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ABSTRACT

The aim of this project was to synthesise and characterise a range of novel 
cyclic and linear mesogenic siloxanes. A synthetic strategy based upon the 
synthesis of linear side-chain siloxanes was adopted. End-functionalised 
linear siloxane precursors were synthesised via ring opening polymerisation 
reactions. The coupling of mesogen and siloxane was carried out via a 
hydrosi lylation reaction in solution. Products were isolated by 
phase-separation and gel permeation chromatography (GPC).

Thermotropic behaviour was studied using optical microscopy, differential 
scanning calorimetry (DSC) and, in some cases, X-ray diffraction. An 
overview of the lyotropic behaviour of the amphiphiles was obtained using 
the penetration technique.

The principles explaining the thermotropic behaviour of conventional 
amphiphiles appear to be generally applicable to these amphiphilic 
siloxanes. Thus, the amphiphiles aggregate in the neat state. The shape of 
these aggregates is determined primarily by packing constraints. The 
amphiphiles undergo a step-wise melting process, w ith  the non-polar and 
the oolar moieties dominating the low and the high temperature transitions, 
respectively. The behaviour of different molecules can be explained by 
reference to the nature of the respective polar and non-polar moieties.

The aqueous lyotropic phase behaviour of NaD4 appears to be sim ilar to that 
of sodium myristate. Thus, the effect of attaching amphiphiles to a 
siloxane chain is to extend the non-polar chain of the amphiphile by 
approximately three methylene units. The linear amphiphiles did not form 
any aqueous lyotropic mesophases. This was explained in terms of the 
reversed micelle structure, which was dictated by packing constraints. 
There was no mesophase behaviour in non-polar solvents due to the strong 
forces of attraction between polar groups.

The model considerations applied to non-amphiphilic side-chain polymers 
appear to applicable to the non-amphiphilic cyclics studied here. Thus, 
suitable flexible spacer groups w ill decouple the motions of mesogenic 
side-chains from those of an oligomeric cyclic backbone such that the 
mesogens may align. However, more effic ient spacers are required to 
decouple the motions and steric effects of the cyclic backbone than is the 
case w ith the equivalent linear backbones.



CHAPTER 1. INTRODUCTION

1.1 Mesomorphism and Liquid Crvstallin itv

Conventionally, three phases of matter have been recognised: crystalline 

solids, isotropic liquids and gases. Each of these phases may be 

characterised according to their molecular order1. For instance, w ith in a 

crystalline solid the molecules are positioned on a three dimensional 

crystal la ttice w ith orientational and positional ordering, and w ith  very 

l i t t le  molecular mobility; w ith in a liquid there is no long range structure 

and li t t le  short range order, but rapid molecular motions and rapid 

molecular mobility; and, w ith in a gas there is no order and very rapid 

molecular motions. The characteristic physical properties of each of these 

phases can, therefore, be related to their molecular organisation; highly 

ordered crystalline solids having a constant volume and a constant shape; 

highly disordered gases having neither a constant volume nor a constant 

shape; and, liquids—which possess an order intermediate between that of 

the crystalline solids and gases-having a constant volume, but not retaining 

a constant shape.

Although not recognised as such, the f irs t  observations of a mesophase (i.e. 

a phase whose molecular order and, hence, whose properties are 

intermediate between that of crystalline solids and isotropic liquids2) were 

made in 1853 by Virchow during his studies on Myelin3. Later, in 1888, 

w hilst attempting to isolate a pure sample of Cholesteryl benzoate, 

Reinitzer4 observed a phase region between 145.5°C and 178.5°C which 

possessed low rig id ity, a llquld-llke property, and also optlcal-anlsotropy, a 

crysta l-like property. Lehmann5 subsequently termed this mesophase a 

'liquid crystal', because of this unusual combination of properties.



As mesophases are states of matter w ith structural orders which are 

intermediate between that of the crystalline solids and the isotropic 

liquids, and as three basic types of structural ordering exist—positional, 

orientational and conformational-Wunderlich and Grebowicz6 proposed that 

three types of mesophases are possible;

- liquid crystals; characterised by orientational order but varying 

degrees or positional disorder.

- plastic crystals; w ith positional order but orientational disorder.

- condis crystals; defined, by them for the f irs t  time, as 

conformationally disordered but w ith positional and orientational 

order.

The transition from a crystalline solid, through one or more of these 

mesophases, to the isotropic liquid, may be brought about by thermal 

processes or by the influence of a solvent (i.e. thermotropic and lyotropic 

mesomorphlsm, respectively)7. However, it  is important to note that 

thermotropic mesophases can, on occasion, incorporate a considerable 

amount of a solvent into their structures w ith the resulting modification of 

their properties, and that the results of thermal processes in lyotropic 

mesophases can have an equally significant effect. Hence, lyotropic and 

thermotropic behaviour may, to some degree, be characteristic of all 

mesophases.

As the molecular order encountered in mesophases is intermediate between 

that of crystalline solids and Isotropic liquids, mesophases exhibit 

properties which are common to both these conventional phases, as well as 

properties which are peculiar to themselves2. Examples of the unique



features of this state of matter include;

- the long range orientational ordering of the molecules in some 

mesophases can be controlled by external fields8*9 (i.e electrical and 

magnetic).

- some mesophases exhibit optical activ ity up to a thousand times 

greater than conventional optically active materials10*11.

- some mesophases change colour as a result of the effect of 

temperature on their structure11.

These are amongst the properties that give rise to the increasing interest in 

this 'relatively new' state of matter.

1.2 Molecular Structures of Conventional Mesomorphic Materials 

Molecules that form mesophases are termed mesogens. The structural 

characteristics which are necessary to produce small molecule mesogens 

have been reviewed by Gray and Winsor7, and by Brown and Shaw12.

Mesogens, and also the mesophases they form, can be divided into two main 

chemical classes7: amphiphilic and non-amphiphilic.

Amphiphilic molecules contain localised lipophilic (o il-lik ing) and 

hydrophilic (water-liking) moieties in their structures13. Typical examples 

of amphiphiles are shown in Table 1.1.

Sodium dodecyl sulphate n-C12H250S03Na
Hexadecyl trimethylammonium bromide n-C|6H33NMe3Br
Sodium perfluorooctanoate n-C7F|5C02Na
Tetraethylene glycol dodecyl ether n -C ^ h ^ O C ^ C h ^ O H

Table 1 1 Typical amphiphiles (the hydrophilic moieties are represented in 
bold text)



A large variety of molecular structures can provide the hydrophilic segment 

(the polar head group), including ionic and nonionic groups. The lipophilic 

segment (the non-polar ta il group) has generally been lim ited to hydrocarbon 

or fluorocarbon chains. Although most amphiphiles contain one head group 

and one ta il group, the number, chemical nature, and structure of both these 

groups can vary greatly.

Non-amphiphilic mesogens are generally organic molecules w ith a fa irly  

rigid rod-like or disc-like structure, which often possess a significant 

dipole moment7*14. Typical examples of non-amphiphilic mesogens are given 

in table 1.2, w ith their non-systematic, industrial ciphers shown in 

brackets.

H3CCH2CH2CH2^^-N=CH^)-0CH3

N-n methoxybenzylidene-p-n-butylaniline (MBBA)

H3CCH2CH2CH2CH2HgXg>-CN

4-Cyano-4'-n-pentylbiphenyl (5CB) r  Rod-like

n-Hexyl 4‘-n-pentyloxybiphenyl-4-carboxylate (650BC)

R 0

Disc-like

0 R

Rufigallol-hexa-n-octanoate (were R=02C(CH2)6CH3)

Table 1.2. Typical non-amphiphilic mesogens

4



These rod- and disc-like mesogens are highly geometrically anisotropic (i.e. 

the rod-like mesogens are characterised by a high length to diameter ratio, 

and the disc-like mesogens possess a high diameter to thickness ratio). The 

core of these molecules is such that the rig id ity /linea rity  is preserved.

1.3 Mesophases

1.3.1 Amphiphilic Mesophases

The lyotropic and thermotropic mesophases formed by typical amphiphiles 

may be regarded as structural arrangements of aggregates of these 

molecules (termed micelles), in which most aspects of the three 

dimensional periodicity of crystalline solids have been lost, and in which 

the molecular mobility is relatively high, being not much slower than that 

of isotropic liquids13.

Amphiphile aggregrates may be divided into three main shapes13; cylinders, 

discs, and spheres. For each of these geometries, the amphiphile can be 

arranged so that the polar group forms the aggregate surface and the 

non-polar group forms the interior, or visa versa (hereafter, referred to as 

normal and reversed micelles, respectively; see figure 1.1).

HEAD GROUP

ALKYL CHAIN

b)a)

Figure 1.1 Schematic representation of a) normal and b) reversed spherical 
micelles



The preferred geometry of an amphiphile aggregate and the number of 

molecules that constitute an individual aggregate (i.e. the aggregation 

number) depend upon the molecular structure of the mesogen (i.e. molecular 

packing constraints and inter-molecular forces) and, in lyotropic systems, 

upon the nature and concentration of the solvent13'15*16. As the growth of 

the rod aggregates is essentially unlimited in at least one dimension, the 

aggregation numbers range from several hundred to around 30000. For 

discs, the growth of the aggregate is lim ited by the unfavourable free 

energy of the "edge" molecules. Hence, disc micelles rarely have aggregation 

numbers greater than 1000. In spheres the size of the aggregate is 

effectively governed by the length of the amphiphile and the aggregation 

numbers are around 50-100.

Whilst the geometric structures of the aggregates formed in thermotropic 

and lyotropic systems are sim ilar, the forces responsible for the occurrence 

of these aggregates may be very d iffe rent13. The presence of the solvent in 

lyotropic systems may fundamentally affect the nature of the interactions 

responsible for mesophase formation, especially if  that solvent is water.

In aqueous lyotropic systems the properties of amphiphiles arise from the 

‘hydrophobic effect’17. As water/water hydrogen bonds are stronger than 

the van der Waals interactions occurring between non-polar and polar 

molecules, non-polar molecules such as alkanes have a lim ited solubility in 

water. On the other hand, polar groups are soluble in water because of their 

ab ility to form strong polar bonds w ith this solvent. Hence, compared to the 

parent non-polar species, amphiphiles have an increased aqueous solubility 

due to the presence of a polar group.

6



Although the aggregation of amphiphiles to form micelles, reduces the 

enthalpically 'less favourable' contact of the non-polar chains w ith water, 

w h ilst allowing the polar groups to remain hydrated, the forces driving this 

m icellisation are essentially entropic in nature17. Water is a highly 

structured liquid, w ith hydrogen bonds linking the individual molecules 

together; the precise arrangement about each molecule is not fu lly  

established. The water molecules which are in closest contact w ith the 

non-polar moiety of an amphiphile are thought to rearrange themselves so 

as to regenerate hydrogen bonds which have been broken due to the presence 

of this non-polar moiety. In doing so, there is a restriction on the range of 

conformations available to the water molecules relative to that of pure 

water, thereby producing a decrease in the entropy of the system. It is the 

minimisation of this effect which is the driving force behind micellization 

in aqueous systems.

Micellization occurs at a critica l concentration for a particular system13*17. 

This critica l concentration is termed the critica l micelle concentration 

(c.m.c.). Since micelle formation in aqueous systems occurs as a 

consequence of less favourable contact between non-polar groups and water, 

i t  is not surprising that c.m.c. values decrease w ith an increase in the chain 

length of the non-polar moiety of an amphiphile. The process of 

m icellisation in aqueous systems has been quantitatively described using 

thermodynamic treatments18*19.

In dilute aqueous solutions, micelles do not interact to any significant 

degree, and these solutions are isotropic. The main effect of increasing 

amphiphile concentration above the c.m.c. is to increase the number of 

m icelles13*16. This leads to increasing interactions between the micelles

7



that arise from excluded volume, solvation (hydration), steric and 

electrostatic effects. All of these are repulsive forces which act to 

increase micelle size and eventually to produce a disorder/order transition 

in the relative arrangement of the micelles. This results in the formation 

of an ordered lyotropic mesophase from an isotropic m icellar solution13*16. 

Further increase in amphiphile concentration may lead to the formation of a 

sequence of different mesophases arising from changes in the shape and the 

mutual arrangement of the micelles13-15*16.

Reversed micelles and reversed mesophases20*21 can result w ith some 

amphiphiles in the neat state, and when some amphiphiles (w ith a li t t le  

water) are dissolved in non-polar solvents. Their properties are sim ilar to 

those of the micelles and mesophases encountered in aqueous systems, 

although the thermodynamics of formation are quite d iffe ren t16*20. In these 

systems, the forces driving the aggregation process are essentially 

enthalpic in nature; the strong forces of attraction between polar groups 

causing phase separation of these groups from the non-polar moieties of the 

amphiphile and any non-polar solvent which is present.

As w ith aqueous systems, the c.m.c. of lyotropic systems based on non-polar 

solvents w ill be characteristic of that system. Again, increasing amphiphile 

concentration above the c.m.c. increases the number of micelles, and 

eventually produces a disorder/order transition resulting in the formation 

of a lyotropic mesophase. Further increase in amphiphile concentration may 

lead to the formation of a sequence of different mesophases20*21.

8



The formation of all amphiphilic mesophases depends on the operation of 

two sets of interactions7’13’16; intermolecular forces (attractive and 

repulsive) which determine micelle size and shape, and interm icellar forces 

(repulsive) which determine the relative arrangement of the micelles and, 

therefore, the nature of the mesophase.

Five well established amphiphilic mesophase structures ex is t13 These are 

the lamellar phase, hexagonal phases, two cubic phases, and nematic phases. 

Only a brief account of these phases w ill be given here as they have been 

extensively described elsewhere13’16’22"25. Details of the structures of the 

more equivocal phases can be found in the lite ra ture13’16. Although a 

variety of alternative systems for the nomenclature of amphiphilic 

mesophases have been published23"25, in this thesis the one given by Tiddy 

w ill be employed25. Thus, each type of mesophase structure w ill be 

represented by a particular le tte r (e.g. hexagonal-H) while subscripts 1 or 2 

w ill refer to normal and reversed structures, respectively.

The hexagonal mesophase consist of extended cylindrical micelles packed in 

a two dimensional hexagonal array (see figure 1.2). With normal micelles 

the normal hexagonal (Hj) phase results. Up to date this phase has only been 

encountered in the presence of a solvent (usually water). With reversed 

micelles the reversed hexagonal (H2) phase results. This phase has been

encountered w ith some amphiphiles in the pure state and in the presence of 

non-polar solvents (and a l i t t le  water).

9
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a) b)

Figure 1.2 Schematic representation of a) normal and b) reversed 
hexagonal phase structures (H1 and H2, respectively).

The lamellar mesophase (Lex) consists of parallel extended bilayer or disc, 

micelles (see figure 1.3). Typically, the dimensions of these layers are of 

the order of microns or more. This phase occurs w ith some amphiphiles in 

the pure state and both oil and/or water can be incorporated into the 

structure. This is perhaps the most common mesophase structure 

encountered in amphiphilic systems.

Figure 1.3 Schematic representation of the lamellar phase structure.

TAILS

POLAR

GROUPS

NON-POLAR
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Various cubic mesophases are thought to exist. The most widely studied 

cubic phases, V1 and V2, are thought to involve a regular three dimensional 

network of micelles (see figure ’ 1.4a). In these phases both the polar and 

non-polar regions are thought to be bi-continuous, although the exact 

structure remains to be resolved.

Figure 1 4 Schematic representation of the structure of a) the Vf and b) the 
I ] mesophases.

The lj and l2 cubic phase are made up small micelles (spheres, cylinders, or

discs whose geometric anisotropy approaches zero) packed in some form of 

cubic lattice (see figure 14b). Examples of both body-centred and 

face-centred normal structures appear in the literature26-27 It is 

interesting to note that, as the If and l2 mesophases are characterised by

orientational disorder but w ith positional order, Wunderlich and Grebowlcz6 

would classify these mesophases as plastic crystals.



Two types of nematic phase have been reported; uniaxial and biaxial. These 

phases have only been observed in surf actant/water systems and generally 

arise w ith short chain surfactants (i.e. chain length (Cn) <14). The viscosity 

of these phases is very low and they can be easily poured and may be aligned 

in strong magnetic fields. The uniaxial phases consist of ordered small 

cylindrical micelles (Nc) or ordered small disc micelles (ND) w ith

orientational ordering, but l i t t le  or no positional ordering (see figure 

1.5)28"31. The structure of the biaxial phases has yet to be fu lly  

established13*16’32.

Figure 1.5 Schematic representation of the structure of the Nc and Nq 
phases.

Although amphiphilic mesophases consist of ordered aggregates and may 

have a very high viscosity, at the molecular level, micelles are transient 

species which form and break up very quickly; the molecular mobility being 

not much slower than that of isotropic liquids13.



1.3.2 Non-Amphiphilic Mesophases

The lyotropic and thermotropic mesophases formed by non-amphiphilic 

mesogens should be regarded as structural arrangements of individual 

molecules, and not the arrangement of aggregates of molecules, as is the 

case in amphiphilic systems. The formation of non-amphiphilic mesophases 

is essentially a consequence of mesogen asymmetry (mesogen 

geometry)33"35 and anisotropy of intermolecular attractions and repulsions 

(i.e. excluded volume effects)36' 41. As a consequence of these interactions 

there is a lim it to the number of rod-like and disc-like units that can be 

accommodated in a random arrangement in solution and in the melt. When 

this lim iting concentration is exceeded an ordered arrangement of the 

molecules-in which some aspect of the three dimensional periodicity of 

crystalline solids is absent-is preferred.

On the basis of molecular arrangement, the mesophases formed by 

non-amphiphilic mesogens can be divided into three main classes7*8; 

smectic, nematic and cholesteric.

The smectic group of phases has long range orientational ordering of the 

major molecular axis and has a layered structure (see figure 1.6). Varying 

degrees of positional order and molecular t i l t  w ith in these layers give rise 

to various smectic modifications42. The direction of the local preferred 

alignment of the long axis of the molecules Is called the director (/?). The 

local areas of preferred alignment are known as domains; the alignments In 

neighbouring domains being independent of each other unless some external 

force is applied (e.g. electric and magnetic fields, or a shearing force). The 

smectic phases are of relatively high order and high viscosity.
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R O D-LIK E MOIETY

FLEXIBLE MOIETY

Figure 1.6 Schematic representation of a smectic phase

In the nematic phase there is orientational ordering, but li t t le  or no 

positional ordering of the molecules (see figure 1.7). Again, there is a local 

preferred alignment of the long axis of the molecules in domains, and the 

alignments of neighbouring domains is independent of each other, unless 

some external force is applied. Compared with the smectic modifications, 

the nematic phase is one of relatively low order and viscosity.

RO D-LIK E MOIETY

FLEXIBLE MOIETY

Figure 1.7 Schematic representation of a nematic phase.
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A special type of nematic phase is the cholesteric phase. The cholesteric 

phase is formed by optically active compounds, where the mesogens are 

assembled in layers in which their molecular arrangement is like that of the 

nematic phase, but each layer is turned through a definite angle relative to 

the next, so that overall there is a helical type of structure (see figure 1.8). 

The successive turns are maintained in position by intermolecular forces 

(e.g. hydrogen bonds and dipole-dipole interactions).

Figure 1.8 Schematic representation of a cholesteric phase (where p = the 
pitch of the helix).

The cholesteric phase is of low viscosity and possesses interesting optical 

properties10*11, which include: an optical activ ity up to a thousand times 

greater than conventional optically active materials, and a variation in their 

colour as a result of the effect of temperature on the helical pitch length.

At this point it  is worth re-iterating that although amphiphilic and 

non-amphiphilie mesophases have historically been studied by separate 

groups, there is much common ground. For instance, the relative 

arrangements of the structural units in these two classes of mesophase (i.e. 

the amphiphilic micelles and the non-amphiphilic molecules) arise 

essentially due to intermolecular or interaggregate forces. It is, therefore,

15



not surprising that structural units of sim ilar geometry give rise to 

mesophases w ith sim ilar structures and, to some degree, sim ilar properties. 

For example, the arrangement of rod micelles in the hexagonal mesophase13 

is analogous to the arrangement of rod-like molecules in the smectic '6' 

mesophase42; the arrangement of the individual amphiphilic mesogens in 

the lamellar mesophase is analogous to the arrangement of the 

non-amphiphilic mesogens in a number of smectic modifications; and 

numerous non-amphiphilic molecules w ith a fa irly  globular structure (i.e. 

geometrically isotropic) such as cyclohexane, carbon tetrachloride, 

hexachloroethane and camphor exhibit a mesophase structure6 which is very 

sim ilar to the I, and \2 cubic phase formed in some amphiphilic systems13.

1.4 Properties and Applications

1.4.1 Amphiphilic Mesophases

Although most people are unaware of the existence of mesophases, 

amphiphiles, and the lyotropic mesophases that result from their dispersion 

in water, have been used in cleaning products for centuries and are 

commonly encountered in every day life 13 Lyotropic mesophases occur 

during the detergency of oily soils, they are fundamental to the stab ility  of 

many emulsion products and even occur during cooking. In general, the 

usefulness of the amphiphiles in these applications, lies in their surface 

activ ity and their ab ility to act as molecular bridges between dissim ilar 

polar and non-polar regions; both effects being facets of the chemical 

nature of an amphiphile. In addition, amphiphiles and their aggregates are 

also used to modify the Theological behaviour of some functional fluids (i.e. 

increase the viscosity of a shampoo to give an aesthetically pleasing 

'richness')43.
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Amphiphiles also occur widely in biological systems44*45. Biological 

membranes are composed primarily of lipids and proteins. The lipids vary in 

composition but are generally amphiphilic in nature consisting of a polar 

head and a non-polar tail. In aqueous environments, the lipids align in 

ta il- to - ta il continuous bilayers with the polar head group in contact w ith 

the aqueous phase, rather like a lamellar mesophase24-44 (see figure 1.9). 

The proteins extend throughout the lipid bilayer. Water, gases, hydrophobic 

and hydrophilic molecules or ions are transported across membranes through 

both proteins and lipid bilayers. The motions and conformations of the 

proteins and lipids are interrelated and greatly affect the permeability of 

the membrane itself. Thus, phase transitions induced by temperature change 

or additives such as cholesterol-thermotropic and lyotropic effects, 

respectively—significantly alter the structure and properties of the 

membrane, which in turn profoundly influences the transport 

characteristics of the membrane.

PROTEIN MOLECULES

POLAR HEAD 
GROUPS

NON-POLAR
TAILS

Figure 1.9 Schematic representation of a lip ids bilayer.
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Although no synthetic equivalents have achieved the versa tility  of 

biological membranes, Ringsdorf et al,46 and Kunitake et a l47 have recently 

synthesised polymerisable lipids which may be used to model biological 

membranes; the study of which, may be of interest to medicine and industry 

alike.

1.4.2 Non-Amphiphilic Mesophases

Although the thermotropic mesophases of certain non-amphiphiles have been 

known since the late nineteenth century4-5, i t  is only in recent years that 

these materials have found widespread application. They have been used in 

the fabrication of electro-optical devices9*48"51, as highly selective 

stationary phases for Gas Chromatography (G.C)52"54, and as thermal 

mapping agents in thermography11*55.

The manufacturers of electro-optical devices (e.g. watches, calculators, 

television sets and large display devices) have made use of their ab ility  to 

control the molecular order w ithin a mesophase w ith the application of 

external fields, and the resultant different optical properties of 

macroscopically ordered and disordered mesophase regions.

The selectivity of certain non-amphiphilic mesogens as stationary phases 

for G.C. depends on the relative solubility of the analyte molecules in the 

mesophase matrix. The analyte molecule w ith a molecular geometry closest 

to that of the mesogen can be incorporated into this matrix w ith  the least 

disruption to the structure. This molecule, all else being equal, is 

preferentially solubilised and, hence, a separation can be effected.
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The use of mesophases In thermography arises from the unusual optical 

properties of the cholesteric phase and their variation w ith temperature11. 

The cholesteric phase has a helical structure, and when the pitch of this 

helix Is comparable to the wavelength of visible light, Interference occurs 

and the mesophase appears highly coloured. A variation In temperature 

alters the pitch of the helix, which alters the wavelength of visible light 

which undergoes interference. Thus, a colour change occurs in the 

mesphase. Consequently, as the observed colour is dependent on 

temperature, cholesteric mesophases can be used as visual temperature 

sensors.

1.5 Mesomorphic Polymers

As yet only 'small molecule' mesomorphism has been discussed. However, 

mesomorphic polymers have been known since the 1940's. The f irs t  

polymers observed to form a mesophase were of biological origin, namely 

aqueous solutions of the rod-like Tobacco Mosaic Virus (T.M.V.) and Collagen, 

which form nematic mesophases at high polymer concentrations56. The f irs t  

synthetic polymer to form a mesophase was discovered in the course of 

evaporating a chloroform solution of poly(r-benzyl-L-glutamate) (PBLG). 

PBLG forms a rod-like alpha helix structure as a result of intermolecular 

hydrogen bonding and association w ith the solvent, which in turn results in 

the formation of a nematic mesophase at high polymer concentrations57*58.

In 1949, Onsager predicted that rigid rod-like molecules would, under 

appropriate circumstances, also form stable mesophases33. Later, Flory 

extended Onsager's theory to concentrated solutions, u tilis ing a la ttice 

model, and proposed that above a critica l concentration the macromolecules 

would form a lyotropic mesophase34. This theoretical prediction was
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verified in 1965, when Kwolek discovered that certain wholly aromatic 

polyamides gave anisotropic solutions in alkylamide and alkylurea solvent59. 

Materials of this type were, the f irs t  mesomorphic polymers to be 

commercialised when, in the 1970's, Du Pont60*61 and Monsanto62 produced 

high modulus fibres spun from lyotropic mesophases of aromatic polyamides 

(i.e. Kevlar and X-500, respectively). Unlike a coiled polymer such as 

polyethylene, which has a potential axial modulus of 300 Giga Pascals (GPa) 

and an actual tensile modulus of the order of only a few GPa, the spinning of 

fibres from ordered polymer melts (i.e. lyotropic mesophases of Kevlar or 

X-500), and the preservation of the aligned molecular order in the final 

fibre, results in polymeric materials which approach their theoretical axial 

tensile moduli, at least in the direction of alignment63.

Following the advent of these materials there has been an increase in 

interest in mesomorphic polymers.

1.6 Molecular structure and Classification of Mesomorphic Polymers 

The empirical structure-property relationships in monomeric mesogens have 

been established for some time7*12. The theoretical treatment of the 

mesophases formed by these mesogens, and the attendant properties have 

been reviewed by de Gennes41. The recent interest in mesomorphic polymers 

led to the application of these relationships to polymers and, hence, to the
l / ' lArv ■’jrvH rNAlurwAr f iv / 'if  Af mAAti rAAAAPAAriA
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mesogens in an e ffo rt to produce polymeric equivalents64.

As w ith the monomeric mesogens, mesomorphic polymers may be classified 

according to their chemical nature (i.e. amphiphilic or non-amphiphilic), 

and/or depending on whether the mesophase is observed by variation of
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solvent content or by variation of temperature (i.e. lyotropic and 

thermotropic behaviour, respectively)64. Subsequently, one can distinguish 

whether the mesogen forms part of the polymer main-chain or is attached 

as side-chains; these are known as liquid crystalline main-chain and liquid 

crystalline side-chain polymers, respectively. Within these two main 

structural categories there are also a number of further possible 

modifications. These include combinations of main-chain and side-chain 

polymers, and also elastomeric polymers which are produced by introducing 

a lim ited number of cross-links between polymer chains.

1.6.1 Amphiphilic Polymers

Despite the recent interest in mesomorphic polymers, studies of the 

mesophase behaviour of amphiphilic polymers, especially in the neat state, 

are relatively limited and, as yet, mesomorphic amphiphilic polymers have 

not achieved any significant commercial success.

The f irs t  report of an amphiphilic side-chain polymer exhibiting a lyotropic 

mesophase was published by Friberg et M-65, who synthesised a low 

molecular weight polymer of sodium- 10-undecenoate, and reported the 

existence of a lamellar mesophase in a 1:1 mixture of this polymer w ith 

water at 20°C. Since then, the lyotropic phase behaviour of a number of 

amphiphilic side-chain polymers based on conventional monomeric ionic66 

and non-ionic66"72 amphiphiles in combination w ith the polyacrylate69-72, 

polymethacrylate72 and polysiloxane66"68*70' 72 backbones has been 

investigated.

From this work, it  has been established that in general, i t  is the ab ility  of 

individual amphiphilic units to pack into the various aggregate geometries



that tends to dominate the phase behaviour of polymeric amphiphiles as 

compared to their monomeric equivalents. As the study of amphiphilic 

polymers w ill form the major, part of this work, the phase behaviour of 

these materials w ill be reviewed in greater detail in chapter 2.

1.6.2 Non-AmphiPhilic Polymers

1.6.2.1 Main-Chain Polymers

In general, monomeric non-amphiphilic mesogens are characterised by their 

rigid, rod-like or disc-like structures7. If these monomers are joined to 

form the backbone of a polymer, the polymer itse lf becomes rigid and 

rod-like and would, on the basis of geometric anisotropy, be expected to 

form a mesophase in a manner analogous to the small molecule 

equivalent34*73.

With polymers such as aromatic polyamides (i.e. Kevlar), the strong 

hydrogen bonding between amide groups and the rig id ity  of the polymer 

backbone, mean that the crystalline melting point (Tm) of the polymer is

greater than the degradation temperature, and melt processing is not 

possible63. It is worth emphasising that non-amphiphilic molecules form 

mesophases essentially as a result of their geometry and, on this basis, the 

aromatic polyamides would form a thermotropic mesophase due to their 

extended rigid structure, were it  not for the onset of thermal degradation 

below Tm. Such polymers may, however, form lyotropic mesophases in which

the addition of the solvent lowers the melting point of the polymer63-73 (i.e. 

sim ilar to the depression of freezing point observed when solutes are added 

to solvents). These concentrated polymer solutions may then be processed 

below the Tm of the neat polymer.
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In concentrated solutions and at a specific concentration, these rigid 

polymers undergo a disorder/order transition and approach a parallel 

alignment, giving rise to a nematic mesophase (as predicted by Onsager33 

and Flory34). Although this molecular alignment is present in domains, if  

the nematic solution is exposed to a shear gradient during processing (i.e. 

spun through a nozzle), a macroscopically almost singularly aligned 

lyotropic melt is produced (see figure 1.10). Removal of the solvent results 

in a macroscopically alignment fibre which, as we have seen, possess 

unusually high mechanical properties63.

DOMAINS

Figure 1.10 Schematic representation of the effect of shear on the 
orientation of neighbouring domains.

The d ifficu lties  w ith these lyotropic systems are that generally the 

solvents required are d iff icu lt to handle (e.g. concentrated acids), and the 

necessity for subsequent solvent removal lim its  their application to the 

preparation of products w ith small cross-sectional areas (i.e. fibres)63*73. 

These lim itations stimulated the development of aromatic polyesters, 

which, because of their less rigid structure and the lack of hydrogen 

bonding, melt below their degradation temperature and form mesophases 

in the neat state73*74. These thermotropic polymers may, therefore, be

SHEAR
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processed sim ilarly to conventional thermoplastics and are not lim ited to 

the production of fibres.

In order to prepare thermotropic main-chain polymers from rigid 

non-amphiphilic monomers, i t  is necessary to disrupt the effic ient packing 

of the macromolecules73. This may be achieved by introducing bulky groups 

onto the chain, disrupting the linearity of the chain, or inserting flexible 

segments between the mesogenic elements along the main-chain; all of 

which reduce the melting temperature of the polymer73*74. Examples of 

such main-chain mesogenic polymers include, aromatic polyesters74, 

polyazomethines75, polyisocyanates76, polydiacetylenes77, polycinnamates 

78* 79 and polystilbene polyesters80.

It is worth noting, that for main-chain polymers i t  is not always necessary 

for the monomer units of the backbone to be inherently rig id73. Chain 

rig id ity  can be caused by the secondary structure of the polymer, i.e. the 

formation of a rigid helical structure held in place by strong intramolecular 

hydrogen bonding, as exemplified by the polyglutamates. However, 

mesomorphism in such polymers is generally not as common as the those 

prepared by the polymerisation of conventional mesogenic monomers.

1.6.2.2 Side-Chain Polymers

If the rod- or uisc-type mesogens are attached to a polymer back bone as 

side-chains, two extreme cases are possible; direct attachment of the 

mesogen to the backbone or attachment via a long 'spacer' group64*73. In the 

former case, the tendency of the polymer back bone to adopt a s ta tis tica l 

distribution of possible chain conformations tends to result, except in a few 

cases81-84, in a disruption of the parallel alignment of the mesogens which
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is necessary to produce a mesophase64. In the la tter case, the presence of 

the spacer group decouples the motions of the mesogens and the backbone, 

allowing the mesogens to align themselves independently of the backbone 

and form a mesophase in a manner analogous to that of their small molecule 

equivalents (see figure 1.11 )64*73.

BACKBONE

MESOGEN

b)

Figure 1.11 Schematic representation of a) direct attachment of mesogen 
to backbone and b) attachment via a spacer group

In mesogenic side-chain polymers i t  is the side-chains themselves that are 

essentially responsible for mesophase formation64*73. Hence, providing that 

the attachment to the polymer does not significantly restric t the motions of 

the mesogens, the position of this attachment may be on the longitudinal or 

the lateral axis of the mesogen. A variety of molecular configurations, each 

w ith different behaviour and properties, may therefore be envisaged (see 

figure 1.12 for an outline of side-chain structures)64*85.
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Figure 1.12 Possible molecular configurations of mesogenic side-chain 

polymers incorporating rod- and disc-like mesogens, but not 
including elastomeric structures.

A feature of side-chain polymers is that the mesomorphic arrangement of 

the side-chains can, in most cases, be frozen in the glassy state of the 

polymer86. If the backbone is a hydrocarbon, the glass transition lies above 

ambient temperature. The ability to prepare orientationally ordered phases 

of mesogenic side-chain polymers at just above room temperature, and 

freeze the orientational order by cooling to room temperature, has practical 

applications in the fie ld of high density data storage87. If the hydrocarbon 

backbone is replaced by a polysiloxane, which is characterised by highly 

flexible chain segments, polymers w ith glass transitions below ambient 

temperature are produced88*89. Mesogenic polymers such as these may be 

used in display devices, although their response time may be greater than 

those based on monomeric mesogens. Various non-amphiphilic side-chain 

polymers, based on polyacrylates90’91, polymethylacrylates90*91 and 

polysiloxanes92"101 have been synthesised and some have shown interesting 

electro-optical properties.

Interesting examples of non-amphiphilic side-chain polymers are the 

N-acryl derivatives of polymethacryloyl-L-lysine, which reportedly have 

glass transition temperatures, Tg, around 100-120°C, but their crystalline

melting points, Tm< are 40-50°C102 These species are rare examples of



polymers in which Tg>Tm. Even when melted, they do not pass into an

isotropic phase, as do conventional mesogenic side-chain polymers, but 

form a structure in which the mesophase domains seem to be placed w ithin 

the glassy matrix of the polymer. Only above Tg, when the segmental

mobility is high enough, does the mesomorphic order disappear and the 

isotropic phase appear.

1.7 Aims and Outline of Present Research Project

As we have seen, due to their particular combination of properties103*104 

(i.e. their very flexible backbone segments (low Tg) and their 'hydrophobic'

nature), polysiloxanes have been used as the polymeric moiety in a number 

of investigations of the thermotropic and lyotropic mesomorphism of 

amphiphilic and non-amphiphilic polymers. Generally these mesogenic 

siloxanes have been prepared via the coupling of a reactive siloxane 

backbone and a suitably functionalised mesogen64. The structure and number 

of the reactive sites on the siloxane precursor, along w ith  the nature of the 

mesogen, therefore determine the structure and properties of the resultant 

mesogenic polymer. The starting point for this thesis-which describes the 

synthesis, and outlines the phase behaviour of a number of novel amphiphilic 

and non-amphiphilic mesogenic siloxanes-was therefore the potential to 

synthesise a variety of reactive siloxane moieties which, when coupled to 

conventional amphiphilic and non-amphiphilic mesogens, would give rise to 

some envisaged novel structures. The structures of interest were as 

follows:

-  mesogenic side-chain oligomeric cyclic siloxanes, w ith  mesogens 

attached via spacer groups to each siloxane repeat unit.

-  linear dimethyl siloxanes of various chain lengths w ith  mesogenic 

groups attached to one or both chain ends.
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The structures of these target molecules is shown below In figure 1.13.

CH3
(S i-0 )x

i
mesoaen w here  x = v a ria b le

a) target cyclic side-chain mesogenic siloxanes

9h3 f h3
non mesgen/c enc/-cap-$\0-i-S}Q-hrS\-n?esogen

(^H3  C H 3  C H 3  w h ere  x = v a ria b le

b) target linear monofunctional mesogenic siloxanes

CH3 ch3 ch3 
n?esogen-S\0-{-S\0±rS i - mesogen

C H 3  C H 3  C H 3  w here  x = v a r ia b le

c) target linear difunctional mesogenic siloxanes

Figure 1.13 The target cyclic and linear, amphiphilic and non-amphiphilic 
mesogenic siloxanes

Following the preparation and characterisation of these target molecules, It 

was planned to compare and contrast their phase behaviour w ith  that of 

existing related monomeric and, where applicable, polymeric systems. 

Consequently, the mesogens employed during this study were chosen to 

allow comparisons w ith the existing literature relating to monomeric 

mesogens and linear side-chains mesogenic siloxanes. The amphiphilic
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mesogens chosen for study were based on the salts of a Cn fa tty  acid as

studied by Hall66, while the non-amphiphilic mesogens were based on 

4'-methoxyphenyl 4-(fl'-alkenyl)oxybenzoate as studied by Finkelmann et 

a l "

Having begun the practical work, it  soon became apparent that time 

constraints would not allow all the envisaged materials detailed in figure 

1.13 to be prepared and studied. As the majority of published data on 

siloxane based mesogenic polymers refers to the thermotropic phase 

behaviour of non-amphiphilic polymers, it  was decided to concentrate this 

thesis primarily, but not exclusively, on the phase behaviour of the novel 

amphiphilic systems. Nevertheless, synthetic routes were investigated and 

have been outlined for all the target structures given in figure 1.13 (see 

chapters 3 and 4). The materials whose phase behaviour have been studied 

are detailed in figure 1.14.

As amphiphilic materials form the major part of this thesis, a more 

detailed review of the phase behaviour of related monomeric and polymeric 

amphiphiles is given in chapter 2. In chapter 3 there is an outline of the 

development of a synthetic strategy for all the target materials, w h ils t 

details of the synthetic work actually carried out are given in chapter 4. 

The main experimental techniques encountered in the characterisation of 

materials are discussed in chapter 5. For convenience and c larity, the 

results and discussion related to the phase behaviour of the cyclic and linear 

amphiphilic polymers-which forms the majority of this thesls-and a brief 

discussion of the behaviour of the cyclic non-amphiphilic polymers, have been 

covered separately in chapters 6, 7 and 8, respectively. Recommendations 

for future work have also been outlined in chapter 9.

29
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a) amphiphilic cyclic side-chain siloxanes

non-polar polar

CH3
CH3(CH2)3“ SiO— (SiO)x— S i-  CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2-CO2Y

ch3 ch3 ch3

c) non-amphiphilic cyclic side-chain siloxanes

Figure 1.14 The novel cyclic and linear amphiphilic and non-amphiphilic 
mesogenic siloxanes that have been studied during this work.

From this work, it  is hoped to promote a greater understanding of the 

molecular parameters which are of particular importance in determining 

mesomorphism, and possibly to develop materials which are of some 

practical application or interest to those working in this field.

w here x *  4 .0 .  1 0 .0  , 1 7 .5 . 2 6 .5  and Y= Na 
x *  4 .0  and Y= l /2 C a

b) amphiphilic linear monofunctional mesogenic siloxanes

(CHo)v
w here  x =  4  and Y= 3 ,5 ,6  

x =  4  and Y= 3 ,5 ,6



CHAPTER 2. PHASE BEHAVIOUR OF ALKALI AND ALK AL INE-E ARTH

METAL SOAPS AND AMPHIPHILIC POLYMERS

2.1 Introduction

The amphiphilic siloxanes which have been prepared and studied during this 

work represent variations of the established monomeric anionic amphiphiles 

(termed soaps) and, the more recently developed, amphiphilic polymers (see 

also chapter 1). Hence, prior to discussing the phase behaviour of the novel 

systems studied during this work, i t  Is proposed to review the phase 

behaviour of the conventional alkali and alkaline-earth metal soaps and the 

recent work on amphiphilic polymers.

2.2 Alkali and Alkaline-EarthMetal Soaps

2.2.1 Thermotropic Behaviour of the Alkali Metal Soaps 

The alkali metal salts of many carboxylic (RC02M) acids undergo a process 

of step-wise melting, involving one or more intermediate phases between 

the crystalline solid and the isotropic liquid105"107. The number and 

structure of these intermediate phases depend upon the cation and the 

length and the structure of the hydrocarbon chain. However, w ith the 

exception of lithium, the thermotropic behaviour of the m ajority of the 

alkali metal soaps (i.e. Na, K, Rb and Cs) is qualitatively very s im ila r108.

For the straight chain soaps, it  has been established that conventional 

melting occurs only when the number of carbon atoms in the hydrocarbon 

chain (nc) is less than or equal to three109'110. At greater chain lengths (Na 

and K, nc=4; Rb, nc=5; Cs, nc=6 and Li, nc=12), these soaps pass through one or 

more mesophases before the transition to the isotropic liqu id111' 115.
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The only thermotropic mesophases formed by short-chain soaps (i.e. nc< 12)

that have been studied in any depth are those of sodium116"129. Ubbelohde et 

a l carried out extensive studies of the properties and the phase behaviour 

of sodium n-butanoate and sodium 3-methylbutanoate116"123. They concluded 

that these soaps melted from the lamellar crystalline solid (see figure 

2.1a), via a mesophase, to the isotropic liquid. Their X-ray diffraction 

studies suggested that this intermediate phase consisted of randomly 

oriented liquid crystal domains of ’sandwich-type* bilayers stabilised by 

electrostatic forces118 (see figure 2.1 b).

Figure 2.1 Schematic representation of the crystalline and mesomorphic

Polarised microscopy carried out by Bonekamp s l a l 129 supported these 

findings, indicating that both sodium n-butanoate and sodium 

3-methylbutanoate form a lamellar mesophase structure (smectic A or neat) 

prior to the formation of the isotropic melt.

a) crystalline b) mesomorphic

lamellar phases
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Nuclear magnetic resonance (NMR) studies on a range of straight and 

branched short-chain sodium soaps124-128, along w ith data obtained from 

polarised microscopy129, have shown that the mesophase properties of these 

soaps may be very dependent on the structure of the the alkyl chain. For 

instance, soaps such as sodium 2-methylpropanoate do not form 

thermotropic mesophases109'130, whilst the unbranched equivalent, sodium 

butanoate, does. On the basis of these observations, a model for the 

arrangement of the polar groups in the lamellar mesophase was proposed for 

all short-chain sodium soaps128. This model proposed an ionic double layer 

w ith interdigitated polar groups, as opposed to the ’sandwich-type' bilayer 

structure originally proposed by Ubbelohde et M-118.

The thermotropic phase behaviour of straight long-chain soaps (where 

nc2 12) has been investigated for many years130-140. The structures of the 

phases occurring during the transition of these soaps from the crystalline 

solid to the isotropic liquid have been extensively studied by Skoulios et a l 

using X-ray d iffraction108’115'141-147. Not all of the structures original 

proposed during this work have been corroborated by addition techniques148.

At room temperature, straight long-chain soaps form lamellar crystalline 

phases. In these structures, i t  is thought that the molecules are packed in a 

three-dimensional la ttice in which the polar groups and the hydrocarbon 

chains form alternating double layers108. The hydrocarbon chains are fu lly  

extended and inclined w ith respect to the end-group planes (see figure 2.1a).

As the temperature is raised, the hydrocarbon chains begin to melt. This 

results in the formation of semi-crystalline phases (ribbon or disc) in 

which the polar groups are thought to be in a crystalline type of
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organisation, dispersed in a liquid hydrocarbon matrix24’108*149. The number 

of these ribbon or disc phases (sometimes also termed the p lastic150, or 

subwaxy, waxy, superwaxy and subneat phases151) depends on the length of 

the hydrocarbon chain and the cation149.

For the sodium soaps (even-numbered homologues from C12 to C18), these

phases are thought to consist of groups of parallel ribbons of indefinite 

length, packed in a two dimensional rectangular la ttice 141-144 (figure 2.2).

NON-POLAR

GROUP

POLAR

GROUP

Figure 2.2 A cross-section of the structure of the two-dimensional 
rectangular lattice of the ribbon phase of the sodium soaps142.

The phases formed by the potassium soaps (even-numbered homologues from 

C1 & to C22) are thought to consist of groups of parallel ribbons, of indefinite 

length, packed in a two dimensional oblique la ttice144-146.

For the rubidium soaps (even-numbered homologues from C16 to C20) disc

phases are thought to form147. These phases consist of groups of parallel 

discs packed on a face centred orthorhombic lattice, the discs representing 

the loci of the polar groups which are separated by the disordered non-polar 

chains. The caesium soaps (C18, C20 and C22) also form disc phases, in which

the discs are located in parallel and equidistant planes but w ith loose 

lateral correlation between the discs themselves108.
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In all these semi-crystalline phases, the breadth of the ribbons or the size 

of the discs is determined by the competition between the thermal agitation 

of the hydrocarbon chains and the strong forces of attraction between the 

head groups and the counter ions. Hence, the breadth of the ribbons or the 

size of the discs decreases discontinuously w ith rising temperature, w ith 

each decrease corresponding to a phase transition24 As the ribbons or discs 

decrease in breadth w ith rising temperature and become more symmetrical, 

the lattices of the successive phases tend towards a two-dimensional 

hexagonal arrangement. However, according to Skoulios et a l, the lamellar 

bilayer mesophase (smectic A or neat soap) is eventually formed by all 

these long-chain soaps as the phase immediately preceding the isotropic 

m elt108 This transition from a semi-crystalline phase to the lamellar 

mesophase is thought to arise as a result of the complete melting of the 

polar groups.

For lithium soaps, i t  has been established that conventional melting occurs 

w ith less than 12 carbon atoms in the n-alkyl chain115. At greater chain 

lengths, intermediate semi-crystalline phases (possibly of a ribbon type) 

and mesophases are known to form between the crystalline solid and the 

isotropic liquid115*148*150. A review of the published data for the thermal 

behaviour of selected lithium soaps (i.e. the C]4, C16 and C18 soaps)

presented conflicting data from different laboratories and demonstrated 

that the phase behaviour of these soaps, despite being less complicated than 

the corresponding soaps of the majority of alkali-metals, has not been fu lly  

resolved148.
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2.2.2 Thermotropic Behaviour of the Alkaline-Earth Metals Soaps

To date, the thermotropic phase behaviour of the short-chain alkaline-earth 

metal soaps has not been studied in depth. The straight long-chain soaps, 

(RC0.0)2M, like the equivalent alkali metal soaps, undergo a process of 

step-wise melting involving one or more intermediate phases between the 

crystalline lamellar and the isotropic liquid152"163. As was the case w ith 

the alkali metal soaps, the number and structure of these intermediate 

phases depends upon both the cation and the length and structure of the 

hydrocarbon chain. On the basis of X-ray diffraction, Spegt and Skoulios 

proposed a number of structures for these intermediate phases, including 

various high temperature mesophases164"169. Some of the structures 

proposed for the low temperature polymorphs of these soaps have since been 

reinterpreted in terms of the arrangements of long rod structures170, rather 

than the disc structures originally proposed by Spegt and Skoulios166’167. 

Even these la tterly proposed structures are not regarded as definite.

The soaps of calcium160 and strontium167 form an hexagonal mesophase 

made up of parallel rod micelles of indefinite length arranged in a 

two-dimensional hexagonal array (see figure 2.3).

NON POLAR 

GROUP

Figure 2.3 A cross-section of the structure of the two-dimensional 
reversed hexagonal structure.

POLAR
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In this stucture, the polar groups form the central core of the rods w hilst 

the hydrocarbon chains extend radially from them and form the continuous 

medium. Although X-ray diffraction measurements indicate that the 

hydrocarbon chains are fu lly  disordered, the exact arrangement of the polar 

groups remains to be established167.

The soaps of magnesium and cadmium are thought to form two hexagonal 

mesophases preceding the transition to the isotropic m elt164-168. In each 

case, the higher temperature structure is believed to possess a slightly less 

compact arrangement of the polar groups.

For the soaps of barium and strontium, it  has been proposed that a body 

centred cubic mesophase is the phase immediately preceding the isotropic 

m elt167*171. This mesophase is thought to be made up of rod micelles of 

fin ite  length arranged in a body centred cubic lattice. The polar groups form 

the central core of the rods w hilst the hydrocarbon chains extend radially 

from them, forming the continuous medium.

2.2.3 Thermotropic Behaviour of the Branched Chain Soaps 

As we have seen, the thermotropic phase behaviour of the alkali and 

alkaline-earth metal soaps depends on the cation and also the length and the 

structure of the hydrocarbon chain. In amphiphiles in which the hydrocarbon 

chains are of a non-compact structure (i.e branched), the anhydrous soap 

may exist as a mesophase at room temperature, where the unbranched 

equivalent would be crystalline172-175. This is primarily due to steric 

effects, as the chain branching not only prevents the hydrocarbon chains 

themselves from crystallising, but also inhibits the close approach and 

crystallisation of the polar groups.
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A well known amphiphile exhibiting such phase behaviour is Aerosol OT 

(sodium di-2-ethylhexylsulphosuccinate). This branched chain soap exists 

as a reversed hexagonal structure at room temperature, whilst the 

equivalent straight chain soap (sodium di-hexylsulphosuccinate) 

crystallises readily173

2.2.4 The Aqueous Lvotropic Phase Behaviour of the Alkali Metal Soaps 

The phase behaviour of amphiphile/water systems has been studied for many 

years132" 139. Phase diagrams of the long-chain sodium and potassium 

soaps/water systems were originally reported by McBain and co-workers, to 

elucidate the principles underlying the soap boiling process132-136' 138. A 

representative composition phase diagram for these systems-in this case 

sodium laurate/water-is shown in Figure 2.4. In this phase diagram, the 

vertical axis at zero percent water, shows the phase behaviour of the neat 

soap as a function of increasing temperature. The horizontal axis 

demonstrates the variation in phase behaviour as a function of added water.

TEMPERATURE, °C

2 o>

£ «

Figure 2.4 The phase diagram for sodium laurate/water (taken from 
reference 11).
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Whilst each of the crystalline and semi-crystalline phases of the neat soap 

(see section 2.2.1) can incorporate only a very small amount of water, the 

high temperature lamellar mesophase can incorporate up to 40% by weight 

of water in its bilayer structure. The presence of this water greatly

reduces the temperature stab ility  of this phase and the temperature at

which the phase forms.

At higher water concentrations, the hexagonal (H| or middle) mesophase is

formed. In this phase, the soap molecules are packed in parallel rod

micelles of indefinite length which are arranged in a two dimensional

hexagonal array. The core of the rods is made up of the liquid hydrocarbon 

chains, w h ilst the polar groups occupy the interface in contact w ith the 

aqueous continuous phase.

In these systems, it  has been established that the sequence of phases 

occurring w ith increasing temperature and/or concentration is the lamellar 

(Lo<) and hexagonal ( H j )176 These phases were originally thought to coexist

at intermediate soap concentrations138. Latterly, more detailed 

investigations of various sodium soap/water systems have demonstrated 

the existence of a variety of other birefringent and non-birefringent 

mesophases occurring over a narrow concentration around the lamellar to 

hexagonal transition region176-184.

On the basis of low-angle X-ray diffraction patterns, Luzzati et aL177,178 

proposed the deformed hexagonal and the complex hexagonal structures for 

the birefringent ‘intermediate’ phases formed by the C14, C16 and C18 sodium 

soaps. The deformed hexagonal structure (H1d) is composed of long rod
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micelles on a rectangular lattice. In the complex hexagonal structure (Hc), 

the amphiphile forms hollow, circular, long rod micelles w ith a water 

interior, which are hexagonally packed in a water continuum.

More recently, Tiddy £ t £ l 185 used a range of techniques to systematically 

study the occurrence of these intermediate phases w ith several series of 

anionic amphiphiles as a function of chain length. Similar phase behaviour 

was demonstrated for the sodium and potassium soaps and the sodium alkyl 

sulphates. With the short hydrocarbon chain derivatives, a non-birefringent 

bicontinuous cubic phase (V,) occurs, while at higher chain lengths, the 

birefringent 'intermediate' phases predominate.

On the basis of optical microscopy, NMR and X-ray diffraction, Tiddy185 

agreed w ith the structure of the deformed hexagonal as proposed by 

Luzzati177’178. However, in view of the fact that the complex hexagonal 

structure proposed by Luzzati would necessitate widely differing surface 

areas per head group on the inner and outer surfaces of the micelle-which 

seemed unlikely—a thin bilayer structure w ith a hydrogen-bonded water 

network linking the bilayers, was the structure proposed for this phase.

On increasing the water concentration to approximately 70% by weight, an 

isotropic mlcellar solution is formed. A variety of techniques have been 

used to investigate the size and shape of these micelles. These include 

light scattering, neutron scattering, viscosity measurements and osmotic 

pressures. At higher soap concentrations (l.e at soap concentrations just 

less than that required for the hexagonal phase to form), the Isotropic 

micellar solution Is thought to be made up of small rod micelles, w h ils t at 

soap concentrations approaching the c.m.c spherical micelles predominate13.
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As the temperature is increased, a point is reached for each soap/water 

composition where the increased thermal agitation breaks down the long 

range order in the mesophase, resulting in the formation of the isotropic 

micellar solution13.

The same basic diagrams are characteristic of all the long chain soaps of 

sodium, potassium, rubidium and caesium139-146’176-178'185-187. Variations 

do occur due to differences in the thermotropic behaviour of the anhydrous 

soaps, changes in the cohesive forces in the polar regions w ith  increasing 

atomic number of the cation, and the formation of low temperture 'gel' 

phases106,188-191.

The 'gel' phase is made up of single layers of parallel, interdigitated soap 

molecules. The hydrocarbon chains are s t if f  and fu lly  extended w hilst the 

polar regions (i.e the polar groups and water) are thought to be fluid.

As w ith thermotropic behaviour, the lyotropic behaviour of the lithium 

soaps is somewhat different from the majority of the alkali metal soaps. In 

fact, the straight chain lithium soaps are quite insoluble in water until well 

above 100°C and hence, few studies of lithium soap/water systems have 

been published192. Void140 used visual observations to construct a phase 

diagram for lithium palm itate/water system. In general, the phase diagram 

was very sim ilar to that of the sodium palm itate/water system as 

determined by McBain e t .a l132. The most important difference was the 

greater temperature and composition s tab ility  of the mesophase region (Hj) 

formed by the lithium soap.
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2.2.5 The Aqueous Lvotropic Phase Behaviour of the A1ka1i-Earth‘Meta1 Soaps 

The straight long-chain alkali-earth metal soaps, like those of lithium, are 

quite insoluble in water until well above 100°C. Hence, l i t t le  work has been 

carried out on these soap/water systems.

2.2.6 The Aqueous Lvotropic Phase Behaviour of Branched Chain Soaps 

As discussed in section 2.2.3, a number of branched chain soaps exist as a 

mesophase at room temperature, whereas the equivalent unbranched soap 

are crystalline. At room temperature, the addition of water to these 

mesomorphous soaps results in the formation of the isotropic liquid phase 

or hydrated mesophases, depending on the amphiphile concentration193.

For instance, Aerosol OT which exists as a reversed hexagonal mesophase in 

the neat state173, can solubilise up to 16% by weight of water in this 

structure, w ith a corresponding increase in the dimensions of the rod 

m icelles194. Further increase in the water content gives rise to a viscous 

isotropic phase (V2), followed by the lamellar mesophase. At approximately 

90% by weight of water, a two phase region consisting of the lamellar 

mesophase and the isotropic micellar solution exists, w h ilst at greater than 

approximately 98.7% by weight of water, the isotropic m icellar phase is 

formed195.

More recently, Khan £ t.a l196 studied the aqueous phase behaviour of calcium 

and magnesium di-2-ethylhexylsulphosuccinate and compared the behaviour 

of these soaps w ith the corresponding sodium soap (Aerosol OT). Whilst all 

three soaps exhibited the same sequence of phases w ith  increasing 

amphiphile concentration (i.e the isotropic solution, and the lamellar, cubic 

and reversed hexagonal mesophases), the phase diagrams of the calcium and
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magnesium soaps differed from that of the sodium soap In two respects. 

Firstly, the aqueous solubility of the calcium and magnesium systems was 

found to be much lower than that of the sodium system. Secondly, the 

lamellar phase of the divalent soaps was observed to swell to a lesser 

degree and to Incorporate much less water than the sodium soap. This 

behaviour has been explained In terms of the different long range 

electrostatic interaction arising from the respective counter-ions197.

2.2.7 The Lvotropic Phase Behaviour of the Alkali and Alkaline-Earth Metal 

Soaps in Non-polar Solvents 

Although most of the published literature on micelle formation concerns 

aqueous systems, work has been carried out in non-polar 

solvents20’131-198-200. The aggregation of amphiphlles into reversed 

micelles occurs when some amphlphiles, possibly w ith a l i t t le  water, are 

dissolved in non-polar solvents (see section 1.3.1.). The properties of these 

reversed micelles are sim ilar to those of normal micelles, although the 

micellisation in non-polar solvents is driven by attractions between polar 

head groups (and possibly a li t t le  water) which form the micelle interior, 

rather than the 'solvophobic* effect encountered in aqueous systems13*20.

At room temperature, the crystalline long-chain alkali and alkaline-earth 

metal soaps show very li t t le  solubility in hydrocarbons due to the very 

strong cohesive forces of the polar groups201-205. As we have seen, when 

heated these anhydrous soaps undergo a process of step-wise melting, In 

which f irs t  the hydrocarbon chains and then the polar groups undergo 

progressive disordering (see sections 2.2.1 and 2.2.2). During this 

progressive melting, hydrocarbon solvents can be dissolved In lim ited 

amounts in the disordered hydrocarbon regions of the amphiphile, while the

43



polar groups essentially retain their crystalline order167’206’207. In general, 

at the temperature at which a soap undergoes a thermotropic transition to a 

mesophase-which is accompanied by the melting of the polar 

regions-complete solubility of the soap in the non-polar solvent w ill occur. 

For example, the amphiphlles of branched soaps which are mesomorphic at 

room temperature, are also soluble in a range of non-polar solvents at this 

temperature. They are therefore known as the ’oil-soluble soaps'20

Whilst the formation of lyotropic mesophases occurs in many concentrated 

amphiphlle/water systems, and has been studied extensively and is 

relatively well understood, the formation of anhydrous mesophases in 

soap/non-polar solvent systems is relatively rare. Few fundamental 

studies173’201’202*206"211 have been made and hence, these systems are less 

well understood than their aqueous counterparts.

Smith and McBain used visual observations to construct binary phase 

diagrams for the sodium stearate (NaC18)-toluene and NaC18- cyclohexane

systems209 At room temperature there was li t t le  interaction between the 

soap and the non polar solvents, but at higher temperatures the existence of 

two liquid crystalline ’phase islands’ was reported. The mesophase 

occurring at highest soap concentrations was termed the 'white, waxy, 

liquid crystalline phase', the other was termed the 'golden, liquid 

crystalline phase'. The structure of the mesophases observed in the 

NaC18-cyclohexane system was subsequently investigated by Skoulios using

X-ray diffraction techniques206. The 'white, waxy, liquid crystalline phase' 

was thought to be a solvent swollen, ribbon phase of the pure anhydrous 

soap. The 'golden phase' was thought to be a lamellar mesophase w ith a 

solvent swollen bilayer structure.
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Two groups of researchers, Stross and Abram202'210 and Doscher and 

Void211, investigated the phase behaviour of the NaC18-cetane

(n-hexadecane) system. Whi 1st both groups agree that the behaviour of this 

system was very different to that of the NaC18-hydrocarbon systems 

studied by Smith and McBain209, there were major differences in the 

reported phase behaviour of the NaC18-cetane system. Stross and Abrams 

suggested that the discrepancies between their findings and those of 

Doscher and Void may have been due to the failure of the la tte r to maintain 

truly anhydrous conditions. These differences may, therefore, illustra te  one 

of the major experimental d ifficu lties  encountered when working w ith 

non-aqueous systems; that of the ingress of atmospheric moisture. Hence, 

where possible, such studies should be carried out in an inert, dry 

atmosphere.

2.3 Polymeric Amphiphiles

The wide spread study of monomeric amphiphiles has established empirical 

relationships between the structure of an amphiphile and the structure of 

micelles and mesophases formed by that amphiphile13. The recent increasing 

interest in polymer liquid crystals has led to the application of these 

relationships to polymeric materials and hence, to the polymerisation or the 

polymer fixation of monomeric amphiphiles in an e ffo rt to investigate the 

properties of their polymeric equivalents64. Even so, studies of the 

mesophase behaviour of amphiphilic polymers, especially in the neat state, 

are relatively limited.

A class of amphiphilic polymer, the ‘polysoaps’-defined as ‘polymers to 

whose chain soap molecules have been attached1212-w ere f irs t  synthesised 

and studied in the early 1950‘s. Strauss and Jackson synthesised addition
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compounds of poly-2-vinyl pyridine and n-dodecyl bromide, and investigated 

the properties of these materials in dilute aqueous and alcoholic 

solutions212. No investigation of mesophase formation was reported.

Several groups have synthesised low molecular weight polymers of 

sodium-10-undecenoate, all of which had the following basic structure:

-(CH2-CH)n-
I

(CH2)8C00Na

Paleos et aL213 and Larrabee et M 214 synthesised oligomers of sodium 

10-undecenoate, carrying out the polymerisation in aqueous solution above 

the c.m.c. of the monomeric amphiphile. Again, no investigation of 

mesophase formation was reported, w ith the subsequent investigations 

concentrated on micellar behaviour in dilute aqueous solution.

Friberg et a t65 also synthesised a low molecular weight polymer of 

sodium-10-undecenoate, in itia ting the polymerisation in the aqueous 

hexagonal mesophase (Hj) (i.e. 50 weight % of the amphiphile). The

polymeric amphiphile was found to exhibit a lamellar mesophase at 20°C, 

compared with the hexagonal mesophase of the corresponding 

monomer/water system. This change in phase behaviour was explained in 

terms of the rigid polyethylene backbone, resulting from the polymerisation 

reaction, restricting the free orientation of the amphiphilic side-chains.

The f irs t  report of an amphiphilic slde-chain polysiloxane exhibiting 

lyotropic mesomorphism was published by Finkelmann et a l70, in which the 

lyotropic phase behaviour of aqueous solutions of a non-ionic monomeric
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amphiphile and the corresponding polymeric amphiphile were compared (see 

figure 2.5).

4*
CH2=CH( CH2 )qCOO( CH2CH20 )nCH3 CH3-S i -(CH2) j 0COO( CH2CH20 )nCH3

0
Tx

a) where n= 4, 6 , 8  b) where x = 95 and n* 4, 6 , 8

Figure 2.5 a) The non-ionic monomeric amphiphiles and b) the corresponding 
amphiphilic polysiloxanes studied by Finkelmann £ la l.70.

It was found that in the polymeric system, the mesophases were stable over 

a much broader range of temperatures and compositions. This was 

attributed to a restriction of the motions of the amphiphiles, due to the 

linkage to the polymer main chain. However, there was also a recognition 

that the effective lengthening of the hydrophobic moiety of the amphiphilic 

repeat unit due to polymer fixation may contribute to a sim ilar effect.

Finkelmann s i a l 68 subsequently contrasted the aqueous phase behaviour of 

two related non-ionic amphiphilic siloxanes in which the monomeric 

amphiphiles incorporated rigid and flexible hydrophobic groups (see figure

2 .6  a) and b), respectively).

H3C-SI - ( CH2) 10COO( CH2CH2O JeCHj H3C - S H C ^ O ^ O H Q H C ^ C ^ C O g C H j
0  0  
t-x T x

a) b)

Figure 2.6 Non-ionic polymeric amphiphiles incorporating b) rig id and
a) flexible hydrophobic moieties.
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In both these systems, the polymer fixation of the monomeric amphiphiles 

enhanced the temperature and concentration stab ility  of the mesophases 

which were characteristic of the respective monomeric amphiphile. Again, 

this was primarily attributed to a restriction of the motions of the 

amphiphiles due to linkage to the polymer main chain, although the 

lengthening of the hydrophobic moiety of the amphiphilic repeat unit 

resulting from polymer fixation was also considered as an alternative 

explanation.

The study of the aqueous phase behaviour of non-ionic amphiphilic siloxanes 

in which the monomeric amphiphiles incorporated rigid hydrophobic groups 

was subsequently extended by Finkelmann et a l71. Again, polymer fixation 

of the monomeric amphiphiles enhanced the temperature and concentration 

stab ility  of the mesophases which were characteristic of the respective 

monomers. During this work, the f irs t observation of a lyotropic nematic 

mesophase exhibited by an amphiphilic polymer was reported. The 

monomeric amphiphiles and the repeat units of the corresponding 

amphiphilic polymers studied during this work are represented in figure 2.7:

H2C=CH(CH2)n-0-O-O>-(CH2-CH2-0)9-CH3

a) where n = 1 and 4

H3C-^i-(CH2-)n- 0 - < ^ y ) - (C H 2-CH2- 0 )9-CH3

0

b) where n = 3 and 6

Figure 2.7 a) monomeric and b) polymeric amphiphiles incorporating rigid 
hydrophobic moieties.
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It is interesting to note that the occurrence of the nematic phase was not 

noted in the in itia l study of the polymeric amphiphile in question (i.e. figure

2.7 b) where n = 3). This may have been due to the narrow temperature and 

composition range over which the nematic phase occurred.

The aqueous phase behaviour of a monomeric monosaccharide and the 

polymeric equivalent has been investigated69. For the polymeric amphiphile 

no c.m.c. was observed. It was assumed that the f irs t  macromolecule in 

solution formed a micelle. When compared w ith the behaviour of the 

monomer, the temperature and composition s tab ility  of the lamellar 

mesophase formed by the polymeric monosaccharide was greatly enhanced. 

It was proposed that the polymerisation of this monomer did not 

significantly alter the lipophilic/hydrophilic balance of the amphiphilic 

repeat unit and hence, the modified phase behaviour of the polymer was 

primarily due to a change in micellar kinetics. It was suggested that 

individual amphiphilic side-chains could not easily escape from the micelle 

because they were fixed to the polymer backbone. Consequently, the micelle 

itse lf was stabilised and, as a mesophase is made up of micelles, the 

resulting lamellar phase was more stable.

Thus far, the few examples of amphiphilic side-chain polymers exhibiting 

mesomorphic behaviour have comprised of a non-polar polymer w ith polar 

groups attached as side-chains to this backbone via a hydrocarbon spacer 

(see figure 2.8 a). Jahns and Finkelmann215 investigated the mesophase 

behaviour in aqueous solution of an amphiphilic side-chain polymer 

polymerised at the hydrophilic moiety of the amphiphile (see figure 2 .8  b). 

This type of molecular configuration had been noted previously212.
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POLAR GROUP

NON-POLAR
GROUP

a) b)

Figure 2.8 Schematic representation of amphiphilic side-chain polymers 
polymerised at (a) the hydrophobic ta il and (b) the polar head 
group.

Jahns and Finkelmann215 originally proposed that polymers of this general 

structure would, for steric reasons, preferentially form inversed micelles 

and therefore, reversed mesophases. This was not found to be the case, 

w ith the polymeric amphiphile exhibiting normal hexagonal, cubic and 

lamellar mesophases w ith increasing polymer concentrations in aqueous 

solution.

Tanaka and Nakaya216 also prepared amphiphilic side-chain polymers 

polymerised at the hydrophilic moiety of the amphiphile. They prepared 

polyurethanes containing long alkyl chains in the side-chains and amino or 

quaternary ammonium groups in the main-chains. Optical microscopy and 

differential scanning calorimetry (DSC) were used to investigate the 

thermotropic behaviour of the neat materials. Some of the amphiphilic 

polyurethanes exhibited a thermotropic mesophase which was thought to be 

made up of alternating polar and non-polar regions; rather like a lamellar 

bi layer.

50



Recently, Luhmann and Finkelmann67 considered the phase behaviour of 

aqueous solutions of a range of non-ionic amphiphilic monomers whose 

hydrophobic moiety incorporated a rod-like segment, and the polymeric and 

oligomeric side-chain amphiphiles synthesised by the fixation of one these 

monomers to various siloxanes backbones. The structures of the polymeric 

and oligomeric amphiphiles and the equivalent monomeric amphiphiles is 

given in figure 2.9.

CH2=CH-(CH2-)n-2-O-0 H0 -(CH2-CH2-O)9-CH3 where n=3 or 6

(a)

'j1*
H3C-Si-(CH2- )3-O-0 -0 -(CH2-CH2-O)9-CH3 where r=3,4,5,6,13.4 

6

(b)

Figure 2.9 a) The monomeric amphiphiles (hereafter referred to as MCnBiE9) 
and b) the polymeric/oligomeric amphiphiles (hereafter referred 
to as PrC3B1E9) studied in reference 67.

Although, the phase behaviour of the monomeric amphiphiles was generally 

consistent w ith that of common non-ionic amphiphiles25*217, the 

introduction of the biphenyl moiety resulted in a characteristic change in 

mesophase behaviour as the flexible hydrophobic moiety became shorter. 

With decreasing length of the flexible hydrophobic chain, there was a 

tendency of the amphiphiles towards crystallisation and an increase in 

k ra fft temperature. Hence, MC3BiE9 did not form any mesophases. With

increasing hydrophobic chain length (i.e MC6BiE9) there was a decrease in 

the k ra fft temperature and an increase in water solubility at room
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temperature. Hence, MC6BiE9 was reported to exhibit two isotropic phases, 

and the hexagonal and lamellar mesophases.

In general, the aqueous phase behaviour of the polymeric and oligomeric 

amphiphilic siloxanes (PrC3BiE9) resembled that of MC6BiE9. From this it

was concluded that:

- the effect of the attachment of the amphiphilic units to every 

monomer unit of a polysiloxane chain is equivalent to an increase of 

the hydrophobic chain by 3-4 methylene units

- the attachment of the amphiphilic units to a polysiloxane backbone 

does not significantly restric t the translational and rotational 

motions of the amphiphiles.

In addition, the comparison of the oligomeric and the polymeric amphiphiles 

(PrC3BiE9 where r=3, 4, 5, 6 , 13.4 and 55) indicated that increasing the 

degree of polymerisation had the following effects:

- increasing the temperature s tab ility  of the lamellar mesophase, 

possibly due to increased interactions between adjacent hydrophobic 

layers

- decreasing the temperature s tab ility  of the mesophases bu ilt up of 

isotropic micelles, due to changes in the packing constraint of these 

multi-amphiphile units

- the thermal s tab ility  of the hexagonal phase was found to be 

independent of the degree of polymerisation, as neither of the 

aforementioned effects was thought to play a significant role in a 

mesophase built up of long rod micelles.
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The variation in phase behaviour w ith the degree of polymerisation of 

amphiphilic side-chain polymers was also investigated by Luhmann218 in 

aqueous solutions of o 1 igooxyethylene alkylethers and their polymeric 

equivalents. As above, w ith increasing degree of polymerisation, the 

clearing temperature of the lamellar phase increased, that of the hexagonal 

phase stayed constant, w hilst that of the cubic phase decreased.

Hall66 has also investigated the phase behaviour of aqueous solutions of a 

non-ionic side-chain polysiloxane. This material was of a sim ilar structure 

to that studied by Finkelmann et a l70 (see figure 2.5), the main difference 

being the degree of polymerisation of the siloxane backbones (i.e. DP-35 and 

95, respectively). In general, the lyotropic phase behaviour of the two 

polymers was very similar. The mesophases formed by the polymeric 

amphiphiles were stable over a greater range of temperature and 

composition than the corresponding monomer. The stabilisation of the 

mesophase regions was explained in terms of a lengthening of the 

hydrophobic part of the amphiphilic chain due to fixation to the siloxane 

backbone, rather than the restriction of the motions of the amphiphiles due 

to linkage to the main-chain, as originally emphasised by Finkelmann70.

This change in phase behaviour on lengthening the hydrophobic moiety of the 

amphiphile following polymer fixation, mimics the change in behaviour 

observed when comparing C12E08 and C16E08217. Indeed, the phase diagrams

of C16E08 and the polymeric non-ionic amphiphile were shown to be

qualitatively very similar. Thus, Hall also concluded that, as an 

approximation, the effect of attaching amphiphilic units to every monomer 

unit of a polysiloxane chain is equivalent to an Increase in length of the 

alkyl chain of the amphiphile by 3 methylene units.
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During this research, Hall also examined the phase behaviour of the same 

linear siloxane (DP~35) w ith an ionic sodium alkanoate side-chain attached 

to every silicon atom of the siloxane backbone (see figure 2.10). This 

material represented the f ir s t  example of the attachment of ionic 

amphiphiles as side-chains to a siloxane polymer.

H3-5i-(CH2)10COONa

0
^  35

Figure 2.10 The f irs t reported example of an ionic polysiloxanes exhibiting 
lyotropic mesomorphism66,

An overview of the properties of the polymer/water system was obtained 

using the penetration technique of Lawrence219. The polymeric amphiphile 

formed the hexagonal (H,) mesophase at room temperature, and at higher

amphiphile concentrations and higher temperatures (70°C), the lamellar (L*) 

mesophase. Contrasting the phase behaviour of the polymer w ith  the that of 

the conventional sodium n-alkanoates185, and w ith reference to their 

previous experience w ith the non-ionic side-chain polysiloxane, it  was 

concluded that:

-  attachment of amphiphilic units to a polysiloxane backbone does not 

significantly restric t the translational motion and micelle packing of 

the amphiphiles

- there is li t t le  difference between the phase behaviour of the 

polymeric amphiphile and that of conventional sodium alkanaotes

- the general behaviour of this ionic polysiloxane could be explained 

in terms of the Increase In alkyl chain length of the amphiphile due to 

fixation to the siloxane backbone.
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In this study, the behaviour of the ionic polymer and monomers of sim ilar 

lipophilic/hydrophilic balance was, however, not identical. The mesophases 

formed by the polymer were more stable at lower temperatures-once 

formed—and the intermediate phases which are characteristic of monomeric 

sodium alkanaotes w ith a sim ilar length of hydrophobic moiety, were not 

apparent. No explanations for the different behaviour polymer and monomer 

were offered.

The influence of the nature of the backbone on the properties of amphiphilic 

side-chain polymers has been investigated by Pletschmann M.72. The 

aqueous phase behaviour of a propane- 1,3-diol substituted in the 2-position 

w ith an n-alkane chain, and the modification of phase behaviour as a result 

of the linkage of this amphiphile to different polymer backbones has been 

investigated. The polymers studied are shown in figure 2.11.

CHo-OH . ChU-OH
4 * /  ‘  +  /

H3C-Si-(CH2 ) 1 r CH R-C-COO-(CH2 ) 1 rCH

o ch2- oh h2c ch2- oh
^ 3 5  H 'n

w here R=H o r CH3

(a) (b)

Figure 2.11 (a) amphiphilic siloxane
(b) amphiphilic polyacrylate (R=H) or polymethacrylate (R=CH3)

The linkage of the amphiphilic diol to the different polymer backbones was 

shown to stabilise the lamellar mesophase formed by the monomeric 

amphiphile. The relative phase behaviour of the polyacrylate, 

polymethacrylate, and the polysiloxane reflected the influence of the nature
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of the respective backbones. The polymethacrylate, which has the least 

flexible main-chain, exhibited the lamellar phase only in the presence of 

water. In contrast, the polyacrylate and the polysiloxane exhibited the 

lamellar phase in the neat state as well as in aqueous solution. The 

polysiloxane, which has the most flexible main-chain, showed the highest 

clearing temperature, and a lamellar mesophase that extended over the 

widest temperature and composition range. Therefore, in line w ith previous 

studies, i t  was concluded that polymer fixation stabilises the lamellar 

mesophase and, the more flexible the nature of the polymer backbone, the 

greater the effect of this stabilisation.

Recently Loffler and Finkelmann220 prepared a non-ionic side-chain 

methylacrylate copolymer containing 4 mole % of a difunctional comonomer 

(2-hydroxyethyl methacrylate). This linear polymer was then cross-linked 

via the reaction of the hydroxyl group of the cornonomer w ith 

4,4-methylenediphenyl diisocyanate (MDI). The lyotropic phase behaviour of 

the linear and lig h tly ' cross-linked polymers upon swelling in water was 

subsequently investigated. Both polymers formed lyotropic hexagonal 

phases over a sim ilar range of polymer concentrations. However, the 

mesophase to isotropic phase transition temperatures were reduced for the 

cross-linked polymer. It was suggested that this was due to a distortion of 

the phase structure at, and in, the vic in ity of the cross-link sites.

56



CHAPTER 3. SYNTHETIC STRATEGY

3.1 Introduction

During the course of this work various amphiphilic and non-amphiphilic 

siloxanes which had been identified as of possible academic and practical 

interest, have been synthesised. The various target molecules could be 

thought of as consisting of two components; the mesogen, and the siloxane 

chain to which this mesogen was attached. The target molecules contained 

one or more mesogens, but in every case an individual mesogen was attached 

to the siloxane chain at only one point. Hence, the mesogen did not form 

part of the backbone itse lf, although in some molecules the mesogen did 

constitute a chain-end. In this respect and in terms of the development of a 

synthetic strategy, all the target materials were considered to be variants 

of side-chain polymers.

Amphiphilic and non-amphiphilic side-chain polymers have been prepared by 

one of two methods64. In the f irs t method, a reactive group capable of 

undergoing a polymerisation reaction is attached to a mesogenic molecule. 

On polymerisation, this reactive groups forms the polymer backbone and the 

mesogens constitute the side-chains:

Figure 3.1 Schematic representation of the polymerisation of functionalised

POLYMERISATION

mesogens, where M= mesogen.
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This method has been used extensively In the synthesis of mesogenlc 

side-chain polymers based on a hydrocarbon back-bone, where the reactive 

group Is a vinyl unit capable of undergoing addition polymerisation (I.e. 

acrylates221, methacrylates221 and chloroacrylates222).

In the second method, reactive mesogenlc groups are attached to a 

preformed reactive polymer (see figure 3.2). This method has been used 

extensively In the synthesis of mesogenlc side-chain polysiloxanes89.

ADDITION REACTION AI AI A11
BI

1
B1

1
B
11

M
1

M M

Figure 3.2 The addition of reactive mesogens to a reactive polymer.

The main factors that affect the phase properties of a given mesogemc 

side-chain polymer are223,

- the purity

-  the average degree of polymerisation (DP)

- the polydlsperslty

A potential advantage of the second method of synthesising mesogemc 

side-chain polymers is that by starting w ith a well characterised reactive 

polymer i t  is possible to have greater control over these factors. Hence, 

unambiguous results which relate mesogemc structure and the nature of the 

reactive polymer to the properties of the resulting side-chain polymer, can 

be obtained; providing that fu ll occupancy of the reactive sites on the 

polymer can be ensured and detected, and that the product can be 

isolated223.
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The catalysed hydrosilylation reaction, coupling S1-H functionalised 

siloxanes and vinyl functionalised mesogens, fu lf ils  these requirements, 

being both quantitative and easily monitored by infra-red spectroscopy223 

(see reaction scheme 3.1). This method of attachment has the added 

advantage of coupling the siloxane and mesogenic moieties via the Si-C 

bond. This bond is less readily hydrolysed than the Si-O-C linkage 

sometimes employed in the preparation of siloxane containing block 

copolymers224-226. The catalysed hydrosilylation reaction, coupling Si-H 

functionalised siloxanes and vinyl functionalised mesogens has therefore, 

been adopted during this work.

CHt; CH,
I | 3

-51-0—• + CH„=CH-Mesogen [catalyst] —s i-0 - .....
I '  I
H CH2-CH2-Mesogen

Reaction scheme 3.1 The hydrosilylation reaction

The use of this approach led to a natural subdivision of the synthetic work 

into four main areas;

(1) the synthesis of Si-H functionalised siloxanes, which when 

coupled to a mesogen(s) by the hydrosilylation reaction would lead 

directly to the envisaged structures; the structures of these siloxane 

precursors are given in figure 3.3.

(2 ) the synthesis of vinyl terminated mesogens.

(3) the coupling of the mesogen(s) to the siloxane.

(4) the purification of the resulting products.
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ch3 ch3 ch3 ch3 ch3 ch3

H- 51-0-(5l-0)x-5l-H  Bu-51-0-(5i-0)x-5i-H
CH3 ch3 ch3 ch3 ch3 ch3

- ( S i - 0 ) x -

a) b) c)

Figure 5 3 Functionalised precursors: a) cyclic hydrogenmethylsiloxanes,
b)c<,(0 -functionalised linear dimethylsiloxanes and c) c * -  
functionalised linear dimethylsiloxanes.

The synthetic routes which have therefore been developed, the problems 

encountered, and the methods by which they have been overcome, w ill form 

the basis of this chapter.

3.2 Synthesis of Reactive Siloxane Precursors

3.2.1 Introduction

Polysiloxanes are a family of polymers w ith a silicone-oxygen backbone 

which has organic groups (Rt and/or R2) attached to a significant proportion 

of the silicon atoms by silicon-carbon bonds227 (see figure 3.4). Generally, 

R1 and R2 are alkyl or aryl groups, w ith the most common polymer being 

polydimethylsiloxane, where Rt= R2 = CH3.

Figure 3.4 Schematic diagram of a siloxane backbone

In general, siloxanes are synthesised by aqueous hydrolysis of 

organohalosilanes, in particular chlorosilanes227. In these reactions, 

halosllanes are rapidly hydrolysed in aqueous medium to give silanols. Most 

silanols are unstable and rapidly condense w ith a halosilane or another

^ S i^  / S k  ^ S l
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sllanol to form the Si-O-Si link w ith the elimination of HC1 or water 

respectively. The complete hydrolysis of organo dihalosilanes results in 

the formation of unbranched cyclic and linear siloxanes:

R R
J.

nX-Si-X + nH20--------» ~(Si—0)n~ +2nHX where X = halogen

R j R j  R and R j = alkyl or aryl

Reaction scheme 3.2 The hydrolysis of organo dihalosilanes

If R and Rt are also hydrolysable, further hydrolysis may lead to

cross-linking.

For a condensation reaction to occur, the two reactive groups must f irs t  be 

in close proximity. Hence, the polycondensation reaction Is essentially 

controlled by statistica l and sterlc processes227*229. The formation of a 

cyclic structure requires that the groups at opposite ends of a growing 

chain be in close proximity and that they condense together. S tatistica lly, 

this is much more likely to occur w ith relatively short chains, the 

likelihood decreasing w ith increasing length of the growing chain. Thus, the 

polycondensation process favours the formation of cyclic material of a 

relatively low DP. However, because of sterlc strain, no cyclic dimers have 

been reported and generally only a small amount of the cyclic trim er is

formed. The cyclic tetramer and pentamer thus constitute by far the

majority of the cyclic siloxanes, w ith gradually decreasing amounts of the 

higher homologues up to a DP of several hundred. Due to steric effects, the 

exact composition of the cyclic fraction w ill vary w ith the nature of the 

organic substituents on the backbone.
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The chains that do not undergo ring closure (i.e. the linear fraction), w ill 

continue to grow until termination occurs by some alternative mechanism or 

all the monomer has been consumed227. Hence, the linear chain length is a 

function of the reaction conditions and the amount of chain terminator 

added. In the absence of a considerable amount of a chain terminator (i.e. a 

monohalosilane), the DP of the linear fraction of such a reaction would be 

much greater than that of the cyclic fraction. An important consequence of 

this difference in DP, as well as the obvious structural differences, is that 

the cyclic and linear fractions can be isolated by fractional 

phase-separation. The relative ratio of the linear and cyclic fractions w ill 

depend on the solvent concentration; indeed, there is a c ritica l solvent 

concentration above which only cyclic species w ill be formed228.

Although the various reactive siloxanes required during this study may have 

been synthesised by the hydrolysis of the appropriate halosilanes, this type 

of heterogeneous and highly exothermic reaction is d iff ic u lt to control and 

results in a complex mixture of products w ith  a broad distribution 

molecular masses227'229. The required products would therefore be produced 

in low yields and would be d ifficu lt to isolate. As we have seen that the 

phase behaviour of a given mesogenic side-chain polymer is dependent upon 

the purity, the DP, and the polydlspersity of the polymer, this is not the 

preferred method for the synthesis of the final side-chain polymers or the 

reactive siloxanes precursors. Only the oligomeric cyclics could, by 

distilla tion, be easily isolated from the resulting reaction mixture. Hence, 

where possible, i t  is these commercially available oligomers that have been 

the precursors used in the synthesis of the target reactive siloxanes.
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3.2.2 Cyclic Hvdroaenmethvlsiloxane Oligomers

In the synthesis of molecules w ith mesogens attached to every unit of a 

cyclic siloxane, the cyclic hyd.rogenmethylsiloxane oligomers (see figure 

3.3a.), were themselves the required reactive siloxanes. In itia lly , a 

commercially available mixture of these oligomers was obtained for further 

purification (see section 4.2.31). Gas Chromatography (GC) and Gas 

Chromatography/Mass Spectrometry (GCMS) indicated that this mixture also 

contained low molecular weight linear siloxane species (see appendix 4.1). 

These linear species had sim ilar boiling points and GC retention times to 

those of the cyclic oligomers and, therefore, hindered the isolation of the 

cyclic species. In an e ffort to increase the molecular weight of the linear 

fraction so that the low molecular weight cyclic fraction could be isolated 

by d istilla tion, an equilibration reaction using acid-activated Fullers earth 

was carried out on this mixture229. Following the equilibration reaction, 

the cyclic fraction was easily isolated by d istilla tion  under reduced 

pressure. The yield of the cyclic fraction was about 15%. This mixture of 

low molecular weight cyclic siloxanes could then be used as the stock for 

the subsequent isolation of the individual cyclic siloxanes.

Considerable time and effo rt was spent renovating and commissioning a 

preparative gas chromatogram for the isolation of mono-disperse samples 

the cyclic siloxanes. Preparative scale columns were prepared and a method 

for the separation of the individual rings was developed. Whilst samples of 

the cyclic tetramer were successfully isolated by this means, th is was an 

extremely time consuming technique and was abandoned in favour of 

spinning band distillation. Again, considerable effort was spent renovating 

the equipment and developing a method. Samples of the cyclic tetramer and 

pentamers were successfully isolated by this technique. This too was
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eventually abandoned in favour of obtaining the individual cyclic tetramer 

and pentamer directly from Petrach Systems (purity >99% and >95%, 

respectively). Nevertheless,, methods of isolating mono-disperse 

oligomeric cyclic siloxanes w ith a DP of 4 and 5 had been established (see 

section 4.2.3.1).

3.2.3 Linear End-Functionalised Dimethvlsiloxanes 

In the synthesis of the linear dimethylsiloxanes w ith mesogens at one or 

both ends of the chain, the commercially available cyclic dimethyl trim er 

and tetramer formed the respective monomers for the ring opening 

polymerisation reactions used in the synthesis of the target reactive 

siloxanes (see figure 3.3 b) and c), respectively). As these ring opening 

reactions are generally homogeneous, not exothermic, and mechanistically 

much less complex than the hydrolysis of halosilanes, they are easier to 

control and give higher yields of less disperse polymers. Hence, these 

reactions are the preferred methods of synthesising well characterised 

end-functionalised siloxanes and It is these reactions that w ill be detailed 

in the following section.

3.2.3.1 cx.tj-Si-H Functionalised Siloxanes

cxcj-functionalised siloxanes have been used extensively as precursors in the 

synthesis of segmented copolymers230-233 and, in the modification of 

network structures234*235. In general, these siloxanes have been synthesised 

via the ring opening polymerisation of cyclic non-functionalised oligomers 

and a functionalised disiloxane236 (see reaction scheme 3.3). Following this 

reaction, essentially all of the linear chains are end-capped w ith  the 

functional group 7' and all the cyclic species are non-functional.
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c h 3 c h 3  c h 3  c h 3  c h 3
Z - S i - O - S i- Z  + D4  catalyst, heat, argon ,  Z - S 1 - 0 - ( - S i - 0 - ) x - S i - Z  + cyclic:

I I  ^ I I I 7
CH3  c h 3  c h 3  c h 3  c h 3

Reaction scheme 3.5 Preparation of <*p-functionalised siloxanes

Due to the partial Ionic nature of the slloxane bond, it  Is susceptible to 

cleavage by nucleophilic or electrophilic reagents229. The polymerisation of 

cyclosiloxanes under the influence of these catalysts proceeds by an ionic 

mechanism. The general rules applicable to the ionic polymerisation 

process237 are also characteristic of the polymerisation of cyclosiloxanes 

under these conditions.

During the polymerisation of unstrained cyclosiloxanes (i.e. not the cyclic 

trimer, D3 ), where the energy of the siloxane bond of the cyclic species is

close to the energy of the bond in the linear polymer, the cleavage of any 

siloxane bond by the catalyst forms an active site that may subsequently 

cleave any other siloxane bond in the system229*236. Hence, a variety of 

interchange reactions take place and a ring-chain equilibrium is set up. 

Examples of the types of Interchanges thought to be occurring in these 

'equilibration' reactions are given in reaction scheme 3.4.

(1) “ Dx- + D4 > ~D(x+4)-
(2) -Dx- + MM  > MDX M
(3) MDX M + MM  > MD(x-y )M + MDy M
(4) MDX M + MDy M  > MD(x+w) M + MD(y_w)M

Note -  w ith  d im ethyls ilo xy  units  i t  is convention to use "D" to re fe r  to a difunctional siloxane u n it  
and " I T  to re fe r  to a monofunctional siloxane u n it; the fu n ctio n a lity  being the num ber of 
siloxane bonds the silicone atom of a monomer u n it is involved in.

Reaction scheme 3.4 The interchange reactions occurring in an equilibration.
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The position of the ring-chain equilibrium in these equilibration reactions 

is obviously independent of the nature and concentration of catalyst, but 

may be influenced by the nature of the organic substituents on the siloxane 

backbone and the solvent concentration229. It should be noted that in the 

absence of the disiloxane, which acts as a chain terminator and thus 

controls the DP of the linear chains as well as introducing reactive 

end-groups, a high molecular weight silicone gum may be formed.

There are a variety of catalysts that can be used to effect an equilibration 

reaction236. The choice of catalyst depends upon the type of functional 

disiloxane that is used. The anionic equilibration of siloxanes using basic 

catalysts, has been studied extensively229*236. This type of polymerisation 

is unsuitable for the preparation of Si-H functionalised siloxanes, because 

the Si-H bond is cleaved under these conditions229*236*238. The cationic 

equilibration of siloxanes, using acidic catalysts, completely retains the 

Si-H group at low temperatures236. It is also known that certain clay cation 

exchangers of the phyllo- and Ino-silicate type (i.e. w ith a crystal la ttice 

w ith a leaf-like or chord-like structure which are capable of undergoing 

sorption and exchange reactions in the interior of the crystal) catalyse the 

equilibration reaction and completely retain the Si-H group at temperatures 

between 0 and 150°C238. The use of such a clay has the added advantages 

of:

- maintaining a uniform dispersion of the catalyst throughout the

reaction mixture and hence forming a uniform product

- the quantitative removal of the catalyst from the reaction mixture

can be achieved by simple mechanical filtra tion .
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Hence, acid-activated Fuller’s earth has been employed as the catalyst for 

the cationic polymerisation of D4 w ith hexamethyldisiloxane:

c h 3  c h 3  c h 3  c h 3  c h 3

H - ^ i - O - S i - H  + D4  c,ay catalyst, A, N2  H - S i - 0 - f - 4 i - 0 4 - S i - H  + cyclics  
1 1 n ---------------------> 1 j x 1 7

c h 3  c h 3  c h 3  c h 3  c h 3

Reaction scheme 3.5 The cationic polymerisation of D4

The molecular weight of the resulting functionalised siloxane is a function 

of the ratio of D4 to disiloxane and the solvent concentration236’238. In the 

absence of solvent and at thermodynamic equilibrium, the amount of cyclic 

material is known and hence, the required ratio of D4 to disiloxane for a 

polymer of a particular DP can be determine (see section 4.2.3.2).

3.2.3.2 c*-5 i-H  Functionalised Siloxane

c*-functionalised siloxanes have been used in the synthesis of graft 

copolymers239. Generally these siloxanes have been prepared by the anionic 

polymerisation of hexamethylcyclotrisiloxane (D3) w ith organolithium 

compounds, followed by end-capping w ith a functional chlorosilane240:

ch3 ch3 ch3 ch3 ch 3

n -(S i-0)3- +  R L i~ >  R -(S i-0)3n_ r  S i-O "L i+ 'endcap R -{ S i-0)3n-  S i-X  + LiCl

CHj CH3 CH3 * CH3 CH3
Cl-Si(CH3)2X

where X= a functional group

Reaction scheme 3.6 Preparation of o<-functionalised siloxanes by the
anionic polymerisation of D3.

67



Although there is some doubt over the exact reaction mechanism, the 

cleavage of a siloxane bond by an organolithium reagent is thought to 

proceed via the formation of a four membered cyclic transition complex229:

R-Li

=Si-0-Si= + RLi ------> [=S i-0-S i=]------> =SiR + =S i-0" L i+

Reaction scheme 5.7 The cleavage of the siloxane bond.

The lithium siloxanolate produced is much more readily cleaved by RLi than 

D3 and the reaction rapidly proceeds to reaction scheme 3.8(c)229:

-D3-+  RLI J li,  R-[S1(CH3 )20 ]3 LI (a)

RLI + 2 R-[SI(CH3)20 ]3 LI 3 RSI(CH3)205i(CH3)20 Li (b)

RLI + RSI(CH3)2OSI(CH3)20 LI 2 RS1(CH3)20 LI (C)

ki « k 2 or k3

Reaction scheme 3.8 Further cleavage of the siloxane bond.

It is the polarised silanolate molecule that is thought to be the active 

polymerisation centre. In the case of lithium silanolates, due to the low 

degree of ionisation of this bond, the reaction is generally carried out in 

polar aprotic solvents236. The acceleration of the polymerisation of D3 in a

polar aprotic solvent, such as tetrahydrofuran (THF), is thought to be 

associated w ith the breakdown of groups of ion pairs and the conversion of 

the contact ion pair to a more active form, specifically to a separate ion 

pair by solvation of the lithium cation by the electron donating solvent. 

Thus, the concentration of available active centres increases and more
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effective active centres are formed. These active centres then cleave the 

siloxane bonds of the strained D3, which is then added in a step-wise 

fashion until all the monomer has been consumed.

The large steric strain associated w ith the cyclic trim er that is absent in 

the larger rings and linears, results in a greater reactivity of a lithium 

silanolate towards D3. Consequently, it  is possible to selectively

polymerise D3 under these conditions, w ith the exclusion of the

redistribution processes outlined in reaction scheme 3.4, that occur in an 

equilibration reaction236. In the absence of these sta tis tica lly  and 

sterically controlled processes there is l i t t le  or no chain transfer or chain 

termination and therefore, a linear polymer of relatively narrow DP 

distribution and free from cyclic material is formed.

Once the reaction is complete, termination is achieved w ith the addition of 

a chlorosilane, in this case dimethylchlorosilane. The DP of the resulting 

siloxane is a function of the ratio of D3 to in itia to r and can therefore, be 

calculated239*240(see section 42.3.3).

3.3. Synthesis of Mesogens

3.3.1 N o n - A m D h iD h i l ic  M e s o g e n s

The target non-amphiphilic mesogens consisted of a phenyl benzoate ester 

’core', coupled via an ether linkage to vinyl terminated alkyl 'spacers' of 

varying length. A diagrammatic representation of these mesogens can be 

seen in figure 3.5.
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CH2=CH (CH2)n-2C K ^ ) —  CO - © ■  0CH3 n= 3 -6

>' -... y ■  ̂ 1 v *

spacer core

Figure 5.5 Diagrammatic representation of the non-amphiphilic mesogens.

Standard synthetic organic methods, which have been reviewed 

elsewhere241, have been used in the synthesis of these mesogens. Of the 

synthetic routes available, one was chosen in which the core of the mesogen 

was synthesised in itia lly , and to which the various vinyl terminated spacers 

were subsequently coupled in a further reaction (see reaction scheme 3.9 a) 

and b), respectively).

H+
H O -0-C O 2H  + H 0-@ -0C H 3  » H 0-@ -C 02-® -0 C H 3 ( a)

-H2 0

H 0 -® -C 0 2-@ -0 C H 3 + CH2=CH(CH2)nBr ------> CH2=CH(CH2 )n0 -® -C % @ -0 C H 3 (b )

-HBr

Reaction scheme 3.9 The preparation of vinyl terminated non-amphiphilic
mesogens.

The synthesis of a common core for all the non-amphiphilic mesogens 

minimised the amount of synthetic work required. The coupling of the 

spacer groups In the last reaction step, also maximises the use of these 

reagents, the longer chains examples of which are expensive.
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It is worth noting that the synthesis of the core involves a condensation 

reaction between a benzoic acid and a phenol. There are, however, two 

phenol derivatives present (i.e. p-methoxyphenol and p-hydroxybenzoic acid) 

and there exists the potential for two competing reactions to occur. In 

practice, this was not the case. This may be explained by the increased 

nucleophilicity of the p-methoxyphenol relative to the p-hydroxybenzoic 

acid, due to the electron donating effect of the methoxy group of 

p-methoxyphenol and some resonance stabilisation of p-hydroxybenzoic 

acid.

3.3.2 Protected Amohiphilic Mesogens

The target amphiphilic polymers consisted of a siloxane moiety w ith 

amphiphiles attached to one or more of the siloxane repeat units at the 

silicon atom. The amphiphiles of interest were the sodium and calcium 

salts of undecanoic acid (Cn ). The synthesis of the sodium and calcium

salts of the commercially available 10-undecenoic acid, and the coupling of 

these salts to the reactive siloxane backbones via the hydrosilylation 

reaction would lead directly to the target structures. However, i t  is known 

that a solvent which is common to both the salts and the siloxane polymers 

and in which the coupling reaction could be carried out, is not easily 

found66. It was therefore necessary to form the salts after coupling the Cn

side-chain(s) to the polymer.

The hexachloroplatinic acid to be used to catalyst the hydrosilylation 

reaction coupling the vinyl functional mesogen to the reactive siloxane, is 

also known to catalyse the reaction of a s ily l group w ith a free carboxylic 

acid66. Hence, it  was necessary to protect the carboxyl function group of 

the Cn amphiphile prior to coupling w ith the polymer. Whilst many such
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protecting groups exist242*243, the appropriate choice required that:

- the attachment of the protecting group be carried out in the absence 

of a strong acid catalyst, which could attack the terminal vinyl group 

of the amphiphile.

- both the protected amphiphile and the siloxane precursor be soluble 

in a common solvent.

- the removal of the protecting group be quantitative and carried out 

in the absence of strong acid or base conditions which may lead to the 

equilibration of a siloxane backbone229*236.

The protecting group thought best to meet these requirements was the 

trlm ethyls ily l ester244. The protection of the carboxyl moiety of the 

amphiphile was carried out according to reaction scheme 3.10.

CH2=CH(CH2)8C00H + C1-SI(CH3)3 + (CH3CH2)3N

ch2 c i2 , n2> a

------------------ »CH2=CH(CH2)qC00~S1(ch3)3 + |(CH3CH2)3N HC1
I

Reaction scheme 3.10 Protection of the carboxyl moiety of the amphiphile.

Subsequent to the coupling of the protected amphiphile to the siloxane 

backbone and the isolation of the resultant polymer (details of which w ill 

be given in section 3.4 and 3.5, respectively), the deprotection was achieved 

in a stirred solution of warm ethanol:

ch3 ch3
I I

-S I-0 - EtOH/A ^  -s i-0- + CH3CH20-S1(CH3)3

CH2( CH2) gCOO- Si ( CH3) 3 CH2(CH2)gC00H

Reaction scheme 3.11 Deprotection of the carboxyl moiety of the
amphiphilic polymers.
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Following the isolation of the free acid, the target sodium and calcium salts 

were prepared by standard acid-base titra tions (see section 4.2.7).

3.4 Coupling of Mesoaen and Siloxane

The coupling of mesogen and siloxane involved the addition of the Si-H 

reactive group of the siloxane precursor across the vinyl moiety of the 

mesogen:

CH3 ch3

-  Si-O- + CH2=CH-Mesogen [catalyst] ^ -Si-O- 
H CH2-CH2-Mesogen

Reaction scheme 3.12 Coupling of mesogen and polymer.

This hydrosilylation reaction is catalysed by a variety of reagents, 

hexachloroplatinic acid (H2PtCl6) being one of the most effective245. The

proposed mechanism for the H2PtC16 catalysed hydrosilylation reaction is 

outlined in reaction scheme 3.13.

^  ^  r /
L L C=C L

H2PtCl6 6H20 + R3Si-H ------- ► Pt  > ^ P t
L L L L

/
R3Si-H

L L
w here L =  C l-  o r coordinated solvent.

Reaction scheme 3.13 Mechanism of the hydrosilylation reaction.
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G ra y f la i246 have shown that the nature of the catalyst used to effect the 

hydrosilylation is crucial i f  the reaction is to be reproducible and 

controllable. Pt(IV), the catalytic species in the proposed reaction 

mechanism, is gradually reduced in solution to P t(ll) and Pt(O). Whilst both 

these species catalyse the hydrosilylation reaction they may also catalyse 

the following side reactions:

(1) 2(-Si-H) + P t(ll) + [0] — > -SI-0-S1- + Pt(0) 4 h2247-

(2) Pt catalysed reactions leading to splitting of Si-C bonds248.

Gray et a l246 demonstrated that a given series of mesogenic side-chain 

polysiloxanes prepared w ith aged and fresh solutions of H2PtCl6 were

different in appearance and phase behaviour. These differences were 

explained in terms of the above side reactions. The production of finely 

divided Pt(0) was thought to be responsible for the discolouration of the 

polymers produced w ith aged catalyst, w hilst either of the possible side 

reactions may have contributed to a degree of cross-linking of the products.

During some of our early attempts to carry out the hydrosilylation reaction, 

sim ilar observations were made w ith aged tetrahydrofuran (THF) solutions 

of the catalyst. Products were discoloured, and effervescence often 

occurred on mixing solutions of the catalyst and the siloxane. In addition, 

during the preparation of an amphiphilic cx-functionalised linear siloxane, 

an impurity was isolated that may have arisen from one of these side 

reactions. The IR and 1H NMR spectra of this impurity were consistent w ith 

the following structure:

CH3 ch3 

R-(5i-0)n-51-R where R = butyl
ch3 ch3
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This, along with the the evolution of a gas when mixing solutions of 

catalyst and siloxane, leads to the suggestion that the impurity may have 

arisen from the reaction of the Si-H functionalised siloxane w ith the 

solution of aged catalyst in analogous fashion to side reaction ( 1), in the 

following way:

CH3 CH3

2  Bu - ( S i - O ) m - S i - H  + P t ( i l )  + [0 ]
I I

c h 3  c h 3

c h 3 c h 3

■» B u - (S 1 -0 )n— S i-B u  + P t ( 0 )  + H 2

I I
CH3  CH3  w here  n = 2 m +1

Reaction scheme 3.14 Proposed side reaction resulting in observed impurity.

It Is, therefore, necessary to use fresh solutions of catalyst and to 

rigorously exclude moisture and light from the reaction, if  clean products 

w ith reproducible phase behaviour are to be synthesised2-46.

A 10% molar excess of the alkene was employed to ensure fu ll reaction of 

the Si-H sites of the reactive siloxane246'249. The extent of reaction was 

followed directly on an evaporated film  of the reaction mixture by 

monitoring the decrease in intensity of the Si-H IR absorption at 2160 cm-1. 

As we have seen, aged solutions of catalyst can give rise to unwanted 

side-reactions and so once the reaction was complete, the purification of 

products was carried out immediately.

3.5 Purification of Mesogen Functionalised Siloxanes 

Reported m lsclb lllty250-251 and doping252 studies have demonstrated that 

small amounts of low molar mass non-amphiphilic mesogens can have a 

profound effect upon the properties of the corresponding mesogenic polymer.
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Consequently, i t  Is important to ensure that the final mesogenic polymer is 

free from any excess of monomeric mesogen.

The isolation of mesogenic polymers may be achieved by various techniques, 

including GPC222*253, precipitation52'221'223*246*254-256, fractionation257*258 

and distilla tion. Precipitation is the most common method of isolation and 

has been the preferred method for the isolation of the various amphiphilic 

molecules synthesised during this study. In this respect, i t  is worth noting 

that Gray et a t223 demonstrated that as many as ten reprecipitations are 

required to isolate non-amphiphilic polymers whose transitions were 

independent of the number of precipitations carried out.

However, Gray et a l223 also noted that the use of many precipitation to 

isolate a non monodlsperse polymer may give rise to fractionation of the 

product, and this may influence the properties of the resulting product. In a 

study of monodisperse non-amphiphilic siloxane oligomers, Stevens et 

M 259 showed that there was a change in the phase transition temperatures 

in the DP range 1-10, the change being much less pronounced in the DP range 

10-50. Thus, the fractionation of polydisperse mesogenic polymers during 

isolation should have a minimal effect on polymers of a high DP, but may 

become increasingly important w ith  mesogenic oligomers of the type 

studied here.

Due to the small quantities of the cyclic non-amphiphilic siloxanes prepared 

for study during this thesis, these materials were isolated by GPC using a 

Sephadex LH-20 gel and THF as the eluting solvent. In all cases, the purity 

of the products was monitored by a combination of TLC, ]H nmr and IR.
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The cyclic and linear amphiphilic siloxanes were isolated using 

phase-separation. The purity of the products was monitored by a

combination of nmr and IR.
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CHAPTER 4. SYNTHESIS

41 Introduction

The synthetic strategy and the reaction schemes employed for the synthesis 

of materials have been outlined in chapter 3. In accordance w ith this 

strategy, the synthetic work was divided into four main areas:

(1) the synthesis of Si-H functionalised siloxanes

(2 ) the synthesis of vinyl terminated amphiphilic and non- 

amphiphilic mesogens

(3) the coupling of mesogen(s) to siloxanes

(4) the purification of products.

The details of this synthetic work w ill form the basis of this chapter.

4.2 Experimental

4.2.1 Materials

Unless otherwise specified all materials were used as supplied from 

Aldrich Chemicals.

All solvents were 'Analar' grade. Tetrahydrofuran (THF) was refluxed over 

potassium metal and distilled prior to use. The fraction boiling at 63-67°C 

was collected. All other solvents were dried using activated 4A molecular 

sieves and distilled prior to use.

n-Butyl lithium in hexane was prepared, in vacuo, from the reaction of 

n-chlorobutane and lithium, and was stored under dry nitrogen.
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42.2 Analytical Techniques

Infra red (IR) spectra were recorded using a Perkin Elmer 530B 

spectrophotometer. Liquids were analysed as film s between sodium 

chloride plates and solids were analysed using potassium bromide discs.

]H nmr spectra were recorded at ambient temperature on either a Joel 

PMX60, or a Bruker WP80, or a Bruker 560 spectrometer, using CDC13, 

(CD3 )2C0, (CD3)250 and D20 as solvents. The data given are for room 

temperature measurements. Chemical shifts are given in p.p.m. downfield 

from tetramethylsilane (TM5). For siloxane samples, TMS in CDC13 was used 

as an external standard, prior to the sample itself. For non-siloxane 

samples, TMS was used as an internal standard.

Gas Liquid Chromatography (GLC) analyses were run on a Perkin Elmer 

chromatogram fitted  w ith a Flame Ionisation Detector (FID), using a 3%0VI 

column. Analysis conditions were 60°C for 5 min., then ramped at 10°C.min-1 

to 125°C, w ith a N2 flow rate of 15 ml.min-1

Preparative Gas Liquid Chromatography was carried out on a Pye 

chromatogram fitted  w ith a Flame Ionisation Detector (FID), using a 5%0VI 

column. Analysis conditions were 60°C for 5 min., then ramped at 

lo o m in ' 1 to 150°C, w ith a N2 flow rate of 60 ml.min-1.

GPC curves of linear siloxane polymers were obtained using a Waters 

Associate instrument, fitted  w ith microstyragel columns (Porasil 60A and 

Bondagel E500) and a Waters R401 refractometer. Toluene was used as the 

solvent w ith a flow rate of 1 ml.min-1. A calibration curve was prepared
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using previously characterised standard samples of linear 

poly(dimethylsiloxane) (PDMS) w ith a narrow distribution of molecular 

masses (Mw/Mn < 1.2)260. The calibration curve for the PDMS samples

covered the number average molar mass (Mn) range 600<Mn< 15000. The

calibration curve is shown in figure 4.1. All analyses, including the 

preparation of the calibration curve, were carried out using 

octamethylcyclotetrasi loxane (D4) as the internal standard. All 

measurements were carried out at 23°C.

4.50

4.00-

&  3.75-

£ 3.50 -
'DjOi
§ 325 -

o
3.00-

2.75-

1.050.950.70 0.75 0.80 0.85 0.90 1.00

Elution volume of analyte/ Elution volume of control (D4)

Figure 4.1 GPC calibration curve for linear PDMS.
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4.2.3 Preparation of Si-H Functionalised Siloxanes.

42.3.1 Cyclic Hydrogenmethylsi loxane Oligomers (see figure 3.3 a).

A mixture of cyclic hydrogenmethylsiloxane oligomers was obtained from 

Petrach Systems. Gas chromatography-mass spectrometry (GCMS) indicated 

that this mixture also contained small amounts of trim ethylsily l 

terminated, linear hydrogenmethylsi loxane oligomers (see appendix 41). 

This mixture was equillibrated over acid-activated Fuller's earth catalyst 

(N2, 48 hours, 60°C)238’261 (see section 42.3.2 for the preparation of the 

catalyst). The cyclic fraction was then isolated by d is tilla tion  under 

reduced pressure (80°C, 0.2 torr, 1 hour)(~ 15% yield).

A rnono-dispersed sample of the cyclic hydrogenmethylsi loxane tetramer 

was isolated from this mixture of cyclic oligomers using preparative GC. 

Figure 42  shows the GC trace obtained during this procedure.

Figure 42  The GC trace obtained during the isolation of the cyclic 
hydrogenmethylsi loxane tetramer using preparative GC.
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Mono-dispersed samples of the cyclic hydrogenmethylsiloxane tetramer and 

pentamer were also isolated from the mixture of cyclic oligomers using a 

spinning band fractionation column (see figure 43). The mixture, along w ith 

wooden splints to reduce bumping, was heated to 50 °C. The pressure in the 

column was then gradually reduced until the f irs t  sign of refluxing occurred 

at the base of the fractionating column. The spinning band of the column 

was switched on. Heat was then gradually applied to the column until the 

most volatile fraction reached the fractionating head, and was refluxing at 

a steady rate. At least 10 minutes were allowed for the system to reach 

equilibrium, and then 0.5cm3 samples were taken from the fractionating 

head w ith a reflux ratio of 10:1. GLC analysis of these fractions was 

carried out and the pure fractions of the cyclic tetramer were retained. The 

fractions rich in the cyclic pentamer, but lacking the less volatile tetramer, 

were retained and recombined. This fraction was then redistilled, as above. 

Again, GC analysis of the various fractions obtained was carried out, and the 

pure fractions of the cyclic pentamer were retained. The IR and nmr 

spectra were consistent w ith the required structures (see figure 4 4  and 

45).

These methods of obtaining these siloxane precursors were subsequently 

abandoned in favour of obtained these materials direct from Petrach 

Systems. The purity of the commercial tetramer and pentamer was >99% 

and >95%, respectively.
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Figure 4.3 Spinning band fractionation column.
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Figure 4.4 IR spectrum of cyclic hydrogenmethylsiloxane tetramer. 
Signal (cm-'): 2160CS1-H), 1300-750 (Si-O-Si).
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Figure 45  >H nmr spectrum of cyclic hydrogenmethylsiloxane tetramer. 
*H nmr signal (ppm): 0.2 (3H, s, CH3), 4.75 (1H, s, Si-H).
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42.3.2. cxOJ-SI-H Functionalised Dimethvlslloxanes238-261^  figure 3.3 b)

a) Preparation of the Catalyst

Fuller’s earth (lOg) was stirred in dilute H2S04 (50ml) for 12 hours at 

ambient temperature, then filtered and washed with distilled water until 

the washings were neutral. The catalyst was then vacuum dried at 100°C.

b) o^J-Si-H Functionalised Dimethylsiloxanes. General Proceedure 

Octamethylcyclotetrasiloxane (D4), tetramethyldisiloxane (TMDS) and acid 

activated Fuller’s earth (0.2g) were heated under N2 with stirring for 72 

hours at 60°C. The reaction mixture was then cooled and filtered to remove 

the catalyst. The filtrate was heated under vacuum for 6 hours (150°C, 0.1 

torr) to remove low molecular mass cyclic contaminants. The residue was 

then phase-separated three times from an acetone/water mixture (80/20). 

The IR and ]H nmr spectra were consistent with the required structures (see 

figure 4.6 and 4.7). The molecular weights were determined by GPC and *H 

nmr (see table 4.1).

nominal

"n
D4
(g, moles. 10’2)

TMDS
(g, moles. 10’3) (6PC)

"n
0 H nmr)

1000 20.0, 6*74- 2.70, 20.10 1120 1080
2000 20.0, 6.74- 1.17,8.70 1950 2150
5000 20.0, 6.74; 0.45, 3.35 4750

Table 4.1. The polymerisation conditions employed in the preparation of 
cxjLD-Si-H functionalised dimethylsiloxanes, and the 1% data 
characterising the products obtained.
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f i gure.4 .6  IR spectrum ofcxpSi-H functionalised dimethylsiloxane (nominal 
Mn=1 0 0 0 ).
IR signal (crrrO: 2160(SI-H), 1300-750 (S1-0-S1)
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Figure 4.7 >H nmr spectrum of o<,tJ-S1-H functionalised dimethylsiloxane 
(nominal f in=1 0 0 0 ).
1H nmr signal (ppm): 0.2 ( 15 3H, s, CH3), 4.75 (2 IH, s, S i-H).
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4.2.3.3 cx-5i-H Functionalised Dimethylsiloxanes. Genera) Proceedure259 

(see figure 3.3 c)

A 50% solution of hexamethylcyclotrisiloxane (D3) in THF was slowly added

to a stirred solution of n-butyllithium in hexane (1.58M.dm“3) at 0°C. After 

20 hours the reaction was cooled to -78°C and dimethylchlorosilane 

(DMCS.10 mole % excess w ith respect to the moles of n-butyllithium used) 

was slowly added (see table 4.2). The mixture was allowed to heat to 

ambient temperature and was then added to water (150ml). The non-aqueous 

layer was separated and any hexane present was removed under reduced 

pressure. The product was phase-separated five times from an 

acetone/water mixture (80/20). The residue was then taken up in acetone, 

dried (Mg2S04) and filtered. The acetone was then removed under reduced

pressure in order to provide the final product. The IR and jH nmr spectra 

were consistent w ith the required structures (see figure 4.8 and 4.9). The 

molecular weights were determined by GPC and GLC. (see table 4.2)

nominal

Mn
&3
(g,moles 10"2)

BuLi
(g,moles 10-2)

DMCS
(g, moles 10~2)

Mn
(G PC)

Mn
OH nmr)

5 0 0 2 0 . 0 , 9 . 0 3 .3 4 ,5 .2 1 5 .4 2 , 5 . 7 3 5 1 0 4 8 0
1000 2 0 . 0 , 9 . 0 1 .4 5 ,2 .2 6 2 .3 5 , 2 . 4 9 9 1 5 8 8 0
1 5 0 0 2 0 . 0 , 9 . 0 0 .9 3 ,  1 .4 5 1 .5 1 , 1 .6 0 1 5 6 0 1 4 1 0
2000 2 0 .0 ,9 .0 0 .6 8 , 1 .0 6 1 .1 1 , 1 .1 7 2 1 7 5 2 0 5 0
5 0 0 0 2 0 . 0 , 9 . 0 0 .2 6 ,0 .4 1 0 .4 3 , 0 . 4 5 5 2 0 0 4 6 5 0

N o te :1H n m r spectra recorded on a B ru ker W P 8 0 . M n ( n mr )  was calculated by comparison  
of the signal due to S i-H  w ith  the signal due to rest of the molecule.

Table 4.2 The polymerisation conditions employed in the preparation of 
oc — functionalised dimethylsiloxanes, and the fin data 
characterising the products obtained.
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Figure 4.8 IR spectrum ofcx-Si-H functionalised dimethylsiloxane (nominal 
Mn =2000)
IR signal (cm-O: 2160(Si-H), 1300-750 (Si-O-Si)
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Figure 49  >H nmr spectrum of <x-Si-H functionalised dimethylsiloxane 
(nominal Mn=2 0 0 0 ).
<H nmr (ppm): O.l (27.5 3H, s, S1-CH3), 0 .3 -1.6 (9H, m, nBu), 4.75 
(1H, s, S1-H)

Note: the respective ]H nmr and IR signal intensities vary w ith the 
molecular weight of the sample. Hence, these figures give only the signal 
positions and the species thereby indicated.



4.2.4 Synthesis of Vinvl Terminated Mesoaens

4.2.4.1 Non-AmphiDhilic Mesoaens (see figure 3.5)

a) 4MethoxvDhenvl-4-hvdroxvbenzoate262

A mixture of 4-hydroxybenzoic acid (4.9g, 0.036M) and 4-methoxyphenol 

(4.96g, 0.04M) in benzene (20ml) containing sulphuric acid (10 drops) was 

refluxed for six days. Water was removed using a Dean Stark trap. The 

reaction was monitored by TLC (70% petroleum sp irits / 30% ethyl acetate). 

When the 4-hydroxybenzoic acid was consumed, the solid product was 

filtered off. This residue was dissolved in diethylether (250ml), washed 

w ith saturated aqueous sodium bicarbonate three times and dried (Mg2S04).

The diethylether was reduced in volume to 100ml and hexane (100ml) was 

added. The crude product was filtered off, and was recrystallised from 

diethylether and hexane to give a white solid (6.80g, 79%), mp 192- 194>C. 

The *H nmr spectrum was consistent w ith the required structure (figure 4.10)

Figure 4.10 iH nmr spectrum of 4 methoxyphenyl-4-hydroxybenzoate.
iH nmr signal (d-DMSO); 3.75 (3H, s, OCH3), 7.5 (8 H, m, aromatic 
H), 10.4 (IH, s, OH). Note: the signal position for ROH may vary 
w ith the solvent and the solution concentration.
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b) Coupling Vinyl Terminated Spacer to 4-MethoxvDhenv1-4-hvdroxvbenzoate.

General Proceedure.

An alkyl bromide (0.028M) was added to a stirred solution of 

4-methoxyphenyl-4-hydroxybenzoate (6 .8 g, 0.028M) and K2C03 (5.4g, 0.028M) 

in dry acetone, under N2 (see table 4.3). The mixture was refluxed for 48

hours. The reaction was monitored by TLC (90% petroleum s p ir its /10% ethyl 

acetate). The product was obtained by column chromatography (90%

petroleum s p ir its /10% ethyl acetate). Yields of white solid were about 70%. 

The ]H nmr spectrum was consistent w ith the required structures (see 

figure 4.11 for example spectrum).

A lkv l brom ide Value of x in  

flQ iir.e.3,5

iH  nm r data 

(C D C I3 )

allybromide 3 7.6  (8H, m, aromatic H); 6 .0  ( IH ,  m, CH); 5 .2  (2H, t.-.CH^ 

45  (2H, t, 0CH2 ); 3 .8  (3H , s, 0CH3 )

4-brom o-1-butene 4 7.5  (8H, m, aromatic H); 5 .9  ( IH .  m, CH); 5 .2  (2H, t,:CH2) 

42 (2H, t, OCH2 ); 3 .8  (3H, s, OCH3 ), 2 .2 5  (2H, m, CH2 )

5-brom o-1-pentene 5 14  (8H. m. aromatic H); 5 .7  ( IH ,  m, CH); 5 .0  (2H. t.iCh^) 

4.0  (2H, t , OCH2 ); 3 .8  (3H, s. OCH3 ); 2 .0  (4H, m, 2 CH2 )

6-brom o-l-hexene 6 7 .6  (8H, m, aromatic H); 5 .8  (1H, m, CH); 5 .0  (2H, L iC H ^  

4 .0  (2H, t , OCH2 ); 3 .8  (3H , s, OCH3 ); 1.8 (6H, m. 3  CH2 )

Table 43  The alkyl bromide used In the preparation of non-amphlphlllc 
mesogens (see figure 3.5), and the !H nmr data characterising 
these mesogens.
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Figure 4.11 iH nmr spectrum of 4'-methoxyphenyl-4-pent-1-enoxybenzoate 
(i.e. the non-amphiphilic mesogen incorporating a pentyl spacer 
group).
!H nmr signal (ppm); 2.0 (2 2H; m, 2 CH2), 3.6 (3H, s, OCH3), 
3.95 (2H, t, OCH2), 5.0 (2H, t, CH2), 5.75 (IH, m, CH), 7.5 (8 H, m, 
aromatic H).
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4.2.42 Protection of the Carboxvl Group of 10-Undecenoic acid. Synthesis of 

Trimethvlsilvl 10-Undecenoate244 

Trimethylchlorosilane (54.47g, 0.5M, 10% mole excess w ith respect to 

moles of acid) in dichloromethane (40ml) was added to a stirred solution of 

10-undecenoic acid (84g, 0.456M, freshly d istilled at 110°C, 0.2 mmHg)) in 

dichloromethane (30ml). A fter refluxing under N2 for 4 hours, the reaction 

mixture was cooled to -78°C and a solution of triethylamine (50.6g, 0.5M) in 

dichloromethane, was slowly added. The mixture was refluxed for a further 

16 hours. The extent of reaction was followed by monitoring the 

disappearance of the -COOH IR stretching band (2900-3500 cm '1). When 

reaction was complete the mixture was cooled, and filtered under N2 to

remove the solid triethylamine hydrochloride. The filtra te  was evaporated 

under reduced pressure to remove the solvent. The residue was dissolved in 

petroleum spirits and a second fraction of triethylamine hydrochloride 

removed by filtra tio n  under N2. The solvent was removed under reduced 

pressure and the ester (a colourless liquid) obtained by vacuum d is tilla tion  

(72°C, 0.3 mm Hg) (yield 85.4g, 73%). The IR and ]H nmr spectra were 

consistent w ith the required structure (see figures 4.12 and 4.13).

4.2.5 Coupling of Mesoaens and Siloxanes. General Procedure246*249 

Catalyst solutions of hexachloroplatinic acid in dry THF were prepared in a 

dry box under N2 and used immediately. All apparatus was flame dried under

N2 and wrapped in foil. The appropriate Si-H functionalised siloxane and

alkene terminated mesogen (10% molar excess w ith respect to the Si-H 

content of the siloxane) were dissolved in THF (50% solution). An aliquot of 

catalyst solution was added, such that the alkene/catalyst molar ratio was 

I:10~4 The mixture was stirred at 50°C for up to 5 days. The extent of
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reaction was followed by IR, the disappearance of an adsorption band at 

2060-2080 cm" 1 (Si-H stretching) indicated complete reaction (see figure 

4.14)

Figure 4.12 IR spectrum of trim ethylsily l 10-undecenoate.
IR signal (cm-1): 2900 (CH2), 1720 (C=0), 1300-750 (Si-O-Si). 
Note the absence of OH at 3000-3500 crrr1.
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Figure 4.13 <H nmr spectrum of trimethylsilyl undecenoate.
1H nmr signal (ppm); 0.2 (9H, s, Si-CH3), 1.0-2.3 (16H, m, CH2), 
4.8 (2H, t, CH2), 5.6 (IH, m, CH)
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Figure 4.14 IR spectra of coupling reaction of methyl undecenoate and 
1,3,5,7 tetrahydrocyclotetrasiloxane (hydrogenmethyl D4), after 

A) 30 minutes and B) 48 hours.
Note: absence of Si-H at 2160 cm- 1 in B) indicating complete 
reaction.
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4.2.6 Isolation of Products

The work up and isolation of products varied according to the nature of the 

backbone and the mesogen.

4.2.6.1 Cyclic Non-AmphiDhilic Oligomers

The cyclic non-amphiphilie oligomers were isolated by 6 PC using a 

Shephadex LH-20 gel and THF as the eluting solvent. The column was 

monitored by TLC (90% petroleum s p ir its /10% ethyl acetate). The solvent 

was removed under reduced pressure, and the polymer dried under vacuum as 

the isotropic liquid. The IR and ]H nmr spectra were consistent w ith the 

required structures (see figures 4.15 and 4.16).

100 —l-lOOi

Him

...L

r-t-i-i-....."“s': i
' lobo (CM-*) ‘ 8003500 (CM ") 3000 TJ3ZT2500 20004000 6 0 01200

Figure 4.15 IR spectrum of D4C6 (see figure 8.1 for key to nomenclature).
IR signal (cm-'): 2950 (CH), 1725 (C=0), 1600 (C=C), 1300-750 
(Si-O-Si).

9 9



Figure 4.16 >H nmr spectrum of D4C6 (see figure 8 .1 for key to nemenclature).
!H nmr signal (ppm): 0.1 ( 12H, s, Si-CH3), 0.6 (8 H, t, Si-CH2), 1.5 
(32H, m, CH2), 3.8 (12H, s, 0CH3), 4.0 (8 H, t, 0CH2), 7.5 (32H, m, 
aromatic H).
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42.6.2 Cyclic Amphiphilic Oligomers

After removal of the solvent, the excess monomeric amphiphile was 

d istilled o ff (100°C, 0.3mm.Hg, 4 hours). The residue was stirred in ethanol 

(4 hours at 50°C) to liberate the carboxylic acid groups. The ethanol was 

removed under reduced pressure, and the product obtained by 

phase-separation from acetone/water (80/20) 7 times. Finally, an acetone 

solution of the product was dried (Mg2S04), filtered and evaporated to give

the final product, which was then dried under vacuum. The 1H nmr spectra 

were consistent w ith the required structures (see figures 4.17).

Figure 4.17 iH nmr spectrum of the acid form of the cyclic amphiphilic 
tetramer.
iH nmr signal (ppm); 0.05 (12H, s, Si-CH3), 0.5 (8 H, t, Si-CH2), 
1.3 (48H, m, CH2), 1.65 (8 H, m, CH2-C-acid), 2.35 (8 H, m, 
CH2-acid).
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42.6.3 Linear Amphiphilic Polymers

After removal of the solvent, the product was isolated by phase-separation 

from acetone/water (80/20) seven times. The residue was stirred in 

ethanol (4 hours at 50°C) to liberate the carboxylic acid groups. A fter the 

ethanol was removed, the product was taken up in acetone, dried (Mg2S0 4)

and filtered. The acetone was removed under reduced pressure and the 

product was dried under vacuum. The IR and nmr spectra were consistent 

w ith the required structures (see figures 4.18 and 4.19).

S '̂Wp3<55a>

Figure 4 18 IR spectrum of linear amphiphilic polymer (nominal Mn= 1000).
IR signal (cm-1): 3500-3000 (COOH), 2950 (CH), 1710 (CO), 
1300-750 (Si-O-Si).
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Figure 4.19 ]H nmr spectrum of the linear amphiphilic polymer (nominal 
Mn=1 0 0 0 ).
1H nmr signal (ppm): 0.0 ( 1 0 0 H, m, SI-CH3 ), 0.47 (4H, m, 
SI-CH2), 1.2 (18H, m, CH2), 1.55 (2H, m, CH2-C-ac1d),2.25 (2H, t, 
CHo-acid)4.
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4.2.7 Salts of the Amphiphilic Siloxanes. General Procedures

4.2.7.1 Sodium salts

a) Cyclic Oligomers.

Ethanolic solutions of the acid functionalised cyclic oligomers (2g in 20ml) 

were neutralised w ith ethanolic NaOH (0.025M.dm-3). The precipitated 

sodium salts were filtered off, triturated w ith hot acetone and dried under 

reduced pressure (yield approximately 85%). The IR and nmr spectra were 

consistent w ith the required structure (see figures 4.20 and 4.21).

2000 WOO 1100 WOO

Figure 4.20 IR spectrum of the sodium salt of cyclic amphiphilic tetramer.
IR signal (crrH): 2950 (CH), 1560 (C=0), 1300-750 (Si-O-SI). 
Note: due to misalignment of the recording chart, peaks appear 
at 50 c rrr1 above actual. Therefore, subtract 50 cm-1 from chart 
reading to obtain true wavenumber.
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Figure 4.21 1H nmr spectrum of the sodium salt of the cyclic tetramer.
nmr signal (ppm): 0.1 (12H, s, Si-CH3), 0.6 (8H, t, Si-CH2), 1.3

(48H, m, CH2), 1.55 (8H, m, CH2-O s a lt) , 2.15 (8H, t, CH2-sa lt).
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b) Linear Polymers

Ethanolic solutions of the acid terminated linear polymers (2g in 20ml) 

were neutralised w ith ethanolic NaOH (0.025M.dnrr3). The end-point was 

monitored by change in pH as a function of added NaOH using a pH meter. The 

solutions were reduced in volume, under reduced pressure, to their 

solubility lim it and then excess acetone was added. Clear, viscous gums 

were deposited and the liquors were decanted off. The products were 

triturated in hot acetone and dried under vacuum. The IR and ]H nmr spectra 

were consistent w ith the required structure (see figures 4.22 and 4.23). 

The molecular weights were determined by GLC (see table 4.4).

nominal Mn of 
siloxane segment 
plus butyl ta il

observed M n of 
siloxane segment 
( 1H n m r)

observed M n* o t  
molecule as a whole  
( 1H n m r)

5 0 0 5 1 0 7 1 7
1 0 0 0 9 6 0 1 1 6 7

a ) 1 5 0 0 1 5 3 0 1 7 3 7
2 0 0 0 2 2 0 0 2 4 0 7

b ) 2 0 0 0 2 1 0 0 2 3 0 7

* 1H n m r spectra recorded on a B ru k e r 5 6 0  spectrom eter. M n calculated by comparison of signal 
due to S iloxane w ith  signal due to re s t of the molecule.

Table 4.4 Mn of the sodium salts of a) cx- and b)cx,uMunctionalised linear 
dimethylsiloxanes.
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Figure 4.22 IR spectrum of the sodium salt of cx- functionalised linear 
dimethylsiloxane (nominal Mn=1 0 0 0 ).
IR Signal (cm-i): 2950 (CH), 1570 (C=0), 1300-750 (Si-0-51). 
Note: due to misalignment of the recording chart, peaks appear 
at 50 cnrr1 above actual. Therefore, subtract 50 cnrr1 from chart 
reading to obtain true wavenumber.
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Figure 4.23 'H nmr spectrum of the sodium salt of c<-functionalisea linear 
dimethylsiloxane (nominal Mn=1 0 0 0 ).
'H nmr signal (ppm); 0.0 (72H, s, Si-CBj), 0.45 (4H, m, Si-CH2), 
0.8 (3H, t, CH3 ), 1.2 (18H, m, CH2), 1.45 (2H, m, CH2-C-salt), 2.05 
(2H, t, CH2-salt).
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42.7.2 The Calcium Salts

a) The Cyclic Tetramer154

The tetrakis sodium salt of the cyclic tetramer (0.5g, 4.7 10~4M) was 

dissolved in deionised water (20ml) at 50 °C. Excess, saturated aqueous 

CaCl2 was added while stirring and a white, solid product precipitated out

of solution. A fter centrifugation and filtra tion , the product was triturated 

in acetone, filtered and dried under vacuum (yield 0.39g, 79%).

b) The<x-Functionalised Linear Polymer (nominal Mn=500)

A solution of the acid cX-terminated linear dimethylsiloxane (0.5g) in 

acetone (50ml) was stirred at 50°C over excess CaOH2 for 4 hours. The 

solvent was removed under reduced pressure. The residue was then taken up 

in ethanol, filtered and the ethanol was removed under reduced pressure. 

The product was then dried under vacuum (yield 0.45g, 90%).
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APPENDIX 4.1

This contains the 6 CMS data for the commercial mixture of cyclic 

hydrogenmethylsiloxanes obtained from Petrach Systems. All data was 

acquired using the following conditions:

The gas chromatograph of the mixture, along w ith  the structures 

subsequently assigned to the individual peaks, is shown in figure 4.24. 

Figures 4.25 to 4.29 show the mass spectra obtained for each of the major 

peaks in the chromatograph. Only the ions of particular importance have 

been referenced on the individual mass spectra, although the unmarked 

fragments do agree w ith  the proposed structures. In all spectra 'M' 

represents the molecular ion.

Equipment

Injection temperature 

Inlet lines 

Column

Initia l temperature 

Final temperature 

Temperature gradient 

Carrier gas 

Electron beam energy

lOC.min-1 

Helium 16 lbs.in2 

70eV

60°C

200°C

225°C

200°C

VG 305 Mass spectrometer

1.25% Dexil 300
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Figure 4 2 4  Gas chromatograph of the commercially available m ixture of
cyclic hydrogenmethylsiloxanes.
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Figure 4.25 Mass spectrum of the compound corresponding to scan 15, i.e.
the cyclic hydrogenmethyltetrasiloxane (hydrogenmethyl D4).
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Figure 4.26 Mass spectrum of the compound corresponding to scan 28, i.e.
the cyclic hydrogenmethylpentasiloxane (hydrogenmethyl D5).
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Figure 427 Mass spectrum of the compound corresponding to scan N9 36, i.e. 
the linear hydrogenmethylsiloxane impurity:

(CH3 )3SiO-C-SiO-)2 -SKCH3 )3

ch3
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Figure 4.28 Mass spectrum of the compound corresponding to scan N5 54, i.e.
the cyclic hydrogenmethylhexasiloxane (hydrogenmethyl D6).
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Figure 429 Mass spectrum of the compound corresponding to scan N9 57, i.e. 
the linear hydrogenmethylsiloxane impurity:

H
(CH3 )3SiO-(-SiO-)3-Si(CH3 )3

ch3
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CHAPTER 5. CHARACTERISATION OF PHASE BEHAVIOUR

5.1 Introduction

Having prepared the target materials (see chapters 3 and 4), the 

characterisation of their phase behaviour was undertaken. The majority of 

this work concentrated on the study of the thermotropic behaviour of the 

neat materials, in particular those that were amphiphilic in nature; this 

required the identification of the structural order present as a function of 

temperature alone. The remainder of the work focused on obtaining an 

overview of the lyotropic behaviour of the amphiphilic materials in 

concentrated aqueous solutions. This overview established the lyotropic 

mesophases present in the phase diagram-only as a qualitative function of 

concentration-and, where applicable, the upper and lower temperature 

lim its of each phase w ith in the range 0-100°C. A comprehensive 

characterisation of the lyotropic phase behaviour would have required the 

quantitative study of the effects of both composition and temperature on 

phase behaviour, which was not possible in the time available.

As no single technique can unequivocally determine the nature of a given 

mesophase, a number of different techniques-each offering supportive 

evidence-were employed during this work. Of the many techniques available 

for the characterisation of phase behaviour, those encountered during this 

work were:

- Polarising Microscopy

- Differential Scanning Calorimetry (DSC)

- X-ray Diffraction

These techniques-the underlying principles, experimental method and 

apparatus thereof—w ill form the basis of this chapter.



5.2 Polarising Microscopy

5.2.1 Introduction

When examined under the crossed-polars of a polarising microscope, a thin 

film  of a mesophase w ill, in most cases, exhibit an optical pattern and a 

rheology, that may be indicative of the structural order present. Hence, a 

polarising microscope fitte d  w ith a heating stage may allow the in itia l 

assignment of structural order, and the visual observation of the transitions 

between the crystalline, mesomorphic and isotropic liquid phases, as a 

function of the temperature263’264 and/or the concentration of added

solvent264-267.

Due to the simplicity of the experimental method, and the amount of 

information thus obtained, the technique of optical microscopy has found 

wide-spread use in the study of both thermotropic and lyotropic

mesophases. Hence, although supportive evidence is also required, optical 

microscopy would generally be the f irs t  technique employed in the

characterisation of phase behaviour.

5.2.2 Principles

As the molecules that constitute the majority of mesophases are 

birefringent (i.e. they possess different refractive indices for light

vibrating normal and parallel to their long axes), the ordered arrangements 

of the aggregates of these molecules that are found in most mesophases, are 

themselves birefringent. These mesophases therefore transmit polarised 

light and exhibit characteristic patterns (referred to as textures) when 

viewed through crossed-polars. The exceptions to this birefringence are the 

cubic phases, which because of their three-dimensional order are generally 

optically isotropic and appear as a uniform dark field. The relationship



between molecular structure and the observed optical properties of all 

these phases has been well established264. The description and 

classification of textures is a lengthy procedure that has been reviewed 

elsewhere25’264"268 and w ill not be attempted here. However, simple 

microscopic observations of the relative viscosity (assessed by pressing on 

the cover-slip) and the texture of a mesophase may, w ith experience and by 

comparison w ith literature photomicrographs25’264' 268, allow the in itia l 

assignment of phase structure.

5.2.3 Experimental

Observations of texture and viscosity were made on sample films, prepared 

between glass microscope slides and cover-slips, using a Vickers M41 

Photoplan polarising microscope equipped w ith a heating stage. The 

temperature and rate of heating of the stage, and hence the sample, were 

controlled with a variable rheostat.

The in itia l assignment of the thermotropic mesophase structure of 

anhydrous samples was carried out w ith the observations of texture and 

viscosity as outlined above. The upper and lower temperature lim its  of a 

phase, and the temperature of any transitions that occurred, were 

determined by slowly heating and cooling the sample at a rate of 

approximately 2°C.min'1. Transition temperatures are quoted to the nearest 

0.5°C.

Whilst the thermotropic behaviour of neat materials varies w ith  

temperature alone, the phase behaviour of lyotropic systems is both 

composition and temperature dependent. The comprehensive 

characterisation of lyotropic systems therefore requires the construction
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of a phase diagram relating phase behaviour to variation of temperature and 

composition. As this was not possible here, an overview of the lyotropic 

phase behaviour of materials was obtained using the penetration technique 

of Lawrence219’269. In this technique, a small sample is placed between a 

microscope slide and a cover-slip. Solvent is added to the slide and allowed 

to diffuse into the sample. Thus, a concentration gradient, w ith decreasing 

solvent concentration towards the anhydrous sample, is established and 

lyotropic mesophases may develop as separate bands around the anhydrous 

sample. Each of these bands may exhibit a texture and viscosity that allows 

the in itia l assignment of phase structure. Due to their three-dimensional 

order, the cubic phases are optically isotropic and therefore do not exhibit 

an optical texture. These phases may nevertheless be identified w ith the 

appearance of a distinct, highly viscous, dark band. With heating or cooling 

of the sample, i t  is then possible to determine the upper and lower 

temperature lim its  of each of the phases present and an overview of the 

phase diagram for both temperature and composition can be established.

To construct a complete phase diagram, homogeneous samples of varying, 

but known, composition would have to be prepared and the thermotropic 

behaviour of thin film s of these samples determined. Alternatively, 

macroscopic visual observations using the method of Void et aL137,270 may 

be used. This method entails preparing bulk samples in sealed glass vials 

and observing the samples through illuminated Polaroid windows. With this 

technique, there is no observation of a texture as such, but i t  is possible to 

follow the thermotropic phase behaviour of a sample by monitoring changes 

in appearance and viscosity. Repeating this operation w ith  samples of 

varying composition would quantify the effects of both temperature and
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composition and thus complete the phase diagram. This technique 

overcomes the problem of solvent loss which may be encountered in the 

penetration technique at elevated temperatures.

5.3 Differential Scanning Calorimetry

5.3.1 Introduction

-Differential scanning calorimetry (DSC) is a rapid and powerful technique 

for the study of thermally induced transitions. It is a modification of 

differential thermal analysis (DTA) that can be used to determine transition 

temperatures and the enthalpy changes involved. DSC, therefore, acts as a 

complement to optical microscopy, finding widespread application in the 

study of the thermotropic phase behaviour of both single89' 150*151*201’271-278 

and multi-component176*201*202*208*279-281 systems.

5.3.2 Principles

In DSC, the sample and an inert reference (i.e. a material that does not

undergo a thermal transition in the temperature range of interest) are

heated at an identical rate. The control unit attempts to maintain a 

gradually increasing and equivalent temperature in both sample and 

reference, and records the electrical power required to achieve this. If no 

thermally induced transition is taking place in the sample, then the relative 

rates at which power is supplied to the sample and the reference cells w ill

remain constant. If a thermally induced transition takes place in the

sample, then the control unit supplies enough electrical power to the sample 

or the reference-depending on whether the transition is exothermic or 

endothermic-to maintain the two at the same temperature. Hence, the 

electrical power input necessary to maintain the sample and the reference 

cells at an equivalent rate of temperature increase throughout the analysis
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is plotted against time. As the rate of temperature increase is known this 

can be related to temperature. The resulting plot, or thermogram, provides 

information on the thermally induced events occurring throughout the 

temperature range of interest. This includes transition temperatures, the 

range over which a transition occurs, the magnitude of a transition, and 

whether the transition is of f irs t  or second order (i.e. involves a change in 

enthalpy or specific heat capacity, respectively).

5.3.3. Experimental

DSC thermograms were recorded using a Mettler TA 3000 thermal analysis 

system. The use of this system is outlined in the Mettler TA 3000 operating 

manual. This system consisted of a TC10 TA control unit, and a DSC 30 

measuring cell w ith an operating range of -170°C to +600°C. Controlled 

cooling was achieved using liquid nitrogen. In addition to recording the 

measuring curve, the processor was used to calculate the transition 

temperatures and enthalpy changes occurring. The measuring sensor used to 

monitor the difference in temperature between sample and reference cells, 

was a vapour-deposited, five-fo ld  gold-nickel thermopile. This ensured high 

instrumental accuracy and precision in the determination of enthalpy values 

(Mettler quoted values of 2% and 0.5%, respectively).

The baseline curve, i.e. empty sample and reference pans, was checked at 

regular intervals to ensure that i t  was free of peaks and discontinuities due 

to impurities in the cell.

The rate at which the cell furnace was heated in order to provide a linear 

temperature increase was controlled w ith a platinum resistance 

thermometer (Pt 100). Temperature measurement w ith the Pt 100 sensor
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was calibrated every six months. The processor has the capability to 

automatically recalibrate from the fusion of pure indium, lead and zinc 

samples at 156.6 °C, 327.4 °C and 419.5 °C respectively.

As the measurements carried out were all on one-component samples (i.e. no 

solvent present), the loss of volatiles was not a problem. Hence, samples of 

5 to 15 mg were contained in standard aluminium pans (40jul net volume) as 

supplied by Mettler AG, Switzerland. Empty pans were used as the reference. 

To minimise the effects of sample oxidation at high temperature, a steady 

stream of dry nitrogen (60cm3.min_1) was passed through the DSC cell. If 

measurements were to be carried out w ith solvent present, then high 

pressure pans would be required. Steel pans which can be hermetically 

sealed to withstand a maximum pressure of approximately 10 0  bar are 

commercially available.

When carrying out DSC experiments, a fast heating rate gives sharp well 

defined peaks. Alternatively, a slow heating rate results in conditions 

closer to equilibrium but also small poorly defined peaks. Hence, a 

compromise was made, and a heating rate of WC.min" 1 was employed 

during this study. Although experiments were mostly conducted w ith  

heating, some cooling analyses were carried out. These cooling runs w ill be 

referred to in subsequent sections by the subscripts C.

During the evaluation of thermograms, the control unit was used to 

calculate the transition temperatures and enthalpy changes involved. The 

temperatures of first-order transitions were taken as the apex of the curve 

of heat supplied versus temperature. For a symmetrical peak, this 

represents the temperature at which the transition is 50% complete. The
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temperatures of second-order transitions were also taken at the point of 

the curve at which the transition was 50% complete. Due to the broad 

transitions observed during this study-the basis of which w ill be discussed 

in chapters 6 , 7 and 8 -trans ition  temperatures w ill be quoted to the nearest 

degree C. (°C) and changes in enthalpy w ill be quoted to the nearest kJ.mol"1.

5.4 X-rav Diffraction

5.4 1 Introduction

A characteristic of mesophase structures is that while there is no short 

range order (i.e. <5A), there is some long range order in one, two or three 

dimensions24'149’282-284. The interaction of X-rays w ith electrons in these 

ordered materials and the subsequent diffraction patterns that occur, can be 

related to atomic positions w ithin the sample. Hence, X-ray diffraction may 

be used to establish mesophase structure and dimensions.

X-ray diffraction techniques285 are usually categorised into wide-angle 

X-ray scattering (WAXS) and small-angle X-ray scattering (5AXS). Such a 

distinction is required because the instrumental requirements, and on 

occasion the method of analysing data, are very different. In the former, the 

required structural information is contained in the intensities at large 

scattering angles and is used to obtain structural information on a scale of 

1 nm or smaller. In the latter, the required structural information is 

contained in the intensities at small scattering angles and is used to obtain 

structural information on a scale of 1-1000 nm. Hence, small-angle X-ray 

diffraction is generally the most widely used of the two techniques in the 

study of mesophase structures (i.e. to investigate aggregate dimensions 

and/or inter-molecule spacings).
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During this work, SAXS has been used to study amphiphilic materials only, 

although the following basic principles apply to both WAXS as a technique 

and, also, to the study of non-amphiphilic materials in general.

5.4.2 Principles

When a beam of X-rays is incident to a material, i t  is partly absorbed and 

partly scattered, w ith the rest being transmitted unmodified. The 

scattering occurs as a result of interaction of the X-rays w ith  electrons in 

the material. The X-rays scattered from different electrons in ordered 

materials, interfere w ith each other and produce a diffraction pattern that 

varies w ith scattering angle. The variation of the scattered and diffracted 

intensity w ith angle provides information on the electron density 

distribution, and hence the atomic positions w ithin the sample285.

The analysis of data is generally based upon treating the X-ray diffraction 

patterns as powder patterns. The positions of the reflections can be related 

to the interplanar spacings by means of the Bragg equation:

n\=2d sin 9 (Equation 5.1)

where n = order of reflection
^  = wavelength of incident radiation 
d = interplanar spacing 

29 = diffraction angle

The symmetry of the lattice is obtained by fitt in g  the observed spacings to 

a proposed structure. The patterns may be so distinctive as to allow the 

assignment of phase structure from the visual inspection of the X-ray 

diffraction pattern alone. The number and Intensities of reflections depend 

upon the material, the structural order present, and the composition (i.e. 

multi-component systems). If the number of observed reflections is small,

125



which is generally the case, i t  may not be possible to categorise phases 

according to their one-, two- or three-dimensional order. Here, 

complementary information obtained from optical microscopy263"267, 

NMR286, etc, is required to determine a phase structure.

Having assigned a structure, either from the X-ray patterns alone, or from a 

combination of techniques, the positions of the reflections can then be used 

to calculate the structural dimensions of the phase. Alternative methods of 

calculating the dimensions for each of the more common mesophases appear 

in the literature24-142*149*166. By considering the proposed structure and the 

composition of the phase-this requires some estimation of the volume 

fractions of polar and non-polar moieties present; see section 5.4.3.4-these 

methods use the derived interaggregate distances to calculate the 

structural parameters Involved. With phases of two- and three-dimensional 

periodicity (i.e. hexagonal and cubic, respectively) these calculated values 

w ill be dependent on this approximation. With a phase of one-dimensional 

periodicity (i.e. lamellar) the surface area per molecule w ill be Independant 

of this approximation. With a knowledge of composition and the chemical 

structures involved, these calculated parameters can be used to indicate the 

valid ity of the proposed structure.

5.4.3 Assignment of Structure and Calculation of Lattice Parameters

5.4.3.1 Phases w ith One-dimensional Periodicity

Here, we are concerned w ith the lamellar phase. This phase is thought to be 

composed of alternating extended polar and non-polar layers (see figure 

1.3). The polar layers are made up of the polar moieties of the amphlphlle 

plus any polar solvent present. The non-polar layers are made up of the 

non-polar moieties of the amphiphlle plus any non-polar solvent present.
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Lamellar phases usually exhibit a series of sharp reflections in the 

small-angle region w ith d-values in the ratio of 1:1/2:1/3:1/4 The 

intensity of the higher order reflections fa ll o ff rapidly and w ith solvent 

present, often it  is only the f irs t  reflection which may be observed.

For the lamellar phase of an amphiphile/water system, the thickness of the 

amphiphile bilayer, da, is given by24*149:

da = do0a (Equation 5.2)

where d0 = the principle reflection (equal to interplanar distance)

0 a = the volume fraction of the hydrophobic chains

Sim iliarly, the thickness of the water layer, dw, is given by287:

dw = (1 -Ca)d0 (Equation 5.3)

where Ca = the weight fraction of the amphiphile plus combined water

The area per molecule at the alkyl chain/water interface (5) is given by24:

S = 2 VaM.1024 (Equation 5.4)

do0aN

where Va = the partial specific volume of the amphiphile (cm3 g~1)

M = the molecular weight of the amphiphile 

N = Avogadros number (6.022 x 1023 mol-1)

Assuming that Va = Vw (partial specific volume of water) = 1.0 cm3 g_1 and 

0a = Ca, a simplified expression for S is obtained178*287:

5 = 2M .1024 (Equation 5.5)

daN
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5.43.2 Phases w ith Two-dimensional Periodicity.

The most common phase with two-dimensional periodicity is the hexagonal 

phase. This phase consists of parallel rod shaped micelles of indefinite 

length packed in a two-dimensional hexagonal lattice. Other phases w ith 

two-dimensional periodicity have been proposed24. These phases have 

square or rectangular lattices, but only the hexagonal type w ill be 

considered here.

The hexagonal phase, both normal and reversed hexagonal (see figure 1.2 a 

and b), exhibit a series of sharp reflections in the small-angle region w ith 

d-values in the ratio of 1 : l/7 3  :1 / /4  :1/77. The calculation of structural 

parameters for the hexagonal phase used here is based upon that derived by 

Spegt and Skoul ios164*166-168, for the thermotropic reversed hexagonal 

phases of anhydrous divalent metal soaps. The la ttice parameter, a (i.e. the 

distance between the centres of the rod micelles), is obtained from the 

f irs t order reflection, d0, by the followind equation:

a = 2 d0 (Equation 5.6)

73

The number of polar groups per unit length of rod, n, can be calculated from 

the following expression:

n= 73Na2d (Equation 5.7)

2 M

where N = the Avogadro number

a = the lattice parameter, as derived from equation 5.6 

a = the density of the amphiphile 

M = the molecular weight of the amphiphile
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The radius, rc> of the rod micelle is obtained from the following equation. 

rc =r n.Vpo,l (Equation 5.8)

N tt

where n = the number of polar groups per unit length of rod, as 

derived from equation 5.7 

Vpo, = the molar volume of the polar group

The interfacial area per polar group, S, can now be obtained from the 

expression:

S = 2nrc (Equation 5.9)

n

where rc is defined as in equation 5.8 

n is defined as in equation 5.7.

5.43.3 Phases w ith Three-dimensional Periodicity.

Various structures w ith three-dimensional periodicity have been 

proposed13’25'26'288"293. The most common appear to be the body centred 

cubic structures26*167’171’294. These, and other more complex stuctures, 

have been revieved by Fontell149, and as they were not encountered during 

this work w ill not be discussed further here.

5.43.4 Estimates of the Volumes of Polar and Non-polar Moieties.

Aplying the appropriate calculation, the interfacial area per polar group 

thus can be calculated from the principle reflection of the X-ray pattern and 

a knowledge of the chemical structure of the amphiphile itse lf. Using data 

for the temperature dependence of the density of a linear 

polyCdimethyIsiloxane) (Mn= 1 2 2 0  and Mw/Mn =1 0 1 ), and literature values for
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sodium stearate, and the CH2 and CH3 moieties, estimates of the volumes of

these groups at a number of temperatures were calculated301’315’316. Table

5.1 lis ts  these values, which have been used to estimate the densities of the 

amphiphiles for which structural parameters have been calculated in 

chapters 6  and 7. Subsequently, these values have been employed in the 

calculation of the surface areas per polar group.

TEMPERATURE VOLUME (A3)

(°C ) c h 2 c h 3 D unit NaC02

2 5 2 7 5 4 1 3 0 2 0

5 0 2 7 5 8 1 3 4 2 1

100 2 8 6 6 141 2 5
200 2 9 8 2 1 57 2 9
2 3 0 3 0 8 6 1 6 3 3 3
3 0 0 3 2 9 7 1 8 2 4 8

Table 5.1 Estimated volumes for the CH2, CH3, dimethylsiloxane and sodium 
carboxylate groups at a range of temperatures.

5.4.4 Experimental

X-ray diffraction experiments were carried out using a Kratky camera 

(manufactured by Anton Paar KG, Graz, Austria) equipped w ith  a s lit  

collimator system. The camera length was 203mm, the divergence s il t  was 

2 0 0 |im and the receiving s lit  300jim.

Samples were sealed in quartz capillary cells. Room temperature 

measurements were carried out at 25°C. Elevated temperatures were 

attained by electrically heating the sample holder using an Anton Paar K-HR 

temperature control unit w ith a operating range of 25-300°C -  1.5°C.
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Samples were allowed to equilibrate for 20 minutes at each temperature 

before data collection was started.

Copper Kc* irradiation (X  = 1.5418A), supplied by a copper target tube 

equipped w ith beryllium windows operating at 50 KV and 40 mA and 

powered by a Phillips PW 1730 generator, was used to irradiate samples. 

Cooling of the X-ray tube was achieved w ith a constant flow of cold water. 

A monochromatic X-ray beam was obtained by means of a focusing quartz 

crystal monochromator.

The scattered radiation was detected by a proportional counter whose 

output was fed into a scaling circu it via a pulse height discriminator. The 

scattering curve (i.e. scattering intensity versus scattering angle) was 

scanned step-wise w ith a sequential mode of data collection. The collected 

data was smoothed, de-smeared and fitte d  using computer methods to yield 

the Bragg spacings and peak intensities, which were then used to verify 

proposed structures and to calculate la ttice parameters, as previously 

outlined.



CHAPTER 6 PHASE BEHAVIOUR OF THE CYCLIC AMPHIPHILIC 

SILOXANES

6.1 Introduction

The amphiphilic cyclic siloxanes consisted of a cyclic methylsiloxane 

oligomer (tetramer and pentamer), to which an eleven-carbon alkyl chain 

was attached at each of the silicon atoms of the siloxane ring. The terminal 

carbon atom of each alkyl chain constituted part of a carboxyl moiety. The 

sodium, and in the case of the tetramer, the calcium salts of these 

carboxylated cyclic siloxanes were prepared. The structures of these 

molecules are shown below:

c h 3
I

— ( S i - 0 ) x —

(C H 2 ) 10 w here x =  4  and Y= N a o r l / 2 Ca
| or x=  5 ,  Y= Na
CO2Y

Figure 6.1 Cyclic amphiphilic siloxanes

Although there are examples in the patent literature regarding the use of 

cyclic amphiphilic siloxanes as surfactants295, no systematic investigation 

of their phase behaviour has been reported. Hence, having synthesised a 

number of novel molecules, the main priority  was to gain an overview of 

their lyotropic and thermotropic behaviour and thus, to investigate the 

effects of incorporating anionic amphiphiles onto an oligomeric cyclic 

siloxane backbone. This overview was obtained w ith a combination of 

techniques, as described in chapter 5. The thermotropic behaviour of neat 

materials was investigated using polarising optical microscopy, DSC and
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X-ray diffraction. The lyotropic behaviour of amphiphile/solvent systems 

was studied using polarising optical microscopy in combination w ith the 

penetration technique of Lawrence219.

As we have seen in chapter 2, the lyotropic phase behaviour of linear 

amphiphilic side-chain polymers is very much dependent on the chemical 

nature and the structure of both the amphiphile itse lf, and the repeat unit of 

the polymer backbone. The differences in the lyotropic phase behaviour of 

these amphiphilic polymers and the equivalent monomeric amphiphiles, has 

been explained in terms of68"72*215:

- the relative ab ility  of the polymer to pack into a particular micelle 

geometry (i.e. changes in the packing constraints and the possible 

restriction of the packing of side-chains due to the nature of the 

backbone itse lf)

- the subsequent stab ility  of these micelles (i.e. the kinetics of the 

formation/breakdown of micelles formed by multi-molecular units)

- changes in the hydrophilic and lipophilic balance of the amphiphile 

repeat unit due to polymerisation.

The cyclic side-chain amphiphiles studied here, being oligomeric, may 

represent a 'halfway house' between monomeric amphiphiles and the linear 

amphiphilic side-chain polymers. The study of these molecules may 

therefore result in some additional understanding of the effects on 

lyotropic phase behaviour of:

- polymer fixation of monomeric amphiphiles

- variation in the DP of such side-chain amphiphiles

- the micelle kinetics of multi-molecular units.
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Previous studies of the lyotropic phase behaviour of amphiphilic side-chain 

polymers have indicated that the fle x ib ility  of a linear siloxane backbone is 

such that the influence on the translational or rotational motions of 

side-chains attached to it, is not sufficient to alter the shape of the 

micelle structures that are characteristic of the parent monomeric 

amphiphile66*67. As such, the attachment of amphiphiles to every unit of a 

linear siloxane backbone is thought to have an effect s im ilar to a 

lengthening of the hydrophobic chain of the parent amphiphile by around 3-4 

methylene units66*67. As the oligomeric cyclic siloxanes are more rig id than 

their linear counterparts296, i t  was of interest to see if  the same would be 

true for the lyotropic behaviour of the cyclic amphiphilic side-chain 

oligomers.

As the literature concentrates on the lyotropic behaviour of amphiphilic 

polymers, it  was the intention of this study to also gain an overview of the 

thermotropic behaviour of the cyclic amphiphilic side-chain oligomers. As 

no previous investigations of the thermotropic behaviour of sim ilar 

molecules have been carried out, the rationalisation of the observed 

behaviour of these cyclic systems was not straight-forward. In attempting 

to understand and to explain their behaviour, comparisons were sought w ith 

the behaviour of conventional monomeric soaps16*142*144*151*166’170*171*177* 

1 8 5 ,2 9 7 -3 0 3 . considering the structures of these cyclic siloxanes (see figure 

6.1), this was thought to be a valid in itia l comparison, particularly so, in 

view of the study of the lyotropic phase behaviour of linear amphiphilic 

side-chain siloxanes referred to above66*67. Also, i t  was of interest to see 

what effect the higher rig id ity  of cyclic siloxane oligomers296 would have 

on the thermotropic phase behaviour of the cyclic amphiphilic siloxanes.
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In summary, the intention was to gain an overview of the thermotropic and 

lyotropic phase behaviour of these novel cyclic amphiphilic side-chain 

oligomers, and contrast this behaviour w ith that of monomeric amphiphiles 

and, where appropriate, the linear side-chain amphiphilic polymers.

6.2 Thermotropic Phase Behaviour

6.2.1 The Sodium Salts

6.2.1.1 Results

6.2.1.1.1 Polarising Optical Microscopy

The microscopy of previously unmelted powdered samples of the sodium 

salts of the cyclic tetramer and pentamer (figure 6.1; Y= Na, x=4 and 5; 

hereafter referred to as NaD4 and NaD5, respectively), was characterised by 

two main optical events in the temperature range 0-450°C. These events 

were:

-  the formation of a birefringent fluid phase at 248°C for NaD4 and 

242°C for NaD5

- the transition of this fluid phase to the low viscosity isotropic 

liquid at approximately 430°C.

The mesophase formed by both NaD4 and NaD5 exhibited a bright

non-geometric texture and a viscosity, which were indicative of a hexagonal 

mesophase (see figure 6.2)16.

At about 280°C, there was a slight 'darkening' of the edge of the samples, 

which was believed to indicate the onset of thermal degradation of the 

material in contact w ith the atmosphere and, by the transition to the low 

viscosity isotropic liquid at approximately 430°C, considerable degradation 

had occurred.
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Figure 6.2 Optical texture of the fluid birefringent phase of NaD4 at 274°C.
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Thin sample film s of NaD4 and NaD5 were then prepared by placing powdered 

samples between a cover-slip and a microscope slide at 270°C, depressing 

the cover-slip and then, in order to minimise thermal degradation, rapidly 

cooling to room temperature. Microscopy of these film s indicated a 

birefringent solid phase at room temperature. This phase exhibited a 

texture sim ilar to that of the mesophase from which it  had been prepared 

(see figure 6.2). As the temperature was increased, the depression of the 

cover-slip indicated a very slight softening of the samples at 145°C and 

142.5°C for NaD4 and NaD5, respectively. This softening was not

accompanied by an obvious change in optical texture. As the temperature 

was gradually increased, a significant reduction in viscosity occurred at 

250°C for NaD4 and 245°C for NaD5, w ith the formation of the birefringent

fluid phase described above. Again, this phase was stable up to 

temperatures that were concomitant w ith a degree of thermal degradation.

6.2.1.1.2 Differential Scanning Calorimetry (DSC)

Thermograms were in itia lly  recorded on heating previously unmelted 

samples of NaD4 and NaDg between -1 70°C and 450°C. These thermograms

were characterised by three f irs t  order endothermal transitions (hereafter 

denoted T 1, T2 and T3 in order of increasing temperature). There was also a 

large exothermal transition occurring at about 420°C, which was thought to 

correspond to the onset of severe thermal degradation of the sample. No 

peak was observed corresponding to the optical observation of the 

transition to the isotropic liquid at approximately 430°C. Figure 6.3 shows 

typical thermograms for previously unmelted samples of NaD4 and NaD5 

(dried over P205 at 100°C for 24 hours) and table 6.1 summarises the 

results of these analysis.
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TRANSITION TRANSITION TEMPERATURE (° C )  AND ENTHALPY (K J .m o T 1)
NaD4 NaD5

°C KJ.m ol- 1 °C K J .m o r 1

T1 6 2 2 0 4 4 19
T2 1 47 7 1 4 4

.
1 0

T3 2 5 8 2 6 245 2 2

Table 6.1 The transition temperatures and corresponding enthalpy changes, 
observed during the in itia l heating of samples of NaD4 and NaD5 
from -170 to 450°C, at a heating rate of 10°C.min“ 1.

a h

-i

T—rt—r t— i— rT T

° c

Figure 6.3 Thermograms for previously unmelted samples of a) NaD4 and b) 
NaD5 which have been dried over P205 at 100 °C for 24 hours, and 
heated from -170 to 450°C at a rate of lO^.m in.-1
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In order to assess the effects of heating and cooling, repeated analysis of 

previously unmelted samples of NaD4 and NaĈ  were then carried out 

between -50 and 320°C, at a heating rate of 10°C.min_1; 320°C was chosen 

as the upper temperature lim it in an attempt to lim it the degree of thermal 

degradation occurring w ith repeated heating. As previously outlined, the 

in itia l thermogram of both NaD4 and NaD5 was characterised by three

endothermal transitions over this temperature range. The thermograms 

obtained during the subsequent reheating of these samples over the same 

range and the identical heating rate, were characterised by only one 

endothermic transition (see figure 6.4). The temperature of this transition 

gradually increased to a maximum after several heating cycles. As the 

temperature and enthalpy of this transition corresponded closely to that of 

the T3 transitions previously outlined, and as optical microscopy had 

demonstrated the reversib ility of the solid to mesophase transition, this 

transition was therefore assigned the reference T3'; thus, reflecting the 

possible connection w ith the T3 transition obtained on in itia l heating. 

Table 6.2 records the transition temperatures and corresponding enthalpy 

changes, observed during the repeated heating of NaD4 and NaD5.
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Figure 6.4 Thermograms obtained on the reheating of samples of a) NaD4 and
b) NaD5 from -50 to 320°C at a rate of 10^.m in .-1
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TRANSITION TEMPERATURE (°C ) AND ENTHALPY CHANGE (KJ.MOLE- !)

RUN Ne

1 2 3 4 j 5 6

T1 

12 

T3 or T3'

62 (2 0 )

147(7)

25 8 (2 6 )

' i IIUIIU UU3UI V̂ U . r

. L . .... .!.......... ! 1 .

2 5 9 (2 8 )

i 11

2 6 2 (2 5 )

NIC UUOCI YCU  ̂ --  }

2 6 2 (2 2 ) j 2 6 2 (2 5 ) | 2 6 3 (2 4 )
I —  i —

a) NaD4

TRANSITION RUN NQ

1 2 3 4 5

T 1 

T2  

T3 or T3’

50 (1 4 )

145(9)

2 4 2 (2 1 )

4--------------------- none observed----- - - - - - - - -

1 1 d 4--------------------- none observed-------------

2 5 1 (2 6 ) | 2 5 2 (2 4 ) 1 2 5 2 (2 0 )
I 1

---------- *

2 5 2 (1 9 )

b) NaD5

Table 6.2 The transition temperatures and the corresponding enthalpy 
changes (In parentheses) occurring during repeated thermal 
analysis from -50 to 320°C for samples of a) NaD4 and b) NaD5.

Following these analyses, the sample vials were reweighed. A reduction in 

the mass of the samples of 2-3% had occurred over the course of the heating 

cycles. These samples were then retained in atmospheric conditions, for 

subsequent re-evaluation. A fter two months storage, the thermograms 

recorded on the reheating of these samples between 30 and 300°C, again 

exhibited only one exothermic transition. The temperature and enthalpy of 

this transition corresponded closely to that of the final T3’ transitions 

outlined above. Figure 6.5 shows the thermograms obtained for NaD4 and

NaD5, w hilst table 6.3 summarises the results of these analyses.
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TRANSITION TRANSITION TEMPERATURE (°C )/E N TH A LPY  (K J .m o l" 1) 
N a D 4  N a D 5

T3* 2 6 2 ( 2 2 )  2 5 2 ( 2 0 .5 )

Table 6.5 The transition temperatures and enthalpy changes (in 
parentheses) observed during the reheating of NaD4 and NaDs 
from 30 to 300°C, at a heating rate of loocm ln-1. These samples 
had been stored for two months following the in itia l heating 
outlined in table 6.2.

NaD

\

e
oot/i NaD,

Figure 6.5 Thermograms obtained on heating NaD4 and NaD5 from 30 to 300°C 
at a rate of lOC.min.-1, after storing the sample for two months 
subsequent to the in itia l heating analysis.

142



Thermograms were subsequently recorded on cooling fresh samples of NaD4 

and NaD5 from 320 to 0°C at a rate of 2°C.min"1 (see figure 6.6). In both

cases, the thermograms were characterised by one f irs t  order exothermal 

transition. Although the temperature of this transition was not determined 

instrumental^, visual inspection of the thermograms indicated that the 

transition temperature was sim ilar to that of the T3 transition occurring in 

both NaD4 and NaD5 during the in itia l heating analysis. The transition 

occurring during the cooling cycle has therefore been assigned the reference 

T3C; thus, reflecting the possible connection w ith the T3 transition 

observed during the in itia l heating.

2«CEJ<EL. 111

<xo
J X
ZUJ

E
tii I/I

Figure 6.6 Thermogram obtained on the cooling a sample of NaD4 from 300
to 0°C at a rate of 20C.min._1
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These cooling runs were followed by an immediate reheating from 0 to 

320°C (see figure 6.7). These thermograms exhibited one endothermic 

transition. Again, visual inspection of the thermograms indicated that the 

transition temperature corresponded closely to that of the final T3‘ 

transition outlined above.

i
j2<E01

J X
iL  wI h *10
ill Xzu

00
Li
X□hX
X
III T—I—r t—rr -1 t—i—rT TT

Figure 6.7 Thermogram obtained on reheating a sample of NaD4 from 0 to 
320°C at a rate of lO ^ .m ln r1, Immediately following a 
controlled cooling cycle (rate of cooling 2°C.min.-i)
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6.2.1.1.3 Thermo-Gravimetric Analysis (TG)

A thermogram was recorded on the heating of a previously unmelted sample 

of NaD4 between 35°C and 420°C. This thermogram exhibited no significant 

weight loss up to about 280°C, at which point there was a gradual and 

increasing loss in weight, up to the termination of the evaluation at 420°C. 

This loss in weight was believed to reflect the thermal degradation of the 

sample. Figure 6.8 shows a thermogram obtained for a sample of NaD4 which

had been dried over P205 at 100°C for 24 hours.

X  I
(0 z

(J

111K3
«<rin
a.
E
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Figure 6.8 TG thermogram obtained on heating a sample of NaD4 from 35 to
420°C at a heating rate of 10 oc.min-1.



6.2.1.1.4 X-Rav Diffraction

Diffraction patterns were obtained for a sample of NaD4 in the low-angle

region at various temperatures. Figure 6.9 shows the diffraction patterns 

obtained and table 6.4 summarises the spacings observed.

SIGNAL SPACING (A) OF PEAKS OBSERVED AT VARIOUS TEMPERATURE

50°C 200°C 300°C

do 30.0 28 .8 2 8 .2

d1 14.4 14.4 24 .7
d2 none none 17.3

d3 none none 14.1

Table 6.4 The spacings observed in the X-ray diffraction pattern for NaD4 at 
50, 200 and 300°C.
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Figure 6,9 X-ray patterns for NaD4 at a) 50°C, b) 200°C and c) 300°C.
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At 50 and 200°C, the peaks observed were very broad w ith only the principle 

and the second order reflections identifiable (see table 6.4). The positions 

of these two reflections were, w ithin experimental error, in the ratio of 

1: 1 / 2 .

At 300°C, the peaks observed were less broad and it  was possible to 

distinguish four reflections at 28.2, 24.7, 17.3 and 14.1 A. The indexing of 

these reflections was not straight-forward and w ill be discussed in further 

detail later.

6.2.1.2 Discussion

Optical microscopy of film s of NaD4 and NaD5 indicated that these materials

existed as ordered solids at room temperature. The non-geometric texture 

of these birefringent film s was indicative of a hexagonal phase16. At 

aproximately 145°C a very slight—almost imperceptible-softening of this 

crystalline solid was observed. This softening was not accompanied by a 

change in optical texture. On further heating, a birefringent flu id  phase 

formed at about 250°C. The non-geometric texture and the viscosity of this 

phase were indicative of a hexagonal phase (see figure 6.2). This phase was 

stable up to the transition to the isotropic liquid at about 430°C. It was not 

possible to be precise about the temperature of this transition due to the 

thermal degradation also occurring.

The transitions observed during the DSC analysis of previously unmelted 

samples of NaD4 and NaD5 were in general agreement w ith the observations

from the optical study. Of the three endothermic transitions in the range 

-170 to 450°C, the temperature of the T2 and T3 transitions corresponded 

to the observations under the microscope of the in itia l softening of the
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crystalline solid, and the transition to the birefringent fluid phase, 

respectively; the T2 transition occurring at 147°C for NaD4 and 144>C for 

NaD5, corresponded to the in itia l softening of the respective crystalline 

solids at 145 and 142°C, and the T3 transition occurring at 258°C for NaD4 

and 245°C for NaD5, corresponded to the transition to the flu id birefringent 

phase at 250 and 245°C for NaD4 and NaD5, respectively. There were,

however, some apparent discrepancies between the observations resulting 

from these two techniques. The T1 transition occurring at about 60°C 

during the in itia l DSC analysis, had no corresponding transition when viewed 

under the microscope. This presumably indicated that this transition was 

not associated w ith a significant change in the overall structural 

arrangement within the sample. In addition, the optical observation of the 

transition from the mesophase to the isotropic liquid, had no corresponding 

identifiable thermal transition during DSC analysis. This presumably 

indicated that only a small enthalpy change was involved in this transition. 

The magnitude of this enthalpy change may, in turn, indicate that the order 

inherent to the crystalline solid has been essentially lost, prior to the 

formation of the isotropic liquid. This would be consistent w ith the 

birefringent fluid phase being a fused mesophase151. The nature of all these 

transitions w ill be discussed in greater detail later.

The absence of an identifiable thermal event in the range -170°C up to T1, 

indicates that no thermal induced transitions are taking place in this range. 

However, i t  should be remembered that w hilst the the presence of a peak in 

the DSC curve denotes a transition, the converse is not necessarily true.
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As the transition from the mesophase to the isotropic liquid occurred at a 

temperature at which considerable thermal degradation of the samples had 

taken place, all subsequent DSC investigations of the effects of repeatedly 

heating and cooling were carried out on samples that had not been heated to 

greater than 320°C (i.e. the samples were not heated above the mesophase to 

isotropic liquid transition). It is worth noting that the f ir s t  evidence of 

degradation of the samples during the DSC occurred w ith the exothermic 

peak at about 420°C, w hilst microscopy and TG indicated the onset of 

degradation to be approximately 280°C (i.e. the observations of a slight 

browning of the sample and a loss in weight of the sample, respectively). 

These differences in the apparent onset of thermal degradation, presumably 

arose as a result of the relative sensitiv ity of the techniques themselves to 

the degradation occurring, and not as a result of any differences in the 

thermal stab ility  of the individual samples used.

Whilst the thermograms obtained on the in itia l heating of NaD4 and NaD5

from -170 to 320°C were characterised by three endothermic transitions 

(i.e. T l, T2 and T3)? the reheating of these samples over the same 

temperature range, either w ithin minutes of the in itia l heating analysis, or 

after two months storage, gave only one endothermal transition (T3‘). The 

cooling of samples from 300 to 0°C at a rate of 2°C.min"1, gave one 

exothermal transition (T3C). As the temperature of the T3, T3' and T3C

transitions were similar, and optical microscopy had demonstrated the 

reversib ility of the solid to mesophase transition, i t  seems reasonable to 

suggest that all these thermal events correspond to the same 

solid/mesophase transition, a s  no instrumental analysis of the transition 

temperature of T3C was carried out, i t  is not possible to judge if  any 

supercooling of mesophase to solid transition occurred.
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The absence of the T1 and T2 transitions from all thermograms, other than 

those recorded on the in itia l heating of the samples, may indicate that:

- these transitions were due to one or more impurities that were 

volatilised from, or dissolved in, the matrix during heating to 320°C, 

and/or

- the structural aspect(s) responsible for Tl and/or T2 on in itia l 

heating, had not reformed on cooling.

Considering the spectroscopic characterisation and the TG analysis of NaD4 

and NaD5 (see chapter 4 and section 6.2.1.1.3), the suggestion of impurities

as an explanation for the absence of the Tl and T2 transitions during 

repeated heating analysis seems unlikely. It is, therefore, proposed that the 

structural aspect(s) responsible for these transitions during the in itia l 

heating, had not reformed on cooling. This may be explained by:

- an annealing of the samples during heating, and thus the formation 

of an alternative equilibrium structure on cooling, or

- the formation of a non-equilibrium structure as a result of a 

quenching of the samples during the 'rapid' cooling that followed the 

heating analysis (i.e. the structural features responsible for these 

transitions were not allowed to reform during cooling).

This la tte r effect has been reported in other amphiphiles, in which some 

structural aspects of a high temperature phase have been retained at lower 

temperatures due to super-cooling153*304*305.

Having used thermal analysis and optical microscopy of NaD4 and NaD5 to

establish the temperature 'boundaries' of individual phases and to supply 

some in itia l indication of the structures present w ith in these boundaries, 

X-ray diffraction data for a sample of NaD4 was used as corroborative 

evidence, and to calculate some structural parameters149. As the s im ilar
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behaviour of NaD4 and NaD5 had been demonstrated, and both molecules being 

adjacent members of a homologous series of compounds, the general 

conclusions derived from x-ray analysis of NaD4, w ill be applied to NaD5 

during the following discussions.

At 50 and 200°C, the low-angle X-ray diffraction pattern of NaD4 exhibited

two broad peaks, corresponding to the principle and the second order 

reflections respectively (see table 6.4). At both temperatures, the 

positions of these reflections were, w ith in experimental error, in the ratio 

of 1:1/2. A number of structures have been proposed for birefringent phases 

whose principle and second order reflections are in this ratio24*149. These 

include the crystalline and mesomorphic lamellar and the tetragonal phases 

(i.e. the C and K phases, presumed to be two dimensional tetragonal 

arrangements of normal and reversed rod micelles, respectively). Whilst 

the lamellar phases have been encountered in many single and 

multi-component systems and are generally accepted phase structures, the 

tetragonal phases have been observed only in lyotropic systems and over 

very narrow composition ranges267*306*307, and remain to be established. It 

has also been pointed out that the structure of the tetragonal phase would 

imply the presence of a X-ray reflection corresponding to the diagonal of the 

square lattice, but this has not been observed308*309. In addition, recent 

studies of the compositions where these phases were thought to exist, have 

reinterpreted the observed behaviour in terms of well established phase 

structures16*310*314. The existence of the tetragonal phase therefore 

remains to be established and, in the absence of the X-ray reflection 

corresponding to the diagonal of the square lattice, w ill not be invoked here. 

Consequently, the X-ray pattern indicates that NaD4 exists as a lamellar 

phase structure at both 50 and 200°C. However, when the number of peaks
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in the X-ray pattern is so small, it  is not possible to unequivocally propose 

a structure on the basis of this data alone149, and guidance is required from 

other techniques. Although the X-ray pattern indicated a lamellar structure, 

the optical texture exhibited by solid film s of NaD4 was more characteristic

of a hexagonal phase, the X-ray diffraction pattern of which exhibits 

principle and second order reflections in the ratio of 1:1/V 3 24’149. Thus, at 

this stage, the data from X-ray diffraction of powdered samples and optical 

microscopy of solid film s were at odds.

In view of this, the experimental method employed in the optical study was 

re-examined. To lim it the effects of thermal degradation, the solid sample 

film s were prepared by rapidly cooling a film  of the high flu id phase from 

270°C to room temperature. This 'quenching' of the samples could have 

frozen the structure and texture of the flu id phase into the solid sample 

films, i.e. the formation of a non-equilibrium structure. This structure 

would have been reflected in the subsequent observations under the 

microscope at all temperatures below the transition to the flu id  phase, but 

not in the X-ray diffraction patterns obtained from a previously unmelted 

powdered sample. A sim ilar 'quenching' of the cyclic amphiphiles during 

DSC analysis has already been proposed as a possible explanation for the 

absence of the Tl and T2 transitions from all thermograms other than those 

obtained on in itia l heating153'304'305.

Having tentatively proposed a lamellar structure on the basis of d iffraction 

patterns, the interfacial area per amphiphile polar group in such a structure, 

may be derived149 For NaD4 at 50 and 200°C, the area per polar group that

would result for a lamellar phase was calculated to be 28.4 and 34.1 A2, 

respectively. It should be pointed out that as no density values specific to
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NaD4 exist, the densities of the different polar and non-polar moieties were

estimated at each temperature using data from several sources301*315’316 

(see section 5.4). Nevertheless, these derived values should be 

representative, providing the proposed structure is valid.

As the area per polar group is a measure of the lateral packing density of 

the head groups, it  is reasonable to expect that the value of this parameter 

w ill be sim ilar at equivalent temperatures for all straight chain sodium 

soaps of equivalent phase structures. Thus, the comparison of the area per 

polar group of monomeric sodium soaps (see table 6.5) and the calculated 

value for NaD4, is of particular interest.

PHASE PRESENT PARAMETER VARIATION IN SURFACE AREA PER POLR GROUP (S) WITH 

TEMPERATURE (t )  AND CHAIN LENGHT (Cn) FOR A NUMBER OF 

STRIAGTH CHAIN SODIUM SOAPS

c 12 C 14 c 16 c 18

Waxy t ( ° C ) 142 142 140 133
S (A2) 24 23 23 25

Superwaxy t ( ° C ) 183 182 176 175
s (A2) * * 24 #

Subneat t ( ° C ) 215 210 211 21 0
S (A2) * 24 24 22

Neat t ( ° C ) 252 248 2 5 4 2 5 6
(lam ellar) t 1 (°C ) 290 271 278 28 5

S (A2) 36 38 40 42

W here  t  = the tra n s itio n .te m p e ra tu re  fo r the form ation of the phase in  question (w ith  the  
exception of the lam e lla r mesophase, the la ttice  dimensions w ith in  each phase a re  
essentia lly  independent of tem p e ra tu re )
t }  = the tem peratu re  fo r w hich the dimensions of the lam e lla r mesophase a re  given.
*  =  no values given

Table 6.5 The variation of area per polar group for convention straight 
sodim soaps w ith temperature (values taken from reference 24).
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As table 6.5 shows, although the straight chain sodium soaps exist as a 

number of different polymorphs w ith increasing temperature, the surface 

area per polar group for this homologous series of soaps (C12- C18), is 

relatively constant at about 23-25A2, in all the crystalline and 

semi-crystal 1 tne phases (i.e. all those phases in which the head groups are 

not fu lly  fused). Only in the high temperature lamellar mesophase is this 

not the case, and the surface area becomes temperature dependent.

The value derived for NaD4 at 50°C is, therefore, in reasonable agreement 

w ith that of the monomeric soaps at this temperature. Whilst this supports 

the proposal of the lamellar structure for NaD4 at this temperature, the 

slight increase in the area per polar group indicates that there exists either:

-  a less dense packing of the head groups in NaD4 than is present in

the monomeric straight chain sodium soaps of this structure, or

-  some interdigitation of the soap molecules w ithin the bilayers.

As the derived area per polar group is only slightly larger than that of the 

monomeric soaps this would seem to favour a less dense packing of the 

molecules within the bilayers, rather than an interdigitated arrangement.

The derived value of 34.1 A2 at 200°CJ is significantly larger than that of the 

monomeric soaps at the equivalent temperature. This indicates a 

significantly less dense packing of the head groups of NaD4 compared to the

monomeric soaps. In view of the macroscopic properties of NaD4 at this

temperature (i.e. semi-crystalline solid) the significant increase in the area 

per polar group at this higher temperature is suprising; by analogy w ith  the 

behaviour of monomeric soaps, the surface area per polar group would be 

expected to be relatively constant in all phases in which the head groups are
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not fu lly  fused. Indeed, the sim ilar packing density of the polar groups 

w ithin this ‘solid1 phase of NaD4 and w ithin the high temperature lamellar

mesophase of monomeric soaps seems unlikely, and as such, requires further 

investigation.

Having proposed a lamellar structure, it  was of interest to compare the 

bilayer thickness of such a structure w ith the molecular dimensions of 

NaD4. in considering the structure of NaD4, it  should be remembered that the

oligomeric cyclic siloxane backbones are much more rigid than their linear 

counterparts, and are essentially planar in geometry296. It therefore seems 

reasonable to consider the structure of NaD4 as four Cn carboxylates,

emanating from a central planar siloxane 'disc1. If all head groups have to 

reside at the non-polar/polar interfaces of the bilayer and there are no 

voids present, then the maximum bilayer thickness w ill be dictated by the 

maximum distance between two polar groups24*149. The maximum distance 

between the centres of two polar groups w ill be tw ice the length of an ‘all 

trans1 amphiphile chain; one chain representing one Cn sodium carboxylate

plus one methylsiloxane unit (see figure 6.10). Assuming that the Si-C bond 

approximates to the length of the C-C bond and that the sodium carboxylate 

head group is about 5A in length, then twice the length of an ‘all trans’ chain 

approximates to 40 .5A  317.

0
CH3-Si-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-C02Na

non-polar group polar
group

Figure 6.10 Schematic representation of the amphiphilic repeat unit of NaD4.
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The actual bilayer thickness, given by d0, was 30A at 50°C and 28.8A at

200°C. Hence, the bilayer thickness was less than the length of two 'all 

trans' amphiphile units. By analogy w ith other amphiphiles, this can be 

explained by a tilt in g  of the chains within the bilayers.

The absence of a DSC transition from T2 (~145°C) up to T3 (~250°C), would

indicate that the lamellar structure proposed at 200°C, remains essentially 

unaltered up to the transition to the birefringent flu id phase. Above this 

transition, but below the transition to the isotropic liquid, the optical 

texture of NaD4 and NaD5 was indicative of a hexagonal phase (f^). As has

been seen, the transition corresponding to the formation of the low 

viscosity isotropic liquid could not be resolved from the exothermal 

transition arising from the thermal degradation of the sample. This 

indicated that a relatively small enthalpy change was involved in the 

transition to the isotropic liquid. Hence, any remnants of crystalline order 

inherent to the birefringent fluid phase prior to this final melting 

transition, must have been relatively low. This in turn indicated that the 

birefringent fluid phase was of the fused type (mesophase)151.

The X-ray diffraction pattern of a H2 mesophase would be expected to 

exhibit peaks in the ratio of 1:1/V3:1/V4:1/V724»H9. However, the X-ray 

pattern obtained for NaD4 at 300°C, contained four peaks at 28.2, 24.7, 17.3

and 14.1 A, which cannot be reconciled w ith a conventional hexagonal 

structure. It is, however, possible to index all four reflections to a body 

centred cubic structure, which exhibits low-angle reflections in the ratio 

1 //3 : \ N 4: 1 //8 : \ N  11316. Taking the value of as equal to 28.2A, and 

applying the above relationship, the second, third and fourth reflections
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would be 24 .42 , 17.26 and 14.72A, respectively. Although these values are 

in approximate agreement w ith  the values obtained experimentally, the body 

centred cubic phase would be expected to be optically isotropic318, which 

was not the case.

An important parameter in judging the plausibility of a structure proposed 

on the basis of X-ray diffraction data, is the area per amphiphile polar group 

that would result in such a structure. The area per polar group that would 

result from the proposal of a H2 structure was calculated to be 17.7A2 (see 

section 5.4). The facts that the lateral packing densities of the apparently 

fused polar groups of NaD4 and the monomeric soaps are so different at

equivalent temperatures (see table 6.5), and that the area per polar group of 

the lower temperature forms of NaD4 are substantially larger than I7 .7 A 2

(i.e. 28.4 and 34.1 A2, at 50 and 200°C, respectively), indicates the 

implausibility of the H2 structure. Indeed, a change from the lamellar

mesophase formed by monomeric sodium soaps to the H2 mesophase

proposed for NaD4, would -necessitate a negative change in the surface

curvature of the polar/non-polar interface of the micelles that constitute 

these mesophases. Whilst a methylsiloxane group is a relatively bulky unit 

(~ 74 A 3 at 25°C), the attachment of one of these units to the ends of each of

the hydrophobic chains-i.e. ten carbon atoms removed from the polar 

group-would not be expected to result in a such a significant change in the 

packing of the individual amphiphiles or the surface curvature of the 

polar/non-polar interface. As NaD4 and NaD5 are multi-amphiphile

molecules, it  is possible that the formation of isotropic spherical micelles 

may be destabilised due to the fin ite  aggregation number of such 

structures67. However, this effect could not explain the fact that NaD4 and
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NaD5 do not form the lamellar mesophase which is so typical of convention 

straight chain sodium soaps, because the growth of bilayers is unrestricted 

in two dimensions.

Hence, the identification of an optical texture typical of a H2 phase may

have been misleading. Whilst this texture probably signifies some sort of 

intermediate phase, it  is not possible on the basis of the evidence available 

here, to propose a structure for the mesophase formed by NaD4 and NaD5.

However, the optical study and the X-ray diffraction pattern of NaD4 have 

demonstrated that, unlike the monomeric straight chain sodium soaps, NaD4 

does not form a lamellar mesophase immediately preceding the formation of 

the low viscosity isotropic liquid. No explanation for this behaviour can be 

offered at this stage.

Having obtained an overview of the thermotropic behaviour of NaD4 and NaD5,

we can attempt to explain this behaviour in terms of the established 

principle of the step-wise melting of mesomorphic materials, and contrast 

this behaviour w ith that of the monomeric sodium soaps (see chapter 2). At 

room temperature, X-ray diffraction indicated that NaD4 and NaD5 exist as 

lamellar crystalline phases sim ilar to that of the monomeric sodium soaps 

at the equivalent temperature, but w ith a slightly less compact packing of 

the individual amphiphiles24. X-ray diffraction at 200°C, in combination 

with DSC data, indicated that although this overall structure remained 

essentially unchanged from room temperature up to the transition to the 

mesophase at about 250°C, there was a further reduction in the packing 

densitiy of these amphiphiles at the higher temperature.
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Between room temperature and the transition to the mesophase, two 

transitions (Tl and T2) occurred during the in itia l DSC heating of NaD4 and 

NaDc The f irs t of these transitions (Tl )  was a broad endothermic transitionj

(-20KJ.mole"1) occurring at about 60°C. In view of the relatively low

temperature at which this transition takes place, and by comparison with 

the melting behaviour of fa tty  acids and other soaps, it  seems reasonable to 

attribute this primarily to a change occurring in the weakly interacting 

non-polar regions of these amphiphiles24’142’151. In this context, i t  should 

be remembered that the non-polar regions of NaD4 and NaD5 are made up of

C10 alkyl chains attached to each of the repeat units of the tetrameric and 

pentamenc cyclosiloxane backbones. As the non-substituted cyclic 

dimethylsiloxane tetramer and pentamer (i.e. D4 and D5) melt at 17 and

-40°C, respectively319, and the Tl transition for both NaD4 and NaD5 occurs 

at around 60°C, it  is proposed that the C'10 alkyl chains dominate the melting 

behaviour of the non-polar regions of the amphiphilic repeat units of NaD4 

and NaD5, By analogy w ith the behaviour of the monomeric sodium

soaps24’142*151, Tl could therefore be:

- an intercrystalline transition, i.e .sim ilar to the curd-curd transition 

occurring in some long-chain sodium soaps at 80-90°C, or

- the in itia tion of the step-wise melting of the non-polar chains of the 

crystalline phase, i.e. sim ilar to the curd-subwaxy transition occurring 

in long-chain sodium soaps at 100-130°C.

The intercrystalline transition of monomeric soaps is thought to consist of 

a change in the angle of t i l t  of the hydrocarbon chain axis, while the packing 

of the polar groups remains essentially unaffected. The enthalpy change 

involved in this type of transition varies typically from 1 to 5
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KJ.mole"1(142;299). The curd-subwaxy transition is attributed to a change in 

the binding of the hydrocarbon chains as a result of the in itia tion of the 

step-wise melting of these chains. The enthalpy change involved in this 

transition is generally greater than the intercrystalline transition, and is in 

the region of 12-13 KJ.mole-1(142’299). Whilst the enthalpy of the Tl 

transition is about 20KJ.mole"1, it  should be remembered that NaD4 and NaD5

are mu1ti-amphiphile‘ molecules. Hence, when comparing the enthalpy 

changes occurring in NaD4 and NaD5 w ith those of monomeric sodium soaps, 

comparisons should be made on the basis of the changes associated w ith 

individual amphiphilic units. Ideally, comparisons of a H/T are required, 

however, as the temperature of the transitions being compared are similar, 

comparisons of a H w ill be a reasonable approximation.

Dividing the enthalpy changes of NaD4 and NaD5 pro rata per amphiphilic unit

of these molecules, the enthalpy change involved in the T l transition 

becomes equal to 4-5 KJ.mole"1 of amphiphilic repeat unit. Whilst the 

magnitude of this enthalpy change and the transition temperature 

approximate to that of the intercrystal line transition of monomeric soaps, 

this is not sufficient evidence to classify T l as some type of 

intercrystalline transition.

The higher temperature transition (T2, typically 7-9 KJ.mole"1) occurred at 

about 145°C. Again, if  this enthalpy change is divided pro rata per 

amphiphilic unit of NaD4 and NaD5, this then becomes just less than 2

KJ.mole-1 of amphiphile. Around this temperature the samples did undergo a 

very slight softening, reflecting at least a partial melting of the 

crystalline structure. By analogy w ith the behaviour of the monomeric
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sodium soaps, this transition could thus be a stage in the142-299:

- step-wise melting of the non-polar chains, and/or

- step-wise melting of the polar groups.

As the X-ray diffraction patterns were identical at temperatures above and 

below T2 (i.e. at 50 and 200°C), the overall phase structure remains 

unaffected by this transition. Remembering that the monomeric sodium 

soaps undergo transitions ascribed to the melting of the alkyl chains at 

temperatures sim ilar to T2,142*299, it  seems reasonable to propose that the 

T2 transition is primarily associated w ith the non-polar regions. However, 

the reduced packing density of the molecules also indicates that the polar 

groups themselves have undergone some structural changes. As has been 

seen, the packing of the polar groups within monomeric sodium soaps is 

independent of temperature in all the crystalline and semi-crystalline 

phases and hence, this is something of a suprising observation.

The lim ited experimental evidence available here indicates that, as is the 

case w ith the monomeric straight chain sodium soaps, NaD4 and NaD5 exist

as a lamellar crystalline phase at room temperature, and in itia lly  melt via 

the step-wise melting of the hydrophobic chains. Unlike the monomeric 

soaps this melting of the hydrophobic chains of NaD4 and NaD5 results in a 

less compact packing of the polar groups. In addition, X-ray data indicates 

that the melting of the hydrophobic chains of NaD4 and NaD5 does not result 

in the formation of the ribbon phases which are characteristic of monomeric 

sodium soaps at temperatures between the lamellar crystalline and the 

formation of the lamellar m e s o p h a s e 2 4 *142 (see figure 6.11).



Figure 6.11 Schematic representation of the ribbon phase of anhydrous 
monomeric sodium soaps at elevated temperatures (see ref.24).

The presence of these semi-crystalline ribbon phases in monomeric sodium 

soaps has been explained by the melting and disordering of the alkyl chains, 

whilst the polar head groups retain their crystalline arrangement24. In 

these soaps, the alkyl chains are attached to the head groups, which are 

effectively anchored in closely packed and fixed positions in the polar 

regions. On the other hand, the alkyl chains themselves, which are partia lly 

or wholly fused, are only anchored in a fixed position via the carbon atom 

covalently bonded to the polar group. Thus, the m obility of the alkyl chain is 

very small near the polar group, but increases towards the methyl end group
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and w ith increasing temperature. At some temperature, the mobility and 

subsequent disorder in the alkyl chains of the monomeric soaps, is such that 

the average orientation of the fused chains is fan-wise, and at some 

distance from the polar groups, the chains are suffic iently disordered to 

overtake the edge of the ordered polar region. This process results in the 

formation of the ribbon type phases.

As NaD4 and NaD5 a1so undergo a step-wise melting of the non-polar chains,

the absence of the ribbon phases during the melting of NaD4 and NaD5 is

presumably explained by some mechanism that precludes this fan-wise 

orientation of their fused or partly fused hydrophobic chains. As the 

attachment of the non-polar chains to the cyclic siloxane backbone in NaD4

and NaD5 must result in a restriction of the degree of freedom of these 

chains at the opposite end from the polar group, this may preclude the 

fan-wise orientation of the non-polar groups. In addition, the significant 

increase in the surface area per polar group of NaD4 at 200°C, would tend to 

counteract the tendency of the alkyl chains to adopt a fan-wise orientation. 

Whether this increase in the area per polar group of NaD4 at 200°C, arises as

a consequence of, or in addition to, the restricted freedom of the alkyl 

chains at the opposite end from the polar group of each amphiphilic unit, is 

a mute question which cannot be answered here. It is, however, worth 

noting that the absence of the ribbon phases, as explained above, does not 

seem compatible w ith the absence of a lamellar structure for the high 

temperature mesophase of NaD4 and NaD5. Whatever the stucture of this 

mesophase, excluding the lamellar phase and any phase w ith a positive 

surface curvature of the non-polar/polar interface, the mesophase structure 

would presumably result from a negative surface curvature of the
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polar/non-polar interface; presumably requiring an average fan-wise 

orientation of the non-polar chains. Why this fan-wise orientation should 

be permitted above the melting point of polar groups (i.e. in the mesophase) 

but not below (i.e. in the semi-crystalline phase) is not obvious.

At about 250°C, both NaD4 and NaD5 undergo a transition to a mesophase 

(T3). Owing to the high temperature at which this transition occurs, it  

seems reasonable to attribute this transition primarily to a melting of the 

polar groups. As we have seen, the absence of an identifiable DSC signal 

corresponding to the subsequent transition to the isotropic liquid, indicated 

that only a small enthalpy change was involved in the melting of this 

mesophase. The magnitude of this enthalpy change, indicates that most of 

the 'bonds' present in the original crystal structure have been broken down 

prior to this final melting and, reflects a step-wise melting sim ilar to that 

encountered in monomeric sodium soaps142*151 >299.

Having proposed that the T3 transition is associated w ith the melting of the 

polar groups, it  is expected that this transition would be susceptible to the 

presence of water. The observation that the temperature of the transition 

to the mesophase gradually increased to a maximum after several DSC 

analyses (see table 6.2) may reflect this, and may indicate that in itia lly  the 

samples were not truly anhydrous. With non-anhydrous samples, repeated 

heating would tend to drive off any water associated w ith the polar groups 

and lead to successively increasing transition temperatures (i.e. T3 to T3‘). 

Due to the relatively high temperature at which T3 occurred, there is also a 

possibility of thermal degradation. The 3% reduction in the mass of samples 

and the increase in the transition temperature of T3 w ith repeated heating, 

may have been due to either of these effects.
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An interesting result of this work, is the observation that the total heat of 

fusion for each amphiphile unit of NaD4 and NaD5 (13.3 and 10.3 kJ.mol"1, 

respectively) is substantially less than that of the monomeric straight 

chain sodium soaps of approximately equivalent hydrophobic chain length 

(typically 30 to 40 kJ.mor1 for sodium laurate and myristate, 

respectively)151. Remembering that the majority of the heat of fusion for 

monomeric sodium soaps is associated w ith the melting of the alkyl 

chains151, and comparing the structures of NaD4 and NaD5 w ith those of the

monomeric sodium soaps, it  may be reasonable to assume that the major 

differences in the melting behaviour of these oligomers and the related 

monomers would be associated w ith the non-polar regions of the respective 

molecules. Indeed, the total enthalpy changes ascribed to the melting of the 

non-polar chains of NaD4 and NaD5 (i.e. 6 to 7 KJ.mol-1 per amphiphile repeat 

unit; T1 plus T2) is much less than the corresponding transitions of the 

monomeric sodium soaps of equivalent hydrophobic chain length (typically 

20 to 35 kJ.mol-1 for sodium laurate and myristate, respectively)151. On the 

other hand, the total enthalpy changes ascribed to the melting of the polar 

groups of NaD4 and NaD5 (i.e. T3; 4 to 6 KJ.mol-1 per amphiphile repeat unit) 

is typical of the equivalent transition in monomeric soaps (I.e. 

approximately 6 KJ.mol-1)151. Hence, the attachment of amphiphlles to the 

siloxane rings in NaD4 and NaD5 may have disrupted the packing of the

hydrocarbon chains of these amphiphiles, in particular, restricting their 

close contact. A sim ilar effect has been reported for sodium oleate, in 

which the presence of a cis double bond in the nine position is thought to 

disrupt the efficient packing of the non-polar chains151. Thus, the total 

heat of fusion for sodium oleate is reported to be 35.5 kJ.mol-1, as opposed 

to the 58 kJ.mol-1 of the corresponding saturated soap, sodium stearate.
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Although i t  seems unlikely, the relatively low enthalpy of melting of the 

non-polar chains of NaD4 and NaD5 may, in part, be attributed to a more 

organised character of the melted soaps. However, if  the attachment to the 

siloxane backbone does disrupt the packing of the hydrocarbons chains of 

NaD4 and NaD5, a sim ilarly low heat of fusion would be expected to occur in 

the fa tty  acids of these cyclic amphiphiles. To check this, DSC was carried 

out on the fa tty  acid of NaD4 (hereafter referred to as D4C00H; see figure 

6. 12).

AII
- I  

3 <to r
Li. Itf X

uo
UJ
IXX H<z

Figure 6.12 Thermogram of D4C02H obtained on heating from -160 to 120°C 
at a rate of lO^.m in-1.
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The enthalpy of fusion for this non-mesomorphic material was 38 KJ.mol"1 

(i.e. 9.5 kJ.mol'1 of repeat unit). This is sim ilar to the total heat of fusion 

of the repeat unit of NaD4, but when compared w ith the heat of fusion of the 

straight chain fatty acids (approximately 30 kJ.mol'1 for lauric acid) i t  is 

unusually low297. Therefore, attaching hydrocarbon chains to a siloxane ring 

does appear to have a significant effect on the packing of these chains and 

thus, the total enthalpy of fusion of NaD4 and NaD5.

This proposal apparently conflicts w ith the conclusions drawn from earlier 

studies of the lyotropic behaviour of linear amphiphilic side-chain 

siloxanes, in which the attachment to a linear siloxane backbone is said to 

have had lit t le  effect on the rotational or translation motion of amphiphilic 

side-chains66*67. In attempting to understand these apparently conflicting 

observations two factors should be considered. Firstly, NaD4 and NaD5

consist of a cyclic siloxane backbone, and cyclic dimethylsiloxane oligomers 

are relatively rigid compared w ith their oligomeric and polymeric linear 

counterparts296. Therefore, the attachment of amphiphiles to these rigid 

backbones may have an adverse effect on the free motions of these 

side-chains72. Secondly, the lyotropic mesophases studied previously66*67, 

are made up of fused non-polar chains, as opposed to the room temperature 

crystalline structures of NaD4 and NaD5 being studied here. Thus, the

reduced ability of the non-polar chains of NaD4 and NaD5 to pack closely in 

the crystalline form may not necessarily be reflected in the previous 

studies of the lyotropic behaviour of the fused amphiphiles (the discussion 

of the lyotropic phase behaviour of NaD4 follows in section 6.3.1.2).
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On the basis of the results obtained during this study, attaching hydrocarbon 

chains to a rigid siloxane ring does have a significant effect on the packing 

of the hydrophobic chains attached to it. The fact that the enthalpies of 

melting of the polar groups of NaD4 and NaD5 are sim ilar to those of 

monomeric sodium soaps, indicates that the polar groups are less affected 

by the attachment to the siloxane. This may be understood by considering 

the alkyl chain which links the polar group to the siloxane ring as acting as 

a type of spacer group, and decoupling the motions and the steric effects of 

these moieties. It is also envisaged that this disruptive effect of the 

attachment to the siloxane rings w ill vary along the length of the alkyl 

chain. Hence, the packing of the methylene units closest to the polar group 

may be sim ilar to that encountered in monomeric sodium soaps, but the 

closer to the siloxane ring, the less effic ient the packing of these 

methylene units would be. It may also follow that i t  is primarily the 

melting of the methylene units closest to the head group that is gives rise 

to T 1 and T2.

Having noted that the cyclic oligomers are relatively rigid compared w ith 

their linear oligomeric and polymeric equivalents, i t  is interesting to note 

that cyclic chains also d iffe r from the corresponding linear systems in that 

their chain backbone atoms are arranged into covalently bonded rings, 

without any chain ends. This imposes restricted freedom of movement 

about the silicon-oxygen bonds, compared w ith the corresponding linear 

backbones, and the shorter the chain length, the greater this restriction 

becomes. Thus, unlike their linear equivalents, cyclic side-chain structures 

such as NaD4 and NaD5> also contain a number of geometric isomers which

cannot interchange (see figure 6.13). These isomers may have affected the 

X-ray patterns observed and may have contributed to the broad X-ray lines
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of NaD4. The presence of these isomers-each isomer having a distinct 

melting point-may also be expected to result in the depression of the 

melting point of the mixture, relative to the individual isomers, and the 

occurrence of relatively broad thermal transitions. Whilst both NaD4 and 

NaD5 certainly did give rise to broad thermal transitions, It is not possible 

to judge if  the presence of the geometric isomers is the root cause of this 

effect or, at this stage, to fu lly  understand the effects of the presence of 

these isomers.

Figure 6.13 A schematic diagram of the geometric isomers of a) NaD4 and b)
NaD5; where the square and the pentagon represent the cyclic 
siloxane tetramer and pentamer backbones respectively. The 
corners of each geometric form represent silicon, the centre of 
each side represent oxygen, R represents the side-chain 
amphiphile and each unspecified equitorial bond represents a 
methyl group.

F

R

a) NaD4

b) NaD5
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In general, the samples of NaD4 and NaD5 exhibited very sim ilar thermal 

behaviour, despite their different degree of polymerisation. There was, 

however, a trend for NaD5 to undergo thermal transitions at slightly lower

temperatures than NaD4, and for these transitions to occur over a broader

temperature range. These observations may be explained by the different 

amounts of higher members of this homologous series of amphiphilic 

side-chain siloxanes (i.e. NaDn) that would have been present in NaD4 and

NaD5 as a result of the polydispersed nature of the siloxane precursors used

in their preparation. These siloxane precursors were used as obtained from 

Petrach, and contained I and 5 wt% of the higher cyclic homologues, 

respectively322. The preparation and characterisation of mono-dispersed 

samples of each member of the homologous series-possibly using 

preparative Gas Chromatography323 or spinning band d istilla tion, as outlined 

in chapter 2-may have been of assistance in assessing the possible effects 

of these 'impurities'

A significant result of this work, is the increased thermal s tab ility  of the 

mesophase region of NaD4 and NaD5, relative to that of the monomeric 

sodium soaps of equivalent chain length142-151'299. The transition to the low 

viscosity isotropic liquid of NaD4 and NaD5 occurred at approximately 430°C.

This is at least 100°C greater than that of sodium laurate and sodium 

myristate (i.e. 320 and 316°C, respectively)300. As the chemical nature of 

NaD4 and NaD5 are not dissimilar to that of the monomeric sodium soaps, 

specific Inter-molecular forces of attraction cannot explain the enhanced 

thermal s tab ility  of the mesophase region of NaD4 and NaD5. Hence, it  is

tentatively proposed that this increased thermal s tab ility  of the mesophase 

region of these multi-amphiphile molecules, may arise as a result of the
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oligomeric nature of the molecules themselves. This may be qualitatively 

understood by considering that the amphiphilic side-chain repeat units of 

these oligomers cannot escape from the micelle as individual units due to 

their covalent bonding to the other amphiphiles of the oligomers (i.e. there 

are 4/5 'bonds' per molecule to hold the amphiphile structure together). 

Hence, the micelles and the mesophases which are built up of these 

micelles, are stabilised. This explanation has been proposed for the 

enhanced thermal s tab ility  of the aqueous lyotropic mesophases of linear 

amphiphilic side-chain siloxanes67*69’70, although the major effect in these 

systems is now believed to be the increased length of the hydrophobic chain 

of the amphiphilic repeat units, due to the attachment to the siloxane 

backbone66*67. An additional consequence of the multi-amphiphile nature 

of NaD4 and NaD5, is that all the polar groups of each oligomer may not be 

isolated to the same polar/non-polar interface. These molecules may, 

therefore, act as 'molecular cross-links' between micelles, maintaining 

the mutual orientation of the micelles and thus, also enhancing the stab ility  

of the mesophase region.

6.2.1.3 Conclusions

The thermotropic behaviour of NaD4 and NaD5 has much in common w ith that

of monomeric sodium soaps, although there are also significant differences 

that require further and more in-depth research in order to fu lly  elucidate 

these differences and to assist in our understanding of these systems, and 

the factors that govern the resulting thermotropic behaviour. Nevertheless, 

the following general conclusions may be drawn:

1 .The well established principles explaining the behaviour of 

monomeric amphiphiles seem to be generally applicable to the phase 

behaviour of these novel cyclic amphiphilic oligomers.
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2. As these principles dictate, the non-polar and polar moieties of 

these amphiphiles tend to aggregate in the neat state. The driving 

force for this aggregation w ill be the enthalpic contribution from the 

association of the polar groups.

3. Due to the molecular structure of these amphiphiles (i.e. packing 

constraints), the phase structure at ambient is that of a bilayer.

4. The absence of an identifiable thermal event from -170°C up to 

room temperature, probably indicates that no thermal induced 

transitions are taking place in this range. Thus, the bilayer phase 

remains at the lower temperatures.

5. At room temperature, the non-polar chains and the polar groups 

appear to be crystalline, although the attachment of the Cn 

carboxylates to the rigid cyclic siloxane backbone seems to lim it the 

degree of crystalin ity w ithin the C10 alkyl chains of these molecules, 

and the packing of the amphiphiles.

6. At around 60 and 145°C, it  seems likely that the non-polar chains 

of these cyclic amphiphiles undergo a two stage melting process that 

results in a less compact packing of the amphiphiles w ith in the 

bilayers (i.e. T1 and T2, respectively). This process may be analogous 

to the in itia l stages in the step-wise melting of monomeric 

straight-chain sodium soaps.

7. Unlike the monomeric straight-chain sodium soaps of equivalent 

chain length, the melting of the non-polar chains (i.e. the formation 

of a semi-crystalline phase) does not result in the formation of 

ribbon type structures. This may be due to a restriction of the alkyl 

chain freedom, as a result of the attachment to the comparatively 

rigid siloxane ring. The structure of the intermediate phase region 

therefore requires further investigation.
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8. At around 250°C, the polar groups of these amphiphiles melt. This 

is also analogous to the step-wise melting of monomeric amphiphiles. 

This melting of the head groups has a significant effect on the 

behaviour of this series of amphiphiles, giving rise to a mesophase.

9. The structure of the mesophase formed by these molecules is 

atypical of the straight chain sodium soaps, and requires further 

investigation.

10. The attachment of the Cn sodium carboxylates to the cyclic 

siloxane ring increases the thermal stab ility  of the mesophase 

regions of these oligomeric amphiphiles by at least 100°C, relative to 

the equivalent monomeric soaps. The presence of a number of 'bonds' 

per multi-amphiphile molecule holding the micelle structures 

together may explain this effect. In addition, the formation of 

'molecular cross-links' between micelles may become important.

6.2.2 The Calcium Salt

6.2.2.1 Results

6.2.2.1.1 Polarising Optical Microscopy

The microscopy of previously unmelted powdered samples of the calcium 

salt of the cyclic tetramer (Figure 6.1; X=4 and Y= i /2 Ca, hereafter referred 

to as CaD4) was characterised by three main optical events in the

temperature range 0-550°C. These events were:

-the formation of a birefringent flu id phase at 156°C

-  the gradual loss of the birefringency of this viscous liquid from 

275-295°C

- the formation of a low viscosity isotropic liquid phase at 490°C.

The non-geometric texture and the viscosity of the mesophase were 

possibly indicative of a hexagonal type structure (see figure 6.14)16. At
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about 280°C; there was evidence of the onset of thermal degradation of the 

sample, and by the transition to the isotropic low viscosity liquid at about 

490°C, considerable degradation had occurred.

Figure 6.14 Optical texture of the fluid birefringent phase of CaD4 at 200°C.
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A film  of CaD4 was then prepared by placing a powdered sample between a 

cover-slip and a microscope slide at 200°C, depressing the cover-slip and 

then, rapidly cooling to room temperature. Microscopy of this film  indicated 

a birefringent solid phase at room temperature. This phase exhibited a 

texture sim ilar to that of the mesophase from which it  had been prepared. 

As the temperature was gradually increased, a significant reduction in 

viscosity occurred at 154°C, w ith the formation of the bright birefringent 

fluid phase described previously. Again, this mesophase was stable up to 

temperatures that were concomitant w ith a significant degree of thermal 

degradation of the sample.

6.2.2.1.2 Differential Scanning Calorimetry (DSC)

The thermogram recorded on heating a previously unmelted sample of CaD4

between -170 and 550°C was characterised by two f irs t  order endothermic 

transitions (hereafter referred to as T1 and T2 in order of increasing 

temperature). Figure 6.15 shows a typical thermogram for a sample which 

had been dried under vacuum over P205 at 100°C for 24 hours, w h ils t table 

6.6 summarises the results of this analysis.

TRANSITION TRANSITION TEMPERATURE (° C ) ENTHALPY (K J .m o l-1)

T1 1 59 17
T2 4 7 8 4 2

Table 6.6 The transition temperatures and enthalpy changes observed during 
the in itia l heating of CaD4 (-170 to 550°C; 1 OoC.min-1).
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Figure 6.15 The thermogram of a previously unmelted sample of CaD4 which 
had been heated from -170 to 550°C at a rate of 1 ooc.mln-1.

in order to assess the effects of heating and cooling the samples, repeated 

thermal analysis of a fresh sample of CaD4 was carried out between -50 and

320°C; 320°C was arb itrarily  chosen as the maximum temperature in an 

attempt to lim it the thermal degradation occurring w ith repeated heating. 

Whilst the in itia l thermogram was characterised by one endothermic 

transition in this temperature range, no transition was identified during the 

reheating (see figure 6.16).
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Figure 6.16 Thermogram obtained on the reheating of a sample of CaD4 
from -50 to 320°C at a rate of lOoC.min.-1

A thermogram was then recorded for a fresh sample of CaD4 from 220 to 

20°C at a cooling rate of 2°C.min'1. No transitions were identified during 

this analysis (see figure 6.17A), or the subsequent reheating of the sample 

between 20 and 220°C at a rate of 10^.m in"1 (see figure 6.17B).
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Figure 6.17 Thermogram obtained for a sample of CaD4 on a) cooling from 
200 to 20°C at a rate of 2°C.min.-1 and b) on the immediate 
reheating from 20 to 220°C at a rate of 10°C.min."1-
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6.2.2.1.3 Thermo-Gravimetric Analysis (TG)

A thermogram was recorded on heating a previously unmelted sample of 

CaD4 between 35 and 550°C. This thermogram exhibited no significant 

weight loss up to about 250°C, at which point there was a gradual and 

increasing loss in weight up to the termination of the evaluation at 550°C. 

This loss in weight was believed to correspond to the onset of thermal 

degradation of the sample. Figure 6.18 shows the thermogram obtained for a 

sample of CaD4 which had been dried over P205 at 100°C for 24 hour.
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Figure 6.18 Thermogram of CaD4 obtained on heating from 35 to 550°C at a 
rate of lOoC.min-1.
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6.2.2.1.4 X-Ray Diffraction

Diffraction patterns were obtained for a sample of CaD4 In both the low- 

and wide-angle regions. Figure 6.19 shows the diffraction patterns obtained 

in the low-angle region, while table 6.7 shows the corresponding spacings 

observed at 25 and 200°C.

SIGNAL VARIATION OF SPACINGS (A) OF PEAKS OBSERVED
WITH TEMPERATURES

25°C 200°C

do 30 .8 2 7 .7

d1 15.4 13.8

Table 6.7 Spacings observed in the X-ray diffraction pattern for NaD4 at 25 
and 200°C.

15 O 17 . 5  2 0 . 0  2 2 . 5  2 5 . 0  1 7 .0
C A M E  Ef t  H T ( M M )

b)

11.5 15.0 17.5 20.0 22.5 25.0 27.0
CAME.?A H T I N M )

Figure 6.19 X-rav diffraction pattern obtained for CaD4 in the low angle 
region at a) 25°C and b) 200°C.
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At 25 and 200°C the main peaks observed were very broad. In each case, the 

major peaks were in the ratio of 1:1/2, and there was some evidence of a 

very weak broad peak around d0/ /3 .  No peaks of any real Intensity were 

observed in the wide-angle region at either temperature. An attempt to 

record an X-ray diffraction pattern at 300°C was abandoned, as considerable 

thermal degradation of the sample had obviously occurred.

6.2.2.2 Discusion

Optical microscopy of film s of CaD4 indicated that this material exists as

an ordered solid at room temperature. The non-geometrlc texture of this 

birefringent solid was indicative of a hexagonal phase16. At about 154°C, a 

birefringent fluid phase formed. The non-geometric texture and the 

viscosity of this fluid phase were also indicative of a hexagonal phase. The 

birefringency of this phase gradually diminished over a broad temperature 

range from 275 to 295°C. The loss of birefringent was not accompanied by a 

significant change in viscosity. This optically Isotropic viscous flu id phase 

was stable up to the transition to the low viscosity Isotropic liquid at about 

480°C. It was not possible to be precise about the temperature of this 

transition because of the severe thermal degradation of the sample.

The transitions observed during the DSC heating of previously unmelted 

samples of CaD4 were in general agreement w ith these observations. The

temperature of the two main endothermic transitions occurring in the range 

-170 to 550°C (i.e. T1 and T2 at 159 and 480°C, respectively), corresponded 

to the observations under the microscope of the transition to the flu id 

birefringent phase and the formation of the low viscosity isotropic liquid, 

respectively. No transition was identified for the loss of birefringence of 

the viscous fluid phase.
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There is some evidence of a small endothermic transition occurring over a 

broad temperature range at around 50°C. A transition occurring at a sim ilar 

temperature was observed in NaD4 and NaD5 and was believed to be an 

intercrystalline transition or the in itia tion of the step-wise melting of the 

non-polar chains of the crystalline phase (see section 6.2.1.2). However, the 

intensity of the DSC signal occurring in CaD4 is such that no firm  

conclusions may be drawn w ith respect to this 'transition1.

As the transition to the isotropic liquid occurred at a temperature at which 

considerable thermal degradation of the samples had also occurred, all 

subsequent DSC investigations of the effects of repeatedly heating and 

cooling CaD4 were carried out on samples that had not been heated to 

greater than 320°C. The thermograms obtained on the reheating of CaD4 

from -50 to 320°C, gave no transitions.

During controlled cooling of samples from 200 to 20°C (20C.min_1), there 

was some evidence of two small, broad enthalpy transitions occurring at 

around 155 and 55°C. As the higher temperature transition corresponds to 

the T 1 transition occurring during in itia l heating, it  may be that the thermal 

events occurring around 155°C corresponded to this same transition. This 

being the case, no significant supercooling of the so lid /flu id  phase 

transition occurred. The weak signal occurring at around 55°C on cooling, 

may Indicate that a transition does indeed occur at a sim ilar temperature 

during the in itia l heating of CaD4. If this were the case, the absence of any 

evidence of this transition during the reheating of a sample-remembering 

that these samples were in itia lly  heated and then cooled rapidly-may be 

explained by a quenching of the sample during the rapid cooling that
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followed the in itia l heating analysis (see section 6.2.1.2). However, the 

low intensity of these signals do not allow for an unambiguous 

interpretation of these 'transitions'.

Having used thermal analysis and optical microscopy of CaD4 to establish

the temperature 'boundaries' of individual phase regions, and to supply some 

in itia l indication of the structures present w ithin these boundaries, X-ray 

diffraction data was used as corroborative evidence for these observations. 

At 50 and 200 °C, the low-angle patterns of CaD4 exhibited two strong broad

peaks (see table 6.7 and figure 6.19). At both temperatures, the positions of 

these reflections were, w ithin experimental error, in the ratio of 1:1/2. No 

peaks of any real intensity were observed in the wide-angle region at either 

temperature.

A number of phase structures have been proposed, whose principle and 

second order reflections in the low-angle region are in the ratio of 1:1/2. 

These include the crystalline and mesomorphic lamellar and the tetragonal 

phases (i.e. C and K). However, as discussed in section 6.2.1.2, only the 

generally accepted lamellar phase structure w ill be invoked here.

In attempting to rationalise the behaviour of CaD4, the optical 

studies-which indicated a hexagonal phase below the transition to the 

viscous isotropic phase at 275 to 295°Ocannot be reconciled w ith the 

X-ray diffraction patterns at 25 and 200°C, which did not exhibit the strong 

d0/7 3  reflection that is generally characteristic of the hexagonal 

phase24*149. In attempting to proposing a structure for the crystalline phase 

of CaD4 (i.e. at temperatures less than 155°C) on the basis of this
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conflicting data, i t  is worth remembering the experience w ith the 

equivalent sodium salt (see 6.2.1.2). This work indicated that the optical 

study of solid film s may have been misleading because of the method 

employed in the preparation of the film s themselves (i.e. the rapid quenching 

of the sample from the higher temperature flu id phase, freezes the 

structure of this high temperature phase into the solid film ). A sim ilar 

quenching of molecular orientation during rapid cooling has been noted in a 

number of studies153’304*305. In fact, during an early X-ray study of calcium 

stearate153, in the absence of a cell for obtaining d iffraction patterns at 

elevated temperatures, this effect was used to advantage, w ith  samples 

which had been quenched from various higher temperatures being examined 

at room temperature, in the hope that the molecules would be frozen into 

the relative orientations characteristic of each of the higher temperature 

forms. This, and the fact that the crystalline lamellar is the phase 

structure encountered in monomeric straight chain soaps of the alkali and 

alkaline earth metals, may indicate that the optical texture of the solid 

film  of CaD4 at 25°C was not characteristic of an equilibrium structure.

Hence, the X-ray diffraction pattern obtained from a unmelted sample at 

25°C, may be more representative of the equilibrium crystalline structure 

of CaD4 On this basis, the experimental evidence indicates that a lamellar 

phase sim ilar to that encountered in monomeric calcium soaps24*149*166, and 

NaD4 and NaD5 (see 6.2.1.2), may also be characteristic of the crystalline 

form of CaD4

Having proposed the lamellar structure at 25°C, the area per polar group 

that would result in this structure can be calculated149. The comparison of 

the area per polar group of monomeric calcium soaps of the lamellar 

structure (see table 6.8) w ith this derived value Is obviously of Interest.
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PARAMETERS PHASE PRESENT

A B C D E F

t ( ° C )  
S (A2)

<100 
*  *

1 0 0 -1 1 0
2 0 .1 -2 0 .3

1 1 0 -1 2 7
2 6 .3 -2 9 .4

13 3 -1 65
3 1 .4 -3 3 .5

1 6 6 -1 8 0
34 .7

2 4 0 *
43 .8

W here A and B represent m odifications of the c ry s ta llin e  la m e lla r phase 
t  = tem peratu re  s ta b ilty  range of the phase 
*  = the tem peratu re  fo r w hich the dimensions of the phase a re  given  
* *  = no values given, but is expected to be ju s t less than the value of the phase B , 
which entails  s lig h tly  less compact packing of the head groups

Table 6.8 The variation of area per polar group of calcium myristate (C14) 
w ith temperature and phase structure (values from ref. 166).

The surface area per polar group for the homologous series of straight chain 

calcium soaps (C12-C18) is relatively independent of chain length166. Hence,

the values for calcium myristate (C14Ca) given in table 6.8, are

representative of this series of soaps. For CaD4 at 25°C, the surface area

per head group that would result in a lamellar structure was calculated to 

be 28.4A2 (see chapter 5). This is significantly larger than the area per 

head group of calcium myristate at the equivalent temperature, which 

would indicate that either:

-  a less dense packing of the head groups in exists CaD4 than is present

in the monomeric straight chain calcium soaps of this structure, or

- there is some interdigitation of the soap molecules w ith in the 

bi layers.

A comparison of the bi layer thickness resulting from the proposed lamellar 

structure at 25°C (I.e. d0 = 30 .8A ), with the molecular dimensions of CaD4

(i.e two 'all trans' amphiphile repeat units, each of 20 .2 5A  in length; see 

section 6.2.1.2) would indicate an inclination of non-interdigitated 

hydrophobic chains to the basal planes of the lamellae, of 49.5°. This degree
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of t ilt in g  is considerably less than the 73° found in calcium myristate (this 

value was calculated from data presented by Spegt and Skoulios166).

The structural parameters derived from the proposed lamellar structure for 

CaD4 at 25°C cannot be used to differentiate between the non-interdigitated 

or interdigitated bilayer structures and, do not preclude the possibility of 

either of these lamellar modifications. However, these parameters do 

indicate a packing of the molecules that is significantly different to that 

found in the crystalline lamellar structure of monomeric straight chain 

calcium soaps. As this tentative proposal of the lamellar phase is based on 

a diffraction pattern containing only two diffraction signals, further work 

is obviously required to verify this proposition and to fu lly  characterise the 

crystalline structure of CaD4.

The proposal that, the optical texture of the solid film  was not indicative of 

the equilibrium structure of CaD4 at 25°C, due to the previous quenching of 

the sample, cannot explain the different structures indicated by the optical 

and X-ray studies of the birefringent flu id  phase of CaD4 (i.e. the samples

were not cooled prior to carrying out the experimental observations at 

200°C). Whilst a convincing explanation for these discrepancies eludes us, 

and it  is not possible to propose a structure for the birefringent flu id  phase 

of CaD4, the following points should be noted. Firstly, aggregates of rod 

micelles have been proposed as the structures of the intermediate phases 

formed by monomeric straight chain calcium soaps170. Hence, although the 

structures proposed for the monomeric calcium soaps are not regarded as 

definite, the possible occurrence of a hexagonal phase for CaD4 (as is 

indicated by microscopy) would be in keeping w ith the generally accepted
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behaviour of these soaps (i.e. based on rod micelles). Secondly, the proposal 

of a lamellar structure for CaD4 at 200°C, would give rise to an area per

polar group of 37.2A2, which is very sim ilar to that found in monomeric 

straight chain soaps at equivalent temperatures (see table 6.8). Although 

the phase structures involved may not be identical, this indicates sim ilar 

packing densities in these related amphiphiles at sim ilar temperatures and 

may therefore support the proposal of the lamellar phase.

In addition, the positions of the principle and second order reflection of the 

X-ray patterns of CaD4 and NaD4 in the range 25 to 200°C, are almost

identical (see tables 6.4 and 6.7). Considering the obvious molecular 

s im ilarities between these sodium and calcium salts, this would seem to be 

strong evidence of a s im ilarity of phase structure. Unfortunately, this can 

be interpreted in one of two ways, f irs tly , as supporting the proposition 

that the lamellar phase as the structure present in both classes of 

oligomeric amphiphilic siloxanes at temperatures at least up to 200°C, or, 

secondly, putting in doubt the previous proposal of the lamellar structure 

for the semi-crystalline phase of NaD4.

Although additional work is obviously required to characterise the 

structures of the individual phase regions of CaD4, some comparisons

between the phase behaviour of CaD4 and the monomeric straight chain

calcium soaps, may be made. Whilst the behaviour of the monomeric 

calcium soaps varies w ith the length of the hydrocarbon chain, the overall 

behaviour of this homologous series of amphiphiles is very 

sim ilar24'153’166*170*304. With increasing temperature, the structure of 

these anhydrous soaps changes from the lamellar crystalline state at 120°C,
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through a number of intermediate phases of various degrees of order, to a 

reverse hexagonal flu id phase at 180°C, and to the isotropic liquid at 

greater than 350°C. This step-wise melting from the crystalline state to 

the isotropic liquid, occurs via the melting of the hydrocarbon chains, 

followed by the melting of the polar groups. The structure of the 

intermediate phases, although known to involve disordered alkyl chains, has 

not been fu lly  resolved. The structure of the high temperature reverse 

hexagonal phase is established.

At room temperature, X-ray diffraction indicates that CaD4 exists as a 

crystalline lamellar phase, which is also the crystalline structure of the 

monomeric straight chain calcium soaps and NaD4. However, the X-ray 

spacings also indicate that there exists:

- a less dense packing, w ith a greater angle of t i l t ,  of the 

non-interdigitated amphiphiles of CaD4, than is found in monomeric 

calcium soaps, or,

-  an interdigitated arrangement of the molecules themselves w ithin 

the bi layer.

X-ray diffraction indicates that the lamellar structure remains essentially 

unchanged at 200°C, although the optical observations, which were 

indicative of a hexagonal flu id phase at temperatures greater than 155°C, do 

not support this.

DSC indicates a weak transition occurring at around 50°C, during the in itia l 

heating and subsequent controlled cooling of samples. Whilst the enthalpy 

of this 'transition' is such that no firm  conclusions may be drawn, i t  is 

interesting to note that sim ilar transitions have been identified for calcium
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stearate at 50°C155, and NaD4 and NaD5 at 60°C (see 6.2.1.2). X-ray 

diffraction indicates that, as is the case in the monomeric calcium soaps166 

and NaD4, this 'transition* does not result in a significant change in the

overall crystalline lamellar structure of CaD4.

The monomeric calcium soaps undergo a number of additional transitions 

between 50°C and the formation of the reverse hexagonal phase at about 

180°C. Of these, the transition occurring at about 110°C, is believed to 

result from a change in the packing of the soap molecules w ith in the 

lamellar phase166. A transition at about 120°C, is thought to represent the 

melting of the hydrocarbon chains and the formation of a body centred 

tetragonal lattice made up of reverse rod micelles of fin ite  length170. At 

about 160°C, a further modification to the phase structure results in the 

formation of the birefringent flu id phase. The nature of this phase region 

has yet to be fu lly  established170. At about 180°C, the reverse hexagonal 

phase is the accepted structure of all the straight long-chain calcium 

soaps24’149’166-170.

In the case of CaD4, only one transition has been observed in the range 50 to 

480°C during DSC analysis. This transition (i.e T1 at 159°C) corresponds to 

the formation of the flu id phase of CaD4 and, occurs at a temperature 

sim ilar to the formation of the flu id phase of the monomeric calcium soaps. 

This may indicate that for CaD4, T1 embodies all the changes occurring in

the multiple steps of the monomeric calcium soaps up to the formation of 

the birefringent fluid phase. However, in the absence of established 

structures for the phases of CaD4 above or below T l, no firm  conclusions 

may be drawn.
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Whatever the nature of T 1, in view of the relatively high temperature at 

which this transition takes place and the flu id ity  of the resulting phase, it  

seems reasonable to attribute this to a complete melting of the weakly 

interacting non-polar regions of these amphiphiles and some partial melting 

of the polar groups. In comparison w ith the monomeric calcium soaps, i t  is 

reasonable to propose that the polar groups w ill retain some aspects of an 

ordered arrangement up to the transition to the low viscosity isotropic 

liquid at around 480°C.

It is interesting to note, that the wide-angle X-ray diffraction patterns at 

50 and 200°C did not exhibit spacings corresponding to either a crystalline 

or liquid-like arrangements of the C10 alkyl moieties of the hydrophobic

chains of CaD4. Hence, no direct evidence regarding the nature of the

non-polar chains is available. This may be very important, indicating that 

the structure is rather irregular.

If T 1 does represent the complete melting of the non-polar chains and some 

partial melting of the polar groups, the enthalpy change of T1 

(i.e.l6KJ.mole_1) must be equal to or greater than the maximum enthalpy of 

fusion of the non-polar chains of CaD4. Remembering that CaD4 is a 

'multi-amphiphile' molecule, the enthalpy changes occurring per amphiphile 

repeat unit is equal to 4 KJ.mole-1. This is much less than the enthalpy 

change associated w ith the melting of fa tty  acids of equivalent chain 

length. As was the case w ith NaD4 and NaDg, this may reflect the reduced 

packing efficiency of the non-polar chains as a result of their attachment to 

the siloxane backbone (see 6.2.1.2). This reduced packing efficiency may 

also be reflected in the increased area per polar group in the proposed
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lamellar crystalline phase of CaD4, relative to that of the monomeric 

calcium soaps of this structure. This behaviour is also analogous to that of 

NaD4.

The enthalpy change and the temperature of the transition to the low 

viscosity isotropic liquid could not be measured accurately because of the 

width of the DSC peak and the degree of thermal degradation also occurring. 

However, the magnitude of the enthalpy change occurring during this 

endothermal transition (i.e. approximately 10 KJmor1 of amphiphile repeat 

unit) would indicate that considerable structural order remains in the 

viscous isotropic phase of CaD4. Due to the high temperature at which this

transition occurred it  is reasonable to assume that this reflects the order 

inherent in the polar groups. The fact that considerable order remains 

within the polar groups of CaD4 prior to the formation of the isotropic

liquid, is analogous to the behaviour of the monomeric straight chain 

calcium soaps160.

What is not analogous to the behaviour of the monomeric calcium soaps, is 

the formation of a viscous isotropic phase preceding the transition to the 

low viscosity isotropic liquid. Whilst a number of structures have been 

proposed for the isotropic phases encountered in anhydrous

amphiphiles24*149, as an attempt to obtain d iffraction data at 300°C was 

abandoned due to the degradation of the sample, i t  is not possible to propose 

a phase structure for the Isotropic viscous phase observed here. Indeed, the 

possibility that this degradation was not implicated in the transition can 

not be ruled out. In addition, no DSC transition was observed corresponding 

to the transition from the birefringent flu id phase to this viscous isotropic 

phase. A small enthalpy change, coupled w ith the broad temperature range

191



over which this transition occurred could explain the absence of a DSC 

signal corresponding to this optical event. However, in the absence of a 

sound understanding of the structures of the birefringent and isotropic 

viscous fluid phases of CaD4, no real conclusions may be drawn here.

A significant observation is the increased thermal s tab ility  of the ordered 

phase region of CaD4, relative to that of the monomeric calcium soaps. The

transition to the low viscosity isotropic phase occurred at a temperature 

approximately 140°C greater than is found in calcium stearate160*166. At 

the temperature at which the transition to the low viscosity isotropic 

liquid occurs, i t  is reasonable to propose that this transition is primarily 

associated w ith the polar groups. As the individual polar groups of CaD4 are 

in a chemical environment that is essentially identical to that found in 

monomeric calcium soaps, i t  is also reasonable to suggest that the 

difference in the behaviour of these related monomeric and oligomeric 

calcium soaps arises as a consequence of the multi-amphiphile nature of 

CaD4. As was the case w ith the oligomeric sodium salts, this may be

qualitatively understood by considering that the amphiphilic side-chain 

repeat units of these oligomers cannot escape from the micelle as 

individual amphlphiles due to their covalent bonding to the other 

amphiphiles. Hence the micelle, and the mesophases which are built up by 

these micelles, are stabilised. In addition, the individual amphiphilic 

side-chain units of each oligomer may not be isolated to the same 

polar/non-polar interface. Hence, these molecules may act as 'molecular 

cross-links' between micelles thus maintaining the mutual orientation of 

the micelles and enhancing the stab ility  of the ordered phase region.
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6.2.2.3 Conclusions

The thermotropic behaviour of CaD4 seems to have much in common with 

that of the monomeric straight chain calcium soaps and, some aspects of 

the behaviour of the equivalent sodium soaps, NaD4 and NaD5 (see section

6.2.1.2). Hence, although there are significant differences that require a 

more in-depth study, the following general conclusions may be drawn:

1.The well established principles explaining the phase behaviour of 

monomeric amphiphiles seem to be generally applicable to these novel 

cyclic amphiphiles.

2. As these principles dictate, the non-polar and polar moieties of 

these amphiphiles tend to aggregate in the neat state. The driving 

force for this aggregation w ill be the enthalpic contribution from the 

association of the polar groups.

3. Due to the molecular structure of these amphiphiles (i.e. packing 

constraints), the crystalline structure at room temperature is 

probably that of a bilayer, although the arrangement w ith in the 

bilayer is less clear. It is interesting to note that NaD4 and NaD5 

exlblt a sim ilar crystalline structure.

4. The absence of an identifiable thermal event in the range -170 to 

25°C, probabaly indicates that no thermal induced transitions are 

taking place in this range. Thus, the proposed lamellar phase would 

also remain at the lower temperatures.

5. In these lamellar phases, the non-polar chains and the polar head 

groups appear to be crystalline. However, the enthalpy change 

ascribed to the melting of the individual hydrophobic (i.e. iA 

KJ.mole*1), indicates that the attachment of the Cn carboxylates to 

the rigid cyclic siloxane backbone lim its  the degree of crysta lin ity  of
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the C10 alkyl chains, and the e ffic ient packing of the amphiphiles.

6 . At around 155°C, there appears to be a one-stage melting of the 

non-polar chains of these cyclic amphiphiles as well as a partial 

melting of the polar groups (i.e. T1). This process results in the 

formation of a birefringent flu id phase. This melting of the non-polar 

chains, may entail all the changes occurring in the step-wise melting 

of the alkyl chains of monomeric straight chain calcium soaps. 

However, as the structure of the resulting birefringent phase remains 

to be established, i t  is unclear whether T1 is also accompanied by a 

change in the overall phase structure.

7. The formation of the birefringent flu id  phase of CaD4 occurs at a

temperature sim ilar to that of the monomeric calcium soaps, although 

the structure of this phase may not be typical o f the monomeric 

soaps. The structure of this phase requires further investigation.

8 . At around 275-295°C, a viscous isotropic liquid formed. Although 

no structure can be proposed for th is phase, this behaviour is not 

typical of the monomeric soaps and warrants further investigation.

9. At around 480°C, the polar groups of these amphiphiles melt 

completely. Again, this is analogous to the step-wise melting of 

monomeric calciums soaps. The melting of the polar groups coincides 

w ith  the formation of the low viscosity isotropic liquid.

10. The attachment of the Cn calcium carboxylates to the cyclic

siloxane increases the thermal s tab ility  of the ordered phase regions 

of th is amphiphile. The formation of multi-amphiphile molecules may 

explain this effect. In addition the formation of molecular 

cross-links between micelles may become important.
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6.3. The Lyotropic Phase Behaviour

6.3.1, The Sodium Salt. NaD1

6.3.1.1 Results

6.3.1.1.1 Polarising Optical Microscopy

A film  of NaD4 was prepared by placing a powdered sample between a

cover-slip and a microscope slide at 270°C, depressing the cover-slip and 

then rapidly cooling to room temperature. Microscopy of this film  indicated 

a birefringent solid phase at room temperature. The texture of this solid 

was indicative of a hexagonal phase (see figure 6.2). Water was contacted 

with the edge of the amphiphile at 5°C. A fter 10 minutes, the sample was 

gradually heated up to 100°C.

At 20 -21°C, a thin mesophase region, which exhibited a non-geometric 

texture and a viscosity characteristic of the hexagonal phase16, was formed 

(see figure 6.20). As the temperature was increased, this band became 

gradually wider. At 45°C two additional mesophase regions were identified 

(see figure 6.21). At amphiphile concentrations between the hexagonal 

region and the solid amphiphile, a low viscosity birefringent phase formed. 

This phase exhibited a mosaic texture and a viscosity typical of the 

lamellar mesophase16. With the polars removed, the lamellar/hexagonal 

phase boundary was marked by a refractive index discontinuity (see figure

6.21). In addition, close examination of the high surfactant concentration 

side of the hexagonal region, indicated the presence of an area of s lightly 

different texture, and of a slightly lower viscosity, compared to the 

majority of the hexagonal mesophase region (see figures 6.21). The 

transition between these regions was not marked by a clear discontinuity in 

refractive index. All three mesophases were stable to greater than 100°C. 

No cooling of the samples was carried out.
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SOLID

Figure 6 .2 0A sample of NaD4 in contact w ith water at 3o°C. a) w ith  
cross-polars in place and b) w ith  cross-polars removed.
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Figure 6.21 A sample of NaD4 in contact w ith water at 55°C. a) w ith  
cross-polars in place and b) w ith  cross-polars removed.
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6.3.1.2 Discussion

Time did not permit an in-depth study of the lyotropic phase behaviour of 

this amphiphile. Instead, an overview of the phase behaviour of the 

amphiphile/water system between 5 and 100°C was established using the 

penetration technique of Lawrence219 The phase behaviour outside this 

temperature range was not investigated, as this represents the practical 

temperature range for soaps in aqueous systems and a number of 

experimental d ifficu lties  are encountered when determining aqueous phase 

behaviour above and below these lim its. It is worth repeating that the 

penetration technique indicates the phases that form w ith changing 

amphiphile concentration and, where applicable, gives the upper and lower 

temperature lim its  of each phase; no quantitative information regarding the 

composition of a phase can be derived from this technique.

During penetration experiments, NaD4 formed a number of lyotropic 

mesophases w ith water. At 5°C, only the solid amphiphile and water were 

observed. As the temperature was increased, three birefringent mesophase 

regions were formed; each mesophase occurring at a particular temperature. 

This lower temperature lim it for formation is the 'penetration' temperature, 

Tpen The first, of these mesophases exhibited a non-geometnc texture and 

an intermediate viscosity that was characteristic of a hexagonal phase 

(H1 )16. At higher temperature and higher concentration, an intermediate and

the lamellar (Lc*) mesophases formed simultaneously. The lamellar phase, 

which occurred at highest amphiphile concentration (i.e. adjacent to solid 

amphiphile) was characterised by a mosaic texture and a relatively low 

viscosity16. The intermediate phase region, occurring at amphiphile 

concentrations between Ht and L<*, had a non-geometnc texture and a 

viscosity typical of a hexagonal phase. Whilst, there was a distinct f irs t
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order boundary between the lamellar and the intermediate phase, no such 

boundary was observed between the intermediate and the 'normal' hexagonal 

phase regions. Despite this, the hexagonal and intermediate phase regions 

were distinguishable.

The absence of a phase boundary between the 'normal' hexagonal and the 

intermediate phase regions, and their sim ilar textures, may indicate that 

the intermediate phase is a variant of the conventional hexagonal phase. 

This leads us to propose a deformed hexagonal (Hld)—thought to consist of 

rod micelles arranged on a deformed hexagonal la ttice—as the structure for 

this region16*185 (see figure 6 .2 2 ).

Figure 6.22 A schematic representation of the deformed hexagonal phase 
(H1d) compared to the normal hexagonal phase (Hj).

H. H
1d
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A summary of the sequence of phases observed fo r NaD4 w ith increasing 

temperature and concentration is given in table 6.9 below.

Temperature
( ° C )

Phase sequence Observation

2 1 - 2 2 S - H r L , Form ation of the H i phase

4 5 S -L o r H 1d - H 1 - L 1 Form ation of the L «  phase and an additional 
reg ion, that was d is tinct fro m , but continuous  
w ith , the hexagonal phase region

1 0 0 As above A ll phases present at 4 5 °C , s t i l l  present

W here S =  solid am phiphile ; U =  la m e lla r  mesophase; = in term ed ia te  region; H i = hexagonal 
mesophase; L i = isotropic liqu id

Table 6.9 Summary of the lyotropic phase sequences of NaD4 developed w ith  
increasing temperature.

Having established the main features of the aqueous phase behaviour of th is 

oligomeric amphiphile from 5 to IOO°C, i t  was of interest to compare this 

behaviour w ith that of related systems (see chapter 2  for review of the 

related monomeric and polymeric amphiphiles). In this respect, the results 

of two studies, which have also employed the penetration technique to 

separately investigate the aqueous phase behaviour of monomeric sodium 

alkanoates185 and an amphiphilic side-chain polymer w ith  Cn sodium

alkanoate moieties attached to every unit of a linear siloxane backbone66, 

are of particular interest. The results of these studies have been 

summarised in table 6 .10, along w ith those obtained here for NaD4.
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Amphiphile
Hi (int. 1)

Phase
Vi (Int.2 ) i-<X

C8Na <23 6 6 77
CjoNa 29 67 69 - 72
C!2Na 42 65 - 69-85 74
C14Na 54 6 8 - - 73
CjgNa 67 - - 78 82
C|8Na 75 — — 83 85

* Polymer <20 - - - 70

NaD4 2 1 - 2 2 45 - - 45

w here CnNa = the homologous series  of sodium alkanoates; the Tpen values fo r these sodium  

soaps taken from  reference ( 1 8 5 ) .
int. 1 and !n t . 2  thought to be the deformed hexagonal and a th in  b ila y e r  s tru c tu re , 
respectively.
*p o ly m e r = the ionic po lym er studied by Hall In  reference ( 6 6 ).

Table 6  10 A comparison of the mesophase penetration temperatures (Tpen) 
for NaD4, the related monomeric sodium alkanoates and the linear 
amphiphilic side-chain siloxane.

As can be seen from table 6.10, the sequence of mesophases formed by 

monomeric sodium alkanoates (i.e. the sodium soaps) w ith  increasing 

temperature and/or increasing concentration is the hexagonal followed by 

the lamellar, w ith a variety of birefringent and non-birefringent 

mesophases occurring over a narrow concentration around the hexagonal to 

lamellar transition region185. The nature of the phases formed at 

intermediate soap concentrations depends on the length of the hydrocarbon 

chain. With short hydrocarbon chain derivatives, the non-birefringent 

bicontinuous cubic phase (v p  occurs, while at higher chain lengths the
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birefringent deformed hexagonal (H1d) and/or a thin bilayer structure occur 

(where these phases coexist, the bi layer structure occurs at higher 

amphiphile concentration). The critica l chain length for the cross-over from 

the cubic to the birefringent intermediate phases for monomeric sodium 

soaps occurs at around the C10 soap.

Comparing the phase behaviour of the ionic polymer w ith that of the 

monomeric sodium soaps185, and from previous experience w ith a non-ionic 

side-chain polysiloxane, Hall concluded that66:

- the attachment of amphiphilic units to a polysiloxane backbone does 

not significantly restric t the translational motion and micelle 

packing of the amphiphiles

- there is li t t le  difference between the phase behaviour of the 

polymeric amphiphile from that of the monomeric sodium alkanoate 

systems

- the general behaviour of this ionic polysiloxane could be explained 

in terms of the increase in alkyl chain length of the amphiphile due to 

fixation to the siloxane backbone.

Despite these sim ilarities, it  was noted that the behaviour of the ionic 

polymer and the monomers of sim ilar lipophilic/hydrophilic balance was not 

identical. The mesophases formed by the polymer were, once formed, more 

stable at lower temperatures and, the intermediate phases that are 

characteristic of sodium soaps of sim ilar chain length did not occur. No 

explanations for the different behaviour of the polymer and the monomers 

was offered.
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Comparing the behaviour of NaD4 w ith that of the monomeric sodium soaps, 

the sequence of phases formed by NaD4 w ith increasing temperature is 

identical to that of sodium myristate (i.e. C14Na, see table 6.10). At this 

point, i t  should be noted that in the absence of supporting spectroscopic or 

x-ray diffraction data, the assignments of structures for the individual 

phase regions of NaD4 should be viewed w ith some caution24*149. However, 

the fact that the overall proposed behaviour of NaD4 is so sim ilar to that of 

the related monomers and the ionic polymer, seems to indicate the valid ity 

of these proposals. Hence, the fact that NaD4 forms three mesophases 

common to the monomeric sodium soaps would seem to indicate that the 

attachment of Cn sodium alkanoates to every unit of a cyclic siloxane 

backbone does not significantly restric t the translational and rotational 

motions and the micelle packing of these amphiphiles. The fact that the 

sequence of phases formed by NaD4 is identical to that of sodium myristate

(C14Na) seems to indicate that the result of coupling these Cn amphiphiles

to the siloxane backbone is, therefore, to effectively lengthen the non-polar 

chain of the amphiphilic units by approximately three methylene groups. 

These observations support the results of previous studies66*67.

Unlike the polymeric equivalent, NaD4 did form an intermediate phase at

concentrations around the hexagonal to lamellar transition region and this 

behaviour is typical of the monomeric sodium soaps of a sim ilar 

hydrophilic/hydrophobic balance185. As the amphiphilic repeat units of the 

polymer and NaD4 are chemically identical, i t  seems reasonable to propose

that the occurrence of this intermediate phase in the phase sequence of the 

oligomer, but not the polymer, was determined by an effect other than the
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chemical nature of the respective amphiphiles (i.e not subtle changes in the 

hydrophobic/hydrophilic balance of the amphiphilic repeat units of the 

oligomer and the polymer). The rationalisation of the different behaviour of 

the oligomer and the polymer should therefore consider:

- the degree of polymerisation of these multi-amphiphile molecules 

(i.e. -50 for the polymer and 4 for NaD4)

- the probable increased polydispersity of the polymeric amphiphile 

(see chapter 3)

- the cyclic and linear natures of the backbones of NaD4 and the 

polymer, respectively.

As the deformed hexagonal phase structure is made up of micelles that are 

not restricted in aggregation number by the dimensions of the micelle (i.e. 

the micelle may expand in one dimension to accommodate additional 

amphiphilic units), it  is not easy to envisage how the increased degree of 

polymerisation or the probable increased polydispersity of the linear 

polymer may preclude the formation of this intermediate structure67. 

Whilst the study of the thermotropic phase behaviour of NaD4 indicated that

the attachment of Cn sodium alkanoates to the cyclic methylsiloxane 

backbone limited the effic ient packing of the non-polar chains of these 

amphiphiles in the crystalline state, the fact that NaD4 exhibits a lyotropic

mesophase sequence identical to C14Na may indicate that this lim itation

applies only to the crystalline close packing of the non-polar chains, and not 

to the packing of the fused non-polar chains (as is the case in these 

lyotropic mesophases). Hence, at this stage, no convincing explanation for 

the difference in the phase behaviour of NaD4 and the linear polymer of the 

same amphiphilic repeat unit, may be offered.
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Although NaD4 exhibits the same sequence of phases as C14Na, the oligomer 

forms these mesophases at much lower temperatures. The polymeric 

amphiphile66 also forms the hexagonal and a lamellar mesophase at lower 

temperatures than any of the long-chain monomeric sodium soaps and, once 

formed, these mesophases are stable to a much lower temperature than 

those of the monomers. In the absence of any cooling of the samples during 

the penetration experiments carried out during this work, no comment on 

the low temperature stab ility  of the phases formed by NaD4 may be made.

However, NaD4 and C14Na form the same sequence of mesophases and the

factors determining the packing of the amphiphilic units of these molecules 

are probably essentially the same (i.e. packing constraints)16.

The fact that NaD4 forms these phases at much lower temperatures could 

indicate that the water solubility of the amphiphilic repeat units of the 

oligomer is greater than that of the monomeric sodium soaps. As the 

sodium carboxylate moiety is the polar group common to the monomeric 

soaps and NaD4, it  is reasonable to attribute any changes in solubility to the

nature of the respective hydrophobic chains. The hydrophobicity of a 

non-polar chain is proportional to the surface area of the chain and the 

interfacial tension between the chain and water17. Considering that the 

volume of the non-polar chain of CwNa is slightly larger than the non-polar

chain of the repeat unit of NaD4 (i.e. approximately 3 7 8  and 3 4 0 A 3,

respectively, assuming that the volumes of the CH2, CH3, and 0Si(CH3)

groups are 27, 5 4  and 73A 3, respectively), and the o il/w a te r interfacial 

tension of a hydrocarbon is also greater than that of a dimethylsiloxane (i.e. 

5 2  and 4 2  dynes.crrr1, respectively324), the hydrophobicity of the repeat unit
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of NaD4 would indeed be slightly less than that of C14Na. However, as NaD4 

forms hexagonal and lamellar mesophases at temperatures below even C8Na 

(see table 6.10), this can not be the major factor determining the lower Tpen 

for the mesophases of NaD4.

Remembering the conclusions drawn from the thermotropic behaviour of 

NafTp an additional effect that may contribute to an increase in the water 

solubility of the amphiphilic units of this oligomeric amphiphile, is the 

reduced efficiency of chain packing w ith in the non-polar chains of NaD4, 

relative to that of the alkyl chains of monomeric sodium soaps (see section

6.2.1.2). Thus, the dissolution of the amphiphilic repeat units of NaD4 in an

aqueous medium, should require less energy to mix w ith the solvent than the 

equivalent sodium soaps (i.e. in proportion to the respective heats of fusion 

of these amphiphiles). A sim ilar consideration may also explain the lower 

Tpen of the polymer studied by Hall66.

6.3.1.3 Conclusions

The proposed lyotropic phase behaviour of NaD4 requires further

corroboration through the use of additional spectroscopic techniques (see 

chapter 5), and further research is required to fu lly  understand the 

implications of the results obtained during this study. However, the 

following general conclusions may be drawn:

1. The attachment of a Cn sodium alkanoate to every unit of a cyclic

methylsiloxane does not significantly restric t the translational and 

rotational motion and the micelle packing of these amphiphiles in 

lyotropic mesophases (i.e. there is no significant restriction imposed 

on the conformations of the fused non-polar chains).
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2. As has been the case w ith previous studies of linear amphiphilic 

side-chain siloxanes, the result of coupling these Cn amphiphiles to

the cyclic siloxane backbone is to effectively lengthen the non-polar 

chain of each amphiphilic unit by approximately 3 methylene units. 

Hence, NaD4 forms the same sequence of mesophases as sodium

myristate (C14Na).

3. The oligomeric amphiphiles form mesophases at temperatures 

significantly below those of monomeric sodium soaps of sim ilar 

hydrophobic/hydrophilic balance. This may be explained by a less 

effic ient crystalline packing of the non-polar chains of these 

oligomers.

6.3.2 The Calcium Salt

6.3.2.1 Results of Polarising Optical Microscopy

A film  of CaD4 was prepared by placing a powdered sample between a

cover-slip and a microscope slide at 200°C, depressing the cover-slip and 

then rapidly cooling to room temperature. Microscopy of this film  indicated 

a birefringent solid phase at room temperature. The texture of this solid 

was indicative of a hexagonal phase (see figure 6.14). Water was then 

contacted w ith the edge of the amphiphile at 5°C. A fter 10 minutes the 

sample was gradually heated to 100°C. There was no evidence of any 

interaction between the sample and the water In this temperature range.

6.3.2.2 Discussion

Having suggested that the attachment of Cn sodium alkanoate moieties to 

every unit of a cyclic siloxane backbone has an effect sim ilar to an 

extension of the non-polar chains of the individual units of these molecules
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by approximately 3 methylene units, i t  seems reasonable to propose that a 

sim ilar attachment of Cn calcium alkanoates would have an analogous 

effect. This would give rise to an oligomer w ith sim ilar phase behaviour to 

calcium myristate (i.e. Cl4Ca). It is, therefore, perhaps not surprising that

CaD4 did not show any interaction w ith water in the range 5 to 100°C. This

is analogous to the behaviour of the monomeric calcium soaps and reflects 

the strong forces of attraction between the polar groups of these soaps.

6.3.2.3 Conclusions

CaD4 did not form any lyotropic mesophases w ith water in the temperature

range 5 to IOO°C. This is analogous to the behaviour of the monomeric 

calcium soaps and presumably reflects the strong forces of attraction 

between the polar groups of these soaps.
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CHAPTER 7 . PHASE BEHAVIOUR OF THE LINEAR AMPHIPHILIC

S1LOXANES

7.1 Introduction

The linear amphiphilic siloxanes consisted of a linear dimethylsiloxane 

backbone of different chain lengths, w ith an undecyl and an n-butyl alkyl 

chain attached to opposite terminal silicon atoms of the siloxane chain. The 

terminal carbon atom of the eleven-carbon alkyl chain constituted part of a 

carboxyl moiety. The sodium and, in the case of the shortest chain length 

amphiphile, the calcium salts of these carboxylated linear siloxanes were 

prepared. The structures of these molecules is shown below:

non-polar polar
t_______________________________________________ A _______________________________________________________v ^

CH3 CH3 CH3 I
CH3(CH2)3- $10-( Si0)x-S!-CH2CH2CH2CH2CH2CH2CH2CH2CH2CH21C02Y 

CH3 ch3 ch3

w h e r e x *  4 ,1 0 ,1 7 .5 ,  2 6 .5  a n d Y = N a  
x «  4  and Y = N a ,1 /2 C a

Figure 7.1 Linear amphiphilic. siloxanes

A great deal of work has been published on the thermotropic and lyotropic 

phase behaviour of monomeric straight chain amphiphiles16*151’166’ 

170,171,177,185,297-303,325,326 (see a | S0 chapters 1 and 2). Whilst a variety of

chemical structures have been used as the polar group of these amphiphiles, 

the non-polar segments have been lim ited to hydrocarbon and, to a lesser 

extent, fluorocarbon chains16. The melting point of these non-polar chains 

increases rapidly w ith increasing chain length and thus, the hydrocarbon and 

fluorocarbon hydrophobic segments of conventional amphiphiles are
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crystalline at room temperature and become insoluble in water w ith 

relatively short hydrophobic chains (i.e. nc> 18 and >12  for the hydrocarbon 

and fluorocarbon chains, respectively)13'328. The linear amphiphiles studied 

here are based on a dimethylsiloxane non-polar moiety and, therefore, 

represent novel variants of the conventional amphiphiles. Unlike the 

conventional amphiphiles, due to the high chain mobility and the low Tg of 

the siloxane backbone (~-125°C)327, these amphiphilic siloxanes represent 

extremely long straight chain amphiphiles w ith highly flexible, low melting 

hydrophobic segments. Such amphiphiles may be water soluble even at low 

temperatures amphiphiles w ith relatively long-chain non-polar moieties.

This potential for the synthesis of amphiphiles w ith extremely long, low 

melting, hydrophobic segments, may also give rise to interesting properties 

in the area of oil soluble soaps. The lengthening of the hydrophobic 

backbone, whilst the polar group remains constant, w ill tend to sh ift the 

hydrophobic/hydrophilic balance of the amphiphile towards the hydrophobic, 

possibly resulting in the formation of oil soluble anionic soaps328.

The investigation of the thermotropic and lyotropic phase behaviour of these 

novel amphiphiles was, therefore, of interest as the dimethylsiloxane chain 

represents a novel hydrophobe and, the combination of a very long, and yet 

highly flexible, hydrophobic chain has been hitherto unachievable w ith w ith 

conventional amphiphiles. Having synthesised the materials the main 

priority was to gain an overview of their lyotropic and thermotropic phase 

behaviour and to investigate the effects of incorporating an anionic 

amphiphile onto the terminal silicon atom of a number of oligomeric and 

polymeric linear dimethylsiloxane backbones. This overview was obtained 

with a combination of techniques as outlined previously in chapters 5 and 6 .

2 1 0



7.2 Thermotropic Phase Behaviour

7.2.1 The Sodium Saits (see figure 7.1; x *4 ,10,17.5 & 26.5; Y=Na)

7.2.1.1 Results

7.2.1.1.1 Polarising Optical Microscopy

A film  of the shortest chain length amphiphile (figure 7.1, x~4.0, hereafter 

referred to as Na500; the subscript referring to the approximate molar mass

of the n-butyl PDMS backbone) was examined under the microscope in the 

temperature range 0-350°C. This material existed as a birefringent viscous 

fluid at 0°C and exhibited a non-geometric texture and an intermediate 

viscosity typical of a hexagonal phase (see figure 7.2). On heating, a gradual 

decrease in viscosity and a gradual increase in birefringence was observed, 

although no obvious phase transition occurred up to 251°C. At this 

temperature, there was a slight, but definite, reduction in viscosity and a 

slight modification to the texture of the phase. Nevertheless, this high 

temperature phase also exhibited the viscosity and the non-geometric 

texture typical of a hexagonal phase (see figure 7.3). This phase remained 

up to the transition to the isotropic liquid at 312 °C.

With the three longer chain amphiphiles (figure 7.1, x~10.0, 17.5 and 26.5; 

hereafter, referred to as Na1000, Na1500 and Na2000, respectively) their phase 

behaviour was, w ith the exception of the absence of the high temperature 

phase region above 250°C, very sim ilar to that outlined for N a ^ . All these

amphiphiles existed as birefringent viscous fluids at 0°C. Although there 

was a slight decrease in viscosity and, possibly, birefringence w ith 

increasing amphiphile chain length, the viscosity and texture of the flu id 

phases of these amphiphiles were typical of a hexagonal phase and, were 

very sim ilar to that exhibited by Na500 at equivalent temperatures (see 

figures 7.4-7.6X
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Figure 7.2 Optical texture of Na500 at 50°C.

Figure 7.5 Optical texture of Na500 at 280°C.
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Figure 7.4 Optical texture of Na1000 at 50°C.

%

Figure 7 5 Optical texture of Na1500 at 50°C.
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Figure 7.6 Optical texture o f Na20oo a t 5C,0C-

On heating samples of Na1000, Na1500 and Na2000, there was a gradual

decrease in the viscosity and a gradual increase in the birefringence of the 

samples, although no obvious phase transition occurred until 252, 252.5 and 

248.5°C, respectively. The transition occurring at these temperatures 

resulted in the formation of the low viscosity isotropic liquid.

For all the amphiphiles of this series, a slight 'darkening' of the edge of the 

sample occurring at about 285°C was thought to indicated the onset of 

thermal degradation.
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7.2.1.1.2 Differencial Scanina Calorimetry (DSC)

Thermograms were in itia lly  recorded on the heating of previously unmelted 

samples of all the members of this homologous series between -170°C and 

350°C. These thermograms were characterised by up to five endothermic 

transitions (hereafter denoted T1, T2, T3, T4 and T5 in order of increasing 

temperature) and a final large exothermic transition at around 320°C, 

believed to correspond to the onset of extensive thermal degradation. T 1 

was a second order transition, w h ilst T2, T3, T4 and T5 were all f irs t  order. 

Figures 7.7 and 7.8 show representative thermograms for this series of 

amphiphiles, whilst table 7.1 summarises the results of these analyses.
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Figure 1.7 Representative thermogram for a previously unmelted sample of 
Na50o which had been dried over P20 5 at 1 0 0  °C for 24 hours, and 
heated from -170 to 350°C at a rate of lO°C.min. - 1
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Figure 7.8 Representative thermogram for a previously unmelted sample of 
Na10oo which had been dried overP20 5 at 1 0 0  °C for 24 hours, and 
heated from -170 to 350°C at a rate of lOoC.min. - 1
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TRANSITION TRANSITION TEMPERATURE W )  AND CORRESPONDING ENTHALPY 
( K J .m o r ' )  OR CHANGE IN  SPECIFIC  HEAT CAPACITY ( J .g ‘ ' ,K *  1 )

Nasoo Naiooo N81500 Na2000

T1 sample 1 - 1 2 0 ( 0 . 4 0 ) - 1 2 0 ( 0 . 3 6 ) - 1 2 2 ( 0 . 3 7 ) 1 2 2  ( 0 . 5 )

T2  sam ple 1 
sample 2  
sam ple 3

8 5  ( * )  
9 0  ( * )  
8 3 ( 2 )

6 5  ( * )  
8 5  ( * )

7 5  ( * ) none observed

T3 sam ple 1 
sample 2  

sam ple 3

1 4 0 ( 2 )
122( 2 )
1 4 0 ( 3 )

1 5 0  ( * )  
none observed

1 8 0  ( * ) 1 6 5  ( 3 )

T4  sam ple 1 
sample 2  
sam ple 3

2 4 8 ( 1 0 )
2 4 3 ( 1 0 )
2 4 9 ( 1 0 )

2 5 0 ( 1 3 )  
2 5 1  ( 9 )

2 5 2 ( 1 4 ) 2 5 0 ( 1 3 )

T 5  sam ple 1 
sam ple 2  
sam ple 3

none observed 
none observed 
3 1 5  ( * )

not app licab le

note - T 1 Is  a second order tran s itio n  and represents  a change In  the specific  heat capacity o f th e  
sam ple , the un its  i f  which a re  J.g-1  .K” 1
T 2 -T 5  a re  f i r s t  o rder trans itions  and rep resen t changes in en tha lpy, the un its  i f  w h ich  a re  
K J .m o r 1
*  Indicates that although there  was evidence o f a tra n s it io n , the signal was v e ry  broad and  
th e re fo re  I t  was not possible to accurate ly  evaluate the entha lpy  change o c cu rrin g ; hence, 
the tra n s itio n  tem peratures quoted a re  approxim ate.

Table 7.1 The transition temperatures and corresponding changes In enthalpy 
and specific heat capacity (both in parentheses) observed during 
the initial heating of this series of linear amphiphiles at a 
heating rate l.oocmirrt (In each case, sample 1 was heated from 
-170 to 350°C, and samples 2 and 3 were heated from 0 to 350°C).
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Although not all the members of this homologous series exhibited the same 

number of transitions, for ease of reference and discussion, the various 

transitions occurring w ith each amphiphile have been arb itrarily

categorised on the basis of their temperature of occurrence, and the

sim ilarity of the enthalpy changes involved; the valid ity of this

classification w ill be discussed later. Consequently, it  should be pointed 

out that T5 corresponds to the transition to the low viscosity isotropic 

liquid for Na500 only; Na1000, Na1500 and Na2000 undergoing the transition to 

the isotropic liquid at T4. In addition, T3 and where applicable, T2 and T5 

were small enthalpy transitions occurring over a broad temperature range. 

Thus, it  was not always possible to accurately determine the enthalpy 

changes occurring. T2 was not observed during the in itia l heating of Na2000.

In order to assess the effects of heating and cooling, repeat analyses of a 

previously unmelted sample of Na500 were carried out between room 

temperature and 280°C. The temperature and enthalpy change of the

transitions observed during these analyses are summarised in Table 7.2.

TRANSITION TRANSITION TEMPERATURE (°C )/E N T H A L P Y  CHANGES( K J .m o r  1)

ru n  1 ru n  2 run  3 ru n  4 ru n  5

T2 9 0 (n o te 1) n o n e*' none* none* none*
T3 122 ( 2 ) 18 u  (n o te 1) none* none* 1 9 9 ( 3 )
T4 2 4 3  ( 1 0 ) 2 6 5 ( 1 3 ) 2 6 4 ( 1 2 ) 2 6 4 ( 1 2 ) 2 6 4 ( 1 2 )

none* -  no peak observed in  th is  region of the evaluation
note1 -  although peak was observed, i t  was v e ry  sm all and broad and no evaluation of the enthalpy  

change occurring  was c a rrie d  out.

Table 1.2 The transition temperatures and corresponding enthalpy changes 
(in parentheses) observed during the repeated heating of a sample 
of Na500 from 0 to 280°C, at a heating rate lO°C.min'1.
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Following these repeat evaluations, the sample vial was reweighed. A 

reduction In the mass of the sample of about 35% had occurred. Visual 

Inspection of the sample Indicated that considerable thermal degradation 

had also taken place. No thermograms were determined for these 

amphlphlles during cooling cycles.

7.2.1.1.3 X-Rav Diffraction

Diffraction patterns were obtained for all materials In the low-angle region 

at various temperatures. Figures 7.9 to 7.12 show the diffraction patterns 

obtained, w hilst table 7.3 summarises the results of the these experiments.

i A

' Z .5 5 . 0  7 . 5
t-------------r

10. 0 12. 5  1 5 . 0  17 . 5  2 0 . 0  22.
C A M E R A  H T C H H )

2- 5  5 . 0  7.5 10.0 12. 5 15 . 0  17 . 5  2 0 . 0  22..S
C A f i E R A  H r ( M M )

T

T

■/

/  '■

300°C

2.5 5.0 7.5 10.0 12.. ’ 15.0 17 . 5  2 0 . 0  1 1 .5

Figure 7.9 Low angle X-ray d iffrac tion  patterns fo r Na500
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Figure 7.10 Low angle X-ray diffraction patterns for Na1000.

2.5 1 2 . 5  1 5 . 0
C A H E R A  H T ( M H )

1 7 . 5 2 2 . 520.0

, 5 1

2 2 . 52 0 . 01 7 . 51 0 . 0  1 2 . 5  1 5 . 0
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Figure 7.11 Low angle X-ray d iffraction  patterns fo r Na1500
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Figure 7.12 Low angle X-ray diffraction patterns for Na2000.
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SIGNAL Na500 N a 1 0 0 0 Na1500 N a 2 0 0 0

At 25°C
do
dl
d2

5 9 .9  (d0) 
34 .5  (d / , /3 ) 
30 .7  (d / , /4 )

6 8 .1  (d0) 69 .3  (d0)

At 5 0 ° £  
do 
di 
d2
d3

41.8  (d0) 
24 .5  ( d / , /3 )
21 .3  ( d / / 4 )
15.3 (d /y y )

At
do 6 2 .6  (d0) 62 .0  (d0)

At 20Q°£.
do
di
d2
d3

38 .9  (d0)
22.7  ( d / / 3 )
19.7 ( d / , /4 )
14.9 ( d / / y )

-

At 23Q°£. 
do 47 .6  (d0) 52 .0  (d0) 52 .0  (d0)

A t3Q Q °£
do
d 1

29.2  (d0) 
16.9 ( d / / 3 )

Note -  b lank areas indicate no d iffrac tio n  patterns  recorded a t that tem p era tu re  fo r  tha t 
p a rtic u la r  sample

Table 7.5 The d-spacings observed and the reflections assigned to each of 
the major peaks in the X-ray d iffraction patterns fo r the linear 
amphiphiles in the low-angle region at various temperatures.

Na500 and Na200o showed a broad diffuse peak in the wide-angle region at 

approximately 6.3k No investigation of this region was carried out fo r the 

remaining members of this series of amphiphiles.

2 2 2



7.2.1.1.4 Thermo Gravimetric Analysis (TG)

A thermogram was recorded on the heating of a previously unmelted sample 

of Na500 between 35°C and 420°C. This thermogram exhibited no significant 

weight loss up to about 280°C, at which point there was a gradual and 

increasing loss in weight up to the termination of the evaluation at 450°C. 

This loss in weight was thought to indicate the onset of thermal 

degradation of the sample. Figure 7.13 shows the thermogram obtained 

during the heating of a sample of N a ^  which had been dried over P205 at 

100°C for 24 hour.

c  I ' | I I I I | I I I I | I I - I - r  |~ l--------1 I [ -1  I ' I  I | I I" I I T  I I I I '( "T
J J g o o o o q o o

5 S g 2 I  2 3 S I

Figure 7.13 TG thermogram obtained on heating a sample of Na50o from 35 to 
420°C at a heating rate of IQoC.mln-1.
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1.2.1.2 Discussion

Optical microscopy indicated that this homologous series of amphiphiles 

existed as ordered fluids at 0°C. The non-geometric texture and the 

viscosity of these birefrlngent fluid phases were sim ilar for all the 

members of this series and were characteristic of a hexagonal phase16. For 

all these amphiphiles, this phase was stable up to around 250°C (see table

7.1 for exact transition temperatures). With Na1000, Na1500 and Na2000 (i.e. 

the three longer chain amphiphiles) the transition occurring around this 

temperature (i.e. T4) resulted in the formation of the low viscosity 

isotropic liquid. With Na500, the transition occurring at this temperature 

resulted in the formation of an additional ordered flu id phase. Although this 

inter-phase transition resulted in a definite reduction in viscosity, the 

viscosity and the non-geometric texture of this high temperature phase of 

Na500 were also characteristic of a hexagonal structure. This phase 

remained up to the transition to the low viscosity isotropic liquid at 312 °C.

Having used optical microscopy to establish the upper temperature 

‘boundary' of the ordered phase regions of these amphiphiles and to supply 

some in itia l indication of the structures present, X-ray diffraction data 

obtained at various temperatures was used as a source of corroborative 

evidence (see table 7.3).

In general, where the diffraction pattern exhibited more than one reflection, 

the observed pattern was characteristic of a hexagonal phase and thus, 

supported the conclusions drawn from microscopy (i.e depending on the 

number of reflections observed, the reciprocal spacings were in the ratio 

1 :V’3:V4:V7)24*149. In some cases the patterns possessed additional peaks of 

low intensity. However, the intensity scale in this technique is a
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logarithmic relationship and small ’peaks' are not necessarily valid. Where 

the diffraction patterns exhibited only one peak it  was not possible to 

propose a structure from this data or to corroborate the conclusions derived 

from optical microscopy. However, the absence of peaks other than the 

principle reflection does not mean that the optical study was flawed. 

Indeed higher order reflections often have very low intensities and in 

polydisperse samples of the type studied here, may be to broad to be seen.

Having proposed phase structures for these amphiphiles from 0°C up to the 

transition to the low viscosity isotropic liquid, DSC was used to provide 

additional information on the number and the nature of the transitions 

occurring in this temperature range and, also to provide some data on the 

low temperature behaviour. As the number temperature, and enthalpy change 

of the transitions occurring in the thermograms of the individual 

amphiphiles were so sim ilar (see table 7.1), i t  seems reasonable to suggest 

that the transitions occurring at sim ilar temperatures were due to related 

thermal processes.

The thermograms of all the linear amphiphiles were characterised by a 

second order transition occurring at around -120°C (T1). Considering their 

molecular structure, the temperature and second order nature of T1 

indicated that this transition was primarily associated w ith the linear 

poly(dimethylsiloxane) (PDMS) backbone of the amphiphiles327. For example, 

it  has been reported that w h ils t high molar mass linear PDMS is highly 

crystalline, linear polymer of comparable molar mass to the siloxane chains 

of these amphiphiles is amorphous and undergoes a glass transition in the 

range -135 to -125°C327. Thus, the absence of a transition(s) corresponding 

to the melting of crystalline linear PDMS in the range -60 to -20°C, and the
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presence of the second order transition at around -120°C, indicated that the 

siloxane segments of these amphiphiles were amorphous and in an 

environment sim ilar to that of the equivalent bulk non-substituted linear 

PDMS. The implications of this would be that the siloxane backbone would 

be able to rotate and be essentially liquid-like above T1, w h ils t below this 

transition, the liquid-like structure of the polymer would be frozen into a 

glassy state331.

Having established that these amphiphiles existed as ordered fluids at 0°C, 

the absence of a transition in between T1 and 0°C, suggested-although, was 

not conclusive evidence-that these ordered fluids were themselves stable 

to T 1 (i.e. approximately -120°C). Bearing in mind the proposal that the 

siloxane chains constitute the continuous phase of these reversed hexagonal 

structures and that T1 represents the glass transition of this continuous 

phase, i t  seems unlikely that the established macroscopic flu id ity  of these 

amphiphiles at 0°C would be maintained at temperatures below T l. Thus, 

below T l, these amphiphiles would be expected to exist as reversed 

hexagonal structures w ith a glass-like continuous phase, whose 

macroscopic properties would be that of a glassy solid.

As a corollary of establishing the amorphous nature of the siloxane chains, 

it  follows that the structural order within the phases of these amphiphiles 

(above or below T l)  must primarily entail the Cn sodium carboxylate 

moieties. This is supported by the fact that the total enthalpy change 

associated w ith the f irs t  order endothermic transitions occurring in these 

amphiphiles between T l and the transition to the low viscosity isotropic 

liquid (i.e. T2, T3, 14 and, where applicable, T5) seemed to be independent of 

the siloxane chain length of the individual amphiphiles (see table 7.1).
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Therefore, these transitions were most likely associated w ith thermal 

processes primarily involving the Cn sodium carboxylate moiety and, the

structural order w ithin these phases (above or below T l) must also 

primarily entail this moiety.

At this stage, it  is worth pointing out that w h ils t the phase behaviour of 

these linear amphiphilic siloxanes differs significantly from that of the 

cyclic amphiphiles discussed in chapter 6, there are s im ila rities in the 

number and temperature of the thermal transitions that occur in these two 

classes of novel amphiphiles above 0°C (see table 7.4).

TRANSITION
SAMPLE

Nfl

TRANSITION TEMPERATURE (°C ) AND CORRESPONDING ENTHALPY(KJ.mol" ])

Na500 Na1000 Na 1500 Na2 0 0 0

TRANSITION

NaD4 NaDs

T2 1 
2 
3

8 5 ( * )
9 0 ( * )
8 3 (2 )

6 5 ( * )
8 5 ( * )

7 5 ( * ) none obs. T l 6 2 (2 0 ) 4 4 (1 9 )

T3 1 
2  
3

140(2)
122(2)
140(3)

1 5 0 (* )  
none obs.

1 8 0 (* ) 165(3) T2 147(7 ) 1 4 4 (1 0 )

T4 1 
2 
3

2 4 8 (1 0 )
2 4 3 (1 0 )
2 4 9 (1 0 )

2 5 0 (1 3 )
2 5 1 (9 )

2 5 2 (1 4 ) 2 5 0 (1 3 ) T3 2 5 8 (2 6 ) 2 4 5 (2 2 )

T5 1 
2 
3

none obs. 
none obs. 
3 1 5 ( * )

not applicable
none obs. none obs.

note -  *  indicates that the tran s itio n  observed was v e ry  broad and th e re fo re  i t  was not possible to 
accurate ly  evaluate the enthalpy change occu rrin g  or the tra n s itio n  tem p eratu res .

Table 7.4 The transition temperatures and corresponding enthalpy changes 
(in parenthesis) observed above 0°C during the in itia l heating of 
the sodium salts of the linear and cyclic amphiphilic siloxanes.
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As can be seen in table 7.4, the cyclic amphiphiles undergo a number of 

transitions above 0°C which are comparable to those occurring in the linear 

amphiphiles. For instance, two transitions occurring at approximately the 

same temperature and of sim ilar enthalpy, were observed during the in itia l 

heating of the cyclic (i.e. Tl and T2) and the linear amphiphiles (i.e. T2 and 

T3). In the cyclic amphiphiles, which were crystalline at room temperature, 

it  was concluded that these transitions were primarily associated w ith a 

rearrangement/melting of the non-polar chains and that the processes 

occurring were analogous to the in itia l stages in the step-wise melting of 

monomeric straight long-chain sodium soaps. In addition, a transition 

occurring at around 250°C was characteristic of both the linear and the 

cyclic amphiphiles. This transition was ascribed to the melting of the 

crystalline polar groups of the cyclic amphiphiles and again, was believed to 

represent a further stage in the step-wise melting of these amphiphiles and 

simnariy, was analogous to the behaviour of monomeric straight chain 

sodium soaps.

The fact that the sodium salts of these linear amphiphiles undergo a number 

of transitions sim ilar to those previously ascribed to the step-wise melting 

of the crystalline cyclic amphiphiles seems to indicate that the Cn sodium

carboxylate moieties of both the linear and the cyclic amphiphiles were 

undergoing thermal transitions that were related to sim ilar physical 

processes. Consequently, despite the novel molecular structure of the 

linear amphiphilic siloxanes and the resulting structure and properties of 

the phases formed by these amphiphiles, i t  seemed likely that the C10 alkyl

chains and the polar groups of the linear amphiphiles may have retained 

some degree of crystalline order w ithin the macroscopically flu id hexagonal 

phase observed between Tl and T4. This would in turn indicate that the
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flu id hexagonal phases formed by these linear amphiphiles are 

semi-crystalline below T4, w ith the Cn sodium carboxylates having some 

structural order and the siloxane chains being essentially amorphous.

The fact that the T3 and, where applicable, the T2 transitions of the linear 

amphiphiles did not result in corresponding transitions when viewed under 

the microscope, indicated that these DSC transitions were not associated 

w ith a significant change in the overall structural arrangement of the phase.

Thus far, we have considered the phase behaviour of all the members of this 

series of amphiphiles to be identical below T4. However, w hilst this is 

generally the case, Na2000 did not exhibit the T2 transition, that was typical

of the shorter chain length linear amphiphiles. Whilst i t  is possible that 

this transition does not occur w ith this, the longest chain amphiphile, i t  is 

not obvious why this should be the case if  this transition is-as 

proposed-associated w ith the melting of the C10 alkyl chain. Alternatively, 

if  this low enthalpy transition is associated w ith the melting of the C10

alkyl chain of these amphiphiles, the reduced volume fraction of this chain 

in this, the longest chain amphiphile, may have resulted in a transition that 

was approaching the lim it of detection of the DSC measuring cell. This 

coupled w ith the polydispersity of the sample could explain the different 

thermograms of the respected samples. At present, no further explanation 

of this observation can be offered.

In attempting to rationalise the behaviour of this series of linear 

amphiphiles, the magnitude of the enthalpy changes occurring gives an 

insight into the structural order present and the changes taking place. An
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interesting result arising from the study of the cyclic amphiphiles, was the 

low total heat of fusion for each amphiphile of NaD4 and NaD5 (13 and 10 

kJ.mol"1, respectively) relative to that of the corresponding monomeric 

straight chain sodium soaps (typically 30 kJ.mor1 for sodium laurate151). 

In comparing the structures of NaD4 and NaD5 w ith those of conventional

sodium soaps, it  was assumed that the major differences in their melting 

behaviour would be associated w ith the non-polar regions of the respective 

amphiphiles. As the enthalpy changes ascribed to the melting of the C10 

alkyl chains of these cyclic amphiphiles (i.e. T 1 and T2) were relatively low, 

and the packing density of the polar group at 50°C were sim ilar for NaD4 and

the monomeric sodium soaps, this seemed to support this proposition. 

Therefore, the attachment of amphiphiles to the siloxane ring in these 

cyclic amphiphiles was thought to disrupt the packing of the C10 alkyl 

side-chains and, in particular, to restric t their close contact.

A comparison of the enthalpy changes associated w ith the melting of the 

alkyl chains of the linear amphiphilic siloxanes w ith those of the cyclic 

amphiphiles and conventional straight chain sodium soaps, shows a 

sim ilarly reduced enthalpy change occurring in the linear amphiphilic 

siloxanes. For example, the total enthalpy change ascribed to the melting of 

the C10 alkyl chains in the linear amphiphiles (i.e. T2 plus T3, <5KJ.mol"1), is 

slightly less than the corresponding enthalpy change in the sodium salts of 

the cyclic amphiphiles (6 to 7 KJ.mol^per amphiphile repeat unit). Both of 

these are considerably less than those of the corresponding transitions of 

monomeric straight chain sodium soaps of sim ilar alkyl chain length 

(typically 20KJ.mol_1 for sodium laurate151). As was the case w ith  the 

cyclic amphiphiles, although the presence of T2 and T3 indicates some
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crystalline order w ithin the C10 alkyl chains of the linear amphiphiles, the

attachment of the alkyl chains to the linear siloxane backbone seems to 

have restricted their ability to crystallise. Considering the relative volume 

of the dimethylsiloxane repeat unit (i.e. ~130A3 at 25°C) and the fle x ib ility  

of the linear siloxane backbone, this is perhaps not surprising, as the 

thermal motions and steric effects of this chain cannot be fu lly  divorced 

from those of the C10 alkyl chains, due to the covalent bond that exists

between them. Thus, the siloxane chains, which are mobile (above Tg) bulky 

polymers, would be expected to restric t the effective packing of the C10 

alkyl chains to which they are attached.

By the same token, one end of the siloxane chain is constrained by the 

attachment to the terminal carbon atom of the C10 alkyl chain and, 

therefore, this constraint would also be expected to affect the f le x ib ility  of 

the siloxane backbone itself. As it  has been reported that the Tg of linear 

PDMS varies from -135 to -125°C for polymer of comparable molar mass to 

that of these linear amphiphiles (i.e. Mn in the range 500 to 2000)327, the 

occurrence of Tl at about -1 20°C may also reflect the kinetic and steric 

interactions occurring between the siloxane and C10 alkyl moieties of these 

amphiphiles. It is worth emphasising that the Tg of non-substituted linear 

PDMS reaches a maximum at approximately -123.2°C for high molar mass 

polymer327. Thus, unless the macroscopic structural arrangement w ith in 

the hexagonal phases formed by these amphiphiles exerts a significant 

influence on the flex ib ility  of the siloxane chains, the interaction between 

the alkyl and siloxane moieties of these amphiphiles is the only plausible 

explanation for the both the observed sh ift in Tg of the siloxane to higher 

temperatures and the reduced packing efficiency of the alkyl chains.
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If the reduced crysta llin ity of the C10 alkyl chains in these linear

amphiphiles is due to the attachment of the siloxane chains, i t  is reasonable 

to assume that the order within these alkyl chains w ill not be uniform along 

the length of the chain. Thus, the order would be expected to increase 

along the alkyl chain from the amorphous siloxane regions to the crystalline 

polar groups. At this stage, no supporting evidence can be presented for this 

proposal.

Whilst the melting of the C10 alkyl chains of these linear amphiphiles

involves a relatively small enthalpy change compared w ith  the equivalent 

processes in conventional sodium soaps, the enthalpy change ascribed to the 

melting of the polar groups (i.e. -lOKJ.mol"1 for T4) approximates to that

straight chain sodium soaps (i.e. ~8 KJ.mol-1 for the semi-crystalline to

mesophase transition of sodium laurate151) and, NaD4 and NaD5 (see chapter

6). This seems to indicate that the order w ith in the polar group of these 

amphiphiles prior to T4, is comparable to that of the conventional sodium 

soaps, and is further evidence of the semi-crystalline nature of the flu id 

phase of all these linear amphiphiles below this transition. The fact that 

the polar groups pack effic iently despite their indirect attachment to the 

bulky siloxane chains, may reflect the 'spacer group' effect332 of the C10 

alkyl chain which covalently links these two moieties.

Whilst the melting of the polar groups (i.e. T4) resulted in the formation of 

the low viscosity isotropic liquid for Na1000, Na1500 and Na2000, the 

equivalent transition of Na500 gave rise to an additional lower viscosity 

hexagonal phase region. Compared w ith the final melting transition of the 

longer chain amphiphiles (i.e. T4), the final melting transition of Na500 (i.e.
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T5) entailed a relatively small enthalpy change (see table 7.1). As the low 

viscosity isotropic liquid entails li t t le  order, th is indicated that most of 

the structural order w ith in the high temperature hexagonal phase of Na^g

had been lost prior to formation of this phase (i.e at T4). The small enthalpy 

change associated w ith  T5 and the reduced viscosity of the phase prior to 

this transition, are therefore consistent w ith a fused phase region (i.e. a 

mesophase). This is also indirect evidence that the other members of this 

series of amphiphiles are, as proposed, sem i-crystalline up to the transition 

to the isotropic liquid at T4. This being the case, by analogy w ith the 

behaviour of monomeric sodium soaps, the interfacial area per amphiphile 

polar group would be expected to be essentially independent of temperature 

for all these linear amphiphiles below T4 (i.e the semi-crystalline phase) 

and dependent on temperature above T4 for Na^g (i.e the mesophase)24’M9

The values for the area per polar group derived from the X-ray study of 

these amphiphiles at various temperatures are compared in table 7.5 (see 

section 5.4).

Phase P aram eter am phiph ile

NaSOO NalOOO N a1500 Na2000

t ( ° C ) 50 25 2 5 25
S (A 2 ) 13 1 1 /1 2 12 14

Sem i- t ( ° C ) 20 0 20 0 100 100
crystalline S (A 2 ) 17 19 22 18
h2

t t ° C ) 2 3 0 211 21 0
S (A 2 ) 19 2 3 26

mesomorphic t ( ° C ) 3 0 0 not applicable
h 2 S (A 2 ) 32

Table 7.5 The variation of the area per polar group for the linear 
amphiphilic siloxanes w ith temperature.

233



Table 7.5 shows that there is generally reasonable agreement between the 

area per polar group of the various amphiphiles at equivalent temperatures. 

This seemed to indicate that this parameter is essentially independent of 

the siloxane chain length. This is perhaps surprising, as the increased 

tendency of the siloxane chains to adopt a coiled conformation and, the 

reduced electrostatic interaction between micelles-both effects resulting 

from an increase in siloxane chain length—might be expected to influence 

the area per polar group w ith in these structures.

The derived areas per polar group at temperatures of 25 and 50°C range from 

11-14A2. By comparison w ith the typical values for the area per polar group 

of conventional sodium soaps, which are in the range 20-25A2 in the 

semi-crystalline phases (table 6.7), these values appear to be much too 

small. Whilst the area per polar group of the linear amphiphilic siloxanes 

cannot be compared quantitatively w ith those of monomeric sodium soaps, 

which although based on the same polar group are of a different phase 

structure, the much reduced area per polar group of these novel amphiphiles 

would require a more compact packing of the polar groups than found in 

conventional sodium soaps. This observation, therefore, warrants further 

investigation and may indicate that the polar cores of the rod micelles are 

non-circular in this temperature region.

The values obtained at the higher temperatures (I.e. 17-32A2) appear to be 

more reasonable. Table 7.5 also Indicates that the values derived for the 

area per polar group of these amphiphiles In the supposedly 

semi-crystalline phases (I.e. at temperatures below T4), do not appear to be 

independent of temperature. This is not as expected24*149, but may reflect 

the unusually small values calculated at 25 and 50°C, indicating that there
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is some rearrangement of the polar groups above this temperature range (i.e. 

a transition from a non-cylindrical to a cylindrical arrangement of the 

polar cores).

In discussing these observations, it  should be pointed out that no density 

measurements for this series of amphiphiles have been made and the 

densities of the polar and non-polar regions of these molecules were 

estimated using data from several sources301*315'316 (see section 5.4). Thus, 

the values of the area per polar group derived using these figures are only 

approximations. To facilita te  the accurate calculation of these parameters, 

and the subsequent improved interpretation of the phase behaviour of these 

amphiphiles, accurate density values would be required. In the absence of 

this work, it  is possible to suggest that compared w ith the values for all 

these amphiphiles at the lower temperatures, the relatively large value of 

the area per polar group for Na500 at 300°C reflects the fused nature of the 

high temperature mesophase.

Having outlined the phase behaviour of this series of linear amphiphiles, we 

may now attempt to rationalise this behaviour in terms of the well 

established principles applied to conventional amphiphiles and, contrast 

this behaviour w ith that of the cyclic amphiphiles discussed in chapter 6.

It has been proposed that the micelles formed by these linear amphiphiles 

below the transition to the low viscosity isotropic liquid, are reversed 

micelles w ith the polar groups constituting the cores of the micelles. 

These micelles are very different to the micelles formed by monomeric 

straight chain sodium soaps and the cyclic amphiphiles discussed 

previously. The different geometries of the micelles formed by these

235



related classes of amphiphiles may be understood on the basis of their 

different molecular structures. The constraint on micelle shapes arising 

from chain packing have led to the assumption that a micelle radius cannot 

be longer than the maximum length of the hydrophobic moiety (1) of an 

amphiphile15'16. Thus, there is a relationship between the volume and 

maximum length of an amphiphile, and the micelle shape adopted by that 

amphiphile. This leads to minimum areas per molecule (amjn) for normal 

spherical, cylindrical and bilayer micelles, given by:

sphere (amjn) = 3 v/1 
cylinder (amin) = 2 v/1
bilayer (amjn) = v/1 where v = volume of the hydrophobic moiety

For aC ]2 hydrocarbon chain, assuming a maximum extension of 15A  and that 

the volume of the CH2 and CH3 groups is 27 and 54A 3 respectively, this 

gives16:

sphere amjn = 70A 2 
cylinder amjn = 4 7 A2 
bi layer amjn = 23 .5A 2

The values for other chain lengths vary slightly from these because of the 

different fractions of CH3 groups w ithin the micelle interior.

Similarly, the relationship between the volume and the maximum length of 

the linear amphiphilic siloxanes should also, at least in part, determine the 

micelle shapes adopted by these amphiphiles. Employing approximations for 

the maximum length of the amphiphilic siloxanes and the volumes of the 

dimethylsiloxane unit (see section 5.4), lim iting values for the surface area 

per chain may be estimated for these amphiphilic siloxanes. If we aply the
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above relationships to Na1000 at 25°C and assume that the volumes of the 

dimethylsiloxane, CH2 and CH3 moieties are 130A 3, 27A 3 and 54A 3 

respectively, and that the length of Na1000 is 4 7 A, then the lim iting values 

are as follows:

sphere amin = 130A2 
cylinder amin = 86A2 
bi layer a = 4 3 A2

Although these values w ill obviously vary w ith the ratios of the siloxane to 

alkyl chain moieties of these amphiphile and also w ith  the temperature, 

Na1000 should be representative of this series. Thus, for these linear

amphiphilic siloxanes w ith sodium carboxylate polar groups, the observed 

reversed phase structures are qualitatively as expected (i.e. less than the 

bilayer amjn). In addition, the shape of the hydrophobic moiety of these

amphiphiles is not of a uniform cross-section along the length of the chain, 

as is assumed in the above calculations. Indeed, these shapes may be 

visualised as a sort of wedge, w ith the bulky siloxane units furthest away 

from the polar head group. This effect could contribute to a negative 

surface curvature of the non-polar/polar interface of the micelles and thus 

the formation of reversed micelles and reversed phase structures.

The exact surface area per polar group at this interface, and, thus the 

degree of surface curvature of the interface, w ill be dependent on the 

balance between intra-micelle and inter-m icelle forces. The electrostatic 

and steric forces of repulsion between adjacent polar groups w ill tend to 

maximise the area per polar group and thus, minimise inter-m icelle 

distance, w hilst the inter-m icellar forces of repulsion (also electrostatic 

and steric) would tend to have the opposite effect.
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An additional effect which could be envisaged to be important for the longer 

chain amphiphiles of this series, is the tendency of the siloxane chains to 

coil. This effect would be expected to act so as to minimise inter-m icelle 

distance and increase the area per polar group. However, as the area per 

polar group appears to be essentially independent of siloxane chain length 

(see table 7.5), this factor does not seem to be significant.

As packing constraints dictate the formation of reversed rod-like micelles, 

inter-m icelle repulsive interactions give rise to a hexagonal packing of 

these micelles. Below Tl (i.e. the glass transition of the siloxane chain), it  

is reasonable to assume that the phase is essentially made up of an 

amorphous glass-like continuum, w ith the micelle cores (polar groups) 

distributed in a two-dimensional hexagonal array. Although no attempt was 

made to study the physical properties of these amphiphiles at these low 

temperatures, the macroscopic properties of such a phase would be expected 

to be that of a glassy solid.

Above T l, the Tg of the siloxane continuum presumably results in the 

formation of a flu id-like  amorphous siloxane phase, w h ils t the cores of the 

micelles remain essentially crystalline. Consequently, the ordered, but yet 

also fluid, nature of the hexagonal phase formed by the linear amphiphilic 

siloxanes above Tl but below T4, may be rationalised by this combination of 

an amorphous siloxane continuum and the partially ordered Cn sodium 

carboxylate moieties. Thus, the siloxane chains, which are essentially 

liquid-like above their Tg (T l), give rise to the macroscopic flu id ity  of

these phases, whilst the Cn sodium carboxylates moieties, which

constitute the core of the reversed micelles, maintain the intra and 

inter-m icelle order below the transition to the isotropic liquid.
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With increasing temperature above T1, no transitions were observed before 

approximately 75°C. At this temperature i t  seemed likely that the C]0 alkyl

chains began a process of a step-wise melting (i.e. 12, which occurred over 

a range of temperatures from 67 to 90°C for the different 

amphiphiles/samples). Further increased temperature resulted in a second 

transition in the range 120-150°C (i.e. T3), which is also thought to 

correspond to a stage in the melting of the alkyl chains. The melting of 

these chains did not result in a significant change to the overall phase 

structure.

The fact that the polar groups of the linear amphiphiles apparently retain 

crystalline order, despite their attachment to the bulky siloxane chains, 

may reflect the 'spacer group' effect of the C10 alkyl chains332. This may be 

contrasted w ith the behaviour of long chain soaos in which the non-polar 

chains are of a non-compact branched type and, therefore, do not crystallise. 

In these soaps, the relatively large cross-sectional area of the bulky 

side-chains may also restric t the effic ient packing of the polar 

groups173-175 and, hence, mesophases may result at room temperature. This 

is not the case w ith these linear siloxane-containing amphiphiles, as the 

C10 alkyl chain must effectively decouple the steric and kinetic interactions 

of the polar groups and the siloxane chains, thereby, allowing the 

crystallisation of the polar groups.

Increasing the temperature above the melting of the alkyl chains eventually 

results in the melting of the polar groups themselves. This process of 

step-wise melting is very sim ilar to that occurring in monomeric sodium 

soaps and the cyclic amphiphilic siloxanes (see chapters 2 and 6). For 

Na1000, Nai5oo and Na20oo> the meltln9 the P°1ar groups resulted in the
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formation of the low viscosity isotropic liquid (i.e. T4). This loss of the 

ordered arrangement of micelles, indicating that the inter-m icelle forces 

which maintain the hexagonal arrangement of these micelles w ithin the 

semi-crystalline fluid phases have broken down.

Unlike the longer chain amphiphiles, the melting of the polar groups of N%00

(also T4), and the resulting loss of crystalline order that occurred at this 

transition, did not result in a corresponding loss of the inter-m icelle order. 

Consequently, at T4, N a ^  forms a fused H2 phase rather than the isotropic

liquid formed by the longer chain amphiphiles. As steric and, to a lesser 

degree, electrostatic repulsive forces are responsible for maintaining the 

mutual arrangement of these micelles16, the different behaviour of the 

members of this series of amphiphiles presumably results from the 

differing separations of the strongly interacting micelle cores (i.e. the polar 

groups). That is to say, the inter-m icellar forces arise essentially from the 

polar regions of these molecules and w ith the shortest chain length 

amphiphile, the closer proximity of the polar group is sufficient to maintain 

the order above T4. The fact that unlike the longer chain amphiphiles, N a ^  

forms a mesophase above the melting of the polar groups, indicates that the 

behaviour of this amphiphile is, in this respect, more akin to the behaviour 

of the conventional straight sodium soaps (i.e. in both conventional sodium 

soaps and Na500 inter-m icellar forces are sufficient to maintain some 

inter-m icelle order above the melting of the polar groups). This is perhaps 

not surprising as Na500, which is the shortest chain length amphiphile of 

this series, possesses a molecular structure which is closest to that of the 

conventional monomeric straight chain sodium soaps (i.e. Na500 has the 

addition of approximately 6 dimethylsiloxane units).
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Having obtained an overview of the thermotropic phase behaviour of this 

series of amphiphiles, the effects of repeated heating and cooling a sample 

of N%00 between 25 and 280°C were investigated. Whilst the thermogram

obtained on the in itia l heating of this amphiphile was characterised by three 

f irs t order endothermic transitions in this range, the reheating was 

characterised by a maximum of two exothermic transitions (see table 7.2). 

The temperature of these transitions seemed to rise w ith each analysis, 

especially so for the lower temperature transition. The replacement of the 

T2 and T3 transitions which occur during the in itia l heating of the sample, 

w ith one higher temperature transition or the absence of a transition during 

reheating, may indicate that a different structural arrangement of the alkyl 

chains is favoured on cooling from the mesophase. The gradual increase in 

the temperature of the T4 transition w ith repeated heating may indicate 

that the polar groups were not in itia lly  tru ly anhydrous and that the 

repeated heating was driving o ff any remaining water. However, i t  is also 

worth noting that the repeated heating of this sample also resulted in a 

2-3% loss m weight and obvious thermal degradation of the sample. Thus, 

either of these effects may explain the modification of the thermal 

behaviour of this amphiphile on reheating.

At this stage, it  is worth contrasting the effects of the respective siloxane 

backbones on the phase behaviour of the linear and cyclic amphiphiles 

studied. In discussing the melting behaviour of the sodium salts of the 

cyclic amphiphiles (see chapter 6), it  was noted that the total heat of 

fusion for each monomer unit of these oligomeric amphiphiles was 

substantially less than that of the corresponding monomeric straight chain 

sodium soaps. It was concluded that the reduced melting enthalpy was 

primarily associated w ith a disruption of the packing of the hydrocarbon
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chains of the cyclic amphiphiles as a result of the attachment of 

amphiphiles to a relatively rigid siloxane ring.

A sim ilarly reduced enthalpy of fusion has been noted for the linear 

amphiphilic siloxanes. Here, the disruption of the packing of the C10 alkyl

chains may be qualitatively understood by the size of the repeat units of the 

linear dimethylsiloxane chain and, possibly, also some influence of the 

motions of this very flexible backbone. On the other hand, the repeat unit of 

the oligomeric methylsiloxane ring is not so large or so flexible. Hence, the 

detailed mechanism by which the crystalline packing of the alkyl chain is 

disrupted may not be identical in these different classes of 

siloxane-containing, amphiphiles.

7.2.1.3 Conclusions

Although this was not an exhaustive study of the thermotropic behaviour of 

these linear amphiphiles, the following general conclusions may be drawn:

1. The well established principles explaining the phase behaviour of 

conventional amphiphiles seem to be generally applicable to the 

rationalisation of the phase behaviour of these novel amphiphiles.

2. As these principles dictate, the non-polar and polar moieties of 

these amphiphiles tend to aggregate to form micelles in the neat 

state. The driving force for this aggregation w ill be the enthalpic 

contribution from the association of the polar groups.

3. Due to the molecular structure of these amphiphiles (i.e. packing 

constraints), the structure of these micelles appears to be that of a 

reversed rod-like micelle.

4. The steric repulsive forces between the polar cores of these 

micelles result in a two-dimensional hexagonal arrangement of the
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micelles, and thus, the formation of hexagonal phases.

5. Within these phases, the siloxane chains form an amorphous 

continuous phase. Thus, below the Tg of the siloxane chains (i.e. below 

T 1), the properties of these phases would be expected to be those of a 

solid, whilst above the Tg, the properties of these phases are known 

to be those of an ordered fluid.

6. Whilst the siloxane continuous phase is amorphous, the Cn sodium

carboxylate groups maintain some crystalline order at temperatures 

below the melting of the polar head groups (i.e below T4). 

Consequently, below T4, the flu id phases of these amphiphiles may be 

considered to be semi-crystalline.

7. Above room temperature, the C10 alkyl chains undergo a two stage

melting process, T2 and T3. This process is analogous to in itia l 

stages in the step-wise melting of conventional monomeric straight 

chain sodium soaps. The complete melting of the alkyl chains does 

not result in a significant change in the structure or properties of the 

flu id phases formed by these amphiphiles.

8. The enthalpy changes associated w ith the melting of the C10 alkyl

chains indicates that the attachment of these chains to the siloxane 

backbone reduces their ab ility  to crystallise. This effect may be 

more pronounced for the methylene units closest to the siloxane 

chain, and may be less significant for the methylene units adjacent to 

the crystalline polar groups.

9. At around 250°C, the polar groups of these amphiphiles melt. 

Again, this is analogous to the step-wise melting of related 

monomeric amphiphiles.
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10. The melting of the polar groups has a significant effect on the 

behaviour of this series of amphiphiles. For the shortest chain length 

amphiphile (Na500), this transition results in the formation of a 

hexagonal mesophase. For the longer chain soaps (Na1000, Na1500 and 

Na20oo^ this transition gives rise to the low viscosity isotropic 

liquid.

11. As inter-m icellar forces of repulsion are responsible for 

maintaining the mutual order arrangement of micelles, the decreased 

separation of the rod micelles of the shortest chain length amphiphile 

(Na500) maintains the ordered arrangement of these micelles above

the melting of the polar groups. Hence, a mesophase is formed prior 

to the formation of the low viscosity isotropic liquid. This is 

analogous to the behaviour of the conventional straight chain sodium 

carboxylates, lo which Na500 is sim ilar in terms of molecular 

structure.

12. The relative increased separation of the sodium carboxylate groups 

of the longer chain length amphiphiles (Na1000, Na1500 and Na2000) 

reduces the inter-m icelle forces of repulsion and, hence, these 

amphiphiles form the isotropic liquid once the polar groups have 

melted.

13. The fact that these linear amphiphiles undergo a number of 

transitions which are very sim ilar to those occurring in the cyclic 

amphiphiles discussed in chapter 6, reflects the contribution of the 

Cn sodium carboxylate amphiphilic units, which are common to both

types of amphiphile, in determining the phase behaviour of these 

novel amphiphiles.
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7.2.2 The Calcium Salt of the Shortest Chain Length Amphiphile

7.2.2.1 Results

7.2.2.1.1 Polarising Optical Microscopy

A film  of the calcium salt of the shortest chain length amphiphile (figure 

7.1, x=4.0; Y=1/2Ca; hereafter referred to as C a ^ ) was examined under the 

microscope in the temperature range 0-500°C. This material existed as a 

birefrinqent viscous flu id at 0°C. This flu id phase exhibited a 

non-geometric texture and an intermediate viscosity typical of an hexagonal 

phase (see figure 7.14).

Figure 7 14Optical texture of the flu id Direfnngent phase of Ca500 at 50°C.
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On heating, a gradual decrease In viscosity and a gradual increase in the 

birefringence of the phase was observed, although no obvious phase 

transition occurred up to the transition to the low viscosity isotropic 

liquid at approximately 450°C. It was not possible to be accurate about the 

temperature of this transition because of the severe thermal degradation of 

the sample.

7.2.2.1.2 Differencial Scaning Calorimetry (DSC)

A thermogram was recorded on the heating of a previously unmelted sample 

of Ca500 between -160°C and 500°C. This thermogram was characterised by

three transitions (hereafter denoted as T l, T2, and T3, in order of 

increasing temperature) and a final large exothermic transition, believed to 

correspond to the onset of thermal degradation. Tl was second order, w hilst 

T2 and T3 were f irs t order transitions. Figure 7.15 shows a representative 

thermogram for Ca500, w hilst table 7.6 summarises the results of this 

analysis. No cooling or repeated heating analyses were carried out.

TRANSITION TRANSITION TEMPERATURE (° C )  AND CORRESPONDING CHANGES 
IN ENTHALPY (K J .m o l-1)  AND SPECIFIC HEAT CAPACITY 
t u . g - ' . K - ' )

T l -120 ( * )
T 2 7 0  ( * )
T 3 4 5 8  ( 5 4 )

note -  *  indicates that although a tran s itio n  was observed, the signal was v e ry  broad and, 
there fo re , it was not possible to accurate ly  evaluate the enthalpy change o ccu rrin g ; hence, 
the trans itio n  tem peratures quoted are  approxim ate.

-  the M n of Casoo is an approxim ation based on the M n of Nasoo from  w hich i t  was prepared.

Table 7.6 The transition temperatures and corresponding enthalpy changes 
(in parentheses) observed during the in itia l heating of a sample of 
Ca5oo from -160 to 500°C, at a heating rate 10°C.min-1.
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Figure 7.15 Thermograms of a previously unmelted sample of Ca50o which 
has been dried over P205 at 100°C for 24 hours, and heated from 
-160 to 0°C and 0 to 500°C at a heating rate of 1 0°C.min_1.

7.2.2.2 p is cusJon

As this was not an in-depth study, the rationalisation of the observations 

made has been carried out w ith particular reference to the behaviour of the 

related linear and cyclic amphiphiles discussed In previous sections. The 

non-geometrlc texture and the intermediate viscosity of Ca500 from 0°C up

to the transition to the low viscosity isotropic liquid at around 458°C, were 

thought to be characteristic of a hexagonal phase16. In the absence of any 

independent supporting evidence (i.e. X-ray diffraction), any interpretation 

of these observations can only be a tentative one. However, considering the
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previous experience w ith the equivalent sodium salt, Na500, it  is proposed 

that the non-geometric texture of Ca500 was indicative of a hexagonal 

phase, and that this phase would be made up of a two dimensional hexagonal 

array of reversed rod micelles (H2), containing the polar groups in a 

non-polar siloxane continuum.

The DSC thermogram obtained during the in itia l heating of Ca500 was

characterised by a second order transition occurring at around -120°C (T l) 

and two f irs t order transitions occurring at 70 and 458°C (T2 and T3, 

respectively). Based on the proposal that Ca500 forms a phase structure

sim ilar to the H2 phase formed by Na500, Tl was believed to be primarily 

associated w ith the Tgof the linear PDMS backbone327(see section 7.2.1.2). 

Thus, the siloxane backbone of Ca500 would be able to rotate and essentially 

be liquid-like above T l, whilst below this transition, the liquid-like 

structure of the polymer would be frozen into a glassy state. The sim ilar 

optical textures and the presence of a common second order transition at 

around -120°C seems to indicate that the behaviour of Ca500 and Na500 was 

indeed very sim ilar, particularly at low temperature.

The absence of a transition between Tl and 0°C, suggested that the flu id 

hexagonal phase of Ca500 was stable to T l. However, at temperatures below

Tl (i.e. the glass transition of the continuous phase), it  seems unlikely that 

the established macroscopic flu id ity  of this amphiphile at 0°C would be 

maintained. It thus follows that below T l, Ca500 would exist as a reversed

hexagonal structure w ith a glass like continuous phase, whose macroscopic 

properties would be that of a glassy solid.
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As a corollary of the proposed amorphous nature of the siloxane continuous 

phase, it  also follows that the structural order w ith in the phases formed by 

Ca500 (i.e. above or below T l)  must primarily entail the Cn calcium 

carboxylate moieties. Hence, the two f irs t  order DSC transitions occurring 

at approximately 70 and 458°C (T2 and T3, respectively) must reflect the 

melting of these Cn calcium carboxylate groups, and the ordered fluid phase

formed by Ca500 at temperatures greater than Tl would appear to be

semi-crystalline. Experience w ith the equivalent sodium salt (Na500) and

the calcium salt of the cyclic amphiphile '(CaD4) would indicate that these

transitions reflect a step-wise melting of the C10 alkyl chains followed by

the polar groups. This step-wise melting is also analogous to the behaviour 

of the conventional monomeric calcium soaps24*149’153*155*166'170 . Whilst 

the melting of the alkyl chains does not result in a significant change in the 

phase structure, the complete melting of the polar groups corresponds to 

the formation of the low viscosity isotropic liquid.

During the study of the sodium salts of the linear and cyclic amphiphiles, it  

was noted that these related molecules underwent a number of sim ilar 

transitions above 0°C; i t  was concluded that this reflected the presence of a 

common Cn sodium carboxylate. Having established that the low 

temperature behaviour of the calcium and sodium salts of the shortest chain 

linear amphiphiles (Ca500 and N a ^ ) were similar, and that this reflects the

presence of a common non-polar moiety, it  was of interest to contrast the 

high temperature behaviour of the calcium salts of the linear and cyclic 

amphiphiles (i.e. Ca500 and CaD4, respectively), which should be determined 

by the presence of the common calcium carboxylate group (see table 7.7).
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TRANSITION TEMPERATURE AND CORRESPONDING ENTHALPY 
( ° C )  ( K J .m o H )

Ca500 CaD^

T2 7 0  ( * ) 1 5 9 ( 1 7 )  T l
T3 4 5 8 ( 5 4 ) 4 7 8 ( 4 2 )  T 2

note -  *  indicates that although tran s itio n  observed, the signal was v e ry  broad and th e re fo re  it  
was not possible to accurate ly  evaluate the enthalpy change occurring  o r the tran s itio n  
tem perature .

Table 7.8 A comparison of the transition temperatures and corresponding 
enthalpy changes (in parentheses) occurring in Ca500 and CaD4

above 0°C.

As can be seen in table 7.7, both the cyclic and linear amphiphile undergo 

two transitions at temperatures greater than 0°C. Whilst there is a 

significant difference in the temperature at which the f irs t  of these 

transitions occur (i.e. 70 and 159°C for Ca500 and CaD4, respectively), the

temperature at which these amphiphiles undergo the transition to the 

isotropic liquid is very similar. This indicates that the high temperature 

behaviour of Ca500 is dominated by the presence of the calcium carboxylate

polar group, and in this respect is sim ilar to that of CaD4. There is a also

significant difference in the enthalpy change per amphiphile of these 

molecules for the transition to the isotropic liquid. However, due to the 

high temperature at which the transition to the isotropic liquid occurs and 

the severe thermal degradation known to be occurring at this temperature, a 

comparison of the enthalpy changes associated w ith these transition may be 

misleading.

Having proposed that the T2 transition primarily represents the melting of 

the C10 alkyl chains of Ca500, it  is of interest to note that the enthalpy
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change involved in this transition was relatively small (see table 7.7). This 

seems to indicate a lack of crystalline order w ithin the alkyl chains of this 

amphiphile. As was thought to be the case w ith the equivalent sodium salt, 

Na500, the steric and kinetic effects of the PDM5 backbone may restric t the 

ability of the C10 alkyl chains to pack, in particular restricting their close 

approach. Further work is required to confirm this proposal.

Unlike the equivalent sodium salt, Ca500 did not form a fused mesophase

following the melting of the polar groups (i.e. T3). This may presumably be 

explained by the high temperature at which this transition takes place 

relative to the sodium salt; The steric and electrostatic interactions 

between fused polar groups must not be sufficient to maintain a mutual 

arrangement of the micelles at such a temperature.

7.2.2.3 Conclusions

Although this was a lim ited investigation of the thermotropic phase 

behaviour of this linear amphiphile, the following general conclusions may 

be drawn:

1. The principles explaining the phase behaviour of conventional 

amphiphiles and the equivalent sodium salt, appear to be generally 

applicable to this novel amphiphile.

2. As these principles dictate, the non-polar and polar moieties of 

Ca500 tend to aggregate to form micelles in the neat state. The 

driving force for this aggregation w ill be the enthalpic contribution 

from the association of the polar groups.

3. Due to the molecular structure of Ca500 (i.e. packing constraints), 

the structure of these micelles appear to be that of a reversed rod.
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4. The steric repulsive forces between the polar cores of these rod 

micelles result in a two-dimensional hexagonal arrangement of the 

micelles, and thus, the formation of a hexagonal phase.

5. Within this phase, the siloxane chains form an amorphous 

continuous phase. Thus, below the Tg of the siloxane chains (i.e. T l), 

the properties of this phase would be expected to be those of a solid, 

w hilst above the Tg, the properties of the phase are known to be that 

of an ordered fluid.

6 . Whilst the continuous siloxane phase is amorphous, the Cn

calcium carboxylate groups maintain some crystalline order up to the 

melting of the polar groups at T3. Below the complete melting of the 

Cn calcium carboxylates (T3), the flu id  phase of this amphiphile may 

be considered to be semi-crystalline.

7. Above room temperature, the C10 alkyl chains appear to undergo a

one stage melting process (T2). This process may encompass all the 

stages encountered in the melting of the alkyl chains of conventional 

monomeric straight chain calcium soaps. This melting of the alkyl 

chains does not result in a significant change in the structure or 

properties of the flu id phase formed by this amphiphile.

8 . The enthalpy changes associated w ith  the melting of the C10 alkyl

chains indicates that the attachment of these chains to the siloxane 

backbone reduces their ability to crystallise. This effect may be 

more pronounced for the methylene units closest to the siloxane 

chain, and less significant for the methylene units adjacent to the 

crystalline polar groups.

9. At around 458°C, the polar groups of these amphiphiles melt and 

the low viscosity isotropic liquid is formed. This is analogous to the
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step-wise melting of related monomeric amphiphiles.

10. The absence of the fused mesophase that occurs above the melting 

of the polar groups of the equivalent sodium salt (i.e. N a ^ ), is 

presumably a consequence of the relatively high temperature at which 

the melting of the polar groups of Ca500 occurs. That is to say, that

the inter-m icellar forces of repulsion responsible for maintaining the 

mutual order arrangement of micelles, are not sufficient to maintain 

this order, at temperatures greater than the melting point of the 

calcium carboxylate polar groups (i.e at approximately 150°C above 

the melting point of the sodium carboxylate groups).

11. The fact that this linear amphiphile undergoes a number of 

transitions which are sim ilar to those occurring in the cyclic 

amphiphile discussed in chapter 6 , reflects the presence of the Cn

calcium carboxylate amphiphilic units, which are common to both 

classes of amphiphile.

12. The fact that the low temperature behaviour of Ca500 and Na500 is

very similar, reflects the influence of the common hydrophobic 

moieties.
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7.3. Lyotropic Phase Behaviour

7.3.1. The sodium salt. Na1QQ0

7.3.1.1 Results

7.3.1.1.1 Polarising Optical Microscopy

Films of Na1000 were prepared by placing samples between a cover-slip and

a microscope slide at room temperature and depressing the cover-slip. As 

has already been discussed, the optical texture of the neat material was 

indicative of a hexagonal phase (see section 7.2.1.2).

Water was then contacted w ith the edge of a sample at 5°C. A fter 10 

minutes the sample was gradually heated up to 100°C. There was no 

evidence of any interaction between the amphiphile and the water in this 

temperature range.

Silicone flu id was also contacted w ith the edge of a sample of this 

amphiphile at 5°C. A fter 10 minutes the sample was gradually heated. 

There was no evidence of any Interaction between the amphiphile and the 

silicone fluid, up to the formation of an isotropic liquid at 249°C.

7.3.1.2 Discussion

7.3.1.21 The Aqueous Phase Behaviour

The overview of the lyotropic phase behaviour of Na1000 afforded by the use 

of the penetration technique269, indicated no interaction between this 

amphiphile and water between 5 and 100°C. Bearing in mind that Na1000

represents a modification of conventional straight chain sodium soaps, 

which are water soluble and known to form a number of lyotropic 

mesophases w ith water (see chapter 2 ), this is at f irs t,  a surprising 

observation. However, a consideration of the conclusions drawn from the
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study of the thermotropic behaviour of this amphiphile, may assist in 

proposing a possible explanation for this behaviour, based on the phase 

structure formed by Na,000 in the neat state.

The molecular structure of Na1000 (i.e. the size and nature of the

dimethylsiloxane chain) results in the formation of reversed rod micelles in 

the neat state. The packing of these micelles results in the formation of a 

two dimensional reversed hexagonal phase, in which the siloxane chains 

constitute the continuous phase. Hence, the existence of a non-polar 

continuum can be envisaged to lim it the water solubility of this amphiphile, 

and results in the observed absence of any amphiphlle/water interaction.

7.3.1.2.2 The Non-Aaueous Phase Behaviour

The overview of the phase behaviour of the Na1000/silicone oil system

between 5 and 300°C was obtained using the penetration technique. The 

observations resulting from this technique indicated no interaction of the 

amphiphile and the solvent w ith in the temperature range studied (i.e. at a 

temperature below the transition to the low viscosity isotropic liquid at 

249°C).

Previous studies of mixtures of anionic amphiphiles and non-polar 

hydrocarbon solvents131' 151’201" 205 have indicated that crystalline anionic 

amphiphiles show very l i t t le  solubility in hydrocarbons at room temperature 

due to the very strong bonding between the polar groups. The solub ility  of 

these soaps increases w ith temperature, the rate of increase depending on 

the soap and the solvent. As was discussed in chapter 2, these‘Crystalline 

anionic amphiphiles undergo a step-wise melting process, in which the alkyl 

chains and then the polar groups melt. Over the intermediate temperature
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range, a lim ited amount of the non-polar solvent may dissolved in the 

disordered hydrocarbon regions of the soap, while the polar groups retain 

their crstalline order206*207. Where the soap undergoes a thermotropic 

transition to a mesophase, complete solubility of this soap in non-polar 

solvents at temperatures above this transition is also thought to 

occur148*333. Bearing these observations in mind, the lim ited solubility of 

Na100o to ^ e  non-polar solvent is perhaps not surprising, as the reverse 

hexagonal structure proposed for Na1000 below the transition to the low 

viscosity isotropic liquid is thought to be semi-crystalline (see section 

7.21.2). Thus, the limited solubility of Na1000 may be due to the strong 

bonding between the polar groups.

7.3,2 The Calcium Salt. Ca50Q

7.3.2.1 Results

7.3.2.1.1 Polarising Optical Microscopy

A film  of CagQQ was prepared by placing a sample between a cover-slip and a

microscope slide at room temperature and depressing the cover-slip. As has 

been discussed, the texture of the phase observed, was indicative of a 

hexagonal phase (see section 1222).

Water was then contacted w ith the edge of the sample at 5°C. A fte r 10 

minutes, the sample was gradually heated up to 100°C. There was no 

evidence of any interaction between the amphiphile and the water in this 

temperature range.

Penetration experiments using a non-polar solvent were not carried out.
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13.22 Discussion

Again, the overview of the lyotropic phase behaviour of the 

amphiphlle/water system between 5 and 100°C was obtained using the 

penetration technique. Within this temperature range, no interaction of the 

solvent and the amphiphile was evident. As was the case w ith the aqueous 

lyotropic behaviour of Na1000, the lim ited water solubility of Ca500 may be 

explained w ith reference to the thermotropic phase behaviour of this 

amphiphile (see section 1222).

As a result of the molecular structure of the amphiphile, the structure of 

the micelles formed by C a ^  in the neat state is believed to be that of a

reversed rod micelle. Thus, the packing of these micelles results in a 

two-dimensional hexagonal arrangement in which the siloxane chains 

constitute the continuous phase. Hence, as was the case w ith the sodium 

salt discussed previously, the lim ited water solubility of C% 00 may be

rationalised w ith reference to the non-polar nature of the continuous phase, 

in addition to the strong forces of attraction between adjacent polar groups.
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CHAPTER 8. THERMOTROPIC PHASE BEHAVIOUR OF THE CYCLIC

NON-AMPHIPHILIC S1LOXANFS

8.1 Introduction

The cyclic non-amphiphilie siloxanes consisted of the cyclic tetramer or 

pentamer methylsiloxane backbone, to which a conventional non-amphiphi 1 ic 

mesogenic moiety (4'-methoxyphenyl 4-oxybenzoate) was attached at each 

of the silicon atoms of the siloxane ring, via an alkyl chain of three, five or 

six methylene units. The structures of these materials is shown below:

ch3

— f—Si-O-3—x- 

(CH2)Y
I J L  w here x =  4 and Y= 3 ,5 ,6
0  - O ^ ~ C 0 2 “^ ^ “ 0 C H 3  x =  5 and Y= 3 ,5 ,6

Figure 8.1 The cyclic non-amphiphilic siloxanes (hereafter referred to as 
DXCV, indicating the number of siloxane units in the backbone (Dx) 
and the number of methylene units in the spacer group (CY)).

Although a great deal of work has been published on the thermotropic phase 

behaviour of linear non-amphiphilic side-chain p o ly m e r s 6 4 ’7 3 *8 1 '8 2 -8 4 ’8 9 ’9 2 * 

9 4 ,9 6 -1 0 0 ,2 4 6 ,2 7 1 ,3 3 2 ,3 3 4 -3 4 9   ̂ including siloxanes, relatively l i t t le  work has 

been carried out on the corresponding cyclic systems (see chapter 1). 

Hence, in addition to the characterisation of the cyclic and linear 

amphiphiles which formed the major subject of this thesis (see chapters 6 

and 7), the study of these cyclic non-amphiphilic siloxanes was thought to 

be a valuable supplement to this work. The main prio rity  here was to gain 

an overview of the thermotropic phase behaviour of these novel cyclic 

oligomers, and then contrast this behaviour w ith that of the equivalent 

linear side-chain polymers64'99. This overview of phase behaviour was
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obtained using a combination of DSC and optical microscopy as outlined in 

chapter 5.

As was discussed in chapter 1, the thermotropic phase behaviour of linear 

side-chain non-amphiphilic polymers is very much dependent upon the 

nature of the mesogenic moiety64*334, the repeat unit of the polymer 

backbone334*337*341, the degree of polymerisation64*349 and, where 

appropriate, the spacer group used to covalently couple the backbone and the 

mesogen together99*271*332*334. Consequently, the study of these novel 

cyclic oligomers may result in some additional understanding of the effects 

on thermotropic phase behaviour of:

- polymer fixation of non-amphiphilic mesogens

- variation in the DP of such side-chain structures

- the nature of the backbone itse lf

8.2 Results

8.2.1 Polarising Optical .Microscopy

The in itia l microscopy of samples of the cyclic non-amphiphilic tetramer 

and pentamer w ith alkyl chain spacers of three methylene units (figure 8 .1, 

x=4 and 5, Y=3; hereafter referred to as D4C3 and D5C3, respectively) was

characterised by one optical event, which was the transition from an opaque 

solid to a viscous isotropic liquid at 24 and 20.5°C, respectively. As the 

temperature was increased the viscosity of this phase gradually decreased.

The in itia l microscopy of samples of the cyclic siloxanes w ith  alkyl chain 

spacers of five and six methylene units (figure 8.1, x=4 and 5, Y= 5 and 6 ; 

hereafter referred to as D4C5, D5C5, D4C6 and D ^ ,  respectively) was 

characterised by two optical events (see table 8.1). These events were, the
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transition from an opaque solid to a birefringent mesophase and the 

transition to the low viscosity isotropic liquid.

Sample Transition Temperatures (°C  )

Initial heating Secondary heating of thin sample films

Initial softening Loss o f birefringence Initial softening Loss o f biref ringence

° 4 C3 2 4 not applicable 21 not applicable

d5 c 3 20 .5 not applicable 17 not applicable

d 4 cS 11 9 2 .5 10.5 92 .5

O5C5 21 .5 116.5 19.5 117

O4C6 10 9 9 .5 9 .5 100

° 5 C6 9 8 5 .5 7 .5 85

Table 8 . l Transition observed under microscope during the in itia l and 
secondary heating of this series of non-amphiphilic siloxanes.

Whilst i t  was d iff ic u lt to assign a texture at low temperatures, the 

mesophases exhibited a bright texture which was more characteristic of a 

schlieren pattern at temperatures just below the transition to the isotropic 

liquid. The viscosity of these mesophases decreased as the temperature 

increased, and at temperatures just below the transition to the isotropic 

liquid was sim ilar to that of the higher temperature low viscosity isotropic 

liquid. Thus, at temperatures about 10°C below the respective transitions 

to the isotropic liquid, the relatively low viscosity, the flickering 

birefringence and the textures were characteristic of nematic mesophases.

Films of all these materials were then prepared by placing samples between 

a cover-slip and a microscope slide, heating to about 10°C above the 

respective transitions to the isotropic liquids, and cooling slowly to room
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temperature. Microscopy of these film s indicated a non-birefringent solid 

phase for D4C3 and D5C5, and a birefringent solid phase for D4C5, D5C5, D4C6 

and D5C6. The texture of the birefringent solids were not characteristic of

any one pattern, possible due to a very fine structure. As the temperature 

was increased, the depression of the cover-slip indicated a softening of all 

these sample film s (see table 8 . 1). This softening was not accompanied by 

an obvious change in the optical texture of the samples, i.e. for D4C3 and 

D5C3 there was a transition to the viscous isotropic liquid, and for D4C5, 

D5C5> D4C6 and D5C6 there was a transition to a viscous birefringent liquid. 

On further heating there was a gradual decrease in the viscosity of all these 

materials, and a final transition to the low viscosity isotropic liquid for

^4C6 ancl ^5^6'

At temperatures just above the softening of the samples, the textures were 

not characteristic of any particular phase. However, as the temperature 

approached the transition to the isotropic liquid, the textures became more 

recognisable as characteristic schlieren patterns. It should be emphasised 

that as the temperature increased no mesophase-mesophase transitions 

were identified. Hence, although the textures observed at low temperatures 

were ambiguous, the patterns obtained at higher temperatures and the 

shimmering birefringence were thought to be indicative of the structures 

observed at lower temperatures.

Finally, fresh samples of D4C5, D5C5, D4C6 and D5C6 were prepared by cooling

from the low viscosity isotropic liquid to approximately 10°C below the 

mesophase to isotropic liquid transition. These were then annealed at this 

temperature for 2 hours to allow textures to develop (figures 8.2 to 8.5).
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Figure 8.2 Schlieren texture of the birefringent mesophase of D4C5 at 82°C.

Figure 8.3 Schlieren texture of the birefringent mesophase of D5C5 at 107°C.



Figure 8.4 Fine schlieren texture of the mesophase of D4C6 at 89°C.

Figure 8.5 Schlieren texture of the birefringent mesophase of D5C6 at 75°C.
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8.2.2 Differentia) Scanning Calorimetry (DSC)

Thermograms were in itia lly  recorded during heating cycles w ith a heating 

rate of 10°C.min"1. These thermograms were characterised by up to 3 

transitions (hereafter denoted as T 1, T2, and T3, in order of increasing 

temperature). T1 was always a second order transition, w hilst T2 and T3 

were f irs t  order. Although not all the members of this series exhibited the 

same number of transitions, for ease of reference and discussion the 

transitions have been arb itra rily  categorised on the basis of their 

temperature of occurrence (i.e. the lowest and highest temperature 

transitions were referenced T1 and T3, respectively; and, where 

appropriate, the transition occurring at an intermediate temperature was 

referenced T2). Figures 8.6-8.11 show the thermograms obtained, w hilst 

table 8 .2  summarises the results of these analyses.

SAMPLE

i

TRANSITION TEMPERATURE (°C ) AND THE CORRESPONDING CHANGES 
IN ENTHALPY (K J .m o r1) OR SPECIFIC HEAT CAPACITY (J/G .K)

T1
[K /J .g - ’ . r 1]

T2
[K/KJ.mol- 1 1

T3
[K /K J.m ol- 1 ]

' D4C3 2 3 /0 .3 8 <--------- not apl icable -------------------- >

| d 5 c3 1 7 /0 .3 2 <--------- not apl icable -------------------- >

d 4 c5 8 /0 .2 8 * 4 5 8 9 /1

d5 c 5 *  19 3 9 /2 112/2

D4C6 8 /0 .2 8 not applicable 9 2 /1

1 d5 c6 7 /0 .2 0 not applicable * 7 5

note -  *  although tran s itio n  was observed, no evaluation of the enthalpy change o ccu rrin g  was 
carried  out. Hence, the tran s itio n  tem peratu res  quoted a re  approxim ate.

Table 8.2 The transition temperatures and corresponding changes in 
enthalpy or specific heat capacity observed during the heating of 
the non-amphiphilic cyclic siloxanes at a heating rate lOC.min-1.
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Figure 8 .6  Thermogram obtained on heating a sample of D4C3 from -30 to 
200°C at rate of 10C.min.-1
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Figure 8.7 Thermogram obtained on heating a sample of D5C3 from -30 to
200°C at rate of looc.min.-1
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Figure 8 .8  Thermogram obtained on heating a sample of D4C5 from -80 to 
150°C at rate of IQoC.min.-1
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Figure 8.9 Thermogram obtained on heating a sample of D5C5 from -30 to
130°C at rate of 10°C.min.-1
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Figure 8.10 Thermogram obtained on heating a sample of D4C6 from -20 to 
130°C at rate of lO°C.min. - 1
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Figure 8.11 Thermogram obtained on heating a sample of D5C6 from -20 to
130°C at rate of lOoC.min.-1
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Thermograms were then recorded on cooling the above samples of D4C5 and

D5C5 from 140 to -30°C at 10°C.min'1. The thermograms were characterised

by up to two transitions (hereafter, denoted as T 1c and T2C, in order of

increasing temperature). T lc was a second order transition, w h ils t T2C was a

f irs t order endothermal transition. Figure 8.12 shows the thermograms 

obtained, w h ilst table 8.3 summarises the results of these analyses.

SAMPLE TRANSITION TEMPERATURE (°C ) AND THE CORRESPONDING CHANGES 
IN ENTHALPY (KJ.mol- 1 ) OR SPECIFIC HEAT CAPACITY (J/G .K)

T1c
[°c / J . g - h r 1]

T2C
[OC/KJ.mol-1 ]

0 0 cn 2 /0 .3 5 86/2

d 5 c 5 1 /0 .2 9 1 1 1 / 3

Table 8.3 The transition temperatures and corresponding changes in 
enthalpy or specific heat capacity observed during the cooling of 
D4C5 and D5C5 at a rate lOoC.min-1.

0
0
Li£3H<rctId
tLTIdH

Figure 8 . 1 2  Thermograms obtained on cooling a) D4C5 and b) D5C5i
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8.3.Discussion

Optical microscopy Indicated that D4C3 and D5C3 soften from an Isotropic 

solid to a viscous isotropic liquid at 21 and 17°C respectively, and that the 

viscosity of the isotropic liquid gradually decreased w ith increasing 

temperature, The thermograms obtained during the heating of D4C3 and D5C3

were characterised by one second order transition only (i.e. T1). Bearing in 

mind the different nature of DSC and optical techniques, the temperature of 

T! corresponded to the optical observation of the softening of these 

samples (see tables 8.1 and 8.2). Thus, the results of the DSC and optical 

studies of D4C3 and D5C3 were in general agreement, and it  was concluded 

that both D4C3 and D5C3 are isotropic in the solid and the liquid states.

Unlike D4C3 and D5C3, optical microscopy of D4C5, D5C5, D4C6 and D5C6

indicated the formation of a mesophase prior to the transition to the low 

viscosity isotropic liquid. The temperature at which these birefringent 

fluid phases formed depended upon the individual species, but was in the 

range 7.5 to 21°C (see table 8.1 for transition temperatures). Although the 

viscosity of these birefringent phases gradually reduced w ith  increasing 

temperature, no mesophase-mesophase transitions were identified. The 

schlieren texture, the shimmering birefringence and the low viscosity of 

these mesophases-at least at temperatures just below the transition to the 

low viscosity isotropic liquid-were characteristic of nematic mesophases 

(see figures 8.2-85).

The thermograms obtained during the heating of D4C5 and D5C5 were

characterised by three transitions. The transitions observed at the lowest

and the highest temperatures (I.e. T1 and T3) corresponded to the optical
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observations of the in itia l softening of the samples and the formation of the 

isotropic liquid, respectively. However, the remaining DSC transition, T2, 

did not correspond to any optical event. This, and the low enthalpy change 

involved, would seem to indicate that T2 corresponds to a relatively minor 

change in the structural order within the samples. It should also be noted 

that the exothermic nature of T2 indicates a disorder-order transition. The 

occurrence of such a transition w ith increasing temperature suggests that 

the lower temperature phase may not be the thermodynamically preferred 

structure, and is metastable.

The thermograms obtained during the cooling of D4C5 and D5C5 gave only two 

transitions, T1cand T2C. As the temperature and nature of T1 and T1C were

similar, and optical microscopy had demonstrated the reversib ility of the 

solid to mesophase transition, it  seems reasonable to suggest that these 

thermal events correspond to the same solid-mesophase transformations. 

As the temperature of the T2C transition was sim ilar to that of the highest 

temperature transition observed during the DSC heating (i.e. T3) and the 

optical observation of the transition to the isotropic liquid, i t  is reasonable 

to propose that this transition corresponds to the isotropic 

liquid-mesophase transition.

Although it  should not be considered as conclusive evidence, the fact that no 

transition corresponding to T2 was observed on cooling, supports the 

proposition that T2 represented a transition from a metastable phase. Such 

a phase may have resulted from a cooling of the samples before the 

molecular segments had time to adopt the thermodynamically preferred 

spatial arrangement (e.g. the cooling of the samples following the original 

purification and vacuum drying; see chapter 4). in common w ith the
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reported behaviour of a linear side-chain polysiloxane344, T2 may therefore 

be due to a 'cold crystallisation' occurring during the DSC heating analysis. 

It is, however, interesting to note that there is l i t t le  super-cooling of 

either isotropic-mesophase or mesophase-solid transitions. This would not 

seem to be in line w ith the proposal that kinetic effects are important at 

the heating and cooling rates employed.

The thermograms obtained during the heating of D4C6 and D5C6 were

characterised by two transitions. The low temperature second order 

transition (T l) corresponds to the optical observation of the in itia l softening 

of the samples. The higher temperature transition (T3) was at a lower 

temperature than the optical observation of the transition to the low 

viscosity isotropic liquid, particularly so in the case of D5C6. At this stage, 

no explanation for this discrepancy can be proposed. This, and the 

observation of a relatively broad transition for T3 of D5C6 (~30K peak 

width) may warrant further investigation.

Unlike D4C5 and D5C5, the thermograms of D4C6 and D5C6 did not exhibit an

exothermic transition at temperatures between T l and T3. At this stage, 

this different phase behaviour for related molecules w ith  nominally the 

same thermal history cannot be fu lly  explained. However, i f  T2 corresponds 

to a cold crystallisation of D4C5 and D5C5, then the Increased length of

spacer in D4C6 and DgCg may result in more flexible segments which are able 

to adopt the thermodynamically preferred spatial arrangements at higher 

cooling rates than D4C5 or D5C5.
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This difference withstanding, the overall behaviour of this series of 

materials may be summarised as follows:

- D4C3 and D5C3 are amorphous solids at low temperature and undergo 

a glass transition to a viscous isotropic liquid

- D4C5, D5C5, D4C6 and D5C6 exist as ordered solids at low temperature

and undergo a step-wise melting, via the nematic mesophase, to a low 

viscosity isotropic liquid.

In attempting to rationalise the behaviour of these novel cyclic systems, it  

may be useful to briefly review the behaviour of linear non-amphiphilie 

side-chain systems, in particular the oligomeric and polymeric siloxanes.

The modification of the phase behaviour of monomeric mesogens following 

fixation to a linear polymeric backbone has been explained by the 

application of model considerations and w ith the 'spacer group' concept as 

originally proposed by Finkelmann et aL.64.332,334 ^s we have seen jn 

chapter 1, if  rod- or disc-type mesogens are attached to a polymer backbone 

as side-chains, two extreme cases are possible; direct attachment of the 

mesogen to the backbone or attachment via a long 'spacer' group64-73 (see 

figure 1.11, page 25). In the former case, the tendency of the polymer 

backbone to adopt a sta tistica l distribution of possible chain conformations 

above the Tg tends to result, except in a few cases81-82-84, in a disruption of

any parallel alignment of the mesogen. Thus in most cases, only isotropic 

polymer melts are observed, or solid polymers w ith an anisotropic structure 

which is irreversibly lost i f  the polymer is heated above its  Tg. Where the

mesogen is fixed to the polymer via a long spacer group, the presence of this 

group decouples the motions of the mesogens and the backbone. Thus, in a 

manner analogous to that of their small molecule equivalents, a
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mesomorphic arrangement of such polymer-bound mesogens is feasible64. In 

line w ith  these model considerations, it  also follows that the longer the 

spacer group, the greater the decoupling of any mesogen-backbone 

interactions. Consequently, the variation of the length of the spacer group 

can also influence the type of ordering of the mesogens in side-chain 

polymers64 With short-chain spacers, no positional ordering of the centres 

of gravity of the mesogens is possible and the nematic and cholesteric 

phases result. With long-chain spacers, greater positional ordering of the 

mesogens is possible, and the smectic phases may occur.

With reference to these model considerations, Finkelmann's" study of 

linear side-chain siloxanes which incorporated the same mesogen as that 

being employed in this research, is of particular relevance. The details of 

the polymers studied in this work and the corresponding phase transitions 

have been given in figure 8.13 below.

CH3 [Pt] CH3

(CH3 )3 -(S1-0)x-(CH3 )3 + CH2=CH-(CH2)n_2-R - »  (CH3 )3-(S i-0)x-(CH3 )3

H (CH2 )n_2 R

1. 2. 3. w h ere  x ~  5 0

n R Phase transition temperatures(°C)

monomer (2 .) polymer ( 3 . )

a 3 k 8 9  i g 15 n 61 i

b 4 0 -0-C O 2-<O>OCH3 k 8 7  i g 15 n 9 5  i

c 5 k 9 0  i k 8 7  n 1 1 5  i

d 6 k 6 3  i g 15 s 4 6  n 1 1 2  i

( w here g = glassy; k = c ry s ta llin e ; i = iso tropic; n= nem atic; s= sm ectic)

Figure 8.13 The structure and phase behaviour of the non-amphiphilic linear
siloxanes studied by Finkelmann f i a ! "



From this work, it  was concluded that a spacer length of three methylene 

units (i.e. figure 8.13, structure 3a) was suffic ient to decouple the motions 

of the linear polysiloxane backbone from those of the mesogen. With the 

degree of orientational and positional freedom afforded by this relatively 

short spacer group, this polymer formed a nematic mesophase. With spacer 

groups of four and five methylene units (i.e. figure 8 .8 , structures 3b and 3c) 

sim ilar phase behaviour was observed, although the transition temperatures 

and range of mesophase stabilities were different. With a spacer group of 

six methylene units (figure 8 .8 , structure 3d), the efficiency of the spacer 

group was such that the mesogens attained some degree of both positional 

and orientational ordering, which resulted in a smectic mesophase.

It is interesting to note that the glass transition of all these side-chain 

polysiloxanes occur at significantly higher temperatures than the parent 

linear siloxane backbone (c.f. -125°C for linear polydimethylsiloxanes327).

This results from the steric hindrance of the bulky side-chain mesogens 

which leads to a decrease in the mobility of the polymer segments64*334. 

Conversely, the Tg of these side-chain mesogenic polymers decreases w ith

increasing length of the spacer group; reflecting a decrease in the 

interactions between the mesogens and the backbone w ith increasing length 

of the spacer group64*334.

Unlike the linear side-chain polysiloxane incorporating a spacer group of 

three methylene units, the cyclic oligomers, D4C3 and D5C3, were not

mesomorphic. However, as is the case w ith linear side-chain polysiloxanes 

incorporating spacer groups of 5 and 6  methylene units, the corresponding 

cyclic oligomers, D4C5, D5C5, D4C6 and D5C6, were mesomorphous. These

274



observations confirm that the use of suitable spacer groups w ill decouple 

the motions of the mesogen from those of a cyclic tetrameric and 

pentameric backbone. Thus, the model considerations applied to linear 

side-chain polymers are, at least in part, also applicable to these 

oligomeric cyclic systems. The facts that D4C3 and D5C3 did not form a

mesophase whilst their linear counterparts did, and that D4C6 and D5C6

formed a less ordered mesophase than the equivalent linear polymer (i.e. 

nematic as opposed to smectic), indicates that the spacer group has to be 

more effective to decouple the motions of this mesogen from those of the 

oligomeric cyclic siloxanes, than is the case w ith a linear polysiloxane.

To explain the different phase behaviour of these linear and cyclic 

systems,it is necessary to consider the structural differences between 

them. As the mesogens and the spacer groups are common to both, the 

different behaviour must be primarily due to:

- the cyclic and linear nature of the respective backbones

- their degrees of polymerisation (i.e. DP = 4 and 5 for the cyclic 

systems, as opposed to a DP ~ 50 for the linear backbone)

- the polydispersity of the respective cyclic and linear backbones.

Considering the possible effects of the cyclic nature of the backbone, we 

may be guided by our previous study of cyclic amphiphiles (see chapter 6 ). 

From this, i t  was concluded that the relative rig id ity  of a oligomeric cyclic 

siloxane may have an adverse effect on the free motions of side-chains 

attached to it. In linear systems, it  is the tendency of the backbone to adopt 

a statistica l distribution of chain conformations that restricts the 

alignment of mesogens which are attached to i t  directly, or via a short 

spacer group64*332. In these oligomeric cyclic systems, the backbones are,
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due to ring strain, much more rigid than the linear backbones327. Hence, 

although the siloxane ring imposes significant restrictions on the 

orientational and positional freedom of any mesogens that are attached as 

side-chains, this is due to the spatial arrangement of the axial bonds around 

the rigid ring. If we consider this, and the fact that there w ill be a number 

of geometric isomers for both the tetrameric and pentameric species (see 

figure 6.14), i t  is not surprising that the attachment of a mesogen by a 

short spacer group of three methylene units, or less, is insufficient to allow 

the mesogens to orient themselves. The existence of a number of geometric 

isomers w ith non-compact structures may also explain the amorphous 

nature of D4C3 and D5C3 in the solid phase (i.e. an inability to crystallise).

For D4C5, D5C5, D4C6 and D5C6, the effect of the longer spacer groups is such 

that the mesogens can align. Concomitant w ith an increase in the 

decoupling of the motions of the bulky side-chains and the backbone, the Tg

of these molecules should be lower than D4C3 and D5C3, due to an increase in 

segmental movement. Disregarding the transition temperatures observed 

for D5C5 which seem anomalously high w ith respect to those of the other 

molecules of this series, this appears to be the case (i.e. the Tg of D4C5, 

D4C6 and D5C6 is indeed lower than that of D4C3 and D5C3; see table 8.2).

As noted earlier, the second major difference between the cyclic systems 

studied here and the linear polymers studied by Finkelmann is their degree 

of polymerisation. In a systematic study of the effect of DP, Stevens 

a t349 prepared polydisperse samples of the following side-chain linear 

siloxanes:

276



5i-(C H 3)3

0

0i
5i-(C H 3)3 where y = 3 or 6andx ranges from 1 to 100

These mixtures were separated by gel permeation chromatography into 

monodisperse oligomers of defined DP. The phase behaviour of these 

oligomers was then determined. For both systems (i.e. y=3 and 6 ) the same 

characteristic behaviour was observed (see figure 8.14).

isotropic
380

360
360isotropic340Jr
340

*  320- 

3 0 0 -

nematic320nematic
300

smectic2801-
280glassy glassy

2601- / 260* 100100
rr

Figure 8.14 The phase behaviour of the monodisperse oligomeric siloxanes 
as a function of degree of polymerisation.

Derivatives w ith a DP = 1 and 2 were non-mesomorphous, w h ils t derivatives 

with a DP i  3 were. Of the la tte r grouping, the polymers and oligomers w ith 

a spacer group of three methylene units (y=3) exhibited a nematic 

mesophase, whilst those w ith a spacer group of six methylene units (y=6 )
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had an additional low temperature smectic phase. For both y= 3 and 6  all 

phase transition temperatures increased sharply w ith an increasing DP, up 

to a DP of 10. At a s t i l l  greater DP, the transition temperatures became 

constant. This behaviour has been observed for a range of linear polymers 

and has therefore been established as a general principle334. Often a change 

from the nematic to the higher order smectic phases is also observed. This 

'stabilisation' of the mesomorphous state following polymerisation, has 

been explained by the restriction of the translational and rotational motions 

of the mesogens when they are attached to the polymer backbone64*334, 

and/or a reduction in specific volume following polymer fixation86 (i.e. an 

increased packing density).

Applying these considerations to the cyclic oligomers studied here, it  would 

be reasonable to expect that the transition temperatures would increase as 

a function of DP. From the data presented here for cyclic tetramers and 

pentamers w ith 3, 5 and 6  methylene spacer groups, it  is d iff icu lt to 

propose a relationship between the DP and transition temperatures. 

Accepting that the results for D5C5 are anomalously high, the relationship

between Tg and DP in D4C3 and D5C3 and in D4C6 and D5C6 is, If anything, the

reverse of that established for linear polymers. There is, however, no 

pattern for the nematic-isotropic transitions.

Whilst further work would be required to investigate the effect of DP, i t  is 

worth noting that increasing the DP of these oligomeric cyclic siloxanes 

decreases ring strain, which in turn increases the fle x ib ility  of the cyclic 

backbone and would be expected to decrease Tg327. Thus, unlike linear

side-chain polymers, th is increase in the f le x ib ility  of the backbone may

give rise to a sh ift in the transitions of side-chain cyclic oligomers and
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polymers to lower temperatures w ith increasing DP. A sim ilar relationship 

has been observed in linear side-chain systems, w ith an increase in the 

length of the spacer group89-99-337, w ith a more flexible polymer64-341, and 

w ith the incorporation of non-substituted monomer units64-334-341; these all 

act to increase the fle x ib ility  of the chain segments.

8.4 Conclusions

An overview of the thermotropic phase behaviour of these non-amphiphilic 

side-chain oligomeric cyclic siloxanes has been established. In order to 

validate the tentative proposals made here, further work is required. None 

the less, the following general conclusions may be drawn:

1. D4C3 and D5C3 are amorphous solids at low temperature and 

undergo a glass transition to a viscous isotropic liquid.

2. D4C5, D5C5, D4C6 and D5C6 exist as ordered solids at low

temperature and undergo a step-wise melting, via the nematic 

mesophase, to a low viscosity isotropic liquid.

3. The use of a suitable flexible spacer group w ill decouple the 

motions of mesogenic side-chains from those of the cyclic backbone 

such that the mesogens may align. Thus, the model considerations 

applied to linear side-chain polymers may also be generally 

applicable to these oligomeric cyclic systems.

4. The length of the spacer group required to decouple the motions of 

the mesogens from those of the cyclic backbone has to be greater than 

that in the equivalent linear polymers.

5. The variation of the phase behaviour of the cyclic tetramers and 

pentamers w ith DP may not follow the relationship established in 

linear systems. If this is the case, this effect may reflect the 

increasing fle x ib ility  of the cyclic backbone w ith increasing DP.
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CHAPTER 9. FUTURE WORK

This project has established an overview of the thermotropic and, in 

selected solvent/amphiphile systems, the lyotropic phase behaviour of a 

range of novel amphiphilic and non-amphiphilic siloxanes. As a consequence 

of this work, further research could be directed towards the validation of 

the proposals made here or the extension of this work.

9.1 Validation of Kev Areas.

A detailed investigation of the structure of the thermotropic mesophases 

formed by NaD4 and NaD5 is required. Further X-ray work and the use of

additional spectroscopic techniques such as NMR, may be of assistance in 

elucidating the structure of these phases.

The proposed absence of ribbon-type phases during the step-wise melting of 

NaD4 and NaD5 may also warrant further work. If this behaviour were to be

confirmed, it  would be interesting to investigate which structural 

characteristic(s) of these amphiphilic side-chain oligomers precludes the 

formation of these phases.

The cyclic and linear amphiphilic siloxanes exhibit different thermal 

behaviour during In itia l and subsequent heating cycles. If a quenching of 

these samples following the In itia l heating is, as proposed, a contributing 

factor in this behaviour, then i t  would be of interest to investigate the 

effect of utilis ing slow rates of cooling during further optical and DSC 

studies of the thermotropic behaviour of these materials.
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The Intermediate lyotropic mesophase observed at water concentrations 

between H1 and u* during aqueous penetration experiments w ith NaD4

requires further characterisation. The preparation of a range of samples of 

varying amphiphile concentration, followed by microscopy and X-ray 

diffraction, may elucidate the structure of this phase.

9.2 Extension of this Work

A well-established relationship exists between the thermotropic behaviour 

of non-amphiphilic side-chain polymers and their DP64*349. ^  s im ilar

relationship has been noted for the aqueous lyotropic phase behaviour of 

some amphiphilic side-chain polymers67'218. It would therefore be of great 

interest to investigate the thermotropic and, where appropriate, the 

lyotropic phase behaviour of the cyclic amphiphilic and non-amphiphilic 

oligomers w ith increasing DP. As the DP of the siloxane ring increases, the 

behaviour and properties of the resulting 'macro-cyclic' side-chain systems 

may approach that of the equivalent linear polymer296.

The linear cx-functionalised amphiphilic siloxanes form phases in which 

the siloxane chains constitute the continuous phase and the Cn carboxylate 

moieties form the micelles cores. At temperatures above the Tg of the 

siloxane continuum, these phases are semi-crystalline in nature as the Cn 

carboxylate groups retain a crystalline arrangement. The polar group and the 

siloxane chain are linked together via a C10 alkyl chain, which also acts to 

decouple the steric and kinetic interactions of these two groups. The 

replacement of this C10 chain w ith progressively shorter alkyl chains would

eventually restric t the ability of the polar groups to crystallise, due to the 

steric effects of the adjacent bulky PDMS chains. With Judicious tailoring
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of the polar group region, i t  may thus be feasible to produce mesophases at 

temperatures just above the glass transition of the siloxane (i.e. >-120°C). 

Thus, i t  may be possible to design anionic soaps which are oil-soluble at 

very low temperatures (i.e. approaching the Tg of the siloxane backbone).

With this in mind, the lyotropic phase behaviour of the shortest chain length 

amphiphile of this series (Na500) in non-polar solvents should be studied. As

this amphiphile forms a mesophase at temperatures greater than the 

melting of the polar groups (i.e at T4), the solubility of th is amphiphile in 

non-polar solvents may increase significantly at th is transition.

It would also be of interest to investigate the occurrence and temperature 

stab ility  of the mesophase formed by amphiphiles sim ilar to Na500 but w ith 

slight variations in the length of the siloxane moiety. It may be reasonable 

to expect that at lower chain lengths, the mesophase s tab ility  would tend 

towards that of the Cn sodium soap, w ith a possible transition to a

lamellar mesophase structure due to the corresponding change in the 

packing constraints. At higher chain lengths, the behaviour would tend 

towards that of the longer chain length linear amphiphiles, Na1000 Na1500 

and Na2000 (i.e. decreasing mesophase stab ility  range w ith  increasing chain 

length).

As a consequence of packing constraints, the c<-functionalised linear 

amphiphilic siloxanes formed reversed rod micelles and reversed hexagonal 

phases. The modification of the molecular geometry of these amphiphiles, 

to give non-reversed micelles in the neat state, may subsequently be 

expected to result in bilayer or normal rod and disc micelles in aqueous
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solution. Such a change in molecular geometry may be achieved w ith 

essentially the same non-polar chain, but coupled to a much larger polar 

group (i.e. a dicarboxylic acid salt, see chapter 7). The potential for the 

synthesis of water soluble amphiphiles w ith non-polar chains as long as 

those synthesised here, would obviously be of interest in studying the 

effects of variations in both the nature and size of the non-polar chain, and 

generally, in expanding an understanding of aqueous lyotropic phase 

behaviour. In particular, the cmc values for such amphiphiles would be 

expected to be very low; indeed, the measurement of such values may 

present a challenge.

If the model considerations64'332-334 previously applied to linear 

non-amphiphilic side-chain polymers and oligomers also apply to the cyclic 

non-amphiphilic siloxanes, as proposed here, then increasing the length of 

the alkyl spacer would eventually be expected to give rise to smectic 

mesophases (i.e. >C6).

Lastly, this project set out to characterise a diverse range of amphiphilic 

and non-amphiphilic siloxanes (see figure 1.13). The characterisation of 

some of the structures which have not been studied here, but for which 

synthetic routes have been established, would be of interest. In particular, 

the synthesis of the non-amphiphilic end-functionalised linear siloxanes 

(oc- and o c ,u »  and the amphiphilic c* , o d -functionalised linear siloxanes 

would be pertinent.
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