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Abstract

Many people work in uncomfortable thermal environments where the need to 
perform manual handling tasks is a fundamental requirement. A review of the 
research into the effects of performing manual handling in these environments 
revealed design limitations and gaps in knowledge. Current industry guidance 
merely states that ‘extremes of heat and humidity should be avoided’.

The purpose of this thesis was to study participants’ physiological and 
subjective responses while lifting in hot, warm and cold environments. Three 
studies were conducted using the psychophysical approach where participants 
self-selected the load in a floor to knuckle-height lift.

For the first study 12 males (mean ± sd), age 25.2 ± 6 yrs, mass 74.9 ±11.9 kg, 
stature 1.73 ± 0.1m were recruited and acclimated over five days (1 hr 
sessions) in an environmental chamber at 38°C, 70% relative humidity (RH). 
They completed 15x35-min trials on consecutive weekdays in five 
environments: thermoneutral, 21 °C, 45% RH (17°C WBGT); warm-dry, 30°C, 
25% RH (22°C WBGT); warm-humid, 30°C, 65% RH (27°C WBGT); hot-dry, 
39°C, 22% RH (27°C WBGT); hot-humid, 38°C, 70% RH (34°C WBGT) and 
three lift frequencies: 1, 4.3 and 6.7 lifts.min'1. Heart rate and aural temperature 
were significantly higher and maximum acceptable weight of lift (MAWL) 
significantly lower in the hot-humid environment compared to all others. Ratings 
of perceived exertion (RPE) were significantly higher in hot-humid compared to 
both warm-dry and thermoneutral. Although participants reduced workloads in 
the heat, they did not compensate adequately. There were no significant 
differences in response between two environments with the same WBGT (27°C).

Secondly, 12 males, age 26 ± 5.6 yrs, mass 75.1 ± 9.2kg, stature 1.77 ± 0.1m 
were recruited. They completed 15x35-min trials in five environments: 
thermoneutral, 16°C, 65% RH; 10°C, 55% RH; 5°C, 45% RH; 0°C, 55% RH 
(standard ensemble); 0°C, 55% RH (enhanced ensemble) and the same three 
lift frequencies. MAWL significantly decreased at higher lift frequencies. Mean 
aural temperature was significantly lower at 0°C (standard) compared to 
thermoneutral. Mean MAWLs were higher than in the heat suggesting that 
participants increased activity to keep warm possibly placing them at greater 
risk of musculoskeletal injury. In all environments below thermoneutral the 
mean end aural temperature was <36.2°C when lifting at 1 lift.min'1.

Finally, 10 males, age 28.4 ± 5.1 yrs, mass 79.5 ± 13.1 kg, stature 1.8 ± 0.1 m 
were recruited to assess the effects of face-cooling on physiological strain and 
perceived exertion while lifting at 6.7 lifts.min'1 in 30°C, 65% RH (27°C WBGT). 
Face-cooling significantly reduced local skin temperature and heart rate. There 
were no other significant differences. Face-cooling seems to be limited to 
mediating RPE (encompassing thermal strain) independent of core temperature 
which might continue to rise.

The following recommendations are suggested for inclusion in future industry 
guidance. Workers should not regulate their own workloads in uncomfortable 
environments. RH does not impose additional strain in air temperatures up to 
30°C. At ~39°C care must be taken when RH exceeds 25%. Attention must be 
paid to workers’ clothing ensembles in temperatures below 16°C so that they 
provide adequate insulation. Finally, face-cooling should not be thought of as a 
protective mechanism against heat stress.
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1 Introduction

1. Summary

This chapter provides a general overview of the topic under investigation. It 

considers the issues surrounding work in hot and cold environments and 

identifies the need for research so that these problems are more readily 

understood.

2. General Introduction

Exercise physiology is defined as the study of how the body responds to 

physical activity. Research in this area is usually focused on sporting or 

recreational pursuits but physical activity can also take place in occupational 

settings. Many people are employed in industries where the need to perform 

manual handling tasks is a fundamental requirement. Factory employees, 

health professionals, military personnel and construction workers all perform 

these tasks as part of their normal working day. In the United Kingdom, the 

regulation of manual handling is enforced by the Health & Safety Executive’s 

(HSE) Manual Handling Operations Regulations (1992) which are enshrined in 

law in the Health & Safety at Work Act (1974).

Occupational settings are often uncomfortable places to work in due to the 

environmental conditions that are typical in different industries. Glassworks, 

steelworks and bakeries are examples of workplaces that are often 

uncomfortably warm or hot. Conversely, areas of chilled and frozen foods 

factories and distribution warehouses may be maintained at very low 

temperatures. Human beings are described as homeotherms meaning that they



attempt to maintain their body temperature within a narrow range irrespective of 

the surrounding environment. Normal body temperature is approximately 37 °C 

with a safe range of approximately 2 °C either side of this. Failure to stay within 

the upper and lower limits of this range can have deleterious and, ultimately, 

fatal results. Working in uncomfortably hot or cold environments can impose a 

physiological strain as the body attempts to maintain its core temperature within 

the safe range despite the ambient conditions. The performance of manual 

handling tasks can present a similar challenge and when they are performed in 

uncomfortable hot or cold environments the threat to thermal homeostasis is 

twofold.

There is a large body of research that has investigated the effects of hot and 

cold environments on individuals performing sports and exercise activities but 

much less on those who have to work in such environments. The reader is 

directed to Doubt (1991) and Toner & McArdle (1988) for reviews of cold 

research and to Sawka & Pandolf (2002) and Hubbard & Armstrong (1988) for 

similar work on hot environments. Although some of the findings from the sports 

and exercise disciplines can be applied to work settings there are quite often 

differences in the latter area that mean specialised research is necessary. For 

instance, many working activities are intermittent and involve compound tasks 

whereas most sports research involves the investigation of an individual’s 

responses whilst performing continuous rhythmic exercise such as treadmill 

running. Potential exposure to hazardous materials might also mean that the 

worker has to wear protective clothing thus preventing adequate 

thermoregulation. Contrast this with the minimalist outfits worn by many athletes,
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outfits often made from so-called ‘breathable’ materials designed to allow 

evaporative cooling.

A closer inspection of the limited research into the effects of working in hot and 

cold environments has revealed gaps in knowledge and highlighted a number of 

design limitations. Many studies in cold environments have concentrated on 

investigating the effects of cold on the fingers and hands (see Bensel & 

Lockhart, 1974 and the reviews by Havenith et a/., 1995; Heus et a/., 1995). 

Others have examined the effects of cold together with windy and wet 

conditions; environments especially likely to be encountered outdoors (McCaig 

& Gooderson, 1986; Weller et a/., 1997; Weller et a/., 1998). Research studies 

into the effects of hot environments on manual handling performance have 

failed to examine the effects of different levels of relative humidity on human 

performance. The Manual Handling Operations Regulations (MHOR) guidance 

issued by the HSE (HSE, 1998) merely states that ‘extremes of heat and 

humidity should be avoided’. For these reasons it would appear that there is a 

need for systematic, controlled studies of the effects of uncomfortably hot and 

cold environments on individuals performing industrial tasks.

3. Conclusions

Whilst it is accepted that conducting manual handling tasks in uncomfortable 

hot and cold environments increases the risk of injury, there is currently no 

guidance on how important these risk factors are or on how to identify and 

control these risks. There is also a lack of guidance on the effects of relative 

humidity on performance of these tasks. Previous research in these areas has 

been almost non-existent with regards to cold environments and those studies

3



concerned with work in the heat have not adequately investigated the effects of 

relative humidity on performance and safety.

The purpose of this thesis is to investigate the physiological and subjective 

responses of individuals performing manual handling tasks in a range of 

uncomfortably hot, warm and cold environments. It aims to address gaps in the 

literature related to manual handling performance in the heat and the cold; the 

effects of relative humidity and of wearing different clothing ensembles.
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2 Main Concepts & Review of Literature

1. Summary

This chapter provides a more detailed overview of the main areas of interest, 

notably the human thermal environment, thermoregulatory responses and 

manual handling tasks. There follows a critical overview of the current state of 

published literature in the areas under investigation.

2. Main Concepts

2.1 The Human Thermal Environment

The human thermal environment is generally described as comprising six basic 

variables (Parsons, 2003); four environmental and two personal. The most 

commonly referred to variable is air temperature, indeed this variable is quite 

often the only variable considered when describing an environment. The other 

three environmental variables are radiant temperature (usually from the sun but 

also from localised heat sources such as furnaces and ovens), relative humidity 

(the amount of moisture held in the air expressed as a percentage of totally 

saturated air) and air velocity. The two personal variables are metabolic heat 

production and clothing insulation. The interaction of the six variables is 

important since adjustment of one or more of them will generally result in a 

different human response to a given situation. Collins (1983) cited in Parsons 

(2003) describes a situation where an adult skier descended a slope with a child 

on his back. At the end of the run the adult was warm and perspiring yet the 

child was hypothermic. Both had experienced the same air temperature and air 

velocity and both were similarly clothed but the adult’s metabolic heat 

production from skiing had compensated for the heat loss experienced during

5



the descent. The adult and child had in effect experienced two different thermal 

environments.

Air temperature describes the degree of hotness or coldness of the air 

surrounding a person. Temperature is a measure of the average kinetic energy 

of the particles in a sample of matter (Parsons, 2003) and is usually, in 

environmental studies, measured in degrees Celsius (°C). Measures of air 

temperature are usually taken in the shade to avoid the effects of radiant heat 

such as that from solar radiation. A mercury-in-glass thermometer is often used 

for measurement. This and other measurement methods will be detailed in 

chapter 3.

Radiant temperature is a measure of heat transferred by radiation between one 

body and another. Virtually all life on Earth depends on the radiant heat of the 

sun reaching this planet. When someone is outside they may be exposed to 

solar radiation in a variety of forms, whether direct from the solar disc, diffused 

through clouds, reflected off walls, ground or water or a combination of these 

factors (Parsons, 2003). Indoors, radiant heat is emitted from various sources 

such as ovens and industrial kilns. Mean radiant temperature is also expressed 

in °C and can be measured using a thermometer inside a matte black globe.

Humidity is defined as the moisture content of the air. Absolute measures of 

humidity usually expressed as a ratio of grams of water vapour to kilograms of 

air are available but in environmental studies it is often more meaningful to use 

measures of relative humidity. Relative humidity is expressed as a percentage 

and represents the ratio between the current partial vapour pressure to the

6



saturated vapour pressure at a given temperature (Parsons, 2003). High levels 

of relative humidity are of great importance to anyone working or exercising in a 

warm or hot environment because of the effect on the body’s ability to cool itself 

by sweating. Cooling by sweating is brought about by the evaporation and 

subsequent convection away of perspiration. The evaporation of sweat requires 

a vapour pressure gradient to exist between the skin and the surrounding air. 

As relative humidity rises the gradient will decrease, reducing the ability of the 

sweat to evaporate until, at a relative humidity of 100%, the gradient disappears 

and evaporative cooling becomes impossible. Relative humidity can be 

measured using a hygrometer of which there are a variety of designs.

The fourth and final environmental factor is air velocity which is defined as the 

movement of air across the body. Most people will have experienced the 

pleasure of a cool breeze on a summer’s day and suffered the effects of a cold 

draught in a poorly insulated room. The movement of air disturbs and carries 

away the air immediately surrounding our bodies. In hot environments it can 

facilitate evaporative cooling but in cold environments it can disturb the barrier 

effect of warm air close to the skin. Air velocity can be measured by a device 

known as an anemometer and is expressed in units of m.s-1.

An individual’s metabolic work rate can greatly affect their personal thermal 

environment. Energy is released in the body to perform mechanical work 

although due to the body’s inefficiency over 75% of this energy may be 

dissipated as heat (Powers & Howley, 1997). This heat originates in skeletal 

muscle and is dissipated to the skin’s surface by conduction or convection 

through the adjoining tissues and blood via the cardio-vascular system. The
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increase in core body temperature contributes greatly to the individual’s 

perception of the surrounding environment (consider the previously described 

example of the skier). Metabolic heat production can be measured directly in 

laboratories using specially constructed rooms or ‘pods’ for instance but this is 

impractical for most ‘real-world’ applications. In these cases indirect 

measurement methods are used and an international standard (International 

Organisation for Standardisation [ISO], 8996, 1990) document is available for 

estimation of metabolic work rate in a wide variety of manual tasks. Work rate is 

expressed in watts (W) but a standardised measure of W.m'2may be used if the 

body’s surface area is estimated using an equation such as that proposed by 

Mosteller (1987).

The second personal variable and last of the six components of the human 

thermal environment is clothing insulation. Clothing covers the body to a greater 

or lesser extent and in certain industrial environments a particular protective 

ensemble may be mandatory. In cold environments the clothing ensemble will 

insulate the body from the surrounding air by trapping a layer of warm air next 

to the skin. This will be beneficial but if the worker is required to perform any 

manual labour it may become a hindrance as evaporative cooling is prevented. 

Bulky clothing might also prevent ease of movement and execution of tasks 

requiring a high degree of precision; a phenomenon known as the ‘hobbling 

effect’. In warm or hot environments the clothing ensemble might again interfere 

with evaporative cooling. The thermal insulation of clothing is often expressed in 

units of Clo and was first proposed by Gagge et al. (1941). In everyday terms, 1 

Clo is the level of clothing insulation (roughly equivalent to a standard business 

suit) required to keep a sedentary person comfortable in an air temperature of

8



21° C. Another ISO document (ISO 9920, 1994) provides tables of Clo values
i

for individual items of clothing and various clothing ensembles.

2.2 Human Thermoregulatory Responses

Human beings are described as 'homeotherms', that is they attempt to maintain 

a constant body temperature despite changes in the surrounding environment 

(Powers & Howley, 1997). Temperature regulation is controlled by the 

thermoregulatory centres in the hypothalamus which receive afferent inputs 

from both peripheral and central thermoreceptors (Marieb, 1998). Peripheral 

thermoreceptors monitor the temperature of the skin whilst central 

thermoreceptors (some of which are located in the hypothalamus) are sensitive 

to changes in the temperature of the blood (Marieb, 1998). Any perturbations 

are corrected by appropriate regulatory and feedback mechanisms described 

below.

2.2.1 Control of Heat Loss

An increase in core temperature above 40-41° C can cause dysfunction of the 

central nervous system and there is a risk of death above 43-44° C (Powers & 

Howley, 1997). Heat loss is achieved by four methods: radiation, conduction, 

convection and evaporation. In common with other examples of energy transfer, 

heat will be lost from the body if it is warmer than the surrounding environment 

(Powers & Howley, 1997). This temperature difference between the body and 

the environment is known as the thermal gradient. Where a thermal gradient 

exists in the opposite direction, a cold body will absorb heat from a warm 

environment.
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In the event of a rise in core temperature, the hypothalamus activates the heat- 

loss mechanisms. Vasodilation of the cutaneous blood vessels occurs as a 

result of an inhibition of vasomotor tone (Marieb, 1998). This allows more blood 

to flow at the skin's surface allowing heat loss via radiation, conduction and 

convection. Sweat glands are activated and the individual begins to perspire 

leading to evaporative cooling. This method of cooling is the most effective 

during physical activity (Powers & Howley, 1997) but it is severely compromised 

in very humid conditions as previously described. This danger is recognised by 

many of the world's sports governing bodies who issue guidelines on whether 

events should take place or not depending on the prevalent conditions. The 

American College of Sports Medicine have published a position stand on the 

prevention of thermal injuries during distance running for instance (ACSM, 

1985).

2.2.2 Control of Heat Promotion

Cold stress is a major risk to the health of an individual and the body attempts 

to counteract this by using a number of mechanisms to promote heat. This 

phenomenon is known as thermogenesis and takes two forms, shivering and 

non-shivering. Vasoconstriction of the cutaneous blood vessels occurs first in 

order to restrict the flow of blood to the skin's surface thus reducing heat loss. 

Noradrenaline is released, increasing the metabolic rate and also heat 

production (Marieb, 1998). This is known as non-shivering thermogenesis. If 

this is not sufficient to maintain core temperature then the body will invoke a 

shivering response. This initially takes the form of asynchronous firing of muscle 

fibres but then graduates onto synchronised firing of the muscle fibres of the 

neck (Parsons, 2003). Other muscle groups are then recruited, the neck being
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first so that the temperature of the brain can be maintained. Heat production 

can be increased six-fold over short durations and doubled for longer periods 

when compared to resting levels (Parsons, 2003).

2.2.3 The Heat Balance Equation

The heat balance equation describes the mechanisms of heat production and

heat loss in humans:

M - W = E  + C + K+ R + S

Where M = metabolic rate 
W = mechanical work 
E = evaporative heat loss 
C = convective heat loss 
K = conductive heat loss 
R = radiative heat loss 
S = heat storage

(Parsons, 2003)

So for heat storage equalling 0, the equation can be rewritten thus: 

M - W - E - C - K - R = 0

2.3 Manual Handling Tasks

Manual handling tasks are generally described as the transport or support of 

any load, including the use of lifting, putting down, pushing, pulling, carrying or 

moving techniques (HSE, 1998). Tasks such as these are commonplace in a 

wide range of industrial settings and they have been identified as a major 

contributor to reported workplace injuries. In 2000/01 manual handling tasks 

accounted for 36% of reported industrial accidents requiring more than three 

days off work in the UK (HSE, 2001). Of these, injuries to the lower-back 

accounted for 49% of the reported injuries and the upper-limbs were also 

identified as areas at increased risk. These injuries may have been the result of
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an acute event or the culmination of years of poor manual handling technique 

(Dickinson, 1995).

Investigators have used a variety of methods to assess manual handling tasks 

and set safe limits for industrial workers. These assessment methods are 

reviewed in detail in the forthcoming section. As previously stated the term 

‘manual handling tasks’ covers a wide range of activities and it would be 

impractical to attempt a study of them all considering the constraints of a typical 

PhD time-schedule. For this reason a decision was made early on in the project 

to concentrate on the lifting task and, more specifically, the lift from floor to 

knuckle-height. This lift is one of three that are traditionally studied; the other 

two being knuckle to shoulder-height and shoulder-height to arm-reach. The 

floor to knuckle-height lift is common throughout industry and has been 

extensively studied in laboratory settings. It commonly imposes the largest 

physiological strain of the three lifts because of the involvement of the large 

muscle groups in the legs, buttocks and lower-back.

3. Review of Literature

3.1 Current UK Manual Handling Guidelines

On January 1st 1993 the Manual Handling Operations Regulations (MHOR, 

1992), came into force under the Health & Safety at Work etc Act (1974). In the 

same year the HSE published a guidance document (L23: HSE, 1992 

subsequently revised as the 2nd. Edition, 1998) aimed at employers and 

employees across all industries. The guidance document identifies four main 

factors when assessing the risk of injury associated with manual handling 

operations, namely: task, load, working environment and individual capability.
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With the exception of working environment, these factors are considered in 

detail. Tasks, for example, are analysed in 23 separate paragraphs which deal 

with the implications of subtle variations such as load distance from the trunk 

and trunk-twisting. The section on working environment however merits only 

seven paragraphs, of which only one deals with extremes of temperature or 

humidity. Although compliance with the guidance document is not compulsory, it 

is generally used by health and safety inspectors as an example of good 

practice. For the sake of clarity, compliance with regulations is mandatory, 

compliance with guidance is not.

The guidance recommends that, where possible, manual handling tasks should 

be avoided. Where this is not possible, a risk assessment should be conducted 

taking into consideration the task, load, working environment and individual 

capability. It is noted that all of these factors are interrelated and cannot be 

considered in isolation (HSE, 1998). It is acknowledged that tasks conducted in 

uncomfortable thermal environments are likely to result in a greater chance of 

injury but there is no detailed guidance on how to assess the increased risks. 

Paragraph 94, for example, states that "high temperatures or humidity can 

cause rapid fatigue" and that "work at low temperatures may impair dexterity" 

(HSE, 1998). In paragraph 156 it is stated that "there is less risk of injury if 

manual handling is performed in a comfortable working environment" and that 

"extremes of temperature, excessive humidity and poor ventilation should be 

avoided where possible". The magnitude of the risks and range of 

environmental temperatures outside of which the injury risks increase have not 

been determined.
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The L23 document (HSE, 1998) includes guidelines on weight limits that are 

recommended for relatively infrequent operations (30 operations per hour or 

one every two minutes) (see figure 1). If the hands move through more than one 

box then the lower or lowest value is recommended as the weight limit. The 

guidance recommends reducing the limit by 30% if the operation is repeated 

once or twice per minute and by 50% for five to eight repetitions per minute.

Figure 1. Manual Handling Operations Regulations guidance on weight limits for 
infreguent lifting and lowering tasks. Reproduced from HSE document L23.

3.2 Methods of Assessing Manual Handling Tasks

What is the best way of assessing manual handling tasks and what is the 

importance in doing so? The second question is answered by the accident and 

injury data. Consider the previously reported UK figures from 2000/1 where 

36% of injuries requiring three or more days off work were attributable to 

manual handling. Of these, 49% were injuries to the lower back. Data from the 

United States of America (USA) also paint a similar picture but here the problem 

is more clearly quantifiable probably because of the differences in health 

service provision and insurance. From a sample of 883,015 workers’ 

compensation claims, 37% were found to be attributable to injuries incurred 

during manual handling activities (Leamon & Murphy, 1994). It was estimated
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that the total workers’ compensation costs in 1989 for lower back pain were 

$11.4 billion (Webster & Snook, 1994). Clearly not all of these costs were 

incurred by manual handling tasks but it can be assumed that they comprise 

slightly over one third of the overall figure; a staggering amount of money.

When considering how manual handling tasks are assessed it should be 

remembered that the tasks vary considerably so no single method will be 

universally appropriate. Even if one confines oneself to lifting, as in the case of 

this study, it should be evident that a physiological assessment using mean 

heart rate for example would glean very little useful information if the lifting 

frequency was extremely low (<1 lift every hour). Snook & Irvine (1967) 

identified seven variables that are important when considering lifting tasks. 

These are age, sex, training, fitness level, size of object, height and frequency 

of lift. Because of this a number of assessment methods have been used in the 

literature but the three principal ones are based on biomechanical, physiological 

and psychophysical factors.

3.2.1 The Biomechanical Approach

Biomechanical assessment is primarily aimed at preventing musculoskeletal 

injuries by measuring the tolerance limits of human tissue. Joint injuries, 

particularly at the lumbosacral (L5/S1) junction are a major risk when 

undertaking manual handling tasks. Analysis of the forces acting on the joints 

and surrounding musculature is used to set limits of maximal safe lifts for 

various population subsets. Compressive forces on the spine have typically 

been measured in cadaver studies using prepared in vitro spine specimens. 

Adams (1995) has published a review of these studies and highlighted some of
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the limitations of these designs. Analysis of the surrounding musculature is 

usually performed on live participants. Granata & Marras (1995), for example, 

collected electromyography (EMG) data from the trunk muscles and kinematic 

data from a force platform to assess trunk-loading during isokinetic and dynamic 

lifting tasks. Jorgensen et al. (1999) measured lumbar motion using an external 

monitor and tape measure along with EMG data from the surrounding 

musculature during a standardized lifting task. These data, together with heart 

rate, were used to determine a maximum acceptable weight of lift at a fixed 

frequency of 4.3lifts.min'1. Limits defined by the biomechanical approach are set 

with the intention of avoiding acute injuries (i.e. tissue failure) caused by 

excessive forces. As such, they are generally most applicable to low-frequency, 

high-intensity tasks.

The biomechanical approach has its limitations as do all of the assessment 

methods. Can a prepared specimen of an in vitro spine really perform in a 

similar fashion to an in vivo spine for example? The cumulative loading of the 

spine may also be important when considering injury prevention (Kumar, 1990) 

and Dempsey (1998) has suggested that cadaver studies may be unable to 

assess this. Dempsey (1998) also indicates that there has been no real 

examination of the effects of shear forces experienced during manual handling.

3.2.2 The Physiological Approach

The physiological approach assesses markers of physical strain such as heart 

rate, oxygen uptake and energy expenditure so that working limits can be set 

that avoid the onset of excessive fatigue. Absolute limits that have been 

recommended include oxygen consumption of 1 l.min'1 or energy expenditure of
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5 kcal.min'1 (Dempsey, 1998). According to Dempsey (1998) these absolute 

limits roughly equate to 33% of maximal oxygen uptake for an ‘average’ person. 

Absolute limits of heart rate have been variously recommended in the range of 

110 to 130 beats.min'1 (Snook & Irvine, 1969). Limits are usually set so that the 

loads selected can be lifted for extended periods (e.g. eight-hour shifts) without 

undue fatigue and, as such, are generally most applicable to high-frequency, 

low-to-medium intensity tasks.

When considering relative limits it should be remembered that VC>2max measured 

on a person while running or cycling will be different from V0 2 max recorded 

during lifting. Khalil et al. (1985) reported that values of maximal oxygen uptake 

during lifting tasks using various weights, heights and frequencies were 

between 57% and 91% of that for cycling. These findings are similar to those of 

Petrofsky & Lind (1978) who reported values of between 54% and 80% 

compared to cycling. The differences are most likely due to the variable 

contribution of different muscle groups used to perform the task at hand. This 

will mean that a relative limit imposed using a V0 2 max measurement from a 

running or cycling protocol will be an overestimate and might result in the onset 

of fatigue while lifting.

Using physiological limits in the workplace is obviously impractical except for 

the possible use of heart rate as a method of preventing the onset of undue 

fatigue. There is also the issue of applying generalized limits to a 

heterogeneous working population. Because of this the appropriateness of 

using physiological limits for manual handling tasks is to a large extent unknown.
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3.2.3 The Psychophysical Approach

The science of psychophysics examines the relationship that exists between 

subjective perceptions and physical stimuli or strain (Ayoub & Dempsey, 1999). 

The underlying theory is that the strength of a subjective sensation is directly 

related to the intensity of a particular stimulus by means of a power function. 

The relationship is described thus:

S = k ln

Where S = perception of the stimulus 
I = strength of the stimulus

k = constant (determined by units of measurement used) 
n = the exponent which varies depending on type of stimulus

(Stevens, 1960)

The exponent n has been investigated for many of the stimuli that affect 

humans and the value of 1.6 for muscular effort and force is of particular 

interest in manual handling research. In the area of exercise science, Borg 

(1970), has used this particular exponent to produce a rating scale of perceived 

exertion that is in widespread use today. When considering manual handling 

tasks, psychophysics makes three assumptions:

1. An individual is able to rate perceived effort in a lifting task.

2. They are able to produce an individually acceptable level of 

performance on their task.

3. This level of performance will be safe from manual handling 

injuries.

(Gamberale et a/., 1987)

However, as Karwowski (1996) argues, the validity of these assumptions has 

never been fully examined.
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In manual handling research using the psychophysical approach, participants 

are asked to perform a specified lifting task (or carry, pull, lower etc.) at either a 

prescribed frequency or load. One of the variables is held constant by the 

researcher while the participant adjusts the other until they arrive at a workload 

or frequency that they deem acceptable to perform for a set period of time 

(usually eight hours). This is known as the tracking and adjustment strategy. 

Usually it is the lift frequency that is controlled by the researcher and the load 

that is free to vary. This is achieved by the participant adding or removing 

weight (usually ball-bearings that are either loose or bagged) to and from the 

box being lifted. The time allowed to make changes to the box weight is known 

as the adjustment period and this can vary, usually from 20 to 40 minutes.

The theory that an individual can accurately gauge an acceptable workload for 

an 8-hour day from a much shorter adjustment period underpins much of the 

research using the psychophysical approach. This theory is largely supported 

by studies where the relationship between workload selected during a short 

adjustment period and actual workloads recorded over 4-hour and 8-hour 

sessions has been investigated. It appears that the theory is valid for lower 

lifting frequencies: Ciriello et a l (1990) reported consistency between the two 

measures up to 4.3 lifts.min'1 after a 4-hour session for example. Over 8 hours, 

Mital (1983) reported similar findings up to a frequency of 6 lifts.min'1 after 

which MAWL started to decline.

Lengths of adjustment periods have varied between 15 and 40 minutes since 

research in this area began in the 1960s. A 40-minute adjustment period was 

used in the early work by Snook & Ciriello (1974) but more recent studies (Chen,
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2003; Mital, 1987; Wu & Chen, 1997) have found that between 20-25 minutes is 

an adequate length of time to establish MAWL. The length of the adjustment 

period is necessarily governed by the lift frequency with very low frequency lifts 

(<0.1 lifts.min'1) requiring a much longer time to establish. Part of the problem 

when examining the literature is the various terminologies used when describing 

lift frequencies. In the context of this study the 1 lift.min'1 frequency would be 

considered low frequency but this would not be the case in studies where lifts 

as infrequent as 0.1 lifts.min'1 and slower have been used.

Research on manual handling using the psychophysical strategy was pioneered 

by Stover Snook in the 1960s on behalf of the Liberty Mutual Insurance 

Company in the USA. In 1978 Snook published tables of maximum acceptable 

weights and forces for lifting, lowering, pushing, pulling and carrying (Snook, 

1978). The tables were produced from data collected in six studies and 

provided information for males and females, accounting for many of the task 

variables known to affect the weight handled. For example the lifting tables 

provide maximum acceptable weights based on width of load, height and type 

of lift and lift frequency. Values are reported for the 10th, 25th, 50th, 75th and 90th 

percentiles representing the percentage of the working population for whom the 

weight should be acceptable. Based on epidemiological data collected by the 

Liberty Mutual Insurance Company, Snook (1978) suggested that workers 

performing a task involving a weight that is acceptable to less than 75% of the 

population were three times more susceptible to low-back injury. The results of 

four further studies were used subsequently to revise and augment the tables 

(Snook & Ciriello, 1991). They are now freely available in an interactive format 

on the world wide web (Liberty Mutual, 2006) although some readers will be
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frustrated by the adherence to imperial weights and measures therein.

In a comprehensive review of the area of psychophysics and manual handling, 

Ayoub & Dempsey (1999) identified a number of advantages and 

disadvantages associated with the psychophysical assessment approach. In its 

favour, the authors cited its ability to assess realistic work tasks and the fact 

that a large amount of data has been collected using industrial workers as 

subjects. It can also be used to assess intermittent tasks and can integrate both 

biomechanical and physiological factors. The main limitations are that it is a 

subjective approach and that the assumption that selected loads are below 

injury thresholds has not been extensively validated. Furthermore, at low and 

high lifting frequencies, the selected loads may exceed limits imposed by 

biomechanical and physiological assessment alone. This assumes, of course, 

that limits set using biomechanical and physiological data are 'correct' but this 

assumption remains unproven.

Psychophysics seeks to bridge the gap that exists between biomechanical and 

physiological assessment methods. The weights in Snook & Ciriello's (1991) 

tables have been found to exceed certain 'safe' spinal compression loads 

(NIOSH, 1981) at low lifting frequencies. At the other end of the continuum it is 

acknowledged that weights for high-frequency lifts may not be valid for eight- 

hour shifts because they incur undue physiological strain. Mital et a/. (1993) 

have published modified tables, incorporating biomechanical and physiological 

data, in an attempt to overcome the problems encountered at the high and low 

ends of the lift-frequency spectrum.
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3.2.4 The NIOSH Equation

In addition to the tables published by Snook & Ciriello (1991) and Mital et al. 

(1993) there is another widely used tool for the assessment of manual handling 

tasks. The NIOSH equation was developed by the National Institute for 

Occupational Safety and Health (NIOSH, 1981), incorporating biomechanical, 

physiological and psychophysical criteria. The equation was revised in 1991 

and again in 1993 to address some of the limitations in the original; notably its 

ability to assess lifts in the sagittal plane only and its inability to assess 

asymmetrical tasks, variations in load couplings (e.g. handles), temperature, 

work duration and lifting frequency. The revised NIOSH (1993) equation is thus:

RWL = LC x HM x VM x DM x AM x FM x CM 

Where
RWL = Recommended weight limit 
HM = Horizontal multiplier 
VM = Vertical multiplier 
DM = Distance multiplier 
AM = Asymmetric multiplier 
FM = Frequency multiplier 
CM = Coupling multiplier

(Waters et al., 1993)

The recommended weight limit is defined as ‘a load value that nearly all healthy 

workers could perform over a substantial period of time’ (Waters et al., 1998). 

The revised equation was reviewed by the same authors and was deemed to be 

of greater protective benefit to workers than the original equation. Amongst the 

limitations identified however was the inability to account for a working 

environment outside of the temperature range of 19 -  26 °C or a relative 

humidity range exceeding 35 - 50%.
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Hidalgo et al. (1997) subsequently proposed a comprehensive lifting model that 

built on the revised NIOSH equation and incorporated, amongst other things, an 

environmental variable (wet bulb globe temperature - WBGT). This variable, 

known as the heat stress multiplier, was developed using data from Hafez 

(1984) but it only applies to environments ranging from 1 9 - 4 0  °C WBGT. The 

effects of cold stress are not addressed nor the other factors responsible for 

thermal comfort (air velocity and clothing). Interestingly, the heat stress 

multiplier only affects WBGT values above 27.0 °C (from 19 to 27 °C the 

multiplier is 1) suggesting that the authors believe that environments up to this 

value all impose the same physiological strain. The multiplier decreases linearly 

to a value of approximately 0.69 at 40 °C.

3.3 Thermal Stress

In extreme environments the body’s internal control mechanisms may prove to 

be inadequate and the core temperature may rise or fall outside the ‘safe’ range. 

If this departure from the safe range is large enough death is inevitable but 

lesser deviations are also problematic, providing a continuum of heat or cold 

illnesses of increasing seriousness.

3.3.1 Heat Stress

As previously described, in the event of an increase in core temperature 

(hyperthermia) the body will activate its heat-loss mechanisms. Vasodilation 

and sweating will occur, providing heat-loss pathways to the surrounding 

environment. The second law of thermodynamics states that heat will travel 

spontaneously from a warmer to a cooler environment so the body must be 

warmer than its surroundings for heat loss to occur. Conversely, there will be a
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net heat gain in cases where the environmental temperature exceeds body
f

temperature. Such environments are described as uncompensable and pose a 

serious risk to health.

Armstrong (2000) has classified heat illnesses into four main categories when 

considering athletes and workers:

■ Heat Exhaustion

■ Exertional Heatstroke

■ Heat Cramps

■ Heat Syncope

Of these, heat exhaustion is probably the most common, occurring at a rectal 

temperature of or exceeding 39 °C. Work or exercise cannot be continued, 

sweating is heavy and there may be some minor mental impairment. Exertional 

heatstroke on the other hand is a medical emergency and typically occurs at a 

rectal temperature of 40 °C or higher.

3.3.2 Exercise in the Heat

During exercise blood is diverted to working muscles thus providing oxygen and 

removing waste products (Powers & Howley, 1997). In the heat, as has been 

stated, blood flow is redistributed to the skin’s surface through vasodilation, 

allowing heat loss to the surrounding environment. Exercise in the heat 

therefore poses a twin challenge to the cardiovascular system.

High sweat rates can lead to dehydration if fluid loss is not balanced by an 

appropriate rehydration regime. Sweat rates of 0.8 -  1.4 I.hr'1 are not 

uncommon and in extended exercise sessions individuals will experience a
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concomitant decrease in body mass (Armstrong, 2000). Sawka et al. (1992) 

demonstrated that a 5% reduction in body mass due to dehydration significantly 

reduced plasma volume, decreased sweat rate and led to a higher heart rate 

during exercise in the heat. Time to exhaustion was also massively reduced 

(121 mins v 55 mins) and this occurred at a significantly lower core temperature.

Investigations into the effects of thermal environments on exercise performance 

are widespread and a comprehensive review of the relevant literature is beyond 

the scope of this thesis. Many of these studies have been conducted using 

continuous running or cycling protocols that are inapplicable to the manual 

handling environment. In addition to the papers cited in the previous chapter, 

the reader is directed to these selected reviews for further information in this 

area (Aoyagi et al., 1997: Cheuvront & Haymes, 2001; Febbraio, 2001; 

Lindinger, 1999; Noakes, 2000).

3.3.3 Cold Stress

In cold environments where the body’s heat generation processes are unable to 

prevent net heat-loss the risk of cold injury and death is very real. Should the 

core temperature fall below 35 °C then the individual is defined as being 

hypothermic (Holmer, 1994b). At this temperature the muscles stiffen and the 

viscosity of the blood increases further (Parsons, 2003). There is a clouding of 

consciousness, confusion and apathy leading to a loss of sensory information 

(Parsons, 2003). At 30-31 °C the individual will lapse into unconsciousness and 

any further fall in core temperature will probably result in death due to 

ventricular fibrillation. Parsons (2003) identified considerable inter-individual 

variation in the ability to withstand extremely low core temperatures, citing a
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case where complete recovery was achieved in an accidental hypothermia 

victim who had experienced a core temperature of 18 °C.

Of particular interest in manual handling studies are the effects of cold on the 

hands. Situated at the body's extremities, the hands are affected immediately by 

the reduction in blood flow caused by vasoconstriction resulting in decreased 

net heat loss. A gradual loss of dexterity is experienced as hand temperature 

falls due to a number of factors. There is a reduction in nerve conduction 

velocity (De Jong et al., 1966) which drops strongly at a nerve temperature 

below 20 °C and is effectively blocked at 10 °C (Vangaard, 1975). There is also 

a loss of sensibility in the surface sensory receptors at a local skin temperature 

of around 6-8 °C (Morton & Provins, 1960) and a decrease in joint mobility as 

the synovial fluid becomes more viscous at lower temperatures (Heus et al., 

1995). Psychological factors such as loss of attention due to pain or discomfort 

may also play a role (Teichner, 1957). Loss of dexterity is accompanied by a 

loss of maximal force output and a reduced time to exhaustion on dynamic 

power tasks (Heus etal., 1995).

Periodic vasodilation of the blood vessels in the hands has been reported when 

they are locally exposed to prolonged cold temperatures (Burton & Edholm, 

1955). This phenomenon has been variously described as 'cold-induced 

vasodilation', 'hunting reflex' and the 'Lewis effect' (named after the first person 

to investigate it). Lewis (1930) reported that when the fingers were immersed in 

ice-water, finger temperature dropped quickly to 0 °C but rose after 

approximately 10-15 minutes to around 5-6 °C. There then followed.a cycle of 

temperature fluctuation which the author concluded was due to variations in
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local blood flow. Most of the work in this area has concentrated on cold-water 

immersion of the hands but some studies have noted a similar, though less 

pronounced, response in cold air environments (Kramer & Schulze, 1948; Blair, 

1952).

Cold injuries to the extremities can occur, of which frostbite is the most severe. 

Frostbite is a condition that occurs when tissue fluids freeze, possibly leading to 

cell death and necessitating amputation of the affected area. Non-freezing cold 

injuries due to exposure to temperatures between 1-15 °C may lead to nerve 

damage (peripheral vasoneuropathy) (Parsons, 2003). In addition to these 

injuries, workers may be at risk from 'contact injuries' where the skin sticks to 

extremely cold surfaces. The type of materials handled and their surface 

temperatures determine when these contact injuries will occur (Parsons, 2003).

3.3.4 Exercise in the Cold

During exercise, metabolic responses to cold exposure (compared to a 

thermoneutral environment) include reduced lipid mobilisation and higher levels 

of blood lactate (Doubt, 1991). Glucose use may be slightly higher (Doubt, 

1991) and Blomstrand et al. (1986) reported greater use of glycogen in muscle 

cooled to 28-29 °C compared to muscle at 35 °C. Burton & Edholm (1969) also 

identified an increase in urinary output in the cold, a phenomenon known as 

cold-induced diuresis. The increase in urine production is accompanied by a 

decrease in plasma volume (and a concomitant increase in blood viscosity). 

These changes have been reported to lower physical work capacity (Gronberg, 

1991).

3.3.5 Acclimation
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Human beings have an ability to adapt in a limited fashion to extended 

exposure to hot (though, it appears, not cold) environments. When this 

adaptation takes place in a ‘natural’ environment (e.g. a tropical country) it is 

known as acclimatization. When it occurs in an artificial environment such as a 

laboratory it is termed ‘acclimation’ and this latter term will be used in the 

original studies reported in this thesis. It is common practice nowadays for 

athletes and military personnel to be relocated to a hot environment prior to 

commencement of competition or operations. The British Olympic team set up a 

holding camp in Cyprus prior to the Athens Olympics in 2004 and coalition 

troops engaged in exercises in the Middle East before deployment in both Iraq 

wars.

The adaptation response to hot environments manifests itself in an earlier onset 

of sweating and a higher sweat rate. These changes contribute to an enhanced 

ability to stay cool by increasing evaporative heat loss. Mineral concentration of 

sweat is lowered, blood volume increases by 10 -  12% and the core body 

temperature falls slightly (Parsons, 2003).

The time-course for the onset and decay of acclimation is well documented. 

Pandolf (1998) reviewed the main studies conducted in this area from the 1940s 

onwards and concluded that almost complete acclimation occurs within 7 to 10 

days of exposure and that two-thirds of the adaptation takes place in the first 4 

to 6 days. Acclimation decays rapidly within the first week of removal from the 

environmental stimulus with almost total cessation after four weeks.

Whether humans can adapt to the cold is much less clear and Parsons (2003)
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states that the results of investigations in this area are inconclusive. The author 

describes the apparent ability of Australian aborigines to allow body 

temperature to fall during the night for example. This suppresses shivering 

allowing them to sleep whereas a person from a temperate climate would find 

this impossible. The possible causes of this phenomenon are unclear as is the 

time factor for any onset or decay of adaptation.

3.4 Indices of Thermal Stress

Over the years attempts have been made to develop indices of heat stress that 

take account of the interactions between the variables that comprise the human 

thermal environment. Goldman (1988) reported that there may more than 60 

such indices in use, many tailored to specific situations.

3.4.1 Wet Bulb Globe Temperature

Probably the most widely used index is the WBGT which is usually attributed, 

slightly inaccurately, to Yaglou & Minard (1957); a paper which documented the 

control of heat casualties at three US Marine Corps (USMC) training camps 

during the summer of 1954. The WBGT scale was introduced in the text as a 

method ‘recently developed’ but the source material was not referenced. An 

article on the World Wide Web provides a clue to the scale’s origins however: 

“The original work which served as the basis of this standard has been lost A 

prominent exercise physiologist of our acquaintance has been looking for the 

seminal "Technical Paper" by Yaglou for more than one year; but it has 

disappeared. ”

(Zunis Foundation, 1998)

What seems certain is that sometime in the early 1950’s the US Navy
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commissioned research into measurements of heat stress after suffering a

particularly high number of heat casualties at a USMC training camp in South

Carolina. The development of the WBGT scale appears to have arisen from this

research and, despite these hazy origins, gained widespread acceptance. It has

even been given its own international standard (ISO 7243, 1989). The scale is

calculated as follows:

Inside buildings and outside without solar load:

WBGT = 0.7tnw + 0.3tg

Outside with solar load:

WBGT = 0.7tnw+0.2tg + 0.1 ta 

Where tnw = natural wet bulb temperature 

tg = globe temperature 

ta = air temperature

(ISO 7243, 1989)

For the purposes of this study, where research was conducted indoors, only the

first formula will be discussed. WBGT is expressed in °C and takes account of

measures of natural wet bulb and globe temperature although in situations 

where there is no radiation component, a simple measure of air temperature 

replaces globe temperature. It has been reported that use of the index may be 

inappropriate for environments exceeding 33 °C WBGT (Westman, 1999).

Consider the following two environments with equivalent WBGT:

WBGT 27.2 °C (dry bulb=30.5 °C, RH=68%)

WBGT 27.1 °C (dry bulb=38.7 °C, RH=22%)

The first, with a relative humidity of 68% may be termed ‘warm-humid’: the 

second ‘hot-dry’. Environments with the same WBGT may vary considerably (as 

above) but it is assumed that the different conditions will impose the same 

thermal load on a human subject if the WBGT remains constant. Recently this
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assumption has been called into question as it is believed that heat stress is 

greater in more humid environments for a given WBGT. Kellett et al. (2003) 

reported that heat strain was greater when subjects exercised on a treadmill in 

a warm-humid environment (WBGT 32.1 °C, dry bulb=33.4 °C, Globe 

Temp=34.1 °C, RH=88%) compared to a hot-dry environment (WBGT 32.3 °C, 

dry bulb=45.6 °C, Globe=46.3 °C, RH=20%). Rectal temperatures, heart rates 

and fluid loss were all significantly higher after 60 minutes of continuous walking 

in the warm-humid environment. Conversely, a study by Keatisuwan et al. 

(1996) found that heat strain was greater in hot-dry conditions (Hot Dry, dry 

bulb=40 °C, RH=30%, WBGT=32 °C vs. Warm Humid, dry bulb=31 °C, 

RH=80%, WBGT=32 °C). Rectal temperature, mean skin temperature, heart 

rate and fluid loss were all significantly higher after a mixed protocol on an 

exercise ergometer culminating in 60 mins of pedalling at 40% of V02max- Why 

this investigation yielded such unexpected results is hard to explain as it runs 

contrary to the received wisdom (i.e. that the humid environment will impose a 

greater strain). A possibility is that the sample, consisting of eight Japanese 

men and eight Japanese women, exhibited some sort of hereditary response. 

Average relative humidity levels in Tokyo exceed 85% throughout the months of 

June to September (WashingtonPost.com, 2006) so it would be expected that 

anyone indigenous to the region would have formed a habituation to the 

conditions.

3.5 Subjective Assessment of Thermal Strain and Comfort

A convenient and inexpensive method of assessing an individual’s perception of 

the environment is to use a subjective assessment ratings tool of which there 

are a number. Two popular ratings tools of this type are the Bedford comfort

31



scale (1936) and the ASHRAE sensation scale (1966). Both are seven-point 

scales with verbal anchors for each point ranging from ‘much too cool’ and ‘cold’ 

(1) to ‘much too warm’ and ‘hot’ (7). Individuals are asked to indicate ‘how they 

feel now’ by pointing to a number on the scale.

The usefulness of such scales is questionable in research of the type included 

in this thesis however. The purpose of this body of work was to examine the 

effects of heat and cold on lifting performance so responses regarding the 

individual’s perceptions of the environment were of limited value. It was 

anticipated that participants would report feeling ‘hot’ in many of the sessions 

during the first study for example. There was also concern that the scales 

themselves did not provide a sufficient range of responses. The ASHRAE and 

Bedford scales accommodate both hot and cold in one seven-point scale, 

severely limiting the range of possible responses. In a warm environment for 

example the ASHRAE scale would only allow for responses of ‘slightly warm’, 

‘warm’ and ‘hot’.

The Borg RPE scale (Borg, 1970) is a subjective assessment tool that is widely 

used in exercise science. If used correctly the scale should produce ratings of 

perceived exertion based on the individual’s integration of all of the ‘signals, 

perceptions and experiences’ felt during exercise (Borg, 1982). It seems 

reasonable therefore to assume that signals from thermal afferents such as 

peripheral and central thermoreceptors will be integrated into the overall rating 

of exertion making the RPE scale an appropriate tool for use in thermal 

research. The RPE scale is described in greater detail in chapter 3.
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There are limitations and potential pitfalls inherent in the use of any subjective 

assessment tool. It is essential that thorough training in the use of such scales 

is provided for both the researcher and participant. This is necessary to avoid 

the possibility of the researcher influencing the rating given and to ensure that 

the participant provides consistent responses. Care must also be taken to 

ensure that factors such as ego, pride and competitive instincts are not allowed 

to influence the ratings provided.

3.6 Manual Handling and Heat Stress

An early study was conducted by Kamon & Belding (1971) who assessed the 

physiological cost of carrying loads in temperate and hot environments. 

Subjects were asked to carry cartons weighing 10, 15 and 20 kg whilst walking 

on a treadmill at two different speeds and gradients. Each session consisted of 

three five-minute exercise bouts separated by five-minute rest periods. The 

temperature ranged from 20 -  45 °C dry bulb. Wet bulb temperatures were 

reported but the environments were considered to be 'warm-dry' or 'hot-dry'. 

Radiant heat was not considered but air velocity was measured at ~75m.min'1 

(1.25 m.s'1). Heart rate was monitored continuously and expired air collected in 

Douglas bags during the final two minutes of each test to measure metabolic 

cost. Of particular interest was the finding that a steady state heart rate was 

achieved in an air temperature (Ta) of 20° C and this remained consistent 

throughout the exercise bouts. At 35° C (Ta), the attainment of steady state 

heart rate was delayed and increased as the bouts progressed. Steady state 

was not achieved during the final two bouts at 45° C (Ta). Compared to the 

measurements at 20° C (Ta), heart rate was approximately 10 beats.min'1 higher 

at 35° C and 20 beats.min'1 higher at 45° C. These findings indicate that
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temperature has an independent effect on heart rate. The significance of these 

findings is greatly diminished by the fact that only three subjects participated 

however.

Snook & Ciriello (1974) investigated the effects of heat stress on lifting, pushing

and carrying tasks using a sample of sixteen male industrial workers. In

particular the authors were interested in how much workers compensated for

increased heat stress by modifying their lift frequency and work load. The

WBGT was used to measure the working environment, as opposed to merely

measuring ambient air temperature in the Kamon & Belding (1971) study. This

gave a more detailed description of the components of heat stress (ambient,

radiant and wet bulb temperature) that the workers were exposed to. Two

environments were studied, moderate (17.2 °C WBGT) and hot (27 °C WBGT)

and the subjects selected were all unacclimatized to work in hot conditions. The

relative humidity was 45% (15 °C natural wet bulb) in the moderate environment

and 65% (25.5 °C natural wet bulb) in the hot environment. The lifting task 
*

consisted of lifting an industrial tote box from floor level to knuckle-height and 

the investigators utilised a motorized frame which automatically lowered the box 

to the starting position again. Subjects self-selected lift frequency or load weight 

(psychophysical approach) during the sessions depending on which groups 

they were assigned to. Heart rate and rectal temperature were monitored for all 

subjects and oxygen consumption for nine subjects. It was found that in the hot 

environment, self-selected workload was significantly reduced by 20% for the 

lifting task and that heart rate and rectal temperature were significantly 

increased by 9-10 beats.min'1 and 0.2 -  0.3° C respectively. It was noted that 

the reduction in workload was not sufficient to reduce heart rate and rectal
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temperature to levels found in the moderate environment. It was speculated that 

subjects may have had a level of tolerable heat stress that they were prepared 

to work at and that heart rate and rectal temperature increases may be used to 

define this limit.

It has been widely reported that an individual's ability to tolerate heat stress can 

be improved by acclimatization (Buskirk & Bass, 1974). An acclimatized 

individual can work in a hot environment whilst maintaining a lower core 

temperature and heart rate. Evaporative cooling is improved by an earlier onset 

of sweating and a higher sweat rate (Sato et al., 1990). Hafez & Ayoub (1991) 

tested six male subjects who performed a lifting test similar to the protocol 

described in Snook & Ciriello (1974). There were three environmental 

conditions (22 °C, 27 °C and 32 °C WBGT) which the subjects were 

acclimatized to over ten consecutive days. The precise environmental variables 

are described in table 1 below.

WBGT CC) 22 27 32
Wet Bulb ('C) 20 24.5 29.4
Dry Bulb CC) 26.7 33 38
RH (%) 53 49 52

Table 1. Environmental variables (Hafez & Avoub. 1991)

Heart rate, rectal temperature and oxygen consumption were recorded 

throughout testing. Mean heart rate increased by 3 beats.min'1 from 22 to 27 °C 

WBGT and by 7 beats.min’1 between 27 and 32 °C WBGT. Mean rectal 

temperature increased by 0.1 °C and 0.3 °C respectively between the three 

environments. When plotted, the increase in heart rate and rectal temperature 

in the three environments described a curvilinear relationship. There was a 

significant interaction between environmental temperature at a given lift
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frequency and amount of weight selected to lift. The most pronounced 

reductions in workload occurred between 27 and 32 °C WBGT and at lift 

frequencies of 3 lifts.min'1 and 6 lifts.min'1. At a frequency of 3 lifts.min'1 there 

was an 18.3% reduction in weight lifted (25.6 kg vs. 20.9 kg) between 27 and 32 

°C WBGT. At 6 lifts.min'1 there was a 21.2% reduction in weight lifted (20.37 kg 

vs. 16.06 kg) between the same environments. Reductions in the amount of 

weight selected to lift at 27 °C WBGT were smaller (7.7% vs. 20%) than those 

reported by Snook & Ciriello (1974). The authors speculated that the younger 

subject sample and their acclimatization status may have contributed to some of 

the differences in results. The authors concluded that acclimatized individuals 

can work at the same rate in a hot environment up to 27 °C WBGT as in a 

moderate environment (22 °C WBGT). Individuals working in hotter 

environments (specifically 32 °C WBGT) should reduce the amount of load lifted 

or take longer rest periods. Further research was recommended in order to 

identify the precise temperature at which reductions in workload should occur. It 

was suggested that work/rest schedules at elevated temperatures should also 

be investigated.

Research into the effects of uncomfortable warm and hot environments on lifting 

performance has been limited to a few studies. Acclimation status has varied 

and hydration status prior to participation has not been assessed. A particular 

limitation has been the absence of any investigation into the effects of relative 

humidity and how it interacts with the other environmental variables.

3.7 Manual Handling & Cold Stress

The literature reviewed on cold stress has been limited to conditions likely to be
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encountered in UK industrial settings and to what it would be possible to 

replicate in the laboratory. This excludes investigations conducted at extreme 

low temperatures (<0 °C) and those concerned with an individual's responses to 

cold water immersion. Many of the deleterious effects of a cold environment can 

be avoided by simply wearing more layers of clothing and by insulating the 

extremities with gloves and suitable footwear (Holmer, 1994a). Hats can also 

reduce a significant amount of heat lost from the head. Unfortunately, a worker 

dressed for thermal comfort at rest or for working at light intensities may be 

overdressed when working at high intensities (British Occupational Hygiene 

Society, 1990). In this case, the additional layers of clothing may prevent heat 

loss and lead to a rise in core temperature.

Investigations into the effects of cold environments on manual handling tasks 

have been extremely limited, especially at temperatures encountered in the 

chilled food industry for example. Emmett & Hodgson (1993) compared the 

cardiovascular responses of ten males whilst shovelling snow in thermoneutral, 

cold (4.9 ±1.3 °C) and cold with wind (4.8 ± 1.3 °C and 1.9m.s‘1) environments. 

Heart rate was significantly lower in the cold/wind environment compared to the 

thermoneutral environment and post-shovelling systolic blood pressure was 

significantly higher. The authors hypothesized that the reduction in heart rate 

may be a protective mechanism against excessive cardiovascular strain caused 

by the increase in systolic blood pressure. It was noted however that subjects 

with higher body fat percentages exhibited higher mean cardiovascular 

responses. This may be due to the greater insulative effect of body fat resulting 

in less efficient heat loss.
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To the author’s knowledge there have been no studies conducted on the effects 

of cold environments on lifting performance and physiological strain. One of the 

aims of this thesis is to begin to address this gap in the literature.
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3 Materials and Methods

1. Summary

This chapter describes the design and procedures used in the investigations 

into the effects of different thermal environments on the performance of manual 

handling tasks. This covers temperature measurement of the environment and 

of the individual with respect to current international standards and methods. 

The calibration of the measurement equipment is also detailed. The protocol 

used to produce the Maximum Acceptable Weight of Lift (MAWL) is described 

and reliability of the results reported with statistical analyses. The details of a 

pilot study used to validate the MAWL procedure are also included. There is 

also a section dedicated to the statistical tests chosen, the reasons for their use 

and their underlying assumptions and limitations.

2. Measurement of the Environment

The ‘environment’ described throughout these studies refers to the 

environmental chamber in the Centre for Sport & Exercise Science at Sheffield 

Hallam University. The chamber was commissioned in 2000 and has a 

temperature range of -20 °C to +45 °C with relative humidity adjustable up to 

95%. The main chamber measures 3.9 m x 3.9 m and is accessible from the 

external environment through an intermediate room where the temperature can 

be independently controlled. This arrangement allows participants to move both 

in and out of the main test area into a relatively comfortable ‘halfway house’ 

environment. The equipment used to adjust the environmental parameters is 

housed in a control room adjacent to the main chamber. Two double-glazed
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glass panels allow investigators to observe events in the chamber and insulated 

service hatches provide access for any required test cables.

3. Assessing the Characteristics of the Chamber

Between November 2002 and April 2003 eighteen trials were conducted in the 

chamber at various environmental settings. The purpose of these trials was to 

identify the characteristics of the chamber with respect to the four environmental 

variables of the human thermal environment. To recap these are; air 

temperature, radiant temperature, relative humidity and air velocity. Conditions 

were also monitored in different parts of the chamber so that a determination 

could be made on the homogeneity (or otherwise) of the environment.

Air temperature was measured using a temperature probe (general purpose 

thermistor CS-U, Grant Instruments, Cambs., UK), accurate to ±0.2 °C between 

0 °C and 70 °C. The probe is approximately 100 mm long and shielded from 

radiant heat sources. Radiant temperature was measured using a temperature 

probe insulated inside a 15 mm matte black globe. Relative humidity was 

measured using a humidity sensor (Rotronic Hygroclip humidity and 

temperature sensor, Rotronics Instruments UK Ltd., West Sussex, UK); 

accurate to ±1.5% RH between -40 °C and 85 °C. Air velocity was measured 

using an anemometer (Air Velocity Transducer 8455-300, TSI Inc., MN, USA). 

All sensors and probes were connected to a data logger (Squirrel 1021, Grant 

Instruments, Cambs. UK) which was set to sample every 10 seconds and 

record a mean of the samples once a minute.

The main findings arising from these trials were as follows:
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• There was an absolute technical error of measurement (TEM) of 0.26 °C 

between air temperature and radiant temperature when the two probes 

were situated adjacent to one another. The relative TEM was 0.84%. The 

mean bias and 95% limits of agreement (Bland & Altman, 1986) were 

0.06 °C ± 0.7 (see appendix F). This meant that there was no 

appreciable radiant heat component in the chamber and therefore black 

globe measurements were unnecessary.

• Air velocity was in excess of 1 m.s'1 in the upper regions of the chamber 

near the vents but fell to less than 0.3 m.s'1 at a height of approximately 

1.8 m. This demonstrated that air flow near head height was barely 

perceptible.

• There was an absolute TEM of 0.02 °C in air temperature between two 

areas in the centre of the chamber separated by a distance of 

approximately 1.5 m. The relative TEM was 0.05%. The mean bias and 

95% limits of agreement (Bland & Altman, 1986) were 0.001 °C ± 0.05 

(see appendix F). This meant that two participants could be tested 

simultaneously in almost identical environmental conditions.

• Mean measurements of air temperature and relative humidity taken 

simultaneously at heights of 0.1 m, 1.1 m and 1.7 m were practically 

uniform (differences of less than ±5% in accordance with ISO 7726, 

1985). Therefore the environment was considered homogeneous 

allowing a future single reading of each variable to be taken at a height of

1.1 m.

• The chamber demonstrated good stability during prolonged operation 

although best performance was at higher air temperatures. Over a three 

hour period set at 34 °C and 60% RH the chamber maintained a mean
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(SD) temperature of 33.9 (0.2) °C and a relative humidity of 61.4 (1.1) %. 

Over four hours set at 5 °C, 45% relative humidity, a mean temperature 

of 4.8 (0.5) °C and a relative humidity of 50.8 (13.5) % were achieved. 

The second trial illustrates the difficulty of maintaining relative humidity in 

a low air temperature. This is because air is able to hold more moisture 

at higher temperatures. Air that is completely saturated at 5 °C holds only 

around 5.5 grams of water vapour per kilogram of dry air (known as the 

mixing ratio), depending on the ambient atmospheric pressure. The 

mixing ratio required for a relative humidity of 45% at 5 °C is therefore 

approximately 2.5 g.kg-1. Compare this with an air temperature of 40 °C 

which has a saturated mixing ratio of around 49.3g.kg'1 and a mixing 

ratio of 22g.kg’1 at 45% RH. The greater absolute concentrations of 

moisture at higher temperatures appear to present less of a challenge to 

the control and feedback mechanisms in the chamber resulting in better 

stability.

As a result of these trials it was decided that measures of air temperature and 

relative humidity would be taken from directly behind each participant at a 

height of 1.1 m from the floor in accordance with the recommendations of ISO 

7726 (1985) for homogeneous environments. Measurements of radiant 

temperature and air velocity were deemed to be unnecessary.

4. Measurement of the Participants

4.1 Core Temperature

Although it is an oft-quoted term, core temperature defies easy description 

because core tissues are not defined (Parsons, 2003). The term is usually used
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to describe the internal temperature of the body particularly the temperature of 

the vital organs including the brain. ISO 9886 (2000) defines the core as “all of 

the tissues located at a sufficient depth not to be affected by a temperature 

gradient through surface tissue”. Measures of core temperature can therefore  ̂

be taken at various sites in the body, seven of which are detailed in ISO 9886 

(2000):

• Oesophagus

• Rectum

• Gastro-lntestinal Tract (Gl tract)

• Mouth

• Tympanum

• Auditory Canal

• Urine

The selections of method and site are dictated by practical considerations but 

these have to be balanced with what is acceptable to the participant. In the 

studies presented herein it was essential for safety reasons to monitor and 

record temperature throughout testing. The temperature sensor had also to 

work continuously while located somewhere on a working participant. For these 

reasons, measurements at the oesophagus, mouth, tympanum and of the urine 

were rejected. The use of ingestible temperature transducers in the Gl tract was 

rejected on grounds of cost. Of the two remaining methods, rectal 

measurements were rejected partly due to the propensity of the probe to 

become displaced when exercising and partly because of participants’ 

traditional aversion to the procedure. It was therefore decided to use the 

temperature of the auditory canal as a measure of core temperature.
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Figure 2. Individual core temperature response at three lifting frequencies in 
three different environments. Top: In 0°C wearing standard clothing ensemble. 
Centre: In 17° C WBGT. Bottom: In 34° C WBGT. Data are from one participant 

recorded over 35 minutes of box-lifting.
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Temperature of the auditory canal or ‘aural temperature’ is usually lower than 

rectal temperature. Muir et a l (2001) for example reported a mean difference of 

-1.2 °C between the two sites prior to an exercise bout. Temperature rose at 

both sites during subsequent exercise though more quickly at the aural site 

resulting in a gradual convergence of the two values. This finding reflects the 

second characteristic of aural temperature; changes are more rapid than those 

seen at the rectum because of the heat storage capability of the tissue 

surrounding the latter. It has also been speculated that aural temperature may 

be a better indicator of brain temperature because of the sensor’s proximity to 

the hypothalamus and the blood vessels that perfuse it (ISO 9886, 2000).

Temperature of the auditory canal or ‘aural temperature’ was measured by a 

sensor inserted into the ear to a depth of approximately 8 mm. The sensor took 

the form of a bead thermistor which was affixed to a plastic ear-shaped 

moulding. Once inserted it was taped into position and insulated with cotton 

wool. Finally, a pair of ear-defenders were donned to fully insulate the internal 

environment (only one ear was covered to allow the participant to communicate 

with investigators). A period of not less than twenty minutes was then allowed to 

elapse prior to testing so that the aural environment could stabilise.

4.2 Skin temperature

The skin is the largest organ in the body, providing climatic protection and a first 

line of defence against infection. With a surface area of between 1.5 and 2 m 

squared (Marieb, 1998) it also facilitates heat transfer with the surrounding 

environment. Skin temperature varies greatly depending on location and 

clothing worn so measurements are usually taken at a number of sites and
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converted to a measure of mean skin temperature using a weighted equation. 

One such popular and practical equation is that proposed by Ramanathan 

(1964) which uses four skin sites. Measurements are taken at the chest, upper 

arm, thigh and shin and a weighted mean is calculated from the equation:

Mean Skin Temperature = 0 .3 tChest + 0 .3 tarm + 0 .2 tthigh + 0 .2 tShin 

(Ramanathan, 1964)

4.3 Data Loggers

The temperature and humidity sensors were all connected to data loggers 

(Squirrel 1021, Grant Instruments, Cambs. UK). The channel configuration was 

as follows:

Chan 1 Core Temp
Chan 2 Chest Temp
Chan 3 Arm
Chan 4 Thigh
Chan 5 Shin
Chan 8 Air Temp
Chan 14 Relative Humidity

The loggers were located outside of the chamber because of their inability to

work in high humidity environments. They were set to sample every 10 seconds

and record a mean of the samples once a minute. After each session the data

were downloaded onto a PC via the serial port and exported into Microsoft

Excel for analysis.

4.4 Heart Rate

Heart rate was measured and recorded using digital monitors (Polar S610, 

Polar, UK). The data from the monitors were downloaded via infra-red link onto 

a PC after each session and analysed in Microsoft Excel.
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4.5 Urinalysis

The review of literature highlighted the fact that hydration status is rarely, if ever, 

assessed prior to manual handling studies in different thermal environments. It 

was important to ensure that the participants were euhydrated prior to testing as 

the exercise protocol and the hot environment would pose a twin challenge to 

thermoregulation. Hydration can be assessed by a number of methods, some 

more invasive than others (blood analysis for instance). A simple and 

acceptable method is the measurement of urine osmolality which is defined as 

the number of osmoles (Osm) of solute particles per kilogram of pure solvent 

(Chadha et a l, 2001). The kidneys can dilute or concentrate urine depending on 

the body’s need to excrete or retain water (Shirreffs, 2000) so urine 

concentration can give an indication of hydration status. In a dehydrated person 

for example the kidneys will reduce urine production so the solute concentration 

will be higher. Most adult humans are capable of concentrating urine from 50 -  

1400 mOsm.kg'1 and much debate exists as to the optimum range for 

euhydration. Shirreffs & Maughan (1998) have suggested that urine osmolality 

greater than 900 mOsm.kg*1 can be used as an indication of hypohydration. 

They have also recommended that a sample of the first urination of the day 

provides the best estimate. Obviously this would present a problem especially 

when test sessions were conducted later in the day. The 900 mOsm.kg'1 

concentration was nevertheless adopted as an indicator of hypohydration and 

anyone presenting with a urine osmolality at this level or higher was asked to 

drink copiously for the 20-30 minutes prior to commencement of lifting.

Osmolality was assessed by an osmometer (Advanced Micro Osmometer 

Model 3300, Advanced Instruments, Norwood, MA) which utilises the principle
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of freezing-point osmometry. Briefly, this technique exploits the fact that when a 

solute is dissolved in a pure solvent the freezing point of the solvent is lowered 

(or depressed). The depression of the freezing point varies depending on the 

amount of dissolved solute. By supercooling the solvent and measuring the 

temperature at which it froze, an estimate can be made of the solution’s 

concentration (Dufour, 1993).

5. Measurement Equipment -  Calibration

This project necessitated the purchase of a range of thermal monitoring 

equipment including sensors and loggers. The equipment was calibrated at the 

Health & Safety Laboratory (HSL), Sheffield using their United Kingdom 

Accreditation Service (UKAS) accredited thermal equipment. UKAS is the 

agency responsible for calibrating, amongst other items, thermal equipment for 

industry and HSL are required to send their equipment away every 12 months 

for certification. Their thermal equipment is therefore one generation removed 

from the UKAS 'gold standard'.

The skin and aural thermistors were measured in a stirred water bath at 36 °C, 

28 °C, 19 °C and 5 °C. A reading was taken from the reference mercury 

thermometer once a minute for 30 minutes at each temperature and compared 

to readings from the purchased equipment. The air thermistors and humidity 

sensors were measured in an oven at 40 °C, 80% RH; 22 °C, 45% RH and 0 °C. 

Readings were taken from the reference equipment (Rotronic A1 Hygrometer, 

Rotronics Instruments UK Ltd., West Sussex, UK and Hanna Instruments 

H193510 microcomputer thermometer) once a minute for 20 minutes and 

compared to the purchased equipment. The results were analysed using Bland
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Altman 95% limits of agreement (Bland & Altman, 1986) and are reproduced in 

full in appendix F. A summary of these results is presented below in table 2:

Sensor Type Bias ±95% Range Test
Environment

Air Temp 0.71 °C 0.33 +0.38 to +1.04 °C 40 °C, 80% RH

Skin Temp -0.24 °C 0.08 -0.32 to -0.16 °C CD
o o

Relative
Humidity -1.16% 0.87 -2.03 to -0.29% o o o

Table 2. Worst oerforminq sensor (bv tvoe) compared to reference equipment.

6. Procedures for Obtaining a Maximum Acceptable Weight of 
Lift

During the initial stages of the project it was envisaged that an automatic lifting 

platform similar to that used by Snook & Ciriello (1974) and other similar studies 

would be built but its design and construction were delayed by health and safety 

considerations. In the middle of 2003 the automatic platform idea was ultimately 

discarded in favour of a static shelf unit. This decision meant that another 

person would have to return the box to its starting position after each lift.

The lifting protocol used throughout this thesis was essentially the same in each 

of the studies. It has been used extensively in published studies since Snook & 

Irvine (1967) with very minor modifications. What follows is a detailed 

description of the lifting task as it was performed during the first two studies 

herein. There were some minor changes made for the face-cooling study and 

these are explained in the relevant chapter.

6.1 Shelving Unit

Two industrial shelving units were obtained for the study and assembled in the 

environmental chamber at the Centre for Sport and Exercise Science in
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Sheffield Hallam University. The requirements were that it should allow for 

varying shelf heights and be robust enough to bear the anticipated loads. With 

the inclusion of a set of custom-made aluminium spacers it was possible to set 

shelf heights with an accuracy of ±2 mm compared to knuckle height. Each 

shelf in the unit was rated by the manufacturers to bear a weight limit of 135 kg, 

well in excess of the loads anticipated.

6.2 Box design

The box chosen was of sturdy construction and made of grey plastic. It 

measured 600 x 390 x 410 mm and had handle holes on each side 20mm 

below the top. The depth of the box allowed for a dead space at the bottom 

which was used to secrete bags of ball-bearings. The space was created by 

using polystyrene packing blocks and then a thin wooden board was used to 

hide the contents (see figure 3).

Figure 3. (a) False bottom containing weight bags, (b) The box at the end of a 
session with bags of weight loaded by the participant.

6.3 Lifting protocol
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The lifting task chosen for each of the studies in this thesis was the floor to 

knuckle height lift. This task is widely performed in industry and tables of 

acceptable weights have been published (Snook & Ciriello, 1991) allowing easy 

comparison with the collected data. Knuckle height was measured from the floor 

to the second metacarpo-phalangeal joint on a standing participant with arms 

relaxed at the sides. The shelf height was then set so that the top of the shelf 

was level with this height (see figure 4a).

The procedure for determining the maximum acceptable weight of lift (MAWL)

was as follows. A pre-determined amount of weight was secreted in the false

bottom of the box so that the starting weight of the box was always different.

The wooden board ensured that the participant was blind to the starting weight 

and that they could not select a box-weight by merely counting weight-bags in 

and out. The box was then placed at the starting position in front of the shelf 

unit. The starting position was indicated by marker tape on the floor ensuring 

that the horizontal distance of the lift was always approximately 0.7 m.

Figure 4. (a) Lifting frame with adjustable shelf, (b) Bags of ball-bearings.

The investigator’s instructions to the participant were then read out in the form 

of a standardised script (see appendix E). After receiving his instructions the
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participant took up his starting position behind the box and commenced lifting in 

time with an audible tone from a cassette tape. The first, non-experimental, 

session was used to habituate the participant to the protocol and was called the 

MAWL stabilisation session. The participant lifted the box onto the shelf at 4.3 

lifts.min'1 for 20 minutes in a thermoneutral (21° C, 45% RH) environment. An 

assistant returned the box to its starting position on the completion of each lift. 

During the 20-minute session the participant adjusted the box weight by either 

adding or removing bags of ball-bearings (figure 4b), the object being to arrive 

at a box weight that they thought they would be able to lift comfortably 

throughout an eight-hour period at work. The lift-cycle is depicted in figure 5.

Figure 5. (a-d) Lift phase, (e-f) Box is returned to starting position.

After 20 minutes the participant was instructed to stop lifting and the box weight 

was recorded. The participant rested for 10 minutes outside the chamber while 

the box was emptied and a new starting weight was selected. A second 20-
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minute session was then conducted and the new final box weight recorded. If 

the two values were within 15% of each other then the participant was deemed 

to have consistently selected an acceptable weight. If the two values differed by 

more than 15% then the participant would have been asked to return on another 

occasion to repeat the test (in practice this didn’t occur). The 15% limit was 

used previously as a cut-off point for acceptability by Snook & Ciriello (1991).

After MAWL stabilisation the main experimental sessions were conducted on 15 

consecutive weekdays. During these sessions the participant lifted for one 

period of 35 minutes. The first 20 minutes were again used as an adjustment 

period for the MAWL after which they continued to lift for another 15 minutes at 

the selected box weight. Three different lifting frequencies were employed: 1 

lift.min'1, 4.3 lifts.min'1 and 6.7 lifts.min'1. There were also five test environments 

making 15 unique test conditions.

7. Pilot Study

A pilot study was conducted early in the project to investigate whether or not the 

MAWL stabilised after two 20-minute bouts. This was important as the ability to 

use the MAWL protocol was expected to be unfamiliar to the participants and 

they were expected to experience a learning effect. This may have resulted in 

increased acceptable loads over time and it was essential to eliminate this 

effect prior to introducing the environmental variables. The literature has shown 

that two or three trials are generally required to 'stabilise' the MAWL and 

eliminate the learning effect (Snook & Ciriello, 1991).
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Five male participants (age, 25.5 ± 7.1yrs) gave written informed consent and 

conducted two 20-minute trials separated by 10 minutes rest in a thermoneutral 

(21 °C, 45% RH) environment. They lifted a box from floor to knuckle height at a 

frequency of 3 lifts.min'1. In the first trial the box was started at a low weight and 

in the second trial the box was started at a heavy weight. The results are 

summarized in the table 3 below.

Participant No. Box Weight Triai 1 
(kg)

Box Weight Triai 2 
(kg)

% Difference

1 17 18 5.9|
2 17.3 17.3 . 0
3 16.3 18.3 12.3f
4 21.3 20.3 4.71
5 16.3 17.3 6.1T

Table 3. Summary of Results from Pilot Study.

It can be seen that the percentage difference between trials was within the 15% 

recommended by Snook & Ciriello (1991) in all cases. This provided evidence 

that the individuals tested could reliably reproduce MAWL after two trials thus 

determining the MAWL stabilization protocol used in the main studies.

8. Subjective Measures - Ratings of Perceived Exertion

It may not always be possible to take objective measures of physiological strain,

especially in a busy or confined workspace. For this reason it was important to

collect data on the participants’ subjective feelings of exertion during the lifting

task. As noted earlier, Borg (1970) has produced measures of perceived

exertion the most popular probably being the 6-20 Rating of Perceived Exertion

(RPE) scale (see figure 6). The category scale is linear and the numbers

roughly equate to heart rate when multiplied by ten (e.g. 13 » 130 beats.min-1)

although Borg (1982) counselled against the rigid interpretation of this

relationship. During exercise the participant is asked to rate their current

perceived exertion level by quoting a number from the left-hand side of the
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scale. The descriptions on the right are designed to help with rating selection. 

The participant must be given a thorough orientation prior to use of the scale 

and it is important that the rating given reflects an overall feeling of exertion, 

integrating all of the “signals, perceptions and experiences” that are felt (Borg,

1982).

6
7 Very, very light
8
9 Very light
10
11 Fairly light
12
13 Somewhat hard
14
15 Hard
16
17 Very hard
18
19 Very, very hard
20

Figure 6. The Borg 6-20 Rating of Perceived Exertion Scale (Borg. 1970).

9. Statistical Analysis

The collected data were analysed using the Statistical Package for the Social 

Sciences (SPSS for Windows version 13: SPSS UK Ltd, Woking, UK) and 

Microsoft Excel 2003.

9.1 Hot & Cold Studies

The design for the hot and cold studies (detailed in chapters 3 and 4 

respectively) was essentially the same; only the air temperatures and relative 

humidities varied. There were two independent variables, environment and lift 

frequency which had five and three levels respectively. This yielded 15 unique 

test conditions and the participants completed all of them in a fully within-



subjects design. There were five dependent variables: heart rate, core 

temperature, mean skin temperature, rating of perceived exertion and maximum 

acceptable weight of lift. Finger surface temperature was also measured in the 

cold study. Heart rate and core temperature were a mean of the last two 

minutes of measurements during the 35-minute lifting protocol. Rating of 

perceived exertion was a mean of the last three values reported by the 

participants. Maximum acceptable weight of lift was the weight of the box at the 

end of the session.

The null hypotheses that stated that there were no significant differences in the 

dependent variables across treatments were each tested using a two-factor 

Analysis of Variance (ANOVA) with repeated measures on both factors. An 

ANOVA is a parametric test used to compare three or more means. The 

requirements for this test are that data are from a random subset of the 

population; they are independent (i.e. they are not influenced by any other 

subjects), normally distributed (ratio or interval scale) and spherical (i.e. exhibit 

sphericity). Sphericity is defined as the equality of variances of the differences 

between treatment levels (Field, 2000). Where this condition is violated, SPSS 

provides corrections (Greenhouse-Geisser, Huynh-Feldt and lower-bound) 

where a value (the £ statistic) is used to adjust the degrees of freedom and, 

consequently, the reported probability. The Greenhouse-Geisser correction was 

used in these analyses wherever the assumption of sphericity was violated.

The ANOVA is sometimes referred to as an ‘omnibus F-test’ because it tests for 

differences across all treatments and produces a statistic (F) with an associated 

probability. The test described above produces three F ratios, one for each of
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the two main effects (environment and frequency) and one for the interaction 

between the two. There were five dependent variables in each study so five 

separate ANOVA tests were planned. Alpha (a) was originally set at 5% (0.05) 

but adjusted to take account of the five planned tests (0.05 / 5 = 0.01). This 

commonly used technique,, known as the Bonferroni adjustment (Huck, 2000), 

makes the null hypotheses more difficult to reject (due to the lower value of a) 

thus reducing the chances of committing a Type I error.

A significant F ratio only indicates that there is a significant difference 

somewhere, not where the difference or differences may be. Post-hoc tests, 

usually in the form of pairwise comparisons, are then conducted to pinpoint the 

location of the differences. For a significant frequency effect for example where 

there are three levels, three pairwise comparisons would be performed (1 vs. 2, 

1 vs. 3 and 2 vs. 3). SPSS does not allow post hoc tests to be performed after a 

within-subjects ANOVA. This limitation can be worked around by ticking the 

‘compare main effects’ box in the options menu and selecting a comparison 

method such as Bonferroni or Least Significant Difference. This work-around is 

generally not recommended however because the tests may lack the power to 

find any significant differences in the case of the former or massively inflate the 

type I error rate as in the latter (Clark, undated). Stevens (1992) recommends 

using Tukey’s tests, which can be computed by hand, providing that the 

sphericity assumption has been met.

If there is no significant interaction but there are either one or two significant 

main effects then it is permissible to perform post-hoc tests, comparing levels of 

each effect to identify the location of the difference. This is a simple two-step
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procedure which is commonly used in research. First perform an ANOVA: if 

there is no significant F then stop; if there is a significant F, perform post-hoc 

tests.

If there is a significant interaction effect then interpretation of the main effects 

can lead to the wrong conclusions. Investigating the interaction can be a 

complex procedure and authors differ in their opinions on the best approach to 

this. Where most authors agree is on the need to produce a graph of the cell 

means so that the nature of the interaction can be identified (Huck, 2000; 

Keppel, 1973; Kirk, 1982; Oshima & McCarty, 2000). The interaction can then 

be investigated statistically by performing tests of simple main effects (Keppel, 

1973) where each factor is examined at a fixed level of the other factor. So in 

the research design for this study, the frequency factor would be examined 

against each of the five levels of the environment factor. Conversely, 

environment would be examined against each of the three levels of frequency. 

The overall error rate from the three families (0.01 for each of A, B and AB) 

would be corrected to account for the number of tests conducted (0.03/8 = 

0.0037) as suggested by Kirk (1982). Tests of simple main effects can help the 

researcher to narrow down the area of search for differences and to specify 

suitable pairs of cell means for post-hoc tests. So it can be seen that the 

procedure for investigating an interaction comprises four steps. Perform an 

ANOVA; after a significant interaction, plot the cell means; perform tests of 

simple main effects and finally perform pairwise comparisons on the pairs of cell 

means of interest.
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It is now expected that researchers will provide more than just statistically 

significant results to support their findings. Schutz & Gessaroli (1993) noted that, 

at the time of their review that ‘the majestical and omnipotent significance level 

continues to be worshipped’ but recently there has been a move away from 

simply testing hypotheses and all of the limitations inherent in such an approach 

(the binary outcome, reject or fail to reject for example). Researchers are now 

encouraged to provide estimates of effect size to support their findings although 

the widespread adoption of this practice has been hampered by the lack of 

available formulae, especially for more complex ANOVA designs. The 

monograph by Cortina & Nouri (2000) for example provides calculations for 

most of the more basic designs but not for factorial, fully-within subjects designs. 

Olejnik & Algina (2003) have proposed an effect size statistic called generalized 

eta squared (Gen q2) for many of the commonly used ANOVA designs. Gen r|2 

has been extended for use in repeated measures designs by Bakeman (2005) 

and it is based on the formulae therein that the calculations of effect size in this 

thesis have been based. The formulae and calculations are detailed in appendix 

D. Bakeman (2005) recommends using the following guidelines to describe gen 

r)2 effect sizes: 0.02=small, 0.13=medium and 0.26=large.

For paired t-test designs where only two means are compared the effect size 

formula is thus (for equal n):

d = tr [2(1 - r)n]°5

Where: tr = t statistic from paired t-test
r = Pearson correlation coefficient between the two means

(Cortina & Nouri, 2000)

Cohen (1988) proposes that an effect size (d) of 0.8 is interpreted as large, 0.5 
is moderate and 0.2 is small.
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9.2 Face-Cooling Study

The statistical analyses in the face-cooling study differ only slightly from the first 

two studies. These small variations are detailed in the methods section of 

chapter 6 since no new concepts are introduced.

9.3 Non-Parametric Tests

The procedures previously described are known as parametric tests and they 

require that the data to be analysed fulfil certain criteria. Data should be on a 

ratio or interval scale, random, independent, normally distributed and exhibit 

homogeneity of variance (or sphericity in the case of repeated measures). As 

previously stated, violations of sphericity can be overcome by using a correction. 

Good research design should ensure that the data fulfil the assumptions of 

randomness and independence and the scale of measurement is usually 

decided a priori. Therefore the most common cause of violations of test 

assumptions are cases of non-normally distributed data. In each of the studies 

in this thesis normality was checked in SPSS using the Kolmogorov-Smirnov 

Goodness of Fit test. This test compares the collected data against an internal 

data set that is known to be normally distributed to determine whether the two 

differ significantly. A non-significant outcome indicates that the data are normal 

and that it is safe to proceed with parametric analysis. Parametric tests are 

known to be extremely robust to departures from normality and Keppel (1973) 

has described the relatively small inflation of a that can occur in such cases. In 

extreme cases however the data may be transformed using one of a number of 

techniques. Taking the reciprocal and 1 /V  are common methods for 

transforming data sets for example. When these transformations are
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unsuccessful the researcher must decide whether to proceed with parametric 

analysis or choose a nonparametric equivalent.

There are apparently no nonparametric equivalents to the two-way, fully within- 

subjects ANOVA. A limited solution is to analyse each main effect using a 

Friedman test for multiple repeated samples. For each main effect the data are 

collapsed for further analysis. The environmental data were collapsed by taking 

the grand mean for each environment (each was conducted at three different lift 

frequencies) and vice-versa for the frequency data. See table 4 for an 

illustration of this procedure. The environment data were then analysed in a 

one-way Friedman test with five repeated measures. The frequency data were 

similarly analysed but with three repeated measures.

15 test conditions Collapsed Means
Thermoneutral 1 lift.min"1
Thermoneutral 4.3 lifts.min'1 Thermoneutral
Thermoneutral 6.7 lifts.min'1
Warm-Dry 1 lift.min'1
Warm-Dry 4.3 lifts.min'1 Warm-Dry
Warm-Dry 6.7 lifts.min'1
Warm-Humid 1 lift.min'1
Warm-Humid 4.3 lifts.min'1 Warm-Humid
Warm-Humid 6.7 lifts.min'1
Hot-Dry 1 lift.min'1
Hot-Dry 4.3 lifts.min'1 Hot-Dry
Hot-Dry 6.7 lifts.min'1
Hot-Humid 1 lift.min'1
Hot-Humid 4.3 lifts.min'1 Hot-Humid
Hot-Humid 6.7 lifts.min'1

Friedman analysis 
performed on these 5 

means

Table 4. Example of Collapsing Data for the Environment Effect. 

Unfortunately, nonparametric tests are generally regarded as having less power 

than their parametric equivalents but in some situations they may provide the 

only method for conducting analysis. It is also the case that the Friedman test 

only permits analysis of the main effects and not the interaction.



The nonparametric equivalent of the Tukey’s test is the Wilcoxon Signed-Ranks 

Test for Matched Pairs (Huck,2000). This would be used as a follow-up to a 

significant result of a Friedman test.

10. Ethics

Ethical approval was applied for and granted by the Research Ethics Committee, 

Faculty of Health & Wellbeing, Sheffield Hallam University for all of the studies 

reported herein. Participants were treated in accordance with the Helsinki 

(World Medical Association, 1964) document regarding the use of human 

subjects in scientific research and the British Association of Sports and Exercise 

Sciences (BASES, 2000) code of conduct. They were given verbal and written 

descriptions of the procedures involved (see appendix A for the written 

description) and completed a medical questionnaire (see appendix A) before 

giving written informed consent to continue. Participants with any previous 

history of musculoskeletal disorders were excluded from the study, as were 

participants with illness, disorders or diseases known to affect the 

thermoregulatory system (e.g. thyroid conditions).

11. Range of Participants

All of the participants in the three studies included in this thesis were male. 

Females were specifically excluded because of the possible confounding 

influence of the menstrual cycle on core temperature which is reported to rise 

by around 0.5 °C during the luteal phase (Coyne et al., 2000). In accordance 

with ethical requirements only males between the ages of 18 and 40 years were 

recruited. It was initially envisaged that our research collaborators would
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provide participants with industrial experience but this proved to be problematic 

so volunteers were recruited from both within the university and the local 

populace.

The research design required participants to attend at the same time each day 

for more than 20 working days; a schedule which naturally precluded the 

undergraduate student population. As such, the participants represented a 

broad range of ages, backgrounds and abilities which gave the studies better 

ecological validity. A number of the participants were in their thirties for instance 

(the mean age in the third study was 28.4 years) which conformed to what was 

observed during the site visits. Similarly, activity levels as self-reported in the 

pre-screening health questionnaires varied from sedentary to very active 

perhaps mirroring what one would expect to find in the general working 

population. The racial composition of the participants was predominantly white, 

northern European. Of these the majority were British nationals with the 

remainder consisting of eastern Europeans. Three Indians (all international 

students) and one native of southern Europe also participated.

12. Site Visits

Several visits to industrial sites were undertaken in 2003 prior to the laboratory- 

based phase of the project. The purposes of the visits were to take 

environmental measurements in hot and cold workplaces and to assess the 

nature of the manual handling tasks being performed.

At each location measures of air temperature, radiant temperature and humidity 

were recorded for periods of up to four hours. All of the locations were indoors
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so air velocity was assumed to be negligible. Where manual handling was 

taking place the nature of the task, weight of load, frequency, height and 

duration of lift were recorded.

Workplaces where the environment was warm or hot included a glassworks, a 

steel fabrication factory and three bakeries. Amongst the cold environments 

visited there were sections of bakeries (creameries, sandwich filling production) 

and a supermarket distribution warehouse. An example of the type of data 

collected during the visits is provided in appendix G.
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4 The Effects of Warm and Hot Environments on 
Performance of an Intermittent Lifting Task

1. Summary

This chapter presents an original study into the effects of warm and hot 

environments on the performance of a floor to knuckle-height lifting task. It also 

examines the participants’ responses to two dissimilar environments with an 

equivalent WBGT.

2. Introduction

Previous research in this area has established that work in warm and hot 

environments results in increased physiological strain and lesser loads lifted 

when compared to the same work in a moderate environment. The number of 

studies is small however, and their findings are open to criticism due to 

limitations in design and method. Kamon & Belding (1971) for example used 

only three participants and reported only descriptive results. None of the studies 

reviewed examined the effects of high humidity and none attempted to ascertain 

hydration status prior to testing. Acclimation status varied: Snook & Ciriello 

(1974) did not acclimate their participants, Hafez & Ayoub (1991) and Kamon & 

Belding (1971) did. All adopted different manual handling protocols, one with 

fixed weights of load, the others with psychophysically adjusted loads. All of 

these factors contribute to the difficulty in accurately assessing the effects of 

warm and hot environments on lifting performance and physiological strain.

The purpose of this experiment was to assess physiological strain and the 

amount of weight lifted when participants were exposed to a range of warm and
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hot environments and required to lift at different frequencies. The five 

environments chosen were a reflection of what had been investigated 

previously and what was measured in the field during the industrial site visits. 

This ensured that the study had good ecological validity. A ‘thermoneutral’ 

environment represented a baseline, providing an environment where a 

standing, normally-clothed man would experience no net heat gain nor net heat 

loss to his surroundings. The other four environments consisted of a warm ‘dry’ 

(low humidity), a warm ‘humid’ (high humidity), a hot-dry and a hot-humid 

condition. So that the assumption that different environments with equivalent 

WBGT values elicit the same physiological strain could be tested, the warm 

humid and hot dry conditions were designed to have the same WBGT (-27° C).

Three lifting frequencies were used which were again a reflection of those used 

previously and what was encountered on the site visits. The slowest frequency 

of 1 lift.min' 1 was analogous to a worker lifting boxes of pre-mixed seasonings in 

a food factory. These boxes were automatically filled with measured amounts of 

ingredients by a machine and the time taken for this to be completed was 

around one minute. The other two frequencies of 4.3 lifts.min' 1 (a lift every 14 

seconds) and 6.7 lifts.min' 1 (every nine seconds) represented tasks such as 

pallet loading and box stacking. These three frequencies have been extensively 

studied, notably by Snook & Ciriello (1991) and are included in tables of 

acceptable loads based on percentiles of the population. These data provide a 

normative set of values with which to compare the results of this study.

3. Methods

3.1 Participants
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Twelve male participants between the ages of 18 and 40 years were recruited 

to take part in the study. Anyone with a previous history of musculoskeletal 

disorders were excluded from the study, as were participants with illness, 

disorders or diseases known to affect the thermoregulatory system (e.g. thyroid 

conditions). All participants were white, northern Europeans except for two 

Indians who had been resident in the UK for at least two years. Participant 

details are presented in table 5 below.

n Age Stature 
(years) (m)

Mass (kg) Knuckle Body 
Height Mass 

(m) Index

Body 
Surface 

Area (m2)
12 25.2 ±5.7 1.7 ±0.1 74.9 ±11.9 0.8 ±0.1 25 ±3.9 1.9 ±0.2
Table 5. Participant Details (mean ± 1 standard deviation). Bodv Surface Area

from Mosteller (1987).

3.2 Procedures

The participants reported to the environmental chamber at the Centre for Sport 

and Exercise Science (CSES), Sheffield Hallam University. Stature (stadiometer, 

Holtain, Crymych, UK), mass (Balance Scales, Avery, Birmingham, UK) and 

knuckle height (distance from floor of second metacarpo-phalangeal joint when 

standing relaxed) were measured.

The participants were asked to provide a urine sample immediately upon arrival 

so that hydration status could be assessed prior to the start of the experiment. 

Urine osmolality was assessed by an osmometer (Advanced Micro Osmometer 

Model 3300, Advanced Instruments, Norwood, MA). Skin thermistors (Grant 

Instruments, Cambs. UK) were fixed to the body with Micropore tape (3M, USA) 

according to the Ramanathan (1964) four point measurement site for estimation 

of mean weighted skin temperature; at the chest (centre of pectoral region, 

midpoint between nipple and clavicle), arm (posterior aspect of the upper-arm,
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at the centre of the belly of the triceps), thigh (anterior aspect, over rectus 

femoris at midpoint of femur) and shin (anterior aspect of lower-leg, at midpoint 

of tibia). An aural bead thermistor (Grant Instruments, Cambs. UK) was fitted 

into the ear, fixed into position with cotton wool and tape and insulated with a 

pair of industrial ear defenders (figure 7b). The thermistor was modified by 

Grant Instruments by removing most of the plastic moulding that encapsulated 

the bead (see figure 7a). This improved the response of the bead thermistor to 

the surrounding environment. The thermistors were all supplied with 5 m leads 

so a wiring harness using a polythene spiral wrap was constructed to facilitate 

cable management and reduce any possible trip hazard (see figure 8 ). All 

thermistors were connected to a data logger (Squirrel 1021, Grant Instruments, 

Cambs. UK) so that measurements could be recorded throughout testing. The 

participant also put on a heart rate monitor (Polar S610, Polar, UK) prior to 

putting on the clothing ensemble.

Figure 7. (a) Standard (left) and modified (right) aural thermistor, (b) Industrial
ear defenders.
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Figure 8 .

Each participant then dressed in a standard clothing ensemble (table 6 ). The 

ensemble was chosen to replicate as closely as possible the clothing observed 

to be worn during the site visits. No gloves were worn. The estimated Clo value 

was designed to ensure that the participant was comfortable whilst standing in 

the thermally neutral environment.

Clothing Item Clo
Underwear (shorts, socks supplied by participant) 0.05
Working trousers (cotton/polyester) 9oz 0.25
Working jacket (cotton/polyester) 9oz 0.25
Safety boots 0.1
Estimated Clo of ensemble 0.65

Table 6 . Standardised clothing ensemble and estimated Clo values.

3.2.1 Acclimation

The first week was used for acclimation and consisted of five one-hour sessions. 

Published literature has shown that this amount of exposure can provide in 

excess of 75% of an individual’s total adaptation to a particular environment 

(Parsons, 2003) with the final -25% adaptation occurring over a further five
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days. The environmental chamber was set at 38°C and 70% relative humidity 

(34 °C WBGT). This replicated the most hostile environment used in the 

experiment.

Each acclimation session was divided into rest, work and a final rest period and 

the participants were required to remain in the environmental chamber 

throughout the sixty minutes. Two twenty-minute rest periods were interspersed 

with a twenty-minute lifting task. Drinking water was available throughout and 

participants were encouraged to drink regularly.

3.2.2 MAWL Stabilisation

The participants were introduced to the psychophysical method of lift 

assessment in one session prior to commencement of testing proper. The 

purpose of this session was to habituate the participant to the proposed lifting 

protocol and to ensure that they were able to consistently select an acceptable 

box-weight (i.e. to demonstrate the repeatability of the protocol). It also provided 

an opportunity to practice using the RPE scale especially for those participants 

for whom the concept was unfamiliar. The protocol is described in detail in 

chapter 3.

3.2.3 Main Experimental Sessions

The main portion of the study commenced once acclimation and MAWL 

stabilization had been achieved. This comprised 15 test sessions made up of a 

combination of the five environments and three lifting frequencies. A within- 

subjects repeated measures design was used. Each participant took part in all 

of the fifteen test conditions and exposure to each condition was counter­
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balanced using an unbalanced Latin Square. Table 7 describes the 

environmental conditions chosen together with the actual mean values (and 

standard deviations) achieved across the entire experiment. Table 8 describes 

the frequency of lift undertaken in each environment.

Environment Air temperature 
(°C)

Relative 
humidity (%)

WBGT (°C)

Thermoneutral 21 (21.9 ±0.9) 45 (47.3 ± 5.5) 17
Warm dry 30 (29.9 ±0.5) 25 (24.8 ±1.2) 22

Warm humid 30 (30.5 ± 0.4) 65 (68.4 ±2.1) 27
Hot dry 39 (38.7 ± 0.6) 25 (21.9 ± 1.1) 27

Hot humid 38 (37.4 ± 0.3) 70 (70.6 ±2.5) 34
Table 7. Environmental Specification (actual mean values ± 1 standard

deviation achieved).

Frequency Lifts.min7
1 lift every 9 seconds 6.7

1 lift every 14 seconds 4.3
1 lift every 60 seconds 1

Table 8 . Lifting frequencies.

The protocol was as detailed in Chapter 3 with the participants lifting for 20 

minutes whilst adjusting the box weight and then for a further 15 minutes at the 

box weight selected. RPE was recorded every five minutes throughout the 

session and the participants were encouraged to convey this information 

discreetly so as not to influence other lifters present (two lifters were usually 

tested simultaneously). Heart rate readings were also taken manually every five 

minutes as a precaution against any failure of the recording equipment. To 

ensure the health and safety of the participants a second experimenter was 

always present in the chamber. Drinking water was available at all times and 

everyone was encouraged to drink ad libitum.

After 35 minutes the test was stopped and the participants were removed to the

intermediate room where the instrumentation was removed. The final box
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weight was recorded as the maximum acceptable weight of lift (MAWL) for the 

session. Heart rate and temperature data from the monitors and data loggers 

were downloaded to a PC for analysis.

3.2.4 Withdrawal Criteria

The withdrawal criterion was set at an aural temperature of 38.5 °C at the 

specific request of the Health & Safety Laboratory. This withdrawal limit is also 

recommended in ISO 9886 (Annex C) as long as temperature is monitored 

continuously which was the case. Heart rate was monitored simultaneously and 

consideration given to removing the subject if this exceeded 85% of their age- 

predicted maximum (based on the other objective and subjective 

measurements).

3.3 Hypotheses

The null hypotheses to be tested were:

1. (Ho1) Frequency of lift does not significantly affect the dependent
ik

variables.

2. (Ho2) There is no difference in physiological strain when lifting in a hot 

environment compared to lifting in a thermoneutral environment.

3. (H03) There is no difference in MAWL when lifting in a hot environment 

compared to lifting in a thermoneutral environment.

4. (H04) There is no difference in physiological strain when lifting in a high 

humidity environment compared to lifting in a similar air temperature with 

low humidity.
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5. (H05) There is no difference in MAWL when lifting in a high humidity 

environment compared to lifting in a similar air temperature with low 

humidity.

6 . (H06) Lifting in two dissimilar environments (warm-humid and hot-dry) 

with an equivalent WBGT imposes the same physiological strain.

3.4 Statistical Analysis

The five dependent variables (heart rate, core temperature, mean skin 

temperature, ratings of perceived exertion and maximum acceptable weight of 

lift) were each planned to be individually analysed for significant differences 

using a two-factor ANOVA with repeated measures on both factors, a was 

initially set at 0.05 but subsequently adjusted using a Bonferroni correction to 

0.01 (0.05/5) to account for the five ANOVA tests (Huck, 2000). Significant F 

ratios were followed-up by Tukey’s post-hoc tests and generalized q2 effect 

sizes were computed. The procedures are described in detail in chapter 3.

4. Results

4.1 Hydration Status

The mean urine osmolality for each participant prior to the test sessions is 

presented in figure 9.
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Figure 9. Mean urine osmolality (pre-session) for each participant. Columns 
represent means, error bars represent ± 1 standard deviation.

4.2 Heart Rate

The mean end heart rates (mean of the final two minutes) for each lifting 

frequency by environment are presented in figure 10 below.

180 1 lift.m in-1 1.3 lifts.min-1 i.7  lifts.min-1

160

140

120  - -

100

60

40

Figure 10. Mean end heart rate for each test condition (columns represent 
means, error bars represent ± 1 standard deviation).

Heart Rate -  ANOVA

One data set out of the fifteen conditions was not normally distributed but this 

was considered to have a minimal effect on the subsequent analysis. Mauchly’s 

test was non-significant for the main effects and the interaction effect so 

sphericity was assumed. There were significant main effects for environment 

[^(4 ^ 4 ) = 4 7 .5 ] and frequency [F(2,22) = 94.5] (both P<0.001). The interaction 

effect was not significant.

Heart Rate -  Post Hoc Tests

The significant main effects were investigated further using Tukey’s HSD post- 

hoc tests. For the environment effect, the mean heart rate in the hot-humid
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condition was significantly higher (P<0.01) compared to all other conditions. No 

other conditions differed significantly. For frequency, heart rate was significantly 

higher (P<0.01) in both the 4.3 lifts.min-1 and 6.7 lifts.min-1 conditions when 

compared to 1 lift.min-1. There was no significant difference between 4.3 

lifts.min-1 and 6.7 lifts.min-1.

Heart Rate -  Effect Sizes

Generalised r)2 effect sizes were calculated for both of the main effects and the 

interaction and are presented in table 9.

Source Gen r f Effect
Environment 0 .2 2 Medium
Frequency 0.63 Large
Interaction 0 .0 2

~  _ i:~  -i 2 r r  i. • _
Small

Table 9. Generalised n2 effect sizes for Heart RateT

4.3 Core Temperature

The mean end core temperatures (mean of the final two minutes) for each lifting 

frequency by environment are presented in figure 11 below.

^  6 .7  lifts.min-11 lift.min- 4 .3  lifts.min-1

38.5

38

37.5

36.5

35.5

34.5

34

Figure 11. Mean end core temperature for each test condition (columns 
represent means, error bars represent ± 1 standard deviation).
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Core Temperature -  ANOVA

All of the data for core temperature were normally distributed. Mauchly’s test 

was significant for the frequency effect so a Greenhouse-Geisser correction 

was applied. Sphericity was assumed for the environment and interaction 

effects. There was a significant interaction effect [F(8 ,8 8 ) = 3.7, P=0.001] and 

significant main effects for both environment [F(4,44) = 72.1] and frequency 

[F(1.35,14.8) = 80.2] both (P<0.001).

The significant interaction was investigated further using the steps detailed in 

chapter 3. Graphs of cell means depicting the interaction are displayed in figure 

12 a & b.
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Figure 12. Interaction effects by (a) environment and (b) frequency. Data points
represent means for each condition.

Core Temperature -  Tests of Simple Main Effects

The significant interaction effect was examined in greater detail by tests of 

simple main effects as described in chapter 3. The results of the tests of simple 

main effects for core temperature are detailed in table 1 0 .
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Source MS d f F
A at bi 0.32 4,44 1 2 *
A at b2 0.93 4,44 19.4*
A at b3 1.35 4,44 31.1 *
B at ai 0.48 2 ,2 2 7.7 §
B at a2 0.41 2 ,2 2 12.7 §
B at a3 0.9 2 ,2 2 32.7 §
B at a4 0.4 2 ,2 2 10 .2  §
B at a5 2.27 2 ,2 2 41.1 §

Table 10. Tests of Simple Main Effects for Core Temperature.

* F  0.01; 4,44 = 3.83 
§F  0.01; 2,22 = 5.72

The tests of simple main effects were all significant at the critical value for F at 

0.01.

Core Temperature -  Pairwise Comparisons

The results of the tests of simple main effects were considered in conjunction 

with a visual examination of the interaction plots and a limited number of 

pairwise comparisons of interest were conducted. Although all tests of simple 

main effects were significant the largest F-ratios for factor A (environment) 

occurred at b2 and b3 (4.3 lifts.min' 1 and 6.7 lifts.min'1) and the largest F-ratios 

for factor B (frequency) were at a3 and as (warm-humid and hot-humid). The 

interaction plots depicted a similar pattern so the following pairwise 

comparisons were conducted (results in tables 11 and 1 2 ).

4.3 lifts.min'1 -  4.3 lifts.min7-  4.3 lifts.min1-  4.3 lifts.min
warm-dry warm-humid hot-dry hot-humid

4.3 lifts.min'1 -  
thermoneutral ns ns ns **

4.3 lifts.min'1 — ; ns ns **
warm-dry
4.3 lifts.min'1 -

’ {  ' * nS
**

warm-humid
4.3 lifts.min'1 -

, . .  ..
**

hot-dry " I  -I! *
6.7 lifts.min1 -  6.7 lifts.min'1-  6.7 lifts.min1- 6.7 lifts.min 1-

warm-dry warm-humid hot-dry hot-humid
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6.7 lifts.min'1 -  
thermoneutral ns ** **

6.7 lifts.min"1 -  
warm-dry
6.7 lifts.min'1 -  
warm-humid

ns ns 

; ns

★★

**

6.7 lifts.min"1- ~  [ **
hot-dry - I

Table 11. Pairwise comparisons for b? (4.3 lifts.min'1) and bg (6.7 lifts.min'1).
**siqnificant at q;5,44 (0.01).

The core temperature at 4.3 lifts.min' 1 was significantly higher in the hot-humid 

environment compared to all other environments. The same was true at 6.7 

lifts.min' 1 although here there were two additional significant pairwise 

comparisons. At 6.7 lifts.min' 1 core temperature was significantly higher in the 

hot-dry and warm-humid environments compared to the thermoneutral 

environment.

warm-humid 
4.3 lifts.min'1

warm-humid - 
6.7 lifts.min'1

warm-humid - ns1 lift.min'1
warm-humid - 
4.3 lifts.min"1

**

hot-humid hot-humid -
4.3 lifts.min'1 6.7 lifts.min'1

hot-humid - 
1 lift.min"1

** **

hot-humid - l i i r t i i i i i i i i i i **
4.3 lifts.min'1

Table 12. Pairwise comparisons for ag (warm-humid) and a* (hot-humid)
**siqnificant at q;3,22 (0.01).

In the warm-humid environment core temperature was significantly higher when 

lifting at 6.7 lifts.min' 1 compared to both other lifting frequencies. In the hot- 

humid environment core temperature was significantly different between all 

lifting frequencies.

Core Temperature -  Effect Sizes

78



Generalised r|2 effect sizes were calculated for both of the main effects and the 

interaction and are presented in table 13.

Source Gen r f effect
Environment 0.46 Large
Frequency 0.42 Large
Interaction 0.11 Small

Table 13. Generalised n2 effect sizes for Core Temperature.

4.4 Maximum Acceptable Weight of Lift (MAWL)

The mean MAWL for each lifting frequency by environment is presented in 

figure 13 below.

40 I.3  lifts.min-1 lifts, min-11 lift.min-1
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Figure 13. Mean maximum acceptable weight of lift for each test condition 
(columns represent means, error bars represent ± 1 standard deviation).

Maximum Acceptable Weight of Lift -  ANOVA

All of the data for MAWL were normally distributed. Mauchly’s test was 

significant in all three cases therefore sphericity was not assumed and 

Greenhouse-Geisser corrections were applied. There were significant main 

effects for environment [F(2.6,28.5) = 4.7, P=0.01] and frequency [F(1.1,12.5) = 

18.2, P=0.001]. The interaction effect was not significant.
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Maximum Acceptable Weight of Lift -  Post Hoc Tests

The significant main effects were investigated further using Tukey’s HSD post 

hoc tests. Tukey’s tests did not identify any significant differences in either of 

the main effects. As reported in chapter 3, SPSS does not permit follow-up tests 

to repeated measures designs except for pairwise analyses of estimated 

marginal means. When these were performed with the Bonferroni correction 

there were no significant differences between any of the environments. For the 

frequency effect, MAWL was significantly lower (P<0.005) when lifting at 6.7 

lifts.min' 1 compared to both of the other lifting frequencies. The Bonferroni 

correction would have markedly reduced the power of the tests to detect any 

significant differences so another analysis was performed using no corrections 

(Least Significant Difference in SPSS). This analysis yielded significant 

differences between the hot-humid condition and both the thermoneutral and 

warm-dry conditions (both P<0.01). The hot-dry condition was also significantly 

different to the thermoneutral environment (P=0.01). The results for frequency 

were the same as for the Bonferroni analysis.

Maximum Acceptable Weight of Lift -  Effect Sizes

Generalised q2 effect sizes were calculated for both of the main effects and the 

interaction and are presented in table 14.

Source Gen i f effect
Environment 0.01 None
Frequency 0.05 Small
Interaction

2 a ±
0 None

Table 14. Generalised n2 effect sizes for Maximum Acceptable Weight of Lift.

4.5 Rating of Perceived Exertion (RPE)
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The mean RPE (average of the three ratings taken during the final 15 minutes) 

for each lifting frequency by environment is presented in figure 14 below. Note 

that, although the RPE scale runs from 6  to 20, the y axis originates at 0 for 

sake of clarity.

1 1 lift.min-1 lifts.min-1 6.7 lifts.min-1

18 -

10 -

Figure 14. Mean ratings of perceived exertion for each test condition (columns 
represent means, error bars represent ± 1 standard deviation).

Rating of Perceived Exertion -  ANOVA

Eleven of the 15 data sets were not normally distributed and transformations 

were unsuccessful. Transformations attempted included taking the natural 

logarithm and the reciprocal of the square root. A Friedman analysis was 

performed on each main effect (procedure detailed in chapter 3). The results of 

the Friedman tests are presented in table 15. The main effects were both 

significant according to the Friedman analysis.

Factor n Chi-Square d f Asymp. Sig
Environment 12 28.3 4 <0.001

Frequency 12 23.5 2 <0 .001
Table 15. Friedman tests of main effects for ratings of perceived exertion.
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Analysis of Variance has been widely reported to be robust to violations of 

underlying assumptions (Keppel, 1973). Because of this, an ANOVA was also 

conducted on these data. There were significant main effects for environment 

[F(4,44) = 15.8] and frequency [F(1.3,14.3) = 25.9] both (P<0.001). The 

interaction effect was not significant.

Rating of Perceived Exertion -  Post Hoc Tests

The significant main effects were investigated further using Wilcoxon Signed 

Ranks Tests for Matched Pairs. For the environment main effect, RPE in the 

hot-humid condition was significantly higher (P<0.005) than in all other 

conditions. RPE in the hot-dry condition was also significantly higher (P<0.005) 

than in the warm-dry condition. None of the other environments differed 

significantly. For frequency, all of the conditions differed significantly (P<0.005) 

from one another.

As with the omnibus F-test, the possibility that parametric analysis might be 

sufficiently robust to the violations of assumptions led to a follow-up 

investigation using Tukey’s HSD post hoc tests. For the environment effect, the 

mean RPE in the hot-humid condition was significantly higher (P<0.01) than 

both the thermoneutral and warm-dry conditions. No other conditions differed 

significantly. There were no significant differences for the frequency main effect 

at the 0.01 level although 1 lift.min' 1 and 6.7 lifts.min' 1 did differ at the 0.05 level 

however.

Rating of Perceived Exertion -  Parametric vs Nonparametric Results
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Parametric Nonparametric
Environment sig sig

Main Frequency sig sig
Interaction ns Not tested

HH vs TN and WD HH vs all other

Environment (<0 .0 1 ) conditions (0 .005)
Follow-Up

ns HD vs WD (0.005)

Frequency 1 vs 6.7 (<0.05) All sig (0 .005)
Table 16. Summary of results for RPE from parametric and nonparametric 
analyses.

To aid comparison between the parametric and nonparametric analyses, a 

summary of the results for ratings of perceived exertion are presented in table 

16.

Rating of Perceived Exertion -  Effect Sizes

Generalised r|2 effect sizes were calculated for both of the main effects and the

interaction and are presented in table 17.

Source Gen r f effect
Environment 0 . 1 6 Medium
Frequency 0 . 2 1 Medium
Interaction 0 . 0 2

2 rc x r  _ r» x:
Small

Table 17. Generalised n2 effect sizes for Ratings of Perceived Exertion.

4.6 Mean Skin Temperature (TmSk)

Data for mean end T mSk (mean of final two minutes) were incomplete because 

the skin thermistors frequently became detached or broke during testing. There 

were a total of 100  sessions where skin data were complete out of a possible 

180. The means and standard deviations for the complete data sets are 

presented in figure 15. Further statistical analysis was not possible due to the 

amount of lost data.



Figure 15. Mean end skin temperature for each test condition (columns 
represent means, error bars represent ± 1 standard deviation).

4.7 Synopsis

The six null hypotheses were tested using a combination of parametric and 

nonparametric omnibus and follow-up tests.

The first null hypothesis (H01) stated that frequency of lift does not significantly 

affect the dependent variables. It can be seen from the results that, in all cases, 

there were significant main effects for lift frequency. The significant interaction 

effect seen for core temperature means that the main effects must be treated 

with caution but nevertheless it is proposed that the null hypothesis in this case 

is rejected.

The second null hypothesis (H02) stated that there is no difference in 

physiological strain when lifting in a hot environment compared to lifting in a 

thermoneutral environment. There were significant main effects for environment 

for both heart rate and core temperature. Again, the interaction for core



temperature should be borne in mind but it is proposed that the null hypothesis 

is rejected.

H03 stated that there is no difference in MAWL when lifting in a hot environment 

compared to lifting in a thermoneutral environment. The significant 

environmental main effect for MAWL means that the null hypothesis is rejected.

The fourth null hypothesis (H04) stated that there is no difference in 

physiological strain when lifting in a high humidity environment compared to 

lifting in a similar air temperature with low humidity. Tukey’s tests comparing 

heart rate and core temperature reported significant differences when the hot- 

humid condition was compared to the hot-dry condition (both environments with 

an air temperature of 38-39 °C). There were no significant differences for warm- 

dry and warm-humid (both 30 °C) however. The null hypothesis is retained in 

this instance although there is clearly a difference at the higher temperature that 

merits further investigation.

Ho5 stated that there is no difference in MAWL when lifting in a high humidity 

environment compared to lifting in a similar air temperature with low humidity. 

There were no significant differences in MAWL between warm-dry/warm-humid 

and hot-dry/hot-humid therefore the null hypothesis is retained.

The final null hypothesis (H06) stated that lifting in two dissimilar environments 

(warm-humid and hot-dry) with an equivalent WBGT imposes the same 

physiological strain. There were no significant differences in heart rate and core
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temperature when the results in the hot-dry condition were compared to the 

warm-humid condition (both -27 °C WBGT). The null hypothesis is retained.

5. Discussion

The purpose of this study was to investigate the physiological strain and the 

amount of weight lifted when participants were exposed to a range of warm and 

hot environments and required to lift at different frequencies. The results will be 

discussed with respect to previous findings in the literature. Any unexpected or 

anomalous findings will be identified and commented upon. The practical 

significance of the results will be assessed along with the limitations in the 

research design and suggestions for possible improvements will be made.

Findings with Respect to Previous Studies 

Hydration Status

An attempt was made to control for hydration status in the present study since it 

appeared to have been overlooked in previous manual handling research in the 

heat. Urine osmolality was measured immediately upon the participant’s arrival 

so that an excessively high reading (possibly indicating hypohydration) could be 

addressed by asking them to start drinking water during the period prior to 

commencement of testing. A cursory examination of the mean values of 

osmolality reported in the previous section demonstrate the extreme intra- and 

inter-individual variability that existed in this sample. Some participants routinely 

returned osmolality readings in excess of 1000 mOsm.l"1; others rarely 

presented with anything higher than 200. Generally speaking, individuals with 

high activity levels (runners for example) were well hydrated; those who were 

sedentary and admitted to drinking a lot of caffeinated beverages were less well



so. The urine samples did not vary enormously in colour so it is unlikely that 

using a colour chart such as that in Armstrong (2000) to assess hydration status 

would have been a better indicator. As such, the attempts to control for 

hydration status must be considered a best effort since it could not be stated 

with any certainty that all of the participants were completely euhydrated in 

every session.

Heart Rate

There were significant main effects for environment and frequency on heart rate. 

Post-hoc tests for environment identified heart rate in the hot-humid condition 

as being significantly higher (P<0.01) than in all other environments. No other 

environmental conditions differed significantly. Previous research has reported 

similar responses although exact comparisons are difficult due to variations in 

test design (choice of environments and frequencies) and, in some cases, less 

than comprehensive presentation of results. Snook & Ciriello (1974) reported 

significantly increased heart rates (P<0.01) when lifting at 4.3 lifts.min'1 in 27 °C 

WBGT compared to 17.2 °C WBGT. These environments roughly equate to the 

thermoneutral and warm-humid environments in the present study where no 

significant difference was found. The task differed slightly by being a floor to 

knuckle-height lift over a fixed distance of 20 inches (50.8 cm) as opposed to 

the present study where lift distance was based on the measured knuckle- 

height of each participant. The mean heart rate increase in Snook & Ciriello 

(1974) was 10 beats.min’1, a comparable response to this study (t 8 beats.min’ 

1) although here the increase represents the mean across all lifting frequencies. 

Hafez & Ayoub (1991) reported significant (P not given) rises in heart rate at 

27 °C WBGT and 32 °C WBGT compared to 22 °C WBGT. These roughly
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correspond to the warm-humid, hot-humid and warm-dry environments 

respectively in this study where only the hot-humid environment differed 

significantly. The mean increase in heart rate from warm-dry to hot-dry was the 

same (~3 -  4 beats.min'1) in both studies but the increase from warm-dry to hot- 

humid was -10 beats.min'1 in Hafez & Ayoub (1991) and -22 beats.min'1 here. 

This difference is probably accounted for by the variation in environments 

between the two studies. The WBGT of 32 °C in Hafez & Ayoub (1991) was 

composed of a dry-bulb temperature of 38 °C and a relative humidity of 52% 

compared with a WBGT of 34 °C (dry-bulb 38 °C, relative humidity 70%) in the 

present study. The mean environmental heart rate data also represent a mean 

across all three lifting frequencies of 0.1, 3 and 6 lifts.min'1, variables which 

again differed between studies. Knuckle-height was also fixed at 51 cm 

regardless of the stature of each participant. Kamon & Belding (1971) reported 

a similar increase (to this study) of -20 beats.min'1 when comparing heart rates 

in an air temperature of 20 °C and 45 °C. Interestingly, although the WBGT of 

the 45 °C (air temperature) environment in Kamon & Belding (1971) was 

approximately 31 °C making it closer to the 32 °C WBGT in Hafez & Ayoub 

(1991), the heart rate response bore more resemblance to the present study. 

Variation in research design probably accounts for this anomaly as does the 

fact that Kamon & Belding (1971) only used three participants.

The heart rate was significantly lower (P<0.01) at 1 lift.min'1 compared to both of 

the other frequencies whereas Hafez & Ayoub (1991) reported significant 

differences (P not given) between all frequencies. Mean heart rates at the 

lowest lift frequency were the same in both studies (-84-85) suggesting that, 

although 1 lift.min'1 is ten times faster than 0.1 lifts.min'1, it imposes a similarly



light physiological load. A comparison of the mean heart rates at the two other 

frequencies shows that they were substantially lower in Hafez & Ayoub (1991). 

At 3 lifts.min'1 mean heart rate was 102 beats.min'1 and at 6 lifts.min'1, 111 

beats.min'1. Again, the frequencies differ between studies but at 4.3 lifts.min'1 

here the mean heart rate was 120 beats.min'1 and at 6.7 lifts.min'1, 136 

beats.min'1. The small differences in lift frequency cannot fully explain this result 

and it is likely that the interaction with the different environments contributed to 

the dissimilar responses. It is also possible that the shorter lift distance of 51 cm 

(compared to a mean of 80 cm in the present study) contributed to the lower 

heart rates as this lift would have required less physical effort to perform. The 

mean age of their participants was also lower (22.1 vs. 25.2yrs); they were also 

taller (184.3 cm vs. 170 cm) and heavier (80.3 kg vs. 74.9 kg); factors which 

may have also contributed to the differences.

Core Temperature

There was a significant interaction between environment and frequency for core 

temperature. This presented a challenge for follow-up analysis since the 

interaction meant that one or more pairs of means were significantly different 

out of a possible 105 pairwise comparisons. The tests of simple main effects 

were all significant, yielding no additional information so pairs were nominated 

based on the size of the F ratios and also a visual examination of the interaction 

plot.

The finding that core temperature was significantly higher in the hot humid 

condition compared to all of the other environments (when lifting at both 4.3 

lifts.min'1 and 6.7 lifts.min'1) was in agreement with the findings of Hafez &
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Ayoub (1991) although the mean increases were more pronounced in this study. 

It is likely that the variations in research design (faster lift frequencies and 

environments with higher WBGTs) and the choice of aural over rectal 

measurement contributed to this difference.

In both the warm-humid and hot-humid environments, core temperatures were 

significantly higher when lifting at 6.7 lifts.min'1 compared to 4.3 lifts.min'1. 

Indeed, the core temperature at all lift frequencies differed significantly in the 

hot-humid environment. Hafez & Ayoub (1991) reported similar significant (P 

not given) main effects for the frequency variable.

Snook & Ciriello (1974) reported a significant increase (P<0.01) of 0.2 °C in 

core temperature when lifting at 4.3 lifts.min'1 in 27 °C WBGT compared to

17.2 °C WBGT but in the present study these conditions were not significantly 

different. Indeed, an examination of the mean core temperatures in these two 

environments at 4.3 lifts.min'1 in the present study show an increase of less than 

0.03 °C. Possible reasons for the difference in response include the relative 

ages of the two sample populations (Snook & Ciriello’s participants were, on 

average, ten years older and ranged up to 56 years), a slight variation in lifting 

duration (40 vs 35 minutes) and the fact that aural temperature was measured 

here as opposed to rectal temperature. The final point is interesting because, all 

things being equal, one would expect rectal temperature to be less sensitive to 

changes in activity level and to rise more slowly.

Maximum Acceptable Weight of Lift
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The main effects for the Maximum Acceptable Weight of Lift (MAWL) were both 

significant. Unfortunately, Tukey’s tests did not identify any significant 

differences and identifying their exact locations was hindered by the limited 

scope for follow-up analysis in SPSS. Pairwise comparisons using no 

corrections (Least Significant Difference) yielded significant differences between 

the hot-humid condition and both the thermoneutral and warm-dry conditions. 

The hot-dry condition was also significantly different to the thermoneutral 

environment. Hafez & Ayoub (1991) reported a significant interaction effect 

(P=0.01) for MAWL so examination of their main effects must be treated with 

caution. At 3 lifts.min’1, MAWL decreased by 5.6% at 27 °C WBGT and by 

18.3% at 32 °C WBGT when compared to 22 °C WBGT. The percentage 

reductions in comparable conditions in the present study were 1.5% and 7% 

respectively. At 6 lifts.min'1 in Hafez & Ayoub (1991), MAWL decreased by 7.7% 

at 27 °C WBGT and by 21.2% at 32 °C WBGT when compared to 22 °C WBGT. 

The percentage differences in comparable conditions in the present study were 

+1.8% and 10% respectively. That there should be an increase in MAWL in a 

supposedly more uncomfortable environment is surprising and possible reasons 

for this will be discussed in a later section. For frequency, Hafez & Ayoub 

(1991) reported reductions of ~20% between 3 and 6 lifts.min'1 in all 

environments. In similar conditions in the present study the percentage 

reductions varied between 8 and 14%.

Snook (1978) has suggested that tasks should only be performed with weights 

that are acceptable to 75% of the working population and has published tables 

based on data collected in many studies (Snook & Ciriello, 1991). According to 

the tables the weight acceptable to 75% of the working population lifting from
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floor to knuckle-height at 1 lift.min'1 is 22 kg. The mean MAWL in the present 

study at this frequency across environments slightly exceeded this value at 22.4 

kg. The mean MAWLs at 4.3 and 6.7 lifts.min'1 also exceeded the published 

75% values for these lifting frequencies (21 vs. 17 kg and 18.6 vs. 14 kg 

respectively).

If one considers the results of MAWL with respect to the modified NIOSH 

equation published by Hidalgo et al. (1997) it can again be seen that the 

reductions in amount of weight lifted in the warmer environments were modest. 

The heat stress multiplier is the same (1.0) for thermoneutral, warm-dry, warm- 

humid and hot-dry conditions since none of these conditions exceeded 27 °C 

WBGT. The hot-humid condition was 34 °C WBGT however and the multiplier 

at this temperature is 0.83. Since all of the other components of the equation 

were held constant then one would have expected to see decrements in MAWL 

between thermoneutral and hot-humid that approximated this multiplier but this 

was not the case. At 1 lift.min'1 for example the mean MAWL in the 

thermoneutral condition was 22.6 kg. Using the heat stress multiplier the 

modified equation yields a value of 18.8 kg (22.6*0.83) at 34 °C WBGT yet the 

actual mean MAWL in the hot-humid environment at the same lifting frequency 

was 22.2 kg. There were similar discrepancies at the higher lifting frequencies: 

17.8 kg (modified NIOSH) vs. 19.9 kg (actual) at 4.3 lifts.min'1 and 16 kg vs.

17.1 kg at 6.7 lifts.min'1. It is of course possible that the heat stress multiplier 

itself is inaccurate. Hidalgo et al. (1997) cite an unpublished PhD thesis (Hafez, 

1984) as the multiplier’s origin and it may be that it requires further validation. In 

particular, the precise point (WBGT value) at which the multiplier comes into 

effect is +27 °C. There were two environments in the present study that had a
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WBGT of 27° C and the MAWL in one of these (hot-dry) differed significantly 

from the thermoneutral condition (17 °C WBGT). Unfortunately, the multiplier 

was not validated below 19 °C WBGT so its value at 17 °C is not known. Even 

so, this finding would seem to contradict the underlying assumption of the 

multiplier (i.e. that environments up to and including 27 °C WBGT impose the 

same physiological strain).

The mean box-weights lifted in this study all exceeded the guidelines published 

in the HSE MHOR guidance document (HSE, 1998). Using the diagram 

reproduced in chapter 2 the base weight limit for this type of lifting task would 

be 20 kg when lifting at 1 lift.min'1: At 6.7 lifts.min' 1 the guidance recommends a 

50% reduction which would impose a limit of 10 kg. There is no specific 

guidance for 4.3 lifts.min' 1 but it is suggested that a 40% reduction would be 

appropriate, imposing a limit of 12 kg. The participants exceeded these limits at 

each of the three lifting frequencies.

To summarize, the percentage reductions in MAWL were generally much 

smaller in the present study and possible reasons for this will be discussed 

shortly. The reductions in MAWL were also smaller than expected when 

baseline values in the thermoneutral condition were recalculated using the heat 

stress multiplier in the modified NIOSH equation.

Ratings of Perceived Exertion

There were significant main effects for environment and frequency in ratings of 

perceived exertion (RPE). Tukey’s tests identified RPE in hot-humid as 

significantly higher (P<0.01) than in either thermoneutral and warm-dry. For
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frequency, RPE was significantly higher (P<0.05) when lifting at 6.7 lifts.min' 1 

compared to 1 lift.min"1. The mean differences when expressed as RPE scores 

were small however (The greatest mean difference was 2 in both environment 

and frequency) and possible reasons for this will be discussed shortly. There do 

not appear to be any lifting studies in the heat that have recorded RPE but the 

results are in agreement with other non-thermally related research into manual 

handling. Wu & Chen (1997) and Asfour et al. (1983) for example have reported 

consistent rises in RPE as the frequency of lift increases in a thermoneutral 

environment. Furthermore, these rises are also relatively small ( | -1.7 between 

1 and 6 lifts.min'1) so they can be considered comparable despite slight 

variations in experimental design.

Unexpected Findings

A surprising outcome of this study was the consistency of MAWL values across 

all conditions. There were significant main effects for both environment and 

frequency admittedly but upon closer examination the mean weights lifted only 

varied by a maximum of 5.5 kg. Consider that at 4.3 lifts.min' 1 the difference in 

mean MAWL between thermoneutral and hot-humid was -1.6 kg and at 6.7 

lifts.min'1, just -2.1 kg. The percentage reductions in MAWL across both main 

effects were considerably less than in previously published research. The 

practical significance of these findings will be discussed in a forthcoming section 

but a comment on the phenomenon of stable MAWLs is merited here.

The participants were remarkably conservative in their box-weight adjustments, 

even after the training period and the emphasis placed on trying a wide range of 

weights. The maxim that ‘you don’t know if its too heavy until you have tried it’

94



was stressed in both the script and in verbal instructions during the training 

period. A number of the participants were students without specific industrial 

backgrounds and many adopted a cautious approach to the lifting task because 

of a perceived injury risk (Some participants were particularly protective of their 

lower backs despite being screened for any prior injuries). This would be less 

likely to occur in industry where some form of ‘natural selection’ would be 

expected to take place. Individuals who find that they are unsuited to the 

demands of manual handling are likely to seek alternative employment unless 

there is an overriding financial imperative that forces them to persevere.

In a similar vein, mean ratings of perceived exertion varied by only a few points 

across all conditions. This despite the thorough grounding provided during the 

training phase. Some of the participants were sports science undergraduates or 

graduates for whom both the RPE scale and its correct use should have been 

second nature. All, including those from completely different backgrounds, 

received at least six exposures to the scale prior to commencement of the main 

testing phase. There is a possibility that some participants were conscious of 

the ratings given by the other participant in the session (most sessions were run 

with two participants lifting simultaneously) and that a competitive element was 

introduced. The effects of this should have been minimal however because 

participants were asked to convey their ratings discreetly to the tester and also 

because of the high noise levels in the chamber. It might also be the case that 

the RPE scale is inherently unsuitable for use during intermittent tasks. 

Participants were advised to give an overall feeling of exertion (i.e. not focusing 

on any particular body area or specific discomfort) and to consider this in terms 

of an average over the lifting cycle. This appeared to be easier to do at 4.3 and
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6.7 lifts.min' 1 where, although still intermittent, the frequencies could be 

considered high enough to be thought of as ‘continuous’. Certainly, many 

participants found it difficult to rate their exertion during the sessions when they 

had to lift only once a minute. The lifting task took approximately 2.5 seconds to 

perform so in these sessions the participant was standing still for the best part 

of 57 seconds. In light of this it is not hard to imagine the difficulties experienced 

in accurately gauging exertion. Despite some significant differences in the 

analysis it would seem that the RPE scale is not a sensitive enough tool to 

regulate work in thermal environments particularly at very low lifting frequencies.

Recent research into the effects of dissimilar environments with equivalent wet 

bulb globe temperatures (WBGT) has shown that physiological strain is greater 

when humidity is higher (Kellett et al., 2003). This finding runs contrary to the 

assumption underpinning the WBGT scale that any combination of 

environmental conditions will impose the same physiological strain providing the 

WBGT number is the same. The results of Kellett et al. (2003) have yet to be 

replicated so the fact that there were no significant differences in physiological 

strain between the hot-dry and warm-humid conditions (both ~27 °C WBGT) in 

the present study should perhaps not come as a complete surprise. It is 

possible that the variation in response, if indeed it is a true response, only 

manifests itself at higher WBGT levels (Kellett et al, 2003 tested their 

participants at 32 °C WBGT). A second possibility is that the response is only 

observed during a longer-term, continuous exercise protocol such as the 60- 

minute treadmill walking protocol adopted by Kellett et al. (2003).

Practical Significance of the Findings
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In this study, generalized eta squared effect sizes were calculated to 

supplement the findings from the analyses of variance. These are discussed 

together with an examination of the descriptive statistics so that a clearer 

picture of the real-world effects can be gleaned.

The calculated effect sizes were larger for both heart rate and core temperature 

compared to MAWL and RPE. Part of the reason for the much smaller effects 

for the latter two variables is probably attributable to the previously mentioned 

conservatism of the participants. The large and medium effects for heart rate 

and core temperature show that, even when participants are allowed to regulate 

their own workload to suit the conditions, they don’t compensate sufficiently 

leading to a concomitant increase in both variables.

The differences in mean core temperature between thermoneutral and hot- 

humid at the three lifting frequencies were 0.4, 0.65 and 0.9 °C respectively. 

These increases were apparent after just 35 minutes of intermittent activity and 

represent the temperature in the auditory canal, a dynamic and fast-responding 

thermal environment. One can only speculate at the rises that might occur 

during extended periods of lifting or of the temperature in the rectum which, 

although slower to respond, would continue to rise for a period after activity has 

ceased.

Statistical analysis of mean skin temperature was not possible because of the 

number of missing data sets. The descriptive data showed that there was a 

considerable rise in mean skin temperature between the thermoneutral (~31 °C) 

and both the hot-dry and hot-humid environments (—35 °C) however. The mean
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increase in core temperatures between these environments was between 0.3 

and 0.7 °C meaning that the thermal gradient between core and skin was 

flattened somewhat. This would reduce the body’s ability to dissipate heat 

effectively from the deep tissues and skeletal muscles.

Frequency of lift had a larger effect on heart rate than environment, partly due 

to the adoption of 1 lift.min' 1 as the lowest lift frequency. Mean heart rates at 

this frequency were, particularly in the less arduous environments, only barely 

raised above resting levels. The much elevated heart rates in the more hostile 

environments suggest that the participants would have struggled to maintain 

their workload throughout a complete working day. This highlights a limitation of 

the psychophysical strategy and demonstrates the difficulty in selecting a 

realistic box-weight in a relatively short space of time. There was a huge 

amount of inter-individual variation in heart rate response with one participant 

routinely working at or around 2 0 0  beats.min' 1 with no apparent discomfort or 

breathlessness. This suggests that heart rate should not be used in isolation 

when determining safe withdrawal criteria in hot environments.

The general trend for heart rate response at 6.7 lifts.min' 1 was that there was a 

plateau after the end of the MAWL stabilisation period except in the hot-humid 

environment where heart rate continued to rise throughout the session. At 4.3 

lifts.min'1, heart rate reached a plateau in all environments suggesting that the 

upper limit for manual handling in hot-humid environments lies somewhere 

between 4.3 and 6.7 lifts.min'1. Indeed, Snook & Ciriello (1991) have stated that 

tasks conducted at 4.3 lifts.min"1 generally result in individuals remaining within
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physiological guidelines and that 94% of industrial tasks are performed at this 

frequency or slower.

There was a small frequency effect for MAWL and no meaningful effect for 

environment. This reflects the aforementioned conservatism of the participants 

when selecting box-weights. The mean MAWL at 1 lift.min' 1 was 22.4 kg 

compared to 21 kg and 18.6 kg at the two higher frequencies. It is unlikely that 

the participants would have benefited from a longer adjustment period as most 

seemed to finalise the box-weights within the first ten minutes. Although a 40- 

minute adjustment period was used in the early work by Snook & Ciriello (1974), 

more recent studies (Chen, 2003; Mital, 1987; Wu & Chen, 1997) have reported 

that between 20-25 minutes is an adequate length of time to establish MAWL.

Upon comparison with the tables published by Snook & Ciriello (1991) the 

participants in the present study exceeded the weight acceptable to 75% of the 

working population. This means that they would be at greater risk of suffering a 

lower back injury according to the data collected by Snook (1978). It should be 

remembered that this conclusion is based on data from customer claims to 

insurance companies. As yet there are no long-term, epidemiological studies 

that have specifically implicated manual handling tasks in the development of 

lower back disorders (Dempsey, 1998). Also, at 6.7 lifts.min' 1 the mean MAWL 

of 18.6 kg approached the value of 19 kg which was highlighted as exceeding 

the physiological limit of 33% VĈ max- Coupled to this, the finding that MAWL 

values remained relatively consistent across conditions indicates that the 

psychophysical strategy (if used in isolation) may be a poor method of 

protecting workers from heat injury.
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There were medium effects for both frequency and environment for ratings of 

perceived exertion. The ramifications of the findings for RPE have been largely 

covered. Mean ratings ranged from 10 in thermoneutral at 1 lift.min' 1 to 13.7 in 

hot-humid at 6.7 lifts.min'1, the latter value recorded despite mean heart rates in 

this condition exceeding 152 beats.min'1. There is a need for a ratings tool 

sensitive enough to be used during intermittent activity although whether one 

could be developed for tasks as infrequent as 1 lift.min' 1 and below is 

questionable.

Overall, frequency of lift provided marginally larger effects than environment 

suggesting that this is the more important factor to control when considering 

reductions in heat stress. The environment effect was only greater than that for 

frequency for core temperature and even then the difference was minimal.

Limitations of the Design

Repeated measures designs are generally accepted as having greater power 

than designs where independent groups are used (Huck, 2000) because each 

participant acts as his own control. The increase in power permits smaller 

sample sizes to be used, making these designs more efficient. However, the 

characteristics that make repeated measures so attractive can also lead to 

problems. If the participant is asked to attend repeated test sessions over a 

period of time, fatigue and boredom can set in. There may also be a carry-over 

or learning effect from one session to the next which distorts the results. The 

participants in this study were required to attend 15 test sessions in addition to 

acclimation and MAWL stabilisation so these were very real concerns.
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The issue of fatigue can probably be discounted as the activity levels could not 

be considered excessive. Any delayed onset muscle soreness and general 

fatigue experienced at the beginning due to undertaking a novel form of 

exercise were eliminated during the acclimation phase. Boredom was a distinct 

possibility as the protocol was especially dull (try listening to one of the audio 

tapes with the intermittent beeping sound for any length of time!) To try to 

minimise this the participants were reminded at the start of each session what 

exactly was expected of them. They were allowed to talk to each other, to the 

lowerers and data-collecters during the sessions with the proviso that they didn’t 

discuss the experiment or how they were feeling at any particular time.

Carry-over effects were minimised by using an unbalanced Latin square, 

ensuring that the order of test conditions was almost completely counter­

balanced across participants. Unfortunately a balanced Latin square could not 

be used because of the odd numbers of both independent variables. A 

simplified design with fewer, even numbers of independent variables would 

have meant that a balanced Latin square could have been used, thus ensuring 

complete counter-balancing. This solution would have had the additional benefit 

of reducing boredom and fatigue because of the reduced number of repeated 

measures.

The method of attaching thermistors to the skin was inadequate resulting in 

many missing data sets. The thermistors became detached due to a 

combination of continuous movement by the participants, friction of clothing and 

perspiration which weakened the bond between the fixing tape and the skin.
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The loss of data meant that statistical analysis of mean skin temperature was 

not possible.

Although an attempt was made to control hydration status it could not be stated 

with complete confidence that each participant was euhydrated for every 

session. It is unlikely that the use of a colour chart to assess hydration would 

have yielded any more useful information. Perhaps this aspect could be better 

controlled by providing a measured quantity of water to be consumed in the 

hours prior to testing. This would still have the limitation of the water 

consumption being self-reported however.

Regarding the generalizability of the findings, a number of factors should be 

borne in mind. Only males under the age of 40 years (most of whom had no 

industrial experience) were studied so care should be taken when interpreting 

the results with respect to other populations. Snook & Irvine (1967) 

recommended that for studies of this type, older participants who are 

experienced industrial workers and better conditioned to the lifting task should 

be recruited. During the preliminary stages of the study it was anticipated that 

our research collaborators would supply volunteers with these attributes but 

unfortunately this did not transpire.

The results are also only applicable to the floor to knuckle-height lifting task. 

They should not be generalized to any other type of lift (floor to shoulder-height 

or knuckle to shoulder-height for example) or other manual handling task.
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The environmental chamber was only able to manipulate air temperature and 

humidity and there was no radiant heat source present. This meant that we 

were unable to replicate the working conditions experienced where ovens or 

kilns were nearby.

6. Conclusions

The environment had a significant effect on both physiological strain and the 

amount of weight lifted. Heart rate and core temperature were significantly 

higher and MAWL significantly lower in the hot-humid environment compared to 

all of the other environments. At 6.7 lifts.min-1 core temperature was also 

significantly higher in the hot-dry and warm-humid conditions compared to 

thermoneutral. Ratings of perceived exertion were significantly higher in the hot- 

humid condition compared to both warm-dry and thermoneutral. These findings 

demonstrate that, although participants adjust their workloads downwards in 

hotter conditions, they do not compensate adequately and experience increases 

in physiological strain.

Frequency of lift also had a significant effect on all of the dependent variables. 

Across the board, lifting at 6.7 lifts.min-1 produced significant differences in 

physiological strain and weight lifted compared to all other frequencies. The 

only differences between 4.3 lifts.min-1 and 1 lift.min-1 were for ratings of 

perceived exertion and core temperature in the hot-humid condition.

Effect sizes were largest for heart rate and core temperature, ranging from 0.22 

to 0.63 for the main effects. In general, effect sizes for both MAWL and ratings 

of perceived exertion were much smaller and it is suggested that this is partly
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due to the conservatism of the participants in their weight selections and 

judgements of exertion.

There were no significant differences in physiological response between two 

different environments with an equivalent WBGT (27 °C). This finding is 

contrary to other recent research for treadmill walking but it is possible that any 

differences only manifest themselves at higher WBGT values for the manual 

handling tasks used in the present study.
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5 The Effects of Cold Environments on Performance 
of an Intermittent Lifting Task

1. Summary

This chapter presents an original study into the effects of cold environments on 

the performance of a floor to knuckle-height lifting task. It also examines the 

participants’ responses while lifting in a 0 °C environment when wearing two 

different clothing ensembles.

2. Introduction

The review of literature highlighted the fact that there was little or no research 

into the effects of performing intermittent lifting tasks in the cold. This was 

something of a surprise since there are so many people employed in 

workplaces that are maintained at cool or cold temperatures.

The increased consumption of ready meals, pre-packed sandwiches, prepared 

vegetables and packaged salads for example has meant that the chilled food 

industry has expanded dramatically in recent years. The chilled meals sector in 

the UK has grown from an estimated £173 million in 1988 to over £1,750 million 

in 2005 (Chilled Food Association, 2006). In 2004 the industry employed over 

56,000 people although not all of these work in cold environments and exact 

figures for these are unavailable. Chilled foods have to be stored at refrigeration 

temperatures below 8 °C and optimally at 5 °C. During preparation, food safety 

is principally ensured by temperature so employees in this sector would typically 

be exposed to conditions at or below 8 ° C for extended periods.
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Other workplaces that operate at similar temperatures include slaughterhouses 

( 5 - 1 2  °C) and warehouses (<15 °C). This study deliberately excludes any 

examination of the frozen food industry or indeed any working environment that 

operates below 0 °C. Typically, cold stores in the frozen food industry are 

maintained at around -25 °C and it was not possible to replicate this 

environment in our chamber. Outdoor environments with the additional factors 

of wind-chill and precipitation in all its forms were similarly impossible to 

replicate and were also excluded.

The problems for people working in the cold are more numerous than for those 

working in the heat. The human body is better designed to cope with heat and 

the most effective forms of preventing heat loss in cold environments are 

behavioural. This usually means avoidance of the cold if at all possible and 

wearing clothing with better insulative properties. The musculoskeletal system is 

at risk in the cold probably due to persistent low muscle and joint temperature. 

A review by Griefahn et al. (1997) found that the onset of musculoskeletal 

disorders appeared to be accelerated by working in the cold. The peripheries of 

the body, notably the hands and the feet, can suffer particular problems 

because of the phenomenon of physiological amputation where a decline in 

core temperature results in vasoconstriction at the extremities in order to 

conserve heat (Havenith et al., 1995). Vasoconstriction moves progressively 

from the extremities through the lower limbs as temperature continues to 

decline (Raman & Roberts, 1989). In this situation the concomitant loss of 

manual dexterity and grip strength can make many tasks very difficult to 

perform.
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In cold air, as opposed to water immersion, both physical activity and clothing 

ensembles are factors which are known to help maintain a safe core 

temperature. Physical activity increases metabolic rate and produces heat 

whilst clothing creates layers of warm air which insulate the body from the 

environment (Noakes, 2000). The optimal combination of the two will depend on 

the rate of physical activity and the level of clothing insulation and it is fair to say 

that the ideal situation is rarely achieved. Most people can identify with the 

scenario where they have ‘wrapped-up warm’ prior to going out on a hill walk 

only to find themselves hot and sweaty halfway along the ascent. Industrial 

workers can experience this problem because they will often move between 

dissimilar thermal environments and their activity levels may vary throughout 

the course of a day. In a south Yorkshire supermarket distribution warehouse 

which was visited for this study for example, workers performed picking 

operations in two adjacent rooms; one maintained at around 0 °C, the other at 

around 12 °C. The ideal ensemble for the cooler environment was too warm to 

wear for any length of time in the warmer environment and vice-versa. Extra 

clothing can produce a hobbling effect, limiting free movement and gloves worn 

to keep the hands warm can interfere with tasks requiring a fine degree of 

manual dexterity.

The purpose of this experiment was to assess physiological strain and the 

amount of weight lifted when participants were exposed to a range of cold 

environments and required to lift at different frequencies. The five environments 

were chosen to reflect the conditions reported to exist in the chilled food 

industry and warehouse environments and those measured during the site visits. 

There was a ‘thermoneutral’ environment representing a baseline where a
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standing man wearing a clothing ensemble of approximately 1.06 Clo would be 

expected to experience no net heat gain nor net heat loss to his surroundings. 

The other four environments were 10 °C, 5 °C and two at 0 °C where two 

different clothing ensembles were tested. The relative humidity varied between 

40 and 60% across all conditions.

Three lifting frequencies were used which were again a reflection of those used 

previously and what was encountered on the site visits. They were the same as 

for the hot study: 1 lift.min' 1 ,4.3 lifts.min' 1 (a lift every 14 seconds) and 6.7 

lifts.min' 1 (every nine seconds). This choice of frequencies again permitted easy 

comparison of the results with the published tables of Snook & Ciriello (1991).

3. Methods

3.1 Participants

Twelve male participants between the ages of 18 and 40 years were recruited 

to take part in the study. Anyone with a previous history of musculoskeletal 

disorders were excluded from the study, as were participants with illness, 

disorders or diseases known to affect the thermoregulatory system (e.g. thyroid 

conditions). All participants were white, northern Europeans except for one 

Indian who had been resident in the UK for at least two years. Participant 

details are presented in table 18 below.

n Age Stature Mass (kg) Knuckle Body Body 
(years) (m) Height (m) Mass Surface

 _______________________________________________________ Index Area (m2)
12 26 ±5.6 1.77 ±0.1 75.1 ±9.2 0.8 ± 0.04 24.1 ± 2.7 1.9 ±0.1
Table 18. Participant Details (mean ± 1 standard deviation). Body Surface Area

from Mosteller (1987).

3.2 Procedures
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Skin thermistors (Grant Instruments, Cambs. UK) were fixed to the body with 

Micropore tape (3M, USA) according to the Ramanathan (1964) four point 

measurement site for estimation of mean weighted skin temperature; at the 

chest (centre of pectoral region, midpoint between nipple and clavicle), arm 

(posterior aspect of the upper-arm, at the centre of the belly of the triceps), thigh 

(anterior aspect, over rectus femoris at midpoint of femur) and shin (anterior 

aspect of lower-leg, at midpoint of tibia). An additional skin thermistor was 

attached to the dorsal surface of the second finger on the proximal phalanx. An 

aural bead thermistor (Grant Instruments, Cambs. UK) was fitted into the ear, 

fixed into position with cotton wool and tape and insulated with a pair of 

industrial ear defenders. The aural thermistor used was the modified version as 

described in the previous chapter. All thermistors were connected to a data 

logger (Squirrel 1021, Grant Instruments, Cambs. UK) so that measurements 

could be recorded throughout testing. The participant also put on a heart rate 

monitor (Polar S610, Polar, UK) prior to donning the clothing ensemble.

The participants then dressed in either of the two designated clothing 

ensembles depending on the session that they were attending. The details for 

the standard and enhanced clothing ensembles are presented in tables 19 and 

20  below.

Clothing Item C!o
Underwear (shorts as supplied by participant) 0.06
Working trousers (cotton) 9 oz 0.25
T-shirt, thermal 0.15
Fleece jacket 0.4
Socks, long, thick 0.1
Safety boots 0.1
Estimated Clo of ensemble 1.06

Table 19. Standard clothing ensemble and estimated Clo value.
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Clothing Item Clo
Underwear (shorts as supplied by participant) 0.06
Underpants, Long, Thermal 0.1
T-shirt, thermal 0.15
Working trousers (cotton) 9 oz 0.25
Fleece jacket 0.4
Woolly hat 0.1
Socks, long, thick 0.1
Safety boots 0.1
Estimated Clo o f ensemble 1.26

Table 20. Enhanced clothing ensemble and estimated Clo value.

The ensembles were chosen to mimic as closely as possible the type of clothing 

worn by workers in the cold environments we visited. The estimated Clo was 

designed to ensure that the participant was comfortable while standing still in 

the thermoneutral environment.

3.2.1 Orientation

The first two days were dedicated to orienting the participants to both the 

climatic environment and the lifting protocol. Orientation took the form of two 

one-hour sessions per day in the environmental chamber at an air temperature 

of 10 °C.

3.2.2 MAWL Stabilisation

The participants were introduced to the psychophysical method of lift 

assessment in one session prior to commencement of testing proper. The 

purpose of this session was to habituate the participant to the proposed lifting 

protocol and to ensure that they were able to consistently select an acceptable 

box-weight (i.e. to demonstrate the repeatability of the protocol). It also provided 

an opportunity to practice using the RPE scale especially for those participants
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for whom the concept was unfamiliar. The protocol is described in detail in 

chapter 3.

3.2.3 Main Experimental Sessions

The main portion of the study commenced once orientation and MAWL 

stabilization had been completed. This comprised 15 test sessions made up of 

a combination of five environments and three lifting frequencies. A within- 

subjects repeated measures design was used. Each participant took part in all 

of the fifteen test conditions and exposure to each condition was randomised 

using an unbalanced Latin Square. Table 21 describes the environmental 

conditions chosen and also the actual mean values (and standard deviations) 

achieved across the entire experiment. The thermoneutral environment differed 

from the hot study because of the extra clothing insulation required here. The 

participants in the present study would have probably experienced a net heat 

gain while at rest in the thermoneutral environment specified for the hot study.

Table 22 describes the frequency of lift undertaken at each condition.

Environment A ir temperature (°C) Relative hum idity (%)
Thermoneutral 16 (15.9±0.7) 65 (67.3±6.5)
10° C 10 (9.9±0.8) 55 (56.2±7.6)
5° C 5 (5±1) 45 (4 4 .3  ± 4 .4 )
0° C (standard ensemble) 0 (0.5±0.7) 55 (60±3.6)
0° C (enhanced ensemble) 0 (0.4±0.8) 55 (54.8±3)
Table 21. Environmental Specifications (actual means ± 1 standard deviation

achieved).

Frequency L ifts .m in1
1 every 9 seconds 6.7

1 every 14 seconds 4.3
1 every 60 seconds 1

Table 22. Lifting frequencies.

Fifteen sessions were conducted at the same time each day on Monday to 

Friday. The participants were clothed and equipped as in the orientation
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sessions and then rested for 20  minutes in an intermediate room prior to 

commencement. This period allowed their aural environment to stabilise once 

the bead thermistor had been fitted and insulated. During this period the shelf 

heights were set and box starting weights were randomised. The participant 

was told the lift frequency for the session but was not aware of the 

environmental conditions nor the starting box weight. Where two participants 

were tested simultaneously (as was usually the case) they were informed that 

their starting box weights were different thus removing any competitive element 

from the session. They then completed a grip strength test (Grip Strength 

Dynamometer, TKK 5401, Grip D, Takei Scientific Instruments, Japan) in the 

intermediate room. The dynamometer was held in the dominant hand in a 

relaxed fashion at the participant’s side and then gripped as tightly as possible, 

isometrically contracting the muscles of the fingers and lower arm. Participants 

were allowed up to three trials and the highest reading was taken. The 

participants entered the chamber and all recording equipment was started. The 

protocol was as detailed in Chapter 3 with the participants lifting for 20 minutes 

whilst adjusting the box weight and then for a further 15 minutes at the box 

weight selected. RPE was recorded every five minutes throughout the session 

and the participants were encouraged to convey this information discreetly so 

as not to influence the other lifter (this proved relatively easy due to the level of 

ambient noise in the chamber). Heart rate readings were also taken every five 

minutes as a back-up procedure. To comply with ethics a second experimenter 

was always present should an emergency arise and drinking water was 

available at all times. The intermediate room was maintained at a warm 

temperature and blankets were available for re-warming should the need to 

remove anyone have arisen.
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After 35 minutes the test was stopped, the grip strength test was repeated 

immediately and then the participants were removed to the intermediate room to 

de-kit. The final box weight was recorded as the maximum acceptable weight of 

lift (MAWL). Heart rate and temperature data from the monitors and data 

loggers were downloaded to a PC for analysis.

3.2.4 Withdrawal Criteria

The withdrawal criterion was set at an aural temperature of 35.5 °C providing a 

safety margin which protected the participant from the onset of hypothermia. 

Because of the considerable inter-individual response to the cold the 

researchers also relied on their observations of each participant to assist them 

in their decision to withdraw.

3.3 Hypotheses

The null hypotheses to be tested were:

1. (Ho1) Frequency of lift does not significantly affect the dependent 

variables (grip strength excluded).

2. (Ho2) There is no difference in physiological strain when lifting in a cold 

environment compared to lifting in a thermoneutral environment.

3. (H03) There is no difference in MAWL when lifting in a cold environment 

compared to lifting in a thermoneutral environment.

4. (Ho4) There is no difference in grip strength after lifting in cold 

environments compared to lifting in a thermoneutral environment.
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5. (Ho5) There is no difference in core temperature and heart rate when 

lifting in 0° C in a standard clothing ensemble compared to lifting in 0° C 

in an enhanced clothing ensemble.

6 . (H06 ) There is no difference in finger surface temperature when lifting in 

a cold environment compared to lifting in a thermoneutral environment.

3.4 Statistical Analysis

Six of the dependent variables (heart rate, core temperature, mean skin 

temperature, ratings of perceived exertion, maximum acceptable weight of lift 

and mean finger surface temperature) were each planned to be individually 

analysed for significant differences using a two-factor ANOVA with repeated 

measures on both factors. Change in grip strength was analysed using a three- 

way ANOVA with repeated measures on all factors 

(time*environment*frequency). a was initially set at 0.05 but subsequently 

adjusted using a Bonferroni correction to 0.007 (0.05/7) to account for the seven 

planned ANOVA tests (Huck, 2000). Significant F ratios were followed-up by 

Tukey’s post-hoc tests and generalized rj2 effect sizes were computed. The 

procedures are described in detail in chapter 3.

4. Results

4.1 Heart Rate

The mean end heart rate for each lifting frequency by environment is presented 

in figure 16 below.
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Figure 16. Mean end heart rate in each condition (columns represent means, 
error bars represent ± 1 standard deviation).

Heart Rate -  ANOVA

All of the data for HR were normally distributed. The Mauchly’s statistic for 

frequency was significant so the Greenhouse-Geisser correction was used for 

this main effect as sphericity could not be assumed. There was a significant 

main effect for frequency [F(1.07,11.7) = 65.6, P<0.001]. The main effect for 

environment and the interaction effect were not significant.

Heart Rate -  Post Hoc Tests

The significant main effect for frequency was investigated further using Tukey’s 

HSD post hoc tests. Heart rate at 1 lift.min' 1 was significantly lower (P<0.01) 

than heart rate at 6.7 lifts.min-1. No other comparisons were statistically 

significant.

Heart Rate -  Effect Sizes

Generalised rj2 effect sizes were calculated for both the main effects and the

interaction and are presented in table 23.
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Source Gen nz effect
Environment 0 None
Frequency 0.51 Large
Interaction 0.01

^  _____l  _ _

None
Table 23. Generalised n2 effect sizes for Heart Rate.

4.2 Core Temperature

The mean end core temperature for each lifting frequency by environment is 

presented in figure 17 below.
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Figure 17. Mean end core temperature in each condition (columns represent
means, error bars represent ± 1 standard deviation).

Core Temperature -  ANOVA

All of the data for core temperature were normally distributed. Mauchly’s test 

was not significant for any of the factors so sphericity was assumed in the main 

analysis. There were significant main effects for environment [F(4,44) = 15.7] 

and frequency [F(2,22) = 50.8] both P<0.001. The interaction effect was not 

significant.

Core Temperature -  Post Hoc Tests
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The significant main effects for environment and frequency were investigated 

further using Tukey’s HSD post hoc tests. Core temperature in the 

thermoneutral environment was significantly higher (P<0.05) than core 

temperature in 0° C while wearing the standard clothing ensemble. There were 

no other statistically significant differences for the environment effect. For the 

frequency effect, core temperature was significantly lower (P<0.05) when lifting 

at 1 lift.min'1 compared to lifting at the other two frequencies. There was no 

significant difference in core temperature between 4.3 and 6.7 lifts.min"1.

Core Temperature -  Effect Sizes

Generalised r|2 effect sizes were calculated for both the main effects and the 

interaction and are presented in table 24.

Source Gen r f effect
Environment 0.1 Small
Frequency 0.22 Medium
Interaction 0.02

^  ■  .7 J  T  rr  X T : "
Small

Table 24. Generalised n  ̂effect sizes for Core Temperature.

4.3 Maximum Acceptable Weight of Lift (MAWL)

jjSjJ 6.7 lifts.min-11 lift.min-1 4 .3  lifts.min-1

25 -

Figure 18. Mean maximum acceptable weight of lift in each condition (columns
represent means, error bars represent ± 1 standard deviation).
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The mean MAWL for each lifting frequency by environment is presented in 

figure 18.

Maximum Acceptable Weight of Lift -  ANOVA

All of the data for MAWL were normally distributed. Mauchly’s test was 

significant for frequency and the interaction so a Greenhouse-Geisser 

correction was applied to these effects as sphericity could not be assumed. 

There was a significant main effect for frequency [F(1.4,14.8) = 34.4, P<0.001]. 

The main effect for environment and the interaction effect were not significant.

Maximum Acceptable Weight of Lift -  Post Hoc Tests

The significant main effect for frequency was investigated further using Tukey’s 

HSD post hoc tests. The MAWL was significantly higher (P<0.05) when lifting at 

1 lift.min'1 compared to 6.7 lifts.min’1. There were no other significant 

differences.

Maximum Acceptable Weight of Lift -  Effect Sizes

Generalised q2 effect sizes were calculated for both the main effects and the 

interaction and are presented in table 25.

Source Gen r f effect
Environment 0 None
Frequency 0.15 Medium
Interaction

J 2  r r l  x
0.01 None

Table 25. Generalised n2 effect sizes for Maximum Acceptable Weight of Lift.

4.4 Rating of Perceived Exertion (RPE)

The mean RPE (average of the three ratings taken during the final 15 minutes) 

for each lifting frequency by environment is presented in figure 19 below. Note
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that, although the RPE scale runs from 6 to 20, the y axis originates at 0 for 

sake of clarity.
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Figure 19. Mean rating of perceived exertion in each condition (columns 
represent means, error bars represent ± 1 standard deviation).

Rating of Perceived Exertion -  ANOVA

Six of the 15 data sets were not normally distributed and transformations were 

unsuccessful. Transformations attempted included taking the natural logarithm 

and the reciprocal of the square root. As with the hot study, Friedman tests for 

multiple repeated samples were performed as a limited alternative. The results 

of the Friedman tests are presented in table 26.

Factor n Chi-Square D f Asymp. Sig
Environment 12 7.4 4 ns
Frequency 12 16.7 2 <0.001
Table 26. Friedman tests of main effects for ratings of perceived exertion. 

The main effect for frequency was significant according to the Friedman 

analysis.

Analysis of Variance has been widely reported to be robust to violations of 

underlying assumptions (Keppel, 1973) so an ANOVA was also conducted on



these data. Mauchly’s test was significant for the frequency main effect so the 

Greenhouse-Geisser correction was applied. There was a significant main 

effect for frequency [F( 1.25, 13.7) = 10.4, P<0.005]. The main effect for 

environment and the interaction effect were not significant.

Rating of Perceived Exertion -  Post Hoc Tests

The significant main effect for frequency was investigated further using 

nonparametric Wilcoxon Signed Ranks tests for Matched Pairs. The RPE was 

significantly higher at 6.7 lifts.min"1 (P<0.01) compared to the other two 

frequencies. The difference between 1 lift.min'1 and 4.3 lifts.min’1 was not 

significant.

As with the omnibus F-test, the possibility that parametric analysis might be 

sufficiently robust to the violations of assumptions led to a follow-up 

investigation using Tukey’s HSD post hoc tests. Despite the significant omnibus 

F, Tukey’s tests were unable to identify any significant pairwise differences. It 

was possible to perform post hoc analysis using the work around in SPSS 

detailed in chapter 3 and also used in the hot study. Pairwise comparisons 

using the Bonferroni correction showed that RPE was significantly higher at 6.7 

lifts.min'1 (P<0.01) compared to the other two frequencies. The difference 

between 1 lift.min'1 and 4.3 lifts.min'1 was not significant. The results of the 

parametric and nonparametric analysis for RPE were the same for both the 

omnibus and post hoc tests.

Ratings of Perceived Exertion -  Effect Sizes
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Generalised q2 effect sizes were calculated for both the main effects and the

interaction and are presented in table 27.

Source Gen q Effect
Environment 0.01 None
Frequency 0.06 Small
Interaction

2 r r  ^
0.01 None

Table 21. Generalised n2 effect sizes for Ratings of Perceived Exertion.

4.5 Grip Strength Change

The mean change in grip strength from pre- to post-session is presented in

figure 20 below.

8?6.7 lifts.min'11 lift.min' |4.3 lifts.min
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Figure 20. Mean change in grip strength in each condition (columns represent 
means, error bars represent ± 1 standard deviation).

Grip Strength Change -  ANOVA

Two of the thirty data sets were not normally distributed but this was considered 

to have a minimal effect on the subsequent analysis. Mauchly’s test was 

significant for the interaction between environment and frequency and the 

Greenhouse-Geisser correction was therefore applied to this effect. There were
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no significant main effects nor any significant interaction effects for mean grip 

strength change.

Grip Strength Change -  Effect Sizes

Generalised rj2 effect sizes were calculated for all of the main effects and 

interactions. There was a small effect for time (Gen r|2 = 0.02) only.

4.6 Mean Skin Temperature

Data for mean end skin temperature (mean of final two minutes) were 

incomplete because the skin thermistors frequently became detached or broke 

during testing. There were a total of 81 sessions where skin data were complete 

out of a possible 180. The means and standard deviations for the complete data 

sets are presented in figure 21. No further statistical analysis was possible 

because of the lost data.
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Figure 21. Mean skin temperature in each condition (columns represent means, 
error bars represent ± 1 standard deviation).

4.7 Finger Surface Temperature
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The mean finger surface temperature (mean of final two minutes) in each 

condition is presented in figure 22 below.
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Figure 22. Mean finger surface temperature in each condition (columns 
represent means, error bars represent ± 1 standard deviation).

Finger Surface Temperature -  ANOVA

The data for mean finger surface temperature were all normally distributed. 

Mauchly’s tests were significant for environment and the interaction so 

Greenhouse Geisser corrections were applied to these effects. There was a 

significant main effect for environment [F(1.3,6.5) = 56.1, P<0.001]. The main 

effect for frequency and the interaction were not significant.

Finger Surface Temperature -  Post Hoc Tests

The significant main effect for environment was investigated further using 

Tukey’s HSD post hoc tests. Tukey’s tests did not identify any significant 

differences between environments so a follow-up in SPSS was conducted using 

the Bonferroni correction for multiple pairwise comparisons. Mean finger 

temperature was significantly higher in the thermoneutral condition compared to 

all of the other conditions (P<0.05). It was also significantly higher in 10° C
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compared to both 0° C (standard) and 0° C (enhanced) (P<0.05). Mean finger 

temperature was also significantly higher in 5° C compared to both conditions at 

0° C (P<0.05).

Finger Surface Temperature -  Effect Sizes

Generalised r|2 effect sizes were calculated for both the main effects and the 

interaction and are presented in table 28.

Source Gen r f effect
Environment 0.72 Large
Frequency 0.01 None
Interaction

2 ^
0.03 Small

Table 28. Generalised n2 effect sizes for Mean Finger Surface Temperature.

4.8 Synopsis

The six null hypotheses were tested using a combination of parametric and 

nonparametric omnibus and follow-up tests.

The first null hypothesis (Ho1) stated that frequency of lift does not significantly 

affect the dependent variables (grip strength excluded). The frequency main 

effects for heart rate, core temperature, ratings of perceived exertion and 

maximum acceptable weight of lift were all significant (all P <0.001). This null 

hypothesis is therefore rejected.

The second null hypothesis (H02) stated that there is no difference in 

physiological strain when lifting in a cold environment compared to lifting in a 

thermoneutral environment. There was a significant environmental main effect 

for core temperature and post-hoc tests identified the difference between the 

thermoneutral and 0 °C (standard ensemble) as significant (P <0.01). The null 

hypothesis is rejected.
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The third null hypothesis (Ho3) stated that there is no difference in MAWL when 

lifting in a cold environment compared to lifting in a thermoneutral environment. 

There was no significant main environmental effect for MAWL therefore the null 

hypothesis is retained.

The fourth null hypothesis (Ho4) stated that there is no difference in grip 

strength after lifting in cold environments compared to lifting in a thermoneutral 

environment. There was no significant main environmental effect for grip 

strength change therefore the null hypothesis is retained.

The fifth null hypothesis (H05) stated that there is no difference in core 

temperature and heart rate when lifting in 0 °C in a standard clothing ensemble 

compared to lifting in 0 °C in an enhanced clothing ensemble. There were no 

significant differences in these two variables in the two environmental conditions 

specified. The null hypothesis is therefore retained.

The final null hypothesis (H06) stated that there is no difference in finger surface 

temperature when lifting in a cold environment compared to lifting in a 

thermoneutral environment. There was a significant environmental main effect 

for mean finger surface temperature therefore the null hypothesis is rejected.

5. Discussion

The purpose of this study was to investigate the physiological strain and the 

amount of weight lifted when participants were exposed to a range of cold 

environments and required to lift at different frequencies. The results will be
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discussed with respect to previous findings in the literature. Any unexpected or 

anomalous findings will be identified and commented upon. The practical 

significance of the results will be assessed along with the limitations in the 

research design and suggestions for possible improvements will be made.

Findings with Respect to Previous Studies

Most investigations conducted on the responses of workers in the cold have 

taken the form of self-reporting questionnaires rather than experimental 

research. It is therefore difficult to draw direct comparisons with these findings.

Heart Rate

There was no environmental main effect for heart rate which was not expected 

since heart rate usually decreases in the cold to compensate for 

vasoconstriction and to prevent hypertension. In fact mean heart rates remained 

remarkably stable across environments, only varying between approximately 

104 and 107 beats.min'1. It is possible that the normally observed bradycardia 

in the cold was offset by the increased metabolic rate associated with lifting. 

The mean heart rate in the thermoneutral condition in the hot study (chapter 4) 

was 104.6 beats.min'1, a difference of only 2 beats.min' 1 compared to the 

present study. There was an upward trend in mean heart rate in the hot study 

across environments demonstrating that the cardiovascular response to working 

in the cold is different. Considering the decrease in core temperature across 

environments here (to be discussed), this would suggest that heart rate is an 

inappropriate measure of cold stress when working in indoor environments 

between 16 °C and 0 °C.
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The significant main effect for frequency was in agreement with previous 

findings. In contrast with the hot study however where the mean heart rates at 

both 4.3 and 6.7 lifts.min-1 were significantly higher than 1 lift.min-1, only 6.7 

lifts.min-1 was significantly higher than 1 lift.min-1. The mean heart rates at 4.3 

and 6.7 lifts.min-1 were 120.2 and 136 beats.min-1 respectively in the hot study. 

This compares with mean values of 111.2 and 127.1 beats.min-1 in the present 

study, providing further evidence of a blunted cardiovascular response to 

working in the cold.

Core Temperature

Environment and frequency significantly affected core temperature as they did 

in the hot study although in the previous case the interaction between the two 

was significant.

The only environment where core temperature was significantly lower than in 

thermoneutral was 0 °C (standard ensemble). The core temperature at 0 °C 

(enhanced ensemble) was not significantly lower than thermoneutral suggesting 

that the additional clothing in this ensemble, consisting of woolly hat and long 

thermal leggings, provided some measure of protection against heat loss.

Core temperature was significantly higher when lifting at both 4.3 and 6.7 

lifts.min-1 compared to 1 lift.min-1. The mean core temperatures at all three 

frequencies were all approximately 0.5 °C lower in the present study compared 

to the hot study. Although there was no significant interaction, the core 

temperatures at 1 lift.min-1 in 10 °C, 5 °C and both 0 °C conditions were all 

between 36.0 and 36.2 °C. This is concerning because the core temperature
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would probably be expected to fall further during a longer exposure. It would 

appear that the lowest lifting frequency in these lower air temperatures does not 

raise the metabolic rate sufficiently to prevent this decline.

Maximum Acceptable Weight of Lift

The environment did not have a significant effect on MAWL. This is contrary to 

the findings of the hot study where there was a downward trend in amount of 

weight lifted across environments. One point of interest is that, overall, mean 

weights were between 4 and 6 kg higher in the present study. It is possible that 

the participants deliberately increased their workloads in order to further raise 

their metabolic rates in an attempt to maintain thermal homeostasis.

As expected, frequency of lift had a significant effect on MAWL. The maximum 

acceptable weight at 6.7 lifts.min-1 was significantly lower than at 1 lift.min-1. In 

the hot study 6.7 lifts.min-1 was also significantly lower than 4.3 lifts.min-1 but 

that was not the case in the present study. Again, when examining the mean 

values across frequencies, they were all much higher than in the hot study. The 

mean MAWL at thermoneutral in the present study was 29.6 kg compared to

22.4 kg previously. Indeed, at 1 lift.min-1, some of the participants were lifting 

around 40 kg. This value is recorded in the tables of Snook & Ciriello (1991) as 

being acceptable to only 10% of the male working population. This suggests 

that if heavier weights are selected as a way of keeping warm, some workers 

might be putting themselves at increased risk of injury to the musculoskeletal 

system.
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With respect to the published tables of Snook & Ciriello (1991), the participants 

exceeded the weight acceptable to 75% of the working population at 1 lift.min'1. 

At 4.3 lifts.min'1 the mean weight lifted exceeded the 50% limit and at 6.7 

lifts.min'1 the 25% limit was exceeded. The mean weight lifted at 6.7 lifts.min'1 

also exceeded the reported physiological limit of 33% VC>2max-

As with the hot study, the mean box-weights lifted in this study all exceeded the 

guidelines published in the HSE MHOR guidance document (HSE, 1998). The 

participants exceeded the recommended limits at each of the three lifting 

frequencies.

Ratings of Perceived Exertion

There was no environmental effect for ratings of perceived exertion. This was 

perhaps to be expected as the findings in the literature are equivocal on this 

point. The stability of RPE across environments mirrors the relative stability of 

both heart rate and MAWL also found in this study.

According to the results of the nonparametric Wilcoxon signed-ranks tests, 

ratings of perceived exertion were significantly higher when lifting at 6.7 

lifts.min'1 compared to both other frequencies. The results of a similar analysis 

in the hot study showed that there was a significant difference in RPE between 

all frequencies. As reported in the hot study, Wu & Chen (1997) and Asfour et al. 

(1983) have all reported consistent rises in RPE as the frequency of lift 

increases in a thermoneutral environment.

Grip Strength Change
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Mean grip strength was not significantly affected by time, environment nor 

frequency. It is probable that the fall in core temperature during the sessions, 

though stimulating vasoconstriction to a certain degree, was not sufficient to 

reduce force production in the hands. The lifting task also required an isometric 

contraction of the fingers and upper-limbs in general probably promoting blood 

flow to the working muscles in these areas. The thermal properties of the box 

material would have also been a factor since plastic exhibits low thermal 

conductivity. This would mean that heat loss from the hands via conduction to 

the box would have been very small.

Mean Skin Temperature (Tmsi<)

Only descriptive data are available for mean T mSk however, upon examination, a 

definite trend emerges. Mean T mSk declined in a linear fashion from 

thermoneutral through to 0 °C (standard ensemble). In the latter environment 

the mean T mSk across lifting frequencies was approximately 4 °C lower 

compared to the former. There was a departure from this linear trend at 0 °C 

(enhanced ensemble) where mean T mSk was -0.5 °C higher than at 0 °C 

(standard ensemble). It seems that the increased insulative qualities of the 

enhanced ensemble did offset some of the effects of the cold environment.

Finger Surface Temperature

As with mean T mSk, mean finger surface temperature declined in a linear fashion 

across conditions although in this case the enhanced clothing ensemble worn at 

0 °C did not appear to confer any benefit. Mean finger temperature was 

significantly higher in the thermoneutral environment compared to all other 

environments. This decline is consistent with the findings in published literature
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(Havenith et a i, 1995; Heus et a/., 1995) and can be explained by the 

phenomenon of physiological amputation whereby blood vessels in the 

peripheries are gradually constricted to reduce heat-loss. The extent of 

physiological amputation is unknown since temperature measurements at sites 

on the hand and lower arm were not taken.

Unexpected Findings

That there was no significant environmental effect on mean heart rate was 

perhaps a surprise when viewed in isolation. However, the lack of any 

significant findings with respect to grip strength suggest that vasoconstriction, 

certainly in the upper extremities, did not occur to any great extent. The 

absence of any hypertensive stimulus would mean that heart rate would not be 

expected to decline. It should be remembered that hand temperature was not 

measured so the absence of vasoconstriction is speculation based on the 

consistency of grip strength measurements only. Mean maximum acceptable 

weights of lift were also extremely consistent across environments meaning that 

the participants were always working at similar intensities.

The higher maximum acceptable weights of lift recorded here compared to the 

hot study were unexpected. Certainly the cold was unpopular with most of the 

participants, a fact communicated to the investigators on more than one 

occasion! A strategy to keep warm alluded to by a number of the participants 

was to stimulate heat production by lifting more weight. This agrees with the 

investigator’s own experiences in the army where physical tasks were often 

readily undertaken when out in the field as a way of keeping warm.
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Practical Significance of the Findings

The difference in mean heart rate between 1 lift.min-1 and 6.7 lifts.min-1 was 

approximately 47 beats.min-1. The calculated generalized r)2 effect size was 

large at 0.51. This compares to 0.63 in the hot study, demonstrating that the 

mean heart rate responses in the selected cold environments of the present 

study were smaller. The lack of environmental effect for heart rate suggests that 

it is a poor predictor of cold stress in working environments between 16 °C and 

0 °C since core temperature was seen to decline during the sessions. The 

safety margin for downward departures from normal core temperature is smaller 

than that for upward movements. Hypothermia is diagnosed as a core 

temperature of 35 °C and below, only a 2 °C fall from the generally considered 

norm of 37 °C. Conversely, a 2 °C increase to 39 °C might signal the onset of 

heat exhaustion but many published studies routinely report higher core 

temperatures than these in participants exercised to voluntary exhaustion.

In the present study the lowest mean aural temperature was 36.0 °C in the 1 

lift.min-1 condition at 0 °C (standard ensemble). There was considerable inter­

individual variation however and some participants were measured at very close 

to the withdrawal criterion of 35.5 °C. Clearly this particular combination of 

environment, lift frequency and clothing ensemble provided little protection 

against heat loss and a longer exposure would have probably resulted in the 

onset of hypothermia. Even at 10 °C, 5 °C and 0 °C (enhanced ensemble), the 

mean core temperature at 1 lift.min-1 was only around 36.2 °C. How long it 

would have taken for hypothermia to occur is not known but it is clear that 

individuals performing very low frequency or sedentary work in the cold should 

pay special attention to the length of exposure to the conditions and to the
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insulative properties of their clothing. The relative effect sizes for environment 

(0.1, small) and frequency (0.22, medium) again indicate, as with heart rate, 

that the frequency of lift is of particular importance when considering the 

physiological strain experienced by workers in the cold.

Mean maximum acceptable weight of lift varied by only ~ 1 kg across all 

environments. Across frequencies the effect size of 0.15 was medium however. 

According to tables of Snook & Ciriello (1991) the mean MAWL at 1 lift.min'1 

across environments of 29.6 kg would be acceptable to only 50% of the male 

working population. One would assume from this that the sample consisted of 

young, strong, athletic men but this was far from the case. Most were in their 

twenties admittedly but many classed their activity levels as low and a few were 

completely sedentary. For comparison, consider that the mean MAWL at 1 

lift.min'1 across environments in the hot study was about 7 kg lower, a weight 

acceptable to 75% of the male working population (Snook & Ciriello, 1991). 

Furthermore, the mean MAWL across frequencies in thermoneutral was 25.3 kg 

in the present study compared to 21.1 kg in the hot study. The thermoneutral 

conditions in the two studies were dissimilar but the clothing ensembles also 

differed and the relative Clo values should have ensured thermal comfort in 

both studies. The differences in MAWL values between the two studies are 

most likely due to the participants selecting heavier weights so as to increase 

their activity levels and therefore maintain thermal comfort. The mean values 

reported at the three lifting frequencies all exceeded the 75% limit stipulated by 

Snook (1978) suggesting that the participants were at increased risk of suffering 

a lower back injury. The reader’s attention is again drawn to the comments 

made by Dempsey (1998) regarding the lack of epidemiological evidence to
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support a causal relationship between manual handling tasks and the onset of 

lower back disorders.

As with the hot study there were considerable problems analysing the ratings of 

perceived exertion data because of the numerous departures from a normal 

distribution. The generalised q2 effect size for frequency was just 0.06 which is 

classed as small. The mean ratings barely varied; a range of less than 0.3 

across environments and only slightly more (-0.4) across frequencies. The 

lowest mean RPE was 10.4 at 1 lift.min'1 in 10 °C and the highest, 11.7 at 6.7 

lifts.min'1 in 0 °C (standard ensemble). One could again put forward the 

suggestion that the participants were being extremely conservative in their 

assessments but the ratings reported are in agreement with the remarkably 

stable heart rates also recorded.

There was a small generalised r|2 effect between pre- and post-session grip 

strength of 0.02 despite the lack of significant result from the analysis of 

variance. The mean difference of -2  kg was more likely to be the result of 

general fatigue as opposed to any cold effect. The protocol for using the grip 

dynamometer was standardised but it is possible to produce large variations in 

recorded forces by making subtle adjustments to the way it is held. For this 

reason the grip strength data and any conclusions drawn from them should be 

treated with great caution.

Mean T mSk declined linearly across environments except in 0 °C whilst wearing 

the enhanced ensemble. This suggests that further investigation is necessary to 

discover the optimal clothing ensemble for use during manual handling tasks in
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the cold. Special attention would need to be paid to the hobbling effect of 

clothing and how this might affect the execution of said tasks.

The decline in finger surface temperature is especially interesting. The finding 

itself is not surprising but the implications for anyone involved in manual 

handling should not be ignored. Mean finger surface temperature in the 0 °C 

environments were 10 °C lower compared to the thermoneutral environment. All 

mean finger surface temperatures in the 10 °C environment and below were 

less than 20 °C, dropping to ~13 °C at 0 °C (both ensembles). Studies have 

reported slight decreases in manual dexterity at finger surface temperatures 

below 20 °C (Schieffer et a/., 1984) and Heus (1993) recommended a safe 

minimum local skin temperature of about 15 °C. The decreases in manual 

dexterity reported are usually for complex motor tasks and it is probable that 

this is less critical for gross motor tasks such as lifting. It is also the case that 

gloves could usually be worn during the performance of this type of task. If, for 

any reason, gloves cannot be worn then care should be taken to avoid finger 

temperatures falling to a point where there may be a loss of sensibility or 

mobility. In addition to the inter-individual differences encountered in this study, 

Enander (1984) has also highlighted the fact that there may be considerable 

differences in hand and finger temperature responses between the sexes and 

different ethnic groups. Given the fact that the workforces employed in cold 

environments are likely to be composed of both sexes and of numerous ethnic 

groups then it would suggest that further investigation is merited into these 

groups’ particular responses to the cold.

Limitations of the Design
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Many of the limitations inherent in the design of the hot study are also present 

here. The first of these is the choice of repeated measures which, although 

generally accepted to have greater power than designs where independent 

groups are used (Huck, 2000), has some potentially undesirable effects. 

Fatigue and boredom can set in and there may also be a carry-over or learning 

effect from one session to the next which distorts the results. The participants in 

this study were again required to attend 15 test sessions in addition to 

orientation and MAWL stabilisation so these were very real concerns.

As with the previous study, many of the skin thermistors became detached 

during testing. It had been thought that excessive sweating was the main cause 

but as this did not occur in the present study it is likely that friction from clothing 

may have been the major culprit. This is supported by the fact that not a single 

finger thermistor fell off during any of the sessions.

As in the hot study, only males under the age of 40 years (most of whom had no 

industrial experience) were studied so care should be taken when interpreting 

the results with respect to other populations. The results are also only 

applicable to the floor to knuckle-height lifting task. They should not be 

generalised to any other type of lift (floor to shoulder-height or knuckle to 

shoulder-height for example) or other manual handling task.

6. Conclusions

The lift frequency had a significant effect on both physiological strain and the 

amount of weight lifted. Mean heart rate was significantly higher when lifting at

6.7 lifts.min'1 compared to 1 lift.min'1. Mean core temperature was significantly
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lower at 1 lift.min'1 compared to both of the other frequencies.. There was also 

an environmental effect on mean core temperature. Mean maximum acceptable 

weight of lift was significantly lower at 6.7 lifts.min'1 compared to 1 lift.min'1 and 

overall, mean weights lifted were higher than in the hot study. Mean ratings of 

perceived exertion were significantly higher at 6.7 lifts.min'1 compared to both of 

the other frequencies. Grip strength change was unaffected by environment or 

frequency but there was a small generalised q2 effect between pre- and post­

session readings.

Overall, mean heart rates and ratings of perceived exertion exhibited little 

variation across all conditions and MAWL varied little across environments. In 

all environments below thermoneutral the mean end core temperature was

36.2 °C or below when lifting at 1 lift.min'1. This suggests that workers 

performing low frequency or sedentary tasks might be at risk of hypothermia 

during prolonged exposure to cold conditions if sufficient attention is not paid to 

wearing a suitable clothing ensemble. The finding that mean maximum 

acceptable weights of lift were higher than in the hot study suggest that 

participants increased their activity levels as a method of maintaining thermal 

comfort. A comparison with published tables showed that some participants 

were lifting a load that would be acceptable to only 10% of the male working 

population. It is possible that this strategy might place a worker at greater risk of 

chronic or acute musculoskeletal injury.
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6 The Effects of Face-Cooling on Physiological 
Strain During an Intermittent Lifting Task in a 
Warm-Humid Environment

1. Summary

This chapter presents an original study into the effects of a face-cooling strategy 

on markers of physiological strain during an intermittent lifting task in a warm- 

humid environment.

2. Introduction

The findings from the hot study demonstrated that working in warm and hot 

conditions significantly affected some physiological responses. In the warm- 

humid environment (30 °C, 65% RH, 27 °C WBGT) core temperature was 

significantly higher when lifting at 6.7 lifts.min-1 compared to the thermoneutral 

environment. Mean skin temperature was also -3  °C higher in the warm-humid 

environment compared to thermoneutral. These results were obtained after just 

35 minutes of lifting and it is reasonable to assume that the physiological strain 

would have been greater had the session been prolonged. A typical working 

shift totalling nine hours is usually divided into four segments which are 

separated by a half-hour lunch break and a 15-minute break either side. Each 

segment lasts two hours so a worker would likely be exposed to an 

uncomfortable thermal environment for this period of time without respite. It is 

probable then that workers in these environments would experience symptoms 

of heat stress during their working day. Any strategies that could alleviate these 

symptoms would be of considerable benefit.
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Food preparation facilities like bakeries and heavy industries such as steel and 

coal-mining are examples of workplaces that may present a thermal hazard to 

employees. In many instances the working conditions also necessitate the 

wearing of protective clothing which imposes further strain by reducing heat loss 

from the body. These problems mean that practical strategies designed to 

reduce heat strain in the workplace are of particular interest both to employees 

and employers. Face-cooling is one such strategy that has been recently 

studied but to understand its possible role in the mediation of heat strain a little 

background information is required.

There is some acceptance now for the theory of centrally mediated fatigue 

(Davis, 1995) where changes in the central nervous system are responsible for 

increased perceptions of exertion (Nielsen & Nybo, 2003) and reduced work 

output. It is also believed that increases in core temperature may be one of the 

factors responsible for the onset of central fatigue (Pitsiladis et a l, 2002). 

Though the mechanisms are complex and poorly understood it seems that 

changes in serotoninergic and dopaminergic activity within parts of the brain 

play a role in this phenomenon. Because direct measurement of these 

neurotransmitters is difficult, concentrations of the hormone prolactin in 

peripheral circulation are often studied instead. Prolactin is secreted from the 

anterior pituitary gland under hypothalamic control by two neurotransmitters, 

prolactin releasing hormone (PRH) and prolactin inhibiting hormone (PIH). The 

latter has been identified as dopamine; the former is believed to be serotonin 

(Marieb, 1998) therefore changes in prolactin concentration are used as indirect 

markers of the serotoninergic and dopaminergic activity in the brain.
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Studies have reported significantly elevated levels of prolactin during exercise in 

the heat compared to cold and normal conditions (Pitsiladis et a i, 2002; Low et 

ai, 2005). Low et a i (2005) reported that serum prolactin measured post­

exercise was significantly positively correlated (all P<0.001) to core, skin and 

mean body temperature and also to end heart rate. These relationships were 

only significant for the participants whose core temperature exceeded 38 °C 

however. This supports a previously proposed theory that there may be an 

exercise-induced threshold temperature of 38 °C above which prolactin starts to 

rise exponentially (Radomski et al., 1998). Armand-Da-Silva et a i (2004) 

warmed 10 male participants in a sauna until their core temperatures reached

38.5 °C then asked them to perform 14 minutes of cycling at approximately 63% 

of maximum power output (V02max) in a 35 °C environment. Plasma prolactin 

was significantly elevated (P<0.05) post-exercise compared to the control 

condition where no pre-warming occurred (1598 mU.I'1 vs. 225 mUT1). Although 

blood was not collected immediately post-sauna it is reasonable to assume that, 

at 38.5° C, plasma prolactin would already have started to rise markedly. This 

suggests that it is the rise in core temperature (not necessarily exercise- 

induced) that is responsible for increased prolactin secretion or 

hyperprolactinaemia. Recent studies (Armand-Da-Silva et a i , 2004; Mundel et 

a l ., 2004) have examined the effects of face-cooling on participants performing 

a continuous cycle-ergometer exercise protocol. Mundel et a i (2004) reported 

significantly lower (P<0.05) plasma prolactin levels in face-cooled subjects 

undertaking a 40-min cycle ergometer task at 65% VC>2max- Heart rate was also 

~5 beats.min-1 lower (significance not reported) during face-cooling but there 

was no difference in ratings of perceived exertion. Armand-Da-Silva et a i 

(2004) reported that in a shorter 14 minute cycling task both plasma prolactin
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(P<0.05) and ratings of perceived exertion (ns) were lower when face-cooling 

was provided.

It has been suggested that face-cooling, rather than directly cooling the brain as 

previously thought, affects thermal comfort by cooling local skin afferents (Frank 

et al., 1999). The signals from these afferents are received by the pre-optic area 

of the hypothalamus together with temperature information from other internal 

and external sensors providing an integrated indication of thermal strain 

(Jessen, 1985). The studies by Armand-Da-Silva et al. (2004) and Mundel et al. 

(2004) both reported reductions in local skin temperature and plasma prolactin 

during face-cooling whilst core temperatures remained unchanged suggesting 

that face-cooling can modulate the integrated response to thermal strain. 

Furthermore, these components of thermal strain could be integrated into the 

overall perception of exertion during a lifting task thus providing subjective 

assessments of the efficacy of the face-cooling intervention. The Borg RPE 

scale (1970), used in the previous two studies, would seem to be an appropriate 

tool in this respect.

The purpose of this investigation was to assess the effects of face-cooling on 

individuals performing an intermittent, whole-body lifting task in a warm-humid 

environment. It was hoped that the results would give an insight into whether or 

not periodic face-cooling with a cold water spray was a practical and effective 

method of reducing physiological strain and perceived exertion in an 

occupational setting. The findings could have benefits for workers employed in 

uncomfortable hot environments.
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3. Methods

3.1 Participants

Ten male participants between the ages of 18 and 40 years were recruited to 

take part in the study. Anyone with a previous history of musculoskeletal 

disorders were excluded from the study, as were participants with illness, 

disorders or diseases known to affect the thermoregulatory system (e.g. thyroid 

conditions). All participants were white, northern Europeans except one who 

was from southern Europe. Participant details are presented in table 29 below.

n Age Stature 
(years) (m)

Mass (kg) Knuckle 
Height (m)

Body Body 
Mass Surface 
Index Area (m2)

10 28.4 ±5.1 1.82 ±0.1 79.5 ± 13.1 0.81 ±0.05 24 ±1.8 2 ±0.1
Table 29. Participant Details (mean ± 1 standard deviation). Bodv Surface Area

from Mosteller (1987).

3.2 Procedures

The participants reported to the environmental chamber at the Centre for Sport 

and Exercise Science (CSES), Sheffield Hallam University. Stature (stadiometer, 

Holtain, Crymych, UK), mass (Balance Scales, Avery, Birmingham, UK) and 

knuckle height (distance from floor of second metacarpo-phalangeal joint when 

standing relaxed) were measured.

Immediately upon arrival the participant provided a urine sample so that 

hydration status could be assessed. Urine osmolality was assessed by an 

osmometer (Advanced Micro Osmometer Model 3300, Advanced Instruments, 

Norwood, MA). A sample of venous blood was then taken from the participant’s 

ante-cubital vein. The participant was recumbent on a treatment bench during 

the procedure and a tourniquet was not used. Some studies have reported 

changes in concentrations of certain blood components with the use and non-
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use of tourniquets (Rosenson et al., 1998). Whether prolactin is affected is not 

known but it was decided to err on the side of caution and avoid the use of a 

tourniquet in this case. A 9 ml sample was collected in an SST (Silica Clot 

Activator, Polymer Gel, Silicone-Coated Interior) BD Vacutainer (Becton, 

Dickinson: Franklin, NJ) flask which was then inverted five times and stored 

upright while the blood clotted. A full description of the treatment of the blood 

samples post-collection is provided in a later paragraph.

After blood collection a skin thermistor (Grant Instruments, Cambs. UK) was 

fixed to the middle of the forehead with Micropore tape (3M, USA) and adhesive 

gauze (Fixomull stretch, Beiersdorf AG, Hamburg, Germany). An aural bead 

thermistor (Grant Instruments, Cambs. UK) was fitted into the ear, fixed into 

position with cotton wool and tape and insulated with a pair of industrial ear 

defenders. As in the previous two studies the aural thermistor used was the 

modified version. Both thermistors were connected to a data logger (Squirrel 

1021, Grant Instruments, Cambs. UK) so that measurements could be recorded 

throughout testing. The participant also put on a heart rate monitor (Polar S610, 

Polar, UK) prior to putting on the clothing ensemble.

Each participant then dressed in a standard clothing ensemble (table 30). The 

clothing ensemble was chosen to replicate as closely as possible the clothing 

observed to be worn during the site visits. No gloves were worn. The estimated 

Clo value was designed to ensure that the participant was comfortable whilst 

standing in the thermally neutral environment.
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Clothing Item Clo

Underwear (shorts, socks supplied by participant) 0.05
Working trousers (cotton/polyester) 9oz 0.25
Working jacket (cotton/polyester) 9oz 0.25
Safety boots 0.1
Estimated Clo of ensemble 0.65

Table 30. Standardised clothing ensemble and estimated Clo values.

3.2.1 MAWL Stabilisation

The participants were introduced to the psychophysical method of lift 

assessment in one session prior to the commencement of testing proper. The 

purpose of this session was to habituate the participant to the proposed lifting 

protocol and to ensure that they were able to consistently select an acceptable 

box-weight (i.e. to demonstrate the repeatability of the protocol). It also provided 

an opportunity to practice using the Borg RPE scale especially for those 

participants for whom the concept was unfamiliar. The protocol is described in 

detail in chapter 3.

3.2.2 Main Experimental Sessions

There were two experimental sessions, one with a face-cooling intervention and 

the other without. The participants completed both sessions in a within-subjects 

design and the order of presentation was counter-balanced to minimise any 

carry-over effects. Both sessions were conducted in 27 °C WBGT (30 °C air 

temperature, 65% relative humidity) and the lift frequency was the same on both 

occasions (6.7 lifts.min’1).

The protocol was similar to the previous two studies (detailed in Chapter 3) with 

the participants lifting for 20 minutes whilst adjusting the box weight and then for 

a further 15 minutes at the box weight selected. A tone from an audio tape was



the cue to commence each lift and upon completion an assistant returned the 

box to its starting position. The starting box weight was randomised prior to 

each session by secreting bags of ball-bearings in the compartment created by 

the false bottom. Unlike the previous studies it was only possible to test one 

participant at a time on this occasion.

The participants were instructed to stop lifting after every five minutes for a 

period of 30 seconds. During this period the face and neck were towelled-down 

and, in the face-cooling session, a mist of very cold water from an atomiser was 

sprayed onto the face and neck for 10 seconds by the experimenter. The water 

was kept at a cold temperature (<5 °C) by keeping the atomiser in a bath of cold 

water surrounded by ice-bricks. In the control session the participants had their 

face and neck towelled-down but received no face-cooling. As stated, these 

conditions were presented in a balanced design so that half of the participants 

received face-cooling first and half did not. Drinking water was available ad 

libitum.

Heart rate, core and local skin temperatures were recorded throughout the 

session and ratings of perceived exertion (Borg 6-20 RPE scale) were taken 

every five minutes, immediately prior to the 30-second rest period. At the end of 

the session the final box weight was recorded as the maximum acceptable 

weight of lift (MAWL). The participant moved to the intermediate room and all 

recording equipment was removed. A post-session blood sample was then 

taken, following the same protocol as at the beginning.
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Heart rate and temperature data were downloaded to a PC for analysis. The 

blood samples were then centrifuged (Heraeus Labofuge 400R) at 1800 RCF 

(4 °C) for 10 minutes. An aliquot of the separated serum for each sample was 

pipetted into an Eppendorf micro-tube and stored at -80 °C prior to radio­

immunoassay analysis at the Clinical Chemistry Department, The Royal 

Hallamshire Hospital, Sheffield. The serum was batch-analysed for 

concentrations of prolactin and the results were notified by e-mail.

3.2.4 Withdrawal Criteria

The withdrawal criterion was set at an aural temperature of 38.5 °C to conform 

with ISO 9886. Heart rate was monitored simultaneously and consideration 

given to removing the participant if this exceeded 85% of their age-predicted 

maximum (based on the other objective and subjective measurements).

3.3 Hypotheses

The null hypotheses to be tested were:

1. (Ho1) There is no difference in serum prolactin after face-cooling 

(compared to no face-cooling) during a bout of intermittent box-lifting in a 

warm-humid environment.

2. (Ho2) There is no difference in ratings of perceived exertion with face- 

cooling (compared to no face-cooling) during a bout of intermittent box- 

lifting in a warm-humid environment.

3. (Ho3) There is no difference in local skin temperature (forehead) when 

receiving face-cooling during a bout of intermittent box-lifting in a warm- 

humid environment.
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4. (Ho4) There is no difference in heart rate when receiving face-cooling 

during a bout of intermittent box-lifting in a warm-humid environment.

3.4 Statistical Analysis

Heart rate, core temperature, local skin temperature and serum prolactin were 

analysed for significant differences using a two-way ANOVA with repeated 

measures on both factors. The factors were time (two levels) and treatment (two 

levels). Sphericity was assumed because of there were only two levels of the 

repeated measures. Maximum acceptable weight of lift and ratings of perceived 

exertion were both analysed using paired t-tests.

4. Results

4.1 Urine Osmolality

The urine osmolality measured for each participant prior to each session is 

presented in figure 23.

H  control 8S treatment

To £: To To To 13 3= To To To Too CD O  CD O  CD o CD o cd o 0} o CD o 0) o 0
— —■

1 2 3 4 5 6 7 8 9

Participant No.

Figure 23. Urine osmolality for each participant in each session. Columns
represent raw values.
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4.2 Heart Rate

The mean pre- and post-heart rates for both the control and treatment 

conditions are presented in figure 24.

H  control 52 treatm ent

Figure 24. Mean heart rates (pre and post) in both conditions. Columns 
represent means; Error bars represent ± 1 standard deviation.

Heart Rate -  ANOVA

Heart rate data were all normally distributed and sphericity was assumed. There 

were significant main effects for time [F( 1,9) = 109.8, P<0.001] and treatment 

[F(1,9) = 18.9, F=0.002]. The interaction effect was not significant.

Heart Rate -  Effect Sizes

Generalised rj2 effect sizes were calculated for both of the main effects and the 

interaction and are presented in table 31.

Source Gen r f effect
Time 0.73 Large

Treatment 0.07 Small
Interaction 0

/-* _ i:____ i 2 r r  i.
None

Table 31. Generalised n2 effect sizes for Heart Rate.

4.3 Core Temperature
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The mean pre- and post-core temperatures for both the control and treatment 

conditions are presented in figure 25.

control treatm ent

Figure 25. Mean core temperatures (pre and post) in both conditions. Columns 
represent means; Error bars represent ± 1 standard deviation.

Core Temperature -  ANOVA

Core temperature data were all normally distributed and sphericity was 

assumed. There was a significant main effect for time [F( 1,9) = 110.9, P<0.001]. 

The main effect for treatment and the interaction effect were not significant.

Core Temperature -  Effect Sizes

Generalised r|2 effect sizes were calculated for both of the main effects and the

interaction and are presented in table 32.

Source Gen r f effect
Time 0.82 Large

Treatment 0 None
Interaction 0.02

^  2 rr *
Small

Table 32. Generalised n2 effect sizes for Core Temperature^

4.4 Local Skin Temperature

The mean pre- and post-local skin temperatures for both the control and 

treatment conditions are presented in figure 26.
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■  control %  treatment

33

R"e Post Pre Rost

Figure 26. Mean local skin temperatures (pre and post) in both conditions. 
Columns represent means; Error bars represent ± 1 standard deviation.

Local Skin Temperature -  ANOVA

Local skin temperature data were all normally distributed and sphericity was 

assumed. There were significant main effects for time [F(1,9) = 30.1, P<0.001] 

and treatment [F(1,9) = 155.9, P<0.001] and the interaction effect was also 

significant [F(1,9) = 106.1, P0.001].

Local Skin Temperature -  Effect Sizes

Generalised rj2 effect sizes were calculated for both of the main effects and the 

interaction and are presented in table 33.

Source Gen n2 effect
Time 0.58 Large

Treatment 0.64 Large
Interaction 0.53

2 r r  *  .™ ...
Large

Table 33. Generalised n2 effect sizes for Local Skin Temperature.

4.5 Serum Prolactin

The mean pre- and post-serum prolactin concentrations for both the control and 

treatment conditions are presented in figure 27.
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Figure 27. Mean serum prolactin concentrations (pre and post) in both 
conditions. Columns represent means: Error bars represent ± 1 standard

deviation.

Serum Prolactin -  ANOVA

Serum prolactin data were all normally distributed and sphericity was assumed. 

Neither the main effects nor the interaction effect were significant.

Serum Prolactin -  Effect Sizes

Generalised r|2 effect sizes were calculated for both of the main effects and the

interaction and are presented in table 34.

Source Gen r f effect
Time 0.01 None

Treatment 0 None
Interaction 0 None

Table 34. Generalised n2 effect sizes for Serum Prolactin.

4.6 Maximum Acceptable Weight of Lift

The mean maximum acceptable weights of lift for both conditions are presented 

in figure 28.
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□  control

□  treatment

control treatment

Figure 28. Mean maximum acceptable weight of lift. Columns represent means; 
Error bars represent ± 1 standard deviation.

Maximum Acceptable Weight of Lift -  Wilcoxon Signed-Ranks Test

The MAWL data for the control condition were not normally distributed and 

transformations were unsuccessful. A Wilcoxon signed-ranks test was therefore 

conducted to test for a significant difference between the control and treatment 

condition. There was no significant difference between conditions.

Maximum Acceptable Weight of Lift -  Paired t-test

A parametric analysis was also performed because of the reported robustness 

of these tests to departures from normality. The paired t-test reported no 

significant difference in maximum acceptable weight of lift between the two 

conditions.

There was no difference between the findings from the parametric and non- 

parametric analyses for maximum acceptable weight of lift.

Maximum Acceptable Weight of Lift -  Effect Size

An effect size (d) was calculated for MAWL and is presented in table 35.
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Source d Effect
Control-treatment 0.09 None

Table 35. Effect size for MAWL.

4.7 Ratings of Perceived Exertion

The mean ratings of perceived exertion for both conditions are presented in 

figure 29.

□ control

□  treatment

Figure 29. Mean ratings of perceived exertion. Columns represent means: Error
bars represent ± 1 standard deviation.

Ratings of Perceived Exertion -  Wilcoxon Signed-Ranks Test

The RPE data for the control condition were not normally distributed and 

transformations were unsuccessful. A Wilcoxon signed-ranks test was therefore 

conducted to test for a significant difference between the control and treatment 

condition. There was no significant difference between conditions.

Ratings of Perceived Exertion -  Paired t-test

The paired t-test reported no significant difference in ratings of perceived 

exertion between the two conditions.

t

m
||||||
mm

control treatment
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There was no difference between the findings from the parametric and non- 

parametric analyses for ratings of perceived exertion.

Ratings of Perceived Exertion -  Effect Size

An effect size (d) was calculated for RPE and is presented in table 36.

Source d effect
Control-treatment 0.19 none

Table 36. Effect size for RPE.

4.8 Synopsis

The four null hypotheses were tested using repeated measures analyses of 

variance and paired t-tests or their non-parametric equivalents.

The first null hypothesis (Ho1) stated that there is no difference in serum 

prolactin after face-cooling (compared to no face-cooling) during a bout of 

intermittent box-lifting in a warm-humid environment. The non-significant results 

of the ANOVA for serum prolactin confirm this and the null hypothesis is 

retained.

The second null hypothesis (Ho2) stated that there is no difference in ratings of 

perceived exertion with face-cooling (compared to no face-cooling) during a 

bout of intermittent box-lifting in a warm-humid environment. Again, although 

there was a difference in RPE between conditions it was not significant and the 

null hypothesis is retained.

The third null hypothesis (Ho3) stated that there is no difference in local skin 

temperature (forehead) when receiving face-cooling during a bout of intermittent



box-lifting in a warm-humid environment. The ANOVA for local skin temperature 

yielded a significant interaction effect and significant main effects. The 

significant interaction was likely caused by the delay in administration of the first 

application of face-cooling so one can be reasonably confident that the main 

effect for face-cooling was a ‘real’ effect. In this case the null hypothesis is 

rejected.

The fourth and final null hypothesis (Ho4) stated that there is no difference in 

heart rate when receiving face-cooling during a bout of intermittent box-lifting in 

a warm-humid environment. There was a significant main treatment effect for 

heart rate therefore the null should be rejected. However, considerable care 

should be exercised when interpreting this finding due to the aforementioned 

anomalies in the pre-session heart rates.

5. Discussion

The purpose of this study was to investigate the effects of face-cooling on 

physiological strain, perceived exertion and the amount of weight lifted when 

participants were exposed to a warm, humid environment. The results will be 

discussed with respect to previous findings in the literature. The practical 

significance of the results will be assessed along with the limitations in the 

research design and suggestions for possible improvements will be made.

Findings with Respect to Previous Studies 

Hydration Status

As with the findings in chapter 4, the results of the urinalysis again 

demonstrated the considerable intra- and inter-individual variation in urine
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osmolality. Participants with higher readings were again asked to consume 

plenty of water in the 20-30 minutes prior to the commencement of the test. In 

practice, nearly everyone habitually drank water in the period before testing. As 

previously, urine colour was not an accurate predictor of the osmolality of the 

sample. The attempt to control hydration status must again be considered a 

‘best effort’.

Serum Prolactin

Serum prolactin decreased slightly in both conditions in contrast to previously 

reported results however the main effects for time and treatment were not 

statistically significant. A rise in serum prolactin in the control condition and a 

reduction in the face-cooling condition were expected but it is likely that the 

participants in this study did not reach the threshold core (rectal) temperature of 

38 °C at which prolactin has been shown to increase exponentially (Low et al., 

2005). The mean end aural temperature was -37.2 °C which would mean that 

the rectal temperature would have been roughly 37.8 °C based on the work 

published by Muir et al. (2001). Rectal temperatures are typically 1 °C higher 

than aural at rest but these values start to converge during exercise, with a 

difference of around 0.6 °C at 35 minutes. In essence, the participants weren’t 

warmed up sufficiently to elicit a prolactin response so it was impossible to 

assess the efficacy of the face-cooling strategy.

The results from this study at least support one half of the threshold 

temperature theory; i.e. that there is little or no prolactin response when the 

core temperature is below 38 °C. Further work would have to be undertaken, 

either in a warmer environment or with a faster lifting frequency to elicit a core
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temperature of 38 °C and higher in order to more fully understand the prolactin 

response to thermal strain.

Ratings of Perceived Exertion

Ratings of perceived exertion (RPE) were lower in the face-cooling condition 

although this was not statistically significant. Findings in previous studies are 

similar; Armand-Da-Silva et al. (2004) also reported non-significant reductions 

in RPE whereas Mundel et al. (2004) reported no differences. Interestingly, an 

examination of the graph for RPE in the former study suggests that the mean 

difference in RPE between conditions was consistently approximately two 

points on the Borg scale. This contrasts with the present study where the mean 

difference in RPE was ~0.4 perhaps providing another example of the 

conservatism of the participants in their ratings of perceived exertion. Indeed, 

the ratings of perceived exertion in the present study are very similar to those in 

the equivalent session in the hot study (see chapter four).

Local Skin Temperature

There was a significant interaction between time and treatment for local skin 

temperature. The thermistor on the middle of the forehead measured 

significantly lower (P<0.001) temperatures in the face-cooling condition. At the 

final time-point the temperature of the forehead was nearly 2.5 °C lower in the 

face-cooling condition compared to the control. An inspection of the graphed 

temperatures recorded by the Squirrel data logger showed that the reduction in 

temperature occurred after the first application of face-cooling at five minutes 

and remained consistently lower for the rest of the session. This is in agreement 

with Mundel et al. (2004) although they managed a consistent reduction of
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~6 °C throughout their sessions. Unfortunately, they did not describe how they 

cooled the face and it is possible that they managed to find a more efficacious 

method, possibly using a combination of iced water and directed cool-air 

although this remains speculation.

Maximum Acceptable Weight of Lift

There were no significant differences in maximum acceptable weight of lift 

between the face-cooling and control conditions and there are no direct 

comparisons in the literature. The mean maximum acceptable weights of lift are 

2-3 kg higher compared with the means for the equivalent session in the hot 

study detailed in chapter four. There are two possible explanations for this 

outcome. Firstly, although the presentation of conditions was counter-balanced 

in the hot study it is still possible that fatigue and boredom over the fifteen 

sessions affected the amount of weight lifted. In the present study, with only two 

conditions, these factors are less likely to have had an effect. Secondly, there 

was a 30-second break every five minutes in both conditions in the present 

study. This means that the initial twenty-minute weight adjustment period 

consisted of only 18.5 minutes of lifting. It is conceivable that the short breaks 

during the adjustment period altered the participants’ perceptions of what they 

thought was an acceptable weight to lift throughout a working day.

Heart Rate

Heart rates were significantly lower (P<0.002) in the face-cooling condition. 

Mundel et al. (2004) reported a similar bradycardia between conditions although 

in the present study the findings are confounded by the fact that starting heart 

rates were also significantly lower. The reasons for this are unknown since their
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was no face-cooling intervention for the first five minutes so to all intents and 

purposes the conditions at the beginning should have been identical.

The Practical Significance of the Findings

The clearest outcome from the study was the reduction in mean local skin 

temperature during the face-cooling condition. The mean reduction of ~2.5 °C, a 

large effect according to the generalised r|2 calculation, was measured by a 

thermistor placed in the centre of the forehead. As such, no claims about the 

surface temperature of the rest of the face can be made. Interestingly, the 

reduction in local skin temperature would seem to be a double-edged sword 

when one considers its effects on thermoregulation. On the one hand, the 

thermal gradient from the core (the head including the brain in this case) to the 

surface is steeper suggesting that heat loss to the body’s periphery would be 

increased. On the other hand, the thermal and vapour pressure gradient 

between the skin and the surrounding air would be reduced, affecting heat 

transfer away from the body. The difference in local skin temperature of 2.5 °C 

would reduce the vapour pressure gradient between the skin and air by 

approximately 0.7 kPa. This would have the effect of reducing evaporative heat 

transfer by around 23%.

There was only a mean difference of 0.06 °C in core temperature between 

conditions supporting the previous findings that face-cooling does not affect this 

variable. The mean increase in core temperature was ~0.7 °C in both conditions 

and it is reasonable to assume that it would have continued to rise if the 

sessions had been longer. This highlights an important safety consideration; 

face-cooling only seems to mediate the perception of thermal strain as reported
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by RPE. It most definitely does not protect the individual from potential heat 

injury, indeed it might have the opposite effect. Because the perceptions of 

exertion (encompassing thermal strain) are attenuated (and that was not 

conclusive in this study), individuals might be motivated to continue working 

while their core temperatures rise to potentially injurious levels. This would 

suggest that face-cooling might only be useful as a method of improving thermal 

comfort over short periods of time.

Heart rate was significantly lower but the problems associated with this outcome 

have already been discussed. Nevertheless, the observed bradycardia supports 

what has been previously reported by Mundel et al. (2004). Further investigation 

is warranted in this area because any safe intervention which could reduce 

mean heart rate by ~8 beats.min'1 over the course of a working day would be 

desirable.

The similarity of maximum acceptable weights of lift and ratings of perceived 

exertion across conditions were not a complete surprise. Unlike the hot study, 

only one participant was tested at any time so at least in the present study any 

potential competitive element was absent. The similarity in subjective 

judgements is probably linked to the fact that core temperature did not reach the 

threshold value of 38 °C. The conditions did not differ sufficiently to firstly elicit a 

measurable change in physiological strain and secondly to alter participant’s 

perceptions. It is probable, though still speculative, to suggest that a more 

uncomfortable environment and/or a greater work rate would have resulted in 

differences in the perception of exertion and the amount of weight lifted.
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As with the previous two studies, the mean MAWL in both conditions exceeded 

Snook & Ciriello’s (1991) 75% limit. The published limit of 19 kg acceptable to 

50% of the working population was also exceeded as was the 33% VC>2max 

physiological limit.

Limitations of the Design

As stated earlier, the measurement of local skin temperature was limited to a 

very small area of the forehead. For a fuller picture of the skin’s response to the 

face-cooling intervention a number of thermistors would have to be fixed to 

other areas of the face. The method of fixing the thermistors would have to be 

resistant to perspiration, application of the water-spray and towelling down. As it 

transpired the forehead thermistor proved remarkably stable and maintained 

contact with the skin throughout the sessions, probably because of the 

underlying solid skeletal structure and lack of friction from moving clothes 

(contrast this with the experiences in the previous studies). A thermistor fixed to 

a soft, moveable area of skin such as the cheek would likely have worked loose 

during the session.

The method of fixing the thermistor to the forehead might have created an 

artificial micro-climate. The thermistor was fastened by a combination of small 

patches of self-adhesive gauze and Micropore tape. Moisture accumulated in 

the material during the sessions which might have affected the temperature at 

the measurement site. It is also possible that unevaporated perspiration and 

water from the spray could have collected in any space between the skin and 

the thermistor surface. It is difficult to suggest any improvements to the method 

used and it might be that any implementation of the skin thermistor solution is
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inherently flawed. Perhaps in any future study some sort of thermal imaging 

would provide a non-invasive and valid method of measuring the temperature of 

the facial skin.

The combination of environment and lifting frequency did not provide sufficient 

thermal strain so the results of the face-cooling, apart from the reduction in local 

skin temperature, were inconclusive. Increasing the lifting frequency is 

impractical; 6.7 lifts.min'1 already requires considerable coordination between 

the participant and the lowerer. A very early test trial prior to the hot study 

conducted at 12 lifts.min'1 (every five seconds) was abandoned as even 

drinking water between lifts was impossible. Changing the environment is 

therefore the better solution. It is suggested that the experiment could be 

repeated at a WBGT of 32 °C (as opposed to 27 °C used here).

The attempt to control hydration status was limited but the results of the 

osmolality tests demonstrated the wide variability that exists within and between 

subjects. One could not state with complete confidence that each participant 

was euhydrated in every session. It can only be said that the issue of hydration 

was recognized and remedial action (drinking water prior to testing) was taken 

where participants presented with very high osmolality readings.

6. Conclusions

Face-cooling had a significant effect on local skin temperature and heart rate 

although the latter finding should be treated with caution. There were no 

significant differences for maximum acceptable weight of lift and ratings of 

perceived exertion. Similarly, serum prolactin and core temperature were
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unaffected by the face-cooling intervention. The participants were unlikely to 

have reached the threshold core temperature of 38 °C at which prolactin has 

been proposed to rise exponentially. This relative lack of thermal strain meant 

that the effect of face-cooling was limited to a reduction in mean local skin 

temperature. It is recommended that further research is conducted at higher wet 

bulb globe temperatures.

The effects of face-cooling appear to be limited to mediating the perceptions of 

heat strain as reported by RPE, independent of the core temperature which 

might continue to rise. Altering the perception of heat strain could have the 

effect of exposing the individual to a potential heat injury because the 

environmental dangers are underestimated. For this reason it is suggested that 

face-cooling is only used to improve thermal comfort over short periods. The, 

length of these periods would be dictated by the interaction between 

environment and work rate.

The effects of face-cooling during the performance of a manual handling task 

are unclear at the temperature and humidity tested (27 °C WBGT). As industrial 

workers are likely to encounter wet bulb globe temperatures that exceed this 

value then further investigation is warranted in these more uncomfortable 

environments.

163



7 Final Conclusions & Recommendations for Further 
Study

1. Summary

This chapter reviews the main findings of the thesis and proposes areas for 

further research.

2. Main Findings

The purpose of this thesis was to investigate the physiological and subjective 

responses of individuals performing manual handling tasks in a range of 

uncomfortably hot, warm and cold environments. It also set out to investigate 

the effects of different levels of relative humidity on performance in the heat and 

the effects of two different clothing ensembles in the cold. Finally, the effects of 

a face-cooling intervention were examined to see if it could alleviate some 

components of thermal strain.

In the heat, environment had a significant effect on both physiological strain and 

maximum acceptable weight of lift. Although the participants selected less 

weight in the hotter environments the adjustments were not sufficient to prevent 

significant rises in heart rate and core temperature. Perceived exertion was 

significantly affected by environment and lifting frequency but absolute 

differences were small. It is suggested that the RPE scale may be inappropriate 

for rating exertion during the performance of an intermittent lifting task. There 

were no significant differences in physiological strain between two dissimilar 

environments with an equivalent WBGT. Physiological strain was greater in a
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high-humidity environment compared to a low-humidity environment at the 

same air temperature (-39 °C) but there were no differences at 30 °C.

In the cold, core temperature was significantly lower when lifting in the 0 °C 

environment wearing the standard clothing ensemble compared to the 

thermoneutral environment. Mean skin temperature was approximately 4 °C 

lower between the same two environments. Finger surface temperature was 

significantly lower in all environments compared to thermoneutral. Mean 

maximum acceptable weight of lift varied by only around 1 kg across all 

environments and, overall, the weights lifted in the cold study were markedly 

higher than in the hot study. The main finding from the cold study was that 

frequency of lift had a greater effect on the dependent variables than 

environment.

Face-cooling had a significant effect on local skin temperature at the forehead 

which was approximately 2.5 °C lower compared to the control condition. Core 

temperature and serum prolactin were unaffected by the intervention. Ratings of 

perceived exertion and maximum acceptable weights of lift were similarly 

unaffected. It is likely that the lack of effects were due to the combination of 

environment and lifting frequency chosen for the study. Core temperature did 

not rise sufficiently to elicit an increase in circulating prolactin.

The participants exceeded published limits for acceptable weights of lift in every 

study. This was especially true in the cold where some participants lifted loads 

that exceeded the weight regarded as being acceptable to only 10% of the 

working population. At higher lifting frequencies the participants often lifted
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loads that suggested that they were working at a rate likely to exceed 33% of 

their V02max.

3. Final Conclusions

Performing a floor to knuckle-height lifting task in uncomfortable thermal 

environments can impose an undue physiological strain on workers. Allowing 

individuals to regulate their own workload does not confer sufficient protection 

against rises in core temperature and heart rate. Relative humidity appears to 

be a significant factor but only at higher temperatures.

Workers in the cold appear to lift heavier loads as a strategy for keeping warm, 

putting them at greater risk of injury to the musculoskeletal system. Individuals 

performing very low frequency lifts or those in sedentary occupations in cold 

conditions might be at greater risk of hypothermia if they remain in the cold for 

extended periods. It is important to ensure that the clothing ensembles worn by 

these workers possess insulative properties that are appropriate for the 

environment.

Face-cooling might have a place as a method of mediating the perception of 

heat strain but the findings herein were inconclusive. Core temperatures 

continued to rise and it may be the case that altering the perception of heat 

strain could lead to an underestimation of the environmental dangers. This 

would have the effect of exposing the individual to a potential heat injury.

The findings published herein provide information that could be used to 

supplement and improve the current guidance to industry published in the



Manual Handling Operations Regulations (MHOR, 1992). The current guidance 

is limited to a few general recommendations of the type detailed in chapter 2 but 

based on the results published here the following recommendations can be 

made. In the heat, humidity does not appear to impose any additional 

physiological strain at least in air temperatures up to 30 °C. At ~39 °C care must 

be exercised when relative humidity exceeds 25%. Workers should not be 

allowed to regulate their own workloads in the heat. Rather, reductions in 

workload should be specified by employers using a lifting equation with a heat 

stress multiplier such as the modified NIOSH equation (Hidalgo, 1997). In 

environments with an air temperature below 16 °C, care must be taken to 

ensure workers do not lift excessive loads as a strategy for keeping warm. This 

can be partly achieved by ensuring that clothing ensembles for work in the cold 

provide adequate insulation from the environment. This is especially pertinent 

for workers performing largely sedentary or low frequency tasks. Finally, face- 

cooling should not be considered as a protective mechanism against heat 

stress as core body temperature is likely to continue to rise during physical 

activity.

4. Further Study

The findings from the three studies highlighted areas that merit further 

investigation. Some of these potential areas of investigation are discussed 

below.

In the hot study, physiological responses were the same between a high- 

humidity and a low-humidity environment at an air temperature of 30 °C but 

significantly different at 38 °C. The effects of relative humidity should be
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investigated further so that the air temperature at which responses start to 

diverge can be identified. The physiological and subjective responses in 

dissimilar environments with an equivalent WBGT should be investigated at 

32 °C. Dissimilar environments at this WBGT have been reported to elicit 

different responses in participants performing a continuous treadmill protocol. 

An investigation into the effects of radiant heat sources on individuals’ 

physiological and subjective responses would provide information on working 

environments where employees lift in close proximity to ovens and kilns.

In the cold, exposure periods longer than 35 minutes should be investigated to 

assess how long workers can safely perform low-frequency or sedentary tasks 

without risk of hypothermia. Further examination of different clothing ensembles 

for these workers would also be merited. An investigation into lifting objects 

composed of different materials would give an insight into the effects of these 

materials on finger and hand temperature.

It is suggested that the face-cooling experiment is repeated at a WBGT of 32 °C. 

It is expected that the increased thermal strain will elicit a prolactin response 

that would allow the effects of face-cooling to be more readily understood.

The experiments conducted herein only provide information on a small subset 

of the working population (healthy males, 40 years of age and under). These 

experiments should be repeated with other sub-groups such as females and 

males over the age of 40 since they are likely to make up a large part of the UK 

working population.
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The experiments should also be repeated using different manual handling tasks. 

It is likely that physiological and subjective responses are different for other 

lifting tasks and for lowering, pushing, pulling and carrying.
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Appendix A -  Ethics Documentation

L Sheffield Hallam University

School of Sport and Leisure Management 

Research Ethics Committee

INFORMED CONSENT FORM

TITLE OF PROJECT:
The Effects of Thermal Environments on Manual Handling Tasks.

The participant should complete the whole of this sheet himself/herself

Have you read the Participant Information Sheet? YES/NO

Have you had an opportunity to ask questions and discuss this 
study? YES/NO

Have you received satisfactory answers to all of your questions? YES/NO

Have you received enough information about the study? YES/NO

To whom have you spoken?

YES/NO

Do you understand that you are free to withdraw from the study:

• at any time

• without having to give a reason for withdrawing

• and without affecting your future medical care

Have you had sufficient time to consider the nature of this project? YES/NO

Do you agree to take part in this study? YES/NO

Signed.....................................................  Date.......................................

(NAME IN BLOCK LETTERS).............................................................................
Signature of Parent / Guardian in the case of a minor
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! Sheffield Hallam University

School of Sport and Leisure Management 

Research Ethics Committee 

Pre-Test Medical Questionnaire

Name: .................................... ....................................................................................

Date of Birth: ...........................   Age:  Sex:........................

Please answer the following questions by putting a circle round the appropriate 
response or filling in the blank.

1. How would you describe your present level o f  activity?
Sedentary /  Moderately active /  Active /  Highly active

2. How would you describe you present level o f  fitness?
Unfit /  Moderately fit /  Trained /  Highly trained

3. How would you consider your present body weight?
Underweight /  Ideal / Slightly over /  Very overweight

4. Smoking Habits Are you currently a smoker? Yes /  No
How many do you smoke   per

day
Are you a previous smoker?
How long is it since you stopped?
Were you an occasional smoker?

Were you a regular smoker?

5. Do you drink alcohol? Yes / No 
If you answered Yes, do you have?
An occasional drink /  a drink every day / more than one drink a day?

6. Have you had to consult your doctor within the last six months? Y e s /N o
If you answered Yes, please give details.............................................................

7. Are you presently taking any form o f medication? Yes /  No
If you answered Yes, please give details.............................................................

8. As far as you are aware, do you suffer or have you ever suffered from:

Yes /N o
  years
Y e s /N o
  per day
Yes /N o  
  per day

181



a Diabetes? Y e s /N o  b Asthma? Y e s /N o
c Epilepsy? Yes /N o  d Bronchitis? Y e s /N o
e *Any form o f  heart complaint? Yes / No f  Raynaud’s Disease? Yes /  No
g *Marfan’s Syndrome? Yes / No h *Aneurysm/embolism? Yes / No  
I Anaemia Yes /N o

9. *Is there a history o f  heart disease in your family? Yes / No

10. *Do you currently have any form o f muscle or joint injury? Yes / No
If you answered Yes, please give details.............................................................

11. Have you had to suspend you normal training in the last two weeks? Yes /  No  
If the answer is Yes please give details...........................................................................

* Please read the following questions:
a) Are you suffering from any known serious infection? Yes /  No
b) Have you had jaundice within the previous year? Yes /N o
c) Have you ever had any form o f hepatitis? Yes / No
d) Are you HIV antibody positive Y e s /N o
e) Have you had unprotected sexual intercourse with any

person from an HIV high-risk population? Yes /N o
f) Have you ever been involved in intravenous drug use? Y e s /N o
g) Are you hemophiliac? Y e s /N o

13. As far as you are aware, is there anything that might prevent you from
successfully completing the tests that have been outlined to you? Yes / No

IF THE ANSWER TO ANY OF THE ABOVE IS YES THEN:
a) Discuss with the Centre fo r Sport and Exercise Science the nature o f 

the problem.
b) Questions indicated by (  * )  Allow your Doctor to f i l l  out the (Doctors 

Consent Form provided, ______ _____________

Signature: ......................................................................................

Signature o f  Parent or Guardian if  the subject is under 18:

Date: ........ / ........./,
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Purpose of Study and Brief Description of Procedures
(Not a legal explanation but a simple statement)

The purpose o f  the study is to examine the effects o f hot and cold working environments on manual handling 
tasks. The results o f  this study will give us valuable information that will be used to produce guidelines for 
industry hopefully resulting in a safer working environment.

You will be asked to lift a box onto a shelf at different lifting speeds. At the end o f  each lift another person 
will return the box to the starting position prior to the start o f  the next lift. The researcher will specify the 
speed at which they wish you to lift (e.g. 6 lifts per minute) and will give guidance accordingly. You should 
ensure that you lift in accordance with the health and safety training that you have received within your 
organisation.
It will be necessary for you to wear some testing equipment during the session. This will be as lightweight 
and unobtrusive as possible. A  heart rate monitor chest band will be worn next to the skin. Additionally, small 
temperature sensors will be fixed to the skin with surgical tape and worn in the ears using ear plugs.

In the Environment Chamber:
You will receive acclimatization or orientation training on 5 consecutive days in the chamber. After this you 
will be required to attend 15 further sessions on consecutive working days. During these sessions both the 
frequency o f  lift and temperature will be varied. These sessions should last no longer than 2 hours each.

Your assistance in this study is entirely voluntary and you are free to withdraw at any time without giving any 
reason.

L Sheffield Hallam University

School of Sport and Leisure Management

Research Ethics Committee 

Participant Information Sheet

Supervisor/Director of Studies Dr. John Saxton

Principal Investigator Andy Davies

Project Title
The Effects o f Thermal Environments on Manual Handling Tasks.

Name of Participant

It has been made clear to me that, should I feel that these Regulations are being infringed or that my interests are 
otherwise being ignored, neglected or denied, I should inform Professor Edward Winter, Chair o f  the School o f  
Sport and Leisure Management Research Ethics Committee (Tel: 0114 225 4333) who will undertake to 
investigate my complaint.
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L Sheffield Hallam University

Faculty of Health and Wellbeing 
Sport and Exercise Research Ethics Committee 

Participant Information Sheet

Project Title The Effects o f  Face-Cooling on Thermal Stress During 
Manual Handling Tasks

Supervisor/Director of Studies Dr. John Saxton

Principal Investigator Andrew Davies

Principal Investigator 
telephone/mobile number

0114 225 5590

Purpose of Study and Brief Description of Procedures
(Not a legal explanation but a simple statement)____________________________________________ _
The purpose o f  this study is to investigate the effects o f  face-cooling on some o f  the factors associated with 
heat strain.

You will be required to attend the laboratory on three separate occasions for about one hour each time. We 
will provide overalls; you will need to bring your own footwear and underwear and you may wish to bring a 
shower kit for afterwards.

You will be asked to lift a box every nine seconds onto a shelf set at your own knuckle height for 35 minutes. 
Your core temperature (just inside your ear) and heart rate will be monitored continuously and you will be 
asked to rate your perceived exertion every five minutes (full training will be provided in lifting technique 
and the use o f  the RPE scale). The RPE scale is a rating scale from 6-20 which allows you to tell us how hard 
you think you are working. Depending on which session you are participating in, you may also have your face 
and neck cooled by a fine mist o f  cold water periodically.

It will be necessary to take a blood sample both before and after each session. This sample will be taken from 
a vein in your arm by a trained phlebetomist and may result in very slight discomfort. A phlebotomist is 
someone trained to take blood samples from veins. You will also have skin thermistors taped to your forehead 
and neck area so that we can monitor local skin temperature.

Remember, you are a volunteer and are free to withdraw at any time without giving any reasons. Your 
information will be kept confidential. In subsequent analysis your data will be referred to by a code number 
not by name.

I f  necessary continue overleaf___________________________________________________________

It has been made clear to me that, should I feel that these Regulations are being infringed or that my interests are 
otherwise being ignored, neglected or denied, I should inform Professor Edward Winter, Chair o f  the Faculty o f  
Health and Wellbeing Sport and Exercise Research Ethics Committee (Tel: 0114 225 4333) who will undertake 
to investigate my complaint.

1 8 4



Appendix B -  Participant Data Sheet (Sample)



Ti
m

e 
S

to
p

14
10

14
09 oo

o

14
13

14
11

14
11

14
06

14
10

14
10

14
09

13
38

14
08

14
08

14
07

14
09

35 
Mi

ns
 

1

M
AW

L 
|

|X»

n

h-
K
CM

r**.

c i

fx.
o>
CM

fx.

co

N

CM

IX.

co 28
.7 |X

CM

N .
CM
CO 28

.7 N
CM

Ix.

S
fx.

CM

n .

HR
 

|

s
CO o

03 11
8

13
8 O

CM 14
8 xTfx

|X-
m fx-

03
-

12
8

Ui
Q.
x

o S o 03 03 o O O o 00 03 - - o, 03

30 
Mi

ns
 

1

x
z

rx
O)

o h-xj- 03
m
CM

fx»
CM CMO)

o
CM 5 03 5 in 00

rx
o eg

LU
CL
X

o CM o 03 03 03 03 03 o co 03 o 00 03 03

25 
Mi

ns
 

|

HR
 

|

CO 14
9 s CO

O)
m
CM 14

0 CO
o

fx.
CM 14

0

fx. CM
CO CM

CD
h-
o CM

LU
Q.
X

03 s o 03 03 o o 03 o CO 03 o 00 03 c

20 
M

in
s

X
z

CM
O

fx.xr CO
CO 12

8

14
6

10
4 CO

CM
o
m oohx. 11

1 5 10
0 CM

O 12
6

LU
Q.
X

o> - o co o 03 03 o 00 03 o 00 03 03

15 
M

in
s

X
z

o
h»
CO

OS I 10
0 CO

CM CO |x-
03 CM ?

XT
oo ? fx.

CO o 10
9 CM

LU
Q.
X

o> - 03 CO 03 03 03 03 03 03 03 O) CO 03 03

10 
Mi

ns
 

I

X
z 10

0 CO
hx.
co o

CO
14

6
00 5

COxj- CO
03 10

4

13
8 o 03

03

Ui
a.
X

CO o 03 oo 00 03 <o CO 03 oo co O) oo 00 03

5 
M

in
s

X
z 10

0

10
4 CT>

o 10
8 in

CM 10
0

10
9 CM

CO in
CO 10

9 o co
o O

CD
O

Ui
Q_
X

CO 00 <o fx CO 00 CO 00 CO CO CO CO <o

Ti
m

e 
S

ta
rt

13
35

13
34

13
33

13
38

13
36

13
36

13
31

13
35

13
35

13
34

13
03

13
33

13
33

13
32

13
34

B
as

el
in

e

X
z s IT)

00
CM
o s m

fx
o xfr

00
fx-
00

o to in
fx. 03

03
oo

o
03 S

Sh
in 

|

rx
cm"
CO 34

.6 in

CO 34
.8

co CO

h.
co"
CO

CO

34
.8

33
.3 CO

CO £ CO 33
.6 8

T
h

ig
h

l

CO
xr
CO s CO CO

CO 30
.9 in

CN
in
CM
CO 33

.2 03

CO 32
.2 rx.

CO 32
.9

32
.6 CM

Arm
 

|

rx.

CO
CO
CO

XT

CO
CO
CO

CO*
CO

CD xr

CO CO

ood
CO

CM

CO 32
.6

£
03

C3

rx.

Ch
es

t 
|

33
.6

CO CO
in"
CO

in

CO
XT
CO

CM

CO 34
.6

34
.9

33
.8 CO

CO CO

in

co

<DV
CO 34

.8

Co
re

 
|

36
.6 CO

CO 36
.6

36
.9 fx.

co"
CO 36

.9 |Xx
CD
CO 36

.9 fx.
CO

rx.

CO
to 36

.6

36
.5 d

(D
CO

Bo
x 

kg
|

5 fx.
00

|X» fx
o'

fx.
CM

fx
r^

f -
O

fx.
CM

fx.
03*

fx.
xr"

fx.
fx!

fx.
<D

r*x
o" 03" CD*

cr
£
Li.

- o> -
V 03 - 03 - 03 -

xj- 03

co
*?
c
Ui

z
1-

X
z

Q
X i o

&
Z
J—

X
X

a
X

X
5

Q
5

z
h-

X
X

O
X

X
§

o
5

o
E
o

82
0

93
2 co

CO
CO 41

9

68
8

53
0

49
8

66
5

35
8

84
2

10
7

21
7

46
8

27
9

16
9

03

D 2S
-J

an

27
-J

an

28
-J

an

29
-J

an

30
-J

an

02
-F

eb

03
-F

eb

04
-F

eb

05
-F

eb

06
-F

eb

09
-F

eb

10
-F

eb

11
-F

eb

12
-F

eb

13
-F

eb

l 
A

c
c

ij

Ac
c 

2

Ac
c 

3

Ac
c 

4

Ac
c 

5 rx CO O m fx CO 03

186



Appendix C -  SPSS Output

Chapter 4 -  The Effects of Warm & Hot Environments on Performance of an 
Intermittent Lifting Task

T e s ts  o f  N o rm a lity

KolmoQorov-Smirnov • Shaqiro-Wilk

Statistic df Siq. Statistic df Siq.
thermoneutral 1/min max 
heart rate (bpm) 
thermoneutral 1/min

.184 12 .200* .925 12 .330

rating of perceived 
exertion (Borg 6-20)

.250 12 .037 .853 12 .040

thermoneutrai 1/min max 
core temperature (C) 
thermoneutrai 1/min

.097 12 .200* .968 12 .885

maximum acceptable 
weight of lift (kg) 

thermoneutrai 14secs (4.

.202 12 .188 .867 12 .059

3Iifts.min-1) max heart 
rate (bpm)
thermoneutrai 14secs (4.

.108 12 .200* .920 12 .289

3lifts.min-1) rating of 
perceived exertion (Borg 
6-20)
thermoneutrai 14secs (4.

.248 12 .040 .825 12 .018

3tifts.min-1) maximum 
acceptable weight of lift
(kg)
thermoneutrai 14secs (4.

.108 12 .200* .965 12 .857

3lifts.min-1)max core 
temperature (C) 
thermoneutrai 9 secs (6.

.196 12 .200* .898 12 .147

7lifts.min-1) max heart 
rate (bpm)
thermoneutrai 9 secs (6.

.144 12 .200* .947 12 .589

7lifts.min-1) max core 
temperature (degrees C) 
thermoneutrai 9secs (6.

.218 12 .119 .861 12 .050

7lifts.min-1) maximum 
acceptable weight of lift 
(kg)

.174 12 .200* .920 12 .290

w dlhra .142 12 .200* .939 12 .482

warm-dry .291 12 .006 '  .837 12 .025

w dltca .165 12 .200* .951 12 .658

warm-dry .130 12 .200* .927 12 .347

wd4.3hra .180 12 .200* .824 12 .018

warm-dry .345 12 .000 .748 12 .003

wd4.3tca .152 12 .200* .973 12 .937

warm-dry .155 12 .200* .924 12 .320

wd6.7hra .208 12 .160 .906 12 .190

warm-dry .299 12 .004 .861 12 .050

wd6.7tca .125 12 .200* .931 12 .387

warm-dry .182 12 .200* .908 12 .200

w hlhra .118 12 .200* .971 12 .923

warm-humid .200 12 .198 .893 12 .130

w hltca .154 12 .200* .958 12 .748

warm-humid .190 12 .200* .920 12 .282

wh4.3hra .213 12 .138 .863 12 .053

warm-humid .302 12 .003 .835 12 .024

wh4.3tca .130 12 .200* .952 12 .662

warm-humid .206 12 .169 .892 12 .125

wh6.7hra .143 12 .200* .971 12 .917

warm-humid .179 12 .200* .929 12 .372

wh6.7tca .217 12 .126 .904 12 .180

warm-humid .135 12 .200* .919 12 .278

hdlhra .190 12 .200* .957 12 .734

hot-dry .270 12 .016 .851 12 .038

hdltca .146 12 .200* .937 12 .464

hot-dry .199 12 .200* .858 12 .046

hd4.3hra .200 12 .200* .916 12 .252

hd6.7hra .156 12 .200* .965 12 .849

hot-dry .209 12 .157 .936 12 .448

hd6.7tca .136 12 .200* .941 12 .508

hot-dry .199 12 .200* .879 12 .085

hhlhra .280 12 .010 .863 12 .053

hot-humid .261 12 .024 .869 12 .063

hhltca .158 12 .200* .957 12 .736

hot-humid .169 12 .200* .912 12 .229

hh4.3hra .164 12 .200* .949 12 .620

hot-humid .250 12 .037 .931 12 .394

hh4.3tca .230 12 .079 .874 12 .074

hot-humid .202 12 .192 .851 12 .038

hh6.7hra .184 12 .200* .936 12 .445

hot-humid .175 12 .200* .940 12 .496

hh6.7tca .142 12 .200* .945 12 .564

hot-humid .167 12 .200- .933 12 .416

*• This is a lower bound of the true significance.

a- Lilliefors Significance Correction

Heart Rate
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Within-Subjects Factors

Measure: MEASURE 1

env freq
Dependent

Variable
1 1 tnlhra

2 tn4.3hra
3 tn6.7hra

2 1 wdlhra
2 wd4.3hra
3 wd6.7hra

3 1 whlhra
2 wh4.3hra •
3 wh6.7hra

4 1 hdlhra
2 hd4.3hra
3 hd6.7hra

S 1 hhlhra
2 hh4.3hra
3 hh6.7hra

M a u c h ly 's  T e s t  o f  S p h e r ic ity

Measure: MEASURE 1

Within Subjects Effect Mauchly's W
Approx.

Chi-Square df Siq.

Epsilon*
Greenhous
e-Geisser Huvnh-Feldt Lower-bound

env .339 10.195 9 .342 .759 1.000 .250
freq .664 4.094 2 .129 .749 .840 .500

env • freq .013 35.355 35 .543 .575 1.000 .125

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix.

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: env+freq+env*freq

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum 
of Squares df Mean Square F Siq.

env Sphericity Assumed 13741.189 4 3435.297 47.528 .000
Greenhouse-Geisser 13741.189 3.036 4526.137 47.528 .000
Huynh-Feldt 13741.189 4.000 3435.297 47.528 .000
Lower-bound 13741.189 1.000 13741.189 47.528 .000

Error(env) Sphericity Assumed 3180.278 44 72.279
Greenhouse-Geisser 3180.278 33.396 95.230
Huynh-Feldt 3180.278 44.000 72.279
Lower-bound 3180.278 11.000 289.116

freq Sphericity Assumed 81003.911 2 40501.956 94.497 .000
Greenhouse-Geisser 81003.911 1.497 54109.047 94.497 .000
Huynh-Feldt 81003.911 1.680 48217.718 94.497 .000
Lower-bound 81003.911 1.000 81003.911 94.497 .000

Error(freq) Sphericity Assumed 9429.289 22 428.604
Greenhouse-Geisser 9429.289 16.468 572.598
Huynh-Feldt 9429.289 18.480 510.255
Lower-bound 9429.289 11.000 857.208

env * freq Sphericity Assumed 1156.978 8 144.622 1.682 .114
Greenhouse-Geisser 1156.978 4.601 251.478 1.682 .161
Huynh-Feldt 1156.978 8.000 144.622 1.682 .114
Lower-bound 1156.978 1.000 1156.978 1.682 .221

Error(env*freq) Sphericity Assumed 7565.156 88 85.968
Greenhouse-Geisser 7565.156 50.608 149.486
Huynh-Feldt 7565.156 88.000 85.968
Lower-bound 7565.156 11.000 687.741

Tests of Between-Subjects Effects

Measure: MEASUREJ 
Transformed Variable: Average

Source
Type III Sum 
of Squares df Mean Square F Siq.

Intercept
Error

2332672.672
55697.528

1
11

2332672.672
5063.412

460.692 .000
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4. env * freq

Measure: MEASURE_1

env freq Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 1 76.250 3.063 69.509 - 82.991

2 111.167 5.899 98.183 124.151
3 126.333 6.797 111.373 141.294

2 1 82.333 3.144 75.414 89.253
2 116.833 6.868 101.718 131.949
3 125.167 7.992 107.576 142.758

3 1 83.833 2.763 77.752 89.915
2 114.750 7.568 98.093 131.407
3 139.750 7.554 123.124 156.376

4 1 85.083 3.692 76.958 93.209
2 119.167 7.509 102.639 135.695
3 136.833 7.807 119.650 154.017

5 1 98.917 4.434 89.158 108.675
2 138.833 7.497 122.332 155.335
3 152.333 5.888 139.373 165.293

Core Temperature

Within-Subjects Factors

Measure: M EAS U R E  .1

env freq
Dependent

Variable
1 1 tn ltca

2 tn4.3tca
3 tn6.7tca

2 1 w d ltca
2 wd4.3tca
3 wd6.7tca

3 1 w h ltca

2 wh4.3tca
3 wh6.7tca

4 1 hd ltca

2 hd4.3tca
3 hd6.7tca

5 1 hh ltca

2 hh4.3tca

3 hh6.7tca

Mauchly's Test of Sphericity

Measure: MEASURE 1

Within Subjects Effect Mauchly's W
Approx.

Chi-Square df Siq.

Epsilon*
Greenhous
e-Geisser Huynh-Feldt Lower-bound

env .446 7.601 9 .581 .758 1.000 .250

freq .519 6.553 2 .038 .675 .736 .500

env * freq .010 37.692 35 .437 .504 .831 .125

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

a. May be used to adjust the degrees o f freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: env+freq+env*freq
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Measure: MEASURE 1

Tests o f W ithin-Subjects Effects

Source
Type III Sum 
of Squares df Mean Square F Siq.

env Sphericity Assumed 9.095 4 2.274 72.084 .000
Greenhouse-Geisser 9.095 3.033 2.999 72.084 .000
Huynh-Feldt 9.095 4.000 2.274 72.084 .000
Lower-bound 9.095 1.000 9.095 72.084 .000

Error(env) Sphericity Assumed 1.388 44 .032
Greenhouse-Geisser 1.388 33.362 .042
Huynh-Feldt 1.388 44.000 .032
Lower-bound 1.388 11.000 .126

freq Sphericity Assumed 7.747 2 3.873 80.228 .000
Greenhouse-Geisser 7.747 1.351 5.735 80.228 .000
Huynh-Feldt 7.747 1.473 5.261 80.228 .000
Lower-bound 7.747 1.000 7.747 80.228 .000

Error(freq) Sphericity Assumed 1.062 22 .048
Greenhouse-Geisser 1.062 14.858 .071
Huynh-Feldt 1.062 16.198 .066
Lower-bound 1.062 11.000 .097

env * freq Sphericity Assumed 1.294 8 .162 3.749 .001
Greenhouse-Geisser 1.294 4.029 .321 3.749 .010
Huynh-Feldt 1.294 6.648 .195 3.749 .002
Lower-bound 1.294 1.000 1.294 3.749 .079

Error(env*freq) Sphericity Assumed 3.798 88 .043
Greenhouse-Geisser 3.798 44.317 .086
Huynh-Feldt 3.798 73.130 .052
Lower-bound 3.798 11.000 .345

Tests of Between-Subjects Effects

Measure: MEASURE_1  

Transformed Variable: Average

Source
Type III Sum 
of Squares df Mean Square F Siq.

Intercept

Error
246154.412

11.398

1

11

246154.412

1.036

237556.5 .000

4. env * freq

Measure: M E A SURE_1

env freq M ean Std. Error

95%  Confidence Interval

Lower Bound Upper Bound
1 1 36.526 .079 3 6.353 3 6.699

2 36.797 .105 3 6.566 37.027

3 36.918 .109 3 6.679 3 7.156

2 1 36.620 .086 3 6.430 36.810

2 36.850 .081 36.671 3 7.029

3 36.987 .091 3 6.786 37.187

3 1 36 .6 68 .086 36.479 3 6.858

2 36 .8 24 .068 3 6.674 3 6.974

3 37.205 .091 37.005 37.405

4 1 36 .8 59 .065 36.717 37.001

2 37 .0 68 .090 36.871 37.266

3 37 .2 39 .130 36.954 37.524

5 1 36 .9 10 .061 36.775 37.045

2 37 .4 60 .132 37.170 37.750

3 37 .7 70 .109 3 7.530 38.010

MAWL

Within-Subjects Factors

Measure: MEASURE 1

env freq
Dependent
Variable

1 1 

3

tnlmawl
tn4.3maw
tn6.7maw

2 1 

3

wdlmawl
wd4.3maw
wd6.7maw

3 1 
2 
3

whlmawt
wh4.3maw
wh6.7maw

4 1 
2 
3

hdlmawl
hd4.3maw
hd6.7maw

5 1 
2 
3

hhlmawl
hh4.3maw
hh6.7maw
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Measure: M EA SU R E 1

M auchly's Tes t o f S p h e r ic i t /

W thin Subjects Effect Mauchly's W
Approx.

Chi-Square df Siq.

Epsilon*

Greenhous
e-Geisser Huvnh-Feldt Lower-bound

env .077 24.189 9 .005 .647 .864 .250
freq .242 14.205 2 .001 .569 .591 .500

env *  freq .002 52.S44 35 .049 .474 .753 .125

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: env+freq+env*freq

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum 
of Squares df Mean Square F Siq.

env Sphericity Assumed 61.867 4 15.467 4.717 .003
Greenhouse-Geisser 61.867 2.588 23.905 4.717 .011
Huynh-Feldt 61.867 3.454 17.910 4.717 .005
Lower-bound 61.867 1.000 61.867 4.717 .053

Error(env) Sphericity Assumed 144.267 44 3.279
Greenhouse-Geisser 144.267 28.469 5.068
Huynh-Feldt 144.267 37.997 3.797
Lower-bound 144.267 11.000 13.115

freq Sphericity Assumed 446.678 2 223.339 18.181 .000
Greenhouse-Geisser 446.678 1.137 392.723 18.181 .001
Huynh-Feldt 446.678 1.181 378.191 18.181 .001
Lower-bound 446.678 1.000 446.678 18.181 .001

Error(freq) Sphericity Assumed 270.256 22 12.284
Greenhouse-Geisser' 270.256 12.511 21.601
Huynh-Feldt 270.256 12.992 20.802
Lower-bound 270.256 11.000 24.569

env * freq Sphericity Assumed 31.767 8 3.971 .754 .644
Greenhouse-Geisser 31.767 3.788 8.386 .754 .554
Huynh-Feldt 31.767 6.026 5.272 .754 .609
Lower-bound 31.767 1.000 31.767 .754 .404

Error(env*freq) Sphericity Assumed 463.300 88 5.265
Greenhouse-Geisser 463.300 41.669 11.119
Huynh-Feldt 463.300 66.283 6.990
Lower-bound 463.300 11.000 42.118

Pairwise Comparisons

Measure: MEASURE 1

(I) env (J) env

M ean
D ifference

(l-J) S td. Error S iq *

95 %  C onfidence Interval for 
D ifference*

Lower Bound U pper Bound

1 2 -.1 9 4 .248 .449 -.74 0 .351

3 .250 .442 .583 -.72 3 1.223

4 .8 06 * .261 .010 .231 1 .380

5 1 .41 7* .427 .007 .478 2.35 6

2  1 .194 .248 .449 -.351 .740

3 .444 .5 79 .459 -.831 1.719

4 1.00 0 .468 .056 -.03 0 2 .03 0

5 1 .61 1* .482 .007 .551 2.671

3  1 - .2 5 0 .4 42 .583 -1 .2 23 .723

2 -.4 4 4 .5 79 .459 -1 .7 19 .831

4 .556 .379 .171 -.27 9 1 .390

5 1 .16 7* .492 .037 .085 2 .24 8

4  1 - .8 0 6 * .261 .010 -1 .3 80 -.231

2 -1 .0 0 0 .4 68 .056 -2 .0 30 .030

3 -.5 5 6 .3 79 .171 -1 .3 90 .279

5 .611 .3 78 .134 -.221 1 .443

5 1 -1 .4 1 7 * .427 .007 -2 .3 56 -.4 7 8

2 -1 .6 1 1 * .4 82 .007 -2.671 -.551

3 -1 .1 6 7 * .492 .037 -2 .2 48 -.0 8 5

4 -.611 .378 .134 -1 .4 43 .221

Based on estimated marginal means
*. The mean difference is significant at the .05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments).

Pairwise Comparisons

Measure: MEASURE 1

(1) freq (J) freq

Mean
Difference

(l-J) Std. Error Siq*

95% Confidence Interval for 
Deference*

Lower Bound Upper Bound
1 2 1.417* .572 .031 .158 2.675

3 3.817- .867 .001 1.909 5.724

2 1 -1.417* .572 .031 -2.675 -.158
3 2.400* .388 .000 1.547 3.253

3 1 -3.817* .667 .001 -5.724 -1.909

2 -2.400* .388 .000 -3.253 -1.547

Based on estimated marginal means
*. The mean difference is significant at the .05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments).
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RPE

Within-Subjects Factors

Measure: MEASURE 1

env freq
Dependent

Variable
1 1 tnlrpe

2 tn4.3rpe
3 tn6.7rpe

2 1 w dlrpe
2 wd4.3rpe
3 wd6.7rpe

3 1 w hlrpe
2 wh4.3rpe
3 wh6.7rpe

4 1 hdlrpe
2 hd4.3rpe
3 hd6.7rpe

5 1 hhlrpe
2 hh4.3rpe
3 hh6.7rpe

Mauchly's Test o f Sphericity

Measure: MEASURE 1

Within Subjects Effect Mauchly's W
Approx.

Chi-Square df Siq.

Epsilon*
Greenhous
e-Geisser Huynh-Feldt Lower-bound

env .178 16.241 9 .066 .530 .660 .250
freq .465 7.663 2 .022 .651 .703 .500
env * freq .002 48.788 35 .098 .456 .711 .125

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: env+freq+env*freq

Tests of Within-Subj'ects Effects

Measure: MEASURE_1

Source
Type III Sum 
o f Squares df Mean Square F Siq.

env Sphericity Assumed 84.000 4 21.000 15.750 .000
Greenhouse-Geisser 84.000 2.119 39.638 15.750 .000
Huynh-Feldt 84.000 2.638 31.839 15.750 .000
Lower-bound 84.000 1.000 84.000 15.750 .002

Error(env) Sphericity Assumed 58.667 44 1.333
Greenhouse-Geisser 58.667 23.311 2.517
Huynh-Feldt 58.667 29.021 2.022
Lower-bound 58.667 11.000 5.333

freq Sphericity Assumed 119.478 2 59.739 25.945 .000
Greenhouse-Geisser 119.478 1.303 91.715 25.945 .000
Huynh-Feldt 119.478 1.406 84.989 25.945 .000
Lower-bound 119.478 1.000 119.478 25.945 .000

Error(freq) Sphericity Assumed 50.656 22 2.303
Greenhouse-Geisser 50.656 14.330 3.535
Huynh-Feldt 50.656 15.464 3.276
Lower-bound 50.656 11.000 4.605

env * freq Sphericity Assumed 9.133 8 1.142 1.448 .188
Greenhouse-Geisser 9.133 3.651 2.501 1.448 .239
Huynh-Feldt 9.133 5.690 1.605 1.448 .214
Lower-bound 9.133 1.000 9.133 1.448 .254

Error(env*freq) Sphericity Assumed 69.400 88 .789
Greenhouse-Geisser 69.400 40.164 1.728
Huynh-Feldt 69.400 62.592 1.109
Lower-bound 69.400 11.000 6.309

4. env * freq

Measure: MEASURE 1__________________

env freq Mean Std. Error

95% Confidence Interval
Lower Bound Upper Bound

1 1 10.000 .508 8.883 11.117
2 10.750 .351 9.978 11.522

3 11.583 .313 10.895 12.272
2 1 10.167 .441 9.196 11.137

2 11.250 .305 10.580 11.920

3 11.417 .499 10.318 12.516

3 1 10.167 .458 9.159 11.174

2 11.500 .417 10.581 12.419

3 12.500 .597 11.187 13.813

4 1 10.250 .446 9.268 11.232

2 11.500 .314 10.809 12.191

3 12.833 .458 11.826 13.841

5 1 11.500 .314 10.809 12.191

2 13.000 .522 11.851 14.149

3 13.667 .829 11.843 15.491
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Non-Parametric Tests. Friedman Tests

Ranks

M e a n  R a n k
R P E tn 1.71

R P E w d 2 .1 7

R P E w h 2 .8 8

R P E h d 3 .5 0

R P E h h 4 .7 5

Test Statistics?

N 12
Chi-Square 28.259

df 4

Asymp. Sig. .000

a- Friedman Test

Ranks

Mean Rank
RPE1 1.00
RPE43 2.04
RPE67 2.96

Test Statistics?

N 12
Chi-Square 23.532
df 2
Asymp. Sig. .000

a. Friedman Test

Chapter 5 -  The Effects of Cold Environments on Performance of an 
Intermittent Lifting Task 

Heart Rate

Within-Subjects Factors

Measure: MEASURE 1

env freq
Dependent

Variable
1 1 tn lhr

2 tn4.3hr
3 tn6.7hr

2 1 tenlhr
2 ten4.3hr
3 ten6.7hr

3 1 five 1 hr
2 five43hr
3 five67hr

4 1 zstdlhr
2 zsd43hr
3 zsd67hr

5 1 zenhlhr
2 zen43hr
3 zen67hr
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Tests of Normality

Kolmogorov-Smirnov a Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

tnlhr .124 12 .200* .944 12 .551
tn4.3hr .179 12 .200* .924 12 .319
tn6.7hr .123 12 .200* .967 12 .876
tenlhr .195 12 .200* .946 12 .578
ten4.3hr .125 12 .200* .917 12 .263
ten6.7hr .174 12 .200* .949 12 .629
fivelhr .120 12 .200* .936 12 .453
five43hr .131 12 .200* .957 12 .744
five67hr .120 12 .200* .976 12 .965
zstdlhr .141 12 .200* .938 12 .469
zsd43hr .137 12 .200* .958 12 .757
zsd67hr .135 12 .200* .967 12 .879
zenhlhr .233 12 .071 .830 12 .021
zen43hr .227 12 .088 .885 12 .101
zen67hr .128 12 .200* .972 12 .927
tnltc .150 12 .200* .955 12 .718
tn4.3tc .203 12 .183 .906 12 .187
tn6.7tc .229 12 .081 .906 12 .189
tenltc .140 12 .200* .927 12 .353
ten4.3tc .189 12 .200* .954 12 .695
ten6.7tc .117 12 .200* .973 12 .939
fiveltc .151 12 .200* .963 12 .824
fiv4.3tc .130 12 .200* .966 12 .868
fiv6.7tc .209 12 .157 .928 12 .361
zstdltc .165 12 .200* .946 12 .578
zsd4.3tc .178 12 .200* .896 12 .139
zsd6.7tc .146 12 .200* .938 12 .467
zenhltc .166 12 .200* .971 12 .925
zen4.3tc .151 12 .200* .969 12 .897
zen6.7tc .184 12 .200* .919 12 .276
tnlrpe .201 12 .194 .877 12 .080
tn4.3rpe .297 12 .004 .816 12 .014
tn6.7rpe .145 12 .200* .948 12 .615
tenlrpe .275 12 .013 .830 12 .021
ten43rpe .264 12 .020 .903 12 .172
ten67rpe .323 12 .001 .856 12 .044
fivelrpe .241 12 .053 .910 12 .213
fiv43rpe .200 12 .198 .914 12 .242
fiv67rpe .171 12 .200* .953 12 .682
zsdlrpe .191 12 .200* .935 12 .440
zsd43rpe .277 12 .012 .826 12 .019
zsd67rpe .217 12 .125 .925 12 .333
zenlrpe .174 12 .200* .886 12 .104
zen43rpe .216 12 .127 .901 12 .162
zen67rpe .323 12 .001 .856 12 .044
tnlmwl .136 12 .200* .958 12 .754
tn4.3mwl .132 12 .200* .934 12 .420
tn6.7mwl .156 12 .200* .969 12 .901
tenlmwl .166 12 .200* .939 12 .479
ten43mwl .128 12 .200* .972 12 .930
ten67mwl .195 12 .200* .930 12 .381
fivel mwl .196 12 .200* .921 12 .298
fiv43mwl .172 12 .200* .961 12 .803
fiv67mwl .156 12 .200* .943 12 .532
zsdlmwl .148 12 .200* .961 12 .799
zsd43mwl .170 12 .200* .948 12 .603
zsd67mwl .176 12 .200* .955 12 .708
zenhlmwl .179 12 .200* .922 12 .299
zen43mwl .114 12 .200* .956 12 .720
zen67mwl .151 12 .200* .935 12 .440

*. This is a lower bound of the true significance.

a- Lilliefors Significance Correction
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Measure: MEASURE 1

Mauchly's Test o f Sphericity

Within Subjects Effect Mauchly's W
Approx.

Chi-Square df Siq.

Epsilon*
Greenhous
e-Geisser Huynh-Feldt Lower-bound

env .587 5.018 9 .836 .796 1.000 .250
freq .125 20.755 2 .000 .533 .544 .500
env * freq .016 33.669 35 .621 .577 1.000 .125

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed In 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: env+freq+env*freq

Tests of Within-Subjects Effects

Measure: MEASURE 1

Source
Type III Sum 
of Squares df Mean Square F Siq.

env Sphericity Assumed 100.922 4 25.231 .446 .775
Greenhouse-Geisser 100.922 3.182 31.715 .446 .733
Huynh-Feldt 100.922 4.000 25.231 .446 .775
Lower-bound 100.922 1.000 100.922 .446 .518

Error(env) Sphericity Assumed 2491.078 44 56.615
Greenhouse-Geisser 2491.078 35.004 71.166
Huynh-Feldt 2491.078 44.000 56.615
Lower-bound 2491.078 11.000 226.462

freq Sphericity Assumed 68809.244 2 34404.622 65.644 .000
Greenhouse-Geisser 68809.244 1.067 64491.796 65.644 .000
Huynh-Feldt 68809.244 1.088 63266.122 65.644 .000
Lower-bound 68809.244 1.000 68809.244 65.644 .000

Error(freq) Sphericity Assumed 11530.356 22 524.107
Greenhouse-Geisser 11530.356 11.736 982.444
Huynh-Feldt 11530.356 11.964 963.772
Lower-bound 11530.356 11.000 1048.214

env * freq Sphericity Assumed 836.144 8 104.518 1.425 .197
Greenhouse-Geisser 836.144 4.612 181.279 1.425 .234
Huynh-Feldt 836.144 8.000 104.518 1.425 .197
Lower-bound 836.144 1.000 836.144 1.425 .258

Error(env*freq) Sphericity Assumed 6454.256 88 73.344
Greenhouse-Geisser 6454.256 50.737 127.210
Huynh-Feldt 6454.256 88.000 73.344
Lower-bound 6454.256 11.000 586.751

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Source
Type III Sum 
of Squares df Mean Square F Siq.

Intercept
Error

2027146.689 

45203.311

1
11

2027146.689
4109.392

493.296 .000

env * freq

Measure: M E ASURE_1

env freq Mean Std. Error

95%  Confidence Interval

Lower Bound Upper Bound
1 1 

2 

3

83.833

108.417

127.917

2 .229

5 .414

7 .4 1 3

78.928

96.501

111.602

88.739

120.333

144.232

2 1 

2 

3

79.583

112.583

125.167

3.071

6 .866

6 .068

72.824

97.471

111.812

86.343

127.696

138.521

3 1 

2 

3

80.083

114.333

124 .000

3 .175

6 .979

6 .235

73.094

9 8.973

110.276

8 7.072

129.693

137.724

4  1 

2 

3

78 .2 50

111.167

131.750

2.541

7 .498

7.141

72.657

94.663

116.034

83.843

127.670

147.466

5  1 

2 

3

78.417

109.667

126.667

2 .589

6 .957

6 .966

72.718

94.355

111.335

84.115

124.979

141.998

Core Temperature
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Within-Subjects Factors

Measure: MEASURE 1

env freq
Dependent

Variable
1 1 tn ltc

2 tn4.3tc
3 tn6.7tc

2 1 tenltc
2 ten4.3tc
3 ten6.7tc

3 1 fiveltc
2 fiv4.3tc
3 fiv6.7tc

4 1 zstdltc
2 zsd4.3tc
3 zsd6.7tc

5 1 zenhltc
2 zen4.3tc
3 zen6.7tc

Mauchly's Test o f Sphericity

Measure: M E A S U R E  1

W ithin Subiects Effect M auchly's W
Approx.

C hi-Square df Sig.

Epsilon*

Greenhous
e-Geisser Huynh-Feldt Lower-bound

env .202 15.054 9 .094 .639 .848 .250

freq .995 .049 2 .976 .995 1.000 .500

env * freq .002 48 .8 69 35 .096 .576 1.000 .125

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables Is 
proportional to an identity matrix.

a. M ay be used to adjust the degrees of freedom  for the averaged tests of significance. Corrected tests are displayed in 
the Tests of W ithin-Subjects Effects table.

b.
Design: Intercept
W ithin Subjects Design: env+freq+env*freq

Tests of W ithin-Subjects Effects

Measure: MEASURE 1

Source
Type III Sum 
of Squares df Mean Square F Sig.

env Sphericity Assumed 2.901 4 .725 15.737 .000
Greenhouse-Geisser 2.901 2.555 1.135 15.737 .000
Huynh-Feldt 2.901 3.393 .855 15.737 .000
Lower-bound 2.901 1.000 2.901 15.737 .002

Error(env) Sphericity Assumed 2.028 44 .046
Greenhouse-Geisser 2.028 28.101 .072
Huynh-Feldt 2.028 37.325 .054
Lower-bound 2.028 11.000 .184

freq Sphericity Assumed 7.762 2 3.881 50.777 .000
Greenhouse-Geisser 7.762 1.990 3.900 50.777 .000
Huynh-Feldt 7.762 2.000 3.881 50.777 .000
Lower-bound 7.762 1.000 7.762 50.777 .000

Error(freq) Sphericity Assumed 1.682 22 .076
Greenhouse-Geisser 1.682 21.893 .077
Huynh-Feldt 1.682 22.000 .076
Lower-bound 1.682 11.000 .153

env * freq Sphericity Assumed .646 8 .081 1.321 .244
Greenhouse-Geisser .646 4.610 .140 1.321 .272
Huynh-Feldt .646 8.000 .081 1.321 .244

Lower-bound .646 1.000 .646 1.321 .275

Error(envVreq) Sphericity Assumed 5.381 88 .061
Greenhouse-Geisser 5.381 50.712 .106
Huynh-Feldt 5.381 88.000 .061
Lower-bound 5.381 11.000 .489

Tests of Between-Subjects Effects

Measure: M EASURE_1 

Transform ed Variable: Average

Source
Type III Sum  
of Squares df M ean Square F Sig.

Intercept

Error

240401 .050

18.165

1

11

24 0401 .050

1.651

145578.7 .000

env * freq

M easure: M E A S U R E _ 1

env freq M ean Std. Error

95 %  C onfidence Interval

Low er Bound U pper Bound

1 1 3 6 .4 9 2 .086 3 6 .3 03 36 .6 8 0

2 3 6 .8 1 0 .103 3 6 .5 84 37 .0 36

3 36 .8 8 3 .080 3 6 .7 0 8 37 .0 59

2 1 36 .2 5 8 .079 3 6 .0 83 36 .4 32

2 36 .7 1 0 .113 3 6 .4 62 36 .9 58

3 36 .881 .117 3 6 .6 2 4 37 .1 37

3 1 36 .281 .117 3 6 .0 24 36 .5 38

2 36 .6 5 3 .107 3 6 .4 1 9 36 .8 88

3 36 .7 3 6 .121 3 6 .4 69 37 .0 02

4 1 36 .0 23 .136 3 5 .7 2 3 36 .3 23

2 36 .3 5 5 .162 3 5 .9 9 8 36 .7 12

3 36 .6 8 5 .149 3 6 .3 5 8 37 .0 12

5 1 36 .2 5 5 .098 3 6 .0 4 0 36 .4 70

2 36 .5 7 8 .123 3 6 .3 0 7 36 .8 49

3 36 .5 8 0 .135 3 6 .2 8 2 36 .8 78
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MAWL
Within-Subjects Factors

Measure: MEASURE_1

env freq
Dependent

Variable
1 1 tn lm w l

2 tn4.3mwl
3 tn6.7mwl

2 1 tenlmwl
2 ten43mwl
3 ten67mwl

3 1 fivelm wl
2 fiv43mwl
3 fiv67mwl

4 1 zsdlmwl
2 zsd43mwl
3 zsd67mwl

5 1 zenhlmwl
2 zen43mwi
3 zen67mwl

Mauchly's Test of Sphericity

Measure: MEASURE 1

Within Subjects Effect Mauchly's W
Approx.

Chi-Square df Siq.

Epsifon*
Greenhous
e-Geisser Huynh-Feldt Lower-bound

env .247 13.169 9 .161 .608 .793 .250

freq .521 6.523 2 .038 .676 .737 .500

env * freq .001 53.911 35 .039 .434 .659 .125

Tests the null hypothesis that the error covariance matrix ot the orthonormalized transformed dependent variables is 
proportional to an Identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: env-tfreq-tenv'freq

Tests o f W ithin-Subjects Effects

Measure: MEASURE 1

Source
Type III Sum 
of Squares df Mean Square F Siq.

env Sphericity Assumed 27.700 4 6.925 1.510 .216

Greenhouse-Geisser 27.700 2.431 11.392 1.510 .238

Huynh-Feldt 27.700 3.172 8.733 1.510 .228

Lower-bound 27.700 1.000 27.700 1.510 .245

Error(env) Sphericity Assumed 201.767 44 4.586

Greenhouse-Geisser 201.767 26.746 7.544

Huynh-Feldt 201.767 34.890 5.783

Lower-bound 201.767 11.000 18.342

freq Sphericity Assumed 1712.878 2 856.439 34.362 .000

Greenhouse-Geisser 1712.878 1.352 1266.824 34.362 .000

Huynh-Feldt 1712.878 1.474 1161.714 34.362 .000

Lower-bound 1712.878 1.000 1712.878 34.362 .000

Error(freq) Sphericity Assumed 548.322 22 24.024

Greenhouse-Geisser 548.322 14.873 36.867

Huynh-Feldt 548.322 16.219 33.808

Lower-bound 548.322 11.000 49.847

en v * freq Sphericity Assumed 129.233 8 16.154 1.784 .091

Greenhouse-Geisser 129.233 3.474 37.198 1.784 .160

Huynh-Feldt 129.233 5.274 24.505 1.784 .127

Lower-bound 129.233 1.000 129.233 1.784 .209

Error{env*freq) Sphericity Assumed 796.900 88 9.056

Greenhouse-Geisser 796.900 38.216 20.853

Huynh-Feldt 796.900 58.012 13.737

Lower-bound 796.900 11.000 72.445

T e s ts  o f  B e tw e e n - S u b je c ts  E f fe c t s

Measure: MEASURE_1 
Transformed Variable: Average

Source
Type III Sum 
of Squares df Mean Square F Siq.

Intercept
Error

116688.272
8483.928

1
11

116688.272
771.266

151.294 .000

env * freq

Measure: MEASURE_1

env freq Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 1 30.950 2.694 25.020 36.880

2 23.617 2.098 18.999 28.234
3 21.283 2.141 16.572 25.995

2 1 28.200 2.539 22.612 33.788

2 25.283 2.130 20.595 29.972
3 21.117 1.612 17.569 24.664

3 1 28.617 2.670 22.740 34.493

2 25.033 2.378 19.799 30.268

3 22.450 1.970 18.114 26.786

4 1 29.533 2.415 24.219 34.848

2 24.200 2.314 19.106 29.294

3 23.950 1.923 19.717 28.183

5 1 30.783 2.524 25.228 36.339

2 24.533 2.299 * 19.473 29.593

3 22.367 1.720 18.580 26.153
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RPE

Within-Subjects Factors

M easure: M EASURE_1

env freq
D ependent

Variable
1 1 tn lrp e

2 tn4.3rpe

3 tn6.7rpe

2  1 ten lrp e
2 ten43rpe
3 ten67rpe

3 1 five lrpe

2 fiv43rpe

3 fiv67rpe
4 1 zsd trpe

2 zsd43rpe

3 zsd67rpe

5 t zen lrp e

2 zen43rpe
3 zen67rpe

Mauchly's Test of Sphericity

Measure: MEASURE_1

Within Subjects Effect Mauchly's W
Approx.

Chi-Square df Sig.

Epsilon*
Greenhous
e-Geisser Huynh-Feldt Lower-bound

env .489 6.739 9 .670 .798 1.000 .250
freq .394 9.305 2 .010 .623 .664 .500
env * freq .002 50.796 35 .069 .492 .799 .125

Tests the null hypothesis that the error covariance matrix of the orthonormali2ed transformed dependent variables is 
proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: env+freq+env*freq

T e s ts  o f  W ith in -S u b je c ts  E f fe c ts

Measure: M EASURE_1

Source
Type III Sum  
of Squares df Mean Square F Siq.

env Sphericity Assumed 2.300 4 .575 1.474 .226

Greenhouse-Geisser 2.300 3.192 .721 1.474 .237

Huynh-Feldt 2.300 4.000 .575 1.474 .226

Lower-bound 2.300 1.000 2.300 1.474 .250

Error(env) Sphericity Assumed 17.167 44 .390

Greenhouse-Geisser 17.167 35.109 .489

Huynh-Feldt 17.167 44.000 .390

Lower-bound 17.167 11.000 1.561

freq Sphericity Assumed 20.933 2 10.467 10.404 .001

Greenhouse-Geisser 20.933 1.246 16.806 10.404 .004

Huynh-Feldt 20.933 1.327 15.771 10.404 .004

Lower-bound 20.933 1.000 20.933 10.404 .008

Error(freq) Sphericity Assumed 22.133 22 1.006

Greenhouse-Geisser 22.133 13.702 1.615

Huynh-Feldt 22.133 14.601 1.516

Lower-bound 22.133 11.000 2.012

env * freq Sphericity Assumed 3.733 8 .467 .909 .513

Greenhouse-Geisser 3.733 3.933 .949 .909 .466

Huynh-Feldt 3.733 6.395 .584 .909 .499

Lower-bound 3.733 1.000 3.733 .909 .361

Error(env*freq) Sphericity Assumed 45.200 88 .514

Greenhouse-Geisser 45.200 43.261 1.045

Huynh-Feldt 45.200 70.344 .643

Lower-bound 45.200 11.000 4.109

T e s ts  o f  B e tw e e n -S u b je c ts  E f fe c ts

Measure: M E A S U R E R  

Transformed Variable: Average

Source
Type III Sum 
of Squares df Mean Square F Sig.

Intercept
Error

22311.200

247.333

1

11

22311.200
22.485

992.277 .000

e n v  *  f re q

Measure: MEASURE _1

env freq Mean Std. Error

95% Confidence Interval
Lower Bound Upper Bound

1 1 10.833 .474 9.790 11.877

2 10.833 .405 9.942 11.725

3 11.417 .452 10.423 12.411

2 1 10.417 .336 9.677 11.157

2 11.417 .358 10.629 12.205

3 11.500 .359 10.710 12.290

3 1 10.917 .484 9.851 11.982

2 11.167 .386 10.317 12.016

3 11.667 .432 10.715 12.618

4 1 10.833 .322 10.125 11.542

2 11.250 .429 10.307 12.193

3 11.750 .429 10.807 12.693

5 1 10.667 .482 9.606 11.728

2 10.833 .386 9.984 11.683

3 11.500 .359 10.710 12.290
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Non-Parametric Tests. Friedman Tests
Ranks

Mean Rank
RPEtn 2.46
RPEten 3.00
RPEfive 3.42
RPEzsd 3.67
RPEzen 2.46

T e s t  S ta t is t ic s ?

N 12
Chi-Square 7.422
df 4
Asymp. Sig. .115

a- Friedman Test

Ranks

Mean Rank
RPE1 1.38
RPE43 1.75
RPE67 2.88

Test S ta tis tics '

N 12
Chi-Square 16.714
df 2
Asymp. Sig. .000

a - Friedman Test

Finger Surface Temperature

Tests of Normality

Kolmogorov-Smirnov3 Shapiro-Wilk
Statistic df Sig. ‘ Statistic df Sig.

tn1 .323 6 .050 .797 6 .056
tn43 .224 6 .200* .869 6 .222
tn67 .312 6 .069 .857 6 .181
ten1 .230 6 .200* .921 6 .516
ten43 .245 6 .200* .843 6 .138
ten67 .227 6 .200* .891 6 .324
fivel .244 6 .200* .849 6 .155
five43 .373 6 .009 .734 6 .014
five67 .223 6 .200* .908 6 .420
zerostdl .231 6 .200* .883 6 .284
zerostd43 .211 6 .200* .968 6 .881
zerostd67 .338 6 .031 .810 6 .073
zeroenhl .215 6 .200* .922 6 .516
zeroenh43 .174 6 .200* .954 6 .771
zeroenh67 .225 6 .200* .892 6 .326

*• This is a lower bound of the true significance.

a. Lilliefors Significance Correction

W ithin-Subjects Factors

M easure : M E A S U R E  1

env freq
Dependent

Variable
1 1 tn1

2 tn43
3 tn67

2 1 ten1
2 ten43
3 ten67

3 1 five l
2 five43
3 five67

4 1 zerostdl
2 zerostd43
3 zerostd67

5 1 zeroenhl
2 zeroenh43
3 zeroenh67
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Measure: MEASURE_1

Mauchly's Test of Sphericity

Within Subjects Effect Mauchly’s W
Approx.

Chi-Square df Siq.

Epsilon*
Greenhous
e-Geisser Huynh-Feldt Lower-bound

env .002 20.960 9 .023 .323 .387 .250
freq .283 5.046 2 .060 .562 .651 .500
env • freq .000 35 .320 .685 .125

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix.

a May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: env+freq+env*freq

Tests of Within-Subjects Effects

M easure: M E A S U R E  1

Source
Type III Sum  

of Squares df M ean Square F Siq.
env Sphericity Assumed 1369 .229 4 342.307 56 .132 .000

Greenhouse-G eisser 1369 .229 1.291 1060.748 56.132 .000

H uynh-Feldt 1369 .229 1.549 884.042 56.132 .000

Lower-bound 1369 .229 1.000 1369.229 56.132 .001

Error(env) Sphericity Assumed 121.966 20 6.098

Greenhouse-G eisser 121.966 6.454 18.897

H uynh-Feldt 121.966 7.744 15.749

Lower-bound 121.966 5.000 24 .393

freq Sphericity Assumed 6 .056 2 3.028 .178 .839

Greenhouse-G eisser 6 .056 1.165 5.198 .178 .725

H uynh-Feldt 6 .05 6 1.301 4.654 .178 .750

Lower-bound 6.05 6 1.000 6.056 .178 .690

Error(freq) Sphericity Assumed 169.942 10 16.994

Greenhouse-G eisser 169.942 5 .825 29 .175

H uynh-Feldt 169.942 6.506 26 .123

Lower-bound 169.942 5.000 33 .988

env * freq Sphericity Assumed 16.123 8 2.015 .471 .869

Greenhouse-G eisser 16.123 2.561 6.297 .471 .680

H uynh-Feldt 16.123 5.478 2 .943 .471 .809

Lower-bound 16.123 1.000 16.123 .471 .523

Error(env'freq) Sphericity Assumed 171.096 40 4.277

Greenhouse-G eisser 171.096 12.803 13.364

H uynh-Feldt 171.096 27 .3 90 6.247

Lower-bound 171.096 5.000 34 .219

Tests o f Between-Subjects Effects

M easure: M E A S U R E J  

Transform ed V ariab le: A verage

Source
Type III Sum  
of Squares d f M ean  Square F Siq.

Intercept 2 5 2 3 0 .5 2 9 1 2 5 2 3 0 .5 2 9 1 6 29 .6 83 .000

Error 7 7 .4 09 5 1 5 .4 82

env* freq

M easure: M E A S U R E J

env freq M ean Std. Error

95 %  C onfidence Interval

Low er Bound U pper Bound

1 1 2 3 .1 7 5 1.137 2 0 .2 53 2 6 .0 9 7

2 2 2 .8 6 7 1 .284 19 .5 67 2 6 .1 6 7

3 2 4 .4 0 8 1 .089 21 .6 1 0 2 7 .2 0 7

2 1 18 .6 50 1 .014 16 .0 44 2 1 .2 5 6

2 18 .2 00 1.28 7 14.891 2 1 .5 0 9

3 18 .2 17 1.33 9 14 .7 76 2 1 .6 58

3 1 16 .4 33 1 .109 13 .5 82 19 .285

2 15 .7 17 .884 13 .4 45 17 .989

3 15 .0 50 .795 13 .0 07 17 .0 93

4  1 1 3 .7 25 1.476 9 .93 0 17 .5 20

2 13 .3 25 .947 10.891 15 .7 59

3 12 .7 17 1.349 9.24 8 16 .1 85

5 1 13 .5 67 1.087 10.771 16 .3 62

2 12 .7 42 .590 1 1 .2 24 14 .259

3 12 .3 58 .584 1 0 .8 57 13 .8 60

Grip Strength Change

200



W ithin-Subjects Factors 

Measure: MEASURE .1________

time env freq
Dependent

Variable
1 1 1 tn lpre

tn43pre
tn67pre

2 1 tenlpre
ten43pre
ten67pre

3 1 fivelpre
five43pre
five67pre

4 1 zsdlpre
zsd43pre
zsd67pre

5 t zen lpre
zen43pre
zen67pre

2 1 t tnlpost
tn43post
tn67post

2 1 tenlpost

ten43post
ten67post

3 1 fivetpost
five43post
five67post

4 1 zsdlpost
zsd43post
zsd67post

5 1 

2 

3

zenfpost
zen43post
zen67post

M a u c h ly 's  T e s t o f  S p h e r ic ity

Measure: MEASURE 1

Within Subjects Effect Mauchly’s W
Approx.

Chi-Square df Sig.

Epsilon*
Greenhous
e-Geisser Huynh-Feldt Lower-bound

time 1.000 .000 0 1.000 1.000 1.000
env .631 4.331 9 .890 .835 1.000 .250
freq .588 5.303 2 .071 .708 .783 .500
time • env .364 9.506 9 .399 .761 1.000 .250
time * freq .889 1.180 2 .554 .900 1.000 .500
env • freq .000 75.163 35 .000 .412 .609 .125
time * env * freq .006 41.388 35 .289 .424 .635 .125

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix.

a- May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table.

b.
Design: Intercept
Within Subjects Design: time+env+freq+time'env+time'freq+env'freq+time'env'freq
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Measure: MEASURE 1

Tests o f W ithin-Subjects Effects

Source
Type III Sum  
of Squares df Mean Square F Siq.

time Sphericity Assumed 337.561 1 337.561 3.315 .096
Greenhouse-Geisser 337.561 1.000 337.561 3.315 .096
Huynh-Feldt 337.561 1.000 337.561 3.315 .096
Lower-bound 337.561 1.000 337.561 3.315 .096

Error(time) Sphericity Assumed 1119.956 11 101.814
Greenhouse-Geisser 1119.956 11.000 101.814
Huynh-Feldt 1119.956 11.000 101.814
Lower-bound 1119.956 11.000 101.814

env Sphericity Assumed 24.801 4 6.200 .696 .599
Greenhouse-Geisser 24.801 3.342 7.422 .696 .575
Huynh-Feldt 24.801 4.000 6.200 .696 .599
Lower-bound 24.801 1.000 24.801 .696 .422

Error(env) Sphericity Assumed 392.018 44 8.910
Greenhouse-Geisser 392.018 36.758 10.665
Huynh-Feldt 392.018 44.000 8.910
Lower-bound 392.018 11.000 35.638

freq Sphericity Assumed 13.751 2 6.876 .946 .403
Greenhouse-Geisser 13.751 1.417 9.705 .946 .379
Huynh-Feldt 13.751 1.566 8.784 .946 .386
Lower-bound 13.751 1.000 13.751 .946 .352

Error(freq) Sphericity Assumed 159.837 22 7.265
Greenhouse-Geisser 159.837 15.586 10.255
Huynh-Feldt 159.837 17.221 9.282
Lower-bound 159.837 11.000 14.531

time * env Sphericity Assumed 12.561 4 3.140 .396 .811
Greenhouse-Geisser 12.561 3.046 4.124 .396 .760
Huynh-Feldt 12.561 4.000 3.140 .396 .811
Lower-bound 12.561 1.000 12.561 .396 .542

Error(time'env) Sphericity Assumed 349.292 44 7.938
Greenhouse-Geisser 349.292 33.502 10.426
Huynh-Feldt 349.292 44.000 7.938
Lower-bound 349.292 11.000 31.754

time * freq Sphericity Assumed 4.314 2 2.157 .402 .674
Greenhouse-Geisser 4.314 1.800 2.397 .402 .653
Huynh-Feldt 4.314 2.000 2.157 .402 .674
Lower-bound 4.314 1.000 4.314 .402 .539

Error(time*freq) Sphericity Assumed 118.172 22 5.371
Greenhouse-Geisser 118.172 19.797 5.969
Huynh-Feldt 118.172 22.000 5.371
Lower-bound 118.172 11.000 10.743

env * freq Sphericity Assumed 106.756 8 13.344 1.031 .419
Greenhouse-Geisser 106.756 3.293 32.418 1.031 .395
Huynh-Feldt 106.756 4.868 21.930 1.031 .408
Lower-bound 106.756 1.000 106.756 1.031 .332

Error{env*freq) Sphericity Assumed 1138.793 68 12.941

Greenhouse-Geisser 1138.793 36.225 31.437
Huynh-Feldt 1138.793 53.549 21.266
Lower-bound 1138.793 11.000 103.527

time • env * freq Sphericity Assumed 102.808 8 12.851 1.975 .059

Greenhouse-Geisser 102.808 3.388 30.341 1.975 .128
Huynh-Feldt 102.808 5.079 20.241 1.975 .095
Lower-bound 102.808 1.000 102.808 1.975 .187

Error(time*env*freq) Sphericity Assumed 572.515 88 6.506
Greenhouse-Geisser 572.515 37.272 15.360
Huynh-Feldt 572.515 55.871 10.247
Lower-bound 572.515 11.000 52.047

T e s ts  o f  B e tw e e n -S u b je e ts  E f fe c ts

Measure: M EA SU R EJ  
Transformed Variable: Average

Source
Type III Sum 
of Squares df Mean Square F Siq.

Intercept
Error

883972.003
13572.261

1
11

883972.003
1233.842

716.439 .000

202



time* env*freq

Measure: MEASURE_1

time env freq Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 t 1 51.003 1.909 46.807 55.210

50.700 2.285 45.670 55.730
50.508 1.806 46.533 54.484

2 1 51.150 1.584 47.663 54.637
49.392 1.916 45.175 53.609
51.133 2.032 46.661 55.606

3 1 51.025 ■ 1.595 47.514 54.536
50.008 1.935 45.750 54.266
49.642 1.885 45.493 53.791

4 1 50.533 1.998 46.137 54.930
50.767 2.008 46.346 55.187
50.175 2.339 45.026 55.324

5 1 50.325 2.443 44.947 55.703
50.342 2.504 44.830 55.854
51.108 1.827 47.088 55.129

2 1 1 49.217 1.751 45.363 53.071
48.142 2.414 42.829 53.454
50.008 1.849 45.940 54.077

2 1 48.242 2.253 43.283 53.200
49.483 1.568 46.032 52.934
48.683 1.946 44.399 52.967

3 1 48.975 2.025 44.517 53.433
47.717 2.511 42.191 53.242
48.867 2.653 43.028 54.705

4 t 48.858 2.032 44.386 53.330
49.525 2.401 44.241 54.809

3 45.142 2.753 39.082 51.201
5 1 48.958 2.461 43.543 54.374

2 48.050 2.025 43.593 52.507
3 48.900 1.390 45.841 51.959

Chapter 6 -  The Effects of Face Cooling on Physiological Strain During an 
Intermittent Lifting Task in a Warm-Humid Environment

Tests of Normality

Kolmoqorov-Smirnov3 Shapiro-Wilk
Statistic df Siq. Statistic df Siq.

osmolcon .228 10 .150 .878 10 .124
osmoltreat .218 10 .197 .918 10 .341
mawlcont .276 10 .030 .787 10 .010
mawltreat .209 10 .200* .908 10 .270
heart rate start-control .131 10 .200* .983 10 .978
heart rate end-control .254 10 .066 .866 10 .091
heart rate start-treatment .155 10 .200* .967 10 .860
heart rate end-treatment .114 10 .200* .990 10 .996
mean rpe for last 15 
minutes-control .300 10 .011 .749 10 .003

mean rpe for last 15 
minutes-treatment .244 10 .092 .845 10 .051

core temp start-control .112 10 .200* .963 10 .824
core temp end-control .205 10 .200* .917 10 .335
core temp start-treatment .157 10 .200* .941 10 .561
core temp end-treatment .211 10 .200* .972 10 .908
starttscon .171 10 .200* .971 10 .903
endtscon .198 10 .200* .939 10 .543
starttstre .181 10 .200* .948 10 .644
endtstre .175 10 .200* .933 10 .481
serum prolactin 
pre-control .144 10 .200* .954 10 .718

serum prolactin 
post-control .141 10 .200* .973 10 .917

serum prolactin 
pre-treatment .206 10 .200* .965 10 .845

serum prolactin 
post-treatment .176 10 .200* .943 10 .585

*• This is a lower bound of the true significance.

a- Lilliefors Significance Correction
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Heart Rate

Within-Subjects Factors

Measure: MEASURE 1

time treat
Dependent

Variable
1 1 

2
hrstartcon
hrstarttre

2 1 
2

hrendcon
hrendtre

T e s ts  o f  W ith in -S u b je c ts  E f fe c ts

Measure: M EASURE 1

Source
Type III Sum  
of Squares df Mean Square F Siq.

time Sphericity Assumed 20475.625 1 20475.625 109.790 .000
Greenhouse-Geisser 20475.625 1.000 20475.625 109.790 .000
Huynh-Feldt 20475.625 1.000 20475.625 109.790 .000

Lower-bound 20475.625 1.000 20475.625 109.790 .000

Error(time) Sphericity Assumed 1678.485 g 186.498
Greenhouse-Geisser 1678.485 9.000 186.498

Huynh-Feldt 1678.485 9.000 186.498

Lower-bound 1678.485 9.000 186.498

treat Sphericity Assumed 544.644 1 544.644 18.934 .002
Greenhouse-Geisser 544.644 1.000 544.644 18.934 .002
Huynh-Feldt 544.644 1.000 544.644 18.934 .002

Lower-bound 544.644 1.000 544.644 18.934 .002

Error(treat) Sphericity Assumed 258.886 9 28.765
Greenhouse-Geisser 258.886 9.000 28.765

Huynh-Feldt 258.886 9.000 28.765
Lower-bound 258.886 9.000 28.765

time * treat Sphericity Assumed 1.444 1 1.444 .033 .859
Greenhouse-Geisser 1.444 1.000 1.444 .033 .859

Huynh-Feldt 1.444 1.000 1.444 .033 .859

Lower-bound 1.444 1.000 1.444 .033 .859

Error(time*treat) Sphericity Assumed 388.386 9 43.154
Greenhouse-Geisser 388.386 9.000 43.154

Huynh-Feldt 388.386 9.000 43.154

Lower-bound 388.386 9.000 43.154

Core Temperature
W ithin-Subjects Factors

Measure: MEASURE 1

time treat
Dependent

Variable
1 1 

2
starttccon
starttctre

2 1 
2

endtccon
endtctre

Tests of Within-Subjects Effects

Measure: MEASURE 1

Source
Type III Sum 
of Squares df Mean Square F Siq.

time Sphericity Assumed 5.256 1 5.256 110.982 .000
Greenhouse-Geisser 5.256 1.000 5.256 110.982 .000
Huynh-Feldt 5.256 1.000 5.256 110.982 .000
Lower-bound 5.256 1.000 5.256 110.982 .000

Error(time) Sphericity Assumed .426 9 .047
Greenhouse-Geisser .426 9.000 .047
Huynh-Feldt .426 9.000 .047
Lower-bound .426 9.000 .047

treat Sphericity Assumed .002 1 .002 .197 .668
Greenhouse-Geisser .002 1.000 .002 .197 .668
Huynh-Feldt .002 1.000 .002 .197' .668
Lower-bound .002 1.000 .002 .197 .668

Error(treat) Sphericity Assumed .103 9 .011
Greenhouse-Geisser .103 9.000 .011
Huynh-Feldt .103 9.000 .011
Lower-bound .103 9.000 .011

time * treat Sphericity Assumed .020 1 .020 .802 .394
Greenhouse-Geisser .020 1.000 .020 .802 .394
Huynh-Feldt .020 1.000 .020 .802 .394
Lower-bound .020 1.000 .020 .802 .394

Error(time*treat) Sphericity Assumed .227 9 .025
Greenhouse-Geisser .227 9.000 .025
Huynh-Feldt .227 9.000 .025
Lower-bound .227 9.000 .025

Local Skin Temperature
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W ithin-Subjects Factors

Measure: MEASURE 1

time treat
Dependent

Variable
1 1 

2

starttscon

starttstre
2 1 

2

endtscon

endtstre

Tests o f Within-Subjects Effects

Measure: MEASURE 1

Source
Type III Sum 
of Squares df Mean Square F Siq.

time Sphericity Assumed 14.556 1 14.556 30.134 .000

Greenhouse-Geisser 14.556 1.000 14.556 30.134 .000

Huynh-Feldt 14.556 1.000 14.556 30.134 .000

Lower-bound 14.556 1.000 14.556 30.134 .000

Error(time) Sphericity Assumed 4.348 9 .483
Greenhouse-Geisser 4.348 9.000 .483
Huynh-Feldt 4.348 9.000 .483
Lower-bound 4.348 9.000 .483

treat Sphericity Assumed 18.320 1 18.320 155.933 .000
Greenhouse-Geisser 18.320 1.000 18.320 155.933 .000

Huynh-Feldt 18.320 1.000 18.320 155.933 .000

Lower-bound 18.320 1.000 18.320 155.933 .000

Error( treat) Sphericity Assumed 1.057 9 .117
Greenhouse-Geisser 1.057 9.000 .117
Huynh-Feldt 1.057 9.000 .117
Lower-bound 1.057 9.000 .117

time • treat Sphericity Assumed 11.524 1 11.524 106.599 .000

Greenhouse-Geisser 11.524 1.000- 11.524 106.599 .000

Huynh-Feldt 11.524 1.000 11.524 106.599 .000

Lower-bound 11.524 1.000 11.524 106.599 .000

Error(time*treat) Sphericity Assumed .973 9 .108
Greenhouse-Geisser .973 9 000 .108

Huynh-Feldt .973 9.000 .108
Lower-bound .973 9.000 .108

Within-Subjects Factors

Measure: MEASURE 1

time treat
Dependent

Variable
1 1 

2
prlprecon
prlpretreat

2 1 
2

prlpostcon
prlposttreat

Tests of Within-Subjects Effects

Source
Type III Sum 
of Squares df Mean Square F Siq.

time Sphericity Assumed 601.025 1 801.025 .295 .600
Greenhouse-Geisser 801.025 1.000 801.025 .295 .600

Huynh-Feldt 801.025 1.000 801.025 .295 .600

Lower-bound 801.025 1.000 801.025 .295 .600

Error(time) Sphericity Assumed 24406.725 9 2711.858
Greenhouse-Geisser 24406.725 9.000 2711.858
Huynh-Feldt 24406.725 9.000 2711.858
Lower-bound 24406.725 9.000 2711.858

treat Sphericity Assumed 319.225 1 319.225 .222 .649
Greenhouse-Geisser 319.225 1.000 319.225 .222 .649

Huynh-Feldt 319.225 1.000 319.225 .222 .649

Lower-bound 319.225 1.000 319.225 .222 .649

Errorjtreat) Sphericity Assumed 12968.525 9 1440.947
Greenhouse-Geisser 12968.525 9.000 1440.947
Huynh-Feldt 12968.525 9.000 1440.947
Lower-bound 12968.525 9.000 1440.947

time * treat Sphericity Assumed 2.025 1 2.025 .003 .958
Greenhouse-Geisser 2.025 1.000 2.025 .003 .958

Huynh-Feldt 2.025 1.000 2.025 .003 .958

Lower-bound 2.025 1.000 2.025 .003 .958

Error(time*treat) Sphericity Assumed 6224.725 9 691.636
Greenhouse-Geisser 6224.725 9.000 691.636
Huynh-Feldt 6224.725 9.000 691.636
Lower-bound 6224.725 9.000 691.636

MAWL and RPE -  Paired t-tests
Paired Samples Statistics

Mean N Std. Deviation
Std. Error 

Mean
Pair mawlcont 22.300 10 7.6041 2.4046
1 mawltreat 21.500 10 6.4256 2.0320

Pair
2

mean rpe for last 15 
minutes-control 13.0000 10 1.37437 .43461

mean rpe for last 15 
minutes-treatment 12.6250 10 1.11959 .35404
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Paired Samples Correlations

N Correlation Sifl.
Pair 1 mawlcont & mawltreat 10 .965 .000
Pair 2 mean rpe for last 15

minutes-control 4 
mean rpe for last 15 10 .916 .000

minutes-treatment

Paired Samples Test

Paired Differences

t df Siq. (2-tailed)Mean Std. Deviation
Std. Error 

Mean

95% Confidence 
Interval of the 

Difference
Lower U pper

Pair 1 mawlcont - mawltreat .8000 2.2010 .6960 -.7745 2.3745 1.149 9 .280
Pair 2 mean rpe for last 15

mean rpe for last 15 .37500 .56826 .17970 -.03151 .78151 2.087 9 .067

minutes-treatment
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Appendix D -  All Hand Calculations

Tukey’s tests were calculated using the following formula:

q =
mean 1 - mean 2

Vs2error*1/2(1/n+1/n)

Hot Data - Tukeys Tests (HRr

1,2 104.58-108.11
V72.28*1/ 2 (1/ 1 2 +1/ 1 2 )

-3.53
2.45

ENV)

-1.44

1,3 104.58-112.78 ■8.2 3.35

1,4 104.58-113.69 -9.11 3.72

1,5 104.58-130.03 ■25.45 -10.39

2,3 108.11-112.78 ■4.67 -1.9

2,4 108 .11 -113.69 -5.58 -2.28

2,5 108.11 -130.03 -21.92 -8.94

3,4 112.78-113.69 -0.91 -0.37

3,5 112.78-130.03 ■17.25 -7.04

4,5 113.69-130.03

q (5,44) ~4.04 at 0.05 level 
-4.93 at 0.01 level

-16.34 = -6.67

ENV 1= TN, 2=WD, 3=WH, 4=HD, 5=HH

Hot Data - Tu keys Tests (HRr FREQ)

1,2 85.28-136.08 ■50.8 -8.49
V428.6*1/ 2(1/12+1/12) 5.98

1,3 85.28-120.15 ■34.87 -5.83
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2,3 136.08-120.15 15.93 2.66

q (3,22) -3.53 at 0.05 level FREQ 1= 1 lift.mirf1
-4.54 at 0.01 level 2= 6.7 lifts.min' 1

3= 4.3 lifts.mirV1

Hot Data - Tukeys Tests (Tcmav)

0.0315 error term 
0.051132 bottom line (denominator)

wd wh hd hh
4.3 tn -1.17343 -0.58671 -5.28043 -13.1033

wd 0.586715 -4.107 -11.9299
wh -4.69372 -12.5166

5,44 hd -7.82286
hh

67 tn -1.369 -5.67157 -6.25829 -16.8192
wd -4.30257 -4.88929 -15.4502
wh -0.58671 -11.1476
hd -10.5609
hh

43 67
wh 1 -3.12914 -10.5609

43 -7.43172
3,22 67

hh 1 -10.7564 -16.8192
43 -6.06272
67

16 tests 0.05/16= 0.003

critical q at 0.01; 5,44 -4.93

critical q at 0.01; 3,22 -4.54

Hot Data - Tukevs Tests (RPE - ENV)
Pairs

1,2 10 .778-10.944 -0.166 = -0.49
Vl.333* 1/ 2 (1/ 1 2 +1/ 1 2 ) 0.333

1.3 10.778-11.389 -0.611 = -1.83

1.4 10.778- 11.528 -0.75 = -2.25
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1,5 10.778-12.722 -1.94 -5.84

2,3 10.944-11.389 -0.45 ■1.34

2,4 10.944-11.528 -0.58 -1.75

2,5 10.944-12.722 -1.78 -5.34

3,4 11 .389-11.528 -0.139 -0.42

3,5 11.389-12.722 -1.33 -4.0

4,5 11.528-12.722 -1.19 -3.58

q (5 ,44) -4.04 at 0.05 level 
5=HH

-4.93 at 0.01 level

Pairs

1,2

1,3

ENV 1= TN, 2=WD, 3=WH, 4=HD,

Hot Data - Tukevs Tests (RPE - FREQ)

10.417-12.4 -1.98
V3.535*1/ 2(1/12+1/12)

10 .417 -11 .6

0.54

-1.18

-3.66

-2.18

2,3 12.4-11.6

q (3,17)-3.65 at 0.05 level

0.8 1.48

FREQ 1= 1 lift.min1
2= 6.7 lifts.min' 1 
3= 4.3 lifts.min1

Pairs
Hot Data - Tukevs Tests (MAWL - ENV)

1,2 21.144-21.339
V5.068*1/ 2 (1/ 1 2 + 1/ 1 2 )

-0.195
0.649

-0.3

1,3 21.144-20.894 0.25 0.39

1,4 21.144-20.339 0.805 1.24

1,5 21.144-19.728 1.416 2.18
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2,3 21.339-20.894 0.445 0.69

2,4 21.339-20.339

2,5 21.339-19.728

3,4 20.894 -  20.339

3,5 20.894-19.728

4,5 20.339-19.728

q (5,28) -4.1 at 0.05 level 
5=HH

1.611

0.555

1.166

0.611

1.54

2.48

0.86

1.8

0.94

ENV 1= TN, 2=WD, 3=WH, 4=HD, 

Hot Data - Tukevs Tests (MAWL - FREQ)
Pairs

1,2

1,3

2,3

22.433-18.617_________________ 3.816
V21.601*14(1/12+1/12) 1.34

22.433-21.017

18.617-21.017

q (3,12) -3.77 at 0.05 level

1.416

-2.4

2.85

1.06

- 1.8

FREQ 1= 1 lift.min'1
2= 6.7 lifts.min'1 
3= 4.3 lifts.min'1

Pairs

1,2

1.3

2.3

Cold Data - Tukevs Tests (HRm». 

80.033-127.1 -47.07

FREQ)

V982.444*1/2(1/12+1/12) 9.05

80.033-111.233 -31.2

127.1 -111.233

q (3,22) -3.53 at 0.05 level 
-4.54 at 0.01 level

15.87

-5.2

-3.45

1.75

FREQ 1= 1 lift.min'1 
2= 6.7 lifts.min'1

3= 4.3 lifts.min'1
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Cold Data - Tukevs Tests (Tcmav.ENV)

Pairs

1.2 36.728-36.616 0.112
V0.072*1/2 (1/12+1/12) 0.08

1.3 36.728-36.557 0.17

1.4 36.728-36.354 0.37

1.5 36.728-36.471 0.26

2.3 36.616-36.557 0.06

2.4 36.616-36.354 0.26

2.5 36.616-36.471 0.15

3.4 36.557 -  36.354 0.2

3.5 36.557-36.471 0.09

4.5 36.354-36.471 -0.12

q (5,44) -4.04 at 0.05 level 
~4.93 at 0.01 level

Cold Data - Tukevs Tests (Tcmay - FREQ)
Pairs

1.2 36.262 -  36.753 -0.49
V0.076*1/4(1 /12+1/12) 0.08

1.3 36.262-36.621 -0.36

2.3 36.753-36.621 0.132

q (3,22) -3.53 at 0.05 level FREQ 1 =
2
3

Cold Data - Tukevs Tests (RPE - FREQ)
Pairs

1,2 10.733-11.567 -0.83
V1.615*^(1 /12+1 /12) 0.37

1.4

2.13 

4.63

3.25 

0.75

3.25 

1.88

2.5

1.13 

-1.5

- 6.1

-4.5

1.65

1 lift.min'1 
6.7 lifts.min'1 
4.3 lifts.min'1

-2.24
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1,3 10.733-11.1 -0.37 = -1

2,3 11.567-11.1 0.47 = 1.27

q (3,22) -3.53 at 0.05 level FREQ 1= 1 lift.min1
2= 6.7 lifts.min'1 
3= 4.3 lifts.min'1

Cold Data - Tukevs Tests (MAWL - FREQ)
Pairs

1.2 29.617-22.233 7.38 = 4.2
V36.867*1/2(1/12+1/12) 1.75

1.3 29.617-24.533 5.08 = 2.9

2.3 22.233-24.533 -2.3 = -1.3

q (3,22) -3.53 at 0.05 level FREQ 1= 1 lift.min*1
2= 6.7 lifts.min'1 
3= 4.3 lifts.min*1

Cold Data - Tukevs Tests (Finger Temp.ENV)

Pairs

1.2 23.48-18.36 5.12 = 0.5
Vl21.97*1/2 (1/12+1/12) 10.16

1.3 23.48-15.73 7.75 = 0.76

1.4 23.48-13.26 10.22 = 1

1.5 23.48-12.89 10.59 = 1.04

2.3 18.36-15.73 2.63 = 0.26

2.4 18.36-13.26 5.1 = 0.5

2.5 18.36-12.89 5.47 = 0.53

3,4 15.73-13.26 2.47 = 0.24
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3,5 15 .73 -12 .89 2.84 0.28

4,5 13 .26 -12 .89 0.37 0.04

q (5 ,4 4 ) -4 .04 at 0.05 level 
~4.93 at 0.01 level

All q values taken from the table of Critical Values of the Studentized Range Statistic. 
Thomas, J.R., & Nelson, J.K. (1996). Research Methods in Physical Activity (3rd ed.). 
Human Kinetics: Champaign, IL.
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Effect Sizes -  ANOVA designs

The formulae for calculating Pq2 and Gr|2 in a two-factor fully within-subjects 
ANOVA are as follows:

SS
F ratio Partial Eta Squared Generalised Eta Squared

SSA MS A/MS As SSA/(SSA+SSAs) SSA/(SSA+SSs+SSAs+SSBs+SSABs)

SSB MSB/MSBs SSB/(SSB+SSBs) SSB/(SSB+SSs+SSAs+SSBs+SSABs)

SSAB MSAB/MSABs SSAB/(SSAB+SSABs) SSAB/(SSAB+SSs+SSAs+SSBs+SSABs)

0.02=small-0.13=medium-0.26=large

Where:
SS = sum of squares MS = mean sum of squares
A = factor A (environment) s = error term for factor
B = factor B (frequency) SSs= between subjects error term
AB= interaction

(Bakeman, 2005)

Hot Study (Chapter 4)

F Partial Eta Squared Generalised Eta Squared
SSA
SSAs

13741.19 MSA 
3180.278 MSAs

3435.297
72.27905

47.53
0.81 0.22 medium

SSs
SSB
SSBs

27967.93 
81003.91 MSB 
9429.289 MSBs

40501.96
428.604

94.50
0.90 0.63 large

SSAB
SSABs

1156.978 MSAB 
7565.156 MSABs

144.6223
85.96768

1.68
0.13 0.02 small

SSA
SSAs

9.095 MSA 
1.388 MSAs

2.27375
0.031545

72.08
0.87 0.46 large

SSs
SSB
SSBs

4.509
7.747 MSB 
1.062 MSBs

3.8735
0.048273

80.24
0.88 0.42 large

SSAB
SSABs

1.294 MSAB 
3.798 MSABs

0.16175
0.043159

3.75
0.25 0.11 small

SSA
SSAs

61.867 MSA 
144.267 MSAs

15.46675
3.278795

4.72
0.30 0.01 none

SSs
SSB
SSBs

8251.844 
446.678 MSB 
270.256 MSBs

223.339
12.28436

18.18
0.62 0.05 small

SSAB
SSABs

31.767 MSAB 
463.3 MSABs

3.970875
5.264773

0.75
0.06 0.00 none

SSA
SSAs

84 MSA 
58.667 MSAs

21
1.333341

15.75
0.59 0.16 medium

SSs
SSB
SSBs

259.528 
119.478 MSB 
50.656 MSBs

59.739
2.302545

25.94
0.70 0.21 medium

SSAB
SSABs

9.133 MSAB 
69.4 MSABs

1.141625
0.788636

1.45
0.12 0.02 small
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F Partial Eta Squared Generalised Eta Squared Pi
SSA 100.922 MSA 25.2305 0.445647
SSAs 2491.078 MSAs 56.61541 0.04 0.00 none

HR SSs 45203.31
SSB 68809.24 MSB 34404.62 65.64426
SSBs 11530.36 MSBs . 524.1071 0.86 0.51 large

SSAB 836.144 MSAB 104.518 1.425042
SSABs 6454.256 MSABs 73.34382 0.11 0.01 none

SSA 2.901 MSA 0.72525 15.73521
SSAs 2.028 MSAs 0.046091 0.59 0.10 small

Tc SSs 18.165
SSB 7.762 MSB 3.881 50.76219
SSBs 1.682 MSBs 0.076455 0.82 0.22 medium

SSAB 0.646 MSAB 0.08075 1.320572
SSABs 5.381 MSABs 0.061148 0.11 0.02 small

SSA 27.7 MSA 6.925 1.510158
SSAs 201.767 MSAs 4.585614 0.12 0.00 none

MAWL SSs 8483.928
SSB 1712.878 MSB 856.439 34.3624
SSBs 548.322 MSBs 24.92373 0.76 0.15 medium

SSAB 129.233 MSAB 16.15413 1.783866
SSABs 796.9 MSABs 9.055682 0.14 0.01 none

SSA 2.3 MSA 0.575 1.473758
SSAs 17.167 MSAs 0.390159 0.12 0.01 none

RPE SSs 247.333
SSB 20.933 MSB 10.4665 10.40361
SSBs 22.133 MSBs 1.006045 0.49 0.06 small

SSAB 3.733 MSAB 0.466625 0.908473
SSABs 45.2 MSABs 0.513636 0.08 0.01 none

SSA 1369.229 MSA 342.3073 56.13159
SSAs 121.966 MSAs 6.0983 0.92 0.72 large

Finger SSs 77.409
SSB 6.056 MSB 3.028 0.178178
SSBs 169.942 MSBs 16.9942 0.03 0.01 none

SSAB 16.123 MSAB 2.015375 0.471168
SSABs 171.096 MSABs 4.2774 0.09 0.03 small

The formulae for calculating Pr|2 and Gr|2 in a three-factor fully within-subjects 
ANOVA are as follows:

SS
SSA

F ratio 

MSA/MSAs

Partial Eta Squared 

SSA/(SSA+SSAs)

Generalised Eta Squared

SSA/(SSA+SSs+SSAs+SSBs+SSCs+SSABsSSACs+SSBCs+SSABCs)

SSB MSB/MSBs SSB/(SSB+SSBs) SSB/(SSB+SSs+SSAs+SSBs+SSCs+SSABsSSACs+SSBCs+SSABCs)

SSC MSC/MSCs SSC/(SSC+SSCs) SSC/(SSC+SSs+SSAs+SSBs+SSCs+SSABsSSACs+SSBCs+SSABCs)

SSAB MSAB/MSABs SSAB/(SSAB+SSABs) SSAB/(SSAB+SSs+SSAs+SSBs+SSCs+SSABsSSACs+SSBCs+SSABCs)

SSAC MSAC/MSACs SSAC/(SSAC+SSACs) SSAC/(SSAC+SSs+SSAs+SSBs+SSCs+SSABsSSACs+SSBCs+SSABCs)

SSBC MSBC/MSBCs SSBC/(SSBC+SSBCs) SSBC/(SSBC+SSs+SSAs+SSBs+SSCs+SSABsSSACs+SSBCs+SSABCs)

SSABC MSABC/MSABCs SSABC/(SSABC+SSABCs) SSABC/(SSABC+SSs+SSAs+SSBs+SSCs+SSABsSSACs+SSBCs+SSABCs)

Where:
SS = sum of squares MS = mean sum of squares
A = factor A (time) s = error term for factor
B = factor B (environment) SSs= between subjects error term
C = factor C (frequency)
AB AC BC ABC = interactions

(Bakeman, 2005)
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Cold Study (Chapter 5) Grip Strength Change
F Partial Eta Squared Generalised Eta Squared

SSA 337.56 MSA 337.56 3.32
SSAs 1119.96 MSAs 101.81 0.23 0.02 small

Grip SSs 13572.26
SSB 24.80 MSB 6.20 0.70
SSBs 392.02 MSBs 8.91 0.06 0.00 none

SSC 13.75 MSC 6.88 0.95
SSCs 159.84 MSCs 7.27 0.08 0.00 none

SSAB 12.56 MSAB 3.14 0.40
SSABs 349.29 MSABs 7.94 0.03 0.00 none

SSAC 4.31 MSAC 2.16 0.40
SSACs 118.17 MSACs 5.37 0.04 0.00 none

SSBC 106.76 MSBC 13.34 1.03
SSBCs 1138.79 MSBCs 12.94 0.09 0.01 none

SSABC 102.81 MSABC 12.85 1.98
SSABCs 572.52 MSABCs 6.51 0.15 0.01 none

Face Cooling Study (Chapter 6)
F Partial Eta Squared Generalised Eta Squared

SSA 20475.63 MSA 20475.63 109.79
SSAs 1678.485 MSAs 186.50 0.92 0.73 large

HR SSs 5277.785
SSB 544.644 MSB 544.64 18.93
SSBs 258.886 MSBs 28.77 0.68 0.07 small

SSAB 1.444 MSAB 1.44 0.03
SSABs 388.386 MSABs 43.15 0.00 0.00 none

SSA 5.256 MSA 5.26 111.04
SSAs 0.426 MSAs 0.05 0.93 0.82 large

Tc SSs 0.425
SSB 0.002 MSB 0.00 0.17
SSBs 0.103 MSBs 0.01 0.02 0.00 none

SSAB 0.02 MSAB 0.02 0.79
SSABs 0.227 MSABs 0.03 0.08 0.02 small

SSA 14.556 MSA 14.56 30.13
SSAs 4.348 MSAs 0.48 0.77 0.58 large

Tsk SSs 4.027
SSB 18.32 MSB 18.32 155.99
SSBs 1.057 MSBs 0.12 0.95 0.64 large

SSAB 11.524 MSAB 11.52 106.59
SSABs 0.973 MSABs 0.11 0.92 0.53 large

SSA 801.03 MSA 801.03 0.30
SSAs 24406.73 MSAs 2711.86 0.03 0.01 none

PrL SSs 51917.73
SSB 319.23 MSB 319.23 0.22
SSBs 12968.5 MSBs 1440.94 0.02 0.00 none

SSAB 2.03 MSAB 2.03 0.00
SSABs 6224.7 MSABs 691.63 0.00 0.00 none

Factor A = Time 
Factor B = Treatment
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Effect Sizes -  d for paired t-test designs

Face-Cooling Study 

Using the formula:

d = tr [2(1 - r)n]0'5

Rating of Perceived Exertion

tr = 2.09 
r =0.916

d = 0.19

Maximum Acceptable Weight of Lift

tr = 1-1 
r = 0.965

d = 0.09
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Tests of Simple Main Effects -  Hot Study (Chapter 4) Core Temperature
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Appendix E -  Psychophysics Script

"We want you to imagine that you are on piece work, getting paid for the 
amount of work that you do, but working a normal 8-hour shift that allows 
you to go home without feeling shattered.

In other words, we want you to work as hard as you can without straining 
yourself, or without becoming unusually tired, weakened, overheated, or 
out of breath.

You will adjust your own workload. You will lift only when you hear the 
audio tone. In some sessions you will be working fast, some sessions 
working slowly. Your job will be to adjust the weight of the box that you 
are lifting.

Adjusting your own workload is not an easy task. Only you know how you 
feel.

If you feel you are working too hard, reduce the load. Take some weight 
out of the box.

We don’t want you loafing either. If you feel that you can work harder, 
increase the load. Put some weight into the box.

Don’t be afraid to make adjustments. You have to make enough 
adjustments so that you get a good feeling for what is too heavy and what is 
too light. You can never make too many adjustments-but you can make too 
few.

Remember...

This is not a contest

Everyone is not expected to do the same amount o f work

We want your judgement on how hard you can work without becoming 
unusually tired."

Adapted from Ciriello, Snook & Hughes (1993).
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Appendix F -  Calibration Data
chanl chan2

Air Temperature Thermistors (C) 
chan3 chan4 ref ch lb ias ch2bias ch3bias ch4bias

Relative Humidity (% ) 
shu ref bias

0.5 0.6 0.65 0.8 1.2 -0.70 -0.60 -0.55 -0.40 38.5 40.3 -1.8

0.5 0.6 0 .6 0.75 1.1 -0.60 -0.50 -0.50 -0.35 37.5 39.3 -1.8

0.5 0 .6 0 .6 0.75 1.1 -0.60 -0.50 -0.50 -0.35 36.5 38.5 -2

0.5 0.55 0.6 0.75 1.1 -0.60 -0.55 -0.50 -0.35 35.8 37.6 -1.8

0.5 0.6 0.65 0.8 1.1 -0.60 -0.50 -0.45 -0.30 35.1 36.9 -1.8

0.5 0.6 0.65 0.8 1.1 -0.60 -0.50 -0.45 -0.30 34.3 36 -1.7

0.5 0.6 0.6 0.75 1.1 -0.60 -0.50 -0 .50 -0.35 33.5 35.1 -1.6

0.45 0.5 0 .55 0.7 1 -0.55 -0.50 -0.45 -0.30 32.7 34.3 -1.6

0.4 0.5 0.5 0.65 1 -0.60 -0.50 -0.50 -0.35 32 33.5 -1.5

0.4 0.45 0.5 0.65 1 -0.60 -0.55 -0.50 -0.35 31.4 32.9 -1.5

0.4 0.5 0 .5 0.65 1 -0.60 -0.50 -0.50 -0.35 31 32.4 -1.4

0.45 0.5 0.55 0.7 1 -0.55 -0.50 -0.45 -0.30 30.8 32 -1.2

0.45 0.5 0.6 0.7 0.9 -0.45 -0.40 -0.30 -0.20 30.4 31 .6 -1.2

0.45 0.5 0.55 0.7 0.9 -0.45 -0.40 -0.35 -0.20 30 31.1 -1.1

0.45 0.5 0.55 0.7 0.9 -0.45 -0.40 -0.35 -0.20 29.5 30.7 -1.2

0.4 0.5 0 .5 0.65 0.9 -0.50 -0.40 -0.40 -0.25 29.4 30.5 -1.1

0.4 0.45 0.5 0 .6 0.9 -0.50 -0.45 -0.40 -0.30 29.3 30.2 -0.9

0.35 0.4 0.45 0.6 0.8 -0.45 -0.40 -0.35 -0.20 29.1 29.9 -0.8

0.35 0.4 0.45 0.6 0.8 -0.45 -0.40 -0.35 -0.20 29 29.8 -0.8

0.35 0.4 0.45 0.6 0.8 -0.45 -0.40 -0.35 -0.20 28.9 29.7 -0.8

0.3 0.4 0.4 0.55 0.8 -0.50 -0.40 -0.40 -0.25 28.7 29.5 -0.8

0.3 0.4 0.4 0.55 0.8 -0.50 -0.40 -0.40 -0.25 28.6 29.4 -0.8

0.3 0.4 0.4 0.55 0.8 -0.50 -0.40 -0.40 -0.25 28.6 29.3 -0.7

0.3 0.4 0.45 0.6 0.8 -0.50 -0.40 -0.35 -0.20 28.4 29.2 -0.8

0.35 0.4 0.45 0.6 0.7 -0.35 -0.30 -0.25 -0.10 28.4 29.1 -0.7

0.3 0.4 0.4 0.6 0.7 -0.40 -0.30 -0.30 -0.10 28.3 29 -0.7

0.3 0.4 0.4 0.55 0.8 -0.50 -0.40 -0 .40 -0.25 28.3 29 -0.7

0.3 0.35 0.4 0.55 0.7 -0.40 -0.35 -0.30 -0.15 28.4 29 -0.6

0.3 0.35 0.4 0.5 0.7 -0.40 -0.35 -0.30 -0.20 28.3 29 -0.7

0.3 0.35 0.4 0.5 0.7 -0.40 -0.35 -0.30 -0.20 28.3 29 -0.7

M oan Bias -0.51 -0.44 •0.40 -0.26 M ean Bias -1.16

05%  LoA at 0 C Std 0.08 0.08 0.08 0.08 Std 0.45

1.96*std 0.17 0.15 0.16 0.15 1.96*std 0.87

21 6 21 6 21 6 21.65 21 4 0.20 0.20 0.20 0.25 48.7 49.4 -0.7

21 6 21.6 21.65 21 65 21.4 0.20 0.20 0.25 0.25 48.7 49.8 -0.8

21.65 21.66 21.65 21.7 21.4 0.25 0.25 0.25 0.30 48.8 49 5 -0.7

21.65 21.7 21.7 21.7 21.4 0.25 0.30 0.30 0.30 48 7 49.5 -0.8

21 65 21.65 21 65 21.05 21.4 0.25 0.25 0.25 0.25 49.8 49.6 -0.8

21.6 21.6 21.65 21 .05 21.4 0.20 0.20 0.25 0.25 48.8 49.6 -0.8

21 65 21.65 21.05 21 .06 21.4 0.25 0.25 0.25 0.25 48.8 49.6 -0.8

21 65 21.65 21 .65 21.7 21.4 0.25 0.25 0.25 0.30 48.8 49 0 -0.7

21.65 21.66 21.65 21.7 21 5 0.15 0.15 0.15 0.20 43.8 49.6 -0.7

21.05 21.56 21 7 21.7 21 5 0.15 0.15 0.20 0.20 48.8 49.6 -0.8

21.65 21.65 21 7 21.7 21.5 0.15 0.15 0.20 0.20 48.8 49.6 -0.7

21.65 21.65 21 .65 21.7 21 5 0.15 0.15 0.15 0.20 48.8 49.6 -0.8

21.65 21.65 21 .65 21.7 21.5 0.15 0.15 0.15 0.20 48.9 43.7 -0 .6

21 65 21.65 2 1 65 21 7 21.5 0.15 0.15 0.15 0.20 43.8 49.5 -0.7

21 65 2.1.65 21 65 21 7 21.5 0.15 0.15 0.15 0.20 43 43.7 -0.7

21 65 21.7 21.7 21 7 21.5 0.15 0.20 0.20 0.20 43 .9 49.6 -0.7

21.7 21.7 21.7 2  5.76 21.5 0.20 0.20 0.20 0.25 43.3 49.6 -0.7

21.7 21.7 21 .75 21.75 21.0 0.10 0.10 0.15 0.15 49 49.7 -0.7

21.7 21.75 21.75 21 76 21 0 0.10 0.15 0.15 0.15 49 43.7 -0.7

21 7 21.75 21.76 21 75 21 6 0.10 0.15 0.15 0.15 49 43.7 -0.7

21 7 21 7 21.75 21.75 21 6 0.10 0.10 0.15 0.15 48 49.7 -0.7

21 7 21.7 21 .75 21 75 21.6 0.10 0.10 0.15 0.15 43 43.7 -0.7

21 ? 21 7 21.76 21.75 21.6 0.10 0.10 0.15 0.15 49.1 43.7 -0.6

21.7 21.75 2 ! 76 21.75 21.6 0.10 0.15 0.15 0.15 49 43.7 -0.7

21.7 21.75 2 i  75 21.75 21.0 0.10 0.15 0.15 0.15 43.2 49.8 -0.6

2.1 75 21.75 21.75 21.75 21.0 0.15 0.15 0.15 0.15 49.1 45.8 -0.7

21.7 21.75 21.75 21 .76 21.0 0.10 0.15 0.15 0.15 49.2 49 9 -0.7

21.7 21.7 21.75 21 .75 21.0 0.10 0.10 0.15 0.15 40.2 49 9 -0.7

21.7 21.75 21.75 21 .75 21 0 0.10 0.15 0.15 0.15 49.2 49.8 -0.6

21 7 21 7 21.75 21.75 21 6 0.10 0.10 0.15 0.15 49.1 49.9 -0.8

M ean Bias 0.15 0.17 0.18 0.20 M ean Bias -0.72

95%  LoA at 22 C 45%  RH Std 0.06 0.05 0.05 0.05 Std 0.06

1.96*std 0.11 0.10 0.09 0.10 1.96‘ std 0.12

39.55 39 5 39.45 39.45 38.4 1.15 1.10 1.05 1.05 74.9 74.3 0.6

39.55 39.5 39.45 39.4 38.5 1.05 1.00 0.95 0.90 75.2 74.5 0.7

39.5 39.45 39.45 39.4 38.6 0.90 0.85 0.85 0.80 75.3 75.3 0

39 55 39.5 39 45 39.45 38.6 0.95 0.90 0.85 0.85 75.4 75.1 0.3

39 55 39.5 39.5 39.45 38.6 0.95 0.90 0.90 0.85 75.7 75.6 0.1

39 55 39.5 39.5 39 5 38.7 0.85 0.80 0.80 0.80 75.9 76 -0.1

39.55 39.5 39.5 39.45 38.7 0.85 0.80 0.80 0.75 76.2 76.2 0

39.55 39.5 39.5 39 .45 38.8 0.75 0.70 0.70 0.65 76.4 76.7 -0.3

39 6 39.55 39 5 39.5 38.8 0.80 0.75 0.70 0.70 76.9 77 -0.1

39.65 3 9 6 39.55 39 55 38 8 0.85 0.80 0.75 0.75 76.9 77.2 -0.3

39.65 39 6 39 6 39.55 38.9 0.75 0.70 0.70 0.65 77.3 77.4 -0.1

39.65 39.6 39.6 39.55 38.9 0.75 0.70 0.70 0.65 77.4 77.6 -0.2

39.65 39.6 ’ 39.6 39.55 39 0.65 0.60 0.60 0.55 77.4 77 .5 -0.1

39 65 39.6 39.6 39.55 39 0.65 0.60 0.60 0.55 77.6 77.6 0

39 65 39.6 39.6 39.55 39 0.65 0.60 0.60 0.55 77.7 77.9 -0.2

3 9 6 5 39.6 39.6 39.55 39 0.65 0.60 0.60 0.55 77.8 77.9 -0.1

39.65 39.6 39.6 39.55 39 0.65 0.60 0.60 0.55 77.8 77.8 0

39.65 39.65 39.6 39.6 39 0.65 0.65 0.60 0.60 77.8 78 -0.2

39.65 39.65 39.65 39.6 39 0.65 0.65 0.65 0.60 77.9 78 -0.1

39 7 39.65 39.65 39.6 39.1 0.60 0.55 0.55 0.50 78.1 78.1 0

39.65 39.65 39.65 39.6 39.1 0.55 0.55 0.55 0.50 78.2 78.4 -0.2

39.65 39.65 39.65 39.6 39.1 0.55 0.55 0.55 0.50 78.3 78.3 0

39.65 39.65 39.6 39.6 39.1 0.55 0.55 0.50 0.50 78.2 78.2 0

39 65 39.65 39 65 39 6 39.1 0.55 0.55 0.55 0.50 78.3 78.2 0.1

39.7 39.65 39 65 3 9 6 39.1 0.60 0.55 0.55 0.50 77.8 77.8 0

39 65 39.6 39.6 39.55 39 0.65 0.60 0.60 0.55 77.7 77.8 -0.1

39.6 39.6 39.55 39.55 39 0.60 0.60 0.55 0.55 77.4 77.6 -0.2

39.6 39.55 39.55 39.5 39.1 0.50 0.45 0.45 0.40 77.3 77.5 -0.2

39.6 39.55 39.55 39.5 39.1 0.50 0.45 0.45 0.40 77.4 77.4 0

39.6 39.6 39.6 39.55 39.1 0.50 0.50 0.50 0.45 77.2 77.4 -0.2

M oan Bias 0.71 0.67 0.66 0.62 M ean Bias -0.03

95%  LoA  a t 40 C 80%  RH Std 0.17 0.16 0.15 0.16 Std 0.22

1.96*std 0.33 0.31 0.30 0.31 1.96*std 0.44

o c
C h 1 
Ch 2 
Ch 3 
Ch 4 

RH

Mean Bias ± 95% Range

-0.51 0.17 -0.68 to -0.34

-0 .44 0.15 -0.59 to -0.29

-0 .4 0.16 -0.56 to -0.24

-0 .26 0.15 -0.41 to -0.11

-1 .16 0.87 -2.03 to -0.29

22 C  45% Mean Bias ± 95% Range

Ch 1 0.15 0.11 +0.04 to +0.26

Ch 2 0.17 0.1 +0.07 to +0.27

Ch 3 0.18 0.09 +0.09 to +0.27

Ch 4 0.2 0.1 +0.1 to +0.3

RH -0 .72 0.12 -0.84 to -0.60

4 0  C  80% Mean Bias ± 95% Range

Ch 1 0.71 0.33 +0.38 to +1.04

Ch 2 0.67 0.31 +0.36 to +0.98

Ch 3 0.66 0.3 +0.36 - +0.96

Ch 4 0.62 0.31 +0.31 to +0.93

RH -0.03 0.44 -0 .47  to +0.41
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Surface Thermistors (C)
Run 1 - Bath at 36 C

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ref Ch1 Bias Ch2 Bias Ch3 Bias Ch4 Bias Ch5 Bias Ch6 Bias
35.9 35.8 36 36 36 36 36 -0.15 -0.2 0 -0.05 -0.05 -0.05
35.9 35.8 35 35.9 36 36 36 -0.15 -0.25 -0.05 -0.1 -0.05 -0.05
35.8 35.7 36 35.9 35.9 35.9 35.9 -0.1 -0.2 0.05 -0.05 0 0
35.8 35.7 35.9 35.8 35.9 35.9 35.9 -0.15 -0.25 0 -0.1 -0.05 -0.05
35.7 35.7 35.9 35.8 35.8 35.8 35.9 -0.2 -0.25 -0.05 -0.15 -0.1 -0.1
35.7 35.6 35.8 35.8 35.8 35.8 35.8 -0.15 -0.2 0 -0.05 -0.05 -0.05
35.7 35.6 35.8 35.7 35.8 35.7 35.8 -0.15 -0.25 -0.05 -0.1 -0.05 -0.1
35.6 35.5 35.8 35.7 35.7 35.7 35.7 -0.1 -0.2 0.05 -0.05 0 0 36? C
35.6 35.5 35.7 35.6 35.7 35.7 35.7 -0.15 -0.2 0 -0.1 -0.05 -0.05 Mean Bias ± 95% Range
35.5 35.5 35.7 35.6 35.6 35.6 35.7 -0.2 -0.25 -0.05 -0.15 -0.1 -0.1 Ch 1 -0.13 0.07 -0.2 to -0.06
35.5 35.4 35.6 35.5 35.6 35.6 35.6 -0.1 -0.2 0 -0.1 -0.05 -0.05 Ch 2 -0.21 0.06 -0.27 to -0.15
35.5 35.4 35.6 35.5 35.5 35.5 35.6 -0.15 -0.2 -0.05 -0.1 -0.1 -0.1 Ch 3 0 0.07 -0.07 to +0.07
35.5 35.4 35.6 35.5 35.5 35.5 35.5 -0.05 -0.15 0.05 -0.05 0 0 Ch 4 -0.08 0.07 -0.15 to -0.01
35.4 35.3 35.5 35.5 35.5 35.5 35.5 -0.1 -0.2 0 -0.05 -0.05 -0.05 Ch 5 -0.05 0.07 -0.12 to +0.02
35.4 35.3 35.5 35.4 35.5 35.5 35.5 -0.15 -0.25 0 -0.1 -0.05 -0.05 Ch 6 -0.05 0.07 -0.12 to +0.02
35.3 35.3 35.5 35.4 35.4 35.4 35.4 -0.1 -0.15 0.05 -0.05 0 0
35.3 35.2 35.4 35.4 35.4 35.4 35.4 -0.1 -0.2 0 . -0.05 -0.05 -0.05
35.3 35.2 35.4 35.3 35.3 35.3 35.4 -0.15 -0.25 -0.05 -0.1 -0.1 -0.1
35.2 35.1 35.4 35.3 35.3 35.3 35.3 -0.1 -0.2 0.05 -0.05 0 0
35.2 35.1 35.3 35.2 35.3 35.3 35.3 -0.15 -0.2 0 -0.1 -0.05 -0.05

Mean Bias -0.13 -0.21 0.00 •0.08 -0.05 -0.05
95% LoA at 36 C Std 0.04 0.03 0.04 0.03 0.03 0.04

Std*2 0.07 0.06 0.07 0.07 0.07 0.07

Run 2 - Bath at 28 C

Chi Ch2 Ch3 Ch4 Ch5 Ch6 Ref Ch1 Bias Ch2 Bias Ch3 Bias Ch4 Bias Ch5 Bias Ch6 Bias
27.7 27.6 27.8 27.7 27.8 27.8 27.7 -0.05 -0.1 0.05 0 0.05 0.05
27 7 27.6 27.8 27.7 2.7.8 27.8 27.7 -0.05 -0.1 0.05 0 0.05 0.05
27.7 27.6 27.8 27.7 27.8 27.8 277 -0.05 -0.1 0.05 0 0.05 0.05
27.7 ' 27.6 27.8 27.7 27.8 27.8 27.7 -0.05 -0.1 0.05 0 0.05 0.05
27.7 27.6 27.8 27.7 27.7 27.8 27.7 -0.05 -0.15 0.05 0 0 0.05
27.7 27.6 27.8 27.7 27.7 27.7 27.7 -0.05 -0.15 0.05 0 0 0
27.7 27.6 27.8 27.7 27.7 27.8 27.7 -0.05 -0.15 0.05 0 0 0.05
27.7 27.6 27.8 27.7 27.7 27.7 27.7 -0.05 -0.15 0.05 0 0 0
27.7 2.7.6 27.8 277 27.7 27.7 27.7 -0.05 -0.15 0.05 -0.05 0 0 28? C
27.7 27.6 27.8 27.7 27.7 27.7 277 -0.05 -0.15 0.05 -0.05 0 0 Mean Bias ± 95% Range
27.7 27.6 27.8 27.7 27.7 27.7 27.7 -0.05 -0.15 0.05 -0.05 0 0 Ch 1 -0.06 0.05 -0.11 to-0.01
27.7 27.6 27.7 27.7 27.7 27.7 27.7 -0.05 -0.15 0 -0.05 0 0 Ch 2 -0.14 0.05 -0.19 to -0.09
27.7 27.6 27.7 27.7 27.7 27.7 27.7 -0.05 -0.15 0 -0.05 0 0 Ch 3 0.03 0.05 -0.08 - +0.02
27.7 2.7.6 27.7 277 27.7 27.7 27.7 -0.05 -0.15 0 -0.05 0 0 Ch 4 -0.03 0.05 -0.08 - +0.02
27.6 27.6 27.7 27.7 27.7 27.7 27.7 -0.1 -0.15 0 -0.05 0 0 Ch 5 0.01 0.04 -0.05 - +0.03

27.6 27.6 27.7 27 7 27.7 27.7 27.7 -0.1 -0.15 0 -0.05 0 0 Ch 6 0.02 0.05 -0.07 - +0.03

27.6 27.6 27.7 27.7 27.7 27.7 27.7 -0.1 -0.15 0 -0.05 0 0
27.6 27.6 27.7 27.7 27.7 27.7 27.7 -0.1 -0.15 0 -0.05 0 0
27.6 2.7.5 27.7 27.7 27.7 27.7 27.7 -0.1 -0.2 0 -0.05 0 0
27.6 27.5 27.7 27.7 27.7 27.1 27 7 -0.1 -0.2 0 -0.05 0 0

Mean Bias -0.06 -0.14 0.03 -0.03 0.01 0.02
95% LoA at 28 C Std 0.02 0.03 0.03 0.03 0.02 0.02

Std*1.96 0.05 0.05 0.05 0.05 0.04 0.05
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ch1 ch2 ch3 ch4 ch5 ref chlbias ch2bias ch3 bias ch4 bias ch5 bias
5.1 4.95 4.9 5.05 5 5.2 -0.1 -0.25 -0.3 -0.15 -0.2
5.1 4.95 4.9 5.05 5 5.2 -0.1 -0.25 -0.3 -0.15 -0.2
5.1 4.95 4.9 5 5 5.2 -0.1 -0.25 -0.3 -0.2 -0.2

5.05 4.95 4.9 5 5 5.2 -0.15 -0.25 -0.3 -0.2 -0.2
5.05 4.95 4.9 5 5 5.2 -0.15 -0.25 -0.3 -0.2 -0.2
5.05 4.95 4.9 5 5 5.2 -0.15 -0.25 -0.3 -0.2 -0.2
5.05 4.95 4.9 5 5 5.2 -0.15 -0.25 -0.3 -0.2 -0.2 5? C

5 4.95 4.9 5 5 5.2 -0.2 -0.25 -0.3 -0.2 -0.2 Mean Bias ± 95% Range
5 4.95 4.9 5 5 5.2 -0.2 -0.25 -0.3 -0.2 -0.2 ch1 -0.2 0.07 -0.27 to -0.13
5 4.95 4.85 5 4.95 5.2 -0.2 -0.25 -0.35 -0.2 -0.25 ch2 -0.2 0.06 -0.26 to -0.14
5 4.95 4.85 4.95 4.9 5.2 -0.2 -0.25 -0.35 -0.25 -0.3 ch3 -0.3 0.08 -0.38 to -0.22
5 4.95 4.85 4.95 4.9 5.2 -0.2 -0.25 -0.35 -0.25 -0.3 ch4 -0.2 0.07 -0.27 to -0.13
5 4.9 4.85 4.95 4.9 5.2 -0.2 -0.3 -0.35 -0.25 -0.3 ch5 -0.2 0.08 -0.28 to-0.12
5 4.9 4.85 4.95 4.9 5.2 -0.2 -0.3 -0.35 -0.25 -0.3

4.95 4.9 4.85 4.95 4.9 5.1 -0.15 -0.2 -0.25 -0.15 -0.2
4.95 4.9 4.85 4.95 4.9 5.1 -0.15 -0.2 -0.25 -0.15 -0.2
4.95 4.9 4.85 4.95 4.9 5.1 -0.15 .-0.2 -0.25 -0.15 -0.2
4.95 4.9 4.85 4.95 4.9 5.1 -0.15 -0.2 -0.25 -0.15 -0.2
4.95 4.9 4.85 4.95 4.9 5.1 -0.15 -0.2 -0.25 -0.15 -0.2
4.95 4.9 4.85 4.9 4.9 5.1 -0.15 -0.2 -0.25 -0.2 -0.2
4.95 4.9 4.85 4.9 4.9 5.1 -0.15 -0.2 -0.25 -0.2 -0.2

Mean Bias -0.1595 -0.2381 -0.2952 -0.1929 -0.22143
SD 0.03398 0.03124 0.03842 0.03635 0.04053
SD*1.96 0.07 0.06 0.08 0.07 0.08

*1 ch2 ch3 ch4 ch5 ref chlbias ch2bias ch3 bias ch4 bias ch5 bias
19.1 19 18.95 19.1 19.05 19.2 -0.1 -0.2 -0.25 -0.1 -0.15

19.15 19 18.95 19.1 19.05 19.2 -0.05 -0.2 -0.25 -0.1 -0.15
19.15 19 18.95 19.1 19.05 19.2 -0.05 -0.2 -0.25 -0.1 -0.15
19.15 19 18.95 19.1 19.05 19.2 -0.05 -0.2 -0.25 -0.1 -0.15
19.15 19 18.95 19.1 19.05 19.2 -0.05 -0.2 -0.25 -0.1 -0.15
19.15 19 18.95 19.1 19.05 19.2 -0.05 -0.2 -0.25 -0.1 -0.15 19? C
19.15 19 18.95 19.1 19.1 19.2 -0.05 -0.2 -0.25 -0.1 -0.1 Mean Bias ± 95%
19.15 19 18.95 19.15 19.1 19.3 -0.15 -0.3 -0.35 -0.15 -0.2 ch1 -0.06 0.06
19.15 19 18.95 19.15 19.1 19.2 -0.05 -0.2 -0.25 -0.05 -0.1 ch2 -0.2 0.07
19.15 19 18.95 19.15 19.1 19.2 -0.05 -0.2 -0.25 -0.05 -0.1 ch3 -0.24 0.08
19.15 19 19 19.15 19.1 19.2 -0.05 -0.2 -0.2 -0.05 -0.1 ch4 -0.07 0.06
19.15 19 19 19.15 19.15 19.2 -0.05 -0.2 -0.2 -0.05 -0.05 ch5 -0.05 0.19
19.15 19 18.95 19.15 19.2 19.2 -0.05 -0.2 -0.25 -0.05 0
19.15 19.05 19 19.15 19.2 19.2 -0.05 -0.15 -0.2 -0.05 0
19.15 19.05 19 19.15 19.25 19.2 -0.05 -0.15 -0.2 -0.05 0.05
19.15 19.05 19 19.15 19.25 19.2 -0.05 -0.15 -0.2 -0.05 0.05
19.15 19.05 19 19.15 19.25 19.2 -0.05 -0.15 -0.2 -0.05 0.05
19.15 19.05 19 19.15 19.3 19.2 -0.05 -0.15 -0.2 -0.05 0.1
19.2 19.05 19 19.15 19.3 19.2 0 -0.15 -0.2 -0.05 0.1
19.2 19.05 19 19.2 19.3 19.25 -0.05 -0.2 -0.25 -0.05 0.05
19.2 19.05 19 19.2 19.35 19.3 -0.1 -0.25 -0.3 -0.1 0.05
19.2 19.05 19 19.2 19.35 19.3 -0.1 -0.25 -0.3 -0.1 0.05

Mean Bias -0.06 -0.20 -0.24 -0.07 -0.05
SD 0.03 0.04 0.04 0.03 0.10
SD*1.96 0.06 0.07 0.08 0.06 0.19

Range 
-0.12 to OC 

-0.27 to -0.13 C 
-0.32 to -0.16 C 
-0.13 to-0.01 C 
-0.24 to 0.14 C

Environmental Chamber -  Reproducibility of Measures

Comparison of air temperature at two locations 
Air 1 Air 2

mean 33.909 33.907 0.1125 sum of differences
sd 0.211 0.208
count 188 188

Absolute TEM 0.02°C
Relative TEM 0.05%
Limits of Agreement

mean bias o.oorc
1 sd 0.02
95% loa 0.048
upper 0.049
lower -0.046
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Two Air Temperature Readings: 95% Limits of Agreement
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Appendix G -  Site Visits (Example data)

Company name has been removed to protect anonymity.

Name of Company Here - April 16th 2003

A facility in Salford producing pies of all descriptions for the freezer. Overall, the 
environment was comfortable throughout the food preparation areas. According 
to the staff, the environment tended to vary with the seasons. Staff admitted that 
it could get hot in the summer and often wore nothing under their overalls. 
Where air extraction was present there were localised variations in temperature 
and air velocity. Because of the flour-dust content in the air it was decided not to 
take readings.

Staff worked two shift patterns, 0500-1300 and 1300-2100, at that time of year. 
Breaks were flexible depending on job demand. They also worked within one 
process area but rotated around periodically within their teams to alleviate 
boredom.

In the first area we visited, pastry was cut to length and rolled onto pins 
weighing ~25kg. The pins were then lifted off the conveyor belt (height=94 cm) 
and transferred to storage racks with heights of 46, 80 and 112 cm respectively. 
Between three and four pins were lifted per minute. No environmental 
monitoring was conducted by the company, they did however test the pastry 
temperature with a probe periodically. At the beginning of this process, trays of 
pastry were lifted off a pallet and tipped into the mixer (height=95 cm) at a 
frequency of around 3.min'1. The trays measured 75x45x16 cm with handles cut 
into the sides 17cm from the edge. When loaded they weighed between 20 - 25
kg-

In the cook room, pie fillings were made according to recipes. Wheeled bins of 
mince were lifted by electric hoist into the vats. Bags of cornflow (25 kg) and 
seasoning (8.5 kg) were poured into mixers at chest height. There was low 
ventilation apart from the middle of the room that benefited from the air-flow 
from a large extractor from the main process area. Only two vats were in use 
when we visited but there were a number of others both large and small and we 
were told that it got very hot when they were all in use.

In the weighing room batches of dry mix were weighed out and poured into 
trays for use in the main area. Rusk bags weighing 20 kg were stored on pallets 
up to a height of 150 cm. Grit bags (25 kg, 60x40x15 cm) were stored on pallets 
to the same approximate height. A worker might make up around 60-70 batches 
a day during an eight hour shift. Trays of mix were around 20 kg. Room 
temperature was fairly constant but there was some air movement by the scales 
caused by an extractor removing dust from the local environment.

In the de-boxing area, boxes of frozen meat (27.2 kg) were unloaded onto trays.

All food was put through a microwave to tenderise it. While we were there, 10 
kg boxes of rhubarb were unloaded from a pallet onto a conveyer 
(height=100cm) and lifted off at the end (85 cm) after going through the
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microwave. Lift frequency was around 2.min'1. Box dimensions were 38x30x20 
cm.

In the rolling out area, pastry on pins (from the first area) was loaded onto 
conveyers from the storage racks. The heights of these conveyers varied 
between 74 cm and 88 cm in the shepherds pie area.

At the end of the processes, boxes of produce were loaded onto pallets from 
conveyers (height= 65 cm). These varied in weight from 4 kg to 9 kg.

Overall impressions. An effort had been made to limit single lifts to around 25 kg 
maximum. No-one seemed to do the same task for more than an hour at a time 
(except in the weighing room). Lift frequencies were up to around 4.min'1. The 
temperature of the food was more important than the temperature of the 
environment. Workers compensated for changes in temperature by varying the 
amount of clothes that they wore under their PPE.
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Figure 1. Boxes of frozen meat lifted from floor (pallet) level to (figure 2) roughly 
knuckle-height. Boxes weighed 25kg.

Figure 3. A lift and carry of seasoning mix for pies. This is an example of an 
intermittent lift. The seasonings were dispensed by a machine approximately 
once a minute.

Figure 4. Trays of sausage rolls being palletized.

Figure 5. The author with environmental monitoring equipment at a bakery in 
2003. Note the uncomfortable plastic over-garment.

All photos reproduced courtesy of HSL.
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