causing an extremely marked

All the runs described So far were carried out at

the medium strip speed of 3ms_l.

In order to examine

the performance of a fixed controller over the range of

practical strip speeds,

the basic simulation of figures

7.2 and 7.3 was repeated, firstly at a strip speed of

lms ~ and then at 8ms_1.

257

The final shape achieved in




each case was virtually identical to that of figure 7.3.
The dynamic performances are summarised in table 7.4,
from which it appears likely that the single controller
willvsuffice. This of course is only strictly true for

a strip width of 1610mm (31 covered shapemeter rotors).
At the time of writing sensible simulation results are
not available for narrower strips due to problems with
the accuracy of the mill gain matrices. However, a
qualitative judgement is possible based upon the fact that
narrower widths only affect the dynamics directly in the
transfer function of the strip between the mill and the
shapemeter (the effects of speed were examined in

Chapter 6). The controller employed in the simulations
was actually designed for a 1200mm wide strip (equation
(6.16)). The oscillatory mnature of the 5 order parameter
response in Table 7.4 for lms_l strip speed tends to
confirm the predictions made in Chapter 6 following
equation (6.17), but is not thought to justify a
different controller. For narrower strips; the transport
lag between the mill and shapemeter increases, and the
time constant of the build-up of shape decreases (see
equations (4.2) and (4.3) in Chapter 4). The controller
was designed for a transport lag of 0.37s and a time
constant of 0.125. For extreme values of width and speed,
the transport delay can vary between (approximately)

0.06s and 1.54s; whilst the corresponding time constant
varies between (approximately) 0.03s and 0.48s. To limit

changes to a single variable at a time, Table 7.5 shows
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the ranges of transport lag and time constant which obtain
as the width changes from 1.61lm to 0,91lmy; for each of the
three speeds considered above. The controller has already
been tested (simulations above) for conditions of
(transport lag = 0.485s, time constant = 0.483s) (transport
lag: = 0.16s, time constant = 0.16s) and (transport

lag = 0.06s, time constant = 0.06s) by the runs described

Strip speed (ms-l) 1 3 8

Strip width (m) 1.61 | 0,91 | 1.61| 0.91} 1.61| 0.91

R??fﬁsggrt Lag (s) (o.48» 1.54)(9.16 0.51)(0.06 o.1§

e tomt (5 (0.48 | 0.27){0.16 | 0.09| (0.06 | 0.03

TABLE 7.5 Variation of Strip Transfer Function with
Width & Speed

previously; and was tested (control design in Chapter 6)
by Bode and Nyquist analysis over ranges of (transport
lag = l.1ls, time constant = 0.36s)(transport lag-= 0.37s,
time constant-= 0.12s) and (transpoft lag = O.l1lhs, time
constant = 0,04s). The entire range of possibilities
with the exception of the combination of extreme narrow
width and slow speed has therefore been examined by one
means or another, and has generated some confidence in

the use of a single controller.

The final simulations to be discussed here test the
effect of the c;ntroller sampling rate upon system per-
formance. The original setup leading to figures 7.2 and
7.3 was again employed. The controller sampling rate for

all simulations discussed previously was set at one
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integration step of the simulation, which happended to be
37.3Hz. The sampling rate was varied, for these tests,

. between this value and O.2Hz. Over the whole of this
range, the target values were in fact achieved, and the
final shapes did not significantly differ from the final
shape of figure 7.3. However, at the very slow sampling
end of the range (5s sampling.period), the dynamic
behaviour of the parameters was becoming greatly de-
graded, and approaching instability. For example, the
response of the fourth order parameter overshot by 24%
‘and then took approximately 90 seconds to settle after

a number of minor oscillations about the setpoint. Up
to 1ls controller sampling periods however, the dynamic
behaviour of all four parameters was almost in-
distinguishable from traces 1 to 4 of figure 7.2. This
is most encouraging for the final system as for various
reasons (see Chapter 8) a microcomputer system will be
used, and there is much "number-crunching" for such a
system to perform. Low sampling rates may therefore be
found necessary in order to provide sufficient

calculation time.

7.6 Hybrid Simulation of As-U-Roll Control

It will be recalled that in Chapter 4, a control
scheme was introduced for cloSed-loop position control
of the non-linear "As—ﬁ—Roll" actuators. Since the per-
formance of this loop is crucial to the performance of
the final control scheme and the accuracy of the dynamic
plant Simulation, it was to be investigated in a manner

as close to reality as possible.
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The chosen method was to employ an analogue computer
simulation of the As-U-Roll syétem, including the non-
linear characteristicsy, and to then place around this
simulation the controller which was to be used on the
plant, programmed into the same computer which would Be
used on the plant. The only differences between the
simulation and reality were therefore the accuracy of the
representations of the hydraulic components and non-
linear characteristics (the "integrator" type rep-
resentation of the rack itself being well known from the

plant trials - Chapter 5, sectiomn 5.4.1).

Figure 7.5 shows the anaolgue simulation diagram,
using the normal conventions for such diagrams. Amplifer
A2 performs the function of a first order lag, simulating
the transfer function of the relay, valve and hydrauiic
motor shown in figure 4.2 (Chapter 4) using the "correct"
plant values. Amplifier A3 represents the integrator
action of the rack, and amplifiers B3, Bl and A4 create
the backlash function, whose width is set by potentiometers
B2 and B4 to represent O.lmm (c.f. figure 4.2). The rack
position is read by the microcomputer (see Chapter 8 and
Appendix 7. for details) which performs the necessary
control algorithm (the error calculation, gain and dead-
space shown in figure 4.2 - équivalent to a variable width
deadspace), and applies a "raise rack", "lower rack" or

"off" signal back to the analogue simulation.

Various response tests were carried out using this
simulation to tune the microcontroller for optimum

performance. The reéponses finally obtained were extremely
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close to the response of fig.5.4 which was obtained
during plant commissioning . In order to reduce wear on
the mechanical componentsy; it is necessary to minimize
any hunting around the set point due to limit cycling.,
This can be achieved for anyvgiven set of conditions

by tuning of the controller gain (or deadspace width -
the effect is the same). However, it is also necessary
for the controller to be able to respond to small changes
in set point (of say one percent of full travel) for an
accurate position control system. The controller
parameters necessary for this are somewhat at variance

with the requirement for minimum hunting.

Although (as is usually the case) suitable com-
promise values were achieved by using this simulation,
consideration was therefore also given to an alternative
controller. This may be described as a pulse width |
modulation (pwm) controller. In this controller, rather
than simply asking the rack to "raise", "lower" or remain
stationary, a "“raise" or "lower" signal is applied for a
given time whenever the controller output leaves the
deadspace (of figure 4.2). The duration of this pulse
is proportional to the magnitude of the error signal
generated in the controller, and is calculated so as to
remove the error when the rack has moved for the specified
time (pulse width). Thus, for a rack integral charact-
eristic of say 8mms™), the pulse width is given (in
seconds) by taking 0.125 of the magnitude of the error

signal (in mm).
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This pwm controller has several advantages over the
simple deadspace controller, but is more difficult to
program (and more expensive in terms of run time) since
it involves the use of timed interrupts for each of
sixteen digital outputs ("raise" and "lower" for eight
actuators). The advantages include better dynamic per-
formance (i.e. less hunting around the set point;
although this is dependent upon accurate knowledge of the
rack "ramp" rate) and, most significantly from the plant
maintenance viewpoint, fewer on/off cycles of the hy-
draulic controls. The main reason preventing its use in
practice is the fact that the As-U-Roll ramp rates varj
enormously depending upon how many racks move simultan-
eously. For example, a rack moving alone may travel at
say 10mm/s, but if all eight racks move together this
may be reduced to abouf 6.5mm/s. The effect is due to
flow. limiting in the hydraulic supplies, which is
necessary to keep the rack rate down to a manageable
level for the mill operators under manual control. To
attempt an algorithm which was only allowed to move one
As-U-Roll at a timé (thus fixing the ramp rate) was con-

sidered impractical.
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CHAPTER 8

SYSTEM IMPLEMENTATION ON THE MILL

8.1 Introduction

As this was always a practical projecty; with a
working system as the end result, the thesis would be in-
complete without this Chapter. At the time of writing,
installation and commissioning work is‘still in progress,
and is not expected to reach fruition for several months.
However, certain aspects of the installation are complete,
whilst others are specified in detail; and information

about these can therefore be given.

The scope of the Chapter therefore covers the choice
of computer hardware, its configuration,; the operator
and plant interfaces and so forth. Also of great im-
portance are the safety factors such as the limiting
of relative As-U-Roll rack travels as laid down by the
mill manufacturer, and the behaviour of the cortrol system

under fault conditions.

8.2 Limiting of Relative Actuator Travel

The As-U-Roll actuator racks have a working range of
some 100mm, which is displayed to the operator eon
arbitrarily scaled meters of -5 to +5 divisions. The
mill manufacturer and plant personnel lay down limits of
relative motion between the actuators, so as to safeguard
the mechanical components of £he plant. The limit
criterion may be expressed as follows, "the position of
any As-U-Roll actuator shall not deviate by more than 1.5
operator's scale division from the mean position of its

two immediate neighbours, or from the position of its
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only neighbour if it is an end As-U-Roll." The control
system therefore must not impose upon the plant a vector
of As-U-Roll position set-points which would violate

these constraints.

After much consideration, it was concluded that the
only point at which this limiting could be carried out
is upon the vector of As-U-Roll setpoints, a4 in figure
7.1y so that the controller would continue to operate
at all times unaware that its outputs were being tampered
with. This however, leads to the well known problem of
integrator wind-up in the P+I controller elements
gc(s) (see (57) for example), which is considered in the

next section.

In limiting the relative As-U-Roll movements, two
fundamentally different approaches are possible. Either

the As-U-Roll(s) which will violate the constraints may

be restrained whilst all other As-U-~Rolls are allowed to .-

move to the updated sefpoints unhindered, or all the
As-U-Rolls can be moved to a scalar submultiple of the
proposed vector of updated setpoints, which does not
violate the constraints (i.e. the system gain is
effectively reduced). Both these methods have their

drawbacks, and they will now be discussed in turn.

If the As-U-Roll(s) which violate the constraints
are to be restrained, whilst the others are allowed full
motion, it is clearly mecessary to develop some means of

deciding which are the offending As-U-Rolls. This
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inevitably involves placing a bias upon the system; where-
by certain As-U-Rolls will be moved in preference to
others. Since the strip edges are acknowledged to be

the most critical areas, it is reasonable that the edge
As-U-Rolls should be allowed maximum response whenever
possible. An exceedingly sophisticated algorithm was
developed which optimized the motion of the As-U-Rolls,
so as to allow the absolute maximum number of actuators
to move to their new setpoints without the constraints
being violated and gave preference to motion of
As-U-Rolls near the strip edges. However, the routine
was so complex that although it funtioned well in the
simulation model,'it would be impractical to use it on-
line for reasons of storage and execution time (the
routine involved twenty-four decision nodes, arranged in
nineteen interconnected loops around which several
iterations were typically necessary)! A second routine
was therefore developed giving a sub-optimal solution,
but in a much simpler algorithm, ah outline flowchart

for which is given in figure 8.1. The philosophy here

is firstly to test as a whole the set of actuator set-
points demanded by the controller. If the constraints
are not violated then all the actuators are allowed to
move. If the constraints are breached, then the present
set of actuator positions (which are considered to 1lie
within the constraints otherwise they would not have been
achieved - apart from plant faults) is taken, the present
positions of the edge two As-U-Rolls in the mill are
replaced with the demanded setpoints. The set of demands

thus formed is then tested against the constraints. If
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Fig.8.1 Limiting of Relative As-U-Roll Motion By Selection.
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the result is acceptable, the next two As-U-Roll positions
inwards from the edges of the mill are replaced with their
demanded setpoints also, and the procedure repeated. If
the constraints are violated on the other hand,; then the
outer two As-U-Roll positions in the "allowable™ setpoint
vector which is being built up, revert to their present
positions before tfying the next inboard.paif. This
procedure is repeated four times so that all eight of the
proposed set points are tried in the admissible setpoint
vector one pair at a time, and accepted or rejected as
appropriate. Flags are set at "A" in fig.8.1 to indicate
which pairs of demands have been admitted. If the flag

at "B" has not been set at:-all during these four iterations
none of the new setpoints are acceptable and the setpoint
vector has not therefore been updated from its previous
values before exiting at "C" (hence there will be no
As-U-Roll movement). If however the flag at "B" has been
set, then the admissible setpoint vector is mnow different
from the existing As-U-Roll positions and it is worth-
while trying the whole procedure again as another pair of
demands which were rejected at the first try, may now
become admissible (loop "D" in fig.8.1). The flags set

at "A" are now used at "E" to avoid including any new
demands more than once. If the test at "F" is true,

then the procedure has gone as far AS it can, since it is
already known that no more than three pairs can be in-
cluded as a result of the test at "G". This procedure
works well, but suffers from the disadvantages that the

demanded As-U-Roll "profile" is distorted, and the
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As-U-Rolls are limited in pairs whereas only a single
As-U-Roll may need to be limited in practice, thus a
degree of freedom is to some extent lost. Nevertheless,
it is anticipated at the time of writing, that this.

method will be used in practice.

The altermnative of reducing the effective system
gain is achieved by the algorithm of figure 8.2. Here,
the véctor of demanded setpoints is progressively re-
duced by a percentage of its initially proposed values,
until either the constraints are observed, or zero is
reached in which case no action is possible and the
existing set of positions is maintained. The flowchart
of figure 8.2 allows ten iterations, removing 10% of the
initial values at each. This method has the advantages
of extreme simplicity and of maintaining the form of the
required bending profile, but the severe diSadvantage that
all eight As-U-Rolls are restrained whenever a single

demand causes violation of the constraints.

8.3 Integral Desaturation in the Controller and
Bumpless Transfer

Since it is necessary to limit the relative
As-U-Roll rack movements as discussed in the preceding
section, it is almost inevitable that the coﬁtrol system
as a whole will ne?er achieve the shape demanded by the
setpoint wvector Y. in fig.6.5. Thus some error e will
always exist, even when no further control action is
allowed. Since the controller for each parameter contains

an integral term (see fig.8.3(i)), the outputs from these
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integrators will "wind-up" until the méximum of the
computer's number range is reached; after which the count
will wrap around, and thus totally unrepresentative
values will occur. Furthermore, catastrophic failures

may occur due to various overflows etc. in the computer.

This phenomenon of integral wind-up is well known
in digital P+I controllers (57), and many methods have
been used to overcome it, some being extremely sophis-
ticated. However, it is felt that in the present case,
once the As-U-Roll travel has been limited; and the
integral of the error begins to build up, it will often
be the case that no further control action will be
feasible during thé current pass of the coil (due to the
slowly-varying shape function). Therefore, the simplest
method of integral desaturation is employed, namely to
clamp the output of the integral term at the level it
has attained when the controller output reaches some
specified maximum value. This value is different for
each parameter and is chosen on the basis of measured
strip shapes from the plant. Figure 8.3(ii) shows the
digital equivalent of the controller of fig.8.3(i) with
this clamping included. The integrators are, of course,
reset for each new pass of a coily, and each time the
BAUTO" mode is entered from manual. Which leads con-

veniently to the consideration of bumpless transfer.

Since the automatic system controls the As-U-Rolls
by using the identical relays to the manual system, there

is no problem when transferring from "AUTO" to "MANUAL"
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modes - the operator simply takes over adjustment of the
same ("ON/OFF") controls. However,; when changing from
"MANUAL" to "AUTO", steps must be taken to ensure that
the control signals applied to the As-U-Rolls begin at
the existing As-U-Roll positions so as to give a bumpless
transfer. It is clear from fig.8.3 that if the integrator
output ("running sum") is held at zero, then the con-

- troller output is due solely to the proportional con-
troller gain acting upon the error signal. Thus,
referring to figure 7.1, even when in "manual" mode there
ﬁill be a non-zero vector at a, (given that some error
exists). This must be held at a level which will causé
no immediate As-U-Roll motions when transferring from
"Manual" to "Auto" control. Therefore, in the "Manual"
modey; every cycle through the control algorithm; the
"running sum" of errors is held at zero, and the vector

u (fig.7.1) is updated as

ck pk k
k=1l,4 (for four controlled
parameters).
~T~
we then calculate Ec = X REC
and set a = a - a where a 1is the vector of measured
—0 =P —cC =P

A _U— 3 3 . 3 3 -
S Roll positions Thus 24 (which is given by a .+ Eo)
is always held equal to Ep in the "manual" mode. Therefore
when transfer from "manual' to "Auto" is effected, the

automatic control scheme will begin by applying a vector
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a4 of demanded setpoints to the As-U-Rolls, which is
identical to the vector Ep of As-U-Roll measured positions.

Thus a true bumpless transfer is achieved.

8.4 Computer Hardware

The choice of computer hardware was not straight-
forward. A mini computer system already exists on each
of the mills in question, and it was originally en-
visaged when the mills were laid down that automatic
shape control would be included; at some time in the
future, in this machine. However, rather than attempt to
interface with the presently operating software, with
which neither the author mnor his colleagues was familiar
(and also for various other reasons) it was decided that
the automatic shape control system would be better in-
stalled as a "stand-alone" system with its own hardware.
Financial ;trictures within BSC also limited”available
capital and therefore a microcomputer system was really

the only choice - but which?

Many microcomputer systems were considered, but most
were considered immediately unsuitable due either to
"non-industrialized" construction, insufficient input/
output capacity, lack of a fast (compiled) high level
language for ease of program development, cost etc.

It was realized that a system which could be guaranteed
fast enough to perform the complex calculations required,
and having sufficient I/0 capability would be fairly

expensive (say of the order of at least £10,000 per system).
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A decisjion was therefore made to employ on each mill,
two single-board microcomputers, which together should be
perfectly capable of implementing the scheme, but which

were of extremely low cost and well-known to the author.

A brief specification of the computer is given in
Appendix 7, and two such machines are wall-mounted side-
by-side in rugged steel enclosures in each of the

existing mill computer rooms.

The computers are sited remotely from the plant
(several tens of metres) and new cabling was installed
as required, by the plant personnel. The majority of
the required signals, however, was already available at

the existing computer interfaces in the computer rooms.

8.5 Plant Interfaces

The purpose of this section is briefly to outline
the interaction between the automatic control scheme and
the mill operafors. The operator's controls which are
allowed for, and are being installed at the time of

writing, are as follows.

MANUAL (Push-Button) Pressing of this button gives the
mill operator sole control of strip shape. Relay
interlocking is arranged so that even if the micro-
computer system has completely failed, the MANUAL
push button will still give control back to the
operator. A relay in the LTAC board (known as the
MAUTO ON" relay) is disabled, which disconnects all
the microcompﬁter control signals from the As-U-Roll

controls., Furthermore, the microcomputer (unless a
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failure occurs) will never attempt to move an
As-U-Roll in MANUAL mode in any case. Thus double
"fail-safe" measures have been included to ensure that
the mill operator can regain and maintain MANUAL

control under any circumstances, and at any time.

Additionally, the microcomputer system itself
(if in AUTO mode) returns control to the operator by
switching to MANUAL whenever the strip speed falls
outside the range 60m/min to 550m/min (when the
shapemeter readings are wunreliable). This will
occur automatically at the end of every pass of course,
and also perhaps at welds and faults. The operator
himself must.re-engage AUTO if he requires it -
(the computer will never of itself assume that AUTO

mode is required).

As a further safety measure, the microcomputer
rerforms regular self-checking of a nature which will
identify faults in many parts of the computer (although
it obviously is far from exhaustive in a real-time
system). Should this self-check fail, the computer
will again revert to the MANUAL mode,; giving control

back to the mill operator.

MANUAL (Indicator Lamp). This indicator is illuminated
whenever the system is in MANUAL mode. It is inter-
locked by relays so that it will illuminate under the
correct conditions even if the microcomputer should

fail.
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CONTROL AVAILABLE (Indicator Lamp). This indicator tells

AUTO

the mill operator that the microcomputer system will
accept an AUTO push-button demand. It is only
illuminated when the microcbmputer system is healthy,
the strip speed is between 60 and 550 m/min, and the
control software has performed certain calculations
required for each pass,; and dependent upon strip

width etc.

(Push-Button) If this button is pressed when the
CONTROL AVAILABLE indicator is extinguished, it will
have no effect.

If the CONTROL AVAILABLE lamp is illuminated, then
pressing the AUTO button will cause the microcomputer
system to attempt to assume AUTO control. This will
not occur,; however, if the mill operator has set the
As-U-Roll actuators in a set of positions which
violates the relative motion constraints. If,; on the
other hand; the As-U-Roll positions are acceptable
to the microcémputer system, then AUTO mode will bé
enetered. The "AUTO ON" relay will be energized
(see above) and the microcomputer system will move
the As-U-Roll actuators in a controlled manner so as
to obtain and maintain a strip shape which is as
near as possible to the target shape for the pass in
question. The microcomputer system does not permit
itself to violate the As-U-Roll relative motion con-
straints, and possible control action may necessarily

therefore be limited on some occasions.
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AUTO

HOLD

If the microcomputer should fail, or the strip
speed falls outside the range 60 m/min to 550 m/min,
control is passed back to. the MANUAL mode immediately

via the fail-safe hardware (see above).

If the mill operator at any time presses the MANUAL

push button, he will immediately obtain MANUAL control.

Under certain circumstances, the mill operator will
find himself able manually to adjust the As-U-Rolls
whilst running in AUTO mode. Howevery, this will up-
set the microcomputer system's error signals,; and
the microcomputer will immediately retufn the
As-U-Roll to its previous position when the operator

releases the switche.

(Indicator Lamp). This indicator is illuminated
whenever the computer system is controlling the strip

shape in either AUTO or HOLD PRESENT SHAPE modes.

PRESENT SHAPE (Push-Button). Pressing the HOLD

PRESENT SHAPE push-button will enter the micro-
computer system into a mode in which the shape at
the moment the button is pressed becomes the target
shape, and is therefore maintained until either the
MANUAL button is pressed, the strip speed falls out-
side the range 60 m/min to 550 m/min,; or the micro-
computer system fails. Under any of these circum-
stances, control immediately reverts to MANUAL mode.

If the CANCEL button is pressed, control reverts to

AUTO mode.

The fact that the microcomputer system will not
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permit itself to violate the As-U-Roll relative

motion .constraints still applies.

HOLDING PRESENT SHAPE (Indicator Lamp). This lamp is

illuminated to tell the mill operator that a HOLD

PRESENT SHAPE request is being obeyed.

CANCEL (Push-Button). If this pushbutton is pressed

whilst the HOLDING PRESENT SHAPE indicator is ex-
tinguished, it will have no effect. Otherwise,
control is returned from the HOLD PRESENT SHAPE
mode to the auto mode; with the appropriate target

shape for the pass in question.

TAKE

LOG (Push-Button). It was mentioned in Chapter 5
that a microprocessor-based data-logger was used
during plant trials. The control microcomputers
do not have the capacity to perform this function
at the same time as the control function, and a
separate machine has not been installed purely for
this purpose. Nevertheless, if at any time the
plant personnel require hard-copy logging of strip
shape for a limited period,; this can be had at the
expense of automatic shape control by replacing the
set of PROM chips in one of the control computers.
The TAXKE LOG button thén initiates the printing
of a log.

When the auto control PROM set is mounted,; the

TAKE LOG button has no effect.
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8.6 Shapemeter Edge Rotor Compensation

Some consideration was also given to the behaviour
of shapemeter rotors which are ohly partially covered by
the edges of the strip. Consider a strip 1000mm wide.
For a shapemeter rotor width of LR = 52mm, equation
(3.120) in Chapter 3, section 3.10, gives the number of
shapemeter rotor centres covered by the strip as JH = 19.
The equation following equation (3.120) then gives the
value of Lps in figure 3.38 (section 3.10) as

L_ - Lp(J,-1)

LPs = 5 = 32 mm e .. .. .(8.1)

The fractional coverage of the rotors at the strip

edges may be found as follows:

L
_frac (p.u.)

Ce = LR
where LR = 1length of shapemeter rotor (m)
= length of covered portion of rotor under
frac
strip edge (m)
=LS+}'_R fOI‘Lssf_B
p 2 p 2 (see fig.3.38
L L for clari-
- L - B eorL s R fication)
ps 2 pPs 2
Thus for the value given at (8.1),
Ce = 0.115 p.u. coverage of rotors at strip
‘ edges.

Now,; the shapemeter electironics systems on the mill
under consideration make no allowance for such partially
covered rotors (an omission which has been corrected on

later generations of the ASEA equipment). Therefore,
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these partially covered rotors will register a small radial
force as the strip passes ovef them, which will be
included in the signal analysis of the shapemeter system
in precisely the same way as a fully covered rotor (see
Chapter 2 section 2.4.2). Thus, the 19 fully covered
rotors (rotors‘7 to 25 inclusive) will give the operator
his display of strip shape (as shown in figure 6.1 in
Chapter 6 for example), but rotors 6 and 26 will also
show some stress differential. Since the forces on these
two edge zones are comparatively light, the strip is
shown as being relatively loose, ahd the two edge

rotors (6 and 26) can often be seen to be displayed at
very low values of differential stress outboard of the
extreme rotors shown in fig.6.1 (for 1000 mm strip) -

see figure 8.4. This,; of course,; implies that a fourth-
order parameter fit will fail; as the behaviour is
appérently sixth-order and there are few data points.
However, in reality the behaviour is predominantly
fourth-order, and it is only the false readings of the
shapemeter rotors at the strip edge which cause the

lack of fit over the entire width,

Some means therefore had to be found to compensate
for such partially-covered rotors. This could be done
rigorously by going right back to the force measurements
in the ASEA equipment and compensating for the fractional
coverage before performing the shape calculations of
section 2.4.2., This approach is impractical however, due

to the cabling and calculation requirements which would
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be involved in interfacing the force signals for each

rotor (which are derived within the ASEA electronic systems)
with the (remote) control microcomputers,; and then per-
forming the necessary compensation to the edge two signals
before finally duplicating the calculations performed by
the ASEA equipment to generate the strip measured shape

vector for further processing.

Compensation cannot be carried out upon the measured
shape signals at the control computers, as there is no way
of evaluating the mean stress., Therefore the only
practical solution is to disregard the readings of edge
rotors which are less than say 50% covered. This is domne
by only considering the number of rotors given by JH

above. Therefore, for a shapemeter having 31 rotors, the

only rotors which are considered are from rotors 33—JH

2
to 31+JH inclusive, for strip assumed to be tracking
2
centrally.

This however, leads to a problem in that the area
under the shape display must be maintained at zero.
Table 8.1 shows in the central column, the values plotted
in figure 8.4. It can be seen from the "overall sum"
entry that the area under the curve is zero (within
rounding errors). Now consider the omission of rotors
6 and 26 (since we know that these rotors are only 11.5%
covered for this strip width). The table entry now shows
2)

a large discrepancy (60.78Nmm
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Let the number of rotors covered by at least 50% = JH

Let the sum of shape readings of these covered rotors

be given by

. 31+JH
2 -2
s - Aoy (Nmm™ “)
X= 33‘_JH
2

where ZSG% is the shape at the xth rotor of 31 from the

front of the mill (Nmm-z)
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Actual Strip

Shape measured -

Adjusted strip
Shape used for

Shapemeter on the plant Control (see
Rotor (see gig.8.4) fig.6.1)
Number (x) (Nmm—*<). Oﬁa;) (Nmm=2)
6 ~21.95 -
7 40,85 37.65
8 - 4,31 - 7.51
9 -35.55 -38.75
10 -23.95 -27.15
11 -13.95 -17.15
12 - 1095 - 5-15
13 - 1.95 - 5.15
14 6.45 3.25
15 6.45 3.25
16 13.65 10.45
17 4, 45 1.25
18 2.85 - 0.35
19 - 1.96 - 5.16
20 - 1.95 - 5.15
21 -11.15 ~14.35
22 -18.15 -21.35
23 -11.15 -14.35
24 36.05 32.85
25 76.05 72.85
26 -38.75 -
Positive Sum 186.80 161.55
Negative Sum -186.72 -161.57
Overall Sum 0.08 - 0.02
Sum excluding
Rotors 6 & 26 S =60.78

TABLE 8.1

"Edge Compensation" for partially covered

rotors

In order to remove this value of S from the sum, we

simply correct the reading at each of the J

algebraically adding a value ) ¢ wWhere

For the wvalues above,
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The right hand column of table 8.1 gives the values
corrected by this amount; and it can be seen that the area
under the curve is maintained at zero. These are the
values which were plotted in figure 6.1, and upon which

the control system will operate.

It is somewhat ﬁnfortunaté that, for certain widths
of strip, this loss of resolution must be tolerated at
the strip edges. It is however fairly insignificant,
and has caused no noteworthy problems during simulation

studies at least.

8.7 System Interaction with First Intermediate Roll Control

Although the first intermediate roll tapers (which can
be slid laterally into and out of the mill cluster for
shape control purposes) have been considered in the
static and dynamic modelling work (Chapter 3-section 3.8,
Appendix 4-section A4.3 and Chapter L-section 4.3),
nothing has so far been said about their control. The
reason for this is that initially the automatic system
will control the As-U-Roll actuators only, the first IRs
being still manually controlled. Work is still proceeding
into the means by which control of the first IRs may be
included in the automatic scheme. Consideration must
therefore be given to interaction between the manually
dontrolled first IRs and automatically controlled

As-U~Rolls.

The mill operator may be observed during rolling

almost invariably to have a parabolic type of bending
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profile set on the As-U-Roll actuators (typically in such
a manner as to tend to tighten the strip at the edges and
slacken it in the centre). From intuitive reasoning
however, and also from the results of the dynamic
simulation studies in Chapter 7, it would be ‘expected
that since the shape in the strip is typically of a W
nature; the As-U-Roll profile required to correct it

would be M-shaped.

- This apparent discrepancy is due to the operator's
use of the tapered first IRs. The operator mentally
divides the strip into two edge zones and a centre zone.
On the first pass of a coil, the first IR tapers and
As-U-Rolls are set by experience to obtain the
characteristic W shape profile. On subsequentvpasses,
the operator {(typically) gradually withdraws the tapered
portions of the first IRs from the cluster so as to
lengthen the strip edges and thus bring "down" the
extremes of the W in an attempt to reach the target shape
(see Chapter 6-section 6.3 for details of target shape).
Since shape is displayed with respect to mean, this also
raises the central peak of the W, The As-U-Roll
actuators are then used to alter the mill camber so as
to reduce this central peak. No As-U-Roll action is
required to assist the first IRs at the edges, as the
gain of the first IRs is large for shape control, This
explains the parabolic type of As-U-Roll bending profile
used by the mill operators - it is simply an adjustment

of mill crown, with the fourth-order behaviour at the

strip edges being taken care of by the (higher gain) first
IRs.
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From observations on the plant; the W shape is always
likely to exist to some extent when the operator switches
to AUTO. The control system will therefore tend to move
the As~-U-Roll actuators into the M profile discussed
above. This is especially true as the algorithm which
limits relative As-U-Roll motion (section 8.2) gives
preference to movements which will tend to correct shape
at the strip edges. Only time will tell whether this:
behaviour will be acceptable to the mill operators. There
are alternative philosophies of operation which may be
adopted should it prove mecessary during commissioning.
One of these is to give preference to As-U-~Roll motions
which tend to corréct the shape at the strip centre.

This appears very sensible at first sighty, as the mill
operator is still manually controlling‘the edges in any
case (via the fifst IRs). However, in thé interests of
safety,; since the automatic control scheme will attempt

to control shape over the entire width using the As-U-Roll
actuators, it is more desirable to allow maximum control

at the most critical area - i.e. the strip edge.

A second option is to rely heavily upon the operator
@aintaining the strip edges correctly with the first IRs,
and bias the automatic scheme (including alteration of
the target parameters for example), towards control of
the central area of the strip only. This could be
achieved by limiting the set of As-U-Roll positions to
roughly parabolic forms (as used by the mill operator)
and generating an error vector corresponding only with

some central region of the strip.
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Clearly this is all conjecture at this stage. The
modelling effort necessary to investigate these con-
ditions is formidable, and woﬁld probably not be completed
before the system is in operation in any event. There-
fore, it was decided at the time of writing to adopt an
empirical approach to these problems as and when they
arise during commissioning. The main point is that no
detrimental effects are expected due to continued manual
operation of the first IRs - they will merely make the
strip shape closer to the target, which can only assist

the automatic system.
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CHAPTER 9
CONCLUDING REMARKS

In response to ever increasing customer demands for
rolled strip quality, the introduction of automatic gauge
control schemes onto rolling mills has been well under-
stood for several years now (i.e. automatic control of
strip thickness along the length of a coil). Such AGC
systems are virtually mandatory on all new steel rolling
mills, and it is proving essential in many areas also to
retro-fit such schemes to existing mills in order to

maintain competitiveness and market share.

Having solved the AGC problem, researchers in the
metal rolling field turned their attention to the
problem of automatic shape (or flatness) control, again
stimilated by market pressures. The purpose of AFC
systems is to allow the roll gap profile to be adjusted
so as to conform with the cross sectional profile of the
incoming material,; thus obtaining a rolled product free
of intermal st;esses; or to alter the roll gap profile
in a manner calculated to remove existing internal |
stresses in the strip. Strip free from internal stresses
'is free from any tendency to warp or buckle; or to bow
sideways when slit into narrower widths. Thus it is more
saleable, and also easier to feed through any fﬁrther

processing lines after the rolling process.

Such AFC systems were first installed on four-high

aluminium mills,; and then on four-high steel mills (for
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both strip and plate). Most new four-high steel mills are
now built incorporating roll-bending jacks so as to
allow for shape control systems to be installed, and many

such automatic systems are now in use around the world.

Although AFC systems on four-high @ills are now
widely accepted, the problem of AFC on a Sendzimir cluster
mill has not yet been fully solved. This is largely
due to the multivariate mnature of the control problem,
since the Sendzimir mill has many more degfees of freedom
for control than doeé the four-high mill. The four-high
mill for example méy only have roll-bending jacks for
shape control (in addition to the inherent facility of
differential adjustment of the mill screws). Thus limiting
control action 6 linear and quasi-parabolic forms of roll
bending. (It should be noted that differential cooling
across the roll barrel is becdming more widespread in the
steel industry however, having been more favoured in the
aluminium sector to date). On the other hand, the type
of Sendzimir mill discussed in'this thesis (a large,
twenty-roll, 1-2-3-4 stack type of mill) has eight separate
shape control actuators distributed across the mill width
and two further sets of actuators specifically designed for
high gain shape control at the strip edges. Movement of
any one of these ten actuators will cause a shape change
of greater or lesser magnitude to be registered at every
measuring zone (of the thirtyone segment shapemeter) which
the strip covers. ' Furthermore, it is conceivable that

shape errors of fourth order behaviour and more could be
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controlled by an automatic system using these actuators.
The content of this thesis is concerned with the develop-

ment of an AFC scheme for such a mill.

The thesis describes the work carried out on a pro-

- ject of great practical value, and covers the entire course
of the project from conception to implementation on the
plant. This is Jjustified firstly on the ground that it
gives a complete overview of the work; and secondly on

the basis that the entire project taken as a whole is
original work, which has been done nowhere else in the
world to the author's knowledge, although since the

thesis covers such a wide range of subject-matter there

is inevitably a fair amouht of standard work distributed

through it.

During the course of this project, the author was
employed by British Steel Corporation, Research Services,
and was effectively for most of the time the project
engineer responsible for the work. The author carried
out virtually all the theoretical work (except for the
basic development of the control strategy) and computer
modelling single-handedly, but was assisted (of course)
in the plant trials and plant implementation phases of
the work by his own engineers and by personnel employed
by BSC Stainless on the Sendzimir mill site (see

acknowledgement).

The first Chapter of the thesis forms an intro-
duction to the shape control problem including some
historical background into various methods of shape

measurement and control. The Sendzimir mill installation
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together with details of the various control actuators

on the mill and the strip shape measuring system are
described in detail in Chapter two, so as to provide a basis
of understanding for the following Chapters. Chapter
three describes the development of a mathematical model
of the static behaviour of the mill stand, including

very detailed modelling of the various control actuators.
Some details of the computer mechanization of this model
are also given. The work of Chapter threé is entirely
original, including a more rapid solution of Bland

and Ford's roll force model than has been reported before.
The model can be run for an infinite variety of plant
conditions; and therefore only a few representative
results are discussed in any detail. The result of running
the model is a plant gain matrix relating movement of any
As-U-Roll actuator to the resulting shape change at
various points across the strip. Many runs of this model
have shown that different matrices are produced for
different mill conditions. For example, when rolling
harder materials, the gains in the matrix are reduced.
When rolling marrower materials, the gains also reduce
and so on. Various portions of the static model re-
quiring further work are mentioned in Chapter three, but
in essence the matrices for wide strip are thought to be
more reliable than thoée for narrower stripdue to edge
effects. The model is much faster in execution than that

of Gunawardene (16) due to the non-iterative structure.
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Chapter 4 describes the dynamic (transfer functional)
analysis of the plant‘items including the As-U-Roll
actuators for shape control (which contain non-
linearities), the shape measuring equipment and the pro-
gress of shape chahges between the mill and the shape-
meter. By the end of Chapter Four therefore, a proposed
model of the entire plant e#ists. This takes the form of
transfer functionalvdescr@ptions of all the dynamic
plant elements, together with a static model providing
a gain matrix for the mill stand itself, which is non-
dynamic. A controller design is specified for the
position controi of the non-linear As-U-Roll actuators,
and the resulting closed loop system is linearised for
use in control scheme design (the actuators were originally
open-loop on the plant, being controlled by "RAISE-OFF—

LOWER" switches by the mill operator).

Chapter Five gives details of attempts to verify the
various models and tune them to the plant. This proved
to be an exceedingly time-consuming (and not wholly
successful!) task, and involved the use of over £100000
worth of test equipmenty; much of which had to be custom
designed by the author. Verification of some of the
dynamic modelling was successful, notably the As-U-Roll
actuator transfer functions and As-U-Roll controller
simulations, but verification of the transfer function
of the strip between the mill and shapemeter and
verification of the static model, proved very difficult
for a number of reasons. Included among these are

unexplained (but significant) variations in recorded strip
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shape which made it wvirtually impossible on many occasions
to distinguish spurious from deliberately induced effects
(the magnitude of induced test signals being limited by
operational constraints, and the use of PRBS testing

being unreliable due to the plant construction and design.)
As a re;ult of these tests confidence was generated in
most of the transfer-functional aodelling and the intuitive
confidence in the gain matrices produced for wide strip
was upheld (if not totally vindicated!). The most reliable
mathematical description of the plant available had thus
been generated for use in control system design and

simulatione.

The basic philosophy of the multivariable controller
design was proposed by Grimble and Fotakis (17,18), but
was not directly useable in the form presented by them.
Chapter 6 describes the Author's work in modifying this
basic philosophy into a practically realizable scheme.
The major areas of the Author's contribution are in the
parameterization of the measured shape signals,; and the
introduction Qf non-square plant matrices (the dimensioﬁs
depending upon strip width). Work was also enacted
pertaining to the selection of target (reference or
set-point) shapes for the control schemey and it was
discovered that a width independent target was feasible,
thus removing some selection programming. The control
scheme involves the parameterization of the measured
shape signals (using orthogonal polynomials) into four
values (orders 1 to 4 of the polynomials). Errors in
these parameters are then calculated and fed into

controllers. Each controller takes the form of an integral
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only controller of fairly low gain (provision for
proportional terms being made in case it should prove
necessary). The four loops are designed separately due
to the fact that the transformed plant (including the
parameterization, deparameterization and plant matrices)
can be shown to be invertible and can be operated upon

by a precompensator comprising its inverse.

Chapter seven describes a multivariable dynamic
simulation of the entire plant and control scheme, to
allow investigatiohs of stability and performance under
varying conditions. The simulation is an extremely
flexible and powerful tool, and uses packages exclusively
written by the Author (no simulation suites being
available on the computer installation in question).

The operation and facilities of the model are described,
and the results of several aspects of simulation are
discussed. These include the reaction of the system

to changes in strip speed, shape disturbances in the
incoming strip, failure of parts of the measurement
system and changes in the sampling rate of the control
computer, which is itself simulated. It was concluded
that a suitable controller design had been selected for
initial commissioning on the plant, and various other
points were also highlighted - for example, a means of
coping with single failed shapemeter rotors was proposed
which would allow the system to continue working in
AUTOMATIC mode with reasonable resuits9 rather than simply

passing control back to the operator. It was also found
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that a relatively slow-sampling control computer system
would be well tolerated (e.g. one sample per second), so
as to allow as much calculation time per scan as possible.
A hybrid computer simulation of the local As-U-Roll
actuator position control loops is also described, by
which the controller for these loops was*successfully

designed. -

Chapter eight completes the picture by gifing details
of the system implementation on the plant, and some
rather specialised considerations which arise for this
particular scheme. An algorithm is developed for limiting
the relative motion of the control actuators, as laid
down by the mill wmanufacturers and plant engineers.
Consideration is then given io the problems of integral
desaturation and bumpless transfer in the controller. The
computer hardware and operator interfaces are then des-
cribed., Attention is also directed to the problem of
compensating for shapemeter rotors which are only
partialiy covered by the strip edges, and thus distort
the shape measurements. In fact, the distortion was
often found to be so great, that the fourth-order
parameter fitting would completely fail without this
compensation, as the appearance of the strip shape was
predominantly sixth order. A suitable practical method
of amménsation was developed. Finally, since the
initially installed system will only control the
As-U-Roll actuators and not the first intermediate rollsy
a short section is inc;uded to explain how the system will

interact with the mill operator,
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In conclusiony, a system has been developed through a
comprehensive programme of theoretical modelling and
design, plant testing and extensive computer simulation,
which shows great promise of providing an excellent aid
to the production of better quality strip on a Sendzimir
mill. Initially the system will control the As-U-Roll
actuators only, but work is still progressing towards
inclusion of the tapered first intermediate-rolls into
the automatic scheme (until this is done, performance
will necessarily be limited by As-U-Roll mechanical
constraints). At the time of writing,the control com-
puters have been installed on.the‘plant, all necessary
cabling modifications have been carried out and tested,
and the vast majority of software has been designed.
Most of the software has been‘written and tested under
laboratory conditions, and currently the software is
being gradually installed on plant. Some aspects, such
as the closed loop position control loops around the
As-U-Roll actuators, have already been successfully
commissioned. Several months will pass yet however,

before the first trials of the entire system.
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Appendix 1

Hetenyi's Theory of beams.on Elastic Foundations

(Reference 32) - Basic Derivation

Al.l. Differential Equation of the Elastic Line

Figure Al.l depicts an originally straight beam AB,
entirely supported by a foundation which is assumed to
obey Hooke's law, and acted upon by various vertical
loadings (i.e. a concentrated force F at point a, and a
distributed loading q between points b and c). These
loadings produce a distributed reaction in the foundation
of qR(Nm"l) which is proportional to the deflection (y)

of the beam at any section, hence,

ap = k . ¥ (Nm—l) (A1.1)

A foundation modulus is defined, being egual to
that force which when distributed over unit area of the
foundation will cause unit deflebfion. It is written as
ko (Nm—3). Therefore, if the beam AB has uniform cross-
sectional-area, and a width b (m) in contact with the
foundation, unit deflection will cause a reaction of bk0
(Nm—z) in the foundation, i.e.

-1
= bkoy (Nm™ ™)

However, for brevity, the foundation modulus is

"re-defined" as k = bk, giving (A1.1) above.

The well known equation for a bending beam is

d2
Y
EI . X - -M (Nm)
2
dx
where E = Young's Modulus (Nm—z)
I = Second moment of area (mq)
Y= deflection (m) at section x
x = distance along beam (m)
M = bending moment (Nm)
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Double differentiation yields

4
d’y 2
d°M -1
EI. —TX = - (Nm™™) (A1.2)
dx dx2

By considering an infinitely small element of the

beam of length dx, at a point where the beam is under a

’

UDL of q (Nm~l), it can be shown that

2
Li__lzil' = ky - q (Nm—l)
x
dx
therefore, from (Al.2)
d4yx -1
EXI -(;4— = - kyx + q (Nm )

Therefore, along unloaded portions of the beam
(g=0) we can state the differential equation of the

deflection curve as

dqyx -1

EI-—p= = - ky_  (Nm™7) (A1.3)
dx

nx . . .
e we obtain the characteristic

By substituting Yy

equation

n4 = - AE%_, which leads to the general solution of (Al.3)

as given below.

y. = e)\x(Cl coshx + C, sinkx)+e_xx(C3cosXx+ Cq'sin)\x)

X
(A1.4)

k

where A= A4/LET (m—l)

and Cl to CQ are constants.
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This therefore represents the deflection of a
straight bar resting on an elastic foundation and subject
to transverse bending forces, but with no gq loading.

An additional term is necessary when gq is present.

Al.2. Beams of Infinite Length

From equation Al.4, we can now derive equations

for deflection (yx), deflection angle (ex = dyx),
' dx
2
moment |M_ = d Yx
* 2
dx
d3y
and shear Qx = X along the infinite beam for
3 - .
dx

various types of loading. ©Positive quantities are as

defined in section 3.1, chapter 3.

At a point infinitely far from the point at which
loading is applied, deflection must be zero. I.e.,
as X —»moo yx_q.o. This can only be true if the terms
in ékx vanish in equation Al.4. Therefore, C = Cy= 0]
and so the deflection curve for the RH half of the

beam takes the form

_
Y =

(C3.cosXx + Cq.sinXx) (m) | (A1.5)

Al.2.1 Results for a concentrated force acting on the beam

Consider figure Al.2. Due to the symmetrical nature
of the deflection which will be caused by such a loading,

we can say that

dyo
dx

Al.4



Therefore, from equation Al.5, C_ = Cli = C, say,

3
so that y_ = Ce—kx(coskx + sinix) (m) (A1.6)

Also, the sum of reactions from the foundation must

balance the force F, i.e.
-
2 .‘g ky .dx = F (N)
o

leading to C = FA (m)

2k
Therefore, from (Al.6) above

F\ -Ax .
Y = 5x'© .(coshx + sinlx) (m)
however, if we let-Akx = e—)‘x (coskx + sinhx)
Byy = e")‘X sinkx
-hx

CXX = e (coskx - sinXx)

DXx = e coskx
we obtain
F\
yX = EE Axx (m) (Al.?)

By taking successive derivatives of (Al.7) we similarly
obtain equations for ex’.Mx and Qx as shown in fig.Al.3,

where

2
8 - . E%}qux (rad) (A1.8)
X

F
M= IR Cx (Nm) (A1.9)
Q = —’21’1 ‘D () (A1.10)

Note that Qx and Qx change sign to the left of the

point of application of the force.

Al.5
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Al.2.2 Results for a concentrated moment acting on the beam

Consider fig. Al.4. The loading shown at (a) can be
considered as the limiting cage of that shown at (b),
assuming that as d—=0, Fd-—*-MO. Examination of equations
Al.7 to Al.10 showsthat all involve proportionality to F,
therefore super-position and reciprocity principles applye.
We can therefore use equations (Al.?) to derive the
deflection result for fig, Al.4 (equation (Al.11l) below),
and then successively differentiate this to obtain the
other results (see fig. Al.5):-

2

vy, = My T);—-'B)\X (m) (Al.°ll)
XB
9x = MO BT Ckx (rad) (A1.12)
M= EQ.D)‘X (Nm) (A1.13)
2
A
Q = -My-S A (N) (A1.14)

Note that Yy and M.x change sign to the left of the

point of application of MO.

Al.2.3 Results for a UDL acting on the beam

Fig.Al.6 depicts a UDL of q(Nm-l) acting over a
portion AB of the infinite beam. We wish to find the
effects of the loading at a third point C, which is at a
distance a (m) from A and b (m) from B. We regard the
loading as an infinite number of infinitely small con-
centrated forces, each of magnitude gq.$x, and sum their

results at point C.
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Fig. A15 Variation Along Beam of y,8,M&Q
Due to a Single Conc. Moment
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Using equation Al.7,

8 = g.sx.x.A

Yx 2k Xx

where x = distance from point C,

Integration over the a-b limits of the loaded

portion of the beam yields equations Al.15, Al.19 and

Al.23 below. Equations for BC, Mc and Qc are obtained

by performing similar operations on equations Al.8 to

Al1.10 respectively. Three cases arise (note that x;a and b

are always taken positive):-

Al.2.3.1 When point C is under

the loading

(m)

(rad.)

(Nm)

(N)

yc = '%E (2—D)\a L D)\b)
A
o = %E (AXa - AXb)
M = ﬂ__ (B + B )
¢ 4X2 Xa Xb
Qc ) 2X (CXa ) CXb)
Al.2.3.2 When C is to the left of the loading
Yo T By, 7R
al
O = 2k (Aka ) AXb)‘
M =-—-(B - B_ )
L S P N

Al.11

(m)

(rad)

(Nm)

(N)

(A1.15)

(A1.16)

(A1.17)

(A1.18)

(A1L.19)

(A1.20)

(A1.21)

(A1.22)



Al.2.3.3 When C is to the right of the loading

Y. = - 3o (D)\a - D)\b) (m)
B, = a (A -4, ) (rad)
C ok >\a> )\b ra
M = —<_ (B, - B, ) (Nm)
c 4X2 ka Xb "

Q, = 1;}— (c - c)\b) (N)

(A1.23)

(A1.24)

(A1.25)

(A1.26)

Al.2.4 Results for a triangular loading acting on the beam

Consider fig.Al.7. We wish to find the deflection

at point C as in the case of the UDL. Again three cases

arise, and x, a and b are always positive,

Al.2.4.1 When point C is under the loading

Measuring x from point C,

in the region AC

t -1
Q. = 3 (a-x) (Nm™ ™)
and in the region CB
t -1
Q. =3 (a+x) (Nm™ ™)

Equation Al.7 therefore gives the deflection at C as

a b
y = EA (a-x) A dx + (a+x) A dx
¢ © 3kd Ax Ax
0 a

which yields

t ]
yC = ﬂxﬁa— (Cxa - be - 2Xd Dkb + &Xa) (m)

Al.12

(A1.27)



similarly,
-t
9c = 2kd
-t
M =
¢ 8\2a
t
Q =
¢ 5324

from A1.8 to Al1,.,10:-

(Dy_ + Dy, + Ad Ay, - 2) (rad)
(A, - Ay - 2\d Bkb) (Nm)
(By_ + By, - Ad ch) (N)

Similarly for the other two cases:-

Al.2

Ve

=
n

o
"

=
n

4.2 When C is to the left of the loading

- C)yp - 2\d DAb) | (m)

- Dkb - \d AXb) (rad)
- Ay, - 2Xdeb) (Nm)
- By, * \d Cy,) (N)

is to the right of the loading

t
EXkd S
t
7 xa P)a
t
- (a
8\a Ma
t
- (B
4.3 When C
< (c
Lakd Aa
-t
5%d (P\a
-t
8)?d (A)a
t
4 )\2q Pha

be + 2Ad Dxb) (m)
DXb + Xd AAb) (rad)
AM)+2h1qb) (Nm)
By, - \d C)\b) (N)

Al.13

(A1.28)

(A1.29)

(A1.30)

(A1.31)

(A1.32)

(A1.33)

(A1.34)

(A1.35)

(A1.36)

(A1.37)

(A1.38)



Al.3. Beams of Finite Length

The present application to rolls in a rolling mill
obviously is concerned with beams of finite length. It is
assumed that the rolls can be regarded as beams having
free ends (with the exception of the backing bearings),
and so the theory for beams with free ends only is out-

lined here.

Consider an infinitely long beam on an elastic
foundation subject to loadings as shown in fig. Al.8(a).
Due to this loading, certain values of y, 9, M and Q will
exist at points A and B on the infinite beam. By super-
imposing pairs of concentrated forces and moments acting

infinitely closely to the left of point A (F MOA) and

OA’

the right of point B (F MOB) as shown in fig. A1.8(b)

OB’
the elastic curve can be modified in such a way that the
required end-conditions for the finite beam AB exist at

-A and B on the infinite beam (hence these forces and
moments are collectively called the "end-conditioning-
forces", For a beam having free ends, (e.g. fig. A1.8(c),
the values of M and Q at points A and B must be zero.
Therefore, the ECFs must make the values of M,, QA, MB

and Qp vanish on the infinite beam of fig. Al.8(a) to
create the conditions of fig. Al.8(c) so that the in-
finite beam bgtween points A and B will behave as if there
were a finite beam of length L with free ends at A and B.
Thus the combination of all four ECFs must produce

=My and —QA at A, and -MB and'—QB at B. From equations

Al.9, Al.10, Al.13 and Al.14, the required conditions are:-

Al.14



M F M
Q l s
A ARAAAA Qa
7 VAV AV A A A Al S A A e e e

7
L , L ..! (a)

I % F
M l NINg
0,
h ASARA/

7/*/—/777///</E/////////// 4 //////:/ﬂ///777—/7-/7

-

- L _ (b)
A B
F )/
FYYvtry
ST ST T ST 777 : )
C

- L

A B

Fig. A.1-8 Principle of End Conditioning Forces

Al.15



QA"F3A+F2BDXL"XE%-W%AXL =°§
)
Qs‘igADXL'*f’g—B' %AXL‘XMQB =°§

The simultaneous solution of these equations is
greatly simplified by resolving the original loading into
symmetrical and antisymmetrical components as shown for
the example of a single concentrated force in fig,;Al.9.

It is clear from the figure that

7 "

M, =M, + M, (Nm) My = My - M, (Nm)
/ ’”? I's /
Q =Q + @ (N) Qg = -Q, + QA' (N)
giving
M‘A,L = 0.5(M,+M;) (Nm) M;' = 0.5(M,-M;) (Nm) ;
’ ) ) (A1.40)
Q, = O.S(QA-QB) (N) Q, = O-S(QA+QB) (N) )

where MK’ MB’ QA and QB are found from the original loading
using equations Al.9 and Al.10, Al.13 and Al.1l4, Al.21

and Al.22 etc. as appropriate. These moments and shears
are now removed from A and B by applying ECFs as in
fig.Al1.10 which shows the assumed positive directions of

the necessary ECFs.
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The equations Al.39 now reduce to two pairs of
/
easily soluble simultaneous equations, one set for FO

/ /4
and Mé, and the other for Fé and MO: The solutions are:-

-

7 ’ 4 )
Foo= 4 B .| @ .(1+Dy ) + AM, . (1aay ) )
L } )
,  -2E | , - ;
M, = Y -LQA . (1+c)\L) + z)MA.(l —D)\L)_ (Nm)3
” — ” 3 g (A1.41)
Fo= 4E, . [ Qy . (1-Dy 4 + )\MA .(1+A)‘L) (N) )
L ) )
_ )
v, 2P 7 .(1-Cy. ) A, ( y] (Nm) )
M0= }\ . QA-l— )\L + 2 K 1+D)\L Nm)
L )
0.5 eXL'
where El = sinh ML+ sinAL
0.5 e>‘L
E2 = sinh AL ~sinAL
Then it is clear from fig. Al.10 that
/ ” / ” )
Foa = Fo + Fq (N) Fop = Fg =~ Fg (N) )
' )
) (A1.42)
Mo, = M(') + M(;’ (Nm) Mo = M5 - MJ (Nm) ;
)

Al.18
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Al.4 Summary of Procedure

Al.Lk.1

Al.L.2

Alol.’:oB

Al.k. b4

Al.4.5

Al.4.6

A.lollo7

Evaluate Mh, MB’ QA and QB on the infinite beam
for all components of the loading under investi-
gationy, using the appropriate equations of

section Al.Z2.

Use these values in equations Al.40,

17

. ’ / V4
Use the resulting values of MA° MA, QA and QA to
4 77

/ 7”7
evaluate Fy, F,, M, and M, using equations Al.41,

Use equations Al.42 to evaluate the ECFs (whiéh
will make the portion AB.of the infinite beam
behave like a beam of length L with free ends at
A and B and subject to the loading under

investigation).

Use equations Al.7 to Al.,10 and Al.1l1l to Al.1l4
to find the value of the desired quantities
(y, ©, M or Q) due to all four ECFs (at the

required section of the beam),

Use the appropriate section Al.2 equations to
find the value of the desired quantities
(y, 6, M or Q) due to all the applied loadings

(at the required section of  the beam).

Sum the values found at Al.4.5 (i.e. one value of
the required quantity per ECF) and Al.4.6 (i.e.
one value of the required quantity per applied
loading) above to yield the total;y96 s M or Q

at the required section of the beam.
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Appendix 2

Calculation of Foundation Modulus (References 33~35)

Consider two cylindrical rolls loaded by a distributed
loading q(Nm™ %) as shown in fig. A.2. . Due to local
deformation of the roll material along the line of contact,
a narrow contact rectangle of width b will be formed; and

the roll axes will move together by a distance d.

The width of the contact rectangle is given in

Hertz's contact stress theory (Ref.33) as:-

16 (19 2) q DD,
T (Dl D) (m) _ (A-Z.l)A

2

where vV = Poisson's Ratio

E = Young's Modulus (Nm™2)
DD, = Roll diameters (m)
Aso from 2q(1-9%) | 2 2Dy 2D,
Ref.34-35 d = T E 3t in T+ dn 5 (m)

(A.2.2)

The foundation modulus is given by

- 4 -2
k = 3 (Nm™ <)

which gives, upon substitution of (A.2.1) and (A.2.2):-

£y

-2
k = - (Nm™ <)
In(f,) + In(D;+D,)- 1n Iql

(A.2.3)

TE

where f, = 5 (1_02) (Nm_z)

S 2TE -2
f, = M e = (Nm™“)
4(1-72)

‘A2.1
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diameter=0D

Fig.A-2 Roll Flattening Due to Loading

A2.2



Note that the absolute magnitude of q has been used
in (A.2.3). This is because in the main model, q will
occasionally be negative and the log of a negative number
is non existent. The fact that q is negative has no
significance in the context of Fig.A.2 but is explained

in the main model.

A2.3



Appendix 3

Bending Theory for a Cantilever having an Elastically
Supported Root (Original)

Consider a conventionally supported cantilever as

showvn in fig.A.3.l. At a section Xy from the unsupported

LH end; the bending moment is given by
M= F‘WN (xM - xWF) (Nm) for XupS XMSLU

i.ee M = FWN (LU—b-XWF) (Nm) for Osbs(LU—XWF)

The equation of the elastic line of the cantilever

over this range is given by

2
4 Ix M PN
: M -1

Integrating yields

Px | Fun 2
M
5 = 9, = g (Lyb - b _ bxgd+ € (rad) (A.3.1)
M 2
and integrating again,
F
WN 2 3 2 <
Yo = BT Ly bl _ b7 _ B
XM EI U 5 4~ T3 XWF) + bc1 + cy (m)_ (A.3.2)
At this stage in the analysis it is usual to prove
that ¢, = ¢, = O. However, consider the LH unsupported

1 2

end of the WR as a cantilever as shown in fig.A.3.2. The
above results still apply, but since this cantilever's

root is elastically supported rather than rigidly fixed,

it is clear thét values of deflection and angle will exist
at the point of suspension. Let these "initial conditions"

be given by

A3.1
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M = -B ‘and

Note that BL is negative according to the sigh con-—-
vention of section 3.1 in Chapter 3 (see figure 'A.3.2.),
but for the present analysis a positive value is required,

hence the sign change above.

Substituting these values into (A.3.1) and (A.3.2)
we see that ¢, = - QL and Cy = ¥y,- Furthermore
b = (LU_xM), and substituting back into (A.3.1) and

(A.3.2) gives:-

Fim Cyx)® | g

BXM = —E—i;' (LU-—XWF) (LU—-XM) - '_—2_— - L (rad)

. (A.3.3)

EFWN )3
y = == | (L ~-x) (L, -x
wxM EI, U 2WF (LU_XM)a _ U6 M = (Ly~xy )0 4y (m)
(A.3.4)
for XWFSXM<LU

Now, at the point of application of the force,

X\, = XWF therefore

M
.
WN 2

Bp = 2ET,, (Lymxye)” - 81' (Rad) (A.3.5)
F
WN 3

Yur = 3BT, (Ly-xyp)” = Cymxyp)Bp+yy () (A.3.6)

The portion of the cantilever to the left of the

force is considered to remain straight, so that

A3.3



Fig.A.3-2 Representation of Workroll as a Beam
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Yy = Yyp t (xygp-Xy) sin BWF (m) (A.3.7)

XM .
for Ost < Xyf

Substituting (A.3.5) and (A.3.6) into (A.3.7), and
gathering the equations together; we have:-

F

= "WN 3
kaM 3EI&(LU_XWF) = Oy Wymxyp) + vy,

( yein | 29N (g )2 -8 (m) (A.3.8a)

B Sl I M S m -3.0a

for Ost<XWF

3
2 (LU-xM) ]

F
WN
= m‘EL -X. )-(L -X. - 3

Yw UTFWE N UM
x W

M

- QU(LU—xM) + ¥y (m) for XWstM<LU (A.3.8Db)
To solve these, we must evaluate ¥y, and 8L° The
"force FWN of fig.A.3.2 will exert a force and moment on
the LH end of the supported section of the WR as shown in

fig.A.3.3, where

F (v)

F WN

0

M ) (Nm)

0 X

“FWN(LU - TWF
The procedure of Appendix 1, section Al.4 is used
to find expressions for deflection and angle at any point

along the "beam" of fig. A.3.3 (i.e. the section of the

WR over the strip)as follows:-
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For the force F,, equations Al.9 and Al.10 (uSing

XWS as given following equation (3.95) h1Chqmer3)

yield: -
F
WN
M = (Nm)
AF EAWS
F
WN
= o ¢C (Nm)
"B Bhys s Ls
F
WN
Qp = 5 (N)
-F
WN
Q = ——.D (N)
BF 2 Mys s
For the moment M,, equations Al.13 and Al.14 yield
-M
0
MAM = —2—— (Nm)
o . M,
M 2 Ays Lg (Nm)
Q = -§9§E§ (N)
AM T 2
=M\
QBM = 07WS

._.,A
2 AWSLS (N)

Summing these effects,

My, =M + My (Nm) MBL = Mpp + Mgy (Nm)

5?
]

QUr * Uy (M) Qg

. . L (N)

Br * QpM

Application of equations Al.40, Al.41 and Al..42
(using the values of kWWS'xWS’ E ys and E o given by
equation (3.95)ff in the main text then yields the ECFs

(F and M ). Equations Al.7, Al.8, Al.11l and

oa7, Forp, Moap, OB{,
Al.12 are then used with these ECFs and the original

A3.6



FO and Mo to give the deflection and angle at any given

point on the supported sebtion of the WR as:-

s
v, = =— *| (F_+F . ).A + F A
Ya Bhys L WNT OAp T Thgea T T 0By st(Ls’aﬁ
hee T
+ s, (MO+M6A )BX a * MOB.BX (L W (m)
kaws L L “ws L “ws‘“s~2 m
(A.3.9)
for Oacg LS
\ 2
6 = = [ ~(Fop  *+ Fyn?*By % Fop 2By (L _a)
v Kyws L WS L Aws'ts-
)\ 3
g, )€ - a4 = Mop - C)\ (Lo-a)| (rad)
+ Kyys L ws? L Ays'ls-2 ra

(A.3.10)

for O ag LS

where a is given by Xy LU and M:l.,.o.,MW

Note the use of the minus sign associateéd with

MOBL in the BW

equation. This is due to the sense in

which Mg acts (c.f. Figs.Al1.10 and Al.5)
L

These equations can now be used to find yL 9 BL',
N N

y and B due to the Nth force F by substituting
Ry RN WN

a = 0 and a = LS' Note here that AXO = CXO = DXO = 1

and on = 0., Therefore for the Nth force from the

front of the mill (F_.),

WN
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=2 WN OA, + F A —
N Myus L 0B, “Ayslg -+ kwws st g (m)
(A.3.11)
XWS (F Fo ) A F X (M +M
y = + + + +
Ry © 2gys Ausks OBy kwws 0 0AL "hysTs
(m)
(A.3.12)
A Ao
WS WS
B =7——.F, .B + —= | M +M_, -M__.C (rad)
Ly  wwg L Musts ~ Fgus | O OALT 0B "Ayslg
(A.3.13)
2
X 3
6. = Y5 .(r._4F_. ).B ‘ WS
= WNTTOoAL VPN L.+ —= | (M Mg, )c -M
Ry Kyws AL" Awsls Ks 0 Aysls ™ OB
(rad) (A.3.14)
The wvalues of ¥y, and BL can now be used in
N N

equation (A.3.8) to give the deflection at any section
on the LH end or over the strip due to a force acting on

the LH end of the WR. The values of y and © are used

Ry Ry

in the main text (section 3.9.2.1) to study the behaviour

of the RH unsupported end.
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APPENDIX 4

Effects of Non-Right-Cylindrical-Rolls on the Beam
Theory ’

The analysis of Chapter 3 considered only parallel-
ground rolls to avoid too much complication. However,
any of the rolls in the mill cluster may be ground with a
camber as shown in figure A.4.1. This camber is taken
heré to be ground off the rollldiameter used in Chapter 3.
Furthermore, the first intermediate rolls are also ground
with tapered-off. ends, which are slid into .or out of the
mill cluster for shape control purposes. This appendix
sets forward a method whereby theée effects may be in-

corporated in the model of Chapter 3.

A.4,1 Roll Camber Definition

Consider a general roll, N. The camber(cN) is
assumed to belparabolic, so that if the upper surface
pnly of the roll is considered, and Cartesian axes are
drawn as in fig.A4.2 then the equation of the roll sur-

face is given by

2 5 2
_ _°n | 2x D (m)
YN T "2 T = )
T Lo

If the y-axis is now shifted to the LH end of the roll,

we see that
Yy = - > CN '(X —‘E)z (m)
N L2 2

The true value of the roll diameter at any point (xM)
measured from the LH end of the roll is therefore
4 °N 2

Gy - L) (m) (A.4.1)

for M:l,...,MN
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A.Lk.2. Incorporation in the Theory

The b.o.e.f. theory of Appendix 1 considered a
parallel roll resting upon a foundation. If the cambered
vroll is now considered as resting upon an elastic found-
ation as shown in fig.A.4.1, we may make the following

observations.

For a force F applied as shown, a reduced amount of
foundation deflection will occur below the point of
application compéred with the case for a parallel-ground
roll of equivalent stiffness. In fact, one can conceive
that for F very small, whereas some small deflection of
the foundation would occur in the parallel case, none may
occur in fig.A.4k.1 if F is not large enough to close the

gap Ay.

Therefore; whereas eQuation (A1.1) gives us the value
of local distributed reaction as
ar = K.y (Nm—l)
the reaction iﬁ the case of figure A.4.1 will be

-1
ag = k(y - 4y) (™)
where y = deflection of lower surface of the roll (m).

Nowy, if the force F is taken to be equivalent to the
loading acting over a length of the roll given by Ax,
(which is how equivalent loadings were represented for
the first intermediate rolls and workrolls in Chapter 3),
then we may imagine the same effect to be produced

locally by assuming a parallel roll in contact with the
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foundation, and reducing F by an amount equal to

AF = k. Ay.Ax (N).

Now, Ay, is the gap between the foundation and the surface
of the roll and is therefore easily found from the wvalues

given by equation (A.4.1) as

Ay = 0.5 (Dg - D (A b.2.)

X

) (m) |
M Nx "

M

M:lg oo .IVIN

Furthermore, if the elastic foundation is itself
formed by a cambered rolly; the effect of the second camber
must be similarly included. Thus, consider for éxample
roll Y resting upon a foundation formed by roll Z, both
of which are cambered. Equation (A.%4.1) is used to

evaluate both D and D, s, and then (A.4.2)} gives

Yo X
*M M
Ayx = 0.5 (D, + D, - Dy -D, ) e . (ALEL3)
M XM XM

M=19.'..,Mn

Therefore, whenever the theory of beams on elastic
foundations is used in the model,; the above correction
is included. Thus for example, equation (A1.7) becomes

) Ne(F - k.Ayx A x)

yxM - M 'AXxM
2k

where Xy is the section under consideration

kgx are the constants of the interface under consideration

Ayx is given by equation (A.4.3).
M

Ax is given by for example LT/JlF in fig.3.28

Similarly equations (A1.8) to (A1.10) are modified by re=-

placing F with (F - k. Ay .Ax).
M
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AL4.3 Tapered First Intermediate Rolls

Consider now the 1lIRs.

L,. which

These have a length T

may be cambered in the same way as the other rolls

(fig.A4.1), but also an additional tapered-off length

L, is provided as shown in fig.A.4.3(i).

t

exists to slide these
cluster, so that more

over the strip edge.

the strip edges to be

The facility
tapers into or out of the mill

or less of the tapered section is
This allows the reduction taken at

varied with respect to the reduction

taken over the rest of the strip,

so that shape control

of the edges is facilitated.

upper 1IR slid a distance L

Fig.AL.3(ii) shows an

into the mill cluster.

IT

In fig.A4.3(i), with the x-axis drawn as in fig.A4.2

but with the y-axis shifted to the extreme LH end of the

roll, the equation of the upper surface of the roll
becomes

°1 ]

yl = ——é— - Z'E . (L‘t - X) (m) for OS}C(Lt
t
—201 15.2.

and ¥y = L2 '(X-Lt - 2) (m) for Lt< x'<(Lt + LT)

T

In fig.AL.3(ii), Xy

is measured from the front of the

other (laterally fixed) mill rolls in oxder to obtain

values at the same points across the mill as in the main

model.

These equations therefore give the magnitude of

the deflection correction due to eithexr surface of the

shifted 1IR as
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relative position of other rolls

Fig. A4-3  1IR Profile & Control Action
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Fig. A.4-4  Upper & Lower 1IR Effects
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y, = °1 o+ 2% (LIT - xM) (m) )
XM 2 t )
)
for O< Xy < LIT ;
) (AL, L)
and 2¢, Gy = Lo - %T’)g (m) g
Y1 = 12 ) for M=l,...,M
M T )
)
)
)
)

The upper 1lIRs are tapered off at the front of the
mill, and the lower 1IRs at the rear as shown in fig.A4.4.
To obtain the magnitude of the deflection correction due
to each surface of the lower 1IR; equatiomns (AL. L) are
applied measuring xﬁ from the RH end of the mill rather than

the left, i.e.

1 )| ;
s
vi, = 7 * 3y P -x) )
X t
M
< <
for OX XM<LIB
2c , L 2
— — P —
ylx’ = L2 (XM LIB 5 ) (m)
M T
for LIBSXI:I SLp

fOI’ M:l,...’Ml

The order of the set of values is then reversed so that

X

M again runs from front to rear:-

y, = yi (m) for M=1,...,M (AL.5)

M X(Ml+l-M)

1
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Although the lower 1IRs are not in the upper half of
the clustery; their effect must be taken into account
during the analysis of Chapter 3. The conditions around
the roll bite during rolling are such that a profile
change forced onto the lower WR only, will have the same
effect on strip shape as the inverse profile change forced
onto the upper WR only. Therefore, to a reasonable
approximation, if the lower 1IRs are conceptually moved
into the upper half of the cluster, their effect upon
strip shape should remain the same. An imaginary roll is
therefore postulated whose surface profile includes all
the effects due to the shifted upper and lower 1IRs. Two
obvious properties of such a roll can be stated. Firstly,
when neither the upper nor lower 1IR tapers are slid into
the cluster at all, then the deflection cormction due to
its surface must be the same as that due to the camber
only on either the top or bottom 1IRs. Secondly, if both
the upper and lower 1IR tapers are slid into the mill to

the maximum possible extent, then the deflection correction
would be expected to be symmetrical about the wvertical
centre-line of the mill, and to be a maximum at each end

of the foll. These conditions are met by assuming that

the magnitude of the deflection correction due to all 1IR
effects (at ome surface of the imaginary roll) is simply

the arithmetic mean of the corrections for the upper and

lower 1IRs., Thus,

(AL4.6)

. X
yI = M M (m) for M:l,ooo'Ml
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where y,, is given by equation (AL4.4)
x
M

Y is given by equation (AL4.5)
x
M

The value of roll diameter for this composite roll

is then found as before (c.f. equation (Ak.1)), viz..

D = D + 2ny (m) v e e oo (ALL7)
M M

M=190009M1

When the first intermediate roll is involved in
Chapter 3; the effects of this are included by using

D, and D, (given by (A4.7) above) in equation (A4.3)
x
M

instead of D or D .
' Y Z
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APPENDIX 5

Examples of Matrices Generated

A5.1 Transpose of Parameterization Matrix (i.e. i;ﬁ) for
the Theoretical Case of 8 Covered Rotors

-1.000 0.571 -0.245 0.080 |
-0.714 0.082 0.175 -0.148
-0.429 -0.245 0.245 ~0.034
T -0.143 -0.408 0.105 0.103
XL - 0.143 -0.408 -0.105 0.103
0.420 ~0.245 -0.245 -0.034
0.714 0.082 ~0.175 ~0.148
1.000 0.571 0.245 0.080
L -

.(Note that the ith column contains the coefficient of

the ith Gram polynomial)

T

AS.2 (ioio )1 Corresponding to the matrix of A5.1

0.292 0.000 0.000 0.000

(i iT‘)—{_ 0.000 0.893 0.000 0.000 | _ T
oo = 10.000 0.000 3.095 0.000
0.000 0.000 0.000 12.440

These matrices were computer generated, and are
rounded to the given accuracy. The'greatest of the off-

diagonal terms in this particular matrix is actually -
S. When compared with the matrix given by
1

0.44*10°
evaluating (in)- for the equivalent matrix in ref.(49),
the mistaken assumptions of Fotakis and Grimble concerning

the Chebshev polynomials are evident (off-diagonal terms of

significance being present).
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A5.3 ig‘ Matrix for 21

Covered Rotors

-1.000
-0.900
-0.800
-0.700
-0.600
-0.500
-0.400
-0.300
-0.200
-0.100
.000
.100
. 200
.300
.400
.500
.600
.700
.800
.900
.000

HOOOOOOOOOO

L

Again, column i contains the coefficients of the i

0.633
0.443
0.273
0.123
-0.007
-0.117
-0.207
-0.277
-0.327
-0.357
-0.367
-0.357
-0.327
-0.277
-0.207
-0.117
-0.007

.123-

.443

0]
0.273
0
0.633

-0.342
-0.137

0.014
0.118
0.179
0.204
0.199
0.170
0.124
0.065

0.000
-0.065
-0.124
-0.170
-0.199
-0.204
-0.179
-0.118
-0.014

0.137

0.342

0.166
0.000
-0.087
-0.117
-0.105
-0.070
-0.022
0.026
0.066
0.093
0.102
0.093
0.066
0.026
-0.022
-0.070
-0.105
-0.117
-0.087
0.000
0.166

-

th

Gram polynomial (c.f. column 1 with equation (6.6) and

X of equations (6.9)),

°1j

& oT. -1
A5.4 (X X )

Corresponding to i;r

of AS.

0.130

. . _. lo.000
(xoxq') 1 _lo.000
° 0.000

Here, the greatest off-diagonal term is - 0.18*10

0.000
0.446
0.000
0.000

A5.2

0.000
0.000
1.605
0.000

0.000
0.000 _
0.000 | =T
5.949
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A5.5 A"Theoretical' 8x8 Ep Matrix (Nmm °)
(As used by Fotakis in.ref. (17))
3.79 3.46 -0.75 -1.44 -1.38 -1.18 -1.56 -0.96
1.30 2.30 1.03 -0.41 -0.62 -1.43 -1.60 -0.87
- -0.44 0.86 1.88 0.67 0.23 -1.04 -1.33 -0.80
G .=]-1.02 -0.75 1.29 1.61 1.35 0.10 -1.34 -0.96
p -0.96 -1.34 - 0.10 1.35 1.61 1.29 -0.75 -1.02
-0.80 -1.33 " -1.04 0.23 0.67 1.88 0.86 -0.44
-0.87 -1.60 -1.43 -0.62 -0.41 1.03 2.30 1.30
L—O.96 -1.56 -1.18 -1.38 -1.44 -0.75 3.46 3.79
A5.6 Transformed Plant Matrix for "Theoretical' 8x8 System
~ _ ~ o~ ~ ~T
Gp = L X, Gp Xo
where i' is given in appendix AS5.2
iJ’ is given in appendix A5.1
Ep is given in appendix AS5.5
i "
8.37 0 -0.52 0]
0 6.19 0 -0.62
~ (Greatest "O"
GT - 0.80 0 3.04 0 term =
| 0 -2.34 0 1.08 ] —0.16*10"$)
A5.7 Precompensator for '"Theoretical® 8x8 system
5 5 -1
P = G
0.18 0 0.02 o |
~ 0 0.21 0 0.12 "(Greatest "O"
P = -0.03 0 0.32 0 term =
0 0.45 0 1.18 0.26*107°
L -

A5
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0.
1.

A5.8 Calculated 8x8 Gp matrix for 1.61m strip (Nmm °)
1.0 2.14 -0.06 -0.94 -1.05 -1.00 -0.92 -0O.
0.68 1.43 1.13 -0.06 -0.90 =-1.02 -0.93 -0.
-0.05 0.54 1.44 0.98 -0.19 -0.91 -0.93 -0.
-0.43 -0.43 0.73 1.36 0.80 -0.29 -0.90 -0.
~ -0.46 -0.90 -0.29 0.80 1.36 0.73 -0.43 -0.
G -0.45 -0.93 -0.91 -0.19 0.98 1.44 0.54 -0.
P | -0.45 -0.93 -1.02 -0.90 -0.06 1.13 1.43
-0.45 -0.92 -1.00 -1.05 -0.94 -0.06 2.14
A5.9 Comparable Matrix after Gunawardene (16) (Nmm—3)
2.74 2.95 -0.12 -1.22 ~-1.17 -0.97 -0.92 -O.
0.73 1.80 1.39 0.00 -1.04 -1.27 -1.18 -1.
-0.47 0.32 1.70 1.24 -0.23 -1.11 ~-1.26 ~-1.
~ -0.73 -0.70 0.76 1.67 1.03 -0.34 -1.19 -1.
G -0.64 -1.10 -0.42 0.87 1.69 0.90 -0.70 -0.
P -0.57 -1.18 -1.08 -0.33 1.06 1.71 0.48
-0.54 -1.12 -1.22 -1.04 -0.19 1.22 1.91 1
-0.52 -0.98 -1.02 -1.19 -1.16 -0.14 2.86 3
A5 .4
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ar

A5.10 .31+8 Gp Matrix for 1.61m strip (Nmm ~).
2.49 3.12 -0.63 -1.12 -1.04 -1.00 -0.94
1.80 2.35 -0.23 -1.00 -1.05 -1.00 -0.95
1.36 1.91 0.15 -0.85 =-1.05 -1.00 -0.95
1.11 1.72 0.50 -0.65 =-1.04 =-1.00 -0.95
0.91 1.59 0.81 -0.41 -1.00 -1.00 -0.95
0.73 1.46 1.06 -0.15 -0.93 -1.00 -0.95
0.54 1.30 1.28 0.14 -0.81 -1.00 -0.95
0.34 1.08 1.40 0.42 -0.65 -1.00 -0.95
0.14- 0.84 1.46 0.69 -0.50 -0.98 -0.95

-0.04 0.57 1.45 0.93 -0.23 -0.92 -0.96
-0.19 0.29 1.35 1.12 0.01 -0.83 -0.96
-0.31 0.03 1.22 1.28 0.28 -0.69 -0.96
-0.40 -0.22 1.00 1.35 0.54 -0.51 -0.96
-0.45 -0.44 0.76 1.37 0.79 -0.30 -0.93
-0.48 -0.62 0.49 1.32 1.02 -0.05 -~0.86
-0.48 -0.76 0.21 1.18 1.18 0.21 -0.76
-0.48 -0.86 -0.05 1.02 1.32 0.49 -0.62
= |-0.48 -0.93 -0.30 0.79 1.36 0.76 -0.44
p -0.47 -0.96 -0.51 0.54 1.35 1.00 -0.22
-0.47 -0.96 -0.69 0.28 1.28 1.22 0.03
-0.47 -0.96 -0.83 0.01 1.12 1.35 0.29
-0.47 -0.96 -0.92 -0.23 0.93 1.45 0.57
-0.47 -0.95 -0.98 -0.50 0.69 1.46 0.84
-0.47 -0.95 -1.00 -0.65 0.42 1.40 1.08
-0.47 -0.95 -1.00 -0.81 0.14 1.28 1.30
-0.47 -0.95 -1.00 -0.93 -0.15 1.06 1.45
-0.47 -0.95 -1.00 -1.00 -0.41 0.81 1.59
-0.47 -0.95 -1.00 -1.04 -0.65 0.50 1.71
-0.47 -0.95 -1.00 -1.05 -0.85 0.15 1.91
-0.46 -0.95 -1.00 -1.05 -1.00 -0.23 2.35
-0.46 -0.94 -1.00 -1.04 -1.12 -0.63 3.12

AS5.5
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A5.11 25x8 Gp Matrix for 1.3m Strip (Nmm )
9.52 13.82 2.32 -0.82 -1.33 -1.21

2.62 3.98 1.14 -0.61 -1.26 =-1.22

-0.29 -0.03 0.71 -0.38 =-1.17 -1.22

-1.02 -0.96 0.75 -0.10 -1.05 -1.22

-0.88 -0.71 0.92 0.17 -0.89 -1.22

-0.55 -0.22 1.09 0.44 -0.70 -1.19

-0.34 0.59 1.17 0.68 -0.48 -1.14

-0.28 0.08 1.13 0.87 -0.24 -1.04

-0.32 =0.07 1.01 1.03 0.03 -0.90

-0.41 -0.31 0.79 1.10 0.29 -0.72

-0.48 -0.55 0.55 1.11 0.54 -0.51

-0.52 -0.76 0.28 1.07 0.77 -0.26

o -0.55 -0.93 0.00 0.93 0.93 0.00
G = | -0.55 -1.04 -0.26 0.77 1.07 0.28
p -0.55 -1.10 -0.51 0.54 1.11 0.55
-0.55 -1.13 -0.72 0.29 1.10 0.79

-0.54 -1.14 -0.90 0.03 1.03 1.01

-0.54 -1.14 -1.04 -0.23 0.87 1.12

-0.54 -1.13 -1.14 -0.48 0.68 1.17

-0.54 -1.13 -1.19 -0.70 0.44 1.09

-0.55 -1.13 -1.22 -0.89 0.17 0.92

-0.55 -1.13 -1.22 =-1.05 -0.10 0.75

-0.55 -1.13 -1.22 -1.17 -0.38 0.71

-0.53 -1.12 -1.22 -1.26 -0.61 1.14

-0.51 -1.09 -1.21 =-1.33 -0.82 2.32

A5.12 19x8 Gp Matrix for 0.99m Strip (Nmm ™)
18.38 29.18 8.81 1.07 -1.39 -1.51
2.22 3.90 2.37 0.21 -1.23 -1.49
-3.37 -4.42 -0.15 -0.04 -1.05 -1.46
-4.11 -5.58 -0.61 0.07 -0.83 -1.41
-3.09 -4.18 -0.30 0.30 -0.59 -1.31
-1.86 -2.48 0.10 0.55 -0.33 -1.17
-1.01 -1.35 0.28 0.69 -0.07 -0.99
-0.59 -0.87 0.25 0.74 0.18 -0.76
~ -0.47 -0.83 0.06 0.71 0.41 -0.49
G_= -0.49 -0.99 -0.21 0.58 0.58 -0.21
P -0.55 -1.17 -0.49 0.41 0.71 0.06
-0.60 -1.32 -0.76 0.18 0.74 0.25
-0.63 -1.40 -0.99 -0.07 0.69 0.28
-0.65 -1.43 -1.17 -0.33 0.55 0.10
-0.65 -1.44 -1.31 -0.59 0.30 -0.30
-0.66 -1.44 -1.41 -0.83 0.07 -0.61
-0.65 -1.43 -1.46 -1.05 -0.04 -0.14
-0.63 -1.41 -1.49 -1.23 0.21 2.37
-0.58 -1.36 -1.51 -1.39 1.07 8.81

A5

.6

.32
.17
.99
.83

.36
41
.43
.44
.44
.43

.35
.48

.57
.42
.90
.18

.56
.63
.65
.66

.65
.63

.55
.49
.47
.59
.01
.86
.09
.11
.37

.38




APPENDIX 6

Details of The Author's Dynamic Simulation Package

Digital simulation of dynamical systems relies, as
does analogue simulation, upon solution of the system
differential equations. Many computer installations
linked with academic institutions are furnished with
software packages which will simulate dynamical systems
expressed in state-space form. Such a package was not
available to the author, and therefore a simple package
previously written by the author for single-variable
transfer function simulation was modified and extended.
Details are now giveﬁ of the various subroutines in the
pacﬁage, which take the form of one routine per block
diagram element. Thus there is an "integrator" routine,
a "first order lag" routine etc., and these are linked
together by a main program to form block diagram simu-

lations of arbitrary complexity.

A6.1 Fundamental Method of Solution of Differential
Eguations

References on numerical analysis (see for example
(30)9(31) and (41)) provide any number of methods of
greater or lesser accuracy and complexity for the solution
or ordinary differential equations. Perhaps the most
widely used of these are the class of Runge Kutta methods.
However, these need typically three or four intermediate
function evaluations per step of the integration pro-

cedure (for the more accurate versions of the method)

wid ch is often inconvenient for the types of simulation
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for which the present package is required. The simpler
methods,; such as Euler's method; have the disadvantage
that a smaller integration step size is needed for
acceptable results, and afe also somewhat less accurate.
In the current application, the step size requirements of
Euler's method are almost acceptable, and this therefore
is the basis of the package. In order to obtain
sufficient accuracy and allow an increase in step size, a
"predictor-corrector" method based upon Euler's method is
used. This is stiictly the "Fox-Euler" method (42),(43).

Consider the differential equation

'%% = y, = f(t,y) ‘ (A6.l)

y(a) = yO

Over an interval (a;b) choose a step length

h = ‘ihﬁil (second)
whence to = a , tn = a+nh, tN = b

y(tn)A= y(a+nh)

Euler's method (which equates to Taylor's method of

order 1) then states that

Vo1 = yn + h.f(tn,yn)
_ /
i.e. Yp41 = Yn * Doy (A6.2)
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It can be shown that the local error of this method is

given by

hz ”
E = 5y (%) tn<€ <‘tn + h

A more accurate solution can be obtained by in-

tegrating the original equation A6.1 from tn to tn+l

(-!'

n+l
giving y_,, = ¥, * J‘ f(t,y(t))dt (A6.3)
t

n

Approximating A6.3 by the trapezoidal formula for

numerical integration gives

h
Yy =y, + 3t L,y ) + £t .y .)) (A6.4)

n+l

which is clearly an implicit formula for Va1

The local error is now much better than Euler's

method, and is given by

3
h 7y
B=-3zy"" (€) t < €<t +h

In order to solve the implicit equation above (A6.4)

an "inner iteration" is used (to distinguish it from

the "outer iteration" on n) as follows:-

1) Use Euler's method (A6.2) to obtain a first

approximation

(o) ’
Yne1 = Yn ¥ h’yn

y(o) ) and use in (A6.4) to obtain

2) Evaluate f(tn+l’ bl

the approximation

(1) h (s
ntl = In * 3 (yn + £(t

(0) ))

y n+1'Yn+1
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3) Continue to apply step (2) using the updated estimates

as an iteration on k:-

(x) h ./ (k-1)
Yn+1 = Yn t 3 O+ £0E 0 Yoe1m ) xo1,2,3,, . cuntil
finished
(46.5)

until two successive iterates agree to the required

accuracy, i.e. until

(x) (k-1)
y yn+l |

n+l

(x)
yn+l

<€ where £ is the pre-
scribed accuracy.

(In the present context, the independent variable is

2
always time; thus y': %% ) y”: 2—% etc.)
dt

A6.2 Simulation of an Integrator

Consider the trivial block diagram of figure A6.1(a),
which may be redrawn as fig.A6.1(b). This represents a
general integrator in transfer functional form, and by
inspection the variable at the unity-gain integrator in-

put in (b) must be y’/. Hence, it can be seen that

Substitution in (A6.2) yields

=y, + hekp.x (A6.6)

yn+l I

(There is no need to apply the '"corrector" part of the
process here, as Euler's method alone is accurate for a
pure'integra£or).

Hence, a subroutine.is provided which is used as

follows: -~
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‘KI

Fig.A.61 Integrator Block

Fig.A.62 First Order Lag Block

(3)

2
K, v

— oK &
* _i S 1+sT

S2 +2§wnS + wrz‘

(b)

l ’Eﬂ
N
.._.-‘

where T:-l— and z°=-¥2—
24“’,\ T
Fig.A.6-3  Second Order System Block
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CALL INTEG(K,X,Y,H,YNXT)

where K = (real) integral gain

X = existing input at present time
Y = existing output at present time
H = integration step length (s)

YNXT = value of output which will exist one time step
(H) later.

A6.3 Simulation of a First Order Lag

Figure A6.2(a) shows a block diagram of a first order
lag in transfer functional form, and fig.A6.2(b) shows
an equivalent representation. From fig.A6.2(b), we see

that

4

1
v’ = -T—I_:(KLX_y)

Substitution into (A46.2) gives

(o) h

=y, + TL-(KL.xn—yn) (A6.7)

yn+1

This value is then used as the starting point for an
"inner iteration" around the corrector equation (A6.5).
It is usually found that for a correct choice of h (i.e.
say TL/S) only two "inner iterations" will be needed.
Therefore the subroutine allows only five iterations
beforevprinting a warning message and the value of Yoel

as the result. The routine is used by issuing the

statement
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CALL LAG(K,T,X,XNXT,Y,H,YNXT)

where K (real) gain

T = Time constant(s)
X = existing input at present time
XNXT = input which will be known to exist one
time step (H) later
Y = existing output at present time
H = integration step length (s)
YNXT = +wvalue of output which will exist one

time step (H) later

A6.4 Simulation of a Second Order System

The generalized second order system is shown in
figure A6.3(a), and in rearranged form in A6.3(b). Here
the intesrmediate variable z is introduced to §implify
matters. It is clear that fig.A6.3(b) makes use only of
transfer functional blocks already dealt with in sections
A6.2 and A6.3. Therefore the procedure here is simply

to issue the calls (written in pseudo code for brevity).
CALL INTEG(w2, (K,x - y),z,H,ZNXT)

(where ZNXT = integrator output one time step (H)
later), followéd by
1

1
)
2‘§wn 2'€wn

CALL LAG (

s 2, ZNXT,y ,H, YNXT)

The call to the second order simulation subroutine

which does this is written

CALL SECORD (K,ZTA,WN,X,Y,Z,H,YNXT,ZNXT)
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where X = system gain
ZTA = damping ratio (%)

WN

natural frequency (wn)(rad 1)
X,Y as before

Z = existing value of intermediate value at
present time?*

H

Integration step length (s)
YNXT as before

ZNXT = +value of intermediate variable which will
exist one time step (H) later.

*On the first call, this can be given as 2 = YO/T

A6.5 Simulation of a Lead-Lag (Phase Advance) Network

The transfer functional representation of a phase
advance compensator is given in figure A6.4(a). From the
rearranged version (fig.A6.4(b)) it can be seen that only
a first-order lag block is required. Here, however, a
call to the LAG routine cannot be used, as the new value
of output will affect the input. Therefore, the following
procedure is used:-

Euler's method is used as in the LAG routine
(équation A6.7) to obtain a first estimate for tﬁe next

value of =z as

(o)

h
zn+1 = Zn + T (yn B Zn)

Then, from fig A5.4(b)
K o x (o)

(o) Cl-oc | Tp “m+l ”
= oC 1l - ec n+1l

Y n+l
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(a)

KP°L(1+STP)

X 1+ s, -7
(b)
KPeL + 1~
X ——e— T { =
z 1
where z=y 1+5T,
Fig. A6.L  Lead-Lag Network Block
X e-sT, y

Fig. A6-5 Transport Delay Block

+x B |3 C 32
s S+hs+16
E
1 —
1+41s
Fig. A.6-6  Example System
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The "corrector" formula (A6.5) is then applied

iteratively as follows, until z is obtained with suf-

(k) (x)
ficient accuracy, when the wvalues Yoasl and 241
are given as the outputs.
(x) (k-1) (k=1)
z =z o+ 22| (y. - =z )+(¥ - z_ )
n+1 n 2T n n "n+l n+l
. k:lg 2, oo e
(k) 1-0c | K< Xy (k) until
_ < 1T = o< - Zo.1 finished
Yn+1 °

The call to the routine takes the form

CALL LEDLAG(X,A,T,X,XNXT,Y,Z,H,YNXT,ZNXT)

where K gain (real)

A lead-lag factor (e<)

i

T = +ime constant (s)
Other variables as before.

N.B. on first step, Z may be given as ZO = Yo

A6.6 Simulation of a Transport Lag

Discussion of this routine is a little out of place
here, as no differential equations are involved.
However, it is included for completeness. The routine
simulates the transport lag of figure A6.5 and is used

by the call:
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CALL DELAY (N,X,Y,YNXT,RI)
with the named common block:
COMMON / DELAY / I, J

where N = number of parameters stored at each step

(regard N = 1 for the moment)
I = number of simulation integration steps (H)
comprising the transport lag, i.e.
I = T/4d
J = number of current delay table entries in

use (automatically updated by the routine
after being entered as zero on the first
step).

X = input to the delay element at the present
time = this is placed into a rotating
shift register created on a disc file.

Y = output from the delay element at the present
time (read from the rotating shift register
I places after X).

YNXT = output from the delay element one step (H)
later (needed for use in the routines
described above). (Read from the rotating
register I-1 places after X)

RI = wvalue existing initially at output of delay

element (= yo). The rotating register is

initially filled with this value which will
therefore be output until I steps have
been executed.

A6.7 Use of Simultation Package Routines

In order to use these routines, a main program must
be written which controls the calling of the routines,
sets up the initial state of the system, and handles the
output. To illustrate the principles involved,; consider
the simple fictitious system given in figure A5.6. Lét
us take as an example a ramp input of A = 0.1t units, with

an initial wvalue Ao = 5 and D = 5.
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‘

Firstly, it is mecessary to calculate all system
states at the initial values of Ao and D0 (it is assumed

‘that steady state exists before the ramp is applied).

Assuming steady-state conditions, we can say that the
time-varying (transient) responses of the first and
second ofﬁér blocks make ﬂo initial contribution. The
second order block has a natural frequency of 4 rad sﬂl,
and gain of 2, thérefore C,6 = Do/z = 2.5. It is not
possible to work "backwards'" to obtain B0 via the in-
tegrator, since an integrator can have (in theory) any
output at steady state. Therefore we work in the other
direction viz. Eo'= Do/l' =5, B, = A -E_ = 0. Now, we
choose the step length H to be 0.1 times the smallest

time constant in the system for accuracy. The first order

time constant is O,1ls; the second order "time constant" =

(2€w )"l = =3 1* = 0.25s therefore we choose
n 2*.5 I
H = 10 ms. Further, we must initialize the variable Z

inside the second order block (see fig.A6.3). This is
given as

D D,
Z = —2— = —=_ = 20

° (28w )=t
n
We can now state the problem as

A=5 B=0 C=2.5 Z=20 D=5 E=5 H=0.01

It is now necessary to call the appropriate simula-
tion routines in such a way as to update the system

states AS A CONSISTENT SET. Let us assume we wish to

simulate 5 seconds of real time. Then N=5/H=500 steps.
The necessary pseudo code (FORFRAN) to perform the

simulation would then be:-
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T = 9
DO 199 I = 1,589
T = T+H
C*** RAMP INPUT ON NEXT LINE...
ANEXT = 5 + T/19
C*** CALCULATE CORRESPONDING SYSTEM STATES...
BNEXT = A-E
CALL INTEG(.3,B,C,H,CNEXT)
CALL SECORD (2,.5,4,C,D,Z,H,DNEXT,ZNEXT)
CALL LAG(l,.1,D,DNEXT,E,H,ENEXT)
OUTPUT OR PLOT SYSTEM STATES A TO E(FOR T=T-H)
C*** UPDATE PARAMETERS...
A = ANEXT, B = BNEXT, C= CNEXT, D = DNEXT, Z=ZNEXT,E=ENEXT

199 CONTINUE

If can thus be seen how easily these routines permit
system simulatioﬁ. Note that in general, when a routine
requires knowledge of the inputlt variable at the next time
step (e.g. the LAG routine), it has always just been
calculated by the routine for the previous block in the
system (e.g. DNEXT calculated by SECORD in the example

above).
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APPENDIX 7

Outline Specification of Single Board Microcomputers Used

(For more detail, see Ref.(58); which is the manu-

facturer's literature).

Manufacturer: J.B. Microsystems Ltd.; Ashly-de-la-Zouch.
Type: MERLIN MRL V3/1
Processor: Intel 8085
System Clock: 3 MHz
Communication: Three RS232-c Serial Link Interfaces
One RS422 Data Link

Memory: 3k RAM, plus six bytewide memory sockets
which are all link-selectable for RAM or
EPROM memory chips.

Maths Facility: High Speed Maths functions are available
using the AMD9511 mathematics processor
chip on-board.

Digital Inputs: Sixteen, opto-isolated (15V to 40V))Also 6-bit
: )TTL memory-

Digital | Jmapped I/O
Outputs: Sixteen, opto-isolated (60V,0.5A) %port.
Analogue Thirty, 1l2-bit,single-ended. (Expanded
Inputs:

to sixty-one on one of the machines in
the present scheme by adding extermal
multiplexers, addressed by some of the

digital outputs).

Analogue Eight, 8-bit )

Outputs: Two, 12-bit g (Voltage outputs)

Programming: (This application is of course unique,
other users may use other methods and
other languages). Parts of the software
which do not require especially fast
execution are written in the high-level

FORTRAN language on a disc-based development
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Other
features:

i)

ii)

iii)

system (of DAI manufacture); and compiled
into into machine code and blown into EPROMS
using this development system. These EPROMS
can then be plugged into the sockets on the
MERLIN board, and the programme can be run
using the hardware reset and ROM-based
monitor on the MERLIN board (the monitor

programme is an optional purchase).

Parts of the programme requiring rapid
execution are programmed directly in 8085
machine code which can be incorporated

"in-~-line" with the FORTRAN source.

FORTRAN was chosen for the following reasons:

Extremely familiar to the author.

It was definitely necessary (for reasons of
execution speed) to use a compiled language
rather than an interpreted language (such
as BASIC).

A FORTRAN compiler was readily available for
DAI development system used.

Many other features could be mentiomned,; but

are not relevant here.
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