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Abstract

Abstract
The importance of nitric oxide (NO) in neurotransmission1, immunological 

defense2, and as a vasodilator in the regulation of blood pressure3 is well known, 

so there is a high interest in methodology for NOS turnover measurements, or 

methods that help to discover new metabolites of nitric oxide. Use of L-arginine 

with a 15N stable label allows determination of the NO pathway throughput, but 

requires sensitive detection methods which are capable of isotopic discrimination. 

The Griess assay for nitrite has been combined with surface enhanced 

resonance Raman spectroscopy (SERRS) to allow more sensitive determination 

of nitrite, and also quantitative discrimination between 14N and 15N forms. The 

method was optimised for use with silver sol prepared from silver nitrate and 

citrate. The method was applied to the analysis of urine, serum and culture 

medium with recoveries of 96%, 85% and 95% respectively. Good reproducibility 

was achieved following pretreatment of samples by solid phase extraction. The 

limit of detection for nitrite was 5 nmol/l and the response was linear up to at least 

10 pmol/l. In terms of isotopic discrimination between the 14N and 15N isotopes, 

15N nitrite was detectable at isotopic ratios of greater than 1:20 15N : 14N. The time 

of analysis, excluding derivatisation by the Griess assay, was approximately 5 

minutes. The method will be useful in metabolic tracer studies using stable labels. 

An alternative assay using ion chromatography -  mass spectrometry allowed the 

detection of nitrite and nitrate without prior derivatisation, and showed good 

discrimination between nitrogen isotopes. Nitrite and nitrate were separated from 

each other and from matrix components by suppressed ion chromatography. Post
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Abstract

column oxidation and a chloride trap column were employed to improve senstivity 

and selectivity. The limit of detection for 14N-nitrite and 14N-nitrate was 200 nmol/l 

and the detection limit for 15N-nitrite and 15N-nitrate 50 nmol/l. Nitrate recovery 

was 93% from urine and 94% from serum. Recovery of nitrite was 96% from urine 

and 107% from serum.

The IC-MS assay was used in a pilot study of primary pulmonary hypertension, in 

which NOS turnover was found to be significantly lower in the patient group than 

in the controls. The assay was also used in a study of NO donors where the 

donor compounds as well as nitrite and nitrate could be detected.
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Abbreviations

Abbreviations

Alb - serum albumin

CE -  capillary electrophoresis

cGMP -  cyclic GMP

DETAnonoate - 2,2'-(hydroxynitrosohydrazono)bis-ethanamine

EDRF - endothelial-derived relaxing factor

GC -  gas chromatography

GIRMS -  Gas isotope ratio mass spectrometry

GSH -  glutathione

Hb -  haemoglobin

H b02 -  oxy-haemoglobin

HPLC -  high performance liquid chromatography

1C -  ion chromatography

IC-MS ion chromatograpy -  mass spectrometry

L-NMMA -  NG-methyl-L-arginine

n.d. - not detectable

NO -  nitric oxide

NOS - nitric oxide synthase

M b02 -  oxy-myoglobin

MetHb - met-haemoglobin

MS -  mass spectrometry

PAPAnonoate - 3-(2-hydroxy-2-nitroso-l-propylhydrazino)-l-propanamine

PPH -  primary pulmonary hypertension

SERS -  surface enhanced Raman spectroscopy

SERRS -  surface and resonance enhanced Raman spectroscopy

sGC -  soluble guanylate cyclase

UV -  ultra-violet

VIS -  visible
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1. Introduction

1.1 Nitric oxide and metabolism

1.1.1. Overview

Nitric oxide (NO) is an important molecule with numerous metabolic functions, 

such as neurotransmission1 immunological defense2 and as the endothelial- 

derived relaxing factor (EDRF)3,4 NO is produced from oxidation of L-arginine in 

the NO-pathway catalysed by three isoforms of nitric oxide synthase (NOS). In 

vivo, NO is excreted mainly as nitrite and nitrate in the urine. However, 

nitrolysation of proteins to nitrosothiols has been an area of great interest over 

the past years. Research has shown an impairment of NO production in several 

diseases such as disorders of the systemic and pulmonary circulations5, 

diabetes6, septic shock7 and cancer8.
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1. Introduction

1.1.2. Properties of NO

Nitric oxide (NO) is a colourless, toxic, non-flammable gas. Its boiling point is 

-152°C and it is solid below -164°C. NO is in equilibrium with its dimer (N2O2). 

Because of its odd number of electrons it has paramagnetic properties and is a 

so-called stable radical. NO is not very soluble in water (73.4 ml/l), but it is 

relatively soluble in lipids. As a small, uncharged molecule NO can diffuse quickly 

in biological systems. The diffusion constant of NO in aqueous solution is 

3300pm2 s 1 at 37°C. These properties allow NO to penetrate cell membranes and 

pass through tissue. As a free radical, NO reacts quickly with compounds 

containing unpaired electrons such as molecular oxygen, superoxide or transition 

metals. In principle NO may react by electron gain to form the nitroxyl anion NO', 

and by electron loss to form NO+, the nitrosonium ion9.

1.1.3. The nitric oxide pathway and nitric oxide synthases

NO is produced in cells by the nitric oxide pathway through the catalysed oxidation 

of L-arginine to L-citrulline10 (Figure 1.1).

HoN' •NH2 HoN- NHOH H2N̂ O

.NH
NADPH + H+ NADP

.NH

O2 HoO

NADPH + H+ NADP
,NH

+ NO-

02 h9o

"COO h 3n-+ "COO"H3N'+
L  - A rg in ine  N -H ydroxyargin inc

Figure 1.1: Formation of nitric oxide by the NO pathway

HoN' "COO"

L-Citralline
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1. Introduction

The catalysed 5 electron oxidation of the guanidino nitrogen by molecular 

oxygen leads to the production of equimolar amounts of NO and L-citrulline. 

The formation of NO is thought to be a two-step biochemical reaction. One of 

the guanidino-nitrogens of L-arginine is oxidised to N-hydroxyarginine followed 

by further oxidation to L-citrulline and nitric oxide.

This reaction is catalysed by a family of enzymes called Nitric Oxide Synthases 

(NOS):

a) neuronal (nNOS) Type I

b) inducible (iNOS) Type II

c) endothelial (eNOS) Type III

There are different nomenclatures for the NOS isoforms11. They are 

categorised in two groups: as calcium/calmodulin-dependant NOS (cNOS), that 

is constitutively expressed and dependant on calcium/calmodulin, versus iNOS 

where the letter 'i' indicates that its expression is inducible and

calcium/calmodulin-independent12. The calcium/calmodulin-dependent isoforms 

are named neuronal NOS (nNOS) and endothelial NOS (eNOS) refering to the 

type of cells where they were first discovered. The abundance of an enzyme is 

not specific to an organ or type of tissue13. Another nomenclature enumerates the 

enzymes in the order in which they were first cloned. The first isoform purified and 

cloned was nNOS (Type I), followed by iNOS (Type II) and finally eNOS (Type III)12. 

Three genes encode NOS in human, cow, rat and mouse, where each NOS gene

Page -10-



1. Introduction

is located on a different chromosome14. Among these, 39% of the 1144 residues in 

the shortest isoform are universally conserved. Across species, the homology 

between equivalent isoforms averages 90% ± 6%, while within species the 

homology between isoforms averages 53% ± 2%. While nNOS and eNOS are 

expressed constitutively to form NO in small amounts, the expression of iNOS is 

induced upon exposure to inflammatory stimuli and in larger amounts than the 

other two constitutive isoforms15.

The nitric oxide synthases show a high degree of similarity with the cytochrome P450 

enzymes, but require additional cofactors namely flavin adenine dinucleotide 

(FAD), flavin mononucleotide (FMN) and tetrahydrobiopterin (BH4) to pass 

electrons from reduced nicotinamide adenosine dinucleotide phosphate (NADPFI) 

substrate to the heme12. eNOS has an extra site for myristoylation since it is usually 

membrane bound12, while the two other isoforms can be found in the cytosol16. All 

three enzymes possess the same binding sites for the cofactors including calcium 

and calmodulin17. iNOS does require calcium and calmodulin to produce NO, but 

their affinity for NOS binding site is high and they are almost permanently bound 

to the enzyme12.

In healthy cells, when iNOS is not induced it produces approximately the same 

amount of NO as the two other isoforms (1 [pmol/l])/min/mg protein NO at 37°C). 

Flowever, upon exposure to inflammatory cytokines, NO production is greatly 

enhanced12. The rate of NO production from endothelial cells in situ or in culture 

was measured at around 0.8 pmol min1 m g-118. With an average mass of 1.5 kg 

of endothelial tissue in the whole body, the daily production of NO by eNOS 

would amount to 1728 pmoles. The administration of 15N-labelled L-arginine to
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1. Introduction

healthy volunteers showed that 0.34% of all dietary arginine was used for NO 

synthesis within the splanchnic region19.

1.1.4. Non-enzymatic reactions that form NO

Under acidic conditions NO can be formed from nitrite by disproportionation, 

which has lead to the idea that nitrite could act as a significant source of NO20:

n o 2* +  H+ —> H N 0 2

3 H N 0 2 — ► 2NO +  N 0 3' +  H+ +  H20
Equation 1.1: Disproportionation of nitrite under acidic conditions

Nitrite is the conjugated base of nitric acid, a weak acid with a pKa of 

approximately 3.8. Under pysiological conditions, small quantities of nitric acid 

will be present. The disproportionation of nitric acid generates NO and nitrate.

In the stomach, high NO concentrations have been detected attributed to 

reduction of nitrite from saliva or dietary sources in contact with acidic gastric 

juice21.

1.1.5. Reaction of NO with oxygen

The autoxidation of NO in aqueous environments forms mainly nitrite and only 

very little nitrate22. The overall reaction is as follows:

4NO- +  0 2 +  2H 20  — > 4H + +  4 N 0 2‘

Eqution 1.2: Autoxidation of NO to nitrite
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1. Introduction

NO can react with oxygen to ONOO-, which can further react with NO to form 

N 0 2‘ radicals:

2 NO- + 0 2 —> ONOO-

ONOO' + NO- — ► ONOONO

ONOONO + — > 2 N 0 2"
Equation 1.3a: Formation of NO2 via ONOO

Alternatively, a dimerisation of NO and reaction of the dimer with oxygen to 

N2O4 can occur, which can break down to N 0 2-:

2  NO — > N20 2 

N20 2 + 0 2 >N20 4

N20 4 —> 2 N 0 2

Equation 1.3b: Formation of A/O/ via dimerisation

A third reaction does exist to form N 0 2- by the oxidation of NO with  

m olecluar oxygen:

2NO +  0 2 —> 2 N 0 2'

Equation 1.3c: Formation of NO2 via oxidation

N 02- resulting from either one of the reactions above (1.3a, 1.3b, 1.3c) reacts 

further to form nitrite:
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1. Introduction

2N02' + NO  ̂N2O3

N2O3 + H20  —► 2N02' + 2 H+
Equation 1.4 Formtion of nitrite from NO2

An alternative reaction for NO decomposition in physiological fluids has been 

suggested by Gaston et al.23, where NO oxidation forms both nitrite and nitrate. 

NO reacts with molecular oxygen (0 2) first to form nitrogen dioxide (N 0 2). 

Dimerisation of N 0 2 forms dinitrogentetroxide (N2O4X which may act as an 

intermediate to generate nitrite and nitrate:

2NO +  0 2 — ► 2 N 0 2 

2 N O 2  ^  N 2 O 4

N2O4 + H20 —► HNO2 + HNO3
Equation 1.5: Oxidation of NO to nitrite and nitrate

1.1.6 Reaction of NO with superoxide

In aqueous solution, NO can react with superoxide anions (0 2‘ ) to form 

peroxynitrite (ONOO ) 22 at near-diffusion-limited rate of 6 .7x l09 1 m ol1 s 1.

NO + 0 2- —> ONOO-
Equation 1.6: Formation of peroxynitrite

The reaction of NO with superoxide is a simple combination of two radicals. It 

can theoretically act as a sink for NO, but in aerobic environments the formation
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1. Introduction

of peroxide is outcompeted by the autooxidation of NO to form nitrite22. 

Peroxynitrite can oxidise free thiol groups by nitrosylation24, induce membrane 

lipid oxidation25 or oxidise DNA26. Peroxynitrite (pKa = 6.8) decomposes rapidly 

under acidic conditions to form nitrogen dioxide and hydroxyl radicals (OH)27:

ONOO' + H+ —> ONOOH

ONOOH — ► N 0 2 + OH
Equation 1.7: Decomposition of peroxynitrite

The reaction progresses via an intermediate with radical-like activity. The 

reaction products are strong oxidants and may be responsible for lipid 

peroxidation28. Lymar et al report the formation of nitrosoperoxycarbonate 

(ONO2CO2 ) from reaction of peroxynitrite with carbon dioxide (CO2)29.

ONOO' + C 0 2 —> ONO2CO2'
Equation 1.8: Formation of nitrosoperoxycarbonate

The rate constant for this reaction was determined to be 3 x l04 1 m ol1 s'1. This is 

sufficiently large that this reaction can progress in physiological fluids where the 

total carbonate concentration is typically 25mM or greater. 

Nitrosoperoxycarbonate can act as a nitrating agent and N 0 2+ resulting from its 

decay may be responsible for the nitration of tyrosine under pathological 

conditions29.
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1. Introduction

1.1.7 Reaction of NO with proteins

An important physiological target of NO is haemoglobin (Hb), since NO binds 

avidly to iron II present in the porphyrin ring to form nitrosyl-haemoglobin under 

anaerobic conditions30. Of all possible ligands of Hb, NO has the highest affinity, 

being 1500 times higher than that of CO31. The half-time for dissociation of the 

first NO molecule from Hb4(NO)4 at 19°C is about 8h at pH 9 and 3h at pH 632. 

The rate constant for the combination of haemoglobin with the first molecule of 

NO is 3.0 x 107 1 mol1 s i 33. NOHb concentrations of 0.5 pmol/l in arterial blood 

and 0.9 pmol/l in venous blood were reported34. NOHb is converted rapidly in 

the presence of oxygen and methaemolgobin reductase to H b02 via MetHb 

within the red blood cells35.

When Hb is added to an aqueous solution the half life of NO decreases 

significantly36. The reaction of NO with oxy-haemoglobin (Hb02) has virtually no 

back-reaction and the reaction-products are Hb and nitrate37. This differs from the 

degradation of NO as found in aqueous solution, where mainly nitrite is formed and 

is the explanation for the short half life of NO in vascular systems38. In biological 

systems, oxy-myoglobin (Mb02) can take the place of oxy-haemoglobin39. The 

combination of NO and free oxy-haemoglobin is almost instantaneous40. The rate of 

this second order reaction has been determined to be 3.4 x 107 M 1 s 141. The rate 

constant for NO uptake by human red blood cells was reported to be 0.167 M 1 s'1, 

but is influenced by the shape, the orientation of the membrane molecules and the 

intracellular haemoglobin concentration42. Therefore the reaction of NO with oxy- 

haemoglobin in the vasculature is limited by its diffusion into the red blood cells and 

is significantly slower than the reaction of NO with free oxy-haemoglobin.
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One of the main targets for the physiological effects of NO is soluble guanylate 

cyclase(sGC), a protein containing a haem group with a porphyrin ring as found 

in Hb. NO triggers a conformational change in the enzyme, stimulating the 

production of cyclic-GMP (cGMP), which leads to smooth muscle dilatation23. 

sGC can act as a NO acceptor, because the structural environment of the His- 

ligated haeme-group allows the formation of a pentacoordinate ferrous nitrosyl 

complex even under aerobic conditions43.

Free thiol groups on biological molecules such as proteins, polypeptides or 

amino acids are an important target for NO. Cysteine is the sole thiol source in 

humans either in proteins such as albumin or haemoglobin, peptides such as 

glutathione or as free cysteine. NO may react with free thiol groups to form 

nitrosothiols44:

4NO + 0 2 + 2RSH —> 2RSNO + 2 N 0 2‘ +2H+
Equation 1.9: Formation of S-nitrosothiols

Under anaerobic conditions NO reacts with thiols to form disulphide, dinitrogen 

monoxide and nitrogen45:

RSH + B '—> RS' + BH

RS + NO —> RSNO'

RSNO" + H+—*  RSNOH

2RSNOH — > RSN(OH)N(OH)SR

RSN(OH)N(OH)SR —» RSSR + N2 +H20
Equation 1.10: Reaction of NO with thiols under anaerobic conditions
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The reaction can occur in two ways. Either the loss of the radical electron forms 

NO+ causing a strong hydrophilicity and reactivity towards most biological R-SH 

species46. The uptake of an electron forms NO' and allows reaction with 

electropositive R-SH species found in the presence of ferrous ion or other 

transition metals47. In blood, this reaction has to be put in context with the 

oxidation of NO to nitrate by H b02 or the formation of nitrosyl-Hb, which are two 

competing reactions to the formation of s-nitrosothiols. The reaction of NO with 

the cysteine-G93 of the fc-subunit forming S-nitrosohaemoglobin (SNO-Hb) is 

oxygen dependent and facilitated in the oxygenated status, whereas 

deoxygenation is accompanied by an allosteric transition in SNO-Hb that 

releases the NO group48. Zhang et al reported that the formation of S- 

nitrosothiols in the presence of oxyHb or oxyMb is only a mixing artifact and that 

most of the NO was oxidised to nitrate, which seems to limit the formation of S- 

nitrosothiols under aerobic conditions49. Reichenbach et al pointed out the 

possibility of S-nitrosothiol formation in the presence of met-Mb, but have not 

demonstrated it under physiological conditions50.

Simon et al. determined the total amount of S-nitrosothiols in human plasma 

and found about 7 pmol/l S-nitrosothiols of which 96% were S-nitrosoproteins 

and 82% of the S-nitrosoproteins were S-nitroso-albumin51. The total level of 

glutathione (GSH+GSSG) in plasma is about 20pmol/l, with 85% being GSH52. 

In plasma S-nitrosoglutathione was reported to be present at a concentration of 

between 0.02-0.2 pmol/l and have a half-life of 8 minutes53,54. S-nitrosocysteine 

was found at levels between 0.2-0.3 pmol/l and the half-life was determined to
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1. Introduction

be below 1 minute54,55. S-nitrosohaemoglobin concentration was determined at a 

concentration of 0.3 pmol/l in arterial blood or 0.003pmol/l in venous blood with 

a half-life of less that 1 minute48,54.

S-Nitrosothiol Concentration

S-nitrosoalbumin 0.7451

S-nitrosoglutathione 0.02-0.253,54

S-nitrosocysteine 0.2-0.354,55

S-nitrosohaemoglobin 0.3(arterial), 0.003(venous)48,54
Table 1.1: Reported concentrations of S-nitrosothiols in human serum

Feelisch et al reported the presence of N-nitrosoproteins in human plasma of 

healthy volunteers at a concentration approximately 5-fold greater than the S- 

nitrosothiols56. It appeared that both the N- and S-nitroso moieties were 

associated with the albumins. This finding not only raises questions about the 

origin and physiological function of this class of compounds, but also whether 

the presence of these potentially mutagenic compounds increases the risk of 

cancer57. Previously, N-nitroso compounds have been only found to be 

generated endogenously under infectious or inflammatory conditions either via 

NO-mediated nitrosation, intermediate formation of peroxynitrite, or bacterial 

action58.

Other protein targets are metallo proteins that bind NO and oxidise it to nitrate59. 

For example, the inactivation of aconitase by NO binding to Fe-S clusters 

regulates iron metabolism60.
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1. Introduction

1.1.8 Metabolic Fate of nitric oxide

Yoshida et al studied the metabolic fate of both inhaled 15NO and 15NO injected 

into the blood of rats61. The 15N label was found in high levels in the blood 

serum, red blood cells and urine of the rats and at low levels in the trachea, 

lung, muscle and kidneys. It was demonstrated that inhaled and injected NO 

rapidly enters circulating red blood cells to become oxidised to nitrate and 

excreted in the urine and that neither NO nor its metabolites are stored in larger 

amounts in any tissues for longer periods.

It has been demonstrated by Liu et al. that the reaction of NO with oxygen 

within the hydrophobic regions of membranes is approximately 300 times more 

rapid than in the surrounding aqueous medium62. This suggests that 

hydrophobic sites such as biological membranes play an important role for the 

metabolic fate of NO.

Even though NO is able to diffuse across distances of more than 100pm in tissue, 

the haemoglobin present in the circulating red blood cells is a major sink for NO63. 

This creates a diffusion gradient towards the vasculature. Even after NO has 

diffused into the smooth muscle, it can rapidly diffuse back along the diffusion 

gradient to the red blood cells27. The half life of NO in blood has been determined 

to be not longer than 1.8 ms64. The half life of nitrate in blood is about 8 hours65. 

The normal nitrate level in serum is approximately 30 pmol/L, but may go up to 

lOOOpmol/L under pathological conditions66. In urine, the total nitrate concentration 

ranges from 250-1000pmol/L67. In balance studies, where rats were given injections 

of 15N-labelled NO, nitrite or nitrate, or inhaled NO, approximately 90% of the 

administered 15N was recovered as nitrate in the urine within 48 hours68. Yoshida et
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al. reported that a certain amount of the nitrate formed in the blood is discharged 

into the oral cavity through the salivary glands and transformed to nitrite69. Part of 

this nitrite is converted to NO gas in the stomach. Nitrate in the intestine is partly 

reduced to ammonia through nitrite, readsorbed into the body, and converted to 

urea.

Unlike in whole blood, where both NO and nitrite are oxidised to nitrate, in plasma 

free of Hb NO is oxidised almost completely to nitrite, where it remains stable for 

several hours70. This raises the question whether the oxidation of NO by 

oxyhaemoglobin progresses stepwise via nitrite or leads directly to nitrate. 

Intratracheal administration of 13N-nitrite to rats or mice revealed that 70% of the 

13N was converted to 13N-nitrate, but 27% remained as nitrite and that the 

conversion occurred within the red blood cells71. In a study using 15N-labelled L- 

arginine, it has been demonstrated that in fasted young volunteers approximately 

90% of the circulating nitrite is a result of the L-arginine pathway72. This may 

include NO, peroxynitrite or S-nitrosothiols as possible sources for nitrite. Inhibition 

of eNOS by NG-methyl-L-arginine (L-NMMA) diminished nitrite concentration in 

human forearm vasculature of healthy volunteers under basal conditions73. 

Demoncheaux et al. have shown that nitrite is in equilibrium with nitric oxide under 

physiological conditions and is therefore both a sink and source of NO74. The half- 

life of nitrite in human blood is 110 s and is pH and temperature dependant, but 

independent of the free haemoglobin concentration75. The normal level of nitrite in 

serum is about 4.4 pmol/L76. Urinary nitrite is usually not detectable except upon 

urinary infection77. The oxygen uptake of haemoglobin by nitrite under aerobic 

conditions occurs via a slow single-electron transfer from nitrite to the bound
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molecular oxygen of haemoglobin, followed by autocatalysis in which either 

superoxide, peroxide, nitrogen dioxide, peroxynitrite or metHb radical may be 

involved35,78,79,80,81.

In a metabolic study where 15N-labelled nitrite and nitrate was given to rats, small 

amounts of 15N-urea were found as a NO metabolite in the urine68. The 15N-urea 

content was lower after the 15N-nitrate injection than after the 15N-nitrite injection. 

This suggests that nitrite entered the urea cycle and that conversion from nitrate to 

nitrite occurred. NH3 and the urea subsequently produced from it are quantitatively 

significant nitrogen precursors for nitrate82. It has been shown in rats that 

continuous infusion of ammonium acetate leads to the formation of nitrate from 

NH382.

The effect of nitrosated proteins on the fate of NO is still a matter of great 

debate. Several enzymes have been described to break down S-nitrosothiols in 

vitro. Xanthine oxidase can break down S-nitrosothiols to peroxynitrite in the 

presence of xanthine83. Glutathione peroxidase and thioredoxin reductase may 

generate NO from S-nitrosothiols84,85. CuZn-superoxide-dismutase has been 

shown to represent a physiological catalyst for the release of NO from low- 

molecular weight S-nitrosothiols, such as S-nitrosoglutathione, but not S- 

nitrosoproteins such as S-nitrosoalbumin86. Formaldehyde dehydrogenase can 

use S-nitrosothiols as substrate and produces hydroxylamine in the process87. 

Gamma-glutamyl transpeptidase converts s-nitrosoglutathione to S- 

nitrosocysteinyl-glycine, that has a greater membrane permeability88. Some 

groups suggest the occurence of transnitrosation. The infusion of NO inhibitors 

was reported to result in a rapid decay of S-nitrosoproteins with the formation of
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low-molecular S-nitrosothiols89. It has been shown that the incubation of S- 

nitrosocysteine or S-nitrosoglutathione with human plasma resulted in a rapid 

decomposition of these low-molecular compounds and virtually all NO was 

recovered as S-nitrosoalbumin90. The transfer of NO from albumin to L-cysteine 

was directly determined in rabbit plasma, indicating that in vivo an intensive NO 

exchange between high and low molecular weight thiols may occur55. 

S-nitrosothiols can be metabolised in inorganic reactions. Iron in combination 

with free thiol groups may contribute to both breakdown of and formation of S- 

nitrosothiols91. Reaction with copper can release nitric oxide from S- 

nitrosothiols92. The presence of Cu2+ and more importantly Cu+ in the circulatory 

system stimulates the breakdown of S-nitrosothiols to NO and disulfide93. 

Reducing agents such as glutathione and ascorbate can facilitate this process 

by chemical reduction of the transition metal ions. Superoxide has been shown 

to cause breakdown of the S-nitrosothiols CysNO and GSNO, but under normal 

physiological conditions the concentrations at which superoxide ions are 

present may be too low to provide a significant sink for NO94.

Besides molecular oxygen, other reactive oxygen species such as superoxide 

were suggested to be involved in the breakdown of NO95. Since superoxide is 

produced by endothelial cells and macrophages, both of which are capable of 

generating NO as well, the reaction of NO with superoxide to peroxynitrite may 

be a metabolic sink for NO despite the short half-life of superoxide and its low 

concentration in biological systems. It has been shown that purified constitutive, 

endothelial NOS forms simultaneously NO and superoxide, the ratio depending
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on the concentration of the substrate L-arginine and the availability of 

cofactors96. Peroxynitrite will only be formed when NO and superoxide are 

formed at equal rates97.

1.1.9 Nitric oxide and the nervous system

NO is produced in the central nervous system (CNS) and in many parts of the 

brain by nNOS located in the neurons1, where it can both link local blood flow to 

neuronal activity and modulate neurotransmitter release. 

nNOS binds with postsynaptic density proteins in the brain98, where it creates the 

link between postsynaptic glutamate binding and NO synthesis99. The binding of 

glutamate to N-methyl-D-aspartate-(NMDA)-type receptors causes an increase in 

intracellular Ca2+ levels, which activates nNOS to generate NO. NO completes the 

positive feedback loop by diffusing back to the presynaptic terminals, where it 

causes the release of glutamate100. This process of long-term-potentiation (LTP) 

seems to depend on cGMP, which regulates Ca2+ levels by regulating the cyclic 

nucleotide-gated ion channels and therefore the release of glutamate from the 

presynaptic terminals101.

NO is an important neurotransmitter in the peripheral nervous system (PNS). 

nNOS may contribute to sensory transmission and is found in some peripheral 

nerves where it may contribute to sensory transmission102. It may play a role in 

nitrergic transmission within non-adrenergic, non-cholinergic (NANC) neuro­

effector nerves103. NO appears to cause dilatation of the stomach as a response 

to an increased intragastric pressure. NO is responsible for the relaxation of the
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corpus cavernosum and is a key factor in the development of penile erection in 

humans104. It has been suggested that not only NO but also S-nitrosothiols 

mediate signal transduction105.

1.1.10 Nitric oxide in the immune system

NO is produced as part of the immunological defense mechanism against 

pathogens, such as tumour cells, bacteria, fungi and helminths106. NO is mainly, 

but not exclusively, produced when macrophages are acivated by cytokines or 

endotoxin and gene transcription of iNOS is induced. This results in a sustained 

production of NO and diffusion to the target cells107. The cytotoxic effect is 

achieved by the combination of nitric oxide with metal-containing active centres 

in key enzymes in target cells108. Not only NO itself, but also S-nitrosothiol as a 

NO donor may have a role in immunological defense, for instance an 

antimicrobial effect in the airway lining fluid in human airways109.

Hierholzer et al. reported that endotoxin-induced nitric oxide initiates an 

inflammatory response in the liver110. In severe cases lethal concentrations of 

nitric oxide are produced by the tissue of the vascular wall which can lead to 

hypotension, septic shock and organ failure.

Since the mechanism of cytotoxicity of NO is not specific to a target, NO 

producing cells have to protect themselves against it. Pre-stimulated 

macrophages tolerated high NO levels through increased breakdown of NO by 

superoxide111.

Escherichia coli resists high NO levels by activation of the redox-sensitive
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transcriptional regulator SoxR, that leads to a defense response that oxidises 

NO and thus protects the bacteria against macrophages112.

1.1.11 Nitric oxide in the vascular system

In the cardiovascular system two functions can be attributed to NO. It acts as a 

vasodilator responsible for regulating blood pressure3 and control of platelet 

aggregation113. The cardiovascular NO, which regulates blood pressure, originates 

mainly but not only from eNOS in the endothelial cells114. The eNOS actvity under 

normal physiological conditions is regulated by chemical as well as mechanical 

factors115.

Increase in intracellular Ca2+ increases eNOS activity, while Ca2+ antagonists such 

as acetylcholine or bradykinin decrease it. NO may diffuse through the endothelial 

cell membranes into the adjacent smooth muscle cells to activate sGC by binding 

to the heme. The cGMP produced upon sGC activation leads to increased levels of 

3', 5' -cyclic monophosphate (cGMP) and thus to smooth muscle relaxation and a 

lower vascular tone116. The effect is localised and any NO coming in contact with 

the blood stream may either be quickly oxidised by Hb02 to nitrate and Hb37form 

HbNO31 or nitrosylate thiol groups on proteins46. S-nitroso-Hb has been suggested 

by recent studies to have a role in blood pressure regulation itself or serve as a 

storage for NO that buffers its effect117. Hb may be S-nitrosylated in the lung and 

NO released from erythrocytes in the tissues. This way S-nitrosohaemoglobin may 

regulate blood flow in the lung in response to oxygen tension by releasing NO in 

the arterioles118. GSNO has been proven to be a selective and potent inhibitor of 

platelet activation in humans119. The significantly slower reaction rates of
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superoxide with nitrosothiols in comparison to the reaction rate of superoxide with 

NO are consistent with the hypothesis that the formation of nitrosothiols stabilises 

NO and thus these compunds can serve as a carrier or buffer of NO94. The concept 

of S-nitrosothiols as buffers or carriers of NO has not yet completely been 

established. The thiol N-actelyl-cysteine did not modulate NO-mediated responses 

in the human forearm circulation120. The in vitro production of NO from S- 

nitrosothiols does not always correlate with the extent of its vasodilatory effects54. 

Cells of the endothelium can respond to mechanical stress caused by pressure or 

shear force with an immediate release of NO as a result of increased Ca2+ influx121. 

NO production is therefore positively fedback by blood pressure.

Inhibition of eNOS may lead to hypertension but also to glomerular damage, 

because NO inhibits platelet aggregation by raising the concentration of cyclic AMP 

in the platelets in a mechanism involving cGMP and prostacyclin122.

1.1.12 Nitric oxide related diseases

NO may play an important role in cancer, as it is involved in the process of 

carcinogenesis. In the early phase of the development of a tumour NO may 

mediate DNA damage123. It supports tumour progression through induction of 

angiogenesis124 and may suppress the immune response in the late phase of 

cancer development8. It is a very controversial subject how NOS activity is 

implicated in tumour progression and NOS activity and while some groups 

report increased NOS activity125, while others report decreased NOS activity126.

A hyperdynamic circulation is often seen in patients with liver disease and can 

be the reason for the death of these patients127. This is a result of high cardiac
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output and low systemic as well as pulmonary vascular resistance128. Nitrite and 

nitrate levels in blood and urine of these patients are increased, which has been 

linked to NO overproduction129. It is assumed that endotoxins and cytokines 

induce NOS and cause widespread vasodilation130. However, the mechanism of 

the systemic vasodilation is still unclear, since endotoxin increases the 

expression of NOS, but cirrhosis does not131.

In patients with essential hypertension, whole-body nitric oxide production is 

significantly lower than in healthy people under basal conditions132. Interestingly, 

L-arginine therapy seems to prevent hypertension and reduces systolic and 

diastolic pressures in animals and humans suffering from essential 

hypertension133.

Patients suffering from hypoxic lung disease and pulmonary hypertension show 

reduced nitric oxide production in the pulmonary endothelium. It is thought that 

nitric oxide released by the pulmonary endothelium may contribute to the 

characteristically low pulmonary vascular resistance5. Indeed, inhalation of nitric 

oxide gas at a concentration of 40 ppm has a powerful selective vasodilating 

effect134.

The NO released by iNOS accounts for wide-spread vasodilation in septic 

shock, as well as for the hypotensive state induced by cytokine therapy in 

patients with cancer135. iNOS is induced in endothelial and smooth-muscle 

vessel cells by certain cytokines and low doses of nitric oxide synthase 

inhibitors may acutely reverse the hypertension seen in these patients7.

Diabetes mellitus is often accompanied by vascular diseases such as ischaemic
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heart disease, cerebrovascular disease and peripheral vascular disease6. It is 

controverial how endothelial dysfunction and NOS activity is related to diabetes. 

Some groups report that high glucose levels increased activity136. Others report 

that hypercholesterolemia, which is associated with diabetes may cause 

endothelial dysfunction through increases in the production of superoxide and 

other free radical species that inactivate NO137. Some groups report no 

difference138.

Pathogenesis of multiple sclerosis may be connected to free radicals including 

NO139. The induction of NOS may be increased by elevated levels of various 

cytokines in the cerebrospinal fluid as well as in the blood140. Yamashita et al 

found significantly elevated levels of the NO metabolites nitrite and nitrate in 

cerebrospinal fluid, especially in the late phase of multiple sclerosis 

exacerbation141.
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1.2. Analytical methods in nitric oxide research

1.2.1. Overview

Numerous methods and techniques have been developed for the analysis of 

NO itself, its metabolites or the determination of NOS turnover. The most 

popular types, despite their problems, are colorimetric assays for nitrite and 

nitrate derived from the Griess assay. However, nitrite and nitrate in body fluids 

may also arise from dietary intake and other sources. As a consequence, 

isotope labelling experiments with L-[15N]2-arginine are preferred to measure 

whole body nitric oxide turnover. Previous methods of nitrite and nitrate analysis 

with isotopic discrimination have included GC-MS after derivatisation to 

nitroaromatic compounds or continuous-flow gas isotope ratio mass 

spectrometry (GIRMS) after reduction to ammonia then conversion to nitrogen. 

There have been many more methods developed for the determination of NO 

metabolites but this chapter will focus on the most important ones.
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1.2.2. The Griess assay and derived methods

The most widely used method for nitrite determination is still the Griess assay, a 

colorimetric procedure first described by P. Griess in 1879, based on the 

formation of an azodye and quantification by measuring the dye's absorbance at 

540 nm142. Figure 1.2 shows the formation of the Griess product. First, nitrite is 

diazotised with sulfanilamide under acidic conditions. This diazonium salt is 

coupled to 1-naphthylethylenediamine by forming an azobond. The resulting 

diazo-dye (Griess product) has an absorbance maximum at 540 nm in its 

protonated form under acidic conditions and at 496 nm in its non-ionic form 

under neutral or basic conditions. The problem with this method is that it is very 

sensitive to matrix effects, since it does not include proper separation of the 

matrix from the analytes.

nh2 nhch2ch2nh2

r ) + NO,-

SC^NHa

Sulfanilamide 1 -Naphtylethylenediamine

Figure 1.2: Formation of the Griess product.

nhch2ch2nh2

H.0

Griess product N

so2nh2

Oxidants or reductants, such as ascorbic acid143 or formate144, present in the
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sample can oxidise or reduce the azo-dye and thus reduce the color intensity145. 

The decomposition of the diazo-dye is catalysed by copper or zinc, which also 

leads to an under-determination if these species are present in the sample 

matrix146. The low pH needed in the reaction to form the diazo salt may lead to 

the formation of nitrosothiols in matrices being rich in protein or amino acids, 

such as serum or urine147. Finally, it is not possible to discriminate between the 

14N and 15N forms with this assay.

To aid the detection of nitrate from biological fluids and improve automation the 

Griess assay was modified by Green at al148. In this flow-injection system, 

nitrate can be analysed by passing the sample through a column packed with 

copperised cadmium to reduce nitrate to nitrite. The conversion of nitrate to 

nitrite was reported to be almost 100%. The reported lower detection limit for 

nitrite and nitrate was lpmol/l. Validation data for this method were only 

presented for nitrate after 40-fold dilution, and so the method may therefore 

suffer from the same problems as the classic Griess assay when nitrite is 

analysed. Nitrite levels in serum are usually around a few pmol/l76 and the 

sample can not be diluted at such a high ratio, otherwise nitrite concentration is 

diluted to levels far below the limit of detection of this method. Other groups 

have observed reduction of nitrate beyond nitrite or incomplete conversion of 

nitrate to nitrite, due to loss of reducing capability of the cadmium column over 

time leading to poor reproducibilities and limits of detection149.

Instead of reducing nitrate chemically to nitrite, the conversion can be done 

through enzymatic reduction with nitrate reductase150. In this process, even
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though the enzyme can be immobilised on a column the conversion ranged 

between -30%  with nitrate reductase extracted from Escherichia coli and -64%  

with nitrate reductase from Aspergillus. This problem was partly solved for 

urine, but not for serum, by using Ci8 solid phase extraction leading to a 

recovery of ~96%151.

1.2.3. Gas Isotope Ratio Mass Spectrometry

The current “gold-standard” for the isotope dicriminative measurement of nitrate 

is a gas isotope ratio mass spectrometry (GIRMS) based assay152. First, total 

nitrate is measured as described by Green et al. by reducing nitrate to nitrite on 

a reduction column of copperised cadmium and a subsequent Griess assay148. 

In a second step the ratio 14N/15N is determined by GIRMS. Nitrate is 

preconcentrated on an ion exchange resin, converted to ammonia by reaction 

with Devarda's alloy for 6 days and then converted by combustion to nitrogen at 

1000°C and analysed by GIRMS. The precision of the 14N/15N ratio 

measurement was ±0.0004% with the mass spectrometer used and the 

calibration curve was linear between 20pmol/l to 1000pmol/l of total nitrate. The 

between-day coefficients of variation ranged from 0.41% to 0.72%. Other 

validation data was not presented by the authors and the limit of detection and 

recoveries are not available. Since this assay relies on the Griess assay for total 

NOx' measurements, it suffers form the same problems as described before. 

Additionally, the simutaneous measurement of 15N nitrite, 15N nitrate, 14N nitrite 

and 14N nitrate is not possible. Further, this technique depends on expensive
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instrumentation which is not routinely available (the isotope ratio mass 

spectrometer), is complicated and takes several days to complete.

1.2.4. Gas Chromatography -  Mass Spectrometry

The first assay for the determination of nitrite and nitrate in saliva and blood by 

gas chromatography was developed by Tesch et al153. Nitrate and nitrite are 

converted to volatile aromatic compounds for instance by reaction with 

benzene. The derivatives are separated by gas chromatography and detected 

by an electron capture detector, which allowed a limit of detection of 0.9 pmol/l. 

But this method is not interference free. Others have found that it is prone to 

interferances from non nitrate sources giving rise to nitrobenzene154. Also 

isotopic discrimination between the 14N and 15N forms is not possible. Mass 

spectrometric detection after gas chromatographic separation for nitrite and 

nitrate determination from biological fluids first was introduced by Tsikas et 

al.147. In this method reduction of nitrate to nitrite was required, but later the 

same group developed a method that allowed simultaneous determination of 

nitrite and nitrate in biological fluids by gas chromatography -  mass 

spectrometry in a single derivatisation procedure155. Nitrite and Nitrate are 

derivatised by pentafluorobenzyl bromide to the nitro and nitric acid ester 

pentafluorobenzyl derivatives, respectively in aqueous acetone prior to GC/MS 

analysis. Even though Tsikas et al. advise that this method should be a 

reference method for nitrite and nitrate measurements, the validation data 

mentioned were incomplete. It was only reported that accurate, interference-
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free and sensitive (50 fmol of [15N]-nitrite and [15N]nitrate were detected at 

signal-to-noise ratios of 870:1 and 95:1).

It can also be used to analyse two other possible NO metabolites: S-nitro- and 

S-nitroso-glutathione. 15N-nitrite and 15N-nitrate are needed as internal 

standards and therefore this technique can not be used for stable label studies 

with 15N-L-arginine, where these species or the 14N/15N ratio is of primary 

interest.

1.2.5 Ion chromatography

Various ion chromatographic methods have been developed for nitrite and 

nitrate determination, not only for biological fluids. A common problem for nitrite 

analysis by ion chromatograpy in biological matrices is the naturally high 

chloride concentration. The similar size/charge ratio of nitrite and chloride leads 

to coelution of a massive chloride peak, making nitrite undetectable. 

Manufacturers of solid phase extraction systems offer cartridges packed with a 

silver-based resin to precipitate chloride prior to analysis, but warn that nitrite 

recovery is usually low due to conversion of nitrite to nitrate.

This led to the development of an ion chromatographic method for the 

determination of nitrite and nitrate in body fluids by Monaghan et al156 in which 

nitrite and nitrate are separated using a chloride gradient elution on a Carbopac 

PA-100 column and detected directly by UV absorption at 214nm. With this 

setup, no interfering peak resulting from chloride is seen as it would be the case 

with other eluent/detector systems. One major advantage here is that sample
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treatment is minimal. No derivatisation or chemical processing is needed that 

could alter the sample. Centrifugal ultrafiltration is all that is required as sample 

pretreatment. It is not only useful for nitrite and nitrate but also for other analytes 

such as lactate or actetate. Calibration curves were linear in the applied working 

range up to 30pmol/l and the limit of detection was of 250 nmol/l for both nitrite 

and nitrate.

In human saliva chloride is present at a lower concentration, which allows nitrite 

and nitrate analysis by ion chromatigraphy using conductivity detection and a 

carbonate eluent (Helaleh et al.157). At these lower chloride levels the nitrite 

peak can still be seen on the tail of the chloride peak. The recoveries of nitrite 

and nitrate ranged between 95% and 101%. The calibration was linear over the 

applied working range and the limit of detection was 325 nmol/I and 540 nm ol/l, 

for nitrite and nitrate, respectively.

1.2.6 Chemiluminescence

One of the few assays to measure NO concentrations directly is 

chemiluminescence. To obtain chemiluminescence, gaseous NO is reacted 

with ozone to give nitrogen dioxide in an excited state(N02*) and the emitted 

light from chemiluminescence can be measured with a photomultiplier. The 

detector response is usually linear to the NO concentration over a very wide 

range.

This is of special interest for the measurement of exhaled nitric oxide158. Breath 

analysers for NO are commercially available that can measure concentrations
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as low as lppb. Exhaled air can be collected directly from a single full 

exhalation or during tidal breathing.

Nitrite and nitrate can also be measured by chemiluminescence after reduction 

to NO with hot acidified vanadium trichloride159. However, this assay is not 

without problems, since it requires derivatisation of nitrite and nitrate under 

acidic conditions. Nitroso-compounds might lead to both over- or 

underestimation and bad recoveries. The reduction of Nitroso-compounds to 

NO leads to overestimation160 and the sequestration of the NO produced from 

nitrite or nitrate reduction by thiols to underestimation161. These effects are 

particularly strong when protein is not removed prior to analysis. Therefore Sen 

et al. have extended this method by coupling a reversed-phase liquid 

chromatography system with a chemiluminescence system as the detector162. 

Now, that nitrite is separated from the matrix it can be used for selective, 

interfere nee-free nitrite determinations from biological fluids with a limit of 

detection of 0.02 pmol/l.

1.2.7 Capillary electrophoresis

A method for the detection of nitrate from urine by capillary electrophoresis was 

first developed by Wild man163. However, this method was too insensitive for the 

measurement of basal nitrite. For this purpose, the method had to be modified 

for the simultaneous determination of basal nitrite and nitrate by Leone et al.164. 

An endoosmotic-flow modifier was applied for the separation of nitrite and 

nitrate from the matrix and direct UV detection at a wavelength of 214nm was
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used. At this wavelength chloride is not detected and no interfering peak was 

observed, even though chloride coelutes with nitrite due to its similar charge/size 

ratio at the pH of the buffer system. A major advantage of this technique is that 

only minimal sample preparation by centrifugal ultrafiltration through a 5kD filter 

is required. Calibration curves were linear in the investigated concentration 

range of up to 50pmol/l for nitrite and up to 400pmol/l for nitrate. However, the 

validation data was incomplete in that proper recovery data from spiked 

samples was not presented and the limit of detection was not reported.

Zunic et al. also developed a method for the simultaneous detection of nitrite 

and nitrate in human serum and cerebrospinal fluids by capillary electrophoresis 

with UV detection at 214nm using a simple borate buffer system at a pH of 

10165. With this method a limit of detection of 0.57 and 0.43 pmol/I was obtained 

for nitrite and nitrate, respectively, with a standard capillary instead of one with a 

detection window with an extended light path designed for UV detection. 

Calibration curves were linear in the investigated concentration range up to 500 

pmol/1. The mean recovery of nitrite and nitrate from human serum was 86.6%  

for nitrite and 97.4% for nitrate. Recoveries from cerebrospinal fluid were similar 

with 92.6% and 104.5% for nitrite and nitrate, respectively.
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1-3 Raman Spectroscopy

1.3.1 Overview

Although the Raman effect was already discovered by C. V. Raman in 1928166 it 

was not widely used as an analytical tool until high energy light sources, namely 

lasers, became available. Still, because of the lack of sensitivity due to the low 

abundance of the Raman effect it was used as a qualitative technique to obtain 

structural information rather than for quantification. Since then techniques have 

been discovered to enhance the Raman effect, improving sensitivity and making 

it a valuable tool for trace analysis. Surface enhancement, where the analyte 

has to be brought in close proximity to a metal surface, was first observed by M. 

Fleischmann in 1974167. Resonance enhancement relies on the use of a light 

source that emits in the absorption range of the analyte and with both effects 

combined a very high sensitivity and even single molecule detection can be 

achieved168.
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1.3.2 The Raman Effect

Raman spectroscopy is often compared to infrared spectroscopy, because the 

resulting spectra obtained from both techniques look very similar. Even though both 

measure molecular vibrations, the principles underlying the two methods are 

fundamentally different. In infra-red spectroscopy infra-red radiation is shone on a 

sample. A functional group of a molecule only absorbs infra red radiation, if the 

energy of the incident radiation equals the energy difference between two 

vibrational levels(resonance).

So
&cHi Stokes Anti-Stokes

_________  virtual state

Infra-red Rayleigh Raman

Figure 1.3: electronic transition in raman scattering
Fluorescence
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■0

ground state

Raman Spectroscopy, however, is a two photon process169. The incident photon is 

absorbed by the molecule initially to emit a new photon immediately afterwards. 

Unlike infra-red spectroscopy, this is an off-resonance process. Absorption does 

not depend on the wavelength of the incident radiation and does not result in an 

electron transition to a full excited state such as t t  ->  t t * ,  but to an unstable, virtual 

meta-state. Only very few photons undergo this Raman-process, which is the
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reason for the low sensitivity of plain Raman spectroscopy. As a net-result a 

wavelength shift, the so-called “Raman-shift”, of the incident radiation can be 

observed that corresponds to the energy difference between to vibrational states. 

Another difference to infra-red spectroscopy is that energy can either be absorbed 

by the molecule (Stokes) or taken from it (Anti-Stokes), resulting in an electron 

transition from an excited vibrational state to an unexcited one.

The Raman effect depends on the interaction of the electric field of the incident 

photon with a polarisable group, it leads to a polarisation of the electrons in the 

molecule and an induced dipole is created. Thus, in Raman spectroscopy the 

signal intensity is proportional to the polarisability of the functional group. 

Functional groups like the diazo group, where the atoms involved have the same 

electronegativity, are easy to polarise and scatter well. Functional groups which 

already have a strong dipole such as carbonyl groups are bad scatterers, because 

more energy is needed to displace the electrons from the atom with higher 

electronegativity, and to polarise this group.

1 3 3  Quantitative Raman spectroscopy

In principle, the nature of an emission technique makes Raman spectroscopy 

suitable to trace analysis170. In absorbance spectroscopy, a greater technical 

effort has to be made to discriminate between these two large signals in order 

to measure low concentrations (double beam instruments etc.). The lower limit 

in Raman spectroscopy is reached when the signal becomes so weak that it 

can not be distinguished from the noise. With curently available multichannel 

detectors it is less than 10 counts171. Calibration curves in Raman spectroscopy,
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being an emission technique, can be obtained by simply plotting the intensity on 

the Raman signal against concentration. Internal standards can be used to 

correct for signal variation and other disturbances.

In comparison to IR spectroscopy, the occurance of water does not pose a 

problem, such that the analysis of aqueous solutions is possible. Since a 

monochromatic light source emitting at a wavlength in the visible spectrum is 

used, cuvettes, optical fibers or other parts of the optics can be made of rather 

inexpensive materials that are also better adapted to the working environment, 

and both single and multichannel detectors are available.

The major weakness that Raman spectroscopy shares with other emission 

techniques is its development as a single beam technique, where correction for 

variations from source, sample and optics are not made. This can lead to a 

lower robustness of the method.

Additionally, Raman scattering is rather weak compared to processes like 

absorption, but resonance and surface enhancement which appear in certain 

situations can make up for the weak Raman scattering. When they are achieved 

they not only increase sensitivity, they are also very specific for the analyte.

1.3A Instrumentation

A typical Raman spectrometer is comprised of four major parts, the laser light 

source, the collection optics, the dispersive element and the detection unit171. 

The collimated laser beam is passed through a line filter to remove any 

unwanted laser lines or sidebands.
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Figure 1.4: Diagram of a singly-dispersive Raman spectrometer

A beam splitter is used to redirect the laser beam towards the sample to 

achieve a 180° setup. A microscope is used to focus the laser light onto the 

sample. The scattered light from the sample is passed through the microscope 

again, through the beam splitter and notch filter. This is a narrow rejection band 

filter that main purpose is to prevent Rayleigh scattered light and reflected laser 

light from reaching the detection unit. The detection unit can either be a 

dispersive one with a grating as shown here or a FT detection system.

Laser sources can be continuous or pulsed lasers. Pulsed lasers are mostly 

used in the UV range, while continuous lasers are predominant for excitation in 

the visible range. Most applications in Raman spectroscopy involve continuous 

gas ion lasers such as argon, krypton or helium-neon lasers, but also solid state 

lasers. Currently available gas ion lasers can provide Raman excitation in the
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range from 450nm to 800nm, where lasers at 514nm, 632nm and 740nm are 

standard wavelengths. Lasers in the UV range are not used very often, because 

of the higher cost. They have uses for instance for resonance Raman 

measurements of compounds that absorb only in the UV region. Near infra-red 

lasers are also available. The advantage of these lasers is that they practically 

avoid fluorescence. However the less energetic excitation wavelength mean a 

lower Raman efficiency and less sensitivity.

The laser is usually focused onto the sample with a Raman microscope, which 

is usually a normal laboratory microscope. A small laser spot size on the sample 

is desirable, in order to simplify the collection process and to maximise the 

power density on the sample. In a confocal arrangement a variable aperture is 

placed behind the microscopes objective, so that the collected light has to pass 

through it and out-of-focus light is removed. This also tends to minimise 

fluorescence as only light from a very small volume of the excited sample is 

collected and the rest is ignored.

The detection system can be a photomuliplier in the simplest case (Single- 

Channel Systems). However, better sensitivity can be obtained with array 

detectors (Multi-Channel Systems). The array commonly consists of 1024 

elements and has an intensifier coupled to it. All spectral elements are observed 

at the same time, which effectively means a longer time of analysis and 

therefore a greater sensitivity. A trade off has to be made between resolution 

and bandwidth, which is the major drawback of array detectors. Modern Raman 

spectrometers have charge coupled devices (CCD) and charge injection
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devices(CID) which further improves sensitivity. They are usually cooled to 

reduce background noise.

1.3.5 Surface enhancement

Surface enhancement was first seen by Fleischmann in 1974 from pyridine on 

an electrochemically roughened silver electride, and recognized as an extreme 

enhancement of Raman167. The analyte has to be brought into close proximity to 

the metal surface, either by force or preferably by adsorption onto the metal 

surface. Two mechanisms have been proposed to account for the SERS effect 

and an enhanced signal intensity electromagnetic enhancement and chemical 

enhancement. Electromagnetic enhancement is thought to be due to an 

increase in the electrical field at the adsorbate because of excitation of the 

surface plasmons in the metal surface by the incident radiation172. Chemical 

enhancement is thought to be a charge transfer between metal and the 

adsorbate173. Electromagnetic enhancement is a major contributor to the 

observed enhancement however chemical enhancement also plays a significant 

role. Since both effects occur combined, it is not yet known to what extent each 

of them actually contribute to the enhanced signal produced.

The electromagnetic enhancement mechanism is thought to involve the creation 

of a surface plasmon on the substrate surface, such as a metal colloid, which 

transfers energy through an electric field to the target molecules172.
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Figure 1.5: Mechanism

Electromagnetic radiation striking the colloidal surface, without analyte being 

present, results in Rayleigh scattering. Rayleigh scattering is a 2-photon 

process, like Raman scattering, which involves the creation of surface plasmon 

modes. Unlike Raman scattering, Rayleigh scattering is an elastic process 

where a photon of identical frequency to that of the the incident photon is 

expelled following the creation of a surface plasmon on the metal surface. 

When considering the effect of the incident radiation on the target analyte only, 

an inelastic Raman Scattering process is observed. In the case of conventional 

Raman scattering no metal particles are present and the target analyte interacts 

directly with the incident electromagnetic field. In this case the process is 

inelastic i.e. the frequency of the incident and resultant photon are not identical 

due to variations within the vibrational energy levels of the target analyte. 

Considering the combined effects of the incident laser on the adsorbed analyte 

and the metal surface, the process is again an inelastic process called surface 

enhanced Raman scattering (SERS). Incident radiation interacts with both the 

metal to create a surface plasmon and the target analyte where the variations in 

the vibrational levels of the molecule result in a photon of a different frequency
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being returned to the metal and inelastically scattered172. The combination of 

incident radiation being absorbed by the large area of the colloid surface, and 

the vibrational energy of the molecule, results in significantly increased 

scattering power observed as SERS. Electromagnetic surface enhancement is 

only obtained with metals that have a similar plasmon resonance frequency as 

the Raman excitation. Various substrates have been investigated, but the most 

popular ones are silver and gold either in form of an electrode174 or in form of a 

colloid175 especially with excitation in the visible spectrum. The extent of 

enhancement depends greatly on the surface of the substrate, for instance the 

degree of roughness of an electrode, or the size, shape and aggregation state 

of colloidal particles. Often effects resulting from preferred orientation of the 

analyte to the substrate can be observed.

As well as the electromagnetic enhancement mechanism which is active during 

the SERS process, there is a chemical enhancement mechanisim which 

contributes considerably to the observed SERS signal173. The chemical 

enhancement mechanism involves the incident radiation striking the roughened 

metallic surface resulting in a photon being excited within the metal to a higher 

energy level. From this excited state, a charge transfer process to an electronic- 

vibrational level of the same energy within the target analyte takes place. 

Variations in vibrational energy states occur resulting in the transfer of a photon 

of different frequency being passed back to the metallic energy levels, and 

returned to the ground state of the metal.
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Figure 1.6: electron transitions in chemical surface enhancement

In terms of the chemical enhancement mechanism, the definition is still under 

debate however, it has been widely proposed that the target molecule must in 

some way adsorb onto the SERS substrate surface for the enhancement 

mechanisms to be applied. Once adsorbed, it is not yet resolved whether or not 

a parallel, but different mechanism is occuring in order to increase the 

vibrational energies of the molecules for SERS.

1.3.6 Resonance enhancement

In non-resonant Raman scattering, an electron transition to a non-allowed 

virtual state occurs. The likelihood for this phenomenon to happen is rather low, 

which explains why non-resonant Raman spectroscopy is not very sensitive. 

When the energy of the incident light approaches the energy required for an
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allowed electronic transition, however, the observed spectrum changes, 

showing an increase in intensity for certain vibrational bands. This phenomenon 

is known as resonance Raman scattering or the resonance Raman effect. Its 

existence was predicted by Placzek in 1934176 and it was observed for the first 

time by Shorygin et al. in 1947177. The enhanced Raman signal originates from 

the chromophore, which undergoes an electronic transition upon excitation as 

shown in Figure 1.7. There are at least two mechanisms responsible for 

resonance enhancement177. The first one, Franck-Condon enhancement, 

involves a single electronic state. A component of the normal coordinate of the 

vibration is in direction in which the molecule expands during an electronic 

excitation.
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Figure 1.7: electron transitions in resonance raman scattering

ground state

The more the molecule is able to expand along the axis when it absorbs light, 

the greater the enhancement. The second type involves two electronic states
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and is called vibronic enhancement.

There is not a distinct frequency where resonance enhancement starts for a 

certain vibration, but at lower wavelengths an effect called pre-resonance 

Raman scattering can be observed. It can start at wavelengths of 50-100 nm 

below the resonance frequency.

In conjunction with surface enhancement, energy transfer can occur from the 

excited states of the molecule to the metal surface, causing fluorescence 

quenching enabling the use of a wide range of chromophores178. The increase 

in sensitivity often permits the use of low-power lasers, which reduce the 

likelihood of analyte photo-decomposition.
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1.4 Ion Chromatography -  mass spectrometry

1.4.1 Overview

The development of interfaces for the combination of liquid chromatography and 

mass spectrometry did not lead automatically to methods utilising mass 

spectrometry as a mode of detection for ion chromatography. The high content 

of involatile compounds in the eluents traditionally used for ion chromatography 

were the reason for this incompatibility. Today, two ways are known by which 

ion chromatography may be made compatible with mass spectrometry. Either a 

volatile buffer system is used as an eluent for ion chromatography189, or a 

suppressor module is employed post column to remove the ionic modifier from 

the eluent before entering the interface to the mass spectrometer194.
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1.4.2 Types of chromatography

Ion chromatography itself can be divided into three groups:

-  ion exchange chromatography

-  ion-pair chromatography

-  ion-exclusion chromatography

Ion exchange chromatography requires an ionic stationary phase of the 

opposite charge to the analyte. The mobile phase usually consists of a salt 

gradient and the ions from it compete with the analyte for the active sites. The 

separation process depends on electrostatic interaction between the ionic 

analyte and the counter-charged ionic stationary phase179. As the ionic analyte 

moves through the stationary phase, it can replace the counter-ions at the 

stationary phase and, after some time, is replaced by an ion from the mobile 

phase and enters the mobile phase again. For instance, when a hydroxide 

eluent is used on an anion exchange column, initially all the immobilised 

quarternary ammonium groups have a hydroxide anion attached. When the 

analyte(X ) is injected, it exchanges with the hydroxide ions at the active sites.

r - n +r 3oh- + X— > r - n +r 3x- + oh-
Equation 1.11: The ion exchange process
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The ion-exchange process is an equilibrium that depends on the affinity of the 

analyte toward the stationary phase. The constant describing the equilibrium 

process is the selectivity coefficient (K):

[X ]s [OH ]m
K = ------------------

[OH-]s [X']m

K -  selectivity coefficient

[X ]SJ [X"]m -  analyte concentration in
stationary/mobile phase

[OH ]s, [OH ]m -  hydroxide concentration in the
stationary/mobile phase

Equation 1.12: Equilibrium constant

The different selectivity coefficients of the analytes lead to different retentions 

and thus to separation. Apart from ion-exchange processes, non-ionic 

interactions can be observed between the analytes and the stationary phase, 

most importantly adsorption. Both effects are usually superimposed and 

influence selectivity.

Ion exclusion chromatography, unlike ion exchange chromatography, is based 

on non-ionic interactions between the analyte and the stationary phase180. De­

ionised water is mostly used as the mobile phase and a cation exchanger as 

stationary phase. The separation mechanism is based on three effects: Donnan 

exclusion, steric exclusion and adsorption. An hydration shell is formed around 

the ionic groups of the stationary phase called the Donnan layer. The Donnan
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membrane has a partial negative charge and is only permeable for uncharged 

compounds, for instance water molecules. Fully dissociated anions are 

excluded from the stationary phase, because of their negative charge. If the 

analyte is a weak acid it will be protonated and not be affected by the Donnon 

exclusion. So this technique is particularly useful for the separation of weak 

inorganic and organic acids, but can even be applied to polar organic 

compounds such as alcohols, amino acids or carbohydrates.

S t a t i o n a r y  p h a s e
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Figure 1.8: The mechanism of ion-exclusion chromatography

lon-pair chromatography is usually done with a common reversed-phase 

column. The mobile phase contains a ion-pair reagent that usually consists of a 

hydrophobic and a ionic moeity. This process has not yet been fully explained. It 

has been suggested that the ion-pair reagent will arrange to a dynamic layer on 

the reversed phase material presenting the ionic part towards the mobile 

phase181. This gives the stationary phase ion-exchange properties. It has also 

suggested that the ionic analyte forms a complex with the hydrophobic ion-pair
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reagent182. These ion-pairs are retained on the non-polar stationary phase. In 

any case, separation can be modified through a change in the concentration of 

the ion-pair reagent or the organic modifier in the mobile phase.

1.4.3 Stationary Phases for anion exchange chromatography

Ion exchange materials for ion chromatography are usually described by their 

support material, the pore size, the exchange capacity and degree of 

hydrophobicity185.

The capacity of a packing material is commonly expressed in milli equivalent 

per gram resin (mequiv/g) rather than mmol/g and means number of ion- 

exchange charges present per gram of resin. A higher capacity usually means a 

longer retention time, but high capacity columns are also preferred when 

samples of high salt content are to be analysed.

Packing resins can either be microporous or macroporous. Microporous or gel- 

type packings have a pore size below 20 A and macroporous packings have a 

pore size between 20 -  400A. Macroporous materials are usually preferred, 

because they are mechanically more stable due to their higher degree of 

crosslinking and are not subject to swelling when organic solvents are used in 

the eluent. The pore size affects the selectivity, through a size exclusion 

mechanism.

The support material should be stable through a wide pH range to allow 

flexibillity in the pH of the eluent. Very alkaline or acidic conditions often used to 

suppress or enhance the dissociation of the analytes. Silica based packing
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materials, as used in normal or reversed phase chromatography, can only be 

used in a pH range from 2-8, otherwise hydrolysis will occur and cause 

damage, so most packings for ion chromatography are based on organic 

polymers that can be used in a wide pH range. Styrene/divinylbenzene 

copolymers are the most widely used substrate materials, since they are stable 

in a pH range from 0-14. The substrate particles can be functionalised directly 

on their surface. The most common type of functionalisation is surface 

amination to produce an anion exchanger183. A higher efficiency than with 

directly surface-modified packings can be obtained with “pellicular” 

substrates179. These stationary phases are also called latex-based ion 

exchangers and are currently state of the art. Figure 1.9 shows schematic of a 

latex-based anion exchanger.

Figure 1.9: Pellicular latex-agglomerated anion exchanger

These materials consist of a surface sulphonated poly-styrene/divinylbenzene 

substrate particle with diameters between 5pm and 25pm. Fully aminated 

porous polymer beads of high capacity, the latex particles, of a size of 0.1pm 

are agglomerated on the surface of the substrate by both electrostatic and van-

Substrate partide Latex particle
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der-Waals interactions. The latex-particles carry the actual anion exchange 

groups. The ion-exchange capacity of such a material is determined by size of 

the substrate particle, the size of the latex beads and the degree of coverage on 

the substrate surface.

The surface sulphonation of the substrate prevents the diffusion of inorganic 

species into the inner part of the stationary phase through Donnan exclusion, so 

the diffusion process is only controlled by the functional groups of the latex 

partices184. Different functional groups can be bonded to the latex particles and 

alter the selectivity. Depending on the functional groups bound to the 

quarternary amino group non-ionic interactions between the analyte and the 

funcional group can be reduced or increased. For instance a more hydrophobic 

functional group leads to longer retention for polarizable ions such as nitrate, 

bromide or iodide185. For iodide, which is easily polarisable due to its large 

radius a hydrophilic functional group is required to avoid long retention times 

and tailing. For ions that are not very polarisable, such as fluoride or chloride, 

the type of functional group does not affect selectivity.

1.4.4 The ion chromatographic system

An ion chromatography system is not much different from a classic liquid 

chromatography system185. The materials used have to be resistant to the 

corrosive eluents that are often used in ion chromatography and so instead of 

stainless steel polymers such as Teflon or PEEK are used. The detectors that 

are commonly used for ion chromatography include conductivity as the most
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popular one, but also UV-VIS absorbance detection, electrochemical detection 

and fluorescence detection.

For conductivity detection, either an eluent with a low background conductivity 

is used (non-suppressed ion chromatography), or a suppressor module is used 

to reduce the background conductivity of the eluent (suppressed ion 

chromatography). A popular type of suppressor is an in-line membrane ion 

exchanger. For instance, for anion exchange chromatography a sodium 

hydroxide eluent can be used together with an post-column cation exchanger 

and conductivity detection.

E l u e n t

N a +

O H

H +

O H -

i
h 2 o

N a +  H +

S O
4

N a +  H H

S O 2-4

H +  H +

S O 2 -4

R e g e n e  r a n t  

M e m b r a n e

Figure 1.10: Membrane suppressor for anion exchange chromatography

The suppressor will reduce the background conductivity of the eluent by 

exchanging sodium for hydronium ions, that recombine with the hydroxide ions
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to form water. Modern suppressors are designed as membrane suppressors 

with a membrane that consists of a sulphonated resin for anion exchange 

chromatography. The eluent is passed along a semipermeable membrane, 

where the actual ion exchange occurs. The driving force for the diffusion of the 

sodium ions is provided by the continuous removal of the diffused protons by 

reaction with the hydroxide from the eluent. To maintain the charge balance the 

sodium ions have to diffuse into the regenerant. This yields an eluate which is 

low in total ion concentration, suitable for introduction to a mass spectrometer.

1.4.8 Mass spectrometry as a detector for chomatography

i) Ion sources

The purpose of the ion source is to ionise the analyte prior to analysis in the 

mass spectrometer186. This can be achieved by ionising a neutral molecule 

through electron ejection, electron capture, protonation, deprotonation, adduct 

formation or the transfer of a charged species from a condensed-phase to a 

gas-phase. The two most important points for consideration are the internal 

energy transferred during the ionisation process and the physicochemical 

properties of the analyte that can be ionised. Ionisation techniques that are 

extremely energetic may cause extensive fragmentation, whilst other “softer” 

techniques only produce molecular species. In a liquid-phase ion source the 

analyte, which is in solution, is introduced by nebulisation as droplets into the 

mass spectrometer through various vacuum-pumping stages. Examples of this 

type of ion source are electrospray, sonic spray, particle beam, thermospray,
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and atmospheric pressure chemical ionisation.

A popular type of ion source when coupling liquid chromatography to mass 

spectrometry is electrospray ionisation (ESI)187. ESI is said to be a ‘soft’ 

technique since little to no fragmentation of the analyte takes place under low 

voltages (i.e. the molecular ion tends to remains intact). Large amounts of 

solvent have to be stripped from the analyte molecules in a desolvatisation 

process. Desolvation is achieved gradually by thermal energy at relatively low 

temperatures. The eluent is sprayed into the ion source of the mass 

spectrometer and high electric fields are applied during nebulisation and 

desolvatisation. The microdroplets are charged by the voltage applied to the tip 

of the gas probe. Additional gas probes can assist to desolvate the analytes. 

During the desolvatisation as the droplets shrink the charge goes over to the 

analyte ionising the same. The orifice of the mass spectrometer is also 

protected by a nitrogen stream, the so-called gas curtain.

The interface to the mass spectrometer has been the major problem in the past, 

when ion chromatography and mass spectrometry are coupled. ESI is effective 

at desolvating eluents of relatively low volatility (e.g. water). A further problem 

with ion chromatography is the presence of a high content of involatile salts in 

the eluent, which can easily block the skimmer inlet to the vacuum phase of the 

mass spectrometer. For some heavier elements, the inductively-coupled plasma 

mass spectrometer (ICP-MS), is possible. Because of the high temperature of 

the plasma no special interface is necessary. Yamanaka et al. used an ICP-MS 

as a detector for ion chromatography and developed a a method for the
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determination of bromate, iodate and other halogen anions in drinking water188. 

The ICP-MS instrument provides a very hard method of ionisation in the plasma 

torch, fragmenting the analyte into its atoms and so can be used as an element- 

selective detector. Other sample introduction systems have become available 

that allow other types of mass spectrometry to be used as a detector for ion 

chromatography. For non-suppressed ion chromatography volatile organic acids 

such as formic acid may be used as the ionic component in the eluent, and do 

not block the mass spectrometer interface. Chaimault et al189 reported the 

separation and detection of 20 underivatised amino acids by ion-pair 

chromatography with detection by pneumatically assisted electrospray mass 

spectrometry. The eluent was made compatible by using volatile perfluoro 

heptane- and octane acid as ion-pair reagents. Huber et al190 also used ion-pair 

chromatography with pneumatically assisted electrospray mass spectrometry 

for the analysis of nucleic acids with triethylammonium acetate as the volatile 

ion-pair reagent. Charles et al191 developed a method using electrospray tandem 

mass spectrometry with ion chromatography for simultaneous analysis of 

oxyhalide ions in water. A volatile ammonium nitrate solution served as eluent 

and allowed the on-line coupling with negative ion electrospray mass 

spectrometric detection. Eluents with non volatile compounds can be used with 

IC-MS ion suppressor modules are employed to remove the problem ion. Ion 

suppressor modules were initially developed to be used for ion chromatography 

in conjunction with conductivity detection, but also provide an elegant solution 

for mass spectrometric detection. Hsu et al192 demonstrated the successful
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coupling of ion-exchange chromatography and mass spectrometry with a 

particle beam mass-spectrometry through the use of a membrane suppressor 

for continuous desalting. A mixed-phase column, having both reversed-phase 

and ion-exchange capabilities was employed. The particle beam interface was 

found to exhibit an analyte carryover especially for anionic compounds, that was 

independent of the choice of column or the use or absence of a membrane 

suppressor. Corr et al193 accomplished the separation and detection of 13 

inorganic anions by 1C using an anion exchange column with a carbonate- 

bicarbonate mobile phase, on-line suppressed conductivity detection, and mass 

spectrometric detection using an ion spray atmospheric pressure ionization 

source. Roehl et al194 used a sodium hydroxide eluent for suppressed ion 

chromatography and electrospray ionisation mass spectrometry for the anaysis 

of anionic environmental pollutants in water. Nowadays, suppressed ion 

chromatography systems are widely available and will provide lower detection 

limits when coupled with mass spectrometry than unsuppressed ion 

chromatorgraphy systems, due to the complete removal of the ionic component.

ii) Mass analyser

After ions are generated they are separated according to their masses in the 

mass analyser. Quadrupoles are among the most commonly used mass 

analysers for LC-MS systems and are more compact, fast, less expensive, and 

more robust than most other types of mass spectrometers195. One major 

advantage of using a quadrupole is its ability to perform high scan rates so that
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a mass spectrum can be obtained in a short time, which is important for 

recording chromatograms. The quadrupole consists of four parallel cylindrical or 

hyperbolic rods, equally spaced around a central axis, that serve as electrodes. 

Opposing sets of rods are connected to a DC source, so that one pair is 

negatively charged and the other pair positively. An AC voltage component with 

a 180° phase shift is superimposed on the DC voltage between both pairs. As 

ions transit the quadrupole, both AC and DC voltages on the rods are changed 

simultaneously while maintaining their ratio constant. Hence through the 

application of controlled AC and DC voltages to opposing sets of poles, a mass 

filter is generated. Only those ions of a limited range of m/z (i.e. of a certain m/z) 

will pass through the mass filter, while all other ions collide with the rods and 

are converted to neutral molecules. Quadropoles are low resolution instruments 

allowing mass resolutions of approximately 1000, meaning that a mass of 100.1 

can still be distinguished from a mass of 100.
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1.5 Aims and objectives of the present work

Existing methods for measuring NOS turnover are either not capable of the 

isotopic discrimination required for metabolic studies using isotope labels, or 

have issues with loss or artifical generation of the analyte due to sample 

derivatisation, or are simply very expensive and time consuming. The aims of 

this work were to develop better techniques for stable isotope labelling 

experiments, in particular experiments employing 15N-L-arginine, and to apply 

them to clinical studies. Two techniques were selected as possible solutions, 

surface enhanced resonance Raman spectroscopy (SERRS) and ion 

chromatography -  mass spectrometry (IC-MS).

SERRS was chosen as an extension to the Griess assay, with Raman 

spectroscopy for detection instead of absorbance spectrometry. The Griess dye 

is an appropriate molecule for Raman spectroscopy for four reasons:

-  The Raman effect relies on a change in polarisability of a bond with vibration, 

and so the t t  -cloud in an azo group is a good scatterer.

Irradiation in the absorbance band of the Griess dye should lead to 

resonance enhancement of the scattering.

-  The amino groups present on the Griess dye allow adsorption to silver and 

so surface enhancement can be used to multiply resonance enhancement by 

several orders of magnitude.

-  Extending the Griess assay by SERRS not only makes it more sensitive and 

selective, but also allows isotopic discrimination between 1SN nitrite and 14N
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nitrite.

Suppressed IC-MS was selected for isotopic discriminative measurements of 

14N/15N-nitrite and 14N/15N-nitrate based on previous work with 1C and 

absorbance detection196. The anticipated advantages of IC-MS were:

-  This method does not rely on pre-column derivatisation and so should be 

less susceptible to interference.

-  Mass spectrometry should provide sensitive detection.

-  Mass spectrometry should provide good discimination between 14N and 15N 

forms.

-  The method might allow detection of other analytes of interest.

After method development, application to laboratory clinical samples was 

intended, e.g. in clinical studies of primary pulmonary hypertension, where the 

suppressed NOS turnover is thought to be the reason for hypertension.
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2. Development of a Raman Spectroscopic Method
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2.1 Experimental
2.1.1 Materials

Sulphanilamide (99%+), paraformaldehyde (95%+), 1-naphthylethylenediamine 

(98%+) and 15N-sodium nitrite (99%) were obtained from Aldrich (Poole, UK). 

14N-sodium nitrite (99%) and hydrochloric acid were obtained from BDH (Poole, 

UK). Silver nitrate (99%+) was obtained from Lancaster (Eastgate, UK) and 

trisodium citrate (99-100%) from Prime Chemicals (Rotherham, UK). Analar- 

grade trisodium phosphate was obtained from BDH (Poole, UK). Distilled and 

deionised water was produced with a Waters Nanopure MilliQ system (Milford,

USA) connected to a still. lOOmg sized reversed phase C solid phase

extraction cartridges were from International Sorbent Technologies 

(Glamorgan, UK) and centrifugal ultrafiltration cartridges with a molecular 

weight cut off of 5000 from Vivascience (Lincoln, UK). Arginine-free culture 

medium (RPMI1640, GIBCO, UK) was used for the experiments with the 

macrophages.

2.1.2 Equipment

Raman spectra were acquired using a Renishaw Raman System 2000 

spectrometer, which comprised an integral Raman microscope (Olympus BH2 

system), a stigmatic single spectrograph, and a Peltier-cooled CCD detector 

(400x600 pixels). The holographic notch filters allowed a lower spectral limit of 

approximately 100 cm'1. The excitation wavelengths used were 514nm and
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632nm, from 25 mW gas lasers.

2.1.3 Procedures

2.1.3.1 Preparation of silver colloid

Citrate based silver colloid was prepared based on the method described by 

Lee and Meisel197. 90 mg of silver nitrate were dissolved in 500 ml distilled water 

and heated to boiling under stirring. A 35 mmol/l citrate solution (lOmL) was 

added quickly and the solution was kept boiling for 60 minutes with continous 

stirring. Colloid suspension was kept in the dark and used within 3 weeks. 

Borohydride based silver colloid was prepared by adding 100ml of aqueous 

silver nitrate solution (2.5mmol/l) dropwise to 300ml of an ice water cooled 

aqueous sodium borohydride solution(2mmol/l). The solution was boiled for 60 

minutes to remove excess borohydride and made up to 500ml with distilled 

water.

2.1.3.2 Sample cleanup

Urine samples were pretreated by C solid phase extraction. The cartridge was18

conditioned with 1ml methanol followed by 1 ml distilled water. 1 ml of urine was 

loaded on a cartridge and the fluid collected. Serum samples were additionally 

deproteinised by ultra-filtration with a 5kD cut-off filter at a speed of 5000 rpm at 

a temperature 3°C.
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2.1.3.3 Griess Reaction

Nitrite standards were prepared with degassed MilliQ-water and kept sealed 

from air. Griess reactions were performed in sealed vials. For the recovery 

studies samples were spiked to 5pmol/l nitrite from a degassed nitrite stock 

solution. For the Griess reaction, 1ml of a 60 mmol/l aqueous sulfanilamide 

solution in 100 mmol/l HCI was added to 1ml sample followed by lm L of a 5 

mmol/l aqueous napthylethylenediamine solution. The samples were allowed to 

react in the dark for 15 minutes at room temperature, then neutralised with 

500pl of a 200 mmol/l trisodium phosphate solution to stop the reaction.

Samples were then passed through a Clo solid phase extraction cartridge to18

separate the dye from salts which would interfere with colloid aggregation in 

SERS. The cartridge was conditioned with 1 ml methanol followed by 1 ml 

degassed, distilled water. 1 ml sample was loaded and rinsed with 1 ml 

degassed, distilled water to leave the neutral dye on the cartridge. The dye was 

then eluted with 1 ml methanol, the methanol was evaporated under nitrogen 

and 1 ml 150 mmol/l sodium nitrate solution added as aggregant. Prior to 

analysis, 6 volumes of silver colloid were added to 1 volume of sample.

2.1.3.4 Raman Measurements

The laser was focussed through a 20 times objective on the sample solution 

and spectra were recorded for 100 seconds. When sampling from a cuvette, the 

aggregated sample was placed quickly in the cuvette so that no air was left and 

it was focussed onto the solution through the wall. When sampled from a
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wellplate, the aggregated sample was imediately filled into one of the chambers 

on the wellplate and the laser was focussed in the center of the solution. When 

a dried sample was measured from a microscope slide a drop of the aggregated 

sample was placed on the microscope slide and it was dried at 40°C.

2.1.3.5 Activated Macrophages

Macrophages were prepared and activated by Dr. T.M. Stevanin (University of 

Sheffield). Supernatants from 12 day old human monocyte derived 

macrophages maintained in RPMI 1640 arginine-free culture medium were 

infected with 250 pL of a bacterial suspension containing approximately 3 x l0 7 

bacteria (MC58 wild type). After an incubation time of 20h, at 37 °C and 5% 

C 0 2, the supernatants were then treated with 2% paraformaldehyde for 15 

minutes at 37 °C to fix the bacteria.

Sample cleanup and Raman measurements were performed by the author. The 

samples were spun down and a dual Ci8 SPE cleanup was perfomed on them 

prior to Raman analysis as described above.
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2.2 Results and Discussion

2.2.1 Sampling

Three different ways of acquiring Raman spectra have been studied. Firstly one 

can keep the aggregated sample in a cuvette, secondly a wellplate can be used 

or thirdly, the sample can be dried down onto a microscope slide after mixing 

with the aggregant.

Raman spectra can be taken from a liquid sample in a filled cuvette with a 

confocal setup of the microscope. Here, the focus of the laser beam has to be 

set just behind the glass wall. When the laser penetrates the sample solution 

too deeply, intensity is lost because the transmission through the colloid is low. 

Keeping the sample in a cuvette during the Raman measurement has the 

advantage that the sample does not evaporate. This is especially advantageous 

when samples contain organic solvents, methanol for instance.

Raman spectra can be taken from a liquid sample filled into a well plate by 

simply focussing on top of the solution. Care must be taken when sampling from 

a wellplate to focus in the center of the wellpate, because the surface of the 

liquid will not be even, but will form a meniscus. Sample evaporation can occur 

in this setup, but is low for purely aqueous solutions. However, samples 

containing organic solvents, for instance methanol, showed a significant 

reduction in volume by evaporation.

Laser irradiation in Raman spectrometry can lead to dye bleaching, but no 

problems with photobleaching were observed with liquid-suspension samples at 

the laser intensities used. Diffusion in and out of the beam and energy transfer

Page -71-



2. Development of a Raman Spectroscopic Method

to solvent were possible with the aqueous suspension used, which probably 

accounts for this stability.

The third way of aquiring Raman spectra is to filter or dry the colloid down onto 

a microscope slide or another solid surface and then focus on the dry silver 

particles that have dye adsorbed on them. This will greatly increase the dye and 

colloid concentration, and may lead to enhanced sensitivity and simpler sample 

handling. However, attempts to improve sensitivity by drying down the colloid 

suspension were unsuccessful because photobleaching of the dye was 

observed with solid dried samples. Very intense spectra could be obtained for 

short measurement times, but it was not possible to sample for longer than a 

few seconds without destroying the dye completely. Another disadvantage is 

that the colloid aggregation or more precisely the size of the colloid particles 

could not be controlled. Due to the longer time needed to dry the sample under 

a nitrogen stream, the precipitated colloid particles were much bigger than the 

ones present in the liquid samples.

2.2.2 Aggregation control

i) Control of interferences

It is well known that the ionic strength of the sample solution influences colloid 

aggregation and hence signal intensity in SERRS198. Controlling aggregant type 

and concentration is therefore of critical importance and optimisation is 

required. Initial experiments indicated that, when biological samples were 

analysed, the recoveries were very low and variable. The problems of poor
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reproducibility with serum and urine samples were found to be due to varying 

ionic strengths between samples which differentially affected aggregation.

A sample preparation step was devised to both extract (and if necessary 

concentrate) the Griess dye, and remove salts and acids which would cause 

irreproducible aggregation. By removing the salt-laden matrix ,then susequently 

adding a uniform type and concentration of aggregant, aggregation could be 

controlled to give good reproducibility. A dual Ci8 SPE cleanup was performed 

on the urine samples as described in Figure 2.1.
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Figure 2.1: SPE sample cleanup for SERRS samples

After conditioning, urine was loaded on the first Ci8 SPE cartridge to retain the 

organic portion of the matrix. The ionic filtrate was collected and the Griess 

reaction was performed on it. The analyte was so converted from an ionic 

species to an organic one. Since the organic portion of the matrix was already 

removed, a second SPE step could selectively separate the analyte from the 

remaining portion of the matrix. For serum samples that are usually high in 

protein an ultra-filtration step has to be employed before the dual C i8 SPE  

cleanup. Proteins can not be completely removed with a Ci8 cartridge.
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When a SPE separation was performed on the samples after the Griess 

reaction the dye was retained on the cartridge and thus separated from the 

acidic aqueous solvent. So after elution with metanol the dye was present in the 

preferred neutral form, with a more useful SERRS spectrum than the acidic 

form. After the sample pretreatment the aggregant (i.e. sodium nitrate) was then 

used for aggregation as described in the experimental section to achieve 

uniform aggregation between all samples and calibration standards.

ii) Selection of aggregant

Chloride has been reported as an aggregant ion198, but in this work no 

significant enhancement was seen with chloride, bromide or iodide as 

aggregants in a concentration range from 0 to 160mmol/l. Organic acids such 

as acetate or citrate are not useful as aggregants here because they show 

bands at 1400 cm'1 from the interaction of carboxylate groups with the silver 

surface, which interfere with the diazo band at 1420 cm'1. Smith et al199 

observed a band at 1400 cm 1 for the COO vibration and the appearance of 

shoulders at 1412 and 1370 cm-1, which could also be seen in a spectrum of 

acetate (figure 2.2).
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Figure 2.2: SERRS spectrum of 50mmol/l actetate.

Sodium nitrate was selected as aggregant here, because it is in the silver 

colloid already (from the production process), and it does not show significant 

Raman bands in the frequency range examined. The amount of nitrate added to 

the sample as aggregant is an important parameter and was optimised as 

shown in figure 2.3.
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Figure 2.3: Raman intensities for a lOOnM standard at different sodium nitrate 
concentrations.
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Usually, there is an optimum aggregant concentration, which gives the 

strongest signal. Variation of aggregant concentration showed an increase in 

signal intensity up to 65 mmol/l sodium nitrate, with a decrease thereafter as the 

silver colloid became unstable and started to precipitate. In the presence of 

methanol, less aggregant was needed to obtain optimum aggregation 

(25mmol/l).

An additional problem arises from the citrate used to generate the silver colloid. 

Citrate itself adsorbs to the silver colloid and generates an interfering band at 

1400cm*1 with shoulders at 1412 and 1370 cm*1, as shown in Figure 2.4.
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Figure 2.4: Bands obtained from silver colloid aggregated with 20mmol/l sodium 
nitrate.

The intensity of these bands increased with increasing concentration of the 

sodium nitrate aggregant. For measurements of nitrite concentrations below 20 

nmol/l it was best to work at aggregant concentrations of 20mmol/, to reduce 

the size of these interfering bands.
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Figure 2.5: Intensity of the citrate bands at different sodium nitrate concentrations

The citrate peaks disappeared when colloid prepared by the borhydride method 

was used. The use of citrate for colloid preparation can not be omitted currently, 

because citrate is not only used to generate the silver colloid, but also to 

stabilise it once it is produced. The silver colloid produced by the borohydride 

method was found to be inferior in both stability and sensitivity of the SERRS  

measurements it was used for. The colloid produced by the borohydride 

reaction was not as dense as the one produced by the citrate method, settled 

down too quickly after aggregation and was not stable for longer than a few 

hours.

2.2.3 Acidic versus neutral

The Griess assay must be performed under acidic conditions otherwise the
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diazonium salt is not formed and the reaction will not take place. As shown in 

figure 2.6, the N=N stretch band is much weaker in the protonated form than in 

the neutral form.
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Figure 2.6: Raman spectra taken under acidic and neutral conditions

Although the C-N band (1279 cm'1) is stronger in the spectrum of the protonated 

form it is not useful for isotopic discrimination because it overlaps strongly with 

another band. Acid can be used for aggregation of the silver colloid, it is 

undesirable both because the silver colloid will be dissolved slowly and because 

the spectrum obtained for the Griess dye in its protonated form is less useful 

than the spectrum obtained for the Griess dye in neutral form.

2.2.4 Choice of laser source

At neutral pH, the visible absorbance maximum of the Griess dye is at 496nm,
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while in acid solution the protonated form of the dye absorbs maximally at 

550nm, so a laser source emitting at a wavelength of 514nm would be expected 

to give a greater resonance enhancement than a laser source emitting at 

632nm.

— 632 nra
— 514 nm8000

6000

£  4000

2000

1500 12001600 1400 1300

Raman Shift [cm *1
Figure 2.7: Raman spectra taken with different laser sources. Green: 514nm, red: 
632nm.

However, when choosing a laser source for this Raman method it is important 

to use the dye in the presence of silver colloid, since the optimum for the dye 

adsorbed to silver may differ from the optimum for the free dye. This is because 

the colloid surface plasmon absorption is also important. For the Griess dye 

adsorbed to silver colloid, strong resonance and surface enhancement can be 

seen for the chromophore and the band corresponding to the N=N stretch (1420 

cm'1) is strong. Overall sensitivity was worse at 514nm than at 632nm, so a red 

laser was preferred. This may indicate more efficient excitation of the dye via

Page -79-



2. Development of a Raman Spectroscopic Method

the silver surface plasmon absorption, and for stronger surface enhancement 

may have been obtained with the laser source emitting at 632nm. Resonance 

between the laser light and the surface plasmons created on the surface of the 

silver colloid is required to achieve surface enhancement.

2.2.6 Quantitative analysis

For quantitative measurements, the band seen for the N=N stretch at 1420 cm'1 

is more useful than the band corresponding to the C-N vibration seen at 

1279cm1, which is weaker at neutral pH. The band area was used to determine 

nitrite concentration. A limit of detection of 5 nmol/l nitrite was achieved under 

these conditions, which is easily adequate for most nitrite analyses. It 

represents a considerable enhancement over the limit of detection achieved by 

absorbance measurement of the Griess dye, even though much lower detection 

limits (down to 8 x 10'16 mol/I) have been reported using SERRS with other 

dyes168. Calibration curves with freshly prepared colloid were linear up to 10 

pmol/l with good correlation (r = 0.995 and higher). This linearity and 

reproducibility shows what can be achieved with SERRS if colloid quality and 

aggregation conditions can be controlled, and the results did not need 

correction procedures200 or flow injection systems201 to achive good 

quantification. To achieve this reproducibility it was necessary not only to 

introduce the SPE dye extraction step to control colloid aggregation and sample 

pH, but also only to use silver colloid for a few weeks after production. Old 

colloid (months of storage) started to show non linear calibration curves even

Page -80-



2. Development of a Raman Spectroscopic Method

though the same limit of detection could be obtained with it. Recovery data from 

spiked urine, serum and cell culture media measured by absorbance 

spectroscopy and SERRS are shown in Table 2.1. Recoveries (n=5) from 

spiked urine averaged 96% (range from 91.6% to 98.7%), from serum 85%  

(range from 79.8% to 90.3%) and from culture medium 95% (range from 88.7%  

to 101.2%).

Urine 

recovery [%] 

Absorbance

Urine 

recovery [%] 

SERRS

Serum 

recovery [%] 

SERRS

Culture media 

recovery [%] 

SERRS
Sample 1 95.8 91.6 81.3 101.2

Sample 2 92.5 94.4 79.8 97.5

Sample 3 96.3 97.7 89.2 88.7

Sample 4 91.9 97.3 90.3 93.9

Sample 5 98.5 98.7 84.5 92.7

mean 95 96 85 95
Table 2.1: Recoveries from biological fluids by the Griess assay with detection by 
absorbance spectroscopy and SERRS.

The average nitrite concentration of serum samples was 1.8 pmol/l nitrite, while 

the average nitrite concentration of urine samples was 750 nmol/l. These 

recoveries from complex biological matrices such as urine and serum were 

good, allowing the method to be used for such samples. Similar recoveries were 

found using the colorimetric Griess assay, indicating that the more elaborate 

sample preparation for SERRS did not adversely affect recovery.
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2.2.7 Isotopic discrimination

Isotopic discrimination can be achieved in vibrational spectroscopy because the 

resonance frequency of a 15N labelled diazo group (15N=14N) will be lower than 

the resonance frequency for an unlabelled diazo group (14N=14N). Figure 2.8 

compares the SERRS spectrum from dye prepared with 20 nmol/l 15N-nitrite 

with the SERRS spectrum from dye prepared with 20 nmol/l 14N-nitrite.
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Figure 2.8: Spectra of the Griess dye prepared from 20nmol/l 15N-nitrite (red) and 
Griess dye prepared from 20nmol/l 14N-nitrite (blue).

The bandshift resulting from one nitrogen substitution was 5 cm'1 for the N=N 

stretch and 10 cm'1 for the C-N stretch, which overlaps with another band. No 

band shifts were observed for any other bands in the spectrum. Biswas et al202 

reported band shifts of 18-34 cm'1 for the azo stretch in different azo dyes upon 

substitution of one of the nitrogens by 15N. Presumably the structural 

environment of the azo group in the Griess dye results in a less dramatic shift
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upon 15N substitution than in the dyes examined by Biswas et at.

When a mixture of labelled and unlabelled Griess product was analysed, the 

two bands could not be resolved completely but always appeared as one band, 

shifting to lower peak wavenumber as the proportion of 15N labelled dye 

increased. Fourier self deconvolution, 2nd derivative analysis or band fitting did 

not enhance the 15N/14N resolution obtained. So the band maximum frequency 

was used to obtain the 15N/14N ratio as shown in Figure 2.9.
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Figure 2.9: Calibration curve to determine the 14N-nitrite/5N-nitrite ratio. Triplicates 
were measured for each standard concentration. Red: linear regression, Blue: non­
linear regression (quadratic)

A near linear relationship was seen between the band maximum frequency and 

the 15N content, with a correlation coefficient greater than 0.996. This allowed
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detection of 15N nitrite content to a minimum of 5%. Improvements in band 

resolution, either by hindering of rotation or by computer aided sharpening may 

help, though noise may be increased.

2.2.8 Cell Culture Media

12 day old human monocyte derived macrophages were incubated with 15N- 

labelled L-arginine. On activation of macrophages, iNOS is expressed and can 

produce NO in large quantities203. Subsequently, nitrate as a major NO 

metabolite should be determinable easily with the developed SERRS method. 

However, total nitrite levels in these samples were low ranging at about 500 

nmol/l, being identical to the nitrite background levels of the cuture medium 

alone and no 15N-nitrite was detectable. When the samples were spiked to 500 

nmol/l 15N-nitrite the usual band shift could be observed, which means that in 

fact no significant amounts of nitrite were present in the samples.

One possible explanation is that the macrophages were not activated properly 

and thus did not express iNOS, even though a prolonged in vitro cultivation of 

10-12 days was reported to trigger NO production in macrophages204. Without 

such an in vitro cultivation procedure, or if the procedure is insufficient, 

macrophages are not activated. As a result no nitrite would have been produced 

and only background nitrite would have been detectable.

Another possibility is that the macrophages were activated, but the produced 

nitrite was converted to other compunds, for instance by oxidation to nitrate 

during the incubation process. In this case, since nitrite is an intermediate in the
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oxidation process, the 14N-nitrite present at the beginning of the experiment 

would have been oxidised to nitrate as well and being replaced by 15N-nitrite. 

Total nitrite was determinable in the samples being only 14N-nitrite. This 

indicates that activation probably failed in the samples and no iNOS was 

expressed. Further indication that the activation of the macrophages may have 

failed comes from western blots perfomed from the macrophages. These did 

not clearly show the presence of iNOS after incubation.
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2.3 Conclusions

It has been shown that highly sensitive measurements of nitrite are possible

using an extension of the Griess assay with surface and resonance enhanced

Raman spectrometry. In summary:

-  Resonance and surface enhancement were achieved by adsorbing the 

Griess dye in its neutral form onto colloidal silver and aggregating the colloid 

prior to excitation with a 632 nm laser. No improvement was seen by 

employing a green laser with an excitation wavelength close to the 

absorbance maximum of the Griess dye.

-  Sampling was most convenient with a wellplate. High reproducibility between 

samples and standards was achieved by separating the Griess product from 

the ionic matrix by solid phase extraction prior to aggregation.

-  Calibration curves were linear with correlation coefficients higher than 0.995. 

In spite of interfering bands from citrate present in the silver colloid, a limit of 

detection of 5 nmol/l for nitrite was obtained. Isotopic discrimination between 

the 15N and 14N isotopes in the Griess dye was possible at 15N/14N isotopic 

ratios of 1:20 or greater.

-  15N-nitrite could be detected in urine, serum and cell culture medium with 

recoveries of 96% (range from 91.6% to 98.7%), 85% (range from 79.8% to
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90.3%) and 95% (range from 88.7% to 101.2%) respectively.

-  It was not possible to detect 15N-nitrite derived from 15N-L-arginine by 

activated macrophages. However, the problem was identified as failure to 

induce iNOS and not the analytical method itself.

-  This simple and straightforward method is a valuable tool for high-throughput 

analysis of NO turnover in biological studies, where higher concentrations of 

15N-L-arginine can be applied. It is, however, not useful for in vivo human 

studies where 15N-nitrite is usually present at levels below the ratio of isotopic 

discrimination that is possible with this method.
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3. Development of an IC-MS method
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3.1 Experimental

3.1.1 Materials

Nitrite and nitrate standards were prepared by dissolving an appropriate amount of 

Analar-grade 14N-sodium salt (BDH) or the 15N-sodium salt (99 atom% Aldrich). 

HPLC-grade methanol (Fisher) and chloride-free sodium hydroxide (puriss. p.a, 

Fluka) was used to prepare the eluents. Milli-Q water with a resistance of greater 

than 18MD was used for all solutions. 30% hydrogen peroxide solution (BDH, UK) 

was used to prepare the solution for post-column oxidation. For sample 

preparation, 200 mg Cis solid phase extraction cartridges (International Sorbent 

Technologies LTD, Glamorgan, UK) and ultrafiltration cartridges with a molecular 

weight cut off of 5000 (Vivascience, Lincoln, UK) were used.

3.1.2. Equipment

3.1.2.1. Ion chromatograph

A Dionex suppressed ion chromatography system equipped with a Dionex 

ASRS-II Ultra anion-suppressor and a Dionex AS-11HC column with a diameter 

of 4mm and a length of 25 cm together with a guard column was used. PEEK 

capillary (Suppelco, UK) was used to connect the components. An ESA 5020 

guard cell (ESA Inc, USA) was used for electrochemical oxidation.

3.1.2.2. Mass Spectrometer

The mass spectrometers used were a Micromass Platform instrument and a 

Micromass Quattro instrument both equipped with an electrospray interface. A
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Harvard syringe pump (Harvard Apparatus, USA) was used for the direct 

infusions.

3.1.3 Procedures

3.1.3.1 Direct infusion experiments

A syringe pump was directly connected to the electrospray interface of the mass 

spectrometer via HPLC PEEK tubing. A solution of the analyte of a 

concentration of 50 pmol/l was prepared in degassed water containing 50% 

methanol. The solution was infused at a flowrate of 10pmol/l. 500 pi were 

pumped through the suppressor module at a higher flowrate first, before mass 

spectra were recorded to displace the void volumn in the suppressor module. 

For direct infusion through the suppressor module, the suppressor was fitted 

between the syringe pump and the electrospray interface.

3.1.3.2 Mass spectrometer setup

The mass spectrometer was tuned for the detection of nitrite, nitrate and the NO 

donor compounds. A capillary voltage of 2 kV, a cone voltage of 30 V was used. 

0.25 kV were used for the HV Lens, 2.5 V for the ion energy and 1 V for the ion 

energy ramp. The source temperature was 85°C and a mass resolution of 15 

was used. A dwell time of 0.5s was used for the m/z=62 mass trace and a dwell 

time of 2.0s was used for the m/z=63 mass trace.
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3.1.3.3 Sample preparation

Urine samples were pretreated by Cm solid phase extraction using 200 mg Cm 

solid phase extraction cartridges (International Sorbent Technologies LTD, 

Glamorgan, UK). A cartridge was conditioned with 1ml methanol followed by 1 

ml distilled water. 1 ml of urine was loaded on a cartridge and the fluid collected 

for injection. Serum samples were deproteinised by ultra-filtration using 

ultrafiltration cartridges with a molecular weight cut off of 5000 (Vivascience, 

Lincoln, UK) at 5°C and a speed of 6000 rpm. The filtrate was used for analysis.

3.1.3.4 Suppressed IC-MS with MS detection

The eluent was prepared by adding methanol to Milli-Q water and degassing for 

15 minutes. The concentrated hydroxide solution was then added quickly to 

minimise contact with air. The eluents were kept under helium to prevent any 

carbon dioxide dissolving leading to the formation of carbonate. Standards were 

made up from degassed eluent (mathanol/water 30:70) without sodium 

hydroxide. A flowrate of 0.5 ml/min was used for chromatography and a split of 

1:15 was applied by using a T-piece to reduce the flowrate for the mass 

spectrometer.

For urine samples a two step gradient was used in the analysis beginning with a 

sodium hydroxide concentration of 20mmol/l for 20 minutes, then 40mmol/l for 

30 minutes and finally a 10 minutes equilibration step at a concentration of 

20mmol/l. The methanol concentration in the eluent was 30%.

For serum samples a linear gradient from 15mmol/l to 20mmol/l sodium
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hydroxide within the first 20 minutes of the run was used and then followed the 

same procedure as for urine samples.

3.1.3.5 IC-MS with post-column oxidation

Post-column oxidation was achieved through an auxiliary HPLC pump that fed 

in hydrogen peroxide solution at a low flowrate via a T-piece after the column 

and before the suppressor module. For urine and serum samples 0.5%  

hydrogen peroxide solution was added at a flowrate of 0.1 ml/min.

3.1.5.6 IC-MS with oxidation and chloride removal

Chloride trap columns were prepared by packing a 4mm guard column with the 

packing material from a Dionex OnGuard II Ag SPE cartridge. 10 ml of 

degassed MilliQ-water were pushed through the chloride trap column to remove 

any mobile silver ions from the resin, prior to use. The chloride trap column was 

placed between the suppressor and the eluent split.

3.1.3.7 IC-MS with electrochemical oxidation

The ion chromatograph was equipped with two Dionex AS-11 columns with the 

electrochemical cell in between them. The suppressor was fitted after the 

second column and before the split and mass spectrometer. A potential of IV  

was applied to the electrochemical cell. An isocratic method was applied using 

an eluent consisting of degassed MilliQ-water containing 30% methanol at a 

sodium hydroxide concentration of 20 mmol/l.
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3.1.5.8 Recovery Study

Urine and serum samples from independent batches were spiked to 10pmol/l 

15N-nitrite and 15N-nitrate in separate sets (n=5) prior to sample cleanup. Pairs of 

spiked and unspiked samples were analysed by ion chromatography with post­

column oxidation and a chloride trap. Recovery was calculated by substracting 

the concentration of analyte found in the unspiked sample or from the amount of 

analyte found in the spiked sample and dividing by the spike concentration.
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3.2 Results and Discussion

3.2.1 IC-MS with oxdiation and chloride removal

The initial direct infusion experiments showed strong mass bands for nitrite and 

nitrate for both the 14N and 15N species as shown in figure 3.1.
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Figure 3.1: Mass spectra obtained from direct infusion of a solution containing 14N- 
nitrite and 15N-nitrite (50pmol/l each) (top) and 14N-nitrate and 15N-nitrate (100pmol/l 
each) (bottom).

When it was attempted to measure nitrite by IC-MS, the sensitivity for nitrate 

was very low on the m/z = 46 and m/z = 47 mass trace and even though nitrite

Page -94-



3. Development of an IC-MS method

was present in at a high concentration no peak was seen in the chromatogram. 

It was suspected that nitrite itself does not ionise very well in the ion source of 

the mass spectrometer, when the suppressor module was used. So the direct 

infusion experiment was repeated, and the experimental stup changed so that 

direct infusion occurred through a suppressor module, as it was used in the IC- 

MS measurement.

Waste

Water

Syringe Suppressor Mass Spectrometer

Figure 3.2: Experimental set up for direct infusion with a suppressor module

Figure 3.3 shows the mass spectrum obtained from direct infusion experiments 

with a solution containing 50pmol/l 14N-nitrite and 15N-nitrite. The mass bands for 

14N-nitrite and 15N-nitrite ions are approximately 100 times smaller when a 

suppressor module was used for direct infusion. Two effects could be observed 

in this experiment that are responsible for the low sensitivity for nitrite, the 

oxidation of nitrite to nitrate and the formation of the water adduct. Since a 

mixture of 14N-nitrite and 15N-nitrite was infused the occurance of two adjacent 

mass bands of similar size indicates a conversion product of nitrite. The 

occurance of the mass bands at m/z = 62 and m/z = 63 indicates some 

oxidation to nitrate. The mass bands at m/z = 80 and m/z = 81 result from a 

nitrate/water adduct. An adduct of water and nitrite molecules was not 

observed.
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Figure 3.3: Mass spectra obtained from direct infusion of a solution containing 14N- 
nitrite and 15N-nitrite (50pmol/l each) directly (top) and through the suppressor module 
(bottom).

Both effects are relatively weak and the bands originating from the conversion 

of nitrite to nitrate are even smaller than the bands for nitite ions. Even though a 

major converion product of nitrite could not be identified, the experiment

Page -96-



3. Development of an iC-MS method

showed that the suppressor module introduces changes to the eluent that 

increase the reactivity of nitrite. The suppressor module is essentially a cation 

exchanger and lowers the pH of the eluent by 1 to 2 pH units, since it is 

exchanging omnipresent cations in the eluent to hydronium ions. The slightly 

acidic conditions introduced by the suppressor module may allow the formation 

of nitrous acid and its disproportionation to nitric oxide and nitrate in the ion 

source and simple catalysis of the oxidation to nitrate, which was observed to 

some extent. Other reactions are also possible in the environment of the ion 

source of a mass spectrometer that can yield different charged and uncharged 

molecules or fragments as conversion products of nitrite, thus diminish the 

sensitivity.

The post-column oxidation of nitrite to nitrate presents an elegant solution to 

this problem.

P u m p  A u x .  P u m p

S p l i t

S u p p r e s s o r
C o l u m n

M a s s  S p e c t r o m e t e rW a s t e

A u t o  S a m p l e r

Figure 3.4: Instrumental setup for chemical post-column oxidation

The setup differs from classic 1C instruments that hydrogen peroxide solution is 

mixed into the eluent stream after the column. Nitrate did not show a loss in 

sensitivity when the suppressor module was employed or post-column oxidation 

was used. Furthermore, both species could be measured in one mass trace,
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which yields general enhancement in sensitivity for quadrupole mass 

spectrometers because the dwell time does not have to be split between two 

mass channels. The amount of hydrogen peroxide added post-column to the 

eluent stream was optimised to maximise and if possible achieve complete 

conversion. A solution of a nitrite and nitrate concentration of 25pmol/l was 

injected and for each run the concentration of the added hydrogen peroxide was 

increased. Figure 3.5 shows the plot.
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Figure 3.5: Optimisation of post-column nitrite conversion

Complete conversion from nitrite to nitrate by post-column oxidation was 

observed at a hydrogen peroxide concentration higher than 0.2%, even at high 

nitrite concentrations of 1000 pmol/l. This also simplified the method greatly,
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because only one calibration curve was needed to measure both anions. 

However, the use of post-column oxidation did not solve the problem 

completely, as recoveries for nitrite from serum and urine were still below far 

below 50% as shown in Figure 3.6.

Further investigation revealed that chloride, which has a similar solvated charge 

to size ratio to nitrite and is present in very high concentrations of approximately 

125 mmol/l in serum, coelutes with nitrite and could not be separated by 

applying a longer gradient.

12.32
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Figure 3.6: Coelution of chloride with nitrite

Normally, chloride and nitrite can be separated on anion exchange columns 

with hydrophobic head groups since nitrite is polarisable, while chloride is not. 

Due to the organic solvent in the eluent, the interaction between nitrite 

molecules and the head groups is much less than compared to when eluents 

without organic solvents are used, which leads to a lower resolution between 

nitrite and chloride. The organic solvent is needed to aid desolvation in the 

interface of the mass spectrometer and can not be left out. The resolution
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between nitrite and chloride in biological fluids is also a problem because the 

high amounts of chloride lead to strong peak broadening. The coelution of 

chloride not only results in suppression of the ionisation of nitrite in the ion 

source of the mass spectrometer, but also increases the reactivity of nitrite in 

the ion source. Since all cations are exchanged to hydronium ions, the chloride 

ions enter the ion source as hydrochloric acid together with the nitrite ions 

causing very acidic conditions.

It was tried to remove chloride as a sample pre-treatment step using a 

combination of a Dionex OnGuard Ag and OnGuard SCX SPE cartidges. The 

SCX cartrigde is needed to trap any silver ions released from the OnGuard Ag 

cartridge, which would damage the analytical column. But it was found that a 

major part of the nitrite is oxidised to nitrate, which resulted in a very poor 

recovery of 10-50% for nitrite. Oxidation of nitrite to nitrate even happened with 

nitrite standards made up in degassed water and might have to do with trace 

metals or silver ions catalysing the oxidation that are present in the silver resin 

or trapped on the strong cation exchange material of the OnGuard SCX  

cartridge. Pre-column sample cleanup with combined Onguard Ag/SCX  

cartridges is therefore not suitable for nitrite analysis.

Since oxidation is desirable after separation on the column and interfering 

chloride could not be removed by a pre-column sample treatment step, this 

gave rise to the idea of a chloride trap column that could be used to remove all 

chloride post-column combined with post-column oxidation to measure nitrite. 

The instrumental setup is shown in Figure 3.7.
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Figure 3 .7 :1ntrumental setup for IC-MS with post-column oxidation and a chloride trap 
column

When employing both a chloride trap column and post column oxidation, all four 

analytes could be measured in one run, as shown in figure 3.8.
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Figure 3.8: Chromatograms of a serum sample spiked to lOpM 15N-nitrite analysed by 
IC-MS (A), by IC-MS with post-column oxidation (B) and by IC-MS with a chloride trap
and post-column oxidation (C,D).
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Nitrite eluted after 14.5 minutes, nitrate after 20 minutes and the overall time for 

each analysis was 60 minutes including a high concentration gradient step to 

elute high affinity matrix compounds and including an equilibration step at the 

end of the gradient. The nitrite peak showed some fronting, since chloride was 

removed post column and is therefore migrating with nitrite along the column 

during the separation process causing peak deformation. The retention time for 

nitrite and nitrate was 1.5 minutes longer when a chloride trap column and post­

column oxidation were used, because of the extra tubing and void volume. This 

particular serum sample (figure 3.8) contained 1 pmol/l 14N-nitrite and 50 pmol/l 

14N-nitrate. Endogenous 15N-nitrate could also be seen since the natural 

abundance of the 15N isotope is 0.360%. No endogenous 15N-nitrite could be 

detected, because the nitrite level in serum samples is much lower than nitrate 

levels and subsequently the 15N-nitrite concentration was below the detection 

limit. The limit of detection for 14N-nitrite and 14N-nitrate was 200 nmol/l and the 

detection limit for 15N-nitrite and 15N-nitrate 50 nmol/l. Lower background noise 

levels on the m/z=63 mass trace were resonsible for the better limit of detection 

for the 15N species as well as the longer dwell time. Calibration curves were 

linear to concentrations up to 1000 pmol/l with correlation coefficients of 0.9995 

and better. An example is shown in figure 3.9.
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Figure 3.9: Typical calibration curve for 14N-nitrate (r2 = 0.9996)

Occasionally, large signals were seen at m/z = 45 resulting from the formation 

of formate from the oxidation of methanol, but were not found to interfere with 

the measurements.

To determine whether any interferences on the m/z = 63 mass trace occur at 

high 14N-nitrate levels due to resultant broadening of the mass band at m/z= 62 

a series of standards was injected where the 15N-nitrate concentration was kept 

fixed at lOpmol/l in each and the 14N-nitrate concentration was increased in 

each up to 1000pmol/l (Figure 3.10).
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Figure 3.10: Chromatogram of standards with fixed15N-nitrate concentration (lOpmol/i) 
and increasing total nitrate concentration(0,10,50,100,500 pmol/l). Values indicate 
peak area.

The peak area for the 15N-nitrate peaks stayed constant except for the last 

injection (500pmol/i nitrate) which introduced measurable amounts of 

endogenous 15N-nitrate (1.8pmol/l endogenous 15N-nitrate). The concentration 

for the last 15N-nitrate peak was 11.7pmol/l, which matched the theoretical 11.8 

pmol/l of 10pmol/l spiked and 1.8pmol/l endogenous 15N-nitrate. These data 

show that there was no significant overlap of the m/z=62 mass band into the 

m/z=63 band at the mass resolution used. The recoveries (Table 3.1) were 

determined from urine (n=5) and serum samples (n=5) spiked with 15N-nitrite 

and 15N-nitrate (10pmol/l). The mean recovery of nitrate was 92.8% ( range from

89.3 to 96.2) from urine and 94.1% (range from 88.6 to 99.9) from serum. The 

mean recovery of nitrite was 95.5% (range from 90.7 to 98.5) from urine and 

106.7% (range from 102.9 to 110.3) from serum.
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urine serum
Recovery [%] 

nitrite

Recovery [%] 

nitrate

Recovery [%] 

nitrite

Recovery [%] 

nitrate

Spike 1 90.7 89.3 110 91.6

Spike 2 94.8 96.2 103.7 99.9

Spike 3 98.3 90.1 110.3 93.3

Spike 4 98.5 95.4 102.9 88.6

Spike 5 95.1 92.8 106.5 96.9

mean 95.5 92.8 106.7 94.1
Table 3.1: Recoveries of nitrite and nitrate from urine and serum

All biological samples had a high 14N-nitrate content and so endogenous 15N- 

nitrate (0.360%) was always visible. To measure the excess 15N-nitrate resulting 

from 15N-L-arginine infusion on top of endogenous 15N-nitrate the endogenous 

15N-nitrate concentration must be calculated (0.36% of the 14N-nitrate 

concentration) and substracted from the measured 15N-nitrate concentration. 

This calculation requires that the instrumental precision is adequate. To test this 

the ratio between the peak area of the endogenous 15N-nitrate peak and the 

peak area of the 14N-nitrate peak of a nitrate standard were measured at 

different concentrations (Table 3.2).

Nitrate
concentration

[pmol/l]

n Peak area ratio [%]

15N 03m/ ,4N03

SD

100 9 0.59 0.047

250 7 0.61 0.019

500 7 0.6 0.021

summed data 23 0.6 0.029
Table 3.2: Ratios of the 15N-nitrate peak area over the 14N-nitrate peak area of nitrate 
standards
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When the limit of detection is defined as three times the standard deviation, the 

ratio of 15N-nitrate to 14N-nitrate in a sample has to exceed the mean value plus 

three times SD, i.e. 0.69% to determine non-endogenous 15N-nitrate. In other 

words, if a sample contains lOOpmol/l nitrate then 15N-nitrate levels have to 

exceed 414.6 nmol/l with 54.6pmol/l non-endogenous 15N-nitrate on top of the 

360 nmol/l endogenous 15N-nitrate.

The measured ratio of the 15N-nitrate and 14N-nitrate peak areas did not match 

the natural isotope ratio of 0.360%. When the instrument was changed to an 

equal dwell time on both channels, the 15N/14N peak area was 0.28%. To check 

whether this was due to a difference in the quantitative instrument response 

between m/z = 63 and m/z = 62 at the different dwell times used for these two 

readings, samples of known total nitrate concentration was analysed using pure 

15N-nitrate as calibrant for the m/z = 63 trace.
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Figure 3.11: Determination of endogenous 15N-nitrate in samples of known total nitrate 
concentration. Left: Peak 1-3 are 1, 2, 5 pmol/l 15N-nitrate standards. Peak 4,5 are 50, 
100 pmol/l normal nitrate standards. Values indicate peak area. Right: Red diamonds: 
theoretical endogenous 15N-nitrate concentrationfassuming 0.36% 15/ 4N relative 
abundance), Green circles: 15N-nitrate concentration found in 50 and 100 pmol/l normal 
nitrate standards (n=8).

Page -106-



3. Development of an IC-MS method

The results (Figure 3.11) show that the measured 15N-nitrate content of the 

sample was indeed 0.360%, so it seems that the instrumental response is 

different at m/z = 63 and m/z = 62 when different dwell times were used.

3.2.2 IC-MS with electrochemical oxidation

An alternative method has been developed using electrochemical oxidation 

rather than chemical oxidation by hydrogen peroxide solution. The 

electrochemical cell was placed after the column and before the suppressor, 

where sodium hydroxide from the eluent is present. If the electrochemical cell 

was placed after the suppressor, no conversion of nitrite to nitrate was 

observed. The instrumental setup in detail is shown in figure 3.12.
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Figure 3.12:1ntrumental setup for IC-MS with electrochemical post-column oxidation.

Different voltages can be applied to the electrochemical cell and the conversion 

of nitrite to nitrate is a function of the applied voltage. So, initially optimisations 

had to be done to achieve maximum, and if possible, complete conversion from 

nitrite to nitrate. Figure 3.13 shows a plot of the applied voltage versus the 

conversion.
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Figure 3.13: Conversion of nitrite to nitrate in the electrochemical cell at different 
potentials

The conversion efficiency increases with the potential applied to the electrode of 

the electrochemical cell and seems to eventually reach a maximum of 

approximately 30%. A potential of 1.3V was chosen for future measurements, 

because higher voltages will not gain significantly higher conversion and the 

high currents that occur in the cell at higher voltages can damage the cell.

Even though the conversion rate was much lower than for chemical oxidation 

this method was still interesting, because a different setup was possible, that 

did not require a chloride trap column. The electrochemical cell was placed 

between two columns, because the oxidation of nitrite to nitrate is base 

catalysed. No significant conversion of nitrite to nitrate was found if the cell was 

placed after the suppressor module. The instrumental setup is shown in detail in 

figure 3.14.
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Figure 3.14: Intrumental setup for IC-MS with electrochemical post-column oxidation 
using two columns

Nitrate was separated from chloride and nitrite on the first column. Nitrite and 

chloride coelute from the first column and enter the electrochemical cell 

simultaneously, where nitrite will be converted to nitrate. On the second column 

the nitrate derived from nitrite oxidation can be separated from chloride. Figure 

3.15 shows the separation of nitrite and nitrate from chloride in a serum sample 

spiked to 20pmol/l nitrite.

100-1 m /z  =  62

100-1 m /z  =  35

30.002.50 10.00 12.50 15.00 17.50 27.505.00 7.50 20.00 22.50 25.00

Figure 3.15: Chromatogram of a serum sample spiked to 20 pmol/l nitrate analysed by 
IC-MS using two columns and electrochemical on-line oxidation
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Chloride elutes after 21.5 minutes, nitrite elutes after 23.3 minutes and nitrate 

after 25.2 minutes. Nitrite and nitrate are detected on the same mass trace of 

m/z = 62. Chloride is detected on the m/z = 35 mass trace. The advantage of 

this setup is that no chloride trap is required and the oxidation is easier to 

handle than in case of chemical oxidation. A similar setup would not have been 

possible with chemical oxidation because the hydrogen peroxide solution would 

have damaged the column quickly. Another advantage of this setup is that 

electrochemical oxidation is “cleaner” than chemical oxidation and no reactants 

need to be added to the eluent that could affect ionisation in the ion source of 

the mass spectrometer. The disadvantage is that only a conversion of 30% 

could be achieved with the electrochemical cell, however the conversion was 

constant over the investigated concentration range which did not result in non­

linear calibration curves. Further disadvantages are the high backpressure and 

longer retention times due to the two columns. Since the first method using 

chemical oxidation and a chloride trap gave better overall performance, it was 

the preferred method.
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3.3 Conclusions

It has been shown that ion chromatography coupled to mass spectrometry is a 

valuable tool for the determination of nitrite, nitrate from biological matrices such 

as blood serum or urine. A trap column has been designed to remove chloride, 

the major interferant, and post-column oxidation has been used to enhance the 

detection of nitrite. The developed methodology has several advantages over 

previous methods (see 3.2):

-  No sample derivatisation is required and sample pretreatment is minimal. 

The existing techniques needed derivatisation of nitrite/nitrate to measure 

total nitrite/nitrate concentrations as well as to determine the 14N/15N ratio of 

the species. This does not only consume more time and complicate the 

method, but also introduces risk of false assessments due to incomplete 

derivatisation, losses through oxidation or losses through side reactions. The 

method presented here does not require more than a simple sample cleanup 

and therefore reduces the risk of nitrite/nitrate losses, thus yielding a faster 

and more reproducible assay.

-  Nitrite and nitrate can be determined simultaneously and independently. If 

nitrite and nitrate levels are analysed by the Griess assay, every sample has 

to be measured twice and nitrite concentration subtracted from the total NOx 

concentration after nitrate to nitrite reduction. This is not needed for the IC- 

MS method. Nitrite and nitrate and their 15N species can be analysed in one
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run.

-  Only standard analytical tools are needed. Unlike the method presented by 

Forte et al.152, which requires rather expensive equipment, this method works 

with a normal ion chromatograph and a simple quadrupole mass 

spectrometer that is available in most analytical laboratories.

-  The method has good validation data for biological matrices. Detection limit, 

linear range and recoveries were excellent for serum and urine, which shows 

that this method is ideal for complex matrices, not only because the 

chromatographic separation makes detection of the analytes easier, but also 

because the chloride trap column removes the major interferent 

quantitatively.

-  The method can easily be automated. Only standard ion chromatography 

and mass spectrometry equipment is needed for this method, which makes it 

compatible with autosampling and automated sample pretreatment 

technologies.
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4. Application of IC-MS
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4.1 Introduction

4.1.1 Clinical studies

There is evidence that primary pulmonary hypertension (PPH) is caused by a 

deficiency in nitric oxide release by endothelial nitric oxide synthase (NOS) in 

the lung tissue205. It is therefore important to compare whole body NOS turnover 

in PPH patients with that in healthy controls. Forte at al.132 have successfully 

used 15N-L-arginine infusion to study NOS turnover in patients with essential 

hypertension, with detection of the 15N label in nitrite and nitrate via gas isotope 

ratio mass spectrometry (GIRMS). This chapter reports the use of Forte's 

infusion technique with the developed IC-MS methodology described in the 

previous chapter in a preliminary study of patients suffering from primary 

pulmonary hypertension compared to healthy controls as proof of principle of 

the assays usefulness in clinical studies.

4.1.2 Laboratory studies

o o

DETAnonoate PAPAnonoate

Figure 4.1: The NO donor drugs DETAnonoate and PAPAnonoate

Various compounds have been proposed as possible nitric oxide donors or 

buffer stores. The kinetics of donor breakdown and buffer NO adduction/release
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are of interest, and the IC-MS system was used to study three such 

compounds. Detection of the NO donors DETAnonoate, PAPAnonoate and S- 

nitroso-cysteine in simple solution was achieved and the breakdown kinetics of 

the NO donor drugs DETAnonoate and PAPAnonoate was investigated via 

subsequent nitrite and nitrate formation.

Page -115-



4. Application of IC-MS

4.1 Experimental

4.1.1 Materials

As described in chapter 3.

4.1.2 Equipment

As described in chapter 3.

4.1.3 Procedures

4.1.3.1 Volunteers and Patients

Four female patients with primary pulmonary hypertension (median mean 

pulmonary artery pressure 54 mm Hg, average age 42.75 years, SD = 5.1) 

were recruited. All were on warfarin, diuretics and calcium channel blockers. 

Four age-matched female, healthy and non-smoking volunteers (average age 

36 years, SD = 9.1) were investigated. A diet low in nitrite and nitrate was 

adopted by all, vegetables and conserved meat being avoided. 15N-L-arginine 

was given via an indwelling venous cannula as a primed (lOpmol/kg) and then a 

constant (lOpmol/kg/h) intravenous infusion whilst supine. Urine was collected 

over 48 hours, from 12 hours before until 36 hours after an intra-venous infusion 

of L-[15N]2-arginine (300 mg, 99 atom% enrichment, Mass Trace, MA, USA). 

Written informed consent was obtained, the study having approval of the South 

Sheffield Ethics Committee (see 8. Ethical approval). Patients were recruited 

and procedures carried out by Drs. S. Wharton, R.Vancoe, J.M. Wong and 

D.Kiely from the Pulmonary Vascular Research Centre, Royal Hallamshire
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Hospital.

4.1.3.2. Sample preparation

Urine samples were pretreated as described in in chapter 3.

4.1.3.3 IC-MS measurements

The cleaned up urine samples were processed as described in chapter 3. The 

14N-nitrate calibration curve was established form a series of nitrate standards. 

The 15N-nitrate present at a ratio of 0.36% in the nitrate standards was used to 

establish the 15N-nitrate calibration curve. This was possible because the total 

15N-nitrate levels were only up to twice as high as the endogenous 15N-nitrate 

levels, since the clinical study was designed to only provide a small pool of 

labelled arginine for safety reasons. Direct calibration with 15N-nitrate standards 

showed indeed an endogenous 15N-nitrate of 0.36% in nitrate, as described in 

chapter 3. Samples were diluted if concentrations were not in the linear working 

range. To calculate 15N-nitrate from NOS turnover, endogenous 15N-nitrate was 

determined from the 14N-nitrate concentration in the sample and subtracted 

from the total measured 15N-nitrate. All results were normalised by urine volume.

4.1.3.4 NO-donors

Stock solutions of 10mmol/l DETAnonoate and PAPAnonoate in 0.1 mmol/l 

aqueous sodium hydroxide were prepared. Cysteine was dissolved in 0.1mmol/l 

phosphate buffer solution (pH 7.4) to prepare a lmmol/I stock solution.
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Appropriate amounts of the stock solutions were added to 5ml of the phosphate 

buffer solution to obtain a NO donor concentration of lOOpmol/l. The sample 

was incubated in a shaking water bath at 37°C. At the desired time points 1ml of 

the solution was removed and stored at -30°C.

4.1.3.4 Statistical analysis and calculation procedure

Because of the small number of replicate samples, range errors are used to 

indicate error ranges. Statistical comparisons were done with Students t-test 

preceeded by an f-test for equal variance. Linear regression was used for the 

calibration curves.
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4.2 Results and Discussion

4.2.1 IC-MS measurements

Figure 4.2 shows a chromatogram of a patient urine sample from the 12-24 

hours collection after 15N-L-arginine infusion.

100n m /z  =  63

H100n m /z  =  62

2.00 4.00 6.00 I.00

Figure 4.2: Chromatogram of a patient urine sample 12-24 h urine collection after 15N- 
L-arginine infusion analysed by IC-MS using a chloride trap and post-column oxidation.

Nitrite eluted after 12.5 minutes and nitrate after 17.5 minutes. In this sample 

the 14N-nitrite concentration was 2.04 pmol/l, 14N-nitrate concentration was 1070 

pmol/l, 15N-nitrite was not detectable and 15N-nitrate concentration was 6.7 

pmol/l. 15N-nitrite may be mostly oxidised to nitrate in the urine samples and so 

the 15N-nitrite levels were below the detection limit. Occasionally, high nitrite 

levels were found, but the level of 15N-nitrite found was about 0.36% of the 14N- 

nitrite, suggesting that the 15N-nitrite seen was not from the labelled L-arginine 

infusion (values shown in figure 4.3). This shows that the nitrite in these 

samples was not a result of endothelial NOS turnover, but must have come 

from another yet unidentified source such as possibly bacterial nitrite production 

resulting from urinary infection.
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1D0n
m/z = 63

100"! m/z = 62

rrrp* Time 
30.005.00 10.00 12.50 15.00 17.502.50 7.50 20.00 22.50 25.00 27.50

Figure 4.3: Chromatogram of a urine sample that showed high nitrite concentration. 
14N-nitrite concentration was 74 pmol/l, 15N-nitrite 259 nmol/l.

For this study however the occasional high nitrite samples had no effect on the 

overall result, because the technique allowed to discriminate between 15N-L- 

arginine derived nitrite and nitrite from other sources. None of the previously 

available techniques are immune to this source of error, and even the ones 

using mass spectrometry to 14N/15N discrimination require determination of total 

NOx (Chapter 1.2) by a technique which is not isotopically selective.
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4.2.2 NOS turnover in healthy subjects

In the healthy subjects 10.65 pmol 15N-nitrate resulting from 15N-L-arginine was 

excreted within 36 hours after the infusion, with a range from 3950 pmol/l to 

17772 pmol/l between the individuals. Assuming that one 15N-nitrate molecule is 

produced from one 15N-L-arginine molecule, about 0.6% of the administered 

15N-L-arginine was excreted as 15N-nitrate. 15N-nitrate originating from 15N-L- 

arginine was detectable in all samples and all samples contained a detectable 

amount of endogenous 15N-nitrate. Table 4.1 shows the 15N-nitrate excretion at 

the investigated time intervals.

15N 0 3‘ excretion [nmol]

subject 0-12h 12-24h 24-36h total

1 1262 1464 1224 3950

2 1191 3948 2112 7251

3 1293 4260 12219 17772

4 7924 788 4894 13606
Table 4.1:15N03 excretion in healthy subjects

Compared to other studies of NOS turnover employing 15N-L-arginine, the 

amount of excreted 15N-nitrate by healthy subjects in this study was several 

times higher. Table 4.2 compares the values to previously published ones.

15n o 3-
excretion[nmol]

15N-L-arginine 
conversion [%]

n

Forte152: 1642 ±83 0.138 ±0.005 11

Demoncheaux206: 4216 ±2189 0.246 ±0.128 6

Durner: 10650 ±5044 0.622 ±0.295 4
Table 4.2:15N03' excretion in healthy subjects reported by Forte et ai, Demoncheaux at 
and this study. Values are shown in mean standard deviation although the the lower 
two rows have only a small sample number.
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Forte at al. used the Griess reaction to assess total urinary nitrate levels and in 

a second step used gas isotope ratio mass spectrometry to determine the 15N- 

nitrate fraction as described by Green at al.207. Green et al. showed recovery 

data for urine that was diluted 1:40 using the flow injection system which 

reduces nitrate to nitrite through a cadmium column and then derivatises nitrite 

with the Griess reaction.

However, Forte at al. did not follow the method described by Green et al. and 

diluted urine 1:10 prior to injection, but crucially did not present any recovery 

data. Matrix effects deminishing the formation of the Griess dye may have lead 

to significantly lower results. The individual-to-individual variation reported by 

Forte at al is also surprisingly small, compared to other studies (Table 4.2). 

Demoncheaux et al. used a similar approach, by using the colorimetric Griess 

assay to determine total nitrate levels and then measuring the 14N-nitrate/15N- 

nitrate ratio by GC-MS after derivatisation as described by Tsikas et al.147 The 

results are closer to those been found in this study, but still are dependant on 

the Griess assay which is not ideal for biological matrices.
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4.2.3 NOS turnover in PPH patients

In the group of 4 PPH patients an average of only 3.2 pmol 15N-nitrate was 

excreted within 36 hours after the infusion, with a range from 70pmol/l to 

6338pmol/l resulting from 1720pmol/l 15N-L-arginine infused (table 4.3). 

Assuming one 15N-nitrate molecule is produced from one 15N-L-arginine 

molecule, about 0.2% of the administered 15N-L-arginine was excreted as 15N- 

nitrate. 15N-nitrate resulting from 15N-L-arginine was not detectable in four 

patient samples. These samples also had lower 14N-nitrate levels resulting in the 

endogenous 15N-nitrate levels being below the detection limit (Table 4.3).

15N 0 3- excretion [nmol]

subject 0-12h 12-24h 24-36h total

1 2500 2056 1782 6338

2 50 n.d. n.d. 50

3 1208 n.d. n.d. 1208

4 1346 846 2938 5130
Table 4.3:15N03' excretion in the investigated PPH patients (n.d. = not detectable)

Undetectable 15N-nitrate levels have not been observed during the recovery 

study and in the samples obtained from the healthy subjects that were analysed 

at the same time. Overall the amount of excreted 15N-nitrate was lower in the 

PPH patients group, than in the healthy volunteers (section 4.2.2). Figure 4.3 

shows the 15N-nitrate excretion of the healthy controls compared to the PPH 

patients. A f-test indicated a similar variance between the sample sets, and the 

-value for a one-tailed t-test was 0.04. This indicates a significant difference 

between the two groups, although the sample number was very low.
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20000 -

^  15000
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Figure 4.4: 15N-nitrate excretion in PPH patients (red triangles) and healthy 
controls(green circles).

This finding confirms earlier results using gas chromatography - mass 

spectrometry obtained by Demoncheaux et al208. Median 12 hours recovery of 

urinary 15N-nitrate over 36 hours was reported to be 16 times lower in the PPH 

patients (n=6) than in the healthy controls(n=4).

Forte at al. compared 15N-nitrate excretion in healthy subjects (n = ll)  to patients 

with essential hypertension (n = ll)  and found a significantly lower excretion by 

the patients132, where 200mg 15N-L-arginine were administered and samples 

taken in the same intervals as in this study. A mean 15N-nitrate excretion of 

2.1pmol was determined in the healthy subjects and 1.3pmol in the patients 

respectively. Again in this study, even though the general trend is the same, 

much higher amounts of 15N-nitrate could be detected. This may indicate less
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sample loss due to the simpler sample preparation required by the ion- 

chromatography based method.

Kaneko et al.209 measured biochemical reaction products of NO in the lung in 

PPH patients (n=8) and healthy controls (n=8) by chemiluminescence after 

conversion to NO without a stable label. A reduction in the levels of NO reaction 

products was found in the PPH patents (0.69pmol/l SE = 0.21) compared to the 

healthy controls (3.3 pmol/l SE = 1.05). This finding reflects the same general 

trend with the results in this study.

Neither the healthy controls nor the patients showed complete clearance of 15N- 

after 36 hours of observation (Figure 4.5).
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Figure 4.5: 15N-nitrate excretion in urine in healthy subjects(green circles) and 
patients(red triangles) over time.

In the PPH patients the highest amount of 15N-nitrate was excreted towards the
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end of the experiment (24-36h). Similar experiments by Forte et al152,132 showed 

almost total clearance of 15N after 36 hours in healthy subjects as well as 

hypertensive patients, while the experiments by Demoncheaux et al208 agree 

with the results obtained here in that 15N-nitrate from 15N-L-arginine was still 

detectable in the 24h-36h interval.
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4.2.3 Detection of nitric oxide donors

This technique was not only found to be useful for the determination of nitrite 

and nitrate, but it was also possible to detect nitric oxide generating compounds 

such as pharmaceutical nitric oxide donors and what were thought to be nitric 

oxide carriers, primarily nitrosylated peptides or amino acids. The oxidative 

stress through the post-column oxidation step probably generates nitrate from 

the nitric oxide donating moiety in the nitric oxide donor molecule, which can be 

detected with the developed detection system. It was not possible to detect 

these compounds directly with the mass spectrometer, because the suppressor 

module removed the analytes from the eluent stream in their cationic form while 

they migrated through it.

Figure 4.6 shows a chromatogram obtained from a phosphate-buffered solution 

of PAPAnonoate after 30 minutes of incubation.

100-1 m /z = 62

PAPAnonoate

10.00 15.00 17 JO 20.00 30.000.00 2 JO 5.00 7.50 25.( 27.50

Figure 4.6: Chromatogram of a buffered PAPAnonoate solution after incubation for 30 
mins analysed by IC-MS using a chloride trap and post-column oxidation

The NO donor compound PAPAnonoate eluted after 7.5 minutes, nitrite after 12 

minutes and nitrate after 17.5 minutes. PAPAnonoate eluted first, since it is a
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weak anion, and might not have been separated from other possibly interfering 

compounds when analysed from more complex sample matrices. Figure 4.7 

shows a chromatogram obtained from a phosphate-buffered solution of 

DETAnonoate after 30 minutes of incubation.

100-i

DETAnonoate

NO-
% -

NO-

2J0

Figure 4.7: Chromatogram of a buffered DETAnonoate solution after incubation for 30
12.50 15.00 30.005.00 7.50 10.00 20.00 22 JO 25.00

mins analysed by IC-MS using a chloride trap and post-column oxidation

The retention times are similar to the ones from the PAPAnonoate sample, but 

DETAnonoate, which elutes first after approximately 7.5 minutes shows strong 

peak tailing, so a Dionex A S H  HC column might not be ideal for this analyte. 

The nitric oxide carrier S-nitroso-cysteine gave a sharp peak as shown in Figure 

4.8.

m/z = 62

s-nitroso-cysteine /1

n o 2- no3-

i t i 'it i 11 i n 1 11 i'i 111 111 i u 1111

2.50 5.00 7JO 10.00 12.50 15.00 17J0 20.00 22.50 25.00 27J0 30.00

Figure 4.8: Chromatogram of a buffered S-nitroso-cysteine solution analysed by IC-MS 
using a chloride trap and post-column oxidation
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The analytes were detected on one mass trace which increased sensitivity of 

the quadrupole mass spectrometer, since it allowed a higher dwell time. The 

rate of nitrate generation from the NO donors in the post-column oxidation 

process was only 32% for DETAnonoate and 11.5% for PAPAnonoate 

compared to the complete conversion of nitrite to nitrate. The rather high 

sodium hydroxide concentration of 20 mmol/l used in this method allowed short 

retention times and so a short analysis time for nitrite and nitrate analysis. A low 

concentration gradient step will be needed to separate the NO donor 

compounds from each other and from possibly interfering matrix components if 

the NO donor compounds itself were to be analysed in mixture or from more 

complex matrices.

The degradation of PAPAnonoate and DETAnonoate and subsequent nitrite 

and nitrate generation was studied in phosphate-buffered solution. Figure 4.9 

shows the chromatograms of the DETAnonoate samples taken at different 

incubation times. The peak for DETAnonoate is decreasing with time and the 

peaks for nitrite and nitrate are increasing with time. The DETAnonoate peak is 

difficult to integrate, because of the strong peak tailing. Although the nitrite peak 

was found on its tail, integration of the nitrite peak was not complicated. 

DETAnonoate is a rather slow NO donor with a half-life of approximately 20 

hours210. So as expected only very low nitrite and nitrate levels could be 

measured over the duration of the experiment as shown in Figure 4.10.
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Figure 4.9: Degradation of DETAnonoate after 0, 30, 60 and 120 minutes. Values on 
peaks indicate peak area.
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Figure 4.10: Nitrite(blue), nitrate(red) and total NOx(black) concentration in the buffered 
DETAnonoate samples. Scaling for comparison to Fig. 4.12.
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Initially, the nitrite concentration was about twice as high as the nitrate 

concentration, which indicates that nitrite is the primary degradation product of 

NO in buffered aqueous solution. Nitrate appears to be generated by nitrite 

oxidation and to be a secondary product of NO generated from the NO donor 

compound. So after approximately 105 minutes the nitrate concentration 

exceeds the nitrite concentration in the sample solution. Since one molecule of 

DETAnonoate can generate two molecules of NO, and the starting 

concentration of DETAnonoate was lOOpmol/I, complete conversion should give 

200pmol/l. However, due to the long half-life, this concentration was not 

reached in the experiment.

Figure 4.11 shows the chromatograms of the PAPAnonoate samples taken at 

different time points.
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Figure 4.11: Degradation of PAPAnonoate after 0, 30, 60 and 120 minutes. Values on 
peaks indicate peak area.
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The PAPAnonoate peaks at 7.5 minutes disappears almost completely after 

120 minutes of incubation. PAPAnonoate is a rather fast NO donor with a half- 

life of approximately 15 minutes210. Due to its instability nitrite and nitrate levels 

were already very high at the beginning of the experiment and rose only to a 

fewer extent as shown in Figure 4.12.
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Figure 4.12: Nitrite(blue), nitrate(red) and total NOx(black) concentration in the buffered 
PAPAnonoate samples

Due to the short half-life of PAPAnonoate a major fraction was already broken 

down before the experiment started. Again the primary product of NO 

degradation appears to be nitite rather than nitrate in aqueous solution. Even 

though two molecules of NO can be produced from one molecule of
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PAPAnonoate and the starting concentration of PAPAnonoate was lOOpmol/l, 

total NOx levels were only about 84pmol/l after 120 minutes and did not reach 

the theoretical maximum concentration of 200pmol/l. It is unclear what the 

reason for this behaviour is. The PAPAnonoate may already have been 

degraded when it was received from the manufacturer or generally the purity 

was not as what the label stated it to be.
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4.3 Conclusions

The previously developed method involving ion chromatography -  mass 

spectrometry with a chloride trap and post column oxidation was successfully 

used to study NOS turnover in healthy volunteers and patients suffering from 

primary pulmonary hypertension. The following conclusions can be drawn:

-  at the 15N-L-arginine doses administered 15N-nitrate could be detected in both 

the healthy volunteers and the patient samples. Endogenous nitrate levels 

could be easily determined from the 14N-nitrate concentration and simply had 

to be subtracted. 15N-nitrite was not detected, possibly because the oxidation 

to nitrate caused 15N-nitrite levels to drop below the limit of detection.

-  The use of a label in pulse chase studies means that the method could 

successfully distinguish between nitrite produced by endogenous sources 

(e.g. possibly bacterial infection) in some of the samples, where other 

methods would likely fail.

-  The average amount of 15N-nitrate excreted by the healthy subjects was 

10.65 pmoles (SD = 5.01 pmol) and 3.186 pmoles (SD = 2.55 pmol) for the 

PPH patients respectively. In the healthy subjects, 0.622% of the 

administered 15N-L-arginine was converted to 15N-nitrate in 36h, while the 

patients group only converted 0.186%.
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-  Compared to other studies of L-arginine conversion in healthy subjects, 

significantly higher amounts of 15N-nitrate were detected (10 times more than 

Forte et al. and 2.5 times more than Demoncheaux et al.). This may be a 

result of lower losses as this method requires minimal sample preparation in 

contrast to the other methods that require derivatisation of nitrite and nitrate.

-  Other studies assessing NOS turnover in PPH patients and healthy subjects 

agree with the results shown here in reporting decreased NO production in 

the patients. Demoncheaux et al208 found a 16-fold reduction of urinary non- 

endogenous 15N-nitrate levels, while Kaneko et al209 found a 4.8-fold 

reduction of NO metabolites in the lung.

-  The excretion patterns do not indicate clearance after 36 h, so it is quite likely 

that the administered 15N-L-arginine will be present in the body for a much 

longer time than the experiment. On the other hand 15N-L-arginine could be 

determined in high levels after 12h after infusion. It would be interesting to 

observe excretion over a longer time period.

-  Other analytes can be measured additionally to nitrite and nitrate. While the 

other techniques are specific to nitrite and nitrate, the method presented here 

is capable of measuring other analytes as well. This includes anions such as 

amino acids, organic acids or inorganic anions. But most importantly it was 

found that nitric oxide donors and carriers can be detected on the same mass
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trace as nitrite and nitrate which makes the technique extremely valuable for 

drug development and testing or to identify new nitric oxide metabolites.

-  The method is specific for NO metabolites and producers. The technique was 

designed to be specific for nitric oxide metabolites and producers, by using 

post-column oxidation. All nitric oxide metabolites and producers are 

detected as nitrate. This not only increases sensitivity for quadrupole mass 

spectrometers by maximising the dwell time, but can also reduce the number 

of peaks in the chromatogram.
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5.1 Overall Conclusions

Two methods have been developed for the determination of NOS turnover, a 

method based on SERRS and a method based on IC-MS. Both methods offer 

considerable advantages over previous techniques for the measurement of 

NOS turnover. The IC-MS method was applied to patient samples.

i )  SERRS

The Raman spectroscopic method was found to be a simple and straightforward 

method for high-throughput analysis of NO turnover in biological studies, where 

higher concentrations of 15N-L-arginine can be applied (such as in cell cultures) 

but was of limited use for human studies where 15N-nitrite is usually present at 

levels below the ratio of isotopic discrimination that is possible with the Raman 

method.

-  Limit of detection of 5 nmol/l for nitrite was obtained and calibration curves 

were linear up to at least 20pmol/l.

-  Isotopic discrimination between the 15N and 14N isotopes in the Griess dye 

was possible at 15N/14N isotopic ratios of 1:20 or greater.

-  The interfering bands resulting from the citrate used to prepare the silver 

colloid were minimised by optimisation of the aggregant concentration.

-  High reproducibility between samples and standards was achieved by 

separating the Griess product from the ionic matrix by solid phase extraction 

prior to aggregation. 15N-nitrite could be detected in urine, serum and cell
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culture medium with recoveries of 96% (range from 91.6% to 98.7%), 85%

(range from 79.8% to 90.3%) and 95% (range from 88.7% to 101.2%)

respectively.

-  sample turnover time was approximately 5 minutes.

-  It was not possible to detect 15N-nitrite derived from 15N-L-arginine by

activated macrophages. However, the problem was identified as failure to 

activate the macrophages and not the analytical method itself.

ii) IC-MS

The method based on ion chromatography -  mass spectrometry with a chloride

trap column and postcolumn oxidation was suitable for the determination of NO

turnover in humans as it was possible to measure 15N-nitrite and 15N-nitrate in

the presence of large amounts of 14N-nitrite and 14N-nitrate.

-  Limit of detection was 200nmol/l for 14N-nitrite and 14N-nitrate and 50nmol/l 

for 15N-nitrite and 15N-nitrate and calibration curves were linear up to at least 

500pmol/l.

-  Isotopic discrimination was only limited by the instrument resolution which is 

typically 1:1000195

-  No sample derivatisation was required and sample pretreatment was 

minimal. The chromatographic separation makes detection of the analytes 

easier and the chloride trap column removes the major interferent 

quantitatively.
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-  Recoveries were excellent for serum and urine,The mean recovery of nitrate 

was 93% ( range from 89% to 96.% from urine and 94% (range from 89% to 

100%) from serum. The mean recovery of nitrite was 96% (range from 91% 

to 99%) from urine and 107% (range from 103%to 110%) from serum.

-  sample turnover time was 1 hour.

-  other NO related compounds could be detected such as NO carriers and NO 

donors.

iii) Comparison of techniques

-  The SERRS method (LOD 5 nmol/l for nitrite) was more sensitive than the IC- 

MS method (LOD 50 nmol/l for 15N-nitrite and 15N-nitrate, 200 nmol/l for 14N- 

nitrite and 14N-nitrate).

-  The IC-SM method showed better isotopic discrimination than the SERRS 

method since the two bands for the 15N=14N and 14N=14N could not be 

resolved in the Raman spectrum. Isotopic discrimination in the IC-MS method 

was only affected by endogenous 15N-nitrate levels and instrument resolution.

-  The existing techniques, as well as this SERRS method, need derivatisation 

of nitrite/nitrate to measure total nitrite/nitrate concentrations as well as to 

determine the ^N/^N ratio of the species. This not only consumes more time, 

and complicates the method, but also introduces risks of error due to 

incomplete derivatisation, losses through oxidation or losses through side 

reactions. The IC-MS method did not require sample derivatisation, but only 

a simple cleanup procedure.
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the SERRS method is quicker than the IC-MS method. It takes 

approximately one hour to measure a serum or urine sample by IC-MS 

including complete elution of the sample matrix from the column and 

equilibration. It takes only approximately 5 minutes to measure a serum or 

urine sample by SERRS.

iv) Patient samples

NOS turnover in healthy subjects and patients suffering from primary pulmonary

hypertension was investigated using the method based on ion chromatography

-  mass spectrometry.

-  Excretion of 15N-nitrate derived from administered 15N-L-arginine was 

significantly lower in the patient group than in controls, in agreement with 

other work208,209, suggesting that NOS turnover is indeed lower in the patient 

group.

-  Compared to other studies of L-arginine conversion in healthy subjects, 

significantly higher amounts of 15N-nitrate were detected (10 times more than 

Forte et al132 and 2.5 times more than Demoncheaux et al.208). This may be a 

result of lower losses as this method requires minimal sample preparation in 

contrast to the other methods that require derivatisation of nitrite and nitrate.
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iv) Future Research

The SERRS method could be used for more studies with cell cultures. It is well 

suited to high throughput work with automated sample handling in multiwell 

plate assays.

Ion chromatography -  mass spectrometry has sufficient selectivity and 

sensitivity for clinical work, albeit with slower analysis. It may have the potential 

to replace the existing “gold-standard” of gas isotope ratio mass spectrometry. 

The detection of NO metabolites by oxidative postcolumn processing and mass 

spectrometry could be extended to couple to other modes of chromatography. 

Ion chromatography is not ideal for organic compounds like NO donors and NO 

carriers and other types of chromatography will be more suitable for their 

separation. The oxidative postcolumn processing and detection by mass 

spectrometry as nitrate is a technique of detection that is specific for all 

compounds that can be oxidised to nitrate including NO carriers, NO donors 

and various metabolites. It could, for instance, be used to discover possible 

unknown metabolites or elucidate the role of S-nitrosothiols in serum.
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Dr. D Bee
Clinical Research Fellow 
Respiratory Medicine 
E Floor 
RHH

Dear Dr. Bee

Ref.: - SS/98/122 - Endogenous vs. exogenous forces of nitric oxide (NO) and higher oxides 
of nitrogen in liver disease- L-arginine / nitric oxide metabolism in liver disease

Thank you for your letter dated 20/04/02 enclosing an amendment to the above study. This was 
reviewed by the Ethics Committee on 02/05/02.

Protocol Amendment No. 1: Received 20/04/02 v''
A dose of up to 85mg/kg 15N-arginine will be infused 
over 30 minutes. Blood samples will be taken at 0,
10, 20,30,40,50,60,90,120 and 180 minutes for 15N serum
enrichment.

Patient Information Sheet; version 2: Received 20/04/02

Volunteer Information Sheet; version 2: Received 20/04/02 . S

I can confirm that full Ethics Committee approval still applies to this protocol.

Yours sincerely

Chairman

* . . ... . J .\ a „ „ : i  A i m . .  An n i  n  a a a a-» j . .
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9/128. I can now confirm that you are requesting a protocol amendment to 97/255 rather than 99/128. The 
lendment involves altering the analate from plasma to urine for one of the biochemical tests involved in 
e protocol. This will involve 24 hour urine collections from both subjects and controls. This amendment 
s previously been considered in error in relation to 99/128 and approved, this approval has now been 
scinded. I am however happy to provide chairman’s approval for this amendment to be extended to 
/255.

ours sincerely

ofessor C Taylor 
airman

in/jess/!etters2000/higenbottam97-255.doc

mailto:Kate.Khoaz@csuh.trent.nhs.uk


Submission of 
clinical trial protocol 
to Eftics Committee

SOUTH SHEpFî i!? KESEAF^H 

E T H IC S ^

TITLE
(succinct & accurate)

Anoretic Agents and Primary Pulmonary Hypertension
«cf

INVESTIGATORS
Name, title & appointment 
(first name should be author 
for communication}

Professor T W  Higenbottam
Professor of Respiratory Medicine, Floor F, Medical School, Beech Hill Road 
SHEFFIELD, S10 2RX 
Telephone (0114) 271 21 96

AIMS OF STUDY To identify biochemical and genetic markers for the risk of pulmonary hypertension

POTENTIAL VALUE 
OF STUDY

Pulmonary hypertension is a progressive and usually fatal disease and only transplantation provides a cure. Early 
diagnosis may greatly assist fhe prognosis. Although pulmonary hypertension may be secondary to lung and 
heart disease, primary pulmonary hypertension is of unknown origin. The aim of this study is to identify potential 
biochemical makers finked to the development of the disease and identify those individuals at risk.
It has been suggested that the epidemiological determined association between the intake of anoretic agents may 
be due to impaired metabolism of the drug. By genotyping individuais for the aUetes of the gene responsible for 
its metaboftsm it may be possible to determine whether those individuate who have taken the drug and have 
impaired enzyme function are at particular risk for developing pulmonary hypertension.

METHODS
WITH PARTICULAR EMPHASIS 
ON:

a) Identification, recruitment, 
number and methods of 
selection of subjects.

b) Procedures

c) Measurements

d) Storage of Data

e) Analysis: statistical methods 
and power

a) Subjects
Three groups of 20 subjects win be 3tudied:- 1. Patients characterised for sporadic primary pulmonary 
hypertension, divided into those who have/have not taken anonetics in the previous 3 years. 2. Aget matched 
positive controls recruited from cardiac myopathy patients awaiting transplantation. 3. Age/sex matched 
volunteers responding to advertisements.

b) Procedures
Subjects wiil provide a venous blood sample (O  mi) and a urine sample.
For the assessment of the endothelial nitric oxide production the subjects wiil fast for 12 hours on Mifii-Q water 
and have been on a diet containig no nitrite/nitrate rich food for 2 days before the study. L-arginine or 1SN- 
guanidino-labeifed L-arginine wifi be given via an indwelling venous cannula as a primed (10pmoi/Kg) and then a 
constant (10pmoUKg/h) intravenous in fusion whilst supine. 5 ml blood samples will be taken immediately 
proceeding infusion and every 20 mm thereafter. (Total Volume 45mi) The subjects inhale and exhale through a 
2-way non-rebreathing valve with nose-clip in position to collect exhated breath for nitric oxide estimation.

c) Measurements
Genotypmg for fast and slow metaboftsers.
Plasma levels of 5-HT and its metabolite 5-HJAA using HPLC.
Circulating levels of ET-1 by radkammunoassay system.
Urine thromboxane and prostacydin metabolites wiil be measured by urine radioimmunoassay.
L-arginine is assayed by cation exchange resin cdumn, nitirc oxide nitnte/nitrate ratio by chemifuminescence and 
mass spectometry.

d) Data storage
Levels from the different metabolites wiU be recorded in a database system and the files wifi be stored on hard 
and floppy disks

e) Analysis
The number of subjects per group was calculated from power equations on the assumption that the incidence of 
poor metabotisers in primary putm onary hypertensive patients was raised from 8% in the normal population to at 
least 50%.
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Where study to take place All studies will be conducted at the Royal Hallamshire Hospital, Glossop Road, 
Sheffield

Duration of 
study

Each patient’s routine consultation (of typically sixty minutes) will be extended by no 
more than twenty minutes.
Endothelial nitric oxide production assessment will be carried out on a further visit 
lasting 5-6 hours

otentiaf hazards to 
ubjects

The isotope of L-argine used is non-radiocactive. The amino acid L-argine is one at
present in a normal diet and no hazards are expected fom its administration.

rocedures of 
iscomfoft and distress 
>r subjects

1 Insertion of venous cannulae for blood sampling and breathing through a mouthpiece 
wiill involve the usual modest discomfort

ompensation/
indemnification

Currently no additional compensation has been agreed, and the apprcpiate ’harm' 
paragraph has been included on the patient information sheet. The organisations with 
an interest in the wider use of DNA obtained from the bleed samplings have been 
approached and responses are awaited

inancia! arrangements

Payment to subjects

Payment from company 
sponsoring the trial

a) to subjects 
None

b) From company 
None

ccess to Data The use of a randomised coding system, the key to which will be held only by the 
investigator, will preclude the need for patient details to be stored with the 
experimental data. In these circumstances, access need not be restricted

cumant Enclosures

se enclose examples of any 
merits given to, or requiring 

signature of, the subject.

J[ copies attached 
[1 copy attached ]
Prof Higenbottam accepts responsibility for the use of

a) Information sheet
b) Consent form
c) CTX/DDX 
unlicensed drugs

Are you going to give radioisotopes No
d) Protocol 3 copies attached (not supplied to patient)

Reciprocal declaration 1 copy attached (not supplied to patient)
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Patent: Improvements to liquid chromatography coupled to mass spectrometry 
in the investigation of selected analytes; Crowther D., Diirner M.B., 
Demoncheaux E.; Application No: GB 0319915.5

Publication: Diirner M.B, Demoncheaux E., Higenbottam T., Crowther D.; 
Quantitative analysis of nitrite and 15N-nitrite in biological fluids by surface
enhanced Raman spectroscopy; In submission

Publication: Diirner M.B., Demoncheaux E., Higenbottam T., Crowther D.; 
Quantitative analysis of nitric oxide metabolites and their 15N labelled isoforms in 
biological fluids by ion chromatography - mass spectrometry


