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Abstract

The aim of this research was to design a non-linear controller based on an Artificial Neu­

ral Network and Reinforcement Learning algorithms implementation, which is able to 

perform an intelligent robotic assembly of mechanical components.

Different information was applied and combined to develop a fully unsupervised, in­

telligent controller. In the author’s design no class labelling or geometry feature pre­

training takes place. Only force and torque signals together with the direction of insertion 

were supplied to the controller.

A unique sandwich structure of the intelligent controller was proposed. It featured 

two major layers, a State Recognition module where the detection and localisation of the 

contact points were performed, and the Decision Making subsystem where the decision 

about the next action took place.

All the algorithms were implemented and tested on simulated data before being ap­

plied to the real-life peg-in-hole insertion. The results are presented in the form of graphs 

and tables.

Evaluation of the environmental uncertainty was accomplished. The signal from the 

force and torque sensor was acquired under controlled conditions. All the data was col­

lected to establish the area and level of uncertainty (e.g. signal errors) the artificial con­

troller would need to learn to cope with and compensate for.

The empirical part of the thesis includes the investigation into the effects of different 

learning methods applied on the same geometry. The influence of action-selection meth­

ods on AI agent performance was analysed. The proposed controller was applied to a set 

of real life peg-and-hole experiments. Both circular and square peg geometries were used, 

and insertions into chamfered and non-chamfered holes were performed. Materials with 

different friction factors were used for mating parts.

Fast and stable knowledge acquisition was clearly present in all the cases investigated. 

A significant reduction in contact force value during the initial stage of the learning pro­

cess was recorded. The force was usually reduced to one tenth o f the initial value. Some 

fluctuations were recorded but when the cylindrical peg was considered the value of con­

tact forces never exceeded 0.5 N during the steady state.
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Glossary of terms

In this section a brief glossary of domain specific terms is presented.

Artificial Neural Networks - a type of massively parallel computing architectures based 

on brain-like information encoding and processing models and, as such, they can 

exhibit brain-like behaviours such as: learning, association, categorisation, gener­

alisation, feature extraction, pattern recognition or optimisation.

Adaptive Resonance Theory - a type of ANN where the information in the form of pro­

cessing element outputs reverberate back and forth between layers. If the proper 

patterns develop, a stable oscillation occurs. This is the neural-network equivalent 

of resonance. Only during this stage can learning take place

Reinforcement learning - a goal oriented method of knowledge acquisition where the 

decision making process is based on value functions not on the immediate reward.

Temporal-Difference - learning algorithms to make long-term predictions about dynamic 

systems.

Q-learning - an off-policy, Temporal-Difference learning method. The action-value func­

tion Q directly approximates the optimal action-value function Q*, independent 

of the policy being followed.

SARSA - an on-policy, Temporal-Difference algorithm. Similarly to q-leaming SARSA 

gathers knowledge from the state-action pairs transitions but it leams the policy 

directly.

Value functions - a function which maps the actions (or state-action pairs) onto the re­

sponse from the environment (the reward).

Reward - a primary feedback signal which provides the immediate response of the envi­

ronment.

Learning policy - definition of relationship between the states and the actions.



Chapter 1

Introduction

Manufacturing could be described as a set of operations and activities performed in order 

to make a final product. It involves a product design, planning, production, assembly, 

inspection and marketing.

Computers have been used in the manufacturing process for many years. It started in 

the late 1960’s when they were applied to direct control o f groups o f machine tools [25]. 

Later the concept of the Flexible Manufacturing Cell (FMC) was introduced. The FMC 

defines a group of semi-independent workstations linked by the material handling system. 

This design allows a production of a variety of different items automatically. The increase 

in computational speed o f modem CPUs caused a rapid advancement in development of 

Computer Integrated Manufacturing (CIM) systems. This approach allows a fast and 

integrated flow of manufacturing activities. The process of making a part has become 

fully automated which has contributed to improvement in quality and efficiency.

There has been a significant technological advancement since the introduction o f the 

first commercial robot for automated assembly in the 1970s. The modem manipula­

tors are faster, more reliable, and cost effective. High performance and a considerable 

drop in prices has contributed to a significant increase in industrial application of robots. 

According to the United Nations Economic Commission for Europe (UNECE) report, 

year 2001 was a record year for robotic investments in Europe [38]. Currently there are 

about 838,400 units working in industry worldwide [39] and the number of installations
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is quickly increasing (see Figure 1.1).

The industrial robots have been successfully applied at almost every stage of the man­

ufacturing process. Tidd in his paper [37] classifies the industrial robots according to their 

application into three major groups:

•  handling robots - holding the components, loading or unloading the machines, 

working in hazardous environments (e.g. nuclear industry),

•  process robots - including painting, deburring, grinding, polishing, spot and arc 

welding robots,

•  assembly robots - involving an assembly of the final component.

180

170 North America — 1—  
Europa —

Asia .....* -
World total  b

160

150

C/2

S 1403
<4-

2 130<DX£|  120

110

100

1996 1997 1998 1999 2000 2001 2002 2003
Year

Figure 1.1: Orders placed for industrial robots by region [38,39].

Assembly operations are amongst the most common and complicated in the manufac­

turing process. It usually requires an accurate motion control guided by a vision system 

since the miniaturisation and complexity of modem components make them impossible 

to be assembled by a human (e.g. electronics industry). With the introduction of CIM the 

speed, repeatability, and flexibility of robots is also very important.

2



The early applications of robots in automated assembly techniques have relied on 

passive accommodation methods, simple sensing systems and the manipulator’s program­

ming language. These approaches show many restrictions that make them unable to deal 

with a complex geometry of the components. The advantage of a passive system lies in 

its stability while interacting with the environment during an assembly task.

In a typical force guided assembly task, the robot’s trajectory corrections are calcu­

lated and applied, according to predefined control laws. The more sophisticated force 

control methods involve modification of trajectory based on continuous force feedback 

from the system and a task description. Several methods of force control were researched. 

Amongst them:

• damping control [27,41], where the sensed forces cause velocity modification,

• stiffness control [43], where the force is calculated from actual and desired arm 

positions,

•  impedance control [8,14,23], combination of two methods above, the dynamic 

relation between force error and position error is controlled,

• hybrid (position/force) control [32,41,45], in this method the force is controlled in 

certain directions and position control is applied in the complementary directions 

of the end effector’s axes

Recently a new way of programming has been proposed. The intelligent control em­

braces substantially different techniques that include application of knowledge based Ex­

pert Systems (ES), Artificial Neural Networks (ANN), Fuzzy Logic (FL) or Reinforce­

ment Learning (RL) algorithms. All these algorithms are different in principles and based 

on different theories but their applications share similar methodology: an attempt to create 

an effective mapping from sensory state space to the action domain.

The use of adaptive and learning capabilities in the assembly process simplifies the 

implementation and improves the reliability of these systems. The main advantage of 

an Al approach is the ability to solve problems without a detailed or explicit algorithm

3



available for the solution. This has a tremendous impact on dealing with complex parts 

geometry or noisy sensory signals during the assembly process as well as the development 

of automatic error recovery methods.

In a complex environment, hard coding of every possible state-action mapping would 

result in much larger source code than in the case of self adapting methods application. 

In some tasks, with an infinite number of states, it is virtually impossible to implement 

the relationships using traditional methods. With the ability of ANNs to generalise, the 

complex 3-dimensional state space could be clustered and classified.

The unsupervised neural and reinforcement learning controllers show the ability to 

self-improve by using the experience gained from the previous tasks. This simplifies 

tremendously the tedious task of robot programming, and enables the controllers to learn 

the best action for a given state without any supervisory influence.

The unsupervised, self-organising algorithms have revolutionised the modern intelli­

gent assembly methods and are state of the art in robot force control.

Early research work by Whitney [41,42] and Simunovic [35] concluded that most 

common assembly operations could be modelled as simple peg-in-hole insertions. This 

represents a large number of part mating operations carried out in industry. Whitney 

[42] defined 4 stages during peg-in-hole assembly operation. He also defines the failures 

associated with insertions namely: jamming and wedging of the peg.

The peg-in-hole model, its dynamics, and acting forces have been widely studied by 

researchers [1,6,13,18,24,31].

The most successful industry-orientated approach was an application o f Remote Cen­

tre Compliance (RCC) techniques. The passive compliance devise, proposed by Whitney 

et al [44], consist of springs and dampers to reduce the end effector stiffness. During 

the assembly, the passive component of the robot’s wrist deflects under the contact forces 

correcting the misalignment of mating parts.

Many assembly operations involve insertions of the components with tolerances much 

finer than the resolution and accuracy of most available robots. This leads to the need 

for force feedback, experience and intelligent control methods to solve the non-linear
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compliance problems associated with those operations. Simons et al [34] pioneered the 

research and defined the need for learning and adaptivity in robotic assembly.

1.1 Aims and objectives

There are many areas where performance of intelligent controller could be improved. 

Most recent research has been focused on increasing the Al controller’s learning speed. 

The research presented in this thesis aimed at the design, implementation and test of the 

unsupervised, intelligent system being able to perform a robotic assembly of mechanical 

components.

The main aims of this research include:

• Investigation of the different information sources and their employment in the peg- 

in-hole insertion problem. Amongst these, one source is sensory (signal from force 

and torque sensor) and descriptive (geometry of parts and coded task description 

and assembly direction).

• Investigation of automatic state recognition and clustering. This involves the analy­

sis of contact states as well as design and implementation of a module for geometry 

classification.

• Investigation of unsupervised motion generation. The intelligent decision making 

agent, able to learn the state-action map, should be implemented, tested and applied.

• Design a stable and flexible system able to support several different Al architec­

tures. For that reason the code portability and re-usability should be considered as 

an important issue during the design process,

• Test and validation of the controller using a range of mechanical components. The 

system should be applied on real-life, 3-dimensional peg-in-hole assembly tasks. 

The different features of the mating parts should be considered.

The controller should be totally unsupervised and gain all the knowledge from ex­

perience. The approach will be implemented and tested using a Puma 560 robotic arm
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connected to a supervisory PC with Pentium 200MHz processor under GNU/Linux op­

erating system. The JR3 F/T sensor will be used to establish force feedback from the 

system.

1.2 Original contribution

As stated in the previous section, the main aim of this study was to develop, implement 

and validate an intelligent controller capable of learning basic manipulative skills during 

the peg-in-hole assembly. The complexity of geometry, nonlinearity of the insertion task 

and noisy feedback signals from the sensors are the main factors making the task very 

difficult to deal with. Previous researches on the subject show many limitations of Al 

controllers for automated assembly. The training speed is an important issue. To speed 

up the learning process different methods of contact state classification were developed. 

Most of them show a good on-line performance but require a priori knowledge about the 

environment.

In contrast to other researches, different information sources will be analysed and 

combined to develop a fully unsupervised, intelligent controller. In the author’s design, 

no class labelling or geometry feature pre-training takes place. First, the controller uses a 

self organising ANN to learn the geometry of the parts. In the next step an unsupervised 

decision about the appropriate action is taken. The only descriptive information feed to 

the system is the assembly direction.

According to the author’s best knowledge, the ’’sandwich” structure of the controller 

and the choice of algorithms are unique and have not been investigated before. The pro­

posed design and selection of information sources proved to be able to cope in an envi­

ronment with high level of uncertainty without the loss of on-line performance.

The improvement in system design is also an important part of this research. The 

modular form of the software and robust method of robot-computer connection were de­

veloped to fulfil that requirement.
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1.3 Thesis structure

Research presented in this thesis is organised in the following manner:

Chapter 1: In the introduction the reasons for research on the application of Artificial 

Intelligence to robot control are presented. Some statistical data showing that the number 

of robotics units applied in industry is still increasing was included. The different meth­

ods of robot control for automated assembly were described followed by an overview of 

applied Al methods. The chapter was concluded by defining the aims and objectives for 

this research project.

Chapter 2: In this chapter the previous research on the intelligent robotic assembly 

is presented. This also includes the definitions of the admittance mapping and both linear 

and non-linear compliances. The last section embodies a discussion of the advantages 

and disadvantages of the presented methods. The previous research presentation was an 

inspiration to build the improved version of the controller.

Chapter 3: This part of the thesis embodies the detailed description of design of the 

system. It begins from the presentation of each element of the setup. First the Puma 560 

robotics arm is described. Then the implemented methods of robot-computer intercon­

nection and the communication protocols are analysed and compared. The F/T sensor 

and its Linux driver design are then introduced to the reader. The last section includes the 

overview of the experimental specimens.

Chapter 4: Here the applied methodology is presented. This includes the description 

of the controller’s structure and utilised algorithms. In the last section the results from 

test simulations on a grid-world maze are presented.

Chapter 5: In this chapter the methodology and plan of experimental validation is 

included. The analysis of environment’s uncertainty is also presented here.

Chapter 6: This chapter consists of the summary of empirical results. This includes 

the results from the real-life peg-and-hole insertions. Different geometries and algorithms 

are analysed and comment.

Chapter 7: Discussion and conclusions are the main part of this chapter. It concludes
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by the author’s suggestions for future work to further improve the controller’s perfor­

mance.

The results in the form of tables and graphs are included in the thesis’ appendices. 

Each main part of the thesis is preceded by a short introduction describing its content. 

The discussion and author’s comments are included in the last section of each chapter.
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Chapter 2

Intelligent motion control

In this chapter the previous research on intelligent robotic assembly will be presented. 

This also includes the definitions of the admittance mapping and both linear and non­

linear compliances. The last section embodies a discussion of the advantages and disad­

vantages o f the presented methods. According to the author’s best knowledge the research 

results enclosed in this chapter represent the state of the art of the intelligent assembly 

process. The presented work was an inspiration to build the improved version o f the 

controller.

2.1 Admittance mapping

Admittance (A) is the ratio defined as follows:

v =  A( f )  (2.1)

It describes the relationship between forces ( / )  acting on the end-effector and resulting 

velocity (v ). Thus the admittance matrix could be used to correct the velocities based on 

acting forces.

Asada in his paper [1] considered both linear and non-linear admittances. First the 

box palletizing task was analysed as an example of linear compliance. The aim was to 

place the rectangular box into a comer of the large box. As shown on the picture (see
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Figure 2.1), for each path the reacting forces and so desired actions are different. In that 

case the mapping is assumed to be linear and the problem could be easily solved using 

conventional control methods.

Figure 2.1: Box palletizing task (after Asada [1]).

As the assembly task becomes more complicated the force-velocity data is no longer 

linearly mappable. In that case applying a linear compliance unavoidably causes the error. 

Asada [1,2] used a chamfer-less peg-in-hole insertion task to illustrate this problem.

Figure 2.2: Contact states between peg and hole (after Asada [1,2]).

In the case of contact state ”P3” the force and torque vector is formed by a vectorial 

sum of f i  and / 2 from the cases ”P i” and ”P2” (see Figure 2.2).

h  — f i  + f o  

10
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Assuming linear compliance and so to satisfy equation (2.1) the resulting velocity 

vector v 3 should also be a vectorial sum of vectors v \  and v 2. However, this is not the 

case. Analysing the velocities (Figure 2.2) we can write:

V\  +  V2 =  [vX2, Vy2 -  v y l , - UJ2]T ^  V3 (2.3)

This indicates that in the case of the chamfer-less peg-in-hole insertion the force to 

velocity mapping is against the principle of superposition which is the one of most fun­

damental properties of linear mapping. Based on that this task should be considered 

nonlinear.

2.2 Nonlinear compliance control with ANNs

Compliance control is a control strategy for correcting a planned motion based on the 

force measured in the process [1]. There were two main methodologies in previous studies 

on the subject, the logical branching [3,15], and the feedback gain method [21,41].

In the logical branching approach the corrections of motions are described by IF- 

THEN-ELSE expressions. The appropriate actions are selected in accordance with the 

sensor state. The feedback gain method represents the strategy for correcting the motions 

in terms of feedback gains that relate the measured force to the change in displacements 

and velocities [1].

The logical branching method is relatively slow and actions are intermittent because 

the controller has to perform a set of discrete operations including reading and evaluat­

ing the sensor signal, logical branching to selected actions followed by reexamination of 

the sensor state. The advantage of this approach over the feedback gain method is that it 

allows the representation of highly nonlinear strategies of complex assembly. The feed­

back gain method, on the other hand, is founded by servo control and provides smooth, 

continuous actions. Due to the nature of feedback gains which are linear and invariant 

the method cannot be use to sufficiently describe task complexity and control strategy. 

That representation is required to perform nonlinear control actions and logical decision
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making. To overcome these problems some research has been done on geometric models 

of the environment [5-7,12,13] and complex task analysis [24]. A different approach, 

proposed by Asada, is to teach the compliance without relying on the part’s geometry 

description and analysis of the complex assembly process.

®1,X

®4,2,

®8,5>2,Y

m

Figure 2.3: ANN structure for 2D chamfer-less insertion problem (after Asada [1]).

In his research Asada [1,2,28] proposed a new way of solving the nonlinear compliant 

motion control problem. He developed a method of generating control law through the 

measurement of an operator’s motion in which the force was monitored along with the 

position of the end-effector. He also proposed a method of teaching the nonlinear com­

pliance strategy. The peg-in-hole insertion problem was analysed using supervised ANN. 

The ANN learns not only linear compliance in terms of stiffness and damping matrices 

but also nonlinear compliance. Asada’s strategy is based on guiding the peg by making 

contacts with referencing surfaces. In the most general case, where the peg’s motion is 

considered in all of its 6 DOF, Asada’s ANN uses 3 layers of neurons, featuring 6 inputs 

in the form of contact information and 6 outputs - matching velocities. The first layer 

is designed to detect the occurrence of contact point at the edge and surface forming the 

hole. The second layer in Asada’s ANN architecture consist of units that each indicate 

the occurrence of a specific contact state. The third layer performs the mapping from the 

output of the second one onto the velocities. Despite uncertainties in the environment 

using this approach the peg can be led to the hole. This method is capable of performing 

nonlinear operations allowing the system fast smooth actions.
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According to Asada the basic requirements for valid peg velocities are:

• conformity to the geometric constraints due to the contacts,

• maintaining the contacts with the referencing surface,

• guidance towards the hole.

Asada illustrates the ability of the trained feed forward network to discriminate among 

the contact states and to provide appropriate velocity commands in a series of simulated 

experiments involving two dimensional peg-in-hole insertions.

Howarth [24] developed a framework for task level programming assembly systems 

in which the realisation of self learning manipulative skills plays a key role in ensuring 

autonomous operation. The approach to the control of peg-in-hole insertions is presented 

based on a multi-layer perceptron (MLP) network trained with error back-propagation. 

The applicability of the technique to the assembly problem in 4 DOF is first successfully 

evaluated by training the network using supervised learning; this required the prior estab­

lishment of desired input-output pairs. The proposed ANN controller’s layout consists of 

a three layered MLP with 5 inputs including three forces acting on the peg Fx, Fy, F2, 

the torque around the peg’s axis Mx and the required direction of insertion a. The output 

layer features 4 nodes representing velocity commands for linear motions along the peg 

axes (Sx, 5y, Sz) and rotation around the direction of insertion (80z).

Lopez-Juarez [29-31] proposed an intelligent assembly controller based on the Fuzzy 

ART-MAP network to control peg-in-hole insertions in 6 DOF. The Fuzzy ART-MAP 

algorithm represents one of the many varieties of the Adaptive Resonance Theory (ART) 

model initially developed by Carpenter and Grossberg [9,17], and shares with the original 

model the ability to produce stable and fast classification of input patterns. The structure 

of the network consists of two FuzzyART modules that simultaneously process patterns 

deriving from two separate families a and b. The two modules operate the unsupervised 

classification of two input patterns according to the ART mechanics, grouping them into 

a finite number of categories. Unlike the original ART algorithm, the FuzzyART module 

has been designed for handling real valued patterns. The ART modules are then linked
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by an associative learning network (the inter-ART module or MAP field) which learns the 

association between the patterns of each family, therefore producing an active mapping 

between heterogeneous sources of information.

K now ledge B ase

A utom ated
m otion

P a tte m -M o tio n
selection

R obotic
System

F /T
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SW2
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Figure 2.4: Controller structure (after Lopez-Juarez [31]).

The proposed controller consists of two subsystems: adaptation and decision modules 

(see Figure 2.4). The adaptation stage has an initial section where the F/T signal pre­

processing takes place. The vectors are normalised to produce n-dimension input vector. 

The next section performs the classification of F/T signal. Learning is supervised, as a 

training set containing pairs of examples is required for the formation of the classification 

categories in each ART module and the MAP field.

Lopez-Juarez and Howarth [30] proposed the application of this architecture to force 

guided assembly of circular, square and semi-square pegs in 6 DOF considering both 

chamfered and chamfer-less matching holes. Because learning is supervised, a priori 

knowledge is provided to the network during the training stage in the form of Primi­

tive Knowledge Base (PKB). The PKB consists of an ordered list of 6-dimensional force 

and torque patterns paired with appropriate motion commands in the form of a sym­

bolic variable indicating an incremental step motion. A total of 12 motion commands 

are considered: positive/negative linear motions along the X ,  Y ,  Z  axes of the peg and 

positive/negative rotations about the same axes. The associations in the training set are 

predefined and designed to achieve an appropriate motion strategy in response to the F/T 

vectors generated by the peg contacting the environment. Generally speaking, the induced 

behaviour is aimed at the minimisation of such contact forces. During the operation, when
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contact occurs, the F/T pattern x a is presented to the ARTa module for recognition; the 

closest matching a category is associated through the MAP field to a b category which in 

turn points to a robot action as previously learnt.

2.3 Learning contact states with ANNs

In more complex, real world situations which involve motions in contact, the analytical 

model of environment may be very difficult to construct. Errors are typically caused by 

uncertainty of the position and orientation of components and noisy feed back signals. 

In these situations the main problem is to relate the complex force and torque signals to 

corresponding contact states.

r f,

Figure 2.5: Contact states between peg and hole (after Cervera et al [13]).

Cervera et al [10,11,13] proposed an unsupervised scheme to deal with uncertainty. 

He investigated a real application of a flexible manufacturing system. The cell consists a 

matching centre which works with several types of tools. The tools were picked from the 

robot vehicle by a robotic arm. The aim was to use a force and torque sensor to detect 

error conditions which led to incorrect insertions.
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Cervera’s 2-dimensional peg-in-hole model includes the presence of clearance be­

tween parts and extended Asada’s design by three additional contact states (see Figure 

2.5). The constraint equation set was used to define a partition of the configuration space 

(2D in this case). The friction forces between matching parts were omitted. To calculate 

the complex relationship between force magnitude and contact states the Self Organising 

Map (SOM) ANN was applied. The main advantage of this approach lies in its ability for 

unsupervised learning (self reorganising). Due to efficiency and topological advantages 

the Kohonen’s algorithm was used. The difference from other neural networks models 

is that after learning SOM’s responses are arranged in the map. The map’s reorganisa­

tion takes place automatically without external supervision. It is based only on internal 

relations in the structure of the input signal.
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Figure 2.6: Activation patterns for the three contact states case (after Cervera et al [13]).

First, for each contact state, the known pattern was introduced to the network. Then 

the label was assigned to the resulting cluster of cells that were activated for this particular 

state (see Figure 2.6). Once the map was labelled for all known states the network was 

considered trained and unknown sensor signal could be applied and successfully clas­

sified. The resulting label of activated cells provides a description of the contact state 

corresponding to the given input. It is clear from the Figure 2.6 that SOM was able to 

successfully classify the three states from Asada’s model (Pi, P2, P3) and their symmetric 

ones (P^ P'2, P^).

In Cervera’s model the ANN’s input signal was built of two force signal and one 

torque value. The simulations showed that due to high similarity in reacting forces the
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network was not able to distinguish between some of the states (class overlapping). To 

overcome that, another source of information was added to the system - the orientation of 

the peg.

The model was successfully extended to 3-dimensional in a described early applica­

tion of a flexible manufacturing system. In that case the ANN’s input signal was built of 

three force and three torque signals.

More recently, Brignone et al [5-7] have developed a novel approach based on the in­

terpretation of the contact conditions using a FuzzyART unsupervised classifier to merge 

on-line force information with a description of the components geometry. In his work 

Brignone combined component’s geometry with the fast learning of Lopez’s algorithm.

The contact between peg and hole, can be modelled with the Newton equations for 

the rigid body. Furthermore representing the insertion as a quasi static transition of states 

greatly simplifies the relations removing them from the time domain.

These observations are at the foundation of Brignone’s proposed insertion architec­

ture. Linear compliance can be achieved by matching the Euclidean normalised force 

signal with the orientation of the surfaces forming the hole (localisation of contact) and 

then selecting a motion that satisfies the geometric constraints.

2.4 Admittance mapping with Reinforcement Learning

In a complex environment it is very difficult to learn an effective control strategy. Amongst 

the other methods the reinforcement learning algorithms have been applied to learn non­

linear control law. The controller improves its performance by repeatedly interacting with 

the environment and so it is able to learn the appropriate admittance mapping on-line. The 

principles of these methods will be described later in this thesis. In this section the author 

would like to focus on the application of different reinforcement learning algorithms to 

the automated robotic assembly.

Yang and Asada [46] proposed a novel approach for a robot to automatically gener­

ate compliance control gains through practice based on adaptive reinforcement learning
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algorithms. In this method, the robot repeatedly attempts to perform the task with initial 

simple control knowledge, and gradually improves the performance through the trials. To 

demonstrate the validity this method was applied to learn damping control parameters in 

a simple ball-aligning task. The objective was to align the ball to the comer with the 

minimum reaction forces from the walls. At the same time the controller was required 

to follow the nominal trajectory until the ball made contact with a wall. Based on these 

assumptions Yang and Asada defined a performance index, called reinforcement.

(x„y,)
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Figure 2.7: Ball-aligning task (after Yang and Asada [46]).

The objective of learning was to find the optimal compliance control law, which max­

imises the reinforcement, from a series of trials.

Gullapalli et al in their research [18-20] developed an ANN controller based on back- 

propagation units, whose outputs are Stochastic Reinforcement Value (SRV) learning 

units.

SRV computes its output (o) at time (t ) as function of his activation (a):

ot =  a(fit ,crt ) (2.4)

The activation is a random number extracted from a Gaussian probability distribution. 

Learning takes place by adjusting the mean /it = 0^x t, and the standard deviation at =
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s(rt), where rt =  (f)Jxt, and x t is an input vector. The function s() is a monotonically 

decreasing, nonnegative function of rt with s(1.0) =  0.0.

The reinforcement r(o t , x t) is used to adjust future outputs by updating the internal 

parameter vectors:

where a  and (5 are the learning parameters.

Gullapalli used a Zebra robot and performed a number of successful peg-in-hole inser­

tions. The outputs of the neural controller were the desired motion values. The feedback 

(F/T signal) to the controller was supplied by a sensor mounted on the robot’s arm. In 

this approach the location of the hole needs to be known since it is used to compute posi­

tion error required to calculate the reinforcement signal. Results show that the algorithm 

performs well despite uncertainty in the peg location and noise of sensor readings.

Cervera and del Pobil in their paper [12] proposed a different method for selecting 

the actions and achieve the goal in the minimum number of steps. The algorithm learns 

the relationships between sensed states and actions. The controller consists of three main 

components (see Figure 2.8). The guarded motion subsystem is responsible for stopping 

the movement when the force value exceeds the fixed threshold. The compliance motion 

takes over after the contact is achieved. Initially random movements are performed but 

the system gradually learns the state-actions relationships. During this stage the motion 

is restricted to the surface. The q-leaming algorithm was applied to learn the best action 

for a given state.

The state is built from two sensory signals: position and torque. Position and orienta­

tion were obtained from the robot joint’s servo encoders. The torque signal was acquired 

by the sensor mounted on manipulator’s wrist. Kohonen’s SOM were used for extracting 

the feature information. Three torque signals were used as an input to the network. Ac­

cording to authors due to the strong correlation between torques and forces the latter ones

(2.5)

and:

(fit+i = <t>t + P i n -  f t ) x t (2 .6)
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will not add new information to the system.

They investigated insertions of three different peg shapes: with circular, square and tri­

angular cross-sections. The components were made from wood (peg) and synthetic resin 

(the platform with holes). In the case of circular pegs the SOM had 24 units implemented. 

The network was trained off-line with 70,000 data vectors from previous trials. The state 

description was built combining the winner from the map and relative position of the peg 

with respect to its initial location. The total number of states was 216. The action domain 

consisted of eight fixed step translations in different directions of the XY-planes. Due to 

complexity of geometry the number of states for the square peg increased and was set 

to 648. The network structure and learning process was similar to the one used in the 

cylindrical peg case. Two new actions in form of rotations around the normal axis to the 

surface were added to the system. The measurement of change in angle was taken into 

consideration during the agent’s orientation description. The same state representation 

and actions were applied to the triangular peg insertion problem.
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Figure 2.8: Controller architecture (after Cervera and del Pobil [12]).

The algorithm was tested on real 3D insertion tasks. The results show the ability of 

the system to learn to insert cylindrical and non-cylindrical components. The proposed 

system exhibited good generalisation capabilities for different geometries and locations 

of assembled parts.

As described earlier, Howarth [24] developed the method of interpretation o f sen­

sory data to minimise the contact forces and guide the peg towards the assembly goal. 

The major disadvantage of this technique is the fact that MLP network was trained with 

the supervised learning algorithm. This requires an input-output training set to be deter­

mined in advance. To overcome this limitation a reinforcement learning algorithm was
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implemented [24]. This allowed the ANN to leam state-action mapping without a pri­

ori knowledge of the environment. The system was tested and validated using an IBM 

7547 SCARA robot during circular and square peg-in-hole insertions. The minimal task 

description was applied to the controller namely assembly direction and force data. Pre­

sented results [24] show that reinforcement learning of an assembly operation can be 

successfully learnt by a MLP network.

Action

Hidden layer

Stochastic switch

Stochastic switch

Stochastic switch

Input layer

Figure 2.9: Learning agent architecture (after Brignone [4]).

Later, Brignone in his research [4] proposed an unsupervised learning method to cor­

rect angular misalignments between peg and the hole (see Figure 2.9). The controller 

(called by the author ART-R) consists of FuzzyART module which performs a state clas­

sification and additional output layer of reinforcement units for computing the state-action 

association. The symbolic representation of the environment produced by ANN was prop­

agated to the hidden layer through a matrix of connective weights. The activation function 

of each node is computed in a standard manner as a weighted sum of input nodes. The se­

lection of the output is determined by stochastic switch architecture. This forms a binary 

vector which represents the appropriate action. The learning algorithm used by Brignone 

is an implementation of the theory of Statistical Gradient Ascent performed by Reinforce­

ment Algorithm.

The proposed method was applied and tested on a Puma 760 robotic arm. According 

to the author [4], the controller was able to leam autonomously what rotation to apply to 

the peg in order to minimise the torque load.
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A large number of movements need to be performed to allow the controller to develop 

the optimal state-action policy (interactive learning). To speed up this process a training 

rig was designed. The controller performed a random rotation around of any of the three 

axes. This caused a torque load which was later minimised by the number of correction 

movements suggested by the learning agent.

2.5 Discussion

In this chapter the previous research on the intelligent robotic assembly is presented. 

According to the author’s best knowledge, the described controllers represent the state 

of the art of modem automated assembly process. The systems differ in choice of the 

algorithms, methodologies and implementation but they share the same principles. The 

main aim is to develop a successful mapping between action and state domains. The 

learning speed is an important issue as well as choice of information feed to the system.

Asada et al [1 ,2 ,21 ,28 ,46] laid the foundation for the research on the intelligent 

assembly process. As stated in the chapter above he analysed and defined the linear and 

non-linear compliances. His 2-dimensional controller, although simple, was a major break 

through in research on intelligent peg-in-hole insertion tasks. The main disadvantages of 

proposed design was its slowness and supervised method of learning. This involves the 

need for a priori knowledge about the environment.

The researchers tried to overcome some of the limitations present in Asada’s Al con­

troller. Howarth [24,29] used the supervised ANN algorithm. However his controller 

was implemented, tested and validated on a real life SCARA robot. His application of 

task level programming to the insertion problem in combination with the neural con­

troller proved to be effective and able to leam the insertion task. The the high level of 

supervision and relatively slow learning algorithm are the main limitations.

Cervera et al [10-13] and later Brignone et al [4-7] used a geometrical approach to 

locate the contact states. Both methods proved to be fast and reliable but again a high 

level of supervision was needed. In Cervera’s design, despite the use of self organising
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learning methods, the class labelling takes part. This involves an additional, ’’expert’s” 

information supplied to the system. Similarly Brignone’s controller, although using an 

unsupervised ANN algorithm had to be trained off-line before being applied to the real 

system.

The other major problem in automated assembly tasks is the automated motion gen­

eration. Different approaches were encountered in the literature. First Asada developed a 

frame work for the application of reinforcement learning to robot control [46]. Gullapalli 

et al [18-20] applied his stochastic reinforcement method on a real life robot. The learn­

ing speed was slow but it is one of the few fully unsupervised designs. Its limitation lies in 

a need for the peg’s position and orientation signal to be acquired from the manipulator’s 

joint encoders. According to the author this information does not aid the implementation 

of of an autonomous system and is not necessary to successfully accomplish the insertion 

task. Howarth [24] also used the reinforcement learning algorithm for automated motion 

generation purposes. To speed up the learning time he used data from off-line simulations.

To correct the angular misalignment between mating parts Brignone [4] applied a 

stochastic reinforcement algorithm to analyse torque patterns. However the experimental 

validation was not well documented, the controller showed the ability to correct the inser­

tion path using rotations and accomplish an insertion task. The limitation of the design is 

the need for off-line pre-training using the designated test rig.

Cervera and del Pobil in their recent research [12] also applied a reinforcement learn­

ing algorithm for automated motion generation. Their controller design shares a lot of 

similarities with the ’’sandwich” structure proposed in this thesis. The author wants to 

emphasise the fact that both researches were being undertaken in parallel and indepen­

dently. It is clear from work described in this chapter, that researchers investigating the 

automated assembly tasks using a peg-in-hole model face a number of complicated prob­

lems. Generally they could be divided into two sections namely:

• State recognition problem - to increase the speed of learning the complex 3-dimensional 

state space needs to be clustered and classified. A fast, reliable algorithm should be 

applied for that purpose.
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• Automated motion generation problem - here the logical decision about the next 

action is taken. The algorithm with the ability to reorganise quickly and obtain 

knowledge without supervision would be the ideal solution.

Most recent designs [4,12,24,30] tried to combine the different methods. In all cases 

presented a significant amount of supervision had to be applied in the form of off-line 

pre-training or class labelling. This involves the need for a supervisor with an initial 

knowledge of the environment. It should be stated clearly, however that the off-line train­

ing is generally aimed at speeding up a learning process, it does not limit the controller’s 

future performance. The controller designs, presented early in this chapter, proved to be 

capable of gaining the necessary knowledge autonomously.

To save on development time the usage of virtual peg-in-hole simulation could be con­

sidered. The 3-dimensional model could be analysed with contact forces derived using 

Final Elements Method (FEM). This would help to focus purely on testing different Al 

methods without the need for time consuming implementation of robot-computer com­

munication protocols. The fully tested and evacuated in ’’synthesised” word algorithms 

should be applied on real life application for further investigation.

The main aim of the work described in this thesis is to design an intelligent controller 

with minimal interference from the supervisor during the learning process. The author 

claims that using modem Al algorithms the off-line pre-training process can be omitted 

without the loss of on-line performance of the system.
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Chapter 3

System design

In this chapter each major part of the experimental hardware will be presented. It begins 

from the presentation of the Puma 560 robotics arm. This includes its specification and 

parameters. Then the method o f implementing the robot-computer interconnection and 

the communication protocols are analysed and compared. Later, the F/T sensor and its 

Linux driver design is introduced to the reader. The last section embodies the overview 

of the experimental specimens.

The whole system was designed and built by the author. Some improvement to other 

researchers [5,31] were applied. This includes the elimination of master-slave architecture 

replacing it with a robust terminal emulation connection method.

The robotic cell was tested, and proved its reliability during extensive experiments 

involving iterative peg-in-hole assembly simulation.

3.1 Experimental setup

The robotic arm and controller are the main parts of the system. The supervisory computer 

is connected to the controller via a serial port. The sensor was mounted on the robot’s 

wrist (see Figure 3.1). The F/T signal is transmitted to the computer and then used as an 

input to the Al controller. The new arm position and orientation values are calculated. 

The incremental motion request is sent to the controller using supervisory or terminal 

mode.
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The proposed design guarantees a stable communication and fast, bi-directional in­

formation flow between the devices. These characteristics are very important since the 

experimental setup is expected to work continuously for several days undertaking numer­

ous peg-in-hole insertions.

In the sections below each part of the system is described. The technical issues and 

problems are also presented in the Appendix E.

The Unimate Puma Mark III series 500 are amongst the most popular robots for educa­

tional purposes. The flexibility, repeatability and easy programing make them first choice 

manipulators for assembly tasks. The 500 series includes two models: the 5-axis Puma 

552, and the 6-axis Puma 562. Both models could be set up for either a 4 or 2.5 kg pay­

load based on performance capability. The Puma 562 was used for the purpose o f this 

project. It consists of the manipulator arm and control unit.

3.2.1 Robotic arm

The arm is a serial, kinematic chain of components connected to each other at 1 DOF 

revolute joints (see Figure 3.2). Its design is similar to the human arm and consists of

PUMA 560 
Robotic arm

Robot
Controller

Supervisory
Computer

Movement
command

Figure 3.1: Experimental setup.

3.2 The robot
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seven rigid bodies namely: Trunk, Shoulder, Upper Arm, Forearm, and Wrist (built of 

three elements) and Mechanical Components (gripper). The Shoulder rotates about the 

Trunk’s centre, vertical axis. The Upper and Fore Arms rotate about two horizontal axes 

(arm joint and the elbow). The Wrist consists of the remaining three rigid bodies.

The arm members are driven by a set of permanent magnet, DC servo motors and 

drive trains. The brakes are built in the servomotors. They were designed to support and 

lock the arm in a fixed position. The arm is also equipped with a dynamic braking system 

which slows down the motors in an emergency condition. In that condition the power is 

disconnected from the motor and its terminal is bridged with a resistor to dissipate the 

energy.

Figure 3.2: Schema of Puma 562 robotic arm.

The arm position and orientation could be controlled in two different modes namely 

WORLD and TOOL. The names correspond to the coordinate systems used as references 

and are defined as follows:

•  WORLD mode - where the reference of coordinates are fixed in the robot arm base. 

When the WORLD mode is chosen the gripper is to move parallel to, and rotate 

about, those axes.

•  TOOL mode - where the reference coordinates are fixed in the gripper. In this mode 

the gripper is to move parallel to any of TOOL axis and rotate about those axes.
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The Orientation (O), Altitude (A) and Tool (T) are the angles formed by the TOOL 

coordinate system axes related to WORLD coordinates. The angles are defined as follows 

(after the robot manual [40]):

• O - a measurement of the angle formed between the WORLD X axis and a projec­

tion of the TOOL Z on the WORLD XY plane.

•  A - a measurement of the angle formed between the TOOL Z and a plane parallel 

to the WORLD XY plane.

•  T - a measurement o f the angle formed between the TOOL Y and a plane parallel 

to the WORLD XY plane.

Item Specifications

Position Repeatability 0.004 in. (0.1 mm)

Payload 8.8 lbs. (4.0 kg) or 5.5 lbs. (2.5 kg)

Straight Line Velocity 19.2 in./sec. max (0.5 m/sec. max)

I/O Capacity 32/32

Arm Weight 140 lbs. (63.0 kg)

Power Requirements 110/208/240 VAC, 1500 W

Ambient Operating Temperature 50 - 120F (10 - 50C)

Number of Axes 6

Drive Electric DC servos

Gripper Control 4-way pneumatic solenoid

Table 3.1: Puma 562 arm specification (after robot manual [40]).

The output from the Al controller is in form of 5X, 6y, 5Z values, which represent 

movement correction and 3 values 56x, S9y, 59z for rotation correction. Since the defi­

nition of these differ from the definition of O, A, T angles, the transformation between 

these values had to be found. An appropriate algorithm was developed and implemented 

(see Appendix C) but after close investigation it became clear that the angles were the
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components of Euler Z-Y-Z orientation description. The appropriate software was written 

to calculate the constant rotation increment value.

To request an incremental movement the DO MOVE H E R E : T R A N S  ( X ,  Y ,  Z ,  O ,  A ,  T )  

command was sent to VAL II. The X, Y, Z values represent the increment on each axis 

respectively and O, A, T represent the components o f Euler Z-Y-Z orientation description. 

Some of specifications for the Puma 562 robotic arm are given in Table 3.1.

3.2.2 Control unit

The main part of the system is the arm’s control module. The system uses an LSI-11/73 as 

a central processing unit and communicates with individual joint processors for robot arm 

motions. All the information, including the signals from position encoders pass through 

the module. It performs a real-time calculation for position and velocity control using the 

incremental optical encoder signals. During power up the calibration o f the arm needs 

to be performed. Using coarse potentiometer reading the exact position of high precision 

encoder’s index mark is recorded.

The movement commands are interpreted by a software present in the memory. The 

motors are driven according to the control law and required trajectory. The movement is 

monitored by an incremental encoders signal which forms the closed-loop control system. 

The basic specifications of the Puma 562 control system are presented in the Table 3.2.

Item Specifications

Controller System computer

Central Processing Unit LSI-II/73

Teaching Method
Teach Pendant, computer terminal 

or intelligent external controller

Programing Language VAL II

External Program Storage Double density floppy disk

VAL software storage memory 45 k words

User memory 19 k words (expandable)

Table 3.2: Puma 562 control unit specification (after robot manual [40]).
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The control module used for the purpose of this research was equipped with a set of 

control cards namely:

• LS-11/73 Central Processing Unit (CPU) board - the core of the system which pro­

cess all programming instructions.

• 64 k words CMOS Random Access Memory board - provides a storage for user 

software.

• DL-11/J Quad Serial Boards - an interface that links the CPU to the external systems 

like terminal, Teach Pendant, SUPERVISOR or ALTER communication standards.

•  I/O board - provides an interface for 32 inputs and 32 output for communication 

with CPU.

• ”A” and ”B” interface boards - which provide respectively a parallel communica­

tion link between the servo boards and connects the control section of control card 

set to each digital servo.

• six digital servo boards - each equipped with separate microprocessor to calculate 

and send the analog drive signals for DC motors.

Variable Assembly Language (VAL) was developed in Unimation Inc. as language 

for industrial manipulators. It is permanently stored as a part of the robot’s operating 

system. VAL-II combines a sophisticated, easy-to-use programming capability with ad­

vanced servo control methods. It provides a full set of instructions for software develop­

ment including editing and file-system maintenance facilities.

3.3 Robot-computer connection

The first important task during the design of the connection was to decide which transmis­

sion protocol to use. A number different approaches have been implemented and tested 

by other researchers.
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The ideal system would involve only one supervisory computer with intelligent agent 

and sensor driver installed. This PC should also send the incremental movement com­

mands to the robot controller. Thus a decision about the transmission type and communi­

cation protocol had to be made.

The considered solutions included:

• ALTER Mode - used by Lopez et al during their research [29-31]. This proved 

to be complicated solution and require an additional slave computer to maintain 

connection.

•  Teach pendant mode simulation - used by Brignone et al [5-7]. This solution proved 

to work well but for similar reasons to the case o f ALTER mode, a slave computer 

needs to be added to the system to help maintain the connection.

• Supervisory Computer System (SCS) mode. The main disadvantage of this solution 

lies in the complexity o f protocol and data exchange rules. Because o f existence of 

DDCMP frames it increases time overhead in the serial communication.

• Terminal emulation. This solution involves disconnecting the robot CRT terminal 

and connecting PC via serial port instead.

The last two modes were implemented and tested by the author. The Supervisory 

Computer System (SCS) offers the capability of communicating with an external com­

puter using rigorous communication protocol. This assures the integrity o f information 

transferred between the VAL II system and the external computer.

Various levels of communication had to be implemented. Communications systems 

are customarily described in terms of functional layers (see Table 3.3). Each layer in 

this model supplies a specific function to the communication message as it transmits the 

system (the ISO model is included for reference only).

The ISO model assumes the computer communication network support is modularised 

into functional units corresponding to each layer. Each support module is responsible for 

providing the specified network services to the module above it.
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The supervisory communications system in VAL II is comprised of four layers. These 

layers correspond roughly to ISO Application/Presentation, ISO Session/Transport, ISO 

Network/Datalink, and ISO Physical layers respectively.

To establish a stable connection with the robot controller the RS-232, DDCMP, and 

data exchange with VAL II Network Manager and VAL II Logical Units had to be imple­

mented. Therefore, only those will be described below. Detailed information about other 

communication layers can be found in the robot manual [40].

ISO reference model VAL II functional layers

Communication User VAL II User Program

Application
VAL II Logical Units

Presentation

Session
VAL II Network Manager

Transport

Network
DDCMP

Data Link

Physical RS-232C

Table 3.3: Communication layers (after robot manual [40]).

3.3.1 Physical link - RS-232C

The physical communication link for VAL II supervisory communication is an EIA RS- 

423 serial link. This is compatible with common EIA RS-232C standard. The main 

differences between the two standards are maximum data rate and electronic design. RS- 

423 uses lower voltages and differential signals to allow cable lengths up to about 300 

meters.

The serial interface between the robot controller and the computer was made using 

RS-232C standard. Therefore, the RS-423 original standard in the asynchronous serial 

line board had to be changed. A number of resistors were removed from the board to 

allow single-ended voltage input. No changes had to be made to the computer since its 

serial port was already using RS-232C standard.
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Serial link was implemented using POrtable Standard for UNIX (POSIX) terminal 

control functions should work, with a few modifications, under Linux, IRIX, HP-UX, 

SunOS, Solaris, Digital UNIX, and most other UNIX operating systems. The *C’ code 

was written and tested connecting the two computers via serial link.

Both serial ports /d e v / t t y S O  and / d e v / t t y S l  (COM1 and COM2 respectively) 

were used for the communication.

3.3.2 Link Control - DDCMP

The Link Control of the VAL II supervisory interface implements a subset of the Dig­

ital Data Communications Message Protocol (DDCMP) specification developed by the 

Digital Equipment Corporation (DEC). The layer of the supervisory communication pro­

tocol can accept a transmission request from the network manager while simultaneously 

reading a message from the communication hardware. On one side the link control layer 

communicates with the Network Manager layer and on the other side it deals directly with 

the actual hardware which is performing the communication. The most important task of 

the data link layer is to ensure that each message transmitted or received is 100% error 

free.

DDCMP provides the rules for message framing, sequencing, and acknowledgement. 

These rules assure message integrity. DDCMP performs these functions through the 

means of special data sequence which envelopes the VAL II message data.

Figure 3.3 shows the format of DDCMP frames sent and received over the communi­

cation link [40]. It includes the envelope added by DDCMP to the VAL II data message.

DDCMP requires that each transmitted frame be acknowledged. This data link level 

acknowledgement is completely independent of any application level acknowledgement 

between each logical unit and its corresponding application.

The Data Message Portion format (see Figure 3.3) is used for records transmitted 

by VAL II and for records transmitted by the supervisory system. Data messages sent 

over the communication link between VAL II and a supervisory system have the general 

form of messages sent between VAL II and the operator at the robot system terminal.
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The only difference is that the messages sent to a supervisory computer have a routing 

and identification information preceding them. This allows the supervisory computer to 

process them.

n Bytes 8 Bytes 0 to 260 Bytes 2 Bytes n Bytes

Fill DDCMP
Header

Logical Unit 
Data Message CRC Fill

V
1 Byte 1 Byte 2 Bytes 0 to 256 Bytes

LUN Function Function Message
ID Code Qualifier Data

Figure 3.3: DDCMP frame types used by VAL II.

A set o f tasks like connection initialisation and data exchange were also implemented. 

Additionally the Cyclic Redundancy Code (CRC) algorithm was implemented since DD­

CMP requires a CRC-16 check sum on each data portion.

The CRC algorithm performs a mathematical calculation on a block o f data and re­

turns a number that represents the content and organisation of that data. The idea is to 

have the CRC return a number that uniquely identifies the data.

Before tests on the real robot, the connection stability and data integrity was carefully 

checked using two computers. To read data from the serial port and analyse DDCMP 

frames the gkermit-1.0 package was used. It offers medium-independent terminal session 

and file transfer.

Tested and debugged software was finally installed on the PC directly connected to the 

robot. The successful connection was established and tested. A more detailed description 

can be found in Appendix E.

3.3.3 CRT terminal mode connection

The existence of DDCMP significantly increases the amount of data to be transfered over 

the serial link. To overcome that the terminal emulation mode connection type was im­

plemented and applied onto the system.

To work efficiently the emulator software has to meet certain requirements, namely:
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•  the VALII operating system needs to be loaded from the hard drive at the beginning 

of the session,

•  full terminal emulation has to be implemented to allow communication with the 

robot’s operating system,

• for external storage the floppy drive emulator needs to be designed.

Two separate pieces of software were written. For VALII communication a simple 

dumb terminal was designed. The program called pterm was successfully compiled and 

tested on the system. It allows the user to release VALII commands from PC without the 

need of the controller’s CRT terminal.

Due to the controller’s design the VALII operating system is stored on the floppy disk 

and needs to be loaded into the robot’s memory during the boot up process. To simplify 

the design a drive emulator ipfloppy) was implemented and run on the PC. It works as a 

client responding to the robot’s requests for the data. This approach gives the advantage of 

using the computer’s hard drive to store the robot’s programs. It also simplifies the overall 

design since both pterm and pfloppy applications are running on the same computer which 

offers a full replacement of the old CRT terminal and the floppy drive.

The full floppy drive protocol was implemented including basic file-system operations 

like file delete, copy, move or load. The standard VALII disk maintenance commands are 

applied and all the operations could be learnt from the robot’s manual.

3.4 The sensor

The feedback signal to the intelligent agent was provided by Force and Torque (F/T) 

sensor mounted on the robot’s wrist.

The JR3 sensor with internal electronic and receiver card for ISA (IBM-AT) bus was 

chosen since it provides force and torque data with very low noise. The sensor was pre­

calibrated with maximum loads 15 lbs on X  and Y  axes and 30 lbs on Z  axis.

It is built as a monolithic aluminium device containing analogue and digital electronic 

systems in the main body. Foil strain gauges sense the loads imposed on the sensor. The
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strain gauge signals are amplified and combined to become analogue representations of 

the force loads on the three axes. In the applied model the analogue data is converted to 

digital form by electronics contained within the main body of the sensor. The data from all 

six axes is sent to the receiver at a rate of 8 kHz. The data stream also includes feedback 

monitoring the sensor’s power supply voltage and information about sensor characteris­

tics. Sending a digital stream of data instead of analogue one has the main advantage of 

being able to use long cables without causing damage to the signal quality.

The JR3 receiver board architecture consists of dual-ported RAM, to which the host 

and JR3 can both read and write. This RAM allows the host to read data from the sensor 

with little overhead. It also allows the sensor to be reconfigured on the fly by writing 

configuration commands to the RAM.

3.4.1 JR3 sensor driver design

The manufacturer does not provide a device driver so an appropriate program in ’C ’ lan­

guage had to be written. Two different approaches were implemented and compared. 

First a separate program was created to provide a communication interface between the 

controller and sensor circuit board. This solution was relatively easy to implement but, 

due to operating system security policy, the access to I/O memory ports from user space 

is limited. Therefore the driver and controller had to be run with computer administrator’s 

permissions.

Later the Loadable Kernel Module (LKM) driver was developed. This more compli­

cated approach requires a lot of development time and resources but is far more flexible 

and provides the end-user with a standard communication interface to the device.

Traditionally the device drivers were built as an integral part of the UNIX kernels. 

This ’’monolithic” structure proved to be very rigid and resource demanding since all the 

interfaces are loaded into the memory and exist throughout the operating system runtime. 

When a new device was added to the system the whole kernel had to be set up and later 

recompiled. Under Linux the kernel features can be expanded dynamically. The piece 

of code called a module could be added and removed during operating system runtime
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(without the reboot). This approach also proved to be memory efficient since LKMs can 

be loaded automatically when they are needed and removed from the memory after being 

idle for some time. It is also much easer to debug and maintain the code during the 

development time.

The LKMs are not only the device drivers. The kernel could also be extended by:

• file-system drivers - implements the interface for different file-systems access e.g. 

MS-DOS, FAT, NFS ext2, or ext3,

•  network drivers - implements a set of network protocols e.g. IPX, TCP/IP,

•  system calls - implements the interconnection between user space process and a 

kernel e.g. read, write the file,

•  TTY line disciplines - implements a set of drivers for terminal devices,

•  executable interpreters - implements an interface for different formats of executa­

bles run under Linux.

The architecture of the receiver board from ISA bus perspective is two 16-bit wide 

registers. To read data values from the DSP’s address space, first the address o f the desired 

data was written to the address port, then the data was read from the data port. Writing 

data was done in an analogous manner.

The receiver board was placed in the supervisory computer ISA bus. The base I/O 

address was set to 0x260 because the default settings were causing conflict with devices 

already installed. The basic features of the sensor were implemented allowing the user to:

•  change the position and orientation of the sensor’s X , Y, and Z  axes,

•  read the filtered or raw data from all 6 sensor’s channels,

•  read scaled or unsealed data.

•  zero the offsets on each axis of the sensor.
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All of these operation can be performed during application runtime but in author’s im­

plementation of the system all sensor settings are set during the controller’s initialisation 

process.

3.5 Experimental specimens

As stated in Chapter 2 many different part geometries were tested and analysed during 

the peg-in-hole insertion. Asada [1] simulated the pegs with the circular cross-section 

and chamfer-less hole, Gullapalli [18] used square pegs. Cervera [12], Howarth [24] and 

Juarez [29] investigated both circular and square geometries. Brignone [4] in his research 

also analysed triangular pegs with chamfered holes.

Square peg

Clearance: 0.2 mm 
Length: 24.8 mm 
Width: 24.8 mm 
Height: 13.3 mm

Cylindrical peg

Clearance: 0.5 mm
Diameter 24.8 mm 
Height: 14.7 mm

Cylindrical peg with rubber end

Clearance: 0.5 mm
Diameter: 24.8 mm 
Height: 14.7 mm

Table 3.4: Experimental specimens.

In this research, during the initial tests only the circular peg was used. This geometry, 

due to its simplicity, makes tuning and debugging of the software a much easer task. 

Later cylindrical peg with rubber end and square pegs were applied. The drawings and 

basic dimensions the reader can find in the Table 3.4. The pegs were manufactured from
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aluminium and featured a special flange profile to maintain better grasp quality. The robot 

gripper was also redesigned for this purpose.

In some cases, due to the small clearance between mating parts, the closed chamber 

with compressed air underneath the peg could prevent the successful insertion. To avoid 

the pressure build up a small vent hole was drilled through the peg.

The controller validation methodology (explained in detail in Chapter 4) requires the 

simulation of the insertion of parts with different friction coefficients. For that purpose, an 

additional circular peg was designed and manufactured. It consists of two parts, namely: 

the aluminium flange profiled to fit the robot gripper and the main cylindrical section 

made from the rubber (see Table 3.4) for details.

In Chapter 2 the difference between linear and non-linear compliances was explained. 

In this work the controller needs to be tested and validated on both insertion cases. To 

simulate linear and non-linear compliance chamfered (45°) and chamfer-less holes were 

used respectively. All the hole parts are manufactured from the aluminium blocks. They 

are firmly screwed into the robot’s working table to prevent sliding during the insertion 

process.

3.6 Discussion

The hardware used for the purpose of this project was chosen based on two major factors, 

applicability and availability. The JR3 F/T sensor was an attractive choice both because 

the manufacturer offers a version which can fit the robot wrist with no modifications and 

also has clear and easy to programme interface.

All elements of the system were designed and implemented by the author during the 

first part of the research. This include:

• supervisory communication system implementation (including DDCMP protocol),

• implementation of robot floppy disc drive emulator {pfloppy),

• implementation of robot CRT terminal {pterm),
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•  JR3 F/T sensor loadable Module Kernel driver implementation,

The software was written in ANSI C language under GNU/Linux operating system. 

As stated before, after initial tests the robot-computer communication mode was entirely 

redesigned. Due to the existence of the DDCMP protocol frame the Supervisory connec­

tion system turned out to be slow and difficult to implement fully. In the case of prolonged 

peg-in-hole experiments a simple terminal emulator run on the PC computer proved to be 

a much more flexible and robust tool.

The major improvement to other researchers [4,31] was to eliminate the presence of 

master-slave architecture. In the author’s design it was replaced by a single master com­

puter running the communication software, sensor driver and AI controller for position 

correction calculations.

The three different geometries o f the parts were applied to evaluate the controller’s 

performance. The major improvement was to use different material for the peg. The 

material was chosen to test the controller under different friction conditions.

A new approach to the software design was also proposed. The AI controller was 

built in a modular form (as a plug-in). This increases its flexibility enabling different 

architectures to be developed and tested. The main disadvantage lies in an increase of 

complexity of the software. The overall structure is shown in the Figure 3.4.

Interprocess
communication Interprocess

communication

u  i r

Main Program

AI Controller

Shared library

F/T data 
acquisition

Process 1

Motion corrections 
to the robot

Process 2

F/T Data 
from the sensor

Incremental movement 
commands

Figure 3.4: Software design.

The software consists o f the main (ANN controller) and two child processes (F/T 

sensor driver and computer-robot connection module) running in parallel. The controller
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itself is compiled as a shared library and loads up or removes from memory at application 

runtime.

This approach allows the user to create different AI controllers and test them without 

any interference to the main application code. The specification o f the application inter­

face allows researchers to focus on controller development and implementation without 

coding the I/O operations needed to establish connection with robot.

The C code can be compiled as a module and in a similar manner to Internet browsers’ 

plug-in, load and execute without stopping the main application. It is also possible to 

create the different parts o f the controller, either ANN or reinforcement agent, as separate 

plug-ins and switch between them at the application runtime.

The system was initially designed to work with Puma 500 series robots. However, due 

to mechanical failure of the manipulator, the proposed system was later transferred, with 

no modification, onto a Staubli RX90 robotic arm. This demonstrates the portability and 

flexibility of the design and methodology.

Due to the complexity of the modular design the software debugging was very diffi­

cult. For that reason most of the presented results were acquired from the experiments 

using a non-modular version of the software. However, the system was deployed and 

tested, and performed well during the initial experiments.
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Chapter 4

Methodology

During this research, the author will extend the earlier work by investigating how the AI 

controller should combine different information sources in order to generate a successful 

assembly strategy. The information sources mainly concern: task description, geome­

try, on-line force and torque contact data analysis and information derived from previous 

moves (experience). The originality of this approach lies in the definition of a method­

ology to merge information derived from different sources to attempt an interpretation of 

the contact state, in terms o f contact location and the peg’s attitude.

4.1 Controller architecture

As stated in Chapter 2, most current intelligent controller designs share a number o f com­

mon disadvantages. The poor on-line performance or need for an explicit description 

of the environment are amongst the major drawbacks in automated assembly. Perform­

ing complex tasks (e.g. peg-in-hole insertion) the intelligent controller often deals with 

infinitive, 3-dimensional Cartesian space. Therefore, for efficient on-line state-action re­

lationship, learning the state domain should be simplified. The classification is often 

necessary but by no means an easy task.

The reinforcement learning methods give the advantage of unsupervised on-line knowl­

edge acquisition but their relatively slow learning process affects the controller’s overall 

performance. Additionally, a clear state description information from the environment is
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required by the decision making agent. Because of that the noisy feedback signals need 

to be filtered, preprocessed and classified before being fed as an input to the algorithm.

The supervised learning methods are amongst the most popular algorithms for state 

clustering and pattern recognition. The major disadvantage o f these methods, although 

they are fast and reliable, is the need for input-output pairs to train the network. This is, in 

fact, supplying the agent with an explicit knowledge about the geometry and relationship 

between the mating parts. That information is often unavailable or difficult to access, 

especially when introducing new geometry features during the learning process.

Those limitations inspired the author to propose the novel AI controller architecture. 

The design objectives were set as follows:

•  the controller needs to be able to work without supervision with the environments 

featuring complex 3-dimensional geometry - this involves the implementation of 

an autonomous, independent decision making agent able to learn and work in the 

environment with a high degree of uncertainty,

•  the controller should react fast and adapt easily for rapid changes and be able 

to utilise the knowledge from previous insertions - this involves issues like the 

stability-plasticity dilemma and a combination of different information sources to 

speed up the learning process,

•  the architecture needs to be simple and modular - this allows easy performance 

evaluation and application o f different AI methods.

In the presented configuration (see Figure 4.1), the controller receives two signals 

from the environment. The state description (s) is fed to the controller alongside the 

reward (r) feedback. The agent influences the environment by sending a control signal in 

the form of incremental movement correction data to the robot.

The proposed controller architecture features a ’’sandwich” structure with two major 

layers (see Figure 4.1) namely:

• State recognition or State Clustering module. This layer is designed to detect and 

localise the contact points that the agent experiences during the assembly task, Here
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3-dimensional state domain classification takes place. The applied algorithm should 

show the ability for fast, unsupervised, adaptive learning. It is essential to efficiently 

analyse the environment’s features and to follow its on-line changes.

the decision making or Learning Agent subsystem learns to apply the next action 

(a) based on the calculated reward (r) and the state description signal (s).

Controller

Agent
Reinforcement learning

Reward

State
State clustering

ART2ANN

CONTROL SIGNAL 
Incremental movement 

request

RECOGNITION 
F/T Signal

Environm ent

Control system 
PUMA 560

Figure 4.1: AI controller architecture.

4.1.1 The information flow within the controller

The F/T signal is acquired from the sensor and fed straight to the State Clustering module. 

This produces a number corresponding to the location of the contact point, called a state 

description. The information is sent as an input to the Learning Agent subsystem. In this 

module, the next action-selection takes place. The reward signal from the environment 

plays a significant role in the decision making process (see the next Section for details). 

This results in an action number which is later decoded to the incremental motion com­

mand understandable to the robot. The robot executes the move which causes the change 

in state. Then the new F/T vector is read and fed again to State Clustering module. This 

closed loop process is repeated until the stop condition occurs.

4.2 The learning agent

This is the main, decision-making part of the controller. Here the next action-selection 

takes place. Many different algorithms were applied in the past to learn manipulative
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skills during peg-in-hole insertion (see Chapter 2 for details). After careful consideration 

the author decided to take a reinforcement learning approach to the problem. The com­

plete insertion can be considered as an episode (or play) and every single movement as a 

step. The controller will learn the state-action relationship by continuously repeating the 

insertions. This will result in developing the optimal insertion strategy.

Two different reinforcement learning algorithms were implemented and tested namely: 

SARSA and q-leaming. Both methods belong to the Temporal-Difference family but 

differ in the learning policy (see Section 4.2.2 for details). The three different action- 

selection policies were also implemented and tested. All methods were evaluated with 

the simulated grid-world environment before being applied on a real life system.

4.2.1 Reinforcement learning

Following Sutton and Barto’s description [36], Reinforcement Learning is meant to be a 

straightforward framing of the problem of learning from iteration to achieve the goal. It 

is a numerical way of finding and optimising the state-action relationship. The learning 

module gains knowledge about the task and makes an unsupervised decision about the 

next action based on the feedback signal it receives.

The learner and decision-maker is called the agent. The thing it interacts with, com­

prising everything outside the agent, is called the environment. The environment gives 

rise to rewards, a special signal whose values the agent tries to maximise over time. A 

complete specification of an environment defines a task, one instance o f the reinforcement 

learning problem. The agent and environment interact continuously (see Figure 4.2).

During learning the adaptive system tries the actions on its environment, then it is re­

inforced by receiving a scalar evaluation (reward). The reinforcement learning algorithms 

selectively retain the outputs that maximise the received reward over time.

Reinforcement learning tasks are generally treated in discrete time steps. At each time 

step (t), the learning system receives some representation o f the environment’s state (st), 

it takes an action (at+1), and one step later it receives a scalar reward (rt+1), and finds 

itself in a new state (st+1).
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The significant feature that distinguishes the reinforcement learning approach from the 

other artificial intelligence algorithms is its ability to learn from experience. The idea is to 

capture the most significant aspects of the environment to solve the problem as opposed 

to supervised learning algorithms, which are mainly focused on finding the methods of 

acting.

A ctionRewardState

Agent

Environment

Figure 4.2: Reinforcement learning principle.

Reinforcement learning is a goal oriented method of knowledge acquisition. The de­

cision making process is based on value functions (explained later in this Chapter) not 

on the immediate reward. This means that the agent deals with the whole problem rather 

than dividing it into simple sub-tasks as in the case of supervised methods. The reinforce­

ment learning controller must interact with the environment to gain the knowledge and to 

achieve the goal. The supervised algorithms, on the other hand, require a set of examples 

to learn from. It is often impossible to obtain a good set which describes well the complex 

environments the agent must deal with.

Evolutionary methods are often used to solve reinforcement learning problems. The 

theory is based on organisms producing a skilled offspring even if they do not learn during 

their lifetime. The genetic algorithms do not interact with an environment ignoring the 

fact that learning policy is a function of state to action pairs (function values). Moreover, 

the information about the experienced states and action taken is also ignored and lost for 

future reference. These methods are very effective when the state signal is noisy or the 

agent is unable to interpret it accurately.
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Value functions versus the immediate rewards

As mentioned before, the value functions play a significant role in reinforcement learning 

methods. It is a function which maps the actions (or state-action pairs) onto the response 

from the environment (the reward). It classifies good and bad events describing the desir­

ability of their occurrence. The agent, during the learning process, tries to maximise the 

total rewards. This defines the feature of the whole problem. In the other words, the value 

of a state is the total amount of reward an agent can expect to acquire in the future starting 

from there [36]. The value functions are built to represent the prediction o f rewards and 

to take into account the action likely to follow (future prediction). They play a significant 

role in the unsupervised decision making process. The system chooses the actions based 

on the function values not the rewards. The choices with the highest value are likely to 

gain the highest amount of rewards in the future.

Differently from the value functions, which describe what is good or bad in a global 

sense, the rewards provide information about the immediate response of the environment. 

This primary feedback signal directly affects the policy changing it to choose the appro­

priate action in the future. It is easy to obtain since it is given directly by the environment 

the agent deals with. The value functions, on the other hand, have to be estimated from 

sequences of interactions (the agent’s lifetime experience). These methods o f estimation 

play a key part in every reinforcement learning algorithm [36].

The genetic algorithms (mentioned earlier in this chapter) do not use a value function, 

instead they rely on immediate rewards to search through the policy space for the best 

actions. These methods can produce very quick and effective results working in environ­

ments featuring small or easily classified policies.

Learning policy

The policy is the core of every reinforcement learning algorithm. It defines the relation­

ship between the states and the actions.

The early reinforcement learning algorithms have used a trial-and-error method to 

learn the optimal policies. The modem ones try to leam the model o f the environment
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instead. The agent’s ability to emulate the environment gives the benefit of next state 

and reward prediction for a given state-action pair. In other words, the advanced systems 

with high level deliberative planning are able to consider future events during the decision 

making process.

Action-selection methods

Reinforcement learning estimates the action taken rather than instructing the system. This 

feature has been widely used for function optimisation, and is a basis of evolutionary 

algorithms [36]. The agent evaluates how good an action taken is, but not whether it is 

the correct choice. The instructive approach, on the other hand, is an action independent 

approach and indicates the best known solution.

The action dependent, evaluative feedback approach requires the agent to decide how 

far to explore the environment or to exploit the current knowledge. This decision making 

process is called exploration-exploitation dilemma and can significantly influence the on­

line performance of the reinforcement learning algorithm [36]. The supervised methods 

implement the exploration-exploitation trade-off explicitly, relying heavily on the expert 

knowledge. Three different action-selection methods were implemented and tested by the 

author. They differ in principles and applications:

•  Greedy action-selection. This method relies entirely on knowledge exploitation. 

The agent always chooses the action with the highest estimated value. This means 

that no exploration of the environment takes place. It performs poorly with the 

complex environment and rarely produces an optimal result. Its limitation lies in 

the fact that it ignores other actions which may produce better results in the long 

run. However, this method performs very well in non-complex environments where 

the system knows each action after trying it once (reward variance equal to zero). 

In the case of greedy action-selection the probability of greedy action (ag) is equal 

to one for every episode (P(ag) =  1).

•  e-greedy action-selection. It is a very similar approach to the greedy method. The 

agent still chooses the action with the highest estimated value but also allows the

48



exploration with a small probability e. The method was implemented so that the 

value of e depends on the number of the current episode. This reduces the amount 

of exploration as the number o f plays increases. The probability of greedy action

cig was set as follows:

P ( . a g )  —  1  —  e  + (4.1)

where e depends on the episode number n and it is described by following equation 

[36]:

e =
H *n +  l

(4.2)

where ji is a bias which regulates how much exploration the agent will experience 

throughout the plays (see Figure 4.3).
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Figure 4.3: e-greedy action-selection method.

The Figure 4.3 presents how the value of e changes over a number o f episodes. 

The simulation was performed on a standard e-greedy algorithm using equations 

presented above (4.1). Five different values o f n were tested on a simulated 500 

episodes problem. It is clear from Figure 4.3 that the probability o f choosing a
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random action decreases with the increased number of plays. On the other hand if  

the value of /i gets smaller the agent is allowed to explore more.

The main advantage of this policy over the greedy action-selection method is the 

fact that with the increase o f episodes, every possible action can be tried and evalu­

ated an infinite number of times [36]. The e-greedy action-selection method guaran­

tees that during exploration time every action has an uniform chance to be chosen. 

This is independent of its estimated value so even the actions with the lowest values 

can be applied. This feature is highly undesirable in the environments where the 

’’bad” actions could have serious implications on system safety and performance 

(e.g. workpiece damage, robot collision).

Softmax action-selection. In this method the probability of each action is a function 

of its estimated value. The uniform choice in the form of random function present in 

e-greedy method has been replaced with a system of weighted actions. In Softmax 

selection policy the probability of choosing the action is usually governed by Gibbs 

distribution, described as follows:

where /? is a ratio which determines how much exploration the agent is allowed to 

take. When (3 =  0 the actions are selected randomly and for (3 —> oo the greedy 

policy is applied. In between the above limits the actions with the highest estimated 

value still have the highest probability of being chosen. Although the actions show­

ing the lowest estimated values have a relatively small chance o f being applied (see 

Figure: 4.4). This approach favourers the ’’good” actions over the ’’bad” ones.

It is clear from Figure 4.4 that for the (3 =  0 the uniform random function governs 

the action-selection. With the increase o f (3 the actions with the higher estimated 

values have more chance o f being chosen than those with low values. The sum of  

probabilities is o f course equal to one.
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Figure 4.4: Gibbs distribution for simulated action values.

4.2.2 Temporal-Difference methods

The main idea of reinforcement learning is called Temporal-Difference learning. These 

methods are, in general, learning algorithms to make long-term predictions about dynam­

ical systems. They are based on estimating value functions, functions o f states (5) or 

action-states pairs (Q(s, a)) that estimate how good it is for the learning system to be in 

a given states or to take a certain action in a given state. Such value actions guide the 

action-selection mechanism, the policy to balance exploration and exploitation, in order 

to maximise reward over time, and let the learning system achieve its goal.

The Temporal-Difference methods are based on Monte Carlo and Dynamic Program­

ming approaches (the detailed description of those methods can be found in the book 

[36]). Similarly to Monte Carlo the Temporal-Difference methods learn from experience 

without the need for a model of the environment. The major limitation of the Monte Carlo 

method lies in the way it updates its estimates. The agent must wait for the result o f an ac­

tion to calculate the value function. This means that whole episode must be completed by 

the agent to learn. In applications featuring very long episodes or continuous task-based
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problems the Monte Carlo methods would produce a low on-line performance.

To solve this problem Temporal-Difference methods combine Dynamic Programming 

methods into the above mentioned system. The learning takes place after each state tran­

sition by interaction in discrete time steps. This method of calculating estimates based 

on past estimates (’’guess from the guess”) was proved to converge to the correct answer 

(see [36] for details).

Q-learning

In this type of Temporal-Difference learning method, the learnt action-value function Q 

directly approximates the optimal action-value function Q*, independent of the policy 

being followed (off-policy). The policy still has an effect in that it determines which state- 

action pairs are visited and updated. However, all that is required for correct convergence 

is that all pairs continue to be updated. This is a minimal requirement in the sense that any 

method guaranteed to find optimal behaviour in the general case must require it. Under 

this assumption and a variant of the usual stochastic approximation conditions on the 

step-size sequence, has been shown to converge with a probability of one to Q*.

The Q function is defined as followed (after Sutton and Barto [36]):

Q (st? Q>t) Q(su a t ) + ol r m  +  7 m axQ (sm ,a m ) -  Q(su at) (4.4)

where: t is a discrete time step at which an agent receives representation of the environ­

ment; s is a finite set of states an agent can be in; a is a finite set of actions an agent may 

perform; Q is a transition function, mapping each state-action pair to a successor state; r 

is a reward function, mapping states-action pairs to payoffs, a  is a learning rate and 7  is a 

discount factor. These last two ratios are learning parameters.

Each state-action pair is assigned the highest discounted cumulative reward possible, 

if state s is the agent’s starting state and a is the first action performed. So function Q is 

based on an optimal policy.

The optimal strategy is not known in advance. But it shows that the Q function can 

be approximated by continuously collecting locally observed payoffs and by updating the
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approximation of Q , using the equation above, although the values for the successor states 

may have been initialised to arbitrary values.

The q-leaming was implemented after Sutton and Barto [36]. The algorithm is pre­

sented in the form of a flowchart below (see Figure 4.5) where Q stands for q-function 

(estimate function value), s is a state, a an action, t a time. E  represents a maximum 

number of episodes. The applied action-selection policy could be either greedy, e-greedy, 

or Softmax.

START

Episode >  E

s, =  GOAL

Get s

G e ts ,

Episode++

Takea

Update Q

Initialise Q

STOP

G e ta ,fo r s , 

using the policy

Figure 4.5: One step Q-leam algorithm flowchart.

The basic q-leaming algorithm was applied. The class number was set as an input 

describing the actual contact forces. Using this configuration, the reinforcement algorithm 

needs to leam how to deal with a particular part of the component’s geometry. Moreover
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the self-learnt geometry information includes only orientation of the given plane. Based 

on that the agent can be trained with a set of surfaces separately and then be able to work 

efficiently with an object built from these planes. So, unless the part consists of a feature 

which has not been learnt before, the change of geometry (e.g. from circular to square 

peg) should not affect the controller’s performance in the early stages of insertion.

The q-leaming algorithm was used with greedy, e-greedy and Softmax action-selection 

methods. Based on research by the author the application of this method together with 

proposed state domain clustering has not been applied for peg-in-hole insertion before.

Q-leaming learns values for optimal policy so after a training period the peg is ex­

pected to slide along the chamfer’s surface to the hole. Unfortunately, in case of the 

e-greedy action-selection method, it occasionally chooses the movement towards the wall 

inevitably increasing the contact forces.

SARSA

The SARSA algorithm belongs to the on-policy Temporal-Difference methods class. Sim­

ilarly to q-leaming SARSA gathers the knowledge from the state-action pairs transitions 

but it leams the policy directly. The on-line performance of the algorithm depends on the 

application but generally is better than in the case of q-leaming. The learning of optimal 

policy relies on applied action-selection method. Each state-action pairs must be visited 

an infinitive number of times to gain the best possible solution. This could be achieved by 

applying an e-greedy action-selection method which converges in limit to greedy policy 

(see section 4.2.1 for details).

The relationship that governs the learning process is described by the equation below 

(after Sutton and Barto [36]):

Q(st, at) <- Q(st , at) +  a  [rt+1 +  7 Q{st+1, at+1) -  Q(sti at)] (4.5)

as in case of q-leaming: t is a discrete time step; s is a finite set of states an agent can be 

in; a  is a finite set of actions an agent may perform; Q is a transition function, mapping 

each state-action pair to a successor state; r is a reward function, mapping states-action

54



pairs to payoffs, a  is a step size and 7  is a discount factor.

As mentioned in the previous section the q-leaming method leams the optimal pol­

icy. This could be a disadvantage in some applications especially when particularly low 

rewards are assigned to some movements. In those cases, despite a pre-leamt optimal 

policy, due to exploratory random action choice the agent can experience an error con­

dition (sudden increase of forces in the case o f peg-and-hole insertion). The SARSA 

method, due to the fact that it leams a safe path, is not affected by this problem. It should 

be emphasised at this point that it is possible for SARSA (by applying an appropriate 

action-selection method) to converge to optimal policy (see Section 4.5.1 for simulation 

results).

START

Episode > E

s t =  GOAL

Update Q

Initialise Q

G e ts ,

Take a ,

STOP

G e ta ,fo r s , 

using the policy

Get a,*,for s 

using the policy

Figure 4.6: SARSA algorithm flowchart. 
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The SARSA algorithm was implemented, applied and tested with greedy, e-greedy 

and Softmax action-selection methods. The implementation method in the form of a 

flowchart is presented in Figure 4.6. As in the case of the q-learning algorithm flowchart, 

Q stands for q-function (estimate function value), s is a state, a an action, t a time. E  

represents a maximum number of episodes.

4.3 State domain clustering module

To learn an appropriate action the reinforcement learning agent requires a clear definition 

of the state. This information can be constructed from almost any data acquired from 

the environment. In most cases the raw signals have to be preprocessed or classified 

and in some applications the state can be built from a combination of two or more fea­

tures. According to reinforcement learning theory, the preprocessing system is nominally 

a part of the environment [36]. It is clear from Figure 4.1 that in the proposed design 

the preprocessing module is placed as a part of the controller. The reason for it is the 

fact that applied methods of classification are fully self-adapting and together with the 

reinforcement learning agent they form an intelligent controller. Although, it should be 

emphasised at this point that the preprocessing system called for the purpose of this thesis 

state clustering module is not a part of a reinforcement learning agent. Both subsystems 

work independently of each other and serve different purposes. The decision about the 

next action is taken by the agent without knowing how the state signal was constructed.

4.3.1 Markovian State

The choice of the best action for a particular state is not an easy task. The decision 

has to be made based on immediate rewards but the overall performance also needs to 

be taken into account. Making the choice by monitoring just the immediate sensations 

will significantly affect the agent’s learning speed since, very often, the actions with poor 

immediate rewards can produce good results on the global (task) scale.
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According to Sutton and Barto [36], a good state representation is built by the infor­

mation sources in such a way that it concludes and compacts the past experiences. Ideally 

all data important for the future decision-making process should be retained. A state sig­

nal with all relevant past events encoded is called Markovian state. This usually involves 

more than just immediate rewards from the environment, but never the whole task history.

The states that feature the Markovian property play a significant role in the reinforce­

ment learning process. The fact that past sensations are retained in the current state makes 

the decision-making process history independent. In the other words all that matters for 

the future is included so the agent can predict the next state (st+i) and reward (rt+1) based 

on current state (st) and the action (at). This very important feature is essential for a fast, 

reliable decision-making process. The next action choice which is based on the state sig­

nal with Markovian property is as good as the decision based on the entire history o f the 

task.

4.3.2 State classification using Artificial Neural Networks

The State Classification module was designed to generalise the large and continuous state 

space. In the author’s application the only sensory signal from the environment is in the 

form of a force and torque signal. Because of that, the unsupervised pattern recognition 

or, in the other words, function approximation system needs to be implemented.

There are many ways to accomplish that including the application o f neural networks 

or fuzzy logic systems, etc. One of the simplest approaches is to partition the continuous 

state space into a set of classes, and treat each class as an autonomous object.

There is no universally accepted definition of Neural Network. According to ANN 

FAQ [33], the Artificial Neural Network is a network of many simple processors (Pro­

cessing Elements), each possibly having a small amount o f local memory. The units are 

connected by communication channels which usually carry numeric data, encoded by any 

of various means. The units operate only on their local data and on the inputs they receive 

via the connections (see Figure 4.7).

Zaknich in his definition [47] describes Artificial Neural Networks as an engineering
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discipline concerned with non-programmed adaptive information processing systems that 

develop associations between objects in response to their environment. That is, they learn 

from examples. Neural Networks are a type of massively parallel computing architectures 

based on brain-like information encoding and processing models and, as such, they can 

exhibit brain-like behaviours such as: learning, association, categorisation, generalisation, 

feature extraction, pattern recognition or optimisation.

1

X

X
Activation
function

PE

X

Figure 4.7: Basic Processing Element.

Given noisy sensory inputs, they build up their internal computational structures through 

experience rather than preprogramming according to a known algorithm.

Haykin in his book [22] gives a more formal definition: ”A neural network is a mas­

sively parallel distributed processor that has a natural propensity for storing experiential 

knowledge and making it available for use. It resembles the brain in two respects:

• knowledge is acquired by the network through a learning process,

• inter-neuron connection strengths known as synaptic weights are used to store knowl­

edge.”

The initial intent of Artificial Neural Networks was to explore and reproduce human 

information processing tasks such as speech, vision, and knowledge processing. These 

algorithms also demonstrated their superior capability for classification and function ap­

proximation problems. This has great potential for solving complex problems such as 

systems control, data compression, optimisation problems, pattern recognition, and iden­

tification.
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There are many different types of Neural Networks (see Figure 4.8). They differ in 

the kinds of data they accept (categorical and quantitative variables), in topology (feed­

forward, feedback or recurrent) or in the learning approach.
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Hamming Network
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Figure 4.8: ANN’s taxonomy (after Huang and Zhang [25]).

The three main types of ANN based on the learning approach are listed as follows 

(after Zaknich [47]):

•  Supervised learning - this type of artificial Neural Networks are trained to perform 

a task by a teacher repeatedly showing them representative examples o f the inputs 

they will receive, paired with the desired outputs. During each learning or train­

ing iteration the magnitude of the error between the desired and the actual network 

response is computed and used to make adjustments to the internal network param­

eters or weights according to some learning algorithm. As the learning proceeds 

the error is gradually reduced until it achieves a minimum, or at least an acceptably 

small, value.

•  Reinforcement learning - in this type of learning the algorithm does not need to 

compute the exact error between the desired and the actual network response, rather
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for each training example the network is given a pass/fail signal by the teacher. If 

a fail is assigned, the network continues to readjust its parameters until it achieves 

a pass or continues for a predetermined number of tries, whichever comes first. 

Reinforcement learning is sometimes thought of as a special type of supervised 

learning and it should not be confused with the unsupervised methods described 

earlier in this chapter.

• Self-organising learning - takes examples of the inputs and forms automatic inter 

groupings and reorganisations or self-clusterings of the input data based on some 

measure of closeness or similarity. It is then sometimes possible to assign some 

meaning to those clusters in context with the nature of the data and problem in­

volved.

Neural Networks have been successfully applied to many manufacturing activities 

spreading from the design phase through process planning, scheduling and monitoring to 

quality assurance. In robotics where the simplest movement requires a sophisticated cal­

culation intelligent algorithms were used to reduce the computational complexity. Due to 

its massive parallelism they offer a significant increase in processing speed. This appears 

to be useful in solving forward and inverse kinematic problem. In robot dynamics the 

Neural Networks have been successfully applied to learn inverse dynamical relationships.

Adaptive Resonance Theory

Adaptive Resonance Theory (ART) was developed by Stephen Grossberg and Gail Car­

penter over the period of 1976-86, during their studies of the behaviour of models of 

systems of neurons [9,17]. ART was developed to solve the learning instability prob­

lem suffered by standard feedforward networks. The weights which have captured some 

knowledge in the past continue to change as new knowledge comes in. There is, therefore, 

a danger of losing the old knowledge with time.

Adaptive Resonance Theory gets its name from the particular way in which learning 

and recall interplay in the network. In this type of network, information in the form 

of processing element outputs reverberate back and forth between layers. If  the proper
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patterns develop, a stable oscillation occurs. This is the neural-network equivalent of 

resonance. Only during this stage can learning take place [16].

A resonance can be attained in one of two ways. If the network has learnt to recognise 

the input pattern before then the resonant state will be achieved quickly when the input 

vector is presented. During this state the memory of the stored pattern will be reinforced. 

If the input vector is not recognised the network will look in the stored patterns database 

for a match. If no match is found the network will enter the resonant state and the new 

pattern will be stored for the first time. Thanks to this design the network is able to 

respond quickly to previously learnt data, yet remains able to learn new patterns.

Attentional subsystemOrienting subsystem

\ZJ Reset
a +

R" sublayer

'FI" layer

'P" sublayer

2̂" layer

'U" sublayer

'W" sublayer

’Q" sublayer

'X" sublayer

V" sublayer

INPUT VECTOR

Figure 4.9: Implemented ART2 architecture (after Ferrman and Skapura [16]).

In the basic ART system two major subsystems can be distinguished. The attentional 

subsystem is represented by F\ and F2 layers of nodes. Patterns of activity that develop 

over them is called Short Term Memory (STM) traces, because they exist only with a 

single appearance of an input vector. The Long Term Memory (LTM) in ART architecture
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is represented by a set of weights associated with top-down and bottom-up connections 

between F\ and F2 layers.

The orienting subsystem is responsible for sensing mismatches between top-down and 

bottom-up patterns on the F\ layer. Its operation can be modelled by the addition of terms 

to the dynamic equations that describe the activities of the F2 processing element. The ori­

enting subsystem could be modelled as as a single processing element with output to each 

unit on the F2 layer. When a pattern mismatch occurs, the orienting subsystem should 

inhibit the F2 unit that resulted in the non-matching pattern and should maintain that in­

hibition throughout the reminder of the matching cycle. The vigilance parameter (p) is 

associated with this subsystem. It measures the degree to which the system discriminates 

between different classes of input patterns. For a given set of patterns to be classified, a 

large value of p will result in finer discrimination between classes (see Section 4.5.2 for 

more results).

ART2 is the type of Adaptive Resonance Theory family which accepts analogue vec­

tors components as well as binary components. It is also able to recognise the underlying 

similarity of identical patterns superimposed on constant backgrounds having a different 

level.

The price for this additional capability is an increase in complexity of the F\ process­

ing layer. It consists of several sub-levels and gain control systems that serve to remove 

noise, enhance contrast, and to normalise an analogue input pattern.

The activity of each unit on each sublayer of F\ is governed by an equation [16]:

exk = - A x k +  (1 -  B x k)Jk -  (C +  D x k)J*T (4.6)

where: is an excitatory input to the kth unit, J ^  is an inhibitory input, x k refer to

activities on the particular layer and A, B , C , D  are constants,

The equations that govern the activities on each of the six sub-layers are as follows 

[16]:

Wi = Ii +  aui (4.7)
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e +  ||w
(4.8)

Vi =  f(xi) +  bf(q,) (4.9)

U i  =
e + | | v ||

(4.10)

Pi =  Ui +  '}2g(yj)Zi3 (4.11)
j

(4.12)

where wit U{, xi9 vi9 Pi, Qi represent activities on the F\ sublayers (see Figure 4.9); g(yj) 

is an output function from F2 layer; f(x)  is a threshold linear function and e is a network 

parameter typically set to a positive number considerably less than 1.

Processing on F2 o f ART2 is identical to that performed on ART1. Bottom-up inputs 

are calculated as follows:

4.4 Software implementation and data structures

Most Artificial Neural Network algorithms share the same basic concepts o f distributed 

and highly interconnected processing elements. The key goal at this stage of research 

was to develop a flexible system able to support several different AI architectures. For 

that reason the code portability and re-usability was an important issue during the design 

process.

Artificial Intelligence algorithms, due to their specific structure, are well suited for 

object oriented programming. C is a general purpose structural programming language. 

It was designed for the UNIX environment and was successfully adopted by the other 

operating systems. However, the quasi-objective programming is also allowed in C. By

T j  — y ^ P i Z u (4.13)

The output function of F2 is govern by equation:

d Tj — max(T*;)V/c
9(Vj) =  S (4.14)

0 otherwise
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organising the variables into structures the programmer can access them in a very similar 

way as the classes and objects in C++. The major difference (but by no means limitation) 

is the fact that the ”C” function cannot be a member of the structure.

For the purpose of this project the data was organised into several structures. With a 

few exceptions, and the author’s modifications, the implementation follows Ferrman and 

Skapura’s [16] proposal.

NET
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FI

F2

LAYER
n

w 1 ... n

X 1 ... n

V 1 ... n

u 1 ... n

p 1 ... n

q 1 ... n

out 1 ... n

<z> 1 ... n

bi)
<D
£ n

Figure 4.10: Data structure implementation for ART2 Neural Network.

The ART2 data was organised into two nested structures: L A Y E R  and N E T  (see Fig­

ure 4.10). The first one defines the structure of a single layer of Processing Elements. 

It consists of the pointers to all sublayers described in the Section 4.3.2. The structure 

N E T  implements the whole topology of the ART2 network. It is built o f three pointers to 

L A Y E R  structure namely F O , F I  and F 2 .  The set o f learning parameters including the
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vigilance (p) is also implemented there. This design creates the flexibility of quick pro­

gramming of different topologies o f Artificial Neural Networks. The relationship between 

the layers and the learning algorithm are implemented independently o f those structures.

The number of layers or input and output units can vary and depends on the applica­

tion. The dynamic memory allocation was used to implement the data.

The reinforcement learning agent was implemented in a similar manner to ART2 net­

work. The structure consists o f pointer to state-action q-function matrix as well as a set 

of learning parameters.

AGENT

Figure 4.11: Data structure implementation for reinforcement learning agent.

The relevant fragments o f C code listings can be found in Appendix E.

4.5 Algorithms simulation

All algorithms described earlier were implemented and tested on simulated data before 

being applied onto the real-life peg-in-hole insertion. Every part of the controller was 

evaluated separately. This approach gave the author an opportunity to understand the in­

formation flow within the Artificial Intelligence algorithms and to learn how the different 

ratios affect the learning speed and overall performance.
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Simulated data was used for the purpose o f the tests. Two different tests were per­

formed. The grid-world was implemented as a representation of the environment for the 

agent to interact with, and set of generated force and torque arrays were used to investigate 

the efficiency of the State Clustering module.

The summary graphs are presented in the main body of the the thesis followed by 

detailed analysis. The remaining results are included in the Appendix A.

4.5.1 Learning Agent evaluation

To evaluate the performance o f action-selection methods the 2-dimensional maze was de­

signed (see Figure 4.12). It is based on a matrix of squares with seven rows and columns. 

The agent was programmed to move around the white area. The grey squares represent 

the obstacles.

s
T

1
1
1 1

1

G

Figure 4.12: A grid-world environment to evaluate the reinforcement learning methods.

During each play the agent could experience up to 15 discrete states (see Figure 4.13). 

The state described by number ”15” is practically impossible for the agent to achieve 

since it represents the lockup position. There were four available actions to chose from, 

namely: move North, South, East or West. The agent was allowed to take only one step 

at a time. The goal ”G” was setup in the bottom right comer o f the maze and was defined 

by the state number ”14”. Each play was started from the square described by ”S”. The 

optimal path from ”S” to ”G” is indicated by the dashed line (see Figure 4.12).
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10 11

12 13 14 15

Figure 4.13: The set of states the agent can experience during each play.

To simplify learning the grid-world was designed so there is only one best action 

for the current state. The optimal trajectory (indicated by the dashed line) involves ten 

movements which represents the shortest route from the START to GOAL conditions.

Action-selection policy evaluation

The action-selection policies described early in Section 4.2.1 were implemented and ap­

plied on the grid-world from Figure 4.12. For all simulations the discount ratio 7  was set 

to 0.9. This makes agent take future rewards into account so it becomes more farsighted. 

The learning ratio a  was set to the value of 0.1.

First e-greedy policy was evaluated using the SARSA reinforcement learning algo­

rithm. Four different bias values ji (see Equation 4.2) were used to show how the action- 

selection policy affects the agent’s learning speed and on-line performance.

The agent is programmed to move around the maze until the goal is reached. Af­

ter that the controller returns to the starting point to begin another episode. The reward
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function was implemented as follows, the value of ”- 1” was returned for every movement 

and the controller was granted ”0” for achieving the goal. In this, however simple, de­

sign the agent reduces the overall number of steps by maximising the cumulative reward. 

This approach also gives an opportunity of easy analysis of the results since the negative 

feedback value directly corresponds to the number of actions taken.

The results from the simulation can be seen on the Figure 4.14.
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Figure 4.14: e-greedy policy evaluation using SARSA algorithm.

The on-line performance of the algorithm decreases while the amount of exploration 

increases. Clearly applying /i = 0.001 produces unacceptable results for such a simple 

environment. The controller explores the environment by executing random actions but 

its on-line performance is significantly lower in relation to the other three policies. The 

reason for it lies in the number of collisions with the obstacles caused by the random 

actions.

The Softmax action-selection policy was applied on the maze using exactly the same 

conditions. Again, for all simulations the discount ratio 7  was set to 0.9 and the learning 

ratio a  was set to the value of 0.1. The different values of (3 (see Equation 4.3) were 

applied namely: (3= 1, (3 = 2 and (3 = 5.
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Three separate simulations were performed. The results can be seen on Figure 4.15 

below.
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Figure 4.15: Softmax policy evaluation using SARSA algorithm.

As stated before in this chapter Softmax policy, due to its implementation, favours the 

the ’’good” actions over the ’’bad” ones. The value o f (3 governs how much exploration the 

agent can take. It could be seen from Figure 4.15 that reducing (3 the number of random 

actions increases at the cost of on-line performance which drops. This has a similar effect 

on how quickly the agent can learn like the ratio of e in the case of e-greedy policy.

It should be emphasised at this point that the value o f (3 was constant throughout 

each simulation. This is the reason that the curves stabilise at a certain level and do not 

converge to the optimal reward (which could be considered as the optimal trajectory). The 

optimal policy could be achieved by changing /3 from episode to episode (like in the case 

of e).

Using this approach, and assuming enough exploration, the agent will eventually learn 

the optimal policy. In this case the optimal policy is defined by assigning the best action 

(move) to a given state. Having learnt that, the agent is able to follow the shortest trajec­

tory from the START to GOAL (see Figure 4.12).
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State
Learnt Policy Optimal

policye-greedy Softmax
//=0 .0 0 1 fJL=0.01 H=Q.l (i= 1 (3=1 /3=2 0=5

0 E E E E E E E -
1 E E E E E E E E
2 E E E E E E E E
3 E E E E E E E E
4 N N N N N N N N
5 S S S S S S S S
6 S S S S S S S S
7 s s s s s s s s
8 N w E E E E E -
9 E E E E E E E E
1 0 N W N S E E E -
11 N N N N N N N -
1 2 N N E E N N N -
13 N N N N N N N -
14 G G G G G G G G
15 N N N N N N N -

Table 4.1: Learnt policies for different action-selection methods.

The learnt policies for both e-greedy and Softmax action-selection methods are pre­

sented in Table 4.1. The actions are mapped onto set o f encoded states the agent can 

experience walking around the maze (see Figure 4.13 for details). Letters ”N”, ”E”, ”S”, 

”W” represent the direction of movements: North, East, South and West respectively, and 

a letter ”G” describes the GOAL.

The optimal policy was derived by the author following the shortest possible trajectory 

form START to GOAL states. It could be seen that both methods successfully converged 

to the optimal policy. Despite low on-line performance the agent managed to learn the 

best state-action relationship. This proves that under the right circumstances (the tight 

exploration-exploitation balance) the SARSA algorithm can learn the optimal policy. The 

tested maze represents a relatively simple task for the agent to learn. It will be shown in 

the next section that SARSA, as opposite to q-leaming, being an on-policy method does 

not always guarantee convergence to such results.

The SARSA algorithm combined with Softmax action-selection method performs
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very well and the optimal policy is quickly learnt together with a good on-line perfor­

mance. This is due to the fact that even during random action-selection non-uniform 

function is used and the action with better values has more chance to be chosen.

The simulations with q-leaming algorithm applied produced very similar results (for 

the graphs see Appendix A). The reason for that lies in the design of the environment. In 

this particular task both methods quickly converged to the optimal policy. The maze from 

Figure 4.12 due to its complex shape but relatively simple optimal trajectory was a good 

choice to exercise the SARSA and q-leaming methods with different action-selection poli­

cies. However, it was not appropriate to compare those algorithms and to clearly empha­

sise the differences amongst them. To serve that purpose another maze-like environment 

was implemented.

Reinforcement methods evaluation

Two reinforcement learning methods were implemented and compared. The SARSA on- 

policy method and q-leaming algorithm were simulated on a cliff-walk task described in 

Sutton and Barto’s book [36]. The main purpose of those simulations was to compare 

the algorithms, test the implementations and to learn the agent’s responses for different 

values of learning ratios.

1
1

S"
1
1

■
G

Figure 4.16: Cliff walk environment (after Sutton and Barto [36]).

The environment was defined in a similar way to the maze from the previous exercise. 

It consisted of a set of white, light grey and dark grey squares (see Figure 4.16). The
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agent was allowed to move around the white area. The light grey colour represents the 

walls. They mark the area within which the agent can operate. The major difference to 

the previous maze lies in the presence of the dark grey section. Those squares mark the 

edge of the cliff. The agent is not allowed to move around the light grey squares but can 

freely step onto the dark ones. However this will result in the ’’sudden death” condition 

followed by the reward ”-100” and the agent being sent back to the starting point. For 

every other move the agent receives the reward of ”- 1” except when it reaches the goal 

which is granted with the reward of ”0 ”.

The existence of cliff alongside the simple geometry of the maze gives the agent an 

opportunity to develop two strategies to achieve its goal (see Figure 4.16). The optimal 

policy, represented by the dashed line, is the quickest but the most dangerous approach. 

The agent walking along the cliff edge takes a high risk of stepping over it during the 

random action-selection move. On the other hand, the safe trajectory (represented by 

dashed and dotted line), although longer, can still produce better results. It is because the 

agent has a good chance to recover after random, exploratory action.

Every episode was started from the square described by the letter ”S”. The goal was 

implemented as a class ” 14” and described by letter ”G”. To make implementation easy 

an additional white square was added one step to the East from the starting position. 

This eliminates the ambiguity of having the START and GOAL defined by the same state 

number. The list of states is identical to the one from the previous simulation and can be 

seen on Figure 4.13. The set of actions is also similar and includes one step movements 

in four directions: North, East, South and West.

The agent was programmed to perform 1000 episodes. For the clarity of results, the 

moving average window with the size of 1 0  was applied on the output data.

Both algorithms were simulated using the same learning parameters. The step size (a) 

together with discount ratio (7 ) were set to the value of 0.1. The e-greedy action-selection 

method was used with the parameter e set to the constant value of 0.1. This will prevent 

the SARSA algorithm converging to the optimal policy (see Figure 4.14 for comparison).
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The optimal and safe policies presented on the graphs below indicate the maximum 

value of the reward per episode. It was derived from the maze model (see Figure 4.16) 

counting the number o f steps for each trajectory. This can be followed by the agent only 

when the relevant policy has been learnt and no exploration takes place (greedy action- 

selection method).

The figure below presents the results o f the on-line performance o f SARSA reinforce­

ment learning method, 

o
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Figure 4.17: The on-line performance of SARSA method .

It can be seen from Figure 4.17 that the agent with the SARSA algorithm implemented 

quickly learnt (after 30 episodes) the safe policy. The good on-line performance and stable 

rewards against the episodes graph indicates that the number of times the agent fell off 

the cliff was low.

After initial transition the agent stabilised its rewards just below the value o f safe 

policy (which was ”-14” in case of environment from Figure 4.16). It is due to an action- 

selection policy with a constant value of e which makes the exploration-exploitation bal­

ance unchanged throughout the learning time. The agent, despite of having learnt the safe 

policy (see Table 4.2), was executing random, exploratory actions which often caused col­

lisions with the walls lowering the value of cumulative rewards. Those actions, although
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wrong, affect the overall performance less than the movements causing the agent to step 

over the edge of the cliff.

The amount of failures per ten episodes is shown on Figure 4.18. ’’Failure” is defined 

as an action which causes the agent to step over the edge of the cliff. This, due to high 

value of the reward (-1 0 0 ) followed by the premature end of the episode, significantly 

lowers the agent’s on-line performance.
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Figure 4.18: The number of the agent’s failures using SARSA algorithm.

In the Figure above, each block represents the actual number of times within a 10 

episodes window that the controller failed to accomplish the task. This only includes the 

agent stepping over the cliff. The maximum number of steps was set to the high value 

of 1000. The agent never exceeded this and all terminated episodes were caused by the 

’’sudden death” condition.

After a short transition time the SARSA agent rapidly learnt to avoid falling over the 

cliff’s edge. It is important to notice that the action-selection policy was taken into account 

during the learning process and the safe path from START to GOAL was chosen. This is a 

very important feature of the SARSA reinforcement learning algorithm. Considering the 

action-selection policy during the knowledge acquisition and decision-making processes 

makes SARSA a member of the on-policy algorithms family.
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The two failures, experienced towards the end of the learning process (episodes 820 

to 830 and 880 to 890), could be caused only by an exceptionally ’’bad” set o f random ac­

tions. The agent had already developed a safe policy from START to the GOAL and only 

the combination of exploratory movements could distract the controller from reaching the 

goal.

The q-leaming algorithm was implemented and tested under exactly the same con­

ditions as in the case of the SARSA method. The learning ratios (a  and 7 ) were set as 

0.1 together with e-greedy parameter (e). The on-line performance after 1000 epochs was 

presented on Figure 4.19 below.
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Figure 4.19: The on-line performance of q-leaming method.

The transition time was 60 episodes long and was much longer than in the case of 

the SARSA method where the controller was able to successfully accomplish the task 

after only executing 10 trials (see Figure 4.18 for comparison). The values o f rewards are 

also much lower reaching the average of -371 for the episodes 30 to 40 (the lowest value 

reached by the SARSA method was registered as 131). This indicates that the controller 

was struggling at the early stage of the learning process.

Later the rewards stabilise just below the line marking the optimal reward (-10 in 

this example). The stable cumulative reward curve means that the knowledge about the
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environment has been gained and finally the state-action relationship was derived. The 

’’noisy” shape is caused by the agent performing exploratory actions (like in previous 

cases, the value of e was constant throughout the simulation).

The number of failures the agent experienced during the simulation is presented on 

Figure 4.20 below. Like in the previous case, the grey blocks represent the abnormal 

termination of the task caused by the agent falling off the cliff. The height represents the 

sum of failures per 1 0  episodes.
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Figure 4.20: Number of the agent’s failures using q-leaming algorithm.

It can be seen from the Figure 4.20 that the number of failures is much higher than in 

the case of SARSA (see Figure 4.18 for comparison). It is caused by the fact that the q- 

leaming method, due to its design, leams an optimal policy. In the case of the cliff-walk 

environment it inevitably means falling off the cliff during the exploratory movements. 

This significantly affects the agent’s on-line performance.

The q-leaming agent did not accomplish the task 167 times during a 1000 episodes 

simulation. This is a far greater number compared to the SARSA controller which failed 

only 11  times.

The learnt state action relationship is presented in Table 4.2. The safe and optimal 

policies were derived by the author from the relevant trajectories presented on Figure 4.16.
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State
Learnt Policy

SARSA Q-leaming
Simulated Safe Simulated Optimal

0 N - E -
1 E E E -
2 N N E -

3 E E E -
4 S S S S
5 S S S S
6 N - N -
7 N - N -
8 N - E E
9 N - N -

1 0 N N E E
11 N - N -
1 2 W - N N
13 N - N -
14 G G G G
15 N - N -

Table 4.2: Learnt policies for SARSA and q-leaming methods.

Only the states which can be experienced during those walks were analysed. Although 

the agent, during the exploratory movements, could experience and leam the actions for 

all possible states. The redundant states for each policy are marked as

It is clear that both, SARSA and q-leaming agents learnt the expected policies. This 

means that assuming greedy action-selection method the SARSA controller will follow 

the safe path to GOAL and the q-leaming agent will walk alongside the cliff.

The fact that q-leaming learns the optimal policy independently o f applied action- 

selection method is an important feature and the algorithm is classified as an ofif-policy 

learning method.

The comparison of the on-line performance o f SARSA and q-leaming methods is 

presented on Figure 4.21. For the clarity of presentation the Bezier curve algorithm was 

applied on the simulated data.

The SARSA agent quickly learnt the policy and converged to the reward value cor­

responding to safe trajectory. The transition time in the case o f the q-leaming controller
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is much longer and the rewards are much lower compared to the SARSA graph. This 

indicates a huge number of failures during the initial stage of the simulation (see Figure 

4.20 for comparison).

After the transition time both methods converge to the similar value of reward. Al­

though it cannot be assumed that the algorithms performed in similar ways. The q- 

leaming agent with the greedy action-selection method would perform much better than 

SARSA. Due to random actions executed in the dangerous zone the controller receives 

poor rewards from the environment.
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Figure 4.21: Comparison of q-leaming and SARSA algorithms on-line performances. 

4.5.2 State classification method evaluation

The ART2 algorithm was chosen for purpose of this project. It differs from ART1 struc­

ture only in the type of the input patterns. The price for that additional capability is an 

increase in complexity on the iq  processing level which contains a number o f sub-layers 

that serve to remove noise, enhance contrast and to normalise analogue input pattern. The 

overall structure of the ART2 network is shown in Figure 4.9. This complicated approach 

allows inputting to the controller raw, unprocessed data from the F/T sensor.
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Choosing to partition the state space, it was divided into a set of classes using informa­

tion extracted on-line from the part geometry. The author’s approach significantly differs 

from the other researchers [5-7] where the geometrical model was supplied and extracted 

from the CAD drawing. In this research the geometry is learnt on-line in an unsupervised 

manner using only force and torque signals. For this purpose, the ART network was used. 

As described before (see Section 4.3.2), ART is a fast classifier with the ability to respond 

quickly to previously learnt data and remains able to learn when novel data is presented 

(stability-plasticity dilemma).

The author’s implementation is based on the algorithm described by Ferrman and 

Skapura [16]. After the initial tests the problems with data stabilisation on the F\ layer 

occurred and a few modifications had to be made (see Appendix D).

The contact between peg and hole can be modelled with the Newton equations for the 

rigid body. Furthermore, representing the insertion as a quasi static transition of states 

simplifies the equations greatly, removing them from the time domain.

In Brignone’s controller design the network was presented with a set of unary vec­

tors normal to the surfaces forming the hole. This helped to distinguish and assign the 

class number to the geometry feature. The idea of using unary vectors to describe ori­

entation of planes in 3-dimensional Cartesian space is well known and was applied early 

by researchers [5-7]. However, the author does not consider network pre-training to be 

necessary. Omitting the geometry information given by an expert during the first stage of 

the learning process will not affect the controller’s ability to learn, dealing with particular 

plane.

The raw F/T signal was set as an input to the network. The signal preprocessing 

was not necessary since normalisation and contrast enhancement is performed by the 

ART2 network. After successful classification of the state description in the form of class 

number was sent as an input to the learning agent.

To test the implementation two sets of data were prepared by the author. First a num­

ber of supervised insertions was performed to collect the force and torque signal samples.

79



The 20224 vectors were collected during that task. In the second stage, five random sig­

nals were chosen out of the main set of data. These vectors were used to test the stability 

of classification by introducing them at the network input during the learning process. 

This should happen every 1000 epochs.

The ART2 is an unsupervised, self-organising type of neural network. Due to it design 

it is hard to distinguish between the learning and working stage of the network. The 

network updates its weights always when the data vector is presented on the input so the 

learning takes place all the time and should not be switched off during the simulation. 

This will inevitably lead to some reorganisation in the classes structure.

As stated in Section 4.3 the reinforcement learning methods require clear state de­

scription for proper operation. For this reason, tuning the learning parameters (especially 

p in the case of ART) is an important task during the controller design. The class division 

should be fine enough to be able to pick up all relevant geometry features. However, if  

the number of states rises too high it will significantly affect the controller’s performance 

since the agent has to learn the best action for each generated class.
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Figure 4.22: The vigilance parameter against the number of generated classes.
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Epoch
Class number

Vector A Vector B Vector C Vector D Vector E
1 1 1 1 1 1

1 0 0 0 4 5 1 0 13 7
2 0 0 0 4 5 6 3 7
3000 4 5 6 3 7
4000 4 5 6 1 7
5000 4 5 6 1 7
6000 4 5 6 1 7
7000 4 5 1 0 13 7
8000 4 5 1 0 13 7
9000 4 5 1 0 13 7

1 0 0 0 0 4 5 1 0 13 7
1 1 0 0 0 4 5 1 0 13 7
1 2 0 0 0 4 5 1 0 13 7
13000 4 5 1 0 13 7
14000 4 5 1 0 13 7
15000 4 5 1 0 13 7
16000 4 5 1 0 13 7
17000 4 5 1 0 13 7
18000 4 5 1 0 13 7
19000 4 5 1 0 13 7
2 0 0 0 0 4 5 1 0 13 7

Table 4.3: Classification stability of ART2 algorithm (p = 0.95).

When the number of clusters is too small the difference between them becomes sig­

nificant. If the reorganisation of classes occurs (e.g. at early stage o f learning) the rein­

forcement learning agent will have to follow it and retrain. This is a lengthy process and 

will eventually lead to low on-line performance.

The graph from the Figure 4.22 presents how the number o f classes changes with the 

vigilance ratio (p).

A number different values of vigilance (p) were applied and tested on the described 

early data set. As expected (see Section 4.3.2 for details), the ART network became more 

sensitive with the increase of vigilance ratio. It means that the same data set will be 

classified into a greater number of states.

The stability of learning is the great advantage o f the ART family algorithm. When an 

unknown pattern is presented to the network it will learn it without forgetting previously
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acquired information. Unlike the backpropagation neural network, the ART does not 

need to be retrained with the arrival o f an unseen vector. The learning process takes place 

throughout the application lifetime. It gives an opportunity to build an independent self- 

adapting system although there is a danger o f class reorganisation. This results in the 

same vector being assigned to different classes throughout the simulation.

The network class numbers returned by ART2 for five random vectors are presented in 

Table 4.3. It could be seen that vectors ”A”, ”B” and ”D” were consistently recognised and 

assigned to the same state. The exception is episode one when no pre-leamt knowledge is 

present and all the weights are set to zero.

During the classification of vectors ”C” and ”D” the state number was changing and 

the output stabilised after 7000 epochs. This reorganisation could be disadvantageous 

especially if  accompanied by low values o f vigilance. However, with the increase o f p the 

contrast between classes is reduced so there is a good chance that the best responses of 

reinforcement agent for classes ”6 ” and ”10” (for the vector ”C”) are exactly the same. 

In this case the controller will not have to relearn its actions even if the reorganisation 

occurs.
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The histogram from Figure 4.23 shows how many vectors were classified to the par­

ticular classes. Twenty different states were generated by the ART network for p=0.95 

during the simulation. It could be seen that the classes ”6”, ”10 and ”13” were amongst 

the most popular. This indicates that those states are well known to the system and the 

reorganisation in case of vectors ”C” and ”D” should not affect the reinforcement learning 

process.

The tables featuring the number of generated classes for given p as well as more 

histograms can be found in Appendix A.2.

4.6 Discussion

In this Chapter the methodology of the artificial intelligence controller design was pre­

sented. The proposed sandwich structure divides the learning process into two main 

subtasks: the decision-making agent and state recognition subsystem. This allows the 

application of different artificial intelligence methods to learn the assembly tasks.

The reinforcement learning algorithms were chosen by the author as the decision­

making part o f the controller. They were used by the researchers [4,12,18,24,28] to learn 

peg-and-hole assembly. All approaches presented in Chapter 2 differ in methodology and 

choice of learning methods but share some common disadvantages. The poor on-line 

performance or high level of supervision are the main reasons for the learning process 

being long and often unstable, or quick but lacking the self-adaptivity.

The choice o f the information sources is also an important issue. Many different types 

of data could be applied to help the learning process. The geometric representation of 

mating parts extracted from CAD drawings [4], or peg orientation information [18] are 

amongst the various information sources utilised.

Reinforcement learning methods, due to the iterative learning nature, are the most 

appropriate for solving automated peg-and-hole assembly problems. They learn by inter­

action with the environment and make decisions based on the current state and the reward
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from the environment. This means learning from experience by capturing the most sig­

nificant aspects o f the environment to solve the problem.

The significant difference to the previous designs is the fact that the controller ad­

dresses the whole problem instead dividing it into a series of subtasks. This is also an 

important feature of reinforcement learning approach.

The way of combining different signals to produce a good state description is very 

important for knowledge acquisition. The states that feature the Markovian property are 

ideal for learning. They include the past experiences and so all important information for 

the future decision-making process is retained. The fact that past sensations are part o f 

a current state makes the decision-making process history independent. All that matters 

for the future is included so the agent can predict the next state (st+1) and reward (rt+i) 

based on current state (st) and the action (at).

In the proposed design the hole’s geometry is divided into set o f classes. All that 

matters for the future is the current, sensed force and torque signal classified by the ART 

network. This allows the agent quick, history independent, learning. The controller opti­

mises the reward function and so the number of steps to achieve the goal. This also should 

involve a significant reduction in contact forces as the number of episodes increases.

Adaptive Resonance Theory solves the learning instability problem suffered by stan­

dard feed-forward networks. The weights which have captured some knowledge in the 

past continue to change as new knowledge comes in. There is, therefore, a danger of 

losing the old knowledge with time. The ART neural network solves the problem by in­

troducing the resonance which can be attained in two ways. If the network has learnt to 

recognise the input pattern before then the resonant state will be achieved quickly and the 

memory of the stored pattern will be reinforced. If the input vector is not recognised the 

network will look for stored patterns in the database. If no match is found the network 

will enter the resonant state and the new pattern will be stored for the first time.

This approach gives an opportunity to develop an independent, unsupervised, and 

what is important, self-adapting state recognition module. As stated before, for purpose 

of this project the state signal was built from force and torque signal. With a change o f the
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geometry the new set of classes is introduced to the controller. The ART with stability- 

plasticity problem solved is the best choice to quickly classify the complex environment.

The applied ART2 algorithm accepts analogue data so the preprocessing was not nec­

essary. It is also a fully scalable approach since more additional information can be sup­

plied to the system and processed by the clustering module to produce a state signal for 

the reinforcement learning agent.

According to the author, the force signal is the only necessary source of information 

about the environment required to perform successful peg-and-hole assembly. Moreover, 

just the direction of the acting forces (and resulting torques) carries enough information 

to perform a successful assembly. The actual value of force is not essential to accomplish 

the task e.g. the human is able to insert a door key to the hole without vision or the 

knowledge of the exact force values. The proposed controller design is expected to be 

fast and reliable using just the necessary feedback signals.

For the purpose of this project, the chosen algorithms were implemented by the author 

and tested on the simulated environment. This provided an opportunity o f understanding 

the learning ratios and to test different programming approaches. It was noted, during 

tests of ART2, the algorithm sometimes was not able to stabilise data on the Fi layer, 

modifications to Ferrman and Skapura’s [16] implementation had to be made. The F0 

layer was added to the previous configuration and the equations from Section 4.3.2 had 

to be modified. The final relationship that governs activities on each of the sub-layers can 

be found in Appendix D.

The different action-selection policies were also analysed. It was clear after simu­

lations that the exploration-exploitation balance is very important and can significantly 

affect the on-line performance of the algorithms. In classic (stationary) peg-and-hole ex­

periments, where the geometry of parts does not change throughout, the best solution is 

to reduce either e or (3 from episode to episode. This guarantees the agent will explore 

less and use pre-leamt knowledge instead. It is assumed that together with the number of 

past episodes the experience and knowledge about the environments will rise.
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After close analysis of the results from the simulation tests it is clear that the on­

line performance of both SARSA and q-leaming methods are similar. The SARSA agent 

quickly learnt and stabilised onto the safe trajectory. However, the q-leaming controller’s 

performance was worse. It is caused by the fact that in this case the optimal trajectory 

was leamt. This inevitably causes the agent to fall off the cliff after executing the random 

(exploratory) actions. It is important to note that the q-leaming agent would produce bet­

ter results if the change of exploration-exploitation balance was applied (after the number 

of episodes no exploration is allowed).

The state clustering module was tested on force vectors acquired from previous experi­

ments. The results show that the number of classes could be controlled with the vigilance 

ratio p. The ART2 network responded to the changes of p as expected: the number of 

classes was rising from 10 to 104 as the vigilance approached the value of 1.0. The data 

was acquired from the circular peg-and-hole experiments. Brignone in his research [4] 

proposed a 16 classes division for the circular peg problem. This includes the 8  classes 

for separate planes forming the hole and 8  classes called ’’virtual” for the edges.

It was clear that with the value of p=0.93 and p=0.94 applied the best classification 

for this type of geometry was secured. The network produced a stable clustering with 18 

different classes in both cases. The higher value of vigilance would result in the greater 

number of classes which makes the state clustering module more sensitive. However, too 

many states will significantly extend the learning process. The reason for that lies in the 

second layer of the controller (the learning agent), which needs to develop a good strategy 

for every, sensed state. So, the greater number of classes produced by ART2 means more 

states to learn and poor on-line performance during the initial stage of the insertion.

It is also important that the number of classes generated by the ART2 network was 

not too small. In this case the controller, due to insufficient information about the envi­

ronment, would not be able to learn the optimal strategy to achieve the goal.

This balance is essential for quick learning. The value of vigilance p was investigated 

and setup by the author at the value of 0.94. However, this supervisory influence does 

not affect the unsupervised nature of the controller. The data reorganisation and learning
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within the clustering and the decision-making modules is fully automatic. For practical 

reasons, due to the extensive time o f the experiments, the number of classes had to be 

limited by setting the value of p manually.

All the algorithms performed well working in simulated environments. The results 

show that both modules of the proposed controller are implemented well and can be ap­

plied in real life experiments. It is important to adjust the learning ratios values since they 

significantly affect the performance of the controller.
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Chapter 5 

Experimental Methodology

In this Chapter the methodology of the experiments will be explained. To verify the 

performance and learning ability of the porpoised controller it was applied onto real life 

system (described in Chapter 3). The different experiments with different part geometries 

were carried out to evaluate the system.

5.1 Environment evaluation

The artificial intelligence controller was designed to solve motion problems working in 

an unknown environment. The state description with Markovian property is the best way 

of describing the environment for reinforcement learning methods. However, in real life 

applications it is usually difficult to build such a signal. The feedback data from the 

environment is often noisy and inaccurate. The control signal, due to machine dynamics, 

also carries certain amount o f error. To efficiently deal with those problems the controller 

needs to be able to quickly adapt to new situations and despite the changes (e.g. non- 

stationary environments) to derive a successful strategy to accomplish the task.

During the peg-in-hole insertion two major signals are exchanged between the robot 

and its environment. The feedback data is derived from force and torque signals acquired 

by the JR3 sensor. The control signal is sent to the robot in the form of incremental 

movement commands. The final response depends on the robot’s accuracy, resolution and 

repeatability.
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In the next two sections the results from experiments to measure the sensor’s and 

robot’s accuracy are presented.

5.1.1 Sensor accuracy

The JR3 sensor was described in details in Chapter 3. It was calibrated and certified by 

the manufacturer for a maximum load of 15 lbs on X  and Y  axes and 30 lbs on Z  axis.

The manufacturer does not provide a device driver so an appropriate program in ’C’ 

language had to be written. To evaluate the communications, filtering ability, unit scaling 

factors and the coordinate transformation procedure, a simple test was carried out.

The sensor was mounted on the Puma 560 robot’s wrist. To assure that the TOOL 

coordinate system axis is aligned with the robot’s WORLD coordinate system the ”DO 

ALIGN” command was released from robot terminal. The sensor’s internal coordinate 

system was aligned with the robot’s TOOL CS. This was done executing a set of rotational 

commands (see JR3 sensor manual for details [26]). The load (value o f 5 Newtons) was 

suspended underneath the sensor. Since the direction o f WORLD Z axis is parallel (within 

the robot’s accuracy) to the gravitational force, the expected sensor’s reading should be 

on Z axis only.

The sensor features different types of pre-processed output data. The readings of 31 Hz 

filtered together with the raw data were presented on the graphs from Figures 5.1 and 5.2. 

The presented value of force and torque are representing the calculated lengths o f the 

relevant vector. It was calculated using the equations below:

The force and torque acquisition was carried out for 60 seconds. First the filtered

(5.1)

(5.2)
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sensor output was setup and recorded followed by raw data collection. Note, ’’filtered” 

and ’’unfiltered” signals are not from the same time frame - the force and torque plots 

below are uncorrelated.

It can be seen from the graphs below that filtering the data affects the magnitude of 

measured signal. The amount o f noise during the force reading is significantly reduced 

with a 31 Hz filter applied. The average value is also closer to the expected value of 5N 

than in the case of raw data reading.
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Figure 5.1: Force results for 5N load applied on the sensor (uncorrelated signals).

The torque results are presented on the graph from Figure 5.2. There is much greater

difference (average of 0.1 Nm) between filtered and unfiltered signals. The load is sus­

pended directly underneath the sensor so the torque readings should be close to the value 

of 0.0. However the design of the load suspension system can cause small values to ap­

pear on X and Y axes. The only true torque free axis in this configuration is Z (see Figure 

B.9 in Appendix B).

According to the manufacturer, the sensor’s accuracy was tested as a part o f a quality 

assurance system so the author decided not to undergo the complex experiments to estab­

lish the resolution and reading errors. It was assumed that the values from the manual and 

calibration certificate are correct, accurate and up to date.
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All measured values prove that under certain circumstances (e.g. wrong filter settings) 

the feedback signal can be noisy but never misleading. The adaptive controller needs to 

be tuned so it can extract the relevant information from the force and torque array and 

classify the signal correctly. In the presented case analysing just the values o f acting 

forces one can deduce the applied load conditions. Moreover, having the information 

about the values acting on each of the three axes (see Figures included in Section B) 

significantly increases the chances for successful classification.
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Figure 5.2: Torque results for 5N load applied on the sensor (uncorrelated signals).

The detailed graphs for each vector component (Fx, Fy> Fz, Mx, My, Mz) can be 

found in Appendix B.

5.1.2 Robot positional accuracy

The robot and its integral computer system are the main parts o f the learning agent’s 

environment. The incremental motion commands are sent to the Puma’s control system. 

Here the inverse kinematics calculations are performed and set of positions and velocities 

instructions are sent to all six servo actuators.

The arm accuracy is limited by many different, and usually independent, factors. The

91

-X X X X
' X X  X *  \  x-X X  X X X .**. X x x*-x-x-x .XX. X X. X. x  X

\  k  X  X X  X-X-X-X- X  X" * - X  V  x  X X X X  y -X  X-X X X
x y'

$ + Ax +x A A A A X
- A  , ;  V  v t A . v v \ /  v  V A / n  .  / V \  * A  !'

V v  * V v# * "  ’ 1 \ /V  i+' V  V

Expected value 
Unfiltered torque

Filtered torque (3 1Hz) - —x.....

J____________ |____________ I____________ |____________ l_



No.
DTI gauge reading [mm]

X-0.2 X+0.2
X Y z X Y z

1 -0 .2 1 -0 .0 1 +0 . 0 1 2 +0 .2 1 +0 . 0 2 -0.014
2 -0.16 +0 . 0 0 -0.038 +0 . 2 2 +0 . 0 2 +0 . 0 1 2

3 -0.19 +0.09 -0.018 +0.15 +0 .0 1 +0.018
4 -0.19 +0 . 0 0 -0.018 +0.14 +0 .0 1 +0 . 0 2 0

5 -0.18 -0 .0 1 -0.016 +0.18 +0 . 0 2 +0 . 0 2 2

Table 5.1: Robot incremental motion accuracy measurements for X axis.

No.
DTI gauge reading [mm]

Y-0.2 Y+0.2
X Y Z X Y Z

1 +0 .0 1 -0.16 -0 . 0 0 2 +0 .0 1 +0 . 2 2 -0 . 0 0 2

2 +0 . 0 2 -0.18 -0 . 0 1 2 +0 . 0 0 +0.19 +0 . 0 0 0

3 +0 . 0 0 -0.19 +0 . 0 0 2 +0 . 0 0 +0.17 -0 . 0 1 2

4 +0 .0 1 -0.18 +0.014 +0 .0 1 +0 . 2 0 -0 . 0 1 0

5 +0 .0 1 -0 . 2 2 -0 . 0 1 0 +0 . 0 0 +0 .2 1 -0.004

Table 5.2: Robot incremental motion accuracy measurements for Y axis.

No.
DTI gauge reading [mm]

Z-0.2 Z+0.2
X Y z X Y z

1 +0.03 +0 .0 1 -0.172 +0.06 +0 . 0 2 +0 . 2 1 2

2 +0.03 -0 .0 1 -0.218 +0 .0 1 +0 . 0 0 +0.224
3 +0 . 0 2 +0 . 0 0 -0.218 +0.03 +0 . 0 0 +0 . 2 1 2

4 +0 . 0 2 +0 .0 1 -0 . 2 2 0 -0 .0 1 +0 .0 1 +0.228
5 +0.04 +0 . 0 0 -0.226 -0 .0 1 +0 . 0 2 +0.226

Table 5.3: Robot incremental motion accuracy measurements for Z axis.

main ones include: the robot’s mechanical rigidity and its dynamics, joint backlash or 

resolution and type of the control system.

For the purpose of this project only the incremental translations and rotations are 

executed. However, the positional repeatability can also play a significant role since all 

the insertions are started from the ’’APR” position. It is a fixed point exactly above the 

entrance to the hole (see the next Section for details of the experimental design).

A set of experiments and measurements were performed to evaluate the accuracy of 

robot motion and its positional repeatability. As in the case of the force and torque sensor
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the tests were designed as a part o f an environmental uncertainty estimation. They were 

not meant to produce a detailed output about the robot’s performance. This data was 

supplied by the manufacturer in the user manual.

Three plunger dial gauges were used to measure the displacement. The aluminium 

square peg was attached to the robot’s gripper. The arm was positioned so the Z axis of 

TOOL coordinate system was parallel to Z of WORLD CS. This also means that the axis 

direction is normal (within robot’s accuracy) to the mounting table.

The sensors were positioned in the way so the measured distance was along the X, 

Y and Z axes in TOOL coordinate system. However this was done manually and some 

inaccuracies are expected.

First the accuracy o f incremental motion was measured. The robot was setup to move 

0.2mm into positive and negative directions along the X,Y and Z axes. After each move 

the reading was taken and the plunger gauges were reset to the value o f 0.00mm. Exactly 

the same procedure was repeated five times for each direction on each axis.

The results from the experiment can be seen in Tables 5.1, 5.2 and 5.3.

5.2 Plan of peg-in-hole experiments

The controller, proposed in Chapter 4 was applied on a set of real life peg end-hole ex­

periments. This type of insertions are amongst the most common operations in automated 

assembly. The basic 2-dimensional and 3-dimensional peg-and-hole tasks were widely 

analysed by the researches in the past (see Chapter 2 for further reference). Due to the 

geometric simplicity it is perfect environment for learning basic manipulative skills with 

artificial intelligence methods.

5.2.1 Initial experiments

Due to the complexity o f the task and implemented algorithms a number of initial tests 

need to be performed. The system should be tested in its simplest form so the circular 

peg-and-hole set was used. This type of geometry is the easiest to learn by the controller
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since it does not include the torque around the Z axis.

To speed up the learning process a limited number of actions were applied. The con­

troller can only perform the incremental translations in both directions along the X, Y 

axes. The insertion direction will be also supplied to the controller.

5.2.2 SARSA and q-learning on-line performance evaluation

During this part of experimental work the SARSA and q-leaming algorithm’s ability to 

leam was tested and compared.

Both algorithms with e-greedy and Gibbs distribution action-selection policies were 

applied on the same insertion task. The circular peg with chamfered hole was used for the 

purpose of this experiment. The set of incremental rotations was added to the action list.

The results from the tests allowed the author to compare the performance of both 

learning methods. The action-selection policy and its influence was also investigated. It 

is important that all experiments in this part of the project are performed under exactly 

the same conditions.

5.2.3 Different peg geometries analysis

To test the controller’s flexibility the different geometries of the mating parts were applied 

and tested. As mentioned in the sections before, the initial experiments as well as rein­

forcement learning methods’ performance evaluation were carried out using the circular 

peg-and hole tests.

The squared peg and chamfered hole was chosen for another test. The presence of 

sharp corners and the torque around Z axis significantly increased the complexity of the 

insertion task. The same controller architecture was applied onto the system. Due to 

the extensive time of the experiments only the q-leaming method with Softmax action- 

selection policy was analysed. Following the simulation’s analysis presented in Section 

4.5.1 and 4.5.2 it is expected to leam the insertion strategy quickly. Using the same 

algorithms and experiment’s settings will help to compare the on-line performance of the 

q-leaming reinforcement methods applied onto two different peg geometries.
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5.2.4 Friction analysis

In this part o f the research the influence of different materials was investigated. A peg 

with a rubber end was manufactured for this purpose. It was applied onto the chamfered 

circular hole. The q-leaming algorithm with Softmax action-selection method was used.

As stated in Section 4.5.2 the contact between peg and hole, can be modelled with 

the Newton equations for the rigid body. The direction of the resulting contact force 

depends on the friction between the mating parts. Due to the controllers design and clear 

distinction between the state recognition and decision-making modules the change of peg 

material should not influence the reinforcement learning agent performance.

The resolution of the ART2 algorithm is governed by the vigilance ration (p). As­

suming it is setup to the right value and the number of output units is large enough to 

accommodate all encountered states, no significant difference in on-line performance was 

expected.

The aluminium peg is far more rigid than its rubber equivalent. This may lead to 

problems not directly related to the friction between mating parts. If two different force 

and torque signals are wrongly classified the reinforcement learning agent will try to adapt 

to the change. This will inevitably lead to a drop in the agent’s performance.

The results from these experiments will be compared with the relevant output from 

the experiments where aluminium parts were applied. For easy data comparison the same 

experimental conditions was applied as in the case of tests described above.

5.2.5 Nonlinear case analysis

Asada in his research [1,2] defines the linear and non-linear compliance for peg-and-hole 

automated assembly. As shown in Section 2.1 the non-chamfered peg-in-hole insertion 

is a good example to test the intelligent controller’s ability to deal with both types of 

problems.

Again, to speedup the tests and ease the analysis of the results, the simple circular 

geometry peg was used.
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5.3 Discussion

In this Chapter the empirical part of this research was planned and analysed. After per­

forming a set of experiments the evaluation of the environment accuracy was possible.

There are three distinguishing factors which contribute to the environmental uncer­

tainty:

• The geometry of the parts. The agent needs to leam to classify the 3-dimensional 

domain without any supervisory influence. At the same time the best action for each 

state is being leamt. This is the main reason why state clustering module stability 

is an important issue. It means that the same vector should always be assigned to 

the same class throughout the whole experiment.

•  The environmental feedback quality. The signal features the errors which need to 

be taken into account during the analysis. The controller must be able to leam to 

cope with the noise and classify the the force and torque vectors accurately.

•  The control signal quality. This includes all the errors associated with the robot 

motion. The intelligent agent must be able to correct all the inaccuracies caused by 

the arm movement

The intelligent algorithm proposed in this thesis was designed to be able to work 

with complex, 3-dimensional geometry under high uncertainty. It is clear from results 

presented in Figures 5.1 and 5.2 that the sensor signal is noisy but not random. Also 

the accuracy of torque readings can be particularly affected by filtering the data. The 

maximum force error reading was less than ±0.15 N. The maximum torque error never 

exceeded the value of ±0.12 N for unfiltered data and ±0.21 N with 31 Hz filter applied 

on the output data.

The sensory reading, due to the noisy nature, presented a challenge for the state clas­

sification module. It is essential for this part of the controller to be able to cope with the 

supplied feedback signal without any preprocessing applied. As stated in Section 4.3.2 

neural networks build up their internal computational structures through experience. This 

includes the ability to classify the patterns despite the presence of noise.
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The reading errors caused by reasons other than noise have to be acknowledged and 

compensated by both AI controller’s subsystems interacting together. The AR.T2 and 

reinforcement learning are self organising and adaptive methods. Although both should 

be able reorganise in such a way that all systematic disturbances are easily compensated 

for. This excludes the random errors which cannot be easily dealt with. The reason lies 

in the fact that the reinforcement learning takes place after the completion o f an episode 

(failed or successful). The issue o f random errors and system recovery will be explained 

later in this thesis during the analysis of the results.

After analysing the data it was assumed that the quality o f force and torque feedback 

signal is good enough to leam the strategy for the automated assembly. For safety reasons 

the insertion is always interrupted when the force value (calculated using equation 5.1.1) 

is greater than 20N. The maximum measured error was smaller than 0.75 percent of that 

range. However, the direction of the force and torque vectors is far more important than 

the actual value of it. The insertions performed with the human hand are performed in 

a similar manner since the brain process the force signals based on the direction o f its 

occurrence and a simple judgement of the increase or decrease of the sensation.

The learning agent affects the environment by sending incremental motion commands 

to the robot. The signal is later translated and executed by the controller. The manip­

ulator’s positional accuracy plays a significant role in the learning process. The large 

distance and direction error would cause ’’confusion” to the agent forcing it to retrain.

It is important to remember that the decision making module learns the state-action 

relationship. The same action number corresponding to two or three different arm move­

ments would cause the controller to constantly reorganise its knowledge to adapt to con­

stantly changing conditions. This is similar to the chess game when one or more figures 

can move around the board randomly, without any rules applied. This situation would 

inevitably cause a chaos which could be solved only by avoiding those moves.

Having the state clustering module tuned and producing the satisfactory results (sta­

ble classification) it is assumed that the robot would execute the incremental movements
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at least in the appropriate direction. Like in the case of force and torque signal the sys­

tem, due to its design, should easily leam to correct any systematic inaccuracies. The 

random positioning errors can have a particularly bad effect on the controller’s on-line 

performance.

Let us assume that the controller has leamt the good strategy for the peg-in-hole in­

sertion. This means that for each state the agent has leamt the best estimated action to 

take. If the robot executes the requested move with a large positioning error there is a 

good chance that it will cause a collision. The interrupt condition is followed by the low 

reward from the environment which can downgrade the action that caused it. From the 

agent’s perspective, the best action for the given state is no longer the favourite one. This 

can cause the dismption of the knowledge (only for a given state). The controller due to 

its ability to adapt to changing conditions can recover from such a condition but at the 

cost of the on-line performance which will inevitably drop.

The results presented in Tables:s 5.1, 5.2, 5.3 show that the robot’s positional accu­

racy on all three axis is fully acceptable for peg-in-hole assembly. The direction of the 

commanded movement was maintained. The robot showed a level of inaccuracy in the 

distance which can be compensated for by the learning agent.

As stated many times in this thesis the controller was designed and built to be able to 

work with environments featuring a high level of uncertainty. The set of experiments was 

designed to evaluate this ability.

At the beginning of each experiment, the learning agent does not know anything about 

its environment. It is essential to acknowledge that no advance knowledge is supplied to 

the system. The supervisor sets up the learning ratios and decides about the direction of 

the insertion. However, this is only done to speedup the learning process.

Considering the geometrical complexity, signals inaccuracies and noise it is clear that 

the intelligent controller faces a difficult task to leam the assembly strategy. All the men­

tioned factors are part of the real world and form the difficult environment featuring high 

levels of uncertainty.

A set of experiments were planned to evaluate the controllers performance. Different
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aspects of learning were investigated. The empirical part of the thesis includes the inves­

tigation of the effects of different learning methods applied on the same geometry. The 

influence of action-selection methods onto controller performance was also analysed. The 

materials with different friction were applied as well as non-linear insertion case.

The on-line performance of different learning methods combined with the ART2 state 

clustering module was also investigated. To save the experimental time it was decided 

that during the tests the insertion task would always start from the same position and ori­

entation. It can be proved that if the reinforcement learning agent can develop successful 

strategy from the given START point it can be done from any (random) position [36]. 

This approach allows the author to compare the results from initial stages of the insertion.

The force and torque sensor was mounted on the robot’s wrist. All the incremental 

movements were related to the TOOL coordinate system. Because of the directions of the 

main axis (TOOL’S and sensor’s coordinates) the intelligent agent can leam the insertion 

even if the hole’s central axis is not vertically aligned. The different orientations o f the 

mating part should not affect the performance and learning abilities of the controller. Also 

the orientation of the force and torque sensor axes is irrelevant from the agent’s point of 

view. As stated before, to be able to leam the assembly strategy the only requirement 

is for the sensor’s axes to be parallel to the robot’s TOOL coordinate system. The state 

clustering system treats each force vector as a pattern so the direction of X, Y and Z can 

be random. The force signal can be post-processed in such a way so the resulting vectors 

comply with the Newtonian model of contact forces.

The main purpose of experimental investigation is to evaluate the usefulness and appli­

cability of the sandwich structure of the controller. The author claims that the combination 

of different, specialised artificial intelligence methods can produce a fully independent, 

self-adaptive and unsupervised controller.
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Chapter 6

Results analysis

The techniques described in the previous chapter have been combined into an intelligent 

assembly architecture. The aim of this research is to provide a stable system which has a 

self-adapting capability, so that assembly operations can be performed in an environment 

under extreme uncertainty. The flexibility of software design was also an important issue.

The chapter is organised into sections where the results from specific experiments are 

presented.

6.1 Initial experiments

The circular peg-and-hole set was used for the purpose of initial tests. The number of 

actions the reinforcement learning controller can execute was restricted to 5. Only the 

positive and negative translations along the X, Y axes were allowed. The other actions, 

including the rotations about the X, Y and Z axes, had been disabled. The insertion 

direction was enforced by disabling all the movements on the negative Z direction.

This setup, however simple and limited, allows the author initial analysis and algo­

rithm tests. It should be emphasised at this point that so far both subsystems were tested 

and simulated separately. The purpose of these tests was to test the stability of the algo­

rithms working together and to adjust the learning ratios. Unlike the main experiments 

the initial tests were run for only 500 episodes. The one step q-leaming algorithm was 

applied with e-greedy action-selection policy. The value of e was constant throughout the
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experiment and set to the value of 0 .1  (greedy).

After a number o f runs the algorithms proved to work efficiently and significant im­

provement in on-line performance was noted.

It can be seen from Figure 6.1 that during first 50 episodes the controller showed 

constant improvement of its on-line performance. The experiment was started without 

any pre-training so the system had no experience and knowledge about the environment. 

The first trials failed due to an excess of contact forces. During that time the controller was 

exploring the environment and learning the necessary manipulative skills to successfully 

accomplish the insertion

It can be assumed that after 50 episodes the controller managed to gain the necessary 

knowledge to insert the peg into the hole. The constant improvement o f the performance 

was registered. It stabilised at the reward value between -100 and -80.
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Figure 6.1: On-line performance of the controller during the initial tests.

The sudden drop in knowledge (episodes: 110 and 270) was caused by exploratory 

moves due to e-greedy action-selection policy. This behaviour is fully acceptable espe­

cially with regards to the fact that the controller quickly recovered from those failures. 

The knowledge about the environment was maintained and stable operation was resumed.
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The initial period, when the controller acquires the basic skills, plays a significant 

part in the learning process. The apparent drop of the on-line performance curve from 

the value of -243 to -273 after the first 20 episodes does not always correspond to the 

loss of knowledge. As explained in Chapter 4 the learning agent receives a reward of -1 

for every action resulting with the occurrence of the contact between peg and the hole. 

However, in the case of a collision an extra penalty of -100 is applied. During the very 

first insertion attempts the controller usually fails after just a few moves. This is the major 

reason why the values of cumulative rewards are relatively low. The graph representing 

the controller’s on-line performance (see Figure 6.1) should always be analysed against 

the histogram from the Figure 6.2 below.
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Figure 6.2: Number of failed insertions throughout the experiment.

As expected, during first 40 episodes the controller was unable to successfully accom­

plish the insertion. Due to lack of knowledge abut the geometry of the parts, position and 

orientation of the peg it was impossible to take a logical decision about the next action. 

This inevitably caused the execution of movements towards the wall and an increase of 

contact forces value.

The moving average window size of 10 was applied on the data from Figure 6.1. It 

could be seen that during first 1 0  episodes all insertion failed and were interrupted due to
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excessive contact force value. However, the intelligent agent was constantly improving its 

on-line performance as the number of insertion increased. This suggests that the learning 

process was taking place even during the interrupted (failed) trials.
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Figure 6.3: Force value throughout the experiment.

The on-line performance graphs and histograms are important tools in helping to as­

sess and analyse the artificial intelligence algorithms. However, considering the peg-in- 

hole application the value of contact forces plays as important role in speed of learning 

during the knowledge acquisition process. It is obvious that ideal controller should be fast 

and able to develop the strategy of insertion minimising the acting forces between mating 

parts.

The graph from the Figure 6.3 presents how the values of contact forces changed with 

the episodes. The values were calculated using all three Fx, Fy and Fz components of 

force vector using the Equation 5.1.1.

The acting forces during first few episodes were very high. The experiment was set 

up in such a way that when the value of contact force exceeded 5 newtons the insertion 

was immediately stopped. Analysing the graph from Figure 6.3 it is clear that the force 

data directly corresponds to the number of insertion failures presented earlier (see Figure 

6.2).
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The value of contact force was gradually reduced as the experiment progressed. This, 

very significant fact, together with on-line performance improvement demonstrates the 

controller’s ability to leam and gather the relevant knowledge to develop an insertion 

strategy.

After the successful accomplishment of the initial tests it was decided to apply the 

proposed intelligent controller onto more complicated tasks involving the investigation of 

different geometries of the parts as well as different mating parts’ material and, finally, 

different reinforcement algorithms.

6.2 Chamfered, circular peg-in-hole insertion

In this section the results from experiments using a 45 degrees chamfered hole with a 

circular cross-section peg will be presented (see Figure 6.4). To compare the data from 

experiments every insertion was mn under exactly the same conditions. The summary of 

the applied settings are shown in the Table B.l (see Appendix B.2).

Different peg materials and geometries were tested and analysed for purpose o f this 

thesis. In the sections below the results from experiments using the aluminium compo­

nents are presented.

Figure 6.4: Peg and hole model used during the experiments.
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6.2.1 Aluminium components

All the data presented in this section’s graphs were post-processed in exactly the same 

way. This approach allows direct comparison between different methods and algorithms. 

The starting conditions for all peg-in-hole insertions were also unified throughout the 

experiments and were set as follows:

• The peg was positioned so its main axis was shifted 1.6 mm on X and -2.2 mm on 

Y direction from the hole centre.

• The angular misalignment was set up to the value o f +1.8 degrees about X axis and 

+0.4 degrees about Y axis.

• The 0.2 mm and 0.2 degrees was applied as motion incremental step for the trans­

lations and rotations respectively.

Q-learning method performance

The detailed description of one-step q-leaming algorithm used for the purpose of this 

experiment can be found in the Chapter 4. It differs from the other reinforcement learning 

methods. The leamt action-value function Q, directly approximates the optimal action- 

value function Q*, independent o f the policy being followed. This off-policy approach 

can be useful in the peg-in-hole insertion application since it allows learning the insertion 

strategy despite of the applied action-selection policy.

Two different action-selection methods were applied on the same q-leaming algorithm 

implementation. Both experiments were performed under the same conditions. Compar­

ing the graphs from Figure 6.5 and Figure 6 . 6  it can be seen that despite of the applied 

action-selection method the controller was able to to leam the insertion strategy.

The on-line performance results from the experiments involving the application of 

q-leaming algorithm with e-greedy action-selection method was presented in the Figure 

6.5. During first 70 episodes the controller was learning the geometry features and force- 

torque relationship necessary to develop the insertion strategy. As in the case of initial 

experiments during that time the agent experienced a great deal of contact forces often
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exceeding the safe value and eventually interrupting the insertion task. The number of 

failed trails can be read from the histogram from Figure B.15 in Appendix B.2.
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Figure 6.5: Performance of q-leaming algorithm - e-greedy action-selection policy.

In this case the probability of random movement is constant during the experiment. 

The occasional falling spikes are caused by the controller failing to accomplish the inser­

tion. It is due to the random actions selected by e-greedy policy which distract the con­

troller from the known path and eventually cause the failure of the task. This behaviour 

is fully acceptable and can be minimised by reducing the amount of environment’s explo­

ration with the increase of the number of trials.

In the next graph (see Figure 6 .6 ) data from the same experiment but with Softmax 

action-selection policy applied was presented. As stated in Section 4, when this method 

is used, actions with higher q-values are preferred. This basically means that the ’’good” 

actions have more chance to be chosen than the bad ones.

It is significant that in the case of both policies the learning agent managed to develop 

the strategy for the insertion. In either case the controller stabilised its on-line perfor­

mance on the level of -15. Based on theoretical analysis and simulations presented in 

Chapter 4 it can be assumed that the insertion strategy was leamt in both cases despite of 

the action-selection method applied.
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Figure 6 .6 : Performance o f q-leaming algorithm - Softmax distribution policy.

It is clear that the learning curve presented on Figure 6 .6  is much smoother than the 

curve from Figure 6.5. The reason for this lies in the nature of Gibbs distribution method 

which significantly reduces the number o f random actions.
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Figure 6.7: Softmax and e-greedy policy during first 400 episodes.
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It is also important to mention that, in the case of chamfered circular hole, the q- 

leaming algorithm with Gibbs distribution applied showed the ability of rapid learning. 

The Figure 6.7 presents the comparison of both action-selection methods. Only the first 

400 episodes were plotted and for clear presentation purpose the data points were interpo­

lated using Bezier approximation function. The raw data can be found in Appendix B.2 

(see Figure B.16).

The learning curve for the Softmax method quickly rises and stabilises on the value of 

-15. In the case of e-greedy policy, due to a greater number of random actions, the on-line 

performance graph more steadily approaches the optimal value.

Despite those differences both methods proved to be highly efficient learning the basic 

skills for successful insertion task.
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Figure 6 .8 : Force data from the peg-in-hole experiment - Softmax policy.

The force value and its change throughout the experiment can be seen in Figure 6 .8 . 

The data was acquired during the the insertion with q-leaming algorithm with Softmax 

action-selection policy applied. The results from tests when the e-greedy distribution was 

used can be found in the Section B.2.1.

The significant reduction of contact forces can be observed while the experiment pro­

gresses. The high values, caused by the collisions between mating parts were lowered
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(within first 40 episodes) and never exceeded the value 0.33 N.

The occasional sharp increase of the force is caused by collisions due to random ac­

tions taken. This can also be observed on the graphs from Figure 6 .6 .

The graph from Figure 6.9 presents the change of torque values. Similarly to the force 

signal torque was very quickly reduced and stabilised at the value of around 0.4 Nm. 

The very high torque values combined with high contact forces recorded during first 40 

episodes suggests the occurrence of jamming conditions during the initial stages of the 

learning process. The controller leamt to recognise those error conditions and to avoid 

them in the future.

The significant reduction of both contact forces and the resulting torques is also a clear 

indication that the intelligent controller was able to leam the necessary skills to perform 

the peg-in-hole assembly. No additional knowledge about the geometry, part’s orientation 

or position was supplied to the system.
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Figure 6.9: Torque data from peg-in-hole experiment.

The data presented on the histogram below (see Figure 6.10) represents the number 

of unsuccessful insertions per 10 episodes. It clearly indicates the sudden drop in error 

conditions caused by high contact forces. The results from Figure 6 .10 conclude the initial 

evaluation.
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Figure 6.10: Number of failed insertions during peg-in-hole experiment.

The artificial intelligence controller with q-leaming method used for knowledge ac­

quisition applied on the chamfered circular peg-in-hole insertion proved to work very 

well. The ability to deal with a complex 3-dimensional environment was achieved. After 

40 episodes transition time the agent very quickly approached and stabilised its perfor­

mance on the value of cumulative reward -15. After reaching this level it can be assumed 

that the controller learnt the necessary skills to successfully accomplish the task.

SARSA performance

In this part of the thesis the results from the experiments using the SARSA algorithm will 

be presented. The same parts were used and the same starting conditions were applied.

Similarly to q-leaming SARSA gathers the knowledge from the state-action pairs 

transitions but it leams the strategy directly. The learning of an optimal strategy relies 

on applied action-selection method. Each state-action pairs must be visited an infinitive 

number of times to gain the best possible solution. The Softmax action-selection method 

was applied (see Section 4.2.1 for details).

The on-line performance of SARSA reinforcement learning agent applied on the cir­

cular chamfered peg-in-hole experiment is presented in Figure 6.11. It took 230 episodes
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of transition until the controller managed to stabilise its cumulative reward close to the 

value o f -18. The occasional fall of performance can be observed during episodes 630, 

1180, and 1550 and was caused by insertion failure. It is clear from the graph that the 

controller’s general performance was not affected and the agent was able to maintain its 

on-line performance after the collision occurrence.
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Figure 6.11: Cumulative rewards data acquired using SARSA algorithm.

The force data from the experiment is presented in Figure 6.12. The force values 

around episodes 1180 and 1550 suggest that the first event (episode 1172) caused the 

agent to reorganise the strategy. The on-line performance level was maintained but the 

contact forces between mating parts were constantly increasing eventually exceeding the 

safety trigger at episode 1550. After that the agent managed reorganise its knowledge 

again and reduce the forces eventually stabilised at the value of 0.07 N.

This behaviour is caused by continuous learning process combined with action-selection 

method which takes place throughout the experiment. The random actions are still possi­

ble which is necessary to converge to the optimal action-value function (Q*)- The strategy 

leading to an increase of contact forces was replaced after episode 1172 by the actions 

leading to low, stable values.
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Figure 6.12: Force data acquired using SARSA algorithm.

A similar pattern can be observed in Figure 6.13 which represents the torque values. 

The occurrence of three spikes after episode 600 combined with high force values indi­

cates jamming occurring. The controller was not designed to cope with those situations 

so the insertion was interrupted.
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Figure 6.13: Torque data acquired using SARSA algorithm.
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This error condition, however undesirable, is the inevitable consequence of the learn­

ing method applied. It is important to mention at this stage that the selection o f random 

actions can be reduced to a minimum (no random actions allowed) by controlling the 

value o f /3 in Gibbs distribution (see Section 4.2.1 for details).

In the histogram from Figure 6.14 the number of failed (jammed) insertions is pre­

sented. Like in the case of previous experiments a significant improvement can be ob­

served. The intelligent agent managed to reduce the number of collisions from 8  per 10 

episodes during the initial stages o f insertion to 0 after 200 episodes. The occasional 

spikes at the values 630, 1180 and 1550 corresponds to jammed conditions explained 

above, caused by the occurrence o f random movements.
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Figure 6.14: Number of the agent’s failures using SARSA algorithm.

6.2.2 Rubber peg test

To evaluate the controller’s ability to learn the assembly with different materials the rubber 

peg was designed and manufactured. A cylindrical rubber end was glued to the aluminium 

frame. This guaranteed the firm grip between the robot’s end-effector and the mating part. 

The cylindrical, chamfered hole was used for purpose of this test. It was entirely built
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from aluminium. The main purpose of this experiment was to investigate if the stiffness 

or friction between the assembly components can affect the learning ability.

Figure 6.15: Peg and hole model used during the experiments.

On the graph from Figure 6.16 the cumulative reward against the number of episodes 

was presented. The starting conditions were set up in exactly the same way as in the case 

of previous experiments. The q-leaming algorithm with Softmax action-selection method 

was applied.

The transition time when the controller leams the geometry features and force-torque 

relationship was 40 episodes long. After this time the agent stabilised its on-line perfor­

mance on the level of 16. This corresponds to the number of times when the contact forces 

were detected and a decision making process took place. A single collision occurred dur­

ing the episode 129. However, this isolated event did not affect the future rewards. The 

on-line-performance stayed at the stable level until the end of the experiment.

Comparing the graph from Figure 6.16 with the one from Figure 6 . 6  where the same 

algorithms and action-selection methods were used it can be seen that both agents per­

formed similarly throughout the experiment. The major, noticeable difference is the qual­

ity of performance curve in its stable area. The results from experiments where only 

aluminium components were applied are more stable (close to the straight line) compared 

to the ones when the rubber peg was used.
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Figure 6.16: On-line performance data from peg-in-hole experiment.

The force readings (presented on the graph from Figure 6.17) were also significantly 

reduced within first 40 episodes. The initial value o f 1.66 N dropped below 0.2 N. The 

spike at episode 129 was caused by the sudden increase o f contact forces leading to the 

interruption of the insertion.
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Figure 6.17: Force data from peg-in-hole experiment.
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The torque values are presented in Figure 6.18. The transition time was 40 episodes 

long. This value is the same for on-line performance and force data. After initial readings 

of 6.97 Nm the contact torques were reduced to the value below 0.5 Nm. This was the 

result of the agent’s ability to learn the insertion strategy.
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Figure 6.18: Torque data from peg-in-hole experiment.
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Figure 6.19: Number of failed insertions per 10 episodes - rubber peg applied.
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Both force and torque graphs feature a clear initial, transition and steady periods. 

The number of failed insertions per 10 episodes is presented on the histogram above 

(Figure 6.19). Five collisions were detected during the initial stage o f the insertion. It was 

followed by only two more interruptions later during the experiment.

6.3 Chamfer-less circular peg-in-hole insertion problem

In this section the results from the experiment using a cylindrical chamfer-less hole are 

presented. The results using q-leaming algorithm with Softmax action-selection method 

are presented below. The data from the experiment with e-greedy action-selection method 

applied can be found in Appendix B.2.
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Figure 6.20: Peg and hole model used during the experiments.

As the assembly task becomes more complicated the force-velocity data is no longer 

linearly mappable. In that case applying a linear compliance unavoidably causes the error. 

Asada [1,2] used a chamfer-less peg-in-hole insertion task to illustrate this problem (see 

Chapter 2 for further details).

In case of the chamfer-less peg-in-hole insertion the force to velocity mapping is 

against the principle o f superposition which is the one o f most fundamental properties 

of linear mapping. Therefore that this task should be considered nonlinear.
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Figure 6.21: On-line performance data from peg-in-hole experiment.

Analysing the on-line performance graph from Figure 6.21 it could be seen that the 

transition time was 270 episodes long. During first 40 episodes the controller was strug­

gling to perform the successful assembly. Later on the number of insertions were accom­

plished but the steady state was reached after episode 270. The controller stabilised the 

cumulative reward at the value around - 1 1 .

The occasional drop in knowledge was caused by the collision condition during episode 

572. Since the knowledge about the environment was well established at this stage (after 

exactly 312 successful insertions), this failure did not affect the later performance.

The contact forces were registered on a higher level than in the case of previous ex­

periments (see Figure 6.22). As expected the high value (2.72 N) within 60 episodes was 

reduced to the average value of 0.1 N. The occasional spikes of 0.54 N, 0.50 N, 0.39 N 

and 0.34 N were caused by the jamming condition and correspond to the drop in knowl­

edge experienced during episodes 102, 163, 260 and 572. Since episode 163 the force 

signal has never raised above value of 0.5 N. It can be seen from the graph above that 

the curve did not stabilise at certain value like in the case of previous experiments. The 

contact force value was rising slowly reaching the peak value of 0.24 N at episode 760. 

The process was reversed and a minimum value of 0.08 was registered at episode 1120.
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The later rise to 0.34 N was also reduced to the final value o f 0.2 N at episode 2000.
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Figure 6.22: Force data from peg-in-hole experiment.

The stable torque curve was registered during the experiment (see Figure 6.23). Sim­

ilarly to contact force data, the four spikes in the stable area indicate the jamming condi­

tion.
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Figure 6.23: Torque data from peg-in-hole experiment.
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The top value of torque (11.7 Nm) was steadily reduced and after 60 episodes sta­

bilised at the value of 0.3 Nm. After 260 episodes, when the last peak occurred (1.85 

Nm) the controller was able to maintain the knowledge about its environment and carry 

on complete insertions.

The last jammed condition was registered during episode 572. The number of un­

successful insertions is presented in the form of a histogram in Figure 6.24. During the 

first 10 episodes 8  were terminated due to excess of contact force and torque values. The 

controller was introduced to the environment without any knowledge. Most of basic infor­

mation about the geometry and contact forces relationship was acquired during the initial 

stage of the insertion.

The four jammed conditions, mentioned earlier in this Section, are also present in the 

histogram. Similarly to previous experiments the sporadic occurrence of failure did not 

affect the controller’s performance or its learning ability. The intelligent agent was able 

to ignore them and maintain all necessary skills.
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Figure 6.24: Number of failed insertions (per 10 episodes).

As mentioned at the beginning of this Section, the data from the experiment using 

e-greedy action-selection method accompanied by a short analysis is presented in the
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Appendix B.2. Due to the similarity of the results described above, the author decided not 

to include them in the main body of the thesis.

6.4 Square peg analysis

The results from the experiment with squared chamfered peg-in-hole insertion was pre­

sented. This is the most complex geometry analysed so far. It involves the highest num­

ber of planes and the additional two actions were introduced to the agent. Since all the 

previous insertions involved the insertion of the peg with circular cross-section into a 

chamfered or chamfer-less, circular hole, the rotations about TOOL Z axis were not im­

plemented. This solution saved computational time as well as the time designated for 

empirical evaluation of the controller.

had to be included. This means that for every detected and classified state the agent has 

two more actions to chose from.

Additionally this type of geometry increases the chance o f class overlap. This cer­

tain state can be detected during the initial stage o f the insertion when the peg makes 

the contact with chamfered part of the hole. It is possible that due to limited sensor’s

Figure 6.25: Peg and hole model used during the experiments.

In the case of the square peg the rotations about Z axis (in both directions Z+ and Z-)
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resolution and ART2 classification setup (parameter p) that another state, detected during 

the second stage of insertion will be assigned to the same class as the previous one. This 

will inevitably cause confusion since the same state would require two different actions 

in regard to the stage of insertion.

The solution for the described problem together with controllers ability to recover 

from the jamming condition was not a part of this research. These problems and suggested 

solutions will be described in more detail in the next Chapter (Section 7.4).

The graph from Figure 6.26 shows the on-line performance of the q-leaming algorithm 

with Softmax action-selection method applied on square peg-in-hole insertion.
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Figure 6.26: On-line performance data from peg-in-hole experiment.

Only the first 600 episodes are presented. The experiment was stopped after 1800 in­

sertions due to the learning difficulties experienced. Several experiments were undergone 

with similar results. Only the recent results are presented for the purpose o f this thesis. 

The full 1800 episodes graphs are included in Appendix B.2.

Due to the complexity of the task after a series of initial experiments it was decided to 

change the standard learning parameters and starting conditions. The following settings 

were used:
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•  The peg was positioned so its main axis was shifted -0.6 mm on X and +0.2 mm on 

Y direction from the hole centre.

•  The angular misalignment was set up to the value of -1.8 about X, +1.4 about Y and 

-0.9 axis.

•  The 0.1 mm and 0.1 deg. was applied as a motion incremental step for the transla­

tions and rotations respectively.

•  The 0.2 mm was applied for every movement on Z+ direction. This value was kept 

the same to speed up the progress towards the bottom of the hole.

•  - 2 0 0  reward was given for every insertion interrupted due to contact forces excess. 

The higher reward was necessary since the step was reduced to 0.1 mm which re­

quired the controller to perform more actions to reach the goal.

•  -50 reward was given if  more that 100 movements were executed without any 

progress towards the bottom of the hole. The insertion was also stopped at this 

stage. This was applied to prevent ’’sinking” o f the peg due to the large number of 

rotation actions applied.
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Figure 6.27: Force data from peg-in-hole experiment.
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It can be seen from Figure 6.26 that the graphs are more erratic and non-stable. How­

ever clear signs of learning can be seen. The first successful insertion was detected after 

episode 8 6 . The series of fully completed tasks was registered later, after episode 138. The 

insertion path was learnt, improved and taken until episode 547 when the series of colli­

sions happened. Due to the applied settings (the high reward of -200 for every collision) 

the knowledge was disrupted and eventually lost. During later parts of the experiment 

(not shown in the included Figures) the agent tried to recover from that error condition.

The contact forces are significantly larger than in the case of experiments with the 

circular peg (see Figure 6.27). Top value of 12.92 N was registered after 60 episodes. 

After episode 150 the agent was able to reduce the contact forces to the value 0.3 N. This 

was maintained for several insertions often interrupted by the peak values (as high as 4 N) 

caused by jammed condition. Eventually, as the controller lost the knowledge the forces 

increased reaching the top value again. At this stage it can be assumed that most of the 

information about the environment was lost.
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Figure 6.28: Torque data from peg-in-hole experiment.

The torque data shows a very similar pattern (see Figure 6.28). The initial value of 

33.85 Nm was gradually reduced to the average value of 1 Nm. Again the steady state 

was often interrupted by the sudden increases in torque caused by the jammed peg.
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The loss of knowledge caused by a series of severe collisions caused the significant 

increase of sensed torques. The lack of algorithms for jammed peg recovery caused the 

insertion to be interrupted and reward -200 was released. This can significantly affect 

the learning process disrupting pre-leamt state-action relationship. As stated before, the 

controller never managed to fully recover from these conditions. Analysing further the 

data from the experiment several reasons for this behaviour can be derived. More detailed 

discussion is included in the Section 6.5 at the end of this Chapter.
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Figure 6.29: Number of failed insertions (per 10 episodes).

The short but present steady state proves the controllers ability to learn to deal with 

the different geometries of mating parts. It can be seen from Figure 6.29 that after 140 

episodes transition time the controller managed to perform more than 250 successful as­

semblies. In some cases 110 consecutive insertions were accomplished.

6.5 Discussion

In this Chapter the results from the series of experiments were presented. The main 

purpose of empirical evaluation was to validate the proposed controller’s ability to learn 

the state-action relationship working with the environments under severe uncertainty.
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Every experiment was started with no external knowledge supplied to the system. 

Only the guidance towards the hole’s bottom was implemented (hard-coded). The system 

was also designed in the way so the contacts with the referencing surfaces were main­

tained. These two, together with the conformity to the geometric constrains due to the 

contacts are Asada’s [1,2,28] three basic requirements for valid peg insertions (see Chap­

ter 2  for further reference).

All the weights in the ART2 artificial neural network were reset to the value of zero 

at the beginning of each experiment. Similarly, all the elements of the Q-function matrix 

were also set to zero. This was done to assure there is no pre-leamt knowledge left from 

the previous tests.

The starting conditions were the same for every experiment except the square, cham­

fered peg-in-hole task. The very simple reward function was applied namely: -100 for 

the collision, 0 for every movement in positive Z direction (insertion direction) and -1 for 

every other movement. Some additional modifications were necessary when chamfer-less 

circular, and chamfered square holes were considered. In those cases, the -50 was applied 

if more that 1 0 0  movements were executed without any progress towards the bottom of 

the hole. The insertion was also stopped at this stage. Due to the change of the step size 

the reward - 2 0 0  had to be applied to the experiments involving the square peg geometry.

Two sensory signals were used namely: force and torque readings. No additional 

information was acquired during the experiments. The author would like to emphasise 

that the explicit position and orientation of the peg was unknown to the intelligent agent 

at every stage of the insertion.

The historical information was also used and is encoded within the reinforcement 

learning algorithms used for purpose of this project (see Chapter 4 for further details). As 

stated before the insertion direction can also be qualified as the information source.

Those two sensory and two descriptive information sources, according to the author, 

form the minimal requirements to perform the stable successful assembly with automatic, 

intelligent knowledge acquisition.
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The q-leaming and SARSA algorithms were tested together with e-greedy and Soft- 

max action-selection methods. A set of experiments were performed to evaluate the use­

fulness and on-line performance of above methods.

Three main stages can be distinguished in the knowledge acquisition process during 

the peg-in-hole insertion tasks:

• No knowledge period. At this stage, which usually takes 10-20 episodes, the con­

troller does not know anything about its environment. In most of the cases 80% 

of the insertions failed due to the excess of contact forces. This feature was set up 

purely for safety reasons preventing damage of the force and torque sensor.

• Transition stage. During this time, which can take up to 70 episodes, the controller 

applies random actions to leam the geometry features of the mating parts as well 

as state-action relationship. This is the time when the main reorganisation of ART2 

weight system and q-function matrix takes place.

• Steady state. This is the last period of the learning process. It is assumed that all 

the necessary information is acquired and controller is able to perform the insertion 

task without interruption. The state-action relationship reorganisation still takes 

place to guarantee the convergence to the the optimal action-value function (Q *). 

The random actions are sporadic but still possible. The on-line performance curve 

slowly approaches the steady reward value. Occasional drops in knowledge at this 

stage are acceptable assuming that they do not affect the agent’s future performance.

During the initial tests all three stages could be clearly distinguished. The experi­

ment was simple and some of the controllers abilities were limited. Some adjustment of 

learning ratios were necessary and the real tests with cylindrical pegs were executed.

First, The aluminium components were taken into account. The q-leaming algorithm 

was applied with both e-greedy and Softmax action-selection methods. Both agents per­

formed very well eventually reaching the same level of performance. It is important to 

mention that due to the system design and data acquisition method it was impossible to
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establish if the learnt policy is optimal. The ART2 belongs to a self-organising, unsuper­

vised family of neural networks. The class rearrangement happens automatically and is 

governed by the algorithm described in detail in Section 4.3.2. This means that in the case 

of contact force patterns, description of each class is encoded within the network. The re­

inforcement learning module was designed to estimate the best action for each state. The 

class to force direction (and friction cone angle) decoding is necessary to confirm if the 

optimal policy was reached. This task was out of the scope of this project.

Comparing the graphs from Figure 6.5 and 6 . 6  it could be seen how the random ac­

tions can affect the performance. The frequent spikes present when e-greedy method was 

applied are caused by the exploratory movements. These actions are responsible for the 

collisions or sending the controller to the area never experienced before. In the second 

case it usually takes a number of additional moves until high contact forces interrupt the 

task. This problem was eliminated when the Softmax method was used. In this case 

from the initial stages of the insertion the actions with greater probability to be better are 

preferred. In the other words, the controller prefers the ’’good” actions over the ’’bad” 

ones.

As expected, both methods in steady state converged to the same average value (-15). 

It is because the q-leaming is an off-policy method and leamt action-value function (Q), 

directly approximates, the optimal action-value function (Q *). Based on that it could be 

assumed that the optimal policy was leamt indeed.

Another experiment was designed to allow the comparison between q-leaming method 

and SARSA. Exactly the same starting conditions with peg and hole geometries were 

applied, the experiment was mn with the Softmax action-selection method.

The SARSA agent slowly approaches the value of cumulative reward reached early by 

the q-leaming algorithm. The transition time of the SARSA controller is much longer and 

more erratic than in the case of q-leaming. However, the major difference is in the steady 

state (compare Figure 6 . 6  and Figure 6.11). According to the theory and simulations 

presented early in this thesis, the SARSA agent should be able to learn the safe policy 

and to avoid the cliff (see Section 4.5 for details). It is clearly not the case when the
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experimental data is considered. The SARSA agent with the same action-selection policy 

applied caused the collision seven times during the stable state. Only one interrupted task 

was recorded when q-leaming agent was used.

This behaviour was expected and is caused by the fact that the contacts with the ref­

erencing surface must be maintained. For that reason to leam the safe path (away from 

the cliff) is very difficult in peg-in-hole application. The q-leaming agent was working 

without causing the collisions during the steady state because of its off-policy nature and 

ability to leam the optimal path.

Analysing the force graphs (Figure 6 . 8  and Figure 6 .12) it can be seen that the SARSA 

agent managed to maintain the contact forces at a slightly higher level than q-leaming 

controller. In some cases, due to random collisions the value exceeded even 0.6 N. The 

graph from Figure 6.12 is also less stable. Also 3 more collisions were detected during 

the steady state when the SARSA agent was applied (compare the graphs from Figures 

6.10 and 6.14). In both cases the force value was steadily increasing after 1100 episodes 

reaching the top value within 450 episodes. After that the controller managed to reduce 

the contact forces back to the low average value of 0.2 N. The experimental data from the 

tests using the SARSA agent suggests that this behaviour was triggered by the collision. 

However, because a very similar pattern was recorded with the q-leaming controller but 

with no interruption present it can be assumed that knowledge reorganisation took place. 

Both controllers are fully adaptive throughout the whole experiment (the learning takes 

place all the time) and they managed to eventually reduce the contact force values.

Generally both the SARSA and q-leaming agents performed similarly on the cylin­

drical peg-in-hole experiment. However, due to more stable contact forces graph, less 

erratic on-line performance curve, and lower contact force level it was decided to choose 

the q-leaming algorithm with Softmax action selection policy for further experiments.

To investigate if the application of different materials can affect the controller perfor­

mance the test with the mbber peg was designed. To be able to compare the results from 

the previous experiments exactly the same starting conditions were applied. Analysing 

the on-line performance of the q-leaming controller using the aluminium components
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(see Figure 6 .6 ) with the one with rubber applied (see Figure 6.16) it can be seen that the 

different peg’s material does not affect the agent’s on-line performance. Both controllers 

converged to the same cumulative reward value and both graphs feature long periods 

(about 800 episodes) of stable performance, successfully executing the insertion tasks.

The difference can be seen when the contact forces and torques are taken into account. 

During the experiments with the rubber peg the forces during the steady state were mea­

sured at the very low level. Only once during episode 1940 they raised above the value of 

0,2 N. The graph does not feature the 400 episode long increase of contact forces clearly 

present when the aluminium components were investigated.

Based on presented results, it can be stated that the application of the rubber type peg 

did not affect the controller’s ability to leam. The usage of a less rigid material resulted 

in lower, more stable force reading during the steady state. It also significantly reduced 

the number of collisions. Only seven unfinished tasks were recorded throughout 2000 

episodes. According to the author the reason for that lies in the damping properties of 

mbber as well as the rigidity of the peg. The friction between mating parts should not 

affect the performance unless it causes the class overlap problem (the same state requires 

two entirely different actions depending on peg’s orientation). Because the position and 

orientation are not included as an input to the system the controller will not be able to deal 

with such a condition.

To evaluate the controllers ability to deal with the complex geometry when force- 

velocity relationship is not linearly mappable the chamfer-less hole was used during the 

experiment. The cylindrical aluminium peg was used. As stated before to avoid the peg 

sinking condition when the controller performs a high number of consecutive rotations a 

different reward function was applied. The value of -50 was released after 100 actions 

executed without any progress towards the bottom of the hole. This also prevented the 

controller from being able to ’’walk” along the top surface o f the hole eventually losing 

contact with the geometry. The hole search algorithms were not implemented since it was 

not part of the research investigation.

Before the change to the reward function a number of unsuccessful experiments was
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executed. The results are not included in this thesis since every of the 2000 episodes was 

interrupted due to contact forces excess or loss of the contact with the referencing surface. 

Basically the controller leamt to perform a set of horizontal movements away from the 

hole well beyond the physical limits.

After the change the on-line performance was improved significantly (see Figure 

6.21). The transition time is much longer than in the case of previous insertions (about 

270 episodes). This indicates that the controller was particularly struggling with the first 

part of the hole’s geometry. After the strategy for the entrance section was developed the 

the rest of insertion task was quickly leamt. The sporadic collision registered during the 

episode 572 did not affect the controller’s performance. The force and torque graphs are 

similar to those presented before. The curve from Figure 6.22 is less stable than in the 

case of chamfer-less hole experiments but the agent managed to maintain the force values 

below 0.5 N throughout the experiment.

The last experiment performed for purpose of this project involved the insertion task 

with square peg and chamfered hole applied. This type of geometry presents new difficul­

ties to the intelligent controller. The rotation about Z-axis was introduced to the system. 

The presence of 2 new actions increases the learning time and the chance of class overlap 

occurrence. Moreover, defined by Brignone [4] ’’virtual classes” (four comers of square 

hole) present additional problems to the controller. Constant incremental steps combined 

with the possibility of rotating the square peg about its main axis can cause confusion dur­

ing the learning process. The orientation of the peg is not a part of information sources 

supplied to the system. The decisions are mainly taken based on force and torque in­

formation. The leamt correct rotation about Z-axis may cause collision when the peg is 

slightly tilted inside the hole.

Despite of the described problems, the results from the square peg-in-hole experiment 

were very promising. All the graphs are erratic and lack stability when compared to the 

data from the experiments with cylindrical peg applied. However, clear signs of the con­

troller’s ability to leam how to cope with this complex geometry can be noticed. The
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significant reduction of forces and torques can be observed between 140 episodes transi­

tion time. The agent managed to work with no interruption in some cases for more than 

110 episodes. Later during the experiment, due to a series of collisions the controller had 

lost the knowledge and never recovered from it. An interesting pattern was developed 

towards the end of the experiment. The controller was systematically given the reward 

-50 for the amount of movements without any progress towards the bottom of the hole. 

After close investigation it turned out that the agent fell into the never ending loop rotat­

ing the peg +0.1 of the degree about Z axis (class 3 was detected) followed the rotation of 

-0.1 degree about the same axis (class 0 was detected). Due to Softmax action-selection 

policy applied where the random actions are reduced while the experiment progresses the 

controller was not able to leam the alternative route.

Different starting conditions, step size and the reward function were applied so the 

results from square peg experiments cannot be directly compared with the previous tests.

The controller performed exceptionally well with the cylindrical peg and hole ge­

ometry. After 40 episodes the agent managed to established the strategy to successfully 

accomplish the peg-in-hole insertion task. Some difficulties were experienced and adjust­

ments to the starting conditions and reward function had to be made when the chamfer-less 

circular and chamfered square holes were applied. However, learning skills and abilities 

to cope with complex 3-dimensional geometry are clearly present.

According to the author’s knowledge the proposed controller with exceptionally low 

degree of supervision was never used before on such a complex geometry. Considering 

the results from the experiments it can be concluded that the agent was able to leam 

the strategy for successful peg-in-hole assembly working with complex 3-dimensional 

geometry under high degree of uncertainty.
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Chapter 7

Conclusions and future work

In this part of the thesis the final summary and conclusions will be presented. The chap­

ter is divided into a set o f subsections where the work done, results summary, the final 

conclusions and the proposal for future work are included.

7.1 Work done

1. System design. A stable connection using the terminal emulation system was es­

tablished. After solving initial problems the robot is able to perform up to 3 move­

ments per second. However, due to the computational load the movement speed 

had to be restricted to 1 per second. The floppy drive emulator was implemented 

to load the VAL II operating system from an external disk. The force and torque 

driver designed as a GNU/Linux kernel module was tested and the scaled data from 

F/T sensor was also successfully read.

2. Controller design and implementation. The sandwich structure of the intelligent 

agent was proposed. It featured two major layers: State Recognition module where 

the detection and localisation of the contact points were performed and the Decision 

Making subsystem where the decision about the next action based on the calculated 

reward and the current state took place. The controller was designed to receive two 

signals from the environment. The force and torque signals were fed alongside the
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reward feedback. The number corresponding to the location of the contact point 

was produced by the State Recognition module. This information together with the 

reward from the environment was sent as an input to the Decision Making subsys­

tem. The decision about the next action was taken and the signal was decoded to the 

incremental motion command understandable to the robot. This close loop control 

system was implemented using ART2 Artificial Neural Network, q-leaming and 

SARSA reinforcement learning algorithms. The system was designed in modular 

form and for flexibility the data structures were also implanted.

3. Algorithm simulations. All the algorithms were implemented and tested on simu­

lated data before being applied onto the real-life peg-in-hole insertion. Every part of 

the controller was evaluated separately. This approach gave the author an opportu­

nity to understand the information flow within the Artificial Intelligence algorithms 

and to leam how the different ratios affect the learning speed and overall perfor­

mance. Both subsystems were tested separately to evaluate the implementation and 

usefulness of proposed algorithms. During tests of the ART2 implementation, the 

algorithm sometimes was not able to stabilise data on the F\ layer. A different 

method had to be implemented (see Appendix D). Here the benefits of the modular 

design could be seen allowing the testing of a problem to be conducted quickly and 

accurately. Using this approach the author was able to switch to a different imple­

mentation and compare it without any interference to the main application code.

4. Environment’s evaluation. A set of measurements was taken to establish the 

robot’s accuracy and repeatability. The signal from the force and torque sensor was 

acquired under controlled conditions (preset load). All the data was collected to 

establish the area and level of uncertainty (e.g. signal errors) the artificial controller 

would need to leam to cope with and compensate for.

5. Plan of experiments. The proposed controller was applied on a set of real life 

peg-in-hole experiments. This type of insertions are amongst the most common 

operations in automated assembly. The set of experiments was designed to evaluate
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the intelligent agent’s ability to learn state-action mapping for different geometrical 

features. This includes working with cylindrical and square peg geometry. Both 

chamfered and chamfer-less holes were taken into account as well as the ability 

of the controller to deal with the different component’s materials (rubber and alu­

minium pegs were used).

6 . Empirical evaluation. The main purpose of the experimental investigation was 

to evaluate the usefulness and applicability of the sandwich structure of the con­

troller. The author claims that the combination of different, specialised artificial 

intelligence methods can produce a fully independent, self-adaptive and unsuper­

vised controller. Different aspects of learning were investigated. The empirical part 

of the thesis includes the investigation of the effects of different learning methods 

applied on the same geometry. The influence of action-selection methods onto con­

troller performance was also analysed. Materials with different friction factors were 

applied as well as a non-linear insertion case.

7.2 Results summary and final conclusions.

The proposed controller was applied on a set of tests to evaluate its on-line performance 

working with complex, 3-dimensional environments.

Every experiment was started with no external knowledge supplied to the system. 

Only the guidance towards the hole’s bottom was implemented.

All three stages of knowledge acquisition defined by the author can be clearly distin­

guished on the presented performance graphs. The transition time was 40 episodes long 

when cylindrical peg was used. It took much longer (up to 270 episodes) to learn the 

insertion task when the chamfer-less or square problem were considered.

The q-leaming and SARSA algorithms performed very similarly. They converged to 

the same value of cumulative rewards (-15). The transition time when SARSA algorithm 

was used was extended to 200 episodes while it took 40 episodes for the q-leaming agent 

to stabilise the learning curve.
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Occasional collisions (jammed condition) were registered during the steady state of 

the knowledge acquisition. They were caused by the agent executing the random actions 

following the action-selection policy. However, the interrupted insertions did not affect 

the pre-learnt knowledge and did not influence the controller’s on-line performance.

A significant reduction in force value during the initial stage of the learning process 

was recorded. The force was reduced to \ / \0 th of the initial value. Some fluctuations 

were recorded but when the cylindrical peg was considered the value of contact forces 

never exceeded 0.5 N during the steady state.

Similarly the torque was quickly reduced (usually by the same factor). After that it 

stabilised and only the occasional jammed peg condition caused the torques to rise.

The application of the rubber type peg did not affect the controller’s ability to learn. 

The usage of less rigid material resulted in lower, more stable force reading during the 

steady state. It also significantly reduced the number of collisions.

To investigate the controller’s ability to deal with the tasks involving the geometry 

where the force-velocity domains are not linearly mappable (non-linear problems) the 

chamfer-less cylindrical hole was used. The transition time was much longer than in 

the case of insertions into chamfered hole (about 270 episodes). This indicates that the 

controller was particularly struggling with the first part of the hole’s geometry. After the 

strategy for the entrance section was developed the the rest of insertion task was quickly 

learnt.

Some problems were encountered when the square peg was analysed. The presented 

graphs lack a long, uninterrupted steady state. However the the set of successful insertions 

can be observed. That clearly indicates that the intelligent agent was able to develop the 

strategy for square peg-in-hole insertions. The suggestions for future work to improve the 

on-line performance are included in the next section of this chapter.

Based on the results of conducted experiments it can be concluded that the main aim 

of this thesis was fully achieved. The fully unsupervised controller with the ability to 

deal with complex, 3-dimensional geometry was proposed, implemented and tested. The 

knowledge acquisition was clearly present in all investigated cases. Also, the contact
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forces and torque values were significantly reduced while the insertion progressed.

According to the author’s best knowledge all aims and project objectives included in 

Section 1.1 were fully fulfilled, namely:

•  Different information sources were analysed and applied to the system. The sen­

sory signals in form of force and torque readings and descriptive in the form of 

assembly direction were employed to peg-in-hole insertion. It was decided and em­

pirically proved that any form of pre-training or task description is not necessary to 

successfully leam the assembly. The history was also included and was embodied 

as a part of the reinforcement learning algorithms.

•  The automatic state recognition and clustering was investigated. The contact states 

were analysed and classified using the implemented module for geometry classifi­

cation.

•  Unsupervised motion generation was achieved using the intelligent decision making 

agent, able to leam the state-action map.

•  The stable and flexible system able to support several different AI architectures was 

implemented.

•  The controller’s performance and its usefulness was tested and validated using a 

range of mechanical components. The real-life, 3-dimensional peg-in-hole assem­

bly tasks were performed. The influence of the different features of the mating parts 

(e.g. peg’s material) was also investigated.

The system was initially designed to work with Puma 500 series robots. However, 

due to mechanical failure of the manipulator, the proposed system was later transferred, 

with no modification, onto a Staubli RX90 robotic arm. This demonstrates the portability 

and flexibility of the design and methodology. The repeatability of the results was also 

observed with no difference in recorded on-line performance or F/T values when both 

robots were applied.
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The agent performed exceptionally well with the cylindrical peg-and-hole geometry. 

After short initial stage it managed to established the strategy to successfully accomplish 

the insertion task. Some difficulties were experienced when chamfered, square hole was 

investigated but the learning skills and abilities to cope with complex 3-dimensional ge­

ometry are clearly present.

7.3 Original contribution

As stated in the previous section, the main aim of this study was to develop, implement 

and validate an intelligent controller capable of learning basic manipulative skills during 

the peg-in-hole assembly. The complexity of geometry, nonlinearity of the insertion task 

and noisy feedback signals from the sensors are the main factors making the task very 

difficult to deal with.

Different information sources were applied and combined to develop a fully unsuper­

vised, intelligent controller. In the authors design, no class labelling or geometry feature 

pre-training takes place. Only force and torque signal together with the direction of inser­

tion was supplied to the controller.

The controller learns the geometry of the parts using self organising Artificial Neural 

Network. In the next step an unsupervised decision about the appropriate action is taken.

According to the author’s best knowledge, the ’’sandwich” structure of the controller 

and the choice of algorithms are unique and have not been investigated before. The pro­

posed design and selection of information sources proved to be able to cope in an envi­

ronment with high level of uncertainty without the loss of on-line performance.

The improvement in system design was also an important part of this research. The 

modular form of the software and robust method of robot-computer connection were de­

veloped to fulfil that requirement.

The system was initially designed to work with Puma 500 series robots. However, 

due to mechanical failure of the manipulator the proposed system was later transferred 

with no modification onto Staubli RX90 robotic arm. This demonstrates the portability
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and flexibility of the design and methodology.

7.4 Future work

The proposed controller has shown some limitations described earlier in this thesis. Some 

improvements suggested by the author are presented in this section below. Most of the 

future work should be focused on improving the controllers performance in working with 

square peg geometry.

1. Angular misalignment problem. As described earlier (Section 4.3) the state clus­

tering methodology is based on a successful match between F/T signal and vector 

normal to the surface. The F/T coordinate system is fixed in the sensor centre point. 

Because of this configuration the F/T reference frame rotates with the robot grip- 

per. The unary vectors which describe the orientation of each surface forming the 

hole are calculated using constant coordinate system fixed at the bottom centre of 

the hole. Since the orientation of the peg is not known the transformation between 

these two systems can not be calculated. This problem could be solved in a number 

of ways:

• Use the peg orientation description gained from the robot. This approach 

increases the number of information sources. Since the author’s aim is to use 

the minimum accessible data to perform successful assembly this approach 

should not be considered in the future.

• F/T sensor is fixed underneath the hole. This is an ideal solution since both 

coordinate systems (for peg and the hole) are constant and fixed in the same 

point.

• Installation of two F/T sensors. This allows the peg orientation to be calcu­

lated by comparing the force signal from two sensors: one mounted on the 

robot gripper and the second fixed underneath the hole. This approach in­

volves the addition of new source of data to the system. It is also an expensive 

solution because the second F/T sensor needs to be obtained.



•  Application of fuzzy logic. Using fuzzy logic and history data should help to 

distinguish between two overlapping classes. This approach does not require 

any change to the system architecture. It involves alteration of clustering al­

gorithms by adding a fuzzy logic module. This could be done by changing 

ART2 type of ANN to a Fuzzy ART or implementation of fuzzy function as a 

separate module.

2. Jammed condition recovery. During the experiments with square peg geome­

try it was noticed that the mating parts had a tendency to jam against each other. 

This situation results in a sharp rise of both force and torque values. To speedup 

the learning process with the more complex geometry than the cylindrical peg a 

module for detection and recovery should be designed and implemented. This will 

inevitably involve the the implementation of actions towards negative Z direction. 

In this case the insertion direction and assembly goal for reinforcement learning 

needs to be redefined.

3. Action domain problem Currently the controller chooses from discrete set of ac­

tion which represent the constant step (usually 0 . 2  mm) towards given direction. 

Also implemented reinforcement learning tasks are generally treated in discrete 

time steps. At each time step, (t), the learning system receives some representa­

tion of the environment’s state (st), it takes an action (at+1), and one step later it 

receives a scalar reward (rt+i), and finds itself in a new state (Sf+i). The limited 

number of actions, five in total, can cause the problems described in the previous 

chapter (see Chapter 6  for reference). Widening the choice by adding the combined 

movements on two different axes, the never ending loop trap could be avoided. Also 

introducing the actions with different step size may increase the controller’s on-line 

performance.

4. Reward function investigation. The proposed controller is given reward value 

of -1  for every performed movement, - 1 0 0  when the collision occurs and 0  for 

successfully accomplished task. This relatively simple reward function was altered
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when chamfer-less and square holes were investigated. Additional value of -50 

was given when the controller performed more than 1 0 0  movements without any 

progress towards the goal. The results suggested that implementing even more 

sophisticated rewards can also improve the learning skills.

5. State clustering module. Currently the ART2 artificial neural networks algorithm 

is implemented. Because it accepts the analogue values on the input the scaled real 

force and torque data can be applied on the input. The drawback o f this solution 

lies in extensive computational time. Additional layers had to be added to the net­

work structure for vector normalisation and contrast enhancement. Since the signal 

from the sensor is read in the form of an unsigned integer number the faster AR.T1 

artificial neural network could be used for purpose of force and torque vectors clas­

sification.

6 . Tests using a wider range of mechanical components. The final version of the 

controller should be tested and validated using all range of peg and hole configura­

tions, raging from circular, square and finally triangular.
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Appendix A 

Simulation results

In this chapter the additional results from simulations described in Section 4.5 are pre­

sented. All the tests were performed under exactly the same conditions as those described 

in the main body of the thesis. This includes the learning parameters and applied action- 

selection methods.

A.l Action selection policy evaluation (q-learning)
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Figure A. 1: e-greedy policy evaluation using q-leaming algorithm.
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Figure A.2: Softmax policy evaluation using q-leaming algorithm.

State
Leamt Policy Optimal

policye-greedy Softmax
/i=0 .0 0 1

1—HOoII fi=0A fi=l P=l £ = 2 /3=5
0 E E E E E E E -
1 E E E E E E E E
2 E E E E E E E E
3 E E E E E E E E
4 N N N N N N N N
5 S S S S S S S S
6 S S S S S S S S
7 s s s s s s s s
8 N E N E E N E -
9 E E E E E E E E
1 0 N W S W N N E -
11 N N N N N N N -
12 N N W E N N N -
13 N N N N N N N -
14 G G G G G G G G
15 N N N N N N N -

Table A.1: Leamt policies for different action-selection methods.
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A.2 State classification method evaluation
7000

6000

5000

4000

3000

2000

1000

0

E poch
C lass num ber

V ector A V ector B V ector C V ector D V ector E

1 1 1 1 1 1

1000 3 4 1 2 5
2 0 0 0 3 4 1 2 5

3 0 0 0 3 4 1 2 5

4 0 0 0 3 4 1 2 5

5 0 0 0 3 4 1 2 5

6 0 0 0 3 4 1 2 5

7 0 0 0 3 4 1 2 5

8 0 0 0 3 4 1 2 5
9 0 0 0 3 4 1 2 5

1 00 0 0 3 4 1 2 5

1 10 0 0 3 4 1 2 5
1 20 0 0 3 4 1 2 5
1 30 0 0 3 4 1 2 5

1 40 0 0 3 4 1 2 5

15000 3 4 1 2 5

1 60 0 0 3 4 1 2 5
1 70 0 0 3 4 1 2 5
18000 3 4 1 2 5

1 90 0 0 3 4 1 2 5
2 0 0 0 0 3 4 1 2 5

Table A.2: Classification stability of ART2 algorithm (p  =  0.9).

4 5

Class number

p=0.9

Figure A.3: State classification using ART2 (p= 0.9).
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Figure A.4: State classification using ART2 (p=0.91).

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1000 3 4 1 2 7
2 0 0 0 3 4 1 2 7
3000 3 4 1 2 5
4000 3 4 1 2 5
5000 3 4 1 2 5
6000 3 4 1 2 5
7000 3 4 1 2 5
8000 3 4 1 2 7
9000 3 4 1 2 7
1 0 0 0 0 3 4 1 2 7
11 0 0 0 3 4 1 2 7
12 0 0 0 3 4 1 2 7
13000 3 4 1 2 7
14000 3 4 1 2 7
15000 3 4 1 2 7
16000 3 4 1 2 7
17000 3 4 1 2 7
18000 3 4 1 2 7
19000 3 4 1 2 7
2 0 0 0 0 3 4 1 2 7

Table A.3: Classification stability o f ART2 algorithm (p  =  0.91).
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Figure A.5: State classification using AR.T2 (p= 0.92).

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1 0 0 0 3 4 5 1 8

2 0 0 0 3 4 2 1 7
3000 3 4 2 1 7
4000 3 4 2 1 7
5000 3 4 2 1 7
6000 3 4 2 1 7
7000 3 4 2 1 7
8000 3 4 2 1 7
9000 3 4 2 1 7

1 0 0 0 0 3 4 2 1 7
1 1 0 0 0 3 4 2 1 7
1 2 0 0 0 3 4 2 1 7
13000 3 4 2 1 7
14000 3 4 2 1 7
15000 3 4 2 1 7
16000 3 4 2 1 7
17000 3 4 2 1 7
18000 3 4 2 1 7
19000 3 4 2 1 7
2 0 0 0 0 3 4 2 1 7

Table A.4: Classification stability of ART2 algorithm (p  = 0.92).
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Figure A.6 : State classification using ART2 (p=0.93).

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1 0 0 0 3 4 7 2 5
2 0 0 0 3 4 7 2 5
3000 3 4 7 2 5
4000 3 4 2 2 5
5000 3 4 2 2 5
6000 3 4 2 2 5
7000 3 4 2 2 5
8000 3 4 2 2 11

9000 3 4 2 2 11

1 0 0 0 0 3 4 2 2 11

1 1 0 0 0 3 4 2 2 11

1 2 0 0 0 3 4 2 2 11

13000 3 4 2 2 11

14000 3 4 2 2 11

15000 3 4 2 2 11

16000 3 4 2 2 11

17000 3 4 2 2 11

18000 3 4 2 2 11

19000 3 4 2 2 11

2 0 0 0 0 3 4 2 2 11

Table A.5: Classification stability of ART2 algorithm (p  = 0.93).

*------------ 1------------ 1------------ 1------------ 1------------ r

p=0.93
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3500
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2500

2000

1500

1000

500

0

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1 0 0 0 3 4 5 1 6

2 0 0 0 3 4 5 11 6

3000 3 4 5 1 6

4000 3 4 5 1 6

5000 3 4 5 1 6

6000 3 4 5 1 6

7000 3 4 5 1 6

8000 3 4 9 1 6

9000 3 4 5 1 6

1 0 0 0 0 3 4 5 1 12

1 1 0 0 0 3 4 5 1 12

1 2 0 0 0 3 4 9 1 12

13000 3 4 9 1 12

14000 3 4 5 1 12

15000 3 4 5 1 12

16000 3 4 5 1 12

17000 3 4 5 1 12

18000 3 4 5 1 12

19000 3 4 5 1 12

2 0 0 0 0 3 4 5 1 12

Table A.6: Classification stability of ART2 algorithm (p  =  0.94).

i -----------r i  i i-----------r n-----------r

p=0.94 C

8 10 12 14 16

Class number

18

Figure A.7: State classification using ART2 (p=0.94).
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0

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1 0 0 0 4 5 10 13 7
2 0 0 0 4 5 6 3 7
3000 4 5 6 3 7
4000 4 5 6 1 7
5000 4 5 6 1 7
6000 4 5 6 1 7
7000 4 5 10 13 7
8000 4 5 10 13 7
9000 4 5 10 13 7

1 0 0 0 0 4 5 10 13 7
1 1 0 0 0 4 5 10 13 7
1 2 0 0 0 4 5 10 13 7
13000 4 5 10 13 7
14000 4 5 10 13 7
15000 4 5 10 13 7
16000 4 5 10 13 7
17000 4 5 10 13 7
18000 4 5 10 13 7
19000 4 5 10 13 7
2 0 0 0 0 4 5 10 13 7

Table A.7: Classification stability of ART2 algorithm (p  =  0.95).

p=0.95 I l

IZL
5 10

Class number

15 20

Figure A.8 : State classification using ART2 (p=0.95).
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Figure A.9: State classification using ART2 (p=0.96).

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1 0 0 0 4 5 11 13 7
2 0 0 0 4 5 11 13 7
3000 4 5 11 13 7
4000 4 5 11 3 7
5000 4 5 11 13 7
6000 4 5 11 1 7
7000 4 5 11 1 7
8000 4 5 11 1 7
9000 4 5 11 13 7
1 0 0 0 0 4 5 11 13 7
1 1 0 0 0 4 5 11 13 7
1 2 0 0 0 4 5 11 13 7
13000 4 5 11 13 7
14000 4 5 11 13 7
15000 4 5 11 13 7
16000 4 5 11 13 7
17000 4 5 11 13 7
18000 4 5 11 13 7
19000 4 5 11 13 7
2 0 0 0 0 4 5 11 13 7

Table A.8: Classification stability of AR.T2 algorithm (p  = 0.96).
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Figure A. 10: State classification using ART2 (p=0.97).

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1 0 0 0 4 5 12 16 6

2 0 0 0 4 5 12 16 6

3000 4 5 12 16 6

4000 4 5 12 16 6

5000 4 5 12 16 6

6000 4 5 12 16 6

7000 4 5 12 16 6

8000 4 5 12 16 6

9000 4 5 12 16 6

1 0 0 0 0 4 5 12 16 6

1 1 0 0 0 4 5 12 16 6

1 2 0 0 0 4 5 12 16 6

13000 4 5 12 16 6

14000 4 5 12 16 6

15000 4 5 12 16 6

16000 4 5 12 16 6

17000 4 5 12 16 6

18000 4 5 12 16 6

19000 4 5 12 16 6

2 0 0 0 0 4 5 12 16 6

Table A.9: Classification stability o f ART2 algorithm (p  = 0.97).
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Figure A .l 1: State classification using ART2 (p=0.98).

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1 0 0 0 4 5 13 19 24
2 0 0 0 4 5 13 19 24
3000 4 5 13 19 24
4000 4 5 13 19 24
5000 4 5 13 19 24
6000 4 5 13 19 24
7000 4 5 13 19 24
8000 4 5 13 19 24
9000 4 5 13 19 24

1 0 0 0 0 4 5 13 19 24
1 1 0 0 0 4 5 13 19 24
1 2 0 0 0 4 5 13 19 24
13000 4 5 13 19 24
14000 4 5 13 19 24
15000 4 5 13 19 24
16000 4 5 13 19 6

17000 4 5 13 19 6

18000 4 5 13 19 6

19000 4 5 13 19 6

2 0 0 0 0 4 5 13 19 6

Table A. 10: Classification stability of ART2 algorithm (p  = 0.98).
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Figure A. 12: State classification using ART2 (p=0.99).

Epoch Class number
Vector A Vector B Vector C Vector D Vector E

1 1 1 1 1 1

1 0 0 0 5 40 2 0 42 11

2 0 0 0 5 40 2 0 37 11

3000 5 40 2 0 37 11

4000 5 40 2 0 37 11

5000 5 40 2 0 37 11

6000 5 40 2 0 37 11

7000 5 40 2 0 37 11

8000 5 40 2 0 37 11

9000 5 40 2 0 37 11

1 0 0 0 0 5 40 2 0 37 11

1 1 0 0 0 5 25 2 0 37 11

1 2 0 0 0 5 25 2 0 37 11

13000 5 25 2 0 37 11

14000 5 25 2 0 37 11

15000 5 25 2 0 37 11

16000 5 25 2 0 37 11

17000 5 25 2 0 37 11

18000 5 25 2 0 37 11

19000 5 25 2 0 37 11

2 0 0 0 0 5 25 2 0 37 11

Table A .l 1: Classification stability of ART2 algorithm (p  = 0.99).
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Appendix B

Experimental results

In this chapter the additional results from the experiments are presented. This includes 

evaluation of the environment’s uncertainty, sensor accuracy and robot measurements. 

The data from real life peg-and-hole experiments is also presented. Different geometries 

and materials are investigated.

B .l Environment evaluation 

B .l .l  Sensor accuracy

The results included in the main body of the thesis represent the overall length of the 

vector calculated using the Equation 5.1.1 and Equation 5.1.1. In this section the force 

and torque readings for every axes are presented.

The sensor was mounted on the Puma 560 robot’s wrist. To ensure that the TOOL 

coordinate system axis is aligned with the robot’s WORLD coordinate system the ”DO 

ALIGN” command was released from robot terminal. The sensor’s internal coordinate 

system was aligned with the robot’s TOOL CS. This was done executing a set o f rota­

tional commands (see JR3 sensor manual for details [26]). The load (value of 5 N) was 

suspended underneath the sensor. Since the direction of WORLD Z axis is parallel (within 

the robot’s accuracy) to the gravitational force, the expected sensor’s reading should be 

on Z axis only.
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Figure B .l : Force reading on X-axis - unfiltered data.
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Figure B.2: Force reading on Y-axis - unfiltered data.
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Figure B.3: Force reading on Z-axis - unfiltered data.
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Figure B.4: Force reading on X-axis - 31Hz filter applied.
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Figure B.5: Force reading on Y-axis - 31Hz filter applied.
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Figure B.6: Force reading on Z-axis - 31Hz filter applied.
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Figure B.7: Torque reading on X-axis - unfiltered data.
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Figure B.9: Torque reading on Z-axis - unfiltered data.
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Figure B.10: Torque reading on X-axis - 31 Hz filter applied.
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Figure B.l 1: Torque reading on Y-axis - 31Hz filter applied.
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Figure B.12: Torque reading on Z-axis - 31 Hz filter applied.
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B.2 Experimental results

In this section the selected results from the experiments using real components are pre­

sented. The circular and square pegs were applied onto chamfered holes. The non-linear, 

chamfer-less peg-in-hole problem was also investigated.

The initial tests were performed using a Puma 560 robotic arm staring from a random 

position. The experiments (except the non-linear and square peg problem) were executed 

using the following settings:

Collision trigger ION

Translation Step X 0 . 2  mm

Translation Step Y 0 . 2  mm

Translation Step Z 0 . 2  mm

Rotation Step X 0 . 2  deg.

Rotation Step Y 0 . 2  deg.

Rotation Step Z 0 . 2  deg.

Table B .l: Standard settings for peg-in-hole insertion experiments.

B.2.1 Circular chamfer-less hole - additional results.

In this section the data acquired during the the insertion with the q-leaming algorithm 

with e-greedy action-selection policy applied is presented. It is a very similar approach to 

the greedy method. The agent still chooses the action with the highest estimated value but 

also allows exploration with a small probability e. The method was implemented in a way 

so the value of e depends on the number of the current episode. This reduces the amount 

of exploration as the number of plays increases, the probability of greedy action ag was 

set according to Equation 4.1. This method together with the q-leaming algorithm was 

applied onto the circular chamfer-less peg-in-hole insertion. To compare the results with 

the data acquired using the other type of hole geometries the Softmax action-selection 

methods were included in the main body of the thesis. The same starting conditions were 

applied to the test presented below.
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Figure B.13: Force data - chamfered hole, q-leaming with e-greedy applied.

The force value and its change throughout the experiment can be seen in the Figure 

B.13.

A significant reduction of contact forces can be observed while the experiment pro­

gresses. The high values, caused by the collisions between mating parts are quickly 

(within first 40 episodes) lowered to the value of below 1 Newton.

The occasional sharp increase of the force is caused by collision due to random actions 

taken (constant value of e = 0 .1).

The graph from Figure B.14 presents the change of torque values. Similarly to the 

force signal torque was very quickly reduced and stabilised at the value o f around 0.5 

Nm. The very high torque values combined with high contact forces recorded during first 

40 episodes suggests the occurrence of jamming conditions during the initial stages o f the 

learning process. The controller leamt to recognise those error conditions and avoid them 

in the future.

The significant reduction of both contact forces and the resulting torques is also clear 

indication that the intelligent controller was able to leam the necessary skills to perform 

the peg-in-hole assembly. No additional knowledge about the geometry, part’s orientation 

or position was supplied to the system.
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Figure B.14: Torque data - chamfered hole, q-leaming with e-greedy applied.

The data presented on the histogram below (see Figure B.15) represents the number 

of unsuccessful insertions per 10 episodes. It clearly indicates the sudden drop in error 

conditions caused by high contact forces. The results from Figure B.15 conclude the 

presented early data.
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Figure B.15: Number of failed insertions (per 10 episodes).
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B.2.2 Softmax and e-greedy comparison data.

The raw data from the graph (see Figure 6.7) included in Section 6.2.1 is presented. For 

clarity the graph in the main body of the thesis only shows the first 400 episodes plotted 

and the data points were interpolated using Bezier approximation function.
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-20
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-5 0
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Figure B.16: Softmax and e-greedy policy during first 400 episodes.

The on-line performance curve for the Softmax action-selection method quickly rises 

and stabilises on the value of -15. In the case of e-greedy policy, due to a greater number 

of random actions, the on-line performance graph more steadily approaches the optimal 

value of cumulative reward.

B.2.3 Q-learning agent with e-greedy policy applied on chamfer-less 

peg-in-hole problem

In this Section the additional results from chamfer-less circular peg-in-hole experiments 

are presented. In the main body of this thesis (see Section 6.3) data acquired during the 

tests with the q-leaming algorithm and Softmax action-selection method applied were 

presented. Here the e-greedy method was used instead. The starting conditions were 

exactly the same so the results can be directly compared to those included in Section 6.3
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Figure B.17: On-line performance data from the experiment.

The on-line performance curve was presented on Figure B.17. The transition time 

was 180 episodes long. After that the controller stabilised the cumulative reward on the 

value -10. The stable period was occasionally interrupted by the occurrence o f a collision 

between mating parts.
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Figure B.18: Force data from peg-in-hole experiment.
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Figure B.19: Torque data from peg-in-hole experiment.

The sudden increases in force and torque values during episodes 249, 435, 745, 816, 

1410, 1607 and 1661 (see Figures B.18 and B.19) are present on both graphs, this in­

dicates the jamming condition. The episode numbers correspond to those from the his­

togram from Figure B.20 below.
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Figure B.20: Number of failed insertions (per 10 episodes).
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B.2.4 Complete raw data from square peg-in-hole insertion.

In this Section the full data for the chamfered square hole is presented. The first 600 

episodes were presented and discussed in the main part of the thesis. The experiment was 

stopped after 1800 episodes due to reasons explained before (see Section 6.4 for details).
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Figure B.21: On-line performance data from the experiment.
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Figure B.22: Force data from peg-in-hole experiment.
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Figure B.23: Torque data from peg-in-hole experiment.
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Figure B.24: Number of failed insertions (per 10 episodes).

It can be seen from the presented graphs that some improvement of controller design 

and the learning parameters is necessary. The suggestions for future work to extend the 

presented features namely: on-line performance, force and torque data readings can be 

found in the Section 7.4.
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Appendix C

Rotations in TOOL Coordinate System

To request an incremental movement the DO MOVE HERE: TRANS ( X ^ Z jCLAjT) 

command is sent to VAL II. The X, Y, Z values represent the increment on each axis re­

spectively. Although O, A and T does NOT represent rotations about those axes. These 

angles are formed by the TOOL CS when referenced to the X, Y, Z WORLD CS. The 

reference coordinates for WORLD mode are fixed to the robot arm base and the TOOL 

reference coordinates are fixed in the gripper with their origin at the centre o f its mechan­

ical interface.

When the TOOL mode is chosen the gripper is meant to move parallel to any of TOOL 

axis and rotate about those axes.

The angles 0, A and T are defined as follows (after robot manual):

• O - a measurement of the angle formed between the WORLD X axis and a projection 

of the TOOL Z on the WORLD XY plane.

•  A - a measurement of the angle formed between the TOOL Z and a plane parallel 

to the WORLD XY plane.

• T - a measurement of the angle formed between the TOOL Y and a plane parallel 

to the WORLD XY plane.

The output from the AI controller is in form of 8X, 5y, 5Z values, which represent
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movement correction and 3 values S9x, 59y, 59z for rotation correction. Since the defini­

tion of those differ from the definition of 0, A, T angles, the transformation between these 

values had to be found.

With help of Dr M. Rybaczuk from Wroclaw University of Technology the following 

algorithm was developed:

1. Calculate the rotation matrix based on the equation (summation convention over k):

where n is a unary vector describing orientation of the rotation axis, 0 is a rotation 

angle, 9 is a rotation matrix.

2. Having the rotation matrix we can calculate transformation from TOOL CS to

3. Now using the description of 0, A ,T from robot manual we can describe relations

9ij =  Sij cos </>+(! — cos (f))fiihj +  sin (C.l)

WORLD CS:

(C.2)

where b ^  and a ^  are TOOL and WORLD CS unary vectors respectively.

between a ^  and b ^  as follows:

cos(O) =  a ^ t (C.3)

cos (O) =  a (2)b (3) (C.4)

cos (T) = (C.5)

where t can be calculated as follows:

(C.6)

(C.7)
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After close investigation it became clear that 0, A,T angles are components of Eu­

ler Z-Y-Z orientation description. The appropriate software was written to calculate the 

constant rotation increment value.
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Appendix D

ART2 algorithm

During tests of the ART2 implementation the algorithm sometimes was not able to sta­

bilise data on the F\ layer. The F0 layer was also added to the previous configuration.

The equations from Section 4.3.2 had to be slightly modified. The final set o f equations

that governs activities on each of the sub-layers for layers Fq and Fi is as follows:

• for Layer F0:

w[ =  k  +  au[ (D .l)

<  =  - 7 J - T j i  ( ° - 2 )e +  ||w'||

Pi =  « '  CD.3)

^  =  e H jp 'll  (D-4)

< = f{<)  +  V  W )  ( D .5)

<  =  ~ T T 7 \\  (D'6)e +  v'

for layer Fi:

Wi =  q[ +  aui (D.l)
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Pi =  ui +  '52 g(yj)zij (D.8)
j

Xi = ~ r r r \  (D-9>e +  ||w||

® =  ~ ^ h r  (D 1 °)e +  l|p||

Vi =  f {x i )+bf {q i )  (D. 11)

ui =  — Tj-ii (D-12>e +  ||v||

The function f(x)  is a threshold linear function. In the simulations the equations were 

computed in the sequence shown for each pass through the loop.

A reset vector is also calculated to record the match between the top-down expectation 

and the bottom-up priming, as follows:

Qi + cpj
e +  l|q|| +  ||cp||
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Appendix E

Software description

E.l Floppy drive emulator

First the data including the operating system boot sequence from the original VALII disk 

had to be extracted. To accomplish that dedicated software was written. The robot’s 

floppy drive was directly connected to the RS232C port on PC computer. The connection 

cable had to be made. The software on PC was acting as robot’s controller and initiated 

the transmission from the floppy according to the protocol regime. The all files were 

copied bit by bit over the designed link from the floppy drive directly to the hard drive 

on the host PC. When the data transmission was accomplished the floppy drive was un­

plugged. The connection cable was slightly modified and connected to the socket o f the 

robot’s controller. The program pfloppy was run in the background to allow floppy drive 

emulation. From the controller’s perspective the whole system is seen as a CRT terminal 

and ordinary disk drive.

E.2 Data structures

The listings of ANSI C code for data structures design used for purpose o f this project 

are presented below. This implementation gives the flexibility of building different net­

work designs with different number of layers applied. The reinforcement learning agent’s 

structure allows the easy implementation of both SARSA and q-leaming methods.
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The structures defining the topology (layers) of the ART2 neural network.

:def s t r u c t  { / / A LAYER OF A NET:

i nt units  ; / / number  o f  u n i t s  in t h i s l a y e r

double* w; / / W s u b l a y e r o f  FI

double* x ; / / X  s u b l a y e r o f  FI

double* v ; / / V s u b l a y e r o f  FI

double* u; / / U s u b l a y e r o f  FI

double* out p ut ; / / o u t p u t  u n i t s

double* p; / / P s u b l a y e r o f  FI

double* p_old ; / / o l d  P  u n i t s f o r  s t a b i l i s a t i o n

double* w_old ; / / o l d  W u n i t s f o r  s t a b i l i s a t i o n

double* q; / / Q s u b l a y e r o f  FI

double** w e i g h t ; / / c o n n e c t i o n w e i g h t s to u n i t

BOOL* inh ib i t ed  ; / / i n h i b i t i o n s t a t u s o f  F2 u n i t

} LAYER;

;def  s t r u c t  { / / A NET:

LAYER* F 0 ; / / F0 l a y e r

LAYER* FI ; / / FI l a y e r

LAYER* F 2 ; / / F2 l a y e r

int w i n n e r ; / / l a s t  winner in F2 l a y e r

double a ; / / p a r a m e t e r A o f the ART2

double b ; / / p a r a m e t e r B o f the ART2

double c ; / / p a r a m e t e r C o f the ART2

double d; / / p a r a m e t e r D o f the ART2

double e ; / / p a r a m e t e r E o f the ART2

double t h e t a  ; / / p a r a m e t e r Theta

double rho  ; / / v i g i l a n c e p a r a m e t e r

} NET;
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The data structure for the reinforcement learning agent:

d ef  s tru ct { / /

i nt s t a t e s  ; / /

in t a c t i o n s  ; / /

double gam m a; / /

double a l p h a  ; / /

double e p s i l o n  ; / /

double** q; / /

} AGENT;

A REINFORCEMENT AGENT: 

number o f  s t a t e s  

number o f  a c t i o n s  

Gamma l e a r n i n g  r a t i o  

Alpha l e a r n i n g  r a t i o  

e p s i l o n —g r e e d y  e x p l o r a t i o n  

Q s t a t e  —a c t i o n s  v a l u e s

E.3 DDCMP protocol

As mentioned in Section 3.3.2, the difference between the description in the robot’s man­

ual and real life controller’s response was spotted. According to the manual,fill bytes are 

suppose to be added to each frame to be sent to the controller. In reality the fill bytes are 

added by the controller so the supervisory computer does not have to include them. The 

correct data flow for establishing connection looks as follows:

FROM VAL: (10) FF FF 05 05 CO 00 00 01 75 95 FF FF <START>

FROM VAL: (10) FF FF 05 05 CO 00 00 01 75 95 FF FF <START>

FROM VAL: (10) FF FF 05 05 CO 00 00 01 75 95 FF FF <START>

[. • •]

TO VAL: (8) 05 07 CO 00 00 01 46 55 <STACK>

FROM VAL: (12) FF FF 05 01 CO 00 00 01 CO 55 FF FF <ACK>

If the supervisor switch is enabled (EN SUPERVISOR from the robot terminal) the 

system will immediately follow the ACK with LUN2 READ DATA message:

FROM VAL I I :  (18) FF FF 81 04 CO 00 01 01 13 81

02 02 00 00 A0 78 FF FF <DATA>

TO VAL II: (8) 05 01 CO 01 00 01 91 95 <ACK>
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Appendix F

List of publications

The printouts of conference publications are included in this Chapter.
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ABSTRACT

The aim of this research is to design a non-linear controller based on an Artificial Neural 
Network (ANN) implementation, which is able to perform an intelligent robotic assembly of 
mechanical components. Differently from other researchers' work, the main aim of this study is 
the investigation of the different information sources and their application to the "peg in hole" 
insertion problem. Amongst these, one source is sensorial (signal from force and torque sensor) 
and three are descriptive (previous actions database, geometry of parts and coded task 
description). To receive F/T data a six-axis sensor is used, the set of unary vectors normal to 
the surfaces forming the hole represents the geometry of components and a previous actions 
database contains the sets of successful insertions for different types of parts’ geometry.

1 INTRODUCTION

There is widespread acceptance that the adoption of automated assembly operations could 
provide a solution to the high costs related to the employment of human labour and supervision 
in the execution of such processes. Early research work by Simunovic [9] concluded that most 
common assembly operations could be modelled as simple peg in hole insertions.

mailto:P.Chmielarczyk@shu.ac.uk
mailto:M.Howarth@shu.ac.uk


Traditional force control strategies have given way to applications of ANN and Artificial 
Intelligence (AI). The applications of AI to the peg in hole problem range from the employment 
of various ANN algorithms to the application of Fuzzy Inference Systems. Asada [1] pioneered 
the application of Backpropagation to assembly tasks, using the network's learning capabilities 
to approximate compliant control laws. Backpropagation based controllers were also 
developed by Gullapalli et al [3] and Howarth [4], these two approaches feature substantial 
differences in the architecture of the reinforcement learning rule. Cervera et al [2] defined a 
finite set of contact configurations and used Self Organising Maps to associate the current 
contact state to a predefined one. Lopez et al [5] applied a FuzzyARTMAP network to learn the 
‘pattern motion’ association from a table of pre-taught templates. Brignone in his studies [6] 
used a similar algorithm but extended the problem by merging FAT data and parts geometry. In 
his work, the network was trained with a set of normalised vectors representing the normal to 
the surfaces, which form the hole.

A new approach to the design of the system is proposed. It includes the main process (ANN 
controller) and two child processes (F/T sensor driver and computer-robot connection module) 
running in parallel. The ANN controller was built in a modular form (as a plug-in). This 
simplified the whole system and increased its flexibility enabling different ANN controller 
architectures to be developed and tested.

2 METHODOLOGY

During this research, authors will extend the earlier work by investigating how the ANN 
controller should combine different information sources in order to generate a successful 
assembly strategy. The information sources mainly concern: task description, geometry and 
dimensions of parts, online force and torque contact data analysis and information derived from 
previous moves (experience). The originality of this approach lies in the definition o f a 
methodology to merge information deriving from different sources to attempt an interpretation 
of the contact state, in terms of contact location and peg's attitude. The work carried out on data 
pre-processing and interpretation is used to provide the tools for the definition of the 
controller's decision-making strategy, which also includes the use of information on previous 
stages of the insertion.
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Robotic A rm

Robot  
. Controller

F/T
S ignal

Movement

C ommand
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Figure 1 System configuration.



The robot arm and controller are the main part of the system. The Supervisory computer is 
connected to the controller via serial port. F/T sensor was mounted on the robot wrist. The 
signal is transmitted to the computer and then used as an input to the ANN controller. The new 
arm position and orientation values are calculated. The incremental motion request is sent to the 
controller using "supervisory" mode (see Figure 1).

2.1 ANN controller architecture
The ANN controller structure is shown in Figure 2. The controller architecture consists two 
main parts: ART network and reinforcement algorithm. In order to generalise large and 
continuous state space (5 ), the controller has to use function approximators. One of the simplest 
way to do this is to partition the continuous state space, and treat each class as an autonomous 
object.

Controller

A gent
R ein fo r c e m e n t  learning

R e w a r d  n

STATE sr S tate clustering  
ART2ANN

CONTROL SIGNAL 
INCREMENTAL 

MOVEMENT REQUEST

RECOGNITION 
F/T SIGNAL

Environment

C ontrolled  S ystem

Puma 560 Robot

Figure 2 Controller architecture.

The state domain was divided into a set of classes using geometiy information extracted from a 
CAD drawing. For this purpose, the ART network was used. The class number was set as input 
for reinforcement learning describing the actual contact forces as well as geometric position of 
its occurrence. Using this configuration, the reinforcement algorithm needs to leam how to deal 
only with a particular part of the component’s geometry. This task decomposition is expected to 
speed up the learning process significantly.

2.1.1 Reinforcement learning
Following Sutton and Barto’s [7] description, reinforcement learning problem is meant to be a 
straightforward framing of the problem of learning from iteration to achieving the goal. The 
basic one step Q-learning control algorithm was used. The method of Q-learning is based on 
the function Q, defined as followed:

Q(st,at)< -Q (s t,a t) + a rM + 7  max ) - Q ( s t,a ,) (1)

where: t is a discrete time step, an agent receives representation of the environment; s is a finite 
set of states, an agent can be in; a is a finite set of actions, an agent may perform; Q is a 
transition function, mapping each state-action pair to a successor state; r is a reward function, 
mapping states-action pairs to payoffs, a  is a learning rate and yis a discount factor. These last 
two ratios are learning parameters.

As described above the class number (indicating a location) was used as the state description.

2.1.2 Adaptive Resonance Theory (ART)
To cluster the continuous state space using F/T signal and geometry information the adaptive 
resonance theory (ART) network was used. In this kind of ANN, information is repeatedly 
transferred back and forth between the layers. If  the right pattern is developed during this



process, a stable oscillation occurs. This is the neural network equivalent of resonance. Only at 
this stage does learning occur. This type of ANN is able to respond quickly to previously 
learned data and remains able to learn when novel data is presented.

Because of the analogue nature of F/T signal, the ART2 algorithm was chosen. It differs from 
ART1 structure only in the type of the input patterns. The price for that additional capability is 
an increase in complexity on the “F f ’ processing level which contains a number o f sub-layers 
that serve to remove noise, enhance contrast and to normalise analogue input pattern [8]. The 
overall structure of the ART2 network is shown in Figure 3 bellow.

A t t e n t i o n a l  s u b s y s t e mO r i e n t i n g  s u b s y s t e m
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“P ” s u b - l a y e r
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“U ” S U B -L A Y E R “V ” SU B -LA Y E R

‘X ” SU B -LA Y ER

“W ” SU B-LA Y ER
‘F l ” LAYER

In p u t  V e c t o r

Figure 3 ART2 architecture [8].

The contact point localisation was proposed by Brignone [6]. The algorithm consists of two 
stages: network off-line training and signal classification. During off-line training, the network 
is presented with the set of unary vectors normal to the surfaces forming the hole. In the next 
step, the on-line F/T signal is presented to the pre-trained network, which returns the class 
number corresponding to the location of the contact.

2.2 Software design
The ANN and reinforcement algorithms were created using ANSI C language and compiled 
with GNU C compiler. Whole system was implemented in 200MHz Pentium PC under Debian 
GNU/Linux 3.0 operating system.

A new approach to the design of the system is proposed. The ANN controller was built in a 
modular form (as a plug-in). This simplified the whole design and increased its flexibility 
enabling different ANN controller architectures to be developed and tested. The overall 
structure is shown on the Figure 4.
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3 CONCLUSIONS

During initial tests, the controller was able to accurately cluster and classify the state domain. 
The ART network was responding quickly and accurately selecting the closest match using F/T 
signals and pre-taught geomehy information. The new approach to the software design has 
proved its flexibility. A number of simple controller designs were developed and tested. Using 
this method switching between different controller designs during the insertion process was 
also possible.

Work continues to improve the capability of this system along with extensive testing using a 
range of mechanical components.
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ABSTRACT

The aim of this research is to develop a non-linear controller, which is able to perform an 
intelligent robotic assembly of mechanical components. The design is based on the 
implementation of Artificial Neural Network (ANN) and Reinforcement Learning (RL) 
algorithms. The main aim of this study is the investigation of the different information sources 
and their application to the "peg-in-hole" insertion problem. Amongst these, one source is 
sensorial (signal from force and torque sensor) and the others are descriptive (geometry of 
parts and coded task description). Force and torque data is obtained from a six-axis sensor. The 
presented results show that controller is able to learn the state-action relationship quickly, 
without supervision.

1 INTRODUCTION

Manufacturing could be described as a set of operations and activities performed in order to 
make a final product. It involves product design, planning, production, assembly, inspection and 
marketing. The assembly is one of the most complicated processes in manufacturing [12]. It 
often requires accurate motion control often guided by a vision system.

There is widespread acceptance that the adoption of automated assembly operations could 
provide a solution to the high costs related to the employment of human labour and supervision 
in the execution of such processes. The very first applications o f robots in automated assembly 
techniques have relied on passive accommodation methods [10], simple sensing systems and 
the manipulator’s programming language. These approaches show many restrictions that make 
them unable to deal with complex geometry, and when working with components in an unknown 
environment. Early research work by Simunovic [9] concluded that most common assembly 
operations could be modelled as simple peg-in-hole insertions.
The applications of AI to the peg-in-hole problem range from the employment of various ANN 
algorithms to the application of Fuzzy Inference Systems. Asada [1] pioneered the application
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of backpropagation to assembly tasks, using the network's learning capabilities to approximate 
compliant control laws. Backpropagation based controllers were also developed later by 
Gullapalli [3] and Howarth [4], these two approaches feature substantial differences in the 
architecture of the reinforcement learning rule. Cervera [2] defined a finite set of contact 
configurations and used Self Organising Maps to associate the current contact state to a 
predefined one. Lopez [5] applied a FuzzyARTMAP network to learn the ‘pattern motion’ 
association from a table of pre-taught templates. Brignone in his studies [6] used a similar 
algorithm but extended the problem by merging F/T data and parts geometry. In his work, the 
network was trained with a set o f normalised vectors representing the normal to the surfaces, 
which form the geometry of the hole.

Most of these early algorithm designs share a number of common disadvantages. The slowness 
and poor online performance of Reinforcement Learning algorithms and supervised learning 
methods of contact states are the major limitations. In this paper the novel AI controller 
architecture will be presented. Early results show its ability to learn the state-action mapping 
quickly and without the supervision. The F/T signal and coded task description are sufficient 
enough to perform a successful peg-in-hole assembly.

2 METHODOLOGY

During this research, authors will extend the earlier work by investigating how the AI controller 
should combine different information sources in order to generate a successful assembly 
strategy. The information sources mainly concern: task description; geometry; and online force 
and torque contact data analysis. The originality of this approach lies in the definition of a 
methodology to merge information derived from different sources to attempt an interpretation of 
the contact state, in terms of contact location and peg's attitude. The work carried out on data 
processing and interpretation is used to provide the tools for the definition of the controller's 
decision-making strategy.

The robot arm and controller are the main part of the system. The computer is connected to the 
controller via serial port. The JR3 six axis force and torque sensor was mounted on the robot 
wrist. The closed loop control system is formed by the signal from the sensor transmitted to the 
computer and then used as an input to the controller. The new arm position and orientation 
values are then calculated and the incremental motion request is sent to the controller using the 
robot controller’s terminal emulation mode.

The controller’s structure is shown in Figure 1. It consists two main parts: an ART2 neural 
network and a reinforcement learning algorithm. In order to speed up the learning process a 
large and continuous state space (?) needs to be clustered and generalised. One of the simplest 
methods is to partition the continuous state domain using ANN, and then treat each output class 
as an autonomous object.

2.1 State classification
To cluster the continuous state space using the force and torque signal, and geometry 
information the adaptive resonance theory (ART) network was used [11]. In this kind o f ANN, 
information is repeatedly transferred back and forth between the layers. If the correct pattern is 
developed during this process, a stable oscillation occurs. This is the neural network equivalent 
of resonance. Only at this stage does learning occur. This type of ANN is able to respond 
quickly to previously learned data and remains able to learn when new data is presented.
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Figure 1 The controller’s architecture.

Because of the analogue nature of the F/T signal, the ART2 algorithm was chosen. It differs 
from ART1 structure in the type of the input patterns. The price for that additional capability is 
an increase in complexity at the processing level, which contains a number of sub-layers that 
serve to remove noise, enhance contrast and to normalise the analogue input pattern [8].

In this configuration, the reinforcement algorithm needs to learn the best actions in relation to a 
finite number of states. This geometry and task decomposition is expected to speed up the 
learning process significantly.

2.2 State-action mapping learning
The basic one step Q-learning reinforcement learning algorithm was used to learn the state- 
action relationship. The method is based on the ^-function, defined as followed [7]:

Q(sn at) <^Q(st, a , ) + a rM + r  max Q(sm , aH, ) -  Q(s,, a,) (1)

where: t is a discrete time step, s is a finite set of states, an agent can be in; a is a finite set of 
actions, an agent may perform; Q is a transition function, mapping each state-action pair to a 
successor state; r is a reward function, mapping states-action pairs to payoffs, a  is a learning 
rate and yis a discount factor (these last two ratios are learning parameters).

Due to its nature, the ^-function approximates the optimal action-value function despite of 
applied exploration policy. Theoretically, the optimal function can be learnt under the 
assumption that the controller will experience every state an infinite number of times.

The information flow within the controller looks as follows. First, the F/T signal was acquired 
and classified by ANN. The number indicating a location was used as the state description and 
set as an input to the reinforcement learning algorithm. The appropriate action was calculated 
and decoded. The incremental movement was sent to the robot, which caused the change in 
state, and then a new F/T vector was read which formed another input to the ANN.



3 RESULTS

The ANN and reinforcement algorithms were implemented using ANSI C language running on a 
Pentium PC under the GNU/Linux operating system. The controller’s performance was 
validated during a number of experiments using a Unimation Puma 560 robotic arm. A circular 
peg and 45° chamfered hole was used during the experiments. The clearance between parts was 
0.2mm. The robot was programmed to perform 2,000 successive iterations, each from a random 
start position. The insertion was considered successful and complete when 2/3 of the peg’s 
height was inside the hole. The reward function was implemented as follows. If after the 
movement reacting forces were reduced by 50%, the controller was granted a reward of +5. 
When the contact force increased (by 20%) the controller was rewarded with a value o f -5 . To 
minimise the overall number of steps during the insertion, for every other movement, the value 
of -1 was applied. The ART2 vigilance parameter (p) was set to 0.95 and two different e- 
greedy action-exploration policies were applied (see Figure 2). Nine different actions namely: 
5 translations and 4 rotations were implemented.
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Figure 2 Applied action-exploration policies

The results from the experiments are presented in Figure 3, and Figure 4. In the case of a 
collision the value of -200 was added to the cumulative rewards. The presented data was 
filtered using a moving average window of ten values. Very low rewards during the first few 
iterations indicate that the controller was not able to successfully accomplish the peg-in-hole 
assembly. The transition time could also be observed. During this time, the controller was 
learning (with no supervision), the geometry features and state-action relationship. The 
controller with “Policy I” applied showed a better online performance. The increase in noise 
(see Figure 4) is caused mainly, by a higher number of random movements (more exploration) 
imposed by “Policy II”.

The significant drop in knowledge after 1,600 iterations can also be seen on the graph in Figure
3. There are several reasons for this phenomenon, but at the time of writing, a conclusive 
reason is still being investigated. The knowledge drop may be caused by the ANN



reorganisation its internal structure during the experiment. Work is being carried out to closely 
investigate the problem and to find an appropriate solution.
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Figure 3 Learning results from the experim ent with “Policy I” applied.
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Figure 4 Learning results from the experim ent with “Policy II” applied.

4 CONCLUSIONS

During initial experiments, the controller was able to accurately cluster and classify the state 
domain. The ART network was responding quickly and accurately to the environment and 
successfully selecting the closest match using F/T signals. The controller has showed the ability 
to quickly learn the relationship between sensor data and robot action, and hence to interact 
with the environment. The two information sources, F/T signal and coded task description (in



form of the assembly direction), are sufficient to perform the peg-in-hole assembly. The 
controller was able to develop the insertion policy without any supervision. The geometry 
classification and state-action learning were done automatically. In comparison with previous 
researchers techniques, this approach does not require class labels; peg position and 
orientation; nor any form of off-line learning.

Future work involves experiments using different exploration policies (current work is 
assessing the performance of polices based on Boltzmann’s distribution) and to validate the 
controller’s performance by applying it to different geometry including the non-linear chamfer- 
less problem. The work on stability of the system is currently being carried out.
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1 Introduction
A sse m b ly  operations are am on gst the m o st co m m o n  and  

com p lica ted  in  m anufacturing p ro cess. W orking in  environ­
m ents under h igh  lev e l o f  uncertainty they u su a lly  require  
an accurate m o tio n  control gu id ed  b y  a v isio n  system .

T he early app lication s o f  robots in  autom ated assem b ly  
tech n iques have relied  on  p a ssiv e  accom m od ation  m eth ods, 
sim p le  sen sin g  system s and the m anipu lator’s program m ing  
langu age. T h ese  approaches sh o w  m any restrictions that 
m ake them  unable to  deal w ith  a co m p lex  geo m etry  o f  the  
com ponents. In a typ ica l force gu id ed  a ssem b ly  task, the  
robot’s trajectory corrections are ca lcu la ted  and app lied , 
according to predefined control law s. T h e m ore so p h isti­
cated  force control m eth ods in vo lve  m odification  o f  trajec­
tory based  on continuou s force  feed back  from  the sy stem  
and a task descrip tion .

R ecen tly  a n ew  w ay  o f  program m ing has been  p ro­
p osed . T he in te llig en t control em braces substantia lly  differ­
ent tech n iques that in c lu d e  app lication  o f  k n o w led g e  based  
E xpert S ystem s, A rtific ia l N eural N etw ork s, F u zzy  L o g ic  or 
R ein forcem en t L earning algorithm s. A ll th ese  algorithm s  
are d ifferent in  p r in cip les and based  on  different theories  
but their app lication  share sim ilar  m eth od o logy: an attem pt 
to create an e ffec tiv e  m apping from  sen sory  state sp a ce  to  
the action  dom ain.

A sad a  [1] la id  the foundation  for  the research on  the in ­
te llig en t assem b ly  p ro cess. H is 2 -d im en sio n a l controller, 
although sim p le , w as a m ajor break through in  research on  
in te llig en t p e g -in -h o le  insertion  tasks. T he m ain d isad van­
tages o f  p roposed  d esig n  w ere  its s lo w n ess  and su perv ised  
m eth od  o f  learning. T his in v o lv es the n eed  for  a  p r i o r i  

k n o w led g e  about the environm ent.

C ervera [5] and later B rign on e [3] u sed  a geom etr ica l ap­
proach to lo ca te  the contact states. B o th  m eth ods proved  to  
b e  fast and reliab le  but a  lev e l o f  su p erv ision  w as n eed ed  to  
acco m p lish  the task.

G ullapalli [9] app lied  h is stochastic  rein forcem en t 
m eth od  on  a real l ife  robot. For su ccessfu l learning the  
p e g ’s p o sitio n  and orientation  descrip tion  had to be su pp lied  
to  the system .

M o st current in te llig en t contro ller  d esig n s share a num ­
ber o f  co m m on  d isadvantages. T he poor o n -lin e  perfor-
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m an ce or need  for an ex p lic it  descr ip tion  o f  the environ­
m ent are am on gst the m ajor draw backs in autom ated a s­
sem bly . P erform ing co m p lex  tasks (i.e . p eg -in -h o le  in ­
sertion) the in te llig en t contro ller  o ften  d ea ls w ith  in fin i­
tive, 3 -d im en sio n a l C artesian sp ace. T herefore, for  e ffic ien t  
o n -lin e  state-action  relationsh ip , learning the state dom ain  
sh ou ld  b e  sim plified .

T he aim  o f  th is research w as to  d esig n  a non -lin ear  c o n ­
troller based  on an A rtificia l N eural N etw o rk  and R e in ­
forcem en t L earning a lgorithm s im plem en tation , w h ich  is  
ab le  to  perform  an in te lligen t a ssem b ly  o f  m ech an ica l c o m ­
ponents.

D u ring  this research, the authors w ill ex ten d  the earlier  
w ork by  investiga tin g  h ow  the A I contro ller  sh ou ld  c o m b in e  
different inform ation  sou rces in  order to  generate  a su c c e ss ­
fu l a ssem b ly  strategy. T he in form ation  sou rces m a in ly  c o n ­
cern: task  descrip tion , geom etry, o n -lin e  fo rce  and torque  
contact data an a lysis and in form ation  d erived  from  previ­
ous m o v es. T he orig ina lity  o f  this approach lie s  in the defi­
n ition  o f  a m eth o d o lo g y  to m erge in form ation  deriv in g  from  
different sou rces to  attem pt an interpretation o f  the contact 
state, in term s o f  contact lo ca tio n  and the p e g ’s attitude.

2 Methodology
Early research w ork b y  S im u n o v ic  [12] co n c lu d ed  that 

m o st co m m o n  a ssem b ly  operations co u ld  b e  m o d e led  as 
sim p le  p eg -in -h o le  in sertion s. T h is rep resents a  large nu m ­
ber o f  part m ating operations carried out in  industry. T he  
p e g -in -h o le  m o d el, its d yn am ics, and actin g  fo rces have  
been  w id e ly  stu died  by  researchers [1, 6, 9 , 10, 1 1 ,2 ] .

T he unsu pervised , se lf-o rg a n is in g  a lgorithm s have  rev o ­
lu tion ised  the m o d em  in te llig en t a ssem b ly  m eth o d s and are 
state-of-the-art in robot fo rce  control. T here is  w id esp read  
accep tan ce  that the adoption  o f  autom ated  a ssem b ly  oper­
ations co u ld  p rovide a so lu tio n  to  the h igh  c o sts  related  to  
the em p lo y m en t o f  hum an labour and su p erv isio n  in  the e x ­
ecu tion  o f  su ch  p ro cesses .

T he u se  o f  adaptive and learn ing ca p a b ilitie s  in  the a s­
sem b ly  p ro cess sim p lifie s  the im p lem en tation  and im proves  
the reliab ility  o f  these  sy stem s. T h e m ain  advan tage o f  A I  
approach is  the ab ility  to  so lv e  prob lem s w ith ou t a d eta iled  
or ex p lic it algorithm  availab le  for the so lu tio n . T h is  has a
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trem endous im pact on  d ea lin g  w ith  co m p lex  parts g e o m e ­
try or n o isy  sen sory  sig n a ls  during the a ssem b ly  p ro cess as 
w e ll as the d evelop m en t o f  autom atic error recovery  m eth ­
ods.

2.1 The controller
T he san dw ich  structure o f  the in te llig en t agent w as pro­

p o sed  (se e  F igu re 1). It features tw o  m ajor layers: S ta te  

C lu s te r in g  m od u le , w h ere the detection  and lo ca lisa tio n  o f  
the contact po in ts w ere  perform ed, and the L e a r n in g  A g e n t  

su b system , w h ere  the d ec is io n  about the n ext action  took  
place. T he contro ller  w as d esig n ed  to  rece iv e  tw o  signals  
from  the environm ent. T h e  F /T  sign a l w as acquired from  
the sen sor  and fed  straight to  the S ta te  C lu s te r in g  m odu le . 
T his produ ces a num ber correspon ding  to  the lo ca tio n  o f  
the contact poin t, ca lled  n o w  a s ta te  d e s c r ip t io n .  T h is infor­
m ation togeth er w ith  the reward from  the environ m en t w as  
sent as an input to the L e a r n in g  A g e n t  su b system . In this 
m od u le , the next a c tio n -se lectio n  takes p lace. It resu lts in  
an action  num ber w h ich  is  later d eco d ed  to  the increm ental 
m otion  com m an d  understandable to the robot. T h e robot 
ex ecu tes the m o v e  w h ich  ca u ses the ch an ge in  state. T hen  
the n ew  F /T  vector  is  read and fed  again  to  S ta te  C lu s te r in g  

m odu le. T h is c lo sed  lo o p  p ro cess is  repeated until the stop  
cond ition  occurs.
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F igure 1: C ontroller architecture

T he sy stem  w as im p lem en ted  in  m odular form . T his ap­
proach a llo w s the user to  create d ifferent A I controllers and 
test them  w ithou t any in terference to  the m ain app lication  
code. T he sp ecifica tion  o f  the application  in terface a llo w s  
researchers to fo cu s  on  contro ller  d evelop m en t and im p le ­
m entation w ithou t co d in g  the I/O  operations n eed ed  to  e s ­
tablish  co n n ectio n  w ith  robot.

2.2 The Learning Agent
T his is  the m ain, d ec is io n -m a k in g  part o f  the controller. 

H ere the n ext ac tio n -se lectio n  takes p lace. M any different 
algorithm s w ere app lied  in  the past to learn m anipu lative  
sk ills  during p e g -in -h o le  insertion . T he authors d ec id ed  to 
take a rein forcem en t learning approach to  the problem . T he  
com p lete  insertion  can be considered  as an e p is o d e  (or p lay )  
and every  sin g le  m o vem en t as a s te p .  T he contro ller  w ill  
learn the state-action  relationsh ip  by  co n tin u ou sly  repeating  
the insertions. T his w ill result in d ev e lo p in g  the optim al 
insertion  strategy.

T w o different rein forcem en t learning a lgorithm s w ere  
im p lem en ted  and in d iv id u a lly  tested  nam ely; S A R S A  and  
q -lea m in g . T hey  both  b e lo n g  to  the T em p oral-D ifference  
fa m ily  but d iffer in  the learn ing p o licy . T he three differ­
ent a c tio n -se lectio n  m eth ods w ere  a lso  im p lem en ted  and  
tested . A ll algorithm s w ere  eva lu ated  w ith  the sim ulated  
grid -w orld  environm ent before  b e in g  app lied  on  a real life  
system .

R ein forcem en t learning tasks are g en era lly  treated in d is ­
crete tim e steps. A t each  tim e step  ( / ) ,  the learn ing sy stem  
receiv es so m e  representation  o f  the env iron m en t’s state (s t ), 
it takes an action  ( a t + i ) ,  and o n e  step  later it rece iv es a 
scalar reward (r f + i ) ,  and finds i t s e lf  in a n ew  state ( s t + 1).

T he sign ifican t feature that d istin g u ish es the rein force­
m ent learning approach from  the other artificial in te llig en ce  
a lgorithm s is  its  ab ility  to  learn from  ex p erien ce . T he idea  
is to capture the m o st sign ifican t asp ects o f  the environm ent 
to so lv e  the problem  as o p p o sed  to  su p erv ised  learning a l­
gorithm s, w h ich  are m ain ly  fo c u se d  on find ing the m eth ods  
o f  actin g  [13].

2.2.1 Q-learning

In Q -lea m in g  m ethod , the learnt a c tion -va lu e  fun ction  
Q  d irectly  approxim ates the optim al action -va lu e  fun ction  
Q * ,  ind ep en dently  o f  the p o licy  b e in g  fo llo w e d  (o ff-p o licy ). 
T he p o licy  still has an e ffe c t in  that it d eterm ines w h ich  
state-action  pairs are v isited  and updated. H ow ever, a ll that 
is  required for  correct co n v ergen ce  is that a ll pairs continue  
to b e  updated.

T he Q -lea m in g  algorithm  w as im p lem en ted  after Sutton  
and B arto  [13 ]. T he c la ss  num ber w as se t as an input d e ­
scrib ing the actual contact fo rces. U s in g  th is configuration , 
the rein forcem en t algorithm  n eed s to  learn h o w  to  deal w ith  
a particular part o f  the co m p o n en t’s geom etry . M oreover  
the se lf-learn t geom etry  in form ation  in c lu d es o n ly  o r ien ­
tation o f  the g iv en  p lane. B a se d  o n  that the agent can  be  
trained w ith  a se t o f  su rfaces separately  and then b e  ab le  
to w ork  e ffic ien tly  w ith  an ob ject bu ilt from  th ese  p lan es. 
S o , u n less the part co n sists  o f  a feature w h ich  has n ot b een  
learnt before, the ch an ge o f  geo m etry  (i.e . from  circu lar to  
square p eg ) sh ou ld  not a ffec t the con tro ller’s perform ance  
in the early  stages o f  insertion .

2.2.2 SARSA

T he Q -lea m in g  m eth od  learns the op tim al p o licy . T his  
co u ld  be a d isad vantage in  so m e  a p p lica tion s e sp e c ia lly  
w h en  particularly lo w  rew ards are a ss ig n ed  to  so m e  m o v e ­
m ents. In th ose  ca ses, d esp ite  o f  a p re-lea m t op tim al p o licy , 
due to  exploratory random  action  c h o ic e  the a gen t can  e x ­
p erien ce  an error con d ition  (su dd en  in crea se  o f  fo rces  in  the  
ca se  o f  p eg -a n d -h o le  in sertion ). T h e  S A R S A  m eth od , due  
to the fact that it learns a sa fe  path, is  not a ffec ted  b y  th is  
problem . It is  still p o ss ib le  for  S A R S A  (b y  ap p ly in g  an ap­
propriate a c tio n -se lectio n  m eth od ) to  co n v erg e  to  optim al 
p olicy .



T he S A R S A  a lgorithm  a lso  b e lo n g s to  the T em poral- 
D ifferen ce  m eth od s c la ss . S im ilarly  to Q -lea m in g , S A R S A  
gathers the k n o w led g e  from  the state-action  pairs transitions  
but it lea m s the p o licy  directly. T he o n -lin e  perform ance  
o f  the a lgorithm  depend s on  the app lication  but genera lly  
is  better than in  the c a se  o f  Q -lea m in g . T h e  learn ing o f  
optim al p o licy  relies on  app lied  a c tio n -se lectio n  m ethod. 
E ach state-action  pairs m ust b e  v is ited  an in fin itive  num ber  
o f  tim es to  gain  the b est p o ss ib le  so lu tion . T h is co u ld  be  
ach ieved  b y  ap p ly in g  an e-greedy a c tio n -se lectio n  m eth od  
w h ich  con verges in lim it to greedy  policy .

2.3 State Clustering module
To learn an appropriate action  the rein forcem en t learning  

agent requires a clear defin ition  o f  the state. T h is inform a­
tion  can  b e  constructed  from  a lm ost any data acquired from  
the environm ent. In m o st ca se s the raw sig n a ls  have  to  be  
preprocessed  or c la ssified  and in so m e  app lication s the state  
can b e  bu ilt from  a com bination  o f  tw o  or m ore features. 
A ccord in g  to  rein forcem en t learning theory, the preprocess­
in g  sy stem  is  n o m in a lly  a part o f  the environm ent [13 ]. It 
is  c lear from  F igure 1 that in  the prop osed  d esig n  the pre­
p ro cessin g  m od u le  is  p laced  as a part o f  the controller. T he  
reason for it is  the fact that app lied  m eth od s o f  c la ssifica tio n  
are fu lly  se lf-ad ap tin g  and together w ith  the rein forcem en t 
learning agent they form  an in te lligen t controller. A lth ou gh , 
it sh ou ld  b e  em p h asised  at th is po in t that the p rep rocessin g  
sy stem  is not a part o f  a reinforcem en t learning agent. B oth  
su b sy stem s w ork ind ep en dently  o f  each  other and serve d if­
ferent purposes. T he d ec is io n  about the next action  is taken  
b y  the agent w ithou t k n ow in g  h ow  the state sign a l w as c o n ­
structed.

T he c h o ic e  o f  the b est action  for a particular state is not 
an ea sy  task. T he d ec is io n  has to  be m ade based  on im ­
m ediate  rew ards but the overa ll perform ance a lso  n eed s to  
b e  taken in to  account. M aking  the c h o ice  by  m onitoring  
ju st the im m ed iate  sensation s w ill s ign ifican tly  a ffect the  
agent’s learning sp eed  sin ce , very o ften , the action s w ith  
poor im m ed ia te  rewards can produce g o o d  resu lts on  the  
g lob a l (task) sca le .

T he states that feature the M arkovian property p lay  a s ig ­
nificant ro le  in the reinforcem en t learning p rocess. T h e fact 
that past sen sa tion s are retained in  the current state m akes  
the d ec is io n -m a k in g  process history independent. In the  
other w ords a ll that m atters for the future is  in c lu d ed  so  
the agent can  predict the n ext state ( s t + 1) and reward ( r t + 1) 
b ased  on  current state (S t) and the action  ( a t ). T h is very  
im portant feature is  essen tia l for  a fast, reliab le  d e c is io n ­
m aking process. T he n ext action  ch o ice  w h ich  is b a sed  on  
the state sign a l w ith  M arkovian property is  as g o o d  as the  
d e c is io n  based  on the entire h istory o f  the task  [13].

T he S ta te  C la s s if ic a t io n  m od u le  w as d esig n ed  to  gener­
a lise  the large and continuou s state sp ace. In the authors’ 
app lication  the o n ly  sensory  sig n a l from  the environ m en t is  
in the form  o f  a force and torque signal. B eca u se  o f  that, 
the u n su pervised  pattern recogn ition  or, in the other w ords,

fun ction  approxim ation sy stem  n eed s to  b e  im plem ented .

2.3.1 Action-selection methods

R ein forcem en t learning estim ates the action  taken rather 
than instructing the system . T h is feature has b een  w id e ly  
used  for  fun ction  optim isation , and is  a b a sis  o f  ev o lu tio n ­
ary algorithm s [13 ]. T h e  agent eva lu ates h ow  g o o d  an ac­
tion  taken is , but not i f  it  is  the correct c h o ice . T h e  instruc­
tive  approach, on  the other hand, is  an action  independent 
approach and ind icates the b est kn ow n  so lu tion .

T h e action  dependant, eva lu ative  feed b a ck  approach re­
quires the agent to d ec id e  h o w  far to  exp lo re  the environ­
m ent or to ex p lo it the current k n o w led g e . T h is d ec is io n  
m aking  p rocess is  ca lled  e x p lo r a tio n - e x p lo i ta t io n  d i le m m a  

and can sign ifican tly  in flu en ce  the o n -lin e  perform ance o f  
the rein forcem en t learning a lgorithm  [13 ]. T h e su perv ised  
m eth ods im p lem en t the ex p loration -exp lo ita tion  trad e-o ff  
ex p lic itly , re ly in g  h ea v ily  on  the expert k n o w led g e . T hree  
d ifferent a c tio n -se lectio n  m eth od s w ere  im p lem en ted  and  
tested  by  the authors. T h ey  d iffer  in p r in cip les and app lica ­
tions:

•  G reedy a ctio n -se lectio n . T h is m eth od  re lies  entirely  
on  k n o w led g e  exp lo ita tion . T he agent a lw a y s c h o o se s  
the action  w ith  the h ig h est e stim ated  va lue. T his  
m eans that no  exp loration  o f  the environ m en t takes 
p lace. It perform s p o orly  w ith  the co m p lex  environ­
m ent and rarely p rodu ces an optim al result. Its lim ita ­
tion  lie s  in  the fact that it ign o res other action s w h ich  
m ay produce better resu lts in  the lo n g  run. H ow ever, 
th is m eth od  perform s very w e ll  in  n o n -co m p lex  e n ­
v ironm ents w here the sy stem  k n o w s ea ch  action  a f­
ter trying it o n ce  (reward varian ce equal to  zero ). In  
the ca se  o f  greedy  a c tio n -se lec tio n  the probab ility  o f  
g reedy  action  (a 9) is  equal to  o n e  for every  ep iso d e  
( P ( a 5 ) =  1).

•  e-greed y  actio n -se lectio n . It is a very sim ilar  approach  
to the greedy  m ethod . T h e agent still c h o o se s  the a c ­
tion  w ith  the h ig h est estim ated  v a lu e  but a lso  a llo w s  
the exp loration  w ith  a sm all probab ility  e. T h e  m eth od  
w as im p lem en ted  in  the w a y  so  the v a lu e  o f  e depend s  
on  the num ber o f  the current e p iso d e . T h is red uces  
the am ount o f  exp loration  as the num ber o f  p lays in ­
creases. T he probab ility  o f  greed y  action  a 9 w a s se t as 
fo llo w s:

Piflg) =  1 — e + "j r (1)|a|
w h ere e depend s on  the actual e p iso d e  num ber.

T he m ain advantage o f  th is p o licy  o ver  the greed y  
a ctio n -se lectio n  m eth od  is  the fa c t that w ith  the in ­
crease  o f  ep iso d es, every  p o ss ib le  action  can  b e  tried  
and evaluated  an in fin ite  num ber o f  tim es [1 3 ]. T h e  e- 
g reedy  a c tio n -se lectio n  m eth od  guarantees that during  
exp loration  tim e every action  has an un iform  ch a n ce  to



b e  ch o sen . T h is is ind ep en dent o f  its estim ated  value  
so  ev en  the action s w ith  the lo w e st v a lu es can  be ap­
p lied . T h is feature is  h igh ly  undesirab le in  the environ­
m ents w h ere the ’’bad” action s co u ld  have ser iou s im ­
p lica tio n s on  sy stem  sa fety  and p erform ance (i.e  w ork­
p iece  dam age, robot co llis io n ).

•  S o ftm a x  actio n -se lectio n . In this m eth od  the probab il­
ity  o f  each  action  is  a fun ction  o f  its estim a ted  value. 
T h e uniform  c h o ice  in the form  o f  random  fun ction  
present in e-greed y  m eth od  has been  rep laced  w ith  a 
sy stem  o f  w e ig h ted  action s. In S o ftm a x  se lec tio n  p o l­
icy  the probab ility  o f  c h o o sin g  the action  is  u sually  
govern ed  b y  G ibbs d istribution , descr ib ed  as fo llo w s:

p/3*Qi

P(ai) = ^

w h ere (3 is  a ratio w h ich  determ ines h o w  m uch e x ­
ploration  the agent is  a llo w ed  to  take. W h en  (3 =  0  
the action s are se lec ted  random ly and for (3 —> oo the  
greedy  p o licy  is app lied . In b etw een  the ab ove  lim its  
the action s w ith  the h ig h est estim ated  va lue still have  
the h ig h est probab ility  o f  b e in g  ch o sen . A lth ou gh  the  
a ction s sh o w in g  the lo w est estim ated  va lues have a rel­
a tively  sm all ch ance o f  b e in g  app lied . T his approach  
favour the ’’g o o d ” action s over the ’’bad” o n es.

2 .3 .2  T h e  A R T 2  A N N

A d aptive R eso n a n ce  T heory (A R T ) w as d ev e lo p ed  by  
Steph en  G rossberg and G ail Carpenter over  the period  o f  
1 9 7 6 -8 6 , during their stu d ies o f  the behaviou r o f  m od els  
o f  sy stem s o f  neurons [8, 4 ]. A R T  w as d ev e lo p ed  to so lv e  
the learning instab ility  problem  su ffered  by  standard fe ed ­
forw ard netw orks. T he w e ig h ts  w h ich  have captured so m e  
k n o w led g e  in  the past co n tin u e  to  ch a n g e  as new  k n o w l­
e d g e  c o m es in. There is , therefore, a danger o f  lo s in g  the 
o ld  k n o w led g e  w ith  tim e.

A d aptive R eso n a n ce  T heory  gets its nam e from  the par­
ticular w ay  in w h ich  learning and recall interp lay in  the net­
w ork. In this type o f  netw ork, in form ation  in the form  o f  
p ro cessin g  e lem en t outputs reverberate back  and forth b e ­
tw een  layers. I f  the proper patterns d ev e lo p , a stab le  o s ­
c illa tio n  occu rs. T his is the neural-netw ork  equ iva len t o f  
resonance. O n ly  during this stage  can learning take p la ce

[7].
A  r e s o n a n c e  can b e  attained in  on e  o f  tw o  w a y s. I f  the  

netw ork has learnt to reco g n ise  the input pattern before  then  
the resonant state w ill be  ach iev ed  qu ick ly  w h en  the in ­
put vector  is  presented . D uring this state the m em ory  o f  
the stored pattern w ill be reinforced . I f  the input vector  is  
n ot reco g n ised  the netw ork w ill lo o k  in  the stored patterns 
database for  a m atch. I f  no  m atch is  foun d the netw ork w ill  
enter the resonant state and the n ew  pattern w ill b e  stored  
for  the first tim e. T hanks to this d esig n  the netw ork  is  able  
to respond qu ick ly  to  p rev iou sly  learnt data, y e t rem ains 
able to learn new  patterns.

T he author’s im plem entation  is b ased  on the algorithm  
d escrib ed  b y  Ferrm an and Skapura [7]. A fter  the in itial 
tests the problem s w ith  data stab ilisation  on the F \  layer  
occurred and so m e  m od ifica tion s had to be m ade.

T he contact b etw een  p eg  and h o le  can  be m o d elled  w ith  
the N ew to n  equations for  the r ig id  body. Furtherm ore, rep­
resen ting the insertion  as a quasi static  transition o f  states 
sim p lifie s  the equations greatly, rem ovin g  them  from  the  
tim e dom ain. T h e raw F /T  sign a l w as set as an input to 
the netw ork. T he signal prep rocessin g  w as not necessary  
sin ce  norm alisation  and contrast enhan cem ent is perform ed  
b y  the A R T 2 netw ork. A fter  su ccessfu l c la ssifica tion  o f  the 
state d escrip tion  in  the form  o f  c la ss  num ber w as sen t as an  
input to  the L e a r n in g  A g e n t .

C h o o sin g  to  partition the state sp ace, it w as d iv id ed  in to  
a set o f  c la sse s  u sin g  in form ation  extracted  o n -lin e  from  
the part geom etry. T h e authors’ approach sig n ifican tly  d if­
fers from  the other researchers w h ere the g eom etr ica l m o d e l 
w as su pp lied  and extracted from  the C A D  draw ing. In this 
research the g eom etry  is  learnt o n -lin e  in  an un su pervised  
m anner u sin g  o n ly  force  and torque sign a ls .

3 Experimental setup
T he sy stem  w a s im p lem en ted  u sin g  P um a 5 6 0  and later  

Staubli R X 9 0  robots. T he robotic  arm and contro ller  are 
the m ain parts o f  the system . T he s u p e r v i s o r y  com puter  is  
c on n ected  to  the contro ller  v ia  a seria l port. T h e  sen sor  w a s  
m oun ted  on  the robot’s w rist (se e  F igu re 2 ). T h e F /T  sign a l 
is transm itted to the com puter and then used  as an input 
to  the A I controller. T h e  n ew  arm p o sitio n  and orientation  
valu es are ca lcu lated . T he increm ental m o tio n  request is  
sen t to  the contro ller  u sin g  te r m in a l  co m m u n ica tio n  m od e.

Supervisory
Computer

F igure 2: E xperim ental setup

T he p roposed  d esig n  guarantees a stab le  co m m u n ica tio n  
and fast, b i-d irectional in form ation  flo w  b e tw een  the d e ­
v ice s . T h ese  characteristics are very  im portant s in ce  the e x ­
perim ental setup is  ex p ected  to  w ork co n tin u o u sly  for se v ­
eral days undertaking num erous p e g -in -h o le  in sertion s.

T h e feed b a ck  sign a l to  the L e a r n in g  A g e n t  w a s p rovided  
by F orce and Torque (F /T ) sen so r  m ou n ted  on  the ro b ot’s 
w rist. T he JR3 sensor  w ith  internal e lectro n ic  and receiver
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card for IS A  (IB M -A T ) bus w a s ch o sen  s in ce  it provides  
force  and torque data w ith  very lo w  n o ise . T he sensor  w as  
pre-calibrated  w ith  m axim um  lo a d s 15 lb s on  X  and Y  axes  
and 3 0  lb s on  Z  ax is.

T he in fluence  o f  a c tio n -se lectio n  m eth ods onto  A I agent 
perform ance w as analysed . T h e  prop osed  contro ller  w as  
app lied  to  a set o f  real l ife  p eg-a n d -h o le  experim en ts. 
T he circular p eg  g eo m etr ies  w ere  used , and insertion s into  
cham fered  and non -ch am fered  h o le s  w ere  perform ed. M a­
terials w ith  d ifferent fr iction  factors (rubber and alum inium  
p eg s) w ere  u sed  for  m ating parts.

4 Results
T h e p roposed  controller  w a s app lied  on  a set o f  tests to  

evaluate its o n -lin e  perform ance w ork ing  w ith  co m p lex , 3- 
dim ension a l environm ents. E very  experim en t w a s started  
w ith  no  external k n o w led g e  su pp lied  to the system . O nly  
the gu id an ce  tow ards the h o le ’s bottom  w as im plem ented .

O nly the resu lts from  the experim en ts u sin g  Q -lea m in g  
algorithm  w ith  S oftm ax  a ctio n -se lectio n  p o licy  are pre­
sented. T he Q -lea m in g  and S A R S A  algorithm s perform ed  
very sim ilarly. T hey  both  con verged  to  the sam e value  
o f  cum ulative  rewards (-1 5 ). T he transition tim e w h en  
S A R S A  algorithm  w as used  w as exten ded  to 2 0 0  ep iso d es  
w h ile  it took  4 0  e p iso d es  for the Q -lea m in g  agent to  sta­
b ilise  the learning curve.
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F igu re 4: Q -lea m in g  agent app lied  on  rubber peg .

To investigate  the contro ller’s ab ility  to  deal w ith  the  
tasks in v o lv in g  the geom etry  w h ere  the fo r ce -v e lo c ity  d o ­
m ains are not linearly  m appable (non -lin ear  p rob lem s) the  
ch am fer-less cy lind rica l h o le  w a s used .
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F igure 3: Q -lea m in g  agent app lied  on  a lum inium  peg .

O ccasion a l c o llis io n s  or ja m m ed  con d ition s w ere reg is­
tered during the steady state o f  the k n o w led g e  acqu isition  
(see  F igure 3 ). T hey  w ere  cau sed  b y  the agent execu tin g  
the random  action s fo llo w in g  the a c tio n -se lectio n  policy . 
H ow ever, the interrupted insertion s d id  not a ffect the pre­
learnt k n o w led g e  and did not in flu en ce  the contro ller’s on ­
lin e  perform ance.

T he app lication  o f  the rubber type p eg  d id  not a ffect the  
con tro ller’s ab ility  to  learn (se e  F igure 4 ). T he usage  o f  
le s s  r ig id  m aterial resu lted  in low er, m ore stab le force  read­
ing during the steady state. It a lso  s ign ifican tly  reduced the  
num ber o f  co llis io n s .

Episodes

F igure 5: Q -lea m in g  agent app lied  on  n o n -ch am fered  h o le .

T he transition tim e w as m uch  lo n g er  than in  the c a se  o f  
in sertion s in to  cham fered  h o le  (se e  F igu re 5 ). T h is in d i­
ca tes that the contro ller  w as particu larly stru gg lin g  w ith  the  
first part o f  the h o le ’s geom etry. A fter  the strategy for  the 
entrance sec tio n  w as d ev e lo p ed  the the rest o f  in sertion  task  
w as q u ick ly  learnt.

5 Conclusions
F ast and stab le  k n o w led g e  a cq u isition  w a s c lea rly  present 

in a ll the ca ses  investigated . A  sig n ifican t red uction  in  c o n ­
tact fo rces va lue during the in itia l stage  o f  the learn ing pro­
c e ss  w a s recorded . T he force  w as u su a lly  red u ced  to  on e  
tenth o f  the in itia l va lue. S o m e  fluctuations w ere  recorded  
but w h en  the cy lind rica l p eg  w as co n sid ered  the va lue  o f  
contact forces never ex ceed ed  0 .5  N  during the stead y  state.



T he fu lly  u n su pervised  contro ller  w ith  the ab ility  to deal 
w ith  co m p lex , 3 -d im en sio n a l g eom etry  w as p roposed , im ­
p lem en ted  and tested . T he k n o w led g e  acqu isition  w as  
clearly  present in a ll investiga ted  cases. A lso , the contact 
forces and torque v a lu es w ere  sig n ifican tly  red uced  w h ile  
the insertion  progressed .

D ifferen t in form ation  sou rces w ere  an a lysed  and app lied  
to  the system . T he sen sory  sig n a ls in  form  o f  force and  
torque read ings and d escrip tive in  the form  o f  a ssem b ly  d i­
rection  w ere em p lo y ed  to  p e g -in -h o le  insertion . It w as d e ­
c id ed  and em p irica lly  proved that any form  o f  pre-training  
or task  d escrip tion  is not n ecessary  to  su ccessfu lly  learn the  
assem b ly . T h e h istory w a s a lso  in c lu d ed  and w a s em b od ied  
as a part o f  the rein forcem en t learning algorithm s.

T he autom atic state recogn ition  and c lu stering  w as in ­
vestigated . T he contact states w ere  analysed  and c la ssified  
u sin g  the im plem ented  m o d u le  for geom etry  c lassifica tion .

T he p roposed  contro ller  w orked  w ith  no  su p erv ision  and  
ga in ed  all the k n o w led g e  autom atica lly  from  exp erien ce . 
T h e sy stem  w as im p lem en ted  and tested  u sin g  a P um a 5 6 0  
robotic arm and Staubli R X 9 0 .

T he agent perform ed excep tio n a lly  w e ll w ith  the c y lin ­
drical p eg -a n d -h o le  geom etry. A fter  short in itia l stage it 
m anaged  to  estab lish ed  the strategy to su cc e ssfu lly  a c co m ­
p lish  the insertion  task. S o m e  d ifficu lties w ere  experi­
en ced  w h en  cham fered  h o le  w as investigated  but the learn­
in g  sk ills  and a b ilities to co p e  w ith  co m p lex  3 -d im en sion a l 
geom etry  are c learly  present.
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